
Intel® 80303 -1/0 Processor
Developer's Manual •

in1:et

Intel@ 80303 I/O Processor
Developer's Manual

Revision 0.5

May 2000

Order Number: 273353-001

Intel@ 80303 liD Processor int:et

Information in this document is provided in connection with Intet" products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale andlor use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intet" 80303 1/0 Processor Developer's Manual may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1 ~800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2000

'Other brands and names are the property of their respective owners.

ii Developer's Manual

Intel@ 80303 110 Processor

Contents
1 Introduction .. 1-1

1.1 Intel® 80303 I/O Processor .. 1-1
1.2 Intel® 80303 I/O Processor Features ... 1-2

1.2.1 PCI-to-PCI Bridge Unit... ... 1-2
1.2.2 Internal Bus ... 1-2
1.2.3 Private PCI Device Support .. 1-3
1.2.4 DMA Controller ... 1-3
1.2.5 Address Translation Unit .. 1-3
1.2.6 Messaging Unit ... 1-3
1.2.7 Memory Controller .. 1-3
1.2.8 Application Accelerator Unit... ... 1-3
1.2.9 Performance Monitoring Unit .. 1-4
1.2.10 12C Bus Interface Unit ... 1-4
1.2.11 GPIO Interface Unit .. 1-4
1.2.12 Secondary PCI Arbitration Unit.. ... 1-4

1.3 Terminology and Conventions ... 1-5
1 .3.1 Representing Numbers ... 1-5
1.3.2 Fields .. 1-5
1.3.3 Specifying Bit and Signal Values .. 1-5
1.3.4 Signal Name Conventions .. 1-5
1.3.5 Terminology .. 1-6

2 Data Types and Memory Addressing Modes .. 2-1

2.1 DataTypes .. 2-1
2.1.1 Word/Dword Notation ... 2-2
2.1.2 Integers ... 2-2
2.1.3 Ordinals .. 2-3
2.1.4 Bits and Bit Fields ... 2-3
2.1.5 Triple and Quad Words ... 2 -3
2.1.6 Register Data Alignment.. ... 2-3
2.1.7 Literals .. 2-4

2.2 Bit and Byte Ordering in Memory ... 2-4
2.3 Memory Addressing Modes ... 2-4

2.3.1 Absolute .. 2-5
2.3.2 Register Indirect .. 2-5
2.3.3 Index with Displacement ... 2-5
2.3.4 IP with Displacement .. 2-6
2.3.5 Addressing Mode Examples ... 2-6

3 Programming Environment. ... 3-1

3.1 Overview .. 3-1
3.2 Registers and Literals as Instruction Operands ... 3-2

3.2.1 Global Registers ... 3-3
3.2.2 Local Registers ... 3-3
3.2.3 Register Scoreboarding .. 3-4
3.2.4 Literals .. 3-4

Developer's Manual iii

Intel@ 80303 110 Processor

3.2.5 Register and Literal Addressing and Alignment... ... 3-4
3.3 Memory-Mapped Control Registers (MMRs) ... 3-6

3.3.1 Intel® i960® Core Processor Function Memory-Mapped Registers 3-6
3.3.1.1 Restrictions on Instructions that Access the

Intel® i960® Core Processor Memory-Mapped Registers 3-6
3.3.1.2 Access Faults for Intel® i960® Core Processor MMRs 3-7

3.3.2 Intel® 80303 I/O Processor Peripheral Memory-Mapped Registers 3-7
3.3.2.1 Accessing The Peripheral Memory-Mapped Registers 3-8

3.4 Architecturally Defined Data Structures ... 3-9
3.5 Memory Address Space .. 3-10

3.5.1 Memory Requirements ... 3-11
3.5.2 Data and Instruction Alignment in the Address Space ... 3-12
3.5.3 Byte, Word and Bit Addressing '" ... 3-12
3.5.4 Internal Data RAM .. 3-13
3.5.5 Instruction Cache .. 3-13
3.5.6 Data Cache ... 3-13

3.6 Processor-State Registers ... 3-13
3.6.1 Instruction Pointer (IP) Register. ... 3-13
3.6.2 Arithmetic Controls Register - AC .. 3-14

3.6.2.1 Initializing and Modifying the AC Register .. 3-14
3.6.2.2 Condition Code (AC.cc) .. 3-15

3.6.3 Process Controls Register - PC ... 3-16
3.6.3.1 Initializing and Modifying the PC Register .. 3-17

3.6.4 Trace Controls (TC) Register .. 3-17
3.7 User-Supervisor Protection Model ... 3-18

3.7.1 Supervisor Mode Resources .. 3-18
3.7.2 Using the User-Supervisor Protection Mode!.. .. 3-19

4 Cache and On-Chip Data RAM .. .4-1

4.1 Internal Data RAM ... 4-1
4.2 Local Register Cache .. 4-2
4.3 Instruction Cache ... 4-3

4.3.1 Enabling and Disabling the Instruction Cache4-4
4.3.2 Operation While the Instruction Cache Is Disabled4-4
4.3.3 Loading and Locking Instructions in the Instruction Cache4-4
4.3.4 Instruction Cache Visibility4-5
4.3.5 Instruction Cache Coherency ... ,4-5

4.4 Data Cache .. 4-5
4.4.1 Enabling and Disabling the Data Cache .. .4-5
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache4-6
4.4.3 Data Cache Fill Policy .. .4-6
4.4.4 Data Cache Write Policy .. .4-7
4.4.5 Data Cache Coherency and Non-Cacheable Accesses .. .4-8
4.4.6 External I/O Bus Masters and Cache Coherency .. .4-8
4.4.7 Data Cache Visibility ... 4-8

5 Instruction Set Overview ... 5-1

5.1 Instruction Formats .. 5-1
5.1.1 Assembly Language Format.. ... 5-1
5.1.2 Instruction Encoding Formats ... 5-2
5.1.3 Instruction Operands .. 5-3

/nte/@ 80303 liD Processor

5.2 Instruction Groups ... 5-4
5.2.1 Data Movement .. 5-5

5.2.1.1 Load and Store Instructions .. 5-5
5.2.1.2 Move ... 5-6
5.2.1.3 Load Address .. 5-6

5.2.2 Select Conditional ... 5-6
5.2.3 Arithmetic .. 5-7

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract 5-7
5.2.3.2 Remainder and Modulo ... 5-8
5.2.3.3 Shift, Rotate and Extended Shift ... 5-8
5.2.3.4 Extended Arithmetic .. 5-9

5.2.4 Logical .. 5-9
5.2.5 Bit, Bit Field and Byte Operations ... 5-10

5.2.5.1 Bit Operations ... 5-10
5.2.5.2 Bit Field Operations ... 5-10
5.2.5.3 Byte Operations .. 5-10

5.2.6 Comparison .. 5-11
5.2.6.1 Compare and Conditional Compare .. 5-11
5.2.6.2 Compare and Increment or Decrement... .. 5-12
5.2.6.3 Test Condition Codes .. 5-12

5.2.7 Branch .. 5-12
5.2.7.1 Unconditional Branch .. 5-13
5.2.7.2 Conditional Branch .. 5-13
5.2.7.3 Compare and Branch .. 5-14

5.2.8 Call/Return .. 5-15
5.2.9 Faults .. 5-16
5.2.10 Debug ... 5-16
5.2.11 Atomic Instructions ... 5-17
5.2.12 Processor Management .. 5-17

5.3 Performance Optimization ... 5-18
5.3.1 Instruction Optimizations .. 5-18

5.3.1.1 Load / Store Execution Model ... 5-18
5.3.1.2 Compare Operations ... 5-18
5.3.1.3 Microcoded Instructions .. 5-18
5.3.1.4 Multiply-Divide Unit Instructions .. 5-19
5.3.1.5. Multi-Cycle Register Operations ... 5-19
5.3.1.6 Simple Control Transfer .. 5-19
5.3.1.7 Memory Instructions .. 5-20
5.3.1.8 Unaligned Memory Accesses .. 5-20

5.3.2 Miscellaneous Optimizations .. 5-21
5.3.2.1 Masking of Integer Overflow ... 5-21
5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions 5-21
5.3.2.3 Use Global Registers (gO - g14) As Destinations for MDU Instructions 5-21
5.3.2.4 Execute in Imprecise Fault Mode .. 5-21

5.3.3 Cache Control ... 5-21

6 Instruction Set Reference .. 6-1

6.1 Notation ... 6-2
6.1.1 Alphabetic Reference ... 6-2
6.1.2 Mnemonic ... 6-2
6.1.3 Format .. 6-2
6.1.4 Description '" ... 6-3

Developer's Manual v

Intel® 80303 110 Processor int'et
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11

Action .. 6-3
Faults .. 6-5
Example .. 6-5
Opcode and Instruction Format .. 6-5
See Also ... 6-5
Side Effects ... 6-5
Notes .. 6-5

6.2 Instructions .. 6-6
6.2.1 ADD<cc> .. 6-6
6.2.2 addc .. 6-9
6.2.3 addi, addo ... 6-10
6.2.4 alterbit ... 6-11
6.2.5 and, andnot ... 6-12
6.2.6 atadd ... 6-13
6.2.7 atmod .. 6-14
6.2.8 b, bx .. 6-15
6.2.9 bal,balx .. 6-16
6.2.10 bbc, bbs .. 6-17
6.2.11 BRANCH<cc> ... 6-18
6.2.12 bswap ... 6-20
6.2.13 eall .. 6-21
6.2.14 calls ... 6-22
6.2.15 calix ... 6-24
6.2.16 chkbit .. 6-25
6.2.17 clrbit .. 6-26
6.2.18 cmpdeci, cmpdeco .. 6-27
6.2.19 cmpinci, cmpinco .. 6-28
6.2.20 COMPARE .. 6-29
6.2.21 COMPARE AND BRANCH<cc> ... 6-30
6.2.22 concmpi, concmpo .. 6-32
6.2.23 dectl .. 6-33
6.2.24 divi, divo .. 6-38
6.2.25 ediv ... 6-39
6.2.26 emul .. 6-40
6.2.27 eshro ... 6-41
6.2.28 extract ... 6-42
6.2.29 FAULT<cc> ... 6-43
6.2.30 flushreg ... 6-44
6.2.31 fmark ... 6-45
6.2.32 halt .. 6-46
6.2.33 iectl .. 6-47
6.2.34 intetl .. 6-53
6.2.35 intdis ... 6-54
6.2.36 inten .. 6-55
6.2.37 LOAD .. 6-56
6.2.38 Ida ... 6-59
6.2.39 mark .. 6-60
6.2.40 modac ... 6-61
6.2.41 modi .. 6-62
6.2.42 modify ... 6-63

vi Developer's Manual

7

6.2.43
6.2.44
6.2.45
6.2.46
6.2.47
6.2.48
6.2.49
6.2.50
6.2.51
6.2.52
6.2.53
6.2.54
6.2.55
6.2.56
6.2.57
6.2.58
6.2.59
6.2.60
6.2.61
6.2.62
6.2.63
6.2.64
6.2.65
6.2.66
6.2.67
6.2.68
6.2.69

Inte/@ 80303 110 Processor

modpc ... 6-64
modtc .. 6-65
MOVE ... 6-66
muli, mulo ... 6-68
nand .. 6-69
nor ... 6-70
not, notand .. 6-71
notbit ... 6-72
notor .. 6-73
or, ornot .. 6-74
remi, remo ... 6-75
ret. ... 6-76
rotate ... 6-78
scanbit .. 6-79
scan byte ... '" ... 6-80
SEL<cc> ... 6-81
setbit ... 6-82
SHIFT ... 6-83
spanbit .. 6-85
STORE ... 6-86
subc .. 6-90
SUB<cc> ... 6-91
subi, subo ... 6-93
syncf ... 6-94
sysctl ... 6-95
TEST <cc> ... 6-99
xnor, xor .. 6-100

Procedure Calls ... 7-1

7.1 Call and Return Mechanism ... 7-2
7.1.1 Local Registers and the Procedure Stack .. 7-2
7.1.2 Local Register and Stack Management.. .. '" 7-3

7.1.2.1 Frame Pointer ... 7-3
7.1.2.2 Stack Pointer ... 7-4
7.1.2.3 Considerations When Pushing Data onto the Stack 7-4
7.1.2.4 Considerations When Popping Data off the Stack 7-4
7.1.2.5 Previous Frame Pointer .. 7-4
7.1.2.6 Return Type Field .. 7-5
7.1.2.7 Return Instruction Pointer ... 7-5

7.1.3 Call and Return Action .. 7-5
7.1 .3.1 Call Operation ... 7-6
7.1.3.2 Return Operation ... 7-6

7.1.4 Caching Local Register Sets .. 7-7
7.1.4.1 Reserving Local Register Sets for High Priority Interrupts 7-8

7.1.5 Mapping Local Registers to the Procedure Stack ... 7-11
7.2 Modifying the PFP Register ... 7-12
7.3 Parameter Passing .. 7-13
7.4 Local Calls ... 7-14
7.5 System Calls .. 7-15

7.5.1 System Procedure Table .. 7-15
7.5.1.1 Procedure Entries ... 7-16

Developer's Manual vii

Intel@ 80303 110 Processor

7.5.1.2 Supervisor Stack Pointer .. 7-17
7.5.1.3 Trace Control Bit ... 7 -17

7.5.2 System Call to a Local Procedure .. 7-17
7.5.3 System Call to a Supervisor Procedure .. 7 -17

7.6 User and Supervisor Stacks .. 7 -18
7.7 Interrupt and Fault Calls .. 7-18
7.8 Returns .. 7-19
7.9 Branch-and-Link .. 7-20

8 PCI and Peripheral Interrupt Controller Unit .. 8-1

8.1 Overview .. 8-1
8.1.1 The Intel® 80303 1/0 Processor Core Interrupt Architecture 8-2
8.1.2 Software Requirements For Interrupt Handling .. 8-2
8.1.3 Interrupt Priority .. 8-3
8.1.4 Interrupt Table : .. 8-4

8.1.4.1 Vector Entries ... 8-5
8.1.4.2 Pending Interrupts ... 8-5
8.1.4.3 Caching Portions of the Interrupt Table .. 8-5

8.1.5 Interrupt Stack And Interrupt Record .. 8-6
8.1.6 Posting Interrupts .. 8-7

8.1.6.1 Posting Software Interrupts via sysctl ... 8-7
8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table 8-8
8.1.6.3 Posting External Interrupts .. 8-8
8.1.6.4 Posting Hardware Interrupts ... 8-8

8.1.7 Resolving Interrupt Priority .. , 8-9
8.1.8 Sampling Pending Interrupts in the Interrupt Table .. 8-10
8.1.9 Savi ng the I nterrupt Mask ... 8-11

8.2 The Intel® i960® Core Processor Interrupt Controller. ... 8-12
8.2.1 Interrupt Controller Dedicated Mode ... 8-14
8.2.2 Interrupt Detection .. 8-15
8.2.3 Non-Maskable Interrupt (NMI#) .. 8-16
8.2.4 Timer Interrupts .. 8-16
8.2.5 Software Interrupts ... 8-16
8.2.6 Interrupt Operation Sequence .. 8-16
8.2.7 Setting Up the Interrupt Controller .. 8-17
8.2.8 Interrupt Service Routines .. 8-18
8.2.9 Interrupt Context Switch ... 8-18

8.2.9.1 Servicing An Interrupt From Executing State .. 8-19
8.2.9.2 Servicing An Interrupt From Interrupted State .. 8-19

8.3 Theory of Operation ... 8-20
8.4 Intel® 80303110 Processor Interrupts .. 8-21

8.4.1 PCllnterrupt Routing .. 8-23
8.4.2 Intel® 80303110 Processor: External Interrupt Interface .. 8-23
8.4.3 Intel® 80303110 Processor: Internal Peripheral Interrupt Routing 8-24

8.4.3.1 XINT6# Interrupt Sources ... 8-24
8.4.3.2 XINT7# Interrupt Sources ... 8-25
8.4.3.3 NMI# Interrupt Sources ... 8-25

8.4.4 PCI Outbound Doorbell Interrupts .. 8-27
8.5 Default Status .. 8-28

8.5.1 Interrupt Controller Register Access Requirements ... 8-28
8.6 Performance Requirements ... 8-28

viii Developer's Manual

Intel@ 80303 110 Processor

8.6.1 Optimizing Interrupt Performance ... 8-29
8.6.2 Interrupt Service Latency .. 8-30
8.6.3 Features to Improve Interrupt Performance .. 8-30

8.6.3.1 Vector Caching Option .. 8-30
8.6.3.2 Caching Interrupt Routines and Reserving Register Frames 8-31
8.6.3.3 Caching the Interrupt Stack ... 8-31

8.6.4 Base Interrupt Latency .. 8-32
8.6.5 Maximum Interrupt Latency .. 8-33
8.6.6 Avoiding Certain Destinations for MDU Operations .. 8-34
8.6.7 Secondary PCI to Upstream Interrupt Routing Latency .. 8-34

8.7 Register Definitions .. 8-35
8.7.1 Interrupt Control Register (ICON) ... 8-36
8.7.2 Interrupt Mapping Registers (IMAPO-IMAP2) ... 8-37
8.7.3 Interrupt Pending (IPND) and Interrupt Mask (lMSK) Registers 8-39
8.7.4 PCllnterrupt Routing Select Register - PIRSR .. 8-41
8.7.5 XINT6 Interrupt Status Register - X61SR .. 8-42
8.7.6 XINT7 Interrupt Status Register- X71SR ... 8-43
8.7.7 NMllnterrupt Status Register - NISR ... 8-44

9 Faults ... 9-1

9.1 Fault Handling Overview .. 9-1
9.2 Fault Types .. 9-3
9.3 Fault Table ... 9-5
9.4 Stack Used in Fault Handling .. 9-7
9.5 Fault Record .. 9-7

9.5.1 Fault Record Description .. 9-8
9.5.2 Fault Record Location ... 9-9

9.6 Multiple and Parallel Faults .. 9-11
9.6.1 Multiple Non-Trace Faults on the Same Instruction .. 9-11
9.6.2 Multiple Trace Fault Conditions on the Same Instruction 9-11
9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction 9-11
9.6.4 Parallel Faults ... 9-11

9.6.4.1 Faults on Multiple Instructions Executed in Parallel. 9-12
9.6.4.2 Fault Record for Parallel Faults ... 9-13

9.6.5 Override Faults ... 9-14
9.6.6 System Error ... 9-14

9.7 Fault Handling Procedures .. 9-15
9.7.1 Possible Fault Handling Procedure Actions .. 9-15
9.7.2 Program Resumption Following a FaulL. ... 9-15

9.7.2.1 Faults Happening Before Instruction Execution .. 9-15
9.7.2.2 Faults Happening During Instruction Execution .. 9-16
9.7.2.3 Faults Happening After Instruction Execution ... 9-16

9.7.3 Return Instruction Pointer (RiP} .. 9-16
9.7.4 Returning to Point in Program Where Fault Occurred .. 9-16
9.7.5 Program Return Point Other than Occurred Fault .. 9-17
9.7.6 Fault Controls ... 9-17

9.8 Fault Handling Action ... 9-18
9.8.1 Local Fault Call ... 9-18
9.8.2 System-Local Fault Call .. 9-18
9.8.3 System-Supervisor Fault Call ... 9-19
9.8.4 Faults and Interrupts ... 9-19

Developer's Manual ix

intel@ 80303 110 Processor

9.9 Precise and Imprecise Faults .. 9-20
9.9.1 Precise Faults ... 9-20
9.9.2 Imprecise Faults ... 9-20
9.9.3 Asynchronous Faults .. 9-20
9.9.4 No Imprecise Faults (AC.nif) Bit ... 9-21
9.9.5 Controlling Fault Precision .. 9-21

9.10 Fault Reference ... 9-22
9.10.1 ARITHMETIC Faults ... 9-23
9.10.2 CONSTRAINT Faults .. 9-24
9.10.3 OPERATION Faults .. 9-25
9.10.4 OVERRIDE Faults .. 9-26
9.10.5 PARALLEL Faults ... 9-27
9.10.6 PROTECTION Faults ... 9-28
9.10.7 TRACE Faults ... 9-29
9.10.8 TYPE Faults .. 9-30

10 Tracing and Debugging ... 10-1

10.1 Trace Controls ... 10-1
10.1.1 Trace Controls Register - TC ... 10-2
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag .. 1 0-3

10.2 Trace Modes .. 10-3
10.2.1 Instruction Trace .. 10-3
10.2.2 Branch Trace .. 10-4
10.2.3 Call Trace ... 10-4
10.2.4 Return Trace ... 10-4
10.2.5 Prereturn Trace ... 1 0-4
10.2.6 Supervisor Trace .. 10-5
10.2.7 Mark Trace .. 10-5

10.2.7.1 Software Breakpoints .. 10-5
10.2.7.2 Hardware Breakpoints .. 10-5
10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources 10-6
10.2.7.4 Breakpoint Control Register - BPCON ... 10-7
10.2.7.5 Data Address Breakpoint Registers - DABx ... 1 0-8
10.2.7.6 Instruction Breakpoint Registers - IPBx ... 1 0-9

10.3 Generating a Trace Fault. .. 10-10
10.4 Handling Multiple Trace Events ... 10-10
10.5 Trace Fault Handling Procedure .. 10-10

10.5.1 Tracing and Interrupt Procedures ... 10-11
10.5.2 Tracing on Calls and Returns ... 10-11

10.5.2.1 Tracing on Explicit Call ... 10-11
10.5.2.2 Tracing on Implicit CalL ... 10-12
10.5.2.3 Tracing on Return from Explicit Call ... 10-13
10.5.2.4 Tracing on Return from Implicit Call: Fault Case 10-13
10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case 10-13

11 Initialization and System Requirements , ... 11-1

11 .1 Overview .. 11-1
11.1.1 Core Initialization .. 11-1
11.1.2 General Initialization ... 11-2

11.2 Intel® 80303 110 Processor Initialization .. 11-2
11 .2.1 Initialization Modes ... 11-2

x Developer's Manual

Intel@ 80303 liD Processor

11.2.2 Mode 0 Initialization .. 11-3
11.2.3 Mode 1 Initialization .. 11-3
11.2.4 Mode 2 Initialization .. 11-3
11.2.5 Mode 3 (Default Mode) ... 11-3
11.2.6 Secondary PCI Bus Arbitration Unit... ... 11-5
11.2.7 Internal Bus Arbitration Unit.. .. 11-5
11 .2.8 Reset State Operation .. 11-5

11.3 Intel® i960® Core Processor Initialization .. 11-6
11.3.1 Self Test Function (STEST, FAIL#) .. 11-7

11.3.1.1 The STEST Signal .. 11-7
11.3.1 .2 I ntel® i960® Local Bus Confidence Test ... 11-7
11.3.1.3 The Fail Signal (FAIL#) ... 11-8
11.3.1.4 IMI Alignment Check and Core Processor Error 11-8
11.3.1.5 FAIL# Code ... 11-9

11.4 Initial Memory Image (IMI) ... 11-10
11.4.1 Initialization Boot Record (IBR) ... 11-12
11.4.2 Process Control Block - PRCB .. 11-15
11.4.3 Process PRCB Flow ... 11-17

11.4.3.1 AC Initial Image ... 11-18
11.4.3.2 Fault Configuration Word .. 11-18
11.4.3.3 Instruction Cache Configuration Word .. 11-18
11.4.3.4 Register Cache Configuration Word ... 11-18

11.4.4 Control Table .. 11-19
11.5 Device Identification on Reset ... 11-20
11.6 Reinitializing and Relocating Data Structures .. 11-21

11.6.1 Output Clocks ... 11-21

12 Core Processor and Internal Operation ... 12-1

12.1 Core Processor Memory Attributes .. 12-1
12.2 Physical Memory Attributes ... 12-2

12.2.1 PMCON Registers .. 12-2
12.2.2 Bus Control Register - BCON .. 12-4

12.3 Programming the Logical Memory Attributes ... 12-5
12.3.1 Logical Memory Attributes .. 12-5
12.3.2 Logical Memory Address Registers - LMADRO:1 ... 12-6
12.3.3 Defining the Effective Range of a Logical Data Template 12-8
12.3.4 Data Caching Enable .. 12-8
12.3.5 Enabling the Logical Memory Template ... 12-8
12.3.6 Initialization ... 12-9
12.3.7 Boundary Conditions for Logical Memory Templates ... 12-9

12.3.7.1 Internal Memory Locations and Peripheral MMRs 12-9
12.3.7.2 Overlapping Logical Data Template Ranges .. 12-9
12.3.7.3 Accesses Across LMT Boundaries ... 12-9

12.3.8 Modifying the LMT Registers .. 12-9
12.4 Bus Interface Unit .. 12-10

12.4.1 Overview ... 12-10
12.4.2 Addressing .. 12-12

12.4.2.1 Bus Width .. 12-12
12.4.3 MUlti-Transaction Timer .. 12-12
12.4.4 Features .. 12-12

12.4.4.1 Write Buffering .. 12-12

Developer's Manual xi

Inte/@ 80303 110 Processor int:et
12.4.4.2 Instruction Fetch Bypass ... 12-13
12.4.4.3 Instruction Prefetch ... 12-13
12.4.4.4 Write Merging .. 12-13
12.4.4.5 Atomic Accesses ... 12-14

12.4.5 Interrupts and Error Conditions ... 12-15
12.4.5.1 Master-Abort ... 12-15
12.4.5.2 PCI Target-Abort ... 12-15
12.4.5.3 Internal Bus Target-Abort .. 12-16

12.4.6 Register Definitions ... 12-17
12.4.6.1 BIU Control Register - BIUCR ... 12-17
12.4.6.2 BIU Interrupt Status Register - BIUISR ... 12-18

13 Memory Controller ... 13-1

13.1 Overview .. 13-1
13.1.1 Glossary , ... 13-2

13.2 Theory of Operation ... , ... 13-3
13.2.1 Functional Blocks .. 13-3

13.2.1.1 Internal Bus Interface .. 13-4
13.2.1.2 Address Decode ... 13-4
13.2.1.3 Configuration Registers .. 13-4
13.2.1.4 SDRAM State Machine '"•......... 13-4
13.2.1 .5 Flash State Machine '" .. 13-4
13.2.1 .6 Refresh Counter .. 13-5
13.2.1.7 Pipeline Queues and Error Correction Logic .. 13-5

13.2.2 Flash Memory Support ... 13-5
13.2.2.1 Flash Memory Addressing .. 13-6
13.2.2.2 Flash Read Cycle .. 13-7
13.2.2.3 Flash Write Cycle .. 13-10

13.2.3 SDRAM Memory Support ... 13-11
13.2.3.1 SDRAM Sizes and Configurations .. 13-13
13.2.3.2 SDRAM Addressing .. 13-15
13.2.3.3 Page Hit/Miss Determination .. 13-16
13.2.3.4 SDRAM Commands .. 13-18
13.2.3.5 SDRAM Initialization ... 13-19
13.2.3.6 SDRAM Mode Programming .. 13-20
13.2.3.7 SDRAM Read Cycle ... 13-21
13.2.3.8 SDRAM Write Cycle .. 13-24
13.2.3.9 SDRAM Refresh Cycle ... 13-27

13.2.4 Error Correction and Detection ... 13-28
13.2.4.1 ECC Generation .. 13-28
13.2.4.2 ECC Generation for Partial Writes .. 13-28
13.2.4.3 ECC Checking ... 13-30
13.2.4.4 Scrubbing .. 13-32
13.2.4.5 ECC Testing .. 13-34

13.2.5 Overlapping Memory Regions .. 13-34
13.2.6 SDRAM Clocking .. 13-35

13.3 Power Failure Mode .. 13-36
13.3.1 Theory of Operation .. 13-36
13.3.2 Power Failure Sequence .. 13-37

13.3.2.1 Power Failure Impact on the System .. 13-37
13.3.2.2 System Assumptions .. 13-38

13.3.3 Memory Controller Response to I_RST# .. 13-38
13.3.3.1 External Logic Required for Power Failure ... 13-40

xii Developer's Manual

p

f.
Intel® 80303 liD Processor

13.4 Interrupts/Error Conditions ... 13-42
13.4.1 Single-Bit Error Detection ... 13-42
13.4.2 Double-Bit/Nibble Error Detection ... 13-43

13.5 Reset Conditions ... 13-43
13.6 Register Definitions .. 13-44

13.6.1 SDRAM Initialization Register - SDIR ... 13-45
13.6.2 SDRAM Control Register - SDCR .. 13-46
13.6.3 SDRAM Base Register - SDBR .. 13-47
13.6.4 SDRAM Boundary Register 0 - SBRO .. 13-48
13.6.5 SDRAM Boundary Registers 1 - SBR1 ... 13-49
13.6.6 ECC Control Register - ECCR .. 13-50
13.6.7 ECC Log Registers - ELOGO, ELOG1 .. 13-51
13.6.8 ECC Address Registers - ECARO, ECAR1 ... 13-52
13.6.9 ECC Test Register - ECTST ... 13-53
13.6.10 Flash Base Register 0 - FEBRO .. 13-54
13.6.11 Flash Base Register 1 - FEBR1 .. 13-55
13.6.12 Flash Bank Size Register 0 - FBSRO .. 13-56
13.6.13 Flash Bank Size Register 1 - FBSR1 .. 13-57
13.6.14 Flash Wait States Registers - FWSRO, FWSR1 ... 13-58
13.6.15 Memory Controller Interrupt Status Register - MCISR ... 13-59
13.6.16 Refresh Frequency Register - RFR .. 13-60

14 PCI-to-PCI Bridge Unit .. 14-1

14.1 Overview .. 14-1
14.2 Theory of Operation ... 14-3
14.3 Architectural Description .. 14-4

14.3.1 Primary PCI Interface ... 14-4
14.3.2 Secondary PCI Interface ... 14-4
14.3.3 Upstream/Downstream Queues .. '" 14-5
14.3.4 Configuration Registers .. 14-6

14.4 Configu ration Accesses ... 14-7
14.4.1 Type 0 Commands ... '" ... 14-9
14.4.2 Type 1 Commands and Type 1 to Type 0 Conversions ... 14-9
14.4.3 Type 1 to Type 1 Forwarding .. 14-11
14.4.4 Type 1 to Special Cycle Conversion ... 14-12
14.4.5 Private Type 0 Commands on the Secondary Interface 14-13
14.4.6 Special Cycles ... , 14-15
14.4.7 Extended Configuration Space ... 14-15

14.5 Address Decoding ... 14-15
14.5.1 I/O Address Space .. 14-16

14.5.2

14.5.3

14.5.4
14.5.5
14.5.6

14.5.1.1 Disabling the I/O Address Range .. 14-17
14.5.1.2 ISAMode .. 14-17

Memory Address Space ... 14-18
14.5.2.1 Burst Order. ... 14-19
14.5.2.2 Disabling the Memory Address Range .. 14-19

VGA Address Support .. 14-20
14.5.3.1 VGA Compatible Addressing .. 14-20

64-Bit Address Decoding - Dual Address Cycles ... 14-21
Private Address Space ... 14-23
Secondary PCI to Messaging Unit Access ... 14-23

Developer's Manual xiii

Inte/@ 80303 110 Processor

14.5.7 Address Decode Summary ... 14-24
14.6 Bridge Operation ... 14-27

14.6.1 PCI Interfaces ... 14-27
14.6.1.1 Primary Interface ... 14-27
14.6.1 .2 Secondary Interface .. 14-28

14.6.2 Claiming a PCI Transaction .. 14-29
14.6.2.1 Latency Timers ... 14-29
14.6.2.2 Delayed Transactions ... 14-30
14.6.2.3 Posted Transactions ... 14-31

14.6.3 64-Bit Operation .. 14-31
14.6.3.1 64-Bit Protocol .. 14-32
14.6.3.2 64-Bit Operation with 32-Bit Targets ... 14-34

14.6.4 66 MHz Operation ... 14-36
14.6.5 PCI Read Transactions ... 14-37

14.6.5.1 Read Streaming .. 14-41
14.6.5.2 Read Boundary ... 14-41

14.6.6 PCI Write Transactions ... 14-42
14.6.6.1 Delayed Write Transactions .. 14-42
14.6.6.2 Posted Write Transactions .. 14-43
14.6.6.3 Memory Write Command .. 14-44
14.6.6.4 Memory Write and Invalidate Command ... 14-45
14.6.6.5 I/O Write Command .. 14-46
14.6.6.6 Write Boundary ... 14-46
14.6.6.7 Qword Unaligned Memory Write Transactions 14-46
14.6.6.8 Fast Back-to-Back Transactions ... 14-46

14.7 Queue Architecture .. 14-47
14.7.1 Queue Operation .. 14-48

14.7.1.1 Upstream/Downstream Posted Memory Write Queue Structures 14-49
14.7.1.2 Upstream/Downstream Delayed Read Completion Queues 14-50
14.7.1.3 Upstream/Downstream Delayed Write Completion Queue 14-51
14.7.1.4 Upstream/Downstream Transaction Queues .. 14-52

14.7.2 Transaction Ordering .. 14-52
14.8 Bridge Data Flow ... 14-55

14.8.1 Delayed Read Transaction ... 14-55
14.8.2 Delayed Write Transaction ... 14-57
14.8.3 Posted Write Transaction ... 14-59

14.9 Exclusive Access ... 14-61
14.9.1 Secondary Interface Error Handling ... 14-62

14.10 PCI Transaction Termination ... 14-63
14.10.1 Termination as a Master (Initiator) .. 14-63

14.10.1 .1 Completion .. 14-63
14.10.1.2 Ti me-out. ... 14-63
14.10.1.3 Time-out During Memory Write and Invalidate 14-63
14.10.1.4 Master-Abort ... 14-64

14.10.2 Termination as a Slave (Target) ... 14-64
14.10.2.1 Retry ... 14-64
14.10.2.2 Disconnect .. 14-65
14.10.2.3 Target-Abort .. 14-65

14.11 Error Conditions ... 14-66
14.11.1 Address Parity Errors .. 14-66

14.11.1.1 Address Parity Errors on Primary Interface .. 14-66
14.11.1.2 Address Parity Errors on Secondary Interface .. 14-67

xiv Developer's Manual

Intel® 80303 110 Processor

14.11.2 Data Parity Errors ... 14-68
14.11.2.1 Read Data Parity ... 14-68
14.11.2.2 Delayed Write Data Parity ... 14-69
14.11.2.3 Posted Write Data Parity ... 14-71

14.11.3 SER R# Assertion .. 14-72
14.11.4 Discard Timers .. 14-73
14.11.5 PCI-to-PCI Bridge Error Summary .. 14-74

14.12 Initialization and Reset Requirements ... 14-79
14.12.1 Bridge Reset ... 14-79
14.12.2 Configuring the PCI-to-PCI Bridge .. 14-79
14.12.3 64-Bit Bus Configuration ... 14-80

14.13 Power-up/Default States .. 14-81
14.14 Performance Considerations ... 14-81
14.15 Register Definitions .. 14-82

14.15.1 Vendor Identification Register - VIDR ... 14-85
14.15.2 Device ID Register - DIDR .. 14-86
14.15.3 Primary Command Register - PCR. .. 14-87
14.15.4 Primary Status Register - PSR ... 14-88
14.15.5 Revision ID Register - RID .. 14-90
14.15.6 Class Code Register - CCR .. 14-91
14.15.7 Cacheline Size Register - CLSR. .. 14-92
14.15.8 Primary Latency Timer Register - PL TR ... 14-93
14.15.9 Header Type Register - HTR .. 14-94
14.15.10 Primary Bus Number Register - PBNR ... 14-95
14.15.11 Secondary Bus Number Register - SBNR .. 14-96
14.15.12 Subordinate Bus Number Register - SubBNR .. 14-97
14.15.13 Secondary Latency Timer Register - SL TR .. 14-98
14.15.14 I/O Base Register - 10BR ... 14-99
14.15.15 I/O Limit Register - 10LR .. 14-100
14.15.16 Secondary Status Register - SSR .. 14-101
14.15.17 Memory Base Register - MBR .. 14-102
14.15.18 Memory Limit Register - MLR ... 14-103
14.15.19 Prefetchable Memory Base Register - PMBR .. 14-104
14.15.20 Prefetchable Memory Limit Register - PMLR ... 14-105
14.15.21 Capabilities Pointer Register - Cap_Ptr .. 14-106
14.15.22 Bridge Control Register - BCR .. 14-107
14.15.23 Extended Bridge Control Register - EBCR ... 14-109
14.15.24 Secondary IDSEL Select Register - SISR .. 14-111
14.15.25 Primary Bridge Interrupt Status Reg ister - PBISR .. 14-113
14.15.26 Secondary Bridge Interrupt Status Register - SBISR ... 14-114
14.15.27 Secondary Arbitration Control Register - SACR ... 14-115
14.15.28 PCI Interrupt Routing Select Register - PIRSR .. 14-115
14.15.29 Secondary I/O Base Register - SIOBR ... 14-116
14.15.30 Secondary I/O Limit Register - SIOLR .. 14-117
14.15.31 Secondary Clock Disable Register - SCDR .. 14-118
14.15.32 Secondary Memory Base Register - 5MBR ... 14-119
14.15.33 Secondary Memory Limit Register - SMLR .. 14-120
14.15.34 Secondary Decode Enable Register - SDER ... 14-121
14.15.35 Oueue Control Register-OCR ... 14-123
14.15.36 Capability Identifier Register- Cap_ID ... 14-124

Developer's Manual xv

Intel@ 80303 110 Processor int:et
14.15.37 Next Item Pointer Register - NexUtem_Ptr ... 14-125
14.15.38 Power Management Capabilities Register - PMCR .. 14-126
14.15.39 Power Management Control/Status Register - PMCSR 14-127
14.15.40 PMCSR PCI-to-PCI Bridge Support - PMCSR_BSE .. 14-128

15 PCI Address Translation Unit.. .. 15-1

15.1 Overview .. 15-1
15.2 ATU Address Translation .. 15-4

15.2.1 Inbound Transactions ... 15-5
15.2.1 .1 I nbound Address Translation .. 15-6
15.2.1.2 Inbound Write Transaction .. 15-9
15.2.1.3 Inbound Read Transaction .. 15-1 1
15.2.1.4 Inbound Configuration Cycle Translation .. 15-13
15.2.1.5 Discard Timers .. 1 5-14

15.2.2 Outbound Transactions .. 15-14
15.2.2.1 Outbound Address Translation ... 15-15
15.2.2.2 Outbound Address Translation Windows .. 15-15
15.2.2.3 Direct Addressing Window .. 15-18
15.2.2.4 Outbound Write Transaction ... 15~19
15.2.2.5 Outbound Read Transaction ... 15-20

15.2.3 Private PCI Address Space / Outbound Configuration Cycle Translation 15-22
15.2.4 PCI Multi-Function Device Swapping/Disabling .. 15-23
15.2.5 64-Bit PCI Operation ... 15-24

15.2.5.1 64-Bit Protocol .. 15-24
15.2.5.2 64-Bit Operation with 32-Bit Targets ... 15-26

15.2.6 66 MHz Operation ... 15-28
15.3 Messaging Unit .. 15-29
15.4 Expansion ROM Translation Unit .. 15-30
15.5 ATU Queue Architecture ... 15-31

15.5.1 Inbound Queues ... 15-31
15.5.1 .1 Inbound Write Queue Structure .. 15-32
15.5.1 .2 Inbound Read Queues and Inbound Transaction Queues 15-33
15.5.1.3 Inbound Delayed Write Queue .. 15-34

15.5.2 Outbound Queues .. 15-34
15.5.3 Transaction Ordering .. 15-35

15.6 ATU Error Conditions .. 15-38
15.6.1 Address Parity Errors on the PCllnterface ... 15-39
15.6.2 Data Parity Errors on the PCI Interface .. 15-40

15.6.2.1 Outbound Read Data Parity Errors - Master. .. 15-40
15.6.2.2 Outbound Write Data Parity Errors - Master ... 15-41
15.6.2.3 Inbound Read Data Parity Errors - Slave .. 15-41
15.6.2.4 Inbound Write Data Parity Errors - Slave .. 15-41
15.6.2.5 Inbound Configuration Write Data Parity Errors - Slave 15-42

15.6.3 Master Aborts on the PCI Interface .. 15-43
15.6.4 Target Aborts on the PCI Interface ... 15-44
15.6.5 SERR# Assertion and Detection ... 1 5-45
15.6.6 Internal Bus Error Conditions .. 15-47

15.6.6.1 Master Abort on the Internal Bus .. 15-47
15.6.6.2 Target Abort on the Internal Bus ... 15-49

15.6.7 ATU Error Summary ... 15-50
15.7 Register Definitions ... 15-54

15.7.1 ATU Vendor 10 Register - ATUVID ; 15-60

xvi Developer's Manual

Ii

15.7.2
15.7.3
15.7.4
15.7.5
15.7.6
15.7.7
15.7.8
15.7.9
15.7.10
15.7.11
15.7.12
15.7.13
15.7.14
15.7.15
15.7.16
15.7.17
15.7.18
15.7.19
15.7.20
15.7.21
15.7.22
15.7.23
15.7.24
15.7.25
15.7.26
15.7.27
15.7.28
15.7.29
15.7.30
15.7.31
15.7.32
15.7.33
15.7.34
15.7.35
15.7.36
15.7.37
15.7.38
15.7.39
15.7.40
15.7.41
15.7.42
15.7.43
15.7.44
15.7.45
15.7.46
15.7.47
15.7.48
15.7.49
15.7.50
15.7.51

Developer's Manual

/nte/® 80303 110 Processor

ATU Device ID Register - ATUDID ... 15-61
Primary ATU Command Register - PATUCMD .. 15-62
Primary ATU Status Register - PATUSR .. 15-63
ATU Revision ID Register - ATURID .. 15-65
ATU Class Code Register - ATUCCR .. 15-66
ATU Cacheline Size Register - ATUCLSR ... 15-67
ATU Latency Timer Register - ATUL T .. 15-68
ATU Header Type Register - ATUHTR. .. 15-69
A TU BIST Register - ATUBISTR .. 15-70
Primary Inbound ATU Base Address Register - PIABAR 15-71
ATU Subsystem Vendor ID Register - ASVIR .. 15-72
ATU Subsystem ID Register - ASIR ... 15-73
Expansion ROM Base Address Register - ERBAR .. 15-74
ATU Capabilities Pointer Register - ATU_Cap_Ptr. .. 15-75
Determining Block Sizes for Base Address Registers .. 15-76
ATU Interrupt Line Register - ATUILR .. 15-77
ATU Interrupt Pin Register - ATUIPR ... 15-78
ATU Minimum Grant Register - ATUMGNT .. 15-79
ATU Maximum Latency Register - ATUMLAT .. 15-80
Primary Inbound ATU Limit Register - PIALR. .. 15-81
Primary Inbound ATU Translate Value Register - PIATVR 15-82
Secondary Inbound ATU Base Address Register - SIABAR 15-83
Secondary Inbound ATU Limit Register - SIALR .. 15-84
Secondary Inbound ATU Translate Value Register - SIATVR 15-85
Primary Outbound Memory Window Value Register - POMWVR 15-86
Primary Outbound I/O Window Value Register - POIOWVR 15-87
Primary Outbound DAC Window Value Register - PODWVR 15-88
Primary Outbound Upper 64-bit DAC Register - POUDR 15-89
Secondary Outbound Memory Window Value Register - SOMWVR 15-90
Secondary Outbound I/O Window Value Register - SOIOWVR 15-91
Expansion ROM Limit Register - ERLR .. 15-92
Expansion ROM Translate Value Register - ERTVR .. 15-93
ATU_Capability Identifier Register _ ATU_Cap_1D ... 15-94
ATU Next Item Pointer Register - ATU_NexUtem_Ptr .. 15-95
ATU Power Management Capabilities Register - APMCR 15-96
ATU Power Management Control/Status Register - APMCSR. 15-97
ATU Configuration Register - ATUCR .. 15-98
Primary ATU Interrupt Status Register - PATU ISR .. 15-100
Secondary ATU Interrupt Status Register - SATUISR .. 15-1 02
Secondary ATU Command Register - SATUCMD ... 15-104
Secondary ATU Status Register - SATUSR ... 15-105
Secondary Outbound DAC Window Value Register - SODWVR 15-106
Secondary Outbound Upper 64-bit DAC Register - SOUDR 15-1 07
Primary Outbound Configuration Cycle Address Register - POCCAR 15-1 08
Secondary Outbound Configuration Cycle Address Register - SOC CAR 15-109
Primary Outbound Configuration Cycle Data Register - POCCDR 15-110
Secondary Outbound Configuration Cycle Data Register - SOCCDR. 15-111
Primary ATU Queue Control Register - PAQCR .. 15-112
Secondary ATU Queue Control Register _ SAQCR. ... 15-113
Primary ATU Interrupt Mask Register- PATUIMR ... 15-114

xvii

Intel@ 80303 liD Processor intel ..
15.7.52 Secondary ATU Interrupt Mask Register - SATUIMR. .. 15-115

16 Messaging Unit ... 16-1

16.1 Overview .. 16-1
16.2 Theory of Operation ... 16-2

16.2.1 Transaction Ordering .. 16-4
16.3 Message Registers .. 16-5

16.3.1 Outbound Messages ... 16-5
16.3.2 Inbound Messages ... 16-5

16.4 Doorbell Registers ... 16-6
16.4.1 Outbound Doorbells .. 16-6
16.4.2 Inbound Doorbells ... 16-6

16.5 Circular Queues .. 16-7
16.5.1 Inbound Free Queue ... 16-11
16.5.2 Inbound Post Queue ... 16-12
16.5.3 Outbound Post Queue .. 16-13
16.5.4 Outbound Free Queue .. 16-14

16.6 Index Registers .. ~ ... 16-15
16.7 Messaging Unit Error Conditions ... 16-15
16.8 Register Definitions ... 16-16

16.8.1 Inbound Message Register -IMRx ... 16-18
16.8.2 Outbound Message Register - OMRx ... 16-19
16.8.3 Inbound Doorbell Register -IDR. .. 16-20
16.8.4 Inbound Interrupt Status Register - IISR. .. 16-21
16.8.5 Inbound Interrupt Mask Register - IIMR. ... 16-22
16.8.6 Outbound Doorbell Register - ODR .. 16-23
16.8.7 Outbound Interrupt Status Register - OISR .. 16-24
16.8.8 Outbound Interrupt Mask Register - OIMR ... 16-25
16.8.9 MU Configuration Register - MUCR ... 16-26
16.8.1 0 Queue Base Address Register - QBAR .. 16-27
16.8.11 Inbound Free Head Pointer Register - IFHPR .. 16-28
16.8.12 Inbound Free Tail Pointer Register -IFTPR ... 16-29
16.8.13 Inbound Post Head Pointer Register - IPHPR .. 16-30
16.8.14 Inbound Post Tail Pointer Register - IPTPR ... 16-31
16.8.15 Outbound Free Head Pointer Register - OFHPR ... 16-32
16.8.16 Outbound Free Tail Pointer Register - OFTPR. .. 16-33
16.8.17 Outbound Post Head Pointer Register - OPHPR ... 16-34
16.8.18 Outbound Post Tail Pointer Register - OPTPR. .. 16-35
16.8.19 Index Address Register - IAR ... 16-36

16.9 Power/Default Status ... 16-36

17 Intel® 80303 I/O Processor Arbitration .. 17-1

17.1 Arbitration Overview .. 17-1
17.2 PCI Arbiter Overview ... 17-2

17.2.1 Theory of Operation .. 17-3
17.2.1.1 Priority Mechanism ... 17-3
17.2.1.2 Priority Example with Three Bus Masters ... 17-4
17.2.1.3 Priority Example with Six Bus Masters ... 17-5
17.2.1.4 Arbitration Signalling ProtocoL .. 17-6
17.2.1.5 Secondary PCI Bus Arbitration Parking .. 17-8

17.2.2 Atomic Accesses .. 17-8

xviii Developer's Manual

Inte/@ 80303 liD Processor

17.2.3 Internal and Secondary PCI Arbiter Differences ... 17-9
17.2.3.1 Multi-Transaction Timer .. 17-9

17.3 PCI Selector Operation .. 17 -11
17.3.1 Primary PCI Bus Arbitration Parking ... 17-11

17.4 Master Latency Timer Operation ... 17-11
17.4.1 Primary and Secondary PCI Master Latency Timers .. 17-11
17.4.2 Internal Master Latency Timer .. 17-11

17.5 Reset Conditions ... 17-12
17.5.1 S_REQ64# Control ... 17-12

17.6 Register Definitions .. : 17 -13
17.6.1 Secondary Arbitration Control Register - SACR ... 17 -14
17.6.2 Internal Arbitration Control Register -IACR. ... 17-15
17.6.3 Master Latency Timer Register - MLTR .. 17-16
17.6.4 Multi-Transaction Timer Register - MTTR .. 17-17

18 Timers ... 18-1

18.1 Timer Registers ... 18-2
18.1.1 Timer Mode Registers - TMRO:1 .. 18-3

18.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc) .. 18-3
18.1.1.2 Bit 1 - Timer Enable (TM Rx.enable) .. 18-4
18.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload) 18-4
18.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup) 18-5
18.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.cseI1 :0) 18-5

18.1.2 Timer Count Register - TCRO:1 ... 18-6
18.1.3 Timer Reload Register- TRRO:1 ... 18-7

18.2 Timer Operation ... 18-8
18.2.1 Basic Timer Operation .. 18-8
18.2.2 Load/Store Access Latency for Timer Registers .. 18-9

18.3 Timer Interrupts ... 18-10
18.4 Powerup/Reset Initialization .. 18-10
18.5 Uncommon TCRx and TRRx Conditions ... 18-10
18.6 Timer State Diagram .. 18-11

19 DMA Controller Unit .. 19-1

19.1 Overview .. 19-1
19.2 Theory of Operation ... 19-3
19.3 DMA Transfer .. 19-4

19.3.1 Chain Descriptors ... 19-5
19.3.2 Initiating DMA Transfers ... 19-7
19.3.3 Scatter Gather DMA Transfers ... 19-8
19.3.4 Synchronizing a Program to Chained Transfers ... 19-9
19.3.5 Appending to The End of a Chain ... 19-11

19.4 64-bit Transfers on a 64-bit PCI Bus ... 19-12
19.4.1 64-bit Operation with 64-bit Targets ... 19-12
19.4.2 64-bit Operation with 32-bit Targets ... 19-12
19.4.3 64-bit Addressing .. 19-13
19.4.4 66 MHz Operation ... 19-13

19.5 Data Transfers ... , 19-14
19.5.1 PCI-to-Local Memory Transfers .. 19-14
19.5.2 Local Memory to PCI Transfers: Memory Write Command 19-14
19.5.3 Local Memory to PCI Transfers: Memory Write and Invalidate Command 19-15

Developer's Manual xix

Intel@ 80303 liD Processor intel·
19.5.4 Exclusive Access .. 19-15

19.6 Data Queues ... 19-16
19.7 Data Alignment .. 19-17

19.7.1 64-bit Unaligned Data Transfers ... 19-17
19.7.2 64/32-bit Unaligned Data Transfers .. 19-18

19.8 Channel Priority ... 19-19
19.9 Programming Model State Diagram .. 19-20
19.10 DMA Channel Programming Examples ... 19-21

19.10.1 Software DMA Controller Initialization .. 19-21
19.10.2 Software Start DMA Transfer. ... 19-21
19.10.3 Software Suspend Channel .. 19-22

19.11 Interrupts ... 19-23
19.12 Error Conditions ... 19-24

19.12.1 PCI Errors ... 19-24
19.12.2 Internal Bus Errors .. 19-24

19.13 Power-up/Default Status .. 19-26
19.14 Register Definitions ... 19-26

19.14.1 Channel Control Register - CCR .. 19-27
19.14.2 Channel Status Register - CSR .. 19-28
19.14.3 Next Descriptor Address Register - NDAR ... 19-30
19.14.4 Descriptor Address Register - DAR .. 19-31
19.14.5 Byte Count Register - BCR ... 19-32
19.14.6 PCI Address Register - PADR .. 19-33
19.14.7 PCI Upper Address Register - PUADR. .. 19-34
19.14.8 Intel® i960® Local Address Register - LADR .. 19-35
19.14.9 Descriptor Control Register - OCR ... 19-36

19.14.9.1 PCI Commands Support ... 19-37

20 Application Accelerator Unit .. 20-1

20.1 Overview .. 20-1
20.2 Theory of Operation ... 20-2
20.3 Hardware-Assist XOR Unit .. 20-3

20.3.1 Data Transfer .. 20-3
20.3.2 Chain Descriptor Format (Four Source Addresses) ... 20-4
20.3.3 Chain Descriptor Format (Eight Source Addresses) ... 20-7
20.3.4 The Bitwise-XOR Algorithm .. 20-10
20.3.5 Initiating the XOR Operation ... 20-13
20.3.6 Scatter Gather Transfers .. 20-14
20.3.7 Synchronizing a Program to Chained Operation .. 20-14
20.3.8 Appending to The End of a Chain ... 20-16

20.4 Packing and Unpacking ... 20-17
20.4.1 64-bit Unaligned Data Transfers ... 20-17

20.5 Application Accelerator Priority .. 20-19
20.6 Programming Model State Diagram .. 20-20
20.7 Programming the Application Accelerator ... 20-21

20.7.1 Application Accelerator Initialization ... 20-21
20.7.2 Start XOR Transfer ... 20-21
20.7.3 Suspend Application Accelerator .. 20-22

20.8 Interrupts ... 20-23
20.9 Error Conditions ... 20-24

xx Developer's Manual

intel· /nte/@ 80303 110 Processor

20.10 Power-up/Default Status .. 20-25
20.11 Register Definitions .. 20-25

20.11.1 Accelerator Control Register - ACR .. 20-26
20.11.2 Accelerator Status Register - ASR ... 20-27
20.11.3 Accelerator Descriptor Address Register - ADAR .. 20-28
20.11.4 Accelerator Next Descriptor Address Register - ANDAR 20-29
20.11.5 80960 Source Address Register - SAR .. 20-30
20.11.6 80960 Destination Address Register - DAR ... 20-31
20.11.7 Accelerator Byte Count Register - ABCR ... 20-32
20.11.8 Accelerator Descriptor Control Register - ADCR .. 20-33

21 Performance Monitoring Unit... .. 21-1

21.1 Overview .. 21-1
21.2 Theory of Operation ... 21-2

21.2.1 Global Time Stamp ... 21-2
21.2.2 Programmable Event Counters .. 21-2

21.2.2.1 Occurrence Events .. 21-3
21.2.2.2 Duration Events ... 21-4

21.2.3 Performance Monitoring ... 21-5
21.3 Event Description ... 21-6

21.3.1 ModeO: Performance Monitoring Disabled ... 21-6
21.3.2 Mode1: Primary PCI bus and Internal Agents .. 21-6

21.3.2.1 M1_PPCIBus_idle ... 21-6
21.3.2.2 M1_PPCIBus_busy ... 21-6
21.3.2.3 M 1_bridge_acq ... 21-7
21.3.2.4 M1_bridge_own ... 21-7
21.3.2.5 M1_DMAO_acq ... 21-7
21.3.2.6 M1_DMAO_own ... 21-7
21.3.2.7 M1_DMA1_acq ... 21-7
21.3.2.8 M1_DMA1_own ... 21-7
21.3.2.9 M1_PATU_acq .. 21-7
21.3.2.10 M1_PATU_own ... 21-8
21.3.2.11 M1_DMAO_gnt .. 21-8
21.3.2.12 M1_DMA 1_gnt .. 21-8
21.3.2.13 M1_PATU_gnt. .. 21-8
21.3.2.14 M1_bridge_gnt .. 21-8

21.3.3 Mode 2: Secondary PCI Bus and Internal Agents .. 21-9
21.3.3.1 M2_SPCIBus_idle ... 21-9
21.3.3.2 M2_SPCIBus_busy ... 21-9
21.3.3.3 M2_SATU_acq .. 21-9
21.3.3.4 M2_SATU_own ... 21-9
21.3.3.5 M2_bridge_acq ... 21-9
21.3.3.6 M2_bridge_own ... 21-9
21.3.3.7 M2_DMA2_acq ... 21-10
21.3.3.8 M2_DMA2_own ... 21-10
21.3.3.9 M2_bridge_9nt .. 21-10
21.3.3.10 M2_SATU_gnt. .. 21-10
21.3.3.11 M2_DMA2_9nt .. 21-10
21.3.3.12 M2_PPCIBus_idle ... 21-10
21.3.3.13 M2_PPCIBus_busy ... 21-10
21.3.3.14 M2_IBus_busy .. 21-10

21.3.4 Mode 3: Secondary PCI Bus and External Agents ... 21-11

Developer's Manual xxi

Intel@ 80303 110 Processor

21.3.4.1 M3_SPClbus_idle ... 21-11
21.3.4.2 M3_SPClbus_busy ... 21-11
21.3.4.3 M3_SPCUOP _acq ... 21-11
21.3.4.4 M3_SPCI_IOP _own .. 21-11
21.3.4.5 M3_DO_acq ... 21-11
21.3.4.6 M3_DO_own .. 21-12
21.3.4.7 M3_D1_acq ... 21-12
21.3.4.8 M3_D1_own .. 21-12
21.3.4.9 M3_D2_acq ... 21-12
21.3.4.10 M3_D2_own .. 21-12
21.3.4.11 M3_SPCUOP _gnt ... 21-12
21.3.4.12 M3_DO_gnt ... 21-12
21.3.4.13 M3_D1_gnt ... 21-13
21.3.4.14 M3_D2_gnt ... 21-13

21.3.5 Mode 4: Secondary PCI Bus and External Agents ... 21-13
21.3.5.1 M4_SPClbus_idle ... 21-13
21.3.S.2 M4_SPClbus_busy ... 21-13
21.3.S.3 M4_D3_acq ... 21-13
21.3.S.4 M4_D3_own .. 21-14
21.3.S.S M4_D4_acq ... 21-14
21.3.S.6 M4_D4_own .. 21-14
21.3.S.7 M4_DS_acq ... 21-14
21.3.S.8 M4_DS_own .. 21-14
21.3.S.9 M4_D3_gnt ... 21-14
21.3.S.10 M4_D4_gnt ... 21-14
21.3.S.11 M4_DS_gnt ... 21-14
21.3.S.12 M4_SPCUOP_gnt ... 21-1S
21.3.S.13 M4_SPCUOP_acq ... 21-1S
21.3.S.14 M4 SPCI lOP own .. 21-1S

21.3.6 Mode S: Int~® 803'03 I/O Processor Bus and Agents Events 21-1S
21.3.6.1 MS_IBusjdle .. 21-1S
21.3.6.2 MS_IBus_busy .. 21-1S
21.3.6.3 M5_AA_acq .. 21-1S
21.3.6.4 MS_AA_own .. 21-16
21.3.6.S MS_DMAO_acq ... 21-16
21.3.6.6 MS_DMAO_own .. 21-16
21.3.6.7 MS_DMA1_acq ... 21-16
21.3.6.8 M5_DMA1_own .. 21-16
21.3.6.9 MS_DMA2_acq ... 21-16
21.3.6.10 MS_DMA2_own .. 21-16
21.3.6.11 MS_AA_gnt ... 21-17
21.3.6.12 MS_DMAO_gnt .. 21-17
21.3.6.13 MS_DMA1_gnt .. 21-17
21.3.6.14 MS_DMA2_gnt .. 21-17

21.3.7 Mode 6: Intel® 80303 I/O Processor Bus and Agents Events 21-17
21.3.7.1 M6_core_acq .. 21-17
21.3.7.2 M6_core_own ... 21-17
21.3.7.3 M6_PATU_acq .. 21-18
21.3.7.4 M6_PATU_own ... 21-18
21.3.7.S M6_SATU_acq .. 21-18
21.3.7.6 M6_SATU_own ... 21-18
21.3.7.7 M6_PBOFF _time .. 21-18
21.3.7.8 M6_PBOFF _cnt .. 21-18
21.3.7.9 M6_SBOFF _time .. 21-18

xxii Developer's Manual

I

Intel@ 80303 liD Processor

21.3.7.10 M6_SBOFF_cnt .. 21-19
21.3.7.11 M6_PATU_gnt. .. 21-19
21.3.7.12 M6_SATU_gnt. .. 21-19
21.3.7.13 M6_core_gnt ... 21-19
0.0.0.1. M6_ATU_retry ... 21-19

21.3.8 Mode 7: Intel® 80303 I/O Processor Internal Bus, Secondary PCI Bus
and Primary PCI Bus Events .. 21-19

21.3.8.1 M7_IBus_idle .. 21-19
21.3.8.2 M7 _IBus_busy .. 21-20
21.3.8.3 M7 _SPClbus_idle ... 21-20
21.3.8.4 M7 _SPClbus_busy ... 21-20
21.3.8.5 M7 _SPCI_IOP _own .. 21-20
21.3.8.6 M7 _DO_own .. 21-20
21.3.8.7 M7 _D1_own .. 21-20
21.3.8.8 M7 _D2_own .. 21-20
21.3.8.9 M7 _D3_own .. 21-20
21.3.8.10 M7 _D4_own .. 21-20
21.3.8.11 M7 _D5_own .. 21-21
21.3.8.12 M7 _PPCI_IOP _own .. 21-21
21.3.8.13 M7 _PPClbus_idle ... 21-21
21.3.8.14 M7 _PPClbus_busy ... 21-21

21.4 Interrupts .. 21-21
21.5 Reset Conditions ... 21-21
21.6 Register Definitions .. 21-22

21.6.1 Global Timer Mode Register (GTMR) ... 21-23
21.6.2 Event Select Register (ESR) .. 21-24
21.6.3 Event Monitoring Interrupt Status Register (EMISR) .. 21-25
21.6.4 Global Time Stamp Register (GTSR) ... 21-27
21.6.5 Programmable Event Counter Register (PECRx) ... 21-27

22 12C Bus Interface Unit. ... 22-1

22.1 Overview .. 22-1
22.2 Theory of Operation ... 22-2

22.2.1 Operational Blocks .. 22-3
22.2.2 12C Bus Interface Modes ... 22-4
22.2.3 Start and Stop Bus States .. 22-5

22.2.3.1 START Condition .. 22-6
22.2.3.2 No START or STOP Condition .. 22-6
22.2.3.3 STOP Condition .. 22-7

22.3 12C Bus Operation .. 22-8
22.3.1 Serial Clock Line (SCl) Generation ... 22-8
22.3.2 Data and Addressing Management .. 22-9

22.3.2.1 Addressing a Slave Device ... 22-10
22.3.3 12C Acknowledge .. 22-11
22.3.4 Arbitration ... 22-12

22.3.4.1 SCl Arbitration .. 22-12
22.3.4.2 SOA Arbitration ... 22-13

22.3.5 Master Operations .. 22-14
22.3.6 Slave Operations .. 22-18
22.3.7 General Call Address .. 22-20

22.4 Slave Mode Programming Examples .. 22-22
22.4.1 Initialize Unit ... 22-22

Developer's Manual xxiii

Intel@ 80303 liD Processor in1:et
22.4.2 Write 1 Byte as a Slave .. 22-22
22.4.3 Read 2 Bytes as a Slave .. 22-22

22.5 Master Programming Examples .. 22-23
22.5.1 Initialize Unit ... 22-23
22.5.2 Write 1 Byte as a Master .. 22-23
22.5.3 Read 1 Byte as a Master .. 22-23
22.5.4 Write 2 Bytes and Repeated Start Read 1 Byte as a Master. 22-24
22.5.5 Read 2 Bytes as a Master - Send STOP Using the Abort 22-24

22.6 Glitch Suppression Logic ... 22-26
22.7 Reset Conditions ... 22-27
22.8 Register Definitions ... 22-28

22.8.1 12C Control Register- ICR ... 22-29
22.8.2 12C Status Register- ISR ... 22-32
22.8.3 12C Slave Address Register- ISAR ... 22-34
22.8.4 12C Data Buffer Register- IDBR .. 22-35
22.8.5 12C Clock Count Register- ICCR. .. 22-36
22.8.6 12C Bus Monitor Register- IBMR ... 22-37

23 General Purpose Input Output (GPIO) .. 23-1

23.1 General Purpose Input Output Support ... 23-1
23.1.1 General Purpose Inputs .. 23-1
23.1.2 General Purpose Outputs ... 23-1
23.1.3 Reset Initialization of General Purpose Input Output Function 23-1

23.2 Register Definitions ... 23-2
23.2.1 GPIO Output Enable Register - GPOE ... 23-2
23.2.2 GPIO Input Data Register - GPID ... 23-4
23.2.3 GPIO Output Data Register - GPOD .. 23-5

24 Test Features .. 24-1

24.1 On-Circuit Emulation (ONCE) .. 24-1
24.1 .1 Entering/Exiting ONCE Mode ... 24-1
24.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible 24-2

24.1.2.1 DEN# Alternatives ... 24-2
24.2 Boundary-Scan (JTAG) ... 24-2

24.2.1 Boundary-Scan Architecture ... 24-3
24.2.2 TAP Pins ... 24-4
24.2.3 Instruction Register ... 24-4

24.2.3.1 Boundary-Scan Instruction Set ... 24-5
24.2.4 TAP Test Data Registers .. 24-7

24.2.4.1 Device Identification Register ... 24-7
24.2.4.2 Bypass Register .. 24-7
24.2.4.3 RUNBIST Register .. 24-7
24.2.4.4 Boundary-Scan Register ... 24-8

24.2.5 TAP Controller .. 24-17
24.2.5.1 Test Logic Reset State .. 24-18
24.2.5.2 Run-Test/Idle State ... 24-18
24.2.5.3 Select-DR-Scan State ... 24-18
24.2.5.4 Capture-DR State ... 24-18
24.2.5.5 Shift-DR State ... 24-18
24.2.5.6 Exit1-DR State .. 24-19
24.2.5.7 Pause-DR State .. 24-19

xxiv Developer's Manual

Intel® 80303 110 Processor

24.2.5.8 Exit2-DR State .. 24-19
24.2.5.9 Update-DR State ... 24-19
24.2.5.10 Select-IR Scan State ... 24-19
24.2.5.11 Capture-IR State ... 24-20
24.2.5.12 Shift-IR State ... 24-20
24.2.5.13 Exit1-IR State .. 24-20
24.2.5.14 Pause-IR State .. 24-20
24.2.5.15 Exit2-IR State .. 24-20
24.2.5.16 Update-IR State .. 24-20

24.2.6 Boundary-Scan Example .. 24-21

25 Clocking and Reset ... 25-1

25.1 Clocking Overview ... 25-1
25.1.1 Clocking Theory of Operation ... 25-1
25.1.2 Clocking Region 1 ... 25-2
25.1.3 Clocking Region 2 : .. 25-2
25.1.4 Clocking Region 3 ... 25-3
25.1.5 Clocking Region Summary ... 25-3

25.2 Reset Overview ... 25-4
25.2.1 Primary PCI Reset .. 25-5
25.2.2 Secondary PCI Reset ... 25-6
25.2.3 Internal Bus Reset .. 25-6

25.3 Reset Strapping Options .. 25-7

A Machine-Level Instruction Formats .. A-1

A.1 General Instruction Format '" .. A-1
A.2 REG Format. .. , A-3
A.3 COBR Format ... A-4
A.4 CTRL Format .. A-4
A.5 MEM Format ... A-5

A.5.1 MEMA Format Addressing ... A-6
A.5.2 MEMB Format Addressing ... A-6

B Opcodes and Execution Times .. B-1

B.1 Instruction Reference by Opcode ... B-1

C Peripheral Memory-Mapped Registers ... C-1

C.1 Overview ... C-1
C.2 Accessing the Peripheral Memory-Mapped Registers .. C-2
C.3 Architecturally Reserved Memory Space .. C-3
C.4 Peripheral Memory-Mapped Register Address Space ... C-5

Developer's Manual xxv

Intel@ 80303 liD Processor intel·
Figures

1-1 Intel® 80303 I/O Processor Functional Block Diagram .. 1-1
2-1 Data Types and Ranges .. 2-1
3-1 Intel® 80303 I/O Processor Programming Environment.. .. 3-2
3-2 Local Memory Address Space ... 3-10
3-3 Arithmetic Controls Register - AC ... 3-14
4-1 Internal Data RAM and Register Cache .. 4-1
5-1 Machine-Level Instruction Formats ... 5-2
6-1 dcctl src1 and src/dst Formats ... 6-34
6-2 Store Data Cache to Memory Output Format.. .. 6-35
6-3 D-Cache Tag and Valid Bit Formats .. 6-35
6-4 icctl src1 and src/dst Formats .. 6-48
6-5 Store Instruction Cache to Memory Output Format.. ... 6-49
6-6 I-Cache Set Data, Tag and Valid Bit Formats ... 6-50
6-7 Src1 Operand Interpretation .. 6-95
6-8 src/dst Interpretation for Breakpoint Resource Request... ... 6-96
7 -1 Procedure Stack Structure and Local Registers .. 7-3
7-2 Frame Spill .. 7-9
7-3 Frame Fill ... 7-10
7 -4 System Procedure Table ... 7-16
7 -5 Previous Frame Pointer Register - PFP ... 7-19
8-1 Interrupt Handling Data Structures .. 8-1
8-2 Interrupt Table ... 8-4
8-3 Storage of an Interrupt Record on the Interrupt Stack ... 8-6
8-4 Interrupt Controller ... 8-13
8-5 Interrupt Pin Vector Assignment .. 8-14
8-6 Interrupt Fast Sampling ... 8-15
8-7 Interrupt Controller Connections .. 8-22
8-8 Interrupt Service Flowchart.. .. 8-29
9-1 Fault-Handling Data Structures ... 9-1
9-2 Fault Table and Fault Table Entries .. 9-5
9-3 Fault Record .. 9-9
9-4 Storage of the Fault Record on the Stack ... 9-10
11-1 Initialization Flow Chart ... 11-4
11-2 Processor Initialization Flow .. 11-6
11-3 FAIL#Timing ... 11-8
11-4 Initial Memory Image (1M I) and Process Control Block (PRCB) .. 11-11
11-5 Control Table ... 11-19
12-1 LMCON Example ... 12-5
12-2 Core Processor/BI U Interface Block Diagram ... 12-1 0
12-3 Internal Block Diagram .. 12-11
13-1 Memory Controller Block Diagram ... 13-3
13-2 Fou r Mbyte Flash Memory System .. 13-6
13-3 90 ns Flash Read Cycle .. 13-8
13-4 60 ns Flash Burst Read Cycle ... 13-9
13-5 90ns Flash Write Cycle .. 13-1 0
13-6 Dual-Bank SDRAM Memory Subsystem ... 13-12
13-7 Logical Memory Image of a 64/128/256 Mbit SDRAM Memory Subsystem 13-17
13-8 Supported SDRAM Mode Register Settings .. 13-19

xxvi Developer's Manual

13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
16-1
16-2
16-3
17-1
17-2
17-3
17-4
18-1
18-2
19-1
19-2
19-3

Intel® 80303 110 Processor

SDRAM Initialization Sequence (controlled with software) .. 13-20
SDRAM Read, 40 bytes, ECC Enabled, BL=4, Page Hit .. 13-21
SDRAM Read, 40 bytes, ECC Enabled, BL=4, Page Miss ... 13-23
SDRAM Write, 40 bytes, ECC Enabled, BL=4, Page Hit.. ... 13-24
SDRAM Write, 40 bytes, ECC Enabled, BL=4, Page Miss .. 13-25
Refresh Following a Read Cycle ... 13-27
Sub 64-bit SDRAM Write (D1) ... 13-29
H-Matrix ... 13-31
Scubbing Routine Flow Chart .. 13-33
SDRAM Clocking ... 13-35
Power Failure Sequence ... 13-37
Power Failure State Machine ... 13-38
Power Failure Sequence ... 13-39
External Power Failure State Machine .. 13-40
External Power Failure Logic in the System .. 13-41
PCI-to-PCI Bridge Unit Functional Block Diagram ... 14-2
Bridge Operation .. 14-3
PCI Configuration Access Formats .. 14-7
Secondary IDSEL Example ... 14-14
I SA Mode Add ress Decode ... 14-17
Overlapping Memory Address Ranges .. 14-18
VGA Compatible Addressing ... 14-20
64-bit Dual Address Read Cycle .. 14-22
PCI 64-Bit Transfer to a 64-Bit Target ... 14-33
64-Bit Write Request with 32-Bit Transfer ... 14-35
Bridge Configuration Header Format ... 14-83
Extended Bridge Configuration Header Format... .. 14-83
ATU Block Diagram ... 15-2
ATU Queue Architecture Block Diagram ... 15-3
Inbound Address Detection ... 15-7
Inbound Translation Example .. 15-8
Intel® i960® Memory Map - Outbound Translation Window .. 15-16
Outbound Address Translation Windows .. 15-17
Direct Addressing Window ... 15-18
PCI 64-Bit Transfer from a 64-Bit Target.. ... 15-25
64-Bit Write Request with 32-Bit Transfer ... 15-27
ATU Interface Configuration Header Format ... 15-54
ATU Interface Extended Configuration Header Format ... 15-55
PCI Memory Map ... 16-3
Overview of Circular Queue Operation .. 16-8
Circular Queue Operation .. 16-10
Intel® 80303 I/O Processor Arbitration Block Diagram .. 17-1
Secondary PCI Arbitration Example .. 17-3
Arbitration Between Two Masters .. 17-6
BIU Back-to-Back Transactions with MTT enabled ... 17-9
Timer Functional Diagram ... 18-1
Timer Unit State Diagram .. 18-11
DMA Controller .. 19-2
DMA Channel Block Diagram .. 19-3
DMA Chain Descriptor ... 19-5

Developer's Manual xxvii

Intel@ 80303 liD Processor intel ..
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12
20-13
20-14
20-15
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10

22-11
22-12
22-13
22-14

22-15
24-1
24-2
24-3
24-4
24-5
25-1
25-2
25-3
A-1
C-2

xxviii

DMA Chaining Operation ... 19-6
Example of Gather Chaining ... 19-8
Synchronizing to Chained Transfers ... 19-10
Optimization of an Unaligned DMA ... 19-17
Optimization of an Unaligned DMA ... 19-18
DMA Programming Model State Diagram ... 19-20
Software Example for Channel Initialization .. 19-21
Software Example for DMA Transfer ... 19-21
Software Example for Channel Suspend ... 19-22
Application Accelerator Unit .. 20-1
Application Accelerator Block Diagram ... 20-2
Chain Descriptor Format ... 20-4
XOR Chaining Operation ... 20-6
Chain Descriptor Format for Eight Source Addresses (XOR Function) 20-7
XOR Chaining Operation : .. 20-9
The Bit-wise XOR Algorithm .. 20-10
Hardware Assist XOR Unit .. 20-11
Example of Gather Chaining for Four Source Blocks .. 20-13
Synchronizing to Chained XOR Operation .. 20-15
Optimization of an Unaligned Data Transfer ... 20-18
Application Accelerator Programming Model State Diagram .. 20-20
Pseudo Code: Application Accelerator Initialization .. 20-21
Pseudo Code: XOR Transfer Operation .. 20-21
Pseudo Code: Suspend Application Accelerator ... 20-22
12C Bus Configuration Example ... 22-2
12C Bus Interface Unit Block Diagram ... 22-3
Start and Stop Conditions .. 22-6
START and STOP Conditions ... 22-7
Data Format of First Bte in Master Transaction ... 22-10
Acknowledge on the I C Bus ... 22-11
Clock Synchronization During the Arbitration Procedure .. 22-12
Arbitration Procedure of Two Masters ... 22-13
Master-Receiver Read from Slave-Transmitter ... 22-17
Master-Receiver Read from Slave-Transmitter / Repeated Start /
Master-Transmitter Write to Slave-Receiver ... 22-17
A Complete Data Transfer ... 22-17
Master-Transmitter Write to Slave-Receiver ... 22-19
Master-Receiver Read to Slave-Transmitter ... 22-19
Master-Receiver Read to Slave-Transmitter, Repeated START,
Master-Transmitter Write to Slave-Receiver ... 22-19
General Call Address .. 22-20
Test Access Port Block Diagram ... 24-3
TAP Controller State Diagram ... 24-17
Example Showing Typical JTAG Operations ... 24-22
Timing Diagram Illustrating the Loading of Instruction Register .. 24-23
Timing Diagram Illustrating the Loading of Data Register ... 24-24
Clocking Regions Diagram .. 25-1
SDRAM Clocking Diagram .. 25-2
Reset Block Diagram ... 25-4
Instruction Formats ... A-1
Intel® 80303 I/O Processor Address Space ... C-4

Developer's Manual

intel· Intel@ 80303 110 Processor

Tables

2-1 Intel® 80303 I/O Processor and PCI Architecture Data Word Notation Differences 2-2
2-2 Memory Addressing Modes ... 2-4
3-1 Registers and Literals Used as Instruction Operands ... 3-3
3-2 Allowable Register Operands .. 3-5
3-3 Data Structure Descriptions ... 3-9
3-4 Alignment of Data Structures in the Address Space .. 3-12
3-5 Condition Codes for True or False Conditions ... 3-15
3-6 Condition Codes for Equality and Inequality Conditions .. 3-15
3-7 Condition Codes for Carry Out and Overflow .. 3-15
3-8 Process Controls Register - PC .. 3-16
4-1 Load Instruction Updates ... 4-6
5-1 Instruction Encoding Formats (REG, COBR, CRTL, MEM) ... 5-2
5-2 Operands and Instruction Formats .. 5-3
5-3 Intel® 80303 I/O Processor Instruction SeL .. 5-4
5-4 Load and Store Instructions ... 5-5
5-5 Move Instructions ... 5-6
5-6 Select Condition Instructions ... 5-6
5-7 Arithmetic Operations .. 5-7
5-8 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract Instructions 5-7
5-9 Remainder and Modulo Instructions .. 5-8
5-10 Shift, Rotate and Extended Shift Instructions .. 5-8
5-11 Extended Arithmetic Instructions ... 5-9
5-12 Logical Instructions .. 5-9
5-13 Bit Operations Instructions ... 5-10
5-14 ompare and Conditional Compare Instructions ... 5-11
5-15 Compare and I ncrement or Decrement Instructions .. 5-12
5-16 Test Condition Code Instructions ... 5-12
5-17 Unconditional Branch Instructions ... 5-13
5-18 Conditional Branch Instructions ... 5-13
5-19 Compare and Branch Instructions ... 5-14
5-20 Call/Return Instructions ... 5-15
5-21 Faults Instructions .. 5-16
5-22 Debug Instructions ... 5-16
5-23 Processor Management Instructions ... 5-17
5-24 Multi-Cycle Register Operations Microcode Instructions ... 5-19
5-25 Simple Control Transfer Instructions ... 5-19
5-26 Memory Instructions .. 5-20
5-27 Memory Instructions .. 5-20
5-28 Cache Control Instructions .. 5-21
6-1 Pseudo-Code Symbol Definitions .. 6-4
6-2 Faults Applicable to All Instructions ... 6-4
6-3 Common Faulting Conditions .. 6-4
6-4 ADD<cc> ... 6-6
6-5 addc ... 6-9
6-6 addi, addo .. 6-10
6-7 alterbit .. 6-11
6-8 and, andnot .. 6-12
6-9 atadd .. 6-13

Developer's Manual xxix

Intei@ 80303 I/O Processor

6-1 0 atmod ... 6-14
6-11 b, bx ... 6-15
6-12 bal, balx ... 6-16
6-13 bbc, bbs ... 6-17
6-14 BRANCH<cc> .. 6-18
6-15 bswap .. 6-20
6-16 call ... 6-21
6-17 calls ... 6-22
6-18 calix ... 6-24
6-19 chkbit ... 6-25
6-20 clrbit ... 6-26
6-21 cmpdeci, cmpdeco ... 6-27
6-22 cmpinci, cmpinco ... 6-28
6-23 COMPARE .. 6-29
6-24 COMPARE AND BRANCH<cc> .. 6-30
6-25 concmpi, concmpo ... 6-32
6-26 dcctl ... 6-33
6-27 dcctl Status Values and D-Cache Parameters .. 6-34
6-28 divi, divo ... 6-38
6-29 ediv .. 6-39
6-30 emul ... 6-40
6-31 eshro .. 6-41
6-32 extract .. 6-42
6-33 FAULT <cc> ... 6-43
6-34 flushreg .. 6-44
6-35 fmark .. 6-45
6-36 halt ... 6-46
6-37 icctl .. 6-47
6-38 icctl Operand Fields ... 6-47
6-39 icctl Status Values and I-Cache Parameters ... 6-49
6-40 intctl ... 6-53
6-41 intdis .. 6-54
6-42 inten ... 6-55
6-43 LOAD ... 6-56
6-44 Ida .. 6-59
6-45 mark ... 6-60
6-46 modac .. 6-61
6-47 modi ... 6-62
6-48 modify .. 6-63
6-49 modpc .. 6-64
6-50 modtc ... 6-65
6-51 MOVE .. 6-66
6-52 muli, mulo .. 6-68
6-53 hand ... 6-69
6-54 nor ... 6-70
6-55 not, notand ... 6-71
6-56 notbit .. 6-72
6-57 notor .. 6-73
6-58 or, arnot ... 6-74
6-59 remi, remo ... 6-75

xxx Developer's Manual

Intel@) 80303 110 Processor

6-60 ret. .. 6-76
6-61 rotate .. 6-78
6-62 scan bit ... 6-79
6-63 scan byte .. 6-80
6-64 SEL<cc> .. 6-81
6-65 setbit .. 6-82
6-66 SHIFT .. 6-83
6-67 span bit ... 6-85
6-68 STORE .. 6-86
6-69 subc ... : 6-90
6-70 SUB<cc> .. 6-91
6-71 subi, subo ... : 6-93
6-72 syncf .. 6-94
6-73 sysctl : .. 6-95
6-74 sysctl Field Definitions ... 6-95
6-75 Cache Mode Configuration .. 6-95
6-76 TEST <cc> .. 6-99
6-77 xnor, xor ... 6-100
7-1 Encodings of Entry Type Field in System Procedure Table .. 7-16
7-2 Encoding of Return Status Field .. 7-20
8-1 PCllnterrupt Routing Summary ... 8-23
8-2 Interrupt Input Pin Descriptions ... 8-23
8-3 XINT6# Interrupt Sources .. 8-24
8-4 XINT7# Interrupt Sources .. 8-25
8-5 NMI# Interrupt Sources .. 8-26
8-6 Default Interrupt Routing and Status Values ... 8-28
8-7 Location of Cached Vectors in Internal RAM ... 8-31
8-8 Base Interrupt Latency ... 8-32
8-9 Worst-Case Interrupt Latency Controlled by divo to Destination r15 8-33
8-10 Worst-Case Interrupt Latency Controlled by divo to Destination r3 ... 8-33
8-11 Worst-Case Interrupt Latency Controlled by Calls ... 8-33
8-12 Worst-Case Interrupt Latency When Delivering a Software Interrupt.. 8-34
8-13 Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame 8-34
8-14 Interrupt Control Registers Addresses ... 8-35
8-15 Interrupt Control (ICON) Register .. 8-36
8-16 Interrupt Map Register 0 (IMAPO) .. 8-37
8-17 Interrupt Map Register 1 (IMAP1) .. 8-38
8-18 Interrupt Map Register 2 (IMAP2) .. 8-38
8-19 Interrupt Pending (IPND) Register ... 8-40
8-20 Interrupt Mask (lMSK) Register ... 8-40
8-21 PCllnterrupt Routing Select Register - PIRSR ... 8-41
8-22 XINT6 Interrupt Status Register- X61SR .. 8-42
8-23 XINT7 Interrupt Status Register- X71SR .. 8-43
8-24 NMI Interrupt Status Register- NISR ... 8-44
9-1 Fault Types and Subtypes ... 9-3
9-2 Fault Control Bits and Masks ... 9-17
10-1 Intel® 80303 I/O Processor Trace Controls Register _ TC .. 10-2
10-2 src/dst Encoding .. 10-6
10-3 Breakpoint Control Register - BPCON .. 10-7
10-4 Configuring Data Address Breakpoint Registers - DABx ... 10-7

Developer's Manual xxxi

Intel@ 80303 liD Processor int'et
10-5
10-6
10-7
10-8
10-9
10-10
10-11
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24

xxxii

Programming Data Address Breakpoint Modes - DABx ... 10-7
Data Address Breakpoint Register - DAB x ... 10-8
Instruction Breakpoint Register - IPBx .. 10-9
Instruction Breakpoint Modes .. 10-9
Tracing on Explicit Call .. 1 0-11
Tracing on Implicit Call .. 10-12
Tracing on Return from Explicit Call .. 10-13
Initialization Modes .. 11-2
Reset Values ... 11-5
BIST Failure Codes ... 11-9
Non-BIST Failure Codes ... 11-9
Initialization Boot Record ... 11-12
PMCON14_15 Register Bit Description in IBR ... 11-14
PRCB Configuration .. 11-15
Process Control Block Configuration Words .. 11-16
Processor Device ID Register - PDIDR .. 11-20

Intel® i960® Core Processor Device ID Register - DEVICEID ... 11-20
PMCON Address Mapping .. 12-2
Physical Memory Control Registers - PMCONO:15 .. 12-3
Bus Control Register - BCON ... 12-4
Logical Memory Address Registers - LMADRO:1 ... 12-6
Logical Memory Mask Registers - LMMRO:1 .. 12-6
Default Logical Memory Configuration Register - DLMCON .. 12-7
Bus Interface Unit Register Table .. 12-17
BIU Control Register - BIUCR ... 12-17
BIU Interrupt Status Register - BIUISR ... 12-18
Commonly Used Terms ... 13-2
Flash Interface Signals .. 13-5
Address Decoding for Flash Memory Space ... 13-7
Flash Wait State Profile Programming ... 13-9
SDRAM Interface Signals .. 13-11
Supported SDRAM Configurations .. 13-13
SDRAM Address Register Definitions ... 13-13
Address Decoding for SDRAM Memory Space ... 13-14
Programming Values for the SDRAM Boundary Registers (SBRx[7:3]) 13-14
SDRAM Address Translation for 64/128/256 Mbit Devices using SA[12:0j 13-15
SD RAM Address Translation for 256 Mbit Devices ... 13-15
SDRAM Commands .. 13-18
Syndrome Decoding .. 13-30
Overlapping Address Priorities .. 13-34
MCU Error Response .. 13-42
Memory Controller Register Table ... 13-44
SDRAM Initialization Register - SDIR .. 13-45
SDRAM Control Register - SDCR ... 13-46
Drive Strength Programmability Options ... 13-47
SDRAM Base Register - SDBR ... 13-47
SDRAM Boundary Register 0 - SBRO ... 13-48
SDRAM Boundary Registers - SBR1 .. 13-49
ECC Control Register - ECCR ... 13-50
ECC Log Registers - ELOGO, ELOG1 ... 13-51

Developer's Manual

intel~
Intel® 80303 110 Processor

13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39
14-40
14-41

ECC Address Registers - ECARO, ECAR 1 .. 13-52
ECC Test Register - ECTST .. 13-53
Flash Base Register 0 - FEBRO ... 13-54
Flash Base Register 1 - FEBR1 ... 13-55
Flash Bank Size Register 0 - FBSRO ... 13-56
Flash Bank Size Register 1 - FBSR1 ... 13-57
Flash Wait State Registers - FWSRO, FWSR1 .. 13-58
Memory Controller Interrupt Status Register - MCISR .. 13-59
Refresh Frequency Register - RFR ... 13-60
PCI Configuration Command Access Formats .. 14-7
Bridge Configuration Cycle Handling Summary .. 14-8
IDSEL Mapping for Type 1 to Type 0 Conversions ... 14-10
Public/Private PCI Memory IDSEL Select Configurations ... 14-13
Primary to Secondary Memory Address Decoding Summary ... 14-24
Primary to Secondary I/O Address Decoding Summary .. 14-24
Secondary to Primary Memory Address Decoding Summary ... 14-25
Secondary to Primary I/O Address Decoding Summary .. 14-26
PCI Commands ... 14-27
Delayed Transactions vs. Posted Transactions ... 14-31
Prefetchable and Non-Prefetchable Memory Summary .. 14-38
Downstream Memory Read Prefetch Size ... 14-39
Upstream Memory Read Prefetch Size ... 14-39
Bridge Unit Queue ... 14-48
D_DRC Assignments ... 14-50
U_DRC Assignments ... 14-50
Bridge Transaction Ordering Rules ... 14-52
Bridge Transaction Ordering and Priority Mechanism ... 14-54
LOCK# Operation State Definitions ... 14-61
PSR Error Reporting Summary ... 14-74
SSR Error Reporting Summary ... 14-77
64-Bit Configuration Options at Reset ... 14-80
PCI-to-PCI Bridge Register Table .. 14-84
Vendor Identification Register - VIDR .. 14-85
Device Identification Register - DIDR (80303 I/O processor) .. 14-86
Primary Command Register - PCR .. 14-87
Primary Status Register - PSR .. 14-88
Revision Identification Register - RID .. 14-90
Class Code Register - CCR ... 14-91
Cacheline Size Register - CLSR .. 14-92
Primary Latency Timer Register- PL TR ... 14-93
Header Type Register- HTR .. 14-94
Primary Bus Number Register- PBNR ... 14-95
Secondary Bus Number Register - SBNR ... 14-96
Subordinate Bus Number Register - SubBNR ... 14-97
Secondary Latency Timer Register - SL TR ... 14-98
I/O Base Register - 10BR .. 14-99
I/O Limit Register - 10LR ... 14-100
Secondary Status Register - SSR ... 14-101
Memory Base Register - MBR ... 14-102
Memory Limit Register - MLR .. 14-103

Developer's Manual xxxiii

Intel@ 80303 I/O Processor

14-42
14-43
14-44
14-45
14-46
14-47
14-48
14-49
14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59
14-60
14-61
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-19
15-20
15-21
15-22
15-23
15-24
15-25
15-26
15-27
15-28
15-29
15-30

xxxiv

Prefetchable Memory Base Register - PMBR ... 14-104
Prefetchable Memory Limit Register - PMLR .. 14-105
Capabilities Pointer Register - Cap_Ptr ... 14-1 06
Bridge Control Register - BCR .. 14-107
Extended Bridge Control Register - EBCR .. 14-109
Secondary IDSEL Select Register - SISR ... 14-111
Primary Bridge Interrupt Status Register - PBISR ... 14-113
Secondary Bridge Interrupt Status Register - SBISR .. 14-114
Secondary I/O Base Register - SIOBR .. 14-116
Secondary I/O Limit Register - SIOLR ... : 14-117
Secondary Clock Disable Register - SCDR ... 14-118
Secondary Memory Base Register - 5MBR .. 14-119
Secondary Memory Limit Register - SMLR ... 14-120
Secondary Decode Enable Register - SDER .. 14-121
Oueue Control Register- OCR ... 14-123
Capability Identifier Register - Cap_ID .. 14-124
Next Item Pointer Register - NexUtem_Ptr .. 14-125
Power Management Capabilities Register - PMCR ... 14-126
Power Management Control/Status Register - PMCSR .. 14-127
PMCSR PCI-to-PCI Bridge Support - PMCSR_BSE ... 14-128
ATU Command Support .. 15-5
Outbound Read Fetch Sizes , .. 15-20
PCI MUlti-Function Device Swapping/Disabling Summary .. 15-23
Inbound Oueues .. 15-31
Inbound Read Prefetch Data Sizes ... 15-33
Outbound Oueues .. , .. 15-34
ATU Inbound Data Flow Ordering Rules ... 15-35
ATU Outbound Data Flow Ordering Rules .. 15-35
Address Parity Errors on the PCI Interface ... 15-39
Outbound Read Data Parity Errors - Master ... 15-40
Outbound Write Data Parity Errors - Master .. 15-41
Inbound Write Data Parity Errors - Slave .. 15-41
Master Aborts on the PCI Interface ... 15-43
Target Aborts on the PCI Interface .. 15-44
Target Aborts on the Primary and Secondary ATUs ... 15-44
SERR# Assertion on the Primary and Secondary ATUs ... 15-45
SERR# Detection On the Primary and Secondary ATUs .. 15-46
Master Abort During an Inbound Write Transaction .. 15-47
Master Abort During an Inbound Read Transaction .. 15-48
Target Abort During an Inbound Write Transaction ... 15-49
Target Abort During an Inbound Read Transaction ... 15-49
Primary ATU Error Reporting Summary - PCllnterface ... 15-50
Secondary ATU Error Reporting Summary - PCllnterface .. 15-51
Primary ATU Error Reporting Summary - Internal Bus Interface .. 15-52
Secondary ATU Error Reporting Summary - Internal Bus Interface 15-53
Address Translation Unit Registers ... 15-56
ATU PCI Configuration Register Space .. 15-58
ATU Vendor 10 Register - ATUVID ... 15-60
Device 10 Register - DID (80303 I/O processor) ... 15-61
Primary ATU Command Register - PATUCMD ... 15-62

Developer's Manual

intel· Intel@ 80303 110 Processor

15-31
15-32
15-33
15-34
15-35
15-36
15-37
15-38
15-39
15-40
15-41
15-42
15-43
15-44
15-45
15-46
15-47
15-48
15-49
15-50
15-51
15-52
15-53
15-54
15-55
15-56
15-57
15-58
15-59
15-60
15-61
15-62
15-63
15-64
15-65
15-66
15-67
15-68
15-69
15-70
15-71
15-72
15-73
15-74
15-75
15-76
15-77
15-78
15-79
15-80

Primary ATU Status Register - PATUSR ... 15-63
ATU Revision ID Register - ATURID ... 15-65
ATU Class Code Register - ATUCCR ... 15-66
ATU Cacheline Size Register - ATUCLSR .. 15-67
ATU Latency Timer Register - ATUL T ... 15-68
ATU Header Type Register - ATUHTR .. 15-69
ATU BIST Register - ATUBISTR ... 15-70
Primary Inbound ATU Base Address Register - PIABAR .. 15-71
ATU Subsystem Vendor ID Register - ASVIR ... 15-72
ATU Subsystem ID Register - ASIR .. 15-73
Expansion ROM Base Address Register -ERBAR .. 15-74
ATU Capabilities Pointer Register - ATU_Cap_Ptr .. 15-75
Memory Block Size Read Response Table ... 15-76
ATU Base Registers and Associated Limit Registers .. 15-76
ATU Interrupt Line Register - ATUILR ... 15-77
ATU Interrupt Pin Register - ATUIPR .. 15-78
ATU Minimum Grant Register - ATUMGNT ... 15-79
ATU Maximum Latency Register - ATUMLAT ... 15-80
Primary Inbound ATU Limit Register - PIALR .. 15-81
Primary Inbound ATU Translate Value Register - PIATVR ... 15-82
Secondary Inbound ATU Base Address Register - SIABAR ... 15-83
Secondary Inbound ATU Limit Register - SIALR ... 15-84
Secondary Inbound Translate ATU Value Register - SIATVR ... 15-85
Primary Outbound Memory Window Value Register - POMWVR ... 15-86
Primary Outbound 1/0 Window Value Register - POIOWVR ... 15-87
Primary Outbound DAC Window Value Register - PODWVR ... 15-88
Primary Outbound Upper 64-bit DAC Register - POUDR .. 15-89
Secondary Outbound Memory Window Value Register - SOMWVR 15-90
Secondary Outbound 1/0 Window Value Register - SOIOWVR .. 15-91
Expansion ROM Limit Register - ERLR ... 15-92
Expansion ROM Translate Value Register - ERTVR ... 15-93
ATU_Capability Identifier Register - ATU_Cap_ID .. 15-94
ATU Next Item Pointer Register - ATU_NexUtem_Ptr ... 15-95
A TU Power Management Capabilities Register - APMCR .. 15-96
ATU Power Management Control/Status Register - APMCSR .. 15-97
ATU Configuration Register - ATUCR ... 15-98
Primary ATU Interrupt Status Register - PATUISR ... 15-100
Secondary ATU Interrupt Status Register - SA TU ISR ... 15-102
Secondary ATU Command Register - SATUCMD .. 15-104
Secondary ATU Status Register - SATUSR .. 15-1 05
Secondary Outbound DAC Window Value Register - SODWVR .. 15-106
Secondary Outbound Upper 64-bit DAC Register - SOUDR ... 15-1 07
Primary Outbound Configuration Cycle Address Register - POCCAR 15-1 08
Secondary Outbound Configuration Cycle Address Register - SOCCAR 15-1 09
Primary Outbound Configuration Cycle Data Register - POCCDR 15-110
Secondary Outbound Configuration Cycle Data Register - SOCCDR 15-111
Primary ATU Queue Control Register - PAQCR ... 15-112
Secondary ATU Queue Control Register - SAQCR ... 15-113
Primary ATU Interrupt Mask Register - PATUIMR .. 15-114
Secondary ATU Interrupt Mask Register - SATUIMR .. 15-115

Developer's Manual xxxv

Intel@ 80303 110 Processor int'et
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
17-9
17-10
17-11
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
19-1
19-2
19-3
19-4

xxxvi

MU Summary ... 16-3
Circular Queue Ordering Requirements .. 16-4
Circular Queue Summary .. 16-7
Queue Starting Addresses .. 16-9
Circular Queue Summary .. 16-14
Message Unit Register Table .. 16-17
Inbound Message Register - IMRx .. 16-18
Outbound Message Register - OMRx ... 16-19
Inbound Doorbell Register - lOR ... 16-20
Inbound Interrupt Status Register - IISR ... 16-21
Inbound Interrupt Mask Register - IIMR .. 16-22
Outbound Doorbell Register - ODR ... 16-23
Outbound Interrupt Status Register - OISR ... 16-24 .
Outbound Interrupt Mask Register - OIMR .. 16-25
MU Configuration Register - MUCR .. 16-26
Queue Base Address Register - QBAR ... 16-27
Inbound Free Head Pointer Register - IFHPR ... 16-28
Inbound Free Tail Pointer Register -IFTPR .. 16-29
Inbound Post Head Pointer Register - IPHPR ... 16-30
Inbound Post Tail Pointer Register - IPTPR .. 16-31
Outbound Free Head Pointer Register - OFHPR .. 16-32
Outbound Free Tail Pointer Register - OFTPR ... 16-33
Outbound Post Head Pointer Register - OPHPR .. 16-34
Outbound Post Tail Pointer Register - OPTPR ... 16-35
Index Address Register - IAR .. 16-36
Bus Master / Programmed Priorities .. 17-4
Bus Arbitration Example - Three Bus Masters .. 17-4
Bus Arbitration Example - Six Bus Masters .. 17-5
Arbitration Flow .. 17-7
Arbitration Block and Reset Signals .. 17 -12
Secondary Arbiter Register Table ... 17-13
Secondary Arbitration Control Register - SACR .. 17-14
2-Bit Priorities .. 17-14
Internal Arbitration Control Register - IACR .. 17-15
Master Latency Timer Register - MLTR .. 17-16
Multi-Transaction Timer Register - MTTR ... 17-17
Timer Performance Ranges .. 18-1
Timer Registers ... 18-2
Timer Mode Register- TMRx ... 18-3
Timer Input Clock (TCLOCK) Frequency Selection ... 18-5
Timer Count Register - TCRx ... 18-6
Timer Reload Register - TRRx ... 18-7
Timer Mode Register Control Bit Summary ... 18-8
Timer Responses to Register Bit Settings ... 18-9
Timer Powerup Mode Settings .. 18-10
Uncommon TMRx Control Bit Settings .. 18-10
DMA Registers .. 19-4
DMA Interrupt Summary .. 19-23
DMA Controller Unit Registers .. 19-26
Channel Control Register - CCR ... 19-27

Developer's Manual

19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11
21-1
21-2
21-3
21-4
21-5
21-6
21-7
21-8
21-9
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10
22-11
22-12
22-13
22-14
23-1
23-2
23-3
24-1
24-2
24-3
24-4

Intei@ 80303 I/O Processor

Channel Status Register - CSR ... 19-28
Next Descriptor Address Register - N DAR .. 19-30
Descriptor Address Register - DAR ... 19-31
Byte Count Register - BCR ... , 19-32
PCI Address Register _ PADR ... 19-33
PCI Upper Address Register - PUADR. ... 19-34
Intel® i960® Local Address Register - LADR ... 19-35
Descriptor Control Register - DCR .. 19-36
PCI Commands ... 19-37
Register Description .. 20-3
AAU Interrupts ... 20-23
Application Accelerator Unit Registers .. 20-25
Accelerator Control Register - ACR ... 20-26
Accelerator Status Register - ASR .. 20-27
Accelerator Descriptor Address Register - ADAR ... 20-28
Accelerator Next Descriptor Address Register - ANDAR .. 20-29
80960 Source Address Register - SARx ... 20-30
80960 Destination Address Register - DAR .. 20-31
Accelerator Byte Count Register - ABCR .. 20-32
Accelerator Descriptor Control Register - ADCR ... 20-33
Occurrence Events .. 21-3
Duration Events ... 21-4
Relationship between the Monitored mode and Monitored Interface 21-5
Event Monitor Register Table .. 21-22
Global Timer Mode Register (GTMR) .. 21-23
Event Select Register (ESR) - External Version .. 21-24
Event Monitoring Interrupt Status Register (EMISR) ... 21-25
Global Time Stamp Register - GTSR .. 21-27
Programmable Event Counter Register - PECRx .. 21-28
12C Bus Definitions ... 22-2
Modes of Operation ... 22-4
START and STOP Bit Definitions .. 22-5
ICCR Programming Values ... 22-8
Master Transactions .. 22-14
Slave Transactions .. 22-18
General Call Address Second Byte Definitions ... 22-20
12C Register Summary Table ... 22-28
12C Control Register - ICR ... 22-29
12C Status Register - ISR ... 22-32
12C Slave Address Register - ISAR ... 22-34
12C Data Buffer Register - IDBR .. 22-35
12C Clock Count Register - ICCR. .. 22-36
12C Bus Monitor Register - IBMR ... 22-37
GPIO Output Enable Register - GPOE .. 23-3
GPIO Input Data Register - GPID .. 23-4
Output Data Register - GPOD ... 23-5
TAP Controller Pin Definitions ... 24-4
Boundary-Scan Instruction Set .. 24-5
IEEE Instructions ... 24-6
Intel® 80303 I/O Processor Boundary Scan Register Bit Order .. 24-8

Developer's Manual xxxvii

Intel@ 80303 110 Processor

25-1 Clock Pin Summary ... 25-3
25-2 Clock Region Summary ... 25-3
25-3 Configuration Modes ... 25-7
A-1 Instruction Field Descriptions .. A-2
A-2 Encoding of src1 and src2 in REG FormaL ... A-3
A-3 Encoding of src/dst In REG Format .. A-3
A-4 Encoding of src1 in C08R Format ... A-4
A-5 Encoding of src2 in C08R Format ... : ... A-4
A-6 Addressing Modes for MEM Format Instructions ... A-5
A-7 Encoding of Scale Field .. A-6
8-8 Miscellaneous Instruction Encoding 8its .. 8-1
8-9 REG Format Instruction Encodings .. 8-2
8-10 C08R Format Instruction Encodings ... 8-6
8-11 CTRL Format Instruction Encodings .. 8-7
8-12 Cycle Counts for sysctl Operations .. 8-7
8-13 Cycle Counts for icctl Operations ... 8-8
8-14 Cycle Counts for dcctl Operations .. 8-8
8-15 Cycle Counts for intctl Operations ... '" 8-8
8-16 MEM Format Instruction Encodings ... 8-9
8-1 7 Addressi ng Mode Performance .. 8-10
C-18 Intel® 80960 Local Addresses Assigned to Integrated Peripherals .. C-5
C-19 Peripheral Memory-Mapped Register Locations .. C-6

xxxviii Developer's Manual

int:et
Introduction 1

1.1

Figure 1-1.

Intel@ 80303 1/0 Processor

The Intel® 80303 I/O processor integrates a high-performance Intel® i960® core processor into a
Peripheral Components Interconnect (PCl) functionality. This integrated processor addresses the
needs of intelligent I/O applications and helps reduce intelligent I/O system costs. As indicated in
Figure 1-1, the primary functional units include an i960 core processor, PCI to PCI bus bridge,
Address Translation Unit, Messaging Unit, Direct Memory Access (DMA) Controller, Memory
Controller, Secondary PCI bus Arbitration Unit, 12C Bus Interface Unit, GPIO Interface Unit,
Application Accelerator Unit, Performance Monitoring Unit and Bus Interface Unit.

Intel® 80303 I/O Processor Functional Block Diagram

Local Memory
12C Serial Bus (SDRAM, Flash)

Intel@ 803031/0 Processor

i960 Core
Processor

~"
Memory ~ ~

Controller Bus Interface 12C Bus

~ Application II Internal I
Unit Interface Accelerator Arbitration

~ ..
.....

,,, , ,
_110.

~ 64-bit Internal Bus ~

Performance

Address
Monitoring

One Address Messaging Two DMA Unit
Unit Channels Translation DMA Translation

Unit Channel Unit

+
I

A ..
~

PCI-to-PCI

64-bitl32-bit Primary PCI Bus Bridge Ii
16'4-bitl32-bit Secondary PCI Bus

,..

Secondary PCI ...
Arbitration Unit

--

Developer's Manual 1-1

Intel@ 80303 110 Processor
Introduction

1.2 Intel® 80303 I/O Processor Features

1.2.1

1.2.2

1-2

The 80303 I/O processor combines an enhanced Intel® i960® JT processor with powerful new
features to create two intelligent I/O processors. This multi-function PCI device is fully compliant
with the PCI Local Bus Specification, Revision 2.2. 803031/0 processor-specific features include:

• PCI-to-PCI Bridge Unit • GPIO Interface Unit

• Private PCI Device Support • Performance Monitoring Unit

• DMA Controller • Secondary PCI Arbitration Unit

• Address Translation Unit • Messaging Unit

• Memory Controller • 120 Compatibility

• Application Accelerator Unit

• I2C Bus Interface Unit

The subsections that follow briefly overview each feature. Refer to the appropriate chapter for full
technical descriptions.

The 80303 I/O processor's core processor is based upon an enhanced version of the i960 JT
processor. The core processor operates at a maximum frequency of 100 MHz. The instruction
cache is 16 Kbytes in size and is two-way set associative. The data cache is 16K bytes in size and is
direct-mapped.

PCI-to-PCI Bridge Unit

The PCI-to-PCI bridge unit (referred to as "bridge") connects two independent PCI buses. It is
fully compliant with the PCI-to-PCI Bridge Architecture Specification, Revision 1.0 published by
the PCI Special Interest Group. It allows certain bus transactions on one PCI bus to be forwarded to
the other PCI bus. It allows fully independent PCI bus operation and fully supports 32-bit or 64-bit
bus widths. Dedicated data queues support high performance bandwidth on the PCI buses. The
primary and secondary PCI buses may independently be configured as 32-bit or 64-bit wide. The
80303 I/O processor supports PCI 64-bit Dual Address Cycle (DAC) addressing.

The bridge has dedicated PCI configuration space that is accessible through the primary PCI bus.
The bridge also supports the power management extended capability configuration header as
defmed by the PCI Bus Power Management Interface Specification, Revision 1.1 Compliance to
this specification provides the hardware support required by the software initiative defined by the
Advanced Configuration and Power Interface Specification, Revision 1.0 (ACPI).

Internal Bus

The Internal Bus is a high-speed interconnect between all internal units and controllers. The
Internal Bus operates at 66 MHz and is 64 bits wide.

Developer's Manual

int:et
1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

Private PCI Device Support

Intel@ 80303 I/O Processor
Introduction

A key 80303 110 processor feature is that it explicitly supports private PCI devices on the
secondary PCI bus without being detected by PCI configuration software. The bridge and Address
Translation Unit work together to hide private devices from PCI configuration cycles and allow
these devices to use a private PCI address space. The Address Translation Unit uses normal PCI
configuration cycles to configure these devices.

DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents
and 80303 local memory. Three separate DMA channels accommodate data transfers: two for
primary PCI bus, one for the secondary PCI bus. The DMA Controller supports chaining and
unaligned data transfers. It is programmable through the i960 core processor only.

Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80303 110
processor local memory. The ATU supports transactions between PCI address space and 80303 I/O
processor address space. Address translation is controlled through programmable registers
accessible from both the PCI interface and the i960 core processor. Dual access to registers allows
flexibility in mapping the two address spaces. The ATU also supports the power management
extended capability configuration header that as defined by the PCI Bus Power Management
lnteiface Specification, Revision 1.1

Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80303 I/O
processor. It uses interrupts to notify each system when new data arrives. The MU has four
messaging mechanisms: Message Registers, Doorbell Registers, Circular Queues and Index
Registers. Each allows a host processor or external PCI device and the 80303 I/O processor to
communicate through message passing and interrupt generation.

Memory Controller

The Memory Controller allows direct control of external memory systems, including SDRAM,
SRAM, ROM and f1ash. It provides a direct connect interface to memory that typically does not
require external logic. It features programmable chip selects, a wait state generator, and support for
error correction codes (ECC). External memory can be configured as PCI addressable memory or
private 80303 110 processor memory.

Application Accelerator Unit

The Application Accelerator Unit transfers blocks of data to and from the local memory and
performs boolean operations, such as XOR, on the data.

Developer's Manual 1-3

Inte/@ 80303 110 Processor
Introduction

1.2.9

1.2.10

1.2.11

1.2.12

1-4

Performance Monitoring Unit

The Perfonnance Monitoring Unit (PMON) allows various events on the 80303 I/O processor to be
monitored. 14 Event Counters can be programmed to observe events selected from a pre-defined
set of events.

12C Bus Interface Unit

The I2C (Inter-Integrated Circuit) Bus Interface Unit allows the i960 core processor to serve as a
master and slave device residing on the I2C bus. The 12C unit uses a serial bus developed by Philips
Semiconductor consisting of a two-pin interface. The bus allows the 80303 I/O processor to
interface to other 12C peripherals and microcontrollers for system management functions. It
requires a minimum of hardware for an economical system to relay status and reliability
information on the I/O subsystem to an external device. Also refer to /2 C Peripherals for
Microcontrollers (Philips Semiconductor).

GPIO Interface Unit

Eight pins are !:ovided as General Purpose Input Output (GPIO) pins. These pins can be used by
the Intel® i960 IT processor to control or monitor external devices in the I/O subsystem.

Secondary PCI Arbitration Unit

The Secondary PCI Arbitration Unit is the arbiter for the secondary PCI bus. It includes a fairness
algorithm with programmable priorities and six PCI request and grant signal pairs. This arbitration
unit can also be disabled to allow for external arbitration.

Developer's Manual

infel·
1.3

1.3.1

1.3.2

1.3.3

1.3.4

Terminology and Conventions

Representing Numbers

Intel® 80303 I/O Processor
Introduction

All numbers in this document can be assumed to be base 10 unless designated otherwise. In text,
numbers in base 16 are represented as "nnnH", where the "H" signifies hexadecimal. In pseudo
code descriptions, hexadecimal numbers are represented in the form OxI234ABCD. Binary
numbers are not explicitly identified but are assumed when bit operations or bit ranges are used.

Fields

A reserved field is a field that may be used by an implementation. If the initial value of a reserved
field is supplied by software, this value must be zero. Software should not modify reserved fields
or depend on any values in reserved fields.

A read/write field can written to a new value following initialization. This field can always be read
to return the current value.

A read only field can be read to return the current value. Writes to read only fields are treated as
no-op operations and will not change the current value nor result in an error condition.

A read/clear field can also be read to return the current value. A write to a read/clear field with the
data value of 0 will cause no change to the field. A write to a read/clear field with a data value of I
will cause the field to be cleared (reset to the value of 0). For example, if a read/clear field has a
value of FOH, and a data value of 55H is written, the resultant field will be AOH.

A read/ set field can also be read to return the current value. A write to a read/set field with the data
value of 0 will cause no change to the field. A write to a read/ set field with a data value of I will
cause the field to be set (set to the value of 1). For example, if a read/set field has a value of FOH,
and a data value of 55H is written, the resultant field will be F5H.

A writeonce/readonly field can be written to a new value once following initialization. After the
this write has occurred, the writeonce/readonly field will treat all subsequent writes as no-op
operations and will not change the current value or result in an error condition. The field can
always be read to return the current value.

Specifying Bit and Signal Values

The terms set and clear in this specification refer to bit values in register and data structures. If a bit
is set, its value is 1; if the bit is clear, its value is O. Likewise, setting a bit means giving it a value of
1 and clearing a bit means giving it a value of O.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively.

Signal Name Conventions

All signal names use the PCI signal name convention of using the "#" symbol at the end of a signal
name to indicate that the signal's active state occurs when it is at a low voltage. This includes
80303 processor related signal names that normally use an overline. The absence of the "#" symbol
indicates that the signal's active state occurs when it is at a high voltage.

Developer's Manual 1-5

Intel® 80303 110 Processor
Introduction

1.3.5 Terminology

in1:et

To aid the discussion of the 80303 I/O processor architecture, the following terminology is used:

1-6

Downstream

DWORD

QWORD

Host processor

Local processor

Local bus

Local memory

Upstream

At or toward a PCI bus with a higher number (after configuration)

32-bit data word

64-bit data word

Processor located upstream from the 80303 I/O processor

i960 core processor within the 80303 I/O processor

80303 I/O processor Internal Bus

Memory subsystem on the 80303 processor local bus

At or toward a PCI bus with a lower number (after configuration)

Developer'S Manual

intel·
Data Types and Memory Addressing
Modes 2

2.1

Figure 2-1.

Data Types

The instruction set references or produces several data lengths and formats. The Intel® 80303 110
processor supports the following data types:

• Integer (signed 8,16 and 32 bits)

• Ordinal (unsigned integer 8, 16, and 32 bits)

• Long Word (64 bits)

• Triple Word (96 bits)

• Quad Word (128 bits)

• Bit Field

• Bit

Figure 2-\ illustrates the class, data type and length of each type supported by the Intel® i960®
processor.

Data Types and Ranges

II Bit Field II I
31 L Length J 0

LSB of Bit Field J B~~ I

Bit~ I Byte I
7 0

15
Short I

o
BYt; ,:-1 ,..-____ w_o_rd.".1

31 0

Brs~I~ __________ ~ __________ ~L~On~g~1
~ 0

BTt~I~~ ____________ ~ ____________ ~ _______ ~~ri~p~le~w~o~r~dl
~ 0

~ft~ I Quad Word I
~12~7~----------~--------------~--------------~----~~~~~0

Class Data Type Length Range

Numeric Byte Integer 8 Bits _27 to 27 -1

(Interger) Short Integer 16 Bits _2 15 to 215 _1

Integer 32 Bits _231 to 231 -1

Byte Ordinal 8 Bits Ot028 -1
Numeric Short Ordinal 16 Bits Ot0216 _1
(Ordinal) Ordinal 32 Bits Ot0232 _1

Long Ordinal 64 Bits Ot0264 _1

Bit 1 Bit

Numeric Bit Field 1-32 Bits

(Ordinal) Long Word 64 Bits N/A

Triple Word 96 Bits
Quad Word 128 Bits

Developer's Manual 2-1

Intel@ 80303 liD Processor intet Data Types and Memory Addressing Modes

2.1.1

Table 2-1.

2.1.2

Word/Dword Notation

Data lengths, as described in the 80303 I/O processor, differ from the conventions used for the
80303 architecture. See also Table 2-1:

• In the PCI specification the term word refers to a 16-bit block of data.

• In this manual and other documentation relating to the 80303 I/O processor, the term word
refers to a 32-bit block of data.

Intel@ 80303 VO Processor and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80303 Architecture

16 word short word or half word

32 doubleword or dword word

Integers

Integers are signed whole numbers that are stored and operated on in two's complement format by the
integer instructions. Most integer instructions operate on 32-bit integers. Byte and short integers are
referenced by the byte and short classes of the load, store and compare instructions only.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructions Idib (load integer byte) and Idis (load integer short), a byte or short word in
memory is considered a two's complement value. The value is sign-extended and placed in the
32-bit register that is the destination for the load.

Example 2-1. Sign Extensions on Load Byte and Load Short

2-2

ldib

ldis

7AH is loaded into a register as 0000 007AH

FAH is loaded into a register as FFFF FFFAH

05A5H is loaded into a register as 0000 05A5H

85A5H is loaded into a register as FFFF 85A5H

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's complement
number in a register is stored to memory as a byte or short word. When register data is too large to
be stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the
ARITHMETIC.lNTEGER_OVERFLOW fault is generated, depending on the Integer Overflow
Mask bit (AC.om) in the AC register. Chapter 9, "Faults" describes the integer overflow fault.

For instructions Id (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

Developer's Manual

2.1.3

2.1.4

2.1.5

2.1.6

Ordinals

Intel® 80303 liD Processor
Data Types and Memory Addressing Modes

Ordinals or unsigned integer data types are stored and treated as positive binary values. Figure 2-1
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only load (Idob and Idos), store (stob and stos), and compare ordinal instructions reference
the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; however, the
values may be zero-extended or truncated. A short word or byte load to a register causes the value
loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an ordinal value
in a register to fit the destination memory. No overt10w condition is signalled in this case.

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (ldo) and store
(sto) instructions. When an Idi instruction loads a bit or bit field value into a 32-bit register, the
processor appends sign extension bits. A byte or short store can signal an integer overflow condition.

Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-word
load, store and move instructions use these data types to accomplish block movements. No data
manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Data in each word subset of a quad word is likely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

Register Data Alignment

Several instructions operate on multiple-word operands. For example, the load-long instruction
(Idl) loads two words from memory into two consecutive registers. Here the register number for the
least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an integral
multiple of four if three or four registers are accessed (e.g., gO, g4). When a register reference for a
source value is not properly aligned, the registers that the processor writes to are undefined.

The 80303 I/O processor does not require data alignment in external memory; the processor
hardware handles unaligned memory accesses automatically. Optionally, user software can
configure the processor to generate a fault on unaligned memory accesses.

Developer's Manual 2-3

Intel@ 80303 110 Processor in1:et Data Types and Memory Addressing Modes

2.1.7

2.2

2.3

Table 2-2.

2-4

Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, the processor zero-extends the value to the operand size. If a literal is
used in an instruction that requires integer operands, the processor treats the literal as a positive
integer value.

Bit and Byte Ordering in Memory

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as little endian.

Memory Addressing Modes

Nine modes are available for addressing operands in memory. Each addressing mode is used to
reference a byte location in the processor's address space. Table 2-2 shows the memory addressing
modes and a brief description of each mode's address elements and assembly code syntax.

Memory Addressing Modes

Mode Description Assembler Syntax Insf.
Type

Absoluteoffset offset (smaller than 4096) exp MEMA

displacement displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB

with offset abase + offset exp (reg) MEMA

with displacement abase + displacement exp (reg) MEMB

with index abase + (index'scale) (reg) [reg'scale) MEMB

with index and displacement abase + (index'scale) + displacement exp (reg) [reg"scale) MEMB

Index with displacement (index'scale) + displacement exp [reg'scale) MEMB

instruction pOinter (IP) with
IP + displacement + 8 exp (IP) MEMB

displacement

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.

See Table B-8. "Miscellaneous Instruction Encoding Bits" on page B-1 for more on addressing
modes. For purposes of this memory addressing modes description, MEMA format instructions
require one word of memory and MEMB usually require two words and therefore consume twice
the bus bandwidth to read. Otherwise, both formats perform the same functions.

Developer's Manual

int:et
2.3.1

2.3.2

2.3.3

Absolute

Intel® 80303 I/O Processor
Data Types and Memory Addressing Modes

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to 4095.
The absolute offset addressing mode is encoded in the MEMA machine instruction format.

• For the absolute displacement addressing mode, the offset value ranges from 0 to 232_1. The
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in Chapter 6, "Instruction Set
Reference".

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions (e.g.,
x + 44) or symbolic labels. After evaluating an address specified with the absolute addressing
mode, the assembler converts the address into an offset or displacement and selects the appropriate
instruction encoding format and addressing mode.

Register Indirect

Register indirect addressing modes use a register'S 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated "abase" in Table 2-2). Depending
on the addressing mode, an optional scaled index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2,4,8 and 16. The
register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use
register-indirect-with-offset (MEMA format) or register-indirect-with-displacement (MEMB
format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a register
and multiplied by a scaling constant before displacement is added. This mode uses MEMB format.

Developer's Manual 2-5

Intel® 80303 110 Processor
Data Types and Memory Addressing Modes

2.3.4

2.3.5

IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP)
relative. IP-with-displacement addressing mode references the next instruction's address plus the
displacement plus a constant of 8. The constant is added because, in a typical processor
implementation, the address has incremented beyond the next instruction address at the time of
address calculation. The constant simplifies IP-with-displacement addressing mode
implementation. This mode uses MEMB format.

Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assembly language.
Example 2-2 shows addressing mode mnemonics. Example 2-3 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a procedure named
array_op uses these addressing modes to fill two contiguous memory blocks separated by a constant
offset. A pointer to the top of the block is passed to the procedure in gO, the block size is passed in g I
and the fill data in g2. Refer to Appendix A, "Machine-Level Instruction Formats".

Example 2-2. Addressing Mode Mnemonics
st g4,xyz

ldob (r3) ,r4

stl g6, xyz (g5)

Absolute; word from g4 stored at memory

location designated with label xyz.

Register indirect; ordinal byte from

memory location given in r3 loaded

into register r4 and zero extended.

Register indirect with displacement;

double word from g6,g7 stored at memory

location xyz + gS.

Idq (r8) [r9*4], r4 # Register indirect with index; quad-word

beginning at memory location r8 + (r9

scaled by 4) loaded into r4 through r7.

st g3,xyz(g4) [g5*2] # Register indirect with index and

displacement; word in g3 stored to mem

location g4 + xyz + (gS scaled by 2) .

Idis xyz[r12*2],r13 # Index with displacement; load short

integer at memory location xyz + r12

into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4

at memory location IP + xyz + 8.

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes
array_op:

mov gO,r4 # Pointer to array is copied to r4.

subi 1,gl,r3 # Calculate index for the last array

b .133 # element to be filled

.I34:

st g2, (r4) [r3*4] # Fill element at index

st g2, Ox30 (r4) [r3*4 # Fill element at index+constant offset
]

subi 1,r3,r3 # Decrement index

.133 :

cmpible O,r3,.I34 # Store next array elements if

ret # index is not 0

2-6 Developer's Manual

Programming Environment 3

3.1

This chapter describes the Intel® 80303 I/O processor programming environment including global
and local registers, control registers, literals, processor-state registers and address space.

Overview

The Intel® i960® architecture defines a programming environment for program execution, data
storage and data man~ulation. Figure 3-1 shows the programming environment elements that
include a 4 Gbyte (23 byte) flat address space, an instruction cache, a data cache, global and local
general-purpose registers, a register cache, a set of literals, control registers and a set of processor
state registers.

The processor includes several architecturally-defined data structures located in memory as part of
the programming environment. These data structures handle procedure calls, interrupts and faults
and provide configuration information at initialization. These data structures are:

• interrupt stack

• control table

• system procedure table

• local stack

• fault table

• process control block

• supervisor stack

• interrupt table

• initialization boot record

Developer's Manual 3-1

Inte/@ 80303 liD Processor
Programming Environment intel·
3.2

Figure 3-1.

3-2

Registers and Literals as Instruction Operands

With the exception of a few special instructions, the 80303 I/O processor uses only simple load and
store instructions to access memory. All operations take place at the register level. The processor uses
16 global registers, 16 local registers and 32 literals (constants 0-31) as instruction operands.

The global register numbers are gO through g15; local register numbers are rO through r15. Several
of these registers are used for dedicated functions. For example, register rO is the previous frame
pointer, often referred to as pfp. i960 processor compilers and assemblers recognize only the
instruction operands listed in Table 3-1. Throughout this manual, the registers' descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

Intel® 803031/0 Processor Programming Environment

0000 OOOOH FFFF FFFFH

%
I

I
I
I

Address Space I
Architecturally Defined

Data Structures

.s::

" Qj
LL

I Instruction I
'0 ~ ro .9 Cache 0
-' en

E ro
~

U5
c
.Q Instruction
t5 Execution I Sixteen 32-Bit gO I 2 u; Global Registers g15 .::

Processor Slate
Registers

..I9 Register Cache

!Instruction pOinter! ~,
! Arithmetic Controls! I Sixteen 32-Bit

Local Registers r15

I Process Controls I
I Control Registers I I Trace Controls I

A6361-01

Developer's Manual

int:et
3.2.1

Table 3-1.

3.2.2

Global Registers

Intel® 80303 I/O Processor
Programming Environment

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program's computational operands. These registers retain their contents across procedure boundaries.
As such, they provide a fast and efficient means of passing parameters between procedures.

Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

gO - g14 global (gO-g14) general purpose

fp global (g15) frame pointer FP

pfp local (rO) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction painter RIP

r3 - r15 local (r3-r15) general purpose

0-31 literals

The i960 architecture supplies 16 global registers, designated gO through g 15. Register g 15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame in internal memory. See Section 7.1, "Call and Return Mechanism"
on page 7-2) for a description of the FP and procedure stack.

After the processor is reset, register gO contains the 80303 I/O processor device identification and
stepping information. gO retains this information until it is written over by the user program. The
80303 I/O processor device identification and stepping information is also stored in the
memory-mapped DEVICEID register located at FFOO 8710H. In addition, the 80303 I/O processor
device identification and stepping information is stored in the memory-mapped register located at
000017lOH.

Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (rO through rl5) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure's local registers. When the application returns from the procedure, the local registers are
released for the next procedure call. The processor performs local register management; a program
need not explicitly save and restore these registers.

r3 through r15 are general purpose registers; rO through r2 are reserved for special functions; rO
contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discussed in Chapter 7, "Procedure Calls".

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Also, the processor does not initialize the local register save area in the newly created
stack frame for the procedure. User software should not rely on the initial values of local registers.

Developer's Manual 3-3

Intel® 80303 110 Processor
Programming Environment in1:et
3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registers is being used in an operation. If the instructions that
follow do not require data from registers already in use, the processor can execute those
instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register
scoreboarding prevents a subsequent instruction from executing. It also illustrates overlapping
instructions that do not have register dependencies.

Example 3-1. Register Scoreboarding

3.2.4

3.2.5

muli
addi

muli

and

Literals

r4,r5,r6
r6,r7,r8

r4,r5,rIO

r6,r7,rB

r6 is scoreboarded

addi must wait for the previous multiply

to complete

rIO is scoreboarded

and instruction is executed concurrently with mUltiply

Architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values ranging from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, the processor zero-extends the value to operand size. If a literal is used in
an instruction requiring integer operands, the processor treats the literal as a positive integer value.

Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction (ldl)
loads two words from memory into two consecutive registers. The register for the less significant
word is specified in the instruction. The more significant word is automatically loaded into the next
higher-numbered register.

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even iftwo registers are accessed (e.g., gO, g2) and an integral
multiple of 4 if three or four registers are accessed (e.g., gO, g4). If a register reference for a source
value is not properly aligned, the source value is undefmed and an
OPERATION.INVAUD_OPERAND fault is generated. If a register reference for a destination value
is not properly aligned, the registers to which the processor writes and the values written are undefined.
The processor then generates an OPERATION.INVALID_OPERAND fault. The assembly language
code in Example 3-2 shows an example of correct and incorrect register alignment.

Example 3-2. Register Alignment

movl g3,gB

movl g4,g8

3-4

Incorrect alignment - resulting value

in registers gB and g9 is

unpredictable (non-aligned source)

Correct alignment

Developer's Manual

Ii

in1et

Table 3-2.

Intel@ 80303 I/O Processor
Programming Environment

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

Allowable Register Operands

Operand1

Instruction Operand Field Local Register Global Register Literal
Encoding

sret X X X
sre2 X X X

REG sre/dst (as sre) X X X
sre/dst (as ds~ X X
sre/dst (as both) X X

sre/dst X X
MEM abase X X

index X X

src1 X X
COBR src2 X X X

dst X2 X2 X2

NOTES:
1. "X" denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.

Developer's Manual 3-5

Intel® 80303 liD Processor
Programming Environment intel.
3.3 Memory-Mapped Control Registers (MMRs)

3.3.1

3.3.1.1

3-6

The 80303 I/O processor gives software the interface to easily read and modify internal control
registers. Each of these registers is accessed as a memory-mapped register with a unique memory
address. There are two distinct sets of memory-mapped registers on the 80303 I/O processor. The
first set exists in the FFOO OOOOH through FFFF FFFFH address range and is used to control the
80303 I/O processor functions. The second set exists in the 0000 1000H through DOOO 18FFH
address range and is used to control the 80303 I/O processor integrated peripherals. The processor
ensures that accesses to MMRs do not generate external bus cycles.

Intel® i960® Core Processor Function Memory-Mapped
Registers

Portions of the 80303 I/O processor address space (addresses FFOO OOOOH through FFFF FFFFH)
are reserved for memory-mapped registers. These memory-mapped registers are accessed through
word-operand memory instructions (atmod, atadd, sysctl, Id and st instructions) only. Accesses to
this address space do not generate external bus cycles. The latency in accessing each of these
registers is one cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read and
write accesses). Table C-18 and Table C-19 show all the memory-mapped registers.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FFOO OOOOH through FFOO 7FFFH are allocated to user space memory-mapped registers;
Addresses FFOO 8000H to FFFF FFFFH are allocated to supervisor space registers.

Restrictions on Instructions that Access the Intel® i960® Core
Processor Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st)
instructions. However some registers have restrictions on the types of accesses they allow. To
ensure correct operation, the access type restrictions for each register should be followed. The
access type columns of Table C-18 and Table C-19 indicate the allowed access types for each
register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the 80303 I/O processor. Do not use this
instruction on any other memory-mapped registers.

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the 80303 I/O processor; the
breakpoints cannot be read using a Id instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user's start-up code by providing a transparent setup of the processor's
peripherals. See Chapter 11, "Initialization and System Requirements".

Developer's Manual

infel·
3.3.1.2

3.3.2

Intel® 80303 110 Processor
Programming Environment

Access Faults for Intel@ i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way results in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION. UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the access is neither of the above, the access is attempted. Note that an MMR may generate
faults based on conditions specific to that MMR. (Example: trying to write the timer registers
in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined operation
of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION. UNIMPLEMENTED fault.

Intel® 80303 1/0 Processor Peripheral Memory-Mapped
Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-bit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the 80303
I/O processor. See Appendix C, "Peripheral Memory-Mapped Registers".

The memory-mapped registers discussed in this chapter are specific to the 80303 I/O processor
only. They support the DMA controller, memory controller, PCI and peripheral interrupt controller,
messaging unit, internal arbitration unit, PCI to PCI bridge unit, PCI address translation unit, 12C
bus interface unit, performance monitoring unit, and the application accelerator unit. This manual
provides chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 18FFH) provides full accessibility
from the primary ATU, secondary ATU, and the 80303 I/O processor.

Developer's Manual 3-7

Intel® 80303 110 Processor
Programming Environment

3.3.2.1

3-8

Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80303 internal bus. This interface accepts
data transactions that appear on the 80303 internal bus from the Primary ATU, Secondary ATU,
and the 80303 I/O processor. The PMMR interface allows these devices to perform read, write, or
read-modify-write transactions.

The PMMR interface does not support multi-word burst accesses from any bus master. The PMMR
interface supports 32-bit bus width transactions only. Because of this, PMCONO: 1 must be
configured as a 32-bit memory region for accesses that originate from the 80303 I/O processor.

The PMMR interface is byte addressable. For PMMR reads, all accesses are promoted to word
accesses and all data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the 80303 internal bus.
However, there may be requirements from the individual units that interface to the PMMR. For
example, when configuring the DMA channel's control register, a full 32-bit write must be
performed to configure and restart the DMA channel. These restrictions are highlighted in the
chapters describing the integrated peripheral units.

The PMMR interface supports the 80303 internal bus atomic operations from the 80303 I/O
processor. The 80303 I/O processor provides atrnod (atomic modify) and atadd (atomic add)
instructions for atomic accesses to memory. When the 80303 processor executes an atrnod or atadd
instruction, the LOCK# signal is asserted. The 80303 internal bus is not granted to any other bus
master until the LOCK# signal is deasserted. This prevents other bus masters from accessing the
PMMR interface during a locked operation.

All PMMR transactions are allowed from 80303 I/O processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the 80303 I/O
processor.

The following PMMR registers have read/write access from the 80303 internal bus (for both the
PCl Bridge and ATU):

• Vendor ID register

• Device ID register

• Revision ID register

• Class Code register

• Header Type register

• Bridge Subsystem ID register

• Bridge Subsystem Vendor ID register

For accesses through PCl configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registers. For PCI
configuration write transactions, the PMMR discards the data. For all other accesses, reading or writing
a reserved register is undefmed. See Table C-18 and Table C-19 for register memory locations.

Developer's Manual

3.4

Table 3-3.

Intel® 80303 I/O Processor
Programming Environment

Architecturally Defined Data Structures

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-3 defines the data structures
and references other sections of this manual where detailed information can be found.

The 80303 I/O processor defines two initialization data structures: the Initialization Boot Record
(IBR) and the Process Control Block (PRCB). These structures provide initialization data and
pointers to other data structures in memory. When the processor is initialized, these pointers are
read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user's startup code. Of these structures, only
the system procedure table, fault table, control table and initialization data structures may be in
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in RAM
to allow posting of software interrupts.

Data Structure Descriptions

Structure Description

User and Supervisor Stacks

Section 7.6, "User and Supervisor The processor uses these stacks when executing application code.
Stacks" on page 7-18

Interrupt Stack
A separate interrupt stack is provided to ensure that interrupt handling

Section 8.1.5, "Interrupt Stack And does not interfere with application programs.
Interrupt Record" on page 8-6

System Procedure Table Contains pointers to system procedures. Application code uses the
Section 3.7, "User-Supervisor system call instruction (calls) to access system procedures through
Protection Model" on page 3-18 this table. A system supervisor call switches execution mode from

Section 7.5, "System Calls" on user mode to supervisor mode. When the processor switches modes,

page 7-15 it also switches to the supervisor stack.

Interrupt Table The interrupt table contains vectors (pointers) to interrupt handling
Section 8.1.4, "Interrupt Table" on procedures. When an interrupt is serviced, a particular interrupt table
page 8-4 entry is specified.

Contains pOinters to fault handling procedures. When the processor

Fault Table
detects a fault, it selects a particular entry in the fault table. The
architecture does not require a separate fault handling stack. Instead,

Section 9.3, "Fault Table" on a fault handling procedure uses the supervisor stack, user stack or
page 9-5 interrupt stack, depending on the processor execution mode in which

the fault occurred and the type of call made to the fault handling
procedure.

Control Table

Section 11.4.4, "Control Table" on
Contains on-chip control register values. Control table values are

page 11-19
moved to on-chip registers at initialization or with sysctl.

Developer's Manual 3-9

Intel® 80303 I/O Processor
Programming Environment

3.5 Memory Address Space

in1:et

The 803031/0 processor's local address space is byte-addressable with addresses running
contiguously from 0 to 232_1. Some memory space is reserved or assigned special functions as
shown in Figure 3-2.

Figure 3-2. Local Memory Address Space

Address

0000 OOOOHl NMI Vector ~I
00000004H -----0-. -pt-Io-na-··. ·-,-,nte-. ··-r.-u-pt-Vecto-· -.~rs-<-· ·-----11
0000003FHl~' _______________ '~'~'_;'_'_' ______ ~~ ___ "_'_"_' __ {
0000 0040H . ". '. . •... . \

~~~~ ~~~~~I·-. --------. _A_va_i_.abIe_' .. ;.;..'_for...;.· ......... _;Data_·_·_>.;..'~.;.. ..• • .... :>_. ---"~" -I' I 
"ntej@)80303110>~ Reservec:t 

oooOOFFFHll--·----------------~------------------~·I· 
00001000H . .;. 

Peripheral .,emoty-mappedFlegI~.·· 

'6'1,'6'1, l~~~~ I"'r - .. -.· ---.'-'n-tel-803Q3--· -1I-0-·· .... Proces---.... sor-·ReServ-·""'·' .... ··-· -ed-;----II 
0000 1 FFFH ........ ______ ...;......;.;.. ____ . .;,;., .. ..,;' . ....;. _________ ........ ____ -1 

00002000H 

::: 
Code/Data 

Architecturally Defined Data Structures 
External Memory 

o Reserved Address Space 

Internal 
Data RAM 

A8037'()1 

3-10 Developer's Manual 



intel· 

3.5.1 

Intel® 80303 liD Processor 
Programming Environment 

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped 
I/O. The architecture does not define a dedicated, addressable I/O space. There are no subdivisions of 
the address space such as segments. For memory management, an external memory management unit 
(MMU) may subdivide memory into pages or restrict access to certain areas of memory to protect a 
kernel's code, data and stack. However, the processor views this address space as linear. 

An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the instruction, 
an address can reference in memory a single byte, short word (2 bytes), word (4 bytes), double word 
(8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and store instruction descriptions 
in Chapter 6, '"Instruction Set Reference" for multiple-byte addressing information. 

Memory Requirements 

The architecture requires that external memory have the following properties: 

• Memory must be byte-addressable. 

• Physical memory must not be mapped to reserved addresses that are specifically used by the 
processor implementation. 

• Memory must guarantee indivisible access (read or write) for addresses that fall within l6-byte 
boundaries. 

• Memory must guarantee atomic access for addresses that fall within l6-byte boundaries. 

The latter two capabilities, indivisible and atomic access, are required only when multiple 
processors or other external agents, such as DMA or graphics controllers, share a common 
memory. 

indivisible access 

atomic access 

Guarantees that a processor, reading or writing a set of memory 
locations, complete the operation before another processor or external 
agent can read or write the same location. The processor requires 
indivisible access within an aligned l6-byte block of memory. 

A read-modify-write operation. Here the external memory system must 
guarantee that once a processor begins a read-modify-write operation on 
an aligned, l6-byte block of memory it is allowed to complete the 
operation before another processor or external agent can access to the 
same location. An atomic memory system can be implemented by using 
the 80303 I/O processor signal to qualify hold requests from external bus 
agents. The processor asserts 80303 I/O processor for the duration of an 
atomic memory operation. 

The upper 16 Mbytes of the address space (addresses FFOO OOOOH through FFFF FFFFH and 
0000 lOOOH through 0000 018FFH) are reserved for implementation-specific functions. 80303 I/O 
processor programs cannot use this address space except for accesses to memory-mapped registers. 
The processor does not generate any external bus cycles to this memory. As shown in Figure 3-2, 
part of the initialization boot record is located just below the 80303 I/O processor's reserved 
memory. 

The 80303 I/O processor requires some special consideration when using the lower 1 Kbyte of 
address space (addresses OOOOH 03FFH). Loads and stores directed to these addresses access 
internal memory; instruction fetches from these addresses are not allowed by the processor. See 
Section 4.1, "Internal Data RAM" on page 4-1. No external bus cycles are generated to this address 
space. 

Developer's Manual 3-11 



Intel@ 80303 liD Processor 
Programming Environment int:et 
3.5.2 

Table 3-4. 

3.5.3 

3-12 

Data and Instruction Alignment in the Address Space 

Instructions, program data and architecturally defined data structures can be placed anywhere in 
non-reserved address space while adhering to these alignment requirements: 

• Align instructions on word boundaries. 

• Align all architecturally defined data structures on the boundaries specified in Table 3-4. 

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in memory. 

The 80303 I/O processor can perform unaligned load or store accesses. The processor handles a 
non-aligned load or store request by: 

• After the access completes, the processor can generate an OPERATION. UNALIGNED fault, 
if directed to do so. 

The method of handling faults is selected at initialization based on the value of the Fault 
Configuration Word in the Process Control Block. See Section 11.4.2, "Process Control Block -
PRCB" on page 11-15. 

Alignment of Data Structures in the Address Space 

Data Structure Alignment Boundary 

System Procedure Table 4 byte 
Interrupt Table 4 byte 

Fault Table 4 byte 
Control Table 16 byte 
User Stack 16 byte 

Supervisor Stack 16 byte 
Interrupt Stack 16 byte 

Process Control Block 16 byte 
Initialization Boot Record Fixed at FEFF FF30H 

Byte, Word and Bit Addressing 

The processor provides instructions for moving data blocks of various lengths from memory to 
registers (ld) and from registers to memory (st). Supported sizes for blocks are bytes, short words 
(2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl (store 
long) stores an 8-byte (double word) data block in memory. 

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word 
increments, using quad-word instructions Idq and stq. 

When a data block is stored in memory, the block's least significant byte is stored at a base memory 
address and the more significant bytes are stored at successively higher byte addresses. This 
method of ordering bytes in memory is referred to as "little endian" ordering. 

When loading a byte, short word or word from memory to a register, the block's least significant bit 
is always loaded in register bit O. When loading double words, triple words and quad words, the 
least significant word is stored in the base register. The more significant words are then stored at 
successively higher-numbered registers. Individual bits can be addressed only in data that resides 
in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit. 

Developer's Manual 



intel· 
3.5.4 

3.5.5 

3.5.6 

3.6 

3.6.1 

Internal Data RAM 

Inte/@ 80303 I/O Processor 
Programming Environment 

The 80303 I/O processor has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in this 
region. Portions of the data RAM can also be reserved for functions such as caching interrupt vectors. 
The internal RAM is fully described in Chapter 4, "Cache and On-Chip Data RAM". 

Instruction Cache 

The instruction cache enhances performance by reducing the number of instruction fetches from 
external memory. The cache provides fast execution of cached code and loops of code in the cache 
and also provides more bus bandwidth for data operations in external memory. The 80303 I/O 
processor instruction cache is a l6-Kbyte, two-way set associative cache, organized in two sets of 
four-word lines. 

Data Cache 

The data cache on the 803031/0 processor is a write-through 4-Kbyte direct-mapped cache. For 
more information, see Chapter 4, "Cache and On-Chip Data RAM". 

Processor-State Registers 

The architecture defines four 32-bit registers that contain status and control information: 

• Instruction Pointer (IP) register 

• Arithmetic Controls (AC) register 

• Process Controls (PC) register 

• Trace Controls (TC) register 

Instruction Pointer (IP) Register 

The IP register contains the address of the instruction currently being executed. This address is 
32 bits long; however, since instructions are required to be aligned on word boundaries in memory, 
the IP's two least-significant bits are always 0 (zero). 

All i960 processor instructions are either one or two words long. The IP gives the address of the 
lowest-order byte of the first word of the instruction. 

The IP register cannot be read directly. However, the IP-with-displacement addressing mode lets 
software use the IP as an offset into the address space. This addressing mode can also be used with 
the Ida (load address) instruction to read the current IP value. 

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the processor 
stores the IP of the next instruction to be executed in local register r2, which is usually referred to as the 
return IP or RIP register. Refer to Chapter 7, "Procedure Calls" for further discussion. 

Developer's Manual 3-13 



/nte/® 80303 110 Processor 
Programming Environment intel .. 
3.6.2 Arithmetic Controls Register - AC 

The AC register (Table 3-3) contains: 

• condition code flags 

• integer overflow flag 

• mask bit 

• a bit that controls faulting on imprecise faults 

Unused AC register bits are reserved. 

Figure 3-3. Arithmetic Controls Register - AC 

3.6.2.1 

3-14 

31 28 24 20 16 12 

11111111111111111: III ~III 
No-Imprecise-Faults Bit-AC.nif ______ ...... t ) 
(0) Some faults are imprecise 
(1) All faults are precise 

integer-Overflow Mask Bit- AC.om ---------' 
(0) No mask 
(1) Mask 

8 4 0 

1:11111 1l1:111 

integer-Overflow Flag - AC.of _____________ -' 
(0) No overflow 
(1) Overflow 

Condition Code Bits - AC.cc ----------------------' 

O Reserved 
(Initialize to 0) 

Initializing and Modifying the AC Register 

A6369-01 

At initialization, the AC register is loaded from the Initial AC image field in the Process Control 
Block. Set reserved bits to 0 in the AC Register Initial Image. Refer to Chapter 11, "Initialization 
and System Requirements". 

After initialization, software must not modify or depend on the AC register's initial image in the 
PRCB. Software can use the modify arithmetic controls (modac) instruction to examine and/or 
modify any of the register bits. This instruction provides a mask operand that lets user software 
limit access to the register'S specific bits or groups of bits, such as the reserved bits. 

The processor automatically saves and restores the AC register when it services an interrupt or 
handles a fault. The processor saves the current AC register state in an interrupt record or fault 
record, then restores the register upon returning from the interrupt or fault handler. 

Developer's Manual I 

I ~ 



intel· 
3.6.2.2 

Table 3-5. 

Table 3-6. 

Table 3-7. 

Condition Code (AC.cc) 

Intel® 80303 I/O Processor 
Programming Environment 

The processor sets the AC register condition code flags (bits 0-2) to indicate results of certain 
instructions, such as compare instructions. Other instructions, such as conditional branch 
instructions, examine these flags and perform functions as dictated by the state of the condition 
code flags. Once the processor sets the condition code flags, the flags remain unchanged until 
another instruction executes that modifies the field. 

Condition code flags show true/false conditions, inequalities (greater than, equal or less than 
conditions) or carry and overflow conditions for extended arithmetic instructions. To show true or 
false conditions, the processor sets the flags as shown in Table 3-5. To show equality and 
inequalities, the processor sets the condition code flags as shown in Table 3-6. 

Condition Codes for True or False Conditions 

Condition Code Condition 

01°2 true 

0°°2 false 

Condition Codes for Equality and Inequality Conditions 

Condition Code Condition 

0°°2 unordered 

001 2 greater than 

01°2 equal 

1°°2 less than 

The term unordered is used when comparing floating point numbers. The 80303 I/O processor does 
not implement on-chip floating point processing. 

To show carry out and overflow, the processor sets the condition code flags as shown in Table 3-7. 

Condition Codes for Carry Out and Overflow 

Condition Code Condition 

01X2 carry out 

OX1 2 overflow 

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate condition code 
flags. For example, branch-if-greater-or-equal instruction (bge) uses a mask of 011 2 to determine if 
condition code is set to either greater-than or equal. Conditional instructions use similar masks for 
remaining conditions (e.g., greater-or-equal [0112], less-or-equal [1102] and not-equal [101 2] ). The 
mask is part of the instruction opcode; the instruction performs a bitwise AND of mask and 
condition code. 

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in 
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault 
generation. When the fault is masked and integer overflow is encountered, the processor sets the 
integer overflow flag instead of generating a fault. If the fault is not masked, the fault is allowed to 
occur and the flag is not set. 

Once the processor sets this flag, the flag remains set until the application software clears it. Refer 
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in Chapter 9, "Faults" for 
more information about the integer overflow mask bit and flag. 

Developer's Manual 3-15 



Intel® 80303 I/O Processor 
Programming Environment in1:et 

3.6.3 

Table 3-8. 

3-16 

The no imprecise faults (Ae.nij) bit (bit 15) determines whether or not faults are allowed to be 
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise. See 
Section 9.9, "Precise and Imprecise Faults" on page 9-20 for more information. 

Process Controls Register - PC 

The PC register (Table 3-8) is used to control processor activity and show the processor's current state. 
The PC register execution mode flag (bit 1) indicates that the processor is operating in either user mode 
(0) or supervisor mode (1). The processor automatically sets this flag on a system call when a switch 
from user mode to supervisor mode occurs and it clears the flag on a return from supervisor mode. (User 
and supervisor modes are described in Section 3.7, "User -Supervisor Protection Model" on 
page 3-18. 

Process Controls Register - PC 

Trace-Enable Bit - PC.te 
(0) Globally disable trace faults 
(1) Globally enable trace faults 

Execution-Mode Flag - PC.em 
(0) User mode 
(1) Supervisor mode 

Trace-Faull-Pending - PC.tfp 
(0) No fault pending 
(1) Fault pending 

Stale Flag - PC.s 
(0) Executing 
(1) Interrupted 

Priority Field - PC.p 
(0-31) Process priority 1 I I 

t 
I P P P P P f e 

s 
4 3 2 1 0 m e 

p 

31 28 24 20 16 12 8 4 0 

0 Reserved 
(Initialize to 0) 

A6370-01 

PC register state flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If the 
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor's state is executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. When 
nested interrupts occur, the processor remains in the interrupted state until all interrupts are 
handled, then switches back to the executing state on the return from the initial interrupt procedure. 

The PC register priority field (bits 16 through 20) indicates the processor's current executing or interrupted 
priority. The architecture defines a mechanism for prioritizing execution of code, servicing interrupts and 
servicing other implementation-<iependent tasks or events. This mechanism defines 32 priority levels, 
ranging from 0 (the lowest priority level) to 31 (the highest). The priority field always reflects the current 
priority of the processor. Software can change this priority by use of the modpc instruction. 

Developer's Manual 



3.6.3.1 

3.6.4 

Intel@ 80303 110 Processor 
Programming Environment 

The processor uses the priority field to determine whether to service an interrupt immediately or to post 
the interrupt. The processor compares the priority of a requested interrupt with the current process 
priority. When the interrupt priority is greater than the current process priority or equal to 31, the interrupt 
is serviced; otherwise it is posted. When an interrupt is serviced, the process priority field is automatically 
changed to renect interrupt priority. See Chapter 8, "PCI and Peripheral Interrupt Controller Unit". 

The PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function. 
The trace enable bit determines whether trace faults are globally enabled (1) or globally disabled (0). 
The trace fault pending nag indicates that a trace event has been detected (l) or not detected (0). The 
tracing functions are further described in Chapter 10, "Tracing and Debugging". 

Initializing and Modifying the PC Register 

Any of the following three methods can be used to change bits in the PC register: 

• Modify process controls instruction (modpc) 

• Alter the saved process controls prior to a return from an interrupt handler or fault handler 

The modpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault 
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc 
provides a mask operand that can be used to limit access to specific bits or groups of bits in the 
register. In user mode, software can use modpc to read the current PC register. 

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or 
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified 
process controls are copied into the PC register. The processor must be in supervisor mode prior to 
return for modified process controls to be copied into the PC register. 

When process controls are changed as described above, the processor recognizes the changes 
immediately except for one situation: if modpc is used to change the trace enable bit, the processor 
may not recognize the change before the next four non-branch instructions are executed. 

After initialization (hardware reset), the process controls reflect the following conditions: 

• priority = 31 

• execution mode = supervisor 

• trace enable = disabled 

• state = interrupted 

• no trace fault pending 

When the processor is reinitialized with a sysetl reinitialize message, the PC register is not changed. 

Software should not use modpc to modify execution mode or trace fault state flags except under 
special circumstances, such as in initialization code. Normally, execution mode is changed through 
the call and return mechanism. See Section 6.2.43, "modpc" on page 6-64 for more details. 

Trace Controls (TC) Register 

The TC register, in conjunction with the PC register, controls processor tracing facilities. It 
contains trace mode enable bits and trace event flags that are used to enable specific tracing modes 
and record trace events, respectively. Trace controls are described in Chapter 10, "Tracing and 
Debugging". 

Developer's Manual 3-17 



Intel® 80303 I/O Processor 
Programming Environment int:et 
3.7 

3.7.1 

3-18 

User-Supervisor Protection Model 

The processor can be in either of two execution modes: user or supervisor. The capability of a 
separate user and supervisor execution mode creates a code and data protection mechanism 
referred to as the user-supervisor protection model. This mechanism allows code, data and stack for 
a kernel (or system executive) to reside in the same address space as code, data and stack for the 
application. The mechanism restricts access to all or parts of the kernel by the application code. 
This protection mechanism prevents application software from inadvertently altering the kernel. 

Supervisor Mode Resources 

Supervisor mode is a privileged mode that provides several additional capabilities over user mode. 

• When the processor switches to supervisor mode, it also switches to the supervisor stack. 
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows 
access to system debugging software or a system monitor, even if an application's program 
destroys its own stack. 

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and 
instructions. For example, the processor uses supervisor mode to handle interrupts and trace 
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller 
characteristics can be performed only in supervisor mode. These functions include 
modification of control registers and internal data RAM that is dedicated to interrupt 
controllers. A fault is generated if supervisor-only operations are attempted while the 
processor is in user mode. 

The PC register execution mode flag specifies processor execution mode. The processor 
automatically sets and clears this flag when it switches between the two execution modes. 

• deetl (data cache control) 

• inten (global interrupt enable) 

• Protected timer unit registers 

• modpe (modify process controls wi non-zero mask) 

• ieetl (instruction cache control) 

• sysetl (system control) 

• intetl (global interrupt enable and disable) 

• Protected internal data RAM or Supervisor MMR space write 

• intdis (global interrupt disable) 

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode. 

Developer's Manual 



int:et 
3.7.2 

Intel® 80303 110 Processor 
Programming Environment 

Using the User-Supervisor Protection Model 

A program switches from user mode to supervisor mode by making a system-supervisor call (also 
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system 
instruction (calls). With calls, the IP for the called procedure comes from the system procedure 
table. An entry in the system procedure table can specify an execution mode switch to supervisor 
mode when the called procedure is executed. calls and the system procedure table thus provide a 
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor 
switches to supervisor mode, it remains in that mode until a return is performed to the procedure 
that caused the original mode switch. 

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the 
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not 
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries 
determine if a particular fault transitions the processor from user to supervisor mode. 

If an application does not require a user-supervisor protection mechanism, the processor can 
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode 
prior to executing the first instruction of the application code. The processor then remains in 
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode. 
The processor does not need a user stack in this case. 

Developer's Manual 3-19 





Cache and On-Chip Data RAM 4 

4.1 

This chapter describes the structure and user configuration of all forms of on-chip storage, 
including caches (data, local register and instruction) and data RAM. 

Internal Data RAM 

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) address space. Loads and stores 
with target addresses in internal data RAM operate directly on internal data RAM; no external bus 
activity is generated. Data RAM allows time-critical data storage and retrieval without dependence 
on external bus performance. Only data accesses are allowed to internal data RAM; instructions 
cannot be fetched from internal data RAM. Instruction fetches directed to data RAM cause an 
OPERATION. UNIMPLEMENTED fault to occur. 

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits 
controlling caching are ignored for data RAM accesses. 

Some internal data RAM locations are reserved for functions other than general data storage. The first 
64 bytes of data RAM may be used to cache interrupt vectors, which reduces interrupt latency. The 
word at OOOOH is always reserved for cached NMI vector. With the exception of the cached NMI 
vector, other reserved portions of data RAM can be used for data storage when the alternate function 
is not used. All locations of internal data RAM can be read in both supervisor and user mode. 

The first 64 bytes (OOOOH to 003FH) of internal RAM are always user-mode write-protected. This 
portion of data RAM can be read while executing in user or supervisor mode; however, it can be only 
modified in supervisor mode. This area can also be write-protected from supervisor mode writes by 
setting the BCON.sirp bit. See Section 12.2.2, "Bus Control Register - BCON" on page 12-4. 
Protecting this portion of the data RAM from user and supervisor rights preserves the interrupt 
vectors that may be cached there. See Section 8.6.3.1, "Vector Caching Option" on page 8-30. 

Figure 4-1. Internal Data RAM and Register Cache 

,-------------, 0000 OOOOH 
NMI 

1-------------1 0000 0004H 

Optional Interrupt Vectors 

1-------------1 0000 003FH 

Available for Data 

..... ___________ -'000003FFH 

A6373-01 

The remainder of the internal data RAM can always be written from supervisor mode. User mode 
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the 
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations 
while they are protected generate a TYPE.MISMATCH fault. See Section 12.2.2, "Bus Control 
Register - BCON" on page 12-4 for the format of the BCON register. 

New versions of the Intel® i960® processor compilers take advantage of internal data RAM. Profiling 
compilers, such as those offered by Intel, can allocate the most frequently used variables into this RAM. 

Developer's Manual 4-1 



Intel® 80303 110 Processor 
Cache and On-Chip Data RAM 

4.2 Local Reg ister Cache 

The Intel® S0303 I/O processor provides fast storage of local registers for call and return 
operations by using an internal local register cache (also known as a stack frame cache). Up to 
eight local register sets can be contained in the cache before sets must be saved in external memory. 
The register set is all the local registers (i.e., rO through r15). The processor uses a 12S-bit wide bus 
to store local register sets quickly to the register cache. An integrated procedure call mechanism 
saves the current local register set when a call is executed. A local register set is saved into a frame 
in the local register cache, one frame per register set. When the eighth frame is saved, the oldest set 
of local registers is flushed to the procedure stack in external memory, which frees one frame. 

Section 7.1.4, "Caching Local Register Sets" on page 7-7 and Section 7.1.5, "Mapping Local 
Registers to the Procedure Stack" on page 7 -11 further discuss the relationship between the internal 
register cache and the external procedure stack. 

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored. 

The entire internal register cache contents can be copied to the external procedure stack through the 
flushreg instruction. Section 6.2.30, "flushreg" on page 6-44 explains the instruction itself and 
Section 7.2, "Modifying the PFP Register" on page 7-12 offers a practical example when flushreg 
must be used. 

To decrease interrupt latency, software can reserve a number of frames in the local register cache 
solely for high priority interrupts (interrupted state and process priority greater than or equal to 2S). 
The remaining frames in the cache can be used by all code, including high-priority interrupts. 
When a frame is reserved for high-priority interrupts, the local registers of the code interrupted by 
a high-priority interrupt can be saved to the local register cache without causing a frame flush to 
memory, providing the local register cache is not already full. Thus, the register allocation for the 
implicit interrupt call does not incur the latency of a frame flush. 

Software can reserve frames for high-priority interrupt code by writing bits 1 ° through S of the register 
cache configuration word in the PRCB. This value indicates the number of free frames within the 
register cache that can be used by high-priority interrupts only. Any attempt by non-critical code to 
reduce the number of free frames below this value results in a frame flush to external memory. The free 
frame check is performed only when a frame is pushed, which occurs only for an implicit or explicit 
call. The following pseudo-code illustrates the operation of the register cache when a frame is pushed. 

Example 4-1. Register Cache Operation 

4-2 

frames_for non_critical = 7- RCW[11:8]; 

if (interrupt_request) 

set_interrupt_handler_PC; 

push_frame; 

nUmber_of_frames = number_of_frames + 1; 

if (number_of_frames = 8) { 

flush_register_frame(oldest_frame) ; 

number_of_frames = number_of_frames - 1; } 

else if (number_of_frames = (frames_for_non_critical + 1) && 

(PC.priority < 28 I I PC. state != interrupted) ) { 

flush_register_frame(oldest_frame); 

number of frames = number of frames - 1; } 

Developer'S Manual 



4.3 

Intel® 80303 I/O Processor 
Cache and On-Chip Data RAM 

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no 
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for 
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the register 
cache to become disabled for non-critical code. If the number of reserved high-priority frames exceeds 
the allocated size of the register cache, the entire cache is reserved for high-priority interrupts. In that 
case, all low-priority interrupts and procedure calls cause frame spills to external memory. 

Instruction Cache 

The 80303 I/O processor features a 16-Kbyte, 2-way set-associative instruction cache (I-cache) 
organized in lines of four 32-bit words. The cache provides fast execution of cached code and loops 
of code and provides more bus bandwidth for data operations in external memory. To optimize 
cache updates when branches or interrupts are executed, each word in the line has a separate valid 
bit. When requested instructions are found in the cache, the instruction fetch time is one cycle for 
up to four words. A mechanism to load and lock critical code within a way of the cache is provided 
along with a mechanism to disable the cache. The cache is managed through the icctl or sysctl 
instruction. The sysctl instruction supports the instruction cache to maintain compatibility with 
other i960 processor software. Using icctl is the preferred and more versatile method for 
controlling the instruction cache on the 80303 I/O processor. 

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the 
location of the Instruction Pointer: 

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated. 

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated. 

Developer's Manual 4-3 



Intef@ 80303 I/O Processor 
Cache and On-Chip Data RAM int'et 
4.3.1 

4.3.2 

4.3.3 

4-4 

Enabling and Disabling the Instruction Cache 

Enabling the instruction cache is controlled on reset or initialization by the instruction cache 
configuration word in the Process Control Block (PRCB); see Table 11-8, "Process Control Block 
Configuration Words" on page 11-16. When bit 16 in the instruction cache configuration word is 
set, the instruction cache is disabled and all instruction fetches are directed to external memory. 
Disabling the instruction cache is useful for tracing execution in a software debug environment. 

The instruction cache remains disabled until one of three, operations is performed: 

• icctl is issued with the enable instruction cache operation (preferred method) 

• sysctl is issued with the configure-instruction-cache message type and cache configuration 
mode other than disable cache (provides compatibility with other i960 processors; not the 
preferred method for the 80303 I/O processor). 

• The processor is reinitialized with a new value in the instruction cache configuration word 

Operation While the Instruction Cache Is Disabled 

Disabling the instruction cache does not disable instruction buffering that may occur in the 
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is 
disabled. 

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag 
for the buffer, any "miss" within the buffer causes the following: 

• All four words of the buffer are invalidated. 

• A new tag value for the required instruction is loaded. 

• The required instruction(s) are fetched from external memory. 

Depending on the alignment of the "missed" instruction, either two or four words of instructions 
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No 
external instruction fetches are generated until there is a "miss" within the buffer, even in the 
presence of forward and backward branches. 

Loading and Locking Instructions in the Instruction Cache 

The processor can be directed to load a block of instructions into the cache and then lock out all 
normal updates to the cache. This cache load-and-Iock mechanism is provided to minimize latency 
on program control transfers to key operations such as interrupt service routines. The block size 
that can be loaded and locked on the 80303 I/O processor is one way of the cache. 

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select 
the load-and-Iock mechanism. When the lock option is selected, the processor loads the cache 
starting at an address specified as an operand to the instruction. 

Developer's Manual 
I I, 



4.3.4 

4.3.5 

Instruction Cache Visibility 

Intel® 80303 110 Processor 
Cache and On-Chip Oata RAM 

Instruction cache status can be determined by issuing icctl with an instruction-cache status 
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits 
can be written to memory. This is done by issuing icctl with the store cache operation. 

Instruction Cache Coherency 

The 80303 I/O processor does not snoop the bus to prevent instruction cache incoherency. The 
cache does not detect modification to program memory by loads, stores or actions of other bus 
masters. Several situations may require program memory modification, such as uploading code at 
initialization or loading from a backplane bus or a disk drive. 

The application program is responsible for synchronizing its own code modification and cache 
invalidation. In general, a program must ensure that modified code space is not accessed until 
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache 
contents should be invalidated after code modification is complete. icctl invalidates the instruction 
cache for the 80303 I/O processor. Alternatively, i960 processor legacy software can use sysctl. 

4.4 Data Cache 

4.4.1 

The 80303 I/O processor features a 4-Kbyte, direct-mapped cache that enhances performance by 
reducing the number of data load and store accesses to external memory. The cache is 
write-through and write-allocate. It has a line size of 4 words and each line in the cache has a valid 
bit. To reduce fetch latency on cache misses, each word within a line also has a valid bit. Caches 
are managed through the dcctl instruction. 

User settings in the memory region configuration registers LMCONO-I and DLMCON determine 
the data accesses that are cacheable or non-cacheable based on memory region. 

Enabling and Disabling the Data Cache 

To cache data, two conditions must be met: 

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache message 
enables the cache. On reset or initialization, the data cache is always disabled and all valid bits 
are set to zero. 

2. Data caching for a location must be enabled by the corresponding logical memory template, or 
by the default logical memory template if no other template applies. See Section 12.2.2, "Bus 
Control Register - BCON" on page 12-4 for more details on logical memory templates. 

When the data cache is disabled, all data fetches are directed to external memory. Disabling the 
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl 
with a disable data cache message. The enable and disable status of the data cache and various 
attributes of the cache can be determined by a dcctl issued with a data-cache status message. 

Developer's Manual 4-5 



Intel@ 80303 110 Processor 
Cache and On-Chip Data RAM 

4.4.2 

Table 4-1. 

4.4.3 

4-6 

Multi-Word Data Accesses that Partially Hit the Data Cache 

The following applies only when data caching is enabled for an access. 

For a multi-word load access (ldl, Idt, Idq) in which none of the requested words hit the data cache, 
an external bus transaction is started to acquire all the words of the access. 

For a multi-word load access that partially hits the data cache, the processor may either: 

• Load or reload all words of the access (even those that hit) from the external bus. 

• Load only missing words from the external bus and interleave them with words found in the 
data cache. 

The multi-word alignment determines which of the above methods is used: 

• Naturally aligned multi-word accesses cause all words to be reloaded. 

• An unaligned multi-word access causes only missing words to be loaded. 

When any words (Table 4-1) accessed with Idl, Idt, or Idq miss the data cache, every word accessed 
by that load instruction is updated in the cache. 

Load Instruction Updates 

Load Instruction Number of Updated Words 

Idq 4 words 

Idt 3 words 

Idl 2 words 

In each case, the external bus accesses used to acquire the data may consist of none, one, or several 
burst accesses based on the alignment of the data and the bus-width of the memory region that 
contains the data. See Chapter 12, "Core Processor and Internal Operation" for more details. 

A multi-word load access that completely hits in the data cache does not cause external bus accesses. 

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words 
of the access regardless if any or all words of the access hit the data cache. External bus accesses 
used to write the data may consist of either one or several burst accesses based on data alignment 
and the bus-width of the memory region that receives the data. The cache is also updated 
accordingly as described earlier in this chapter. 

Data Cache Fill Policy 

The 80303 I/O processor always uses a "natural" fill policy for cacheable loads. The processor 
fetches only the amount of data that is requested by a load (i.e., a word, long word, etc.) on a data 
cache miss. Exceptions are byte and short-word accesses, which are always promoted to words. 
This allows a complete word to be brought into the cache and marked valid. When the data cache is 
disabled and loads are done from a cacheable region, promotions from bytes and short words still 
take place. 

Developer's Manual 



inteL 
4.4.4 Data Cache Write Policy 

fntef® 80303 110 Processor 
Cache and On-Chip Data RAM 

The write policy determines the action taken on cacheable writes (stores). The 80303 I/O processor 
always uses a write-through policy. Stores are always seen on the external bus, thus maintaining 
coherency between the data cache and external memory. 

The 80303 I/O processor always uses a write-allocate policy for data. For a cacheable location, 
data is always written to the data cache regardless of whether the access is a hit or miss. The 
following cases are relevant to consider: 

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are updated 
with the data. 

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if 
needed, and the appropriate valid bits, line, and word(s) are updated. 

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in 
cache and external memory are updated with the data; the cache word remains valid. 

4. In the case of byte or short-word data that falls within a valid line but misses because the 
appropriate word is invalid, both the word and external memory are updated with the data; 
however, the cache word remains invalid. 

5. In the case of byte or short-word data that does not fall within a valid line, the external 
memory is updated with the data. For data writes less than a word, the data cache is not 
updated; the tags and valid bits are not changed. 

A byte or short word is always invalid in the data cache since valid bits only apply to words. 

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate 
valid bits are updated whenever data is written into the cache. Consider a word store that misses as an 
example. The tag is always updated and its valid bit is set. The appropriate valid bit for that word is 
always set and the other three valid bits are always cleared. If the word store hits the cache, the tag 
bits remain unchanged. The valid bit for the stored word is set; all other valid bits are unchanged. 

Cacheable stores that are less than a word in length are handled differently. Byte and short-word 
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change 
the tag and valid bits. The processor writes the data into the cache and external memory as usual. A 
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit 
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously 
writes the data into the cache and the external memory. 

Developer's Manual 4-7 



Intel@ 80303 I/O Processor 
Cache and On-Chip Data RAM in1:et 
4.4.5 

4.4.6 

4.4.7 

4-8 

Data Cache Coherency and Non-Cacheable Accesses 

The 80303 I/O processor ensures that the data cache is always kept coherent with accesses that it 
initiates and performs. The most visible application of this requirement concerns non-cacheable 
accesses discussed below. However, the processor does not provide data cache coherency for 
accesses on the external bus that it did not initiate. Software is responsible for maintaining 
coherency in a multi-processor environment. 

An access is defined as non-cacheable when any ofthe following is true: 

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the 
data-caching enabled bit in the matching LMCON is clear. 

2. The entire data cache is disabled. 

3. The access is a read operation of the read-modify-write sequence performed by an atmad or 
atadd instruction. 

4. The access is an implicit read access to the interrupt table to post or deliver a software interrupt. 

If the memory location targeted by an atmad or atadd instruction is currently in the data cache, it is 
invalidated. 

If the address for a non-cacheable store matches a tag ("tag hit"), the corresponding cache line is 
marked invalid. This is because the word is not actually updated with the value of the store. This 
behavior ensures that the data cache never contains stale data in a single-processor system. A 
simple case illustrates the necessity of this behavior: a read of data previously stored by a 
non-cacheable access must return the new value of the data, not the value in the cache. Because the 
processor invalidates the appropriate word in the cache line on a store hit when the cache is 
disabled, coherency can be maintained when the data cache is enabled and disabled dynamically. 

Data loads or stores invalidate the corresponding lines of the cache even when data caching is 
disabled. This behavior further ensures that the cache does not contain stale data. 

External 1/0 Bus Masters and Cache Coherency 

The 80303 I/O processor implements a single processor coherency mechanism. There is no 
hardware mechanism, such as bus snooping, to support multiprocessing. If another bus master can 
change shared memory, there is no guarantee that the data cache contains the most recent data. The 
user must manage such data coherency issues in software. 

A suggested practice is to program the LMCONO-l registers such that I/O regions are 
non-cacheable. Partitioning the system in this fashion eliminates I/O as a source of coherency 
problems. See Section 12.2.1, "PMCON Registers" on page 12-2 for more information on this 
subject. 

Data Cache Visibility 

Data cache status can be determined by a dcctl instruction issued with a data-cache status message. 
Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging. 
This operation is accomplished by a dcctl instruction issued with the dump cache operand. See 
Section 6.2.23, "dcctl" on page 6-33 for more information. 

Developer's Manual 



intel· 
Instruction Set Overview 5 

5.1 

5.1.1 

This chapter provides an overview of the Intel® i960® microprocessor family instruction set and 
Intel® 80303 I/O processor-specific instruction set extensions. Also discussed are the 
assembly-language and instruction-encoding formats, various instruction groups and each group's 
instructions. 

Chapter 6, "Instruction Set Reference" describes each instruction, including assembly language 
syntax, and the action taken when the instruction executes and examples of how to use the 
instruction. 

Instruction Formats 

80303 I/O processor instructions may be described in two formats: assembly language and 
instruction encoding. The following subsections briefly describe these formats. 

Assembly Language Format 

Throughout this manual, instructions are referred to by their assembly language mnemonics. For 
example, the add ordinal instruction is referred to as addo. Examples use Intel 80303 assembly 
language syntax which consists of the instruction mnemonic followed by zero to three operands, 
separated by commas. In the following assembly language statement example for addo, ordinal 
operands in global registers g5 and g9 are added together, and the result is stored in g7: 

addo g5, g9, g7# g7 = g9 + g5 

In the assembly language listings in this chapter, registers are denoted as: 

g 

r 

# 

global register 

local register 

pound sign precedes a comment 

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal 
numbers are denoted with a "Ox" prefix (e.g., OxffffO012). Several assembly language instruction 
statement examples follow. Additional assembly language examples are given in Section 2.3.5, 
"Addressing Mode Examples" on page 2-6. 

Example 5-1. Assembly Language Instruction Statement Examples 

subi r3, r5, r6 

setbit 13, g4, g5 

Ida Oxfab3, r12 

ld (r4), g3 

st glO, (r6) [r7*2] 

Developer's Manual 

#r6 = r5 - r3 

#g5 = g4 with bit 13 set 

#r12 = Oxfab3 

#g3 = memory location that r4 points to 

#glO = memory location that r6+2*r7 points to 

5-1 



Intel® 80303 110 Processor 
Instruction Set Overview 

5.1.2 

Table 5-1. 

Figure 5-1. 

5-2 

Instruction Encoding Formats 

All instructions are encoded in one 32-bit machine language instruction - an opword - which 
must be word aligned in memory. An opword's most significant eight bits contain the opcode field. 
The opcode field determines the instruction to be performed and how the remainder of the machine 
language instruction is interpreted. Instructions are encoded in opwords in one of four formats (see 
Figure 5-1). For more information on instruction formats, see Appendix A, "Machine-Level 
Instruction Formats". 

Instruction Encoding Formats (REG, COBR, CRTL, MEM) 

Instruction Type Format Description 

register REG 
Most instructions are encoded in this format. Used primarily for instructions 
which perform register-to-register operations. 

compare and 
An encoding optimization which combines compare and branch operations into 

branch COBR one opword. Other compare and branch operations are also provided as REG 
and CTRL format instructions. 

control CTRL For branches and calls that do not depend on registers for address calculation. 

Used for referencing an operand which is a memory address. Load and store 
instructions - and some branch and call instructions - use this format. MEM 

memory MEM 
format has two encodings: MEMA or MEMB. Usage depends upon the 
addressing mode selected. MEMB-formatted addreSSing modes use the word 
in memory immediately following the instruction opword as a 32-bit constant. 
MEMA format uses one word and MEMB uses two words. 

Machine-Level Instruction Formats 

31 0 

I 
OPCODE 

I 
src/dst src2 OPCODE src1 IREG 

31 0 

I 
OPCODE 

I 
src1 src2 displacement ICOBR 

31 0 

I 
OPCODE 

I 
displacement ICTRL 

31 0 

I 
OPCODE 

I 
src/dst 

I 
Address Base 

I 
Offset IMEMA 

31 0 

OPCODE I src/dst I Address Base I Scale I Index MEMB 

32-bit displacement 

A6374-01 

Developer's Manual 



5.1.3 

Table 5-2. 

Instruction Operands 

Intel® 80303 110 Processor 
Instruction Set Overview 

This section identifies and describes operands that can be used with the instruction formats. 

Operands and Instruction Formats 

Format Operand(s) Description 

REG src1, src2, srcldst src1 and src2 can be global registers, local registers or literals. 
srcldst is either a global or a local register. 

CTRL displacement CTRL format is used for branch and call instructions. displacement 
value indicates the target instruction of the branch or call. 

src 1, src2 indicate values to be compared; displacement indicates 
COBR src1, src2, displacement branch target. src1 can specify a global register, local register or a 

literal. src2 can specify a global or local register. 

Specifies source or destination register and an effective address 
(eta) formed by using the processor's addressing modes as 

MEM srcldst, eta described in Section 2.3, "Memory Addressing Modes" on page 2-4. 
Registers specified in a MEM format instruction must be either a 
global or local register. 

Developer's Manual 5-3 



Intel@ 80303 110 Processor 
Instruction Set Overview 

5.2 

Table 5-3. 

5-4 

Instruction Groups 

The i960 processor instruction set can be categorized into the following functional groups shown in 
Table 5-3. The actual number of instructions is greater than those shown in this list because, for 
some operations, several unique instructions are provided to handle various operand sizes, data 
types or branch conditions. The following sections provide an overview of the instructions in each 
group. For detailed information about each instruction, refer to Chapter 6, "Instruction Set 
Reference" . 

Intel® 80303 1/0 Processor Instruction Set 

Data Movement Arithmetic Logical Bit, Bit Field and Byte 

Add 
Subtract 
Multiply And 

Set Bit Divide Not And Clear Bit 
Remainder And Not 

Not Bit 
Load Modulo Or 

Alter Bit 
Store Shift Exclusive Or 

Scan For Bit 
Move Extended Shift Not Or Span Over Bit 
'Conditional Select Extended Multiply Or Not 

Extract Load Address Extended Divide Nor 
Modify 

Add with Carry Exclusive Nor Scan Byte for Equal 
Subtract with Carry Not 'Byte Swap 
'Conditional Add Nand 
'Conditional Subtract 
Rotate 

Comparison Branch Call/Return Fault 

Compare Call 
Conditional Compare 

Unconditional Branch Call Extended 
Compare and Increment Conditional Branch Call System Conditional Fault 
Compare and Decrement Compare and Branch Return 

Synchronize Faults 
Test Condition Code 
Check Bit 

Branch and Link 

Debug 
Processor 

Atomic Management 

Flush Local Registers 
Modify Arithmetic 

Modify Trace Controls 
Controls 

Mark 
Modify Process Controls Atomic Add 

Force Mark 
'Halt Atomic Modify 
System Control 
'Cache Control 
* Interrupt Control 

* Denotes newer instructions that are NOT available on 80960CAiCF, 80960KAiKB and 80960SA/SB implementations. 

Developer's Manual 



in1:et 
5.2.1 

5.2.1.1 

Table 5-4. 

Data Movement 

Inte/@ 80303 I/O Processor 
Instruction Set Overview 

These instructions are used to move data from memory to global and local registers, from global 
and local registers to memory, and between local and global registers. 

Rules for register alignment must be followed when using load, store and move instructions that 
move 8, 12 or 16 bytes at a time. See Section 3.5, "Memory Address Space" on page 3-10 for 
alignment requirements for code portability across implementations. 

Load and Store Instructions 

Load instructions copy bytes or words from memory to local or global registers or to a group of 
registers. Each load instruction has a corresponding store instruction to memory bytes or words to 
copy from a selected local or global register or group of registers. All load and store instructions 
use the MEM format. 

Load and Store Instructions 

Instruction Description Instruction Description 

Id load word st store word 

Idob load ordinal byte stob store ordinal byte 

Idos load ordinal short stos store ordinal short 

Idib load integer byte stib store integer byte 

Idis load integer short stis store integer short 

Idl load long stl store long 

Idt load triple stt store triple 

Idq load quad stq store quad 

Id copies 4 bytes from memory into a register; Idl copies 8 bytes; Idt copies 12 bytes into 
successive registers; Idq copies 16 bytes into successive registers. 

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from 
successive registers; stq copies 16 bytes from successive registers. 

For Id, Idob, Idos, Idib and Idis, the instruction specifies a memory address and register; the 
memory address value is copied into the register. The processor automatically extends byte and 
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers 
are sign-extended. 

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the 
register value is copied into memory. For byte and short instructions, the processor automatically 
reformats the source register's 32-bit value for the shorter memory location. For stib and stis, this 
reformatting can cause integer overflow when the register value is too large for the shorter memory 
location. When integer overflow occurs, either an integer-overflow fault is generated or the 
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting 
in the AC register. 

For stob and stos, the processor truncates the register value and does not create a fault when 
truncation resulted in the loss of significant bits. 

Developer's Manual 5-5 



Inte/® 80303 110 Processor 
Instruction Set Overview 

5.2.1.2 

Table 5-5. 

5.2.1.3 

5.2.2 

Table 5-6. 

5-6 

Move 

Move instructions copy data from a local or global register or group of registers to another register 
or group of registers. These instructions use the REG format. 

Move Instructions 

Instriction Description Instriction Description 

mov move word movt move triple word 

movl move long word movq move quad word 

load Address 

The Load Address instruction (Ida) computes an effective address in the address space from an 
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a 
register. This instruction uses the MEM format and can operate upon local or global registers. 

On the 80303 I/O processor, Ida is useful for performing simple arithmetic operations. The 
processor's parallelism allows Ida to execute in the same clock as another arithmetic or logical 
operation. 

Select Conditional 

Given the proper condition code bit settings in the Arithmetic Controls register, these instructions 
move one of two pieces of data from its source to the specified destination. 

Select Condition Instructions 

Instruction Description Instruction Description 

selno Select Based on Unordered sell Select Based on Less 

selg Select Based on Greater seine Select Based on Not Equal 

sele Select Based on Equal selle Select Based on Less or Equal 

selge Select Based on Greater or Equal selo Select Based on Ordered 

Developer's Manual 



5.2.3 

Table 5-7. 

5.2.3.1 

Table 5-8. 

Arithmetic 

Intel® 80303 110 Processor 
Instruction Set Overview 

Table 5-7 lists arithmetic operations and data types for which the 80303 I/O processor provides 
instructions. "X" in this table indicates that the microprocessor provides an instruction for the 
specified operation and data type. All arithmetic operations are carried out on operands in registers 
or literals. Refer to Section 5.2.11, "Atomic Instructions" on page 5-17 for instructions which 
handle specific requirements for in-place memory operations. 

All arithmetic instructions use the REG format and can operate on local or global registers. The 
following subsections describe arithmetic instructions for ordinal and integer data types. 

Arithmetic Operations 

Data Types 
Arithmetic Operations 

Integer Ordinal 

Add X X 

Add with Carry X X 

Conditional Add X X 

Subtract X X 

Subtract with Carry X X 

Conditional Subtract X X 

Multiply X X 

Extended Multiply X 

Divide X X 

Extended Divide X 

Remainder X X 

Modulo X 

Shift Left X X 

Shift Right X X 

Extended Shift Right X 

Shift Right Dividing Integer X 
.. NOTE: "X" Indicates that an InstructIOn IS available for the specified operation and data type. 

Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract 

These instructions perform add, subtract, multiply or divide operations on integers and ordinals: 

Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract Instructions 

Instruction Description Instruction Description 

addi Add Integer muli Multiply Integer 

addo Add Ordinal mulo Multiply Ordinal 

subi Subtract Integer divi Divide Integer 

subo Subtract Ordinal divo Divide Ordinal 

SUB<cc> Conditional Subtract 

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the result 
is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when the 
divisor is zero. 

Developer's Manual 5-7 



Intel@ 80303 110 Processor 
Instruction Set Overview 

5.2.3.2 

Table 5-9. 

5.2.3.3 

Remainder and Modulo 

These instructions divide one operand by another and retain the remainder of the operation: 

Remainder and Modulo Instructions 

Instruction Description Instruction Description 

remi remainder integer modi modulo integer 

remo remainder ordinal 

The difference between the remainder and modulo instructions lies in the sign of the result. For 
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign 
as the divisor. 

Shift, Rotate and Extended Shift 

These shift instructions shift an operand a specified number of bits left or right: 

Table 5-10. Shift, Rotate and Extended Shift Instructions 

5-8 

Instruction Description Instruction Description 

shlo shift left ordinal shrdi shift right dividing integer 

shro shift right ordinal rotate rotate left 

shli shift left integer eshro extended shift right ordinal 

shri shift right integer 

Except for rotate, these instructions discard bits shifted beyond the register boundary. 

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit. 
These instructions are equivalent to mulo and divo by the power of 2, respectively. 

shli shifts zeros in from the least significant bit. When the shift operation results in an overflow, an 
integer-overflow fault is generated (when enabled). The destination register is written with the 
source shifted as much as possible without overflow and an integer-overflow fault is signaled. 

shri performs a conventional arithmetic shift right operation by extending the sign bit. However, 
when this instruction is used to divide a negative integer operand by the power of2, it may produce 
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward 
negative.) 

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the 
result when the bits shifted out are non-zero and the operand is negative, which produces the 
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of 
2, respectively, except in cases where an overflow error occurs. 

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits. 
Bits shifted beyond the register's left boundary (bit 31) appear at the right boundary (bit 0). 

The eshro instruction performs an ordinal right shift of a source register pair (64 bits) by as much 
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an 
extended divide by a power of 2, which produces no remainder. The instruction is also the 
equivalent of a 64-bit extract of 32 bits. 

Developer's Manual 



5.2.3.4 

Table 5-11. 

5.2.4 

Extended Arithmetic 

Intel@ 80303 110 Processor 
Instruction Set Overview 

These instructions support extended-precision arithmetic; (i.e., arithmetic operations on operands 
greater than one word in length): 

Extended Arithmetic Instructions 

Instruction Description Instruction Description 

addc add ordinal with carry ernul extended multiply 

subc subtract ordinal with carry ediv extended divide 

addc adds two word operands (literals or contained in registers) plus the AC Register condition 
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 ofthe condition code is set; 
otherwise, it is cleared. This instruction's description in Chapter 6, "Instruction Set Reference" 
gives an example of how this instruction can be used to add two long-word (64-bit) operands 
together. 

subc is similar to addc, except it is used to subtract extended-precision values. Although addc and 
subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes when the 
operation would have resulted in an integer overflow condition. This facilitates a software 
implementation of extended integer arithmetic. 

ernul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored 
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an 
ordinal remainder (stored in two adjacent registers). 

logical 

These instructions perform bitwise Boolean operations on the specified operands: 

Table 5-12. Logical Instructions 

Instruction Description Instruction Description 

and src2 AND src1 xnor src2 XNOR src1 

notand (NOT src2) AND src1 not NOT src1 

and not src2 AND (NOT src1) notor (NOT src2) or src1 

xor src2 XOR src1 ornot src2 or (NOT src1) 

or src20R src1 nand NOT (src2 AND src1) 

nor NOT (src20R src1) 

All logical instructions use the REG format and can operate on literals or local or global registers. 

Developer's Manual 5-9 



Intel® 80303 I/O Processor 
Instruction Set Overview 

5.2.5 

5.2.5.1 

Bit, Bit Field and Byte Operations 

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and 
Byte instructions use the REG format and can operate on literals or local or global registers. 

Bit Operations 

These instructions operate on a specified bit: 

Table 5-13. Bit Operations Instructions 

5.2.5.2 

5.2.5.3 

5-10 

Instruction Description Instruction Description 

setbit set bit alterbit alter bit 

clrbit clear bit scanbit scan for bit 

notbit invert bit spanbit span over bit 

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal. 

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the 
condition code is 0102, the bit is set; when the condition code is 0002, the bit is cleared. 

chkbit, described in Section 5.2.6. "Comparison" on page 5-11, can be used to check the value of 
an individual bit in an ordinal. 

scan bit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal. 

Bit Field Operations 

The two bit field instructions are extract and modify. 

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence, 
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with 
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits). 

modify copies bits from one register into another register. Only masked bits in the destination 
register are modified. modify is equivalent to a bit field move. 

Byte Operations 

scan byte performs a byte-by-byte comparison of two ordinals to determine when any two 
corresponding bytes are equal. The condition code is set based on the results of the comparison. 
scanbyte uses the REG format and can specify literals or local or global registers as arguments. 

bswap alters the order of bytes in a word, reversing its "endianess." 

Developer's Manual 



5.2.6 

5.2.6.1 

Comparison 

Inte/@ 80303 I/O Processor 
Instruction Set Overview 

The processor provides several types of instructions for comparing two operands, as described in 
the following subsections. 

Compare and Conditional Compare 

These instructions compare two operands then set the condition code bits in the AC register 
according to the results of the comparison: 

Table 5-14. om pare and Conditional Compare Instructions 

Instruction Description Instruction Description 

cmpi Compare Integer concmpi Conditional Compare Integer 

cmpib Compare Integer Byte concmpo Conditional Compare Ordinal 

cmpis Compare Integer Short chkbit Check Bit 

cmpo Compare Ordinal 

These all use the REG format and can specify literals or local or global registers. The condition 
code bits are set to indicate whether one operand is less than, equal to, or greater than the other 
operand. See Section 3.6.2, "Arithmetic Controls Register - AC" on page 3-14 for a description of 
the condition codes for conditional operations. 

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly. 
concmpi and concmpo first check the status of condition code bit 2: 

• When not set, the operands are compared as with cmpi and cmpo. 

• When set, no comparison is performed and the condition code flags are not changed. 

The conditional-compare instructions are provided specifically to optimize two-sided range 
comparisons to check for the condition when A is between Band C (B ::;; A ::;; C). Here, a compare 
instruction (cmpi or cmpo) checks one side of the range (A?: B) and a conditional compare 
instruction (concmpi or concmpo) checks the other side (A::;; C) according to the result of the first 
comparison. The condition codes following the conditional comparison directly reflect the results 
of both comparison operations. Therefore, only one conditional branch instruction is required to act 
upon the range check; otherwise, two branches would be needed. 

chkbit checks a specified bit in a register and sets the condition code flags according to the bit 
state. The condition code is set to 0102 when the bit is set and 0002 otherwise. 

Developer's Manual 5-11 



Inte/@ 80303 110 Processor 
Instruction Set Overview 

5.2.6.2 Compare and Increment or Decrement 

These instructions compare two operands, set the condition code bits according to the compare 
results, then increment or decrement one of the operands: 

Table 5-15. Compare and Increment or Decrement Instructions 

5.2.6.3 

instruction Description Instruction Description 

cmpinci compare and increment integer cmpdeci compare and decrement integer 

cmpinco compare and increment ordinal cmpdeco compare and decrement ordinal 

These all use the REG format and can specify literals or local or global registers. They are an 
architectural performance optimization which allows two register operations (e.g., compare and add) 
to execute in a single cycle. The intended use of these instructions is at the end of iterative loops. 

Test Condition Codes 

These test instructions allow the state of the condition code flags to be tested: 

Table 5-16. Test Condition Code Instructions 

5.2.7 

5-12 

instruction Description Instruction Description 

teste test for equal testg test for greater 

testne test for not equal testge test for greater or equal 

testl test for less testo test for ordered 

testle test for less or equal testno test for unordered 

When the condition code matches the instruction-specified condition, a TRUE (0000 OOOlH) is 
stored in a destination register; otherwise, a FALSE (0000 OOOOH) is stored. All use the COBR 
format and can operate on local and global registers. 

Branch 

Branch instructions allow program flow direction to be changed by explicitly modifying the IP. The 
processor provides three branch instruction types: 

• unconditional branch 

• conditional branch 

• compare and branch 

Most branch instructions specify the target IP by specifying a signed displacement to be added to 
the current IP. Other branch instructions specify the target IP's memory address, using one of the 
processor's addressing modes. This latter group of instructions is called extended addressing 
instructions (e.g., branch extended, branch-and-link extended). 

Developer's Manual 



infel· 
5.2.7.1 Unconditional Branch 

These instructions are used for unconditional branching: 

Intel@ 80303 110 Processor 
Instruction Set Overview 

Table 5-17. Unconditional Branch Instructions 

5.2.7.2 

Instruction Description Instruction Description 

b Branch bal Branch and Link 

bx Branch Extended balx Branch and Link Extended 

band bal use the CTRL format. bx and balx use the MEM format and can specify local or global 
registers as operands. b and bx cause program execution to jump to the specified target IP. These 
two instructions perform the same function; however, their determination of the target IP differs. 
The target IP of a b instruction is specified at link time as a relative displacement from the current 
IP. The target IP of the bx instruction is the absolute address resulting from the instruction's use of 
a memory-addressing mode during execution. 

bal and balx store the next instruction's address in a specified register, then jump to the specified 
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is 
specified with an instruction operand.) As described in Section 7.9, "Branch-and-Link" on 
page 7-20, branch and link instructions provide a method of performing procedure calls that do not 
use the processor's integrated call/return mechanism. Here, the saved instruction address is used as 
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not 
call other procedures). 

bx and balx can make use of any memory-addressing mode. 

Conditional Branch 

With conditional branch (BRANCH IF) instructions, the processor checks the AC register condition 
code flags. When these flags match the value specified with the instruction, the processor jumps to 
the target IP. These instructions use the displacement-plus-ip method of specifying the target IP: 

Table 5-18. Conditional Branch Instructions 

Instruction Description Instruction Description 

be branch if equal/true bg branch if greater 

bne branch if not equal bge branch if greater or equal 

bl branch if less bo branch if ordered 

ble branch if less or equal bno branch if unordered/false 

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the 
result of a chkbit or scanbit instruction. Refer to Section 3.6.2.2, "Condition Code (AC.cc)" on 
page 3-15 for a discussion of the condition code for conditional operations. 

Developer's Manual 5-13 



Intef® 80303 flO Processor 
Instruction Set Overview 

5.2.7.3 Compare and Branch 

These instructions compare two operands then branch according to the comparison result. Three 
instruction sUbtypes are compare integer, compare ordinal and branch on bit: 

Table 5-19. Compare and Branch Instructions 

5-14 

Instruction Description Instruction Description 

cmpibe compare integer and branch if equal cmpobe compare ordinal and branch if equal 

cmpibne compare integer and branch if not equal cmpobne compare ordinal and branch if not equal 

cmpibl compare integer and branch if less cmpobl compare ordinal and branch if less 

cmpible compare integer and branch if less or cmpoble compare ordinal and branch if less or 
equal equal 

cmpibg compare integer and branch if greater cmpobg compare ordinal and branch if greater 

cmpibge compare integer and branch if greater cmpobge compare ordinal and branch if greater 
or equal or equal 

cmpibo compare integer and branch if ordered bbs check bit and branch if set 

cmpibno compare integer and branch if bbc check bit and branch if clear 
unordered 

All use the COBR machine instruction format and can specify literals, local or global registers as 
operands. With compare ordinal and branch (compob*) and compare integer and branch (compib*) 
instructions, two operands are compared and the condition code bits are set as described in 
Section 5.2.6, "Comparison" on page 5-11. A conditional branch is then executed as with the 
conditional branch (BRANCH IF) instructions. 

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in the 
second operand. The condition code flags are set according to the state of the specified bit: 0102 
(true) when the bit is set and 0002 (false) when the bit is clear. A conditional branch is then 
executed according to condition code bit settings. 

These instructions can be used to optimize execution performance time. When it is not possible to 
separate adjacent compare and branch instructions from other unrelated instructions, replacing two 
instructions with a single compare and branch instruction increases performance. 

Developer's Manual 



intet 
5.2.8 Call1Retu rn 

Intel® 80303 110 Processor 
Instruction Set Overview 

The 80303 I/O processor offers an on-chip call/return mechanism for making procedure calls. 
Refer to Section 7.1. "Call and Return Mechanism" on page 7-2. The following instructions 
support this mechanism: 

Table 5-20. Call/Return Instructions 

Instruction Description Instruction Description 

call call calls call system 

calix call extended ret return 

call and ret use the CTRL machine-instruction format. calix uses the MEM format and can specify 
local or global registers, calls uses the REG format and can specify local or global registers. 

call and calix make local calls to procedures. A local call is a call that does not require a switch to 
another stack. call and calix differ only in the method of specifying the target procedure's address. 
The target procedure of a call is determined at link time and is encoded in the opword as a signed 
displacement relative to the call IP. calix specifies the target procedure as an absolute 32-bit 
address calculated at run time using anyone of the addressing modes. For both instructions, a new 
set of local registers and a new stack frame are allocated for the called procedure. 

calls is used to make calls to system procedures - procedures that provide a kernel or 
system-executive service. This instruction operates similarly to call and calix, except that it gets its 
target-procedure address from the system procedure table. An index number included as an 
operand in the instruction provides an entry point into the procedure table. 

Depending on the type of entry being pointed to in the system procedure table, calls can cause 
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a 
call to a system procedure that switches the processor to supervisor mode and switches to the 
supervisor stack. A system-local call is a call to a system procedure that does not cause an 
execution mode or stack change. Supervisor mode is described throughout Chapter 7, "Procedure 
Calls". 

ret performs a return from a called procedure to the calling procedure (the procedure that made the 
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling 
procedure. ret is used to return from all calls - including local and supervisor calls - and from 
implicit calls to interrupt and fault handlers. 

Developer's Manual 5-15 



Intel@ 80303 110 Processor 
Instruction Set Overview 

5.2.9 Faults 

Generally, the processor generates faults automatically as the result of certain operations. Fault 
handling procedures are then invoked to handle various fault types without explicit intervention by 
the currently running program. These conditional fault instructions permit a program to explicitly 
generate a fault according to the state of the condition code flags. All use the CTRL format. 

Table 5-21. Faults Instructions 

5.2.10 

Instruction Description Instruction Description 

faulte fault if equal faultg fault if greater 

faultne fault if not equal faultge fault if greater or equal 

faultl fault if less faulto fault if ordered 

faultle fault if less or equal faultno fault if unordered 

syncf ensures that any faults that occur during the execution of prior instructions occur before the 
instruction that follows the syncf. syncf uses the REG format and requires no operands. 

Debug 

The processor supports debugging and monitoring of program activity through the use of trace 
events. The following instructions support these debugging and monitoring tools: 

Table 5-22. Debug Instructions 

5-16 

Instruction Description Instruction Description 

mod pc modify process controls mark mark 

modtc modify trace controls fmark force mark 

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC) 
register which enable or disable various types of tracing. Other TC register flags indicate when an 
enabled trace event is detected. Refer to Chapter 10, "Tracing and Debugging". 

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be generated 
when breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the state 
of the breakpoint trace mode bits. 

Other instructions that are helpful in debugging include modpc and sysctl. mod pc can 
enable/disable trace fault generation. The sysctl instruction also provides control over breakpoint 
trace event generation. This instruction is used, in part, to load and control the 80303 I/O 
processor's breakpoint registers. 

Developer's Manual 



intet 
5.2.11 

5.2.12 

Atomic Instructions 

Intel@ 80303 110 Processor 
Instruction Set Overview 

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An 
atomic operation is one in which other memory operations are forced to occur before or after, but 
not during, the accesses that comprise the atomic operation. These instructions are required to 
enable synchronization between interrupt handlers and background tasks in any system. They are 
also particularly useful in systems where several agents - processors, coprocessors or external 
logic - have access to the same system memory for communication. 

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an 
operand to be added to the value in the specified memory location. atmod causes bits in the 
specified memory location to be modified under control of a mask. Both instructions use the REG 
format and can specify literals or local or global registers as operands. 

Processor Management 

These instructions control processor-related functions: 

Table 5-23. Processor Management Instructions 

Instruction Description Instruction Description 

modpe Modify the Process Controls register modac Modify the Arithmetic Controls register 

flushreg Flush cached local register sets to 
memory 

All use the REG format and can specify literals or local or global registers. 

modpe provides a method of reading and modifying PC register contents. Only programs 
operating in supervisor mode may modify the PC register; however, any program may read it. 

The processor provides a flush local registers instruction (flush reg) to save the contents of the 
cached local registers to the stack. The flush local registers instruction automatically stores the 
contents of all the local register sets - except the current set - in the register save area of their 
associated stack frames. 

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied to 
a register and/or modified under the control of a mask. The AC register cannot be explicitly 
addressed with any other instruction; however, it is implicitly accessed by instructions that use the 
condition codes or set the integer overflow flag. 

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It 
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysetl 
may be executed only by programs operating in supervisor mode. 

intetl, inten and intdis are used to enable and disable interrupts and to determine current interrupt 
enable status. 

Developer's Manual 5-17 



Intel@ 80303 /10 Processor 
Instruction Set Overview intel· 
5.3 

5.3.1 

5.3.1.1 

5.3.1.2 

5.3.1.3 

5-18 

Performance Optimization 

Performance optimization is categorized into two sections: instructions optimizations and 
miscellaneous optimizations. 

Instruction Optimizations 

Instruction optimizations are broken down by the instruction classification. 

Load I Store Execution Model 

Because the 80303 I/O processor has a 32-bit external data bus, multiple word accesses require 
multiple cycles. The processor uses microcode to sequence the multi-word accesses. Because the 
microcode can ensure that aligned multi-words are bursted together on the external bus, software 
should not substitute multiple single-word instructions for one multi-word instruction for data that 
is not likely to be in cache; (i.e., one Idq provides better bus performance than four Id instructions). 

Once a load is issued, the processor attempts to execute other instructions while the load is 
outstanding. It is important to note that when the load misses the data cache, the processor does not 
stall the issuing of subsequent instructions (other than stores) that do not depend on the load. 

Software should avoid following a load with an instruction that depends on the result of the load. 
For a load that hits the data cache, a one-cycle stall occurs when the instruction immediately after 
the load requires the data. When the load fails to hit the data cache, the instruction depending on 
the load is stalled until the outstanding load request is resolved. 

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes full. 

The processor delays issuing a store instruction until all previously-issued load instructions 
complete. This happens regardless of whether the store is dependent on the load. This ordering 
between loads and stores ensures that the return data from a previous cache-read miss does not 
overwrite the cache line updated by a subsequent store. 

Compare Operations 

Byte and short word data is more efficiently compared using the new byte and short compare 
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word 
compare instruction. 

Microcoded Instructions 

While the majority of instructions on the 80303 I/O processor are single cycle and are executed 
directly by processor hardware, some require microcode emulation. Entry into a microcode routine 
requires two cycles. Exit from microcode typically requires two cycles. For some routines, one 
cycle of the exit process can execute in parallel with another instruction, thus saving one cycle of 
execution time. 

Developer's Manual 



5.3.1.4 

5.3.1.5 

Multiply-Divide Unit Instructions 

Intel@ 80303 I/O Processor 
Instruction Set Overview 

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These 
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit mulo, to 30+ cycles 
for an ediv. 

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions 
that do not depend on the result of the MDU operation. Attempting to issue another MDU 
instruction while a current MDU instruction is executing, stalls the processor until the first one 
completes. 

Multi-Cycle Register Operations 

A few register operations can also take multiple cycles. The following instructions are performed 
in microcode: 

Table 5-24. Multi-Cycle Register Operations Microcode Instructions 

5.3.1.6 

· bswap · extract · eshro · modify · movl · movt 

· movq · shrdi · scan bit · span bit · testno · testo 

· testl · testle · teste · testne · testg · testge 

On the 80303 I/O processor, test<cc> dst is microcoded and takes many more cycles than 
SEL<cc> O,l,dst, which is executed in one cycle directly by processor hardware. 

Multi-register move operation execution time can be decreased at the expense of cache utilization 
and code density by using mov the appropriate number of times instead of movl, movt and movq. 

Simple Control Transfer 

There is no branch look-ahead or branch prediction mechanism on the 80303 I/O processor. Simple 
branch instructions take one cycle to execute, and one more cycle is needed to fetch the target 
instruction if the branch is actually taken. 

Table 5-25. Simple Control Transfer Instructions 

· b . bno . bl . be . bg 

· bal . bo . ble . bne . bge 

b, bal, bno, bo, bl, ble, be, bne, bg, bge 

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one 
cycle to execute and one cycle to fetch the target. 

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for 
efficient leaf procedure implementation. 

Compare-and-branch instructions have been optimized on the 80303 I/O processor. They require 
two cycles to execute, and one more cycle to fetch the target instruction if the branch is actually 
taken (see Table 5-19 on page 5-14). 

Developer's Manual 5-19 



Intel@ 80303 110 Processor 
Instruction Set Overview intel· 
5.3.1.7 Memory Instructions 

The 80303 I/O processor provides efficient support for naturally aligned byte, short, and word 
accesses that use one of six optimized addressing modes. These accesses require only one to two 
cycles to execute; additional cycles are needed for a load to return its data. 

The byte, short and word memory instructions are: 

Table 5-26. Memory Instructions 

· Idob · Idis · stob · stis 

· Idib · Id · stib · st 

· Idos · Ida · stos · 
The remainder of accesses require multiple cycles to execute. These include: 

• Unaligned short, and word accesses 

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes 

• Multi-word accesses 

The multi-word accesses are: 

Table 5-27. Memory Instructions 

5.3.1.8 

5-20 

I • Idl I • Idt • Idq • stl • stt • stq 

Unaligned Memory Accesses 

Unaligned memory accesses are performed by microcode. Microcode sequences the access into 
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are 
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for 
these accesses. Whenever possible, unaligned accesses should be avoided. 

Developer's Manual 



intet 
5.3.2 

5.3.2.1 

5.3.2.2 

5.3.2.3 

5.3.2.4 

5.3.3 

Miscellaneous Optimizations 

Masking of Integer Overflow 

Inte/@ 80303 110 Processor 
Instruction Set Overview 

The i960 core architecture inserts an implicit syncf before performing a call operation or 
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can 
require a number of cycles to complete when a multi-cycle integer-multiply (muli) or 
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked 
(allowed to occur). Call performance and interrupt latency can be improved by masking 
integer-overflow faults (AC.om = 1), which allows the implicit syncf to complete more quickly. 

Avoid Using PFP, SP, R3 As Destinations for MDU Instructions 

When performing a call operation or delivering an interrupt, the processor typically attempts to push 
the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as possible. 
Because of register-interlock, this operation is stalled until previous instructions return their results to 
these registers. In most cases, this is not a problem; however, in the case of multi-cycle instructions 
(divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles waiting for 
the result and unable to proceed to the next step of call processing or interrupt delivery. 

Call performance and interrupt latency can be improved by avoiding the first four registers as the 
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are 
used for procedure linking. 

Use Global Registers (gO - g14) As Destinations for MDU Instructions 

Using the same rationale as in the previous item, call processing and interrupt performance are 
improved even further by using global registers (gO-g14) as the destination for multi-cycle MDU 
instructions. This is because there is no dependency between gO-g14 and implicit or explicit call 
operations (i.e., global registers are not pushed onto the local register cache). 

Execute in Imprecise Fault Mode 

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In 
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous 
one completes. This ensures that a fault from the previous instruction is delivered before the next 
instruction can begin execution. Imprecise fault mode allows new instructions to be issued before 
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate 
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault 
mode to isolate faults at desired points of execution when necessary. 

Cache Control 

The following instructions provide instruction and data cache control functions. 

Table 5-28. Cache Control Instructions 

Instruction Description Instruction Description 

icctl Instruction cache control dcctl Data cache control 

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking 
(instruction cache only), invalidating, getting status and storing cache information out to memory. 

Developer's Manual 5-21 





intel· 
Instruction Set Reference 6 

This chapter provides detailed infonnation about each instruction available to the Intel® 80303 I/O 
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and 
notation used in this chapter are defined in Section 6.l, "Notation" on page 6-2. 

Information in this chapter is oriented toward programmers who write assembly language code for 
the 80303 I/O processor. Information provided for each instruction includes: 

• Alphabetic listing of all instructions 

• Faults that can occur during execution 

• Assembly language mnemonic, name and format 

• Action (or algorithm) and other side effects of executing an instruction 

• Description of the instruction's operation 

• Assembly language example 

• Related instructions 

• Opcode and instruction encoding format 

Additional infonnation about the instruction set can be found in the following chapters and 
appendices in this manual: 

• Chapter 5, "Instruction Set Overview" - Summarizes the instruction set by group and describes 
the assembly language instruction format. 

• Appendix A, "Machine-Level Instruction Formats" - Describes instruction set opword 
encodings. 

• Appendix B, "Opcodes and Execution Times" - A quick-reference listing of instruction 
encodings assists debugging with a logic analyzer. 

Developer's Manual 6-1 



Inte!® 80303 110 Processor 
Instruction Set Reference in1:et 
6.1 

6.1.1 

6.1.2 

Notation 

In general, notation in this chapter is consistent with usage throughout the manual; however, there are a 
few exceptions. Read the following subsections to understand notations that are specific to this chapter. 

Alphabetic Reference 

Instructions are listed alphabetically by assembly language mnemonic. When several instructions 
are related and fall together alphabetically, they are described as a group on a single page. 

The instruction's assembly language mnemonic is shown in bold at the top of the page (e.g., subc). 
Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name of the 
instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc». 

The 80303 I/O processor-specific extensions to the Intel® i960® microprocessor instruction set are 
indicated in the header text for each such instruction. This type of notation is also used to indicate 
new core architecture instructions. Sections describing new core instructions provide notes as to 
which i960-series processors do not implement these instructions. 

Generally, instruction set extensions are not portable to other i960 processor implementations. 
Further, new core instructions are not tygcally portable to earlier i960 processor family 
implementations such as the Intel® i960 R Kx microprocessors. 

Mnemonic 

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each 
instruction covered on the page, for example: 

Example 6-1. Mnemonic Instruction 

6.1.3 

Instruction Description 

subi Subtract Integer 

This name is the actual assembly language instruction name recognized by assemblers. 

Format 

The Format section gives the instruction's assembly language format and allowable operand types. 
Format is given in two or three lines. The following is a two-line format example: 

Example 6-2. Two-line Format 

6-2 

iSUb
< 

IsrC2 

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When 
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An * 
(asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either subi 
or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the class of 
conditional add instructions (e.g., addio, addig, addoo, addog). 

Developer's Manual 



Intel® 80303 I/O Processor 
Instruction Set Reference 

Operand names are designed to describe operand function (e.g., src, len, mask). 

The second line shows allowable entries for each operand. Notation is as follows: 

Example 6-3. Operand Allowable Entries (second line) 

Entry Description 

reg Global (gO ". g15) or local (rO '" r15) register 

lit Literal of the range 0 '" 31 

disp Signed displacement of range (_222 '" 222 - 1) 

mem Address defined with the full range of addressing modes 

In some cases, a third line is added to show register or memory location contents. For example, it 
may be useful to know that a register is to contain an address. The notation used in this line is as 
follows: 

Example 6·4. Register or Memory Location Contents (third line) 

6.1.4 

6.1.5 

Contents Description 

addr Address 

eta Effective Address 

Description 

The Description section is a narrative description of the instruction's function and operands. It also 
gives programming hints when appropriate. 

Action 

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct 
effects and possible side effects of executing an instruction. Algorithms document the instruction's 
net effect on the programming environment; they do not necessarily describe how the processor 
actually implements the instruction. The following is an example of the action algorithm for the 
alterbit instruction: 

Example 6·5. Action Algorithm for the alterbit Instruction 

if ((AC,cc & 0102)==0) 

dst = src2 & -(2**(src1 %32)); 

else 

dst = src2 12**(src1 %32); 

Developer's Manual 6-3 



Intef@ 80303 110 Processor 
Instruction Set Reference 

Table 6-1. 

Table 6-2. 

Table 6-3. 

6-4 

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The 
pseudo-code has been written to comply as closely as possible with standard C programming 
language notation. Table 6-1 lists the pseudocode symbol definitions. 

Pseudo-Code Symbol Definitions 

Symbol Description 

==, != Comparison: equal, not equal 

<,> less than, greater than 

<=, >= less than or equal to, greater than or equal to 

«, » Logical Shift .. Exponentiation 

&,&& Bitwise AND, logical AND 

I, II Bitwise OR, logical OR 
A Bitwise XOR 

- One's Complement 

% Modulo 

+, - Addition, Subtraction . Multiplication (Integer or Ordinal) 

/ Division (Integer or Ordinal) 

# Comment delimiter 

Faults Applicable to All Instructions 

Fault Type Subtype Description 

OPERATION UNIMPLEMENTED An attempt to execute any instruction fetched from internal data RAM or 
a memory-mapped region causes an operation unimplernented fault. 

A Mark Trace Event is signaled after completion of an instruction for 
MARK which there is a hardware breakpoint condition match. A Trace fault is 

TRACE generated when PC.mk is set. 

INSTRUCTION 
An Instruction Trace Event is signaled after instruction completion. A 
Trace fault is generated when both PC.te and TC.i=1. 

Common Faulting Conditions 

Fault Type Subtype Description 

Any instruction that causes an unaligned memory access causes an 
UNALIGNED operation aligned fault when unaligned faults are not masked in the fault 

configuration word in the Processor Control Block (PRCB). 

INVALlD_OPCODE This fault is generated when the processor attempts to execute an 
instruction containing an undefined opcode or addressing mode. 

OPERATION This fault is caused by a non-defined operand in a supervisor mode only 
INVALID_OPERAND instruction or by an operand reference to an unaligned long-, triple- or 

quad-register group. 

This fault can occur due to an attempt to perform a non-word or 
UNIMPLEMENTED unaligned access to a memory-mapped region or when attempting to 

fetch instructions from MMR space or internal data RAM. 

Any instruction that attempts to write to supervisor protected internal 

TYPE MISMATCH 
data RAM or a memory-mapped register in supervisor space while not in 
supervisor mode causes a TYPE.MISMATCH fault. This fault is also 
generated for any non-supervisor mode reference to an SFR. 

Developer's Manual 



int:et 
6.1.6 

6.1.7 

6.1.8 

Faults 

Intel® 80303 I/O Processor 
Instruction Set Reference 

The F wIlts section lists faults that can be signaled as a direct result of instruction execution. 
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and 
could directly result from any instruction. These fault types are not included in the instruction 
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the 
instruction set. When an instruction can generate a fault, it is noted in that instruction 's Faults 
section. In these sections, "Standard" refers to the faults shown in Table 6-2 and Table 6-3. 

Example 

The Example section gives an assembly language example of an application of the instruction. 

Opcode and Instruction Format 

The Opcode and Instruction Format section gives the ope ode and instruction format for each 
instruction, for example: 

Example 6-6. Opcode and Instruction Format 

6.1.9 

6.1.10 

6.1.11 

Instruction Opcode Format 

subi 593H REG 

The opcode is given in hexadecimal format. The format is one of four possible formats: REG, 
COBR, CTRL and MEM. Refer to Appendix A, "Machine-Level Instruction Formats" for more 
information on the formats. 

See Also 

The See Also section gives the mnemonics of related instructions which are also alphabetically 
listed in this chapter. 

Side Effects 

This section indicates whether the instruction causes changes to the condition code bits in the 
Arithmetic Controls. 

Notes 

This section provides additional information about an instruction such as whether it is implemented 
in other i960 processor families. 

Developer's Manual 6-5 



Intel@ 80303 110 Processor 
Instruction Set Reference in1'et 
6.2 Instructions 

6.2.1 

Table 6-4. 

6-6 

The processor's instructions are arranged alphabetically by instruction or instruction group. 

ADD<cc> 

ADD<cc> 

Mnemonic: 

Format: 

Description: 

addono Add Ordinal if Unordered 

addog Add Ordinal if Greater 

ad doe Add Ordinal if Equal 

ad doge Add Ordinal if Greater or Equal 

addol Add Ordinal if Less 

addone Add Ordinal if Not Equal 

addole Add Ordinal if Less or Equal 

addeD Add Ordinal if Ordered 

addino Add Integer if Unordered 

addig Add Integer if Greater 

addie Add Integer if Equal 

addige Add Integer if Greater or Equal 

addil Add Integer if Less 

ad dine Add Integer if Not Equal 

addiJe Add Integer if Less or Equal 

addio Add Integer if Ordered 
add· src1, src2, dst 

reg/lit reg/lit reg 

Conditionally adds src2and src1, values and stores the result in dstbased on the AC 
register condition code. If for Unordered the condition code is 0, or if for all other cases the 
logical AND of the condition code and mask part of the opcode is not 0, then the values are 
added and placed in the destination. Otherwise the destination is left unchanged. The table 
below shows the condition code mask for each instruction. The mask is in opcode bits 4-6. 

Instruction Mask Condition 

addono 
0002 Unordered 

addino 

addog 
001 2 Greater 

addig 

addoe 

addie 
0102 Equal 

addoge 
011 2 Greater or equal 

addige 

addol 
1002 Less 

addiJ 

addone 

addine 
1012 Not equal 

addole 

addile 
1102 Less or equal 

addeD 
1112 Ordered 

addio 

Developer's Manual 



intel· 
Action: 

Faults: 

Example: 

Developer's Manual 

Intel@ 80303 I/O Processor 
Instruction Set Reference 

addo<cc>: 

if((mask & AC.cc) II (mask == AC.cc)) 

dst = (src1 + src2)[31 :0]; 

if((mask & AC.cc) II (mask == AC.cc)) 

true_result = (src1 + src2); 

dst = true _result[31 :0]; 

if((true_result > (2**31) -1) II (true_result < -2**31)) 

#Check for overflow 

if(AC.om == 1) 

AC.of = 1; 

else 

generate_fault(ARITHMETIC.OVERFLOW); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ARITHMETIC.OVERFLOW Occurs only with addi<cc>. 

# Assume (AC.cc AND 001 2 ) *' O. 

addig r4, rS, r10 # r10 rS + r4 

# Assume (AC. cc AND 1012 ) O. 

addone r4, rS, r10 # r10 is not changed. 

6-7 



Inte/@ 80303 liD Processor 
Instruction Set Reference 

Opcode: 

See Also: 

Notes: 

6-8 

in1:et 
addono 780H REG 

addog 790H REG 

addoge 7AOH REG 

addoe 7BOH REG 

addol 7COH REG 

addone 700H REG 

addole 7EOH REG 

addoo 7FOH REG 

addino 781H REG 

addig 791H REG 

addie 7A1H REG 

addige 7B1H REG 

addil 7C1H REG 

addine 701H REG 

addile 7E1H REG 

addio 7F1H REG 

addc, SUB<cc>, addi, addo 

This class of core instructions is not implemented on 80960Cx, Kx and Sx processors, 

Developer's Manual 



6.2.2 addc 

Table 6·5. addc 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

addc 

addc 

Add Ordinal With Carry 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Adds src2 and src1 values and condition code bit 1 (used here as a carry-in) and stores 
the result in dst. If ordinal addition results in a carry out, condition code bit 1 is set; 
otherwise, bit 1 is cleared. If integer addition results in an overflow, condition code bit 0 is 
set; otherwise, bit 0 is cleared. Regardless of addition results, condition code bit 2 is 
always set to O. 

addc can be used for ordinal or integer arithmetic. addc does not distinguish between 
ordinal and integer source operands. Instead, the processor evaluates the result for both 
data types and sets condition code bits 0 and 1 accordingly. 

An integer overflow fault is never signaled with this instruction. 

dst = (src1 + src2 + AC.cc[1 ])[31 :0]; 

AC.cc[2:0] = 0002 ; 

if((src2[31] == src1[31]) && (src2[31] != dst[31])) 

AC.cc[O] = 1; # Set overflow bit. 

AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out. 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

* Example of double-precision arithmetic. 

# Assume 64-bit source operands 

# in gO,gl and g2,g3 

cmpo 1, 0 

addc gO, g2, gO 

addc gl, g3, gl 

addc 

ADD<cc>, SUB<cc> 

# Clears Bit 1 (carry bit) of 

# the AC. cc. 

# Add low-order 32 bits: 

# gO = g2 + gO + carry bit 

# Add high-order 32 bits: 

# gl = g3 + gl + carry bit 

# 64-bit result is in gO, gl. 

5BOH REG 

Sets the condition code in the arithmetic controls. 

6-9 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.3 addi, addo 

Table 6·6. addi, addo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-10 

addo Add Ordinal 

addi Add Integer 

add* src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Adds src2 and src1 values and stores the result in dst. The binary results from these two 
instructions are identical. The only difference is that addi can signal an integer overflow. 

addo: 

dst = (src2 +src1 )[31 :0]; 

addi: 

true_result = (src1 + src2); 

dst = true_result[31 :0]; 

if((true_result> (2**31) - 1) II (true_result < -2**31» # Check for overflow 

if(AC.om == 1) 

else 

STANDARD 

ARITHMETIC.OVERFLOW 

addi r4, g5, r9 

addo 590H 

addi 591 H 

AC.of = 1; 

generate_fault(ARITHMETIC.OVERFLOW); 

Refer to Section 6.1 .6, "Faults" on page 6-5. 

Occurs only with addi. 

if r9 = g5 + r4 

REG 

REG 

addc, subl, subo, subc, ADD<cc> 

Developer's Manual 



6.2.4 alterbit 

Table 6-7. alterbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

alterbit 

alterbit 

Alter Bit 

bitpos, 

reg/lit 

src, 

reg/lit 

Intel@ 80303 110 Processor 
Instruction Set Reference 

dst 

reg 

Copies src value to dst with one bit altered. bitpos operand specifies bit to be 
changed; condition code determines the value to which the bit is set. If condition code 
is X1 X2 , bit 1 = 1, the selected bit is set; otherwise, it is cleared. Typically this 
instruction is used to set the bitpos bit in the targ register if the result of a compare 
instruction is the equal condition code (0102)' 

if((AC.cc & 0102)==0) 

dst = src & -(2**(bitpos%32)); 

else 

dst = src 12**(bitpos%32); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# Assume AC.cc = OlO~ 

alterbit 24, g4,g9 # g9 = g4, with bit 24 set. 

alterbit 58FH REG 

chkbit, clrbit, notbit, setbit 

6-11 

, .' 



Inte/® 80303 110 Processor 
Instruction Set Reference 

6.2.5 and, andnot 

Table 6-8. and, and not 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-12 

intel· 

and And 

andnot And Not 

and sret, sre2, dst 

reg/lit reg/lit reg 

andnot sret, sre2, dst 

reg/lit reg/lit reg 

Performs a bitwise AND (and) or AND NOT (andnot) operation on sre2and sret values 
and stores result in dst. Note in the action expressions below, sre2 operand comes first, 
so that with andnot the expression is evaluated as: 

{sre2 and not (sret)} 

rather than 

{sret and not (sre2)} 

and: 

dst = src2 & src1 ; 

andnot: 

dst = src2 & -src1 ; 

STANDARD 

and Ox7, g8, g2 

andnot Ox7, r12, r9 

and 

and not 

581 H 

582H 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Put lower 3 bits of g8 in g2. 

# Copy r12 to r9 with lower 

# three bits cleared. 

REG 

REG 

nand, nor, not, notand, notor, or, ornot, xnor, xor 

Developer's Manual 



intel~ 
6.2.6 atadd 

Table 6-9. atadd 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

atadd 

atadd 

Atomic Add 

addr, 

reg 

src, 

reg/lit 

Intel® 80303 I/O Processor 
Instruction Set Reference 

dst 

reg 

Adds srcvalue (full word) to value in the memory location specified with addroperand. 
This read-modify-write operation is performed on the actual data in memory and never 
on a cached value on chip. Initial value from memory is stored in dst. 

Memory read and write are done atomically (Le., other bus masters must be prevented 
from accessing the word of memory containing the word specified by srcldst operand 
until operation completes). See Section 3.5.1, "Memory Requirements·' on page 3-11 or 
more information on atomic accesses. 

Memory location in addris the word's first byte (LSB) address. Address is automatically 
aligned to a word boundary. (Note that addroperand maps to src1 operand of the REG 
format.) 

implici,-syncfO; 

tempa = addr & OxFFFFFFFC; 

temp = atomic_read(tempa); 

atomic_write(tempa, temp+src); 

dst = temp; 

STANDARD 

atadd r8, r3, rll 

atadd 

atmod 

612H 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# r8 contains the address of 

# memory location. 

# rll = (r8) 

# (r8) = rll + r3. 

REG 

6-13 



Intel@ 80303 I/O Processor 
Instruction Set Reference 

6.2.7 atrnod 

Table 6-10. atmod 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-14 

atmod 

atmod 

Atomic Modify 

addr, 

reg 

mask, 

reg/lit 

src/dst 

reg 

Copies the selected bits of srcldstvalue into memory location specified in addr. The 
read-modify-write operation is performed on the actual data in memory and never on a 
cached value on chip. Bits set in mask operand select bits to be modified in memory. 
Initial value from memory is stored in srcldst. See Section 3.5.1 , "Memory 
Requirements" on page 3-11 for information on atomic accesses. 

Memory read and write are done atomically (Le., other bus masters must be prevented 
from accessing the word of memory containing the word specified with the src/dst 
operand until operation completes). 

Memory location in addris the modified word's first byte (LSB) address. Address is 
automatically aligned to a word boundary. 

impliciCsyncfO; 

tempa = addr & OxFFFFFFFC; 

tempb = atomic_read(tempa); 

temp = (tempb &- mask) I (src_dst & mask); 

atomic_write(tempa, temp); 

src_dst = tempb; 

STANDARD 

atmod gS, g7, glO 

Refer to Section 6.1.6, "Faults" on page 6-5. 

", tempa = (g5) 

atmod 610H 

atadd 

", temp = (tempa andnot g7) or 

", (glO and g7) 

", (gS) = temp 

", glO = tempa 

REG 

Developer's Manual 



intel· 
6.2.8 b,bx 

Table 6-11. b, bx 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Inte/@ 80303 I/O Processor 
Instruction Set Reference 

b 

bx 

b 

bx 

Branch 

Branch Extended 

targ 

disp 

targ 

mem 

Branches to the specified target. 

With the b instruction, IP specified with targ operand can be no farther than _223 to 
(223_ 4) bytes from current IP. When using the Intel i960 processor assembler, targ 
operand must be a label which specifies target instruction's IP. 

bx performs the same operation as b except the target instruction can be farther 
than _223 to (223_ 4) bytes from current IP. Here, the target operand is an effective 
address, which allows the full range of addressing modes to be used to specify target 
instruction's IP. The "IP + displacement" addressing mode allows the instruction to be 
IP-relative. Indirect branching can be performed by placing target address in a register 
then using a register-indirect addressing mode. 

Refer to Section 2.3, "Memory Addressing Modes" on page 2-4 for information on this 
subject. 

b, bx: 

IP[31 :2) = effective_address(targ[31 :2)); 

IP[1 :0) = 0; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

b xyz 

bx 1332 (ip) 

# IP 

# IP 

xyz; 

IP + 8 + 1332; 

# this example uses IP-relative addressing 

b 08H CTRL 

bx 84H MEM 

bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs 

6-15 



Intef@ 80303 /10 Processor 
Instruction Set Reference 

6.2.9 bal, balx 

Table 6-12. bal, balx 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-16 

bal 

balx 

bal 

balx 

Branch and Link 

Branch and Link Extended 

targ 

disp 

targ, 

mem 

dst 

reg 

intel· 

Stores address of instruction following bal or balx in a register then branches to the 
instruction specified with the targ operand. 

The bal and balx instructions are used to call leaf procedures (procedures that do not 
call other procedures). The IP saved in the register provides a return IP that the leaf 
procedure can branch to (using a b or bx instruction) to perform a return from the 
procedure. Note that these instructions do not use the processor's call-and-return 
mechanism, so the calling procedure shares its local-register set with the called (leaf) 
procedure. 

With bal, address of next instruction is stored in register g14. targ operand value can be 
no farther than _223 to (223 _ 4) bytes from current IP. When using the Intel i960 processor 
assembler, targ must be a label which specifies the target instruction's IP. 

balx performs same operation as bal except next instruction address is stored in dst 
(allowing the return IP to be stored in any available register). With balx, the full address 
space can be accessed. Here, the target operand is an effective address, which allows 
full range of addressing modes to be used to specify target IP. "IP + displacement" 
addressing mode allows instruction to be IP-relative. Indirect branching can be 
performed by placing target address in a register and then using a register-indirect 
addressing mode. 

See Section 2.3, "Memory Addressing Modes" on page 2-4 for a complete discussion of 
addressing modes available with memory-type operands. 

bal: 

g14=IP+4; 

IP[31 :2] = effective_address(targ[31 :2]); 

IP[l :0] = 0; 

balx: 

dst = IP + instruction_length; 

# InstructionJength = 4 or 8 depending on the addressing mode used. 

IP[31 :2] = effective_address(targ[31 :2]); # Resume execution at new IP. 

IP[l :0] = 0; 

STANDARD 

bal xyz 

balx (g2), g4 

bal 

balx 

OBH 
85H 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# g14 = IP + 4 

# IP xyz 

# g4 IP + 4 

# IP (g2) 

CTRL 

MEM 

b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs 

Developer's Manual 



6.2.10 bbc,bbs 

Table 6-13. bbc,bbs 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel@ 80303 110 Processor 
Instruction Set Reference 

bbc 

bbs 

bb* 

Check Bit and Branch If Clear 

Check Bit and Branch If Set 

bitpos, 

reg/lit 

src, 

reg 

targ 

disp 

Checks bit (designated by bitpos) in src and sets AC register condition code according 
to src value. The processor then performs conditional branch to instruction specified 
with targ, based on condition code state. 

For bbc, if selected bit in src is clear, the processor sets condition code to 0002 and 
branches to instruction specified by targ; otherwise, it sets condition code to 0102 and 
goes to next instruction. 

For bbs, if selected bit is set, the processor sets condition code to 0102 and branches to 
targ; otherwise, it sets condition code to 0002 and goes to next instruction. 

targ can be no farther than _212 to (212 - 4) bytes from current IP. When using the Intel 
i960 processor assembler, targ must be a label which specifies target instruction's IP. 

bbs: 

if((src & 2**(bitpos%32)) == 1) 

{ AC.cc = 0102; 

temp[31 :2] = sign_extension(targ[12:2]); 

IP[31 :2] = IP[31 :2] + temp[31 :2]; 

IP[1 :0] = 0; 

else 

bbc: 

if((src & 2**(bitpos%32)) == 0) 

{ AC.cc = 0002; 

temp[31 :2] = sign_extension(targ[12:2]); 

IP[31 :2] = IP[31 :2] + temp[31 :2]; 

IP[1:0] = 0; 

else 

AC.cc = 0102; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# Assume bit 10 of r6 is clear. 

bbc 10, r6, xyz 

bbc 

bbs 

30H 

37H 

# Bit 10 of r6 is checked 

# and found clear: 

# AC.cc = 000 

# IP = xyz; 

COBR 

COBR 

chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc> 

Sets the condition code in the arithmetic controls. 

6-17 



Intel® 80303 110 Processor 
Instruction Set Reference 

6.2.11 BRANCH<cc> 

Table 6-14. BRANCH<cc> 

Mnemonic: 

Format: 

Description: 

6-18 

be Branch If Equal 

bne Branch If Not Equal 

bl Branch If Less 

ble Branch If Less Or Equal 

bg Branch If Greater 

bge Branch If Greater Or Equal 

bo Branch If Ordered 

bno Branch If Unordered 

b* targ 

disp 

Branches to instruction specified with targ operand according to AC register condition 
code state. 

For all branch<cc> instructions except bno, the processor branches to instruction 
specified with farg, if the logical AND of condition code and mask part of opcode is not 
zero. Otherwise, it goes to next instruction. 

For bno, the processor branches to instruction specified with targ if the condition code is 
zero. Otherwise, it goes to next instruction. 

For instance, bno (unordered) can be used as a branch if false instruction when coupled 
with chkbit. For bno, branch is taken if condition code equals 0002. be can be used as 
branch-if true instruction. 

The farg operand value can be no farther than _223 to (223_ 4) bytes from current IP. 

The following table shows condition code mask for each instruction. The mask is in 
opcode bits 0-2. 

Instruction Mask Condition 

bno 00°2 Unordered 

bg 001 2 Greater 

be 0102 Equal 

bge 011 2 Greater or equal 

bl 1002 Less 

bne 101 2 Not equal 

ble 1102 Less or equal 

bo 1112 Ordered 

Developer's Manual 



intel· 
Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

if((mask & AC.cc) II (mask == AC.cc)) 

temp[31 :2] = sign_extension(targ[23:2]); 

IP[31 :2] = IP[31 :2] + temp[31 :2]; 

IP[1:0] = 0; 

Intel® 80303 I/O Processor 
Instruction Set Reference 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# Assume (AC.cc AND 1002) '* ° 
b1 xyz # IP = xyz; 

be 12H CTRL 

bne 15H CTRL 

bl t4H CTRL 

ble 16H CTRL 

bg 11 H CTRL 

bge 13H CTRL 

bo 17H CTRL 

bno 10H CTRL 

b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc> 

6-19 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.12 bswap 

Table 6·15. bswap 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-20 

bswap 

bswap 

Byte Swap 

src1:src, 

reg/lit 

src2:dst 

reg 

Alters the order of bytes in a word, reversing its "endianess." 

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1 becomes 
byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc. 

dst = (rotate_'eft{src 8) & OxOOFFOOFF) 

+(rotate_'eft{src 24) & OxFFOOFFOO); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# g8 = Ox89ABCDEF 

bswap g8, g10 

bswap 

scanbyte, rotate 

5ADH 

# Reverse byte order 

# g10 now OxEFCDAB89 

REG 

This core instruction is not implemented on 80960Cx. Kx and Sx processors. 

Developer's Manual 



6.2.13 call 

Table 6-16. call 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

call 

call 

Call 

targ 

disp 

Calls a new procedure. targ operand specifies the IP of called procedure's first 
instruction. When using the Intel i960 processor assembler, targ must be a label. 

In executing this instruction, the processor performs a local call operation as described 
in Section 7.1.3.1, "Call Operation" on page 7-6. As part of this operation, the processor 
saves the set of local registers associated with the calling procedure and allocates a new 
set of local registers and a new stack frame for the called procedure. Processor then 
goes to the instruction specified with targ and begins execution. 

targ can be no farther than _223 to (223 - 4) bytes from current IP. 

# Wait for any uncompleted instructions to finish. 

impliciCsyncfO; 

temp = (SP + (SALlGN*16 - 1)) & -(SALlGN*16 - 1) 

# Round stack pointer to next boundary. 

# SALlGN=1 on 80303. 

RIP= IP; 

if (register_seCavailable) 

allocate_new_frame( ); 

else 

save_register_set( ); 

allocate_new_frame( ); 

# Save register set in memory at its FP. 

# Local register references now refer to new frame. 

IP[31 :2] = effective_address(targ[31 :2]); 

IP[I:0] = 0; 

PFP = FP; 

FP = temp; 

SP = temp + 64; 

STANDARD 

call xyz 

call 

bal, calls, calix 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# IF = xyz 

09H CTRL 

6-21 



Intel® 80303 I/O Processor 
Instruction Set Reference 

6.2.14 calls 

Table 6-17. calls (Sheet 1 of 2) 

Mnemonic: 

Format: 

Description: 

Action: 

6-22 

calls 

calls 

Call System 

targ 

reg/lit 

Calls a system procedure. The targ operand gives the number of the procedure being 
called. For calls, the processor performs system call operation described in Section 7.5, 
"System Calls" on page 7-15. targ provides an index to a system procedure table entry 
from which the processor gets the called procedure's IP. 

The called procedure can be a local or supervisor procedure, depending on system 
procedure table entry type. If it is a supervisor procedure, the processor switches to 
supervisor mode (if not already in this mode). 

As part of this operation, processor also allocates a new set of local registers and a new 
stack frame for called procedure. If the processor switches to supervisor mode, the new 
stack frame is created on the supervisor stack. 

# Wait for any uncompleted instructions to finish. 

impliciCsyncfO; 

If (targ > 259) 

generate_fault(PROTECTION.LENGTH); 

temp'" geCsys_proc_entry(sptbase + 48 + 4*targ); 

# sptbase is address of supervisor procedure table. 

if (register_seCavailable) 

allocate_new_frame( ); 

else 

save_register_set( ); 

allocate_new_frame( ); 

Save a frame in memory at its FP 

# Local register references now refer to new frame. 

RIP",IP; 

IP[31 :2] '" effective_address(temp[31 :2]); 

IP[1:0] '" 0; 

if ((temp. type "'''' local) II (PC.em "'''' supervisor)) 

{ # Local call or supervisor call from supervisor mode. 

tempa '" (SP + (SALlGN*16 - 1)) & -(SALlGN*16 - 1 ) 

# Round stack pointer to next boundary. 

# SALlGN",1 on 80303. 

temp.RRR '" 0002; 

else # Supervisor call from user mode. 

tempa '" SSP; # Get Supervisor Stack pointer. 

temp.RRR", 0102 1 PC.te; 

PC.em '" supervisor; 

Developer's Manual 



infel· 
Table 6-17. calls (Sheet 2 of 2) 

Intel@ 80303 110 Processor 
Instruction Set Reference 

PC.te = temp.te; 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

PFP = FP; 

PFP.rrr = temp.RRR; 

FP = tempa; 

SP = tempa + 64; 

STANDARD 

PROTECTION.LENGTH 

calls r12 

calls 3 

calls 660H 

bal, call, calix, ret 

Refer to Section 6.1.6, "Faults" on page 6-5. 

Specifies a procedure number greater than 259. 

# IP = value obtained from 

# procedure table for procedure 

# number given in r12. 

# Call procedure 3. 

REG 

6-23 



Intei@ 80303 liD Processor 
Instruction Set Reference 

6.2.15 calix 

Table 6-18. calix 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-24 

calix 

calix 

Call Extended 

targ 

mem 

infel· 

Calls new procedure. targ specifies IP of called procedure's first instruction. 

In executing calix, the processor performs a local call as described in Section 7.1.3.1, 
"Call Operation" on page 7 -6. As part of this operation, the processor allocates a new set 
of local registers and a new stack frame for the called procedure. Processor then goes 
to the instruction specified with larg and begins execution of new procedure. 

calix performs the same operation as call except the target instruction can be farther 
than _223 to (223 - 4) bytes from current IP. 

The targ operand is a memory type, which allows the full range of addressing modes to 
be used to specify the IP of the target instruction. The "IP + displacement" addressing 
mode allows the instruction to be IP-relative. Indirect calls can be performed by placing 
the target address in a register and then using one of the register-indirect addressing 
modes. 

Refer to Chapter 2, "Data Types and Memory Addressing Modes" for more information. 

# Wait for any uncompleted instructions to finish; 

impliciCsyncfO; 

RIP= IP; 

temp = (SP + (SALlGN*16 - 1)) & -(SALlGN*16 - 1) 

# Round stack pointer to next boundary. 

# SALlGN=1 on 80303. 

if (register_seCavailable) 

allocate_new_frame( ); 

else 

save_register_set(); # Save register set in memory at its FP; 

allocate_new_frame( ); 

# Local register references now refer to new frame. 

IP[31 :2] = effective_address(targ[31 :2]); 

IP[1 :0] = 0; 

PFP = FP; 

FP = temp; 

SP = temp + 64; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

callx (g5) # IP = (g5), where the address in g5 

# is the address of the new procedure. 

calix 86H MEM 

bal, call, calls, ret 

Developer's Manual 



int'et 
6.2.16 chkbit 

Table 6-19. chkbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

chkbit 

chkbit 

Check Bit 

bitpos, 

reg/lit 

src2 

reg/lit 

Checks bit in src2 designated by bitpos and sets condition code according to value 
found. If bit is set, condition code is set to 01°2; if bit is clear, condition code is set to 

0°°2· 

if (((src2 & 2**(bitpos % 32)) == 0) 

AC.cc = 0002; 

else 

AC.cc = 0102; 

STANDARD 

chkbit 13, g8 

chkbit 5AEH 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Checks bit 13 in g8 and sets 

# AC.cc according to the result. 

REG 

alterbit, clrbit, notbit, setbit, cmpi, cmpo 

Sets the condition code in the arithmetic controls. 

6-25 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.17 clrbit 

Table 6-20. clrbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-26 

clrbit 

clrbit 

Clear Bit 

bitpos, 

reg/lit 

sre, 

reg/lit 

dst 

reg 

Copies sre value to dst with one bit cleared. bitpos operand specifies bit to be cleared. 

dst = src & -(2**(bitpos%32)); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared. 

clrbit 58CH REG 

alterbit, chkbit, notbit, setbit 

Developer's Manual 



in1et 
6.2.18 

Table 6-21. 

fntel® 80303 110 Processor 
Instruction Set Reference 

cmpdeci, cmpdeco 

cmpdeci, cmpdeco 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

cmpdeci 

cmpdeco 

cmpdec* 

Compare and Decrement Integer 

Compare and Decrement Ordinal 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Compares src2 and src1 values and sets the condition code according to comparison 
results. src2 is then decremented by one and result is stored in dst. The following table 
shows condition code setting for the three possible results of the comparison. 

Condition Code Comparison 

1002 src1 < src2 

0102 src1 = src2 

001 2 src1 > src2 

These instructions are intended for use in ending iterative loops. For cmpdeci, integer 
overflow is ignored to allow looping down through the minimum integer values. 

if(src1 < src2) 

AC.cc = 1002 ; 

else if(src1 == src2) 

AC.cc = 0102; 

else 

AC.cc = 001 2; 

dst = src2 -1; 

STANDARD 

cmpdeci 12, g7, gl 

cmpdeci 

cmpdeco 

5A7H 

5A6H 

# Overflow suppressed for cmpdeci. 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Compares g7 with 12 and sets 

# AC.cc to indicate the result 

# gl = g7 - 1. 

REG 

REG 

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc> 

Sets the condition code in the arithmetic controls. 

Developer's Manual 6-27 



Inte/@ 80303 110 Processor 
Instruction Set Reference in1:et 
6.2.19 cmpinci, cmpinco 

Table 6-22. cmpinci, cmpinco 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-28 

cmpinci 

cmpinco 

cmpinc' 

Compare and Increment Integer 

Compare and Increment Ordinal 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Compares src2 and src1 values and sets the condition code according to comparison 
results. src2 is then incremented by one and result is stored in dst. The following table 
shows condition code settings for the three possible comparison results. 

Condition Code Comparison 

1002 src1 < src2 

01°2 src1 = src2 

001 2 src1 > src2 

These instructions are intended for use in ending iterative loops. For cmpinci, integer 
overflow is ignored to allow looping up through the maximum integer values. 

if (src1 < src2) 

AC.cc = 10°2; 

else if (src1 == src2) 

AC.cc = 01°2; 

else 

AC.cc = 001 2; 

dst= src2 + 1; 

STANDARD 

cmpinco r8, g2, g9 

cmpinci 

cmpinco 

5A5H 

5A4H 

# Overflow suppressed for cmpinci. 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Compares the values in g2 

# and r8 and sets AC.cc to 

# indicate the result: 

# g9 = g2 + 1 

REG 

REG 

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc> 

Sets the condition code in the arithmetic controls. 

Developer's Manual 



intel· 
6.2.20 COMPARE 

Table 6-23. COMPARE 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Notes: 

Developer's Manual 

Inte/@ 80303 liD Processor 
Instruction Set Reference 

cmpi 

cmpib 

cmpis 

cmpo 

cmpob 

cmpos 

cmp' 

Compare Integer 

Compare Integer Byte 

Compare Integer Short 

Compare Ordinal 

Compare Ordinal Byte 

Compare Ordinal Short 

sre1, 

reg/lit 

sre2 

reg/lit 

Compares sre2 and sre1 values and sets condition code according to comparison results. 
The table below shows condition code settings for the three possible comparison results. 

Condition Code Comparison 

1002 sre1 < sre2 

0102 sret = sre2 

001 2 sret > sre2 

cmpi* followed by a branch-if instruction is equivalent to a compare-integer-and-branch 
instruction. The latter method of comparing and branching produces more compact 
code; however, the former method can execute byte and short compares without 
masking. The same is true for cmpo* and the compare-ordinal-and-branch instructions. 

# For cmpo, cmpi, N = 31. 

# For cmpos, cmpis, N = 15 

# For cmpob, cmpib, N = 7. 

if (src1[N:0] < src2[N:0]) 

AC.cc = 1002 ; 

else if (src1 [N:O] == src2[N:0]) 

AC.cc = 0102 ; 

else if (src1 [N:O] > src2[N:0]) 

AC.cc = 001 2 ; 

STANDARD 

cmpo r9, OxlO 

bg xyz 

cmpi 5A1H 

cmpib 595H 

cmpis 597H 

cmpo 5AOH 

cmpob 594H 

cmpos 596H 

Refer to Section 6.1.6, "Faults" on page 6-5. 

11 Compares the value in r9 with 

11 OxlO and sets AC.cc to indicate 

11 the result 

11 Branches to xyz if the value of 

11 r9 was greater than OxlO. 

REG 

REG 

REG 

REG 

REG 

REG 

COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco, concmpi, 
concmpo 

Sets the condition code in the arithmetic controls. 

The core instructions cmpib, cmpis, compob and compos are not implemented on 
80960Cx. Kx and Sx processors. 

6-29 



Intel@ 80303 I/O Processor 
Instruction Set Reference 

6.2.21 COMPARE AND BRANCH<cc> 

Table 6·24. COMPARE AND BRANCH<cc> 

Mnemonic: 

Format: 

Description: 

6-30 

cmpibe 

cmpibne 

cmpibl 

cmpible 

cmpibg 

cmpibge 

cmpibo 

cmpibno 

cmpobe 

cmpobne 

cmpobl 

cmpoble 

cmpobg 

cmpobge 

cmpib* 

cmpob* 

Compare Integer and Branch If Equal 

Compare Integer and Branch If Not Equal 

Compare Integer and Branch If Less 

Compare Integer and Branch If Less Or Equal 

Compare Integer and Branch If Greater 

Compare Integer and Branch If Greater Or Equal 

Compare Integer and Branch If Ordered 

Compare Integer and Branch If Not Ordered 

Compare Ordinal and Branch If Equal 

Compare Ordinal and Branch If Not Equal 

Compare Ordinal and Branch If Less 

Compare Ordinal and Branch If Less Or Equal 

Compare Ordinal and Branch If Greater 

Compare Ordinal and Branch If Greater Or Equal 

src1, src2, targ 

reg/lit reg disp 

src1, src2, targ 

reg/lit reg disp 

Compares src2 and src1 values and sets AC register condition code according to 
comparison results. If logical AND of condition code and mask part of opcode is not 
zero, the processor branches to instruction specified with targ; otherwise, the processor 
goes to next instruction. 

targ can be no farther than _212 to (212 - 4) bytes from current I P. When using the Intel 
i960 processor assembler, targ must be a label that specifies target instruction's IP. 

Functions these instructions perform can be duplicated with a cmpi or cmpo followed by 
a branch-if instruction, as described in Section 6.2.20, "COMPARE" on page 6-29. 

The following table shows the condition-code mask for each instruction. The mask is in 
bits 0-2 of the opcode. 

Instruction Mask Branch Condition 
cmpibno 0002 No Condition 

cmpibg 001 2 src1 > src2 
cmpibe 0102 src1 = src2 

cmplbge 011 2 src1;;:: src2 

cmpibl 1002 src1 < src2 
cmpibne 101 2 src1"# src2 
cmpible 1102 src1:::;; src2 

cmpibo 1112 Any Condition 

cmpobg 001 2 src1 > src2 
cmpobe 0102 src1 = src2 

cmpobge 011 2 src1;;:: src2 
cmpobl 1002 src1 < src2 

cmpobne 101 2 src1"# src2 

cmpoble 1102 src1:::;; src2 
cmpibo always branches, cmplbno never branches. 

Developer's Manual 



intel· 
Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

if(src1 < src2 

AC.cc = 10°2; 

else if(src1 == src2) 

AC.cc = 01°2; 

else 

AC.cc = 001 2; 

if((mask && AC.cc) != 0002) 

IP[31 :2] = efa[31 :2]; 

IP[1 :0] = 0; 

STANDARD 

# Assume g3 < g9 

cmpib1 g3, g9, xyz 

# assume 19 ~ r7 

cmpobge 19, r7, xyz 

cmpibe 3AH 

cmpibne 3DH 

cmpibl 3CH 

cmpible 3EH 

cmpibg 39H 

cmpibge 3BH 

cmpibo 3FH 

cmpibno 38H 

cmpobe 32H 

cmpobne 35H 

cmpobl 34H 

cmpoble 36H 

cmpobg 31H 

cmpobge 33H 

Intel@ 80303 110 Processor 
Instruction Set Reference 

# Resume execution at the new IP. 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# g9 is compared with g3; 

# IF = xyz. 

# 19 is compared with r7i 

# IF = xyz. 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

COBR 

BRANCH<cc>, cmpi, cmpo, bal, balx 

Sets the condition code in the arithmetic controls. 

6-31 



Inte/@ 80303 liD Processor 
Instruction Set Reference in1:et 
6.2.22 concmpi, concmpo 

Table 6-25. 

6-32 

concmpi, concmpo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

concmpi 

concmpo 

concmp* 

Conditional Compare Integer 

Conditional Compare Ordinal 

sret, 

reg/lit 

src2 

reg/lit 

Compares sre2 and sret values if condition code bit 2 is not set. If comparison is 
performed, condition code is set according to comparison results. Otherwise, condition 
codes are not altered. 

These instructions are provided to facilitate bounds checking by means of two-sided 
range comparisons (e.g., is A between Band C?). They are generally used after a 
compare instruction to test whether a value is inclusively between two other values. 

The example below illustrates this application by testing whether g3 value is between g5 
and g6 values, where g5 is assumed to be less than g6. First a comparison (cmpo) of 
g3 and g6 is performed. If g3 is less than or equal to g6 (Le., condition code is either 
0102 or 001 2), a conditional comparison (concmpo) of g3 and g5 is then performed. If 
g3 is greater than or equal to g5 (indicating that g3 is within the bounds of g5 and g6), 
condition code is set to 0102 ; otherwise, it is set to 001 2 . 

if (AC.cc != 1 XX2) 

( if( src1 <= src2) 

AC.cc = 0102 ; 

else 

STANDARD 

cmpo g6, g3 

concmpo g5, g3 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Compares g6 and g3 

# and sets AC.cc. 

# If AC.cc < 1002 (g6 S g3) 

# g5 is compared with g3. 

At this point, depending on the register ordering, the condition code is one of those listed 
in the table below. 

concmpi 

concmpo 

Order 

g5 < g6 < g3 

g5 < g6 = g3 

g5 < g3 < g6 

g5 = g3 < g6 

g3 < g5 < g6 

5A3H 

5A2H 

REG 

REG 

CC 

1002 

0102 

0102 

0102 

001 2 

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND BRANCH<cc> 

Sets the condition code in the arithmetic controls. 

Developer's Manual 



6.2.23 dcctl 

Table 6-26. dcctl 

Mnemonic: 

Format: 

Description: 

Developer's Manual 

dcctl 

src1, 

reg/lit 

Data-cache Control 

src2, 

reg/lit 

src/dst 

reg 

Intel@ 80303 liD Processor 
Instruction Set Reference 

Performs management and control of the data cache including disabling, enabling, 
invalidating, ensuring coherency, getting status, and storing cache contents to memory, 
Operations are indicated by the value of src1, src2 and src/dst are also used by some 
operations. When needed by the operation, the processor orders the effects of the 
operation with previous and subsequent operations to ensure correct behavior. The 
table below shows dcctl operand fields. 

Function src1 src2 src/dst 

Disable D-cache 0 NA NA 

Enable D-cache 1 NA NA 

Global invalidate D-cache 2 NA NA 

Ensure cache coherency1 3 NA NA 

src:NA 
Get D-cache status 4 NA dst: Receives 

D-cache status (Figure 6-1), 

Reserved 5 NA NA 

Destination src: D-cache set #'s to be 
Store D-cache to memory 6 address for stored (Figure 6-1), 

cache sets 

Reserved 7 NA NA 

Quick invalidate 8 1 NA 

Reserved 9 NA NA 

1, Invalidates data cache on 80303. 

6-33 



Intel@ 80303 I/O Processor 
Instruction Set Reference intel. 
Figure 6-1. dcctl sre1 and sre/dst Formats 

src1 Format 
31 870 

31 2827 

31 

src/dst Format for Data Cache Status 
1615 12 11 8 7 

# of Ways-1 

log2 (# of Sets) ~ J 
1092 (Atoms/Line) 

log2 (Bytes/Atom) 

src/dst Format for Store Data Sets to Memory 

1615 

4 3 o 

Enabled = 1 -
Disabled = 0 

o 

Ending Set # Starting Set # 

Table 6-27. dcctl Status Values and D-Cache Parameters 

A6375-01 

Value Value on Intel@ 80303 1/0 Processor 

bytes per atom 4 

atoms per line 4 

number of sets 256 (full) 

number of ways 1 (Direct) 

cache size 4-Kbytes (full) 

Status[o] (enable / disable) o or 1 

Status[1 :3] (reserved) 0 

Status[7:4] (log2(bytes per atom)) 2 

Status[11 :8] (IOQ2(atoms per line)) 2 

Status[15: 12] (l0Q2(number of sets)) 8 (full) 

Status[27:16] (log2(number of ways - 1)) 0 

6-34 Developer's Manual 



Intel® 80303 I/O Processor 
Instruction Set Reference 

Figure 6-2. Store Data Cache to Memory Output Format 

hag (Starting set) 

0 

Valid Bits (Starting set) 

Word 0 

Word 1 

Word 2 
i---

Word 3 

0 

Tag (Starting set + 1) 
--

Valid Bits (Starting set + 1) 

... 

I 
I 
i 
i 

I 
Destination Address (DA) 

DA+4H 

DA+8H 

DA+CH 

DA + 10H 

DA + 14H 

DA + 18H 

DA + 1CH 

DA + 20H 

DA + 24H 

Figure 6-3. D-Cache Tag and Valid Bit Formats 

31 

31 

Developer's Manual 

Intel® 80303 Processor Cache Tag Format (4 Kbyte Cache) 
21 20 

Actual Address Bits 31 :11 

Valid Bits Values 
5 

Valid Bit for Word 3 of current Set and Way ~ 
Valid Bit for Word 2 of current Set and Way 

Valid Bit for Word 1 of current Set and Way -

Valid Bit for Word 0 of current Set and Way -

o 

o 

T ag Valid Bit for current Set and Wa -y 

A6383-01 

A8039-01 

6-35 



Inte/® 80303 liD Processor 
Instruction Set Reference 

Action: 

6-36 

in1:et 
if (PC.em != supervisor) 

generate_fault(TYPE.MISMATCH); 

order_wrt(previous_operations); 

switch (src1 [7:0]) { 

case 0: 

case 1: 

case 2: 

case 3: 

case 4: 

# Disable data cache 

disable_Dcache( ); 

break; 

# Enable data cache. 

enable_Dcache( ); 

break; 

# Global invalidate data cache. 

invalidate_Dcache( ); 

break; 

# Ensure coherency of data cache with memory. 

# Causes data cache to be invalidated on this processor. 

ensure_Dcache_coherency( ); 

break; 

# Get data cache status into src_dst. 

if (Dcache_enabled) src_dst[O] = 1; 

else src_dst[O] = 0; 

# Atom is 4 bytes. 

src_dst[7:4] = log2(bytes per atom); 

# 4 atoms per line. 

src_dst[11 :8] = log2(atoms per line); 

src_dst[15:12] = log2(number of sets); 

src_dst[27:16] = number of ways-1; # in lines per set 

# cache size = ([27:16]+ 1) « ([7:4] + [11 :8] + [15:12]). 

break; 

case 6: # Store data cache sets to memory pointed to by src2. 

start = src_dst[15:0] # 

end = src_dst[31 :16] # 

# 

Starting set number. 

Ending set number. 

(zero-origin) 

if (end >= Dcache_max_sets) end = Dcache_max_sets - 1; 

if (start> end) generate_fault 

(OPERATION.lNVALlD_OPERAND); 

memadr = src2; # Must be word-aligned. 

if (Ox3 & memadr! = 0) 

generate_fault(OPERATION.INVALlD_OPERAND) 

for (set = start; set <= end; set++){ 

# SeCData is described at end of this code flow. 

Developer's Manual 



Faults: 

Example: 

Opeode: 

See Also: 

Notes: 

Developer's Manual 

break; 

default: # Reserved. 

Intel® 80303 liD Processor 
Instruction Set Reference 

memory[memadr) = SeCData[set); 

memadr += 4; 

for (way = 0; way < numb_ways; way++) 

{memory[memadr) = tags[set)[way); 

memadr += 4; 

memory[memadr) = valid_bits[set)[way); 

memadr += 4; 

for (word = 0; word < words_in_line; 
word++) 

( memory[memadr) = 

Dcache_line[set)[way)[word); 

memadr += 4; 

generate_fault(OPERATION.INVALlD_OPERAND); 

break; 

order _ wrt( subsequenC operations); 

STANDARD 

TYPE.MISMATCH 

OPERATION.INVALID _OPERAND 

dcctl gO,gl,g2 

deetl 

sysetl 

65CH 

Refer to Section 6.1.6, "Faults" on page 6-5. 

Attempt to execute instruction while not in 
supervisor mode. 

# gO 6, gl = OxlOOOOOOO, 

# g2 Ox001FOOOl 

# Store the status of D-cache 

# sets l-OxlF to memory starting 

# at OxlOOOOOOO. 

REG 

DCCTL function 6 stores data-cache sets to a target range in external memory. For any 
memory location that is cached and also within the target range for function 6, the 
corresponding word-valid bit is cleared after function 6 completes to ensure data-cache 
coherency. Thus, deetl function 6 can alter the state of the cache after it completes, but 
only the word-valid bits. In all cases, even when the cache sets to store to external 
memory overlap the cache sets that map the target range in external memory, DCCTL 
function 6 always returns the state of the cache as it existed when the DCCTL was 
issued. 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, 80960Hx, 
and 80960Jx processor families only, and mayor may not be implemented on future i960 
processors. 

6-37 



Inte/@ 80303 110 Processor 
Instruction Set Reference 

6.2.24 divi, divo 

Table 6-28. divi, divo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-38 

divi 

divo 

div* 

Divide Integer 

Divide Ordinal 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

inteL 

Divides src2value by src1 value and stores the result in dst. Remainder is discarded. 

For divi, an integer-overflow fault can be signaled. 

divo: 

if (src1 == 0) 

dst = undefined_value; 

generate_fault (ARITHMETIC.ZERO_DIVIDE); 

else 

dst = src2/src 1 ; 

divi: 

if (src1 == 0) 

dst = undefined_value; 

generate_fault (ARITHMETIC.ZERO_DIVIDE);} 

else if ((src2 == -2**31) && (src1 == -1) 

dst = -2**31 

if (AC.om == 1 

AC.of = 1; 

else 

generate_fault (ARITHMETIC. OVERFLOW); 

else 

dst = src2 / src1 ; 

STANDARD 

ARITHMETIC.ZERO_DIVIDE 

ARITHMETIC.OVERFLOW 

diva r3, rS, r13 

divi 74SH 

divo 70SH 

ediv, mulo, muli, ernul 

Refer to Section 6.1.6, "Faults" on page 6-5. 

The src1 operand is O. 

Result too large for destination register (divi only). If 
overflow occurs and AC.om= 1 , fault is suppressed and 
AC.of is set to 1. Result's least significant 32 bits are 
stored in dst. 

# r13 = rS/r3 

REG 

REG 

Developer's Manual 



6.2.25 ediv 

Table 6-29. ediv 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

ediv 

ediv 

Extended Divide 

sret, 

reg/lit 

sre2, 

reg/lit 

dst 

reg 

Divides sre2 by sret and stores result in dst. The sre2 value is a long ordinal (64 bits) 
contained in two adjacent registers. sre2 specifies the lower numbered register which 
contains operand's least significant bits. sre2 must be an even numbered register (Le., 
gO, g2, ... or r4, r6, rB ... ). sret value is a normal ordinal (Le., 32 bits). 

The result consists of a one-word remainder and a one-word quotient. Remainder is 
stored in the register designated by dst; quotient is stored in the next highest numbered 
register. dstmust be an even numbered register (Le., gO, g2, '" r4, r6, rB, ... ). 

This instruction performs ordinal arithmetic. 

If this operation overflows (quotient or remainder do not fit in 32 bits), no fault is raised 
and the result is undefined. 

if((reg_number(src2)%2 != 0) II (reg_number(dst)%2 != 0)) 

dst[O] = undefined_value; 

dst[1] = undefined_value; 

generate_fault (OPERATION. INVALID_OPERAND); 

else if(src1 == 0) 

else 

dst[O] = undefined_value; 

dst[1] = undefined_value; 

generate_fault(ARITHMETIC.DIVIDE_ZERO); 

# Quotient 

dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1 )[31 :0]; 

#Remainder 

dst[O] = (src2 + reg_value(src2[1]) * 2**32 

- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ARITHMETIC.ZERO_DIVIDE The sret operand is O. 

ediv g3, g4, g10 

ediv 671H 

ernul, divi, divo 

# g10 remainder of g4,g5/g3 

# gIl quotient of g4,g5/g3 

REG 

6-39 



Intel@ 80303 I/O Processor 
Instruction Set Reference 

6.2.26 ernul 

Table 6·30. ernul 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-40 

emul 

emul 

Extended Multiply 

src1, src2, 

intel· 

dst 

reg/lit reg/lit reg 

Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal (64 bits) 
stored in two adjacent registers. dst specifies lower numbered register, which receives 
the result's least significant bits. dst must be an even numbered register (i.e., gO, g2, ... 
r4, r6, r8, ... ). 

This instruction performs ordinal arithmetic. 

if(reg_number(dst)%2 != 0) 

else 

dst[O]= undefined_value; 

dst[1] = undefined_value; 

generate_fault(OPERATION.INVALlD_OPERAND); 

dst[O] = (src1 * src2)[31 :0]; 

dst[1] = (src1 * src2)[63:32]; 

STANDARD 

ernul r4, r5, g2 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# g2,g3 = r4 * r5. 

emul 670H REG 

ediv, muli, mulo 

Developer's Manual 



6.2.27 eshro 

Table 6-31. eshro 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

eshro 

eshro 

Extended Shift Right Ordinal 

sret, sre2, dst 

reg/lit reg/lit reg 

Shifts sre2 right by (sret mod 32) places and stores the result in dst. Bits shifted beyond 
the least-significant bit are discarded. 

sre2value is a long ordinal (Le., 64 bits) contained in two adjacent registers. sre2 
operand specifies the lower numbered register, which contains operand's least 
significant bits. sre2 operand must be an even numbered register (i.e., r4, r6, r8, ... or 
gO, g2). 

sre t operand is a single 32-bit register or literal where the lower 5 bits specify the 
number of places that the sre2 operand is to be shifted. 

The least significant 32 bits of the shift operation result are stored in dst. 

if(reg_number(src2)%2 != 0) 

else 

dst[O] = undefined_value; 

dst[1] = undefined_value; 

generate_fault(OPERATION.INVALlD_OPERAND); 

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1 %32))[31 :0]; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# gll = g4,5 shifted right by eshro g3, g4, gll 

# (g3 MOD 32) . 

eshro 5D8H REG 

SHIFT, extract 

This core instruction is not implemented on the 80960Kx and Sx processors. 

6-41 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.28 extract 

Table 6-32. extract 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-42 

extract 

extract 

Extract 

bitpos 

reg/lit 

len 

reg/lit 

int'et 

src/dst 

reg 

Shifts a specified bit field in src/dst right and zero fills bits to left of shifted bit field. bitpos 
value specifies the least significant bit of the bit field to be shifted; len value specifies bit 
field length. 

src_dst = (src_dst» min(bitpos, 32)) 

& - (OxFFFFFFFF « len); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

extract 5, 12, g4 

extract 

modify 

651H 

# g4 = g4 with bits 5 through 

# 16 shifted right. 

REG 

Developer's Manual 



intel· 
6.2.29 FAULT<cc> 

Table 6-33. FAULT<cc> 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

faulte Fault If Equal 

faultne Fault If Not Equal 

faultl Fault If Less 

faultle Fault If Less Or Equal 

faultg Fault If Greater 

faultge Fault If Greater Or Equal 

tau Ito Fault If Ordered 

faultno Fault If Not Ordered 

fault' 

Raises a constraint-range fault if the logical AND of the condition code and opcode's mask 
part is not zero. For taultno (unordered), fault is raised if condition code is equal to 0002' 

faulto and faultno are provided for use by implementations with a floating point coprocessor. 
They are used for compare and branch (or fault) operations involving real numbers. 

The table below shows condition-code mask for each instruction (mask is opcode bits 0-2). 

Instruction 

faultno 
faultg 
faulte 

taultge 
fault! 

faultne 
faultle 
faulto 

For all except faultno: 

if(mask && AC.cc != 0002 

Mask 

0°°2 
001 2 

01°2 
011 2 

10°2 
101 2 

11°2 
1112 

gen erate _tau It( CONSTRAINT. RANG E); 

faultno: 

if(AC.cc == 0002 

generate_fault(CONSTRAINT.RANGE); 

Condition 

Unordered 

Greater 

Equal 

Greater or equal 

Less 
Not equal 

Less or equal 

Ordered 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

CONSTRAINT. RANGE If condition being tested is true. 

# Assume (AC.cc AND 110 2) '" 0002 

faultle # Generate CONSTRAINT RANGE fault 

faulte 1AH CTRL 

faultne 1DH CTRL 

faultl 1CH CTRL 

faultle 1EH CTRL 

faultg 19H CTRL 

faultge 1BH CTRL 

faulto 1FH CTRL 

faultno 18H CTRL 

BRANCH<cc>, TEST <cc> 

6-43 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.30 flushreg 

Table 6-34. flushreg 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

6-44 

flushreg 

flushreg 

Flush Local Registers 

Copies the contents of every cached register set, except the current set, to its 
associated stack frame in memory. The entire register cache is then marked as purged 
(or invalid). On a return to a stack frame for which the local registers are not cached, the 
processor reloads the locals from memory. 

flushreg is provided to allow a debugger or application program to circumvent the 
processor's normal call/return mechanism. For example, a debugger may need to go 
back several frames in the stack on the next return, rather than using the normal return 
mechanism that returns one frame at a time. Since the local registers of an unknown 
number of previous stack frames may be cached, a flush reg must be executed prior to 
modifying the PFP to return to a frame other than the one directly below the current 
frame. 

To reduce interrupt latency, flush reg is abortable. If an interrupt of higher priority than 
the current process is detected while flushreg is executing, flushreg flushes at least 
one frame and aborts. After executing the interrupt handler, the processor returns to the 
flushreg instruction and re-executes it. flushreg does not reflush any frames that were 
flushed before the interrupt occurred. flushreg is not aborted by high priority interrupts if 
tracing is enabled in the PC or if any faults are pending at the time of the interrupt. 

Each local cached register set except the current one is flushed to its associated stack 
frame in memory and marked as purged, meaning that they are reloaded from memory if 
and when they become the current local register set. 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

flushreg 

flushreg 66DH REG 

Developer's Manual 



6.2.31 fmark 

Table 6-35. fmark 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

fmark 

fmark 

Force Mark 

Generates a mark trace event. Causes a mark trace event to be generated, regardless 
of mark trace mode flag setting, providing the trace enable bit, bit ° in the Process 
Controls, is set. 

For more information on trace fault generation, refer to Chapter 10, "Tracing and 
Debugging". 

A mark trace event is generated, independent of the setting of the mark-trace-mode flag. 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TRACE.MARK A TRACE.MARK fault is generated if PC.te=1. 

# Assume PC.te 1 

fmark 

# Mark trace event is generated at this point in the 

# instruction stream. 

fmark 

mark 

66CH REG 

6-45 



Intel® 80303 liD Processor 
Instruction Set Reference 

6.2.32 halt 

Table 6-36. halt 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

Notes: 

6-46 

intel" 

halt 

halt 

Halt CPU 

src1 

reg/lit 

Causes the i960 core processor to enter HALT mode. Entry into Halt mode allows the 
interrupt enable state to be conditionally changed based on the value of src1. 

The processor exits Halt mode on a hardware reset or upon receipt of an interrupt that 
should be delivered based on the current process priority. After executing the interrupt 
that forced the processor out of Halt mode, execution resumes at the instruction 
immediately after the halt instruction. The processor must be in supervisor mode to use 
this instruction. 

srcl Operation 

0 Disable interrupts and halt 

t Enable interrupts and halt 

2 Use current interrupt enable state and halt 

impliciCsyncf; 

if (PC.em != supervisor 

generate_fault(TYPE.MISMATCH); 

switch(src1) { 

case 0: 

case 1: 

case 2: 

default: 

ensure_busjs_quiescient; 

enter_HALT _mode; 

# Disable interrupts. set ICON.gie. 

globaUnterrupCenable = true; 

# Enable interrupts. clear ICON.gie. 

globaUnterrupCenable = false; 

# Use the current interrupt enable state. 

break; 

break; 

break; 

generate_fault(OPERATION.INVALID _OPERAND); 

break; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TYPE.MISMATCH 

halt gO 

halt 

Attempt to execute instruction while not in supervisor 
mode. 

# ICON.gie = 1, gO = 1, Interrupts 
disabled. 

# Enable interrupts and halt. 

65DH REG 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, and 
80960Jx processor families only, and mayor may not be implemented on future i960 
processors. 

Developer's Manual 



inteL 
6.2.33 icctl 

Table 6-37. icctl 

Mnemonic: 

Format: 

Description: 

icctl 

icctl 

Instruction-cache Control 

src1, 

reg/lit 

src2, 

reg/lit 

Intel® 80303 110 Processor 
Instruction Set Reference 

src/dst 

reg 

Performs management and control of the instruction cache including disabling, enabling, 
invalidating, loading and locking, getting status, and storing cache sets to memory. 
Operations are indicated by the value of src1. Some operations also use src2 and 
src/dst. When needed by the operation, the processor orders the effects of the operation 
with previous and subsequent operations to ensure correct behavior. For specific 
function setup, see the following tables and diagrams: 

Table 6-38. icctl Operand Fields 

Function src1 src2 src/dst 

Disable I-cache 0 NA NA 

Enable I-cache 1 NA NA 

Invalidate I-cache 2 NA NA 

Load and lock I-cache 3 
src: Starting address of Number of blocks to lock. 
code to lock. 

Get I-cache status 4 NA dst: Receives status (Figure 6-4). 

Get I-cache locking 5 NA dst: Receives status (Figure 6-4) status 

Store I-cache sets to 
6 

Desti natio n address for src: I-cache set #'s to be stored 
memory cache sets (Figure 6-4). 

Developer's Manual 6-47 



Inte/@ 80303 I/O Processor 
Instruction Set Reference int:et 
Figure 6-4. icctl sTe1 and sTe/dst Formats 

sre1 Format 
31 8 7 0 

sre/dst Format for I-cache Status 
31 28 27 16 15 12 11 8 7 4 3 

#ofWays -1 

1092 (# of Sets) ~ J 
log2 (Atoms/line) 

1092 (Bytes/Atoms) -

Enabled = 1 _ 
Disabled = 0 

sre1/dst Format for I-cache Locking Status 
31 2423 8 7 

# of Blocks that are 
Locked Block Size in Words #ofBlocks 

that Lock 

31 

O Reserved 
. (Initialize to 0) 

sre/dst Format for Store l-cache Sets to Memory 
16 15 

Ending Set # Starting Set # 

o 

o 

o 

A638S-Q1 

6-48 Developer's Manual 



Table 6-39. icctl Status Values and I-Cache Parameters 

Value 

bytes per atom 

atoms per line 

number of sets 

number of ways 

cache size 

Status[O] (enable / disable) 

Status[1 :3] (reserved) 

Status[7:4] (log2(bytes per atom)) 

Status[11 :8] (log2 (atoms per line)) 

Status[15:12] (log2(number of sets)) 

Status[27:16] (number of ways - 1) 

Lock Status[23:8] (block size in words) 

Lock Status[23:8] (block size in words) 

Lock Status[31 :24] (number of blocks that are locked) 

Figure 6-5. Store Instruction Cache to Memory Output Format 

Set_Data [Starting Set] 

Tag (Starting set) 

Valid Bits (Starting set) 

0 Word 0 
>- Word 1 ct! 

~ 
Word 2 

Word 3 

.. . 

Tag (Starting set) 

Valid Bits (Starting set) 

,.... Word 0 
>-
~ Word 1 

Word 2 

Word 3 

Set_Data [Starting Set + 1] 

0 
Tag (Starting set + 1) 

>- Valid Bits (Starting set + 1) ct! 

~ 
.. . 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

Value on 80960JN CPU 

4 

4 

512 

2 

16-Kbytes 

Oor1 

0 

2 

2 

9 

1 

1 

2048 

Oor1 

Destination 
Address (DA) 

DA+4H 

DA+ 8H 

DA+CH 

DA+ 10H 

DA + 14H 

DA + 18H 

... 

DA + 1CH 

DA + 20H 

DA+ 24H 

DA + 28H 

DA+ 2CH 

DA + 30H 

DA+ 34H 

DA+ 38H 

DA+ 3CH 

... 

6-49 



Intel® 80303 /10 Processor 
Instruction Set Reference int:et 
Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats 

Set Data I-cache Values 
31 o 

II 
I-cache Set Data Value ___ ---'f 

o = Way 0 is least recently used 
1 = Way 1 is least recently used 

Intel@80303 Processor Cache Tag Format (16 Kbyte Cache) 
31 21 20 0 

I I Actual Address Bits 31 : 11 I 
Valid Bits Values 

31 5 0 

Valid Bit for Word 3 of current Set and Way ~ J 
Valid Bit for Word 2 of current Set and Way 

Valid Bit for Word 1 of current Set and Way -

Valid Bit for Word 0 of current Set and Way -

Ta Valid Bit for current Set and Wa -9 y 

A8040-01 

6-50 Developer's Manual 



intel· 
Action: if (PC.em != supervisor) 

generate_fault(TYPE.MISMATCH); 

switch (src1 [7:0]) { 

case 0: # Disable instruction cache. 

disablejnstruction_cache( ); 

break; 

case 1: # Enable instruction cache. 

enable_instruction3ache( ); 

break; 

Intel® 80303 110 Processor 
Instruction Set Reference 

case 2: # Globally invalidate instruction cache. 

# Includes locked lines also. 

invalidate_instruction_cache( ); 

unlock_icache( ); 

break; 

case 3: # Load & Lock code into Instruction-Cache 

# src_dst has number of contiguous blocks to lock. 

# src2 has starting address of code to lock. 

# On the i960 RP, src2 is aligned to a quad word boundary 

aligned_addr = src2 & OxFFFFFFFO; 

invalidate(l-cache); unlock(l-cache); 

for (j = 0; j < src_dst; j++) 

{ way = wacassociated_with_block(j); 

start = src2 + j*block_size; 

end = start + block_size; 

for (i = start; i < end; i=i+4) 

{ set = seCassociated_with(i); 

word = word_associated_with(i); 

IcacheJine[set][way][word] = 

memory[i]; 

update_tag_n_valid_bits(set,way,word) 

lock_icache(set, way, word); 

} } break; 

case 4: # Get instruction cache status into src_dst. 

if (Icache_enabled) src_dst[O] = 1 ; 

else src_dst[O] = 0 

# Atom is 4 bytes. 

src_dst[7:4] = log2(bytes per atom); 

# 4 atoms per line. 

src_dst[11 :8] = log2(atoms per line); 

src_dst[15:12] = log2(number of sets); 

src_dst[27:16] = number of ways-1; #in lines per set 

# cache size = ([27:16]+ 1) « ([7:4] + [11 :8] + [15:12]) 

break; 

case 5: # Get instruction cache locking status into dst. 

src_dst[7:0] = number_oCblocks_thaUock; 

src_dst[23:8] = block_size_in_words; 

src_dst[31 :24] = number_oCblocks_that_are_locked; 

break; 

case 6: # Store instr cache sets to memory pointed to by src2. 

start = src_dst[15:0] # Starting set number 

Developer's Manual 6-51 



Intel® 80303 110 Processor 
Instruction Set Reference 

Faults: 

Example: 

Opcode: 
See Also: 
Notes: 

6-52 

end = src_dst[31:16] 

if (end >= Icache_max_sets) 

# Ending set number 

# (zero-origin) 

end = Icache_max_sets - 1; 

if (start> end) 

generate_fault(OPERATION.lNVALID _OPERAND); 

memadr = src2; # Must be word-aligned. 

if(Ox3 & memadr != 0) 

generate_fault(OPERATION . INVALID _ OP ERAND); 

for (set = start; set <= end; set++){ 

# SeeData is described at end of this code flow. 

memory[memadr] = Set_Data[set]; 

memadr += 4; 

for (way = 0; way < numb_ways; way++) 

{memory[memadr] = tags[set][way]; 

memadr+= 4; 

memory[memadr] = valid_bits[set][way]; 

memadr+= 4; 

for (word = 0; word < words_in_line; 

word++) 

} break; 

{memory[memadr] = 

'cache_'ine[set][way][word]; 

memadr += 4; 

default: # Reserved. 

generate_fault(OPERATION.INVALlD_OPERAND); 

break;} 

STANDARD 

TYPE.MISMATCH 

icctl gO,gl,g2 

icctl 

sysctl 
65BH 

Refer to Section 6.1.6, "Faults" on page 6-5. 

Attempt to execute instruction while not in supervisor 
mode. 

# gO = 3, gl=OxlOOOOOOO, g2=1 

# Load and lock 1 block of cache 

# (one way) with 

# location of code at starting 

# OxlOOOOOOO. 

REG 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, 80960Hx, 
and 80960Jx processor families only, and mayor may not be implemented on future 
i960 processors. 

Developer's Manual 



intel· 
6.2.34 intetl 

Table 6-40. intetl 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

Intef® 80303 flO Processor 
Instruction Set Reference 

intctl 

intcti 

Global Enable and Disable of Interrupts 

src1 dst 

reg/lit reg 

Globally enables, disables or returns the current status of interrupts depending on the 
value of src1. Returns the previous interrupt enable state (1 for enabled or 0 for 
disabled) in dst. When the state of the global interrupt enable is changed, the processor 
ensures that the new state is in full effect before the instruction completes. (This 
instruction is implemented by manipulating ICON.gie.) 

sre1 Value Operation 

0 Disables interrupts 

1 Enables interrupts 

2 Returns current interrupt enable status 

if (PC.em '= supervisor) 

generate_fault(TYPE.MISMATCH); 

old_interruPCenable = global_interrupCenable; 

sWitch(src1) { 

case 0: # Disable. Set ICON.gie to one. 

globally_disable_interrupts; 

global_interrupCenable = false; 

ordec wrt( subsequenU nstructions); 

break; 

case 1: # Enable. Clear ICON.gie to zero. 

globally_enable_interrupts; 

globaUnterrupCenable = true; 

order _ wrt( subsequenUnstruction s); 

break; 

case 2: # Return status. Return ICON.gie 

break; 

default: generate_fault(OPERATION.INVALID_OPERAND); 

break; 

if(old_interrupCenable)s 

dst = 1; 

else 

dst = 0; 

Refer to Section 6.1.6, "Faults" on page 6-5. STANDARD 

TYPE.MISMATCH Attempt to execute instruction while not in supervisor 
mode. 

intct1 0, g4 

intctl 

intdis, inten 

658H 

# ICON.gie = 0, interrupts enabled 

# Disable interrupts (ICON.gie = 1) 

# g4 = 1 

REG 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, 80960Hx, 
and 80960Jx processor families only, and mayor may not be implemented on future 
i960 processors. 

6-53 



Intel@ 80303 I/O Processor 
Instruction Set Reference 

6.2.35 intdis 

Table 6-41. intdis 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-54 

intdis 

intdis 

Global Interrupt Disable 

in1:et 

Globally disables interrupts and ensures that the change takes effect before the 
instruction completes. This operation is implemented by setting ICON.gie to one. 

if (PC.em != supervisor) 

generate_fault(TYPE.MISMATCH) ; 

# Implemented by setting ICON.gie to one. 

globally-disable_interrupts; 

interrupCenable = false; 

order_wrt(subsequenUnstructions); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TYPE. MISMATCH 

intdis 

intdis 

intctl, inten 

5B4H 

Attempt to execute instruction while not in supervisor 
mode. 

# ICON.gie = 0, interrupts enabled 

# Disable interrupts. 

# ICON.gie = 1 

REG 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, 80960Hx, 
and 80960Jx processor families only, and mayor may not be implemented on future 
i960 processors. 

Developer's Manual 



int:et 
6.2.36 inten 

Table 6-42. inten 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

Intel® 80303 liD Processor 
Instruction Set Reference 

inten 

inten 

global interrupt enable 

Globally enables interrupts and ensures that the change takes effect before the 
instruction completes. This operation is implemented by clearing ICON.gie to zero. 

if (PC.em != supervisor) 

generate_fault(TYPE.MISMATCH); 

# Implemented by clearing ICON.gie to zero. 

globally_enable_interrupts; 

interrupCenable = true; 

order _ wrt( subsequenU nstructions); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TYPE.MISMATCH 
Attempt to execute instruction while not in supervisor 
mode. 

inten 

inten 

intctl, intdis 

5B5H 

# ICON.gie = 1, interrupts disabled. 

# Enable interrupts. 

# ICON.gie = 0 

REG 

This instruction is implemented on the 80303, 80960RM/RN, 80960RP/RD, 80960Hx, 
and 80960Jx processor families only, and mayor may not be implemented on future 
i960 processors. 

6-55 



Intel@ 80303 flO Processor 
Instruction Set Reference 

6.2.37 LOAD 

intet· 

Table 6-43. LOAD (Sheet 1 of 3) 

Mnemonic: 

Format: 

Description: 

Action: 

6-56 

Id Load 

Idab Load Ordinal Byte 

Idos Load Ordinal Short 

Idib Load Integer Byte 

Idis Load Integer Short 

Idl Load Long 

Idt Load Triple 

Idq Load Quad 

Id* src, dst 

mem reg 

Copies byte or byte string from memory into a register or group of successive registers. 

The src operand specifies the address of first byte to be loaded. The full range of 
addressing modes may be used in specifying src. Refer to Chapter 2, "Data Types and 
Memory Addressing Modes" for more information. 

dst specifies a register or the first (lowest numbered) register of successive registers. 

Idob and Idib load a byte and Idos and Idis load a half word and convert it to a full 
32-bit word. Data being loaded is sign-extended during integer loads and zero-extended 
during ordinal loads. 

Id, Idl, Idt and Idq instructions copy 4, 8,12 and 16 bytes, respectively, from memory 
into successive registers. 

For Idl, dst must specify an even numbered register (Le., gO, g2 ... ). For Idt and Idq, dst 
must specify a register number that is a multiple of four (Le., gO, g4, g8, g12, r4, r8, r12). 
Results are unpredictable if registers are not aligned on the required boundary or if data 
extends beyond register g15 or r15 for Idl, Idt or Idq. 

Id: 

dst = read_memory(effective_address)[31 :0]; 

if((effective_address[1 :0] != 002 ) && unaligned _fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

Idob: 

dst[7:0] = read_memory(effective_address)[7:0); 

dst[31 :8] = OxOOOOOO; 

Idib: 

dst[7:0) = read_memory(effective_address)[7:0); 

if(dst[7) == 0) 

dst[31 :8] = OxOOOOOO; 

else 

dst[31 :8] = OxFFFFFF; 

Idis: 

dst = read_memory(effective_address)[15:0]; 

# Order depends on endianism. 

dst[31 :16] = OxOOOO; 

if((effective_address[O) != O2) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

Developer's Manual 



intel· 
Table 6-43. LOAD (Sheet 2 of 3) 

Idos: 

Intel® 80303 I/O Processor 
Instruction Set Reference 

dst = read_memory(effective_address)[15:0]; 

# Order depends on endianism. 

dst[31 : 16] = OxOOOO; 

if((effective_address[O] != O2) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

Idis: 

dst[15:0] = read_memory(effective_address)[15:0]; 

# Order depends on endianism. 

if( dst[15] == O2 

dst[31 :16] = OxOOOO; 

else 

dst[31 :16] = OxFFFF; 

if((effective_address[O] != O2) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

Idl: 

if((reg_number(dst) % 2) != 0) 

generate_fault(OPERATION.INVALlD_OPERAND); 

# dst not modified. 

else 

Idt: 

dst = read_memory(effective_address)[31 :0]; 

dsC+_1 = read_memory(effective_address_+ _4)[31 :0]; 

if((effective_address[2:0] != 0002) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

if((reg_number(dst) % 4) != 0) 

generate_fault(OPERATION.INVALlD_OPERAND); 

# dst not modified. 

else 

Idq: 

dst = read_memory(effective_adddress)[31 :0]; 

dsC +_1 = read_memory(effective_adddress_ +_ 4)[31 :0]; 

dsC+ _2 = read_memory(effective_adddress_ + _8)[31 :0]; 

if((effective_address[3:0] != 00002) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

if((reg_number(dst) % 4) != 0) 

generate_fault(OPERATION.INVALlD_OPERAND); 

# dst not modified. 

else 

dst = read_memory(effective_adddress)[31 :0]; 

# Order depends on endianism. 

dsC +_1 = read_memory(effective_adddress_ +_4)[31 :0]; 

dsC +_2 = read _ memory( effective _adddress_ +_8)[31 :0]; 

Developer's Manual 6-57 



Intel@ 80303 110 Processor 
Instruction Set Reference infel· 
Table 6-43. LOAD (Sheet 3 of 3) 

Faults: 

Example: 

Opcode: 

See Also: 

6-58 

dsC+_3 = read_memory(effective_adddress_+_12)[31 :0]; 

if((effective_address[3:0) != 00002) && unaligned_fauICenabled) 

generate_fault(OPERATION.UNALIGNED); 

Refer to Section 6.1.6, HFaults" on page 6-5. STANDARD 

OPERATION.UNALIGNED 

OPERATION.INVALlD_OPERAND 

Idl 2450 (r3) , rlO # rlO, rll = r3 + 2450 in 

# memory 

Id 90H MEM 

Idob 80H MEM 

Idos 88H MEM 

Idib COH MEM 

Idis C8H MEM 

Idl 98H MEM 

Idt AOH MEM 

Idq BOH MEM 

MOVE, STORE 

Developer's Manual 



int:et 
6.2.38 Ida 

Table 6-44. Ida 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

Ida 

Ida 

Load Address 

src, 

mem 

efa 

dst 

reg 

Computes the effective address specified with src and stores it in dst. The src address is 
not checked for validity. Any addressing mode may be used to calculate eta. 

An important application of this instruction is to load a constant longer than 5 bits into a 
register. (To load a register with a constant of 5 bits or less, mov can be used with a 
literal as the srcoperand.) 

dst = effective_address; 

STANDARD 

lda 58 (g9), gl 

lda Ox749, r8 

Ida 8CH 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# gl g9+58 

# r8 Ox749 

MEM 

6-59 



Intel® 80303 110 Processor 
Instruction Set Reference 

6.2.39 mark 

Table 6-45. mark 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-60 

mark 

mark 

Mark 

Generates mark trace fault if mark trace mode is enabled. Mark trace mode is enabled if 
the PC register trace enable bit (bit 0) and the TC register mark trace mode bit (bit 7) are 
set. 

If mark trace mode is not enabled, mark behaves like a no-op. 

For more information on trace fault generation, refer to Chapter 10, "Tracing and 
Debugging". 

if(PC.te && TC.mk) 

generate_fault(TRACE.MARK) 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TRACE.MARK Trace fault is generated if PC.te=1 and TC.mk=1. 

# Assume that the mark trace mode is enabled. 
ld xyz, r4 
addi r4, r5, r6 
mark 
# Mark trace event is generated at this point in the 
# instruction stream. 

mark 66BH REG 

fmark, modpc, modtc 

Developer's Manual 



6.2.40 modac 

Table 6-46. modac 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

modac 

modac 

Modify AC 

mask, 

reg/lit 

src, 

reg/lit 

dst 

reg 

Reads and modifies the AC register. src contains the value to be placed in the AC 
register; mask specifies bits that may be changed. Only bits set in mask are modified. 
Once the AC register is changed, its initial state is copied into dst. 

temp = AC; 

AC = (src & mask) I (AC & -mask); 

dst = temp; 

STANDARD 

modac gl, g9, g12 

modac 645H 

mod pc, modtc 

Refer to Section 6.1 .6, "Faults" on page 6-5. 

# AC = g9, masked by gl. 

# g12 = initial value of AC. 

REG 

Sets the condition code in the arithmetic controls. 

6-61 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.41 modi 

Table 6-47. modi 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-62 

modi 

modi 

Modulo Integer 

src1, 

reg/lit 

src2, 

reg/lit 

intel~ 

dst 

reg 

Divides src2 by src1, where both are integers and stores the modulo remainder of the 
result in dst. If the result is nonzero, dsthas the same sign as src1. 

if(src1 == 0) 

dst = undefined_value; 

generate_fault(ARITHMETIC.ZERO_DIVIDE); 

dst = src2 - (src2/src1) • src1 ; 

if((src2 ·src1 < 0) && (dst != 0)) 

dst = dst + src1 ; 

STANDARD See Section 6.1.6, "Faults" on page 6-5. 

ARITHMETIC.lERO_DIVIDE The src1 operand is zero. 

modi r9, r2, r5 # r5 = modulo (r2/r9) 

modi 749H REG 

divi, divo, remi, remo 

modi generates the correct result (0) when computing _231 mod -1, although the 
corresponding 32-bit division does overflow, it does not generate a fault. 

Developer's Manual 



intel· 
6.2.42 modify 

Table 6-48. modify 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

modify 

modify 

Modify 

mask, 

reg/lit 

src, 

reg/lit 

fnte/@ 80303 I/O Processor 
Instruction Set Reference 

src/dst 

reg 

Modifies selected bits in src/dst with bits from src. The mask operand selects the bits to 
be modified: only bits set in the mask operand are modified in src/dst. 

src_dst = (src & mask) I (src_dst & -mask); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

modify g8, g10, r4 # r4 = g10 masked by g8. 

modify 650H REG 

alterbit, extract 

6-63 



Inte/® 80303 I/O Processor 
Instruction Set Reference 

6.2.43 mod pc 

Table 6-49. modpc 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-64 

modpc 

modpc 

Modify Process Controls 

src, 

reg/lit 

mask, 

reg/lit 

in1:et 

srcldst 

reg 

Reads and modifies the PC register as specified with mask and srcldst. srcldst operand 
contains the value to be placed in the PC register; mask operand specifies bits that may 
be changed. Only bits set in the mask are modified. Once the PC register is changed, its 
initial value is copied into srcldst. The srcoperand is a dummy operand that should 
specify a literal or the same register as the mask operand. 

The processor must be in supervisor mode to use this instruction with a non-zero mask 
value. If mask=O, this instruction can be used to read the process controls, without the 
processor being in supervisor mode. 

If the action of this instruction lowers the processor priority, the processor checks the 
interrupt table for pending interrupts. 

When process controls are changed, the processor recognizes the changes 
immediately except in one situation: if modpc is used to change the trace enable bit, the 
processor may not recognize the change before the next four non-branch instructions 
are executed. For more information see Section 3.6.3, "Process Controls Register - PC" 
on page 3-16. 

if(mask != 0) 

else 

if(PC.em != supervisor) 

generate_fault(TYPE.MISMATCH); 

temp = PC; 

PC = (mask & src_dst) I (PC & -mask); 

src_dst = temp; 

if(temp.priority > PC.priority) 

check-pending_interrupts; 

src_dst = PC; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

TYPE. MISMATCH 

modpc g9, g9, g8 # process controls g8 

# masked by g9. 

modpc 655H REG 

modac, modtc 

Since modpc does not switch stacks, it should not be used to switch the mode of 
execution from supervisor to user (the supervisor stack can get corrupted in this case). 
The call and return mechanism should be used instead. 

Developer's Manual 



6.2.44 modtc 

Table 6-50. modtc 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

modtc 

modtc 

Modify Trace Controls 

mask, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Reads and modifies TC register as specified with mask and src2. The src2 operand 
contains the value to be placed in the TC register; mask operand specifies bits that may 
be changed. Only bits set in mask are modified. mask must not enable modification of 
reserved bits. Once the TC register is changed, its initial state is copied into dst. 

The changed trace controls may take effect immediately or may be delayed. If delayed, 
the changed trace controls may not take effect until after the first non-branching 
instruction is fetched from memory or after four non-branching instructions are executed. 

For more information on the trace controls, refer to Chapter 9, "Faults" and Chapter 10, 
"Tracing and Debugging". 

mode_bits = OxOOOOOOFE; 
evenUlags = OXOFOOOOOO 
temp = TC; 
tempa = (evenUlags & TC & mask) I (mode_bits & mask); 
TC = (tempa & src2) I (TC & -tempa); 
dst = temp; 

STANDARD 

modtc g12, g10, g2 

modtc 654H 

modac, modpc 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# trace controls = g10 masked 

# by 912; previous trace 

# controls stored in g2. 

REG 

6-65 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.45 MOVE 

in1:et 

Table 6-51. MOVE (Sheet 1 of 2) 

Mnemonic: 

Format: 

Description: 

Action: 

6-66 

mov Move 

movl Move Long 

movt Move Triple 

movq Move Quad 

mov* sret, dst 

reg/lit reg 

Copies the contents of one or more source registers (specified with sre) to one or more 
destination registers (specified with dst). 

For movl, movt and movq, sret and dst specify the first (lowest numbered) register of 
several successive registers. sret and dstregisters must be even numbered (e.g., gO, 
g2, ... or r4, r6, ... ) for movl and an integral multiple of four (e.g., gO, g4, ... or r4, r8, ... ) 
for movt and movq. 

The moved register values are unpredictable when: 1) the src and dst operands overlap; 
2) registers are not properly aligned. 

mov: 

if(is_reg(src1 )) 

else 

movl: 

dst = src1; 

dst[4:0) = src1; 

dst[31 :5) = 0; 

#src1 is a 5-bit literal. 

if((reg_num(src1 )%2 != 0) II (reg_num(dst)%2 != 0)) 

dst = undefined_value; 

dsC+_1 = undefined_value; 

generate_fault(OPERATION.INVALID_OPERAND); 

else if(is_reg(src1)) 

dst = src1; 

else 

movt: 

dsC+_1 =src1_+_1; 

dst[4:0) = src1; 

dst[31 :5) = 0; 

dsC+_1[31 :0) = 0; 

#src1 is a 5-bit literal. 

if((reg_num(src1 )%4 1= 0) II (reg_num(dst)%4 1= 0)) 

{ dst = undefined_value; 

dsC+_1 = undefined_value; 

Developer's Manual 



infel· 
Intel@ 80303 110 Processor 

Instruction Set Reference 

Table 6-51. MOVE (Sheet 2 of 2) 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

dst_ + _2 = undefined_value; 

generate_fault(OPERATION.INVALlD_OPERAND); 

else if(is_reg(src1)) 

dst = src1; 

else 

movq: 

dsC+_1 =src1_+_1; 

dst_+_2 = src1_+_2; 

dst[4:0] = src1 ; 

dst[31 :5] = 0; 

dsC+_2[31 :0] = 0; 

#src 1 is a 5-bit literal. 

if((reg_num(src1 )%4 != 0) II (reg_num(dst)%4 != 0)) 

dst = undefined_value; 

dsC+_1 = undefined_value; 

dsC+_2 = undefined_value; 

dsC+_3 = undefined_value; 

generate_fault(OPERATION.INVALlD_OPERAND); 

else if(is_reg(src1)) 

dst = src1; 

else 

dst_ + _1 = src1_ +_1; 

dst_ +_2 = src1_ + _2; 

dst_+_3 = src1_+_3; 

dst[4:0] = src1; 

dst[31 :5] = 0; 

dsC+_1[31 :0] = 0; 

dst_ + _2[31 :0] = 0; 

dsC +_3[31 :0] = 0; 

STANDARD 

movt g8, r4 

mov 

movl 

movt 

movq 

LOAD, STORE, Ida 

5CCH 

5DCH 

5ECH 

5FCH 

#src1 is a 5 bit literal. 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# r4, r5, r6 = g8, g9, glO 

REG 

REG 

REG 

REG 

6-67 



Intel@ 80303 //0 Processor 
Instruction Set Reference 

6.2.46 muli, mulo 

Table 6-52. muli, mulo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-68 

muli Multiply Integer 

mulo Multiply Ordinal 

mul* src1, src2, dst 

reg/lit reg/lit reg 

Multiplies the src2 value by the src1 value and stores the result in dst. The binary results 
from these two instructions are identical. The only difference is that muli can signal an 
integer overflow. 

mulo: 

dst = (src2 * src1)[31 :0]; 

muli: 

true_result = (src1 * src2); 

dst = true_result[31 :0]; 

if((true_result> (2**31) - 1) II (true_result < -2**31» # Check for overflow 

if(AC.om == 1) 

AC.of = 1; 

else 

generate_fault(ARITHMETIC.OVERFLOW); 

STANDARD 

ARITHMETIC.OVERFLOW 

muli r3, r4, r9 

muli 741H 

mulo 701H 

emul, ediv, divi, divo 

Refer to Section 6.1.6, "Faults" on page 6-5. 

Result is too large for destination register (muli only). 
If a condition of overflow occurs, the least significant 
32 bits of the result are stored in the destination 
register. 

it r9 = r4 * r3 

REG 

REG 

Developer's Manual 



6.2.47 nand 

Table 6-53. hand 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

nand 

nand 

Nand 

sret, 

reg/lit 

sre2, 

reg/lit 

Intel® 80303 110 Processor 
Instruction Set Reference 

dst 

reg 

Performs a bitwise NAND operation on sre2 and sret values and stores the result in dst. 

dst = -src2 I -src1 ; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

nand g5, r3, r7 

nand 58EH 

# r7 = r3 NAND g5 

REG 

and, and not, nor, not, notand, notor, or, ornot, xnor, xor 

6-69 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.48 nor 

Table 6-54. nor 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-70 

nor 

nor 

Nor 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

intel· 

Performs a bitwise NOR operation on the src2 and src1 values and stores the result in 
dst. 

dst = -src2 & -src1 ; 

STANDARD 

nor g8, 28, rS 

nor 588H 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# rS = 28 NOR g8 

REG 

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor 

Developer's Manual 



6.2.49 

Table 6-55. 

not, notand 

not, notand 

Intel@ 80303 liD Processor 
Instruction Set Reference 

Mnemonic: not Not 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

notand Not And 

not srcl, dst 

reg/lit reg 

notand srcl, dst 

reg/lit reg 

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction) operation on 
the src2 and src1 values and stores the result in dst. 

not: 

dst = -src1; 

notand: 

dst = -src2 & src1; 

STANDARD 

not g2, g4 

notand r5, r6, r7 

not 

notand 

58AH 

584H 

Refer to Section 6.1 .6, "Faults" on page 6-5. 

# g4 = NOT g2 

# r7 = NOT r6 AND r5 

REG 

REG 

and, and not, nand, nor, notor, or, ornot, xnor, xor 

6-71 



Intel® 80303 110 Processor 
Instruction Set Reference 

6.2.50 notbit 

Table 6-56. notbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-72 

notbit 

notbit 

Not Bit 

bitpos, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Copies the src2 value to dst with one bit toggled. The bitpos operand specifies the bit to 
be toggled. 

dst = src2 A 2**(src1%32); 

STANDARD 

notbit r3, r12, r7 

notbit 580H 

alterbit, chkbit, clrbit, setbit 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# r7 = r12 with the bit 

# specified in r3 toggled. 

REG 

Developer's Manual 



int:et 
6.2.51 notor 

Table 6·57. notor 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

notor 

notor 

Not Or 

src1, 

reg/lit 

src2, 

reg/lit 

Intel® 80303 I/O Processor 
Instruction Set Reference 

dst 

reg 

Performs a bitwise NOTOR operation on src2 and src1 values and stores result in dst. 

dst = -src2i src1; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

notor g12, g3, g6 

notor 58DH 

# g6 = NOT g3 OR g12 

REG 

and, and not, nand, nor, not, notand, or, ornot, xnor, xor 

6-73 



Intel® 80303 110 Processor 
Instruction Set Reference 

6.2.52 or,ornot 

Table 6-58. or,ornot 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-74 

or Or 

ornot Or Not 

or src1, src2, dst 

reg/lit reg/lit reg 

ornot src1, src2, dst 

reg/lit reg/lit reg 

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction) operation on the 
src2 and src1 values and stores the result in dst. 

or: 

dst = src2 I src1 ; 

ornot: 

dst = src2 I -src1; 

STANDARD 

or 14, g9, g3 

ornot r3, r8, r11 

or 

ornot 

587H 

S8BH 

Refer to Section 6.1.6, "Faults" on page 6-5. 

41 g3 = g9 OR 14 

41 r11 = r8 OR NOT r3 

REG 

REG 

and, andnol, nand, nor, nOI, noland, nolor, xnor, xor 

Developer's Manual 



int:et 
6.2.53 remi, remo 

Table 6-59. remi, remo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

Intel@ 80303 I/O Processor 
Instruction Set Reference 

remi 

remo 

rem* 

Remainder Integer 

Remainder Ordinal 

sret, 

reg/lit 

sre2, 

reg/lit 

dst 

reg 

Divides sre2 by sret and stores the remainder in dst. The sign of the result (if nonzero) is 
the same as the sign of sre2. 

remi, remo: 

if(src1 == 0) 

generate_fault(ARITHMETIC.ZERO_DIVIDE); 

dst = src2 - (src2/src1 )*src1 ; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ARITHMETIC.ZERO_DIVIDE The sret operand is O. 

remo r4, r5, r6 

remi 748H 

remo 

modi 

708H 

# r6 = r5 rem r4 

REG 

REG 

remi produces the correct result (0) even when computing _231 remi -1, which would 
cause the corresponding division to overflow, although no fault is generated. 

6-75 



Intel® 80303 110 Processor 
Instruction Set Reference 

6.2.54 ret 

Table 6-60. ret (Sheet 1 of 2) 

Mnemonic: 

Format: 

Description: 

Action: 

6-76 

ret 

ret 

Return 

Returns program control to the calling procedure. The current stack frame (i.e., that of 
the called procedure) is deallocated and the FP is changed to point to the calling 
procedure's stack frame. Instruction execution is continued at the instruction pOinted to 
by the RIP in the calling procedure's stack frame, which is the instruction immediately 
following the call instruction. 

As shown in the action statement below, the return-status field and prereturn-trace flag 
determine the action that the processor takes on the return. These fields are contained 
in bits 0 through 3 of register rO of the called procedure's local registers. 

See Chapter 7, "Procedure Calls" for more on ret. 

impliciCsyncfO; 

if(pfp.p && PC.te && TC.p) 

( pfp.p = 0; 

generate_fault(TRACE.PRERETURN); 

switch (return_status_field) 

case 0002 : #Iocal return 

getJP _and_I PO; 

break; 

case 001 2 : #fault return 

tempa = memory(FP-16); 

tempb = memory(FP-12); 

getJP _and_I PO; 

AC = tempb; 

if(execution_mode == supervisor) 

PC = tempa; 

break; 

case 0102 #supervisor return, trace on return disabled 

if(execution_mode != supervisor) 

getJP _and_IPO; 

else 

break; 

PC.te = 0; 

execution_mode = user; 

getJP _and_IPO; 

# supervisor return, trace on return enabled 

if(execution_mode != supervisor) 

geCFP _and_IPO; 

Developer's Manual 



Table 6-60. ret (Sheet 2 of 2) 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

else 

break; 

PC.te = 1; 

execution_mode = user; 

getJP _and_IP(); 

case 1002: 

break; 

#reserved - unpredictable behavior 

case 101i 

break; 

break; 

#reserved - unpredictable behavior 

#reserved - unpredictable behavior 

case 111 2 #interrupt retu rn 

tempa = memory(FP-16); 

tempb = memory(FP-12); 

getJP 3nd_IP(); 

AC = tempb; 

if(execution_mode == supervisor) 

PC = tempa; 

getJP _and_IP() 

check _pending_interrupts(); 

break; 

FP =PFP; 

free(current_register _set); 

if(noCaliocated(FP)) 

retrieve_from_memory(FP); 

IP = RIP; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ret 

ret 

call,calls,callx 

OAH 

# Program control returns to 

# context of calling procedure. 

CTRL 

6-77 



Inte/@ 80303 110 Processor 
Instruction Set Reference 

6.2.55 rotate 

Table 6-61. rotate 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-78 

rotate 

rotate 

Rotate 

len, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Copies src2 to dst and rotates the bits in the resulting dst operand to the left (toward 
higher significance). Bits shifted off left end of word are inserted at right end of word. The 
len operand specifies number of bits that the dstoperand is rotated. 

This instruction can also be used to rotate bits to the right. The number of bits the word 
is to be rotated right should be subtracted from 32 and the result used as the len 
operand. 

src2 is rotated by len mod 32. This value is stored in dst. 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

rotate 13, r8, r12 # r12 = r8 with bits rotated 

# 13 bits to left. 

rotate 59DH REG 

SHIFT, eshro 

Developer's Manual 



6.2.56 scanbit 

Table 6-62. scan bit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

scanbit 

scanbit 

Scan For Bit 

src1, dst 

reg/lit reg 

Searches src1 for a set bit (1 bit). If a set bit is found, the bit number of the most 
significant set bit is stored in the dst and the condition code is set to 0102, If src value is 
zero, all 1 's are stored in dst and condition code is set to 0002' 

dst = OxFFFFFFFF; 

AC.cc = 0002 ; 

for(i = 31; i >= 0; i--) 

if((src1 & 2**i) != 0) 

dst = i; 

AC.cc = 0102 ; 

break; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# assume g8 is nonzero 

scanbit g8, g10 

scanbit 

spanbit, setbit 

641H 

# g10 = bit number of most-

# significant set bit in g8; 

# AC.cc = 010 2 , 

REG 

Sets the condition code in the arithmetic controls. 

6-79 



Intel® 80303 I/O Processor 
Instruction Set Reference 

6.2.57 scanbyte 

Table 6-63. scanbyte 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-80 

scanbyte 

scanbyte 

Scan Byte Equal 

sre1, 

reg/lit 

sre2 

reg/lit 

Performs byte-by-byte comparison of sre1 and sre2 and sets condition code to 0102 if 
any two corresponding bytes are equal. If no corresponding bytes are equal, condition 
code is set to 0002.. 

if((srcl & OxOOOOOOFF) == (src2 & OxOOOOOOFF) 

II (srcl & OxOOOOFFOO) == (src2 & OxOOOOFFOO) 

II (srcl & OxOOFFOOOO) == (src2 & OxOOFFOOOO) 

II (srcl & OxFFOOOOOO) == (src2 & OxFFOOOOOO)) 

AC.cc = 0102 ; 

else 

AC.cc = 0002 ; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# Assume r9 = Ox11AB1100 # AC.cc = 0102 

scanbyte OxOOAB0011, r9 

scanbyte 

bswap 

5ACH REG 

Sets the condition code in the arithmetic controls. 

Developer's Manual 



inteJ~ 

6.2.58 SEL<cc> 

Table 6-64. SEL<cc> 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

Intel@ 80303 liD Processor 
Instruction Set Reference 

selno Select Based on Unordered 

selg Select Based on Greater 

sele Select Based on Equal 

selge Select Based on Greater or Equal 

sell Select Based on Less 

seine Select Based on Not Equal 

selle Select Based on Less or Equal 

selo Select Based on Ordered 

sel* srcl, src2, dst 

reg/lit reg/lit reg 

Selects either srcl or src2to be stored in dst based on the condition code bits in the 
arithmetic controls. If for Unordered the condition code is 0, or if for the other cases the 
logical AND of the condition code and the mask part of the opcode is not zero, then the 
value of src2 is stored in the destination. Else, the value of srcl is stored in the 
destination. 

Instruction 

selno 
selg 
sele 

selge 
sell 

seine 
selle 
selo 

if ((mask & AC.cc) II (mask == AC.cc)) 

dst = src2; 

else 

Mask Condition 
0002 Unordered 
001 2 Greater 
0102 Equal 
011 2 Greater or equal 
1002 Less 
101 2 Not equal 
1102 Less or equal 

1112 Ordered 

dst = src1; 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

# AC.cc = 010 2 

se1e gO,gl,g2 # g2 = gl 

# AC.cc = 001 2 

sell gO,gl,g2 # g2 = gO 

selno 784H REG 

selg 794H REG 

sele 7A4H REG 

selge 7B4H REG 

sell 7C4H REG 

seine 7D4H REG 

selle 7E4H REG 

selo 7F4H REG 

MOVE, TEST <cc>, cmpi, cmpo, SUB<cc> 

These core instructions are not implemented on i960 Cx, Kx and Sx processors. 

6-81 



Inte/® 80303 110 Processor 
Instruction Set Reference 

6.2.59 setbit 

Table 6-65. setbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-82 

setbit 

setbit 

Set Bit 

bitpos, 

reg/lit 

src, 

reg/lit 

intel· 

dst 

reg 

Copies src value to dst with one bit set. bitpos specifies bit to be set. 

dst = src I (2**(bitpos%32)); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

setbit 15, r9, rl # rl = r9 with bit 15 set. 

setbit 583H REG 

alterbit; chkbit, clrbit, notbit 

Developer's Manual 



int:et 
6.2.60 SHIFT 

Intel@ 80303 I/O Processor 
Instruction Set Reference 

Table 6-66. SHIFT (Sheet 1 of 2) 

Mnemonic: 

Format: 

Description: 

Action: 

Developer's Manual 

shlo Shift Left Ordinal 

shro Shift Right Ordinal 

shli Shift Left Integer 

shri Shift Right Integer 

shrdi Shift Right Dividing Integer 

sh* len, src, dst 

reg/lit reg/lit reg 

Shifts src left or right by the number of bits indicated with the len operand and stores the 
result in ds!. Bits shifted beyond register boundary are discarded. For values of len> 32, 
the processor interprets the value as 32. 

shlo shifts zeros in from the least Significant bit; shro shifts zeros in from the most 
significant bit. These instructions are equivalent to mulo and divo by the power of 2, 
respectively. 

shli shifts zeros in from the least significant bit. An overflow fault is generated if the bits 
shifted out are not the same as the most significant bit (bit 31). If overflow occurs, dst 
equals src shifted left as much as possible without overflowing. 

shri performs a conventional arithmetic shift-right operation by shifting in the most 
significant bit (bit 31). When this instruction is used to divide a negative integer operand 
by the power of 2, it produces an incorrect quotient (discarding the bits shifted out has 
the effect of rounding the result toward negative). 

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added 
to the result if the bits shifted out are non-zero and the src operand was negative, which 
produces the correct result for negative operands. 

shli and shrdi are equivalent to muli and divi by the power of 2. 

shlo: 

if(src1 < 32) 

dst = src * (2**len); 

else 

dst = 0; 

shro: 

if(src1 < 32) 

dst = src / (2**len); 

else 

dst = 0; 

shli: 

if(len > 32) 

count = 32; 

else 

count = src1 ; 

temp = src; 

while((temp[31] == temp[30]) && (count> 0)) 

{ temp = (temp * 2)[31 :0]; 

6-83 



Inte/@ 80303 110 Processor 
Instruction Set Reference 

Table 6-66. SHIFT (Sheet 2 of 2) 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-84 

count = count - 1 ; 

dst = temp; 

if(count > 0) 

else 

if(AC.om == 1) 

AC.of = 1; 

generate_fault(ARITHMETIC.OVERFLOW); 

shri: 

if(len > 32) 

count = 32; 

else 

count = srcl; 

temp = src; 

while(count> 0) 

temp = (temp» 1 )[31 :0]; 

temp[31] = src[31]; 

count = count - 1 ; 

dst = temp; 

shrdi: 

dst = src / (2**len); 

STANDARD 

ARITHMETIC.OVERFLOW 

shli 13, g4, r6 

shlo 

shro 

shli 

shri 

shrdi 

59CH 

598H 

59EH 

59BH 

59AH 

divi, muli, rotate, eshro 

Refer to Section 6.1.6, "Faults" on page 6-5. 

For shli. 

# g6 = g4 shifted left 13 bits. 

REG 

REG 

REG 

REG 

REG 

shli and shrdi are identical to multiplications and divisions for all positive and negative 
values of src2. shri is the conventional arithmetic right shift that does not produce a 
correct quotient when src2 is negative. 

Developer's Manual 



6.2.61 spanbit 

Table 6-67. spanbit 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

spanbit 

span bit 

Span Over Bit 

src, 

reg/lit 

dst 

reg 

Searches src value for the most significant clear bit (0 bit). If a most significant 0 bit is 
found, its bit number is stored in dst and condition code is set to 0102 , If src value is all 
1 's, all 1 's are stored in dst and condition code is set to 0002 , 

dst = OxFFFFFFFF; 

AC.cc = 0002; 

for(i = 31; i > = 0; i--) 

if((src1 & 2**i) == 0) 

dst = i; 

STANDARD 

AC.cc = 0102 ; 

break; 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# Assume r2 is not Oxffffffff 

spanbit r2, r9 

spanbit 

scan bit 

640H 

# r9 = bit number of most-

# significant clear bit in r2; 

# AC.cc = 0102 

REG 

Sets the condition code in the arithmetic controls. 

6-85 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.62 STORE 

int:et 

Table 6-68. STORE (Sheet 1 of 4) 

Mnemonic: 

Format: 

Description: 

Action: 

6-86 

st Store 

stob Store Ordinal Byte 

stos Store Ordinal Short 

stib Store Integer Byte 

stis Store Integer Short 

stl Store Long 

sit Store Triple 

stq Store Quad 

st* srct, dst 

reg mem 

Copies a byte or group of bytes from a register or group of registers to memory. src 
specifies a register or the first (lowest numbered) register of successive registers. 

dst specifies the address of the memory location where the byte or first byte or a group 
of bytes is to be stored. The full range of addressing modes may be used in specifying 
dst. Refer to Section 2.3, "Memory Addressing Modes" on page 2-4 for a complete 
discussion. 

stob and stib store a byte and stos and stis store a half word from the src register's low 
order bytes. Data for ordinal stores is truncated to fit the destination width. If the data for 
integer stores cannot be represented correctly in the destination width, an Arithmetic 
Integer Overflow fault is signaled. 

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive registers to 
memory. 

For stl, srcmust specify an even numbered register (e.g., gO, g2, ... or rO, r2, ... ). For sit 
and stq, src must specify a register number that is a multiple of four (e.g., gO, g4, g8, ... 
or rO, r4, r8, ... ). 

st: 

if (iliegaLwrite_to_on_chip_RAM) 

generate_fault(TYPE.MISMATCH); 

else if «effective3ddress[1 :0] != 002) && unaligned_fauicenabled) 

(store_to_memory(effective_address)[31 :0] = src1; 

generate_fault(OPERATION.UNALIGNED);} 

else 

store_to_memory(effective_address)[31 :0] = src1 ; 

stob: 

if (iliegaLwrite_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else 

store_to_memory(effective_address)[7:0] = src1 [7:0]; 

Developer's Manual 



in1et Intel® 80303 I/O Processor 
Instruction Set Reference 

Table 6-68. STORE (Sheet 2 of 4) 

Developer's Manual 

stib: 

if (iliegal_write_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else if ((src1 [31 :8] != 0) && (src1 [31 :8] != OxFFFFFF)) 

store_to_memory(effective_address)[7:0] = src1 [7:0]; 

if (AC.om == 1) 

else 

end if; 

stos: 

AC.of = 1; 

else 

generate_fault(ARITHMETIC.OVERFLOW); 

store_to_memory(effective_address)[7:0] = src1 [7:0]; 

if (iliegal_write_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else if ((effective_address[O] != O2) && unaligned_fault_enabled) 

store_to_memory(effective_address)[15:0] = src1 [15:0]; 

generate_fault(OPERATION.UNALIGNED); 

else 

store_to _memory( effective_address)[ 15:0] = src 1 [15 :0]; 

stis: 

if (iliegal_write_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else if ((effective_address[O] != O2) && unaligned_fauICenabled) 

store_to_memory(effective_address)[15:0] = src1 [15:0]; 

generate_fault(OPERATION.UNALIGNED); 

else if ((src1[31 :16] != 0) && (src1 [31 :16] != OxFFFF)) 

store_to_memory(effective_address)[15:0] = src1 [15:0]; 

if (AC.om == 1) 

AC.of = 1; 

else 

generate_fault(ARITHMETIC.OVERFLOW); 

else 

store_to_memory(effective_address)[15:0] = src1 [15:0]; 

6-87 



Intel@ 80303 110 Processor 
Instruction Set Reference 

Table 6-68. STORE (Sheet 3 of 4) 

stl: 

6-88 

if (iliegaLwrite_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else if (reg_number(src1) % 2 != 0) 

generate_fault(OPERATION.INVALlD_OPERAND); 

else if ((effective_address[2:0] != 0002) && unaligned_fauICenabled) 

store_to_memory(effective_address)[31 :0] = src1; 

store_to_memory(effective_address + 4)[31 :0] = src1_ + _1; 

generate_fault (OPERATION. UNALIGNED); 

else 

store_to_memory(effective_address)[31 :0] = src1 ; 

store_to_memory(effective_address + 4)[31 :0] = src1_+_1; 

stt: 

if (iliegaLwrite_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.M ISMATCH); 

else if (reg_number(src1) % 4 != 0) 

generate_fault(OPERATION.INVALID _OPERAND); 

else if ((effective_address[3:0] != 00002) && unaligned_faulcenabled) 

store_to_memory(effective3ddress)[31 :0] = src1; 

store_to_memory(effective_address + 4)[31 :0] = src1_+_1; 

store_to_memory(effective_address + 8)[31 :0] = src1_ +_2; 

generate_fault (OPERATION. UNALIGNED); 

else 

store_to_memory(effective_address)[31 :0] = src1; 

store_to_memory(effective_address + 4)[31 :0] = src1_+_1; 

store_to_memory(effective_address + 8)[31 :0] = src1_ +_2; 

stq: 

if (iliegaLwrite_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 

else if (reg_number(src1) % 4 != 0) 

generate_fault(OPERATION.INVALID_OPERAND); 

else if ((effective_address[3:01 != 00002) && unaligned_faulcenabled) 

store_to_memory(effective_address)[31 :0] = src1; 

store_to_memory(effective_address + 4)[31 :0] = src1_+_1; 

store_to_memory( effective_address + 8)[31 :0] = src1_ +_2; 

store_to_memory(effective_address + 12)[31 :0] = src1_ +_3; 

generate_fault (OPERATION. UNALIGNED); 

Developer's Manual 



Intel® 80303 //0 Processor 
Instruction Set Reference 

Table 6-68. STORE (Sheet 4 of 4) 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

Developer's Manual 

else 

store_to_memory(effective_address)[31 :0] = srcl; 

store_to_memory(effective_address + 4)[31 :0] = srcl_ + _1; 

store_to_memory(effective_address + 8)[31 :0] = srcl_ +_2; 

store_to_memory(effective_address + 12)[31 :0] = srcl_ +_3; 

STANDARD 

ARITHMETIC.OVERFLOW 

Refer to Section 6.1 .6, "Faults" on page 6-5. 

For slib, stis. 

st g2, 1254 (g6) 

st 

stob 

stos 

slib 

slis 

stl 

stt 

stq 

LOAD, MOVE 

92H 

82H 

8AH 

C2H 

CAH 

9AH 

A2H 

B2H 

# Word beginning at offset 

# 1254 + (g6) = g2. 

MEM 

MEM 

MEM 

MEM 

MEM 

MEM 

MEM 

MEM 

iliegal_write_to_on_chip_RAM is an implementation-dependent mechanism. The 
mapping of register bits to memory(efa) depends on the endianism of the memory 
region and is implementation-dependent. 

6-89 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.63 subc 

Table 6-69. subc 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-90 

subc 

subc 

Subtract Ordinal With Carry 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Subtracts src1 from src2, then subtracts the opposite of condition code bit 1 (used here 
as the carry bit) and stores the result in dst. If the ordinal subtraction results in a carry, 
condition code bit 1 is set to 1, otherwise it is set to o. 

This instruction can also be used for integer subtraction. Here, if integer subtraction 
results in an overflow, condition code bit 0 is set. 

subc does not distinguish between ordinals and integers: it sets condition code bits 0 
and 1 regardless of data type. 

dst = (src2 - src1 -1 + AC.cc[1])[31 :0]; 

AC.cc[2:0] = 0002; 

if((src2[31] == src1[31]) && (src2[31]!= dst[31])) 

AC.cc[O] = 1; # Overflow bit. 

AC.cc[1] = (src2 - src1 -1 + AC.cc[1J)[32]; # Carry out. 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

subc gS, g6, g7 

#g7 = g6 - gS - not (condition code bit 1) 

subc 5B2H REG 

addc, addi, addo, subi, subo 

Sets the condition code in the arithmetic controls. 

Developer's Manual 



in1:et 
6.2.64 SUB<cc> 

Table 6-70. SUB<cc> 

Mnemonic: 

Format: 

Description: 

Action: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

subono Subtract Ordinal if Unordered 

subog Subtract Ordinal if Greater 

suboe Subtract Ordinal if Equal 

suboge Subtract Ordinal if Greater or Equal 

subol Subtract Ordinal if Less 

subone Subtract Ordinal if Not Equal 

subole Subtract Ordinal if Less or Equal 

suboo Subtract Ordinal if Ordered 

subino Subtract Integer if Unordered 

subig Subtract Integer if Greater 

subie Subtract Integer if Equal 

subige Subtract Integer if Greater or Equal 

subil Subtract Integer if Less 

subine Subtract Integer if Not Equal 

subile Subtract Integer if Less or Equal 

subio Subtract Integer if Ordered 

sub* src1, src2, dst 

reg/lit reg/lit reg 

Subtracts src1 from src2 conditionally based on the condition code bits in the arithmetic 
controls. 

If for Unordered the condition code is 0, or if for the other cases the logical AND of the 
condition code and the mask part of the opcode is not zero; then src1 is subtracted from 
src2 and the result stored in the destination 

Instruction Mask 

subono, subino 0002 

subog, subig 001 2 

suboe, subie 0102 

suboge, subige 011 2 

subol, subil 1002 

subone, subine 1012 

subole, subile 1102 

suboo, subio 1112 

SUBO<cc>: 

if ((mask & AC.cc) II (mask == AC.cc)) 

dst = (src2 - src1 )[31 :0]; 

SUBl<cc>: 

if ((mask & AC.cc) II (mask == AC.cc)) 

Condition 

Unordered 

Greater 

Equal 

Greater or equal 

Less 

Not equal 

Less or equal 

Ordered 

6-91 



Intel@ 80303 110 Processor 
Instruction Set Reference 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-92 

true_result = (src2 - src1); 

dst = true_result[31 :0]; 

intet 

if((true_result> (2**31) - 1) II (true_result < -2**31)) 

else 

STANDARD 

ARITHMETIC.OVERFLOW 

suboge gO,gl,g2 

subile gO, gl, g2 

subono 782H 

subog 792H 

suboe 7A2H 

suboge 7B2H 

subol 7C2H 

subone 702H 

subole 7E2H 

suboo 7F2H 

subino 783H 

subig 793H 

subie 7A3H 

subige 7B3H 

subil 7C3H 

sublne 703H 

sublle 7E3H 

subio 7F3H 

if (AC.om == 1) 

AC.of = 1; 

# Check for overflow 

generate_fault (ARITHMETIC.OVERFLOW); 

Refer to Section 6.1.6, "Faults" on page 6-5. 

For the SUBI<cc> class. 

# AC.cc = 01°2 

# g2 = gl - gO 

# AC.cc = 0012 

# g2 not modified 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

REG 

subc, subi, subo, SEL<cc>, TEST <cc> 

These core instructions are not implemented on 80960Cx, Kx and Sx processors. 

Developer's Manual 



in1'et 
6.2.65 subi, subo 

Table 6-71. subi, subo 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

subi 

subo 

sub* 

Subtract Integer 

Subtract Ordinal 

src1, 

reg/lit 

src2, 

reg/lit 

dst 

reg 

Subtracts src1 from src2 and stores the result in dst. The binary results from these two 
instructions are identical. The only difference is that subi can signal an integer overflow. 

subo: 

dst = (src2 - src1 )[31 :0); 

subi: 

true_result = (src2 - src1); 

dst = true_result[31 :0); 

if((true_result> (2**31) - 1) II (true_result < -2**31)) # Check for overflow 

else 

if(AC.om == 1) 

AC.of = 1; 

generate_fault(ARITHMETIC.OVERFLOW); 

STANDARD 

ARITHMETIC.OVERFLOW 

subi g6, g9, g12 

subi 593H 

subo 592H 

addi, addo, subc, addc 

Refer to Section 6.1.6, "Faults" on page 6-5. 

For subi. 

# g12 = g9 - g6 

REG 

REG 

6-93 



Intel@ 80303 110 Processor 
Instruction Set Reference 

6.2.66 syncf 

Table 6-72. syncf 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-94 

syncf 

syncf 

Synchronize Faults 

Waits for all faults to be generated that are associated with any prior uncompleted 
instructions. 

if(AC.nif == 1) 

break; 

else 

waiCuntil_all-previous_instructionsJn_flow_have_completedO; 

# This also means that all of the faults on these instructions have 

been reported. # 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ld xyz, g6 
addi r6, r8, r8 
syncf 
and g6, OxFFFF, g8 
* The syncf instruction ensures that any faults * that may occur during the execution of the * ld and addi instructions occur before the 
* and instruction is executed. 

syncf 66FH REG 

mark, fmark 

Developer's Manual 



intel· 
6.2.67 sysctl 

Table 6-73. sysctl 

Mnemonic: 

Format: 

Description: 

sysctl 

sysctl 

System Control 

src1, 

reg/lit 

src2, 

reg/lit 

Intel@ 80303 liD Processor 
Instruction Set Reference 

src/dst 

reg 

Performs system management and control operations including requesting software 
interrupts, invalidating the instruction cache, configuring the instruction cache, processor 
reinitialization, modifying memory-mapped registers, and acquiring breakpoint resource 
information. 

Processor control function specified by the message field of src1 is executed. The type 
field of src1 is interpreted depending upon the command. Remaining src1 bits are 
reserved. The src2 and src3 operands are also interpreted depending upon the 
command. 

Figure 6-7. Src1 Operand Interpretation 

31 16 15 8 7 a 

Field 2 Message Type Field 1 

A6387-01 

Table 6-74. sysctl Field Definitions 

Src1 Src2 Src/Dst 
Message 

Type Field 1 Field 2 Field 3 Field 4 

Request Interrupt OxO Vector Number N/U N/U N/U 

Invalidate Cache Ox1 N/U N/U N/U N/U 

Configure Instruction 
Cache Mode 

Cache load 
Ox2 Configuration N/U N/U 

Cache 
(Table 6-75) address 

Reinitialize Ox3 N/U N/U Starting IP PRCB Pointer 

Modify 
Memory-Mapped Ox5 N/U Lower 2 bytes of Value to write Mask 
Control Register MMR address 
(MMR) 

Breakpoint Resource 
Ox6 N/U N/U N/U 

Breakpoint info 
Request (Figure 6-8) 

NOTE: Sources and fields that are not used (designated N/U) are ignored. 

Table 6-75. Cache Mode Configuration 

Mode Field Mode Description 80303 

0002 Normal cache enabled 16 Kbyte 

XX1 2 Full cache disabled 16 Kbyte 

1002 or 1102 
Load and lock one way of the 

4 Kbyte 
cache 

Developer's Manual 6-95 



Inte/® 80303 //0 Processor 
Instruction Set Reference 

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request 

31 

Action: 

6-96 

8 7 4 3 o 
v # available # available 

Reserved - Set to zero data instruction 
breakpoints breakpoints 

if (PC.em != supervisor) 

generate_fault(TYPE_MISMATCH); 

order _ wrt(previous _operations); 

OPtype = (srcl & OxffOO) » 8; 

switch (OPtype) { 

case 0: # Signal Software Interrupt 

vectoUo_post = Oxff & srcl; 

priority-to_post = vecloUo...,post » 3; 

pend_ints_addr = interrupUable_base + 4 + priority_to_post; 

pend_priority = memory_read(interrupUable_base,atomic_lock); 

# Priority zero just recans Interrupt Table 

if (priority-to_post != 0) 

{pendjnts = memory-read(pend_ints_addr, non-cacheable) 

pend_ints[7 & vector] = 1 ; 

pend...,priority[priority_to...,post] = 1; 

memory-write(pend_ints_addr, pend_ints); } 

memory-write(interrupUable_base,pend...,priority,atomic_unlock); 

# Update internal software priority with highest priority interrupt 

# from newly adjusted Pending Priorities word. The current internal 

# software priority is always replaced by the new, computed one. (If 

# there is no bit set in pending_priorities word for the current 

# internal one, then it is discarded by this action.) 

if (pend_priority == 0) 

SW_'n,-Priority = 0; 

else {msb_set = scan_bit(pend...,priority); 

SW_'n,-Priority = msb_set; } 

# Make sure change to internal software priority takes full effect 

# before next instruction_ 

order _ wrt( subsequent_operations); 

break; 

case 1: # Global Invalidate Instruction Cache 

invalidate_instruction_cache( ); 

unlock_instruction_cache( ); 

A6388-01 

Developer's Manual 



in1et 

Developer's Manual 

Intel® 80303 I/O Processor 
Instruction Set Reference 

break; 

case 2: # Configure Instruction-Cache 

mode = src1 & Oxff; 

if (mode & 1) disable_instruction_cache; 

else switch (mode) ( 

case 0: 

case 4,6: 

enablejnstruction_cache; break; 

# Load & Lock code into I-Cache 

# All contiguous blocks are locked. 

# Note: block = way on 80303. 

# src2 has starting address of code to lock. 

# src2 is aligned to a quad word 

# boundary 

aligned_addr = src2 & OxfffffffO; 

invalidate( I-cache); u nlock( I-cache); 

for (j = 0; j < numbecoCblocks_thaUock; j++) 

(way = block_associated_with_block(j); 

start = src2 + j*block_size; 

end = start + block_size; 

for (i = start; i < end; i=i+4) 

set = seCassociated_with(i); 

word = word_associated_with(i); 

Icache_line[set][way][word) = 

memory[i); 

update_tag_n_valid_bits(set,way,word) 

lock_icache(set,way,word); 

} } break; 

default: generate_operation_invalid_operand_fault; 

} break; 

case 3: # Software Re-init 

disable( I_cache); invalidate( I_cache); 

disable(D_cache); invalidate(D_cache); 

Process_PRCS(dst); # dst has ptr to new PRCS 

IP = src2; 

break; 

case 5: # Modify One Memory-Mapped Control Register (MMR) 

# src1[31 :16) has lower 2 bytes of MMR address 

# src2 has value to write; dst has mask. 

# After operation, dst has old value of MMR 

6-97 



Inte/® 80303 I/O Processor 
Instruction Set Reference 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-98 

addr = (OxffOO « 16) I (src1 » 16); 

temp = memory[addr]; 

memory[addr] = (src2 & dst) I (temp & -dst); 

dst = temp; 

break; 

case 6: # Breakpoint Resource Request 

acquire_available_instr_breakpoints( ); 

dst[3:0] = number_oCavaiiable_instr_breakpoints; 

acquire_available _ data_ breakpoints( ); 

dst[7:4] = number_oCavaiiable_data_breakpoints; 

dst[31 :8] = 0; 

break; 

default: # Reserved, fault occurs 

generate_fault(OPERATION.lNVALlD_OPERAND); 

break; 

order_wrt(subsequenCoperations); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

ldconst OxlOO,r6 

sysctl r6,r7,r8 

ldconst Ox204, gO 

ldconst Ox20000000,g2 

sysctl gO,g2,g2 

sysctl 

Sdcctl, icctl 

659H 

# Set up message. 

# Invalidate I-cache. 

# r7, r8 are not used. 

# Set up message type and 

# cache configuration mode. 

# Lock half cache. 

# Starting address of code. 

# Execute Load and Lock. 

REG 

This instruction is implemented on 80303, 80960RP/RD, 80960Hx, 80960Jx and 80960Cx 
processors, and mayor may not be implemented on future i960 processors. 

Developer's Manual 



int:et 
6.2.68 TEST<cc> 

Table 6-76. TEST<cc> 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 
Example: 

Opcode: 

See Also: 
See Also: 

Developer's Manual 

Intel® 80303 110 Processor 
Instruction Set Reference 

teste Test For Equal 

testne Test For Not Equal 

testl Test For Less 

testle Test For Less Or Equal 

testg Test For Greater 

testge Test For Greater Or Equal 

testo Test For Ordered 

testno Test For Not Ordered 

test* dstsrc1 

reg 

Stores a true (01 H) in dst if the logical AND of the condition code and opcode mask part 
is not zero. Otherwise, the instruction stores a false (OOH) in dst. For testno 
(Unordered), a true is stored if the condition code is 0002 , otherwise a false is stored. 

The following table shows the condition-code mask for each instruction. The mask is in 
bits 0-2 of the opcode. 

Instruction 

testno 

testg 

teste 
testge 

test! 
testne 

testle 

testo 

For all TEST <cc> except testno: 
if((mask & AC.cc) != 0002) 

src1 = 1; 

else 

src1 = 0; 
testno: 
if(AC.cc == 0002) 

src1 = 1 ; 

else 

src1 = 0; 
STANDARD 
# Assume AC.cc = 1002 
testl g9 

xor gl, 

teste 
testne 
test! 

g7, g4 

22H 

25H 
24H 
testle 
testg 
testge 
testo 
testno 

cmpi, cmpdeci, cmpinci 
cmpi, cmpdeci, cmpinci 

Mask Condition 

0002 Unordered 

001 2 Greater 

0102 Equal 

011 2 Greater or equal 

1002 Less 

101 2 Not equal 

1102 Less or equal 

1112 Ordered 

#true value 

#false value 

#true value 

#false value 

Refer to Section 6.1.6, "Faults" on page 6-5. 

# g9 = Ox00000001 

# g4 = g7 XOR gl 

COBR 

COBR 

COBR 
26H 

21H 

23H 

27H 

20H 

6-99 



Intel@ 80303 I/O Processor 
Instruction Set Reference 

6.2.69 xnor, xor 

Table 6-77. xnor, xor 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-100 

xnor Exclusive Nor 

xor Exclusive Or 

xnor src1, src2, dst 

reg/lit reg/lit reg 

xor src1, src2, dst 

reg/lit reg/lit reg 

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction) operation on the 
src2 and src1 values and stores the result in dst. 

xnor: 

dst = -(src21 src1) I (src2 & src1); 

xor: 

dst = (src21 src1) & -(src2 & src1); 

STANDARD Refer to Section 6.1.6, "Faults" on page 6-5. 

xnor r3, r9, r12 

xor gl, g7, g4 

xnor 589H 

xor 586H 

# r12 = r9 XNOR r3 

# g4 = g7 XOR gl 

REG 

REG 

and, andnot, nand, nor, not, notand, notor, or, ornot 

Developer's Manual 



intel· 
Procedure Calls 7 

This chapter describes mechanisms for making procedure calls, which include branch-and-link 
instructions, built-in call and return mechanism, call instructions (call, calix, calls), return 
instruction (ret) and call actions caused by interrupts and faults. 

The Intel® i960® architecture supports two methods for making procedure calls: 

• A RISe-style branch-and-link: fast call best suited for calling procedures not calling other procedures. 

• An integrated call and return mechanism: a more versatile method for making procedure calls, 
providing a highly efficient means for managing a large number of registers and the program stack. 

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The called 
procedure uses the same set of registers and same stack as the calling procedure. On a call (call, calix, 
calls) or when an interrupt or fault occurs, the processor also branches to a target instruction and saves a 
return IP. Additionally, the processor saves local registers and allocates a new set of local registers and a 
new stack for the called procedure. The saved context is restored when the return instruction (ret) executes. 

In many RISe architectures, a branch-and-link instruction is used as the base instruction for coding 
a procedure call. The user program handles register and stack management for the call. Since i960 
architecture provides a fully integrated call and return mechanism, branch-and-link coding calls are 
not necessary. Additionally, the integrated call is much faster than typical RISe-coded calls. 

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for calling 
leaf procedures. Leaf procedures call no other procedures; they reside at the "leaves" of the call tree. 

In the i960 architecture the integrated call and return mechanism is used in two ways: 

• explicit calls to procedures in a user's program 

• implicit calls to interrupt and fault handlers 

The remainder of this chapter explains the generalized call mechanism used for explicit and 
implicit calls and call and return instructions. 

The processor performs two call actions: 

local When a local call is made, execution mode remains unchanged and the stack frame for 
called procedure is placed on local stack. Local stack refers to stack of calling procedure. 

supervisor When a supervisor call is made from user mode, execution mode is switched to supervisor 
and the stack frame for the called procedure is placed on the supervisor stack. 

When a supervisor call is issued from supervisor mode, the call degenerates into a local 
call (i.e., no mode nor stack switch). 

Explicit procedure calls can be made using several instructions. Local call instructions call and 
calix perform a local call action. With call and calix, the called procedure IP is included as an 
operand in the instruction. 

A system call is made with calls. This instruction is similar to call and calix, except the processor 
obtains the called procedure IP from the system procedure table. A system call, when executed, is 
directed to perform either local or supervisor call action. These calls are referred to as system-local and 
system-supervisor calls, respectively. A system-supervisor call is also referred to as supervisor call. 

Developer's Manual 7-1 



Intel® 80303 110 Processor 
Procedure Calls intel· 
7.1 

7.1.1 

7-2 

Call and Return Mechanism 

At any point in a program, the i960 processor has access to the global registers, a local register set 
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame. 

• When a call executes, a new stack frame is allocated for the called procedure. The processor 
also saves the current local register set, freeing these registers for use by the newly called 
procedure. In this way, every procedure has a unique stack and a unique set of local registers. 

• When a return executes, the current local register set and current stack frame are deallocated. 
The previous local register set and previous stack frame are restored. 

Local Registers and the Procedure Stack 

The processor automatically allocatesa set of 16 local registers for each procedure. Since local registers 
are on-chip, they provide fast access storage for local variables. Of the 16 local registers, 13 are 
available for general use; rO, rl and r2 are reserved for linkage information to tie procedures together. 

The processor does not always clear or initialize the set of local registers assigned to a new 
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does 
not initialize the local register save area in the newly created stack frame for the procedure, its 
contents are equally unpredictable. 

The procedure stack can be located anywhere in the address space and grows from low addresses to 
high addresses. It consists of contiguous frames, one frame for each active procedure. Local 
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure 
stack, available to the user, begins after this save area. 

To increase procedure call speed, the architecture allows an implementation to cache the saved 
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of 
local registers often do not have to be written out to the save area in the stack frame in memory. 
Refer to Section 7.1.4, "Caching Local Register Sets" on page 7-7 and Section 7.1.4.1, "Reserving 
Local Register Sets for High Priority Interrupts" on page 7-8 for more about local registers and 
procedure stack interrelations. 

Developer's Manual 



intel· 
Figure 7-1. 

7.1.2 

7.1.2.1 

Intel® 80303 I/O Processor 
Procedure Calls 

Procedure Stack Structure and Local Registers 

Current Register Set 

gO r--

Frame Point (FP) g15 -

Previous Frame Point (PFP) rO -
Stack Pointer (SP) r1 -
Reserved for RIP r2 

r15 

Procedure Stack 

Return Instruction Pointer (RIP) 

User Allocated Stack 

Padding Area 

Register 
Save Area 

User Allocated Stack 

Unused Stack 

Stack Growth 
(toward higher addresses) 

~ 

Local Register and Stack Management 

rO 

r1 

r2 

r15 

1-

-

1-

-

Previous 
Stack 
Frame 

Current 
Stack 
Frame 

A6389-01 

Global register g15 (FP) and local registers rO (PFP), r1 (SP) and r2 (RIP) contain information to 
link procedures together and link local registers to the procedure stack (Figure 7 -1). The following 
subsections describe this linkage information. 

Frame Pointer 

The frame pointer is the current stack frame's first byte address. It is stored in global register gI5, 
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use 
g15 for general storage. 

Stack frame alignment is defined for each implementation of the i960 processor family, according 
to an SALIGN parameter. In the 80303 I/O processor, stacks are aligned on 16-byte boundaries 
(Figure 7 -1). When the processor needs to create a new frame on a procedure call, it adds a padding 
area to the stack so that the new frame starts on a I6-byte boundary. 

Developer's Manual 7-3 



Intel® 80303 liD Processor 
Procedure Calls 

7.1.2.2 

7.1.2.3 

7.1.2.4 

7.1.2.5 

7-4 

Stack Pointer 

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack 
pointer value is stored in local register rl, the stack pointer (SP) register. The procedure stack 
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor 
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action 
creates the register save area in the stack frame for the local registers. 

The program must modify the SP register value when data is stored or removed from the stack. The 
i960 architecture does not provide an explicit push or pop instruction to perform this action. This is 
typically done by adding the size of all pushes to the stack in one operation. 

Considerations When Pushing Data onto the Stack 

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the 
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt 
record, the SP should be incremented first to allocate the space, and then the data should be written 
to the allocated space: 

mov sp, r4 

addo 24,sp,sp 

st data, (r4) 

st data,20(r4) 

Considerations When Popping Data off the Stack 

For reasons similar to those discussed in the previous section, care should be taken in reading the 
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data 
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be 
read first and then the sp should be decremented: 

subo 24,sp,r4 

Id 20(r4),rn 

Id (r4),rn 

mov r4, sp 

Previous Frame Pointer 

The previous frame pointer is the previous stack frame's first byte address. This address's upper 
28 bits are stored in local register rO, the previous frame pointer (PFP) register. The four 
least-significant bits of the PFP are used to store the return type field. See Figure 7-5 and Table 7-2 
for more information on the PFP and the return-type field. 

Developer's Manual 



intel· 
7.1.2.6 

7.1.2.7 

7.1.3 

Return Type Field 

Intei@ 80303 I/O Processor 
Procedure Calls 

PFP register bits 0 through 3 contain return type information for the calling procedure. When a 
procedure call is made - either explicit or implicit - the processor records the call type in the 
return type field. The processor then uses this information to select the proper return mechanism 
when returning to the calling procedure. The use of this information is described in Section 7.8, 
"Returns" on page 7-19. 

Return Instruction Pointer 

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism 
and must not be used by software; the actual value of RIP is unpredictable at all times. For 
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP. 
An OPERATION.lNVALID_OPERAND fault is generated when attempting to write the RIP. 

The image of the RIP register in the stack frame is used by the processor to determine that frame's 
return instruction address. When a call is made, the processor saves the address of the instruction 
after the call in the image of the RIP register in the calling frame. 

Call and Return Action 

To clarify how procedures are linked and how the local registers and stack are managed, the 
following sections describe a general call and return operation and the operations performed with 
the FP, SP, PFP and RIP registers. 

The events for call and return operations are given in a logical order of operation. The 80303 I/O 
processor can execute independent operations in parallel; therefore, many of these events execute 
simultaneously. For example, to improve performance, the processor often begins prefetching of 
the target instruction for the call or return before the operation is complete. 

Developer's Manual 7-5 



Intel@ 80303 110 Processor 
Procedure Calls 

7.1.3.1 

7.1.3.2 

7-6 

Call Operation 

When a call, calls or calix instruction is executed or an implicit call is triggered: 

1. The processor stores the instruction pointer for the instruction following the call in the current 
stack's RIP register (r2). 

2. The current local registers - including the PFP, SP and RIP registers - are saved, freeing 
these for use by the called procedure. The local registers are saved in the on-chip local register 
cache if space is available. 

3. The frame pointer (gI5) for the calling procedure is stored in the current stack's PFP register 
(rO). The return type field in the PFP register is set according to the call type which is 
perfonned. See Section 7.8, "Returns" on page 7-19. 

4. For a local or system-local call, a new stack frame is allocated by using the old stack pointer 
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a new 
frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new frame's 
register save area. This value is stored in the SP register. 

For an interrupt call from user mode, the current interrupt stack pointer value is used instead of 
the value saved in step 2. 

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP) value 
is used instead of the value saved in step 2. 

5. The instruction pointer is loaded with the address of the first instruction in the called 
procedure. The processor gets the new instruction pointer from the call, the system procedure 
table, the interrupt table or the fault table, depending on the type of call executed. 

Upon completion of these steps, the processor begins executing the called procedure. Sometime 
before a return or nested call, the local register set is bound to the allocated stack frame. 

Return Operation 

A return from any call type - explicit or implicit - is always initiated with a return (ret) 
instruction. On a return, the processor performs these operations: 

1. The current stack frame and local registers are deallocated by loading the FP register with the 
value of the PFP register. 

2. The local registers for the return target procedure are retrieved. The registers are usually read 
from the local register cache; however, in some cases, these registers have been flushed from 
register cache to memory and must be read directly from the save area in the stack frame. 

3. The processor sets the instruction pointer to the value of the RIP register. 

Upon completion of these steps, the processor executes the instruction to which it returns. The 
frames created before the ret instruction was executed is overwritten by later implicit or explicit 
call operations. 

Developer's Manual 



int:et 
7.1.4 Caching Local Register Sets 

Intel@ 80303 /10 Processor 
Procedure Calls 

Actual implementations of the i960 architecture may cache some number of local register sets 
within the processor to improve performance. Local registers are typically saved and restored from 
the local register cache when calls and returns are executed. Other overhead associated with a call 
or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets must at 
times be saved to (and restored from) their associated save areas in the procedure stack. Because these 
operations require access to external memory, this local cache miss affects call and return performance. 

When a call is made and no frames are available in the register cache, a register set in the cache 
must be saved to external memory to make room for the current set of local registers in the cache. 
See Section 4.2, "Local Register Cache" on page 4-2. This action is referred to as a frame spill. The 
oldest set of local registers stored in the cache is spilled to the associated local register save area in 
the procedure stack. Figure 7-2 illustrates a call operation with and without a frame spill. 

Similarly, when a return is made and the local register set for the target procedure is not available in 
the cache, these local registers must be retrieved from the procedure stack in memory. This 
operation is referred to as a frame fill. Figure 7 -3 illustrates return operations with and without 
frame fills. 

The flush reg instruction, described in Section 6.2.30, "t1ushreg" on page 6-44, writes all local 
register sets (except the current one) to their associated stack frames in memory. The register cache is 
then invalidated, meaning that all flushed register sets are restored from their save areas in memory. 

For most programs, the existence of the multiple local register sets and their saving/restoring in the 
stack frames should be transparent. However, there are some special cases: 

• A store to the register save area in memory does not necessarily update a local register set, 
unless user software executes flush reg first. 

• Reading from the register save area in memory does not necessarily return the current value of 
a local register set, unless user software executes flush reg first. 

• There is no mechanism, including flush reg, to access the current local register set with a read 
or write to memory. 

• f1ushreg must be executed sometime before returning from the current frame if the current 
procedure modifies the PFP in register rO, or else the behavior of the ret instruction is not 
predictable. 

• The values of the local registers r2 to r15 in a new frame are undefined. 

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local 
registers. In this way, call history may be traced back through nested procedures. 

Developer's Manual 7-7 



Intel@ 80303 110 Processor 
Procedure Calls 

7.1.4.1 

7-8 

Reserving Local Register Sets for High Priority Interrupts 

To decrease interrupt latency for high priority interrupts, software can limit the number of frames 
available to all remaining code. This includes code that is either in the executing state 
(non-interrupted) or code that is in the interrupted state but has a process priority less than 28. For the 
purposes of discussion here, this remaining code is referred to as non-critical code. Specifying a limit 
for non-critical code ensures that some number of free frames are available to high-priority interrupt 
service routines. Software can specify the limit for non-critical code by writing bits 10 through 8 of 
the register cache configuration word in the PRCB (Table 11-8, "Process Control Block 
Configuration Words" on page 11-16). The value indicates how many frames within the register 
cache may be used by non-critical code before a frame needs to be flushed to external memory. The 
programmed limit is used only when a frame is pushed, which occurs only for an implicit or explicit 
call. 

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserves no frames 
for high-priority interrupts.-Setting the value to 7 causes the register cache to become disabled for 
non-critical code. See Section 11.4.2, "Process Control Block - PRCB" on page 11-15. 

Developer's Manual 



Figure 7-2. Frame Spill 

call with no frame spill 
.......,.. 

Procedure Stack 0 

(0 = Main, successive 
numbers indicate nested 1 

procedure level) 

I 
2 

~ 

3 

4 

5 

6 

7 

• 
Local Register Cache 

(with no sets reserved for 
high priority interrupts) 

I 
Empty 

~ 1 

2 

3 

4 

Current Local 5 

Register Set 6 

I I ~ I 7 I 

o local register set n 
n stored on procedure stack 

f:!1] user stack 
.. space 

Developer's Manual 

0 

1 

2 

3 

4 

5 

6 

7 

8 

+ 

1 

2 

3 

4 

5 

6 

7 

8 

Intel@ 80303 I/O Processor 
Procedure Calls 

call with frame spill 

~ 
0 

( 
1 

2 

3 

4 

\ 5 

Frame 
Spill 6 

7 
,~ 

8 

9 

• 2 

3 

4 

5 

6 

7 

W-ciJ 
o reserved for local 

register set n 

A6391-01 

7-9 



Intel® 80303 110 Processor 
Procedure Calls 

Figure 7-3. Frame Fill 

Procedure Stack 
(0 = Main, successive 

numbers indicate nested 
procedure level) 

int:et 

return with no frame fill return with frame fill 

-.,.. ... -......,.....-:.----, 
o o o 

11.--___ ,.,.,<.2 " 
2 

7-10 

Local Register Cache 
or s reserve (with no set d f 

high priori ty interrupts) 

I 

t Local Curren 
Regis ter Set 

I 

r.:l local register set n 
L!!J stored on procedure stack 

3 

4 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

3 

-~ 

m userstack 
~ space 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

3 

Frame 
Spill 

r.:l reserved for local 
L!!J register set n 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

Empty 

2 

A6392-01 

Developer's Manual 



intel· 
7.1.5 

Intel@ 80303 110 Processor 
Procedure Calls 

Mapping Local Registers to the Procedure Stack 

Each local register set is mapped to a register save area of its respective frame in the procedure 
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to 
memory. This is not a write-through cache. Local register set contents are not saved automatically 
to the save area in memory when the register set is cached. This would cause a significant 
performance loss for call operations. 

Also, no automatic update policy is implemented for the register cache. If the register save area in 
memory for a cached register set is modified, there is no guarantee that the modification is reflected 
when the register set is restored. For a frame spill, the set must be flushed to memory prior to the 
modification for the modification to be valid. 

The flushreg instruction causes the contents of all cached local register sets to be written (flushed) 
to their associated stack frames in memory. The register cache is then invalidated, meaning that all 
flushed register sets are restored from their save areas in memory. The current set of local registers 
is not written to memory. flush reg is commonly used in debuggers or fault handlers to gain access 
to all saved local registers. In this way, call history may be traced back through nested procedures. 
flushreg is also used when implementing task switches in multitasking kernels. The procedure 
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to 
update the current procedure stack and invalidate all entries in the local register cache. Next, the 
procedure stack is changed by directly modifying the FP and SP registers and executing a call 
operation. After flushreg executes, the procedure stack may also be changed by modifying the 
previous frame in memory and executing a return operation. 

When a set of local registers is assigned to a new procedure, the processor mayor may not clear or 
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor 
does not initialize the local register save area in the newly created stack frame for the procedure; its 
contents are equally unpredictable. 

Developer's Manual 7-11 



Inte/@ 80303 110 Processor 
Procedure Calls int'et 
7.2 Modifying the PFP Register 

The FP must not be directly modified by user software or risk corrupting the local registers. 
Instead, implement context switches by modifying the PFP. 

Modification of the PFP is typically for context switches; as part of the switch, the active procedure 
changes the pointer to the frame that it returns to (previous frame pointer - PFP). Great care 
should be taken in modifying the PFP. In the general case, a flushreg must be issued before and 
after modifying the PFP when the local register cache is enabled (Example 7-1). This requirement 
ensures the correct operation of a context switch on all i960 processors in all situations. 

Example 7-1. flushreg 

7-12 

# Do a context switch. 

# Assume PFP Ox5000. 

flushreg # Flush Frames to correct address. 

lda Ox8000,pfp 

flushreg # Ensure that "ret" gets updated PFP. 

ret 

The flush reg before the modification is necessary to ensure that the frame of the previous context 
(mapped to Ox5000 in the example) is "spilled" to the proper external memory address and 
removed from the local register cache. If the flush reg before the modification was omitted, a 
flushreg (or implicit frame spill due to an interrupt) after the modification ofPFP would cause the 
frame of the previous context to be written to the wrong location in external memory. 

The flush reg after the modification ensures that outstanding results are completely written to the PFP 
before a subsequent ret instruction can be executed. Recall that the ret instruction uses the low-order 
4 bits of the PFP to select which ret function to perform. Requiring the flush reg after the PFP 
modification allows an i960 implementation to implement a simple mechanism that quickly selects 
the ret function at the time the ret instruction is issued and provides a faster return operation. 

Note the flush reg after the modification executes very quickly because the local register cache has 
already been flushed by the flush reg before; only synchronization of the PFP is performed. i960 
processor implementations may provide other mechanisms to ensure PFP synchronization in addition 
to flush reg, but a flushreg after a PFP modification is ensured to work on all i960 processors. 

Developer's Manual 



int:et 
7.3 Parameter Passing 

Parameters are passed between procedures in two ways: 

Intel® 80303 110 Processor 
Procedure Calls 

value Parameters are passed directly to the calling procedure as part of the call and return 
mechanism. This is the fastest method of passing parameters. 

reference Parameters are stored in an argument list in memory and a pointer to the argument list 
is passed in a global register. 

When passing parameters by value, the calling procedure stores the parameters to be passed in 
global registers. Since the calling procedure and the called procedure share the global registers, the 
called procedure has direct access to the parameters after the call. 

When a procedure needs to pass more parameters than fits in the global registers, they can be 
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument 
list is placed in a global register. 

The argument list can be stored anywhere in memory; however, a convenient place to store an 
argument list is in the stack for a calling procedure. Space for the argument list is created by 
incrementing the SP register value. If the argument list is stored in the current stack, the argument 
list is automatically deallocated when no longer needed. 

A procedure receives parameters from - and returns values to - other calling procedures. To do 
this successfully and consistently, all procedures must agree on the use of the global registers. 

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using 
the global registers. If the number of parameters exceeds 12, additional parameters are passed 
using the calling procedure's stack; a pointer to the argument list is passed in a pre-designated 
register. Similarly, several registers are set aside for return arguments and a return argument block 
pointer is defined to point to additional parameters. If the number of return arguments exceeds the 
available number of return argument registers, the calling procedure passes a pointer to an 
argument list on its stack where the remaining return values is placed. Example 7-2 illustrates 
parameter passing by value and by reference. 

Local registers are automatically saved when a call is made. Because of the local register cache, 
they are saved quickly and with no external bus traffic. The efficiency of the local register 
mechanism plays an important role in two cases when calls are made: 

1. When a procedure is called which contains other calls, global parameter registers should be 
moved to working local registers at the beginning of the procedure. In this way, parameter 
registers are freed and nested calls are easily managed. The register move instruction 
necessary to perform this action is very fast; the working parameters - now in local registers 
- are saved efficiently when nested calls are made. 

2. When other procedures are nested within an interrupt or fault procedure, the procedure must 
preserve all normally non-preserved parameter registers, such as the global registers. This is 
necessary because the interrupt or fault occurs at any point in the user's program and a return 
from an interrupt or fault must restore the exact processor state. The interrupt or fault 
procedure can move non-preserved global registers to local registers before the nested call. 

Developer's Manual 7-13 



Intel® 80303 liD Processor 
Procedure Calls 

Example 7-2. Parameter Passing Code Example 

7.4 

7-14 

# Example of parameter passing . . 

# C-source: int a, b[lO],-

# a z procl(a,l,'x',&b[O]),-

# assembles to ... 

mov r3,gO # value of a 

ldconst 1,gl # value of 1 

ldconst 120,g2 # value of "XU 

Ida Ox40(fp) ,g3 # reference to b [10] 

call procl -

mov gO,r3 # save return value in "a" 

_proc1 : 

movq gO,r4 # save parameters 

# other instructions in procedure 

# and nested calls 

mov r3,gO # load return parameter 

ret 

Local Calls 

A local call does not cause a stack switch. A local call can be made two ways: 

• with the call and calix instructions; or 

• with a system-local call as described in Section 7.5, "System Calls" on page 7-15. 

call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement 
(i.e., _223 to 223 - 4). calix allows any of the addressing modes to be used to specify the procedure 
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing. 

When a local call is made with a call or calix, the processor performs the same operation as 
described in Section 7.1.3.1, "Call Operation" on page 7-6. The target IP for the call is derived 
from the instruction's operands and the new stack frame is allocated on the current stack. 

Developer's Manual 



intel· 
7.5 

7.5.1 

System Calls 

Inte/@ 80303 I/O Processor 
Procedure Calls 

A system call is a call made via the system procedure table. It can be used to make a system-local 
call - similar to a local call made with call and calix in the sense that there is no stack nor mode 
switch - or a system supervisor call. A system call is initiated with calls, which requires a 
procedure number operand. The procedure number provides an index into the system procedure 
table, where the processor finds IPs for specific procedures. 

Using an i960 processor language assembler, a system procedure is directly declared using the 
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a 
system procedure target is specified. (Refer to current i960 processor assembler documentation for 
a description of the .sysproc and callj directives.) 

The system call mechanism offers two benefits. First, it supports application software portability. 
System calls are commonly used to call kernel services. By calling these services with a procedure 
number rather than a specific IP, applications software does not need to be changed each time the 
implementation of the kernel services is modified. Only the entries in the system procedure table 
must be changed. Second, the ability to switch to a different execution mode and stack with a 
system supervisor call allows kernel procedures and data to be insulated from applications code. 
This benefit is further described in Section 3.7, "User-Supervisor Protection Model" on page 3-18. 

System Procedure Table 

The system procedure table is a data structure for storing IPs to system procedures. These can be 
procedures which software can access through (1) a system call or (2) the fault handling 
mechanism. Using the system procedure table to store IPs for fault handling is described in 
Section 9.1, "Fault Handling Overview" on page 9-1. 

Figure 7 -4 shows the system procedure table structure. It is 1088 bytes in length and can have up to 
260 procedure entries. At initialization, the processor caches a pointer to the system procedure 
table. This pointer is located in the PRCB. The following subsections describe this table's fields. 

Developer's Manual 7-15 



Intef® 80303 liD Processor 
Procedure Calls 

Figure 7-4. System Procedure Table 

7.5.1.1 

Table 7-1. 

31 o r-----------------------------------------------'OOOH 

034H 

~------------------------------------------~ 038H 
r-----------------------------------------------~03CH 

r-______________________________________________ ~438H 

43CH 

31 Procedure Entry 2 1 0 

Address I I I 

Trace 
Control 
Bit 

L Entry Type: 
00 - Local o 

I 
Reserved 
(Initialize to 0) 10 - Supervisor 

Preserved 

A6393-01 

Procedure Entries 

A procedure entry in the system procedure table specifies a procedure's location and type. Each 
entry is one word in length and consists of an address (IP) field and a type field. The address field 
gives the address of the first instruction of the target procedure. Since all instructions are word 
aligned, only the entry's 30 most significant bits are used for the address. The entry's two 
least-significant bits specify entry type. The procedure entry type field indicates call type: 
system-local call or system-supervisor call (Table 7-1). On a system call, the processor performs 
different actions depending on the type of call selected. 

Encodings of Entry Type Field in System Procedure Table 

Encoding Call Type 

00 System-Local Call 

01 Reserved1 

10 System-Supervisor Call 

11 Reserved1 

I. Calls with reserved entry types have unpredictable behavior. 

7 -16 Developer's Manual 



7.5.1.2 

7.5.1.3 

7.5.2 

7.5.3 

Supervisor Stack Pointer 

Intel® 80303 110 Processor 
Procedure Calls 

When a system-supervisor call is made, the processor switches to a new stack called the supervisor 
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the 
supervisor stack pointer field in the system procedure table (Figure 7 -4) during the reset 
initialization sequence and caches the pointer internally. Only the 30 most significant bits of the 
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary to 
determine the first byte of the new stack frame. 

Trace Control Bit 

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC register 
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting 
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use of this bit 
is described in Section 10.1.2, '"PC Trace Enable Bit and Trace-Fault-Pending Flag" on page 10-3. 

System Call to a Local Procedure 

When a calls instruction references an entry in the system procedure table with an entry type of 00, 
the processor executes a system-local call to the selected procedure. The action that the processor 
performs is the same as described in Section 7.1.3.1, "Call Operation" on page 7-6. The call's 
target IP is taken from the system procedure table and the new stack frame is allocated on the 
current stack, and the processor does not switch to supervisor mode. The calls algorithm is 
described in Section 6.2.14, "calls" on page 6-2:2. 

System Call to a Supervisor Procedure 

When a calls instruction references an entry in the system procedure table with an entry type of 
1020 the processor executes a system-supervisor call to the selected procedure. The call's target IP 
is taken from the system procedure table. 

The processor performs the same action as described in Section 7.1.3.1, "Call Operation" on 
page 7-6, with the following exceptions: 

• If the processor is in user mode, it switches to supervisor mode. 

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new 
frame for the called procedure is placed at the location pointed to after alignment of SP. 

• If no mode switch occurs, the new frame is allocated on the current stack. 

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the return 
type field in the PFP register. The trace enable bit is then loaded from the trace control bit in 
the system procedure table. 

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the 
return type field of the pfp register. 

When the processor switches to supervisor mode, it remains in that mode and creates new frames 
on the supervisor stack until a return is performed from the procedure that caused the original 
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and 
calix) or calls can be used to call procedures. 

The user-supervisor protection model and its relationship to the supervisor call are described in 
Section 3.7, "User-Supervisor Protection Model" on page 3-18. 

Developer's Manual 7-17 



Inte/@ 80303 I/O Processor 
Procedure Calls 

7.6 User and Supervisor Stacks 

When using the user-supervisor protection mechanism, the processor maintains separate stacks in 
the address space. One of these stacks - the user stack - is for procedures executed in user mode; 
the other stack - the supervisor stack - is for procedures executed in supervisor mode. 

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for the 
supervisor stack is automatically read from the system procedure table and cached internally 
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor 
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer 
for the user stack is usually created in the initialization code. See Section 11.2, "Intel® 80303 I/O 
Processor Initialization" on page 11 -2. The base stack pointers must be aligned to a 16-byte 
boundary; otherwise, the first frame pointer on the interrupt stack is rounded up to the previous 
16-byte boundary. 

7.7 Interrupt and Fault Calls 

7-18 

The architecture defines two types of implicit calls that make use of the call and return mechanism: 
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt 
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the 
interrupt procedures through the interrupt table. The processor always switches to supervisor mode 
on an interrupt procedure call. 

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or 
supervisor calls. The processor obtains pointers to fault procedures through the fault table and 
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly 
generated stack frame for the call. These records hold the machine state and information to identify 
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored 
from these records. See Chapter 8, "PCI and Peripheral Interrupt Controller Unit" and Chapter 9, 
"Faults" for more information on the structure of the fault and interrupt records. 

Developer's Manual 



7.8 

Figure 7-5. 

Returns 

Intel® 80303 110 Processor 
Procedure Calls 

The return (ret) instruction provides a generalized return mechanism that can be used to return 
from any procedure that was entered by call, calls, calix, an interrupt call or a fault call. When ret 
executes, the processor uses the information from the return-type field in the PFP register 
(Figure 7 -5) to determine the type of return action to take. 

Previous Frame Pointer Register - PFP 

Return Status 
Return-Type Field - PFP.rt 

~~;;~;,;;;;:::PFPP I J j , 
1~11111111111111111111111111:lpIO~I~1 
31 28 24 20 16 12 8 4 0 

A6394-01 

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field 
encoding for the various calls: local, supervisor, interrupt and fault. 

trace-on-return flag (PFP.rtO or bit 0 of the return-type field) stores the trace enable bit value when 
an explicit system-supervisor call is made from user mode. When the call is made, the PC register 
trace enable bit is saved as the trace-on-retum flag and then replaced by the trace controls bit in the 
system procedure table. On a return, the trace enable bit's original value is restored. This 
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs. 
See Section 10.5.2.1, "Tracing on Explicit Call" on page 10-11. 

prereturn-trace f7ag (pFP.p) is used in conjunction with call-trace and prereturn-trace modes. If 
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; 
otherwise it clears the flag. Then, if this flag is set and preretum-trace mode is enabled, a preretum 
trace event is generated on a return, before any actions associated with the return operation are 
performed. See Section 10.2, "Trace Modes" on page 10-3 for a discussion of interaction between 
call-trace and prereturn-trace modes with the preretum-trace flag. 

Developer's Manual 7-19 



Intel@ 80303 liD Processor 
Procedure Calls intel· 
Table 7-2. 

7.9 

7-20 

Encoding of Return Status Field 

Return Status 
Call Type Return Action Field 

Local call 
Local return 000 (systern-Iocal call or system-supervisor (return to local stack; no mode switch) 

call made from supervisor mode) 

001 Fault call Fault return 

Supervisor return 

01 t System-supervisor from user mode (return to user stack, mode .switch to user 
mode, trace enable bit is replaced with the 
t 1 bit stored in the PFP register on the call) 

100 reserved 2 

101 reserved2 

110 reserved2 

111 Interrupt call Interrupt return 

NOTES: 
1. "t" denotes the trace-an-return flag; used only for system supervisor calls which cause a user-to-supervisor 

mode switch. 
2. This return type results in unpredictable behavior. 

Branch-and-Link 

A branch-and-link is executed using either the branch-and-link instruction (bal) or 
branch-and-link-extended instruction (balx). When either instruction executes, the processor 
branches to the first instruction of the called procedure (the target instruction), while saving a 
return IP for the calling procedure in a register. The called procedure uses the same set of local 
registers and stack frame as the calling procedure: 

• For bal, the return IP is automatically saved in global register g14 

• For balx, the return IP instruction is saved in a register specified by one of the instruction's 
operands 

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction, 
where the branch target is the address saved with the branch-and-link instruction. The 
branch-and-link method of making procedure calls is recommended for calls to leaf procedures. 
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a 
call, providing the calling procedure does not require its own registers or stack frame. 

Developer's Manual 



intel· 
PCI and Peripheral Interrupt Controller 
~n 8 

8.1 

Figure 8-1. 

This chapter describes the Intel® 80303 I/O processor Interrupt Controller Unit. The operation 
modes, setup, external memory interface, and implementation of the interrupts are described in this 
chapter. 

Overview 

An interrupt is an event that causes a temporary break in program execution so the processor can 
handle another task. Interrupts commonly request I/O services or synchronize the processor with 
some external hardware activity. For interrupt handler portability across the Intel® i960® processor 
family, the architecture defines a consistent interrupt state and interrupt-priority-handling 
mechanism. To manage and prioritize interrupt requests in parallel with processor execution, the 
80303 I/O processor provides an on-chip programmable interrupt controller. 

When the processor is redirected to service an interrupt, it uses a vector number that accompanies 
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an 
address to the first instruction of the selected interrupt procedure. The processor then makes an 
implicit call to that procedure. 

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processor 
creates a new frame for the interrupt on this stack and a new set of local registers is allocated to the 
interrupt procedure. The interrupted program's current state is also saved. 

Upon return from the interrupt procedure, the processor restores the interrupted program's state, 
switches back to the stack that the processor was using prior to the interrupt and resumes program 
execution. 

Since interrupts are handled based on priority, requested interrupts are often saved for later service 
rather than handled immediately. The mechanism for saving the interrupt is referred to as interrupt 
posting. Interrupt posting is described in Section 8.1.6, "Posting Interrupts" on page 8-7. 

The i960 processor defines two data structures to support interrupt processing: the interrupt table 
(Figure 8-1) and interrupt stack. The interrupt table contains 248 vectors for interrupt handling 
procedures (eight of which are reserved) and an area for posting software requested interrupts. The 
interrupt stack prevents interrupt handling procedures from using the stack in use by the 
application program. It also locates the interrupt stack in a different area of memory than the user 
and supervisor stack (e.g., fast SRAM). 

Interrupt Handling Data Structures 

Interrupt 
Request 

~, .................... , ........................................... " 

Ilntel1)' 803031/) 
lO l Processor 

I 
t. .................................................................... J 

Memory 
Interrupt 

Table 

Interrupt Pointer 

Interrupt 
Handling 

Procedure 

Developer's Manual 8-1 



Intef® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.1.1 

8.1.2 

8-2 

Requests for interrupt service come from many sources and are prioritized such that instruction 
execution is redirected only when an interrupt request is of higher priority than that of the 
executing task. On the 80303 I/O processor, interrupt requests may originate from external 
hardware sources, internal peripherals or software. The 80303 I/O processor contains a number of 
integrated peripherals which may generate interrupts, including: 

• DMA Channel 0 • Primary ATU 

• DMA Channell • Secondary ATU 

• DMA Channel 2 • 12C Bus Interface Unit 

• Primary and Secondary Bridge Interface • Application Accelerator Unit 

• Performance Monitoring Unit • Messaging Unit 

• Timers 0 and 1 • Memory Controller Unit 

The interrupt controller can also intercept external secondary PCI interrupts and forward them to 
the primary PCI interrupt pins. 

Interrupts are detected with the chig's 6-bit interrupt port and with a dedicated Non-Maskable 
Interrupt (NMI#) input in the Intel R i960® core processor interrupt controller. Interrupt requests 
originate from software by the sysctl instruction. To manage and prioritize all possible interrupts, 
the processor integrates an on-chip programmable interrupt controller. 

The Intel® 80303 1/0 Processor Core Interrupt Architecture 

The 80303 I/O processor contains the same core interrupt architecture as many other 80960 family 
members. Some of the core features include the interrupt record and stack, the way interrupts are 
posted, and the way interrupt priorities are resolved. These basic architectural features are detailed 
in the following sections. 

Software Requirements For Interrupt Handling 

To use the processor's interrupt handling facilities, user software must provide the following items 
in memory: 

• Interrupt Table 

• Interrupt Handler Routines 

• Interrupt Stack 

These items are established in memory as part of the initialization procedure. Once these items are 
present in memory and pointers to them have been entered in the appropriate system data 
structures, the processor handles interrupts automatically and independently from software. 

Developer's Manual 



8.1.3 Interrupt Priority 

Intel@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Each procedure pointer's priority is defined by dividing the procedure pointer number by eight. 
Thus, at each priority level, there are eight possible procedure pointers (e.g., procedure pointers 
8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure pointers 
0-7 cannot be used because a priority-O interrupt would never successfully stop execution of a 
program of any priority. In addition, procedure pointers 244-247 and 249-251 are reserved; 
therefore, 241 procedure pointers are available to the user. 

The processor compares its current priority with the interrupt request priority to determine whether 
to service the interrupt immediately or to delay service: 

• The interrupt is serviced immediately when its priority is higher than the priority of the 
program or interrupt the processor is currently executing. 

• The interrupt is posted as a pending interrupt (not serviced immediately) when the interrupt 
priority is less than or equal to the processor's current priority. 

See Section 8.1.4.2, "Pending Interrupts" on page 8-5. When multiple interrupt requests are 
pending at the same priority level, the request with the highest vector number is serviced first. 

Priority -31 interrupts are handled as a special case. Even when the processor is executing at 
priority level 31, apriority -31 interrupt will interrupt the processor. On the 80303 I/O processor, 
the non-maskable interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an 
NMI# handler. 

Developer's Manual 8-3 



Intel® 80303 110 Processor 

intel" PCI and Peripheral Interrupt Controller Unit 

8.1.4 Interrupt Table 

The interrupt table (Figure 8-2) is 1028 bytes in length and can be located anywhere in the 
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer 
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM so the 
processor can read and write the table's pending interrupt section for software or externally 
generated interrupts. 

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are 
described in the subsections that follow. 

Figure 8-2. Interrupt Table 

8-4 

31 

Pending Interrupts 

Vector Entry 

Instruction Pointer 

.. Reserved (Initialize to 0) 

_ Preserved 

8 7 0 

OOOH 

004H 

020H 

024H (Vector 8) 

028H (Vector 9) 

02CH (Vector 10)~ 

3DOH (Vector 243) 
3D4H (Vector 244) 

3EOH (Vector 247) 

3E4H (Vector 248) 

3E8H (Vector 249) 

3FOH (Vector 251) 
3F4H (Vector 252) 

400H (Vector 255) 

21 0 

Ixlxl 
L-.J 
L Entry Type: 

00 Normal 
01 Reserved1 

10 Target in Cache 
11 Reserved 1 

lVector entries with a reserved 
type have unpredictable behavior. 

Developer's Manual 



int'et 
8.1.4.1 

8.1.4.2 

8.1.4.3 

Vector Entries 

Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

A vector entry contains a specific interrupt handler's address. When an interrupt is serviced, the 
processor branches to the address specified by the vector entry. 

Each interrupt is associated with an 8-bit vector number pointing to an interrupt table vector entry. 
The vector entry section contains 248 word-length entries. Vector numbers 8-243 and 252-255, and 
their associated vector entries, are used for conventional interrupts. Vector number 248 is the NMI# 
vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248 and its associated 
vector entry, is for the non-maskable interrupt (NMI#). Vector numbers 0-7 cannot be used. 

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the 
interrupt table NMI# vector automatically read and stored in internal data RAM location OR. The 
NMI# vector is subsequently fetched from internal data RAM to improve interrupt performance. 

The vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must 
begin on a word boundary, so the processor assumes the two least significant vector bits are O. 
Bits 0 and 1 of an entry indicate entry type: type 00 indicates the interrupt procedure should be 
fetched normally; type 10 indicates the interrupt procedure should be fetched from the instruction 
cache locked partition. Refer to Section 8.6.3.2. "Caching IntelTupt Routines and Reserving 
Register Frames" on page 8-31. The other possible entry types are reserved and must not be used. 

Pending Interrupts 

The pending interrupts section comprises the first 36 bytes of thr interrupt table, divided into two 
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35). 

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor 
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority is set 
(e.g., when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set). 

Each of the pending interrupts field 256 bits represent an interrupt procedure pointer. Byte offset 5 
is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the 
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding 
pending interrupt field bit is set. 

This encoding of the pending priority and pending intelTupt fields permits the processor to first 
check for any pending interrupts with a priority greater than the current program and then 
determine the vector number of the interrupt with the highest priority. 

Caching Portions of the Interrupt Table 

The architecture allows all or part of the interrupt table to be cached internally to the processor. The 
purpose of caching these fields is to reduce interrupt latency by allowing the processor to access 
certain interrupt procedure pointers and the pending interrupt information without having to make 
external memory accesses. The 80303 I/O processor caches the following: 

• The value of the highest priority posted in the pending priorities field. 

• A predefined subset of interrupt procedure pointers (entries from the interrupt table). 

• Pending interrupts received from external interrupt pins. 

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt 
table without modifying the same fields in the interrupt table itself. Vector caching is described in 
Section 8.6.3.1, "Vector Caching Option" on page 8-30. 

Developer's Manual 8-5 



Intel@ 80303 liD Processor int:et PCI and Peripheral Interrupt Controller Unit 

8.1.5 Interrupt Stack And Interrupt Record 

The interrupt stack can be located anywhere in the non-reserved address space. The processor 
obtains a pointer to the base of the stack during initialization. As with the local stack, the interrupt 
stack grows from lower addresses to higher addresses. 

The processor saves the state of an interrupted program, or an interrupted interrupt procedure, in a 
record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record. 

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack 

8-6 

Stack 
Growth 

Current Stack 
31 (Local, Supervisor, or Interrupt Stack) 0 

J~-----It t----- C"_F~. -! 
Interrupt Stack 

Padding Area 

(not used Processor • 

NFP-1S]lnterrupt 

NFP-12 Record 

NFP-8 

Saved Process Controls Register 

NFP 

New Frame B Reserved 

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created 
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the 
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame 
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register is located 
at address NFP-16. 

In the 80303 I/O processor, the stack is aligned to a 16-byte boundary. When the processor needs to 
create a new frame on an interrupt call, it adds a padding area to the stack so that the new frame 
starts on a 16-byte boundary. 

Developer's Manual 



int:et 
8.1.6 

8.1.6.1 

Posting Interrupts 

Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Interrupts are posted to the processor by a number of different mechanisms; these are described in 
the following sections. 

• Software interrupts: interrupts posted through the interrupt table, by software running on the 
80303 I/O processor. 

• External Interrupts: interrupts posted through the interrupt table, by an external agent to the 
80303 I/O processor. 

• Hardware interrupts: interrupts posted directly to the 80303 I/O processor through an 
implementation-dependent mechanism that may avoid using the interrupt table. 

Posting Software Interrupts via sysctl 

In the 80303 I/O processor, sysctl is typically used to request an interrupt in a program (see 
Example 8-1). The request interrupt message type (OOH) is selected and the interrupt procedure 
pointer number is specified in the least significant byte of the instruction operand. See i960® RP 
Microprocessor User's Manual (272736), "sysctl" for a complete discussion of sysctl. 

Example 8-1. USing sysctl to Request an Interrupt 

ldconst ox53,g5# Vector number 53H is loaded 

# into byte 0 of register g5 and 

# the value is zero extended into 

# byte 1 of the register 

sysctl g5, g5, g5# Vector number 53H is posted 

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required 
value of OOH in the second byte of a register operand is implied. 

The action of the processor when it executes the sysctl instruction is as follows: 

1. The processor performs an atomic write to the interrupt table and sets the bits in the 
pending-interrupts and pending-priorities fields that correspond to the requested interrupt. 

2. The processor updates the internal software priority register with the highest pending priority 
value from the interrupt table. This may be the priority of the interrupt that was just posted. 

The interrupt controller continuously compares the following three values: software priority 
register, current process priority, priority of the highest pending hardware-generated interrupt. 
When the software priority register value is the highest of the three, the following actions occur: 

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced. 

2. The core checks the interrupt table in memory, determines the vector number of the highest 
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the 
table that correspond to that interrupt. 

3. The core detects the interrupt with the next highest priority that is posted in the interrupt table 
(if any) and writes that value into the software priority register. 

4. The core services the highest priority interrupt. 

When more than one pending interrupt is posted in the interrupt table at the same interrupt priority, 
the core handles the interrupt with the highest vector number first. The software priority register is 
an internal register and, as such, is not visible to the user. The core only updates this register's 
value when sysctl requests an interrupt or when a software-generated interrupt is serviced. 

Developer's Manual 8-7 



Inte/® 80303 110 Processor intel .. PCI and Peripheral Interrupt Controller Unit 

8.1.6.2 

8.1.6.3 

8.1.6.4 

8-8 

Posting Software Interrupts Directly in the Interrupt Table 

In special cases within a single processor system, software can post interrupts by setting the desired 
pending-interrupt and pending-priorities bits directly. Direct posting requires that software ensure 
that no external I/O agents post a pending interrupt simultaneously, and that an interrupt cannot 
occur after one bit is set but before the other is set. Note, however, that this method is not 
recommended. 

Posting External Interrupts 

An external agent posts (sets) a pending interrupt with vector "v" to the i960 processor through the 
interrupt table by executing the following algorithm: 

x = atomic_read(pending_priorities); #synchronize; 
z = read(pending_interrupts[v/8]); 
x[v/8] = 1; 
z[v mod 8] = 1; 
write(pending_interrupts[v/8]) = z; 
atomic_write (pending_priorities) = x; 

Generally, software cannot use this algorithm to post interrupts because there is no way for 
software to have an atomic (locking) read/write span multiple instructions. 

Posting Hardware Interrupts 

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism 
that can bypass the interrupt table. This is often done for performance reasons. 

Developer's Manual 



intal. 
8.1.7 Resolving Interrupt Priority 

Intel@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

The interrupt controller continuously compares the processor's priority to the priorities of the 
highest-posted software interrupt and the highest-pending hardware interrupt. The core is 
interrupted when a pending interrupt request is higher than the processor priority or has a priority 
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interrupt.) 
There are no priority-O interrupts, since such an interrupt would never have a priority higher than 
the current process, and would therefore never be serviced. 

In the event that both hardware and software requested interrupts are posted at the same level, the 
hardware interrupt is delivered first while the software interrupt is left pending. As a result, when 
both priority-31 hardware- and software-requested interrupts are pending, control is first 
transferred to the interrupt handler for the hardware-requested interrupt. However, before the first 
instruction of that handler can be executed, the pending software-requested interrupt is delivered 
and control is transferred to the corresponding interrupt handler. 

Example 8-2. Interrupt Resolution 

/* Model used to resolve interrupts between execution of all macro instructions */ 

if (NMI#_pending && Iblock_NMI) 

block_NMI = true; /* Reset on return from NMI INTR handler */ 

vecnum = 248; vector_addr = 0; 

PC.priority = 31; 

push_local register_set(); 

goto common interrupt_process; 

if (ICON.gie == enabled) ( 

expand_HW_int() ; 

Developer's Manual 

temp = max (HW_Int_Priority, SW_Int_priority); 

if (temp == 31 I I temp> PC.priority) 

{ PC.priority = temp; 

if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int; 

else{ vecnum = HW_vecnum; goto Deliver_HW_Int;} 

8-9 



Intel@ 80303 110 Processor in1:et PCI and Peripheral Interrupt Controller Unit 

8.1.8 Sampling Pending Interrupts in the Interrupt Table 

At specific points, the processor checks the interrupt table for pending interrupts posted. When one 
is found, it is handled as if the interrupt occurred at that time. In the 80303 I/O processor, a check 
for pending interrupts in the interrupt table is made when requesting a software interrupt with 
sysctl or when servicing a software interrupt. 

When a check of the interrupt table is made, the following algorithm is used. Since the pending 
interrupts may be cached, the check for pending interrupt operation may not involve any memory 
operations. The algorithm uses synchronization because there may be multiple agents posting and 
unposting interrupts. In the algorithm, w, x, y, and z are temporary registers within the processor. 

Example 8-3. Pending Interrupts 

8-10 

x = read(pending_priorities); 

if(x == 0) return(); #nothing to do 

y = most_significant_bit(x); 

if(y != 31 && Y <= current_priority) return(); 

x = atomic_read(pending_priorities); #synchronize 

if (x == 0) 

{atomic_write (pending_priorities) = x; 

return();} #interrupts disappeared 

# (e.g., handled by another processor) 

y = most_significant_bit(x); #must be repeated 

if(y != 31 && Y <= current_priority) 

{atomic_write (pending_priorities) = x; 

return();} #interrupt disappeared 

z = read(pending_interrupts[y]); #z is a byte 

if(z == 0) 

{x[y] = 0; #fa1se alarm, should not happen 

atomic_write (pending_priorities) = x; 

return();} 

else 

(w = most_significant_bit[z]; 

z [w] = 0; 

write(pending_interrupts[y]) = z; 

if(z == 0) x[y] = 0; #no others at this level 

atomic_write (pending_priorities) x; 

take_interrupt();} 

The algorithm shows that the pending interrupts are marked by a bit in the Pending Interrupts Field, 
and that the Pending Priorities Field is an optimization. The processor examines Pending Interrupts 
only when the corresponding bit in Pending Priorities is set. 

The steps prior to the atomic read are another optimization. Note that these steps must be 
repeated within the synchronized critical section, since another processor could have spotted and 
accepted the same pending interrupt(s). 

Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for 
pending interrupts. When an extemal agent is posting interrupts to a shared interrupt table, use 
sysctl periodically to guarantee recognition of pending interrupts posted in the table by the 
external agent. 

Developer's Manual 



in1:et 
8.1.9 Saving the Interrupt Mask 

Intel@ 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

Whenever an interrupt requested by the external interrupt pins or by the internal timers is serviced, 
the IMSK register is automatically saved in register r3 of the new local register set allocated for the 
interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks all 
interrupts except NMI#s while an interrupt is serviced. Since the IMSK register value is saved, the 
interrupt procedure can restore the value before returning. The option of clearing the mask is 
selected by programming the ICON register as described in Section 8.7.1. "Interrupt Control 
Register (ICON)"' on page 8-36. 

Priority -31 interrupts are interrupted by other priority -31 interrupts. For level-activated interrupt 
inputs, instructions within the interrupt handler are typically responsible for causing the source to 
deactivate. If these priority-31 interrupts are not masked, another priority-31 interrupt is signaled 
and serviced before the handler can deactivate the source. The first instruction of the interrupt 
handling procedure is never reached, unless the option is selected to clear the IMSK register on 
entry to the interrupt. 

Another use of the mask is to lock out other interrupts when executing time-critical portions of an 
interrupt handling procedure. All hardware-generated interrupts are masked until software 
explicitly replaces the mask. 

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When 
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable 
interrupts after return from the handler. 

Developer's Manual 8-11 



Intel@ 80303 110 Processor in1:et PCI and Peripheral Interrupt Controller Unit 

8.2 The Intel® i960® Core Processor Interrupt Controller 

8-12 

The 80303 I/O processor Interrupt Controller Unit (ICU) provides a flexible, low-latency means 
for requesting and posting interrupts and minimizing the core's interrupt handling burden. Acting 
independently from the core, the interrupt controller posts interrupts requested by hardware and 
software sources and compares the priorities of posted interrupts with the current process priority. 

The interrupt controller provides the following features for managing hardware-requested 
interrupts: 

• Low latency, high throughput handling. 

• Six external interrupt pins. 

• One non-maskable interrupt pin. 

• Two internal timers soUrces. 

• Peripheral interrupt sources. 

Developer's Manual 



int:et 
Figure 8-4. Interrupt Controller 

Interrupt Control 

Register 

Global 
Interrupt 
Disable 

Interrupt Pin to 
Vector Map 

Registers 0 to 2 

Interru t Core 

I nterru t 
Pin Mode 

Interrupt 

Selection 

Interrupt 
Vector Action 

Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Interrupt Detection 
Block 

Ack 

r~ · _'--'------, BIO.-Ck _.1-..1......-----, 

_ Process Priority Software Interrupt 
(in PC) Priority Register 

(Internal) 

Core accepts interrupt when: Core: 
• Processor not stopped • Calls interrupt handlers 
• Not executing a fault-call or • Posts software interrupts 
• Interrupt-call action and • Checks for software interrupts 
• Between instruction or • Handles all interrupt table access 
• At a resumption point 

The user program interfaces to the interrupt controller with ten memory-mapped control registers. 
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAPO-IMAP2) 
provide configuration information. The Interrupt Pending Register (lPND) posts 
hardware-requested interrupts. The Interrupt Mask Register (lMSK) selectively masks 
hardware-requested interrupts. 

Developer's Manual 8-13 



Intel@ 80303 I/O Processor 

intel· PCI and Peripheral Interrupt Controller Unit 

8.2.1 Interrupt Controller Dedicated Mode 

The 80303 I/O processor interrupt controller external pins are set up for dedicated mode operation, 
where each external interrupt pin is assigned a vector number. Vector numbers that may be 
assigned to a pin are those with the encoding PPPP 00102 (Figure 8-5), where bits marked P are 
programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable bits 
and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered 
priority. (Vector 0000 00102 is undefined; it has a priority of 0.) 

Interrupts are posted in the interrupt pending (IPND) register. Single bits in the IPND register 
correspond to each of the eight dedicated external interrupt inputs, or the two timer inputs to the 
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts. 
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. This locks 
out other hardware-generated interrupts until the mask is restored. See Section 8.7, "Register 
Definitions" on page 8-35 for a further description of the IMSK, IPND and IMAP registers. 

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned vectors. 

Figure 8-5. Interrupt Pin Vector Assignment 

8-14 

• • • 
XINT5# 

TINTO 

TINT1 

IMAP Control Registers 

pppp 

pppp 

pppp 

• 
• 
• 

pppp 

pppp 

pppp 

Hard-wired Vector Offset 

00102 

00102 

00102 

· • 
• 

00102 

00102 

001~ 

Highest Selected 
Vector Number 

Developer's Manual 



int:et 
8.2.2 Interrupt Detection 

Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

The XINT5:0# pins and the NMI# pin use level-low detection. All of the interrupt pins use fast 
sampling. 

For low-level detection, the pin's bit in the IPND register remains set as long as the pin is asserted 
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. However, if 
the active level on the pin is not removed at this time, the bit in the IPND register remains set until 
the source of the interrupt is deactivated and the IPND bit is explicitly cleared by software. 
Software may attempt to clear an interrupt pending bit before the active level on the corresponding 
pin is removed. In this case, the active level on the interrupt pin causes the pending bit to remain 
asserted. 

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that 
source before return from handler is executed. If the pending bit is not cleared, the interrupt is 
re-entered after the return is executed. 

Example 8-4 demonstrates how a level detect interrupt is typically handled. The example assumes 
that the Id from address "timer_O," deactivates the interrupt input. 

Example 8-4. Return from a level-detect Interrupt 

Figure 8-6. 

# Clear level-detect interrupts before return from handler 
ida IPND_MMR, gl # Get address of IPND Memory-Mapped Register 

ld timer_O, gO 
ida OxlOOO, g2 

wait: 

mov 0, g3 

atmod gl, g2, g3 
bbs oxe, g3, wait 

# Get timer value and clear TMRO 

ret # Return from handler 

Interrupt pins are asynchronous inputs. Setup or hold times relative to S_CLK are not needed to 
ensure proper pin detection. Note in Figure 8-6, which shows how a signal is sampled using fast 
sampling, that interrupt inputs are sampled once every two S_CLK cycles. For practical purposes, 
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted 
for at least three S_CLK cycles. See the <Emphasis>80960RP Intelligent I/O Microprocessor Data 
Sheet for setup and hold specifications that guarantee detection of the interrupt on particular edges 
of S_CLK. These specifications are useful in designs that use synchronous logic to generate 
interrupt signals to the processor. These specification must also be used to calculate the minimum 
signal width, as shown in Figure 8-6. 

Interrupt Fast Sampling 

S_INT[D:A]/XINT3:0# [ 
XINT5:4# 

(fast sampled) 

* * * * * 

_ 3 cycle min. -

=-----• Detect Interrupt 

* Denotes sampling clock edge. Interrupt pins are sampled one time for every two S_CLK (external bus clock) cycles. 

Developer's Manual 8-15 



Inte/@ 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.2.3 

8.2.4 

8.2.5 

8.2.6 

8-16 

Non-Maskable Interrupt (NMI#) 

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error 
interrupts from the internal peripheral units also come into the 80303 Core through the NMI# pin. 
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt 
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core 
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in 
location OH of internal data RAM. 

The core immediately services NMI# requests. While servicing an NMI#, the core does not 
respond to any other interrupt requests, even another NMI# request. The processor remains in this 
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt 
request on the NMI# pin is always falling-edge detected. (Note that a return-from-interrupt in user 
mode does not unblock NMI# events and should be avoided by software.) 

Timer Interrupts 

Each of the two timer units has an associated interrupt to allow the application to accept or post the 
interrupt request. The timer interrupts are connected directly to the 80303 I/O processor interrupt 
controller and are posted in the IPND register. These interrupts are set up through the timer control 
registers described in the i960® RP Microprocessor User's Manual (272736), Chapter 19, "Timers". 

Software Interrupts 

The application program may use the sysctl instruction to request interrupt service. The vector 
that sysctl requests is serviced immediately or posted in the interrupt table's pending interrupts 
section, depending upon the current processor priority and the request's priority. The interrupt 
controller caches the priority of the highest priority interrupt posted in the interrupt table. The 
processor cannot request vector 248 (NMI#) as a software interrupt. 

Interrupt Operation Sequence 

The interrupt controller, microcode and core resources handle all stages of interrupt service. 
Interrupt service is handled in the following stages: 

Requesting Interrupt - In the 80303 I/O processor, the programmable on-chip interrupt controller 
transparently manages all interrupt requests. Interrupts are generated by hardware (external events) 
or software (the application program). Hardware requests are signaled on the 6-bit external 
interrupt port (S_INT[D:AJ/XINT3:0#, XINT5:4#), the non-maskable interrupt pin (NMI#) or the 
two timer channels. Software interrupts are signaled with the sysctl instruction with post-interrupt 
message type. 

Posting Interrupts - When an interrupt is requested, the interrupt is either serviced immediately or 
saved for later service, depending on the interrupt's priority. Saving the interrupt for later service is 
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and 
software interrupts are posted differently: 

• Hardware interrupts are posted by setting the interrupt's assigned bit in the interrupt pending 
(IPND) memory mapped register 

• Software interrupts are posted by setting the interrupt's assigned bit in the interrupt table's 
pending priorities and pending interrupts fields 

Developer's Manual 



intel· 

8.2.7 

Inte!® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Checking Pending Interrupts - The interrupt controller compares each pending interrupt's priority 
with the current process priority. When process priority changes, posted interrupts of higher 
priority are then serviced. Comparing the process priority to posted interrupt priority is handled 
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific 
priority when the processor is configured. The priority of all posted hardware interrupts is 
continually compared to the current process priority. Software interrupts are posted in the interrupt 
table in external memory. The highest priority posted in this table is also saved in an on-chip 
software priority register; this register is continually compared to the current process priority. 

Servicing Interrupts - When the process priority falls below that of any posted interrupt, the 
interrupt is serviced. The comparator signals the core to begin a microcode sequence to perform the 
interrupt context switch and branch to the first instruction of the interrupt routine. 

Figure 8-4 illustrates interrupt controller function. For best performance, the interrupt flow for 
hardware interrupt sources is implemented entirely in hardware. 

The comparator only signals the core when a posted interrupt is a higher priority than the process 
priority. Because the comparator function is implemented in hardware, microcode cycles are never 
consumed unless an interrupt is serviced. 

Setting Up the Interrupt Controller 

This section provides an example of setting up the interrupt controller. The following example 
describes how the interrupt controller can be dynamically configured after initialization. 

Example 8-5. sets up the interrupt controller to fetch interrupt vectors from internal data RAM 
rather than external memory. Initially the IMSK register is masked to allow for setup. A value that 
selects vector caching is loaded into the ICON register and the IMSK is unmasked. 

Example 8·5. Programming the Interrupt Controller for Vector Caching 

# Example vector caching setup . . . 

mov OxO, gO 

mov Ox00006000, gl 

st gO,IMSK# mask, IMSK MMR at OXFF008504 

st gl, ICON 

st gl,IMSK# fetch vectors from internal RAM 

Developer's Manual 8-17 



Intel@ 80303 110 Processor int:et PCI and Peripheral Interrupt Controller Unit 

8.2.8 

8.2.9 

8-18 

Interrupt Service Routines 

An interrupt handling procedure performs a specific action that is associated with a particular 
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit 
request. The interrupt handler procedures can be located anywhere in the non-reserved address 
space. Since instructions in the i960 processor architecture must be word-aligned, each procedure 
must begin on a word boundary. 

When an interrupt handling procedure is called, the processor allocates a new frame on the 
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the 
processor always switches to supervisor mode while an interrupt is handled. It also saves the states 
of the AC and PC registers for the interrupted program. 

The interrupt procedure shares the remainder of the execution environment resources (namely the 
global registers and the address space) with the interrupted program. Thus, interrupt procedures 
must preserve and restore the state of any resources shared with a non-cooperating program. For 
example, an interrupt procedure that uses a global register that is not permanently allocated to it 
should save the register'S contents before using the register and restore the contents before 
returning from the interrupt handler. 

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the 
instruction cache. See Section 8.6.3.2, "Caching Interrupt Routines and Reserving Register 
Frames" on page 8-31 for a complete description. 

Interrupt Context Switch 

When the processor services an interrupt, it automatically saves the interrupted program state or 
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt 
request. When the interrupt handler completes, the processor automatically restores the interrupted 
program state. The method used to service an interrupt depends on the processor state when the 
interrupt is received. 

An executing-state interrupt When the processor is executing a background task and an interrupt 
request is posted, the interrupt context switch must change stacks to 
the interrupt stack. 

An interrupted-state interrupt When the processor is already executing an interrupt handler, no 
stack switch is required since the interrupt stack is already in use. 

The following subsections describe interrupt handling actions for executing-state and 
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that 
of the processor and thus is serviced immediately when the processor receives it. 

Developer's Manual 



8.2.9.1 

8.2.9.2 

Intel@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Servicing An Interrupt From Executing State 

When the processor receives an interrupt while in the executing state (i.e., executing a program, 
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same 
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The 
processor: 

l. Switches to the interrupt stack (Figure 8-3). The interrupt stack pointer becomes the new stack 
pointer for the processor. 

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also 
saves the interrupt procedure pointer number. 

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global 
register glS. 

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its 
priority to the priority of the interrupt. Setting the processor's priority to that of the interrupt 
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt. 

5. Clears the trace enable bit in Pc. The interrupt is handled without raising trace faults. 

6. Sets the frame return status field pfp[2:0] to 111 2, 

7. Performs a call operation as described in the i960® RP Microprocessor User's Manual 
(272736), Chapter 7, "Procedure Calls". The address for the called procedure is specified in 
the interrupt table for the specified interrupt procedure pointer. 

After completing the interrupt procedure, the processor: 

1. Copies the arithmetic controls field and the process controls field from the interrupt record into 
the AC and PC, respectively. It therefore switches to the executing state and restores the 
trace-enable bit to its value before the interrupt occurred. 

2. Deallocates the current stack frame and interrupt record from the interrupt stack and switches 
to the stack it was using before servicing the interrupt. 

3. Performs a return operation as described in the i960® RP Microprocessor User's Manual 
(272736), Chapter 7, "Procedure Calls". 

4. Resumes work on the program when all pending interrupts and trace faults are serviced. 

Servicing An Interrupt From Interrupted State 

When the processor receives an interrupt while servicing another interrupt, and the new interrupt 
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted. 
Here, the processor performs the same interrupt-servicing action as described in Section 8.2.9.1 to 
save the state of the interrupted interrupt-handler routine. The interrupt record is saved on the top 
of the interrupt stack prior to the new frame that is created for use in servicing the new interrupt. 
See Figure 8-3. 

On the return from the current interrupt handler to the previous interrupt handler, the processor 
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack. 

Developer's Manual 8-19 



Intel@ 80303 110 Processor intel· PCI and Peripheral Interrupt Controller Unit 

8.3 Theory of Operation 

8-20 

The PCI and Peripheral Interrupt Controller (PPIC) provides the ability to generate interrupts to 
both the i960 core processor and the PCI bus. The 80303 I/O processor contains a number of 
peripherals which may generate an interrupt to the i960 core processor. These are: 

• DMA Channel 0 • Primary ATU 

• DMA Channell • Secondary ATU 

• DMA Channel 2 • 12C Bus Interface Unit 

• Bridge Primary Interface • Application Accelerator Unit 

• Bridge Secondary Interface • Messaging Unit 

• Performance Monitoring Unit • Memory Controller Unit 

In addition to the internal peripherals, external devices may also generate interrupts to the i960 core 
processor. External devices can generate interrupts via the XINT5:0# pins and the NMI# pin. The 
PCI and Peripheral Interrupt Controller provides the ability to direct PCI interrupts. The routing 
logic enables, under software control, the ability to intercept the external secondary PCI interrupts 
and forward to the primary PCI interrupt pins. 

The PCI and Peripheral Interrupt Controller has two functions: 

• Internal Peripheral Interrupt Control 

• PCI Interrupt Routing 

The internal peripheral interrupt control mechanism consolidates a number of interrupt sources for 
a given peripheral into a single interrupt driven to the i960 core processor. In order to provide the 
executing software with the knowledge of interrupt source, memory-mapped status registers 
describe the source of the interrupts. All of the peripheral interrupts are individually enabled from 
the respective peripheral control registers. 

The PCI interrupt routing mechanism allows the host software (or 80303 software) to route PCI 
interrupts to either the i960 core processor or the P _ INTA#, P _ INTB#, P _ INTC#, and P _INTD# 
output pins. This routing mechanism is controlled through a memory-mapped register accessible 
from the primary PCI bridge configuration space or the 80303 I/O processor. 

Developer's Manual 



intel· 
B.4 

Inte/@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Intel® B0303 1/0 Processor Interrupts 

The interrupt controller on the i960 core processor has six external interrupt pins, two interrupt 
lines dedicated to inter-chip communication, and one non-maskable interrupt pin for detecting 
external interrupt requests. The six external interrupts may be individually mapped to interrupt 
vectors. 

The nine interrupt signals of the i960 core processor have the following definitions and 
programming options: 

XINT7:6# 

XINlI:O# 

b 

NMI# 

Internal Interrupt - These signals generate interrupts to communicate with internal 
devices on the 80303 I/O processor. 

External Interrupt (Input) - These pins cause interrupts to be requested. Interrupts 
are software configurable for three modes: dedicated, expanded, mixed. Each 
interrupt can be programmed as an edge-detect input or as a level-detect input. 
Additionally, a debouncing mode for these interrupts can be selected under program 
control. 

Non-Maskable Interrupt (Input) - Causes a non-maskable interrupt event to occur. 
NMI is the highest priority interrupt recognized. The NMI# input of the i960 core 
processor is edge-triggered. The external NMI# input of the 80303 I/O processor 
requires a level input. The interrupt latch drives an active low input to the processor 
as long as a valid interrupt condition exists. A debouncing mode for NMI# can be 
selected under program control. This pin is internally synchronized. 

Utilization of the 80303 I/O processor interrupt mechanism relies on the configuration of the i960 
core processor interrupt controller and XINT Select bit in the PCI Interrupt Routing Select Register 
(PIRSR). 

The PCI and Peripheral Interrupt Controller provides the connections to the i960 core processor. 
These connections are shown in Figure 8-7. 

Developer's Manual 8-21 



Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit int'et 
Figure 8·7. Interrupt Controller Connections 

------------------.-----.. -----.----.--- --- .-- -------------- -------------------------------iiiiel@-S030:3"iiC)"Processor--------------------------------

8-22 

XINT 0# 

XINT 1# 

2# 

3# 

XINT 

XINT 5# 

NM 1# 

S_INTD# Select bit 

S_INTC# Select bit 

S_INTB# Select bit 

S_INTA# Select bit 

m 

tJ-
I m 

"W-
m 
u I 
x 

~ 
x 

,....,.,-
DMA Channel 0 Interrupt Pending ~ §-
DMA Channel 1 Interrupt pendin~::::: 1ij.c 
DMA Channel 2 Interrupt Pending :5 til 

Penormance Monitor Unit Interrupt Pending ---to ~-' 
Application Accelerator Interrupt Pending ---+ ~ 

~ 

~ 
12C Bus Interface Unit Interrupt Pending ---. E 

Messaging Unit Interrupt Pending ---. ~ Ii 
Primary ATUIStart BIST Interrupt Pending --+ r:: ~ -

z 
~ 

Bus Interface Unit Error--+ -
Primary PCI Bridge Intenace Error--+ 

Secondary PCI Bridge Intenace Error--+ 
Primary ATU Error-+ -a 

Secondary ATU Error--+ E.c ~ 
Memory Controiler Unit Error~ ~~ 

DMA Channel 0 Error--+- =-' 
DMA Channel 1 Error--+-

::;; 
z 

DMA Channel 2 Error--+-
Messaging Unit Error ~ 

Application Accelerator Unit Error -+ 

80303 Outbound Doorbell 0 
B0303 Outbound Doorbell 1 
B0303 Outbound Doorbell 2 
B0303 Outbound Doorbell 3 

XINTO# 

XINT1# 

XINT2# Intej® i960® 
Core Processor 

XINT3# 

XINT4# 

XINT5# 

XINT6# 

XINT7# 

NMI# 

Developer's Manual 



8.4.1 PCI Interrupt Routing 

Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

The four secondary PCI interrupt inputs S _INT[A:D]# can be routed to either i960 core processor 
interrupt inputs or to the primary PCI interrupt output pins P _INT[A:D]#. 

Routing of interrupt inputs is controlled by the PCI Interrupt Routing Select Register (PIRSR). 
Table 8-1 summarizes the usage of the bits in the PIRSR. 

Table 8-1. PCllnterrupt Routing Summary 

8.4.2 

PIRSR Bit 
Description 

Select Bit Value 

1 
bit 0 

S_INTA#/XINTO# Input Pin routed to i960 core processor XINTO# Input Pin 

0 S_INTA#/XINTO# Input Pin routed to P _INTA# Output Pin 

1 
bit 1 

S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin 

0 S_INTB#/XINT1# Input Pin routed to P _INTB# Output Pin 

1 S_INTC#/XINT2# Input Pin routed to i960 core processor XINT2# Input Pin 
bit2 

0 S_INTC#/XINT2# Input Pin routed to P _INTC# Output Pin 

1 
bit3 

S_INTD#/XINT3# Input Pin routed to i960 core processor XINT3# Input Pin 

0 S_INTD#/XINT3# Input Pin routed to P _INTD# Output Pin 

Note: XINTO# through XINT3# of the i960 core processor must be programmed to be level sensitive to 
accommodate PCI interrupts. When any Select bit is set, the logic external to the i960 core 
processor input must drive an inactive level (' 1 ') to the corresponding interrupt input of the i960 
core processor. 

Intel@ 80303 1/0 Processor: External Interrupt Interface 

The external interrupt input interface for the 80303 I/O processor consists of the pins shown in 
Table 8-2. 

Table 8-2. Interrupt Input Pin Descriptions 

Signal Description 

S_INTA#/XINTO# Directed to the P JNTA# output or the i960 core processor interrupt input XINTO#. 

S_INTB#/XINT1# Directed to the P _INTB# output or the i960 core processor interrupt input XINT1#. 

S_INTC#/XINT2# Directed to the P _INTC# output or the i960 core processor interrupt input XINT2#. 

S_INTD#!XINT3# Directed to the P _INTD# output or the i960 core processor interrupt input XINT3#. 

XINT4# Always connected to the i960 core processor interrupt input XINT4#. 

XINT5# Always connected to the i960 core processor interrupt input XINT5#. 

Shared with ten internal interrupts. These include all collected error interrupts from 
the local processor, primary PCI bridge interface, secondary PCI bridge interface, 

NMI# 
primary ATU, secondary ATU, three DMA channels, application accelerator and 
the messaging unit. All interrupts are directed to the i960 core processor NMI# 
input. Software reads the NMllnterrupt Status Register to determine the exact 
source of the interrupt. 

Developer's Manual 8-23 



Intel@ 80303 110 Processor intel .. PCI and Peripheral Interrupt Controller Unit 

8.4.3 

8.4.3.1 

Table 8-3. 

8-24 

Intel® 80303 1/0 Processor: Internal Peripheral Interrupt 
Routing 

The XINT6#, XINT7#, and NMI# interrupt inputs on the i960 core processor receive inputs from 
multiple internal interrupt sources. There is one internal latch before each of these three inputs that 
provides the necessary muxing of the different interrupt sources. More detail about the exact cause 
of the interrupt can be determined by reading the status register of the respective peripheral unit. 

XINT6# Interrupt Sources 

The XINT6# interrupt of the i960 core processor receives interrupts from the three DMA channels, 
Performance Monitoring Unit and the Application Accelerator (AA) Unit. Each DMA channel 
interrupt is either for DMA End of Transfer interrupt or DMA End of Chain interrupt. A 
Performance Monitoring Unit interrupt implies that at least one of the fourteen programmable 
event counters and/or the Global Time Stamp Counter has a pending interrupt condition. An AA 
interrupt implies an End of Chain interrupt or an End of Transfer interrupt. 

A valid interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive 
interrupt to the i960 core processor XINT6# input. The interrupt latch should continue driving an 
active low input to the processor interrupt input as long as a one is present in the latch. The 
XINT6# Interrupt Latch is read through the XINT6# Interrupt Status Register. The XINT6# 
Interrupt Latch is cleared by clearing the source of the interrupt at the internal peripheral. 

The interrupt sources which drive the inputs to the XINT6# Interrupt Latch are detailed in 
Table 8-3, 

XINT6# Interrupt Sources 

Unit Interrupt Register 
Condition 

End of 
Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

DMA Chain 

Channel 0 End of 
Transfer Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

End of 
Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

DMA Chain 

Channel 1 End of 
Transfer Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

End of 
Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

DMA Chain 

Channel 2 End of 
Transfer Section 19.14.2, "Channel Status Register - CSR" on page 19-28 

End of 
Section 20.11 .2, "Accelerator Status Register - ASR" on page 20-27 

Application Chain 

Accelerator End of 
Transfer Section 20.11.2, "Accelerator Status Register - ASR" on page 20-27 

Performance Counter Section 21.6.3, "Event Monitoring Interrupt Status Register (EMISR)" on 
Monitor Overflow page 21-25 

Developer's Manual 



intel· 
8.4.3.2 

Table 8-4. 

8.4.3.3 

XINT7# Interrupt Sources 

Intel® 80303 liD Processor 
PCI and Peripheral Interrupt Controller Unit 

The XINT7# interrupt on the i960 core processor receives interrupts from the I2C Bus Interface 
Unit, the Primary ATU, and the Messaging Unit. A valid interrupt from any of these sources sets 
the bit in the latch and outputs a level-sensitive interrupt to the i960 core processor XINT7# input. 
The interrupt latch should continue driving an active low input to the processor interrupt input as 
long as a one is present in the latch. The XINT7# Interrupt Latch is read through the XINT7# 
Interrupt Status Register. The XINT7# Interrupt Latch is cleared by clearing the source of the 
interrupt at the internal peripheral. 

The unit interrupt sources which drive the inputs to the XINT7# interrupt latch are detailed in 
Table 8-4. 

XINT7# Interrupt Sources 

Unit Register Interrupt Condition 

Receive Buffer Full 

Transmit Buffer Empty 

12C Bus Interface Unit 12C Status Register 
Slave Address Detect 

STOP Detected 

Bus Error Detected 

Arbitration Lost Detected 

Index Register Interrupt 

Inbound Post Queue Interrupt 

Messaging Unit Inbound Interrupt Status Register Inbound Doorbell Interrupt 

Inbound Message 1 Interrupt 

Inbound Message 0 Interrupt 

Primary ATU Primary ATU Interrupt Status 
ATU BIST Start 

Register 

NMI# Interrupt Sources 

The Non-Maskable Interrupt (NMI#) on the i960 core processor receives interrupts from the 
external pin, the primary and secondary ATU s, the primary and secondary bridge interfaces, the 
local processor, the Messaging Unit, three DMA channels and the application accelerator. Each of 
these interrupts represent an error condition in the peripheral unit. Refer to the appropriate units for 
more details. 

The NMI Interrupt Latch accepts one interrupt input from each source and the external NMI# pin. 
A valid interrupt from any of these sources sets the bit in the latch and outputs an edge-triggered 
interrupt to the i960 core processor NMI# input. The NMI Interrupt Latch is read through the NMI 
Interrupt Status Register. The NMI interrupt latch is cleared by clearing the source of the interrupt 
at the internal peripheral. 

Note: The i960 core processor NMI# input is edge-triggered. The external NMI# input of the 80303 I/O 
processor requires a level input. The interrupt latch drives an active low input to the processor as 
long as a valid interrupt condition exists. When there are multiple interrupt sources (e.g.: DMA 
Channel 0 and DMA Channell), the NMI latch output transitions from active low to high to 
account for the interrupt condition that has been cleared. It then outputs another edge-triggered 
input to the i960 core processor to identify the second interrupt condition that still exists. 

Developer's Manual 8-25 



Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

Table 8-5. 

8-26 

Table 8-5 details the unit interrupt sources, which drive the inputs to the NMI interrupt latch. 

NMI# Interrupt Sources 

Unit Register Error Condition 

PCI Master Parity Error 

Primary PCI Bridge 
PCI Target Abort (target) 

Primary Bridge Interrupt Status 
PCI Target Abort (master) Interface Register 
PCI Master Abort 

P _SERR# Asserted 

PCI Master Parity Error 

PCI Target Abort (target) 
Secondary PCI Bridge Secondary Bridge Interrupt Status PCI Target Abort (master) 

Interface Register 
PCI Master Abort 

S_SERR# Asserted 

PCI Master Parity Error 

PCI Target Abort (target) 

Primary ATU 
PCI Target Abort (master) 

Primary ATU Interrupt Status Register 
PCI Master Abort 

P _SERR# Detected 

IB Master Abort 

ATU BIST Interrupt 

Messaging Unit Inbound Interrupt Status Register 
Outbound Free Queue Full Interrupt 

NMI Doorbell Interrupt 

PCI Master Parity Error 

PCI Target Abort (target) 

Secondary ATU PCI Target Abort (master) 

Secondary ATU Interrupt Status Register PCI Master Abort 

S_SERR# Detected 

IB Master Abort 

Bus Interface Unit BIU Interrupt Status Register IB Master Abort 

PCI Master Parity Error 

DMA Channel 0 Channel Status Register 0 
PCI Target Abort (master) 

PCI Master Abort 

IB Master Abort 

PCI Master Parity Error 

DMA Channel 1 Channel Status Register 1 
PCI Target Abort (master) 

PCI Master Abort 

IB Master Abort 

PCI Master Parity Error 

DMA Channel 2 Channel Status Register 2 
PCI Target Abort (master) 

PCI Master Abort 

IB Master Abort 

Application Accelerator Accelerator Status Register IB Master Abort 

Memory Controller 
Memory Controller Interrupt Status 

Target-Abort (Single or Multi-bit ECC Errors) 
Register 

The PCI Interrupt Routing Select Register, XINT6 Interrupt Status Register, XINT7 Interrupt 
Status Register, and NMI Interrupt Status Register are described in Section 8.7. 

Developer's Manual 



in1:et 
8.4.4 

Intel® 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

pel Outbound Doorbell Interrupts 

The 80303 I/O processor has the capability of generating interrupts on the primary PCI interrupt 
pins. This is done by setting a bit in the Outbound Doorbell Register within the Messaging Unit. 
Bits 28 through 31 correspond to PCI interrupts P _ INTA# through P _ INTD# respectively. Setting 
a bit within the register will generate the corresponding PCI interrupt. 

Bits 27 through 0 in the Outbound Doorbell Register are all cleared in the default state. When any 
bit is set, a PCI interrupt is generated. The bit-field in the Address Translation Unit Interrupt Pin 
Register (ATUIPR) will determine which PCI interrupt (P _ INTA# through P _ INTD#) is 
generated. Refer to PCI Local Bus Specification, Revision 2.2 for complete details on the bit-field 
definition of the ATUIPR. 

Developer's Manual 8-27 



Inte/® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.5 

Table 8-6. 

8.5.1 

8.6 

8-28 

Default Status 

The interrupt logic is reset by the primary PCI reset signal or through software. Table 8-6 shows 
the power-up and reset values. 

Default interrupt Routing and Status Values 

Register Default Value Description 

Software responsible for clearing 
IPND Undefined this register before unmasking any 

interrupts. 

IMSK OOOOOOOOH A" interrupts masked. 

IMAP2:0 Initial Image in Control Table Set to user's values. 

ICON Initial Image in Control Table Set to user's values. 

PIRSR OOOOOOH A" interrupts IRQ[23:0] routed to 
the Intel® i960® core processor. 

NM I Interrupt Latch 0000000002 A" interrupts cleared 

XINT7 Interrupt Latch 000002 A" interrupts cleared 

XI NT6 Interrupt Latch DOH A" interrupts cleared 

NMI Interrupt Status Register OOOOOOOOH No interrupts set 

XINT7 Interrupt Status Register OOOOOOOOH No interrupts set 

XINT6 Interrupt Status Register OOOOOOOOH No interrupts set 

Interrupt Controller Register Access Requirements 

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has a latency of one 
internal processor cycle. A store access to an interrupt register is synchronous with respect to the 
next instruction; that is, the operation completes fully and all state changes take effect before the 
next instruction begins execution. 

Interrupts can be enabled and disabled quickly by the intdis and inten instructions, which take 
four cycles each to execute. intetl takes a few cycles longer because it returns the previous 
interrupt enable value. See i960® RM/RN I/O Processor Developer's Manual (273158) Chapter 6, 
"Instruction Set References" for more information on these instructions. 

Performance Requirements 

The interrupt routing logic shall accept the routing control value written to the PIRSR register and 
accept the changes within one clock after the write has completed. When the processor reads the 
PIRSR register, the value shall be returned immediately, effectively zero wait states. 

When the processor reads the NISR, X4ISR, X5ISR, X6ISR and X7ISR registers, the value shall 
be returned immediately, effectively zero wait states. 

The logic shall introduce no more than one clock delay when the interrupt is recognized on the 
input of the logic until the signal is driven either to the i960 core processor interrupt controller or 
the PCI output interrupt pins. 

Developer's Manual 



intel· 
8.6.1 

Figure 8-8. 

Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

Optimizing Interrupt Performance 

Figure 8-8 depicts the path from interrupt source to interrupt service routine. This section discusses 
interrupt performance in general and suggests techniques the application can use to get the best 
interrupt performance. 

Interrupt Service Flowchart 

YES 
(See if 
Interrupt 
Priority is 
greater than 
process 
priority OR 
at interrupt 
priority~31 ) 

(Test for 
interrupted 

state) 

PC.s~1 

? 

NO 

( Software Interrupt 

~ 
get vector in field 1 I 

~ 
set corresponding 

pending bits in 

interrupt table 

NO 

clear trace fault pending bit (TC.tfp) 

clear trace enable bit (TC.te) 
state ~ interrupted (PC.s ~ 1) 
mode ~ supervisor (PC. em ~ 1) 

get interrupt procedure pointer 
SP ~ FP +64 
IP ~ interrupt procedure painter 

Developer's Manual 8-29 



Intel@ 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.6.2 

8.6.3 

8.6.3.1 

8-30 

Interrupt Service Latency 

The established measure of interrupt performance is the time required to perform an interrupt task 
switch, which is known as interrupt service latency. Latency is the time measured between 
interrupt source activation and execution of the first instruction for the accompanying 
interrupt-handling procedure. 

Interrupt latency depends on interrupt controller configuration and the instruction being executed 
at the time of the interrupt. The processor also has a number of cache options that reduce interrupt 
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock 
cycles. 

Features to Improve Interrupt Performance 

The 80303 I/O processor employs four methods to reduce interrupt latency: 

• Caching interrupt vectors on-chip 

• Caching of interrupt handling procedure code 

• Reserving register frames in the local register cache 

• Caching the interrupt stack in the data cache 

Vector Caching Option 

To reduce interrupt latency, the 80303 I/O processor caches some interrupt table vector entries in 
internal data RAM. When the vector cache option is enabled and an interrupt request has a cached 
vector to be serviced, the controller fetches the associated vector from internal RAM rather than 
from the interrupt table in memory. 

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached. 
Vectors that can be cached coincide with the vector numbers selected with the mapping registers 
and assigned to dedicated-mode inputs. The vector caching option is selected when programming 
the ICON register; software must explicitly store the vector entries in internal RAM. 

Since the internal RAM is mapped to the address space directly, this operation can be performed 
using the core's store instructions. Table 8-7 shows the required vector mapping to specific 
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at 
RAM location 04H, and so on. 

Developer's Manual 



Table 8-7. 

8.6.3.2 

8.6.3.3 

Inte/@ 80303 110 Processor 
PCI and Peripheral/nterrupt Controller Unit 

The NMI# vector is also shown in Table 8-7. This vector is always cached in internal data RAM at 
location OOOOH. The processor automatically loads this location at initialization with the value of 
vector number 248 in the interrupt table. 

Location of Cached Vectors in Internal RAM 

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address 

(NMI#) 248 OOOOH 

0001 00102 18 0004H 

001000102 34 0008H 

001100102 50 OOOCH 

010000102 66 0010H 

0101 00102 82 0014H 

011000102 98 0018H 

0111 00102 114 001CH 

100000102 130 0020H 

100100102 146 0024H 

101000102 162 0028H 

101100102 178 002CH 

110000102 194 0030H 

1101 00102 210 0034H 

111000102 226 0038H 

1111 00102 242 003CH 

Caching Interrupt Routines and Reserving Register Frames 

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt 
response time and throughput. The controller reduces this fetch time by caching interrupt 
procedures or portions of procedures in the 80303 I/O processor's instruction cache. 

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit 
the number of frames in the local register cache available to code running at a lower priority 
(priority 27 and below). This ensures that some number of free frames are available to high-priority 
interrupt service routines. See i960® RMIRN lIO Processor Developer's Manual (273158) "Local 
Register Cache, for more details. 

Caching the Interrupt Stack 

By locating the interrupt stack in memory that can be cached by the data cache, the performance of 
interrupt returns can be improved. This is because accesses to the interrupt record by the interrupt 
return can be satisfied by the data cache. See i960® RMIRN lIO Processor Developer's Manual 
(273158), "Programming the Physical Memory Attributes (PMCON Registers)" for details on how 
to enable data caching for portions of memory. 

Developer's Manual 8-31 



Intel® 80303 liD Processor 
PCI and Peripheral Interrupt Controller Unit 

8.6.4 

Table 8-8. 

Base Interrupt Latency 

In many applications, the processor's instruction mix and cache configuration are known 
sufficiently well to use typical interrupt latency in calculations of overall system performance. For 
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base 
interrupt latency assumes the following: 

• Single-cycle RISC instruction is interrupted 

• Frame flush does not occur 

• Bus queue is empty 

• Cached interrupt handler 

• No interaction of faults and interrupts (i.e., a stable system) 

Table 8-13 shows the base latencies for all interrupt types, with varying vector caching options. 

Base Interrupt Latency 

Interrupt Type Vector Caching Enabled Typical Latency (Bus Clocks) 

NMI# Yes 30 

XINT[S:4]#, TINT1 :01 
Yes 34 

No 40+a2 

Yes 35 
XINT[7:6]#, XINT[3:0]# 

No 41+a2 

Yes 68 
Software 

No 69+a2 

NOTES: 

1. TINT - Timer interrupts 
2. a = MAX (O,N - 7), where "N" is the number of bus cycles needed to perform a word load. 

8-32 Developer's Manual 



8.6.5 

Table 8-9. 

Maximum Interrupt Latency 

Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

In real-time applications, worst-case interrupt latency must be considered for critical handling of 
external events. For example, an interrupt from a mechanical subsystem may need service to 
calculate servo loop parameters to maintain directional control. Determining worst-case latency 
depends on knowledge of the processor's instruction mix and operating environment as well as the 
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from 
critical sections of code reduces worst-case interrupt latency to levels approaching the base latency. 

The following tables present worst case interrupt latencies based on possible execution of divo 
(r1S destination), divo (r3 destination), calls or flushreg instructions or software interrupt 
detection. The assumptions for these tables are the same as for Table 8-13, except for instruction 
execution. 

Worst-Case Interrupt Latency Controlled by divo to Destination r15 

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks) 

NMI# Yes 43 

Yes 45 
XINT[5:4]#, TINn:O 

No 45+a1 

Yes 46 
XINT[7:6]# XINT[3:0]# 

No 46+a1 

NOTES: 

1. a = MAX (O,N - 11), where .oN" is the number of bus cycles needed to perform a word load. 

Table 8-10. Worst-Case Interrupt Latency Controlled by divo to Destination r3 

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks) 

NMI# Yes 60 

Yes 65 
XINT[5:4]#, TINT1 :0 

No 72+a1 

Yes 66 
XINT[7:6]# XINT[3:0]# 

No 73+a1 

NOTES: 

1. a = MAX (O,N - 7), where UN" is the number of bus cycles needed to perform a word load. 

Table 8-11. Worst-Case Interrupt Latency Controlled by Calls 

Interrupt Type 

NMI# 

XINT[5:4]#, TINT1 :0 

XINT[7:6]# XINT[3:0]# 

NOTES: 

1. a = MAX (O,N - 4) 
b = MAX (O,N - 7) 

Vector Caching Enabled 

Yes 

Yes 

No 

Yes 

No 

where UN" is the number of bus cycles needed to perform a word load. 

Worst Latency (Bus Clocks) 

54+a1 

58+a1 

66+a+b 

59+a' 

67+a+b' 

Developer's Manual 8-33 



Intel@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Table 8-12. Worst-Case Interrupt latency When Delivering a Software Interrupt 

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks) 

NMI# Yes 97 

Yes 99 
XINT[5:4]#, TINT1:0 

No 107+a1 

Yes 100 
XINT[7:6]# XINT[3:0]# 

No 108+a1 

NOTES: 

1. a = MAX (O,N - 7), where uN" is the number of bus cycles needed to perform a word load. 

Table 8-13. Worst-Case Interrupt latency Controlled by flushreg of One Stack Frame 

8.6.6 

8.6.7 

8-34 

Interrupt Type 

NMI# 

XINT[5:4]#, TINT1:0 

XINT[7:6]# XINT[3:0]# 

NOTES: 

1. a = MAX (0, M - 15) 
b = MAX (0, M - 28) 
c = MAX (0, N - 7) 

Vector Caching Enabled Worst Latency (Bus Clocks) 

Yes 78+a+b1 

Yes 82+a+b1 

No 89+a+b+c1 

Yes 83+a+b1 

No 90+a+b+c1 

where "M" is the number of bus cycles needed to perform a quad word store and "N" is the number of bus cycles needed to 
perform a word load. Interrupt latency increases rapidly as the number of flushed stack frames increases. 

Avo.iding Certain Destinations for MDU Operations 

Typically, when delivering an interrupt, the processor attempts to push the first four local registers 
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of register-interlock, 
this operation is stalled until previous instructions return their results to these registers. In most 
cases, this is not a problem; however, in the case of instructions performed by the Multiply/Divide 
Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles 
waiting for the result and unable to proceed to the next step of interrupt delivery. 

Interrupt latency can be improved by avoiding the fIrst four local registers as the destination for a 
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general 
operations as these are used for procedure linking.) 

Secondary PCI to Upstream Interrupt Routing Latency 

The interrupt routing logic accepts the changes to the routing control value written to the PIRSR 
register one clock after the write has completed. There is a one clock delay from the time that the 
interrupt is recognized on the input of the MUX until the signal is driven either to the 80303 core 
interrupt controller or directly upstream. 

Developer's Manual 



int:et 
8.7 Register Definitions 

Intel@ 80303 liD Processor 
PCI and Peripheral Interrupt Controller Unit 

All ten registers are visible as 80303 I/O processor memory mapped registers and can be accessed 
through the internal memory bus. Each is a 32-bit register and is memory-mapped in the 80303 I/O 
processor memory space. The memory-mapped addresses of the interrupt control registers are 
found in Appendix C. "Peripheral Memory-Mapped Registers."' 

There are four control and status registers for the PCI and Peripheral Interrupt Controller: 

• PCI Interrupt Routing Select Register 

• XINT6 Interrupt Status Register 

• XINT7 Interrupt Status Register 

• NMI Interrupt Status Register 

The PCI Interrupt Routing Select Register is accessible from the internal memory bus and also 
during PCI configuration cycles through the PCI configuration register space (function #0). See 
Chapter 15, "PC I Address Translation Unit"' for additional information regarding the PCI 
configuration cycles that access the PCI Interrupt Routing Select Register. The programmer's 
interface to the interrupt controller is through ten memory-mapped control registers. Table 8-14 
describes these registers. 

Table 8-14. Interrupt Control Registers Addresses 

Register Name Description Address 

ICON Interrupt Control Register FFOO 8510H 

IMAPO Interrupt Map Register 0 FFOO 8520H 

IMAP1 Interrupt Map Register 1 FFOO 8524H 

IMAP2 Interrupt Map Register 2 FFOO 8528H 

IPND Interrupt Pending Register FFOO 8500H 

IMSK Interrupt Mask Register FFOO 8504H 

PIRSR PCI Interrupt Routing Select 00001050H 
Register 

X61SR XINT6 Interrupt Status Register 0000 1708H 

X71SR XINT7 Interrupt Status Register 0000 1704H 

NISR NMI Interrupt Status Register 0000 1700H 

Developer's Manual 8-35 



Intel® 80303 I/O Processor in1:et PCI and Peripheral Interrupt Controller Unit 

8.7.1 Interrupt Control Register (ICON) 

The ICON register is a 32-bit memory-mapped control register, that sets up the interrupt controller. 
Software can manipulate this register using the load/store type instructions. The ICON register is 
also automatically loaded at initialization from the control table in external memory. Table 8-15 
describes the ICON register. 

Table 8-15. Interrupt Control (ICON) Register 

Bit 

lOP [ 
Attributes 

8 4 o 

PCI [ 
Attributes \rial\nal\n<l\ncl\n<I\n(!\n1I\n!I\rnI\n!I\n<!\nl'l\nl!\m!\n<I\n~I\ml\n!1\n!!\ric!\n(!\m!\n<I\ml\n!I\m!\nll\ncl\n!I\ri!!\nla\n~~\ 

Intel® i960® Core internal bus address 

FFOO 8510H 

Default 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :15 Reserved. 

14 

13 

Default Value 
loaded from 

12:11 image in 
Control Table 

10 

9:0 

8-36 

This bit must be set (1)._ 

Vector Cache Enable - determines het er interrupt table vector entries are fetched from the interrupt 
table (bit clear) or from internal data RAM (bit set). Only vectors with the four least-significant bits equal 
to 00102 may be cached in internal data RAM. 

Mask Operation Field - determines the operation the core performs on the mask register when a 
hardware-generated interrupt is serviced. On an interrupt, the value in IMSK is copied to r3. IMSK is 
then either left unchanged (00) or cleared (01). IMSK is never cleared for NMI# or software interrupts. 

Global Interrupts Enable - globally enables or disables the external interrupt pins and timer unit inputs. It 
. does not affect the NMI# pin. This bit performs the same function as clearing the IMSK register. This bit 

is also changed indirectly by the instructions inten, intdis, intetl. 
These bits must be cleared (0). 

Developer's Manual 



8.7.2 

Inte/@ 80303 liD Processor 
PCI and Peripheral Interrupt Controller Unit 

Interrupt Mapping Registers (IMAPO-IMAP2) 

The IMAP registers (Table 8-16, Table 8-17 and Table 8-18) are three 32-bit registers (IMAPO 
through IMAP2). These registers are used to program the vector number associated with the 
interrupt source. IMAPO and IMAP1 contain mapping information for the external interrupt pins 
(four bits per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits 
per interrupt). 

Each set of four bits contains a vector number's four most-significant bits; the four least-significant 
bits are always 00102, In other words; each source can be programmed for a vector number of 
PPPP 00102, where "P" indicates a programmable bit. For example, IMAPO bits 4 through 7 
contain mapping information for the XINT1 pin. When these bits are set to 01102, the pin is 
mapped to vector number 0110 00102 (or vector number 98). 

Software can access the mapping registers using load/store type instructions. The mapping 
registers are also automatically loaded at initialization from the control table in external memory. 

Table 8-16. Interrupt Map Register 0 (IMAPO) 

lOP [ 
Attributes 

31 28 24 20 

IMAPO 

Intel@ i960® Core internal bus address 

FFOO 8520H 

Bit Default 

31 :16 Reserved (initialize to 0) 

15:12 Default Value External Interrupt 3 Field - IMAPO.x3 

11 :8 loaded from External Interrupt 2 Field - IMAPO.x2 image in 
7:4 Control Table External Interrupt 1 Field - IMAPO.x1 

3:0 External Interrupt 0 Field - IMAPO.xO 

Developer's Manual 

16 12 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

8 4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

8-37 



Intel@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Table 8-17. Interrupt Map Register 1 (IMAP1) 

lOP [ 
Attributes 

PCI [ 
Attributes 

31 28 24 

IMAP1 

Intel® i960® Core internal bus address 

FFOO 8524H 

Bit Default 

31 :16 Reserved (initialize to 0) 

20 

15:12 

11 :8 

Default Value External Interrupt 7 Field - IMAP1.x7 
loaded from 

External Interrupt 6 Field - IMAP1 .x6 
image in 

9:4 Control Table External Interrupt 5 Field - IMAP1.x5 
1-----1 

3:0 External Interrupt 4 Field - IMAP1.x4 

Table 8-18. Interrupt Map Register 2 (IMAP2) 

lOP [ 
Attributes 

31 28 24 20 

16 12 

Attribute Legend: 

16 

RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

12 

8 

8 

int:et 

4 o 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA= Not Accessible 

4 

PCI[ Attributes \I1a~a\na\na\nal\na~a\na'\na\mi\mi\na'rn;I\nal\na~a'\na\na~a\na\nal\nai\nal\na\nal\nal\rn;l\nal\ml\n';\nla\nl~\ 

IMAP2 

Intel® i960® Core internal bus address 

FF008528H 

Bit Default 

31:24 Reserved (initialize to 0) 
Default Value 

23:20 loaded from Timer Interrupt 1 Field - IMAP2.t1 

19:16 image in Timer Interrupt 0 Field - IMAP2.tO 
Control Table 

15:0 Reserved (initialize to 0) 

8-38 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA= Not Accessible 

Developer's Manual 



8.7.3 

Inte/@ 80303 I/O Processor 
PCI and Peripheral Interrupt Controller Unit 

Interrupt Pending (IPND) and Interrupt Mask (lMSK) 
Registers 

The IPND and IMSK (Table 8-19 and Table 8-20) registers are both memory-mapped registers. 
Bits 0 through 7 of these registers are associated with the external interrupt pins (XINTO# -
XINT7#) and bits 12 and 13 are associated with the timer-interrupt inputs (TMRO and TMR1). All 
other bits are reserved and should be cleared at initialization. 

The IPND register posts interrupts originating from the eight external dedicated sources and the 
two timer sources. Asserting one of these inputs latches a I into its associated bit in the IPND 
register. The mask register provides a mechanism for masking individual bits in the IPND register. 
An interrupt source is disabled when its associated mask bit is cleared (0). 

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on 
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI# or software interrupt. 

Although software can read and write IPND and IMSK using any memory-format instruction, it is 
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be 
used for reading and writing these registers. Executing an atmod on one of these registers causes 
the interrupt controller to perform regular interrupt processing (including using or automatically 
updating IPND and IMSK) either before or after, but, not during the read-modify-write operation 
on that register. This requirement ensures that modifications to IPND and IMSK take effect cleanly, 
completely, and at a well-defined point. Note that the processor does not assert the LOCK# pin 
externally when executing an atomic instruction to IPND and IMSK. 

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for 
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated 
with an interrupt source that is programmed for level detection and the true level is still present, the 
bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear the 
external interrupt source and explicitly clear the IPND bit before return from the handler is 
executed. 

An alternative method of posting interrupts in the IPND register, other than through the external 
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has 
the same effect as requesting an interrupt through the external interrupt pins. 

Developer's Manual 8-39 



Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

Table 8-19. Interrupt Pending (IPND) Register 

lOP [ 
Attributes 

31 28 24 20 

in1:et 

16 12 8 4 o 

PCI [ 
Attributes \na'\na'\na'\n!il~na'\na'\na'\na'\na\nal\nal\n<~n<l\ncl\n"I\nal\nEI\n<I\n,!\n,!\n<!\nla\n<~\lJi~\n;a\n;a\na\na\na\nia\nia\na\ 

Intel® i960® Core internal bus address 

FFOO 8500H 

Bit Default 

31 :14 0 Reserved 

Timer Interrupt Pending Bits - IPND.tip 
13:12 x o = No Interrupt 

1 = Pending Interrupt 

11 :8 00002 Reserved (initialize to 0) 

External Interrupt Pending Bits - IPND.xip 
7:0 x o = No Interrupt 

1 = Pending Interrupt 

Table 8-20. Interrupt Mask (IMSK) Register 

lOP [ 
Attributes 

31 28 24 20 

Attribute Legend: 

16 

RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

12 8 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA= Not Accessible 

4 o 

PCI [ 
Attributes \na'\na'\na'\na1~a'\na·\na·\na'~.\n8IWI\n<~n<I\nEI\n.IW~nel\nI!\IJ!!\nI!\ma\n;a\nia\nia\n.a\na\na\na\na\na\n,a\ma\ 

Bit 

31:14 

13:12 

11 :8 

7:0 

8-40 

IntefB> i96o® Core internal bus address 

FF008504H 

Default 

0 Reserved 

Timer Interrupt Pending Bits - IMSK.xim 

002 0= Masked 
1 = Not Masked 

00002 Reserved (initialize to 0) 

External Interrupt Mask Bits - IMSK.tim 
OOH 0= Masked 

1 = Not Masked 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA= Not Accessible 

Developer's Manual 



intet Intel® 80303 110 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.7.4 PCllnterrupt Routing Select Register - PIRSR 

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of the external input 
pins. The input pins consist of four secondary PCI interrupt inputs which are routed to either the 
primary PCI interrupts or i960 core processor interrupts. The PCI interrupt pins are defined as 
"level sensitive," asserted low. The assertion and deassertion of the interrupt pins are synchronous 
to the PCI or processor clock. 

When any of S _INT[A:D]# are routed upstream the corresponding i960 core processor inputs 
(XINT3:0#) must be set inactive (level' I '). 

When any of the XINT4# or XINT5# latch interrupts are steered away from the i960 core 
processor, the logic external to the latch input must drive an inactive level (' 1') to the 
corresponding interrupt latch input. 

Table 8-21 shows the bit definitions for programming the PCI Interrupt Routing Select Register. 

Table 8-21. PCI Interrupt Routing Select Register - PIRSR 

Bit 

31 :4 

3 

2 

o 

lOP [ 
Attributes 

PCI [ 
Attributes 

Intel® i960® Core internal bus address 

00001050H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA= Not Accessible 

Default Description 

o Reserved 

S_INTD# Select Bit - PIRSR.seld 
o o = Interrupt routed to P _INTD# pin 

1 = Interrupt routed to i960 core processor interrupt controller input (XINT3#) 

S_INTC# Select Bit - PIRSR.selc 
o o = Interrupt routed to P _INTC# pin 

1 = Interrupt routed to i960 core processor interrupt controller input (XINT2#) 

S_INTB# Select Bit - PIRSR.selb 
o o = Interrupt routed to P _INTB# pin 

1 = Interrupt routed to i960 core processor interrupt controller input (XINT1#) 

S_INTA# Select Bit - PIRSR.sela 
o o = Interrupt routed to P _INTA# pin 

1 = Interrupt routed to i960 core processor interrupt controller input (XINTO#) 

Developer's Manual 8-41 



Intel® 80303 I/O Processor int:et PCI and Peripheral Interrupt Controller Unit 

8.7.5 XINT6 Interrupt Status Register - X61SR 

The XINT6 Interrupt Status Register (X6ISR) contains the current pending XINT6# interrupts. The 
source of the XINT6# interrupt can be the internal peripheral devices connected through the XINT6# 
Interrupt Latch. The interrupts which can be generated on the XINT6# input are detailed in 
Section 8.4.3, "Intel® 80303 I/O Processor: Internal Peripheral Interrupt Routing" on page 8-24. 

The X6ISR is used by application software to determine the source of an interrupt on the XINT6# 
input and to clear that interrupt. All bits within this register are defined as read only. The bits within 
this register are cleared when the source of the interrupt (status register source shown in Table 8-3) 
are cleared. The X6ISR reflects the current state of the input to the XINT6# Interrupt Latch. 

Due to the asynchronous nature of the 80303 I/O processor peripheral units, multiple interrupts can 
be active when application software reads the X6ISR register. Application software must handle 
such conditions appropriately. In addition, application software may subsequently read the X6ISR 
register to determine if additional interrupts have occurred during interrupt processing for the prior 
interrupts. All interrupts from the X6ISR register will be at the same priority level within the i960 
core processor. 

Table 8-22 details the bit definition of the X6ISR. 

Table 8-22. XINT6 Interrupt Status Register- X61SR 

Bit 

lOP [ 
Attributes 

31 28 24 20 16 12 8 4 o 

PCI [ 
Attributes \na\na\nal\nEI\n<I\n.l\n(iI\n.l\ncl\n<t\ncl\ncl\n<l\ml\ncl\n~I\n!!\n,!\nc!\ncl\nc!\n!!\n<I\n!!\n,,\nc!\ncl\nc!\n1!\n!!\n;a\n<a\ 

Intel® i960® Core internal bus address 

0000 1708H 

Default 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31:06 0 Reserved 

05 0 

04 O2 

03 O2 

02 O2 

01 O2 

00 O2 

8-42 

Application Accelerator Interrupt Pending - when set, an end of chain condition has been signaled by the 
Application Accelerator. When clear, no interrupt condition exists. 

Performance Monitor Interrupt Pending - when set, at least one of the programmable event counters 
and/or the Global Time Stamp Counter contains an overflow condition. Application software identifies the 
counter by reading the Event Monitoring Interrupt Status register (EMISR). 

When clear, no interrupt condition exists. 

Reserved. 

DMA Channel 2 Interrupt Pending - when set, an end of chain of channel active condition has been 
Signaled by DMA channel 2. When clear, no interrupt condition exists. 

DMA Channel 1 Interrupt Pending - when set, an end of chain of channel active condition has been 
signaled by DMA channel 1. When clear, no interrupt condition exists. 

DMA Channel 0 Interrupt Pending - when set, an end of chain of channel active condition has been 
Signaled by DMA channel O. When clear, no interrupt condition exists. 

Developer's Manual 



int'et Intel® 80303 /10 Processor 
PCI and Peripheral Interrupt Controller Unit 

8.7.6 XINT7 Interrupt Status Register- X71SR 

The XINT7 Interrupt Status Register (X7ISR) contains the current pending XINT7 interrupts. The 
source of the XINT7 interrupt can be the internal peripheral devices connected through the XINT7 
Interrupt Latch. The interrupts which can be generated on the XINT7# input are detailed in 
Section 8.4.3, "Intel® 80303 I/O Processor: Internal Peripheral Interrupt Routing" on page 8-24. 

The X7ISR is used by application software to determine the source of an interrupt on the XINT7# 
input and to clear that interrupt. All bits within this register are defined as read only. The bits within 
this register are cleared when the source of the interrupt (status register source shown in Table 8-4) 
are cleared. The X7ISR reflects the current state of the input to the XINT7 Interrupt Latch. 

Due to the asynchronous nature of the 80303 I/O processor peripheral units, multiple interrupts can 
be active when application software reads the X7ISR register. Application software must handle 
these multiple interrupt conditions appropriately. In addition, application software may 
subsequently read the X7ISR register to determine if additional interrupts have occurred during 
interrupt processing for the prior interrupts. All interrupts from the X7ISR register will be at the 
same priority level within the i960 core processor. 

Table 8-23 details the bit definition of the X7ISR. 

Table 8-23. XINT7 Interrupt Status Register- X71SR 

lOP [ 
Attributes 

PCI [ 
Attributes 

31 28 24 20 16 12 8 4 o 

Intel® i960® Core internal bus address 

0000 1704H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadIWrite 
RC = Read Clear 
RO = Read Only 

Bit Default 

31 :04 0 

03 O2 

02 O2 

01 O2 

00 O2 

Developer's Manual 

NA = Not Accessible 

Description 

Reserved 

Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the start BIST request 
in the ATUBISTR register. When clear, no start BIST interrupt is pending. 

Messaging Unit Interrupt Pending - when set, an interrupt from the Messaging Unit is pending. When 
clear, no interrupt is pending. 

12C Interrupt Pending - when set, an interrupt is from the 12C Bus Interface Unit is pending. When clear, 
no interrupt is pending. 

Reserved 

8-43 



Intel@ 80303 110 Processor intel· PCI and Peripheral Interrupt Controller Unit 

8.7.7 NMllnterrupt Status Register - NISR 

The NMI Interrupt Status Register (NISR) contains the current pending NMI interrupts. The source 
of the NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt 
Latch or the external NMI# input pin. The interrupts which can be generated on the NMI# input 
are detailed in Section 8.4.3. "Intel® 80303 I/O Processor: Internal Peripheral Interrupt Routing" 
on page 8-24. 

The NMI Interrupt Status Register is used by application software to determine the source of an 
interrupt on the NMI# input and to clear that interrupt. All of the bits within the NISR are read 
only. The bits within this register are cleared when the source of the interrupt (status register source 
shown in Table 8-5) are cleared. The NISR reflects the current state of the input to the NMI 
Interrupt Latch. 

Due to the asynchronous nature of the 80303 I/O processor peripheral units, multiple interrupts can 
be active when the application software reads the NISR register. Application software must handle 
these multiple interrupt conditions appropriately. In addition, application software may 
subsequently read the NISR register to determine if additional interrupts have occurred during 
interrupt processing for the prior interrupts. All interrupts from the NISR register will be at the 
same priority level within the i960 core processor. 

N ole: Although the NMI# input of the i960 core processor is edge triggered, the external NMI# input of 
the 80303 I/O processor requires a level input and must be latched external to the 80303 I/O 
processor. 

Table 8-24 details the bit definitions for the NMI interrupt status register. 

Table 8-24. NMllnterrupt Status Register- NISR (Sheet 1 of 2) 

Bit 

lOP [ 
Attributes 

Intel® i960® Core internal bus address 

0000 1700H 

Default 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

RW = ReadIWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :12 0 Reserved 

11 

10 

09 

08 

8-44 

0 

O2 

O2 

O2 

Bus Interface Unit Error - when set. a PCI or internal bus error condition exists within the BIU. When 
clear. no error condition exists. 

Application Accelerator Unit Error - when set. an internal bus error condition exists within AA unit. When 
clear. no error exists. 

External NMI# Interrupt - when set. an interrupt is pending on the external NMI# input. When clear. no 
interrupt exists. 

Messaging Unit Interrupt - when set. an NMI interrupt or error exists in the Messaging Unit. When clear. 
no error exits. 

Developer's Manual 



intel· 
Intel@ 80303 I/O Processor 

PCI and Peripheral Interrupt Controller Unit 

Table 8-24. NMllnterrupt Status Register- NISR (Sheet 2 of 2) 

Bit 

07 

06 

05 

04 

03 

02 

01 

00 

lOP [ 
Attributes 

31 28 24 20 16 12 8 o 

Intel® i960® Core internal bus address 

0000 1700H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Default 

O2 

O2 

O2 

O2 

O2 

O2 

O2 

NA = Not Accessible 

Description 

DMA Channel 2 Error - when set, a PCI or internal bus error condition exists within DMA channel. When 
clear, no error exists. 

DMA Channel 1 Error - when set, a PCI or internal bus error condition exists within DMA channel. When 
clear, no error exists. 

DMA Channel 0 Error - when set, a PCI or internal bus error condition exists within DMA channel. When 
clear, no error exists. 

Secondary Bridge Error - when set, a PCI error condition exists within the secondary interface of the 
bridge. When clear, no error exists. 

Primary Bridge Interface Error - when set, a PCI error condition exists within the primary interface of the 
bridge. When clear, no error exists. 

Secondary ATU Error - when set, a PCI or internal bus error condition exists within the secondary ATU. 
When clear, no error exists. 

Primary ATU Error - when set, a PCI or internal bus error condition exists within the primary ATU. When 
clear, no error exists. 

Memory Controller Error - when set, an error condition exists within the MCU. The bit indicates one of 
the following conditions: 

• A single-bit correctable or un correctable ECC error. 

• A mUlti-bit correctable or un correctable ECC error. 

When clear, no error exists. 

Developer's Manual 8-45 





Faults 9 

9.1 

Figure 9-1. 

This chapter describes the Intel® 80303 I/O processor fault handling facilities. Subjects covered 
include the fault handling data structures and fault handling mechanisms. See Section 9.10, "Fault 
Reference" on page 9-22 for detailed information on each fault type. 

Fault Handling Overview 

The Intel® i960® architecture defines various conditions in code and/or the processor's internal 
state that could cause the processor to deliver incorrect or inappropriate results or that could cause 
it to choose an undesirable control path. These are called fault conditions. For example, the 
architecture defines faults for divide-by-zero and overflow conditions on integer calculations with 
an inappropriate operand value. 

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set of 
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to handle 
processor-generated faults. 

Fault-Handling Data Structures 

Fault 
Fault 

Intel® 80303 Fault 
1/0 Processor Table Handling 

r-- f- ~ Procedures 

I-
System 

~ 
Supervisor 

~ Procedure Stack 
Table 

User 
Stack 

A8048-01 

The fault table contains pointers to fault handling procedures. The system procedure table 
optionally provides an interface to any fault handling procedure and allows faults to be handled in 
supervisor mode. Stack frames for fault handling procedures are created on either the user or 
supervisor stack, depending on the mode in which the fault is handled. When the processor is in the 
interrupted state, the processor uses the interrupt stack. 

Developer's Manual 9-1 



Inte/@ 80303 I/O Processor 
Faults int:et 

9-2 

Once these data structures and the code for the fault procedures are established in memory, the 
processor handles faults automatically and independently from application software. 

The processor can detect a fault at any time while executing instructions, whether from a program, 
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor 
determines the fault type and selects a corresponding fault handling procedure from the fault table. 
It then invokes the fault handling procedure by means of an implicit call. As described later in this 
chapter, the fault handler call can be: 

• A local call (call-extended operation) 

• A system-local call (local call through the system procedure table) 

• A system-supervisor call (supervisor call through the system procedure table) 

A normal fault condition is handled by the processor in the following manner: 

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to 
Section 7.8, "Returns" on page 7-19 for more information. 

• When the fault call is a system-supervisor call from user mode, the processor switches to the 
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. This record includes information on the 
fault and the processor's state when the fault was generated. 

• The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the 
fault table or through the system procedure table (for system fault calls). 

After the fault record is created, the processor executes the selected fault handling procedure. 
When a fault is recoverable (i.e., the program can be resumed after handling the fault) the Return 
Instruction Pointer (RIP) is defined for the fault being serviced (Section 9.10, "Fault Reference" on 
page 9-22, and the processor resumes execution at the RIP upon return from the fault handler. 
When the RIP is undefined, the fault handling procedure can create one by using the flushreg 
instruction followed by a modification of the RIP in the previous frame. The fault handler can also 
call a debug monitor or reset the processor instead of resuming prior execution. 

This procedure call mechanism also handles faults that occur: 

• While the processor is servicing an interrupt 

• While the processor is servicing another fault 

Developer's Manual 



9.2 

Table 9-1. 

Fault Types 

Intel® 80303 I/O Processor 
Faults 

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each 
fault has a unique type and sUbtype number. When the processor detects a fault, it records the fault 
type and subtype numbers in the fault record. It then uses the type number to select the fault 
handling procedure. 

The fault handling procedure can optionally use the sUbtype number to select a specific fault 
handling action. The 80303 I/O processor recognizes i960 architecture-defined faults and a new 
fault subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the 80303 I/O 
processor detects, arranged by type and subtype. Text that follows the table gives column 
definitions. 

Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record 

Number Name 
Number or 

Name 
Bit Position 

OH OVERRIDE NA NA See section 8.10.1, 
"Overrides" (pg. 8-23) 

OH PARALLEL NA NA 
see Section 9.6.4, "Parallel 

Faults" on page 9-11 

Bit 1 INSTRUCTION 00010002H 
Bit2 BRANCH 00010004H 
Bit3 CALL 00010008H 

1H TRACE Bit4 RETURN 0001 0010H 
BitS PRERETURN 0001 0020H 
Bit6 SUPERVISOR 0001 0040H 
Bit 7 MARK/BREAKPOI NT 0001 0080H 

1H INVALlD_OPCODE 00020001 H 

2H OPERATION 2H UNIMPLEMENTED 00020002H 
3H UNALIGNED 00020003H 
4H INVALID_OPERAND 00020004H 

3H ARITHMETIC 
1H INTEGER_OVERFLOW 00030001 H 
2H ZERO-DIVIDE 00030002H 

4H Reserved 

SH CONSTRAINT 1H RANGE 00050001 H 
, 

6H Reserved 

7H PROTECTION Bit 1 LENGTH 00070002H 

8H - 9H Reserved 

AH TYPE 1H MISMATCH OOOA 0001H 

BH - FH Reserved 

Developer's Manual 9-3 



Intel@ 80303 liD Processor 
Faults 

9-4 

In Table 9-1: 

• The first (left-most) column contains the fault type numbers in hexadecimal. 

• The second column shows the fault type name. 

• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as 
a bit position in the fault record's 8-bit fault subtype field. The bit position method of 
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more 
fault subtypes may occur simultaneously. 

• The fourth column gives the fault subtype name. For convenience, individual faults are 
referenced by their fault-subtype names. Thus an OPERATION.lNVALID_OPERAND fault is 
referred to as an INVALID_OPERAND fault; an ARlTHMETIC.lNTEGER_OVERFLOW 
fault is referred to as an INTEGER_OVERFLOW fault. 

• The fifth column shows °the encoding of the word in the fault record that contains the fault type 
and fault sUbtype numbers. 

Other i960 processor family members may provide extensions that recognize additional fault 
conditions. Fault type and sUbtype encoding allows all faults to be included in the fault table: those 
that are common to all i960 processors and those that are specific to one or more family members. 
The fault types are used consistently for all family members. For example, Fault Type 4H is 
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H 
to store the pointer to the floating point fault handling procedure. 

Developer's Manual 



9.3 

Figure 9-2. 

Fault Table 

Intel@ 80303 I/O Processor 
Faults 

The fault table (Figure 9-3) is the processor's pathway to the fault handling procedures. It can be 
located anywhere in the address space. From the Process Control Block, the processor obtains a 
pointer to the fault table during initialization. 

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the 
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the 
fault handling procedure for the type of fault that occurred. Once called, a fault handling procedure 
has the option of reading the fault subtype or SUbtypes from the fault record when determining the 
appropriate fault recovery action. 

Fault Table and Fault Table Entries 

31 Fault Table 

PARALLEUOVERRIDE Fault Entry 

TRACE Fault Entry 

OPERATION Fault Entry 

ARITHMETIC Fault Entry 

CONSTRAINT Fault Entry 

PROTECTION Fault Entry 

TYPE Fault Entry 

. 

o 

~ 

OOH 

OBH 

10H 

1BH 

20H 

2BH 

30H 

3BH 

40H 

4BH 

50H 

TL..-____________ -ITFCH 

31 Local-Call Entry 2 1 0 

!aloIn 
n+4 

~------------------------------------------------------------------------------------------~ 

Fault-Handler Procedure Address 

31 System-Call Entry 2 1 a 
Fault-Handler Procedure Number 

0000 027FH 

o Reserved (Initialize to 0) 

A6404-01 

Developer's Manual 9-5 



fntef@ 80303 liD Processor 
Faults in1:et 

9-6 

As indicated in Figure 9-3, two fault table entry types are allowed: local-call entry and system-call 
entry. Each is two words in length. The entry type field (bits a and I of the entry's first word) and 
the value in the entry's second word determine the entry type. 

local-call entry 
(type OOz) 

system-call entry 
(type 1Oz) 

Provides an instruction pointer for the fault handling procedure. The 
processor uses this entry to invoke the specified procedure by means of an 
implicit local-call operation. The second word of a local procedure entry is 
reserved. It must be set to zero when the fault table is created and not 
accessed after that. 

Provides a procedure number in the system procedure table. This entry must 
have an entry type of 10z and a value in the second word of 0000 027FH. 
U sing this entry, the processor invokes the specified fault handling procedure 
by means of an implicit call-system operation similar to that performed for 
the calls instruction. A fault handling procedure in the system procedure 
table can be called with a system-local call or a system-supervisor call, 
depending on the entry type in the system-procedure table. 

Other entry types (Ol z and lIz) are reserved and have unpredictable behavior. 

To summarize, a fault handling procedure can be invoked through the fault table in any of three 
ways: a local call, a system-local call or a system-supervisor call. 

Developer's Manual 



9.4 

9.5 

Stack Used in Fault Handling 

Intef® 80303 110 Processor 
Faults 

The i960 architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the 
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is 
generated. There is, however, one exception: if the user stack is active when a fault is generated 
and the fault handling procedure is called with an implicit system supervisor call, the processor 
switches to the supervisor stack to handle the fault. 

Fault Record 

When a fault occurs, the processor records information about the fault in a fault record in memory. 
The fault handling procedure uses the information in the fault record to correct or recover from the 
fault condition and, if possible, resume program execution. The fault record is stored on the same 
stack that the fault handling procedure uses to handle the fault. 

Developer's Manual 9-7 



Intel@ 80303 110 Processor 
Faults 

9.5.1 

9-8 

Fault Record Description 

Figure 9-3 shows the fault record's structure. In this record, the fault's type number and sUbtype 
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields, 
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that 
caused the processor to fault. 

When a fault is generated, the existing PC and AC register contents are stored in their respective fault 
record fields. The processor uses this information to resume program execution after the fault is handled. 

The Resumption Field is used to store information about a pending trace fault. When a trace fault 
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pending 
trace may be lost depending on the non-trace fault encountered. The Trace Reporting paragraph for 
each fault specifies whether the pending trace is kept or lost. 

Developer's Manual 



intel· 
Figure 9-3. 

9.5.2 

Fault Record 

31 

Fault Data 

Intel® 80303 I/O Processor 
Faults 

Intel@a0960 
Local Bus Address 

o Is Was 

NFP-96 NFP-(n+ 1 r32 

NFP-88 NFP-24-n'32 

NFP-84 NFP-20-n'32 

NFP-76 NFP-12-n'32 

•••••••••• l1li ••••••••••• I11III. NFP-72 NFP-8-n'32 

Address of Faulting Instruction (n) 

Resumption Information 

~----------------------------------------~ 

Override Fault Data 

Fault Data 

Note: "NFP" means New Frame Pointer 

D Reserved 

Fault Record Location 

NFP-68 

NFP-64 

NFP-52 

NFP-48 

NFP-44 

NFP-32 

NFP-4-n'32 

NFP-64 

A6406-01 

The fault record is stored on the stack that the processor uses to execute the fault handling 
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt 
stack. The fault record begins at byte address NFP-l. NFP refers to the new frame pointer that is 
computed by adding the memory size allocated for padding and the fault record to the new stack 
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80 
bytes for the fault record. 

Developer's Manual 9-9 



Intel@ 80303 /10 Processor 
Faults in1:et 
Figure 9-4. 

9-10 

Storage of the Fault Record on the Stack 

Current Stack 
(Local, Supervisor, or Interrupt Stack) 

31 o 

1 Current Frame 

~------------------------------------------~SP 

Local Stack or Supervisor Stack2 

31 0 NSp1 f P,dd''''' Aco, 1 

Stack F,,'I R",,,' I IFault 

Growth } ... ------------------------------------------II ~ecord 
j 1 N.wF,~e I 

Notes: 
1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) 

is the same as SP. 
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, 

the processor switches to the supervisor stack. 

A6405-01 

Developer's Manual 



9.6 

9.6.1 

9.6.2 

9.6.3 

9.6.4 

Multiple and Parallel Faults 

Inte/@ 80303 I/O Processor 
Faults 

Multiple fault conditions can occur during a single instruction execution and during multiple 
instruction execution when the instructions are executed by different units within the processor. 
The following sections describe how faults are handled under these conditions. 

Multiple Non-Trace Faults on the Same Instruction 

Multiple fault conditions can occur during a single instruction execution. For example, an 
instruction can have an invalid operand and unaligned address. When this situation occurs, the 
processor is required to recognize and generate at least one of the fault conditions. The processor 
may not detect all fault conditions and reports only one detected non-trace fault on a single 
instruction. 

In a multiple fault situation, the reported fault condition is left to the implementation. 

Multiple Trace Fault Conditions on the Same Instruction 

Trace faults on different instructions cannot happen concurrently, because trace faults are precise 
(Section 9.9, "Precise and Imprecise Faults" on page 9-20). Multiple trace fault conditions on the 
same instruction are reported in a single trace fault record (with the exception of prereturn trace, 
which always happens alone). To support multiple fault reporting, the trace fault uses bit positions 
in the fault -subtype field to indicate occurrences of multiple faults of the same type (Table 9-1). 

Multiple Trace and Non-Trace Fault Conditions on the Same 
Instruction 

The execution of a single instruction can create one or more trace fault conditions in addition to 
multiple non-trace fault conditions. When this occurs: 

• The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned in the 
"Trace Reporting" paragraph for that fault in Section 9.10, "Fault Reference" on page 9-22. 

• The processor services one of the non trace faults. 

• Finally, the trace is serviced upon return from the non-trace fault handler if it was not 
dismissed in step 1. 

Parallel Faults 

The 80303 I/O processor exploits the architecture tolerance of out-of-order instruction execution, 
by issuing instructions to independent execution units within the processor. The following 
subsections describe how the processor handles faults in this environment. 

Developer's Manual 9-11 



Intel@ 80303 110 Processor 
Faults intel. 
9.6.4.1 

9-12 

Faults on Multiple Instructions Executed in Parallel 

When AC.nif=O, imprecise faults relative to different instructions executing in parallel may be 
reported in a single parallel fault record. For these conditions, the processor calls a unique fault 
handler, the PARALLEL fault handler (Section 9.9.4, "No Imprecise Faults (AC.nif) Bit" on 
page 9-21). This mechanism allows instructions that can fault to be executed in parallel with other 
instructions or out of order. 

In parallel fault situations, the processor saves the fault type and subtype of the second and 
subsequent faults detected in the optional section of the fault record. The optional section is the 
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored. 
The fault handling procedure for parallel faults can then analyze the fault record and handle the 
faults. The fault record for parallel faults is described in the next section. 

When the RIP is undefined for at least one of the faults found in the parallel fault record, then the 
RIP of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can 
either create a RIP and return or call a debug monitor to analyze the faults. 

When the RIP is defined for all faults found in the fault record, then it points to the next instruction 
not yet executed. The parallel fault handler can simply return to the next instruction not yet 
executed with a ret instruction. 

Consider the following code example, where the muli and the addi instructions both have overflow 
conditions. AC.om=O, AC.nif = 0, and both instructions are in the instruction cache at the time of 
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and the 
faults that these instructions can generate (ARITHMETIC) are imprecise. 

muli g2, g4, g6; 

addi g8, g9, gIO; # results in integer overflow 

The fault on the addi is detected before the fault on the muli because the muli takes longer to 
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi 
instruction (Section 9.9.5, "Controlling Fault Precision" on page 9-21), which is when the muli 
fault is detected. The processor builds a parallel fault record with information relative to both faults 
and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovered by 
storing the desired result of the instruction in the proper destination register and setting the AC.of 
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler 
routine then returns to the next instruction not yet executed in the program flow. 

On the 80303 I/O processor, the muli overflow fault is the only fault that can happen with a delay. 
Therefore, parallel fault records can report a maximum of two faults, one of which must be a muli 
ARITHMETIC. INTEGER_OVERFLOW fault. 

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local 
parallel fault handlers are not supported by the architecture and have unpredictable behavior. 
Tracing is disabled upon entry into the parallel fault handler (PC.te is cleared). It is restored upon 
return from the handler. To prevent infinite internal loops, the parallel fault handler should not set 
PC.te. 

Developer's Manual 



infel· 
9.6.4.2 Fault Record for Parallel Faults 

Intel® 80303 110 Processor 
Faults 

When parallel faults occur, the processor selects one of the faults and records it in the first 16 bytes 
of the fault record as described in Section 9.5.1, "Fault Record Description" on page 9-8. The 
remaining parallel faults are written to the fault record's optional section, and the fault handling 
procedure for parallel faults is invoked. Figure 9-3 shows the structure of the fault record for 
parallel faults. 

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional section 
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel fault 
records are stored incrementally in the fault record starting at byte offset NFP-68. The fault record 
for each additional fault contains only the fault type, fault SUbtype, address-of-faulting-instruction 
and the optional fault section. (For example, when two parallel faults occur, the fault record for the 
second fault is located from NFP-96 to NFP-6S.) 

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. For the 
80303 I/O processor, a maximum of two faults are reported in the parallel fault record, and one of 
them must be the ARITHMETIC.lNTEGER_OVERFLOW fault on a muli instruction. 

Developer's Manual 9-13 



Intel@ 80303 I/O Processor 
Faults intel· 
9.6.5 

9.6.6 

9-14 

Override Faults 

The 80303 I/O processor can detect a fault condition while the processor is preparing to service a 
previously detected fault. When this occurs, it is called an override condition. This section 
describes this condition and how the processor handles it. 

A normal fault condition is handled by the processor in the following manner: 

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to 
Section 7.8, "Returns" on page 7-19 for more information. 

• When the fault call is a system-supervisor call from user mode, the processor switches to the 
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. 

• The IP of the first instruction of the fault handler is accessed through the fault table or through 
the system procedure table (for system fault calls). 

A fault that occurs during any of the above actions is called an override fault. In response to this 
condition, the processor does the following: 

• Switches the execution mode to supervisor. 

• Selects the override condition that shows that the writing of the fault record was unsuccessful. 
If no such fault exists, the processor selects one of the other fault conditions. This method 
ensures that the fault handler has information regarding the fault record write. 

• Saves information pertaining to the override condition selected. The fault record describes the 
first fault as described previously. Field 01)rpe contains the fault type of the second fault, field 
OSubtype contains the fault subtype of the second fault and field override-fault-data contains 
what would normally be the fault data field for the second fault type. 

• Attempts to access the IP of the first instruction in the override fault handler through the 
system procedure table. 

It should be noted that a fault that occurs while the processor is actually executing a fault handling 
procedure is not an override fault. The override fault entry is entry O. When the override fault entry 
in the fault table points to a location beyond the system procedure table, the processor enters 
system error mode. Override fault conditions include: PROTECTION and 
OPERATION. UNIMPLEMENTED faults. 

An override fault handler must be accessed through a system-supervisor call. Local and 
system-local override fault handlers are not supported by the architecture and have an 
unpredictable behavior. Tracing is disabled upon entry into the override fault handler (PC.te is 
cleared). It is restored upon retum from the handler. To prevent infinite internal loops, the override 
fault handler should not set PC.te. 

System Error 

When a fault is detected while the processor is in the process of servicing an override or parallel 
fault, the processor enters the system error state. Note that "servicing" indicates that the processor 
has detected the override or parallel fault, but has not begun executing the fault handling 
procedure. This type of error causes the processor to enter a system error state. In this state, the 
processor uses only one read bus transaction to signal the fail code message; the address of the bus 
transaction is the fail code itself. See Section 11.3.1.5, "FAIL# Code" on page 11-9. 

Developer's Manual 



9.7 

9.7.1 

9.7.2 

9.7.2.1 

Fault Handling Procedures 

Intel@ 80303 I/O Processor 
Faults 

The fault handling procedures can be located anywhere in the address space except within the 
on-chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor 
can execute the procedure in user or supervisor mode, depending on the fault table entry type. 

Possible Fault Handling Procedure Actions 

The processor allows easy recovery from many faults that occur. When fault recovery is possible, 
the processor's fault handling mechanism allows the processor to automatically resume work on 
the program or pending interrupt when the fault occurred. Resumption is initiated with a ret 
instruction in the fault handling procedure. 

When recovery from the fault is not possible or not desirable, the fault handling procedure can take 
one of the following actions, depending on the nature and severity of the fault condition (or 
conditions, in the case of multiple faults): 

• Return to a point in the program or interrupt code other than the point of the fault. 

• Call a debug monitor. 

• Perform processor or system shutdown with or without explicitly saving the processor state 
and fault information. 

When working with the processor at the development level, a common fault handling strategy is to 
save the fault and processor state information and call a debugging tool such as a monitor. 

Program Resumption Following a Fault 

Because of the wide variety of faults, they can occur at different times with respect to the faulting 
instruction: 

• Before execution of the faulting instruction (e.g., fetch from on-chip RAM) 

• During instruction execution (e.g., integer overflow) 

• Immediately following execution (e.g., trace) 

Faults Happening Before Instruction Execution 

The following fault types occur before instruction execution: 

• ARITHMETIC.ZERO_DIVIDE 

• TYPE.MISMATCH 

• PROTECTION.LENGTH 

• All OPERATION sUbtypes except UNALIGNED 

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP 
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before 
the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon 
return from the fault handling procedure. 

Developer's Manual 9-15 



Intel® 80303 110 Processor 
Faults 

9.7.2.2 

9.7.2.3 

9.7.3 

9.7.4 

9-16 

Faults Happening During Instruction Execution 

The following fault types occur during instruction execution: 

• CONSTRAINT.RANGE 

• OPERATION. UNALIGNED 

• ARITHMETIC.INTEGER_OVERFLOW 

For these faults, the fault handler must explicitly modify the RIP to return to the faulting 
application (except for ARITHMETIC.INTEGER_OVERFLOW). 

When a fault occurs during or after execution of the faulting instruction, the fault may be 
accompanied by a program state change such that program execution cannot be resumed after the 
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored 
in the destination. When the destination register is the same as one of the. source registers, the 
source value is lost, making it impossible to re-execute the faulting instruction. 

Faults Happening After Instruction Execution 

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to 
the next instruction in the flow: 

• TRACE 

• ARITHMETIC.INTEGER_OVERFLOW 

In general, resumption of program execution with no changes in the program's control flow is 
possible with the following fault types or SUbtypes: 

• All TRACE Subtypes 

The effect of specific fault types on a program is defined in Section 9.10, "Fault Reference" on 
page 9-22 under the heading Program State Changes. 

Return Instruction Pointer (RIP) 

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image of 
the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the fault 
handler after a flushreg. The RIP in the previous frame points to an instruction where program 
execution can be resumed with no break in the program's control flow. It generally points to the 
faulting instruction or to the next instruction to be executed. In some instances, however, the RIP is 
undefined. RIP content for each fault is described in Section 9.10, "Fault Reference" on page 9-22. 

Returning to Point in Program Where Fault Occurred 

As described in Section 9.7.2, "Program Resumption Following a Fault" on page 9-15, most faults 
can be handled such that program control flow is not affected. In this case, the processor allows a 
program to be resumed at the point where the fault occurred, following a return from a fault 
handling procedure (initiated with a ret instruction). The resumption mechanism used here is 
similar to that provided for returning from an interrupt handler. 

Also, to restore the PC register from the fault record upon return from the fault handler, the fault 
handling procedure must be executed in supervisor mode either by using a supervisor call or by 
running the program in supervisor mode. See the pseudocode in Section 6.2.54, "ret" on page 6-76. 

Developer's Manual 



9.7.5 

9.7.6 

Table 9-2. 

Intel@ 80303 I/O Processor 
Faults 

Program Return Point Other than Occurred Fault 

A fault handling procedure can also return to a point in the program other than where the fault 
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling 
procedure should perform the following steps: 

1. Flush the local register sets to the stack with a flush reg instruction. 

2. Modify the RIP in the previous frame. 

3. Clear the trace-fault-pending flag in the fault record's process controls field before the return 
(optional) . 

4. Execute a return with the ret instruction. 

Use this technique carefully and only in situations where the fault handling procedure is closely 
coupled with the application program. 

Fault Controls 

For certain fault types and subtypes, the processor employs register mask bits or flags that determine 
whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes these flags 
and masks, the data structures in which they are located, and the fault SUbtypes they affect. 

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this 
mask is discussed in Section 9.10, "Fault Reference" 011 page 9-22. 

The Arithmetic Controls no imprecise faults (AC.nit') bit controls the synchronizing of faults for a 
category offaults called imprecise faults. The function of this bit is described in Section 9.9, 
"Precise and Imprecise Faults" on page 9-20. 

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode 
bits enable trace modes; the trace enable bit (PC. te) enables trace fault generation. The use of these 
bits is described in the trace faults description in Section 9.10, "Fault Reference" on page 9-22. 
Further discussion of these flags is provided in Chapter 10, "Tracing and Debugging", 

Fault Control Bits and Masks 

Flag or Mask Name Location Faults Affected 

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW 

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults 

Trace Enable Bit Process Controls (PC) Register All TRACE Faults 

Trace Mode Trace Controls (TC) Register 
All TRACE Faults except hardware 

breakpoint traces and fmark 

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault 

The unaligned fault mask bit is located in the process control block (PRCB), which is read from the 
fault configuration word (located at address PRCB pointer + OCH) during initialization. It controls 
whether unaligned memory accesses generate a fault. 

Developer's Manual 9-17 



Intel@ 80303 110 Processor 
Faults inlet 
9.8 

9.8.1 

9.8.2 

9-18 

Fault Handling Action 

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and, if 
possible, restores the program state when the fault recovery action completes. No software other 
than the fault handling procedures is required to support this activity. 

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a local 
call, a system-local call and a system-supervisor call. 

The following subsections describe actions the processor takes while handling faults. It is not 
necessary to read these sections to use the fault handling mechanism or to write a fault handling 
procedure. This discussion is provided for those readers who wish to know the details of the fault 
handling mechanism. 

Local Fault Call 

When the selected fault handler entry in the fault table is an entry type 0002 (a local procedure), the 
processor operates as described in Section 7.1.3.1, "Call Operation" on page 7-6, with the 
following exceptions: 

• A new frame is created on the stack that the processor is currently using. The stack can be the 
user stack, supervisor stack or interrupt stack. 

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-I 
(Figure 9-4). 

• The processor gets the IP for the first instruction in the called fault handling procedure from 
the fault table. 

• The processor stores the fault return code (001 2) in the PFP return type field. 

When the fault handling procedure is not able to perform a recovery action, it performs one of the 
actions described in Section 9.7.2, "Program Resumption Following a Fault" on page 9-15. 

When the handler action results in recovery from the fault, a ret instruction in the fault handling 
procedure allows processor control to return to the program that was executing when the fault 
occurred. Upon return, the processor performs the action described in Section 7.1.3.2, "Retum 
Operation" on page 7-6, except that the arithmetic controls field from the fault record is copied into 
the AC register. When the processor is in user mode before execution of the return, the process 
controls field from the fault record is not copied back to the PC register. 

System-Local Fault Call 

When the fault handler selects an entry for a local procedure in the system procedure table (entry 
type 1°2), the processor performs the same action as is described in the previous section for a local 
fault call or return. The only difference is that the processor gets the fault handling procedure's 
address from the system procedure table rather than from the fault table. 

Developer's Manual 



intel· 
9.8.3 

9.8.4 

System-Supervisor Fault Call 

Intel® 80303 liD Processor 
Faults 

When the fault handler selects an entry for a supervisor procedure in the system procedure table, 
the processor performs the same action described in Section 7.1.3.1, "Call Operation" on page 7-6, 
with the following exceptions: 

• When the fault occurs while in user mode, the processor switches to supervisor mode, reads 
the supervisor stack pointer from the system procedure table and switches to the supervisor 
stack. A new frame is then created on the supervisor stack. 

• When the fault occurs while in supervisor mode, the processor creates a new frame on the current 
stack. When the processor is executing a supervisor procedure when the fault occurred, the current 
stack is the supervisor stack; when it is executing an interrupt handler procedure, the current stack 
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.) 

• The fault record is copied into the area allocated for it in the new stack frame, beginning at 
NFP-l (Figure 9-4). 

• The processor gets the IP for the first instruction of the fault handling procedure from the 
system procedure table (using the index provided in the fault table entry). 

• The processor stores the fault return code (001 2) in the PFP register return type field. When the 
fault is not a trace, parallel or override fault, it copies the state of the system procedure table 
trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fault is a trace, 
parallel or override fault, the trace enable bit is cleared. 

On a return from the fault handling procedure, the processor performs the action described in 
Section 7.1.3.2, "Return Operation" on page 7-6 with the addition of the following: 

• The fault record arithmetic controls field is copied into the AC register. 

• When the processor is in supervisor mode prior to the return from the fault handling procedure 
(which it should be), the fault record process controls field is copied into the PC register. The 
mode is then switched back to user, if it was in user mode before the call. 

• The processor switches back to the stack it was using when the fault occurred. (When the 
processor was in user mode when the fault occurred, this operation causes a switch from the 
supervisor stack to the user stack.) 

• When the trace-fault-pending flag and trace enable bits are set in the PC field of the fault record, 
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time. 

The user should note that PC register restoration causes any changes to the process controls done 
by the fault handling procedure to be lost. 

Faults and Interrupts 

When an interrupt occurs during an instruction that faults, an instruction that has already faulted, or 
fault handling procedure selection, the processor: 

1. Completes the selection ofthe fault handling procedure. 

2. Creates the fault record. 

3. Services the interrupt just prior to executing the first instruction of the fault handling procedure. 

4. Handles the fault upon return from the interrupt. 

Handling the interrupt before the fault reduces interrupt latency. 

Developer's Manual 9-19 



Inte!® 80303 liD Processor 
Faults 

9.9 

9.9.1 

9.9.2 

9.9.3 

9-20 

Precise and Imprecise Faults 

As described in Section 9.10.5. '"PARALLEL Faults" on page 9-27, the i960 architecture - to 
support parallel and out-of-order instruction execution - allows some faults to be generated together. 

The processor provides two mechanisms for controlling the circumstances under which faults are 
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchronize 
faults. See Section 9.9.5, "Controlling Fault Precision" on page 9-21 for more information. Faults 
are categorized as precise, imprecise and asynchronous. The following subsections describe each. 

Precise Faults 

A fault is precise if it meets all of the following conditions: 

• The faulting instruction is the earliest instruction in the instruction issue order to generate a fault. 

• All instructions after the faulting instruction, in instruction issue order, are guaranteed not to 
have executed. 

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in 
parallel records with other precise or imprecise faults. 

Imprecise Faults 

Faults that do not meet all of the requirements for precise faults are considered imprecise. For 
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be 
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may 
not be possible to access the source operands of the instruction. This is because they may have been 
modified by subsequent instructions executed out of order. However, the RIP of some imprecise 
faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and guarantees 
the return from the fault handler to the original flow of execution. Faults that the architecture 
allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE. 

Asynchronous Faults 

Asynchronous faults are those whose occurrence has no direct relationship to the instruction 
pointer. This group includes MACHINE faults, which are not implemented on the 80303 I/O 
processor. 

Developer's Manual 



int:et 
9.9.4 

9.9.5 

No Imprecise Faults (AC.nif) Bit 

Intel® 80303 I/O Processor 
Faults 

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. When 
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise. 
Therefore, setting this bit reduces processor performance. When AC.nif is clear, several imprecise 
faults may be reported together in a parallel fault record. Precise faults can never be found in 
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif 
= 0 can produce a parallel fault. 

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure 
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors 
from which recovery is not needed. This also allows the processor to take advantage of internal 
pipelining, which can speed up processing time. When only precise faults are allowed, the 
processor must restrict the use of pipelining to prevent imprecise faults. 

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For 
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked 
integer-overflow faults and the fault handling procedure cannot be closely coupled with the 
application to perform imprecise fault recovery. 

Controlling Fault Precision 

The syncf instruction forces the processor to complete execution of all instructions that occur prior 
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This 
instruction has two uses: 

• It forces faults to be precise when the AC.nif bit is clear. 

• It ensures that all instructions are complete and all faults are generated in one block of code 
before executing another block of code. 

The implicit fault call operation synchronizes all faults. In addition, the following instructions or 
operations perform synchronization of all faults except MACHINE. PARITY: 

• Call and return operations including call, calix, calls and ret instructions, plus the implicit 
interrupt and fault call operations. 

• Atomic operations including atadd and atmod. 

Developer's Manual 9-21 



Intel@ 80303 110 Processor 
Faults in1:et 
9.10 Fault Reference 

This section describes each fault type and subtype and gives detailed information about what is 
stored in the various fields of the fault record. The section is organized alphabetically by fault type. 
The following paragraphs describe the information that is provided for each fault type. 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Gives the number that appears in the fault record fault-type field when 
the fault is generated. 

Lists the fault sUbtypes and the number associated with each fault 
sUbtype. 

Describes the purpose and handling of the fault type and each subtype. 

Describes the value saved in the image of the RIP register in the stack 
frame that the processor was using when the fault occurred. In the RIP 
definitions, "next instruction" refers to the instruction directly after the 
faulting instruction or to an instruction to which the processor can 
logically return when resuming program execution. 

Note: Note that the discussions of many fault types specify that the RIP contains the address of the 
instruction that would have executed next had the fault not occurred. 

Fault IP: Describes the contents of the fault record's fault instruction pointer field, 
typically the faulting instruction's IP. 

Fault Data: Describes any values stored in the fault record's fault data field. 

Class: Indicates if a fault is precise or imprecise. 

Program State Changes: Describes the process state changes that would prevent re-executing the 
faulting instruction if applicable. 

Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected on the 
faulting instruction, also if and when the fault is serviced. 

Note: Additional information specific to particular implementations of the i960 architecture. 

9-22 Developer's Manual 



intel· Intel@ 80303 I/O Processor 
Faults 

9.10.1 ARITHMETIC Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting: 

Developer's Manual 

3H 

Number 

OH 

lH 

2H 

3H-FH 

Name 

Reserved 

INTEGER_OVERFLOW 

ZERO_DIVIDE 

Reserved 

Indicates a problem with an operand or the result of an arithmetic instruction. 
An INTEGER_OVERFLOW fault is generated when the result of an integer 
instruction overflows its destination and the AC register integer overflow mask 
is cleared. Here, the result's n least significant bits are stored in the 
destination, where n is destination size. Instructions that generate this fault 
are: 

addi subi stis 

stib shli ADDl<cc> 

muli divi SUBI<cc> 

divo divi 

ediv remi 

remo modi 

IP of the instruction that would have executed next if the fault had not 
occurred. 

I P of the faulting instruction. 

Imprecise. 

Faults may be imprecise when executing with the AC.nif bit cleared. 
INTEGER_OVERFLOW and ZERO_DIVIDE faults may not be recoverable 
because the result is stored in the destination before the fault is generated 
(e.g., the faulting instruction cannot be re-executed if the destination register 
was also a source register for the instruction). 

The trace is reported upon return from the arithmetic fault handler. 

9-23 



Intel@ 80303 110 Processor 
Faults 

9.10.2 CONSTRAINT Faults 

Fault Type: 

Fault Subtype: 

5H 

Number 

OH 

1H 

2H-FH 

Name 

Reserved 

RANGE 

Reserved 

Function: 
Indicates the program or procedure violated an architectural constraint. 

A CONSTRAINT.RANGE fault is generated when a FAULT <CC> instruction 
is executed and the AC register condition code field matches the condition 
required by the instruction. 

RIP: No defined value. 

Fault IP: Faulting instruction. 

Class: Imprecise. 

Program State Changes: These faults may be imprecise when executing with the AC.nif bit cleared. No 
changes in the program's control flow accompany these faults. A 
CONSTRAINT.RANGE fault is generated after the FAULT <CC> instruction 
executes. The program state is not affected. 

Trace Reporting: Serviced upon return from the Constraint fault handler. 

9-24 Developer's Manual 



intel· Intel® 80303 110 Processor 
Faults 

9.10.3 OPERATION Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Fault Data: 

Class: 

Program State Changes: 

Trace Reporting: 

Notes: 

Developer's Manual 

2H 

Number Name 

OH Reserved 

1H INVALlD_OPCODE 

2H UNIMPLEMENTED 

3H UNALIGNED 

4H INVALID_OPERAND 

5H - FH Reserved 

Indicates the processor cannot execute the current instruction because of 
invalid instruction syntax or operand semantics. 

An INVALlD_OPCODE fault is generated when the processor attempts to 
execute an instruction containing an undefined opcode or addressing mode. 

An UNIMPLEMENTED fault is generated when the processor attempts to 
execute an instruction fetched from on-chip data RAM, or when a non-word 
or unaligned access to a memory-mapped region is performed, or when 
attempting to write memory-mapped region OxFF0084XX when rights have 
not been granted. 

An UNALIGNED fault is generated when the following conditions are present: 
(1) the processor attempts to access an unaligned word or group of words in 
non-MMR memory; and (2) the fault is enabled by the unaligned-fault mask 
bit in the PRCS fault configuration word. 

An INVALID_OPERAND fault is generated when the processor attempts to 
execute an instruction that has one or more operands having special 
requirements that are not satisfied. This fau.lt is generated wh!3n specifying a 
non-existent SFR or non-defined sysetl, leetl, deetl or Intetl 
command, or referencing an unaligned long-, triple- or quad-register group, 
or by referencing an undefined register, or by writing to the RIP register (r2). 

No defined value. 

Address of the faulting instruction. 

When an UNALIGNED fault is signaled, the effective address of the 
unaligned access is placed in the fault record's optional data section, 
beginning at address NFP-24. This address is useful to debug a program that 
is making unintentional unaligned accesses.\ 

Imprecise. 

For the INVALlD_OPCODE and UNIMPLEMENTED faults (case: store to 
MMR), the destination of the faulting instruction is not modified. (For the 
UNALIGNED fault, the memory operation completes correctly before the fault 
is reported.) In ali other cases, the destination is undefined. 

OPERATION.UNALIGNED fault: the trace is reported upon return from the 
OPERATION fault handler. Ali other sUbtypes: the trace event is lost. 

OPERATION. UNALIGNED fault is not implemented on i960 Kx and Sx 
CPUs. 

9-25 



Inte/@ 80303 110 Processor 
Faults 

9.10.4 OVERRIDE Faults 

Fault Type: 

Fault Subtype: 

Fault OType: 

Fault OSubtype: 

Function: 

Trace Reporting: 

Note: 

9-26 

Fault table entry = 10H 
The fault type in the fault record on the stack equals the fault type of the initial 
fault. The fault type in the internal registers equals the fault type of the 
additional fault detected while atlempting to service the initial fault. 

The fault subtype in the fault record on the stack equals the fault subtype of 
the initial fault. The fault subtype in the internal registers equals the fault 
subtype of the additional fault detected while attempting to service the initial 
fault. 

The fault type of the additional fault detected while attempting to deliver the 
program fault. 

The fault subtype of the additional fault detected while attempting to deliver 
the program fault. 

The override fault handler must be accessed through a system-supervisor 
call. Local and system-local override fault handlers are not supported and 
have an unpredictable behavior. Tracing is disabled upon entry into the 
override fault handler (PC.te is cleared). It is restored upon return from the 
handler. To prevent infinite internal loops, the override fault handler should 
not set PC.te. 

Same behavior as if the override condition had not existed. Refer to the 
description of the original program fault. 

Fault handlers must not be placed in a GMU-protected area. 

Developer's Manual 



infel· 
9.10.5 PARALLEL Faults 

Fault Type: 

Fault Subtype: 

Fault OType: 

Fault OSubtype: 

Number of Faults: 

Function: 

Fault table entry = OH 

Intel® 80303 I/O Processor 
Faults 

Fault type in fault record = fault type of one of the parallel faults. 

Fault subtype of one of the parallel faults. 

OH 

Number of parallel faults. 

Number of parallel faults. 

See Section 9.6.4, "Parallel Faults" on page 9-11 for a complete description of 
parallel faults. When the AC.nif=O, the architecture permits the processor to 
execute instructions in parallel and out-of-order by different execution units. 
When an imprecise fault occurs in any of these units, it is not possible to stop 
the execution of those instructions after the faulting instruction. It is also 
possible that more than one fault is detected from different instructions almost 
at the same time. 

When there is more than one outstanding fault at the point when all execution 
units terminate, a parallel fault situation arises. The fault record of parallel 
faults contains the fault information of all faults that occurred in parallel. The 
number of parallel faults is indicated in the Parallel Faults Field (NFP-20). See 
Figure 9-3. The maximum size of the fault record is implementation 
dependent and depends on the number of parallel and pipeline execution 
units in the specific implementation. 

The parallel fault handler must be accessed through a system-supervisor call. 
Local and system-local parallel fault handlers are not supported by the i960 
processor and have an unpredictable behavior. Tracing is disabled upon entry 
into the parallel fault handler (PC.te is cleared). It is restored upon return from 
the handler. To prevent infinite internal loops, the parallel fault handler should 
not set PC.te. 

RIP: When all parallel fault types allow a RIP to be defined, the RIP is the next 
instruction in the flow of execution, otherwise it is undefined. 

Fault IP: IP of one of the faulting instructions. 

Class: Imprecise. 

Program State Changes: State changes associated with all the parallel faults. 

Trace Reporting: If all parallel fault types allow for a resumption trace, then a trace is reported 
upon return from the parallel fault handler, or else it is lost. 

Developer's Manual 9-27 



Inte/® 80303 I/O Processor 
Faults intel· 
9.10.6 PROTECTION Faults 

Fault Type: 

Fault Subtype: 

Function: 

7H 

Number 

Bit 0 

Bit 1 

Name 

Reserved 

LENGTH 

Indicates that a program or procedure is attempting to perform an illegal 
operation that the architecture protects against. 

A PROTECTION.LENGTH fault is generated when the index operand, used 
in a calls instruction, points to an entry beyond the extent of the system 
procedure table. 

Reserved 

RIP: IP of the faulting instruction. 

Fault IP: LENGTH: IP of the faulting instruction. 

Class: Imprecise. (PROTECTION. LENGTH is precise even though the 
PROTECTION fault class is imprecise.) 

Program State Changes: LENGTH: The instruction does not execute. 

Trace Reporting: PROTECTION.LENGTH: The trace event is lost. 

~~ Developer's Manual 



int:et 
9.10.7 TRACE Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Fault IP: 

Developer's Manual 

lH 

Number 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Bit 5 

Bit 6 

Bit 7 

Name 

Reserved 

INSTRUCTION 

BRANCH 

CALL 

Intel® 80303 I/O Processor 
Faults 

RETURN 

PRERETURN 

SUPERVISOR 

MARK/BREAKPOINT 

Indicates the processor detected one or more trace events. The event tracing 
mechanism is described in Chapter 10, "Tracing and Debugging·'. 

A trace event is the occurrence of a particular instruction or instruction type in 
the instruction stream. The processor recognizes seven different trace 
events: instruction, branch, call, return, prereturn, supervisor, mark. It detects 
these events only if the TC register mode bit is set for the event. If the PC 
register trace enable bit is also set, the processor generates a fault when a 
trace event is detected. 

A TRACE fault is generated following the instruction that causes a trace event 
(or prior to the instruction for the prereturn trace event). The following trace 
modes are available: 

INSTRUCTION 

BRANCH 

CALL 

RETURN 

PRERETURN 

SUPERVISOR 

Generates a trace event following every instruction. 

Generates a trace event following any branch 
instruction when branch is taken (a branch trace event 
does not occur on branch-and-link or call instructions). 

Generates a trace event following any call or 
branch-and-link instruction or an implicit fault call. 

Generates a trace event following a ret. 

Generates a trace event prior to any ret instruction, 
provided the PFP register pre return trace flag is set 
(the processor sets the flag automatically when a call 
trace is serviced). A prereturn trace fault is always 
generated alone. 

Generates a trace event following any calls instruction 
that references a supervisor procedure entry in the 
system procedure table and on a return from a 
supervisor procedure where the return status type in 
the PFP register is 0102 or 0112. 

MARK/BREAKPOINT Generates a trace event following the mark 
instruction. The MARK fault subtype bit, however, is 
used to indicate a match of the instruction-address 
breakpoint register or the data-address breakpoint 
register as well as the fmark and mark instructions. 

Instruction immediately following the instruction traced, in instruction issue 
order, except for PRERETURN. For PRERETURN, the RIP is the return 
instruction traced. 

IP of the faulting instruction for all except prereturn trace and call trace (on 
implicit fault calls), for which the fault IP field is undefined. 

Precise. 

IP of the faulting instruction. 

9-29 



9.10.8 TYPE Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Class: 

Program State Changes: 

Trace Reporting: 

9-30 

AH 

Number Name 

OH Reserved 

1H MISMATCH 

2H-FH Reserved 

Indicates a program or procedure attempted to perform an illegal operation 
on an architecture-defined data type or a typed data structure. 

A TYPE.MISMATCH fault is generated when attempts are made to: 

Execute a privileged (supervisor-mode only) instruction while the processor is 
in user mode. 

modpc 

sysctl 

icctl 

dcctl 

intctl 

inten 

intdis 

• Write to on-chip data RAM while the processor is in supervisor-only write 
mode and BCON.irp is set. 

• Write to the first 64 bytes of on-chip data RAM while the processor is in 
either user or supervisor mode and BCON.sirp is set. 

• Write to memory-mapped registers in supervisor space from user mode. 

• Write to timer registers while in user mode, when timer registers are 
protected against user-mode writes. 

No defined value. 

Imprecise. 

The fault happens before execution of the instruction. Machine state is not 
changed. 

The trace event is lost. 



Tracing and Debugging 10 

10.1 

This chapter describes the Intel® 80303 I/O processor facilities for runtime activity monitoring. 
The Intel® i960® architecture provides facilities for monitoring processor activity through trace 
event generation. A trace event indicates a condition where the processor has just completed 
executing a particular instruction or a type of instruction or where the processor is about to execute 
a particular instruction. When the processor detects a trace event, it generates a trace fault and 
makes an implicit call to the fault handling procedure for trace faults. This procedure can, in turn, 
call debugging software to display or analyze the processor state when the trace event occurred. 
This analysis can be used to locate software or hardware bugs or for general system monitoring 
during program development. 

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits 
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to 
generate trace events explicitly in the instruction stream. 

The 80303 I/O processor also provides four hardware breakpoint registers that generate trace events 
and trace faults. Two registers are dedicated to trapping on instruction execution addresses, while the 
remaining two registers can trap on the addresses of various types of data accesses. 

Trace Controls 

To use the architecture's tracing facilities, software must provide trace fault handling procedures, 
perhaps interfaced with a debugging monitor. Software must also manipulate the following registers 
and control bits to enable the various tracing modes and enable or disable tracing in general. 

• TC register mode bits 

• DABO-DABI registers' address field and enable bit (in the control table) 

• System procedure table supervisor-stack-pointer field trace control bit 

• IPBO-IPB 1 registers' address field (in the control table) 

• PC register trace enable bit 

• PFP register return status field prereturn trace flag (bit 3) 

• BPCON register breakpoint mode bits and enable bits (in the control table) 

These controls are described in the following subsections. 

Developer's Manual 10-1 



Intel® 80303 liD Processor 
Tracing and Debugging intel .. 
10.1.1 Trace Controls Register - TC 

The TC register (Table 10-1) allows software to define conditions that generate trace events. 

Table 10-1. Intel@ 80303 I/O Processor Trace Controls Register - TC 

10-2 

Trace Mode Bits 
Instruction Trace Mode -TC.i----------------------, 
Branch Trace Mode - TC.b ----------------------, 
Call Trace Mode -TC.c----------------------, 
Return Trace Mode - TC.r --------------------, 
Pre-Return Trace Mode -TC.p------------------, 
Supervisor Trace Mode - TC.s -----------------, 
Mark Trace Mode - TC.mk------------------, 

31 

I Reserved 

24 20 16 

12 8 4 

Hardware Breakpoint Event Flags 
'--------- Instruction-Address Breakpoint 0 - TC.iOf 

Instruction-Address Breakpoint 1 - TC.i1f 
Data-Address Breakpoint 0 - TC.dOf 
Data-Address Breakpoint 1 - TC.d1f 

o 

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions that 
the processor can detect. For example, when the call-trace mode bit is set, the processor generates a 
trace event when a call or branch-and-link operation executes. See Section 10.2, "Trace Modes" on 
page 10-3. The processor uses event flags to monitor which breakpoint trace events are generated. 

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register. On 
initialization, the TC register is read from the Control Table. modtc can then be used to set or clear 
trace mode bits as required. Updating TC mode bits may take up to four non-branching instructions to 
take effect. Software can access the breakpoint event flags using modtc. The processor automatically 
sets and clears these flags as part of its trace handling mechanism: the breakpoint event flag 
corresponding to the trace being serviced is set in the TC while servicing a breakpoint trace fault; the 
TC event flags are cleared upon retum from the trace fault handler. When the program is not in a trace 
fault handler, or when the trace is not for breakpoints, the TC event bits are clear. On the 80303 I/O 
processor, TC register bits 0, 8 through 23 and 28 through 31 are reserved. Software must initialize 
these bits to zero and cannot modify them afterwards. 

Developer's Manual 



10.1.2 

10.2 

10.2.1 

Intel@ 80303 110 Processor 
Tracing and Debugging 

PC Trace Enable Bit and Trace-Fault-Pending Flag 

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field 
of the fault record control tracing (Section 3.6.3, "Process Controls Register - PC" on page 3-16). 
The trace enable bit enables the processor's tracing facilities; when set, the processor generates 
trace faults on all trace events. 

Typically, software selects the trace modes to be used through the TC register. It then sets the trace 
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the 
processor performs as described in Section 10.5.2, "Tracing on Calls and Returns" on page 1 0-11. 

The update of pc.te through modpc may take up to four non-branching instructions to take effect. 
The update of pc.te through call and return operations is immediate. 

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remember 
to service a trace fault when a trace event is detected at the same time as another event (e.g., 
non-trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and 
depending on the event type and execution mode, the trace-fault-pending flag in the PC field of the 
fault record may be used to generate a fault upon return from the non-trace fault event 
(Section 10.5.2.4, "Tracing on Return from Implicit Call: Fault Case" on page 10-13). 

Trace Modes 

This section defines trace modes enabled through the TC register. These modes can be enabled 
individually or several modes can be enabled at once. Some modes overlap, such as call-trace 
mode and supervisor-trace mode. 

• Instruction trace 

• Branch trace 

• Mark trace 

• Prereturn trace 

• Call trace 

• Return trace 

• Supervisor trace 

See Section 10.4, "Handling Multiple Trace Events" on page 10-10 for a description of processor 
function when multiple trace events occur. 

Instruction Trace 

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC 
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is 
executed. A debug monitor can use this mode (TC.i = 1, pc.te = 1) to single-step the processor. 

Developer's Manual 10-3 



Intel® 80303 I/O Processor 
Tracing and Debugging 

10.2.2 

10.2.3 

10.2.4 

10.2.5 

10-4 

Branch Trace 

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates a 
branch-trace fault immediately after a branch instruction executes, if the branch is taken. A 
branch-trace event is not generated for conditional-branch instructions that do not branch, 
branch-and-link instructions, and call-and-return instructions. 

Call Trace 

When the call-trace mode is enabled in TC (TC.c = 1) and pc.te is set after the call operation, the 
processor generates a call-trace fault when a call instruction (call, calix or calls) or a 
branch-and-link instruction (bal or balx) executes. See Section 10.5.2.1, "Tracing on Explicit Call" 
on page 10-11 for a detailed description of call tracing on explicit instructions. Interrupt calls are 
never traced. 

An implicit call to a fault handler also generates a call trace if TC.c and pc.te are set after the call. 
Refer to Section 10.5.2.2, "Tracing on Implicit Call" on page 10-12 for a complete description of 
this case. 

When the processor services a trace fault, it sets the preretum-trace flag (PFP register bit 3) in the 
new frame created by the call operation or in the current frame if a branch-and-link operation was 
performed. The processor uses this flag to determine whether or not to signal a prereturn-trace 
event on a ret instruction. 

Return Trace 

When the return-trace mode is enabled in TC and pc.te is set after the return instruction, the 
processor generates a return-trace fault for a return from explicit call (pFP.rrr = 000 or 
PFP.rrr = 0Ix). See Section 10.5.2.3, "Tracing on Return from Explicit Call" on page 10-13. 

A return from fault may be traced and a return from interrupt cannot. See Section 10.5.2.4, 
"Tracing on Return from Implicit Call: Fault Case" on page 10-13 and Section 10.5.2.5, "Tracing 
on Return from Implicit Call: Interrupt Case" on page 10-13 for details. 

Prereturn Trace 

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the 
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on 
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor 
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode. 

If another trace event occurs at the same time as the prereturn-trace event, the processor generates a 
fault on the non-prereturn-trace event ftrst. Then, on a return from that fault handler, it generates a 
fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause two 
successive trace faults to be generated between instruction boundaries. 

Developer's Manual 



inteJ· 
10.2.6 

10.2.7 

10.2.7.1 

10.2.7.2 

Supervisor Trace 

Intel® 80303 I/O Processor 
Tracing and Debugging 

When supervisor-trace mode is enabled in TC, and pc.te is set, the processor generates a 
supervisor-trace fault after either of the following: 

• A call-system instruction (calls) executes from user mode and the procedure table entry is for 
a system-supervisor call. 

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 011 2 
(i.e., return from calls). 

This trace mode allows a debugging program to determine kernel-procedure call boundaries within 
the instruction stream. 

Mark Trace 

Mark trace mode allows trace faults to be generated at places other than those specified with the 
other trace modes, using the mark instruction. It should be noted that the MARK fault sUbtype bit 
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the 
data-address breakpoint registers as well as the fmark and mark instructions. 

Software Breakpoints 

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction 
stream. When mark trace mode is enabled and pc.te is set, the processor generates a mark trace 
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace 
fault regardless of whether or not mark trace mode is enabled, provided pc.te is set. If PC.te is 
clear, mark and fmark behave like no-ops. 

Hardware Breakpoints 

The hardware breakpoint registers are provided to enable generation of trace faults on instruction 
execution and data access. 

The 80303 I/O processor implements two instruction and two data address breakpoint registers, denoted 
IPBO, IPB 1, DABO and DAB 1. The instruction and data address breakpoint registers are 32-bit registers. 
The instruction breakpoint registers cause a break after execution of the target instruction. The DABx 
registers cause a break after memory access has been issued to the bus controller. 

Hardware breakpoint registers may be armed or disarmed. When registers are armed, hardware 
breakpoints can generate an architectural trace fault. When registers are disarmed, no action occurs, 
and execution continues normally. Since instructions are always word aligned, the two low-order bits 
of IPBx registers act as control bits. Control bits for DABx registers reside in the Breakpoint Control 
(BPCON) register. BPCON enables data address breakpoint registers, and sets specific modes of these 
registers. Hardware breakpoints are globally enabled by the process controls trace enable bit (pC.te). 

The IPBx, DABx, and BPCON registers may be accessed using normal load and store instructions 
(except for loads from IPBx register). The application must be in supervisor mode for a legal 
access to occur. See Section 3.3, "Memory-Mapped Control Registers (MMRs)" on page 3-6 for 
more information on the address for each register. 

Applications must request modification rights to the hardware breakpoint resources, before 
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as 
described in the following section. 

Developer's Manual 10-5 



Intel® 80303 I/O Processor 
Tracing and Debugging in1:et 
10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources 

Application code must always first request and acquire modification rights to the hardware breakpoint 
resources before any attempt is made to modify them. This mechanism is employed to eliminate 
simultaneous usage of breakpoint resources by emulation tools and application code. An emulation 
tool exercises supervisor control over breakpoint resource allocation. If the emulator retains control of 
breakpoint resources, none are available for application code. If an emulation tool is not being used in 
conjunction with the device, modification rights to breakpoint resources are granted to the application. 
The emulation tool may relinquish control of breakpoint resources to the application. 

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers 
without first obtaining rights, an OPERATION. UNIMPLEMENTED fault is generated. In this 
case, the breakpoint resource are not modified, whether accessed through a sysctl instruction or as 
a memory-mapped register. 

Application code requests modification rights by executing the sysctl instruction and issuing the 
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current 
available breakpoint resources are returned as the src!dst parameter (srcldst must be a register). The 
src2 parameter is not used. Results returned in the src!dst parameter must be interpreted as shown 
in Table 10-2. . 

Table 10-2. src/dst Encoding 

src/dst7:4 srcldst3:0 

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints 

NOTE: src/dst 31 :8 are reserved and always return zeroes. 

The following code sample illustrates the execution of the breakpoint resource request. 

Example 10-1. Execution of Breakpoint Resource Reques 

10-6 

Idconst Ox600, r4 

sysctl r4, r4, r4 

# Load the Breakpoint Resource 

# Request message type into r4. 

# Issue the request. 

Assume in this example that after execution of the sysctl instruction, the value of r4 is 
0000 0022H. This indicates that the application has gained modification rights to both instruction 
and both data address breakpoint registers. If the value returned is zero, the application has not 
gained the rights to the breakpoint resources. 

Because the 80303 I/O processor does not initialize the breakpoint registers from the control table 
during initialization (as i960 Cx processors do), the application must explicitly initialize the 
breakpoint registers in order to use them once modification rights have been granted by the sysctl 
instruction. 

Developer's Manual 



10.2.7.4 Breakpoint Control Register - BPCON 

Intef® 80303 I/O Processor 
Tracing and Debugging 

The format of the BPCON registers are shown in Table 10-3 and Table 10-6. Each breakpoint has 
four control bits associated with it: two mode and two enable bits. The enable bits (DABx.eO, 
DABx.el) in BPCON act to enable or disable the data address breakpoints, while the mode bits 
(DABx.mO, DABx.ml) dictate which type of access generates a break event. 

Table 10-3. Breakpoint Control Register - BPCON 

Table 10-4. 

31 28 24 20 16 12 8 4 0 

LBA [jrv /rv /rv /rv/ rv frv/rv/rv/rw/rw/rwfrw/rw/rw/rw/rw/ rv /rv/rv /rv/rv ~v /r:/rv/rv /rv /rv/ rv/rv/rv / rv /rv/ 
~tlllJrl I I I I I I I 11":'I>;JI'll ],11111111 

PCI [~a~a\1a~a~~a\1~a~~a~~a~"'fa~~a~a~~a'f~a~a~a~a\1a'(la~a",,a~~a~a'(l~ 

LBA: 8440H Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 

PCI: NA RW = ReadlWrite, RS = Read/Set, RC = Read Clear, LBA = 80303 local bus address, 
PCI = PCI Configuration Address Offset 

31 :24 OOH Reserved. Initialize to O. 

21 O2 DAB1 Breakpoint Enable Control Bit: DAB1.e1 

20 O2 DAB1 Breakpoint Enable Control Bit: DAB1.eO 

19 O2 DABO Breakpoint Mode Control Bit: DABO.m1 

18 O2 DABO Breakpoint Mode Control Bit: DABO.mO 

17 O2 DABO Breakpoint Enable Control Bit: DABO.e1 

16 O2 DABO Breakpoint Enable Control Bit: DABO.eO 

Programming the BPCON register is summarized in Table 10-4 and Table 10-5. 

Configuring Data Address Breakpoint Registers - DABx 

PC.te DABx.e1 DABx.eO Description 

0 X X No action. With PC.te clear, breakpoints are globally disabled. 

X 0 0 No action. DABx is disabled. 

1 0 1 Reserved. 

1 1 0 Reserved. 

1 1 1 Generate a Trace Fault. 

NOTE: "X" = don't care. Reserved combinations must not be used. 

The mode bits of BPCON control the type of access that generates a fault, trace message, or break 
event, as summarized in Table 10-5. 

Table 10-5. Programming Data Address Breakpoint Modes - DABx 

DABx.m1 DABx.mO Mode 

0 0 Break on Data Write Access Only. 

0 1 Break on Data Read or Data Write Access. 

1 0 Break on Data Read Access. 

1 1 Break on Data Read or Data Write Access. 

Developer's Manual 10-7 



Intel® 80303 //0 Processor 
Tracing and Debugging 

10.2.7.5 Data Address Breakpoint Registers - DABx 

The format for the Data Address Breakpoint (DAB) registers is shown in Table 10-6. Each 
breakpoint register contains a 32-bit address of a byte to match on. 

A breakpoint is triggered when both a data access's type and address matches that specified by 
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are 
contained in BPCON (Section 10.2.7.4, "Breakpoint Control Register - BPCON" on page 10-7), 
qualify the access types that DAB matches. An access-type match selects that DAB register to 
perform address checking. An address match occurs when the byte address of any of the bytes 
referenced by the data access matches the byte address contained within a selected DAB. 

Consider the following example. DABO is enabled to break on any data read access and has a value 
of lOOFH. Any of the following instructions causes the DABO breakpoint to be triggered: 

Example 10-2. DABO Breakpoint Trigger Instructions 

ldob 

ldos 

Id 

Id 

Idl 

Idq 

Note that the instruction: 

Idt OxlOOO,r8 

OxlOOf,r8 

OxlOOe,r8 

OxlOOc,r8 

OxlOOd,r8 

Oxl008,r8 

OxlOOO,r8 

/* even unaligned accesses */ 

does not cause the breakpoint to be triggered because byte IOOFH is not referenced by the triple 
word access. 

Data address breakpoints can be set to break on any data read, any data write, or any data read or 
data write access. All accesses qualify for checking. These include explicit load and store 
instructions, and implicit data accesses performed by other instructions and normal processor 
operations. 

For data accesses to the memory-mapped control register space, it is unpredictable whether 
breakpoint traces are generated when the access matches the breakpoints and also results in an 
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault is 
always reported in this case. 

Table 10-6. Data Address Breakpoint Register - DABx 

10-8 

PCI [ 

LBA: Ch 0-8420H 
Ch 1-8424H 

PCI: NA 

31 :00 OOOOOOOOH 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = ReadlWrite, RS = Read/Set, RC = Read Clear, LBA = 80303 local bus address, 
PCI = PCI Configuration Address Offset 

Data Address. 

Developer's Manual 



10.2.7.6 Instruction Breakpoint Registers - IPBx 

Intel@ 80303 I/O Processor 
Tracing and Debugging 

The format for the instruction breakpoint registers is given in Table 10-7. The upper 30 bits of the 
IPBx register contain the word-aligned instruction address on which to break. The two low-order 
bits indicate the action to take upon an address match. 

Table 10-7. Instruction Breakpoint Register - IPBx 

LBA [ 

PCI [ 

LBA: 

PCI: 

31 :02 

01 

00 

Ch 0-8400H 
Ch 1-8404H 
NA 

OOOOOOOOH 

O2 

O2 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = ReadIWrite, RS = Read/Set, RC = Read Clear, LBA = 80303 local bus address, 
PCI = PCI Configuration Address Offset 

Instruction Address. 

IPBX Mode: IPB1 

IPBX Mode: IPBO 

Programming the instruction breakpoint register modes is shown in Table 10-8. 

On the 80303 I/O processor, the instruction breakpoint memory-mapped registers can be read by using 
the sysctl instruction only. They can be modified by sysctl or by a word-length store instruction. 

Storing directly to an IP breakpoint register may cause unexpected results if tracing is enabled. Any 
instructions in the superscalar template of a store operation that updates an IPB and any instructions 
in the subsequent superscalar template may trigger on the new or old value of the breakpoint register. 
The IP in the fault record may be that of the instruction that caused the breakpoint or may be the new 
value of the IPB register. The return IP in the fault record is always correct. 

If it is necessary to avoid this condition, use the modify memory-mapped control register operation 
of the sysctl instruction to update the IPB registers. 

Table 10-8. Instruction Breakpoint Modes 

PC.te IPBx.rn1 IPBx.rnO Action 

0 X X No action. Globally disabled. 

X 0 0 No action. IPBx disabled. 

1 0 1 Reserved. 

1 1 0 Reserved. 

1 1 1 Generate a Trace Fault. 

NOTE: "X" = don't care. Reserved combinations must not be used. 

Developer's Manual 10-9 



Intel@ 80303 I/O Processor 
Tracing and Debugging intel .. 
10.3 

10.4 

10.5 

10-10 

Generating a Trace Fault 

To summarize the information presented in the previous sections, the processor services a trace 
fault when PC.te is set and the processor detects any of the following conditions: 

• An instruction included in a trace mode group executes or is about to execute (in the case of a 
preretum trace event) and the trace mode for that instruction is enabled. 

• A fault call operation executes and the call-trace mode is enabled. 

• A mark instruction executes and the breakpoint-trace mode is enabled. 

• An fmark instruction executes. 

• The processor executes an instruction at an IP matching an enabled instruction address 
breakpoint (IPB) register. 

• The processor issues a memory access matching the conditions of an enabled data address 
breakpoint (DAB) register. 

Handling Multiple Trace Events 

With the exception of a preretum trace event, which is always reported alone, it is possible for a 
combination of trace events to be reported in the same fault record. The processor may not report 
all events; however, it always reports a supervisor event and it always signals at least one event. 

If the processor reports preretum trace and other trace types at the same time, it reports the other 
trace types in a single trace fault record first, and then services the prereturn trace fault upon return 
from the other trace fault. 

Trace Fault Handling Procedure 

The processor calls the trace fault handling procedure when it detects a trace event. See 
Section 9.7, "Fault Handling Procedures" on page 9-15 for general requirements for fault handling 
procedures. A trace fault handler must be invoked with an implicit system-supervisor call, this 
differs from other fault handling procedures. When the call is made, the processor clears the PC 
register trace enable bit (PC.te), disabling trace faults in the trace fault handler. Recall that for all 
other implicit or explicit system-supervisor calls, the processor replaces the trace enable bit with 
the system procedure table trace control bit. Clearing PC.te ensures that tracing is turned off when 
a trace fault handling procedure is being executed, thus preventing an endless loop of trace fault 
handling calls. 

The processor calls the trace fault handling procedure when it detects a trace event. See 
Section 9.7, "Fault Handling Procedures" on page 9-15 for general requirements for fault handling 
procedures. 

The trace fault handling procedure is involved in a specific way and is handled differently than 
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When 
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace 
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace enable 
bit is replaced with the system procedure table trace control bit. The exception handling of trace 
enable for trace faults ensures that tracing is turned off when a trace fault handling procedure is 
being executed. This is necessary to prevent an endless loop of trace fault handling calls. 

Developer's Manual 



intel· 
10.5.1 

10.5.2 

10.5.2.1 

Tracing and Interrupt Procedures 

Intel® 80303 110 Processor 
Tracing and Debugging 

When the processor invokes an interrupt handling procedure to service an interrupt, it disables 
tracing. It does this by saving the PC register's current state in the interrupt record, then clearing 
the PC register trace enable bit. 

On returning from the interrupt handling procedure, the processor restores the PC register to the 
state it was in prior to handling the interrupt, which restores the trace enable bit. See 
Section 10.5.2.2, "Tracing on Implicit Call" on page 10-12 and Section 10.5.2.5, "Tracing on 
Retum from Implicit Call: Interrupt Case" on page 1 0-13 for detailed descriptions of tracing on 
calls and retums from interrupts. 

Tracing on Calls and Returns 

During call and return operations, the trace enable flag (PC.te) may be altered. This section 
discusses how tracing is handled on explicit and implicit calls and returns. 

Since all trace faults (except prereturn) are serviced after execution of the traced instruction, 
tracing on calls and returns is controlled by the PC.te in effect after the call or the return. 

Tracing on Explicit Call 

Tracing an explicit call happens before execution of the first instruction of the procedure called. 

Tracing is not modified by using a call or calix instruction. Further, tracing is not modified by 
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is read 
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is 
cached on chip during initialization. The trace enable bit in effect before the calls is stored in the 
new PFP[O] bit and is restored upon return from the routine (Section 10.5.2.3, "Tracing on Retum 
from Explicit Calr' on page 10-13). The calls instruction and all instructions of the procedure 
called are traced according to the new PC.te. 

Table 10-9. Tracing on Explicit Call 

Call Calling Procedure Calling Procedure Saved PFP.rt2:0 Called Procedure 
Type Trace Enable Mode Trace Enable Bit 

call,callx PC.le user or supervisor 0°°2 PC.le 

calls PC.le supervisor 0°°2 PC.te 

01t2 
calls PC.te user Stores PC.te into SSP.te 

bit 0 of PFP.rt2:0 

Refer to Table 7-2, "Encoding of Return Status Field" on page 7-20). 

Developer's Manual 10-11 



Intel® 80303 110 Processor 
Tracing and Debugging 

10.5.2.2 Tracing on Implicit Call 

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault 
handler called. Table 10-10 summarizes all cases of tracing on implicit call. In the table, "a" is a bit 
variable that symbolizes the trace enable bit in Pc. 

Table 10-10 summarizes all cases. 

Table 10-10. Tracing on Implicit Call 

10-12 

Previous 

System 
Frame PC.te Value 

Call Pointer Source Target Used for 
Type 

Procedure 
Return PC.te PC.te Traces on 

Table Entry 
Status Implicit Call 

(PFP.rt2:0) 

00-Fault1 NA 001 a2 a a 

10-Fault1 00 001 a a a 

10-Fault1 10 001 a SSP.te SSP.te 

OO-Parallel/Override Fault x2 Type of trace fault not supported 
OO-Trace Fault 

10-Parallel/Override Fault 
00 Type of trace fault not supported 

10-Trace Fault 

10-Parallel/Override Fault 10 001 a 0 0 
10-Trace Fault 

Interrupt NA 111 a 0 0 

1. On 80303 110 processor, all faults except parallelfoverride and trace faults. 
2. "a" and "x" are bit variables. 

Tracing is not altered on the way to a local or a system-local fault handler, so the call is traced if 
PC.te and TC.c are set before the call. For an implicit system-supervisor call, PC.te is read from the 
Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before execution of 
the fIrst instruction of the non-trace fault handler (tracing is disabled on the way to a trace fault 
handler). 

On the 80303 I/O processor, the parallel/override fault handler must be accessed through a 
system-supervisor call. Tracing is disabled on the way to the parallel/override fault handler. 

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on 
the way to the trace fault handler. 

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never 
traced. 

Note that the Fault IP fIeld of the fault record is not defined when tracing a fault call, because there 
is no instruction pointer associated with an implicit call. 

Developer's Manual 



10.5.2.3 Tracing on Return from Explicit Call 

Table 10-11 shows all cases. 

Intel® 80303 I/O Processor 
Tracing and Debugging 

Table 10-11. Tracing on Return from Explicit Call 

10.5.2.4 

10.5.2.5 

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return 

0002 user or supervisor PC.te 

01a2 user PC.te 

01a2 supervisor t2 (from PFP.r2:0) 

Refer to Table 7·2, "Encoding of Return Status Field" on page 7·20. 

For a return from local call (return type 000), tracing is not modified. For a return from system call 
(return type ala, with pc.te equal to "a" before the call), tracing of the return and subsequent 
instructions is controlled by "a", which is restored in the pc.te during execution of the return. 

Tracing on Return from Implicit Call: Fault Case 

When the processor detects several fault conditions on the same instruction (referred to as the 
"target"), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the 
processor services a trace fault on the target if in supervisor mode before the return and if the trace 
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at FP-l6). 

If the processor is in user mode before the return, tracing is not altered. The pending trace on the 
target instruction is lost, and the return is traced according to the current pc.te. 

Tracing on Return from Implicit Call: Interrupt Case 

When an interrupt and a trace fault are reported on the same instruction, the instruction completes 
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if the 
interrupt handler did not switch to user mode. On the 80303 I/O processor, the interrupt handler 
returns directly to the trace fault handler. 

If the interrupt return is executed from user mode, the PC register is not restored and tracing of the 
return occurs according to the PC.te and TC.modes bit fields. 

Developer's Manual 10-13 





int:et 
Initialization and System Requirements11 

11.1 

This chapter describes the steps that the Intel® 80303 I/O processor performs during initialization. 
Discussed are the reset modes, the reset state and built-in self test (BIST) features. This chapter 
also describes the processor's basic system requirements - including power, ground and clock
and concludes with some general guidelines for high-speed circuit board design. 

Overview 

The 80303 I/O processor initialization can basically be separated into two steps: initialization of the 
Intel® i960® core processor and initialization of all of the other units. Four initialization modes are 
available; the selected mode is determined by the values of the RST_MODE# and RETRY signals 
when P _ RST# is asserted. These modes dictate when the i960 core processor initializes and when the 
primary PCI interface accepts transactions. 

Many of the 80303 I/O processor functional units require initialization before system operation. 
The order in which they are initialized is important and is dependent on the system design. There is 
no one single initialization process for the 80303 I/O processor. Instead, there are several options 
that may be considered. 

Note: Sample initialization code, technical notes and other developer resources are available on the Intel 
World Wide Web site at: http://www.intel.com. 

11.1.1 Core Initialization 

When the i960 core processor initialization begins, the processor uses an Initial Memory Image 
(IMI) to establish its state. The IMI includes: 

• Initialization Boot Record (IBR) - contains the addresses of the first instruction of the user's 
code and the PRCB. 

• Process Control Block (PRCB) - contains pointers to system data structures; also contains 
information used to configure the processor at initialization. 

• System data structures - the processor caches several data structure pointers internally at 
initialization. 

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and 
reinitialization instruction pointer are specified. Reinitialization is useful for relocating data 
structures from ROM to RAM after initialization. 

Developer's Manual 11-1 



Intel® 80303 110 Processor 
Initialization and System Requirements intel· 
11.1.2 

11.2 

11.2.1 

Table 11-1. 

11-2 

General Initialization 

The 80303 I/O processor supports several facilities to assist in system testing and start-up 
diagnostics. ONCE mode electrically removes the processor from a system. This feature is useful 
for system-level testing where a remote tester exercises the processor system. The 80303 I/O 
processor also supports JTAG boundary scan (Chapter 24. "Test Features"). During initialization, 
the processor performs an internal functional self test and local bus self test. These features are 
useful for system diagnostics to ensure basic CPU and system bus functionality. 

The processor is designed to minimize the requirements of its external system. It requires an input 
clock and clean power and ground connections (V ss and V cd. Since the processor can operate at a 
high frequency, the external system must be designed with considerations to reduce induced noise 
on signals, power and ground. 

Intel® 80303 I/O Processor Initialization 

Several functional units within the 80303 I/O processor must be initialized before system 
operation. These are the PCI-to-PCI Bridge, Address Translation Unit (ATU), i960 core processor, 
Memory Controller, and Secondary PCI Bus Arbiter. The order in which they are initialized is 
dependent on how the 80303 I/O processor is used in the system. The initialization process begins 
when the Primary PCI Bus Reset signal (P _ RST#) is asserted. 

Initialization Modes 

The initialization process is generally controlled through either an external host processor or the 
i960 core processor. Based on this assumption, there are four initialization modes. 

The mode is determined by the value of the RST_MODE# and RETRY signals, described in the 
next sections. Table 11-1 describes the relationship between the RST_MODE# and RETRY signal 
values and the initialization mode. 

Initialization Modes 

RST_MODE# RETRY Initialization Primary PCI Interface 
Intel® i960® Core 

Mode Processor 

0 0 Mode 0 Accepts Transactions Held in Reset 

0 1 Mode 1 Retries All Configuration Transactions Held in Reset 

1 0 Mode 2 Accepts Transactions Initializes 

1 1 Mode 3 (default) Retries All Configuration Transactions Initializes 

The RST _ MODE# signal is sampled on the rising edge of P _ RST#. The inverse value of this 
signal is then written to the Core Processor Reset bit in the Extended Bridge Control Register 
(EBCR). See Chapter 14, "PCI-to-PCI Bridge Unit". When RST MODE# is active and P RST# 
is asserted, the i960 core processor is held in reset until P _ RST# is deasserted. The i960 core 
processor reset is released when the reset bit in EBCR is cleared. When RST MODE# is inactive 
and P _ RST# is asserted, the i960 core processor is reset. The i960 core processor then begins its 
normal initialization sequence when P _ RST# is deasserted. 

Developer's Manual 



infel· 

11.2.2 

11.2.3 

11.2.4 

11.2.5 

Intel® 80303 110 Processor 
Initialization and System Requirements 

The RETRY signal is sampled on the rising edge of P _ RST#. The value of this signal is written to 
the Configuration Cycle Disable bit in the EBCR. When RETRY is active and P _RST# is 
de-asserted, the 80303 I/O processor signals a Retry on all PCI configuration cycles it receives on 
the primary PCI bus. When RETRY is inactive and P _ RST# is de-asserted, the 80303 I/O 
processor accepts PCI configuration cycles on the primary PCI bus. 

Figure 11-1 shows a flow chart of the initialization process. 

Mode a Initialization 

Mode 0 allows a host processor to configure the 80303 I/O processor peripherals while the i960 
core processor is held in reset. The host processor configures the PCI-to-PCI Bridge by assigning 
bus numbers, allocating PCI address space, and assigning IRQ numbers. The memory controller 
and ATU can also be initialized by the host processor. Program code for the i960 core processor 
may be downloaded into local memory by the host processor. 

The host processor clears the 80303 reset signal by clearing the Core Processor Reset bit in the 
EBCR. This deasserts the internal reset signal on the i960 core processor and the processor begins 
its initialization process. 

Mode 1 Initialization 

Intel does not recommend the use of Mode I initialization. 

Mode 2 Initialization 

Intel does not recommend the use of Mode 2 initialization. 

Mode 3 (Default Mode) 

Mode 3 allows the i960 core processor to initialize and control the initialization process before the 
host processor is allowed to configure the 80303 I/O processor peripherals. During this time, the 
primary PCI interface signals a Retry on all configuration cycles it receives until the i960 core 
processor clears the Configuration Cycle Disable bit in the EBCR. This option is only available 
when an initialization ROM is used. 

By allowing the i960 core processor to control the initialization process, it is possible to initialize 
the PCI configuration registers to values other than the default power-up values. Certain PCI 
configuration registers that are read only through PCI configuration cycles are read/write from the 
i960 core processor. This allows the programmer to customize the way the 80303 I/O processor 
appears to the PCI configuration software. 

Developer's Manual 11-3 



Intel® 80303 I/O Processor 
Initialization and System Requirements 

Figure 11-1. Initialization Flow Chart 

11-4 

Intei® 
80303 Core 
held in reset 

MODE 0 

Start 

MODE 3 

Enable bridge 
(clear config disable 

bit EBCR) 

Host 
configures bridge 

int'et 

Host processor 
prevented from 
configurig 
PCI-to-PCI Bridge 
Unit and the ATU 

A8042-01 

Developer's Manual 



intet· 
11.2.6 

11.2.7 

Intel® 80303 I/O Processor 
Initialization and System Requirements 

Secondary PCI Bus Arbitration Unit 

After reset, all devices controlled by the secondary PCI Bus Arbiter are set to low priority, except 
for the secondary PCI interface of the 80303, which is set to high priority. 

The secondary bus arbiter is reset by the S_RST# signal on the secondary interface. Whenever the 
secondary bus is reset, the secondary arbiter is reset moving all devices to their programmed 
priority levels and starting the round robin arbitration sequence on the lowest number device at 
each priority level. 

Internal Bus Arbitration Unit 

The internal bus arbitration logic is reset by the P _ RST# signal. The reset values of the registers 
are shown in Table 11-2. All bus masters are initialized to the highest priority. None of the devices 
are disabled at powerup. 

Table 11-2. Reset Values 

Internal Arbitration Register Reset Value Note 

Internal Arbitration Control Register (IACR) 0000 OOOOH All Bus Masters Enabled 

Master Latency Timer Register (MLTR) 0000 OFFFH Maximum Count Value 

Multi-Transaction Timer Register (MTTR) 0000 OOOOH Disabled 

11.2.8 Reset State Operation 

The P _ RST# signal, when asserted, causes the 80303 I/O processor to enter the reset state. All 
external signals go to a defined state, internal logic is initialized, and certain registers are set to 
defined values. 

P _RST# must be asserted when power is applied to the processor. The processor then stabilizes in 
the reset state. This power-up reset is referred to as cold reset. To ensure that all internal logic has 
stabilized in the reset state, a valid input clock (S _eLK) and Vee must be present and stable for a 
specified time before P _ RST# can be deasserted. 

The processor may also be cycled through the reset state after execution has started. This is referred 
to as warm reset. For a warm reset, P _ RST# must be asserted for a minimum number of clock 
cycles. Specifications for a cold and warm reset can be found in the 80960RM 110 Processor Data 
Sheet and the 80960RN 110 Processor Data Sheet. 

User software cannot reset the entire 80303 I/O processor; however, the sysctl instruction can reset 
the i960 core processor. The P _RST# signal must be asserted to enter the reset state. See 
Section 11.6, "Reinitializing and Relocating Data Structures" on page 11-21. 

Developer's Manual 11-5 



Intel@ 80303 110 Processor 
Initialization and System Requirements int:et 
11.3 Intel® i960® Core Processor Initialization 

Initialization describes the mechanism that the processor uses to establish its initial state and begin 
instruction execution. When i960 core processor initialization begins, the processor automatically 
configures itself with information specified in the IMI and performs its built-in self test based on 
the sampling of the STEST signal. The processor then branches to the first instruction of user code. 
See Figure 11-2 for a flow chart of i960 core processor initialization. 

The objective of the initialization sequence is to provide a complete, working initial state when the 
first user instruction executes. The user's start-up code needs only to perform several basic 
functions to place the processor in a configuration for executing application code. 

Figure 11-2. Processor Initialization Flow 

Hardware Reset In Mode 3 Software Reinitializatlon 

'-----+I Deassert FAIL# signal 

A6408-01 

11-6 Developer's Manual 



11.3.1 

Intel@ 80303 I/O Processor 
Initialization and System Requirements 

Self Test Function (STEST, FAIL#) 

As part of initialization, the 80303 I/O processor executes a local bus confidence self test, an 
alignment check for data structures within the initial memory image (IMI), and optionally, a 
built-in self test program. The self test (STEST) signal enables or disables built-in self test. The 
FAIL# signal indicates that the self tests failed by asserting FAIL#. During normal operations the 
FAIL# signal can be asserted when a core processor error is detected. The following subsections 
further describe these signal functions. 

Built-in self test checks basic functionality of internal data paths, registers and memory arrays 
on-chip. Built-in self test is not intended to be a full validation of processor functionality; it is 
intended to detect catastrophic internal failures and complement a user's system diagnostics by 
ensuring a confidence level in the processor before any system diagnostics are executed. 

Note: BIST applies only to the i960 core processor. 

11.3.1.1 

11.3.1.2 

The STEST Signal 

The STEST signal enables and disables Built-In Self Test (BIST). BIST can be disabled when the 
initialization time needs to be minimized or when diagnostics are simply not necessary. The 
STEST signal is sampled under the following conditions: 

• On the rising edge P _ RST# 

• On the rising edge of reset mode (RST_MODE#), if used. 

• On the rising edge of na internal bus reset (initiated after the Reset Internal Bus bit in the 
Extended Bridge Control Register (EBCR) is set). 

When STEST is asserted, the i960 core processor executes the built-in self test. When STEST is 
deasserted, the i960 core processor bypasses built-in self test. 

Intel® i960® Local Bus Confidence Test 

The local bus confidence test is always performed regardless of STEST signal value. The local bus 
confidence test reads eight words from the Initialization Boot Record (lBR) and performs a 
checksum on the words and the constant FFF FFFFH. The test passes only when the processor 
calculates a sum of zero (0). The test can detect catastrophic bus failures such as external address, 
data or control lines that are stuck, shorted or open. 

Developer's Manual 11-7 



Inte/® 80303 110 Processor 
Initialization and System Requirements intel .. 
11.3.1.3 The Fail Signal (FAIL#) 

The FAIL#signal signals errors in either the built-in self test or the bus confidence self test. FAIL# 
is asserted (low) for each self test (Figure 11-3): 

• When any test fails, the FAIL# signal remains asserted, a fail code message is driven onto the 
address bus, and the processor stops execution at the point of failure. 

• When a core processor error occurs, F AIL# is also asserted. See Section 11.3.104, "IMI 
Alignment Check and Core Processor Error" on page 11-8 for details. 

• When the test passes, FAIL# is deasserted. 

When FAIL# stays asserted, the only way to resume normal operation is to perform a reset operation. 
When the STEST signal is used to disable the built-in self test, the test does not execute; however, 
FAIL# still asserts at the point where the built-in self test would occur. FAIL# is deasserted after the 
bus confidence test passes. In Figure 11-3, all transitions on the FAIL# si~al are relative to S _ CLK 
as described in the IntefID 80960RM I/O Processor Datasheet and the Intel R 80960RN I/O Processor 
Datasheet. 

Figure 11-3. FAIL# Timing 

11.3.1.4 

11-8 

Intei®> 80303 Core 
Reset 

Built-in Self-test Status 

Pass 

Bus Confidence 
Test Status 

Pass 

FAIL# ! Built-in Self-test Intel 80303 Local Bus Confidence Test 

f.- 414,000 Cycles -~~-*e------132 Cycles ----~.I 

Note: Cycles = Number of S_CLK Periods 

AS043-01 

IMI Alignment Check and Core Processor Error 

The alignment check during initialization for data structures within the IMI ensures that the PRCB, 
control table, interrupt table, system-procedure table, and fault table are aligned to word 
boundaries. Normal processor operation is not possible without the alignment of these key data 
structures. The alignment check is one case where a core processor error could occur. 

The other case of core processor error can occur during regular operation when generation of an 
override fault incurs a fault. The sequence of events leading up to this case is quite uncommon. 

When a core processor error is detected, the FAIL# signal is asserted, a fail code message is driven 
onto the address bus, and the processor stops execution at the point of failure. The only way to resume 
normal operation of the processor is to perform a reset operation. Because core processor error 
generation can occur sometime after the Bus confidence test and even after initialization during normal 
processor operation, the F AIL# signal is a logic one before the detection of a Core Processor Error. 

Developer's Manual 



int:et 
11.3.1.5 FAIL# Code 

Inte/@ 80303 I/O Processor 
Initialization and System Requirements 

The processor uses only one read bus transaction to signal the fail code message; the address of the 
bus transaction is the fail code itself. The fail code is of the form: OxFEFFFFnn; bits 6 to 0 contain 
a mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from 
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown in 
Table 11-3 and Table 11-4. 

Table 11-3. BIST Failure Codes 

Bit When Set 

7 Set to one for BIST failure 

6 On-chip Data-RAM failure detected by BIST 

5 Internal Microcode ROM failure detected by BIST 

4 I-cache failure detected by BIST 

3 D-cache failure detected by BIST 

2 Local-register cache or processor core failure detected by BIST 

1 Always Zero 

0 Always Zero 

Table 11-4. Non-BIST Failure Codes 

Bit When Set 

7 Set to zero for non-BIST failure 

6 Always One; this bit does not indicate a failure 

5 Always One; this bit does not indicate a failure 

4 A data structure within the IMI is not aligned to a word boundary 

3 A core processor error during normal operation has occurred 

2 The Bus Confidence test has failed 

1 Always Zero 

0 Always Zero 

Developer's Manual 11-9 



Inte/® 80303 110 Processor 
Initialization and System Requirements inteJ· 
11.4 

11-10 

Initial Memory Image (IMI) 

The IMI comprises the minimum set of data structures that the processor needs to initialize. As 
shown in Figure 11-4, these structures are: the initialization boot record (IBR), process control 
block (PRCB) and system data structures. The IBR is located at a fixed address in memory. The 
other components are referenced directly or indirectly by pointers in the IBR and the PRCE. The 
IMI performs three functions for the processor: 

• Provides initial configuration information for the core. 

• Provides pointers to the system data structures and the first instruction to be executed after 
processor initialization. 

• Provides checksum words that the processor uses in its self test routine at startup. 

Several data structures are typically included as part of the IMI because values in these data 
structures are accessed by the processor during initialization. These data structures are usually 
programmed in the systems's boot ROM, located in memory region 14_15 of the address space. 
The required data structures are: 

• PRCB 

• IBR 

• System procedure table 

• Control table 

• Interrupt table 

• Fault table 

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt 
table, and fault table must not be located in architecturally reserved memory - addresses reserved 
for on-chip Data RAM and addresses at and above FEFF FF60R. In addition, each of these 
structures must start at a word-aligned address; a core processor error occurs when any of these 
structures are not word-aligned. See Section 11.3.1.3, "The Fail Signal (FAIL#)" on page ll-S. 

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system procedure 
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped control 
register. Recall that the supervisor stack pointer is located in the preamble of the system procedure 
table at byte offset 12 from the base address. The system procedure table base address is programmed 
in the PRCB. Consult Section 7.5.l, "System Procedure Table" on page 7-15 forthe format of the 
system procedure table. 

At initialization, the NMI vector is loaded from the interrupt table and saved at location 
0000 OOOOR of the internal data RAM. The interrupt table is typically programmed in the boot 
ROM and then relocated to internal RAM by reinitializing the processor. 

The fault table is typically located in boot ROM. When it is necessary to locate the fault table in 
RAM, the processor must be reinitialized. 

The remaining data structures that an application may need are the user stack, supervisor stack and 
interrupt stack. These stacks must be located in the 80303 I/O processor's local bus RAM. 

Developer's Manual 



Intel® 80303 I/O Processor 
Initialization and System Requirements 

Figure 11-4. Initial Memory Image (IMI) and Process Control Block (PRCB) 

Fixed Data Structures 

Initialization Boot Record (IBR) Address 

PMCON FEFF FF30H 
Byte 0 
PMCON 

FEFF FF34H Byte 1 
PMCON 
Byte 2 FEFF FF38H 

PMCON FEFF FF3CH 
Byte 3 

"- First Instruction Pointer FEFF FF40H 

PRCB Pointer FEFF FF44H 

FEFF FF48H 

6 Check Words 
(for Local Bus Confidence Self-test) FEFF FF5CH 

Developer's Manual 

Relocatable Data Structures 

User Code: 

I 
T 

1 
j. I~ 

Process Control Block (PRCB) 

- Fault Table Base Address ~ 

~ Control Table Base Address 

~ AC Register Initial Image 

Fault Configuration Word 

Interrupt Table 
~ Based Address 

~ 
System Procedure Table 

Base Address 

Reserved 

Interrupt Stack Pointer 

Instruction Cache 
Configuration Word 

Register Cache 
Configuration Word 

Control Table ... 
~ 

Interrupt Table ~ 

~ 

System Procedure Table ~ 

~ 

Other Architecturally Defined 
Data Structures r--

(not required as part of 1M I) 

A641 0-01 

11-11 



Intel® 80303 110 Processor 
Initialization and System Requirements 

11.4.1 Initialization Boot Record (IBR) 

The initialization boot record (IBR) is the primary data structure required to initialize the 80303 
I/O processor processor. The IBR is a 12-word structure which must be located at address 
FEFF FF30H (Table 11-5). The IBR is made up of four components: the initial bus configuration 
data, the first instruction pointer, the PRCB pointer and the bus confidence test checksum data. 

Table 11·5. Initialization Boot Record 

11-12 

Byte Physical Address Description 

FEFF FF30H 
PMCON14_15, byte 0 

(Program to 0000 OOOOH) for 80303 1/0 processor 

FEFF FF31 H to FEFF FF33H Reserved 

FEFF FF34H 
PMCON14_15, byte 1 

(Program to 0000 OOOOH) for 80303 1/0 processor 

FEFF FF35H to FEFF FF37H Reserved 

FEFF FF38H 
PMCON14_15, byte 2 

(Program to 0000 0080H) for 80303 1/0 processor 

FEFF FF39H to FEFF FF3BH Reserved 

FEFF FF3CH PMCON14_15, byte 3 
(Program to 0000 OOOOH) for 80303 1/0 processor 

FEFF FF3DH to FEFF FF3FH Reserved 

FEFF FF40H to FEFF FF43H First Instruction Pointer 

FEFF FF44H to FEFF FF47H PRCB Pointer 

FEFF FF48H to FEFF FF4BH Bus Confidence Self-Test Check Word 0 

FEFF FF4CH to FEFF FF4FH Bus Confidence Self-Test Check Word 1 

FEFF FF50H to FEFF FF53H Bus Confidence Self-Test Check Word 2 

FEFF FF54H to FEFF FF57H Bus Confidence Self-Test Check Word 3 

FEFF FF58H to FEFF FF5BH Bus Confidence Self-Test Check Word 4 

FEFF FF5CH to FEFF FF5FH Bus Confidence Self-Test Check Word 5 

When the processor reads the IMI during initialization, it must know the bus characteristics of 
external memory where the IMI is located. Specifically, it must know the bus width and endianism 
for the remainder of the 1M!. At initialization, the processor sets the PMCON register to an 8-bit 
bus width. The processor then needs to form the initial DLMCON and PMCON14_15 registers so 
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of the 
IBRs first 4 words are used to form the register values. On the 80303 I/O processor, the bytes at 
FEFF FF30H and FEFF FF34H are not needed, so the processor starts fetching at address 
FEFF FF38. The loading of these registers is shown in the pseudo-code flow in Example 11-1. 

Note: The 803031/0 processor requires that all PMCON registers be programmed for 32-bit bus widths. 

Developer'S Manual 



intel· Intel® 80303 I/O Processor 
Initialization and System Requirements 

Example 11-1. Processor Initialization Pseudocode Flow 

Processor Initialization flow ( ) 

FAIL_pin = true; 
restore full cache mode; disable(I cache); invalidate(I cache); 
disable (D_cache) ; invalidate (D_cache) ; 
BCON.ctv = 0; /* Selects PMCON14 15 to control all accesses */ 
PMCON14 15 = 0; /* Selects 8-bit bus width */ 

/** Exit Reset State & Start Init **/ 

if (STEST_ON_RISING_EDGE_OF_RESET) 

status BIST(); /* BIST does not return if it fails */ 

FAIL_pin = false; 

PC = OxOOlf2002; 

Oxfeffff30; 

/* Read PMCON14 15 image in IBR */ 

FAIL_pin = true; 

DLMCON.dcen = 0; 

/* PC.Priority = 31, PC.em = Supervisor,*/ 

/* PC.te = 0; PC.State = Interrupted */ 

/* ibi_ptr used to fetch IBR words */ 

LMMRO.lmte 

IMSK 

O' LMMRl.1mte = O· 

0; 

PMCON14 15[byte2] = OxcO & memory[ibr_ptr +8],

/*Compute CheckSum on Boot Record */ 

carry = 0,- CheckSum Oxffffffff,-

for( i = 6,- i>O,- i--) /*carry is carry out from previous add*/ 

CheckSum = memory[ibr_ptr + 24 + i*4] + CheckSum + carry,

prcb_ptr = memory[ibr ptr + Ox14],-

IP = memory[prcb_ptr + 4],-

CheckSum = prcb_ptr + IP + CheckSum + carry,

if(CheckSum '= 0) 

else 

{fail_msg = Oxfeffff64,

dummy = memory[fail_msg],-

for (,-,-),-

false,-

/* Process PRCB and Control Table */ 

prcb _ptr = memory [ibr _ptr + Ox14],-

/* Fail BUS Confidence Test */ 

/* Do load with address 
*/ 

/* loop forever with FAIL pin true */ 

/* See Process PRCB Section for Details */ 

/*Previous values of Global 

and Local Registers are 

Destroyed during 

initialization and software re-

gO = 80303core_device ID,

return; 

Developer's Manual 

initialization*/ 

/* Execute First Instruction */ 

11-13 



Intel@ 80303 110 Processor 
Initialization and System Requirements 

Table 11-6. 

11-14 

The processor initializes the DLMCON.dcen bit to 0 to disable data caching. The remainder of the 
assembled word is used to initialize PMCON14_15. In conjunction with this step, the processor 
clears the bus control table valid bit (BCON.ctv), to ensure for the remainder of initialization that 
every bus request issued takes configuration information from the PMCONI4_15 register, 
regardless of the memory region associated with the request. At a later point in initialization, the 
processor loads the remainder of the memory region configuration table from the external control 
table. The Bus Configuration (BCON) register is also loaded at this time. The control table valid 
(BCON.ctv) bit is then set in the control table to validate the PMCON registers after they are 
loaded. In this way, the bus controller is completely configured during initialization. (Chapter 12, 
"Core Processor and Internal Operation" for a complete discussion of memory regions and 
configuring the bus controller.) 

After the bus configuration data is loaded and the new bus configuration is in place, the processor 
loads the remainder of the IBR which consists of the first instruction pointer, the PRCB pointer and 
six checksum words. The PRCB pointer and the first instruction pointer are internally cached. The 
six checksum words - along with the PRCB pointer and the first instruction pointer - are used in 
a checksum calculation which implements a confidence test of the local bus. The checksum 
calculation is shown in the pseudo-code flow in Example 11-2. When the checksum calculation 
equals zero, then the bus confidence test passes. 

Table 11-6 further describes the IBR organization. 

PMCON14_15 Register Bit Description in IBR 

ADD [ 

pc{ 

ADD: 8638H 
PCI: NA 

31:24 OOH 

23:22 002 

21:00 OOOOOOH 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, 
PR = Preserved, RW = ReadlWrite, RS = Read/Set, RC = Read Clear, 
ADD = 80303 internal bus address, PCI = PCI Configuration Address Offset 

Reserved. Initialize to O. 

Local Bus Width (BW) 
(00) Reserved 
(01) Reserved 
(10) 32-bit 
(11) Reserved 

Reserved. Initialize to O. 

Developer's Manual 



11.4.2 

Table 11-7. 

Process Control Block - PRCB 

Intel@ 80303 liD Processor 
Initialization and System Requirements 

The PRCB contains base addresses for system data structures and initial configuration information 
for the i960 core processor. The base addresses are accessed from these internal registers. The 
registers are accessible to the users through the memory mapped interface. Upon reset or 
reinitialization, the registers are initialized. The PRCB format is shown in Table 11-7. 

PRCB Configuration 

Physical Address Description 

PRCB POINTER + OOH Fault Table Base Address 

PRCB POINTER + 04H Control Table Base Address 

PRCB POINTER + OSH AC Register Initial Image 

PRCB POINTER + OCH Fault Configuration Word 

PRCB POINTER + 10H Interrupt Table Base Address 

PRCB POINTER + 14H System Procedure Table Base Address 

PRCB POINTER + 1SH Reserved 

PRCB POINTER + 1CH Interrupt Stack Pointer 

PRCB POINTER + 20H Instruction Cache Configuration Word 

PRCB POINTER + 24H Register Cache Configuration Word 

Developer's Manual 11-15 



Intel® 80303 I/O Processor 
Initialization and System Requirements 

Table 11-8. 

11-16 

The initial configuration information is programmed in the arithmetic controls register (AC) initial 
image, the fault configuration word, the instruction cache configuration word, and the register 
cache configuration word. Table 11-8 show these configuration words. 

Process Control Block Configuration Words 

AC Register Initial Image Offset 08H 

Condition C ode Bits - AC.cc 

Integer-Overflow Flag - AC.of 
(0) No overflow 
(1) Overflow 

Integer-Overflow Mask Bit - AC.om 
(0) Enable overflow faults 
(1) Mask overflow faults 

No-Imprecise-Faults Bit - AC.nif 
(0) Allow imprecise fault conditions 
(1) Prevent imprecise fault conditions 

31 28 24 20 16 

11111111111,1',111: 'II~ I111 ~ 1I11I1 ~ I H ~ I 
12 8 4 0 

Fault Configuration Word Offset OCH 

31 28 24 20 16 12 8 4 o 

111111111111111111111111111111111 
t'-_______ Mask Non-Aligned Bus Request Fault 

(0) Enable the fault 
(1) Mask the fault 

Instruction Cache Configuration Word Offset 20H 
D' bl I C h Isa e nstructlon ac e 

1 
(0) Enable cache 
(1) Disable cache 

31 28 24 20 16 12 8 4 o 

Register Cache Configuration Word Offset 24H 
Number of frames Reserved for High Priority Interrupts -----,l 

i I 

I1111111I11111111111111111111 tIl 
31 28 24 20 16 12 8 4 o 

A6411-01 

Developer's Manual 



int:et 
11.4.3 Process PReB Flow 

Intel@ 80303 I/O Processor 
Initialization and System Requirements 

The following pseudo-code flow illustrates the processing of the PReB. Note that this flow is used 
for both initialization and reinitialization (through sysctl). 

Example 11-2. PRCS Processing Pseudo-code Flow 

Process_PRCB(prcb_ptr) 

PRCB_mmr = prcb_ptr; 

reset state (data ram); /* It is unpredictable whether the */ 

/* Data RAM keeps its prior contents */ 

fault table 

ctrl table 

AC 

memory[PRCB_mmr]; 

memory[PRCB_mmr+Ox4]; 

memory [PRCB_mmr+Ox8]; 

fault config memory[PRCB_mmr+Oxc]; 

if (1 & (fault config » 30)) 

generate fault on_unaligned_access = false; 

else 

/** Load Interrupt Table Pointer **/ 

Reset_block_NMI; 

interrupt table = memory[PRCB_mmr+OxlO]; 

/** Load System Procedure Table Pointer **/ 

sysproc = memory[PRCB_mmr+Ox14]; 

/** Initialize ISP, FP, SP, and PFP **/ 

ISP mmr memory[PRCB_mmr+Oxlc]; 

FP ISP_mmr; 

SP FP + 64; 

PFP FP; 

/** Initialize Instruction Cache **/ 

ICCW = memory[PRCB_mmr+Ox20]; 

if (1 & (ICCW » 16) ) enable (I cache); 

/** Cache NMI Vector Entry in Data RAM**/ 

true; 

memory[O] = memory[interrupt_table + (248*4) + 4]; 

/** Process System Procedure Table **/ 

temp memory[sysproc+Oxc]; 

SSP mmr (-Ox3) & temp; 

SSP.te 1 & temp; 

/** Configure Local Register Cache **/ 

programmed_limit = (7 & (memory [PRCB_mmr+Ox24] » 8) ); 

config_reg_cache(programmed_limit); 

/** Load_control_table. Note breakpoints and BPCON are excluded here **/ 

load_control_table(ctrl_table+OxlO, ctrl_table+Ox58); 

/* Load ctrl_table+OxlO through ctrl_table+Ox58 */ 

load_control_table(ctrl_table+Ox68, ctrl_table+Ox6c); 

/* Load ctrl table+Ox68 through ctrl table+Ox6C */ 

IBPO = OxO; IBPl = OxO; DABO = OxO; DABl = OxO; 

/** Initialize Timers **/ 

Developer's Manual 

TMRO.tc 

TMRO. sup 

TMRO.csel 

return; 

0; TMRl. tc 

0; TMR1.sup 

0; TMRl.csel 

0; TMRO.enable 

0; TMRO.reload 

0; 

0; TMRl.enable 

0; TMRl.reload 

0; 

0; 

11-17 



Intel® 80303 110 Processor 
Initialization and System Requirements intel· 
11.4.3.1 

11.4.3.2 

11.4.3.3 

11.4.3.4 

11-18 

AC Initial Image 

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial 
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits 
to be selected at initialization. 

The AC initial image condition code bits can be used to specify the source of an initialization or 
reinitialization when a single instruction entry point to the user start-up code is desirable. This is 
accomplished by programming the condition code in the AC initial image to a different value for 
each different entry point. The user start-up code can detect the condition code values - and thus 
the source of the reinitialization - by using the compare or compare-and-branch instructions. 

Fault Configuration Word 

The fault configuration word allows the operation-unaligned fault to be masked when an unaligned 
memory request is issued. When an unaligned access is encountered, the processor always 
performs the access. After performing the access, the processor determines whether it should 
generate a fault. When bit 30 in the fault configuration word is set, a fault is not generated after an 
unaligned memory request is performed. When bit 30 is clear, a fault is generated after an 
unaligned memory request is performed. 

Instruction Cache Configuration Word 

The instruction cache configuration word allows the instruction cache to be enabled or disabled at 
initialization. When bit 16 in the instruction cache configuration word is set, the instruction cache 
is disabled and all instruction fetches are directed to external memory. Disabling the instruction 
cache is useful for tracing execution in a software debug environment. 

The instruction cache remains disabled until the following operations: 

• The processor is reinitialized with a new value in the instruction cache configuration word 

• icctl is issued with the enable instruction cache operation 

• sysctl is issued with the configure instruction cache message type and a cache configuration 
mode other than disable cache. 

Register Cache Configuration Word 

The register cache configuration word specifies the number of free frames in the local register 
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process 
priority greater than or equal to 28). 

The register cache and the configuration word are explained further in Section 4.2, "Local Register 
Cache" on page 4-2. 

Developer'S Manual 



11.4.4 Control Table 

Intel@ 80303 I/O Processor 
Initialization and System Requirements 

The control table is the data structure that contains the on-chip control registers values. It is 
automatically loaded during initialization and must be completely constructed in the 1M!. 
Figure 11-5 shows the Control Table format. 

For register bit definitions of the on-chip control table registers, see the following: 

• IMAP - Table 8-16 through Table 8-18, "Interrupt Map Register 2 (IMAP2)" on page 8-38 

• ICON - Table 8-15, "Interrupt Control (lCON) Register" on page 8-36 

• PMCON - Table 12-2, "Physical Memory Control Registers - PMCONO:15" on page 12-3 

• TC - Table 10-1, "Intel® 80303 I/O Processor Trace Controls Register - TC" on page 10-2 

• BCON -Table 12-3, "Bus Control Register - BCON" on page 12-4 

Figure 11-5. Control Table 

31 o 
Reserved (Initialize TO 0) OOH 

Reserved (Initialize TO 0) 04H 

Reserved (Initialize TO 0) 08H 

Reserved (Initialize TO 0) OCH 

Interrupt Map 0 (IMAPO) 10H 

Interrupt Map 1 (IMAP1) 14H 

Interrupt Map 2 (IMAP2) 18H 

Interrupt Configuration (ICON) 1CH 

Physical Memory Region 0:1 Configuration (PMCONO_1)(0080 OOOOH) 20H 

Reserved (Initialize TO 0) 24H 

Physical Memory Region 2:3 Configuration (PMCON2_3)(0080 OOOOH) 28H 

Reserved (InltiaUze TO 0) 2CH 

Physical Memory Region 4:5 Configuration (PMCON4_5)(0080 OOOOH) 30H 

Reserved (Initialize TO 0) 34H 

Physical Memory Region 6:7 Configuration (PMCON6J)(0080 OOOOH) 38H 

Reserved (Initialize TO 0) 3CH 

Physical Memory Region 8:9 Configuration (PMCON8_9)(0080 OOOOH) 40H 

Reserved (Initialize TO 0) 44H 

Physical Memory Region 10:11 Configuration (PMCON1 0_11 )(0080 OOOOH) 48H 

Reserved (Initialize TO 0) 4CH 

Physical Memory Region 12:13 Configuration (PMCON12_13)(0080 OOOOH) 50H 

Reserved (Initialize TO 0) 54H 

Physical Memory Region 14:15 Configuration (PMCON14_15)(0080 OOOOH) 58H 

Reserved (Initialize TO 0) 5CH 

Reserved (Initialize TO 0) 60H 

Reserved (Initialize TO 0) 64H 

Trace Controls (TC) 68H 

Bus Configuration Control (BCON) 6CH 

A6412-01 

Developer's Manual 11-19 



Intel® 80303 I/O Processor 
Initialization and System Requirements 

11.5 

Table 11-9. 

Device Identification on Reset 

During the manufacturing process, values characterizing the 80303 I/O processor type and stepping 
are programmed into the memory-mapped registers. The 80303 I/O processor contains two 
read-only device ID MMRs. One holds the Processor Device ID (PDIDR) and the other holds the 
i960 Core Processor Device ID (DEVICEID). 

The device identification values are compliant with the IEEE 1149.1 specification and Intel 
standards. Table 11-9 and Table 11-10 describe the fields of the two Device IDs. During 
initialization, the PDIDR is placed in gO. 

Processor Device ID Register - PDIDR 

ADD: 1710H 

PCI: NA 

31:0 X 

Legend:NA = Not AccessibleRO = Read Only 
RV = ReservedPR = PreservedRW = Read/Write 
RS = Read/SetRC = Read Clear 
ADD = 80303 internal bus addressPCI = PCI Configuration Address Offset 

The values programmed into this register vary with stepping. Refer to the 80303 I/O 
Processor Specification Update (273355) for the correct value. 

Table 11-10. Intel® i960® Core Processor Device ID Register - DEVICEID 

ADD: FFOO 8710H 
PCI: NA 

31:0 X 

11-20 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, 
PR = Preserved, RW = Read/Write, RS = Read/Set, RC = Read Clear, 
ADD = 80303 internal bus address, PCI = PCI Configuration Address Offset 

The values programmed into this register vary with stepping. Refer to the 80303 I/O 
Processor Specification Update (273355) for the correct value. 

Developer'S Manual 



intel· 
11.6 

11.6.1 

Inte/@ 80303 I/O Processor 
Initialization and System Requirements 

Reinitializing and Relocating Data Structures 

Reinitialization can reconfigure the processor and change pointers to data structures. The processor 
is reinitialized by issuing the sysctl instruction with the reinitialize processor message type. See 
Section 6.2.67, "sysctl" on page 6-95 for a description of sysctl.) The reinitialization instruction 
pointer and a new PRCB pointer are specified as operands to the sysctl instruction. When the 
processor is reinitialized, the fields in the newly specified PRCB are loaded as described in 
Section 11.4.2, "Process Control Block - PRCB" on page 11-15. 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt 
table must be located in RAM: to post software-generated interrupts, the processor writes to the 
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate the 
control table to RAM: it must be in RAM when the control register values are to be changed by 
user code. In some systems, it is necessary to relocate other data structures (fault table and system 
procedure table) to RAM because of unsatisfactory load performance from ROM. 

After initialization, the software is responsible for copying data structures from ROM into RAM. 
The processor is then reinitialized with a new PRCB which contains the base addresses of the new 
data structures in RAM. 

The processor caches the following pointers during its initialization. To modify these data 
structures, a software re-initialization is needed. 

• Interrupt Table Address 

• Fault Table Address 

• System Procedure Table Address 

• Control Table Address 

Output Clocks 

The 80303 I/O processor supports an 12C bus interface. The output clock frequency for 12C 
operation is 100 KHz or 400 KHz. This clock is generated from the i960 core processor clock. To 
use the 12C interface, a clock divider value must be written into the 12C Clock Count Register. See 
Section 22.8.5, "I2C Clock Count Register- ICCR" on page 22-36. 

Developer's Manual 11-21 





Core Processor and Internal 
Operation 12 

12.1 

This chapter provides information on setting the Core Processor memory-mapped registers that 
configure the local memor~ bus. Topics include enabling/disabling data caching for a memo~ 
region, setting Intel® i960" core local bus width, the Bus Interface Unit (BIU), and the Intel" 
80960RMIRN internal bus. 

Core Processor Memory Attributes 

Every location in memory has associated physical and logical attributes. For example, a specific 
location may have the following attributes: 

• Logical: Data is non-cacheable 

• Physical: 80303 I/O processor requires all to be 32-bit wide physical regions 

In the example above, physical attributes correspond to those parameters that indicate how to 
physically access the data. The BCU uses physical attributes to determine the local bus protocol 
and signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU 
how to interpret, format and control interaction of on-chip data caches. The physical and logical 
attributes for an individual location are independently programmable. 

Developer's Manual 12-1 



Intel® 80303 I/O Processor infel .. Core Processor and Internal Operation 

12.2 

12.2.1 

Physical Memory Attributes 

The physical memory attributes of the Intel® 80303 I/O processor are controlled through the 
PMCON registers and the BCON. 

PMCON Registers 

Physical Memory Configuration registers, PMCONO_l to PMCON14_l5, are shown in 
Table 12-2. The PMCON registers reside within memory-mapped control register space. Each 
PMCON register controls one 5l2-Mbyte region of memory according to mapping in Table 12-1. 

Table 12-1. PMCON Address Mapping 

12-2 

Register Region Controlled Required Bus Width 
(Control Table Entry) 

Physical Memory Control 0000 OOOOH to OFFF FFFFH 32 bits - 80960RM/RN Peripheral and 
Register 0 - PMCONO_1 1000 OOOOH to 1 FFF FFFFH Memory-Mapped Registers 

Physical Memory Control 2000 OOOOH to 2FFF FFFFH 
and 32 Bits 

Register 1 - PMCON2_3 3000 OOOOH to 3FFF FFFFH 

Physical Memory Control 4000 OOOOH to 4FFF FFFFH 
and 32 Bits 

Register 2 - PMCON4_5 5000 OOOOH to 5FFF FFFFH 

Physical Memory Control 6000 OOOOH to 6FFF FFFFH 
and 32 Bits 

Register 3 - PMCON6_7 7000 OOOOH to 7FFF FFFFH 

Physical Memory Control 8000 OOOOH to 8FFF FFFFH 32 bits - 80960RM/RN and 
Register 4 - PMCON8_9 9000 OOOOH to 9FFF FFFFH outbound ATU translation windows 

Physical Memory Control AOOO OOOOH to AFFF FFFFH 
and 32 Bits 

Register 5 - PMCON1 0_11 BOOO OOOOH to BFFF FFFFH 

Physical Memory Control 
COOO OOOOH to CFFF FFFFH 

and 32 Bits 
Register 6 - PMCON12_13 0000 OOOOH to OFFF FFFFH 

Physical Memory Control 
EOOO OOOOH to EFFF FFFFH 

and 32 Bits 
Register 7 - PMCON14_15 FOOO OOOOH to FFFF FFFFH 

The Bus Interface Unit expects all accesses coming out of the i960® core processor to be targeted 
for a 32-bit region. The PMCON registers should all be programmed to support a 32-bit bus width 
during initialization and then left alone. 

Developer's Manual 



Inte/@ 80303 110 Processor 
Core Processor and Internal Operation 

All eight PMCON registers are loaded automatically during system initialization. The initial values 
are stored in the Control Table in the Initialization Boot Record [Section 1104. "Initial Memory 
Image (lMI)" on page 11-10]. 

Table 12-2. Physical Memory Control Registers - PMCONO:15 

LBA [ 

pet[ 
LBA: Table 12-1 

PCI: NA 

Bit Default 

31 :24 OOH 

23:22 002 

21 :00 OOOOOOH 

Developer's Manual 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = Read/Write, RS = Read/Set, RC = Read Clear, LBA = 80303 Local Bus 
Address, PCI = PCI Configuration Address Offset 

Description 

Reserved. Initialize to O. 

Bus Width 
Selects the local bus width for a region: 

(00) = reserved (do not use) 
(01) = reserved (do not use) 
(10) = 32-bit bus 
(11) = reserved (do not use) 

Reserved. Initialize to O. 

12-3 



Intel® 80303 liD Processor intal. Core Processor and Internal Operation 

12.2.2 Bus Control Register - BCON 

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus 
Control (BCON) register. When the PMCON entries are marked invalid in BCON, the BCU uses 
the parameters in PMCONI4_15 for all regions. On a hardware reset, PMCON14_15 is 
automatically cleared. This operation configures all regions to an 8-bit bus width. Subsequently, 
the processor loads all PMCON registers from the Control Table. The processor then loads BCON 
from the Control Table. When bit 0 of BCON is clear, PMCON14_15 remains in use for all local 
bus accesses. When bit 0 of BCON is set, the region table is valid and the BCU uses the 
programmed PMCON values for each region. 

Table 12-3. Bus Control Register - BCON 

12-4 

PC, [ 

LBA: 86FCH Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = ReadIWrite, RS = Read/Set, RC = Read Clear, LBA = 80303 Local Bus 

PCI: NA Address, PCI = PCI Configuration Address Offset 

Bit Default Description 

31 :03 0000 OOOOH Reserved. 

Supervisor Internal RAM Protection 
02 O2 (0) = First 64 bytes not protected from supervisor mode write 

(1) = First 64 bytes protected from supervisor mode writes 

Internal RAM Protection 
01 O2 (0) = Internal data RAM not protected from user mode writes 

(1) = Internal data RAM protected from user mode write 

Configuration Entries in Control Table Valid) 
00 02 (0) = PMCON entries not valid, default to PMCON14_15 setting 

(1) = PMCON entries valid 

Developer's Manual 



infel· 
12.3 

12.3.1 

Intel® 80303 I/O Processor 
Core Processor and Internal Operation 

Programming the Logical Memory Attributes 

Bit field definitions for Logical Memory Address Registers - LMADR1:0 and LMMR1:0 registers 
are shown in Table 12-4. LMCON registers reside within the i960 core processor memory-mapped 
control register space. (Appendix C, "Peripheral Memory-Mapped Registers".) 

Logical Memory Attributes 

The 80303 I/O processor provides a mechanism for defining two Logical Memory Templates 
(LMTs). An LMT may be used to specify whether a section (or subset) of a physical memory 
subsystem connected to the BCU (e.g., DRAM, SRAM) is cacheable or non-cacheable in the 
on-chip data cache. 

There are typically several different LMTs defined within a single memory subsystem. For 
example, data within one area of DRAM may be non-cacheable while data in another area is 
cacheable. Figure 12-1 shows the use of the Control Table registers (PMCON) with logical 
memory templates for a single DRAM region in a typical application. 

Each logical memory template is defined by programming the Logical Memory Configuration 
registers (LMCON). An LMCON register pair defines a data template for areas of memory that 
have common logical attributes. The 80303 I/O processor has two pairs of LMCON registers -
defining two separate templates. The extent of each data template is described by an address (on 
4 Kbyte boundaries) and an address mask. The address is programmed in the Logical Memory 
Address register (LMADR). The mask is programmed in the Logical Memory Mask register 
(LMMR). These two registers constitute the LMCON register pair. 

The Default Logical Memory Configuration (DLMCON) register provides configuration data for 
areas of memory that do not fall within one of the two logical data templates. 

The LMCON registers and their programming are described in Section 12.3, "Programming the 
Logical Memory Attributes" on page 12-5. 

Figure 12-1. LMCON Example 

FFFF FFFFH 

9FFF FFFFH 1--------\ 

Non·Cacheable 

Non-Cacheable 

80000000H 1--------\ 

OOOOOOOOH '---______ -' 

NOTE: The DLMCON maps the remaining memory as cacheable. 

AS413-01 

Developer's Manual 12-5 



Intel@ 80303 110 Processor intet Core Processor and Internal Operation 

12.3.2 Logical Memory Address Registers - LMADRO:1 

The LMADRl:O registers define the address for the logical data templates and template caching. 

Table 12-4. Logical Memory Address Registers - LMADRO:1 

LBA [ 

pc{ 

LBA: 

PCI: 

Bit 

31 :12 

11 :02 

01 

00 

CHO-S10SH 
CH1-S110H 
NA 

Default 

OOOOOH 

OOOH 

O2 

O2 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, RW 
= ReadIWrite, RS = Read/Set, RC = Read Clear, LBA = S0303 Local Bus Address, PCI 
= PCI Configuration Address Offset 

Description 

Template Starting Address - Defines upper 20 bits for the address of a logical data 
template. The lower 12 bits are fixed at zero. The starting address is modulo 4 Kbytes. 

Reserved. 

Data Cache Enable - Controls data caching for the template. 
(0) = Data caching disabled 
(1) = Data caching enabled 

Instruction caching is never affected by this bit. 

Reserved. 

Table 12-5. Logical Memory Mask Registers - LMMRO:1 

31_2824 20 16 12 8 4 0 

LBA [ l.L l,LI'·L ',' I' , "(,l!"" , ' I ' I',' '~(I.~_~no/ 
PCi [ ,\1<1\"\'~' ~ ,,'" \',"\'''\''''\' "'~\"\' \' ',',: '\'U\" ',' ,\'Q\," \""'Q\'~"'"'\'ct""\la\,~,< 

LBA: CHO-S10CH Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
CH1-S114H RW = Read/Write, RS = Read/Set, RC = Read Clear, LBA = S0303 Local Bus 

PCI: NA Address, PCI = PCI Configuration Address Offset 

Bit Default Description 

Template Address Mask - Defines upper 20 bits for the address mask for a logical 

31 :12 OOOOOH 
memory template. The lower 12 bits are fixed at zero (MA). 

(0) = Mask 
(1) = Do not mask 

11 :01 OOOH Reserved. 

Logical Memory Template Enabled - Enables/disables logical memory template. 
00 O2 (0) = LMT disable 

(1) = LMT enabled 

12-6 Developer's Manual 



in1:et Intel® 80303 I/O Processor 
Core Processor and Internal Operation 

The Default Logical Memory Configuration (DLMCON) register is shown in Table 12-6. The 
BCD uses the parameters in the DLMCON register when the current access does not fall within 
one of the two logical memory templates (LMTs). 

Table 12-6. Default Logical Memory Configuration Register - DLMCON 

LBA [ 

pc{ 

LBA: 

PCI: 

Bit 

31:02 

01 

00 

Developer's Manual 

8100H 

NA 

Default 

OOOOOOOOH 

O2 

O2 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = Read/Write, RS = Read/Set, RC = Read Clear, LBA = 80303 Local Bus 
Address, PCI = PCI Configuration Address Offset 

Description 

Reserved. 

Data Cache Enable - Controls data caching for areas not within other logical memory 
templates. 

(0) = Data caching disabled 
(1) = Write-through caching enabled 

Instruction caching is n'ever affected by this bit. 

Reserved. 

12-7 



Intel® 80303 I/O Processor 
Core Processor and Internal Operation 

12.3.3 

12.3.4 

12.3.5 

12-8 

Defining the Effective Range of a Logical Data Template 

For each logical data template, an LMADRx register sets the base address using the bits 31:12. The 
LMMR register sets the address mask using the bits 31: 12. The effective address range for a logical 
data template is defined by using bits 31: 12 in the LMADRx register and bits 31: 12 in the LMMRx 
register. 

For each access, only those address bits in the range 31:12 marked as unmasked (defined by bits 
MA31:12 in the LMMRx register), are compared against bits 31:12 in the LMMRx register. When 
all of the unmasked bits of the address match bits 31: 12 of the LMMRx register, then the address 
falls within the memory region governed by "x" logical memory template. The lower 12 address 
bits are not compared and are thus considered masked bits or "don't care" bits. This forces a 
minimum 4 Kbyte boundary on a memory region governed by a logical memory template. 
Logically, the operation is as follows: 

(EFA31:12 xnor LMADRx31:12) or (not LMMRx31:12) 

Where EFA31:12 is the effective address for a bus access. Only when all compared address bits 
match is the logical data template used for the current access. Two examples help clarify the 
operation of the address comparators. 

• Create a template 64 Kbytes in length beginning at address 0010 OOOOH and ending at address 
00 10 FFFFH. Determine the form of the candidate address to match and then program the 
LMADR and LMMR registers: 

Candidate Address is of form: 0 0 1 0 XXX X 
LMADR <31:12> should be:0010 0 .. . 
LMMR <31:12> should be:FFFF 0 .. . 

• Multiple data templates can be created from a single LMADRxLMMRx register pair by 
aliasing effective addresses. For example, to create sixteen 64 Kbyte templates, each 
beginning on modulo 1 Mbyte boundaries starting at 0000 OOOOH and ending with 
ooFO OOOOH, the registers are programmed as follows: 

Candidate Address is of form: 0 0 X 0 XXXX 

LMADR <31:12> should be:OOOO 0 .. . 
LMMR <31:12> should be:FFOF 0 .. . 

Data Caching Enable 

Enabling and disabling data caching for an LMT is controlled via the bit 0 in the LMADR register. 
Likewise, the bit 1 in the DLMCON enables and disables data-caching for regions of memory that 
are not covered by the LMCON registers. 

Disabling a memory range does not exclude an address range from being cacheable. For cacheable 
ranges, the BCU promotes all sub-word accesses to word accesses. 

Enabling the Logical Memory Template 

LMMRx bit 0 activates the logical data template in the LMMR register for the programmed range. 

Developer's Manual 



infel· 
12.3.6 

12.3.7 

12.3.7.1 

12.3.7.2 

12.3.7.3 

12.3.8 

Initialization 

Intel® 80303 liD Processor 
Core Processor and Internal Operation 

Immediately following a hardware reset, all LMTs are disabled. The bit 0 in each of the LMMR 
registers is cleared (0) and all other bits are undefined. Also the Default Logical Memory Control 
register Data Caching Enable (LMADRx bit 1) is cleared (Data Caching Disabled). Application 
software may initialize and enable the logical memory template after hardware reset. The registers 
are not modified by software initialization. 

Boundary Conditions for Logical Memory Templates 

The following sections describe the operation of the LMT registers during conditions other than 
"normal" accesses. See Chapter 4, "Cache and On-Chip Data RAM" for a treatment of data cache 
coherency when modifying an LMT. 

Internal Memory Locations and Peripheral MMRs 

The LMT registers are not used during accesses to i960 core processor memory-mapped registers. 
Internal data RAM locations are never cached; LMT bits controlling caching are ignored for data 
RAM accesses. The 80303 I/O processor peripheral MMRs, (addresses 0000 1000H through 
0000 17FFH) and the ATU windows (8000 OOOOH through 9001 FFFFH) should be defined as 
non-cacheable. Further, if direct addressing is enabled (bit 8 of the ATUCR) addresses 0000 OOOOH 
through 7FFF FFFFH should be defined as non-cacheable. 

Overlapping Logical Data Template Ranges 

Logical data templates that specify overlapping ranges are not allowed. When an access is 
attempted that matches more than one enabled LMT range, the operation of the access becomes 
undefined. 

To establish different logical memory attributes for the same address range, program 
non-overlapping logical ranges, then use partial physical address decoding. 

Accesses Across LMT Boundaries 

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken 
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both. Each 
smaller access is completed using the parameters of the LMT in which it resides. 

Modifying the LMT Registers 

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data 
cache coherency and order the modification with previous and subsequent data accesses. 

Developer's Manual 12-9 



Intel® 80303 110 Processor in1et Core Processor and Internal Operation 

12.4 Bus Interface Unit 

The BIU connects the i960 core processor to the Internal Bus. The BIU has two bus interfaces: 

• 32-bit i960 core processor bus 

• 64-bit Internal Bus (IB). 

The BIU is the only agent on the i960 core processor bus. The BIU also separates the core 
processor clock domain from the Internal Bus clock domain. See Figure 12-2. 

Figure 12-2. Core Processor/BIU Interface Block Diagram 

12.4.1 

12-10 

100 MHz 100 MHz Intel i960 Processor Local Bus Bus Interface Intel® i96o® 
Unit Core Processor 

66 MHz Intemal Bus (IB) 

A6414-01 

The BIU forwards i960 core processor bus accesses to the Internal Bus and is responsible for their 
completion. No address translation is performed by the BIU. 

Overview 

The BIU accepts i960 core processor bus accesses. It forwards read accesses to the IB and returns 
the read data to the i960 core processor. It completes write accesses for the i960 core processor. 

All accesses received by the BIU from the i960 core processor are processed in order, except that instruction 
fetches may bypass write accesses. See Section 12.4.4.2, "Instruction Fetch Bypass" on page 12-13. 

The BIU may address any target on the Internal Bus. Instruction fetch accesses by the i960 core 
processor to either ATU is not supported. 

The BIU divides the core processor clock domain (100 MHz) from the Internal Bus clock domain 
(66 MHz). All data moving through the BIU is buffered. 

The BIU has several address/data buffers: 

• Write Buffer 

• Read Buffer 

• Prefetch Buffer 

The Write Buffer temporarily stores write accesses that are destined for the IB. The Write Buffer is 
2 entries deep and each entry can store one address and up to 16 bytes of data. The BIU is 
responsible for forwarding all write accesses to the IB and ensuring their completion. 

Developer's Manual 



Intel® 80303 110 Processor 
Core Processor and Internal Operation 

The Read Buffer temporarily stores read data for read accesses returning from the IE to the i960 
core processor. The Read Buffer is one entry deep and each entry can store up to 16 bytes of data. 

The Prefetch Buffer temporarily stores additional instructions prefetched by the BIU from the 
Memory Controller. 

The BIU has two optional features that are intended to increase overall performance. The BIU can 
extend i960 core processor fetches by 16 bytes and then store the additional 16 bytes in the 
Prefetch Buffer. If a subsequent instruction fetch hits the Pre fetch Buffer, the instructions are 
returned to the processor and an IE bus access is avoided. Under special conditions, the BIU also 
can merge two sequential write accesses into one IB bus access. Both of these features can be 
independently enabled or disabled. 

The BIU does not perform byte merging (merging byte writes together) or write collapsing 
(collapsing multiple writes to one location). 

Figure 12-3. Internal Block Diagram 

32-bit Intel® i960® Processor Bus 

Bus Interface Unit 

I Intel i960 Processor Bus Interface I 
C/J 
C/J 
(]) 

(\l -0 
Cil "0 
0 « 

. : Read Buffer I 
Write Buffer 

.; Prefetch Buffer I 

I Internal Bus Interface I 

64-bit Internal Bus 

A6415-01 

Developer's Manual 12-11 



Intel@ 80303 I/O Processor infel., Core Processor and Internal Operation 

12.4.2 

12.4.2.1 

Addressing 

The BIU converts 32-bit DWORD addresses from the i960 core processor bus into 64-bit QWORD 
addresses on the Internal Bus. The BIU does not translate addresses or otherwise alter addresses. 

The BIU only reads and writes data on the Internal Bus as indicated by the Byte Enables generated 
by the i960 core processor. The BIU assumes that all accesses are to non-prefetchable memory. It 
does not promote i960 byte or i960 short accesses to DWORD accesses. 

Bus Width 

The BIU only supports i960 core processor data bus width of 32-bits. The Bus Width field 
(BW1:0) in the Physical Memory Region Configuration Registers (PMCON) should set to lO2 
(32-bit bus). 

Note: Setting the i960 core processor data bus width in the PMCON Registers to 16-bits or 8-bits results 
in undefined behavior. 

12.4.3 

12.4.4 

12.4.4.1 

12-12 

The BIU, however, does supports the 8-bit bus width when the Initial Boot Record (IBR) is read 
during core processor initialization. 

Multi-Transaction Timer 

The BIU has an associated Multi-Transaction Timer (MIT) in the Internal Bus Arbiter. When 
programmed properly, the MTT allows for a guaranteed quantum of time for the BIU. See 
Chapter 17, "Intel® 80303 I/O Processor Arbitration". 

Features 

Additional features of the BIU are: 

• Write Buffering 

• Instruction Fetch Bypass 

• Instruction Prefetch (optional) 

• Write Merging (optional) 

Write Buffering 

The Write Buffer temporarily stores multiple i960 core processor write accesses waiting for 
completion on the Internal Bus. The Write Buffer has two entries. Each entry contains one 32-bit 
address and 16 bytes of data storage. 

Write buffering allows the BIU to handle up to 2 outstanding write accesses from the i960 core 
processor. If Write Merging is enabled, up to 4 outstanding write accesses are allowed. 

An instruction fetch by the i960 core processor may bypass write accesses in the Write (see 
Section 12.4.4.2, "Instruction Fetch Bypass"). 

Developer's Manual 



12.4.4.2 

12.4.4.3 

12.4.4.4 

Instruction Fetch Bypass 

Intel® 80303 110 Processor 
Core Processor and Internal Operation 

With instruction fetch bypass, instruction fetches by the i960 core processor bypass any write 
accesses in the Write Buffer. The instruction fetch has priority over all write accesses in the Write 
Buffer for the next IB access performed by the BIU. 

If the write access in the Write Buffer was attempted on the IB but has not completed (e.g., 
received a Retry), the instruction fetch does not bypass the write access. The instruction fetch 
bypasses the write access only if the write access has not started on the IB. 

There is no address checking between the address of the instruction fetch and the address of any 
write accesses in the Write Buffer. 

Instruction Prefetch 

With instruction prefetch, instruction fetches by the i960 core processor cause the BID to extend 
the IE bus access by an additional 16 bytes. An 8-byte fetch is extended to a 24-byte fetch and a 
16-byte fetch is extended to a 32-byte fetch. The 8-byte or 16-byte fetch data originally requested 
by the processor is returned to the processor. The additional 16 bytes of instructions are stored in 
the Prefetch Buffer and marked valid. 

If, for any reason, the Memory Controller is not able to deliver the complete extra 16 bytes of 
instructions (e.g., the Memory Controller disconnects after the original 8-byte or 16-byte fetch but 
before the complete 24-byte or 32-byte fetch is returned), the prefetch is aborted. The Prefetch 
Buffer is not loaded and is marked invalid. 

When instruction pre fetch is enabled, the address of all instruction fetches is compared with the 
address stored in the Prefetch Buffer. If the buffer is valid and the addresses match, the BIU returns 
the contents of the Prefetch Buffer to the i960 core processor and the BIU does not begin an IB 
access for the fetch. 

Because the Prefetch Buffer contains 16 bytes and the i960 core processor may make an 8-byte 
instruction fetch, it is possible that the desired 8 bytes is in the Pre fetch Buffer but the addresses do 
not match. In this case, the BIU does not return the 8 bytes from the Prefetch Buffer but must instead 
make an IE bus request. For example, if the Prefetch Buffer is marked valid and contains the address 
AOOO.OOOOR and the subsequent instruction fetch is an 8-byte fetch with an address of AOOO.0002H, 
the BIU does not match the addresses even though the instructions are in the Prefetch Buffer. 

Instruction Prefetch can be enabled or disabled by the Instruction Prefetch Enable bit in the BIU 
Control Register. 

Write Merging 

With write merging, the BIU may merge two sequential write accesses by the i960 core processor 
into one IE bus access. Write merging is controlled by the Write Merging Enable bit in the BIU 
Control Register. 

There is only one type of sequential write accesses that may be merged: one DWORD write 
followed another one DWORD write. 

For write merging, the addresses must be sequential and incrementing. Bits 31:03 of the addresses 
of both accesses must match exactly. Bits 02:00 of the address must be 0002 for the first access and 
1002 for the second access. The resulting QWORD must be naturally aligned. No other pairings of 
store accesses are merged by the BID. 

Developer's Manual 12-13 



Intel@ 80303 I/O Processor 

intel" Core Processor and Internal Operation 

For example, if the first access is a DWORD write and the address is xxxx.xxxOH, the next access 
must be a DWORD write and the address must be xxxx.xxx4H. If the first access is a DWORD 
write and the address is xxxx.xxx8H, the next access must be a DWORD write and the address 
must be xxxx.xxxCH. 

DWORDs are merged at the input to the Write Buffer. Both DWORDs are written to the same entry 
in the Write Buffer to form a QWORD in the entry. 

Write accesses are never deliberately held in the Write Buffer and not completed on the Internal 
Bus just to enable Write Merging. Write Merging only occurs if the first DWORD write has not 
started on the IB before the second DWORD write occurs. 

Instruction fetches that bypass write accesses in the Write Buffer do not affect write merging. An 
instruction fetch that occurs between two DWORD writes may bypass the first write in the Write 
Buffer. The second write may then merge with the first write. 

Example 12-1. Code Examples of Write Merging 

12.4.4.5 

12-14 

; Merge Example 
st gO, OxAOOOOOOO 
st g7, OxA0000004 

; Merge Example 
st g5, OxAOOOl008 
st g4, OxAOOOlOOC 

; Non-Example 
; (not merged due to non-sequential addresses) 
st g5, OxA0002000 
st g6, OxA00020l0 

Atomic Accesses 

The BID supports atomic bus accesses from the i960 core processor to local memory and the 
Peripheral Memory-Mapped Registers (PMMR) only. Atomic instructions (atmod, atadd) from the 
i960 core processor require that the BIU perform the memory read-modify-write operation 
atomically. 

Developer's Manual 



intel· 
12.4.5 

12.4.5.1 

12.4.5.2 

Interrupts and Error Conditions 

Intel@ 80303 110 Processor 
Core Processor and Internal Operation 

The BIU records error conditions that result from accesses initiated by the BIU on the Internal Bus. 
The errors are recorded in the BIU Interrupt Status Register (BIUISR). 

Master-Abort 

There are two ways that the BIU can receive a Master-Abort from the Internal Bus: 

• IB Master-Abort: No target on the Internal Bus claims the transaction 

• PCI Master-Abort: The ATU, as a PCI master on behalf of the BIU, received a Master-Abort 
on the PCI bus and is returning the Master-Abort to the BIU during the read completion 

When an Internal Bus access initiated by the BIU receives a Master-Abort, the BIU records the 
Master-Abort condition in the BIU Interrupt Status Register and signals an NMI interrupt to the 
i960 core processor. Note that a Master-Abort received from the ATU is not recorded as an IB 
Master-Abort in the BIU Interrupt Status Register. 

The PCI Master Abort is recorded in the PATUISR or SATUISR depending on which outbound 
ATU window is accessed. The ATU generates an interrupt to the i960 core processor. When the 
ATU detects a Master-Abort on the PCI bus for a read access and the ATU returns the Master-Abort 
to the BIU during the read completion. 

For read accesses, the BIU returns FFH to the i960 core processor for each byte read. For write 
accesses, the BIU clears the access from the Write Buffer. 

PCI Target-Abort 

There are two ways that the BIU can receive a Target-Abort from the Internal Bus: 

• PCI Target-Abort: The ATU, as a PCI master on behalf of the BIU, received a Target-Abort on 
the PCI bus and is returning the Target-Abort to the BIU 

• IB Target-Abort: The Memory Controller returned a Target-Abort to the BIU 

The PCI Target Abort is recorded in the PATUISR or SATUISR depending on which outbound 
ATU window is accessed. The ATU generates an interrupt to the i960 core processor. When the 
ATU detects a Target-Abort on the PCI bus for a read access and the ATU returns the Target-Abort 
to the BIU during the read completion. 

The BIU does not need to distinguish the difference between an MCU access that resulted in a target 
abort and a outbound ATU access that results in a target abort. Both the ATUs and the MCUs record the 
target aborts and generate its respective interrupt to the core. The only requirement for the BIU during a 
target abort, is to return any valid data received from the target and then returns FFH to the i960 core 
processor for each umead byte. For write accesses, the BIU clears the access from the Write Buffer. 

The IB Target Abort is discussed in Section 12.4.5.3, "Internal Bus Target-Abort" on page 12-16 
and When an Internal Bus access initiated by the BIU receives a Target-Abort, the Memory 
Controller Unit (MCU) records the Target-Abort condition in the MCU Interrupt Status Register 
and signal an NMI interrupt to the i960 core processor. 

Developer's Manual 12-15 



Intel® 80303 110 Processor in1:et Core Processor and Internal Operation 

12.4.5.3 Internal Bus Target-Abort 

There are four ways that the BIU can receive a Target-Abort from the Internal Bus Memory 
Controller Unit (MCU): 

• Target Abort during Bill write to MCU 
• Target Abort during Bill read from MCV 
• Target Abort during Bill instruction fetch from MCU 
• Target Abort during Bill instruction prefetch from MCU 

The MCU generates a target abort to initiating masters only when the access hits the SDRAM, 
ECC is enabled, and the MCU detected a multi-bit ECC error. 

All four of the Target Abort cases are described in the following bullets: 

• Target-Abort During BIU Write 

When BIU Internal Bus access receives a Target-Abort from the MCU, the MCU records the 
Target-Abort in ELOGx registers and generates an NMI interrupt to the i960 core processor. 

Since the BIU burst a maximum of 2 data cycles (for 64-bit SDRAM), and 4 data cycles for 
(32-bit SDRAM), the target abort can occur on any of the data cycles. If the target abort occurs 
on any data cycle, except the last data cycle, the BIU discards with the remaining data. 

If target abort occurs on the last data cycle of a burst, the BIU completes the transaction before 
the MCU had determined there is a multi-bit ECC error. Therefore, to the Bill, the transaction 
appears completed and there is no remaining data in the write queue for the transaction. In this 
case, the MCU is the only unit that can notify the core processor of the error condition. 

• Target-Abort During BIU Read 
When BIU Internal Bus access receives a Target-Abort from the MCU, the MCU records the 
Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor. 

For read accesses, the BIU returns any data received from the target and then returns FFH to 
the i960 core processor for each unread byte. 

• Target-Abort During BIU Instruction Fetch 
When BIU Internal Bus access receives a Target-Abort from the MCU, the MCU records the 
Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor. 

For read accesses, the Bill returns any data received from the target and then returns FFH to 
the i960 core processor for each unread byte. 

• Target-Abort During BIU Instruction Prefetch 
When Bill Internal Bus access receives a Target-Abort from the MCU, the MCU records the 
Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor. 

For read accesses, the Bill returns any data received from the target and then returns FFH to 
the i960 core processor for each unread byte. If the target abort occurs during the BIU 
instruction prefetch, the prefetch buffer is not loaded and is marked invalid. 

Note: The MCU records errors and generates an interrupt to the i960 core processor during an instruction 
prefetch. The MCU may log the same error condition multiple times under the following condition. 
If, during the instruction prefetch, the MCU generates a target abort, the error is recorded. If the 
instruction flow is such that the next instruction fetch hits the addresses which the Bill prefetch just 
occurred, the Bill generates an IB cycle to fetch the instructions as instructed to by the i960 core 
processor. The second access by the BIU, to the same address as the previous prefetch (which marked 
the prefetch buffer invalid because of the target abort), results in another target abort by the MCU to 
the BIU. The MCU logs the same error condition again if there are available ELOGx registers. 
However, because the interrupt from the MCU to the NMI latch is level sensitive, the MCU generates 
only one interrupt to the i960 core processor. The software processing the MCU errors, must ensure 
that all error conditions are processed each interrupt to the i960 core. 

12-16 Developer's Manual 



12.4.6 Register Definitions 

Intel® 80303 110 Processor 
Core Processor and Internal Operation 

There are two peripheral memory-mapped registers (PMMR) for the BIU. Table 12-7 lists the 
PMMR registers for the BIU. 

Table 12-7. Bus Interface Unit Register Table 

Section, Register Name - Acronym (Page) 

Section 12.4.6.1, "BIU Control Register - BIUCR" on page 12-17 

Section 12.4.6.2, ;'BIU Interrupt Status Register - BIUISR" on page 12-18 

12.4.6.1 BIU Control Register - BlUeR 

The BIU Control Register (BIUCR) allows software to control the BIU. 

Table 12-8. BIU Control Register - BIUCR 

80303 Core Internal 
Address: 1640H 

Bit Default 

31 :02 OOOOOOOOH 

01 

00 

Developer's Manual 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = Read/Write, RS = Read/Set, RC = Read Clear, LBA = 80303 Local Bus 
Address, PCI = PCI Configuration Address Offset 

Description 

Reserved 

Write Merging Enable - When set, the BIU merges sequential DWORD Write 
accesses. When clear, the BIU does not merge any accesses. 

Instruction Prefetch Enable - When set, the BIU extends i960 core processor 
instruction fetches by 16 bytes. The 16-byte prefetch data is stored in the Prefetch 
Buffer. When clear, the BIU does not prefetch additional instructions and the Prefetch 
Buffer is invalid. 

12-17 



12.4.6.2 BIU Interrupt Status Register - BIUISR 

The BIU Interrupt Status Register (BIUISR) records the assertion of interrupts to the i960 core 
processor. 

Table 12-9. BIU Interrupt Status Register - BIUISR 

12-18 

31 28 24 20 16 12 8 4 

~ ! [ \!lA'\ml'\!l,,1\m11In,,'\n,,1\n,,'\m,llrld\n"\n"'\"""n"\n~l\ne'\npl'n'!\n"'\n"\n"'t.r1H\n"'~n" 
< 

80303 Core Internal 
Address 
1644H 

Legend: NA = Not Accessible, RO = Read Only, RV = Reserved, PR = Preserved, 
RW = ReadlWrite, RS = Read/Set, RC = Read Clear, LBA = 80303 Local Bus 
Address, PCI = PCI Configuration Address Offset 

Bit Default Description 

31 :03 OOOOOOOOH Reserved 

o 

IB Master-Abort - When set, the BIU has detected a Master-Abort on the Internal Bus 
and has signalled an NMI interrupt to the i960 core processor. This bit is cleared by 

02 O2 software. 

Note that a Master-Abort received from the ATU is not recorded as an IB Master-Abort 
in this bit. 

01 :00 O2 Reserved 



intel· Intel® 80303 110 Processor 
Memory Controller 

Memory Controller 13 

13.1 

This chapter describes the integrated Memory Controller Unit (MCU). The operating modes, 
initialization, external interfaces, and implementation are detailed in this chapter. 

Overview 

The Intel® 80303 I/O processor integrates a Memory Controller to provide a direct interface 
between the 80303 I/O processor and its local memory subsystem. The Memory Controller 
supports l : 

• Up to 16 Mbytes of 8-bit Flash (8Mbyte/Bank) 

• Between 32 and 512 Mbytes of 64-bit Synchronous DRAM (SDRAM) 

• Single-bit error correction, double-bit and nibble detection support (ECC2) 

The Flash interface provides an 8-bit data bus, 23-bit address bus, and control to support up to two 
64 Mbit Bulk-Erase or Boot-Block Flash devices. The Flash devices provide storage for the 80303 
I/O processor initialization code. 

The MCU provides a separate SDRAM interface from the Flash interface. The SDRAM interface 
provides a direct connection to a high bandwidth and reliable memory subsystem. The SDRAM 
interface consists of a 100 MHz, 64-bit wide data path to support 800 Mbytes/sec throughput. In 
addition, the SDRAM interface is designed to be compatible with 133 MHz technologies. An 8-bit 
Error Correction Code (ECC) across each 64-bit word improves system reliability. The ECC is 
stored into the SDRAM array along with the data and is checked when the data is read. If the code 
is incorrect, the MCU corrects the data (if possible) before reaching the initiator of the read. 
User-defined fault correction software is responsible for scrubbing the memory array. 

• The MCU supports two banks of SDRAM in the form of one unbuffered two-bank dual inline 
memory module (DIMM l) or two unbuffered single-bank DIMMs. 

• The MCU responds to internal bus memory accesses within its programmed address range and 
issues the memory request to either the Flash or SDRAM interface. 

• The MCU provides four chip enables to the memory subsystem. Two chip enables service the 
SDRAM subsystem (one per bank) and two service the Flash devices. 

1. The Mev does NOT support registered DIMMs. 
2. The MeV does NOT support non-Eee memory subsystems. 

Developer's Manual 13-1 



Inte/® 80303 110 Processor 
Memory Controller 

13.1.1 Glossary 

This section lists commonly used terms throughout this chapter: 

Table 13-1. Commonly Used Terms 

Term Definition 

A bank is defined as a memory region defined with a base register and a bank size register. 
Bank Physically, a bank of memory is controlled by a single chip select. A DIMM could comprise of a 

single or dual banks. 

A column refers to a portion of memory within an SDRAM device. An SDRAM device can be 

Column 
thought of as a grid with rows and columns. Once a row is activated, any column within that 
row can be accessed multiple times without reactivating the row. Columns are activated with 
SCAS#. 

A DIMM is an acronym for Duallnline Memory Module. A DIMM is a physical card comprising 
DIMM multiple SDRAM devices. The card could be populated on one or both sides. A DIMM can be 

single or dual-bank. 

SDRAM devices use multiple banks within the device operating in an interleaved mode. 

Leaf 
16 Mbit SDRAM devices contains two internal banks and the MCU supports 64 Mbit devices 
containing four internal banks. An internal bank is defined as a leaf (to avoid confusion with a 
memory bank). 

A page is a row of memory. Once a row is activated, any column within that row can be 
accessed multiple times without reactivating the row. This is referred to as "keeping the page 

Page open." While it depends on the SDRAM device configuration, the MCU supports only the 
smallest possible page size (2 Kbytes for 64-bit wide memory). Therefore, if an SDRAM 
physical configuration supports a larger page size, the MCU breaks it up into smaller 2 Kbyte 
pages. 

A row refers to a portion of memory within an SDRAM device. An SDRAM device can be 

Row 
thought of as a grid with rows and columns. Once a row is activated, any column within that 
row can be accessed multiple times without reactivating the row. Rows are activated with 
SRAS#. 

Once an error is detected within the memory array, the MCU must correct the error (if possible) 
Scrubbing while delivering the data to the initiator. Correcting the memory location is referred to as 

"scrubbing the array." The MCU relies on software to scrub any errors. 

A syndrome is a value which indicates an error in the data read from the memory array. The 

Syndrome 
MCU computes the syndrome with every memory read. Decoding the syndrome indicates: the 
bit in error for a single-bit error, a double-bit error, or a nibble-error. Table 13-13 defines the 
syndrome decoding. 

13-2 Developer's Manual 



in1:et 
13.2 

13.2.1 

Theory of Operation 

Intel® 80303 110 Processor 
Memory Controller 

The 80303 I/O processor memory controller translates the internal bus transactions into the 
protocol supported by the connected memory subsystem. The supported memory components 
consist of SDRAM and/or Flash memory devices. 

Functional Blocks 

The memory controller logically comprises the blocks illustrated in Figure ]3':1: 

Figure 13-1. Memory Controller Block Diagram 

Developer's Manual 13-3 



Intel® 80303 110 Processor 
Memory Controller intel. 
13.2.1.1 

13.2.1.2 

13.2.1.3 

13.2.1.4 

13.2.1.5 

13-4 

Internal Bus Interface 

The Internal Bus Interface block supports the internal bus protocol detailed in Appendix A, 
·'Internal Bus Signaling and Protocol". The internal bus protocol is a subset of PCI protocol. 

Since the MCU is only a slave for internal bus transactions, the internal bus interface monitors 
I FRAME#. When I FRAME# is asserted, the address decode block checks if the address falls 
Within the Flash memory ranges, SDRAM memory ranges, or the MCU MMR register space. If the 
address falls within any of these ranges, the MCU claims the transaction by asserting 
I DEVSEL#. 

Address Decode 

The Address Decode block is responsible for decoding the internal bus address and determining if 
the MCU should claim the internal bus transaction. There are three address ranges that the MCU 
responds to. 

Flash Memory Space The Flash memory space is defined with the Flash Base Address 
Registers (FEBRO, FEBRl) and the Flash Bank Size Registers (FBSRO, 
FBSRl). The transaction is intended for a Flash bank if the address falls 
between the base register (FEBRx) and the base plus the Flash size 
register (FBSRx). 

SDRAM Memory Space The SDRAM memory space is defined with the SDRAM Base Address 
Register (SDBR) and the SDRAM Boundary Registers (SBRO, SBR1). 
The transaction is intended for an SDRAM bank if the address is 
between the base register (SDBR) and between the boundaries 
programmed with SBRO and SBRI. 

The Address Decode block also records and maintains the open SDRAM 
pages. The MCU can keep a maximum of eight pages open 
simultaneously. This block keeps track of these pages and determines if 
the internal bus transaction hits an open page. For more details about the 
page hit/miss determination, see Section 13.2.3.3, "Page Hit/Miss 
Determination" on page 13-16. 

Memory-Mapped Register Space 
The MCU MMR memory space is 1500H to 15FFH. The registers are 
detailed in Section 13.6, "Register Definitions" on page 13-44. 

Configuration Registers 

The Configuration Registers block contains all of the memory-mapped registers listed in 
Section 13.6, "Register Definitions" on page 13-44. These registers define the memory subsystem 
connected to the 80303 I/O processor. The status registers indicate the current MCU status. 

SDRAM State Machine 

The SDRAM State Machine controls the protocol for SDRAM transactions. 

Flash State Machine 

The Flash State Machine controls the protocol for Flash transactions. 

Developer's Manual 



intet 
13.2.1.6 

13.2.1.7 

13.2.2 

Refresh Counter 

Intel@ 80303 I/O Processor 
Memory Controller 

The Refresh Counter block keeps track of when the SDRAM devices need to be refreshed. The 
refresh interval is programmed in the RFR. Once the lO-bit refresh counter reaches the 
programmed interval, the SDRAM state machine issues a refresh command to the SDRAM 
devices. If a transaction is currently in progress, the SDRAM State Machine waits for the 
completion of the transaction to issue the refresh cycle. See Section 13.2.3.9, "SDRAM Refresh 
Cycle" on page 13-27 for more details. 

Pipeline Queues and Error Correction Logic 

Since the MCU generates error correction codes based on the data, the MCU is a pipelined 
architecture. Pipelining also ensures acceptable AC timings to the memory interfaces. The 
SDRAM state machine pipelines SDRAM memory operations for two clocks. The Flash state 
machine pipelines memory operations for one clock. The Pipeline Queues keep up to two stages of 
64-bit data and 32-bit address. 

The Error Correction Logic generates the ECC code for SDRAM reads and writes. For reads, this 
logic compares the ECC codes read with the locally generated ECC code. If the codes mismatch 
then the Error Correction Logic determines the error type. For a single-bit error, this block 
determines which bit is in error and corrects the error. For a double-bit or nibble error, the Error 
Correction Logic logs the error in ELOGO and ELOG 1. See Section 13.2.4, "Error Correction and 
Detection" on page 13-28 for more details. 

Flash Memory Support 

The 80303 I/O processor memory controller supports one or two 8-bit Flash devices. The second 
Flash bank may be used to interface a UART device. Flash devices typically store initialization code. 

The MCU supports read bursting up to 8 bytes of data from the Flash device for a single read 
transaction. Any write transactions the core issues to the Flash address space must always be single 
byte transfers (stab). 

The MCU separates the Flash interface from the SDRAM interface to isolate the electrical loading 
on the SDRAM interface. The MCU implements twenty three address pins multiplexed on 
RADf16:0] to address Flash devices up to 64 Mbit. Refer to the timing diagrams in Figure 13-3 
and Figure 13-4 for details about how the pins are multiplexed. 

Flash memory space is separate from the SDRAM space. The Flash chip enables activate the 
appropriate Flash bank when the address falls within one of the Flash address ranges. Table 13-2 
shows the Flash interface signals. 

Table 13-2. Flash Interface Signals 

Pin Name Description 

RCE[1:0]# Chip Enable. Must be asserted for all transactions to the Flash device. 

RWE# Write Enable. Controls the Flash data input buffers. 

ROE# 
Output Enable. Asserted for reads, deasserted for writes. Controls the Flash output data 
buffers for write transactions. 

RAD[16:0] Address/Data bus capable of supporting 16 Mbit of Flash (2Mx8). The data bus is multiplexed 
on RAD[16:9]. 

RALE Address Latch Enable. Indicates the transfer of a physical address. RALE is asserted during a 
Flash address cycle and deasserted before the beginning of the data cycle. 

Developer's Manual 13-5 



Intel@ 80303 liD Processor 
Memory Controller 

Figure 13-2 illustrates how two Flash devices would interface with the 80303 I/O processor 
through the MCU. 

Figure 13-2. Four Mbyte Flash Memory System 

13.2.2.1 

13-6 

RAD(2:0) A(2:0) 

RAD(8:3) A(8:3) 

4 I A(22:17) Intel® 28F016-70 
Latch I 16 Ubit Flash 

~ I A(20:0) 
Intel® 80303 RAD(16:9) I Latch I A(16:9) 
Processor rr- OE# 

I I 
I WE# 

RALE 
I DO(7:0) 

RAD(16:0) 1--. 
CE# 

ROE# 

REW# 

RCEO# Intel 28F016-70 
16 Ubit Flash 

RCE1# 
'-- A(20:0) 

- OE# 

WE# 

DO(7:0) 

CE# 

A7954-01 

Flash Memory Addressing 

Since the internal bus comprises a 64-bit data bus, it is possible that an internal bus master requests 
up to 8 bytes for a read transaction. The Flash interface utilizes an externally multiplexed 
address/data bus. The address bus is effectively 23 bits. The memory controller pipelines the 
address in two cycles. During the first address phase, address bits [22:9] are presented on 
RAD[16:3]. An external14-bit latch must preserve RAD[16:3] using RALE. During the second 
address phase, address bits [8:0] are presented on RAD[8:0]. The data bus is multiplexed on 
RAD[16:9]. The MCU increments the lower 3 address bits (RAD[2:0]) throughout the subsequent 
data phases. 

The two Flash chip enables (RCE[1:0]#) support a Flash memory subsystem consisting of two 
devices. The base addresses for the two Flash devices are programmed in FEBRO and FEBRl. The 
size of each Flash memory region is programmed in FBSRO and FBSRI. 

To determine if the internal bus address is within Flash memory space, Table 13-3 indicates which 
bits of the FEBRx are compared with the corresponding bits of 1_ AD[31:0]. 

Developer's Manual 



int:el. 
Table 13-3. 

13.2.2.2 

Intel® 80303 110 Processor 
Memory Controller 

Address Decoding for Flash Memory Space 

Flash Bank Size Bits Compared for Decoding the Flash Address Range 

64 Kbytes FEBRx[31 :16) 

128 Kbytes FEBRx[31 :17) 

256 Kbytes FEBRx[31 :18) 

512 Kbytes FEBRx[31:19) 

1 Mbyte FEBRx[31 :20) 

2 Mbytes FEBRx[31 :21) 

4 Mbytes FEBRx[31 :22) 

8 Mbytes FEBRx[31 :23) 

A valid address range for RCE[O]# is defined by the start address programmed in the base address 
register (FEBRO) with the ending address determined by the size programmed into the bank size 
register (FBSRO). The programmed value in the base address register requires alignment based on 
the size programmed into the FBSRO register. The base address logic ignores the lower address bits 
based on the programmed block size. For example, if the memory size is 2 Mbytes, the software 
programs the base address value aligned with a 2 Mbyte boundary. 

RCE[l]# follows the same logic but uses FEBRI and FBSRl. 

Refer to Section 13.2.5, "Overlapping Memory Regions" on page 13-34 for prioritization details if 
the two Flash memory regions overlap. 

Flash Read Cycle 

Reading a Flash device involves driving the address, output enable, and chip enable. Depending on 
the speed of the Flash device, the data returns several cycles later. 

The definition of address-to-data wait states are the number of cycles between the assertion of 
RCE[1:0]# or ROE# (whichever is last), and the arrival of data from the Flash or UART device on 
RAD[16:9]. The definition of recovery wait states are the number of cycles between the data 
arrival on RAD[16:9] and the address for the next Flash transaction. 

Address-to-data and recovery wait states programmed in FWSRO and FWSRI are identical for 
reads and writes. Since the read wait state requirement is typically greater, the write wait state 
requirement is guaranteed to be met. Refer to Table 13-4 for the programmable address-to data and 
recovery wait states. 

Figure 13-3 illustrates a read cycle from a 90 ns Flash device. 

Developer's Manual 13-7 



Intel® 80303 I/O Processor 
Memory Controller int:et 
Figure 13-3. 90 ns Flash Read Cycle 

13-8 

,.. 
IV 

I_FRAME#[ \I..... _________________ ~ 
~ ~ ,.. 

LAD[63:0] [ --@""'-----------------~-"'''"''------
,.. 

I_ClBE[7:0]# [ -@ FE ~------,-
~ ~ 

URDY#[~ .~ r ,... '------' 
IV 

LDEVSEL# [ 

LTRDY# [ . 

\~ ________________ __'I \~~~r-

,.. 

LSTOP# [ 

RCE# [ 

ROE# [ 

RWE# [. 

...., 

,'--------_____ --'1 , 

~---~ __ --_----'I : 

RAD[2:0] [ rglViiJ!~fk)(. ADDR{2:0] xm~l!if<£_J11iJilJ 

ADDR[8:3] )@ltji$QiJfii':mM~ 

RAD[16:9] [ er~ ADDR[16:9J. 

RALE[ r-\'--__ ~ ________ ~ ______ ~ ____ ~---~I 

t t 
14-ot Extemal Latch Retry the Internal Bus 

When an internal bus master requests data from the Flash memory region, the MCU decodes the 
internal bus byte enables (1_ C/BE[7 :0]#) for the initial RAD[2:0]. The read request could result in 
multiple 8-bit reads (burst) on the Flash interface depending on 1 CIBE[7:0]#. The Flash state 
machine increments RAD[2:0] for each read. The MCU is responsible for packing the multiple 
bytes and placing them on the appropriate byte lanes before driving the data on the internal bus. 
Due to the typically long time for Flash reads, the master reading data will always get disconnected 
after the first data phase. 

Figure 13-4 illustrates a bursted read cycle from a 60 ns Flash device. 

Developer's Manual 



intel· Intel® 80303 110 Processor 
Memory Controller 

Figure 13-4. 60 ns Flash Burst Read Cycle 

~--------------------------------------~/ 
,...,. 

r------------------------------------------------~ 

_________________________ F_C ________________________ ~~ 

~ __________________________________ ~r_ 

~ ________________________________ ~r_ 

~ 

~--------------------------------~/ 
\~ ________________________ _J/ 

~~~~~~··~~~<~:X~ ________ AD_D_R~[2~:~~~X~ _______ A_D_DR~~_:O~1+_1 ____ ~~ 

RAD[8:31 [f;;::{ai.,it>.·g;j(ADDR[22:1"X'-____ ------------A-D-D-R.;:..[8-:3=-1 ______________ ---1)c:J

RALE [____ -1r\'----________________________ ------_---

Wi
Address
Decode

14-blt External
Latch

t
Do driven
by Flash and
latched In the MCU

Refer to Table 13-4 for the programmable address-to data wait states.

i
Pack Do and D,
and drive on Internal bus

Table 13-4. Flash Wait State Profile Programming

Flash Speed Address-to-Data Wait States Recovery Wait States

<= 55 ns 8 0

<= 115 ns 16 4

<= 175 ns 20 4

Developer's Manual 13-9

Intel® 80303 I/O Processor
Memory Controller

13.2.2.3 Flash Write Cycle

Address-to-data and recovery wait states for reads and writes are identical and programmed in
FWSRO and FWSRl. Refer to Table 13-4 for the programmable address-to data wait states.

The MeV claims internal bus transactions and accepts the data with zero wait-states, thus freeing
the internal bus. However, the MeV remains busy until the cycle completes on the Flash interface.
Subsequent MeV cycles are retried on the internal bus during this period.

The MeV does not support bursting data to a Flash device since the Flash device has no write
buffers to support bursting data.

Figure 13-5 illustrates a write cycle to a 90 ns Flash device.

Figure 13-5. 90ns Flash Write Cycle

OClK[,....
......

LFRAME#[,. /
,....

LAD[63:0] [~ Do)
roo

LClBE[7:0]# [---@ BE)":"'
,....
IV

URDY#[\ / ,.,.
IV

LDEVSEL#[LJ ,.,.
IV

I_TRDY#[LJ
RCE#[\ /

ROE#[

RWE#[~-----+--~~----~----~/
RAD[2:0][~~fit<,-_________ AD_D_R.:...[2:....:0] _______ --J""
RAD[8:3] [~ADDR[22:17JX,-______ AD_D-=R[,-8:3,.:.] ________ -,)_

RAD[16:9] [~ADDR[16:9] X 00 >tB
RALE[----~~~--~--~~~----~--~~~--------------

t-ti t
~

14-bil External Latch

13-10 Developer's Manual

intel·
13.2.3 SDRAM Memory Support

Intef@ 80303 110 Processor
Memory Controller

The 80303 I/O processor memory controller supports one or two banks of SDRAM. SDRAM allows
zero data-to-data wait-state operation at 100 MHz. SDRAM offers an extremely wide range of
configuration options emerging from the SDRAMs internal interleaving and bursting capabilities.

The MCU supports SDRAM burst lengths of four. A burst length of four enables seamless
read/write bursting of long data streams as long as the MCU master does not cross the page
boundary. Page boundaries are at naturally aligned 2 Kbyte blocks for the 64-bit data bus. The
MCU ensures that the page boundary is not crossed within a single transaction by initiating a
disconnect with data on the Internal Bus prior to the page boundary.

The MCU SDRAM interface provides a flexible mix of combinations including:

Table 13-5 shows the SDRAM interface signals.

Table 13-5. SDRAM Interface Signals

Pin Name Description

SDRAM Output Clocks - These are the four output clocks driven to the Unbuffered DIMMs
DCLK[3:0] supported by the Intel® 80303 I/O processor. Section 13.2.6, "SDRAM Clocking" on

page 13-35 describes the SDRAM clocking strategy.

SDRAM Feedback clock - This clock is driven in to the memory subsystem so that
DCLKOUT DCLK[3:0] may be skewed back to accommodate for the clocks' flight time and be

compatible with 100/133 MHz SDRAM technologies

DCLKIN
SDRAM Clock In - This is the DCLKOUT clock returning from the memory subsystem.
Section 13.2.6, "SDRAM Clocking" on page 13-35 describes the SDRAM clocking strategy.

Clock enables - One clock after SCKE[1 :0] is deasserted, the data is latched on DO[63:0]

SCKE[1:0]
and SCB[7:0). The burst counters within the SDRAM device are not incremented.
Deasserting this signal places the SDRAM in self-refresh mode. For normal operation,
SCKE[1 :0] must be asserted.

Data Mask - On a write, these signals enable the eight output data bytes required by the
SDOM[7:0] 64-bit data bus. On a read, two clocks after asserting SOOM[7:0] the output data bytes are

disabled.

SCE[1:0]# Chip Select- Must be asserted for all transactions to the SDRAM device. One per bank.

SWE#
Write Enable - Controls the SDRAM data input buffers. Asserting SWE# causes the data on
DO[63:0] and SCB[7:0] to be written into the SDRAM devices.

SBA[1:0] SDRAM Bank Selects - Controls which of the internal SDRAM banks to read or write. For
16 Mbit devices (2 banks), only SBA[O] is used while 64 Mbit devices use SBA[1 :0].

SA[10]
Address bit 10 - If high during a read or write command, auto-precharge occurs after the
command. During a row-activate command, this bit is part of the address (see Table 13-6).

SA[12:0]
Address bits 12 through 0 - Indicates the row or column to access depending on the state of
SRAS# and SCAS# (see Table 13-6).

SA[13] Address bit 13 -

SRAS# Row Address Strobe - Indicates that the current address on SA[12:0] is the row.

SCAS# Column Address Strobe - Indicates that the current address on SA[12:0] is the column.

00[63:0] Data Bus - 64-bit wide data bus.

SCB[7:0] ECC Bus - 8-bit error correction code which accompanies the data on DO[63:0].

Utilizing the SDRAM chip enables SCE[1:0)# and internal bank selects SBA[1:0), the MCU keeps
a maximum of eight pages open simultaneously with 64/128/256 Mbit devices. The number of
available pages depends on the memory subsystem population. A single 64/128/256 Mbit SDRAM
bank allows four pages and two banks allow eight pages.

Developer'S Manual 13-11

Intel® 80303 110 Processor
Memory Controller int'et

Open pages allow optimal performance when a read or write occurs to an open page. Multiple open
pages allow multiple memory segments to be open simultaneously and is well-suited for the 80303
I/O processor's system environment. The MCUs paging algorithm is detailed in Section 13.2.3.3,
"Page Hit/Miss Determination" on page 13-16. The waveforms illustrating the performance issues
are in Section 13.2.3.7, "SDRAM Read Cycle" on page 13-21 and Section 13.2.3.8, "SDRAM
Write Cycle" on page 13-24.

Figure 13-6 illustrates how two banks of SDRAM would interface with the 80303 I/O processor
through the MCV.

Figure 13-6. Dual-Bank SDRAM Memory Subsystem

Intel®
80303

00[63:0] 00[63:0] Processor
SC[7:0] CB[7:0]

SRAS# RAS#

SCAS# CAS#
SDRAMDIMM

SWE# WE#

SA[12:0] A[12:0)

SBA[1:0] BA[1:0]

SOOM[7:0) 00M[7:0)

SCKE CKE[1:0]

SCEO CS[3:0]#

SCE1

- 00[63:0]

'---- CB[7:0)

RAS#

CAS#
SDRAMDIMM

WEI

A[12:0]

BA[1:0)

00M[7:0]

CKE[1:0)

CS[3:0)#

A7656-01

13-12 Developer's Manual

int'et
13.2.3.1 SDRAM Sizes and Configurations

Inte/@ 80303 liD Processor
Memory Control/er

The MCU supports an ECC only memory subsystem ranging from 32 to 528 Mbytes. An ECC
system may be implemented using x8, or x16 devices. This allows flexibility and offers between 32
and 512 Mbytes. Table 13-6 illustrates the supported SDRAM configurations.

Table 13-6. Supported SDRAM Configurations

SDRAM SDRAM
Address Size Leaf Select Total

Banks Memory
Technology Arrangement

Row Column SBA[1] SBA[O] Size

1 64M
8M x 8 12 9 I_AD[25] I_AD[24]

2 128M
64 Mbit

1 32M
4M x 16 12 8 I_AD[24] I_AD[23]

2 64M

1 128M
16M x 8 12 10 I_AD[26] I_AD[25]

2 256M
128 Mbit

1 64M
8M x 16 12 9 I_AD[25] I_AD[24]

2 128M

1 256M
32M x8 13 10 I_AD[27] I_AD[26]

2 512M
256 Mbit

1 128M
16M x 16 13 9 I_AD[26] LAD[25]

2 256M

64/128/256 Mbit SDRAM devices comprise four internal leaves. The MCU controls the leaf
selects within 64/128/256 Mbit SDRAM by toggling SBA[O] and SBA[l].

The two SDRAM chip enables (SCE[l:O]#) support an SDRAM memory subsystem consisting of
two banks. The base address for the two contiguous banks are programmed in the SDRAM Base
Register (SDBR) and must be aligned to a 32Mbyte boundary. The size of each SDRAM bank is
programmed with the SDRAM boundary registers (SBRO and SBR1).

Table 13-1. SDRAM Address Register Definitions

SDRAM Address Register Definition

SDRAM Base Register (SDBR)
The lowest address for SDRAM memory space
aligned to a 32 Mbyte boundary.

The upper address offset to the SDBR for bank 0 of

SDRAM Boundary Register 0 (SBRO)
SDRAM memory space. Also, the lower address
offset to the SDBR for bank 1 of SDRAM memory
space.

The upper address offset to the SDBR for bank 1 of
SDRAM Boundary Register 1 (SBR1) SDRAM memory space. SBR1 must be greater than

or equal to SBRO.

Note: SDRAM memory space must be aligned to a 32Mbyte boundary and must never cross a 512 Mbyte
boundary.

Developer's Manual 13-13

Intel® 80303 110 Processor
Memory Controller intel.

The base register defines the upper seven address bits of the SDRAM memory space. The
boundary registers define the address limits for each SDRAM bank in 32 Mbyte granularity.
Table 13-8 defines the conditions which must be satisfied to activate an SDRAM memory bank.

Table 13-8. Address Decoding for SDRAM Memory Space

Condition SO RAM Bank Selected

I_AO[31 :29] is not equal to the SDBR[31 :29] None

I_AO[31 :25] is greater than or equal to the SDBR[31 :25]
BankO

I_AO[28:25] is less than the value in SBRO[7:3]

I_AO[31 :25] is greater than or equal to the SDBR[31 :25]

I_AO[28:25] is greater than or equal to the value in SBRO[7:3] Bank 1

I_AO[28:25] is less than the value in SBR1[7:3]

Example 13-1. Address Register Programming Example 1

The user wants to program the SDRAM memory space to begin at BOOO OOOOH. Bank 0 is 32
Mbytes and Bank 1 is 64 Mbytes yielding in a total memory of 96 Mbytes. The registers would be
programmed as follows:

SDBR = BOOO OOOOH
SBRO[7:3] = 00001 2 = 01H
SBRI [7:3] = 000112 = 03H

Example 13-2. Address Register Programming Example 2

The user wants to program the SDRAM memory space to begin at BOOO OOOOH. Bank 0 is 32
Mbytes and Bank 1 is unpopulated. The registers would be programmed as follows:

SDBR = BOOO OOOOH
SBRO[7:3] = 000012 = 01H
SBRI [7:3] = 00001 2 = 01H

Example 13-3. Address Register Programming Example 3

The user wants to program the SDRAM memory space to begin at BOOO OOOOH. Bank 0 is 32
Mbytes and Bank 1 is 32 Mbytes yielding in a total memory of 64 Mbytes. The registers would be
programmed as follows:

SDBR = BOOO OOOOH
SBRO[7:3] = 000012 = OIR
SBR1[7:3] = 000102 = 02H

Table 13-9 shows the programming for SDRAM memory space

Table 13-9. Programming Values for the SDRAM Boundary Registers (SBRx[7:3]) (Sheet 1 of 2)

Bank Size Bank 0 (SBRO) Bank 1 (SBR1)

Empty SBRO '" OxOO + SDBR[28:25] SBR1 '" OxOO + SBRO[7:3]

32M SBRO '" Ox01 + SDBR[28:25] SBR1 '" Ox01 + SBRO[7:3]

64M SBRO = Ox02 + SDBR[28:25] SBR1 = Ox02 + SBRO[7:3)

13-14 Developer's Manual

Table 13-9.

13.2.3.2

Intel® 80303 110 Processor
Memory Controller

Programming Values for the SDRAM Boundary Registers (SBRx[7:3]) (Sheet 2 of 2)

Bank Size Bank 0 (SBRO) Bank 1 (SBR1)

128M SBRO = Ox04 + SDBR[28:25] SBR1 = Ox04 + SBRO[7:3]

256M SBRO = Ox08 + SDBR[28:25] SBR1 = Ox08 + SBRO[7:3]

SDRAM Addressing

SDRAM addressing for 64/128/256 Mbit Devices using SA[12:0]

Table 13-10 illustrates how the internal address is mapped to the SA[12:0] lines for
64/128/256 Mbit SDRAM devices.

Table 13-10. SDRAM Address Translation for 64/128/256 Mbit Devices using SA[12:0]

SA[12:0] 12 11 10 9 8 7 6 5 4 3 2 1 0

Row I.-AD[25] LAD[22] I_AD[21] I_AD[20] I_AD[19] I_AD[18] I_AD[17] I_AD[16] I.-AD[15] I_AD[14] I_AD[13] I_AD[12] LAD[11]

Co] V1 LAD[24] I_AD[23] I_AD[10] I_AD[9] I_AD[8] I_AD[7] I_AD[6] I_AD[5] I_AD[4] I_AD[3]

NOTES:
1. SA[10] is used for precharge variations on the read or write command. See Table 13-12 for more details.
2. For the Leaf Selects, see Table 13-6.

SDRAM addressing for 256 Mbit Devices using SA[13,11 :0]

The SA[13] signal can provide the appropriate address signal (I_AD[24]) for 256Mb x 16 SDRAM
devices. Table 13-11 illustrates how the internal address is mapped to the SA[13,11:0] lines.
Instead of connecting SA[12] to the 256Mb x 16 SDRAM, replace it with SA[13]. With this
configuration the 13 rows and 9 columns will now provide the correct addressing to the 256Mb x
l6SDRAM.

Table 13-11. SDRAM Address Translation for 256 Mbit Devices

SA[13, 11 :0] 13 11 10 9 8 7 6 5 4 3 2 1 0

Row I_AD[24] I_AD[22] I_AD[21] I_AD[20] I_AD[19] I_AD[18] I_AD[17] I_AD[16] I_AD[15] LAD[14] I_AD[13] I_AD[12] I_AD[11]

Col v1 I.-AD[23] LAD[10] I_AD[9] I_AD[8] LAD[7] LAD[6] I_AD[5] I_AD[4] I_AD[3]

NOTES:
1. SA[10] is used for precharge variations on the read or write command. See Table 13-12 for more details.
2. For the Leaf Selects, see Table 13-6.

Since the MeU supports SDRAM bursting, the MeU increments the column address by four for
each SDRAM read or write burst.

The MeU supports a sequential burst type (Figure 13-8). Sequential bursting means that the
address issued to the SDRAM is incremented by the SDRAM device in a linear fashion during the
burst cycle.

Developer's Manual 13-15

Intel@ 80303 110 Processor
Memory Controller

13.2.3.3

13-16

Page Hit/Miss Determination

The MCV address translation assumes a 2 Kbyte page even if the physical addressing allows a
greater page size. For 64/128/256 Mbit devices, the MCV keeps four pages per bank (8 maximum)
open simultaneously.

For 64/128/256 Mbit devices, the MCV keeps only one page each of BankOlLeafO, BankOlLeafl,
BankOlLeaf2, BankOlLeaf3, BankllLeafO, BankllLeafl, BanklILeaf2, and BankllLeaf3 open
simultaneously. This rule implies that one 2 Kbyte page per eighth of the memory can be open. See
Figure 13-7 for an example organization using 64 Mbit devices.

The MCV paging logic determines the hit/miss status for reads and writes. For a new SDRAM
transaction, the MCV compares the address of the current transaction with the address stored in the
appropriate page address register. Assuming 64/128/256 Mbit SDRAM devices and two banks,
there are eight pages kept open simultaneously. The SDRAM chip enables (SCE[1:0]#) and leaf
selects (SBA[1:0]) determine which page address to compare.

If the current transaction misses the open page selected then the MCV closes the open page pointed
to by SCE[1:0]# and SBA[1:0] by issuing a precharge command. The MCV opens the current
page with a row-activate command and the transaction completes with a read or write
command. When the MCV opens the current page, I_AD[31:11] is stored in the page address
register pointed to by SCE[1:0]# and SBA[1:0] so it may be compared for future transactions.

If the current transaction hits the open page, then the page is already active and the read or write
command may be issued without a row-activate command. If the refresh timer expires and the
MCU issues an auto-refresh command, all pages are closed.

Figure 13-10 illustrates the performance benefit of a read hit versus a read miss in Figure 13-11.
Figure 13-12 illustrates the performance benefit of a write hit versus a write miss in Figure 13-13.

Developer's Manual

intel· Intel® 80303 liD Processor
Memory Controller

Figure 13-7. Logical Memory Image of a 64/128/256 Mbit SDRAM Memory Subsystem

Page Address Registers
j~ I

Paae 0 closed~

Page 2 Paoe 1 (closed)
BankO Leaf 0 Paae 2 (OPEN)

Leaf 0 Pa~e 3Jclosectt
BankO Leaf1 Page 0

BankO Leaf2 Page 1 'r
paae ~Pt:N

BankO Leaf3 Page 1 j~
Paae UclosectL
Paae 2 (closed)

Bank1 Leaf 0 Page 2 Leaf 1 Paae 3 (closed)

Bank1 Leaf1 Page 0 1r
BankO

Page 1 j~
paae 0 c ose

Bank1 Leaf2 Pa..qe UOPEN)

Bank1 Leaf3 Page 1 Leaf 2
Paoe 2 (closed)
Paae 3 (closed)

"
J~

Paae 0 (closed)
Paae 1 (OPEN)

Leaf 3
PaJle 2 (closed)
Paae 3 (closed)

'r n

j~ A
Paoe 0 (closed)
Paae 1 (closed)

Leaf 0
Pa_qe 2JOPEN)
Paoe 3 (closed)

"
J

Paae 0 OPEN
Paoe 1 (closed)

Leaf 1
Paae 2 (closed)
Paae 3 (closed)

Bank 1
1r
j~

paae 0 c oseCl
Paoe 1 (OPEN)

Leaf 2
Paae 2 (closed)
Paae 3 (closed)

1r
j~

pa e c ose
Paae 1 (OPEN)

Leaf 3
Paoe 2 (closed)
Paae 3 (closed)

, l'
Figure 13-7 illustrates how the logical memory image is partitioned with respect to open and closed
pages. If the above image represents a 64 Mbyte SDRAM memory size, each bank is 32 Mbytes
and each leaf is 8 Mbytes.

Only one page may be open within each of the leaf blocks. The block sizes depend on the memory
sizes implemented in the SDRAM memory subsystem. The page size is always 2 Kbytes. The
programmer can optimize SDRAM transactions by partitioning code and data across the leaf
boundaries to maximize the number of page hits.

Developer's Manual 13-17

Intel® 80303 I/O Processor
Memory Controller int'et
13.2.3.4 SDRAM Commands

The MCU issues specific commands to the SDRAM devices by encoding them on the SCE[l:O]#,
SRAS#, SCAS#, and SWE# inputs. Table 13-12 lists all of the SDRAM commands understood by
SDRAM devices. The MCU supports a subset of these commands.

Table 13-12. SDRAM Commands

13-18

Conditions
Command Comments

SCE# SRAS# SCAS# SWE# Other

NOP 0 1 1 1 No Operation

Mode
0 0 0 0

Load the Mode Register from
Register Set SA[12:0]

Row Activate 0 0 1 1 SBA[O] = Leaf
Activate a row specified on
SA[12:0]

Read 0 1 0 1
SBA[O] = Leaf

SA[10] = 0
Column burst read

Read wi
SBA[O] = Leaf Column burst read with row

Auto-Prechar 0 1 0 1 precharge at the end of the
ge SA[10] = 1 transfer

Write 0 1 0 0
SBA[O] = Leaf

Column burst write
SA[10] = 0

Write wi
SBA[OI = Leaf Column burst write with row

Auto-Prechar 0 1 0 0 precharge at the end of the
ge SA[10] = 1 transfer

Precharge 0 0 1 0
SBA[O] = Leaf

SA[10] = 0
Precharge a single leaf

Precharge All 0 0 1 0 SA[10] = 1 Precharge both leaves

Auto-Refresh 0 0 0 1
Refresh both banks from
on-chip refresh counter

Self-Refresh 0 0 0 1 SCKE = 0
Refresh autonomously while
SCKE = 0

Power Down x x x X SCKE = 0
Power down if both banks
precharged when SCKE = 0

Stop 0 1 1 0 Interrupt a read or write burst.

NOTES:
1. This table copied from New DRAM Technologies by Steven Przybylski.
2. Shaded boxes indicate commands not supported by 80303 I/O processor. They are included for

completeness.

SDRAM commands are synchronous to the clock so the MCU sets up the above conditions prior to
the DCLKOUT[3:0] rising edge.

Developer's Manual

13.2.3.5 SDRAM Initialization

Inte/@ 80303 I/O Processor
Memory Controller

Since SDRAM devices contain a controller within the device, the MCU must initialize them
specifically. Upon the deassertion ofI_RST#, software initializes the SDRAM devices with the
sequence illustrated with Figure 13-9:

1. The MCU applies the clock (DCLKOUT[3:0]) at power up along with system power (clock
frequency unknown).

2. The MCU must stabilize DCLKOUT[3:0] within 100 /IS after power stabilizes.

3. The MCU holds all the control inputs inactive (SRAS#, SCAS#, SWE#, SCE[I:0]# = 1) and
deasserts SCKE[I:0] for a minimum of 1 ms after supply voltage reaches the desired level.
Asserting P _RST# achieves this state.

4. Software disables the refresh counter by setting the RFR to zero.

5. Software issues one NOP cycle after the 1 ms device deselect. A NOP is accomplished by
setting the SDIR to 011 2, The MCU asserts SCKE[I:0] with the NOP.

6. Software pauses 200 /I sec after the NOP.

7. Software re-enables the refresh counter by setting the RFR to the required value.

8. Software issues a precharge-all command to the SDRAM interface by setting the SDIR to
01°2'

9. Software provides eight auto-refresh cycles. An auto-refresh cycle is accomplished by
setting the SDIR to 1002, Software must ensure at least Tre cycles between each auto-refresh
command.

10. Software issues a mode-register-select command by writing to the SDIR to program the
SDRAM parameters. Setting the SDIR to 0002 programs the MCU for CAS Latency of two
while setting the SDIR to 001 2 programs the MCU for CAS Latency of three. The MCU
supports the following SDRAM mode parameters:

a. CAS Latency (CL) = three or two

b. Wrap Type (WT) = Sequential

c. Burst Length (BL) = four

Figure 13-8. Supported SDRAM Mode Register Settings

AO

Burst Length:
010:4
Other: X

Burst Type:

CAS Latency:
010:2
011: 3
Other: X

0: Sequential
1: X (Interleaved)

The SDRAM mode register resides

in the SDRAM devices.

11. The MCU may issue a row-activate command three clocks after the mode-register-set
command (T mrd)'

Developer's Manual 13-19

Intel® 80303 liD Processor
Memory Controller

The waveform in Figure 13-9 illustrates the SDRAM initialization sequence.

Figure 13-9. SDRAM Initialization Sequence (controlled with software)

13.2.3.6

13-20

DCLK [

SA[12:0] [---...... 1"-' ---------II-----------j'-~>____c=>

SBA[O] [-,-----,--_----------,-,,>1'-) -,-______ --,--______ _

SCE[O]# [

SCE[1]# [

SRAS# [

SCAS# [

SWE# [

+- Trp -----.

'~

/~'-----'U

'~

\ r
'~

SCKE[1:0] [~ ,/

/ i i i
Inputs Stable Precharge 1 st Auto Refresh 8th Auto Refresh
for 200 ~sec All Banks
after NOP command

i i
MRS Command Legal Command

Since the SDRAM subsystem implements ECC (see Section 13.2.4, "Error Correction and
Detection" on page 13-28), initialization software must initialize the entire memory array with the
80303 I/O processor. It is important that every memory location has a valid ECC byte. The BIU
optimizes SDRAM accesses by supporting instruction and read prefetching. If the memory array is
not initialized, the BIU may attempt to read memory locations beyond the specified word(s). In this
case, the MCU will report an ECC error even though software did not specifically request the
uninitialized data.

SDRAM Mode Programming

The MCU programs the SDRAM devices through a mOde-register-set command. During the
initialization sequence this command sets the SDRAM mode register (see Section 13.2.3.5,
"SDRAM Initialization" on page 13-19) by programming the SDIR.

The SDRAM state machine ensures that a row-activate command is issued no sooner than T mrd

(3) cycles after the mode-register-set command.

Developer's Manual

int'et
13.2.3.7 SCRAM Read Cycle

Intel® 80303 I/O Processor
Memory Controller

Read performance is optimized for page hits and the MCUs behavior is different for the hit and
. .

mISS scenarIO.

Note: To accommodate a heavily loaded memory subsystem (>= 18 SDRAM devices), the MCU drives
SA[12:0), SBA[1:0), SCAS#, SRAS#, and SWE# for two clocks in the following SDRAM timing
diagrams. The MCU drives SCE[1:0)# for one clock since it maintains half the loading of the
above signals, SDQM[7:0) is unaffected.

Example 13-4. Read Page Hit

A page hit occurs when the current address falls within a row that is currently open. For a page hit,
the MCU does not need to open the page (assert SRAS#) and avoids the RAS-to-CAS delay
achieving greater performance. The waveform for a read that hits a page in bank ° is illustrated in
Figure 13-10.

Figure 13-10. SDRAM Read, 40 bytes, ECC Enabled, BL=4, Page Hit

DCLK [

SCE[Oj# [

SRAS# [

SCAS# [

SWE# [

SDQM[7:0j [

\'--_-J/ \'--_-...J/ \L-_--'/

____ ~-------------------------O-O----------------------~X~----FF----

i
Address
Decode
(Hit)

I i CAS Latency
ECC
Calculation and
Compare for DO

I
Ready for ... T dqz

next transaction-.l
on internal bus

• The MCV decodes the address to determine if the transaction should be claimed.

- If the address falls in the SDRAM address range indicated by the SDBR, SBRO, and
SBRI, the MCV claims the transaction.

Developer's Manual 13-21

Intel@ 80303 110 Processor
Memory Controller

13-22

- During the same cycle, the MCV determines whether or not any of the open pages are hit.
If so, then the SDRAM state machine activates the appropriate bank by asserting its chip
select for the next cycle.

• In the following cycle, the MCV asserts SCAS#, deasserts SWE#, and places the column
address on SA[12:0]. This initiates the burst read cycle.

• After the CAS latency expires, the SDRAM device drives data to the MCV.

• Vpon receipt of the data, the MCV calculates the ECC code from the data and compares it with
the ECC returned by the SDRAM array. Section 13.2.4, "Error Correction and Detection" on
page 13-28 explains the ECC algorithm in more detail.

• Assuming the calculated ECC matches the read ECC, the MCV drives the data onto the
internal bus.

• For each burst read issued, the memory controller increments the column address by four.

The MCV continues to return data until the master initiating the transaction is satisfied. Once the
master terminates the transaction, the MCV ceases issuing read cycles and asserts SDQM[7:0]
preventing the SDRAM devices from driving the additional data. The additional data returned from
the SDRAM devices is discarded.

Developer's Manual

Intel@ 80303 I/O Processor
Memory Controller

Example 13-5. Read Page Miss

A read that misses the open pages encounters a miss penalty because the currently open page needs
to be closed before the read can be issued to the new page. Refer to Section 13.2.3.3, "Page
Hit/Miss Determination" on page 13-16 for the paging algorithm details. Closing a page means
issuing a precharge command to the row that needs to be closed. Figure 13-11 illustrates a read
miss. The new page and the old page are in bank 0.

Figure 13-11. SDRAM Read, 40 bytes, ECC Enabled, BL=4, Page Miss

DCLK [

SCE[O]# [

SRAS# [

SCAS# [

SWE# [\

DO[71 :0] [t \" . '\., . "J .:>-.' 't',

("',',., ';:f/' :" 'v,, '

SDOM[7:0] [_________________ oo ____________ ...-JXI-__ F_F_~

t II
I

Address t Trp t Decode
(Miss) Precharge Row

Activate

I I
I t

Tred CAS Latency ECG
Calculation and
Compare for DO

I
Tdqz

Disable --.1
I_AD drivers

• The MCU decodes the address to determine ifthe transaction should be claimed.

- If the address falls in the SDRAM address range indicated by the SDBR, SBRO, and
SBR1, the MCU claims the transaction.

- During the same cycle, the MCU determines whether or not any of the open pages are hit.

• In the following cycle, the MCU closes the currently open page by issuing a precharge
command to the currently open row.

- The MCU waits Trp (3) cycles after the pre charge before issuing the row-activate
command for the new read transaction.

• The row-activate command enables the appropriate row.

- The MCU asserts SRAS#, deasserts SWE#, and drives the row address on SA[12:0].

• After Trcd (2) cycles, the MCU issues the read command by asserting SCAS# while driving
the column address on SA[12:0].

The remainder of the read transaction is identical to a "Read Page Hit" on page 13-21 beginning at
clock cycle 8.

Developer's Manual 13-23

Intel® 80303 110 Processor
Memory Controller in1:et
13.2.3.8 SDRAM Write Cycle

The performance is best for page hits and therefore the MCUs behavior is different for the hit and
miss scenario. Section 13.2.4, "Error Correction and Detection" on page 13-28 explains the ECC
algorithm in more detail.

Note: To accommodate a heavily loaded memory subsystem (>= 18 SDRAM devices), the MCV drives
SA[12:0], SBA[1:0], SCAS#, SRAS#, and SWE# for two clocks in the following SDRAM timing
diagrams. The MCV drives SCE[1:0]# for one clock since it maintains half the loading of the
above signals, SDQM[7:0] is unaffected.

Example 13-6. Write Page Hit

For a page hit, the MCV does not need to open the page (assert SRAS#) and avoids the
RAS-to-CAS delay achieving greater performance. The waveform for a write that hits a page in
bank 0 is illustrated in Figure 13-10.

Figure 13-12. SDRAM Write, 40 bytes, ECC Enabled, BL=4, Page Hit

DCLK [

SCE[O]#
I
L

SRAS# [

SCAS# [

SWE# [

SA[12:0] r
L

00[71:0] [

SDOM[7:0] [

13-24

\'----~/

\'-------'/ \1.--,--_"",--.....11

________________________ O_O ____________________________ ~X~ _____ FF ____ ~

i
Addr.
Decode
(Hit)

i
Generate
ECC for DO

• The MCV decodes the address to determine if the transaction should be claimed.

- If the address falls in the MCV address range, the MCU claims the transaction.

- During the same cycle, the MCV determines whether or not any of the open pages are hit.
If so, then the SDRAM state machine activates the appropriate bank by asserting its chip
select for the next cycle.

• The ECC logic generates the ECC code for the data to be written.

Developer's Manual

Intel® 80303 I/O Processor
Memory Controller

• In the following cycle, the MCU asserts SCAS#, asserts SWE#, and places the column
address on SA[12:0]. This initiates the burst write cycle. The MCU drives the data to be
written and its ECC code to the SDRAM devices.

• The MCU drives the new data on the data bus each cycle until the transaction is completed
with the master deasserting I_FRAME#.

• If the data to write is not aligned on an 8 byte boundary, the MCU will perform a
read-modify-write of the entire 8 byte aligned quad-word and incorporate the new data while
regenerating ECC.

Example 13-7. Write Page Miss

A write that misses the open pages encounters a miss penalty because the currently open page
needs to be closed before the MCU can issue the write to the SDRAM. Closing a page means
issuing a precharge command to the row that needs to be closed. Figure 13-13 illustrates a write
miss. The new page and the old page are in bank O.

Figure 13-13. SDRAM Write, 40 bytes, ECC Enabled, BL=4, Page Miss

SCLK [

SCE[O]# [

SRAS# [
New

\~ ____ ~r--\~ __ RO_W~/

SCAS# [\'---~/

SWE# [\'----~/ \ / ~~

ROW X GOL Xiq~>j;'(:'t;;;X GOL+4 >e:l

SDQM[7:0] [______________ OO _________________ >@

Address
Decode
(Miss) i

Precharge

I t Trcd

Generate
EGG

• Once an external master asserts 1_ FRAME#, the M CU decodes the address to determine if the
transaction should be claimed.

- If the address falls in the MCU address range, the MeU claims the transaction by
asserting 1_ DEVSEL#.

• In the following cycle, the MCU closes the currently open page by issuing a precharge
command to the currently open row.

Developer's Manual 13-25

Intel® 80303 110 Processor
Memory Controller

13-26

- The MCU waits Trp (3) cycles after the precharge command before the MCU issues the
row-activate command for the new write transaction.

• The MCU issues the row-activate command enabling the appropriate row.

- The MCU asserts SRAS# while driving the row address on SA[12:0].

• After Trcd (2) cycles, the MCU issues the write command by asserting SCAS# and driving the
column address on SA[12:0].

The remainder of the write transaction is identical to_"Write Page Hit"' on page 13-24.

Developer's Manual

13.2.3.9 SDRAM Refresh Cycle

Intel® 80303 liD Processor
Memory Controller

Since the SDRAM is a dynamic memory, the MCU issues a refresh cycle periodically. The interval
of these refresh cycles is programmable in the RFR register. The SDRAM device generates the
refresh address internally. The MCU initiates two sequential refresh cycles (one per bank) after the
MCUs refresh timer expires and any current transaction is complete. The waveform in
Figure 13-14 illustrates the case where the refresh timer expires in the middle of an incomplete
read cycle.

Figure 13-14. Refresh Following a Read Cycle

DCLK L JOV1V2U3V4V5V6V7V8V9V10U11V12V13~
SCE[O]# [~ "---J U U

SCE[1]# [LJ

SRAS# [\~ __ ~r-\~ ____ ~!

SCAS# [~ \ /
SWE# [\L--_----'/

SA[12:0] [~ COL X,--"'-' '---~___'_,-"-\--'_' 1,,-, -,,-,-,-,-,,---;,,-,' .;:...' ' ,~"'""';'-, -,,"""-:'--0.' ,-,-,---,----,<,,-'--,-",-,-,-".....;" _'-"-~>1

DQ[71 :0] [~~, ._'-'-"~"-'--"""-"'"""""--'-,.c.;. . .:;;."~' ---'-""'O"""'O'~""'O----.:'~·'---.:---.:'-'4:"""!''-' ...JI

SDQM[7:0] [______ OO __ ~X'_ _____________ F_F _________ __

"Mdi, 1 "ofre,h 1
I

I
II

lrp
I I

I I
Tdqz i i Tre i

Precharge Refresh Ready for
progress counter expires r Bank 1 next transaction

Refresh
Bank 0

• Once the refresh timer expires, the MCU knows that a refresh cycle is necessary.

- The refresh timer continues to count for the next refresh cycle.

• The MCU allows the current read transaction to complete.

on internal bus

- Since the MeV is currently reading from the SDRAM array, the refresh cycle is queued
until the transaction is complete.

• The MCU closes all open pages with a precharge-all command to all the populated SDRAM
banks.

- The MeU resets the page register valid bits.

• The MCU issues an auto-refresh command to SDRAM bank O.

- This command affects all internal leaves.

• In the next cycle, the Mev issues an auto-refresh command to SDRAM bank 1.

• After Trc cycles, the MeU can service a new transaction or another refresh cycle.

Developer's Manual 13-27

Intel® 80303 110 Processor
Memory Controller int'et

13.2.4

13.2.4.1

13.2.4.2

13-28

The refresh timer value is programmed with the RFR depending on the internal bus frequency. The
RFR should be programmed to 600H. The longest possible internal bus transaction is writing a
2Kbyte page where each data cycle results in a read-modify-write due to partial writes (see
Section 13.2.4.2, "ECC Generation for Partial Writes" on page 13-28). Such a transaction could
potentially require queueing two refresh cycles.

Error Correction and Detection

The MCV is capable of correcting any single bit errors and detecting any double bit errors in the
80303 I/O processor's SDRAM memory subsystem. In addition, the ECC logic detects any three or
four bit errors which occur in the same nibble. ECC enhances the reliability of a memory
subsystem by correcting single bit errors caused by electrical noise or occasional alpha particle hits
on the SDRAM devices.

Similar to parity, which simply detects single bit errors, error correction requires an additional 8-bit
code word for the 64-bit datum. This means that a memory must have the additional 8-bit error
correction code (SCB[7:0]) per 64-bit datum (DQ[63:0D resulting in a 72-bit wide memory
subsystem. During SDRAM read cycles, the MCV detects single bit errors and corrects the data
prior to returning the data on the internal bus. SDRAM write cycles generate the ECC and sends it
with the data to the memories.

Scrubbing is the process of correcting an error in the memory array. The chance of an
unrecoverable multi-bit error increases if the software does not correct a single-bit error in the
array. For the 80303 I/O processor, scrubbing is handled by software. When an error occurs, the
MeV logs the error type in ELOGO or ELOG 1 and the address in ECARO or ECARI.

ECC Generation

For write operations, the MCV generates the error correction code which is written along with the
data. The algorithm for a write transaction is:

if data to write is 64 bits wide

Generate the ECC

Write the new data and ECC

else {Partial Write}

Read entire 64-bit data word from memory

Merge the new data portion with the data from memory

Generate the new ECC

Write new data and ECC

ECC Generation for Partial Writes

If the internal bus master writes less than the data bus width programmed in the SDCR, then the
MCV translates the write transaction into a read-modify-write transaction. For a partial write, the
MCV calculates the ECC for the modified datum and writes it back. So, if an internal bus master
issues a write cycle with partial data, the MCV:

1. Issues a 64-bit read.

2. Modifies the value with the new portion to be written.

3. Calculates the ECC on the modified value.

Developer's Manual

intel·
4. Writes the 64-bit value and ECC.

Intel@ 80303 I/O Processor
Memory Controller

Figure 13-15 shows an example where the second data of a burst write to bank 0 is less than 64-bits
wide. The waveform illustrates how the MCU issues a read-modify-write cycle for the second data
(D 1)·

Even though the internal bus transaction completes, the MCU may still be busy due to the
read-modify-write. Subsequent MCU transactions are retried on the internal bus during this period.

Figure 13-15. Sub 64-bit SORAM Write {OJ}

SCE[O]#

SRAS#

SCAS#

SWE#

SA[12:0]

[

[

L

[

\L-______ .-.I

'-'--__ --'1

L_~

\ ,-
['-'-I; · ---,-'" -,,' -c--' .. '=\~j\-,-"'_' "-; ~:'.~X-,--_C_O_L =x= COL+ 1 =-X:_' _-,--"-"--',,,,,,' .. -"'",. X COL+ 1 >CJ

DO[71 :0] [[' v " ?,)>---------<C§X§::)>------<~>--------'~

SOOM!. _________________ OO _____________ ~ ____________ F_F ______ ~X~ ___ O_O __ _

Developer's Manual

i
Address
Decode
(Hit)

i 1
Generate Write
ECCforDO

1''--' ----,cA~-----'1 iLL wm.
Latency ECC Calculation Merge New Data

Comparison, and and Generate Read
Correction for D I New ECC for 01

13-29

Intel@ 80303 110 Processor
Memory Controller intel..
13.2.4.3 ECC Checking

If enabled, the ECC logic uses the following ECC read algorithm. This algorithm corrects the data
before it's driven onto the internal bus. The ECC algorithm for a read transaction is:

Read 64-bit data and 8-bit ECC
Compute the syndrome

if the syndrome <> 0 {ECC Error)
determine error type

Register the address where the error occurred

if error is correctable {single bit)

Correct data

Send corrected data to internal bus

Interrupt core for software scrubbing

else {uncorrectable)

if the read cycle is a part of a RMW cycle
Interrupt the core for uncorrectable error (MCISR[2])

else
Target-Abort the transaction

When the MCU reads the ECC code from the memory subsystem, it is compared (XORed) with an
ECC that the MCU generates from the data read from the memory. The result is called the
syndrome. Table 13-13 shows how the MCU decodes the syndrome for SDRAM read cycles.

Table 13-13. Syndrome Decoding

13-30

Error Type Symptom

None The syndrome is 0000 0000.

Single-Bit The syndrome contains an odd number of ones.

Nibble
One nibble of the syndrome contains 3 bits that are a "1" and the other nibble contains all
zeroes. This error is uncorrectable.

Double-Bit All other syndrome values. This error is uncorrectable.

If decoding the syndrome indicates a double-bit or nibble error (see Table 13-13), the transaction
results in a target-abort. If an internal bus master detects a target-abort, the master asserts an NMI
to the core. If during a write cycle, the internal bus master has already released the bus, the MCU
sets bit 2 in the MCISR and the MCU interrupts the core with an NMI.

If the syndrome indicates a single-bit error, the H-Matrix (Figure 13-16) is used to determine the
bit error. For example if the syndrome was 11000001 (S[7:0]), the error is with bit 0 of DQ[63:0].
To correct the error, the MCU inverts bit 0 before driving the data on the internal bus.

Developer's Manual

Cl
~
(J)

0"
"0

~
uf

~
III
:J
C
a1..

UJ
W

S7

S6

S5

S4

S3

S2

S1

SO

S7

S6

S5

S4

S3

S2

S1

SO

sc
80

1

35

1

1

1

SC SC SC
81 82 83

1

1

1

34 33 32

1

1

1

1 1 1

1 1 1

SC SC SC SC 63 84 85 86 87

1 1

1 1

1 1

1 1

1

31 30 29 28 27

1 1

1 1

1 1

1 1
- L- _ L-_

1 1 1

1 1

1 1 1

1 1 1

Bit Positions

62 61 60 59 58 57 56 55 54 53 52

1 1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Bit Positions

26 25 24 23 22 21 20 19 18 17 16

1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1
- - __ L- L-.L..-_

51 50 49 48 47 46 45 44 43

1 1 1

1 1

1 1

1 1

1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1
-~ - - -

15 14 13 12 11 10 9 8 7

1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1 1

1 1

42 41 40 39 38

1

1 1

1

1

1 1 1 1 1

1 1

1 1 1

6 5 4 3 2

1 1 1 1 1

1 1

1 1 1

1

1 1

1

1

37 36

1

1 I
1 1

1 1

-~'- --

1 0

1 1

1 1

1

1

."
cO'
c: ...
(1)
(,)

I
!'>
::I:
I s:

I» -:::!.
><

--::l
c[:

@

:J
<ii
@
~

s:8
(J)CJ
3(,.)
oS:: -<0
()lJ
o a
:::J C)
~(J) o(/) arC/)
'"' ~

Intel® 80303 110 Processor
Memory Controller int'et

13.2.4.4

If error reporting is enabled in the ECCR and the MCV detects a nibble, single-bit, or double-bit
error, the MCV stores the address in ECARx and the syndrome in ELOGx. Software decides how
to proceed through an interrupt handler. By registering the address in ECARx, software can
identify the faulty DIMM.

For details about the MCV error conditions and how the MMR registers are affected, refer to
Section 13.4, "Interrupts/Error Conditions" on page l3-42.

Scrubbing

Fixing the data error in memory is called scrubbing. The 80303 I/O processor relies on software
scrubbing. Once the MCU detects an error during a read, the MCV writes the address where the
error occurred in the ECARx register, updates the ELOGx register with information regarding the
error and interrupts the core with an NMI. The core decides how to fix the error through an
interrupt handler. Software could decide to perform the scrubbing on:

• the data location that failed

• the entire row of the data that failed

• the entire memory

The interrupt handler should perform the following actions.
1. Turn off ECC error reporting.

N ole: Since the scrubbing routine reads the failed location in order to fix the single-bit error, a second error is
reported. Therefore, software should disable single-bit ECC reporting (ECCR[O]) during the scrubbing
routine.
2. Read the MCISR register and store the results. Determine which ECAR/ELOG register the

MCV used to record the ECC error. Note: This is a read clear register.
3. Check the ELOGx register for information about the ECC error. Determine if the error is a sin

gle bit or multi-bit error. Double-bit or nibble errors cannot be fixed. If it's a single-bit error,
continue.

4. Do an atmod (read, modify, write) to the address specified in the ECARx register. Even
though an atmod instruction is only a 32 bit instruction, this will work for either 32 bit memory
mode or 64 bit memory mode. The error is fixed by the MCU when it reads the memory loca
tion and stores the value in the register, then the corrected data is written back to the memory
location.

5. Turn on ECC error reporting.
6. Exit from ISR.
7. Read from the address specified in the ECARx register again.
8. If no errors are reported (through NMI interrupt), the scrubbing procedure worked.
9. If another error is generated, treat this as a multi-bit error.

13-32 Developer's Manual

Intel® 80303 liD Processor
Memory Controller

The diagram below is a flowchart version of the scrubbing routine.

Figure 13-17. Scubbing Routine Flow Chart

Developer's Manual

Turn off EGG reporting
(EGGR.3=O)

Determine Error by reading MGISR,
Store value

almod instruction on address
in EGARx register

EGARx.31 :2)

Turn on EGG reporting
(EGGR.3=1)

Exit from ISR

Read Address Specified in EGARx
(EGARx.31 :2)

End EGG Error
Scrubbing Routine

Yes

(NISR.O=1)

Software / Application
specific handling of multi-bit error

End EGG Error
Scrubbing Routine

A7695-01

13-33

Intel® 80303 110 Processor
Memory Controller intel~
13.2.4.5

13.2.5

ECC Testing

The MCV implements the ECTST register providing the programmer the ability to test error
handling software. For write transactions, the ECTST register value is XORed with the generated
ECC. This inverts the bits where the mask is set prior to writing the ECC to memory. When the
MCV reads the address later, the ECC mismatches and the error condition occurs (see Section 13.4,
"Interrupts/Error Conditions" on page 13-42).

Overlapping Memory Regions

The MCV supports four independent memory regions:

• MMR Memory Space

• SDRAM Memory Space

• Two Flash Memory Spaces

The MMR memory space is fixed at 1500H to 15FFH. Software programs the SDRAM memory
region by providing a base address in SDBR and each of the two bank boundaries in SBRO and
SBRI. The first Flash address range is programmed with a base register in FEBRO and the bank
size in FBSRO. FEBRI and FBSRI defines the second address range.

While it is not recommended, the four ranges could overlap. In the case of a memory region
overlap, refer to Table 13-14 for the priority rules.

Table 13-14. Overlapping Address Priorities

Priority Address Region

Highest Memory Mapped Register Address Space

Flash Bank 0 Address Space

Flash Bank 1 Address Space

Lowest SDRAM Address Space

13-34 Developer's Manual

13.2.6 SDRAM Clocking

Inte/@ 80303 110 Processor
Memory Controller

The MCU provides 4 clocks (DCLKOUT[3:0]) to the SDRAM memory subsystem at 100 MHz.
The 72-bit 2-bank SDRAM DIMM specification requires 4 clocks to distribute the loading across
eighteen x8 SDRAM components.

DCLKOUT is driven back into the 80303 I/O processor as DCLKIN so that DCLK[3:0] may be
skewed back to accommodate for the clocks' flight time and be compatible with 133 MHz
SDRAM technologies. The amount of skew is determined by the board trace length. Refer to
Figure 13-18 for the layout diagram. SDRAM layout details as well as the clocking strategy are
recommended in the 80303 I/O processor Design Guide.

Figure 13-18. SO RAM Clocking

n ~······ •. ··· .. t-i2 , ,
DQ[71:0J SDQ[71 :OJ SDQ[71 :OJ

.. r.. v

~
I" ,.0/ v I I

DQ[71:0J
: ' .. ,' \j

DClKIN
I

J L~~~ DCLKOUT , ,
DClKOUT[3:0J 1 ClK[3:0J ClK[3:0J

---I_elK v v

SORAM
DIMM1

SDRAM {"sed fOf
DIMMO MAX limings)

MCU

Developer's Manual 13-35

Intel@ 80303 110 Processor
Memory Controller

13.3

13.3.1

13-36

Power Failure Mode

The 80303 I/O processor is an I/O processor used in server applications including networking and
storage. Specifically, the storage applications supported utilize the 80303 I/O processor as the lOP
for a SCSI RAID disk subsystem. The integrated memory controller supports up to 512 Mbytes of
local memory used for disk caching. The local memory is used for the temporary storage of disk
writes which greatly improves disk performance.

For the 80303 I/O processor memory controller, up to 512 Mbytes may be stored within the disk
cache. While the host assumes all written data is stored on the non-volatile disk subsystem, the lOP
must ensure that eventually all the data in the disk cache is actually stored onto disk.

The power supply could fail to provide power to the I/O subsystem in the case of a power outage or
a failed power supply. It is imperative that the cached data within the lOP's local memory is not
lost. If power fails, the local memory subsystem must remain powered with a battery backup and
some agent must continue to refresh at the appropriate interval specified by the memory
component datasheet.

This proposal defines the mechanism which the 80303 I/O processor's memory controller ensures
that the data within local memory is not lost during a power failure.

Theory of Operation

SDRAM technology provides a simple way of enabling data preservation through the self-refresh
command. This command is issued by the memory controller and the SDRAM will refresh itself
autonomously with internal logic and timers. The self-refresh command is defined in Table 13-12.

The SDRAM device will remain in self-refresh mode as long as:

• The device continues to be powered.

• SCKE is held low until the memory controller is ready to control the SDRAM once again.

Power to the SDRAM subsystem is ensured with an adequate battery backup and a reliable method
for switching between system power and battery power. The memory controller is responsible for
deasserting SCKE[l:O] when issuing the self-refresh command but while power gradually drops,
SCKE[l :0] MUST remain deasserted regardless of the state of Vee powering the 80303 I/O
processor.

Developer's Manual

inteI· Intel® 80303 110 Processor
Memory Controller

13.3.2 Power Failure Sequence

Figure 13-19 illustrates the sequence of events during a power failure as defined by PCI Local Bus
Specification, Revision 2.2.

Figure 13-19. Power Failure Sequence

ClK L

POWER [

PWRGOOD L

PUlLCKE I '-_.

SCKEout [

SCKE i
L

13.3.2.1

~ approximately 1 ms ..

~ __________ ~~/~-ti//~-4\~ _________ 'H'/ __________ ~;-;

'//.

\~--------------~.

t t t t t
Initial
Power·Up

Power Detected
Good by Supply

System
Deasserts
Reset

Power
Failure

Power
Restored

Power Failure Impact on the System

Upon initial power-up a power supply provides the appropriate voltage to the system. The voltage
level will increase at a rate that is dependent on the type of power supply used and the components
in the system. These variables are not certain, so the power supply often provides a signal called
PWRGOOD which indicates the time when the voltage has reached a reliable level. The power
supply deasserts PWRGOOD if the voltage level drops below a certain minimum threshold.

PCl Local Bus Specification, Revision 2.2 indicates that once PWRGOOD is deasserted, the PCI
reset pin (P _RST#) is asserted in order to float the output buffers. In the specification Tfail is
defined as the time when P _RST# is asserted in response to the power rail going out of
specification. Tfail is the minimum of:

• 500 ns from either power rail going out of specification (exceeding specified tolerances by
more than 500m V)

• 100 ns from the 5V rail falling below the 3.3V rail by more than 300mV

Developer's Manual 13-37

fntel® 80303 110 Processor
Memory Controller intel·
13.3.2.2

13.3.3

System Assumptions

This proposal makes specific assumptions about the system's behavior during a power failure. If
the below assumptions are not guaranteed, it is the vendor's responsibility to ensure them.

1. P _RST# is asserted to the 80303 I/O processor when there is at least 1 us of reliable power
remaining and stays asserted as long as reliable power is available. This is required so that the
memory controller can execute it's power-failure state machine in response to the assertion of
P_RST#.

2. The PCI clock will continue to run for at least 20 clock cycles after P _RST# is asserted. The
80303 I/O processor requires a PCI clock operating in the specified range of 16-66 Mhz in
order to complete the power fail sequence and put the SDRAM in self-refresh mode.

Memory Controller Response to LRST#

The memory controller assumes a power failure condition whenever CRST# is asserted. Note that
CRST# is asserted in response to the assertion of P _RST#. If P _RST# indicates a true power
failure, then battery-backup power is supplied to the SDRAM array. If P _RST# indicates any
condition other than a power failure, the SDRAM array will be powered down and any attempt to
issue the self-refresh command is ignored by the memory.

Due to the high loading on SCKE and the requirement of 100 MHz operation, the memory
controller must drive two copies to the SDRAM DIMM. The board layout will distribute the two
SCKE[1:0] signals between the two SDRAM banks equally.

Refer to Figure 13-20 for a high-level state machine representation illustrating the memory
controller's behavior during a power failure condition.

Figure 13-20. Power Failure State Machine

A6813·01

13-38 Developer's Manual

int:et Intel® 80303 110 Processor
Memory Controller

Once the memory controller detects the assertion of 1_ RST#, the memory controller will:

• Ignore the internal bus. The internal bus is invalid during 1_ RST# so the memory controller
should not assume any valid state.

• Wait for eight clocks to allow any previous SDRAM bus activity (i.e., read burst) to complete
before the memory controller issues the precharge-all command.

• Deactivate all SDRAM leaves with the precharge-all command.

• Issue an auto-refresh command and wait Trc (8) clocks.

• Issue a self-refresh command to the SDRAM devices and continue to deassert SCKE[1:0].

Figure 13-21 illustrates the SDRAM waveforms upon the assertion ofI_RST#.

Figure 13-21. Power Failure Sequence

'-----l LJ
\~ _ _...l!\\-__ __1/

\ /

\ /

~

LF

\'-------'/

\ I

____________ ~----J/ \~ ________________________________ _

\'----

\~--

Reset 1 Wait for 8 to 10 clocks i i i
due to Power Fail Precharge-AII Auto-Refresh Self-Refresh

SCKE[1:0] must be held low throughout the power-down period. The memory controller drives it
low initially with the self-refresh command, but an external pull-down is required to continually
drive it low when the 80303 I/O processor loses power. External logic ensures that SCKE[1:0] is
held low after the memory controller initially deasserts it. Likewise, the external logic must stop
driving SCKE[1:0] low once P _RST# is deasserted by the system. Figure 13-22 shows one
example of the external logic required for power failure mode.

As long as the SDRAM memory subsystem is powered with a battery source and SCKE[1:0] is
held low, the SDRAM preserves its memory image.

Developer's Manual 13-39

Intel@ 80303 I/O Processor
Memory Controller intel ..

When power is restored, the system asserts P _RST# to the 80303 I/O processor. While the 80303
I/O processor is reset, SCKE[1:0] is held low by the memory controller. After P _RST# is
deasserted (and subsequently, I_RST# is deasserted), the 80303 I/O processor must be
re-initialized to reset the CAS Latency parameter. The MRS command issued to the SDRAM
subsystem re-asserts SCKE[1:0] to ones and the memory controller resumes refreshing. The
SDRAM initialization sequence does not affect the memory contents. For more details about the
SDRAM initialization sequence, refer to Section 13.2.3.5, "SDRAM Initialization" on page 13-19.

Note: The power failure mechanism in the memory controller is not responsible for maintaining the
80303 I/O processor state. The purpose of this mechanism is to maintain the memory so that any
data cached in the local memory can be flushed once power is restored. Any data queued within the
80303 I/O processor's components (ATUs, BIU, etc.) will be lost.

13.3.3.1 External Logic Required for Power Failure

Assertion of P _RST# During Power Failure

Unfortunately, the 80303 I/O processor will not function down to the minimum voltage level of 2.5
volts after which the PCI specification guarantees P _RST# will be asserted during a power failure.
As a result, if the power failure mechanism is to be used, the P _RST# input pin must be an OR
function of the system's P _RST# signal and the output of a voltage detection circuit that will
trigger below the 3.0 volts guaranteed by the PCI specification during normal operations but above
the 2.5 volts where the device is not functional.

SCKE Control

Refer to Figure 13-22 for a state machine of the external logic required to control SCKE[1:0] for
power failure mode. Actual implementations may vary. This state machine can be implemented in
a programmable logic device illustrated in Figure 13-23.

Figure 13-22. External Power Failure State Machine

SCKEout ~

A6814-01

13-40 Developer's Manual

Figure 13-23. External Power Failure Logic in the System

External PLD

----------------P

Intel@ 80303 I/O Processor
Memory Controller

SDRAM
.. Subsystem

The implementation illustrated in Figure 13-23 requires that all external logic is powered by Vbatt.

The edge detect state machine will turn on the pull-down when the MeU deasserts SCKE[1:0]. As
long as V batt is active, SCKE[1:0] is held low. Once the memory controller is reset, the rising edge
of P _RST# deactivates the pull-down. The memory controller will reliably control SCKE[1:0] at
this point driving it low.

Note: Figure 13-23 shows logic for one of the SCKE signals. The loading of this signal is large enough
that two signals are required (one per SDRAM bank). The above logic will need to be replicated for
each SCKE[1:0].

Initialization of the Power Failure State Machine

The 80303 I/O processor's power failure state machine can not be initialized by the P _RST# pin
like the rest of the device's state machines since the power failure state machine is operational
during P _RST# assertion.

The 80303 I/O processor provides a dedicated input pin, PWRDELAY that will be used to
initialize the MCUs power failure state machine when deasserted. This signal should be driven by
external circuitry that will assert PWRDELAY following the initial deassertion of P _RST#.
PWRDELAY will not be deasserted until power has truly failed.

This circuitry could consist of a capacitor that is charged up through a FET enabled via the
deassertion of P _RST#. The only discharge path available to the capacitor would be through a
Zener diode connected to vee, thus PWRDELAY would be deasserted only when power has
truly failed.

Developer's Manual 13-41

Intel® 80303 110 Processor
Memory Controller intel ..
13.4 Interrupts/Error Conditions

The MCU has two conditions which require intervention from the 80303 I/O processor core. If a
single-bit error is detected during a read cycle, the MCU can fix the error but software needs to fix
the error in the memory array. If a double-bit or nibble error is detected, the core decides how to
handle the condition. For all ECC errors, the MCU records the master of the transaction resulting in
the error in ELOGx[18: 16] and interrupts the core.

If the MCU detects an ECC error during a read or write cycle l , MCISR[O] or MCISR[l] is set to 1.
Whenever the MCU toggles one of the MCISR bits from 0 to 1, an NMI is generated to the core.

Table 13-15 shows how the MCU responds to error conditions.

Table 13-15. MCU Error Response

Error Type MCU Action

Single-Bit during a read or write Fix Error

Double-Bit/Nibble during a read Target Abort the transaction

Double-Bit/Nibble during a write Target Abort the transaction

• Internal Bus write cycle not yet complete Do not write the data in error to SDRAM array

Double-Bit/Nibble during a write
Do not write the data in error to SDRAM array . Internal Bus write cycle completed

Note: If ECC reporting is enabled with ECCR[l] or ECCR[O] and an ECC error occurs, MCISR[l] or
MCISR[O] is set and ELOGx/ECARx logs the error in addition to the above table actions.

13.4.1 Single-Bit Error Detection

When enabled, the MCU interrupts the core when the ECC logic detects a single-bit error by
setting the appropriate bit in the MCISR register. The core knows the interrupt was caused by a
single-bit error by polling the ELOGO or ELOG 1 register. The MCU ensures that correct data is
transferred onto the internal bus but the interrupt handler is responsible for scrubbing the error in
the array (refer to Section 13.2.4.4, "Scrubbing" on page 13-32).

An example flow for a single-bit error with error detection and reporting enabled is:

• A single-bit ECC error is detected on the data bus (DQ[63:0]) by the MCU.

• The MCU fixes the error prior to sending the data onto the internal bus.

• The MCU clears ELOGO[8] indicating a single-bit error.

• The MCU records the master of the transaction that resulted in an error in ELOGO[18:16]

• The MCU loads ELOGO[7:0] with the syndrome that indicated the error.

• The MCU loads ECARO[31 :2] with address where the error occurred.

• Since the core needs to scrub the error in the array, the MCU sets MCISR[O] to 1 (assuming it
is not already set).

- Setting any bit in the MCISR causes an NMI to the core.

1. Any error condition during a write cycle actually occurs while perfonning the read portion of a read-modify-write on a sub-64-bit write. See
Section 13.2.4.1, "ECC Generation" on page 13-28 for details.

13-42 Developer's Manual

13.4.2

13.5

Intel® 80303 I/O Processor
Memory Controller

• Software polls the interrupt status register. Bit 0 set to 1 indicates that the first error has
occurred.

• Software polls ELOGO and ECARO and scrubs the error at the location specified by ECARO.

• Software writes a 1 to MCISR[O] thereby clearing it.

If software does not perform error scrubbing, the probability of an unrecoverable double-bit error
increases for the memory location containing the single-bit error.

ECARx and ELOGx remain registered until software explicitly clears them.

If a second error occurs before software clears the first by resetting MCISR[O] or MCISR[l], the
error is recorded in the remaining ELOGx/ECARx register. If none are available, the error is not
logged but the MCU carries out the action described in Table 13-15.

Double-Bit/Nibble Error Detection

If a multi-bit error occurs during a read or write transaction and error reporting is enabled, the
MCU sets MCISR[O] or MCISR[l] which asserts an NMI to the core. Upon receiving an NMI, the
core knows the interrupt was caused by a double-bit or nibble error by polling the ELOGx
registers.

When the MCU detects a double-bit or nibble error during a read cycle and error reporting is
enabled in the ECCR, the MCU target aborts the transaction indicating to the internal bus masters
that an unrecoverable error has been detected. The MCU records the error type in ELOGx and the
address in ECARx.

When the MCU detects a double-bit or nibble error during a write cycle and error reporting is
enabled in the ECCR, the MCU records the first nibble or double-bit error by programming
ELOGx and ECARx. The MCU cannot correct the data before sending it on DQ[63:0] so the MeU
aborts the read-modify-write cycle.

If a second error occurs before software clears the first by resetting MCISR[O] or MCISR[l], the
error is recorded in the remaining ELOGx/ECARx register. If none are available, the error is not
logged but the MCU carries out the action described in Table 13-15.

It is the interrupt handler's responsibility to decide how to handle this error condition and clear the
MCISR.

Reset Conditions

Once P _RST# is deasserted and 200 us have passed, software must issue the initialization sequence
defined in Section 13.2.3.5, "SDRAM Initialization" on page 13-19. After initialization, the
SDRAM devices are ready to be written to or read from. Reads issued prior to a write to the same
address results in an ECC error (if enabled) and is not recommended.

While P _RST# is asserted, the MCU initializes its MMR registers to the states defined in
Section 13.6, "Register Definitions" on page 13-44.

Developer's Manual 13-43

Intel@ 80303 I/O Processor
Memory Controller

13.6 Register Definitions

int:et

A series of configuration registers control the MCU. Software can determine the status of the MCU
by reading the status registers. Table 13-16 lists all of the MCU registers which are detailed further
in proceeding sections.

Table 13-16. Memory Controller Register Table

Section, Register Name· Acronym (Page)

Section 13.6.1, "SDRAM Initialization Register - SDIR" on page 13-45

Section 13.6.2, "SDRAM Control Register - SDCR" on page 13-46

Section 13.6.3, "SDRAM Base Register - SDBR" on page 13-47

Section 13.6.4, "SDRAM BOl!ndary Register 0 - SBRO" on page 13-48

Section 13.6.5, "SDRAM Boundary Registers 1 - SBR1" on page 13-49

Section 13.6.6, "ECC Control Register - ECCR" on page 13-50

Section 13.6.7, "ECC Log Registers - ELOGO, ELOG1" on page 13-51

Section 13.6.8, "ECC Address Registers - ECARO, ECAR 1" on page 13-52

Section 13.6.9, "ECC Test Register - ECTST" on page 13-53

Section 13.6.10, "Flash Base Register 0 - FEBRO" on page 13-54

Section 13.6.11, "Flash Base Register 1 - FEBR1" on page 13-55

Section 13.6.12, "Flash Bank Size Register 0 - FBSRO" on page 13-56

Section 13.6.13, "Flash Bank Size Register 1 - FBSR1" on page 13-57

Section 13.6.14, "Flash Wait States Registers - FWSRO, FWSR1" on page 13-58

Section 13.6.15, "Memory Controller Interrupt Status Register - MCISR" on page 13-59

Section 13.6.16, "Refresh Frequency Register - RFR" on page 13-60

13-44 Developer's Manual

13.6.1 SO RAM Initialization Register - SOIR

Intel@ 80303 liD Processor
Memory Controller

The SDRAM Initialization Register (SDIR) is responsible for programming the operation of the
SDRAM device state machines. The SDIR provides a method for software to execute the SDRAM
initialization sequence (see Section l3.2.3.5, "SDRAM Initialization" on page l3-19).

Table 13-17. SO RAM Initialization Register - SOIR

lOP [
Attributes

PCI [
Attributes

31 28 24 20 16 12 8 4 o

80960 Core Local Bus Address

1500H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:03 o

02:00

Developer's Manual

NA = Not Accessible

Description

Reserved

Special SDRAM Command: These bits are used for SDRAM initialization. See Section 13.2.3.5,
"SDRAM Initialization" on page 13-19 for details. While not in the initialization sequence, these bits
should be set to 11 x2' For details on the exact SDRAM commands, refer to Table 13-12, "SDRAM
Commands" on page 13-18.

• 0002 - Mode-Register-Set Command where CAS# Latency = 2.

• 0012 - Mode-Register-Set Command where CAS# Latency = 3.

• 0102 - Precharge-AII Command: The MCU issues one precharge-all command to the SDRAM
devices.

• 011 2 - NOP Command: The MCU issues one NOP command to the SDRAM devices.

• 1002 - Auto-Refresh Command: The MCU issues one auto-refresh command to the SDRAM
devices.

• 11 x2 - Normal SDRAM Operation

13-45

Intel® 80303 liD Processor
Memory Controller

13.6.2 SDRAM Control Register - SDCR

The SDRAM Control Register (SDCR) is responsible for programming the operation of the
SDRAM state machines. The SDCR specifies the drive strength for the MCV pins, the bus width,
and power failure handling. Refer to Table 13-19 for the recommended output buffer drive
programmability.

Table 13-18. SDRAM Control Register - SDCR

lOP [
Attributes

31 28 24 20 16 12 8 4 o

PCI [
Attributes \""\"", in;' \''''.,,,,''\'''' \"" \",".,"" \r,.'I >c," ,,,,,, ... n,,,

Bit

31 :13

12:11

10:09

08:07

06:05

04:03

02:00

13-46

80960 Core Local Bus Address

1504H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Default Description

o Reserved

Address and Control Drive Strength: Controls the strength of the SA[12:0], SBA[i :0], SRAS#,
SCAS#, SWE# SDRAM output buffers.

Register can be programmed with four distinct drive strengths ranging from low to high:

(low drive strength) "00" => "01" => "10" => "11" (high drive strength)

Data Mask Drive Strength: Controls the strength of the SDOM[7:0] SDRAM output buffers.

Register can be programmed with four distinct drive strengths ranging from low to high:

(low drive strength) "00" => "01" => "10" => "11" (high drive strength)

Chip Enable 1 Drive Strength: Controls the strength of the SCE[1]# and SCKE[1] SDRAM output
buffers.

Register can be programmed with four distinct drive strengths ranging from low to high:

(low drive strength) "00" => "01" => "10" => "11" (high drive strength)

Chip Enable 0 Drive Strength: Controls the strength of the SCE[O]# and SCKE[O] SDRAM output
buffers.

Register can be programmed with four distinct drive strengths ranging from low to high:

(low drive strength) "00" => "01" => "10" => "11" (high drive strength)

Data Bus Drive Strength: Controls the strength of the DO[63:0] and SCB[7:0] SDRAM output
Register can be programmed with four distinct drive strengths ranging from low to high:

(low drive strength) "00" => "01" => "10" => "11" (high drive strength)

Reserved

Developer's Manual

Table 13-19. Drive Strength Programmability Options

SDCR[4:3]
SOCR[6:5]

Form Factor BankO Bank 1
(SOQ) (SCEO#,

SCKEO)

1 single-sided
9[xB] None 00 01

DIMM

2 single-sided 9[xB] 9[xB] 01 10
DIMMs

1 double-sided
9[xB] 9[xB] 01 10 DIMM

1 single-sided 5[x16] None 00 01 DIMM

2 single-sided 5[x16] 5[x16] 01 10 DIMMs

1 double-sided 5[x16] 5[x16] 01 10
DIMM

SOCR[8:7]
(SCE1#,
SCKE1)

10

10

10

01

01

01

Intel® 80303 110 Processor
Memory Controller

SDCR[10:9]
SOCR[12:11]

(SOQM) (SA[12:01,
Controls)

10 10

10 10

10 10

01 01

01 10

01 10

1. The values in this column represent the number of SDRAM devices in the bank of a certain SDRAM device
width. For instance, 5x16 means that the bank contains 5 SDRAM devices with a 16-bit data bus width.

13.6.3

2. In the 5x16 configuration, there are B unused bits of one of the SDRAM devices used to create the 72-bit
wide bus.

SORAM Base Register - SOBR

This register indicates the beginning of SDRAM space. See Section 13.2.3.1, "SDRAM Sizes and
Configurations" on page 13-13 for usage details. There can be two contiguous physical banks
defined by SERO and SBR1 in the SDRAM subsystem starting at this address.

Note: SDRAM space must never cross a 512Mbyte boundary.

Table 13-20. SDRAM Base Register - SDBR

Bit

31 28 24

lOP [Attributes 1 ... "1 .. ,,",,",, coo

f--If--If--f--if--f--f--

PCI [Attributes \na·\na'\na'\.na~lna'ma'.na'.na\na

B0960 Core Local Bus Address

150BH

Default

20 16 12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:25 o SORAM Base Address: These bits define the upper seven bits of the SDRAM base address.

24:00 o Reserved

Developer's Manual 13-47

Intel® 80303 //0 Processor
Memory Controller

13.6.4 SO RAM Boundary Register 0 - SBRO

This register indicates the upper boundary of SDRAM bank O. If bank 0 is unpopulated, SBRO[7:3]
is programmed with same value as SBRl[7:3]. See Section l3.2.3.l, "SDRAM Sizes and
Configurations" on page l3-l3 for more details and programming examples.

Table 13-21. SDRAM Boundary Register 0 - SBRO

lOP [
Attributes

Ailrib~~~ [

31 28 24

80960 Core Local Bus Address

150CH

20 16 12

Bit Default Description

31 :08 OOOOOOH Reserved

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

07:03 0000002 SDRAM Boundary: Defines the upper limit of SDRAM bank O.

02:00 OH Reserved

13-48

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Developer's Manual

Intel® 80303 110 Processor
Memory Controller

13.6.5 SDRAM Boundary Registers 1 - SBRl

This register indicates the upper boundary of SDRAM bank 1. If bank 1 is unpopulated, SBRI [7:3]
is programmed with same value as SBRO[7:3]. If bank 1 is populated, SBR1[7:3] must be
programmed greater than or equal to SBRO[7:3]. See Section 13.2.3.1, "SDRAM Sizes and
Configurations" on page 13-13 for more details and programming examples.

Table 13-22. SDRAM Boundary Registers - SBR1

lOP [
Attributes

28 24

80960 Core Local Bus Address

1510H

20 16 12

Bit Default Description

31 :08 OOOOOOH Reserved

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

07:03 0000002 SDRAM Boundary: Defines the upper limit of SDRAM bank 1.

02:00 OH Reserved

Developer's Manual

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

13-49

Intel® 80303 I/O Processor
Memory Controller

13.6.6 ECC Control Register - ECCR

This register programs the MCU error correction and detection capabilities. The configuration
depends on the application's needs but a typical configuration is:

• Enable multi-bit error reporting

• Enable single-bit error reporting

• Enable single-bit error correcting

While there are separate bits for single-bit and multi-bit error reporting, if either is enabled, both
are enabled.

For more details, see Section 13.2.4, "Error Correction and Detection" on page 13-28 and
Section 13.4, "Interrupts/Error Conditions" on page 13-42.

Table 13·23. ECC Control Register· ECCR

lOP [
Attribut~)s

PCI [
Attributes

80960 Core Local Bus Address

1534H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

31 :03 OOOOOOOH Reserved

02

01

00

13-50

Single Bit Error Correction Enable: Enables or disables the correction of a single bit error.

o = Disable single bit error correction
1 = Enable single bit error correction

Multi-Bit Error Reporting Enable: Enables or disables the reporting of a mUlti-bit error condition.

o = Disable mUlti-bit error reporting
1 = Enable mUlti-bit error reporting

Single Bit Error Reporting Enable: Enables or disables the reporting of a single bit error condition.

o = Disable single bit error reporting
1 = Enable single bit error reporting

Developer's Manual

intel· Inte/@ 80303 110 Processor
Memory Controller

13.6.7 ECC Log Registers - ELOGO, ELOG1

The ECC Log Registers are responsible for logging the error types detected on the local memory
bus. Two errors can be detected and logged. The error type is logged (single-bit or multi-bit) along
with the syndrome that indicated the error. For a single-bit error, software can read this syndrome
and determine which bit had the error in order to perform scrubbing. For a multi-bit error, software
can read the syndrome and determine if the error is a nibble error (see Table 13-13, "Syndrome
Decoding" on page 13-30).

The error recorded in ELOGO corresponds to the address in ECARO. ELOG 1 corresponds to
ECARI.

The ELOGx registers comprise read-only bits and only have meaning if MCISR[O] or MCISR[l] is
non-zero. For more details on error handling, see Section 13.2.4, "Error Correction and Detection"
on page 13-28.

Table 13-24. ECC log Registers - ElOGO, ElOG1

lOP [
Attributes

PCi [
Attributes

31 28 24 20 16 1') ,- 8

Error #

o
80960 Core Local Bus Address

1538H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Bit Default

31 :19 o

18:16

15:13 0002

12 02

11:09 0002

08 02

07:00 OOH

Developer's Manual

153CH

Description

Reserved

ECC Error Master: Indicates the master of the logged error.

• 000 - Primary ATU / Expansion ROM / Messaging Unit

• 001 - DMA Channel 0

• 010 - DMA Channel 1

• 011 - Secondary ATU

• 100 - DMA Channel 2

• 101 - Core/Bus Interface Unit

• 110 - Application Accelerator

• 111 - Reserved
Reserved

Read or Write: Indicates if the error occurred during a read or write transaction.

o = Read error
1 = Write Error

Reserved

ECC Error Type: Indicates the type of error that occurred at this address.

o = Single Bit Error
1 = Multi-Bit Error

Syndrome: Holds the syndrome value that indicated the error.

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

13-51

Intel@ 80303 110 Processor
Memory Controller intel ..
13.6.8 ECC Address Registers - ECARO, ECAR1

These registers are responsible for logging the addresses where the errors were detected on the
local memory bus. Two errors can be detected and logged. The software knows exactly which
SDRAM device had the error by reading these registers and decoding the syndrome in the log
registers. For error details, see Section l3.2.4, "Error Correction and Detection" on page 13-28).

Table 13-25. ECC Address Registers - ECARO, ECAR1

Error #

o

Bit

31:02

01 :00

13-52

31 28 24

80960 Core Local Bus Address

1540H

1544H

Default

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Description

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

o Error Address: Stores the upper 30 bits of the address that resulted in a single bit or multi-bit error.

Reserved

Developer's Manual

intel·
13.6.9 ECC Test Register - ECTST

Intel® 80303 I/O Processor
Memory Controller

This register allows testing between the ECC logic and the memory subsystem (Section 13.2.4.5,
"ECC Testing" on page 13-34). To test error handling software. the programmer writes this register
with a non-zero masking function. Any subsequent writes to memory stores a masked version of
the computed ECC. Therefore, any subsequent reads to these locations result in an ECC error.

Table 13-26. EGG Test Register - EGTST

lOP [
Attributes

80960 Core Local Bus Address

1548H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31 :08 OOOOOOH

07:00 OOH

Developer's Manual

NA = Not Accessible

Description

Reserved

ECC Mask: 8-bit ECC mask. Each bit of the generated ECC is XORed with the appropriate bit in this
mask field before the ECC is stored into memory. See Section 13.2.4.5, "ECC Testing" on
page 13-34.

13-53

Intel@ 80303 110 Processor
Memory Controller intet
13.6.10 Flash Base Register 0 - FEBRO

This register indicates the beginning of the first Flash memory bank. The starting location must be
boundary equal to the granularity of the Flash device. The upper 16 bits are used for a 64 Kbyte
bank, 15 for a 128 Kbyte bank, etc. There can be two non-contiguous physical banks in the Flash
subsystem starting with this address. For more details, see Section 13.2.2.1, "Flash Memory
Addressing" on page 13-6.

Table 13-27. Flash Base Register 0 - FEBRO

Bit

31 :16

15:00

13-54

31 28 24

80960 Core Local Bus Address

154CH

Default

20 it? 12 8

Attribute Legend:

Description

RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

FE80H Flash Base Address: These bits define the upper 16 bits of the Flash base address.

OOOOH Reserved

Developer's Manual

intel·
13.6.11 Flash Base Register 1 - FEBR1

fntef® 80303 I/O Processor
Memory Controller

This register indicates the beginning of the second Flash memory bank. The starting location must
be boundary equal to the granularity of the Flash device. The upper 16 bits are used for a 64 Kbyte
bank, 15 for a 128 Kbyte bank, etc. There can be two non-contiguous physical banks in the Flash
subsystem. For more details, see Section 13.2.2.1, "Flash Memory Addressing" on page 13-6.

Table 13-28. Flash Base Register 1 - FEBR1

Bit

PCi [
Attributes

31 24

80960 Core Local Bus Address

1550H

Default

20 16 12 8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Description

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:16 OOOOH Flash Base Address; These bits define the upper 16 bits of the Flash base address.

15:00 OOOOH Reserved

Developer's Manual 13-55

Intel@ 80303 I/O Processor
Memory Controller

13.6.12 Flash Bank Size Register 0 - FBSRO

intet

This register indicates the size of Flash bank O. The two Flash banks do not have to be equal in size.
If the bank is unpopulated, a value of zero is programmed. See Section 13.2.2.1, "Flash Memory
Addressing" on page 13-6 for more details.

Table 13-29. Flash Bank Size Register 0 - FBSRO

lOP [
Attributes

31

PCI [
Attributes \na'\na'\na'Lna1Lna'Lna'ma',nlil.na\na\na\na\na\ina\I1a\rlll.\rla\na\na\n,a\na\n:a\n.a\nll\nll\nai\na\rlll.'~a'\na1Lna'

Bit

31:04

03:00

13-56

80960 Core Local Bus Address

1554H

Default

o Reserved

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Description

Flash Bank Size: Defines the size for the Flash bank.

• 0000 - Bank disabled

• 0001 - 64 Kbytes

• 0010 - 128 Kbytes

• 0011 - 256 Kbytes

• 0100 - 512 Kbytes

• 0101 - 1 Mbytes

• 011 0 - 2 Mbytes

• 0111 - 4 Mbytes

• 1XXX - 8 Mbytes

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Developer's Manual

13.6.13 Flash Bank Size Register 1 - FBSR1

Intel@ 80303 110 Processor
Memory Controller

These registers indicate the size of Flash bank 1. The two Flash banks do not have to be equal in
size. If the bank is unpopulated, a value of zero is programmed. See Section 13.2.2.1. "Flash
Memory Addressing" on page 13-6 for more details.

Table 13-30. Flash Bank Size Register 1 - FBSR1

lOP [
Attributes

PCi [
Attributes

80960 Core Local Bus Address

1558H

Bit Default

31:04 o Reserved

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Description

Flash Bank Size: Defines the size for the Flash bank.

• 0000 - Bank disabled

• 0001 - 64 Kbytes

• 0010 - 128 Kbytes

03:00
• 0011 - 256 Kbytes

• 0100 - 512 Kbytes

• 0101 - 1 Mbytes

• 0110 - 2 Mbytes

• 0111 - 4 Mbytes

• 1 XXX - 8 Mbytes

Developer's Manual

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

13-57

Inte/@ 80303 110 Processor
Memory Controller infel·
13.6.14 Flash Wait States Registers - FWSRO, FWSR1

These registers indicate the wait state and recovery cycle profile of each physical Flash bank.
Programmability for up to 20 address-to-data wait states is included to accommodate DART
devices. For more details, see Section 13.2.2.2, "Flash Read Cycle" on page 13-7 and
Section 13.2.2.3, '·Flash Write Cycle" on page 13-10.

Table 13-31. Flash Wait State Registers - FWSRO, FWSR1

31 28 24 20 16 12 4 o
lOP [

Attributes

PCI [
A11ributes \na\na\nll '~na'~nfl'"na \,n8 ",m.",n"H

Bank #

o

Bit

31 :07

06:04

03

02:00

13-58

80960 Core Local Bus Address

155CH

1560H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Default Description

o Reserved

Recovery Cycle Wait States: Defines the number of recovery cycle wait states for the Flash bank.

• 000 - 1 Recovery wait state

• 001 - 4 Recovery wait states

• 010 - 8 Recovery wait states

• 011 - 12 Recovery wait states

• 1 00 - 16 Recovery wait states

• Others (Default) - 20 Recovery wait states

Reserved

Address-to-Data Wait States: Defines the number of address-to-data wait states for the Flash
bank during a read or write transaction.

• 000 - 4 Address-to-Data wait states

• 001 - 8 Address-to-Data wait states

• 010 - 12 Address-to-Data wait states

• 011 - 16 Address-to-Data wait states

• Others (Default) - 20 Address-to-Data wait states

Developer's Manual

int'et
13.6.15

Intel® 80303 I/O Processor
Memory Controller

Memory Controller Interrupt Status Register - MCISR

Setting the MCISR asserts an NMI to the core. Upon an interrupt, the JX core polls the interrupt
status register for each unit. The interrupt status register tells the core the reason for the interrupt.
The MCU has three interrupt conditions: first ECC error (MCISR[O]), second ECC error
(MCISR[I]), and more than two ECC errors (MCISR[2]).

If the MCU detects an ECC error and both MCISR[O] and MCISR[1] are cleared, the error is
logged in ELOGO and MCISR[O] is set to 1. If one of the MCISR bits are not clear and the MCU
detects an error, the error is logged in the unused ELOGx register and the appropriate MCISR bit is
set to 1. If both MCISR[O] and MCISR[1] are not clear, any additional ECC errors are not logged
and MCISR[2] is set.

Bits 2:0 are read/clear bits which means that to clear them, software must write a one to these bits.

Table 13-32. Memory Controller Interrupt Status Register - MCISR

lOP [
Attributes

PCI [
Attributes

31 28 24 20 16 12 8 4 o

80960 Core Local Bus Address

1564H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:03 o

02

01

00

Developer's Manual

NA = Not Accessible

Description

Reserved

ECC Error N: Indicates that the MCU detected an ECC error while MCISR[1] and MCISR[O] are
both set.

o = No error detected
1 = Error detected

ECC Error 1: Indicates that the MCU detected an ECC error and recorded the error in ELOG1.

o = No error detected
1 = Error detected and recorded in ELOG1

ECC Error 0: Indicates that the MCU detected an ECC error and recorded the error in ELOGO.

o = No error detected
1 = Error detected and recorded in ELOGO

13-59

Intel@ 80303 /10 Processor
Memory Controller

13.6.16 Refresh Frequency Register - RFR

The Refresh Frequency Register is programmed for refreshing the SDRAM subsystem at the
specified interval. Writing to the RFR programs the refresh counter with the number of clocks
between refresh cycles. Reading from the RFR results in the value currently within the refresh
counter.

For lOOMHz operation, the RFR should be programmed with a value of 600H. For frequencies
below lOOMHz, the RFR should be programmed with 400H.

Table 13-33. Refresh Frequency Register - RFR

Bit

31 :11

,op [
Attributes

PCI [
Attributes

31 28 24

80960 Core Local Bus Address

1568H

Default

o Reserved

20 16 12 8

Attribute Legend:

Description

RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

10:00 OOOH
Refresh Interval: Programs the number of clocks that triggers a refresh cycle to the SDRAM
interface. If all zeroes, refresh cycles are disabled. See Section 13.2.1.6, "Refresh Counter" on
page 13-5.

13-60 Developer's Manual

int:et
PCI-ta-PCI Bridge Unit 14

14.1

This chapter describes the PCI-to-PCI Brid~e including functionality, modes of operation,
configuration, and integration into the Intel" 80303 I/O processor system architecture.

Overview

The PCI -to-PCl bridge unit extends a PCI Bus beyond its physical constraint of ten electrical PCl loads
at 33 MHz or five electrical PCl loads at 66 MHz. The bridge unit uses the concept of hierarchical
buses; each hierarchybus is a separate electrical entity, but all hierarchy buses are logically one bus.
The PCl-to-PCl bridge unit does not increase the PCl bus bandwidth, it only allows that bus to be
extended for applications requiring more I/O components than PCI electrical specifications allow.

PCI-to-PCI bridge unit features include:

• Full compliance to the PCI Local Bus Specification, Revision 2.2.

• Full compliance to the PCI-to-PCI Bridge Architecture Specification, Revision 1.l.

• Full Compliance to the PCI Bus Power Management Interface Specification, Revision 1.l.

- Defines the PCI hardware support required by the Advanced Configuration and Power
IntCliace Specification, Revision 1.0 initiative.

• Support for 66 MHz PCI operation.

• 528 MBytes/sec. PCI bandwidth for Primary and Secondary buses through 64-bit/66 MHz
operation.

• Synchronous operation between Primary and Secondary PCl busses.

• Provides six Secondary PCl output clocks (S _ CLKOUT[5:0]).

• Support for 32-bit PCl masters and targets on both busses.

- Additional support for independent 32-bit only bus configurations on Primary and
Secondary busses.

• Independent Primary and Secondary PCl buses allowing concurrent operations in either
direction.

• Multiple Memory Write and Memory Write and Invalidate operations posted within the
upstream and downstream bridge queues concurrently.

- Up to four PMW transactions with a total of 128 Bytes of write data on downstream
transactions.

- Up to eight PMW transactions with a total of 256 Bytes of write data on upstream
transactions.

• Support for up to three delayed read cycles initiated from the Primary bus and three delayed
read cycles initiated from the Secondary bus.

- 516 bytes dedicated for delayed read completion data for upstream reads.

- 132 bytes dedicated for delayed read completion data for downstream reads.

• Separate memory and I/O address spaces on the Secondary side of the bridge.

• VGA Compatible Addressing Mode.

• 64-bit addressing mode (Dual Address Command) for upstream cycles initiated from
Secondary PCl interface.

• Private device configuration and address space for private PCI devices on Secondary PCl bus.

Developer's Manual 14-1

Intel® 80303 /10 Processor
PC/-to-PCI Bridge Unit infel ..

Figure 14-1 shows a block diagram of the 80303 I/O processor PCI-to-PCI Bridge unit.

Figure 14-1. PCI-to-PCI Bridge Unit Functional Block Diagram

14-2

Internal Bus
(for Configuration Only)

PC~to-PCI Bridge
Configuration Registers
256 Byte Address Space

o PMWD r--------------------, -=-----.J Downstream Posted Memory Wrfte (PMW) 128 Bytes Data ij---

Upstream Delayed Read Completion (ORe) 256 Bytes Data

Upstream Delayed Read Completion (ORC) 256 Bytes Data o TRQO:2

+ __ +l-D~--~:=::~-.c-------------J~~;~~U
Primary

PCI
66 MHzl64-Blt

r --------------------, U PMWD +----1 Upstream Posted Memory Wrfte (PMW) 256 Bytes Data t-=-

~I.,..c =====",,===<:Z:!l~CO ~""'" Downstream ORe 64 Bytes Data g-

-----J. ~D_DRC1
~_ Downstream DRe 64 Bytes Data ~

"'

Secondary
PCI

66 MHzl64-Blt

Developer's Manual

int:et
14.2 Theory of Operation

Intel@ 80303 I/O Processor
PCI-fo-PCI Bridge Unit

The bridge unit operates as an address filter unit between the Primary and the Secondary PCl
buses. PCl supports three separate address spaces:

• 32-Bit address space with Single Address Cycle (SAC)

• 64-Bit address space with Dual Address Cycle (DAC)

• 64 Kbyte I/O address space (with 16-bit addressing)

• Separate configuration space

A PCI-to-PCl bridge is programmed with a contiguous range of addresses within the memory and
I/O address spaces, which then become the Secondary PCl address space. Any address present on
the Primary side of the bridge which falls within the programmed Secondary space is forwarded
from the Primary to the Secondary side while addresses outside the Secondary space are ignored by
the Primary interface. The Secondary side of the bridge works in reverse of the Primary side,
ignoring any addresses within the programmed Secondary address space and forwarding any
addresses outside the Secondary space to the Primary side. See Figure 14-2.

The Primary and Secondary interfaces of the PCl bridge each implement PCl PC/-fa-Pc/ Bridge
Architecture Specification, Revision 1.1 compliant master and target devices. A PCl transaction
initiated on one side of the bridge will address the initiating bus bridge interface as a target and the
transaction will be completed by the target bus interface operating as a master device. The bridge is
software transparent to PCl devices on either side.

Figure 14-2. Bridge Operation

Primary PCI Address Space Secondary PCI Address Space
OOOO.OOOOH

Valid
Secondary PCI

Addresses

FFFF.FFFFH

64-BitDAC
Addresses

FFFF.FFFF.FFFF.FFFFH

OOOOOOOOH - [Transactions
Valid Primary Forwarded Upstream to

The Primary PCI Bus PCI Addresses

~

---. Valid
Transactions Forwarded Secondary PCI Downstream to The

Secondary PCI Bus
Addresses

---. · l Transactions Forwarded Valid Primary
Upstream to The Primary PCI

PCI Bus Addresses
~

FFFF.FFFF ..
All Transactions

Forwarded Upstream to
64-BitDAC The Primary PCI Bus
Addresses

I(

FFFF.FFFF.FFFF.FFFFH

\
Secondary PCI
Address remain

on the Secondary
PCI Bus and are
Never Forwarded

Upstream

The PCl-to-PCl bridge unit of the 80303 I/O processor adheres, at a minimum, to the required
features found in the PCI-to-PCI Bridge Architecture Specification, Revision 1.1 and the PCI
Local Bus Specification, Revision 2.2. This chapter will describe bridge functionality and will refer
to the PCI-to-PCI Bridge Architecture Specification, Revision 1.1 and the PCI Local Bus
Specification, Revision 2.2 where appropriate.

Developer's Manual 14-3

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit infel·
14.3

14.3.1

14.3.2

14-4

Architectural Description

The PCI-to-PCI bridge unit can be logically separated into four major components. They are:

• Primary PCI Interface

• Secondary PCI Interface

• Upstream!Downstream Queues

• Configuration Registers

Primary PCI Interface

The Primary PC! interface of the PCI-to-PCI bridge unit can act either as a target or an initiator of
a PCI bus transaction. For most systems, the Primary interface will be connected to the PCI side of
a Host/PCI bridge which is typically the lowest numbered PCI bus in a system hierarchy. The
Primary interface consists of the mandatory 50 signal pins defined within the PCI-to-PCI Bridge
Architecture Specification, Revision 1.1, four optional interrupt pins, one 66 MHz enable pin, and
the 39 pins required by the PCI 64-bit extension. Refer to the PCI Local Bus Specification,
Revision 2.2 for a complete description of individual pin functionality.

The Primary PCI interface implements both an initiator (master) and a target (slave) PCI device.
When a PCI transaction is initiated on the Secondary bus, the Primary master state machine
completes the transaction (write or read) as if it was the initiating device. The Primary PCI
interface, as a PCI target for transactions that need to complete on the Secondary bus, accepts the
transaction and forwards the request to the Secondary side. As a target, the Primary PCI interface
uses positive decoding to claim the PCI transaction addressed below the bridge and then forward
the transaction onto the Secondary master interface.

The Primary PCI interface is responsible for all PCI command interpretation, address decoding and
error handling for transactions initiated on the PCI-to-PCI bridge Primary bus.

The Primary interface of the 80303 I/O processor supports enhanced PCI bandwidth of
528 MBytes/sec. through the use of the 64-bit PCI extension at a frequency of up to 66 MHz.

The additional bandwidth that the 80303 I/O processor Primary PCI interface provides is used to
support additional I/O bandwidth from the Secondary PCI bus as well as providing a faster/wider
pipe to the host processor memory bus.

Secondary PCI Interface

The Secondary PCI interface of the PCI-to-PCI bridge unit functions in almost the same manner as
the Primary interface. It consists of both a PCI master and a PCI slave device and implements the
"second" PCI bus with a new set of PCI electrical loads for use by the system. The Secondary PCI
interface consists of the mandatory 49 pins defined in the PCI-to-PCI Bridge Architecture
Specification, Revision 1.1, one 66 MHz enable pin, and the 39 pins required for the 64-bit
extension. Four additional PCI interrupt pins are provided for use by Secondary PCI devices.

As a slave (target), the Secondary PCI interface is responsible for claiming PCI transactions that do
not fit within the bridge Secondary memory or I/O address space and forwarding them through the
bridge to the addressed target on the Primary side. As a master (initiator), the Secondary PCI

Developer's Manual

14.3.3

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

interface is responsible for completing transactions initiated on the Primary side of the bridge. The
Secondary PCI interface uses inverse decoding of the bridge address registers and only forwards
addresses within the Primary address space across the bridge.

The Secondary PCI interface also implements a separate address space for private PCI devices on
the Secondary bus where it ignores and does not forward a range of Primary addresses defined at
configuration time by the i960 core processor. Support for private PCI devices is discussed in
Section 14.4.5 and Section 14.5.5.

The Secondary PCI interface supports the use of PC! dual address cycles (DAC) for memory
transactions targeted at the Primary bus and main system memory. The Secondary interface will
claim all DAC memory cycles present on the Secondary bus with subtractive (default) or medium
decode timing decode timing.

Upstream/Downstream Queues

The 80303 I/O processor implements an extensive queueing architecture to improve the PCI
bandwidth for all write transactions and to reduce the latency of read transactions from both sides
of the PCI-to-PCI bridge unit. As a PCI Local Bus Specification, Revision 2.2 compliant device,
the bridge unit supports both posted and delayed transactions.

In a Delayed transaction, the information required to complete the transaction is latched and the
transaction is terminated with a Retry. The bridge then performs the transaction on behalf of the
initiator. The initiator is required to repeat the original transaction that was terminated with a Retry
in order to complete the transaction.

In a Posted transaction, the transaction is allowed to complete on the initiating bus before
completing on the target bus.

Delayed and Posted transactions are discussed in detail in Section 14.6.

The bridge has an asymmetric queue architecture supporting the data flow requirements of
intelligent I/O applications. For downstream transactions (initiated on the Primary PCI bus
interface) the PCI-to-PCI bridge unit supports the following number and types of a queues:

• Up to four transactions with 128 bytes of data for posted memory write transactions

- FIFO implementation supporting variable length write transactions within the same
queue. Any combination of burst sizes from one to four transactions.

- Supports Memory Write and Memory Write and Invalidate transactions

• 132 bytes of delayed read completion (DRC) data queue with three separate Transaction
Address Queues

- Two 64-byte DRC queues

- One 4-Byte DRC queue

- Transaction Queue holds delayed read addresses during PCI delayed transactions

- Supports Memory Read, Memory Read Line, Memory Read Multiple, Configuration Read
and 110 Read transactions

• Separate 4-byte queue for I/O and Configuration Write Cycles

- Performed as Delayed Write Cycles

Developer's Manual 14-5

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et

14.3.4

14-6

For upstream transactions (initiated on the Secondary PCI interface), the bridge supports a larger
set of queues to accommodate high PCI bandwidth targeted at the Primary PCI bus:

• Up to eight transactions with 256 bytes of data for posted memory write transactions.

- FIFO implementation supporting variable length write transactions within the same
queue. Any combination of burst sizes from one to 8 transactions.

- Supports Memory Write and Memory Write and Invalidate transactions.

• 516 bytes of delayed read completion (DRC) data queue with three separate Transaction
Address Queues.

- Two 256-byte DRC queues.

- One 4-byte DRC queue.

- Transaction Queue holds delayed read addresses during PCI delayed transactions.

- Supports Memory Read, Memory Read Line, Memory Read Multiple, and I/O Read
transactions.

• Separate 4-byte queue for Delayed Write Cycles.

- I/O Writes and Configuration Writes.

The asymmetric, multi-transaction queue architecture enforces all PCI Local Bus Specification,
Revision 2.2 ordering rules. Priority mechanisms with additional prefetch rules assign larger read
queues (if available) for Memory Read Line and Memory Read Multiple transactions. See
Section 14.6.5 and Section 14.7.2 for additional details.

Configuration Registers

Every PCI device implements a separate configuration address space and configuration registers.
The PCI Local Bus Specification, Revision 2.2 requires that the configuration space be 256 bytes
long with the first 64 bytes adhering to a predefined header format. The PCI-to-PCI Bridge in the
80303 I/O processor contains the predefined 64 byte header registers plus additional configuration
registers for device dependent operation (see Section 14.15).

The first 16 bytes of the bridge configuration header format implement the common configuration
registers required by all PCI devices. The value in the read-only Header Type Register defines the
format for the remaining 48 bytes within the header and returns a 81H for a PCI-to-PCI bridge that
integrates other functions.

The bridge has a seven byte extended configuration space residing at configuration offset 68H that
supports the Advanced Configuration and Power Interface Specification, Revision 1.0 by
providing the Power Management registers defined by the PCI Bus Power Management Interface
Specification, Revision 1.1.

Devices on the Primary bus can only access the PCI-to-PCI bridge configuration space with Type 0
configuration commands. Devices on the Secondary PCI bus can not access bridge configuration
space with PCI configuration cycles. The configuration registers hold all the necessary address
decode, error condition and status information for both sides of the bridge.

Developer'S Manual

intel~

14.4 Configuration Accesses

Intel@ 80303 liD Processor
PCI-fo-PCI Bridge Unit

This section describes how the bridge handles PCl configuration read and write commands.

There are two classes of targets for PCl configuration commands:

• devices that reside on the Primary PCl bus

• devices that reside on hierarchical (Secondary) PCl buses that are accessed via PCl-to-PCl
bridge chips

The encoding of the address during a confignration command distinguishes the target of the
command. Figure 14-3 and Table 14-1 show the different address encodings associated with each
PCl configuration command type. Type 0 and Type 1 commands are distinguished by address bits
AD[1:0].

Table 14-1. PCI Configuration Command Access Formats

Figure 14-3.

Bit Function Type 0 Commands Type 1 Commands
Bit Position (# of Bits) Bit Position (# of Bits)

Command Type 1:0 (2) 1:0 (2)

Register Number 7:2 (6) 7:2 (6)

Function Number 10:8 (3) 10:8 (3)

Device Number N/A 15:11 (5)

Bus Number N/A 23:16 (8)

Reserved 31:11 (20) 31 :24 (8)

PCI Configuration Access Formats

31 11 10 8 7 2 1 0

Function Register
0 0 Number Number

Type 0

31 24 23 16 15 11 10 8 7 2 1 0

Bus Device Function Register
Number Number Number Number 0 1

Type 1

A Type 0 configuration command on the Primary interface may be accepted or ignored by the
bridge depending on the value of the P _ IDSEL input. A Type 1 configuration command on the
Primary interface may be ignored, forwarded downstream unaltered, converted to a Type 0
command on the Secondary interface, or converted to a Special Cycle on the Secondary interface.

Developer's Manual 14-7

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit intel ..

A Type 1 configuration write command on the Secondary interface of the bridge may be ignored,
forwarded upstream under certain conditions, or converted to a Special Cycle on the Primary
interface. The bridge cannot convert a Type 1 configuration command on the Secondary side to a
Type 0 on the Primary side. The bridge will ignore all configuration reads and Type 0 configuration
writes on the Secondary interface.

Configuration commands will only be accepted on the Primary interface if the Configuration Cycle
Retry bit within the Extended Bridge Command Register (EBCR, see Section 14.15) is cleared. If
the Configuration Cycle Retry bit is set, the Primary PCI interface will signal a Retry on all Type 1
and Type 0 configuration commands.

All configuration commands are 32-bit only and therefore will not use the 64-bit extensions of both
the Primary and Secondary PCI bus interfaces. See Section 14.6.3 for complete details of 64-bit
operation. In addition, the 80303 I/O processor does not support bursting during Type 0 or Type 1
configuration cycles. Type 0 and Type 1 configuration writes will be disconnected after the first
32-bit data phase. Type 1 configuration reads (handled as delayed transactions) will only read up at
a maximum 1 Dword (actual data read depends on the byte enables during the data phase).

Table 14-2. Bridge Configuration Cycle Handling Summary

Primary Interface Secondary Interface

NOTE: Type 0 - Bridge Accepts Type 0 - Bridge Ignores

Type 1 forwarded to Type 1 on Primary Side if:

Command = Config Write

and
Type 1 forwarded to Type 1 on Secondary Side if:

Bus number does not equal PBNR
Bus number between SBNR and SubBNR (including

and
SubBNR)

Bus Number is outside SBNR and SubBNR

and

Address = OxXXXXFF01 H

Type 1 converted to Type 0 on Secondary Side if:

Command = Con fig Write

and

Bus number = SBNR

and
Type 1 never converted to Type 0 on Primary Side

Address not equal to OxXXXXFF01 H

or

Command = Config Read

and

Bus number = SBNR

Type 1 converted to a Special Cycle on Secondary Type 1 converted to a Special Cycle on Primary Side
Side if: if:

Command = Config Write Command = Config Write

and and

Bus number is equal to SBNR Bus number = PBNR

and and

Address equals OxXXXXFF01 H Address = OxXXXXFF01 H

14-8 Developer's Manual

14.4.1

14.4.2

Type 0 Commands

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

If address bits P _AD[l:O] are 002, then the transaction present on the PCI bus is a Type 0
configuration read or write command. Type 0 configuration transactions configure PCI devices
connected to the bus where the transaction originated. The PCI-to-PCI bridge responds to Type 0
commands on the Primary PCI interface only. Type 0 configuration commands present on the
Secondary bus are ignored by the bridge.

The bridge is selected by a PCI configuration command and will claim it (by asserting
P _ DEVSEL#) if the P _IDSEL pin is asserted, the PCI command indicates a configuration read or
write, and address bits P _AD[l:O] are 002 all during the address phase. The Primary interface will
ignore any configuration command (P _IDSEL active) where P _AD[l:O] are not 002 (see
Section 14.4.2 for the case of 01 2), During the configuration access address phase, the PCI address
is divided into a number of fields to determine the actual configuration register access. These
fields, in combination with the byte enables during the data phase create the unique encoding
necessary to access the individual registers of the configuration address space:

• P _AD[7:2] - Register Number. Selects one of 64 DWORD registers in the bridge PCI
configuration address space.

• P _ C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is
used within the DWORD address. Creates byte address ability of the register space.

• P _AD[lO:8] - Function Number. Used to select which function of a multi-function device is
being accessed. The PCI-to-PCI bridge unit is function 0 and therefore it will only respond to
0002 in this bit field and ignore all other bit combinations. (Refer to Section 15.2.4, "PCI
Multi-Function Device Swapping/Disabling" on page 15-23 for exceptions to this statement.)

Address bits P _AD[31:11] are used to drive the bridge unit P _IDSEL input. Typically, the IDSEL
input of each PCI device on a PCI bus is connected to a unique address bit in this range. This
mapping requires that only one address bit from P _AD[31:11] be asserted during the address phase
of a configuration access.

Type 1 Commands and Type 1 to Type 0 Conversions

If P _AD[l:O] are 012, a Type 1 configuration command is present. Type 1 commands can be
forwarded by the bridge to any level in the PCI hierarchy (up to 255 levels). Eventually, a Type 1
command is converted to a Type 0 command by a PCI bridge to configure a device on its
Secondary interface. Configuration registers in the bridge itself (PBNR, SBNR, and SubBNR)
identify the bridge Primary bus number, Secondary bus number and a subordinate bus number
(highest numbered PCI bus beneath the bridge). These parameters, along with the information
embedded in the PCI Type 1 command determine whether a Type 1 transaction is ignored,
forwarded, or converted to a Type 0 command. Type 1 commands are also used as a means for
generating PCI Special Cycles on a hierarchical bus.

Address bits P _ AD[lO:2] in a Type 1 command have the same function as in a Type 0 command.
P _AD[lS:l1] and P _AD[23:16] are used to determine a unique IDSEL encoding and to determine
whether or not to convert the Type 1 command to a Type 0, forward it unmodified, or ignore it
completely. The bit fields within a Type 1 PCI configuration command are as follows:

• P _AD[7:2] - Register Number. Selects one of 64 DWORD registers in the bridge PCI
configuration address space.

• P _ C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is
used within the DWORD address. Creates byte address ability of the register space.

Developer's Manual 14-9

Intel@ 80303 110 Processor
PCI-fo-PCI Bridge Unit int:et

• P _ AD[lO:8] - Function Number. Used to select which function of a multi-function device is
being accessed.

• P _AD[15:11] - Device Number. Used during Type 1 to Type 0 conversion. Decoded by the
bridge and used to select a unique address bit to drive an IDSEL input of a PCI device on the
Secondary bus during the Type 0 transaction that occurs after a Type 1 to Type 0 conversion.
The value in P_AD[15:11] is decoded and used to drive S_AD[31:11]. See Table 14-3~

• P _AD[23:16] - Bus Number. Used to identify the hierarchical bus number for which the
configuration transaction is intended and where the Type 0 conversion needs to occur. The
bridge uses this information in conjunction with the Primary, Secondary, and Subordinate Bus
Number registers to make the decision to forward unaltered or to convert to a Type 0 on its
Secondary interface. If the bus number bit field (bits 23: 16 of Type 1 command) matches the
value in the Secondary bus number register (Section 14.15.11}, the transaction is converted to
a Type 0 on the Secondary bus.

Table 14-3 shows the address mapping for driving S AD[31:11] on the Secondary bus based on the
encoding of the device number in P _ AD[15:11] of it Type 1 transaction. Note that when
P _ AD[15] = 12 on the Primary interface, bits 31: 11 are not asserted on the Secondary interface.

In addition, the Secondary IDSEL Select Register (SISR, see Section 14.15) can cause any of the
Secondary address bits S_AD[25:16] to be zero regardless of the Primary address P _AD[15:11].
This register is needed for implementing private PCI devices on the Secondary PCI bus. Refer to
Section 14.4.5 for details.

Table 14-3. IDSEL Mapping for Type 1 to Type 0 Conversions

Primary Address P _AD[15:11J Secondary Address Bits S_AD[31:11J

00000 0000 0000 0000 0001 00000

00001 0000 0000 0000 0010 0000 0

00010 0000 0000 0000 01 00 0000 0

00011 0000 0000 0000 1000 0000 0

00100 000000000001 000000000

00101 0000 0000 0010 0000 0000 0

00110 0000 0000 0100 0000 0000 0

00111 0000 0000 1000 0000 0000 0

01000 0000 0001 0000 0000 0000 0

01001 000000100000000000000

01010 0000 0100 0000 0000 0000 0

01011 0000 1000 0000 0000 0000 0

01100 0001 0000 0000 0000 0000 0

01101 0010 0000 0000 0000 0000 0

01110 01 00 0000 0000 0000 0000 0

01111 1000 0000 0000 0000 0000 0

10000 - 11111 0000 0000 0000 0000 0000 0

14-10 Developer's Manual

14.4.3 Type 1 to Type 1 Forwarding

Intel@ 80303 liD Processor
PCI-to-PCI Bridge Unit

A Type 1 write transaction on the Primary bus is converted to a Type 0 write transaction and
forwarded to the Secondary interface provided the following condition is met:

• Bus number in the Type 1 command is equal to the Secondary Bus Number Register (SBNR,
see Section 14.15).

A Type 1 write transaction on the Primary bus is forwarded unmodified to the Secondary interface
provided the following condition is met:

• Bus number in the Type 1 command is greater than the SBNR but less than or equal to the
Subordinate Bus Number Register (SubBNR).

In this instance, the Secondary interface will generate a Type 1 command address cycle with
exactly the same address information that was contained within the Type 1 command on the
Primary interface. The Type I command on the Secondary interface will be intercepted and
decoded by a downstream bridge.

A Type 1 write transaction on the Secondary bus is forwarded unmodified to the Primary interface
provided all of the following conditions are met:

• Device Number is all ones - S_AD[IS:ll] = 111112

• Function Number is all ones - S _ AD[lO:8] = 1112

• Register Number is all zeros - S_AD[7:2] = 000002

• Bus Number does not match the Primary Bus Number of the bridge

• Bus Number is outside the range of bus numbers specified by the Secondary Bus Number
(inclusive) and the Subordinate Bus Number (inclusive) of the bridge.

The bridge will generate a Type 1 on the Primary side with exactly the same information as on the
Secondary side. This Type 1 command will be intercepted by an upstream bridge and converted to
a Special Cycle transaction.

Note that Type 1 to Type 1 forwarding is for Configuration Write commands only. Type 1
Configuration Read commands are not forwarded upstream through the bridge.

Developer's Manual 14-11

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et
14.4.4

14-12

Type 1 to Special Cycle Conversion

A Type 1 configuration write command on the Primary interface will be converted to a Special
Cycle command on the Secondary interface provided all of the following conditions are met:

• Device Number is all ones - P _AD[lS:l1] = 111112

• Function Number is all ones - P _ AD[lO:8] = 1112

• Register Number is all zeros - P _ AD[7:2] = 000002

• Bus Number matches the Secondary Bus Number of the bridge

All PCl devices ignore the address during a Special Cycle and a Master-Abort occurs on the PCl
bus. However, the Master Abort error status bit (bit 13 of the Secondary Status Register) is not set.
The data for the Special Cycle on the Secondary interface will be the write data from the Type 1
command on the Primary interface. Converted cycles are restricted to a burst length of one PCl
32-bit data phase.

A Type 1 configuration write command on the Secondary interface will be converted to a Special
Cycle command on the Primary interface provided all of the following conditions are met:

• Device Number is all ones - S_ADUS:ll] = 111112

• Function Number is all ones - S_AD[lO:8] = 1112

• Register Number is all zeros - S _ AD[7:2] = 000002

• Bus Number matches the Primary Bus Number of the bridge

The address during a Special Cycle is ignored by all PCl devices and a Master-Abort occurs on the
PCl bus. However, the Master Abort error status bit (bit 13 of the Primary Status Register) is not
set. The data for the Special Cycle on the Primary interface will be the write data from the Type 1
command on the Secondary interface. Converted cycles are restricted to a burst length of one 32-bit
PCl data phase.

Developer's Manual

in1:et
14.4.5

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

Private Type 0 Commands on the Secondary Interface

Type 0 configuration reads and write commands can be generated by the Secondary Address
Translation Unit of the 80303 I/O processor. These Type 0 configuration commands are required to
configure private PCI devices on the Secondary bus which are in private PCI address space. These
commands are initiated by the Address Translation Unit and not by Type 1 commands on the
Primary bus. Any device mapped into this private address space will not be part of the standard
Secondary PCI address space and therefore will not be configured by the system host processor.
These devices are hidden from PCI configuration software but are accessible from the 80303 I/O
processor Secondary Address Translation Unit. See Chapter 15, "PC I Address Translation Unit"
for a complete description of the private PCI address space implementation.

In Type 0 Secondary interface commands, S_AD[31:11] are used to select the target device IDSEL
input. In Type 1 to Type 0 conversions, P AD[15:11] are decoded to assert a unique address line
from S_AD[31:16] on the Secondary inte~face as described in Section 14.4.2, "Type 1 Commands
and Type 1 to Type 0 Conversions" on page 14-9. This leaves S_AD[15:11] on the Secondary
interface open for a possibility of up to 5 address lines for IDSEL assertion of private PCI devices.
These 5 address lines shall be reserved for private PCI devices on the Secondary PCI bus.

If more than five unique address lines are required, the Secondary IDSEL Select Register (SISR)
can be programmed to block an additional 10 address lines during Type 1 to Type 0 conversions
from the Primary interface. Secondary addresses S AD[25:16] are the addresses that can be
masked by the SISR register. By setting bits 0 through 9 (corresponding to S_AD[25] - S_ADL16])
in the SISR, the associated address line can be forced to remain deasserted for the P _AD[15:11]
encodings of 000002 - 010012 and therefore are free to be used as an IDSEL select line for private
Secondary PCI devices. Table 14-4 shows the possible configurations of S_AD[31:11] for
public/private Type 0 commands on the Secondary interface. For example, if SISR Bit 9 is set,
S _ AD[16] will never be asserted during a Type 1 to Type 0 conversion from the Primary PCI bus.
It can only be asserted by the Secondary Address Translation Unit.

If Primary interface receives a Type 1 command that intends to use an S _AD address lines reserved
for private PC! devices, the bridge will perform the Type 1 to Type 0 conversion but not assert the
reserved S _AD address line. The Type 0 command will then be ignored on the Secondary PCI bus.

By using the SISR register and the five reserved address lines, a total of 15 IDSEL signals are
available for private PCI devices.

Table 14-4. Public/Private PCI Memory IDSEL Select Configurations

Primary Secondary Addresses Secondary IDSEL Select Secondary Addresses
Address S_AD[31:11] with Register S_AD[31:111 with

P _AD[1S:11] All SISR Bits = a Bits 9-0 SISR Bits Programmed

00000 00000000 0000 0001 0000 O2 1 XXXXXXXXX2 0000 0000 0000 0000 0000 O2

00001 0000 0000 0000 0010 0000 O2 X1XXXXXXXX2 0000 0000 0000 0000 0000 O2

00010 0000 0000 0000 0100 0000 O2 XX1XXXXXXX2 0000 0000 0000 0000 0000 O2

00011 0000 0000 0000 1 000 0000 O2 XXX1XXXXXX2 0000 0000 0000 0000 0000 O2

00100 0000 0000 0001 0000 0000 O2 XXXX1XXXXX2 0000 0000 0000 0000 0000 O2

00101 0000 0000 0010 0000 0000 O2 XXXXX1XXXX2 0000 0000 0000 0000 0000 O2

00110 0000 0000 0100 0000 0000 O2 XXXXXX1XXX2 0000 0000 0000 0000 0000 O2

00111 0000 0000 1000 0000 0000 O2 XXXXXXX1XX2 0000 0000 0000 0000 0000 O2

010002 00000001 000000000000 O2 XXXXXXXX1X2 0000 0000 0000 0000 0000 O2

01001 2 0000 001 0 0000 0000 0000 O2 XXXXXXXXX1 2 0000 0000 0000 0000 0000 O2

x = Don't Care

Developer's Manual 14-13

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

Figure 14-4 shows an example of connecting S _AD lines to IDSEL inputs of PCl devices and
private PCl devices.

Figure 14-4. Secondary IDSEL Example

• These S_AD lines can be either PCI or private

~ depending on the SISR register. For example. S_AD[21) can

/
be used as a private PCI device only if SISR bit 5 is set.

PCI-to-PCI
Bridge

- S_AD[11)

S_AD[12]

Private S_AD[13]
S_AD[14)

- S_AD[15] , S_AD[16]
S_AD[17]
S_AD[18]
S_AD[19]

Private S_AD[20]
or Public· S_AD[21]

S_AD[22]
S_AD[23]
S_AD[24]

I- S_AD[25]
S_AD[26]
S_AD[27]

Public S_AD[28]
S_AD[29]
S_AD[30)

'--- S_AD[31]

IDSEL IDSEL IDSEL IDSEL

Public/Private Public/Private Private Private
PCI Device Device PCI Device PCI Device

14-14 Developer's Manual

inteL
14.4.6

14.4.7

14.5

Special Cycles

fnte/@ 80303 liD Processor
PCI-to-PCI Bridge Unit

The bridge unit will neither initiate nor accept PCI Special Cycle commands on either the Primary
or the Secondary interface, except as a conversion. A mechanism is provided for converting Type 1
write commands to Special Cycles on either interface. See Section 14.4.4 for details.

Extended Configuration Space

The bridge unit includes an 8-byte extended configuration space. The extended configuration space
can be accessed by a device on the Primary interface through a mechanism defined in the PCl
Local Bus Specification, Revision 2.2.

In the bridge Primary Status Register (Section 14.15.4) the appropriate bit is set indicating that the
Extended Capability Configuration space is supported. When this bit is read, the device can then
read the Capabilities Pointer register (Section 14.15.21) to determine the configuration offset of the
Extended Capabilities Configuration Space.

The first byte at the Extended Configuration Offset is the Capability Identifier Register
(Section 14.15.36). This will identify this Extended Configuration Header space as the type
defined by the PCl Bus Power Management Interface Specification, Revision 1.1.

Following the Capability Identifier Register will be the single byte Next Item Pointer Register
(Section 14.15.37) which will indicate the configuration offset of an additional Extended
Capabilities Header, if supported. In the bridge, the Next Item Pointer Register is set to OOH
indicating that there are no additional Extended Capabilities Headers supported in the bridge
configuration space.

Address Decoding

The 80303 I/O processor provides three separate address ranges that are used to determine which
memory and I/O addresses are forwarded in either direction across the bridge portion of the 80303
I/O processor. There are two address ranges provided for memory transactions and one address
range provided for I/O transactions. The bridge uses a base address register and limit register to
implement an address range. The address ranges are positively decoded on the Primary interface
with any address within the range considered a Secondary address and therefore capable of being
forwarded downstream across the bridge. On the Secondary interface, the address ranges are
inversely decoded.

In addition to the memory and I/O space, the bridge unit implements support for an ISA
compatibility mode to support downstream expansion bridges and support for VGA graphics
devices on the secondary interface of the bridge.

Standard bridge unit address decoding can also be modified by the Secondary Decode Enable
Register (SDER). The bits within this register enable private address space on the Secondary side
of the bridge.

The bridge will not accept PCI transactions generated by the Address Translation Units or the
DMA Controller from the Secondary PCI interface. The bridge is capable of mastering transactions
on the Primary interface that can be accepted by the Primary Address Translation Unit. (see
Chapter 15, "PCI Address Translation Unit".)

Developer's Manual 14-15

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit in1:el"
14.5.1

14-16

I/O Address Space

The PCI-to-PCI bridge unit implements one programmable address range for PCI I/O transactions.
A continuous I/O address space is defined by the I/O Base Register (IOBR) and the I/O Limit
Register (IOLR) in the bridge configuration space. The upper four bits of the 10BR correspond to
AD[15:12] of the I/O address and the lower twelve bits are always OOOH forcing a 4 Kbyte
alignment for the I/O address space. The upper four bits of the IOLR also correspond to AD[15:12]
and the lower twelve bits are FFFH forcing a granularity of 4 Kbytes.

The bridge unit will forward from the Primary to Secondary interface an I/O transaction that has an
address within the address range defined (inclusively) by the IOBR and the IOLR. In this instance
the Primary interface acts as a PCI target and the Secondary interface acts as a PCI initiator for the
bridged I/O transaction.

If an I/O read or write transaction is present on the Secondary bus, the bridge unit forwards it to the
Primary interface if the address is outside the address range defined by IOBR and 10LR. In this
instance the Secondary interface acts as a PCI target and the Primary interface serves as a PCI
initiator.

The 803031/0 processor only supports 16-bit addresses for I/O transactions and therefore any I/O
transaction with an address greater than 64 Kbytes will not be forwarded over either interface. The
bridge assumes AD[31:16] = OOOOH even though these bits are not implemented in the IOBR and
the 10LR. The bridge unit must still perform a full 32-bit decode during an I/O transaction to check
for AD[31:16] = OOOOH per the PCI Local Bus Specification, Revision 2.2.

I/O Read and I/O Write transactions with invalid byte enables (those that are inconsistent with the
byte address) will be transparently passed by the bridge. In this case, it is expected that the target
will target-abort, and the bridge will pass the target-abort back to the master.

For all PCI I/O transactions (I/O Read/Write Commands), the bridge does not use the PCI 64-bit
extensions. I/O cycles are performed as 32-bit transactions only (REQ64# is never asserted).

The bridge response to I/O transactions can be modified by the following configuration bits:

• Master Enable bit in the Primary Command Register (PCR)

• I/O Enable bit in the Primary Command Register (PCR)

• ISA Enable bit in the Bridge Control Register (BCR)

• VGA Enable bit in the Bridge Control Register (BCR

The Master Enable bit needs to be set to allow the Primary interface to function as a PCI initiator
(master) on behalf of transactions initiated on the Secondary bus. The I/O Enable bit must be set to
allow the bridge to accept I/O transactions on the Primary interface. The VGA Enable bit in the
BCR will cause I/O accesses where AD[9:0] are in the ranges 3BOH - 3BBH and 3COH - 3DFH
(inclusive of ISA addresses - AD[15:10] are not decoded) to be forwarded from primary to
secondary and blocked from secondary to primary. See Section 14.5.3, "VGA Address Support" on
page 14-20 for more details on VGA Compatible addressing.

The ISA Enable bit is discussed in the following section.

Developer's Manual

intel·
14.5.1.1

14.5.1.2

Disabling the I/O Address Range

Intef® 80303 I/O Processor
PCI-to-PCI Bridge Unit

The I/O address range can be disabled for Primary to Secondary transactions by using either the
I/O Enable bit or by using the I/O Base and Limit Registers. If the I/O Limit Register (IOLR) is
programmed to a value less than the I/O Base Register CIOBR), the 80303 I/O processor will not
forward any transactions from the Primary PCI interface to the Secondary PCI interface. In this
case, all I/O transactions from the Secondary to the Primary will be forwarded upstream through
the bridge.

ISA Mode

The PCI -to-PCI bridge unit of the 80303 I/O processor implements an ISA Enable bit in the Bridge
Control Register (BCR) to provide ISA-awareness for ISA I/O cards on downstream PCI buses.
ISA Mode only affects I/O addresses within the address range defined by the IOBR and IOLR
registers. When ISA Mode is enabled by setting the ISA Enable bit in the Bridge Control Register
(BCR), the bridge will filter out and not forward from Primary to Secondary I/O transactions with
addresses in the upper 768 bytes (300H) of each naturally aligned 1 Kbyte block. Conversely, I/O
transactions on the Secondary bus will inversely decode the ISA addresses and therefore forward
I/O transactions with addresses in the upper 768 bytes of each naturally aligned 1 Kbyte block
from Secondary to Primary.

ISA I/O cards only decode the lower 10 bits of the address (l Kbyte). The upper 768 bytes of the
1 Kbyte is assigned for general I/O. Because these cards do not decode the upper 6 bits of the
16-bit I/O address, the ISA address is aliased 64 times in the 64 Kbyte I/O address space. The
combination of ISA addressing modes and the 4 Kbyte I/O address granularity results in an address
decode that is similar to EISA slot decoding. Devices on the Secondary interface may be mapped to
the first 256 bytes of each 1 Kbyte block. ISA addressing and the ISA Enable bit do not affect
ordering, posting or error handling behavior of the PCI-to-PCI bridge unit. See Figure 14-5 for an
ISA address decoding diagram.

Figure 14-5. ISA Mode Address Decode

Developer's Manual

Primary
Interface

Range Defined
by IOBRIIOLR
Register Pair

...

....

....

...

DOOH- FFFH

.. COOH - CFFH

900H- BFFH

800H -8FFH

500H -7FFH

400H -4FFH

100H-3FFH

OOOH - OFFH

J~

1 Kbyte
Block

~

~

...

...
....

Secondary
Interface

~

..

..

..

14-17

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.5.2 Memory Address Space

The bridge supports two separate address ranges for forwarding PCI memory accesses downstream
from the Primary to Secondary interfaces. The Memory Base Register (MBR) and the Memory
Limit Register (MLR) define one address range (often referred to as the Memory Mapped I/O
Range) and the Prefetchable Memory Base Register (PMBR) and the Prefetchable Limit Register
(PMLR) define the other address range. The prefetchable address range is used in determining
which memory spaces are capable of prefetching without side effects. Both register pairs determine
when the bridge will forward Memory Read, Memory Read Line, Memory Read Multiple, Memory
Write, and Memory Write and Invalidate transactions across the bridge. In the case where the two
register pairs overlap, one address range results that is the summation of both registers combined
(Figure 14-6) with the prefetchable range having priority over bridge read transaction response.

Figure 14-6. Overlapping Memory Address Ranges

14-18

MBR/MLR Address
Range

PMBR/PMLR Address
Range

PMBR/PMLR
Read Attributes

Combined Address
Range

Intel® 80303 I/O Processor

~ Private Memory
Address Range

The upper twelve bits of the MBR, MLR, PMBR, PMLR (see Section 14.15 for all register
definitions) registers correspond to address bits AD[31:20] of a Primary or a Secondary Single
Address Cycle (SAC) memory address. For decoding purposes, the bridge assumes that AD[19:0]
of both memory base registers are OOOOOH and that AD[19:0] of both memory limit registers are
FFFFFH. This forces the memory address ranges supported by the bridge unit to be aligned on 1
Mbyte boundaries and to have a size granularity of 1 Mbyte. The lower four bits in all four
registers are read only from the configuration address space and return zero when read.

Any PCI memory transaction present on the Primary bus that falls inside the address ranges
defined by the two register pairs (MBR-MLR and PMBR-PMLR) will be forwarded downstream
across the bridge from the Primary to Secondary interface. The command used on the Secondary
interface mayor may not match the command used on the Primary interface. Under certain
conditions Memory Write and Invalidate commands can be converted to Memory Write commands
(see Section 14.6.6.4) and within the non-prefetchable address space, Memory Read Multiple and
Memory Read Line commands can be converted to Memory Read commands (see Section 14.6.5).

Developer's Manual

int:et

14.5.2.1

14.5.2.2

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Any PCI memory transaction present on the Secondary bus that falls outside the address range
defined by the two register pairs (MBR-MLR and PMBR-PMLR) is forwarded upstream across the
bridge from the Secondary to Primary interface. These transactions default to prefetchable unless
programmed to non-prefetchable in the EBCR. The Secondary interface will forward all Dual
Address Cycles from the Secondary bus to the Primary bus. Dual address cycles are constrained to
the upper 4 Gbytes of the 64-bit address space (see Section 14.5.4). Under certain conditions
Memory Write and Invalidate commands can be converted to Memory Write commands (see
Section 14.6.6.4) and within the non-prefetchable address space, Memory Read Multiple and
Memory Read Line commands can be converted to Memory Read commands (see Section 14.6.5).

The 64-bit PCI extensions can be used by PCI memory commands for transactions initiated from
either bridge PCI interface. See Section 14.6.3 for details on PCI 64-bit extensions. As a side note,
the addition of a 64-bit PCI datapath still requires the use of DAC mode for 64-bit addressing. See
Section 14.5.4 for details.

The bridge response to memory transactions on either interface may be modified by the following
register bits from the bridge configuration space:

• Master Enable bit in the Primary Command Register (PCR)

• Memory Enable bit in the Primary Command Register (PCR)

• VGA Enable bit in the Bridge Control Register (BCR)

The Memory Enable bit in the PCR register must be set to allow the bridge to accept memory
transactions on the Primary bus. The Master Enable bit in the PCR must be set to allow the Primary
interface to master PCI transactions.

The VGA Enable bit in the BCR register forces the bridge to forward memory accesses in the
address range from OAOOOOH to OBFFFFH from the Primary to Secondary and blocks addresses in
the same range from Secondary to Primary. See Section 14.5.3, "VGA Address Support" on
page 14-20 for more details on VGA Compatible addressing.

Burst Order

The bridge only supports linear incrementing addresses for burst order (AD[1:0] = 002). For any
other burst order, the Bridge will disconnect the transaction after the first 32-bit data phase. See
Section 14.8.1, "Delayed Read Transaction" on page 14-55 for information on non-linear MRLs
andMRMs.

Disabling the Memory Address Range

The Memory address range can be disabled for Primary to Secondary transactions by using either
the Memory Enable bit or by using the MBR-MLR and PMBR-PMLR register pairs. If the
Memory Enable bit in the Primary Command Register (PCR) is cleared, the Primary interface of
the bridge will not respond to any PCI memory transaction that falls within the MBR-MLR or
PMBR-PMLR register pair address ranges. The Secondary interface is unaffected by Memory
Enable bit in the PCR. In this case, all Memory transactions from the Secondary to the Primary will
be forwarded upstream through the bridge.

If the Memory Limit Register (MLR) is programmed to a value less than the Memory Base
Register (MBR) and the Prefetchable Memory Limit Register (PMLR) is programmed to a value
less than the Prefetchable Memory Base Register (PMBR), the 80303 I/O processor will not
forward any transactions from the Primary to the Secondary. In this case, all Memory transactions
from the Secondary to the Primary will be forwarded upstream through the bridge.

Developer's Manual 14-19

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit intel·
14.5.3

14.5.3.1

VGA Address Support

Of the issues related to the use of VGA compatible devices in systems with 80303 I/O processor
devices are VGA-ISA compatible addressing and VGA palette snooping. To support a VGA device
on a downstream bus from the 80303 I/O processor, the PCI-to-PCI bridge is able to recognize and
forward VGA addresses on the Primary interface to the Secondary interface. The peI-to-PCI
bridge unit of the 80303 I/O processor device does not support VGA palette snooping.

VGA Compatible Addressing

VGA addressing is used to allow the PCI-to-PCI bridge to support VGA frame buffer addressing
and VGA register addressing. When the VGA Enable bit is set in the Bridge Command Register,
the PCI-to-PCI bridge will positively decode memory accesses to a VGA frame buffer and I/O
accesses to VGA registers on a Secondary bus. The following addresses are positively decoded on
the Primary interface when the VGA Enable bit is set:

• VGA memory accesses - OAOOOOH - OBFFFFH

• VGA I/O accesses - AD[9:0] = 3BOH - 3BBH and 3COH - 3DFH. These addresses are
inclusive of ISA aliasing since AD[15:10] are not decoded for VGA I/O accesses These I/O
addresses are aliased every I KB throughout the first 64 KB of I/O space. This means that
AD[31:16] = OOOOH.

VGA compatible addressing, when the VGA Enable bit is set, is not dependent on the address
ranges programmed into the MBR/MLR and PMBR/pMLR register pairs for memory or the
IOBRIIOLR register pair. The stated addresses will be forwarded from primary to secondary and
blocked from secondary to primary regardless of the defined address ranges. In addition, VGA
compatible addressing is not dependent on the ISA enable bit. VGA compatible addressing is
dependent upon the I/O Enable bit and the Memory Enable bit and the respective memory and I/O
transactions will be disabled if the appropriate I/O and memory bits are not set.

Figure 14-7. VGA Compatible Addressing

Primary

14-20

Memory Base
Address Range

Memory Base
Address

VGA Memory Decoding

Secondary Primary Secondary

Address Range

VGA 1/0 Decoding

Developer's Manual

14.5.4

Intef@ 80303 110 Processor
PCI-to-PCI Bridge Unit

64-Bit Address Decoding - Dual Address Cycles

The bridge unit supports the dual address cycle (DAC) command for 64-bit addressing on the
Secondary interface of the bridge unit only. Dual address cycle commands allow 64-bit addressing
by using two PCI address phases; the first one for the lower 32 bits and the second one for the
higher 32 bits. The DAC command is also used by the bridge Primary PCI interface to forward
DAC cycles that appear on the secondary bus upstream.

The bridge unit decodes and forwards all dual address cycle commands from the Secondary to the
Primary interface regardless of the address ranges defined in the MBR/MLR and PMBR/PMLR
register pairs. DAC cycles are restricted to PCI memory commands only. I/O and configuration
cycles are not supported in the greater than 4 GB address space. All DAC transactions are treated
as prefetchable and adhere to the pre fetch data amounts defined in Table 14-13.

The bridge unit defaults to Subtractive Decode timing for claiming dual address cycle commands.
Subtractive Decode timing is defined as the assertion of DEVSEL# on the fourth clock after the
address phase, the fifth clock after FRAME#, for DAC cycles. If the Secondary DAC Medium
Decode Enable bit is set in the EBCR, the Secondary interface of the bridge claims all DAC
transactions with medium decode timing.

The Primary interface will not forward dual address cycle commands to the Secondary interface.

The operation ofDAC mode addressing for 32-bit or 64-bit buses, as defined by the PCl Local Bus
Specification, Revision 2.2, is shown in Figure 14-8. For 32-bit bus operation or for a DAC request
initiated from a 32-bit device on a 64-bit bus, AD[63:32] and C/BE[7:4]# are ignored. As a master
on the Primary PCI bus, the bridge unit extends the address phase to two clock cycles. In the first
cycle, the bridge drives the low order 32-bits of address on AD[31:0] and the DAC PCI command
(1101 2) on C/BE[3:0]#. In the second address cycle, the bridge drives the high order 32-bit of
address on AD[31:0] and the actual PCI read/write command on C/BE[3:0]#.

For 64-bit bus operation as a target on the Secondary bus, the bridge unit does not decode the high
order address bits driven on S _ AD[63:32] during the first address phase of the DAC cycle. The
Secondary bridge interface waits for the second address phase to capture the complete 64-bit
address and the actual PCI command for the transaction. As a master on the Primary PCI bus
interface, the bridge operates as defined in Figure 14-8 and drives the high order 32 bits on
P _ AD[63:32] and the actual PCI command on P _ C/BE[7:4]# during the first address phase of the
DAC cycle. Both address phases as defined for a 32-bit bus are still performed.

The response to DAC commands on the Secondary interface may be modified by the following
register bit from the bridge configuration space:

• the Master Enable bit in the Primary Command Register (PCR)

• the Posting Disable bit in the Extended Bridge Control Register (EBCR)

The Master Enable bit in the PCR must be set to allow the Primary interface to master PCI
transactions.

If the Posting Disable bit is set, the Secondary interface of the bridge unit will not accept any DAC
write transactions at all.

Developer's Manual 14-21

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Figure 14-8. 64-bit Dual Address Read Cycle

14-22

CLK

2 3 4 5 6 7

FRAME# ~_~L ________________ ---1! _____ : _ ~~_ ~

ADI31 :00] -:-:::-" ~ LO-ADDR X HI-ADDR) 8-<'__DA_T_A--,-'>'--___ ~8_:_:

~ L ___ ~ ____ _ C/BEI3:01# -:-:::- ___ ~'_ __ B_E_#1_3:(_)I _________ __"! ~

ADI63:32] -:-:::- _~:>.-__ H_IA_D_D_R _ ___')--8-< DATA-2 >

C/BEI7:41# -:-=- _ ~'_ __ B_U_S_C_M_D __ X'_ __ B_E_#1_7:_41 _________ ~r8_:_:

IRDY# ______ -__ ~ ~ _ ~ __ --::\ ~~ ~.-l _____ _
~ ~

~ ~ ~ ~
- --r->o- - - -T-- ~ ~ ~ r:: ________ "-::: ___________ ~ ~ ~.-l _____ _ TRDY#

Q Q

DEVSEL# __ c ___ -_ ~ _~ _ ~ ________ \.'-________ --,-_f. ____ _

..... __ -------'--I.~ ___ ----'--I.~ if------.~
ADDRESS

PHASE
DATA

PHASE
DATA

PHASE

Developer's Manual

intel·
14.5.5

14.5.6

Private Address Space

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

The bridge supports private address space by not claiming and forwarding upstream private
Memory and I/O addresses on the Secondary PCI bus. These private addresses will appear to the
bridge as Primary PCI addresses because they fall outside the Secondary PCI address space.
Private addresses are only supported on the Secondary PCI bus and may be used for transactions
from private devices to the Secondary ATU, transactions from the 80303 I/O processor to private
devices, or transactions from private device to private device. The bridge will not claim
transactions with these three types of private addresses if private addressing has been enabled:

1. Inbound transactions from private devices to the Secondary ATU.

2. Outbound transactions from the Secondary ATU or DMA channel 2 to private devices.

3. Peer transactions from Secondary devices.

For inbound private transactions, the Secondary ATU is responsible for claiming these
transactions. If the Secondary ATU claims the transaction, the bridge will not claim or try to
forward the transaction. The inbound ATU address space takes precedence over the inverse
decoding performed by the bridge on the Secondary PCI interface.

For outbound transactions from the Secondary ATU or DMA channel 2, or peer transactions from
Secondary device to private device, the programmer must use the Secondary Memory Base
Register and Secondary Memory Limit Register (SMBR/SMLR) to define a private memory
address range and the Secondary I/O Base Register and the Secondary I/O Limit Register
(SIOBR/SIOLR) to define a private I/O address range. To enable this feature, the Private Memory
Space Enable bit in the Secondary Decode Enable Register must be set. See Section 14.15.34. The
bridge will not claim any Secondary PCI address that falls within a valid 5MBR/SMLR and
SIOBR/SIOLR address ranges if the Private Memory Space Enable or the Private I/O Space
Enable bits are set.

Secondary PCI to Messaging Unit Access

The PCI-to-PCI bridge unit is responsible for providing the data path for access to the Messaging
Unit (part of the Primary ATU). The bridge, in conjunction with the SATU, allows Secondary PCI
masters to read and write the first 4 KB of the PATU inbound address space (the MU). The
following statements apply to accessing the MU from the Secondary PCI bus through the bridge:

• The Secondary Bus - Messaging Unit Access Enable bit must be set. When set, the SATU will
not claim the first 4 KB of its inbound address space, allowing the bridge the opportunity. This
bit is contained in the ATUCR in the ATU configuration space (see Chapter 15, "PCI Address
Translation Unit").

• The PCI memory read or write transaction (I/O or configuration cycles are not supported) must
have a valid bridge address outside the PMBRlPMLR and MBR/MLR address ranges.

• The bridge unit Primary interface takes no other action to allow Secondary access to the MU.
The application programmer is responsible for guaranteeing that the MU address is accessible
from the Secondary PCI interface as an upstream bridge transaction. If the upstream
transaction, meant for the Messaging Unit, is not at the correct address, a master abort will
occur or the transaction will be claimed by the incorrect target.

• Normal Upstream read prefetch behavior applies. The Messaging Unit will disconnect (as a
32-bit device) after delivering one 32-bit Dword.

Developer's Manual 14-23

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.5.7 Address Decode Summary

Table 14-5 through Table 14-8 contain a summary of the address decode options. Table 14-5 and
Table 14-6 summarize how addresses are decoded for Primary to Secondary transactions. Table 14-5
and Table 14-8 summarize how addresses are decoded for Secondary to Primary transactions. Each
pair of tables is divided into one Memory transaction table and one I/O transaction table. The tables
list the various control bits and the potential address ranges.

The response for the address is noted in each table entry. The response is determined by the control
bits and by the address range the address falls into. The response may be one of following three:

• Forward the transaction across the Bridge (denoted as "Forward").

• Ignore the transaction and do not forward across the Bridge (denoted as "Ignore").

• This particular range is not valid and the response is dictated by another address range
(denoted as "Not Valid").

The tables assume that the Memory and I/O Base and Limit address ranges are only valid when the
Limit is greater than or equal to the Base. Table 14-5 is a summary of the Memory address
decoding rules for Primary to Secondary Memory transactions.

Table 14-5. Primary to Secondary Memory Address Decoding Summary

Special Primary to Secondary

Memory VGA Memory In In InVGA In Special Outside all
Enable bit Enable Bit Window MBR/MLR PMBR/PM Memory Memory valid

Enable range LR range Range Range ranges

0 0 0 Ignore Ignore Not Valid Ignore Ignore

0 1 0 Ignore Ignore Not Valid Ignore Ignore

1 0 0 Forward Forward Ignore Ignore Ignore

1 1 0 Forward Forward Forward Ignore Ignore

0 0 1 Ignore Ignore Not Valid Forward Ignore

0 1 1 Ignore Ignore Not Valid Forward Ignore

1 0 1 Forward Forward Ignore Forward Ignore

1 1 1 Forward Forward Forward Forward Ignore

Table 14-6 is a summary of the I/O address decoding rules for Primary to Secondary I/O
transactions. The I/O Enable bit must be set to forward any I/O transactions. To be in the ISA
range, the address must also fall in the IOBR/lOLR range. Also, the ISA range covers the complete
IOBR/lOLR range.

Table 14-6. Primary to Secondary I/O Address Decoding Summary

14-24

Primary to Secondary
I/O ISA VGA

Enable Mode Enable In In In ISA range In ISA range Outside
bit bit Bit 10BRIIOLR VGA I/O (Lower 256 (Upper 768 all valid

range Range bytes) bytes) ranges

0 X X Ignore Not Valid Ignore

1 0 0 Forward Ignore Ignore Not Valid Ignore

1 0 1 Forward Forward Ignore Not Valid Ignore

1 1 0 Forward Ignore Forward Ignore Ignore

1 1 1 Forward Forward Forward Ignore Ignore

Note: When ISA is enabled, not all of the I/O addresses defined by the IOBR/lOLR range are forwarded
downstream.

Developer's Manual

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Table 14-5 is a summary of the Memory address decoding rules for Secondary to Primary Memory
transactions.

The Private Address Space Enable bit in the SDER can disable forwarding of the 5MBRjSMLR
range.

Table 14-7. Secondary to Primary Memory Address Decoding Summary

ell 3: Secondary to Primary
(.) 0 - til - "0

:0 0. .0 - s:: Cf) iii ~ ell
ell ell CI en .t::: :c a: ell ell U) :c U).o ell

~~
s:: ..J CI CI ell

til ell ell
til :c ~ :: s:: s:: CI s:: 0.0 "tJ s:: ... - W til ll..eIl a: a: ell

til -til ell s::
W "0.0 s:: E til a:

s:: ::J § eta: .!!! a: :Ef! "tJtIl >- W ellS:: ..J ~C1 .=CD~g .=lil~ lil ets:: (; et ::w :: a:s:: -~~ .= (!l ~ !!"tJ
(jj $w a: CD til ~Cf)~ >0 0.0 :::J=
til E (!l iii ::= E Cf)E o til

til ell > 'u CD Il.. > :: .2!: :: :: ell ell
ell .= :: :: iii c: 0. .= Cf)

0 X X X X Ignore

1 0 0 0 0 Forward Forward Not Valid Ignore Not Valid Not Valid Forward

1 0 0 0 1 Forward Forward Not Valid Ignore Not Valid Ignore Forward

1 0 0 1 0 Forward Forward Not Valid Ignore Not Valid Not Valid Forward

1 0 0 1 1 Forward Forward Not Valid Ignore Not Valid Ignore Forward

1 0 1 0 0 Ignore Ignore Not Valid Ignore Not Valid Not Valid Forward

1 0 1 0 1 Ignore Ignore Not Valid Ignore Not Valid Ignore Forward

1 0 1 1 0 Ignore Ignore Not Valid Ignore Ignore Not Valid Forward

1 0 1 1 1 Ignore Ignore Not Valid Ignore Ignore Ignore Forward

1 1 0 0 0 Forward Forward Ignore Ignore Not Valid Not Valid Forward

1 1 0 0 1 Forward Forward Ignore Ignore Not Valid Ignore Forward

1 1 0 1 0 Forward Forward Ignore Ignore Not Valid Not Valid Forward

1 1 0 1 1 Forward Forward Ignore Ignore Not Valid Ignore Forward

1 1 1 0 0 Ignore Ignore Ignore Ignore Not Valid Not Valid Forward

1 1 1 0 1 Ignore Ignore Ignore Ignore Not Valid Ignore Forward

1 1 1 1 0 Ignore Ignore Ignore Ignore Ignore Not Valid Forward

1 1 1 1 1 Ignore Ignore Ignore Ignore Ignore Ignore Forward

Developer's Manual 14-25

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et

Table 14-8 is a summary of the I/O address decoding rules for Secondary to Primary I/O
transactions. The ISA Enable pertains to the IOBR/lOLR range.

Table 14-8. Secondary to Primary 1/0 Address Decoding Summary

CD Secondary to Primary :c ca
C

:s w - CD
CD :c u CD 0: iii iii CD
:c CD Ii :c 0: ...I CD CD CD!!!

0)
CD "C C ca :c 0_ (J) ca ...I 0 ~~ 0)>- ca

C I:
QCD fiSCD I:.c 0: ca :IE:c >- w w C '- --0) --0) caU) e!co g '- W < 0 < 0:1: 0:1: '-11')

<Ie CD ~ E <!l COca COca <N
iii g CD > Q'- 0'- (J),- (J)'- <
(II :IE -CD -CD <!l fiS 1::: cQ. :IE CD .E -0 -Q. > - .E :::!. 2- .E ca

> .;:
Q.

0 X X X X Ignore

1 0 0 0 0 Forward Not Valid Not Valid Not Valid Not Valid

1 0 0 0 1 Forward Not Valid Not Valid Not Valid Not Valid

1 0 1 0 0 Forward Not Valid Not Valid Not Valid Not Valid

1 0 1 0 1 Forward Not Valid Not Valid Not Valid Not Valid

1 1 0 0 0 Ignore Not Valid Not Valid Not Valid Not Valid

1 1 0 0 1 Ignore Not Valid Not Valid Not Valid Ignore

1 1 1 0 0 Forward Not Valid Ignore Forward Not Valid

1 1 1 0 1 Forward Not Valid Ignore Forward Ignore

1 0 0 1 0 Forward Ignore Not Valid Not Valid Not Valid

1 0 0 1 1 Forward Ignore Not Valid Not Valid Not Valid

1 0 1 1 0 Forward Ignore Not Valid Not Valid Not Valid

1 0 1 1 1 Forward Ignore Not Valid Not Valid Not Valid

1 1 0 1 0 Ignore Ignore Not Valid Not Valid Not Valid

1 1 0 1 1 Ignore Ignore Not Valid Not Valid Ignore

1 I I I 0 Forward Ignore Ignore Forward Not Valid

1 I I 1 1 Forward Ignore Ignore Forward Ignore

=:rl caO)
CDC "Cca
:e~
:::I:
O~

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Forward

Note: When ISA is enabled, not all of the I/O addresses defined by the 10BR/lOLR range are forwarded
upstream.

14-26 Developer's Manual

14.6 Bridge Operation

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

The bridge unit of the 80303 I/O processor is capable of forwarding all types of memory, I/O and
configuration commands from one PCI interface to the other PCI interface. Table 14-9 defines the
PCI commands supported and not supported by the PCI-to-PCI bridge unit and its two PCI
interfaces. PCI commands are encoded within the C/BE[3:0]# pins on either interface during the
address phase of any PCI transaction (excluding DAC cycles which encode the DAC command in
the first address phase and the read or write command in the second address phase).

Table 14-9. PCI Commands

C/BE# PCI Command
Initiator: Primary Bus Initiator: Secondary Bus

Target: Secondary Bus Target: Primary Bus

00002 Interrupt Acknowledge Ignore Ignore
0001 2 Special Cycle Ignore Ignore
00102 I/O Read Forward Forward
0011 2 I/O Write Forward Forward
01002 Reserved Ignore Ignore
0101 2 Reserved Ignore Ignore
01102 Memory Read Forward Forward
0111 2 Memory Write Forward Forward
10002 Reserved Ignore Ignore
1001 2 Reserved Ignore Ignore
10102 Configuration Read Forward Ignore
1011 2 Configuration Write Forward Forward (Type 1 Only)
11002 Memory Read Multiple Forward Forward
1101 2 Dual Address Cycle Ignore Forward
11102 Memory Read Line Forward Forward

11112 Memory Write and Invalidate Forward Forward

14.6.1 pel Interfaces

14.6.1.1

The 80303 I/O processor bridge unit consists of a Primary PCI interface and a Secondary PCI
interface. When transactions are initiated on the Primary bus and claimed by the bridge, the
Primary interface serves as a PCI target device and the Secondary interface serves as an initiating
device for the true PCI target on the Secondary bus. The Primary bus is the initiating bus and the
Secondary bus is the target bus. The sequence is reversed for transactions initiated on the
Secondary bus. The interfaces are defined in the following sections.

Primary Interface

The Primary PCI interface of the bridge unit will be the interface connected to the lower numbered
PCI bus between the two PCI buses that the 80303 I/O processor bridges. The Primary PCI
interface must adhere to the definition of a PCI master and slave device as defined within the PCI
Local Bus Specification, Revision 2.2 and the PC/-to-PC/ Bridge Architecture Specification,
Revision 1.1.

Developer's Manual 14-27

Inte!® 80303 110 Processor
PCI-to-PCI Bridge Unit intet
14.6.1.2

14-28

Secondary Interface

The Secondary PCI interface of the bridge unit will be the interface connected to the higher
numbered PCI bus between the two PCI buses that the 80303 I/O processor bridges. The Secondary
PCI interface must adhere to the definition of a PCI master and slave device as defined within the
PC/-to-PCl Bridge Architecture Specification, Revision 1.1 and the PCl Local Bus Specification,
Revision 2.2.

Developer's Manual

intel·
14.6.2

14.6.2.1

Claiming a PCI Transaction

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

In general, the PCI-to-PCI bridge unit, as a target on the initiating bus, uses medium timing to
assert DEVSEL# to claim a bus transaction,

With the exception of Primary Interface Slow Decode under certain, special conditions, the
performance of the bridge will not be affected. Both Slow and Medium Decode timings will meet
the PCI specification of claiming a transaction within five clocks of the assertion of FRAME# by
the initiating PCI device. The bridge target interface will claim the transaction depending on the
transaction type and address. See the rules for address decoding for memory and I/O transactions in
Section 14.5 and for configuration transactions in Section 14.4.

The bridge unit, as a master on the target bus, expects DEVSEL# to be asserted from the target
device within five PCI clocks of asserting FRAME#. If the target interface does not receive
DEVSEL# within the required amount of time, it will signal a Master-Abort on the target bus if the
function is enabled (see Section 14.10.1 for Master-Abort information).

See the PCI Local Bus Specification, Revision 2.2 for full details on transaction claiming.

Latency Timers

A latency timer (LT) is used to create a mechanism that limits one masters ownership of a PCI bus
in the presence of other bus masters. There are two latency timers in the bridge, one for each of the
PCI interface masters.

The function of each latency timer is defined as:

• A LT is initialized and suspended (not counting) whenever a master interface (Primary or
Secondary) is not asserting FRAME#.

• When a master interface asserts FRAME#, the LT will start counting down one for every PCI
clock cycle that FRAME# is asserted.

• If the master interface deasserts FRAME# before the LT has expired (reached zero), the LT is
meaningless to the transaction. The LT is initialized when FRAME# is deasserted.

• If the LT expires before the transaction completes, the interface must relinquish the bus and
terminate the transaction (see Section 14.10.1) as soon as the master interface G NT# signal is
deasserted. If the LT expires and the master interface GNT# signal is still asserted, the
transaction is allowed to continue until it is complete or the master GNT# signal is deasserted.
The exception to this rule is when a master is currently performing a Memory Write and
Invalidate command on the bus. Refer to Section 14.10.1.3 for details.

In essence, the LT creates a minimum time slice that each master is allowed to own the PCI bus.
Two registers exist within the bridge unit configuration space which define the maximum count
and granularity of both the Primary and Secondary latency timers; the Primary Latency Timer
Register (PLTR) and the Secondary Latency Timer Register (SLTR). Each register is 8 bits wide
resulting in a time slice of up to 248 PCI clocks that each interface can own its respective PCI bus.
The lower three bits (02 through 00) of the PLTR and the SLTR are hardwired to 0002 which forces
a minimum granularity for the timer of eight PCI clocks. The upper five bits of the register are
programmable to allow the timer value for each PCI interface to be independently programmed to a
value between 111110002 and 000000002 resulting in timer count of anywhere from 0 to 248.

Developer's Manual 14-29

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et
14.6.2.2

14-30

Delayed Transactions

Delayed transactions are a method for processing PCI transactions that may exceed the PCI Local
Bus Specification, Revision 2.2 requirement for no more than 16 clocks of latency between the PO
address and the first data word.

The bridge will process all transactions as Delayed transactions, except for Memory Write and
Memory Write and Invalidate transactions. These two transactions can be processed as Posted
transactions or as delayed write transactions. If the Posting Disable bit in the Extended Bridge
Control Register is clear, Memory Write and Memory Write and Invalidate transactions will be
processed as Posted transactions (default state). If Posting Disable bit is set, Memory Write
commands will be processed as Delayed transactions and Memory Write and Invalidate commands
will be processed as delayed Memory Write commands.

In a Delayed transactions performed by the bridge, the address, command, REQ64# and byte
enable information required to complete the transaction is latched by the bridge in a transaction
queue and the initiator is signaled a retry. For writes, the information includes the data to be written
as well. The bridge performs the request on the target bus on behalf of the initiator. For reads, the
returned data and the target response is stored in the bridge delayed read completion (DRC)
queues. For writes, only the target response is recorded. The retried initiator must then repeat the
original request on the initiating bus in order complete the full transaction.

A Delayed transaction consists of three parts;

• Request phase on the initiating bus

• Completion phase on the target bus

• Completion phase on the initiating bus

The request phase is when the transaction information is latched by the bridge and the bridge
terminates the transaction with a Retry. This is referred to as a Delayed Request phase.

Once a Delayed Request transaction is accepted by the bridge, the bridge will initiate a completion
phase on the target bus using the same transaction type as on the initiating bus. Data that
accompanies the request transactions for delayed writes is held in the bridge delayed write request
(DWR) queues. Data being returned for reads is written into the DRC queues.

The completion phase on the initiating bus is when the initiator repeats the original request and the
bridge signals a termination other than Retry. This is referred to as a Delayed Completion
transaction. The Delayed Completion transaction will terminate with the same termination as the
target bus transaction. For example, if the target bus transaction terminated with Disconnect, the
Delayed Completion transaction will terminate with Disconnect.

The bridge has a discard timer associated with each data buffer used for Delayed transactions (see
Section 14.11.4). If the discard timer expires before the initiator repeats the original request, the
data and associated request information is discarded.

Developer's Manual

in1:et
14.6.2.3 Posted Transactions

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

In a Posted transaction performed by the bridge, the bridge stores the data in a write queue and
signals a termination other than Retry. Once the bridge acquires the target bus, it completes the
request.

Table 14-10 summarizes the difference between Delayed transactions and Posted transactions.

Table 14-10. Delayed Transactions vs. Posted Transactions

14.6.3

Delayed Transaction Posted Transaction

For all PCI commands (except Special Cycle)
For Memory Write, Memory Write and Invalidate
commands only

Requires repeated request Does not require repeated request

Completes on target bus before initiating bus Completes on initiating bus before target bus

Less efficient for writes More efficient for writes

64-Bit Operation

Both the Primary and Secondary interfaces of the 80303 I/O processor are capable of PCI 64-bit
operation to support data transfer rates of up to 264 MBytes/sec. at 33 MHz or 528 Mbytes/sec. at
66 MHz. The 64-bit PeI extensions add 39 additional signals to each bridge PCI interface. These
signals and their functions are

• AD[63:32] - high order address/data bus

• C/BE[7:4]# - byte enables covering high order four bytes of data

• PAR64 - even parity signal covering AD[63:32] and C/BE[7:4]#. Same timing as PAR

• REQ64# - used by a 64-bit master to request a 64-bit operation. Same timing as FRAME#

• ACK64# - used by a 64-bit capable target in response to REQ64# being asserted. Signifies to
the master that the transaction can be completed with 64-bit transfers. Same timing as
DEVSEL#.

At PCI bus reset, each individual PCI bus (Primary and Secondary) will independently sample their
respective REQ64# signals. If this signal is low, the bus is 64-bit capable and the respective master
state machines will attempt to complete all memory transactions as 64-bit cycles. See
Section 14.12.3 for complete details of REQ64# detection by each PCI interface at power-up.
Once a PCI bus interface is known to be 64-bit, the interface may attempt the following transaction
types as 64-bit; Memory Read, Memory Read Line, Memory Read Multiple, Memory Write, and
Memory Write and Invalidate. Configuration and I/O transactions are 32-bit only.

The bridge attempts a transaction on the target interface according to the size of the initiating
interface. For example, a downstream write from a 32-bit master on the Primary bus will typically
be attempted as a 32-bit transaction on the Secondary PCI interface. This approach improves the
possibility of streaming between the initiator and its target. Another possibility occurs if a 32-bit
write transaction is fully posted and meets the criteria of a 64-bit transaction, the write will be
attempted as a 64-bit. transaction. The previous statements also apply to read transactions.

Developer's Manual 14-31

Inte/@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.6.3.1

14-32

64-Bit Protocol

The 64-bit PCI extensions have been developed to coincide with the existing 32-bit protocol. The
additional 32 bits of address/data require an additional four byte enables and a parity signal to
cover them. The bus timing, protocol, and turn-around cycles behave exactly the same for the
64-bit signals as they do for the standard PCI interface signals with the exception of the 64-bit
handshake signals referenced below.

The 64-bit handshake signals used by the 80303 I/O processor are P _REQ64# and P _ACK64# on
the Primary interface and S _ REQ64# and S _A CK64# on the Secondary interface. As a master, a
PCI interface of the bridge will assert REQ64# with FRAME# to indicate to the target that a 64-bit
transaction is being requested. REQ64# is asserted and deasserted with the exact timing as
FRAME# for the master state machines. When REQ64# is asserted, the target of the memory
operation is required to assert ACK64# with the same timing as DEVSEL# to allow a 64-bit
transaction to proceed. If ACK64# is not asserted with DEVSEL#, the master interface must revert
to a 32-bit transaction. See Section 14.6.3.2 for details on 64-bit operation with 32-bit targets.

A 64-bit transaction is required to have a 64-bit aligned address (AD2 = 0). A master that is starting
a request on an odd boundary (AD2 = 1) must use a 32-bit transaction and not assert REQ64#. This
is true for an initial request or as the result of a disconnect from a 32-bit target (see the next
section). The bridge as a master on the target interface for reads will use 32-bit transactions when
the initiator starts a 32-bit read transaction on an odd boundary

When ACK64# is asserted by the target of the transaction, a 64-bit transfer may proceed. As stated,
a 64-bit transfer behaves exactly the same as a 32-bit transfer except that up to eight bytes of data
are transferred during each PCI data phase. For the 64-bit transfer, the AD[63:32] and C/BE[7:4]#
are reserved during the address phase. (assuming a SAC transfer). During the data phases, the
master interface transfers up to eight bytes of data on each of the 8-byte lanes defined by
AD[63:00]. As in a 32-bit transfer the master is capable of asserting any (or none) of the byte
enables during each of the data phases within a burst transfer. Refer to Figure 14-9 for a diagram of
a 64-bit transfer to a 64-bit target. PAR64 for a 64-bit transfer has the same function and timing as
PAR for a 32-bit transfer. PAR64 must be asserted one clock after each address and data phase.
64-bit targets will qualify address parity checking using PAR64 with the assertion of REQ64#.
Although AD[63:32] and C/BE[7:4]# are reserved for SAC 64-bit transfers, PAR64 must still be
preserved and therefore stable values must be driven.

Developer's Manual

inteJ·
Infel® 80303 liD Processor

PCI-fo-PCI Bridge Unit

Figure 14-9. PCI 64-Bit Transfer to a 64-Bit Target

CLK

2 4 6 7 9

FRAME# ~_~,-___________________ ---,l _____ '~ _ ~_

REQ64# ~_~,-__________________ ~l _____ ': _ ~

~~- -~ L __ ~ _____ _ ADr31:o01-:--=- ___ ~ ___ ~ __ ~ __ ~~ __ D_AT_A_-5 __ ___1/ "---'

AD163:321 -:--=- _--=-=-C =) __ C~ DATA-2 > = ~,-__ D_AT_A_-6 __ -,>--=-8~

CIBEI3:01# -:--=-_~,--__ B_E_#S_. _______________ ---1rC~

~ - 'J~ ________________________________ ~~ __ ~ ___ --__ C/BE[7:41# -:--=- ___ ~ _ J_ BE#S !"---'

lRDY# ____ ~9 _ -:-\'------ lEO< ~ ------- fil - - - - - fj~ - - - - - -
u- u-

~ ~ ~

t: ~ t: Z t: ~
-r4 ---~ ~ ~ g ~ ~

- - - - - -~ - - - - - - -~ ~~--~ ~ ~~ - - - - - -
000

TRDY#

-,.--,..
DEVSEL# ______ ':-.:' ~ ________ L ___________ -'-___ --JI. ____ _

ACK64# ____ ~ ~ • ________ \.1.-. _________________ ------'(___ __

~ I------I .. ~ 1-------1 I-------I .. ~
ADDRESS DATA

PHASE PHASE
DATA

PHASE
DATA

PHASE

As a target, the slave state machines of both bridge PCI interfaces are capable of responding as a
64-bit target. When a PCI memory transaction is claimed by a bridge interface and the initiating
master has requested a 64-bit transfer by asserting REQ64# with FRAME#, the bridge slave
interface will assert and de assert ACK64# with the same timing and protocol as DEVSEL#. Further
64-bit slave operation is exactly like 32-bit operation with data being written or returned on both
AD[31:00] and AD[63:32] using C/BE[3:0]# and C/BE[7:4]# respectively. PAR64 must be
driven with the same timing as PAR for read operations.

Developer's Manual 14-33

Infel® 80303 liD Processor
PCI-fo-PCI Bridge Unit int'et
14.6.3.2

14-34

64-Bit Operation with 32-Bit Targets

When a 64-bit transfer is requested by the PCI master interfaces by the assertion of REQ64#, it is
not guaranteed that the target of the transaction is capable of performing the 64-bit request. If the
target is not 64-bit capable, ACK64# will remain deasserted when the target asserts DEVSEL# to
claim the transaction. When a target signals that it cannot complete the transaction using 64-bit
transfers, the bridge master interfaces are responsible for completing the transactions as a 32-bit
master. Two possible conditions arise from a 32-bit target which does not respond with ACK64#:

1. ACK64# deasserted but a burst can be sustained

2. ACK64# deasserted but a burst can not be sustained

If a 32-bit target does not respond with ACK64# and STOP#, it is capable of continuing a burst as a
32-bit target. For memory read requests, the bridge master interfaces changes to 32-bit operation by
only expecting read data on the lower byte lanes, AD[31:0]. The master interfaces continue
requesting read data (by the continued asserting of IRDY#) as 32-bit masters. No master
completions are prematurely signaled due to 32-bit target response. For memory write operations,
the master interface may already have the first data phase on the bus by the time it is detected that
ACK64# has not been asserted. The bridge Primary/Secondary master interface discontinues
driving data on the upper 4 bytes during the second data phase. The second data phase of the burst
now contains the data from the high 4 bytes of the first data phase. The master interface stops
driving the AD[63:32] and C/BE[7:4]# during data phase 2 and all subsequent data phases of the
burst write transfer. See Figure 14-10 for a diagram of this transaction. As a note, a disconnect after
the first data phase of the burst transfer write will result in the continuation of the write transaction
as a 32-bit master only (no REQ64#). This works similar to the write transfer disconnected in the
first data phase described in the next paragraph.

If a 32-bit target does not respond with ACK64# but asserts STOP#, the target will not continue the
burst. If a read or write request is made and STOP# without TRDY# is signaled (Retry), the master
interface must repeat the original read or write request as a 64-bit transaction. If the target signals a
Disconnect with data (STOP# and TRDY#) on a write transaction, then only the lower four bytes
of the 8-byte transfer have been delivered. The master state machines of the bridge unit repeat the
request as a 32-bit master (no REQ64# assertion) using the upper four bytes of data from the
disconnected transaction on AD[31:00] and the next address (i.e., if address OOH was used in the
first 64-bit request, address 04H is used in the next 32-bit request). The bridge unit completes the
memory write transaction as a 32-bit master until the data transferred from the initiating interface is
exhausted (data from the posted memory write being completed on the target bus) regardless of the
number of times the target disconnects the master or the address boundary on which it occurs. This
occurs for 64-bit requests which are disconnected with no ACK64#. 64-bit requests disconnected
with an ACK64# are continued as 64-bit requests. If the target signals a Disconnect with data on a
read transaction (during the first data phase), then data has only been returned on AD[31:00]. No
additional read requests are initiated due to delayed read transaction usage (See Section 14.6.5 for
details).

Note that 32-bit targets create special circumstances for FRAME# signaling. For 32-bit, single
Dword transfers, FRAME# is driven low and then high immediately in the next clock signaling
last data phase. Due to the potential of requiring two 32-bit data phases to complete what was
originally intended as one 64-bit data phase, this is not possible. FRAME# must not be deasserted
until after ACK64# is returned.

Developer's Manual

intet Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Figure 14-10. 64-Bit Write Request with 32-Bit Transfer

ClK

2 3 4 5 6 7 B 9

FRAME# ~_~..I... ___________ ~! __________________ ~_

REQ64# ~ ~..I... ___________ ---'-! __________________ ~

AD[31:00] -:-:: _4DDRES~ DATA-1 X DATA-2 >:= :=)<~ ___ D_A_T_A-_3 ___ -.lrQ-=-:

AD[63:32] ~ _ ~ :=)(DATA-2 > - - -

C/BE[3:0]# -:-:: _~ _____ B_E_#_S-3 ____ ----L>--=C-=-:

C/BE[74]# -:-:: _--:-(:= ~ - - - - - - - - - -

DEVSEl# ____ ~_Q_ ~'-__________ -'--______ -'! _____ _

ACK64#

~ ~.~---~~~ ~.~---~.~~ . .--~-~~~
ADDRESS DATA DATA DATA

PHASE PHASE PHASE PHASE

As a PCI-to-PCI bridge, the 80303 I/O processor may be in a system environment with 64-bit
devices on one bridge side and 32-bit devices on the other bridge side. This creates potential
problems when a 64-bit master performs a delayed read to a 32-bit target with a prefetching PCI
Local Bus Spec!fication, Revision 2.2 bridge in the data path within non-prefetching address space.
To account for this, the following rules apply to bridge read behavior:

• For a non-prefetchable read, the bridge will never return ACK64# and will always perform a
32-bit read (REQ64# not asserted) on the target interface.

• As is the case in all delayed reads, a disconnect during the delayed completion cycle on the
target bus does not result in any additional reads.

• For all prefetchable reads, if the initiator starts a transaction with A2=O, the target interface
will assert REQ64#. If the initiator starts a transaction with A2=1, the target interface will not
assert REQ64#. This means that a 32-bit requestor can transfer data from a 64-bit target on a
64-bit target bus. If the read completion data is completely buffered and QWORD aligned at
the tail end, the bridge will return the data as a 64-bit target.

• Delayed reads in prefetchable address space can return 64-bit data to a 64-bit master on the
initiating bus even if the read on the target bus was from a 32-bit target.

• REQ64# is required to be asserted on a Retry sequence by the master but the target is under no
obligation to assert ACK64# during the completion cycle even if it was asserted during the
original transaction when the delayed read was enqueued and initiated.

Developer's Manual 14-35

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.6.4

14-36

66 MHz Operation

The PCI interfaces of the 80303 I/O processor are capable of PCI 66 MHz operation to support data
transfer rates of up to 264 MBytes/sec. with a 32-bit bus or 528 Mbytes/sec. with a 64-bit bus.
Differences between 33 MHz PCI and 66 MHz PCI are minimal. Both share the same protocol, and
signal definitions. The 66 MHz PCI extension adds one additional signal to each bridge PCI
interface. The signal and its function is

• P _ M66EN - when asserted, indicates that the Primary PCI bus will run at 66 MHz

• S _ M66EN - when asserted, indicates that the Secondary PCI bus will run at 66 MHz

Additionally, bit 5 of the "Primary Status Register - PSR" and bit 5 of the "Secondary Status
Register - SSR" are set to a 12 indicating that the bridge is capable of 66 MHz operation on both
interfaces.

At PCI bus reset, each individual PCI bus (Primary and Secondary) will independently sample their
respective M66EN signals. If this signal is high, the bus is 66 MHz capable, and in the case of the
Primary bus, the clock unit will be configured to accept a 66 MHz Primary PCI Bus clock.

The 66 MHz capable 80303 I/O processor supports the following Primary and Secondary bus
frequency combinations:

• 66 MHz Primary bus, 66 MHz Secondary bus

• 66 MHz Primary bus, 33 MHz Secondary bus

• 33 MHz Primary bus, 33 MHz Secondary bus

The 80303 I/O processor does not support 33 MHz Primary/66 MHz Secondary bus operation,
where the Secondary bus is operating at twice the frequency of the Primary bus. If P _ M66EN is
low (Primary bus at 33 MHz), then the 80303 I/O processor pulls down S _ M66EN to indicate that
the Secondary PCI bus is operating at 33 MHz.

The 80303 I/O processor generates clock signals S _ CLKOUT[5:0] for the Secondary bus devices.
The 80303 I/O processor divides the Primary bus clock P _ CLK by two to generate the Secondary
bus clock outputs whenever the Primary bus is operating at 66 MHz and the Secondary bus is
operating at 33 MHz. The 80303 I/O processor detects this condition when P _ M66EN is high and
S_M66EN is low. The "Secondary Clock Disable Register - SCDR" provides the ability to
selectively disable unused secondary output clocks following the de assertion of P _ RST#.

For the 80303 I/O processor, the P _ M66EN signal is routed from an external pin. While, for the
80303 I/O processor the P _ M66EN signal is hardwired internally to be driven high since P _ CLK
will always be running at 66 MHz.

For more details on the 80303 I/O processor 66 MHz PCI clock scheme and the operation of the
Secondary PCI bus clocks, please see Chapter 25, "Clocking and Reset".

Developer's Manual

int:el.
14.6.5 pel Read Transactions

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

The 80303 I/O processor supports memory read and I/O read transactions from both sides of the
bridge unit. Memory read transactions are claimed if they are within the MBR/MLR or
PMBRjPMLR address pairs on the Primary bus and outside the register pairs on the Secondary bus.
I/O read transactions are claimed if they are within the IOBR/IOLR write transactions on the
Primary bus and outside the address pair on the Secondary bus. Refer to the PCl Local Bus
Spec(i'ication, Revision 2.2 for full details on memory and I/O read transactions. Prefetchable
Memory read commands will be attempted as 64-bit transactions (see Section 14.6.3). I/O,
non-prefetchable reads and configuration reads are always performed as 32-bit operations. Refer to
Section 14.7.1 for information on bridge queue operation during PCI read operations.

The bridge implements Delayed Read transactions in order to meet initial transaction latency
requirements (from initiating bus IRDY# active to target bus TRDY# active). Delayed Transaction
operation is described in Section 14.6.2.2.

The Delayed Read Request (DRR) transaction is the initial memory read or I/O read transaction
that the bridge claims. The address, command, and byte enables of this transaction will be latched
by the bridge and retained in the Transaction Queues. Once the bridge interface latches the address,
command (including REQ64# for 64-bit transfers), and byte enables, it will signal a Retry to the
initiator who is then required to re-issue the now delayed request.

If the DRR is accepted by the bridge, the bridge will then initiate the transaction on the target bus.
Delayed Requests are accepted as new requests if all of the following conditions apply:

• The DRR does not match any DRRs currently held by the bridge in the initiating bus
Transaction Queues.

• The request does not match up with the Delayed Completion currently held by the bridge. This
new request must be checked against possible Delayed Completions to see if this is a repeated
request that can be completed.

• The bridge has the ability to hold a Delayed Read Request in an available Transaction Queue
and Delayed Read Completion Queue. In the situation where no queues are available, the
bridge will signal a Retry without latching any information.

Two requests will match only if they have the exact same address, command, byte enables, and
REQ64#. For the purposes of matching a delayed request with a delayed completion, the bridge
unit will not compare byte enables for all prefetchable transactions that have linear addresses. Byte
enables will be compared for prefetchable transactions that are non-linear.

If the request is accepted as a delayed transaction, the bridge retrys the master on the initiating bus
and performs the same memory or I/O read command on the target bus. If the request is not accepted,
the bridge signals a Retry to the master on the initiating bus with no action on the target bus.

When the target returns data on the target bus, the bridge will store the data in a Delayed Read
Completion (DRC) Queue along with the associated Delayed Request information (address,
command, REQ64#, and byte enables) that already exists in the Transaction Queue. The bridge
will accept 1 or more data bytes to be stored in the DRC Queues. If additional queue space
becomes unavailable (either from physically full or due to reserved space) and more data words are
available from the target, the bridge will signal a Disconnect on the target bus.

The amount of data the bridge reads on the target bus and store in the DRC queues depends on:

• PCI command type

• whether the memory address space is prefetchable or not

• Size of Delayed Read Completion Queues available for data

Developer's Manual 14-37

Inte/@ 80303 110 Processor
PCI-to-PCI Bridge Unit int:et

Whether or not the read command prefetches depends on the address space, whether the transaction
is upstream or downstream and the Upstream Prefetchable Enable bit in the EBCR. See
Table 14-11 for a summary.

For downstream Memory Read commands, which address range (MBR-MBLR or PMBR-PMLR)
is used to claim the address determines whether the memory is prefetchable or not. See
Section]4.5.2.

For upstream Memory Read commands on the Secondary PCI bus, the bridge treats the memory as
prefetchable or non-prefetchable depending on the Upstream Prefetchable Memory Enable bit in
the Extended Bridge Control Register. If this bit is set, upstream memory is prefetchable. If this bit
is clear, upstream memory is non-prefetchable.

For all Memory Read Line and Memory Read Multiple transactions in the non-prefetchable address
space (either upstream or downstream), the bridge unit will alias the command to Memory Read on
the target interface. For the purposes of matching MRL/MRM in the non-prefetchable address
space, the bridge will match on the original command issued from the PCI master on the initiating
interface. Non-prefetchable commands are always claimed as a 32-bit target (ACK64# deasserted)
and attempted as 32-bit requests (REQ64# deasserted) on the target bus.

Table 14-11. Prefetchable and Non-Prefetchable Memory Summary

14-38

Prefetchable Non·Prefetchable
PCICommand

Downstream Upstream Downstream Upstream

In MBR/MLR
Upstream Prefetch

Memory Read Address Range
Enable bit = 0 in

EBCR
In PMBR/PMLR

Memory Read Line Address Range Upstream Prefetch
In MBR/MLR

Upstream Prefetch

Memory Read Enable bit = 1 in Address Range 1 Enable bit = 0 in

Multiple EBCR EBCR2

Upstream Prefetch
DAC Read N/A N/A Enable bit = 0 in

EBCR3

1. MRL and MRM commands are aliased to Memory Read command on Secondary PCI Bus
2. MRL and MRM commands are aliased to Memory Read command on Primary PCI Bus
3. DAC MRL and MRM are aliased to Memory Read on the Primary PCI Bus

For DAC read commands on the Secondary PCI bus, the bridge will treat the memory the same as
SAC transactions. See Table 14-11 for details.

The rules for the amount of data attempted to be read during a delayed transaction depend on the
command used, the direction of the request (upstream or downstream) and whether or not
prefetchable or non-prefetchable address space is used. Table 14-12 and Table 14-l3 summarize
the rules for downstream and upstream read transactions respectively. Note that the actual amount
of data read will depend upon the DRC queue available at the time the DRR is enqueued in the
Transaction Queue (refer to Section 14.7.1 for queue selection criteria), the amount of data
delivered by the target on the actual target bus and the starting address of the read command.

The starting address of the read transaction must be on a cacheline boundary to pre fetch the full
data size determined in Table 14-12 and Table 14-13. For example a MRM read with a 32 byte
cacheline configuration that wants to prefetch 128 bytes and start on address XXXXXX24H would
only read a maximum of 124 bytes. If the same read had a starting address of XXXXXX20H, the
maximum of 128 bytes could be read (assuming the target returned that much data).

Developer's Manual

int'et Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

Table 14-12. Downstream Memory Read Prefetch Size

Prefetchable Memory Address Space Non-Prefetchable Memory Address

Read Command Space

CLS1= 8 (32 bytes) CLS = 16 (64 bytes) CLS = 8 (32 bytes) CLS = 16 (64 bytes)

Memory Read Up to 32 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read Line Up to 32 Bytes2 Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read
Up to 64 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes Multiple

1. CLS - Cache Line Size Defined by the Cache Line Size Register within the bridge configuration space
2. Up to 64 Bytes if the Downstream MRL Prefetch Size Bit is set in the Queue Control Register (See Section 14.15.35)

Table 14-13. Upstream Memory Read Prefetch Size

Prefetchable Memory Address Space Non-Prefetchable Memory Address

Read Command Space

CLS1 = 8 (32 bytes) CLS = 16 (64 bytes) CLS = 8 (32 bytes) CLS = 16 (64 bytes)

Memory Read Up to 32 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read Line Up to 32 Bytes2 Up to 64 Bytes3 Up to 4 Bytes Up to 4 Bytes

Memory Read Up to 256 Bytes Up to 256 Bytes Up to 4 Bytes Up to 4 Bytes Multiple

1. CLS - Cache Line Size Defined by the Cache Line Size Register within the bridge configuration space
2. Up to 64 Bytes if the Upstream MRL Prefetch Size Bit is set in the Queue Control Register (See Section 14.15.35)
3. Up to 128 Bytes if the Upstream MRL Prefetch Size Bit is set in the Queue Control Register (See Section 14.15.35)

If the value in the CLS is anything other than eight or 16, the read prefetch behavior will be that of
a CLS value of eight (32 bytes).

If selected read queue is large enough, MRL control bits within the Queue Control Register are
capable of promoting the Memory Read Line Command pre fetch size to 2x the amount in previous
tables, if the command is in the prefetchable address space. Refer to Section 14.15.35 for details.
The MRL prefetch bits increase the maximum prefetch size attempted during an MRL transaction.

I/O Read commands, Configuration Read, and all non-prefetchable read commands are limited to
one 32-bit PCI data phase. The bridge reads and stores up to four bytes for these transaction types.
The bridge will signal a Disconnect to the initiator if the master requests more than one DWORD.

The Delayed Completion transaction is the repeated memory read, I/O read, or configuration read
transaction from the original initiator. The bridge matches the address, command, REQ64#, and
byte enables of repeated transaction with those in the Transaction Queue and retrieves the data
from the DRC queues. The bridge provides the requested data to the initiator and signals the
termination (other than Retry) that matches what was used on the target bus.

The bridge will terminate the Delayed Completion transaction with:

• Completion termination if the transaction on the target bus terminated normally.

• Master-Abort termination or Is (the number of Is passed back, either 32-bit or 64-bit, is based on
PCI bus size of initiating master, and in 64-bit bus size case, REQ64#/ ACK64#) if the transaction
on the target bus terminated with Master-Abort. See Section 14.10.1 for more information.

• Target-Abort termination if the transaction on the target bus terminated with Target-Abort.

• Disconnect termination if the transaction on the target bus terminated with Disconnect before
the prefetch data amount was reached.

Developer's Manual 14-39

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

14-40

Any additional data words read from the target by the bridge but not ultimately requested by the
initiator will be discarded upon transaction completion from the DRC queue. The bridge will not
follow the termination rules above when it reads more data than is requested. The bridge will
terminate with Completion termination if the initiator requests less data words than the bridge read
from the target. For example, if the bridge reads eight Dwords from the target and is terminated
with a Disconnect while the initiator only reads four DWORDs, the bridge will terminate with
Completion termination.

If the expected number of prefetch data transfers are not received from the target for a Memory
Read Line or aM emory Read Multiple command, the bridge will perform the same number of data
transfers to the initiator during the Delayed Read Completion transaction as it receives from the
target. For example, if the bridge, as a master, is disconnected by the target before reading the
pre fetch amount and only receives 16 DWORDs from the target, the bridge, as a target will only
return 16 DWORDs to the initiator during the Delayed Read Completion transaction. An additional
read transaction on the target bus is not issued to read the full pre fetch amount as defined in
Table 14-12 and Table 14-13.

If the initiator does not repeat the read transaction, the data and associated information may be
discarded (see Section 14.11.4).

Under PCI Local Bus Specification, Revision 2.2, the initiator must repeat the read transaction
exactly with the same address, byte enables, REQ64#, and command or the bridge will treat the
transaction as a new request which will result in a deadlock condition. To support PCI Local Bus
Specification, Revision 2.0 devices, the bridge can be programmed to ignore the memory read
command (Memory Read, Memory Read Line, and Memory Read Multiple) when trying to match
the current read transaction on an initiating interface with data in a DRC queue which was read
previously (DRC on target bus). If the Delayed Read Command (DRC) Alias Bit in the QCR
register is set, the bridge will not distinguish the read commands on transactions which where read
through prefetchable address space only. For example, the bridge enqueues a DRR with a Memory
Read Multiple command and performs the read on the target bus. Some time later, a PCI master
attempts a Memory Read with the same address as the previous Memory Read Multiple. If the ORC
Alias Bit is set and the transaction was in prefetchable address space, the bridge initiating interface
would return the read data from the DRC queue and consider the Delayed Read transaction
complete. If the DRC Alias bit in the QCR was clear, or if the transaction was in non-prefetchable
address space, the bridge would not return data since the PCI read commands didn't match, only
the address (and of course byte enables).

The bridge only supports the linear incrementing burst mode for Memory commands (AD[l:O] =
002)' For a non-linear (AD[1:0] do not equal 002) Memory Read transaction, the bridge will fetch
and transfer one Dword of data and then signal a Disconnect to the initiator. For a non-linear MRL
or MRM (prefetchable or non-prefetchable) transaction, the bridge will convert the transaction to
an MR on the target bus, fetch and transfer one Dword of data, and then signal a Disconnect to the
initiator.

Developer's Manual

intel·
14.6.5.1

14.6.5.2

Read Streaming

Infe/@ 80303 I/O Processor
PCI-fo-PCI Bridge Unit

Once the target interface of the bridge starts reading memory data, the initiating interface of the
bridge allows the retried transaction access to the data in the DRC queue if there are at least 4
Dwords already in the queue. However, a target termination by the PCI slave on the target bus
allows the retrying master on the initiating bus access to the data in the DRC queue even if less
than 4 Dwords are already in the queue.

If the PCI master on the initiating interface is granted access to the DRC queue on a retried
transaction, and the target interface of the bridge is filling, read streaming can occur. During read
streaming, the bridge unit is filling on the target interface and draining on the initiating interface
simultaneously. The following rules apply for read streaming

• Read streaming will only occur for the following master/target transaction sizes:

- 32-bit request: 32-bit target

- 64-bit request: 64-bit target

- 32-bit request: 64-bit target

• Read streaming only occurs for prefetchable transactions (see Table 14-11).

• The bridge unit will read beyond the prefetch read sizes to accommodate read streaming.

• Read streaming will stop if the target performs a disconnect, the master terminates, or the 4
KB read boundary is reached

• The bridge unit will never insert target or master D-D wait states on the initiating or target
busses to accommodate read streaming except as defined below.

To provide the maximum window of opportunity to stream read data, the bridge target interface
will insert up to 16 target waitstates (from the master assertion of FRAME#) when the master
attempts to complete a read during a delayed completion transaction on the initiating interface. The
following rules apply to this situation:

• The initiating interface only inserts waitstates if the target bus has GNT# and has asserted
FRAME# for the read transaction matching the master on the initiating bus.

• Wait states are inserted until read low watermark in the DRC queue. The read low watermark
is two Qwords.

• Once the read low watermark is reached the initiating interface will assert TRDY# for the first
time and start delivering data to the target

• If the full 16 clocks has expired and the read low watermark has not been reached, the
initiating interface will assert STOP# signaling a Retry to the initiator.

• This mechanism is used for all prefetchable read transactions crossing the bridge.

Read Boundary

The bridge is required not to read past a 4 Kbyte read address boundary. This prevents a
prefetchable read access from crossing the boundary from a prefetchable range into a
non-prefetchable range. When the 4 Kbyte read address boundary is reached, the bridge will signal
a Disconnect on the target bus.

Developer's Manual 14-41

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit int'et
14.6.6

14.6.6.1

14-42

pel Write Transactions

The 80303 I/O processor supports memory write and I/O write transactions from both sides of the
bridge unit. Memory write transactions are claimed if they are within the MBR/MLR or
PMBRlPMLR address pairs on the Primary bus and outside the register pairs on the Secondary bus.
I/O Write transactions are claimed if they are within the IOBR/lOLR write transactions on the
Primary bus and outside the address pair on the Secondary bus. Refer to the PCI Local Bus
Specification, Revision 2.2 for full details on memory and I/O write transactions. Memory write
commands will be attempted as 64-bit transactions (see Section 14.6.3). I/O and configuration
write commands are always performed as 32-bit operations.

The bridge supports both posted and delayed write transactions for memory transactions. I/O write
and configuration write transactions are always delayed transactions. The Posting Disable bit must
be clear in the Extended Bridge Control Register (EBCR) to allow posting to occur from either
interface of the bridge. If this bit is set, all write transactions are processed as delayed transactions.

Delayed Write Transactions

A Delayed write transaction is very similar to a Delayed read transaction. The bridge will claim the
transaction on the initiating bus by asserting DEVSEL# and latch the address, command, byte
enables into a Transaction Queue, and data into a Delayed Write Completion (DWC) Queue. It will
then signal a Retry to the initiator.

Delayed write transactions are limited to one data cycle of 4 bytes for I/O writes, configuration
writes, and for memory writes performed with posting disabled.

Delayed write transactions are used for:

• I/O Writes
• Configuration Writes

• All memory writes when the Posting Disable bit in the Extended Bridge Control Register
(EBCR) is set. This means the bridge limits all write commands to one PCI data phase
(4 bytes) when this bit is set.

The bridge then initiates the same command on the target bus. Once the target bus has been
obtained, the bridge propagates write data from the initiating bus to the target bus. The bridge will
keep the request information in a Transaction Queue and a DWC queue. The request information is
the address, command (including REQ64#), byte enables, parity (if enabled), and data.

Once the write data has been successfully transferred to the target by assertion of IRDY# and
TRDY# on the target bus, the bridge can now accept the repeated write command from the original
initiator. At this time, the bridge will accept the request and attempt to match it with the transaction
information in a Transaction Queue. The bridge must match the address, command, REQ64#, byte
enables, parity (if parity is enabled), and data in order to signal a termination other than Retry to the
initiator. The bridge unit will use the following terminations for delayed write cycles:

• Completion termination if the transaction on the target bus terminated normally.

• Master-Abort termination if the transaction on the target bus terminated with Master-Abort or
normal termination (see Section 14.10.1.4).

• Target-Abort termination if the transaction on the target bus terminated with Target-Abort.

The initiator must repeat the write transaction exactly with the same address, REQ64#, byte
enables, command, parity, and data or the bridge will treat the transaction as a new request. If the
initiator does not repeat the write transaction, the data and associated information may be discarded
(see Section 14.11.4).

Developer's Manual

intet·
14.6.6.2 Posted Write Transactions

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

In a posted write transaction, the bridge will accept the write data and assert TRDY# to the
initiating bus before the data has been transferred to target interface for writing to the target bus,
Once the bridge has acquired the target bus, it will transfer the write data to the target to complete
the PCI transaction (both IRDY# and TRDY# asserted on the target bus).

For downstream posted write transactions, the bridge contains a 128-byte FIFO queue (Posted
Memory Write Queue) for holding PMW data and separate address queue capable of holding up to
4 PMW transaction addresses (entries). For upstream posted write transactions, the bridge contains
a 256-byte FIFO queue and a separate address queue capable of holding up to 8 PMW transaction
addresses. This queue implementation will hold any number of posted memory writes up to the
data queue depth and the size address queue. For example, the downstream queue could maintain
two posted write transactions:

l. PMW 1

a. 20 bytes of data in data queue

b. 4 bytes of address (one entry) in address queue

2. PMW2

a. 74 bytes of data in data queue

b. 4 bytes for address (one entry) in address queue

For a total of 94 bytes of data and two transaction entries. Another example of a possible upstream
PMW Queue state could have the queue holding four transactions:

1. PMW 1

a. 4 bytes for address (one entry) in address queue

b. 4 bytes of data in data queue

2. PMW2

a. 4 bytes for address(one entry) in address queue

b. 8 bytes of data in data queue

3. PMW3

a. 4 bytes for address in address queue

b. 64 bytes of data in data queue

4. PMW4

a. 4 bytes for address (one entry) in address queue

b. 128 bytes of data in data queue

For a total of 204 bytes of data in the data queue and four entries in the address queue. New posted
memory write transactions are accepted in the PMW queues as long as there is enough data queue
space to hold the data (8 bytes) and one transaction entry.

If the bridge PMW queues reach one less than the full state (defined as 8 bytes free) and the bridge
has not acquired the target bus to transfer out data, the bridge will signal a Disconnect to the
initiator on the initiating bus on the last transfer that would fill the PMW queue. A state may exist
where a 64-bit master is filling the PMW queue and the bridge unit is transferring to a 32-bit target
on the target interface. For this or any other bus configuration where the Primary and Secondary

Developer's Manual 14-43

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit intel·

14.6.6.3

14-44

buses don't maintain the same PCI bandwidths, the bridge PMW Queues maintain data integrity
and guarantee no data is lost by disconnecting a filling master on an initiating bus before an
overflow condition exists.

The PMW Queues are capable of streaming write data from an initiating bus to a target bus
assuming no prior PMW transactions exist in the PMW Queue (by the time the queue fills) being
accessed and the target interface is capable of acquiring the bus and the addressed target device.
This can continue until the target initiates termination (Disconnect or Target-Abort), the bridge
initiates termination on the target bus (Time-out), the PMW Queue fills, the transaction is an MWI
and a full cacheline is not free in the PMW Queue, or the initiator completes the required number
of write transfers. In the situation where the target bus transaction terminates while the initiator is
still transferring data, the PMW Queue will fill and a Disconnect would occur in the same situation
as when the initiator started the original transaction (see previous paragraph). In addition, neither
the Primary or Secondary interface of the bridge will insert target wait states (deassertion of
TRDY#) or master wait states (deassertion ofIRDY#) to support the sustaining of a streaming
transaction through the bridge. The target interface of the bridge may insert master wait states to
guarantee the transfer of an entire cacheline during Memory Write and Invalidate transfers. See
Section]4.6.6.4, "Memory Write and Invalidate Command" on page 14-45.

The bridge unit is capable of supporting simultaneous write posting in both directions across the
bridge.

When a memory write transaction is accepted on the initiating bus interface, and transaction
ordering supports the immediate draining of the current transaction (see Section 14.7.2), the default
is for the target bridge interface to assert REQ# once the first PCI dataphase has been entered into
the posted write queue. In this case, the PCI dataphase is a 32-bit word if the master is driving
32-bits or a 64-bit word if the master is driving 64-bits.

The bridge only supports the linear incrementing burst mode for Memory write commands. The
bridge will signal a Disconnect to the initiator after the transfer of the first data phase if the burst
mode is not linear incrementing.

See Section 14.7.1.1 for complete details on posted memory write queues.

Memory Write Command

A PCI initiator will use the memory write command for transferring data to one of the memory
address spaces defined in one or both of the MBR/MLR and the PMBRjPMLR register pairs.
Memory write transactions can be either posted or delayed transactions. This is determined by the
Posting Disable bit in the Extended Bridge Control Register. If clear, posted transactions are used.
If set, delayed transactions are used.

Delayed Memory Write commands will only transfer one 32-bit PCI data phase. This means
FRAME# will only be asserted for one clock on the target interface and that the initiating interface
will signal a target Disconnect after the first data transfer. Refer to the PCl Local Bus Specification,
Revision 2.2 for more details.

Developer's Manual

intel·
14.6.6.4 Memory Write and Invalidate Command

Infe/@ 80303 110 Processor
PCI-fo-PCI Bridge Unit

The Memory Write and Invalidate (MWI) command is essentially identical to the Memory Write
command except it guarantees a minimum transfer of at least one cacheline as defined by the
Cacheline Size Register (CLSR). The initiating PCI master will only allow the transaction to cross
the predefined cacheline boundary if it intends to transfer the entire next cacheline.

The target interface of the bridge must guarantee that there is enough free queue space in the PMW
data queue to accept an MWI transaction. If this is not true, the MWI is retried. Once a full
cache line is accepted and the master continues bursting into the next cache line, this decision needs
to be made again and so on. For example, if in the upstream queue, an MWI is active on the
Secondary bus, a full cacheline (32 bytes in this case) has already been transferred, and the
U_PMWD queue only has 24 free bytes available, the Secondary interface of the bridge will
perform a disconnect without data on the first data phase of the next cacheline. If U _PMWD queue,
in this case, had 32 bytes or more of free queue space available, the Secondary interface would
continue accepting the next cache line.

When the bridge accepts an MWI command which is terminated with a Master Abort on the target
bus, the bridge may disconnect the transaction before transferring an entire cacheline into the
queue.

When the bridge accepts an MWI command which is terminated by the master before the entire
cache line is transferred, the bridge will complete the transaction using a Memory Write Invalidate
command to transfer the partial cache line.

When the bridge accepts an MWI command which is disconnected by the target (on the target
interface) before the entire cacheline is transferred, the bridge will complete the transaction using a
Memory Write command to transfer the partial cacheline. If the transaction is still in progress
(streaming), the bridge is free to disconnect the initiator with a target disconnect on the initiating
bus in the middle of a cacheline. No other action is taken by the bridge unit; no error is reported.

To satisfy the MWI command protocol, the target interface of the bridge will deassert IRDY #
(master wait state) when a stream is occurring (data transferred on initiating and target interface
simultaneously) and the target interface is capable of a faster transfer rate than the initiating
interface. This can occur due to varying bus or target widths or bus speeds or master wait states
from the initiator on the initiating bus. (Master wait states may cause the bridge to insert more than
8 IRDY# wait-states between data phases on the target bus.)

The bridge unit converts a MWI command to a Memory Write command if the CLSR is
programmed to a value of zero or if the Cacheline Size Register is programmed to a value other
than 8 or 16. Refer to the PCI Local Bus Specification, Revision 2.2 for the full details of a
Memory Write and Invalidate command.

If posting is disabled, the bridge will not allow the MWI command to appear on the target bus. The
bridge will convert the MWI to a Memory Write and only allow one PCI data phase on the target
bus.

If the MWI Alias bit is set in the Queue Control Register, the bridge will accept an MWI command
as long as the PMW queue is not in a full state. This means that there does not need to be at least a
cacheline of queue space free to accept the MWL When the MWI Alias bit is set, the bridge target
interface will alias the MWI command to a Memory Write command for transfer to the PCI target.
MWI master rules do not apply. In addition, MWI transactions which start on a non-cacheline
boundary are treated as if the MWI alias bit is set, i.e. they are aliased to an Memory Write.

Developer's Manual 14-45

Inte/® 80303 110 Processor
PCI-to-PCI Bridge Unit intet
14.6.6.5

14.6.6.6

14.6.6.7

14.6.6.8

14-46

I/O Write Command

All I/O Write transactions will be processed as Delayed transactions. The 80303 I/O processor is
restricted to 16-bit addressing for I/O transactions although it still must decode the full 32-bits of
address and verify that AD[31:16] = DOOOH. The bridge will claim any transaction inside the 16-bit
address range defined by the I/O Base and I/O Limit registers on the Primary bus and outside the
address range on the Secondary address bus.

Write Boundary

The bridge of the 80303 I/O processor imposes a naturally-aligned 4096-byte write boundary for
posted write transactions only. When the bridge unit detects a write boundary, the initiating
interface will signal a Disconnect to the initiator and complete delivery of the write data within the
PMW Queue to the target interface. The write boundary can be considered an address counter
which is incremented by one for every byte of a burst transaction. The write boundary is imposed
when the lower 12 bits of the counter reach zero.

Qword Unaligned Memory Write Transactions

To minimize the number of null write transactions on the PCI bus, the bridge has the following
behavior for Qword (8-byte) unaligned write transactions:

• If the memory write transaction is completely posted within the bridge posted memory write
queue (upstream or downstream), and the transaction is QWORD aligned at both the head and
tail of the transaction, then the bridge will attempt this as a 64-bit transaction (assuming the
bus is defined as 64-bit).

• If the memory write transaction is in a streaming mode (active on initiating bus while the
target interface is acquired), the bridge will attempt the transaction on the target bus based on
the initiating bus transaction width:

- 64-bit memory write transaction on initiating bus is attempted as a 64-bit transaction on
the target bus

- 32-bit memory write transaction on initiating bus is attempted as a 32-bit transaction on
the target bus

Fast Back-to-Back Transactions

The 80303 I/O processor bridge unit does not generate fast back to back transactions. The Fast
Back to Back Enable bits in the Primary Command Register (PCR) and in the Bridge Control
Register (BCR) are ignored.

The bridge unit is capable of accepting fast back to back transactions from the same PCI master.

Developer's Manual

intel·
14.7 Queue Architecture

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

The extensive queueing architecture in the 80303 I/O processor allows the bridge to achieve
maximum PCI throughput between buses while keeping read latency to a minimum. The bridge
unit queues are responsible for transferring all transactions from an initiating bus to a target bus.
The queues are classified under the following five categories:

• Posted Memory Write Queue - used to forward posted memory write operations (Memory
Write, Memory Write and Invalidate) from an initiating bus to a target bus. By definition, the
data within a posted memory write queue has already completed on its source bus.

• Delayed Read Completion Queue - used to forward memory read (Memory Read, Memory
Read Line, Memory Read Multiple), configuration read, and I/O read data from the target bus
back to the initiating bus. Read data within a DRC Queue is the result of a Delayed Read
Completion transaction and is not considered "read" until delivered to the requesting master
on the initiating bus.

• Delayed Write Completion Queue - used to forward I/O write and configuration write data
from the initiating bus to the target bus. Write data in a DWC queue is the result of a Delayed
Write Request transaction and is not considered written until delivered to the addressed PCI
slave on the target bus. The DWC Queue also returns the status of the write operation on the
target bus back to the master on the initiating bus.

• Transaction Queue - used to hold the address, REQ64#, and command of a delayed request
cycle. This includes all memory and I/O reads as well as all delayed write operations.

• Address Queue - used to hold the address and command of a posted memory write operation.

The bridge is capable of holding multiple posted memory writes and delayed reads in either
direction simultaneously. This high performance architecture requires strict adherence to
PCI-to-PCI bridge transaction ordering rules. The ordering requirements for the 80303 I/O
processor bridge architecture is defined in Section 14.7.2" Refer to the pel Local Bus
Specification, Revision 2.2, Appendix E for complete details on PCI transaction ordering.

Developer's Manual 14-47

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.7.1 Queue Operation

Table 14-14 details a summary of the different queues present in the 80303 I/O processor bridge
unit.

Table 14-14. Bridge Unit Queue

14-48

Queue
Queue Name Queue Size

Transactions
Mnemonic Possible in Queue 1

U]MWD Upstream Posted Memory Write 256 Bytes MWI,MW

U_PMWAD Upstream Posted Memory Write Address 8 Entries MWI,MW
Address/Command

U_DRCO Upstream Delayed Read Completion 0 256 Bytes MR, MRL, MRM

U_DRC1 Upstream Delayed Read Completion 1 256 Bytes MR, MRL, MRM

U_DRC2 Upstream Delayed Read Completion 2 4 Bytes
Non-pre!etchable
Read, lOR

U_DWC Upstream Delayed Write Completion 4 Bytes CW,IOW

U_TRQO:2 Upstream Transaction Queues 0:2 Address / Command DRR address

U_TRQ3 Upstream Transaction Queue 3 Address / Command DWR address

D_PMWD Downstream Posted Memory Write 128 Bytes MWI,MW

D_PMWAD Downstream Posted Memory Write 4 Entries MWI,MW
Address Address/Command

D_DRCO Downstream Delayed Read Completion 0 64 Bytes MR, MRL, MRM

D_DRC1 Downstream Delayed Read Completion 1 64 Bytes MR, MRL,MRM

D_DRC2 Downstream Delayed Read Completion 2 4 Bytes
Non-Pre! MR, CR,
lOR

D_DWC Downstream Delayed Write Completion 4 Bytes CW,IOW

D_TRQO:2 Downstream Transaction Queues 0:2 Address / Command DRR address

D_TRQ3 Downstream Transaction Queue 3 Address / Command DWR address

1. MRL - Memory Read Line, MRM - Memory Read Multiple, MR - Memory Read (Non-Prefetchable is noted, Prefetchable oth
erwise), MW - Memory Write, MWI - Memory Write & Invalidate, lOR - I/O Read, lOW - 1/0 Write, CD - Configuration Read,
CW - Configuration Write, DRR - Delayed Read Request, DWR - Delayed Write Request

Figure 14-1 contains a block diagram of the queues defined in Table 14-14~ There are five different
types of queues in the bridge. Each queue type has a specific responsibility for either upstream or
downstream transactions. Detailed explanations of the queue types follow.

Developer's Manual

intel·
14.7.1.1

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Upstream/Downstream Posted Memory Write Queue Structures

Each upstream and downstream PMW Queue structure consists of two separate queues: one for
data, one for address. The upstream data queue, U _PMWD, has a queue depth of 256 bytes and
moves write transactions from the Secondary bus to the Primary bus. The corresponding address
queue, U _PMWAD, holds the address of the posted memory write transactions. There are a total of
8 entries in the U_PMWAD for holding up to eight SACs. DAC addresses are handled in a separate
address queue sitting beside the U _PMWAD for holding up to 8 DAC memory writes. If the write
transaction is a DAC cycle, the upper 32-bits of address is entered into this piece of the
U_PMWAD. Each entry is the address for the write data which exists in the U_PMWD queue. The
size of the data (transaction burst size) attached to each address queue entry is variable.

The downstream queue, D_PMWD, has a depth of 128 bytes and moves write transactions from
the Primary bus to the Secondary bus. The address queue, D_PMWAD, contains four address
entries for up to four SAC addresses. Downstream DACs are not supported. The queue operation is
the same as the upstream description.

Memory write transactions fill the tail of the queue on the initiating bus and are drained from the
head of the queue on the target bus. The following rules apply to the initiating bus interface and
govern the acceptance of data into the tail of the PMW Queue:

• A memory write operation claimed by the slave PCI interface on the initiating bus is accepted
into the queue if the data queue is in a non-full state and can accept at least one data phase and
the address queue has free space for the address. A non-full state for the data queues are
defined as:

- 1/4 empty or 1/2 empty based on the setting of the QCR. See Section 14.15.35.

- The length of a cacheline (determined by the Cacheline Size Register, see
Section 14.15.7) for Memory Write and Invalidate transactions.

A non-full state for the address queues are defined as one address entry (SAC or DAC).

A Retry is signaled if these conditions are not true when a transaction is first claimed by
the slave interface.

• If the PMW data queue reaches a full state while filling, a disconnect with data is signaled to
the master of the transaction on the data phase that fills the queue to a completely full state (no
queue bytes remaining).

Error conditions on the initiating bus take precedence over the previous rules. See Section 14.11
for error condition responses.

Memory write transactions are drained from the head of the queue, when the master interface has
acquired bus ownership, and transaction ordering and priority have been satisfied (Section 14.7.2).
A memory write transaction is considered drained from the queue when the entire amount of data
entered on the initiating bus has been accepted by the target. Error conditions resulting in the
cancellation of a write transaction (master-abort and target-abort) only flush the transaction at the
head of both the address and data queues. All other transactions within the queues are considered
still valid. When draining Memory Write and Invalidate transactions, the master interface may only
complete on cacheline boundaries (regardless of GNT# and the master latency timer).

Transactions entering the tail of an empty queue (no previous write transactions reside in queue)
are forwarded immediately to the head of the queue. A queue entry (4 bytes for 32-bit data and
8 bytes for 64-bit data) is immediately added to the tail of the queue when drained from the head of
the queue on the target bus. As a note, both the upstream and downstream PMW Queues do not
operate if the Posting Disable bit is set in the EBCR (see Section 14.15.23). All write operations
are delayed and use the DWC Queues.

Developer's Manual 14-49

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.7.1.2 Upstream/Downstream Delayed Read Completion Queues

The Delayed Read Completion Queues (DRC) in the bridge hold the read data obtained during a
read completion cycle on the target bus of a Delayed Read Request transaction. The bridge unit has
three DRC Queues for each direction of data through the bridge unit. These DRC Queues are
different sizes allowing for larger read prefetch sizes when Memory Read Line and Memory Read
Multiple commands are used. I/O Reads and Configuration Reads are constrained to the 4-byte
queues on each side of the bridge (see Table 14-14).

Only the data from a delayed read completion cycle is stored in the DRC queue. The address
latched from the delayed read request cycle on the initiating bus is stored in the dedicated
transaction queues. U_DRCO through U_DRC2 use U_TRQO through U_TRQ2 respectively and
D_DRCO through D_DRC2 use D_TRQO through D_TRQ2 respectively.

Transaction queues U_TRQO, U_TRQ1, and U_TRQ2 have an additional 32-bits of address space
for holding the upper 32-bits of an upstream DAC read transaction. Upstream DACs are
constrained to U_DRCO, U_DRC1, and U_DRC2.

To maximize read throughput, the larger DRC queues are assigned to the memory read hint
commands to maximize the amount of data read on the target bus interface. I/O Reads,
Configuration Reads, and non-prefetchable Memory Reads are assigned to the dedicated 4-byte
queues. The assignment schemes are in Table 14-15 for the downstream read queues and
Table 14-16 for the upstream read queues. Refer to Table 14-12 for downstream read prefetch data
sizes and Table 14-13 for upstream read prefetch sizes.

Table 14-15. D_DRC Assignments

PCI Command
Queue Assignment

Prefetch Non-Prefetch

Memory Read Multiple 64 Byte Queue 4 Byte Queue

Memory Read Line 64 Byte Queue 4 Byte Queue

Memory Read 64 Byte Queue 4 Byte Queue

liD Read N/A 4 Byte Queue

Configuration Read N/A 4 Byte Queue

Table 14-16. U_DRC Assignments

14-50

PCI Command
Queue Assignment

Prefetch Non-Prefetch

Memory Read Multiple 128 Byte Queue 4 Byte Queue

Memory Read Line 128 Byte Queue 4 Byte Queue

Memory Read 128 Byte Queue 4 Byte Queue

liD Read N/A 4 Byte Queue

The exact amount of data read by the master state machine on the target interface depends upon the
size of the queue assigned to the request cycle, read command used, prefetchable or
non-prefetchable, and how much data the PCI target device delivers. Table 14-12 and Table 14-13
show the amounts of data attempted to be read for the different memory read commands in
prefetchable and non-prefetchable address spaces. If an entry in Table 14-12 and Table 14-13 states
a prefetch size of 128 bytes and the target PCI device on the target bus disconnects the bridge
master interface before reaching the prefetch size, the DRC is complete on the target bus and is
allowed to be returned to the initiator. Additional cycles are not initiated to fill the DRC queue to
the predefined prefetch data size. PCI error conditions override all prefetch amounts (i.e., a
master-abort and target-abort conditions).

Developer's Manual

infel·

14.7.1.3

Intef® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Filling the DRC Queues on the target bus only occurs when the DRR cycle in the dedicated
Transaction Queue has satisfied priority and transaction ordering. Once the DRC cycle is complete
on the target bus, it remains in the DRC Queue until the master on the initiating bus performs a
Retry cycle with the same address and command as the initial read request cycle. The DRC
transaction will remain in the DRC Queue until retrieved by the master or until the discard timer
attached to the queue has expired. Section 14.11.4 explains discard timer operation. When the
master does retrieve the data from the DRC queue, the only amount returned is what the master
asks for. Any data left in a DRC queue after the master has performed a master completion is
invalidated. The bridge unit slave state machine on the initiating bus will only disconnect the read
in response to a disconnect on the target bus during the DRC completion cycle of an error
condition. See Section 14.11 for all bridge error states.

Upstream/Downstream Delayed Write Completion Queue

The upstream and downstream Delayed Write Completion Queues hold the data from a delayed
write cycle moving from the initiating bus to the target bus. The upstream and downstream DWC
Queues are each 4 bytes in length with one per side of the bridge unit. When a delayed write cycle
is claimed by the initiating side of the bridge, the write data is entered into the DWC queue and the
initiator is issued a Retry. The address and command information for the delayed write cycle is held
in a Transaction Queue. Each DWC Queue has a dedicated Transaction Queue. D_DWC used
D_TRQ3 and U_DWC uses U_TRQ3. The DWC queue will hold all //0 Write and Configuration
Write data. In addition, if write posting is disabled all Memory Write and Memory Write and
Invalidate commands will be delayed and will use the initiating bus DWC Queue.

During the write request cycle on the initiating bus, the slave interface of the bridge will claim the
delayed write cycle. If the DWC Queue is busy (and the transaction in x_TRQ3 does not match)
then the cycle is retried immediately since only one DWC queue exists per side of the bridge and
each one is only capable of holding the data from one transaction at a time. If the DWC Queue is
empty, the data from the write request cycle is latched into the DWC for delivery to the target bus.
The queue is 4 bytes only since all delayed write cycles are a maximum of 32-bits in length.

The DWC Queue is drained on the target bus of the delayed write cycle during the Delayed Write
Completion phase after transaction ordering and priority are satisfied. The address from the
x_TRQ3 queue is presented and the data for the write is drained from the DWC Queue. Once the
data is accepted the DWC Queue is responsible for returning the completion status of the cycle
from the target bus back to the initiating bus. This completion is then delivered back to the original
master. This completion will be either normal master completion, target disconnect, or one of the
error conditions discussed in Section 14.11.

When the retry cycle occurs on the initiating bus, the DWC Queue is used to match the data and
byte enables from the retry cycle to the request cycle. This is different than delayed reads which
only use the address, byte enables, REQ64#, LOCK#(for downstream transactions only), and
command to determine if there is a cycle match.

Developer's Manual 14-51

Inte!@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.7.1.4

14.7.2

Upstream/Downstream Transaction Queues

The upstream and downstream Transaction Queues are used to hold the address and command
information from a delayed read or delayed write request cycle. The address within the Transaction
Queue is latched on the initiating bus and is presented on the target bus during the delayed
completion cycle. Once the delayed completion cycle is enqueued in the completion queue (data
for reads, status for writes), the Transaction Queue is used in determining which PCI transaction on
the initiating bus is the retried transaction of the original request cycle.

The choice of which Transaction Queue for reads (U _ TRQO - U _ TRQ2 and D _ TRQO - D _ TRQ2)
is determined from the information in Section 14.7.1.2. The Transaction Queues for write
(U_TRQ3 and D_TRQ3) are dedicated.

The Transaction Queues are loaded during the request cycle on the initiating bus and are only
invalidated when a PCI master retries the original request transaction on the initiating interface or
when a discard timer attached to the associated data queue expires.

For Dual Address Cycles initiated on the Secondary interface, the Transaction Queues are capable
of holding the upper 32-bits of address in a separate set of queues.

Transaction Ordering

Because the bridge can process multiple transactions simultaneously, it must maintain proper
ordering to avoid deadlock conditions and improve throughput. The PCI-to-PCI Bridge transaction
ordering rules used by the 80303 I/O processor are listed in Table 14-17.

Table 14-17. Bridge Transaction Ordering Rules

14-52

Row Pass Posted Memory Delayed Read Delayed Write Delayed Read Delayed Write
Completion Completion

Column? Write (PMW) Request (ORR) Request (OWR) (ORC) (OWC)

Posted Memory No Yes Yes Yes Yes Write (PMW)

Delayed Read No Yes Yes Yes Yes
Request (ORR)

Delayed Write No Yes No Yes Yes Request (OWR)

Delayed Read
Completion No Yes Yes Yes Yes

(ORC)

Delayed Write
Completion Yes Yes Yes Yes No

(OWC)

These transaction ordering rules define base line operation for the way data moves in both
directions through the PCI-to-PCI Bridge. In Table 14-17 a NO response in a box means, based on
ordering rules, the current transaction (the row) can not pass the previous transaction (the column)
under any circumstance. A Yes response in the box means the current transaction is allowed to pass
the previous transaction, but is not required to do so. This table is derived from Appendix E of the
PCl Local Bus Specification, Revision 2.2. The rules for when a current transaction will pass a
previous transaction (based on a YES in Table 14-17) are defined in Section 14.7.2.

In the case of bridge posted memory write operations, multiple transactions may exist within the
PMW Queue at any point in time. The ordering of these transactions is based on a time stamp basis.
Transactions entering the queue are stamped with a relative time in relation to all other transactions
moving in a similar direction.

Developer's Manual

infel~
Intel® 80303 110 Processor

PCI-to-PCI Bridge Unit

Example 14-1. Downstream Data Path Queue Completion

Upstream Delayed Read Completion Queue 0

~I B
r

B I B I B
[

B
I

B [B [B ~
, ,

~~ c c [c I c
I

c I c I c I A I A I A I A A A
I

A I A ~
,

Downstream Posted Memory Write Queue

Upstream Delayed Read Completion Queue 0

~I B l B [B B B
I

B
I

B [B ~ ~
'<; ,

~~ [J I I c I c I c
I

c
1

c c [c 1 c I ~

'"

Downstream Posted Memory Write Queue

In Example 14-1., the downstream write data queue (D _PMWD) and an upstream read completion
queue (U_DRCO) of the bridge are shown. In this example, transaction A entered the write queue at
Time O. Next, the bridge entered read completion data into the upstream read queue at Time 1
(Transaction B). Finally, before the previous transactions could be cleared, another downstream
write, Transaction C, was entered into the downstream write data queue. The ordering in
Table 14-17 states that nothing can pass a PMW and therefore Transaction A must complete on the
Secondary bus before Transaction B is allowed to complete since an upstream read completion can
not pass a downstream posted memory write. Also, Transaction A must complete before
Transaction C since a PMW can not pass another PMW. Once Transaction A completes,
Transaction C moves to the head of the downstream posted memory write queue. The two
transactions at the head of the queues moving data in downstream direction are now Transaction C,
a downstream posted memory write, and Transaction B, an upstream read completion. Ordering
states that a PMW may pass a read completion. This means that the priority mechanism now takes
over to decide which will complete since a YES condition from Table 14-17 is now present. In this
case, if the PCI master on the Secondary bus acquires the Secondary bus first, Transaction B will
complete. If the Secondary interface of the bridge acquires the Secondary bus first, Transaction C
will complete. Note that ordering enforced the completion of Transaction A but priority dictated
the completion of Transactions Band C.

The first action performed to determine which transaction is allowed to proceed (either upstream or
downstream) is to apply the rules of ordering as defined in Table 14-17. Any box marked No must
be satisfied first. For example if a downstream read request is in the D_TRQx queue and it was
latched after the data in the D _PMW arrived, then ordering states that a Read Request may not pass
a Posted Memory Write; therefore the Posted Memory Write must be cleared out of the D _PMW
before the Read Request is attempted on the Secondary bus. Once transaction ordering is satisfied,
the boxes marked Yes are now resolved based on the priority mechanism in Section 14.7.2.

Developer's Manual 14-53

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Table 14-18 summarizes the transaction ordering tables in relation to token assignment of the
priority mechanism. This table is read as follow:

1. As the transaction reaches the respective queue head, the question in column two is asked.

2. Based on the answer in column three, either a token is assigned or no token is assigned
signifying that transaction ordering must first be satisfied. Note that if the answer is Yes/N 0 in
column three, the Action in column four is for either a Yes or a No.

Table 14-18. Bridge Transaction Ordering and Priority Mechanism

Transaction at Question Answer Action Head of Queue

Is there a DRR in a TROO:2 queue with an earlier time stamp? YeS/No Assign Token

Posted Memory Is there a DRC in DRCO:2 with an earlier time stamp? Yes/No Assign Token
Write in PMWD Is there a DWR in TR03 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWe:; queue with an earlier time stamp? Yes/No Assign Token

Do Not Assign
Token

Is there a PMW in the PMWD queue with an earlier time stamp? Yes Allow previous
Transaction to

Delayed Read Complete
Request in Is there a PMW in the PMWD queue with an earlier time stamp? No Assign Token
TROO:2 Is there a DRR in a TROO:2 queue with an earlier time stamp? Yes/No Assign Token

Is there a DRC in DRCO:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TR03 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time stamp? Yes/No Assign Token

Do Not Assign
Token

Is there a PMW in the PMWD queue with an earlier time stamp? Yes Allow previous
Transaction to

Delayed Write Complete
Request in TR03 Is there a PMW in the PMWD queue with an earlier time stamp? No Assign Token

Is there a DRR in a TROO:2 queue with an earlier time stamp? Yes/No Assign Token

Is there a DRC in DRCO:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time stamp? Yes/No Assign Token

Do Not Assign
Token

Is there a PMW in the PMWD queue with an earlier time stamp? Yes Allow previous
Transaction to
Complete

Delayed Read
Completion in Is there a PMW in the PMWD queue with an earlier time stamp? No Assign Token
DRCO:2

Is there a DRR in a TROO:2 queue with an earlier time stamp? Yes/No Assign Token

Is there a DRC in DRCO:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TRQ3 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time stamp? Yes/No Assign Token

Is there a PMW in the PMWD queue with an earlier time stamp? Yes/No Assign Token
Delayed Write Is there a DRR in a TROO:2 queue with an earlier time stamp? Yes/No Assign Token
Completion in

Is there a DRC in DRCO:2 with an earlier time stamp? Yes/No Assign Token DWC
Is there a DWR in TR03 with an earlier time stamp? Yes/No Assign Token

14-54 Developer's Manual

int:et
14.8

14.8.1

Bridge Data Flow

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

The bridge allows transactions to cross both PCI buses through the 80303 I/O processor. PCI
transactions initiated on the Primary PCI bus and targeted at an agent on the Secondary PCI bus are
referred to as downstream transactions and PCI transactions initiated on the Secondary PCI bus and
targeted at an agent on the Primary PCI bus are referred to as upstream transactions.

Upstream and downstream bridge transactions are best described by the data t10ws used on the
initiating and target bus during read and write operations. The following sections describe:

• Delayed Read transactions

• Delayed Write transactions

• Posted Write transactions

Separate upstream and downstream transactions are not shown but have identical data t10ws except
that the references to initiating interface and target interface are reversed.

Delayed Read Transaction

A delayed read transaction is initiated by a PCI master on the initiating PCI bus and is targeted at a
PCI agent on the target PCI bus. The read transaction is propagated through the bridge and read
data is returned through a Delayed Read Completion Queue (DR C).

All read transactions are processed as delayed read transactions. The PCI slave interface on the
initiating bus of the bridge claims the read transaction and store the read address and control
information in a bridge Transaction Queue. This read request is then forwarded to the target bus. The
target bus master interface then performs the read from a PCI target and store returning read data in a
Delayed Read Completion Queue. The original PCI master on the initiating bus continuously retries
the read transaction until slave interface on initiating bus claims the transaction and returns read data
present in the DRC Queue. The data flow for a delayed read transaction is summarized as followings:

• The Bridge claims the PCI read transaction if the PCI address is within the address window
defined by a BaselLimit register pair and a Transaction Queue is available to retain the
address/control information to forward to the target bus.

• If there is currently an available Transaction Queue, then latch the PCI address into
Transaction Queue and then signal a Retry to the initiator.

• If an address parity error is detected, allow transaction to master-abort and assert SERR#. This
assumes parity checking is enabled and SERR# assertion is enabled (Note: SERR# is not
asserted on Secondary bus interface, only on the Primary bus interface, see Section 14.11.1).

• If transaction inside an address window and a Transaction Queue not available or inside an address
window, a cycle match occurs, but read data not ready (!DRC_Ready), then retry transaction.

• If transaction is inside an address window, a cycle match occurs, read data is ready in the DRC
(DRC_Ready), then return the read data to the master device. Data is returned 64-bits wide if
the master used REQ64# during the request or 32-bits at a time if REQ64# was not asserted.

• Once read data has started to be driven onto the initiating PCI bus from a DRC Queue, it will
continue to be driven until one of the following is true:

- The initiator completes the PCI transaction, master-completion.

- The DRC Queue becomes empty.

~ A target-abort condition is driven out from the DRC Queue.

• If a data parity error is detected by the master and PERR# is asserted, set the appropriate error
response bits (if enabled, see Section 14.11.2).

Developer's Manual 14-55

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14-56

The target PCI interface will initiate the read transaction with the PCI address and command used
on the initiating bus and then put the return data into a DRC Queue to return it to the initiating PCI
bus. The data flow is summarized in the following statements:

• The bridge PCI master interface on the target bus will request the PCI bus when an read
request address is written to a Transaction Queue.

• Once the bus is granted to the bridge interface for the read transaction, the target bus master
interface will initiate a read transaction with the same address and command used on the
initiating interface. Ifthe read is a memory read (and a 64-bit bus is enabled) the bridge will
assert REQ64# attempting to use 64-bit data phases. If the bus is not 64-bit enabled or it is an
I/O or Configuration Read, REQ64# is not asserted.

• If the transaction is claimed and retried, the bus interface will re-attempt the transaction. If the
master interface receives a master-abort, a master-abort condition is loaded into the DRC
Queue for return to the master on the initiating bus. The condition loaded is dependent on the
Master Abort bit in the BCR. See Section 14.10.1.4 for details.

• Once the read transaction is claimed, the bridge master interface will read data from the PCI
target. If ACK64# is asserted data is read 64-bits at a time. If ACK64# is not asserted, data is
read 32-bits at a time.

• The master interface will continue to read data until one of the following is true:

- The prefetch amount of DWORDs specified in Table 14-12 is reached.

- The target disconnects the transaction.

- A PCI time-out occurs.

- The target performs a target-abort (this condition is returned and loaded into the DRC
Queue).

- The bridge master interface encounters a 4 Kbyte boundary.

• If parity checking is enabled and a data parity error is detected, the master interface will assert
PERR# and continue reading data until one of the previous conditions is true.

Developer's Manual

inteJ·
14.8.2 Delayed Write Transaction

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

A delayed write transaction is initiated by an agent on the initiating PCI bus and is targeted at a PCI
agent on the target PCI buses. I/O and Configuration writes as well as memory writes with posting
disabled are processed as delayed writes. The delayed write request address is propagated from the
initiating PCI bus to the target PCI bus through a Transaction Queue. The delayed write request
data is propagated to the target bus in a Delayed Write Completion (DWC) Queue. Completion
status is returned to the master on the initiating bus during a retry cycle.

The data flow for a delayed write transaction on the PCI bus is summarized in the following
statements:

• The Bridge claims the PCI write transaction if the PCI address is within an address window
defined by a Base/Limit register pair, the Delayed Write Completion Queue is available (if
DWC is free, the associated Transaction Queue is free by architectural definition), and it is a
delayed write PCI transaction (I/O writes, Configuration Writes, Memory Writes with posting
disabled).

• The address is written to the Transaction Queue in anticipation of capturing the data for the
delayed write request.

• If an address parity error is detected (if enabled), the Transaction Queue is cleared and the
transaction is allowed to master-abort. SERR# is asserted if enabled and on the Primary bus.

• The assertion of STOP#, to Retry the transactions, by the bridge unit is delayed until the
assertion of PAR by the master so parity can be calculated. If parity is good, the transaction is
retried and the delayed write request can proceed to the target interface.

• If a data parity error is detected and parity response is enabled, the transaction is claimed (not
retried) with the assertion of TRDY# and PERR# is asserted if enabled. The delayed write
request is cleared from the queues and is not forwarded to the target interface.

• If subsequent transactions from the master on the initiating bus are inside the address window,
the DWC is not cleared, and there is no cycle match or the write has not completed on the
target interface (!Write_Complete), the transaction is retried immediately.

• If subsequent transactions are inside the address window, the DWC is not cleared, there is a
cycle match, and the transaction has already completed on the target bus, then the bridge unit
slave interface will compare the write data from the master with the write data that was used in
the delayed request cycle. If the data matches (with no parity error detected) then the status
seen on the target bus is returned and a disconnect is performed. Note that the status returned is
exactly what was seen from the target on the target bus i.e. target-abort, parity error or normal
completion.

• If a parity error is detected from the data being written from the initiating master, the bridge
slave interface will claim the transaction and assert PERR# if enabled. Since the data has not
matched with the data from the write request cycle, the transaction remains enqueued.

Developer's Manual 14-57

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit in1:et

14-58

The PCI master target interface is responsible for issuing the write completion transaction to a PCI
agent using the data in the DWC Queue and the address/command from the Transaction Queue.
The data flow for a delayed write transaction on the target bus is summarized in the following
statements:

• The master interface on the target PCI bus will request the PCI bus when after address and data
from the request cycle have been received and ordering has been satisfied (see Section 14.7.2).
Once the bus is granted, the target PCI interface will write the PCI address to the PCI bus and
wait for the transaction to be claimed.

• If an address parity error is detected by an agent on the bus, SERR# may be asserted.

• If the transaction on the bus receives a master-abort, the appropriate master abort condition is
loaded into the DWC queue for return to the PCI master on the initiating bus. Refer to
Section 14.10.1.4 for master-abort conditions.

• If the PCI target signals a Retry or Disconnect, the master interface will return to idle. If the
PCI target signals claims the transaction, the 32-bit data is transferred to the target in a single
data phase (all delayed writes are performed as 32-bit operations.). The master/target response
is captured for return to the master on the initiating bus. The following conditions are possible:

- Master Completion - Normal Completion

- Target Abort

- Data Parity Error

The Write_Complete flag is set indicating to the initiating interface that the write
completion cycle is complete.

Developer's Manual

inteL
14.8.3 Posted Write Transaction

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

A posted write transaction is initiated by a PCI master on the Primary PCI bus and is targeted at a
PCI agent on the Secondary PCI bus. The address and data from the master on the initiating bus is
written to the Posted Memory Write (PMW) Queue for delivery to the target bus. Posted memory
write operations complete on the initiating bus before they complete on the target bus.

The data flow for a posted write transaction on the PCI bus is summarized in the following
statements:

• The Bridge claims the PCI write transaction if the PCI address within the address window
defined by a Base/Limit register pair. If the PMW Queue is full (defined as not enough buffer
space to hold the address and at least one data phase) the transaction is retried. If the memory
write transaction is inside the address window and the PMW Queue is not full (and posting is
enabled) the transaction is claimed and the address is entered into the PMW Queue.

• If an address parity error is detected from the master. SERR# is asserted (if enabled and the
initiating bus is the Primary bus) and the transaction is allowed to master-abort.

• Once the PCI address is in the PMW Queue, the PCI interface can start accepting write data
and store it in the PMW Queue. If REQ64# was asserted by the master, 64-bit data is received.
If REQ64# was not asserted by the master, 32-bit data is received. The PCI interface will
continue accepting write data until one of the following is true:

- The initiator completes the transaction - master completion.

- The PMW Queue becomes full. In this case, the PCI slave interface will signal a
disconnect to the master and return to idle.

• If a data parity error is detected, the slave interface will assert PERR# (if enabled). No other
action is taken and the reception of write data continues.

Developer's Manual 14-59

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14-60

The PCI interface is responsible for completing the posted write transaction to a PCI agent using
the address/data in the PMW Queue. The data flow for the posted write transaction on the target
PCI bus is summarized in the following statements:

• The master interface on the target PCI bus will request the PCI bus when posted write
transaction address is at the head of the PMW Queue and transaction ordering has been
satisfied (see Section 14.7.2). Once the bus is granted, the target PCI interface will write the
PCI address from the PMW Queue to the PCI bus and wait for the transaction to be claimed.

• If an address parity error is detected by the assertion of SERR# on the target interface, the
error is recorded. The action taken by the interface depends on the targets response to the
parity error. If a master abort is used, see the following section.

• If a master-abort is signaled, the master-abort condition is used. This could be either flushing
the write data, asserting P _SERR#, or signaling a disconnect. Refer to Section 14.10.1.4 for
details.

• Once the PCI write transaction is claimed, the PCI interface will transfer data from the PMW
Queue to the PCI bus. If ACK64# is asserted, data is transferred 64-bits at a time. If ACK64#
is deasserted, data is transferred 32-bits at a time. Data is transferred to the bus until one of the
following is true:

- The PCI target signals Disconnect.

- The PCI target signals a Target-Abort. In this case, the PMW Queue is flushed and the
transaction is aborted.

- The PMW Queue become empty signifying that the transaction is finished. This results in
a master completion.

• If the transfer is an MWI, the bridge target bus interface may have to insert master waitstates to
guarantee to transfer of an entire cacheline of data (defined by the value in the CLS register).

• If a data parity error is detected by the target (PERR# driven) and it is not a result of an error
propagated from the initiating interface, the bridge master interface logs the error and asserts
P _SERR#, if enabled, on the Primary bus. Refer to Section 14.11.2.3 for details.

Developer's Manual

14.9 Exclusive Access

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

The bridge supports the PCI exclusive access mechanism using the P _ LOCK# signal for
downstream accesses only. The bridge ignores the S _ LOCK# signal for upstream accesses.

Note: PCI Masters on the Secondary bus should not attempt to perform upstream locked transactions.
Doing so may cause the PCI system to enter a state which prevents the Secondary locking master
from completing the locked request enqueued in the bridge, resulting in a system livelock.

The bridge establishes itself as a locked target during a Delayed Read Request on the Primary PCI
bus when P _LOCK# is deasserted in the address phase. When the bridge detects a downstream
locked read request, a bridge lock sequence is started. This sequence is a series of state transitions
which, when completed, will leave the bridge "locked" from all masters except for the master
which owns the P LOCK# resource.

These states, and their transition criteria, are described in detail in Table 14-19,

Table 14-19. LOCK# Operation State Definitions

State Primary Interface Secondary Interface Transition

Operation Definition Operation Definition Transition

Accept all Accept all Move to Secondary Locking
Unlocked Unrestricted transactions Unrestricted transactions when locked ORR received on

on interface' on interface Primary interface

Move to Primary Locking when

All new
bridge has finished mastering the

Secondary downstream
Accept all locked request on the Secondary

Restricted Unrestricted transactions interface. If an abort occurs while Locking transactions
on interface mastering this transaction the

retried.
bridge will transition to directly to
the Unlocking state.

Upon completion of the locked

All new All new
request the bridge transitions to

Primary downstream upstream Locked state. If the ORCs

Locking Restricted transactions Restricted transactions
discard timer expires before the

retried. retried transaction is completed, the
bridge will transition directly to
the Unlocking state.

Moves to Unlocking when Lock
Only accepts master on Primary interface
downstream All upstream releases P _LOCK# signal. If an

Locked Restricted transactions Restricted transactions abort occurs while mastering a
from lock retried locked transaction, the bridge will
master release the S_LOCK# Signal and

transition to the Unlocking state.

Moves to the Unlocked state as
soon as the bridge has

All new completely emptied all of its

downstream
All upstream transaction queues. Note: In

Unlocking Restricted
transactions

Restricted transactions certain error situations this may

retried
retried require that the discard timers be

used to remove transactions
which cannot otherwise be
completed.

Developer's Manual 14-61

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit intel·

14.9.1

14-62

If an abort (see Section 14.9.1) occurs, either while locked or while attempting to lock, or the
discard timer associated with a locked transaction expires, the bridge will transition to the
Unlocking state. If this occurs due to an abort, any remaining enqueued requests are forwarded as
unlocked transactions. This ensures that the bridge makes every attempt to pass the lost lock status
back to the initiating master before accepting more transactions.

Downstream lock transactions must begin with a delayed read request (DRR) from the lock master.
If a PCI master tries to establish a lock with a write transaction using any PCI write command, the
Primary interface accepts the write transaction as an unlocked transaction and forwards it to the
Secondary interface without asserting S _ LOCK#.

Systems which implement multiple 80303 I/O processors must be aware that there are situations
which can cause lockup conditions if downstream masters are allowed to generate locked
transactions. These lockup conditions can arise due to interactions between the PCI transaction
ordering rules and the requirement to restrict transaction forwarding through the bridge while
locking or locked. This should not present a problem as the only master which typically generates
locked transactions is the system host, located on the uppermost PCI bus.

Several other precautions are worth noting for systems that forward transactions to downstream
targets. Since the PCI specification requires that the lock resource be released when the locked
master transaction aborts, situations may arise in which the bridge loses its lock on the Secondary
bus before the initial locked master is ready to release its lock. The system designer must ensure
that the bridge is configured to allow error or abort status to be reflected upstream to handle these
situations, otherwise data integrity may be compromised in the shared resource.

Finally, since the bridge is required to transition through the Unlocking state before returning to
Unlocked, the bridge must be able to empty all of its transaction queues. Discard timers should
never be disabled, since timing out may be the only means of emptying the bridge in the event a
master is unable to complete an enqueued transaction.

Secondary Interface Error Handling

The PCl Local Bus Specification, Revision 2.2 states that a master which has lost its bus lock, must
deassert LOCK#. An issue arises because the specification also states that a master must retry (with
LOCK#) all locked outstanding transactions already attempted on the bus.

The Secondary interface of the bridge will use the following rules when an abort condition (master
or target) is encountered from a target on the Secondary interface:

• Deassert S _ LOCK# as masters are required to do when an abort condition is encountered.

• Put the bridge into the Unlocked state (see Table 14-19).

• Convert all remaining requests within the bridge into non-locked transactions and let them
complete (locked completions will complete as locked). This includes any outstanding delayed
requests.

The converted transactions (on the Secondary interface) may be accepted as new transactions by
any downstream bridges. The original master on the initiating bus will release P _ LOCK# when the
abort condition is reported. This may leave delayed locked requests within downstream bridge
queues which can only be removed by the action of the Discard Timers. In the case of posted write
transactions, it is up to software to use P _ SERR# to determine that the transaction aborted on the
target interface.

Developer's Manual

int:et
14.10

14.10.1

14.10.1.1

pel Transaction Termination

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

PCI creates a mechanism for both PCI initiators and PCI targets to prematurely terminate a
transaction. As a PCI master (initiator), a device can terminate a transaction when it is complete or
when an error condition occurs. As a slave (target), a PCI device can only terminate when an error
condition occurs. While transaction termination can be initiated by either a master or a target,
ultimately it is up to the master to bring a PCI transaction to an orderly conclusion. As a bridge
device, the target interface is responsible for this on the target bus. A PCI transaction is considered
concluded when both FRAME# and IRDY# are both deasserted indicating a PCI IDLE cycle.

Termination as a Master (Initiator)

The target interface of the bridge unit, acting as a PCI master, will terminate a PCI transaction
under the different situations described in the following sections.

Completion

The target interface will complete the transaction in response to a completion on the initiating
interface. Completion tennination occurs when the initiator bus has FRAME# and IRDY#
deasserted. FRAME# will always be deasserted during the second to last data transfer of a
transaction. Refer to the PCI Local Bus Specification, Revision 2.2.

14.10.1.2 Time-out

A time-out occurs when the GNT# signal is deasserted on the target bus and the associated master
latency timer has expired (see Section 14.6.2.1). A normal termination will occur on the target
interface (except when Memory Write and Invalidate is in progress). See the next section for the
Memory Write and Invalidate case.

14.10.1.3 Time-out During Memory Write and Invalidate

If target interface time-out occurs during a Memory Write and Invalidate transaction, the bridge
will retain ownership until an entire cache line has been transferred from the PMW Queues. Refer
to the PC! Local Bus Specification, Revision 2.2.

Developer's Manual 14-63

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et
14.10.1.4 Master-Abort

14.10.2

14.10.2.1

14-64

A Master-Abort is used when no target responds with a DEVSEL# within 5 clocks after the
assertion of FRAME#. The 80303 I/O processor bridge unit has two mechanisms for handling
Master-Aborts. The mechanism depends on the Master Abort Mode bit in the Bridge Control
Register (BCR).

When the Master Abort Mode bit is cleared, the bridge is operating in a PC compatibility mode.
When a read transaction crosses the bridge in this mode and the target interface signals a
Master-Abort, the bridge returns allIs (32-bits wide or 64-bits wide based on the size of the
initiating PCI bus) to the initiator during the repeated transaction and terminates normally (with
TRDY#) on the initiating interface. When a write transaction crosses the bridge in this mode and
the target interface signals a Master-Abort, the bridge completes the transaction normally on the
initiating interface and discards the write data on the target interface. In both cases, the bridge sets
the Received Master Abort bit in the Primary Status Register (PSR) if the Master-Abort occurred
on the Primary interface and in the Secondary Status Register (SSR) if the Master-Abort occurred
on the Secondary interface.

When the Master Abort Mode bit is set, the bridge signals a Master-Abort to the initiator of a
delayed read or write transaction when that transaction causes a Master-Abort on the target bus.
The bridge sets the corresponding Received Master Abort bit as in the previous case. If the
transaction that caused the Master-Abort on the target interface was a posted write transaction, the
bridge asserts P _ SERR# on the Primary interface (if enabled). The bridge terminates the posted
write transaction on the initiating interface with a disconnect with or without data. The Received
Master Abort bit is set in the appropriate status register corresponding to the Master-Abort
interface and the Signaled System Error bit in the PSR.

A Master-Abort is not signaled during a Special Cycle transaction from either interface.

Termination as a Slave (Target)

The method for a target termination on either PCI interface is the assertion of the STOP# signal. A
PCI target asserts STOP# to request that the master terminate a transaction. The target will hold
STOP# asserted until the master deasserts FRAME#. IRDY# and TRDY# are independent of
target termination so data mayor may not be transferred. The only rule is that if STOP# is asserted
when TRDY# is deasserted, the master will not wait for the fmal data transfer. The following
sections summarize the bridge actions as a PCI target for termination situations. See the PCI Local
Bus Specification, Revision 2.2 for details.

Retry

Retry refers to a termination request to the initiator where data has not been transferred. The bridge
uses the Retry mechanism when the bridge:

• is unable to provide resources for propagating the transaction to its destination.

• accepts a delayed request.

• receives a delayed request and it does not match any delayed completions held by the bridge.

• is locked and the initiator does not own the LOCK# signal.

A Retry is signaled when STOP# and DEVSEL# are asserted and TRDY# is deasserted on the
initiating interface.

Developer's Manual

in1et
14.10.2.2 Disconnect

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

A Disconnect is used when the initiating interface is unable to respond to the initiator due to a
condition like the posting buffer has become full. A Disconnect is used when data has been already
been transferred to the bridge. Refer to the pel Local Bus Specification for details on Disconnect.

A Disconnect is signaled using two sequences. When STOP#, TRDY#, and DEVSEL# are all
asserted, it indicates that this transfer is the last and at least one data word is transferred. When
STOP# and DEVSEL# are asserted and TRDY# is deasserted after previous data transfers, it
indicates that the most recent transfer was the last.

14.10.2.3 Target-Abort

A Target-Abort differs from a Retry or a Disconnect when STOP# is asserted and DEVSEL# has
been deasserted.

During all transactions crossing the bridge, except posted writes, the bridge will signal a
Target-Abort to the initiator on the initiating bus when a Target-Abort is received by the bridge on
the target bus. The bridge will set the Target Abort (master) bit in the target bus status register (PSR
or SSR) and the Target Abort (target) bit in the initiating bus status register. (An exception to this
rule can occur in the case where a target inserts data-to-data wait states after the initial Qword of
data. If the bridge is forced to disconnect with data on the initiating side, due to the fact that the
bridge does not insert data-to-data wait states as a slave, and a target-abort is then signalled by the
target after the bridge has disconnected with the master, the target-abort will not be reflected back
to the master and the Target Abort (target) bit in the initiating bus status register will not be set.)

If the bridge detects a Target-Abort during a posted write transaction on the target bus and the write
is still in progress on the initiating bus, the bridge will signal a Target-Abort to the initiator on the
initiating bus. The bridge will set the Target Abort (master) bit in the target bus status register (PSR
or SSR) and the Target Abort (target) bit in the initiating bus status register. The error must be
signaled on the originating bus in the same data phase in which it occurred on the destination bus.

If the posted write transaction is complete on the initiating interface, the bridge will assert
P _ SERR# (if enabled) on the Primary interface indicating a system error. The bridge will also set
the Target Abort (master) bit in the target bus status register (PSR or SSR).

Developer's Manual 14-65

Intel® 80303 /10 Processor
PCI-to-PCI Bridge Unit intel~

14.11

14.11.1

14.11.1.1

14-66

Error Conditions

PCI provides an extensive error reporting mechanism. The PCI-to-PCI bridge implements parity
generation and parity error detection on both the Primary and Secondary PCI interfaces and passes
that information to the Primary interface. This enables the parity error recovery mechanisms
outlined on the PCI Local Bus Specification, Revision 2.2 without special considerations for a
bridge.

The following sections detail the bridge response to parity errors on the Primary and Secondary
PCI interfaces.

Address Parity Errors

The bridge must detect and report address parity errors for transactions on both interfaces. When
the bridge, as a device on the initiating interface, detects an address parity error before claiming a
cycle, the bridge will not claim the cycle (not assert DEVSEL#) and allow the transaction to
terminate with the Master-Abort mechanism.

When the bridge detects an address parity error during a transaction the Primary and Secondary
interfaces will handle the error in different manners.

Address Parity Errors on Primary Interface

If an address parity error occurs on the Primary interface of the bridge unit, the 80303 I/O
processor performs the following actions based on the constraints specified:

• If the Primary Parity Error Response Enable bit in the PCR is set, the Primary bridge interface
will not claim the transaction by not asserting P _ DEVSEL#, allowing a master abort to occur.

If the Primary Parity Error Response Enable bit in the PCR is cleared, the Primary bridge
interface takes normal action and allows the transaction to proceed (claim the transaction
if the address is within the bridge address space).

• Assert P _ SERR# on the Primary interface if the SERR# Enable bit and Primary Parity Error
Response Enable bit in the PCR are both set.

• Set the Signaled System Error bit in the PSR if the SERR# Enable bit and Primary Parity Error
Response Enable bit in the PCR are both set. If the Signaled System Error bit in the PSR is set
and the P _SERR# Asserted Interrupt Mask is clear in the SDER, set the P _SERR# Asserted
bit in the PBISR

• Set the Detected Parity Error bit in the PSR. If the Detected Parity Error bit in the PSR is set
and the Primary Detected Parity Error Interrupt Mask bit in the SDER is clear, set Detected
Parity Error bit in the PBISR.

Developer'S Manual

14.11.1.2 Address Parity Errors on Secondary Interface

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

If an address parity error occurs on the Secondary interface of the bridge unit, the 80303 I/O
processor performs the following actions based on the constraints specified:

• If the Secondary Parity Error Response Enable bit in the Bridge Control Register (BCR) is set,
the Secondary bridge interface will not claim the transaction by not asserting S _ DEVSEL#,
allowing a master abort to occur.

If the Secondary Parity Error Response Enable bit in the BCR is cleared, the Secondary
bridge interface takes normal action and allows the transaction to proceed.

• Assert P _ SERR# on the Primary interface if the SERR# Enable bit in the PCR is set and
Secondary Parity Error Response Enable bit and the Secondary SERR# enable bit in the BCR
are set.

• Set the Signaled System Error bit in the PSR if the SERR# Enable bit in the PCR is set and
Secondary Parity Error Response Enable bit in the BCR is set. If the Signaled System Error bit
in the PSR is set and the P _SERR# Asserted Interrupt Mask is clear in the SDER, set the
P SERR# Asserted bit in the PBISR

• Set the Detected Parity Error bit in the SSR. If the Detected Parity Error bit in the SSR is set
and the Secondary Detected Parity Error Interrupt Mask bit in the SDER is clear, set Detected
Parity Error bit in the SBISR.

While forwarding a DAC cycle upstream, the bridge may detect an address parity error in any of
the four different parts of the DAC address phase in which parity information is encoded. If an
address parity error is detected in these cases, the bridge will forward the DAC using bad address
parity for all possible parts of the forwarded transaction. This eliminates the possibility of an
address parity being filtered out by the bridge in the event it is converted from a 64-bit transaction
to a 32-bit transaction.

Developer's Manual 14-67

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit intel·
14.11.2

14.11.2.1

14-68

Data Parity Errors

When the bridge unit detects a data parity error, the bad data and bad parity will be passed to the
opposite interface whenever possible. This will enable the parity error recovery mechanisms
outlined in the PCI Local Bus Specification, Revision 2.2 without special consideration for the
bridge in the datapath.

Read Data Parity

When a data parity error is detected during a read transaction that crosses the bridge unit, it will
assert PERR# on the target interface. The bridge will pass the bad data and the bad parity to the
initiating interface and bus where the initiator will also detect the bad parity and data and assert
PERR# on the initiating bus. The bridge will set the Detected Parity Error bit and set the Data
Parity Detected bit (when enabled) in the PSR if the Primary interface is the target bus or the SSR
if the Secondary interface is the target bus. When data parity is detected by the master on the
initiating bus, it will assert PERR#. No other action is taken by the bridge unit.

Specifically for downstream reads (initiated by a master on the Primary bus interface), the 80303
I/O processor performs the following actions with the given constraints:

• S_PERR# is asserted two clock cycles following the data phase in which the data parity error
is detected on the Secondary bus. This is only done if the Secondary Parity Error Response
Enable bit in the Bridge Control Register (BCR) is set.

• The Data Parity Detected bit in the Secondary Status Register (SSR) is set if the Secondary
Parity Error Response Enable bit in the BCR is set. If the Secondary PCI Master Parity Error
Interrupt Mask bit in the SDER is clear, set the PCI Master Parity Error bit in the SBISR.

• The Detected Parity Error bit in the SSR is set. If the Secondary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.

• The data and the bad parity are stored in a DRC queue and returned to the master on the
Primary bus during Delayed Read Completion cycle. If the data word with the bad parity is not
read from DRC queue by the initiator (i.e., delayed cycle read 32 bytes with an error in byte 30
and the master only wanted 16 bytes) due to the prefetch algorithm (see Section 14.6.5), the
data is discarded when the queue is invalidated and no other action is taken.

Specifically for upstream reads (initiated by a master on the Secondary bus interface), the 80303
I/O processor performs the following actions with the given constraints:

• P _ PERR# is asserted two clocks cycles following the data phase in which the data parity error
is detected on the Primary bus. This is only done if the Primary Parity Error Response Enable
bit in the Primary Command Register (PCR) is set.

• The Data Parity Detected bit in the Primary Status Register (PSR) is set if the Primary Parity
Error Response Enable bit in the PCR is set. If the Primary PCI Master Parity Error Interrupt
Mask bit in the SDER is clear, set the PCI Master Parity Error bit in the PBISR.

• The Detected Parity Error bit in the PSR is set. If the Primary Detected Parity Error Interrupt
Mask bit is clear in the SDER, set the Detected Parity Error bit in the PBISR.

• The data and the bad parity are stored in a DRC queue and returned to the master on the
Secondary bus during Delayed Read Completion cycle. If the data word with the bad parity is
not read from DRC queue by the initiator (i.e., delayed cycle read 32 bytes with an error in
byte 30 and the master only wanted 16 bytes) due to prefetch algorithm (see Section 14.6.5),
the data is discarded when the queue is invalidated and no other action is taken.

In both cases, the initiator of the Delayed Read transaction is responsible for asserting PERR# on
the initiating bus (if enabled) in response to bridge unit delivering data along with the bad parity.

Developer's Manual

14.11.2.2 Delayed Write Data Parity

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

To allow for correct data parity calculations for delayed write transactions, the bridge will delay the
assertion of STOP# (signalling a Retry) until PAR is driven by the master. A parity error during a
delayed write transaction can occur in any of the following parts of the transactions:

• During the Delayed Write Request cycle on the initiating bus when the transaction is enqueued
by the bridge unit.

• During the Delayed Write Completion cycle on the target bus when the write data is delivered
to the target and write status is capture for delivery to the initiator

• During the Delayed Write Completion cycle on the initiating bus when write status is to be
delivered to the initiator who has retried the transaction.

Depending on where and when the parity error occurs, different responses are required.

The 80303 I/O processor Primary bridge interface has the following responses to a delayed write
parity error for downstream transactions during Delayed Write Request cycles on the initiating bus
with the given constraints:

• If the Primary Parity Error Response bit in the PCR is set, the Primary bridge interface asserts
P _ TRDY# (disconnects with data) and two clock cycles later asserts P _ PERR# notifying the
initiator of the parity error. The delayed write cycle in not enqueued and not forwarded to the
Secondary interface.

The Detected Parity Error bit is set in the Primary Status Register (PSR) only if data has
been transferred. This scenario would occur if a request is seen with bad parity. In this
case the request is immediately completed and discarded. Because of the completion, data
has been transferred on the initiating interface. If the Primary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the PBISR.

• If the Primary Parity Error Response bit in the PCR is cleared, the Primary bridge interface
retries the transaction by asserting P _STOP# and enqueues the Delayed Write Request cycle
to be forwarded to the Secondary bridge interface. P _PERR# is not asserted.

On the Secondary bridge interface, the following responses to a delayed write parity error for
upstream transactions during Delayed Write Request cycles on the initiating bus with the given
constraints:

• If the Secondary Parity Error Response bit in the BCR is set, the Secondary bridge interface
asserts S_TRDY# (disconnecting with data) and two clock cycles later asserts S_PERR#
notifying the initiator of the parity error. The delayed write cycle in not enqueued and not
forwarded to the Primary interface.

The Detected Parity Error bit is set in the Secondary Status Register (SSR) only if data has
been transferred. This scenario would occur if a request is seen with bad parity. In this
case the request is immediately completed and discarded. Because of the completion, data
has been transferred on the initiating interface. If the Secondary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.

• If the Secondary Parity Error Response bit in the BCR is cleared, the Secondary bridge
interface retries the transaction by asserting S STOP# and enqueues the Delayed Write
Request cycle to be forwarded to the Primary bridge interface. S _ PERR# is not asserted.

Developer's Manual 14-69

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit int:et

14-70

During a downstream Write Completion Cycle on the target bus when the bridge is trying to deliver
enqueued write data, the Secondary bridge interface has the following actions with the given
constraints when S_PERR# is detected during the transaction:

• The Data Parity Error Detected bit is set in the Secondary Status Register (SSR) if the
Secondary Parity Error Response Bit is set in the BCR. If the Data Parity Error Detected bit in
the SSR is set and the Secondary PCI Master Parity Error Interrupt Mask in the SDER is clear,
set the PCI Master Parity Error bit in the SBISR.

• The Secondary interface of the bridge captures the error completion status for delivery back to
the initiator on the Primary interface.

During a upstream Write Completion Cycle on the target bus when the bridge is trying to deliver
enqueued write data, the Primary bridge interface has the following actions with the given
constraints when P _PERR# is detected during the transaction:

• The Data Parity Error Detected bit is set in the Primary Status Register (PSR) if the Primary
Parity Error Response Bit is set in the PCR. If the Data Parity Error Detected bit in the PSR is
set and the Primary PCI Master Parity Error Interrupt Mask in the SDER is clear, set the PCI
Master Parity Error bit in the PBISR.

• The Primary interface of the bridge captures the error completion status for delivery back to
the initiator on the Secondary interface.

For the original write transaction to be completed, the initiator will retry the transaction on the
initiating bus and the bridge will return the status from the target bus, completing the transaction. A
data parity error can occur in this scenario on the initiating bus that was not detected during the
write completion cycle on the target bus or a parity error can occur in response to a parity error that
did occur during the write completion cycle on the target bus (contained with the status returned by
the bridge).

For downstream delayed completion transaction on the initiating bus where a data parity error
occurs that did not occur on the target bus (i.e. status being returned is normal completion) the
Primary bridge interface performs the following actions with the given constraints:

• If the Primary Parity Error Response Bit is set in the PCR, the Primary interface claims the
transaction by asserting P _TRDY# and two clocks later asserts P _PERR#. The Delayed
Completion cycle in the DWC Queue remains since the data of retried command did not match
the data within the queue.

If the Primary Parity Error Response Bit is clear in the PCR, the Primary interface will
retry the transaction with no other response. A new transaction is not enqueued due to
queue architecture constraints (see Section 14.7.1).

• The Detected Parity Error bit is set in the Primary Status Register (PSR) in the following
scenario only: a transaction with bad parity was forwarded to the Secondary bus, which means
that the Parity Response Enable Bit (PCR) associated with the Primary bus is not set. If the
Primary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected Parity
Error bit in the PBISR.

Note that if the parity of the original request does not match the parity of the transaction
the Primary master sends for a completion, the bridge will not detect a match for the
completion attempt and will retry the transaction. In this case the transaction will most
likely never be completed, and the enqueued data will eventually be discarded.

Developer's Manual

intel·

14.11.2.3

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

For upstream delayed completion transaction on the initiating bus where a data parity error occurs
that did not occur on the target bus (i.e. status being returned is normal completion) the Secondary
bridge interface performs the following actions with the given constraints:

• If the Secondary Parity Error Response Bit is set in the BCR, the Primary interface claims the
transaction by asserting S_TRDY# and two clocks later asserts S_PERR#. The Delayed
Completion cycle in the DWC Queue remains since the data of the retried command did not
match the data within the queue.

If the Secondary Parity Error Response Bit is clear in the BCR, the Secondary interface
will retry the transaction with no other response. A new transaction is not enqueued due to
queue architecture constraints (see Section 14.7.1).

• The Detected Parity Error bit is set in the Secondary Status Register (SSR) in the following
scenario only: a transaction with bad parity was forwarded to the Primary bus, which means
that the Parity Response Enable Bit (BCR) associated with the Secondary bus is not set. If the
Secondary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected
Parity Error bit in the SBISR.

Note that if the parity of the original request does not match the parity of the transaction
the Secondary master sends for a completion, the bridge will not detect a match for the
completion attempt and will retry the transaction. In this case the transaction will most
likely never be completed, and the enqueued data will eventually be discarded.

When returning status on the initiating bus from an error that occurred on the target and did not
originally occur on the initiating bus, the bridge unit will assert PERR# (on the initiating bus
interface) two clocks after the data is written assuming the bridge unit has parity enabled on both
interfaces by the setting of the Primary and Secondary Parity Error Response bits in the PCR and
BCR. The status is delivered and the transaction is cleared from the DWC queue. The appropriate
Detected Parity Error bit is not set since the error did not actually occur on that bus.

Posted Write Data Parity

When a data parity error is detected by the bridge initiating interface during a posted write
transactions that crosses the bridge, the bridge asserts PERR# on the initiating bus two clocks after
the error is detected and retains the bad data and parity in the PMW Queue. The bridge will always
perform the following on the initiating bus interface

• The Detected Parity Error bit in the PSR is set if the initiating bus is the Primary bus. If the
Primary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected Parity
Error bit in the PBISR.

• The Detected Parity Error bit in the SSR is set if the initiating bus is the Secondary bus. If the
Secondary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected
Parity Error bit in the SBISR.

When the write data is transferred on the target bus, the target of the transaction should assert
PERR# on the target bus. If PERR# is asserted by the target, then the bridge sets:

• The Data Parity Detected bit in the PSR if the target bus is the Primary and the Primary Parity
Error Response bit is set in the PCR. If the Primary Detected Parity Error Interrupt Mask bit is
clear in the SDER, set the Detected Parity Error bit in the PBISR.

• The Data Parity Detected bit in the SSR if the target bus is the Secondary and the Secondary
Parity Error Response bit is set in the BCR. If the Secondary Detected Parity Error Interrupt
Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.

Developer's Manual 14-71

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit intel ..

14.11.3

14-72

When a data parity error is detected on the target bus by the target of a posted write transaction
when the bridge did not detect a data parity error on the initiating bus, the master of the transaction
has no way of knowing that the data parity error has occurred (since PERR# cannot be forwarded
back to the master due to the two clock cycle restriction for PERR# and data transferred).
P _SERR# is used to notify the Primary interface of an error of this type. P _SERR# is only used
when the data parity error occurs on the target bus and was not detected on the initiating bus.

For a downstream transaction, where no data parity error was detected on the Primary interface,
which is completing on the Secondary bus and S _ PERR# is detected by the Secondary interface
the following actions are performed with the given constraints:

• The Data Parity Detected bit in the SSR is set if the Secondary Parity Error Enable bit is set in
the BCR. If the Data Parity Detected bit is set in the SSR and the Secondary PCI Master Parity
Error Interrupt Mask bit is clear in the SDER, set the Data Parity Detected bit in the SBISR.

• P SERR# is asserted if:

- the Secondary Parity Error Enable bit is set in the BCR

- the Primary Parity Error Enable bit is set in the PCR

- the SERR# Enable bit is set in the peR

For an upstream transaction, where no data parity error was detected on the Secondary interface,
which is completing on the Primary bus and P _ PERR# is detected by the Primary interface the
following actions are performed with the given constraints:

• The Data Parity Detected bit in the PSR is set if the Primary Parity Error Enable bit is set in the
PCR. If the Data Parity Detected bit is set in the PSR and the Primary PCI Master Parity Error
Interrupt Mask bit is clear in the SDER, set the Data Parity Detected bit in the PBISR.

• P SERR# is asserted if:

- the Secondary Parity Error Enable bit is set in the BCR

- the Primary Parity Error Enable bit is set in the PCR

- the SERR# Enable bit is set in the peR

SERR# Assertion

Whenever S_SERR# is asserted on the Secondary interface of the bridge, the bridge must assert
P _ SERR# on the Primary interface if the following is true:

• The SERR# Enable bit is set in the peR.

• The Secondary SERR# Enable bit is set in the BeR

The bridge must also set the Received System Error bit in the SSR. This function propagates the
error upstream to the Primary interface. If the Received System Error bit in the SSR is set and the
S_SERR# Detected Interrupt Mask bit in the SDER is clear, the S_SERR# Detected bit is set in the
SBISR.

Developer's Manual

int:et
14.11.4 Discard Timers

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

The discard timers are responsible for preventing deadlocks when the initiator of a retried
transaction fails to complete the transaction within 2' () or 2'5 PCI clock cycles on the initiating bus.
The timers start counting when the delayed request becomes a delayed completion by completing
on the destination bus. If the originating master on the initiating bus has not retried the transaction
before the associated timer expires, the completion transaction is discarded and P _SERR# is
optionally asserted on the Primary bus.

There are eight discard timers in the bridge unit. Each PCI interface of the bridge unit has separate
discard timers for a the DRC and DWC Queues in each direction. When the discard timer attached
to a particular queue expires, the queue is invalidated, freeing the queue for use with a new
transaction.

The discard timers are controlled through configuration bits in the Bridge Control Register.
Delayed cycles initiated from the Primary bus interface have a programmable discard value of 210

(enabled by setting bit 8 in the BCR) or 215 (enabled by clearing bit 8 in the BCR). Delayed cycles
initiated from the Secondary bus interface have a programmable discard value of 210 (enabled by
setting bit 9 in the BCR) or 215 (enabled by clearing bit 9 in the BCR).

When a discard timer expires, the bridge sets (unconditionally) the Discard Timer Status bit in the
BCR and optionally asserts P _ SERR# if the following is true:

• The SERR# Enable bit is set in the PCR

• The Discard Timer SERR# Enable bit is set in the BCR

The Primary and Secondary Discard Timers can be disabled by setting Discard Timer Disable bit
(bit 07) in the Extended Bridge Control Register (EBCR). When disabled, the timers will not count
and delayed completion transactions will remain in their respective queues until retrieved by a PCI
master.

Developer's Manual 14-73

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.11.5 pel-to-PCI Bridge Error Summary

Table 14-20 and Table 14-21 summarize the bridges error reporting for PCI bus errors (parity and
transaction termination). The tables are in relation to the Primary and Secondary Status Registers.
Each table details the corresponding registers error bit and the conditions that set the bit. The
Primary and Secondary Bridge Interrupt Status Registers are also shown. These registers record
i960 core processor interrupt status information.

Note: When an external agent violates PCI protocol, PCI-ta-PCI Bridge behavior may be
unpredictable/undefined.

Table 14-20. PSR Error Reporting Summary (Sheet 1 of 3)

Error Bit in Primary Status
Qualifying Bit in Primary

Register (PSR) Error Condition Command Register
(PCR Unless Otherwise Noted)

Address Parity Error on Primary N/A
Interface

Upstream Read Data Parity Error
N/A

on Primary Bus

Downstream Posted Memory Write N/A
Data Parity Error on Primary Bus

Downstream Delayed Write Data

Detected Parity Error - Bit 15
Parity Error During Request Cycle Primary Parity Error Response
on Primary Bus if Request is Seen

Enable must be SET- bit 6
with Bad Parity & Immediately
Completed

Downstream Delayed Write Data
Parity Error During Completion
Cycle on Primary Bus, Only if Error Primary Parity Error Response
Occurred During Request Phase of

Enable must be CLEAR- bit 6
Transaction on Primary Bus and
Completion Request from Master
Matches Initial Request Error

Upstream Delayed Read Data Primary Parity Error Response
Parity Error on Primary Bus Enable - bit 6

Upstream Delayed Write Data Primary Parity Error Response
Data Parity Error Detected - Bit 8 Parity Error During Completion Enable - bit 6

Cycle on Primary Bus

Upstream Posted Memory Write Primary Parity Error Response
Data Parity Error on the Primary

Enable - bit 6
Bus

14-74 Developer's Manual

intel·
Table 14-20. PSR Error Reporting Summary (Sheet 2 of 3)

Error Bit in Primary Status
Error Condition Register (PSR)

Address Parity Error on Primary
Interface

Address Parity Error on Secondary
Interface

Downstream Posted Memory Write
Data Parity Error Which Occurs on
Secondary Bus and Did Not Occur
on Primary Bus

Upstream Posted Memory Write
Data Parity Error Which Occurs on
Primary Bus and Did Not Occur on
Secondary Bus

Signaled System Error - bit 14
Downstream Posted Memory Write
that Receives a Target Abort on
Secondary Bus and the
Transaction is Not Currently Active
on the Primary Interface

Upstream Posted Memory Write
that Receives a Target Abort on
Primary Bus and the Transaction is
Not Currently Active on the
Secondary Interface

Downstream Posted Memory Write
that Ends in a Master Abort on the
Secondary Bus

Upstream Posted Memory Write
that Ends in a Master Abort on the
Primary Bus

One of 8 Discard Timers Expire

Upstream Delayed Read (memory
or I/O) Which Received a Master

Master Abort - bit 13
Abort on the Primary Bus

Upstream Write (posted or
delayed) Which Received a Master
Abort on the Primary Bus

Upstream Delayed Read (memory
or I/O) Which Received a Target

Target Abort (master) - bit 12
Abort on the Primary Bus

Upstream Write (posted or
delayed) Which Received a Target
Abort on the Primary Bus

Developer's Manual

fntel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

Qualifying Bit in Primary
Command Register

(PCR Unless Otherwise Noted)

Primary Parity Error Response
Enable - bit 6

SERR# Enable - bit 8

Secondary Parity Error Response
Enable - bit 0 (BCR)

SERR# Enable - bit 8

SERR# Forwarding - bit 1 (BCR)

Primary Parity Error Response
Enable - bit 6

Secondary Parity Error Response
Enable - bit 0 (BCR)

SERR# Enable - bit 8

Primary Parity Error Response
Enable - bit 6

Secondary Parity Error Response
Enable - bit 0 (BCR)

SERR# Enable - bit 8

SERR# Enable - bit 8

SERR# Enable - bit 8

Master Abort Mode - bit 5 (BCR)

SERR# Enable - bit 8

Master Abort Mode - bit 5 (BCR)

SERR# Enable - bit 8

Discard Timer SERR# Enable -
bit 11 (BCR)

SERR# Enable - bit 8

N/A

N/A

N/A

N/A

14-75

Intel@ 80303 liD Processor
PCI-fo-PCI Bridge Unit

Table 14-20. PSR Error Reporting Summary (Sheet 3 of 3)

Error Bit in Primary Status Error Condition Register (PSR)

Downstream Delayed Read Which
Receives a Target Abort on the
Secondary Bus. Set During
Completion Cycle on Primary Bus.

Downstream Delayed Write Which
Received a Target Abort on the

Target Abort (target) - bit 11 Secondary Bus. Set During
Completion Cycle on Primary Bus.

Downstream Posted Write Which
Received a Target Abort on the
Secondary Bus and the
Transaction Was Still Active on the
Primary Bus

14-76

intel·

Qualifying Bit in Primary
Command Register

(PCR Unless Otherwise Noted)

N/A

N/A

N/A

Developer's Manual

intel·
Table 14-21. SSR Error Reporting Summary (Sheet 1 of 2)

Error Bit in Primary Status Error Condition
Register (SSR)

Address Parity Error on Secondary
Interface

Downstream Read Data Parity
Error on Secondary Bus

Upstream Posted Memory Write
Data Parity Error on Secondary
Bus

Upstream Delayed Write Data

Detected Parity Error - Bit 15
Parity Error During Request Cycle
on Secondary Bus if Request is
Seen with Bad Parity &
Immediately Completed

Upstream Delayed Write Data
Parity Error During Completion
Cycle on Secondary Bus, Only if
Error Occurred During Request
Phase of Transaction on
Secondary Bus and Completion
Request from Master Matches
Initial Request Error

Downstream Delayed Read Data
Parity Error on Secondary Bus

Downstream Delayed Write Data

Data Parity Error Detected - Bit 8
Parity Error During Completion
Cycle on Secondary Bus

Downstream Posted Memory Write
Data Parity Error on the Secondary
Bus

S_SERR# Detected on Secondary
Interface

Received System Error - bit 14
Address Parity Error on Secondary
Interface

Downstream Delayed Read
(memory or 1/0) Which Received a
Master Abort on the Secondary

Master Abort - bit 13 Bus

Downstream Write (posted or
delayed) Which Received a Master
Abort on the Secondary Bus

Downstream Delayed Read
(memory or 110) Which Received a

Target Abort (master) - bit 12
Target Abort on the Secondary Bus

Downstream Write (posted or
delayed) Which Received a Target
Abort on the Secondary Bus

Developer's Manual

Inte/@ 80303 110 Processor
PCI-to-PCI Bridge Unit

Qualifying Bit in Primary
Command Register

(BCR)

N/A

N/A

N/A

Secondary Parity Error Response
Enable must be SET- bit 0

Secondary Parity Error Response
Enable must be CLEAR- bit 0

Secondary Parity Error Response
Enable - bit 0

Secondary Parity Error Response
Enable - bit 0

Secondary Parity Error Response
Enable - bit 0

N/A

Secondary Parity Error Response
Enable - bit 0 (BCR)

N/A

N/A

N/A

N/A

14-77

intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

Table 14-21. SSR Error Reporting Summary (Sheet 2 of 2)

Error Bit in Primary Status
Register (SSR)

Error Condition

Upstream Delayed Read Which
Received a Target Abort on the
Primary Bus. Set During
Completion Cycle on Secondary
Bus.

Upstream Delayed Write Which
Received a Target Abort on the

Target Abort (target) - bit 11 Primary Bus. Set During
Completion Cycle on Secondary
Bus.

Upstream Posted Write Which
Received a Target Abort on the
Primary Bus and the Transaction
Was Still Active on the Secondary
Bus

14-78

intel·

Qualifying Bit in Primary
Command Register

(BCR)

N/A

N/A

N/A

Developer's Manual

14.12

14.12.1

14.12.2

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Initialization and Reset Requirements

When the Primary bus P _RST# is removed from the Primary interface, the PCI-to-PCI bridge unit
is in an inactive mode. The bridge responds only to Type 0 configuration cycles with the Primary
IDSEL input active. System configuration software is responsible for setting up the bridge unit for
correct operation. Refer to the PCl Local Bus Specification, Revision 2.2 and the PCl-to-PCl
Bridge Architecture Specification, Revision 1.1.

Bridge Reset

The PCI-to-PCI bridge unit has two independent reset states; one for the Primary interface and one
for the Secondary interface. The Secondary S RST# signal is the logical OR of the Primary
interface P _ RST# and the Secondary Bus Reset bit in the BCR. The assertion of the Secondary
interface S _ RST# output is asynchronous with respect to the Secondary output clocks
(S _ CLKOUT[5:0]); to support this, there exists a combinatorial path from the Primary P _ RST#
input and the Secondary Bus Reset bit in the BCR to the Secondary PCI bus S _ RST# output. The
deassertion of the S _ RST# output is synchronous with the Secondary output clocks.

The bridge will not take any action if Secondary bus S _ RST# is driven active by another device.

When the Secondary Bus Reset Bit in the BCR is set and subsequently cleared by software, the
80303 I/O processor can also be programmed to send an interrupt to the core processor. This is
done using the Secondary Decode Enable Register - SDER.

During the reset sequence (no more than three clocks from the assertion of P _ RST# on the Primary
interface) the Secondary PCI Bus Arbitration Unit must park the Secondary bus on the Secondary
bus interface. Refer to Section 17.2.1.3, "Priority Example with Six Bus Masters" on page 17-5 for
details on bridge parking.

Configuring the pel-to-PCI Bridge

For the bridge unit to operate in a system environment, several things must be properly initialized.
The procedure below is required for all PCI-to-PCI bridges and is included here for completeness.

1. The Primary Bus Number, Secondary Bus Number and Subordinate Bus Number must be
programmed with valid bus numbers. This must be done to allow the configuration software to
probe the configuration space of downstream buses.

2. If I/O accesses must be forwarded downstream, the IOBR and IOLR register pair must be
programmed to proper values and then the I/O Space Enable bit set in the PCR register. The
ISA Enable bit of the BCR register should be set if the system includes ISA or EISA buses.

3. If Memory accesses must be forwarded downstream then both the Memory Mapped I/O range
and the Prefetchable Memory range must be defined by programming the MBR/MLR and
PMBR/pMLR register pairs. If only one address range is required then the PMBR/pMLR
register pair can be programmed with the same values as the MBR/MLR register pair. After all
four memory registers are valid, the Memory Enable bit in the PCR register can be set.

4. If VGA Compatible address forwarding is required, the VGA Enable bit (bit 3 of the BCR)
must be set. Also, the Memory Space Enable and the I/O Space Enable bits must be set in
order for VGA Compatible addressing to be operational. This mode forwards VGA
Compatible Memory and I/O accesses downstream independent of the MBR/MLR,
PMBR/PMLR, and IOBRIIOLR register pairs. This mode should be enabled when a VGA
compatible device exists on the Secondary PCI bus.

Developer's Manual 14-79

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

5. If bus masters are to be supported on the downstream buses, the Bus Master Enable bit in the
PCR register must be set. Note that once this bit is set, all I/O and Memory accesses on the
Secondary bus that do not fall into the ranges defined by the bridge will be forwarded to the
Primary interface and bus. This means that if the I/O Space Enable bit of the PCR register is
not set, all I/O accesses on the Secondary bus will be passed to the Primary bus. Likewise, if
the Memory Enable bit in the PCR is not set, all memory accesses on the Secondary bus will
be forwarded to the Primary bus.

6. The CLSR, PLTR, and SLTR must be set to appropriate values before the bridge is fully
functional. Most systems will want the SERR# Enable bits in the PCR and the BCR registers
set as well.

7. To enable the PCI Bus Power Management Interface Specification, Revision 1.1 compliance
support, the Power State Transition interrupt mask in bit 1 of the SDER needs to be cleared.

8. The Configuration Cycle Retry Bit in Section 14.15.23, "Extended Bridge Control Register
EBCR" on page 14-109 must then be cleared to allow the host to configure the bridge.

The previous list is the base minimum required to initialize the bridge unit. It is the configuration
software responsibility to enable or disable the additional base and 80303 I/O processor specific
features found in the bridge.

Note: If the bridge is using private PCI devices on the Secondary bus and their IDSEL inputs are using
S_AD[2S:16], then the Secondary IDSEL Select Register must be programmed before the system
configuration software probes the Secondary bus.

14.12.3 64-Bit Bus Configuration

At 80303 I/O processor reset time, it is the responsibility of the bus arbitration resource to
configure the bus for 64-bit operation. If the bus is configured for 64-bit operation, the PCI master
interfaces of the bridge will attempt memory transactions as 64-bit cycles. 64-bit bus operation is
defined by the state of the REQ64# pin on the rising edge of the bus reset signal (P _ RST# for the
Primary bus). Table 14-22 details the bus configuration for the different states of each bus REQ64#
at reset. The results of bus configuration operation are latched into the EBCR register (bit 8 for
Primary bus and bit 9 for Secondary bus).

Table 14·22. 64·Bit Configuration Options at Reset

Pin State at the Rising Edge of Reset Bus Configuration

P_REQ64# Asserted (logic 0) 64-bit Capable Bus

P_REQ64# Deasserted (logic 1) 32-bit Only Bus

S_REQ64# Asserted (logic 0) 64-bit Capable Bus

S_REQ64# Deasserted (logic 1) 32-bit Only Bus

14-80 Developer's Manual

intel·
14.13

14.14

Power-up/Default States

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Upon power-up and before P _RST# is asserted on the Primary interface, the bridge is in an
inactive mode of operation. After reset, all internal registers associated with the bridge
configuration address space are set to the default values defined in Section 14.15. The posting
buffers are marked invalid. Refer to Section 14.12.1 for details on resetting the PCI-to-PCI bridge
unit.

Performance Considerations

As a bridge device, the 80303 I/O processor will have a negative impact on the performance of a
transaction initiated on one bus and completed on another bus as compared to a transaction that is
initiated and completed on the same bus.

The following are a list of performance requirements for PCI-to-PCI bridge unit operation:

• The bridge unit uses Medium Decoding on both the Primary and Secondary interfaces. This
means that as a target, the bridge will claim the transaction by asserting DEVSEL# (if decoded
and accepted) within three PCI clocks of the assertion of FRAME# on the initiating interface.

• The bridge unit will not take any additional clocks to forward data through an non-full queue.
The bridge unit is capable of emptying the data queues at the rate of one 64-bit word per PCI
clock from the second through the nth word of a delayed or posted transaction.

Developer's Manual 14-81

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit in1:et
14.15

14-82

Register Definitions

The following sections describe the PCI-to-PCI bridge configuration registers. The configuration
space consists of 8-, 16-,24-, and 32-bit registers arranged in a predefined format. The
configuration registers are accessed through Type 0 Configuration Reads and Writes on the
Primary side of the bridge and through i960 processor local operations.

Each register is detailed in functionality, access type (read/write, read/clear, read only) and reset
default condition. As stated, a Type 0 configuration command on the Primary side with an active
IDSEL or a memory-mapped i960 processor access is required to read or write these registers. The
format for the registers with offsets up to 3EH are defined with the PC/-to-PCI Bridge Architecture
Specification, Revision 1.1. Registers with offsets greater than 3EH are implementation specific to
the 80303 I/O processor.

See Chapter 1, "Introduction" for definitions of reserved, read only, writeonce/readonly, and
read/clear. All registers adhere to the definitions found in the PCI Local Bus Specification,
Revision 2.2 and the PCI-to-PCI Bridge Architecture Specification, Revision 1.1 unless otherwise
noted.

An additional requirement exists to allow the i960 core processor to access the bridge
configuration space. Some registers that are read only from Type 0 Configuration Read and Write
commands may be writable from the i960 core processor. This allows certain configuration
registers to be initialized before PCl configuration begins. See Appendix C, "Peripheral
Memory-Mapped Registers".

The i960 core processor will read and write the bridge configuration space as memory-mapped
registers. Table 14-23 shows the register and its associated offset used in a PCl configuration
command and its memory-mapped address in the i960 processor address space.

The assertion of the P _ RST# signal on the Primary side of the bridge affects the state of most of
the registers contained within the bridge configuration space. Unless otherwise noted, all bits and
registers will return to their stated default state value upon Primary reset. The only bit affected by
1_ RST# is bit 5 of the EBCR, Reset Internal Bus.

Developer's Manual

inteJ·
Intef® 80303 I/O Processor

PCI-to-PCI Bridge Unit

Figure 14-11. Bridge Configu ration Header Format

Bridge Configuration Header

Device ID Vendor ID

Primary Status Primary Command

Class Code Revision ID

Reserved I Header Type
Primary latency

Cacheline Size Timer

Reserved

Secondary I Subordinate Bus Secondary Bus Primary Bus
latency Timer Number Number Number

Secondary Status liD Limit liD Base

Memory Limit Memory Base

Prefetchable Memory Limit Prefetchable Memory Base

Reserved

Reserved Capabilities Ptr

Reserved

Bridge Control Reserved

Secondary IDSEl Control Extended Bridge Control

Primary Bridge Interrupt Status

Secondary Bridge Interrupt Status

Secondary Arbitration Control

PCI Interrupt Routing Control

I
Secondary ClK Secondary liD Secondary liD

Reserved Disable Limit Base

Secondary Memory Limit Secondary Memory Base

Queue Control Secondary Decode Enable

Reserved

Figure 14-12. Extended Bridge Configuration Header Format

Developer's Manual

PCI
Address

Offset

OOH

04H

08H

OCH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

44H

48H

4CH

50H

54H

58H

5CH

60H

PCI-to-PCI
Bridge

803031/0
processor
Specific

1
68H

6CH

14-83

Intel® 80303 flO Processor
PCI-to-PCI Bridge Unit intel·
Table 14-23. PCI-to-PCI Bridge Register Table

Internal Bus
Section, Register Name - Acronym (Page)

Address

1000H Section 14.15.1, "Vendor Identification Register - VIDR" on page 14-85

1002H Section 14.15.2, "Device ID Register - DIDR" on page 14-86

1004H Section 14.15.3, "Primary Command Register - PCR" on page 14-87

1006H Section 14.15.4, "Primary Status Register - PSR" on page 14-88

1008H Section 14.15.5, "Revision ID Register - RID" on page 14-90

1009H Section 14.15.6, "Class Code Register - CCR" on page 14-91

100CH Section 14.15.7, "Cacheline Size Register- ClSR" on page 14-92

100DH Section 14.15.8, "Primary latency Timer Register - PlTR" on page 14-93

100EH Section 14.15.9, "Header Type Register - HTR" on page 14-94

1 018H Section 14.15.10, "Primary Bus Number Register - PBN R" on page 14-95

1019H Section 14.15.11, "Secondary Bus Number Register - SBNR" on page 14-96

101AH Section 14.15.12, "Subordinate Bus Number Register - SubBNR" on page 14-97

101BH Section 14.15.13, "Secondary latency Timer Register - SlTR" on page 14-98

101CH Section 14.15.14, "1/0 Base Register - 10BR" on page 14-99

101 DH Section 14.15.15, "1/0 Limit Register - 10lR" on page 14-100

101 EH Section 14.15.16, "Secondary Status Register - SSR" on page 14-101

1020H Section 14.15.17, "Memory Base Register - MBR" on page 14-102

1022H Section 14.15.18, "Memory Limit Register - MlR" on page 14-103

1024H Section 14.15.19, "Prefetchable Memory Base Register - PMBR" on page 14-104

1026H Section 14.15.20, "Prefetchable Memory Limit Register - PMLR" on page 14-105

1034H Section 14.15.21, "Capabilities Pointer Register - Cap_Ptr" on page 14-106

103EH Section 14.15.22, "Bridge Control Register - BCR" on page 14-107

1040H Section 14.15.23, "Extended Bridge Control Register - EBCR" on page 14-109

1042H Section 14.15.24, "Secondary IDSEL Select Register - SISR" on page 14-111

1044H Section 14.15.25, "Primary Bridge Interrupt Status Register - PBISR" on page 14-113

1048H Section 14.15.26, "Secondary Bridge Interrupt Status Register - SBISR" on page 14-114

104CH Section 14.15.27, "Secondary Arbitration Control Register - SACR" on page 14-115

1050H Section 14.15.28, "PC I Interrupt Routing Select Register - PIRSR" on page 14-115

1054H Section 14.15.29, "Secondary 110 Base Register - SIOBR" on page 14-116

1055H Section 14.15.30, "Secondary 1/0 Limit Register - SIOlR" on page 14-117

1056H Section 14.15.31, "Secondary Clock Disable Register - SCDR" on page 14-118

1058H Section 14.15.32, "Secondary Memory Base Register - 5MBR" on page 14-119

105AH Section 14.15.33, "Secondary Memory Limit Register - SMLR" on page 14-120

105CH Section 14.15.34, "Secondary Decode Enable Register - SDER" on page 14-121

105EH Section 14.15.35, "Queue Control Register - QCR" on page 14-123

1060H Reserved

1064H Reserved

1068H Section 14.15.36, "Capability Identifier Register - Cap_ID" on page 14-124

1069H Section 14.15.37, "Next Item Pointer Register - NexUtem_Ptr" on page 14-125

106AH Section 14.15.38, "Power Management Capabilities Register - PMCR" on page 14-126

106CH Section 14.15.39, "Power Management Control/Status Register - PMCSR" on page 14-127

106EH Section 14.15.40, "PMCSR PCI-to-PCI Bridge Support - PMCSR_BSE" on page 14-128

14-84 Developer'S Manual

int:el. Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.1 Vendor Identification Register - VIDR

Vendor ID Register bits adhere to the definitions in the PCl Local Bus Specification, Revision 2.2.

Table 14-24. Vendor Identification Register - VIDR

PCI Configuration Offset

00 - 01 H

Bit Default

lOP [
A!trib!lk,

Fn[
AuribuiC',

Intel® i960® Core Local Bus Address

00001000H

Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

15:00 8086H Vendor 10 - A unique identifier indicating the manufacturer of a PCI device

Developer's Manual

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

14-85

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.2 Device 10 Register - DIDR

int:et

Device ID Register bits adhere to the definitions in the PCI Local Bus Specification, Revision 2.2.

Table 14-25. Device Identification Register - DIDR (803031/0 processor)

PCI Configuration Offset

02 - 03H

Bit Default

lOP [
Allributes

pel [
Auributes

IntetID i960® Core Local Bus Address

00001002H

Description

4 o

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

15:00 0309H
Device ID - This is a 16-bit value assigned to the 80303 I/O processor. This register, combined with the
VID, uniquely identify any PCI device.

14-86 Developer's Manual

in1:et Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.3 Primary Command Register - PCR

Primary Command Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2 and in most cases affect the behavior of the Primary interface of the PCI-to-PCI
bridge.

Table 14-26. Primary Command Register - PCR

15 4 ()

PCI [
Attribute:'>

PCI Configuration Offset

04 - 05H

Intel® i960® Core Local Bus Address

00001004H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:10 000002

09 O2

08 O2

07 O2

06 O2

05 O2

04 O2

03 O2

02 O2

01 O2

00 O2

Developer's Manual

NA = Not Accessible

Description

Reserved.

Fast Back to Back Enable - This Primary interface does not perform fast back to back transactions.

SERR# Enable - If this bit is cleared, the 80303 I/O processor is not allowed to assert P _SERR# on its
Primary interface.

Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit field

Primary Parity Error Response Enable - If this bit is set, then the bridge must take normal action when a
parity error is detected. If it is cleared, then parity checking is disabled.

VGA Palette Snoop Enable· VGA Palette Snooping is not supported.

Memory Write and Invalidate Enable - Not applicable. A PCI-to-PCI bridge does not initiate MWI
commands, only forwards them on behalf of another master. The initiator has the control to determine
which type of write command to use.

Special Cycle Enable - The bridge cannot respond as the target of a Special Cycle so this bit field is
defined as read only.

Bus Master Enable - Controls the bridge ability to operate as a master on the Primary interface for
memory and I/O transactions. This bit does not affect the bridge ability to forward or convert Type 1
configuration commands. When this bit is set, the bridge is enabled to act as a master on the Primary
interface. When this bit is clear, the bridge will not claim any memory or I/O transactions on the
Secondary PCI interface.

Memory Enable - Controls the bridge response to both memory and prefetchable memory accesses. If
this bit is cleared, the bridge will not respond to any memory access on the Primary PCI interface.

I/O Space Enable· Controls the bridges response to I/O transactions on the Primary PCI interface. If this
bit is cleared, the bridge will not respond to any I/O transaction on the Primary side.

14-87

Inte/@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.4 Primary Status Register - PSR

Primary Status Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2 but only apply to the Primary interface of the bridge. The read/clear bits can only be
set by the internal hardware and are cleared by either a reset condition of by writing a 12 to the
register.

Table 14-27. Primary Status Register - PSR (Sheet 1 of 2)

101' [
Attribuk':-,

PC! [
Attribu""

PCI Configuration Offset

06 - 07H

Intel® i960® Core Local Bus Address

00001006H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15

14

13

12

11

10:09

08

14-88

NA = Not Accessible

Description

Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the Primary
bus even if parity handling is disabled. Set under the following conditions:

• Write Data Parity Error when the Primary interlace of the Bridge is a slave (downstream write).

• Read Data Parity Error when the Primary interlace of the Bridge is a master (upstream read).

• Any Address Parity Error on the Primary Bus (including one generated by the Primary interface of
the Bridge).

Signaled System Error - This bit is set if P _SERR# is asserted on the Primary bus.

Master Abort - This bit is set whenever a transaction initiated by the bridge on the Primary bus (except
Special Cycles) ends in a Master-Abort.

Target Abort (master) - This bit is set whenever a transaction initiated by the Primary interface ends in a
Target-Abort.

Target Abort (target) - This bit is set whenever the bridge, acting as a target, terminates the transaction
on the Primary bus with a Target-Abort.

DEVSEL# Timing - These bits are read-only and define the slowest DEVSEL# timing for a target device
(except configuration accesses).
002 = Fast
01 2 = Medium
102 = Slow
112 = Reserved

In general, the Primary interlace uses Medium timing.Though this occurrence is not part of the normal
bridge operation, the PCI Local Bus Specification, Revision 2.2 requires that this field of the status
register indicate the slowest DEVSEL# possible by a target device.

In the event that a subtractive decode agent is present on the bridge primary bus interlace, the indication
that the bridge could claim positively with Slow decode will prevent the users of this bus from
programming the subtractive decode agent to claim with Slow decode timing.

With the exception of Primary Interlace Slow Decode under certain, special conditions, the perlormance
of the bridge will not be affected.

Data Parity Error Detected - This bit is set when the bridge:

• asserted P _PERR# (or saw asserted) on the Primary bus.

• and was the master of the transaction when it occurred.

• and the Primary Parity Error Response bit is set in the PCR.

Developer'S Manual

intel·
Intel@ 80303 liD Processor

PCI-to-PCI Bridge Unit

Table 14-27. Primary Status Register - PSR (Sheet 2 of 2)

15 n

lOP [
/\1trih!Jit'\

PCI Configuration Offset

06 - 07H

Intel® i960® Core Local Bus Address

00001006H
Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

07 12

06 O2

05 12

04 12

03:00 00002

Developer's Manual

NA = Not Accessible

Description

Fast Back-to-Back Capable - Indicates that the Primary interface capable of accepting Fast
Back-to-Back transactions as a target.

UDF Supported - User Definable Features are not supported.

66 MHz. Capable - 66 MHz. operation is supported.

Capabilities - This function implements extended capabilities.

Reserved.

14-89

fnte/® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.5 Revision ID Register - RID

Revision ID Register bits adhere to definitions in the PCI Local Bus Specification, Revision 2.2.

Table 14-28. Revision Identification Register - RID

7 4 (I

lOP [
Attribult:" tvfw/wJv/wfvJrwfw/

PC! [
Attribules \0\0 \{)\0\r~\o\o\o\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

08H 00001008H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH Revision 10 - This value identifies the revision number of the 80303 110 processor.

14-90 Developer's Manual

14.15.6 Class Code Register - CCR

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

Class Code Register bits adhere to the definitions in the PCl Local Bus Spec(j'ication, Revision 2.2.
It tells the auto configuration software the type of function present in the PCl device.

Table 14-29. Class Code Register - CCR

PCI [
Attributes

PCI Configuration Offset

09 - OBH

Intel® i960® Core Local Bus Address

00001009H

Bit Default

23:16 06H Base Class - Bridge Device

15:08 04H Sub Class - PCI-to-PCI Bridge Device

Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

Il

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

07:00 DOH Programming Interface - Consistent with PCI-to-PCI Bridge Architecture Specification Revision 1.0.

Developer's Manual 14-91

Intel@ 80303 110 Processor
PCI-fo-PCI Bridge Unit intel·
14.15.7 Cacheline Size Register - ClSR

Cache line Size Register bits adhere to the definitions in the PCI Local Bus Spec(jlcation,
Revision 2.2 and apply to both sides of the bridge. It is programmed with the system cacheline size
in DWORDs (32-bit quantities). The Cache line Size is restricted to either 32 or 64 bytes. If a value
other than 8 or 16 is written to the Cache line Size Register, the Bridge will behave as if a value of
zero was written.

Table 14-30. Cacheline Size Register - ClSR

7 -1 (I

lOP [
Attribuc-s /rw/-wfw/-"f .. /n/wfw/

PCI [
AHribmes \w'xw\w\w\w\w\nvX¥\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

OCH 0000100CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH
Cacheline Size - Cacheline size in DWORDs. Cacheline size is restricted to a register value of 8 or 16
for 32- or 64-byte cachelines, respectively.

14-92 Developer's Manual

int:et Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.8 Primary Latency Timer Register - PLTR

Primary Latency Timer Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2 and apply to the Primary side of the bridge only. It loads a timer at the beginning of
each pel transaction initiated by the bridge on the Primary bus. If the timer counts down to zero,
the bridge must terminate the transaction as soon as the GNT# signal is deasserted.

Table 14-31. Primary Latency Timer Register- PLTR

i' ·f ()

lor [
/\Uribuit.~' I "lv/~/w/w!o/o!,,/

. PCl [
Attributes \w'xw\w\w\'\ro\ro ~o\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

ODH 0000100DH RV = Reserved
PR = Preserved

RC = Read Clear
RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

07:03 000002
Programmable Latency Timer - This portion of the register varies the latency timer for the Primary
interface from a minimum of zero clocks to a maximum of 248 clocks.

02:00 0002
Latency Timer Granularity - These bits are read only giving a programmable granularity of eight clocks
for the Latency Timer.

Developer's Manual 14-93

Intel@ 80303 liD Processor
PCI-to-PCI Bridge Unit

14.15.9 Header Type Register - HTR

Header Type Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register indicates the layout of bytes lOH to 3FH of the bridge configuration
space. The most significant bit indicates whether or not the device is multi-function and is defined
as a 1 for multi-function device in the PCI-to-PCI Bridge Architecture Specification, Revision 1.1.
(Refer to Section 15.2.4. "PCI Multi-Function Device Swapping/Disabling" on page 15-23 for
exceptions to this statement.)

Table 14-32. Header Type Register- HTR

7 4 0

lOP [
Attribute, llrwfwfwtw/Wfr,t,i

PC! [
Attl'ibUk" \oyo\n\m\m\Q\ro\m\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

OEH 0000100EH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

7 12
Single Function/Multi-Function Device - This bit identifies whether or not the 80303 I/O processor is a
single or multi-function PCI device. The 80303 I/O processor is considered a multi-function device.

PCI Header Type - This bit field tells the system initialization code what type of PCI header is
06:00 000001 2 implemented. The 80303 110 processor has a PCI-to-PCI bridge header as defined in PCI-to-PCI Bridge

Architecture Specification, Revision 1.0.

14-94 Developer's Manual

intel.
14.15.10 Primary Bus Number Register - PBNR

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

Primary Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register records the bus number of the bridge Primary interface. This register
decodes Type I configuration transactions on the Secondary interface that should be converted to
Special Cycle transactions on the Primary interface.

Table 14-33. Primary Bus Number Register- PBNR

7 -l 0

lOP [
Al1rihlHt:''';; J'f'f"j,lv/,/,v/w/

pel [
AnrIlJLHc-> ~\:\{"\w\w\w\w\rv\w\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

18H 00001018H RV = Reserved
PR = Preserved

RC = Read Clear
RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH
Primary Bus Number - This field is programmed with the PCI bus number of the bridge Primary
interface.

Developer's Manual 14-95

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.11 Secondary Bus Number Register - SBNR

Secondary Bus Number Register bits adhere to the definitions in the PCI Local Bus
Specification. This register records the bus number of the bridge Secondary interface. This register
determines when to respond to Type 1 configuration commands on the Primary interface and
convert them to Type 0 commands on the Secondary interface.

Table 14-34. Secondary Bus Number Register - SBNR

7 4 ()

lOP [
Attribute, t'fwl/rw/rwf~/,lv/

PCl [
Attribute, rxw\w'xw\w'xw\rw\v\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

19H 00001019H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH
Secondary Bus Number - This field is programmed with the PCI bus number of the bridge Secondary
interface.

14-96 Developer's Manual

intel@
14.15.12

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Subordinate Bus Number Register - SubBNR

Subordinate Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register records the highest numbered PCI bus behind the bridge. This register is
used in conjunction with the Secondary bus number to determine when to respond to Type 1
configuration commands on the Primary bus and pass them on to the Secondary interface.

Table 14-35. Subordinate Bus Number Register - SubBNR

~ -f U

lOP [
AttrihHle...-: /rwf"vfnf,lv)wlfv/

PCI [
Al1ribmc-, rw\c\w\,,\,,\,\w\w\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

1AH 0000101AH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH
Subordinate Bus Number - This field is programmed with the highest numbered PCI bus which exists
behind the bridge.

Developer's Manual 14-97

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit intet
14.15.13 Secondary Latency Timer Register - SLTR

Secondary Latency Timer Register bits adhere to the defmitions in the PCI Local Bus
Specification, Revision 2.2 and apply to the Secondary interface of the bridge only. It loads a timer
at the beginning of each PCI transaction initiated by the bridge on the Secondary bus. If the timer
counts down to zero, the bridge must terminate the transaction as soon as the GNT# signal is
deasserted.

Table 14-36. Secondary Latency Timer Register - SLTR

7 4 (I

lOP [
Attribule, tw/,/rw/rwt,fof·,fo/

PCJ[
Attribute, ~W\TW\w\rw\rw\.o\o\u \

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

1BH 0000101BH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:03 000002
Programmable Latency Timer - This portion of the register varies the latency timer for the Secondary
interface from a minimum of zero clocks to a maximum of 248 clocks.

02:00 0002
Latency Timer Granularity - These bits are read only giving a programmable granularity of eight clocks
for the Latency Timer.

14-98 Developer'S Manual

infel. Intel@ 80303 liD Processor
PCI-to-PCI Bridge Unit

14.15.14 I/O Base Register - 10BR

I/O Base Register bits adhere to the definitions in the PCI Local Bus Specification, Revision 2.2.
The I/O Base Register defines the bottom address (inclusive) of an address range that is used to
determine when to forward I/O transactions from one side of the bridge to the other. It must be
programmed with a valid value before the lIO Space Enable bit in the Primary Command Register
(PCR) is set. The bridge only supports 16-bit addressing which is indicated by a value of OH in the
four least significant bits of the register. The upper 4 bits are programmed with AD[15:12] for the
bottom of the address range. AD[11:0] of the base address is always OOOH forcing the I/O address
range to be 4 Kbyte aligned.

For the purposes of address decoding, the bridge assumes that AD[31:16], the upper 16 address
bits of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits
of address per PCI Local Bus Specification and check that the upper 16 bits are equal to OOOOH.

The I/O address range (defined by the IOBR in conjunction with the IOLR) is modified by the ISA
Enable bit of the Bridge Control Register (BCR). If this bit is set then I/O addresses in the range
X400H - XFFFH will not be accepted by the Primary side of the bridge, even if the address falls
within the defined I/O address range.

The VGA Enable bit in the BCR will cause I/O accesses where AD[9:0] are in the ranges
3BOH - 3BBH and 3COH - 3DFH (inclusive of ISA addresses - AD[15:10] are not decoded) to be
forwarded from primary to secondary and blocked from secondary to primary.

Table 14-37. I/O Base Register -IOBR

7 4 (j

lOP [
Attribute, {rw/rw/-/rw/rcfrofoJr<f

PCI [
Attribute., \rw\w\rw\"y\o\ro\ro\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

1CH 0000101CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:04 OH
I/O Base Address - This field is programmed with AD[15:12] of the bottom of the I/O address range to
be passed down the hierarchy by the bridge.

03:00 OH I/O Addressing Capability - The value of OH signifies that the bridge only supports 16-bit I/O addressing.

Developer's Manual 14-99

Intef® 80303 110 Processor
PCI-to-PCI Bridge Unit infel·
14.15.15 1/0 Limit Register -IOLR

I/O Limit Register bits adhere to the definitions in the PCI Local Bus Specification, Revision 2.2.
The I/O Limit Register defines the upper address (inclusive) of an address range that is used to
determine when to forward I/O transactions from one side of the bridge to the other. It must be
programmed with a valid value greater than or equal to the 10BR before the I/O Space Enable bit
in the Primary Command Register (PCR) is set. The bridge only supports 16-bit addressing which
is indicated by a value of OH in the four least significant bits of the register. The upper 4 bits are
programmed with AD[15:12] for the top of the address range. AD[11:0] of the limit address is
always FFFH forcing a 4 Kbyte I/O range granularity.

For the purposes of address decoding, the bridge assumes that AD[31:16], the upper 16 address
bits of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits
of address per PCI Local Bus Specification, Revision 2.2 and check that the upper 16 bits are equal
to OOOOH.

The I/O address range (defined by the 10BR in conjunction with the IOLR) is modified by the ISA
Enable bit of the Bridge Control Register. If this bit is set then I/O addresses in the range
X400H - XFFFH will not be accepted by the Primary side of the bridge, even if the address falls
within the defined I/O address range.

The VGA Enable bit in the BCR will cause I/O accesses where AD[9:0] are in the ranges
3BOH - 3BBH and 3COH - 3DFH (inclusive of ISA addresses - AD[15:10] are not decoded) to be
forwarded from primary to secondary and blocked from secondary to primary.

Table 14-38. 1/0 Limit Register - 10LR

"~I 4 ()

lOP [
Attritmte\ t"/wfwllr(,/,/,,f,,;

PCl [
Attribute, '~\w\w\\()\m\'()\ft\

PCI Configuration Offset Intel@ i960® Core Local Bus Address Attribute Legend: RW = Read/Write

1DH 0000101DH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:04 OH
I/O Limit Address - This field is programmed with AD[1S:12] of the top of the I/O address range to be
passed down the hierarchy by the bridge.

03:00 OH I/O Addressing Capability - The value of OH signifies that the bridge only supports 16-bit I/O addressing.

14-100 Developer's Manual

intel· Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.16 Secondary Status Register - SSR

Secondary Status Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2 (with modifications made to bit 14 by the PCI-to-PCI Bridge Architecture
Specification, Revision 1.1) and apply to the Secondary interface of the bridge only. The
Read/Clear bits can only be set by the hardware. They are cleared when S RST# is asserted or by
writing a 12 to the bit location. -

Table 14-39. Secondary Status Register - SSR

15 12 4 ()

101' [
AltribtHCC,

PCI [
AUr;bu!",

PCI Configuration Offset

1 E - 1 FH

Intel® i960® Core Local Bus Address

0000101EH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15

14 O2

13 O2

12 O2

11 O2

10:09 01 2

08 O2

07 12

06 O2

05 12

04:00 000002

Developer's Manual

NA = Not Accessible

Description

Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the
Secondary bus even if parity handling is disabled. Set under the following conditions:

• Write Data Parity Error when the Secondary interface of the Bridge is a slave (upstream write).

• Read Data Parity Error when the Secondary interface of the Bridge is a master (downstream read).

• Any Address Parity Error on the Secondary Bus (including one generated by the Secondary
interface of the Bridge).

Received System Error - When set indicates that S_SERR# was detected by the bridge on the
Secondary interface.

Master Abort - This bit is set whenever a transaction initiated by the Secondary interface (except Special
Cycles) ends in Master-Abort

Target Abort (master) - This bit is set whenever a transaction initiated by the Secondary interface ends in
a Target-Abort.

Target Abort (target) - This bit is set whenever the Secondary interface, acting as a target, terminates a
transaction with a Target-Abort

DEVSEL# Timing - Medium Decode Timing for the Secondary interface

Data Parity Error Detected - This bit is set when the bridge:

• asserted S_PERR# (or saw asserted) on the Secondary bus

• and was the master of the transaction when it occurred

• and the Secondary Parity Error Response bit is set in the BCR.

Fast Back-to-Back Capable - Indicates that the Secondary interface is capable of accepting Fast
Back-to-Back transactions as a target on the Secondary interface

UDF Supported - This indicates that User Definable Features is not supported

66 MHz. Capable - 66 MHz. operation is supported.

Reserved.

14-101

Inte/® 80303 liD Processor
PCI-fo-PCI Bridge Unit int:et
14.15.17 Memory Base Register - MBR

Memory Base Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. The Memory Base Register defines the bottom address (inclusive) of a
memory-mapped I/O address range (non-prefetchable) that is used to determine when to forward
memory transactions from one side of the bridge to the other. The Memory Base Register must be
programmed before the Memory Space Enable bit of the Primary Command Register (PCR) is set.
The upper 12 bits correspond to AD[31:20] of 32-bit addresses. For the purposes of address
decoding, the bridge assumes that AD[19:0], the lower 20 address bits of the memory base address,
are zero. This means that the bottom of the defined address range will be aligned on a 1 Mbyte
boundary.

The VGA Enable bit in the BCR register forces the bridge to forward memory accesses in the
address range from OAOOOOH to OBFFFFH from the Primary to Secondary and blocks addresses in
the same range from Secondary to Primary.

Table 14-40. Memory Base Register - MBR

lOP [
Attribllt~ ... ~

PC! [
/\ttrii!ute':"

PCI Configuration Offset

20 - 21 H

Intel® i960® Core Local Bus Address

00001020H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:04 OOOH

03:00 OH

14-102

NA = Not Accessible

Description

Memory Base Address - This field is programmed with AD[31 :20] of the bottom of the memory address
range to be passed down the hierarchy by the bridge.

Reserved.

Developer's Manual

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.18 Memory Limit Register - MLR

Memory Limit Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. The Memory Limit Register defines the upper address (inclusive) of the
memory-mapped I/O address range (non-prefetchable) that is used to determine when to forward
memory transactions from one side of the bridge to the other. The Memory Limit Register must be
programmed to a value greater than or equal to the MBR before the Memory Space Enable bit of
the Primary Command Register is set. The upper 12 bits correspond to AD[31:20] of 32-bit
addresses. For the purposes of address decoding, the bridge assumes that AD[19:0], the lower
20 bits of the memory limit address, are FFFFFH. This forces a 1 Mbyte granularity on the
memory address range.

The VGA Enable bit in the BCR register forces the bridge to forward memory accesses in the
address range from OAOOOOH to OBFFFFH from the Primary to Secondary and blocks addresses in
the same range from Secondary to Primary.

Table 14-41. Memory Limit Register - MLR

lOP [
Attribule,

PCI Configuration Offset

22 - 23H

Intel® i960® Core Local Bus Address

00001022H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:04 OOOH

03:00 OH

Developer's Manual

NA = Not Accessible

Description

Memory Limit Address - This field is programmed with AD[31 :20] of the top of the memory address
range to be passed down the hierarchy by the bridge,

Reserved.

14-103

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.19 Prefetchable Memory Base Register - PMBR

The Prefetchable Memory Base Register defines the bottom address (inclusive) of a prefetchable
memory address range that is used to determine when to forward memory transactions from one
side of the bridge to the other. The Prefetchable Memory Base Register must be programmed
before the Memory Space Enable bit of the Primary Command Register (PCR) is set. The upper
12 bits correspond to AD[31:20] of 32-bit addresses. For the purposes of address decoding, the
bridge assumes that AD[19:0], the lower 20 address bits of the memory base address, are zero.
This means that the bottom of the defined address range will be aligned on a 1 Mbyte boundary.

The VGA Enable bit in the BCR register forces the bridge to forward memory accesses in the
address range from OAOOOOH to OBFFFFH from the Primary to Secondary and blocks addresses in
the same range from Secondary to Primary.

Table 14-42. Prefetchable Memory Base Register - PMBR

lOP [
Attribute,

PCI[
Attribut~'

PCI Configuration Offset

24 - 25H

Intel® i960® Core Local Bus Address

00001024H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:04 OOOH

03:00 OH

14-104

NA = Not Accessible

Description

Prefetchable Memory Base Address - This field is programmed with AD[31 :20] of the bottom of the
memory address range to be passed down the hierarchy by the bridge.

Reserved.

Developer's Manual

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.20 Prefetchable Memory Limit Register - PMLR

The Prefetchable Memory Limit Register defines the upper address (inclusive) of a prefetchable
memory address range that is used to determine when to forward memory transactions from one
side of the bridge to the other. The Prefetchable Memory Limit Register must be programmed to a
value greater than or equal to the PMBR before the Memory Space Enable bit of the Primary
Command Register is set. If the value in the PMLR is not greater than or equal to the value of the
PMBR once the Memory Space Enable bit is set, memory transactions on either side of the bridge
will be indeterminate. The upper 12 bits correspond to AD[31:20] of 32-bit addresses. For the
purposes of address decoding, the bridge assumes that AD[19:0], the lower 20 bits of the memory
limit address, are FFFFFH. This forces a 1 Mbyte granularity on the memory address range.

The VGA Enable bit in the BCR register forces the bridge to forward memory accesses in the
address range from OAOOOOH to OBFFFFH from the Primary to Secondary and blocks addresses in
the same range from Secondary to Primary.

Table 14-43. Prefetchable Memory Limit Register - PMLR

lOP [
Attrjbute-:<.,

PCI [
Attribl.!tl'~

PCI Configuration Offset

26 - 27H

Intel® i960® Core Local Bus Address

00001026H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:04 OOOH

03:00 OH

Developer's Manual

NA = Not Accessible

Description

Prefetchable Memory Limit Address - This field is programmed with AD[31 :20] of the top of the memory
address range to be passed down the hierarchy by the bridge.

Reserved.

14-105

Intel® 80303 liD Processor
PCI-fo-PCI Bridge Unit intel·
14.15.21 Capabilities Pointer Register - Cap_Ptr

The Capabilities Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register provides an offset for the PCI Configuration Space in this function, for
the location of the first item in the Capabilities linked list. In the case of the 80303 I/O processor,
this is the PCI Bus Power Management extended capability as defined by the PCI Bus Power
Management Interface Speciji"cation, Revision 1.1.

Table 14-44. Capabilities Pointer Register - Cap_Ptr

7 -i (I

lOP [
Attribuic-s 1,/,1,,/,/0/ 0/'/';

PCI [
Anribmc, \{,\o\~tJX{10\O \0\0\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

34H 00001034H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 68H
Capability List Pointer - This provides an offset for the configuration space in this function, that points to
the 80303 I/O processor PCI Bus Power Management extended capability.

14-106 Developer's Manual

int'et Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.22 Bridge Control Register - BeR

Bridge Control Register bits provide extensions to the Command Register that are specific to
PCI-to-PCl bridges. The Bridge Control Register provides many of the same controls for the
Secondary interface that are provided by the Command register for the Primary interface. Some
bits affect the operation of both interfaces of the bridge.

Table 14-45. Bridge Control Register - BCR (Sheet 1 of 2)

lOP [
Attl"ibute~

PC! [
Attributc-

PCI Configuration Offset

3E - 3FH

Intel® i960® Core Local Bus Address

0000103EH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:12 00002

11 O2

10 O2

09 O2

08 O2

07 O2

06

Developer's Manual

NA = Not Accessible

Description

Reserved.

Discard Timer SERR# Enable - This bit enables the assertion of P _SERR# for all discard timers. A value
of 0 indicates that P _SERR# is not asserted when any discard timer expires. A value of 1 indicates that
P _SERR# is asserted (if enabled in the PCR) when a discard timer expires.

Discard Timer Status - This bit indicates the status of the discard timers. A value of zero indicates that no
discard timers have expired. A value of 1 indicates that at least one of the eight discard timers has
expired.

Secondary Discard Timer Value - This bit controls the time-out value for the four discard timers attached
to the queues holding data for transactions initiated on the Secondary bus. A value of zero indicates the
time-out value is 215 clocks. A value of 1 indicates the time-out value is 210 clocks.

Primary Discard Timer Value - This bit controls the time-out value for the four discard timers attached to
the queues holding data for transactions initiated on the Primary bus. A value of 0 indicates the time-out
value is 215 clocks. A value of 1 indicates the time-out value is 210 clocks.

Fast Back to Back Enable - This Secondary interface does not perform fast back to back transactions.

Secondary Bus Reset - This bit controls the Secondary bus S_RST# signal. When set:

• The PCHo-PCI Bridge Unit will reset all upstream and downstream Transaction Queues and Data
Queues as well as the Secondary PCI bus interface. The Bridge PCI configuration registers are not
reset. The Primary PCI bus interface will retry all transactions, except Type 0 configuration
transactions, until this bit is cleared.

• DMA Channel 2 will immediately halt any PCI transactions and gracefully complete any local bus
transactions. It will then return to an idle state. DMA Channel 2 will not begin any new transfers until
the Secondary Bus Reset bit is cleared.

• Secondary ATU will immediately halt any PCI transactions and gracefully complete any local bus
transactions. The i960 core processor will be released from back-off, if necessary. The Secondary
ATU will not accept any new i960 core processor requests until the Secondary Bus Reset bit is
cleared. The Secondary ATU configuration registers are reset.

• An interrupt may be sent to the core processor based upon the setting of bit 3 in the SDER.

When this bit is cleared, the S_RST# Signal is deasserted. The software must clear this bit.

14-107

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit int:et
Table 14-45. Bridge Control Register - BCR (Sheet 2 of 2)

lor [
1~!{ribUlt~S

pel [
Attrit>ule,

PCI Configuration Offset

3E - 3FH

Intel® i960® Core Local Bus Address

0000103EH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

05

04

03

02

01

00

14-108

NA = Not Accessible

Description

Master Abort Mode - This bit controls the bridge functionality whenever a Master-Abort termination
occurs on either interface for transactions in which the bridge is the slave.

When clear, reads will return all ones (32-bit or 64-bit depending on the PCI bus size of the initiating
master and in the 64-bit bus case on REQ64#/ACK64#) and write data will be accepted by the bridge
and discarded.

When set, the bridge will signal a Master-Abort to the requesting master when the corresponding
transaction on the other side of the bridge terminates with a Master-Abort and the transaction has not
yet been concluded (reads and non-posted writes). When the bit is set and the transaction on the
requesting interface has completed (posted writes) then the bridge must assert P _SERR# on the
Primary interface (providing enabled in the PCR).

Reserved.

VGA Enable - Modifies the bridge response to VGA compatible addresses. When set to a '1', this bit
indicates that a VGA device is on the Secondary PCI bus. Therefore, the bridge positively decodes and
forwards the following transactions downstream regardless of the value of the MBRlMLR, PMBR/PMLR,
and 10BRIIOLR registers.

Memory transactions addressing: OOOAOOOOh-OOOBFFFFh

I/O transactions addressing: 3BOh-3BBh and 3COh-3DFh

In addition, the Secondary address decoder will block the forwarding of these I/O and Memory
transactions from Secondary to Primary.

When set to '0' the bridge will not forward VGA compatible memory and I/O addresses from the
Secondary to the Primary PCI interface unless they are enabled for forwarding by the defined I/O and
memory address ranges.

ISA Enable - This bit modifies the bridges response to ISA I/O addresses. This only applies to I/O
addresses that are defined by the bridge in 10BR and 10LR and are also in the first 64 Kbytes of PCI
address space (OOOO.OOOOH - OOOO.FFFFH)

When set, the bridge will not forward from Primary to Secondary and I/O transactions addressing the
last 768 bytes in each 1 Kbyte block. In the opposite direction, I/O transactions will be forwarded up the
bridge if the address the last 768 bytes in each 1 Kbyte block.

Secondary SERR# Enable - This bit controls the forwarding of Secondary interface S_SERR#
assertions to the Primary interface. When this bit is set, If the SERR# Enable bit in the PCR register is
set and the bridge detects the assertion of S_SERR# on the Secondary bus, it will then assert P _SERR#
on the Primary interface. When dear, S_SERR# assertions are not forwarded to the Primary interface.

Secondary Parity Error Response Enable - This bit controls the response to parity errors on the
Secondary interface. If this bit is clear, all address and data parity errors on the Secondary interface will
be ignored. If this bit is set, detection and reporting of all parity errors on the Secondary interface is
enabled. Correct parity must be generated even when parity error reporting is disabled.

Developer's Manual

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.23 Extended Bridge Control Register - EBCR

The Extended Bridge Control Register controls the extended functionality the bridge implements
over the base PC/-to-PCI Bridge Architecture Specification, Revision 1.1.

Table 14-46. Extended Bridge Control Register - EBCR (Sheet 1 of 2)

lOP [
Attribute"

PCI [
Attrihut(''-,

PCI Configuration Offset

40 - 41 H

Intel® i960® Core Local Bus Address

00001040H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

15:13 Reserved.

12

Varies with
external state Secondary Bus Operating at 66 MHz - When set, the Secondary interface has been initialized to

11 of S_M66EN function at 66 MHz by the assertion of S_M66EN during bus initialization. When clear, the Secondary
at Secondary interface has been initialized as a 33 MHz bus.
PCI bus reset

Varies with
external state Primary Bus Operating at 66 MHz - When set, the Primary interface has been initialized to function at

10 of P _M66EN 66 MHz by the assertion of P _M66 EN during bus initialization. When clear, the Primary interface has
at Primary been initialized as a 33 MHz bus.

09

08

07

06

PCI bus reset

Varies with
external state

of
S_REQ64#

at Secondary
PCI bus reset

Varies with
external state

of
P REQ64#
at Primary

PCI bus reset

Developer's Manual

Secondary PCI Bus 64-Bit Capable - When clear, the Secondary PCI bus interface has been configured
as 64-bit capable by the assertion of S_REQ64# on the rising edge of S_RST#. When set, the
Secondary PCI interface is configured as 32-bit only.

Primary PCI Bus 64-Bit Capable - When clear, the Primary PCI bus interface has been configured as
64-bit capable by the assertion of P _REQ64# on the rising edge of P _RST#. When set, the Primary PCI
interface is configured as 32-bit only.

Reserved.

Secondary DAC Medium Decode Enable - When set, DAC cycles on the Secondary PC I interface of the
bridge will be claimed by the bridge and forwarded to the Primary PCI interface with medium decode
timing. When clear, all DAC cycles on the Secondary PCI interface will be claimed with subtractive
decode timing and forwarded to the Primary PCI interface.

14-109

Inte!@ 80303 110 Processor
PCI-to-PCI Bridge Unit

Table 14-46. Extended Bridge Control Register - EBCR (Sheet 2 of 2)

lOP [
Attrihuk': ...

PC! [
Allribui.e-,

PCI Configuration Offset

40 - 41 H

Intel® i960® Core Local Bus Address

00001040H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

05

04 O2

03 12

Varies with
external state

02 of RETRY pin
at Primary

PCI bus reset

Varies with
external state

01
of

RST MODE#
pin at Primary
PCI bus reset

00 O2

14-110

NA = Not Accessible

Description

Reset Internal Bus - This bit controls the reset of the i960 core processor and all units on the internal
bus. When set:

The PCI-to-PCI Bridge Unit is not reset. Upstream and downstream bridge I/O and memory transactions are
unaffected during the IB reset.

All current PCI transactions being mastered by the ATU and DMA will complete, and the ATU and DMA
master interfaces will proceed to an idle state. No additional transactions will be mastered by these units until
the IB reset is complete.

All current transactions being slaved by the ATU on either the PCI bus or the internal bus will complete. and
the ATU slave interfaces will proceed to an idle state. All future slave transactions will master abort, with the
exception of the completion cycle for the transaction that set the Reset Internal Bus bit in the EBCR.

If the value of the Core Processor Reset bit in the EBCR (upon normal reset) is set, the i960 core processor
will be held in reset when the IB reset is complete.

The Bridge and the ATU will ignore configuration cycles, and they will appear as master aborts for: 32
Internal Bus clocks + the number of Internal Bus clocks needed to finish all ATU and DMA transactions that
will complete before the IB reset (as described in the above text).

The 80303 I/O processor hardware will clear this bit after the reset operation completes.

Reserved.

Upstream Prefetchable Memory Enable - When this bit is set, the Bridge assumes that upstream
Memory Read commands are to prefetchable memory. When this bit is clear, the Bridge assumes that
upstream Memory Read commands are to non-prefetchable memory. (Modifying this bit, while the
bridge is enabled may cause unknown behavior.)

Configuration Cycle Retry - When this bit is set, the Primary PCI interface of the 80303 I/O processor
will respond to all configuration cycles with a Retry condition. When clear, the 80303 I/O processor will
respond to the appropriate configuration cycles.

The default condition for this bit is based on the external state of the RETRY pin at the rising edge of
P _RST#. If the external state of the pin is high, the bit is set. If the external state of the pin is low, the bit
is cleared.

Core Processor Reset - This bit is set to its default value by the hardware when either P _RST# is
asserted or the Reset Local Bus bit in the EBCR is set. When this bit is set, the i960 core processor is
being held in reset. Software cannot set this bit. Software will be required to clear this bit to deassert
i960 processor reset.

The default condition for this bit is based on the external state of the RST _MODE# pin at the rising edge
of P _RST#. If the external state of the pin is low, the default value of this bit is set. If the external state of
the pin is high, the default value of this bit is clear.

Posting Disable - If this bit is set, the bridge is not allowed to post write transactions from either bridge
interface. All memory write transactions are processed as Delayed Write transactions. If this bit is clear,
the bridge is allowed to post write transactions. (Modifying this bit, while the bridge is enabled may
cause unknown behavior.)

Developer's Manual

in1et
14.15.24 Secondary IDSEL Select Register - SISR

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit

The Secondary IDSEL Select Register controls the usage of S_AD[2S:16] in Type 1 to Type 0
conversions from the Primary to Secondary interface. In default operation, a unique encoding on
Primary addresses P _ AD[lS: 11] results in the assertion of one bit on the Secondary address bus
S_AD[31:16] during a Type 1 to Type 0 conversion (See Section 14.4.2.). This is used for the
assertion of IDSEL on the device being targeted by the Type 0 configuration command. This
register allows Secondary address bits S_AD[2S:16] to be used to configure private PCI devices by
forcing Secondary address bits S AD[2S:16] to all zeros during Type 1 to Type 0 conversions,
regardless of the state of Primary-addresses P _ AD[lS: 11] (device number in Type 1 configuration
command).

If any address bit within S_AD[2S:16] is to be used for private Secondary PCI devices, the i960
core processor must guarantee that the corresponding bit in the SISR register is set before the host
tries to configure the hierarchical PCI buses.

Table 14-47. Secondary IDSEL Select Register - SISR (Sheet 1 of 2)

lOP [
AHribute~

PCI [
/\1tribute<.

PCI Configuration Offset

42 - 43H

Intel® i960® Core Local Bus Address

00001042H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

15:10 0000002 Reserved.

AD16 - IDSEL Disable - When this bit is set, AD16 will be deasserted for any possible Type 1 to Type 0
09 O2 conversion. When clear, AD16 will be asserted when Primary addresses AD[1S:11] = 000002 during a

Type 1 to Type 0 conversion.

AD17 - IDSEL Disable - When this bit is set, AD17 will be deasserted lor any possible Type 1 to Type 0
08 O2 conversion. When clear, AD17 will be asserted when Primary addresses AD[1S:11] = 00001 2 during a

Type 1 to Type 0 conversion.

AD18 - IDSEL Disable - When this bit is set, AD18 will be deasserted for any possible Type 1 to Type 0
07 O2 conversion. When clear, AD18 will be asserted when Primary addresses AD[1S:11] = 000102 during a

Type 1 to Type 0 conversion.

AD19 - IDSEL Disable - When this bit is set, AD19 will be deasserted lor any possible Type 1 to Type 0
06 O2 conversion. When clear, AD19 will be asserted when Primary addresses AD[1S:11] = 00011 2 during a

Type 1 to Type 0 conversion.

AD20 - IDSEL Disable - When this bit is set, AD20 will be deasserted for any possible Type 1 to Type 0
05 O2 conversion. When clear, AD20 will be asserted when Primary addresses AD[1S:11] = 001002 during a

Type 1 to Type 0 conversion.

AD21 - IDSEL Disable - When this bit is set, AD21 will be deasserted for any possible Type 1 to Type 0
04 O2 conversion. When clear, A021 will be asserted when Primary addresses AO[1S:11] = 00101 2 during a

Type 1 to Type 0 conversion.

AD22 - IDSEL Disable - When this bit is set, A022 will be deasserted for any possible Type 1 to Type 0
03 O2 conversion. When clear, A022 will be asserted when Primary addresses AD[1S:11] = 001102 during a

Type 1 to Type 0 conversion.

Developer's Manual 14-111

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

Table 14-47. Secondary IDSEL Select Register - SISR (Sheet 2 of 2)

PCI Configuration Offset

42 - 43H

]5 12

lor' [
Attribu""

f'C! [
Allribute,

Intel® i960® Core Local Bus Address

00001042H

Bit Default Description

<1 lJ

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

in1:et

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

AD23 - IDSEL Disable - When this bit is set, AD23 will be deasserted for any possible Type 1 to Type 0
02 O2 conversion. When clear, AD23 will be asserted when Primary addresses AD[15:11] = 00111 2 during a

Type 1 to Type 0 conversion.

AD24- IDSEL Disable - When this bit is set, AD24 will be deasserted for any possible Type 1 to Type 0
01 O2 conversion. When clear, AD24 will be asserted when Primary addresses AD[15:11] = 010002 during a

Type 1 to Type 0 conversion.

AD25- IDSEL Disable - When this bit is set, AD25 will be deasserted for any possible Type 1 to Type 0
00 O2 conversion. When clear, AD25 will be asserted when Primary addresses AD[15:11] = 01001 2 during a

Type 1 to Type 0 conversion.

14-112 Developer's Manual

intel·
14.15.25

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Primary Bridge Interrupt Status Register - PBISR

The Primary Bridge Interrupt Status Register notifies the i960 core processor of the source of a
Primary Bridge interface interrupt. In addition, this register is written to clear the source of the
interrupt to the interrupt unit of the 80303 I/O processor (see Section 8.4, "Intel® 80303 I/O
Processor Interrupts" on page 8-21). All bits in this register are Read Only from PCI and
Read/Clear from the local bus.

Bits 5:0 are a direct reflection of bits 15: 11 and bit 8 (respectively) of the Primary Status Register
(these bits are set at the same time by hardware but need to be cleared independently). The
conditions that result in a Primary Bridge interrupt to the core processor are cleared by writing a
"1" to the appropriate bits in this register.

The individual setting of the bits within the PBISR can be masked through the bits 10:6, bit 4 and
bit 1 of the SDER. Refer to Section 14.15.34 for details.

Table 14-48. Primary Bridge Interrupt Status Register - PBISR

lOP [
Attributes

PCI [
Auribmc"

PCI Configuration Offset

44 - 47H

Intel® i960® Core Local Bus Address

00001044H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

31 :07 OOOOOOOH Reserved.

Power State Transition - When the Power State Field of the Power Management Control/Status Register
06 O2 is written to transition the Bridge function Power State from either D3 to DO or DO to D3 and the Power

State Transition Interrupt mask is cleared, this bit is set.

05

04

03

02

01

00

Developer's Manual

Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the Primary
bus even if parity handling is disabled. Set under the following conditions:

• Write Data Parity Error when the Primary interface of the Bridge is a slave (downstream write).

• Read Data Parity Error when the Primary interface of the Bridge is a master (upstream read).

• Any Address Parity Error on the Primary Bus (including one generated by the Primary interface of
the Bridge).

P _SERR# Asserted - This bit is set if P _SERR# is asserted on the Primary PCI bus.

PCI Master Abort - This bit is set whenever a transaction initiated by the Primary master interface ends
in a Master-Abort.

PCI Target Abort (Master) - This bit is set whenever a transaction initiated by the Primary master
interface ends in a Target-Abort.

PCI Target Abort (Target) - This bit is set whenever the Primary interface, acting as a target, terminates
the transaction on the PCI bus with a Target-Abort.

PCI Master Parity Error - The Primary interface sets this bit when three conditions are met:
1. the bus agent asserted P _PERR# itself or observed P _PERR# asserted
2. the agent setting the bit acted as the bus master for the operation in which the error occurred
3. the Parity Checking Enable bit (PCR Register) is set

14-113

Intel® 80303 //0 Processor
PC/-to-PCI Bridge Unit int:et
14.15.26 Secondary Bridge Interrupt Status Register - SBISR

The Secondary Bridge Interrupt Status Register notifies the i960 core processor of the source of a
Secondary Bridge interface interrupt. In addition, this register is written to clear the source of the
interrupt to the interrupt unit of the 80303 I/O processor (see Section 8.4, "Intel® 80303 I/O
Processor Interrupts" on page 8-21). All bits in this register are Read/Clear from the PCI bus and
the local bus.

Bits 5:0 are a direct reflection of bits 15:11 and bit 8 (respectively) of the Secondary Status
Register (these bits are set at the same time by hardware but need to be cleared independently).
Bit 6 is set when software sets and subsequently clears the Secondary Bus Reset bit in the BCR.
The conditions that result in a Secondary Bridge interrupt are cleared by writing a "1" to the
appropriate bits in this register.

The individual setting of the bits within the SBISR can be masked through the bits 3, 15:11, and 5
of the SDER. Refer to Section 14.15.34 for details.

Table 14-49. Secondary Bridge Interrupt Status Register - SBISR

lOP [
AHribule,

PCI [
Allribules

PCI Configuration Offset

48 - 4BH

Intel® i960® Core Local Bus Address

00001048H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:07 OOOOOOOH

06

05

04

03

02

01

00

14-114

NA = Not Accessible

Description

Reserved.

Secondary Bus Reset Occurred - This bit is set when the bridge senses the deassertion (by software
only) of bit 6, Secondary Bus Reset, in the BCR.

Detected Parity Error - This bit is set when a parity error is detected during a data transfer on the
Secondary bus even if parity handling is disabled. Set under the following conditions:

• Write Data Parity Error when the Secondary interface of the Bridge is a slave (upstream write).

• Read Data Parity Error when the Secondary interface of the Bridge is a master (downstream read).

• Any Address Parity Error on the Secondary Bus (including one generated by the Secondary
interface of the Bridge).

Received System Error - This bit is set if S_SERR# is detected on the Secondary PCI bus.

PCI Master Abort - This bit is set whenever a transaction initiated by the Secondary master interface
ends in a Master-Abort.

PCI Target Abort (Master) - This bit is set whenever a transaction initiated by the Secondary master
interface ends in a Target-Abort.

PCI Target Abort (Target) - This bit is set whenever the Secondary interface, acting as a target,
terminates the transaction on the PCI bus with a Target-Abort.

PCI Master Parity Error - The Secondary interface sets this bit when three conditions are met:
1. the bus agent asserted S_PERR# itself or observed S_PERR# asserted
2. the agent setting the bit acted as the bus master for the operation in which the error occurred
3. the Secondary Parity Error Response bit (BCR Register) is set

Developer's Manual

int:et intei@ 80303 liD Processor
PCI-to-PCI Bridge Unit

14.15.27 Secondary Arbitration Control Register - SACR

Refer to Section 17.6.1, "Secondary Arbitration Control Register - SACR" on page 17-14 for a
description of the Secondary Arbitration Control Register.

14.15.28 PCllnterrupt Routing Select Register - PIRSR

Refer to Section 8.7.4, "PCl lntenupt Routing Select Register - PIRSR" on page 8-41 for a
description of the PCl lntenupt Routing Select Register.

Developer's Manual 14-115

Intel® 80303 110 Processor
PCI-ta-PCI Bridge Unit

14.15.29 Secondary 1/0 Base Register - SIOBR

Secondary I/O Base Register bits are used when the Secondary PCI interface is enabled for private
addressing. The Secondary I/O Base Register defines the bottom address (inclusive) of a positively
decoded address range that is used to determine when to not forward I/O transactions from the
Secondary interface to the Primary interface of the bridge. It must be programmed with a valid
value before the Private Address Space Enable bit is set. The bridge only supports 16-bit
addressing which is indicated by a value of OH in the four least significant bits of the register. The
upper 4 bits are programmed with S_AD[15:12] for the bottom of the address range. S_AD[11:0]
of the base address is always OOOH forcing the Secondary I/O address range to be 4 Kbyte aligned.

For the purposes of address decoding, the bridge assumes that S _ AD[31:16], the upper 16 address
bits of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits
of address per PCI Local Bus Specification and check that the upper 16 bits are equal to OOOOH.

Table 14-50. Secondary 1/0 Base Register -.SIOBR

7 4 (I

lOP [
AllJ'ibuks frwlv/rw/w/rofo/o/ro/

PC] [
Attribules \w'r'xw\w\ro \ro \r\ro \

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = ReadlWrite

54H 00001054H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

Secondary lID Base Address - This field is programmed with S_AD[15:12] of the bottom of the private
07:04 OH Secondary lID address range not passed from the Secondary to the Primary side of the bridge due to a

private I/O range.

03:00 OH 110 Addressing Capability - The value of OH signifies that the bridge only supports 16-bit 110 addreSSing.

14-116 Developer's Manual

intet Inte/@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.30 Secondary 1/0 Limit Register - SIOLR

Secondary I/O Limit Register bits are used when the Secondary PCI interface is enabled for private
address decoding. The Secondary I/O Limit Register defines the upper address (inclusive) of a
decoded Secondary address range that is used to determine when to not forward I/O transactions
from the Secondary to Primary interface of the bridge. The bridge only supports 16-bit addressing
which is indicated by a value of OH in the four least significant bits of the register. The upper 4 bits
are programmed with S _ AD[lS:12] for the top of the address range. S _AD[11:0] of the base
address is always FFFH forcing a 4 Kbyte I/O range granularity.

For the purposes of address decoding, the bridge assumes that S_AD[31:16], the upper 16 address
bits of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits
of address per PCI Local Bus Specification and check that the upper 16 bits are equal to OOOOH.

Table 14-51. Secondary 1/0 limit Register - SIOLR

'7 ·f ()

101' [
AHrihllit'.'< /v/,/wjw/,/o/,/oJ

FC! [
/\.tLribute~ \wx,,\w\r\"Xoyoy,,\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

55H 00001055H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:04 OH
Secondary 1/0 Limit Address - This field is programmed with S_AD[1S:12] of the top of the private 1/0
address range not passed from the Secondary to Primary interface.

03:00 OH
Secondary 110 Addressing Capability - The value of OH signifies that the bridge only supports 16-bit I/O
addressing.

Developer's Manual 14-117

Intel@ 80303 I/O Processor
PCI-to-PCI Bridge Unit in1:et
14.15.31 Secondary Clock Disable Register - SCDR

The BDG unit provides six Secondary PCI output clocks (S _ CLKOUT[5:0]). Upon assertion of
P _ RST#, all of the six secondary output clocks are enabled.

The Secondary Clock Disable Register provides the ability to selectively disable unused secondary
output clocks following deassertion of P _ RST#.

Table 14-52. Secondary Clock Disable Register - SCDR

7 -+ (I

lOP [
Anribmc, l..l I I "'lrw! ." l' 1 1

PCI [
AUribule, . \TW\ \rw\w\'Jw\

PCI Configuration Offset Intel@ i960® Core Local Bus Address Attribute Legend: RW = Read/Write

56H 00001056H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:06 0°2 Reserved.

05 O2
Disable S_CLKOUT5 -- When set, this bit disables the operation of the S_CLKOUT5 secondary clock
output. Instead of toggling, the output will be driven to logic O.

04 °2
Disable S_CLKOUT4 -- When set, this bit disables the operation of the S_CLKOUT4 secondary clock
output. Instead of toggling, the output will be driven to logic O.

03 °2
Disable S_CLKOUT3 -- When set, this bit disables the operation of the S_CLKOUT3 secondary clock
output. Instead of toggling, the output will be driven to logic O.

02 O2
Disable S_CLKOUT2 -- When set, this bit disables the operation of the S_CLKOUT2 secondary clock
output. Instead of toggling, the output will be driven to logic O.

01 O2
Disable S_CLKOUT1 -- When set, this bit disables the operation of the S_CLKOUT1 secondary clock
output. Instead of toggling, the output will be driven to logic O.

00 O2
Disable S_CLKOUTO -- When set, this bit disables the operation of the S_CLKOUTO secondary clock
output. Instead of toggling, the output will be driven to logic O.

14-118 Developer's Manual

in1et
14.15.32

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Secondary Memory Base Register - 5MBR

Secondary Memory Base Register bits are used to define a private address space on the Secondary
PCI bus if the Private Address Space Enable bit in the SDER is set. The Secondary Memory Base
Register defines the bottom address (inclusive) of a memory-mapped address range that is used to
determine when to not forward transactions from the Secondary to Primary interface. The
Secondary Memory Base Register must be programmed with a valid value before the Private
Address Space Enable bit in the SDER is set. The upper 12 bits correspond to S_AD[31:20] of
32-bit addresses. For the purposes of address decoding, the bridge assumes that S_AD[19:0], the
lower 20 address bits of the memory base address, are zero. This means that the bottom of the
defined address range will be aligned on a 1 Mbyte boundary.

Table 14-53. Secondary Memory Base Register - 5MBR

PCI Configuration Offset

58 - 59H

lOP [
Attribute~

PCl [
Anribn!",

Intel® i960® Core Local Bus Address

00001058H

Bit Default Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Secondary Memory Base Address - This field is programmed with S_AD[31 :20] of the bottom of the
15:04 OOOH Secondary memory address range that is not passed from the Secondary to Primary interface when

private address space is enabled.

03:00 OH Reserved.

Developer's Manual 14-119

Inte/® 80303 I/O Processor
PCI-to-PCI Bridge Unit in1'et
14.15.33 Secondary Memory Limit Register - SMLR

Secondary Memory Limit Register bits are used when the Secondary interface of the bridge unit is
enabled for private address decoding. The Secondary Memory Limit Register defines the upper
address (inclusive) of a memory-mapped address range that is used to determine when to not
forward transactions from the Secondary to Primary interface. The Secondary Memory Limit
Register must be programmed to a value greater than or equal to the 5MBR before private address
space is enabled. If the value in the SMLR is not greater than or equal to the value of the 5MBR
once the Private Address Enable bit is set, the private address range is indeterminate and will not
function. The upper 12 bits correspond to S _ AD[31:20] of 32-bit addresses. For the purposes of
address decoding, the bridge assumes that S_AD[19:0], the lower 20 address bits of the Secondary
memory base address, are FFFFFH. This forces a 1 Mbyte granularity on the memory address
range.

Table 14-54. Secondary Memory Limit Register - SMLR

PCI Configuration Offset

5A - 5BH

101' [
Attributes

PC! [
Attribute:.,

Intel® i960® Core Local Bus Address

0000105AH

Bit Default Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Secondary Memory Limit Address - This field is programmed with S_AD[31 :20] of the top of the
15:04 OOOH Secondary memory address range that is not forwarded from Secondary to Primary side due to a private

address space.

03:00 OH Reserved.

14-120 Developer's Manual

infel· Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.34 Secondary Decode Enable Register - SDER

The Secondary Decode Enable Register has two separate functions. It is used to control the address
decode functions on the Secondary PCI interface of the bridge unit and in addition contains the
control bits capable of masking the Primary and Secondary bridge interface interrupt sources to the
i960 core processor.

The Private Memory Space Enable bit allows a private memory and I/O space to be created on the
Secondary PCI bus. This bit is used in conjunction with the 5MBR/SMLR and the SIOBR/SIOLR
registers. If this bit is set, transactions with addresses within the memory and I/O address ranges
are ignored by the bridge. It also disables Secondary positive decode.

The interrupt mask bits are responsible for masking interrupt conditions to the Primary and
Secondary Bridge Interrupt Status Registers (PBISR and SBISR). Masking the bits in the PBISR
and SBISR prevents the setting of the Primary Bridge PCI Interface Error Interrupt Bit and the
Secondary Bridge PCI Interface Error Bit in the NMI Interrupt Status Register (see Chapter 8, "PCI
and Peripheral Interrupt Controller Unit". The setting of a mask bit means that an error condition
which results in the setting of an error response bit in the PSR or SSR does not set the
corresponding bit in the PBISR or SBISR.

Table 14-55. Secondary Decode Enable Register - SDER (Sheet 1 of 2)

15 "12 X "'
n

lOP [
AttribuK':-' lfRj / I flllIll II·

PCI [
Attribut(';... \w\w\\\\\w\ \wx·1\r\ \ \.

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

5C - 5DH 0000105CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

S_SERR# Detected Interrupt Mask - When set, detecting S_SERR# on the Secondary interface
15 12 resulting in bit 14 of the SSR being set will not result in bit 4 of the SBISR being set. When clear, an error

that sets bit 14 of the SSR will cause bit 4 of the SBISR to be set

Secondary PCI Master Abort Interrupt Mask - When set, a master abort error resulting in bit 13 of the
14 12 SSR being set will not result in bit 3 of the SBISR being set. When clear, an error that sets bit 13 of the

SSR will cause bit 3 of the SBISR to be set.

Secondary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting in bit 12 of
13 12 the SSR being set will not result in bit 2 of the SBISR being set. When clear, an error that sets bit 12 of

the SSR will cause bit 2 of the SBISR to be set.

Secondary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error resulting in bit 11 of
12 12 the SSR being set will not result in bit 1 of the SBISR being set. When clear, an error that sets bit 11 of

the SSR will cause bit 1 of the SBISR to be set.

Secondary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in bit 8 of the SSR
11 12 being set will not result in bit 0 of the SBISR being set. When clear, an error that sets bit 8 of the SSR will

cause bit 0 of the SBISR to be set.

P _SERR# Asserted Interrupt Mask - When set, detecting or asserting P _SERR# on the Primary
10 12 interface resulting in bit 14 of the PSR being set will not result in bit 4 of the PBISR being set. When

clear, an error that sets bit 14 of the PSR will cause bit 4 of the PBISR to be set

Developer's Manual 14-121

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit

Table 14-55. Secondary Decode Enable Register - SDER (Sheet 2 of 2)

15 ! :: ~ ~ (I

lOP [
Attribuk'_" l../,Jwf, I / I~!lrw/v/w/lw/w r!

FCI [
AttributC",,> \w\~ '\ \~\w\w\ \ \- \wX"\ \' \

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

5C - 50H 0000105CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

Primary PCI Master Abort Interrupt Mask - When set, a master abort error resulting in bit 13 of the PSR
09 12 being set will not result in bit 3 of the PBISR being set. When clear, an error that sets bit 13 of the PSR

will cause bit 3 of the PBISR to be set.

Primary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting in bit 12 of the
08 12 PSR being set will not result in bit 2 of the PBISR being set. When clear, an error that sets bit 12 of the

PSR will cause bit 2 of the PBISR to be set.

Primary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error resulting in bit 11 of the
07 12 PSR being set will not result in bit 1 of the PBISR being set. When clear, an error that sets bit 11 of the

PSR will cause bit 1 of the PBISR to be set.

Primary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in bit 8 of the PSR
06 12 being set will not result in bit 0 of the PBISR being set. When clear, an error that sets bit 8 of the PSR will

cause bit 0 of the PBISR to be set.

05 12
Secondary Detected Parity Error Bit Interrupt Mask - When set a parity error resulting in bit 15 of the
SSR being set will not result in bit 5 of the SBISR being set.

04 12
Primary Detected Parity Error Bit Interrupt Mask - When set a parity error resulting in bit 15 of the PSR
being set will not result in bit 5 of the PBISR being set.

Secondary Bus Reset Occurred Interrupt Mask - When this bit is set, and the bridge senses the
03 12 deassertion (by software only) of bit 6, Secondary Bus Reset, in the BCR, bit 6 of the SBISR will not be

set.

Private Memory Space Enable - when set, this bit disables Bridge forwarding of addresses in the
02 O2 5MBR/SMLR and SIOBR/SIOLR address ranges. This creates a private memory space on the

Secondary PCI bus that allows peer to peer transactions.

Power State Transition Interrupt Mask - When this bit is set and the Power Management Control/Status
01 12 Register is written to transition the Bridge Function Power State from either DO to 03 or 03 to ~O, bit 6 of

the PBISR is not set.

00 O2 Reserved.

14-122 Developer's Manual

in1:et Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

14.15.35 Queue Control Register - QCR

The Queue Control Register contains programmable parameters affecting operation of the
PCI-to-PCI Bridge Queues.

Table 14-56. Queue Control Register- QCR

lOP [
Attribute\,

PO [
At1ribl!tc~

PCI Configuration Offset

5E - 5FH

Intel® i960® Core Local Bus Address

0000 105EH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:04 OOOH

03

02

01

00

Developer's Manual

NA = Not Accessible

Description

Reserved.

ORC Alias - when set, the bridge does not distinguish read commands in prefetchable address space
when attempting to match a current PCI read transaction with read data enqueued within a DRC buffer.
When clear, a current read transaction must have the exact same read command as the ORR for the
bridge to deliver DRC data. (Modifying this bit, while the bridge is enabled may cause unknown
behavior.)

MWI Alias - when set, the target interface of the bridge treats an MWI as a Memory Write and aliases
the MWI to a Memory Write on the target bus.

Upstream MRL Prefetch Size - when set, the maximum prefetch data size attempted by the Primary
interface of the bridge, as a master, is 128 bytes. When clear, the maximum prefetch size is 32 bytes.
Refer to Table 14-13 for the exact prefetch data sizes during MRL transactions.

Downstream MRL Prefetch Size - when set, the maximum prefetch data size attempted by the
Secondary interface of the bridge, as a master, is 64 bytes. When clear, the maximum prefetch size is
32 bytes. Refer to Table 14-12 for the exact prefetch data sizes during MRL transactions.

14-123

Intel® 80303 110 Processor
PCI-to-PCI Bridge Unit int'et
14.15.36 Capability Identifier Register - Cap_ID

The Capability Identifier Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register in the PCI Extended Capability header identifies the type of Extended
Capability contained in that header. In the case of the 80303 I/O processor, this is the PCI Bus
Power Management extended capability with an ID of OIH as defined by the PCI Bus Power
Management Interface Specification, Revision 1.1.

Table 14-57. Capability Identifier Register - Cap_ID

7 of 0

lOP [
Atl:riblJles lojrojr<,f"/o/,,!lrri

PCI [
Atlribmc, \ro X"\ro \ro\ro \"X(\ro \

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

68H 00001068H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 01H Cap_ld - This field with its 01 H value identifies this item in the linked list of Extended Capability Headers
as being the PCI Power Management Registers.

14-124 Developer's Manual

intel·
14.15.37

Intel® 80303 I/O Processor
PCI-to-PCI Bridge Unit

Next Item Pointer Register - Next_ltem_Ptr

The Next Item Pointer Register bits adhere to the definitions in the PCl Local Bus Speciji'cation,
Revision 2.2. This register describes the location of the next item in the function capability list. For
the 80303 I/O processor, the Power Management Registers are the only Extended Capability
Supported, thus the NexCItem_Ptr is set to OOH, indicating the end of the Capabilities List.

Table 14-58. Next Item Pointer Register - NexUtem_Ptr

7 -+ u

lOP [
Attril:llHe, l,,/,/,Iol,,/,;',j,';

PCI[\ ~,\\,\ \' Auribme., ro\" JX) m no ro\" 1\)\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

69H 00001069H RV = Reserved
PR = Preserved

RC = Read Clear
RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

Nexc Item_ Pointer - This field provides an offset into the function configuration space pointing to the
07:00 OOH next item in the function capability list. Since there are no other Extended Capabilities besides PCI

Power Management in the 80303 I/O processor, the register is set to OOH.

Developer's Manual 14-125

Intel® 80303 110 Processor
PCI-fo-PCI Bridge Unit in1:et
14.15.38 Power Management Capabilities Register - PMCR

Power Management Capabilities bits adhere to the definitions in the PCI Bus Power Management
Interface Specification, Revision 1.1. This register is a 16-bit read-only register which provides
information on the capabilities of the bridge function related to power management.

Table 14-59. Power Management Capabilities Register - PMCR

15 i~ 1-; 4 II

lOP [
Anr_ibute:-; /oj,v/oj"IJro/v/,I/,,/r ''''/0/''/'';

PCI [
A!!ributes \O\\O\O\l)YO\O\O\O\'oX' \0\'\0\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = ReadlWrite

6A-6BH 0000106AH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = ReadlSet NA = Not Accessible

Bit Default Description

15:11 000002
PME_Support - This function is not capable of asserting the PME# signal in any state, since PME# is not
supported by the 80303 1/0 processor, thus the value of PME_Support is set to OOOOOB.

10 O2
Support - This bit is set to O2 indicating that the 80303 1/0 processor does not support the 02 Power
Management State

9 O2
Support - This bit is set to O2 indicating that the 80303 1/0 processor does not support the 01 Power
Management State

Aux_Current - This field is set to 0002 indicating that the 80303 1/0 processor has no current
8:6 0002 requirements for the 3.3Vaux signal as defined in the PCI Bus Power Management Interface

Specification, Revision 1,1

5 O2
OSI- This field is set to O2 meaning that this function will not require a device specific initialization
sequence following the transition to the 00 uninitialized state.

4 O2 Reserved.

3 O2
PME Clock - Since the 80303 1/0 processor does not support PME# signal generation, this value is set
to O2

2:0 0102
Version - Setting these bits to 0102 means that this function complies with PCI Bus Power Management
Interface Specification, Revision 1.1

14-126 Developer's Manual

Intel® 80303 liD Processor
PCI-to-PCI Bridge Unit

14.15.39 Power Management Control/Status Register - PMCSR

Power Management Control/Status bits adhere to the definitions in the PCI Bus Power
Management Interface Specification, Revision 1.1. This 16-bit register is the primary control and
status interface for the power management extended capability.

Table 14-60. Power Management Control/Status Register - PMCSR

101' [
Allrihul~'

PCI[
Attribul'"

PCI Configuration Offset

6C- 60H

Intel® i960® Core Local Bus Address

0000106CH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15

14:9 OOH

8

7:2 0000002

1 :0

Developer's Manual

NA = Not Accessible

Description

PME_Status - This function is not capable of asserting the PME# signal in any state, since PME# is not
supported by the 80303 I/O processor, thus the value of PME_Status is set to O2 and is read-only.

Reserved.

PME_En - This bit is hardwired to read-only O2 since this function does not support PME# generation
from any power state.

Reserved.

Power State - This 2-bit field is used both to determine the current power state of a function and to set
the function into a new power state. The definition of the values is:

002 - 00

01 2 - 01 (Unsupported)

102 - 02 (Unsupported)

112 - 03hot

The 80303 I/O processor supports only the 00 and 03hot states.

14-127

Intel@ 80303 110 Processor
PCI-to-PCI Bridge Unit

14.15.40 PMCSR PCI-to-PCI Bridge Support - PMCSR_BSE

This register supports Bridge specific Power Management Control/Status functionality and is
required for all PCI-to-PCI bridges.

Table 14-61. PMCSR PCI-to-PCI Bridge Support - PMCSR_BSE

7 4 0

lOP [
Attribute, Jw/rw/rofrofo/n/o/ro/

PCI [
Attribute, \m\ro\ro\ro\ro\o'yo\o\

PCI Configuration Offset Intel® i960® Core Local Bus Address Attribute Legend: RW = Read/Write

6EH 0000106EH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07 O2
BPCC_En (Bus Power/Clock Control Enable) - If this bit is set the Power State field in the PMCSR
register can be used to control the Secondary bus Power/Clock.

B2_B3# (B2/B3 support for 03hot) - If BPCC_EN (bit 07) is set, the state of this bit determines the action
that is to occur as a direct result of programming the Power State field of the PMCSR from 00 to 03hot.

06 O2
If this bit is set, the Secondary bus PCI clock will be stopped (B2) when the Power State field of the
PMCSR is programmed to 03hot and BPCC_EN is set.

If this bit is cleared, the Secondary bus will have its power removed (B3) when the Power State field of
the PMCSR is programmed to 03hot and BPCC_EN is set.

5:0 0000002 Reserved.

14-128 Developer's Manual

intel· intel® 80303 liD Processor
PCI Address Translation Unit

PCI Address Translation Unit 15

15.1

This chapter describes the operation modes, setup, and implementation of the mechanism which
interfaces between the primary and secondary PCI busses and the Intel® 80303 I/O processor
internal bus,

Overview

As indicated in Figure 15-1, the ATU - the interface between the PCI bus and the on -chip internal
bus - consists of two address translation units, the Expansion ROM Unit and the Messaging Unit
(MU) described in Chapter 16, "Messaging Unit"

The ATU s support both inbound and outbound address translation. The ATU s are:

• Primary ATU (PATU) - provides access between the primary PCI bus and the 80303 I/O
Processor Internal Bus. The primary ATU and Messaging Unit share PCI address space.

• Secondary ATU (SATU) - provides access between the secondary PCI bus and the 80303 I/O
Processor Internal Bus.

Transactions initiated on a PCI bus and targeted at the 80303 I/O Processor Internal Bus are
referred to as inbound transactions (PCI to internal bus); transactions initiated on the 80303 I/O
Processor Internal Bus and targeted at a PCI bus are referred to as outbound transactions (internal
bus to PCI). The ATU handles multiple inbound PCI transactions; it can simultaneously process
PCI read and write transactions.

During inbound transactions, the ATU converts PCI addresses (initiated by a PCI bus master) to
internal bus addresses and initiates the data transfer on the 80303 I/O Processor Internal Bus.
During outbound transactions, the ATU converts internal bus addresses to PCI addresses and
initiates the data transfer on the respective PCI bus.

The Messaging Unit provides a mechanism for the system processor and the 80303 I/O processor
to transfer control information. The Messaging Unit occupies the first 4 Kbytes of the Primary
ATU address space. PCI masters on the primary interface of the 80303 I/O processor access the
MU by addressing the PATU anywhere in the first 4 KB offset from the PATU Base Address
Register. When the Secondary Bus Messaging Unit Access mode is enabled, secondary PCI
masters can access the MU by forwarding transactions through the PCI-to-PCI Bridge Unit.

The Expansion ROM provides the PCI mechanism for downloading devicelboard driver code
during system boot sequence. It consists of a separate inbound address range which accesses a
Flash EPROM device connected through the 80303 I/O processor memory controller. Refer to the
PCI Local Bus Specification, Revision 2.2 for details of Expansion ROM usage.

The Primary and Secondary Address Translation Units, the Expansion ROM Translation Unit, and
the Messaging Unit appear as a single PCI device on the primary PCI bus. These units collectively
are the second PCI function in the multi-function 80303 I/O processor. (Refer to Section 15.2.4 for
exceptions to this statement.) The block diagram for the ATU s and the Messaging Unit is shown in
Figure 15-1.

Developer's Manual 15-1

Inte/@ 80303 110 Processor
PCI Address Translation Unit intel·

Both the Primary ATU and the Secondary ATU support the PCI 64-bit and 66 MHz extensions
providing up to 528 Mbytes/sec of PCI bandwidth. On the internal interface, the Primary and
Secondary ATU implement the 80303 I/O processor internal bus protocol which provides for a
maximum of 528 Mbytes/sec using 64-bit/66 MHz signaling.

The Primary ATU includes an 8 byte extended capability header that implements Power
Management registers as defined by the PCI Bus Power Management lnteljace Specification,
Revision 1.1.

The functionality of the ATUs is described in the following sections. The Primary and Secondary
ATUs (and the Messaging Unit) have a memory-mapped register interface that is visible from
either the PCI interface, the internal bus interface, or both.

Figure 15-1. ATU Block Diagram

15-2

PRIMARY ADDRESS TRANSLATION UNIT
r ------------.,

Primary PCI Bus

Primary Address
Ql

OQl
Translation Unit ()

.@ a...() Ql
QlOO
>'t: E
OOQl

Expansion ROM
Cf)

~E ::l

$~
Translation Unit ClJ

<U
gjClJ c:
:2 Q;

E
Messaging Unit

I... _____________ ...l

PCI-to-PCI Bridge

Secondary PCI Bu

L

SECONDARY ADDRESS TRANSLATION UNIT

Secondary Address
Translation Unit

.J

Cf)
::l

ClJ
<U
c:
(fi

E
o
Cf)
Cf)
Ql
()

e
a...

2
C')
o
C')
o
<Xl

®
]i
E

Developer's Manual

Figure 15-2. ATU Queue Architecture Block Diagram

Developer's Manual

~~-------------------
!il:
m r-----------------~

.-.~~ ~~-...
~
~--

~~-------------------
.. _.~ ~ J-----------'l~

~I---'"
~
~--

Intel® 80303 I/O Processor
PCI Address Translation Unit

Primary ATU

A6490-01

15-3

Intel® 80303 liD Processor
PCI Address Translation Unit

15.2

15-4

ATU Address Translation

The primary ATU and the secondary ATU support transactions from both directions through the
80303 I/O processor. The primary ATU allows PCI masters on the primary PCI bus to initiate
transactions to the 80303 I/O Processor Internal Bus and allows the i960® core processor to initiate
transactions to the primary PCI bus. The secondary ATU performs the same function, but on the
secondary PCI bus and for secondary PCI bus masters.

The ATU s implement an address windowing scheme to determine which addresses to claim and
translate to the appropriate bus.

• The address windowing mechanism for inbound translation is described in Section 15.2.1.1,
"Inbound Address Translation" on page 15-6

• The address windowing mechanism for outbound translation is described in Section 15.2.2.1,
"Outbound Address Translation" on page 15-15

The ATU has the ability to handle multiple inbound PCI transactions simultaneously. The ATU
may contain up to four PCI memory writes up to the data queue size of the ATU (PATU or SATU).
Each ATU is also capable of handling two outstanding delayed read transactions. Refer to
Figure 15-2 and Section 15.5 for details of the ATU queue architecture.

The primary ATU contains a data path between the primary PCI bus and the internal bus.
Connecting the primary ATU in this manner enables data transfers to occur without requiring any
resources on the secondary PCI bus. The secondary ATU contains a data path between the
secondary PCI bus and the internal bus. The secondary ATU allows secondary PCI bus masters to
access the internal bus and 80303 I/O processor local memory. These transactions are initiated by a
secondary bus master and do not require any bandwidth on the primary PCI bus.

The ATU units allow for recognition and generation of multiple PCI cycle types. Table 15-1 shows
the PCI commands supported for both inbound and outbound ATU transactions. The type of
operation seen by the ATU on inbound transactions is determined by the PCI master (on either
primary or secondary bus) who initiates the transaction. Claiming an inbound transaction depends
on the address range programmed within the inbound translation window. The type of transaction
used by the ATU on outbound transactions is determined by the 80303 local address and the fixed
outbound windowing scheme. See Section 15.2.2.1, "Outbound Address Translation" on
page 15-15 for the full details on outbound PCI cycle selection.

Both ATUs support the 64-bit addressing specified by the PCl Local Bus Specification,
Revision 2.2. This 64-bit addressing extension is for outbound data transactions only (i.e., data
transfers initiated by the i960 core processor). This is in addition to the 64-bit data extensions
supported by the 80303 I/O processor. Refer to Section 15.2.5 for details of 64-bit PCI operation.

Neither ATU supports exclusive access using the PCI LOCK# signal. Also, the ATUs do not
guarantee atomicity for outbound transactions when performing atomic accesses using i960 core
processor atomic instructions (atmod, atadd).

Developer's Manual

int:et
Table 15-1.

15.2.1

ATU Command Support

Claimed on Inbound
PCI Command Type Transactions on PCI

Bus

Interrupt Acknowledge No

Special Cycle No

110 Read No

110 Write No

Memory Read Yes

Memory Write Yes

Memory Write and
Yes Invalidate

Memory Read Line Yes

Memory Read Multiple Yes

Configuration Read Yes

Configuration Write Yes

Dual Address Cycle No

Intel@ 80303 110 Processor
PCI Address Translation Unit

Generated by
Valid Internal Bus Outbound Transactions

Command
on PCI Bus

No No

No No

Yes No

Yes No

Yes Yes

Yes Yes

No No

No Yes

No Yes

Yes Yes

Yes Yes

Yes No

Inbound and outbound ATU transactions are best described by the data flows used on the PCI bus
and the 80303 I/O processor internal bus during read and write operations. The following sections
describe read and write operations for inbound ATU transactions (PCI to internal bus) and
outbound transactions (internal bus to PCI). For the purposes of data flows, there are no
distinctions between primary ATU transactions and secondary ATU transactions.

Inbound Transactions

Inbound transactions which target the PATU or the SATU are translated and performed on the
80303 I/O processor internal bus. As a PCI target, the ATU s are capable of accepting all PCI
memory read and write operations as either a 32-bit or a 64-bit target PCI target. Refer to
Section 15.2.5 for details on 64-bit PCI operation. Memory Writes and Memory Write and
Invalidate operations are performed as posted operations and all memory read operations are
performed as delayed reads. The PATU is capable of accepting configuration read and write cycles.
For Configuration Writes, the cycles are performed as delayed memory write operations.
Configuration Reads are performed as delayed read operations.

Inbound write transactions have their address entered into the inbound write address queue
CIWQAD) and data entered into the inbound write data queue (IWQ). The IWQ/IWQAD pair are
capable of holding up to 4 write operations up to the size of the data queue. Inbound read
operations (memory and configuration) have their address entered into the inbound transaction
queue (ITQ) and the data is returned to the PCI master in the inbound read queue (IRQ). Inbound
configuration writes use the inbound delayed write queue (IDWQ) for address and data. Refer to
Section 15.5 for details of queue operation.

For inbound transactions, the ATUs are slaves on the PCI bus and are masters on the internal bus.
PCI slave operation is defined in the PCI Local Bus Specification, Revision 2.2 ..

Developer's Manual 15-5

Inte/@ 80303 110 Processor
PCI Address Translation Unit in1'et
15.2.1.1 Inbound Address Translation

The ATUs allow PCI bus masters to directly access the internal bus. These PCI bus masters can
read or write 80303 I/O processor memory-mapped registers or 80303 I/O processor local memory
space. The process of inbound address translation involves two steps:

1. Address Detection.

- Determine when the 32-bit PCI address is within the address window defined for the
inbound ATU (primary or secondary).

- Claim the PCI transaction with medium DEVSEL# timing.

2. Address Translation.

- Translate the 32-bit PCI address to a 32-bit 80303 I/O Processor Internal Bus address.

The ATUs use the following registers in inbound address translation:

• Inbound ATU Base Address Register

• Inbound ATU Limit Register

• Inbound ATU Translate Value Register

See Section 15.7, "Register Definitions" on page 15-54 for details on inbound translation register
definition and programming constraints.

By convention, primary inbound ATU addresses are primary PCI addresses; secondary inbound
ATU addresses are secondary PCI addresses. For the SATU, inbound addresses beyond the flrst 4
KB of the SATU inbound address space which are capable of being claimed by the secondary
interface of bridge unit and the SATU slave interface, will be claimed by the SATU.

The first 4 KB of the SATU inbound address space is dependent on the value of bit 12 (Secondary
Bus-Messaging Unit Access Enable bit) of the ATUCR. If set, these addresses are claimed by the
secondary interface of the Bridge Unit (if a valid bridge address). If clear, these addresses are
claimed by the SATU for forwarding to the internal bus. See Section 15.3 for details.

Inbound address detection is determined from the 32-bit PCI address, the base address register and
the limit register. The algorithm for detection is:

Equation 15-1. Inbound Address Detection

IWhen (PCLAddress & LimiCRegister == Base_Register) the PCI Address is claimed by the Inbound ATU.

15-6 Developer's Manual

inteL
Figure 15-3 shows an example of inbound address detection.

Intel® 80303 110 Processor
PCI Address Translation Unit

Figure 15-3. Inbound Address Detection

Address is not claimed ~
Base_Register

Address is claimed

se_Register + Value of LimiCRegister

Address is not claimed ~

PCI Address

Space
Inbound Translation

Window

The incoming 32-bit PCI address is bitwise ANDed with the associated inbound limit register.
When the result matches the base register, the inbound PCI address is detected as being within the
inbound translation window and is claimed by the ATU.

Note: The first 4 Kbytes of the primary ATUs inbound address translation window are reserved for the
Messaging Unit. PCI addresses in this 4 Kbyte area are not translated and forwarded to the local
bus as inbound transactions. See Section 15.3, "Messaging Unit" on page 15-29.

Once the transaction is claimed, the address must be translated from a 32-bit PCI address to a
32-bit internal bus address. The algorithm is:

Equation 15-2. Inbound Translation

80303 I/O Processor Internal Bus Address = (PC I_Address & -LirniCRegister) I
ATU_ Translate_Value_Register.

The incoming 32-bit PCI address is first bitwise ANDed with the bitwise inverse of the limit
register. This result is bitwise ORed with the ATU Translate Value and the result is the internal bus
address. This translation mechanism is used for all inbound memory read and write commands
excluding inbound configuration read and writes. Inbound configuration cycle translation is
described in Section 15.2.1.4, "Inbound Configuration Cycle Translation" on page 15-13. Address
aliasing of multiple PCI addresses to the same physical 80303 I/O Processor Internal Bus address
can be prevented by programming the inbound translate value register on boundaries matching the
associated limit register, but this is only enforced through application programming.

For inbound memory transactions, the only burst order supported is Linear Incrementing. For any
other burst order, the ATU signals a Disconnect after the first data phase.

Developer's Manual 15-7

Intel@ 80303 I/O Processor
PCI Address Translation Unit

Figure 15-4 shows an inbound translation example. This example would hold true for an inbound
transaction from either the primary or secondary PCI bus.

Figure 15-4. Inbound Translation Example

15-8

PCI Address Space 1/0 Processor Local Memory
Address Space

OOOOOOOOH

PC I_Address ---.

3A45012CH

FFFF FFFFH

Register Values

Base_Register = 3AOO OOOOH

OOOOOOOOH

Value_Register
Address

8145012CH

'---_____ -' FFFF FFFFH

LimiCRegister = FF80 OOOOH (8 Mbyte limit value)

Value_Register = B1 00 OOOOH

Inbound Translation Window ranges from 3AOO OOOOH to 3A7F FFFFH (8 Mbytes)

Address Detection
PC I_Address & LimiCRegister == Base_Register
3A45 012CH & FF80 OOOOH == 3AOO OOOOH
PC I_Address is in the Inbound Translation Window

Address Translation
IB_Address = (PC I_Address & -LimiCRegister) I Value_Regist
IB_Address = (3A45 012CH & 007F FFFFH) I B100 OOOOH
IB_Address = B145 012CH

Developer's Manual

infel·
15.2.1.2 Inbound Write Transaction

Inte/® 80303 110 Processor
PCI Address Translation Unit

An inbound write transaction is initiated by a PCI master (on either the primary or secondary PCI
bus) and is targeted at either 803031/0 processor local memory or a 80303 I/O processor
memory-mapped register.

Data flow for an inbound write transaction on the PCI bus is summarized as:

• The ATU claims the PCI write transaction when the PCI address is within the inbound
translation window defined by the ATU Inbound Base Register and Inbound Limit Register.

• If the IWQAD has at least one address entry available and the IWQ is not full and is capable of
accepting data (dependent upon the Memory Write Non-Full State Bits in Section 15.7.49,
"Primary ATU Queue Control Register - PAQCR" on page 15-112 and Section 15.7.50,
"Secondary ATU Queue Control Register - SAQCR" on page 15-113, the address is latched
and the first data phase is accepted. If additional queue space is available, the slave interface
continues accepting data until the IWQ reaches a full state. If REQ64# was driven by the
initiator, data is accepted as 64-bit, otherwise a 32-bit transactions is used.

• If an address parity error is detected during the address phase of the transaction, the address
parity error mechanisms are used. Refer to Section 15.6.1 for details of the address parity error
response. If a data parity error is detected while accepting data, the slave interface sets the
appropriate bits based on PCI specification. No other action is taken. Refer to Section 15.6.2.4
for details of the inbound write data parity error response.

• The PCI interface continues to accept write data until one of the following is true:

- The initiator performs a master completion.

- The IWQ becomes full. In this case, the PCI interface signals a Disconnect to the initiator
and returns to idle.

• If a master abort or a memory controller multi-bit ECC error (target abort), occurs during the
inbound transaction on the internal bus and the transaction is still active on the PCI interface,
the slave interface will perform a disconnect, and SERR# is asserted based upon the setting of
the PATUIMR or SATUIMR, see Section 15.7.51, "Primary ATU Interrupt Mask Register -
PATUIMR" on page 15-114 and Section 15.7.52, "Secondary ATU Interrupt Mask Register
SATUIMR" on page 15-115.

Once the PCI interface places a PCI address in the IWQAD and a 2 QWORD boundary is crossed
or if the master disconnects on the PCI bus, the ATU s internal bus interface becomes aware of the
inbound write. If there are additional write transactions ahead in the IWQ/lWQAD, the current
transaction remains posted until ordering and priority have been satisfied (Refer to Section 15.5.3)
and the transaction is attempted on the internal bus by the ATU internal master interface. If there
are no other write operations in the queue and ordering and the priority mechanism supports it, the
ATU will attempt to immediately acquire the internal bus and allow write streaming to occur. If the
queue fills or the master completes before the first data phase is accepted (by the assertion of
1_ TRDY#) on the internal bus, streaming can not occur. The ATU will not insert target wait states
nor do data merging on the PCI interface to allow for streaming.

Developer's Manual 15-9

Intel® 80303 liD Processor
PCI Address Translation Unit

15-10

Data flow for the inbound write transaction on the internal bus is summarized as:

• The ATU internal bus master requests the internal bus when the IWQAD/IWQ contains the
PCI address and data for the current transaction which has crossed at least a 2 QWORD
boundary or a PCI address from an earlier posted PCI transaction has moved to the head of the
IWQAD.

• When the internal bus is granted, the internal bus master interface initiates the write
transaction by driving the translated address onto the internal bus. For details on inbound
address translation, see Section 15.2, "ATU Address Translation" on page 15-4. If
1_ DEVSEL# is not returned, a master abort condition is signaled on the internal bus. The
current transaction is flushed from the queue and SERR# on the PCI interface is asserted
based upon the setting of the ATUCR, see Section 15.7.38, '"ATU Configuration Register -
ATUCR" on page 15-98.

• Write data is transferred from the IWQ to the internal bus when data is available and the
internal bus interface retains internal bus ownership. The ATU master interface will assert
I REQ64# to attempt a 64-bit transfer. If I ACK64# is not returned, a 32-bit transfer is used.
T~ansfers of less than 64-bits use the 1_ C/BE[7:0]# to mask the bytes not written in the 64-bit
data phase.

• The internal bus interface stops transferring data from the current transaction to the internal
bus when one of the following conditions becomes true:

- The internal bus master interface loses bus ownership and the master latency timer has
expired. The ATU internal master will perform a master completion and attempt to
reacquire the bus to complete delivery of the data.

- A Disconnect with Data is signaled on the internal bus from the internal slave. If the
transaction in the IWQ is complete, the master returns to idle. If the transaction in the
IWQ is not complete, the master attempts to reacquire the internal bus.

- The data from the current transaction has completed. A master completion is performed
and the bus returns to idle.

- A Target Abort is signaled from the internal bus slave. This is in response to an ECC error
from the memory controller. SERR# is asserted based upon the setting of the PATUIMR
or the SATUIMR, see Section 15.7.51, "Primary ATU Intelrupt Mask Register
PATUIMR" on page 15-114 and Section 15.7.52, "Secondary ATU Interrupt Mask
Register - SATUIMR" on page 15-115. A disconnect is signaled on PCI if the transaction
is active. If the transaction in the IWQ is complete, the master returns to idle. If the
transaction in the IWQ is not complete, the master attempts to reacquire the internal bus.
Refer to Section 15.6.6.2, for full details.

- A Master Abort is signaled on the internal bus. SERR# is asserted based upon the setting
of the PATUIMR or the SATUIMR, see Section 15.7.51, "Primary ATU Interrupt Mask
Register - PATUIMR" on page 15-114 and Section 15.7.52, "Secondary ATU Interrupt
Mask Register - SATUIMR" on page 15-115. Data is flushed from the IWQ.

• When the ATU attempts to transfer data in the IWQ to the IB and is stopped during a burst for
any reason other than a Master Abort, the ATU will attempt to reacquire the IB only after one
of the following conditions is met:

- The transactions has disconnected on the PCI bus.

- At least 4 Dwords are in the IWQ.

- The next IB address to attempt is not Qword aligned.

Developer's Manual

15.2.1.3 Inbound Read Transaction

Intel@ 80303 I/O Processor
PCI Address Translation Unit

An inbound read transaction is initiated by a PCI master (on either the primary or secondary PCI
bus) and is targeted at either 80303 I/O processor local memory or a 80303 I/O processor
memory-mapped register. The read transaction is propagated through the inbound transaction
queues (ITQl and ITQ2) and read data is returned through the inbound read queue (IRQ).

All inbound read transactions are processed as delayed read transactions. The ATUs PCI interface
claims the read transaction and forwards the read request through to the internal bus and returns the
read data to the PCI bus. Data flow for an inbound read transaction on the PCI bus is summarized
in the following statements:

• The ATU claims the PCI read transaction when the PCI address is within the inbound
translation window defined by ATU Inbound Base Register and Inbound Limit Register.

• When one of the ITQs is empty, the PCI address and command are latched into the available
ITQ and a Retry is signalled to the initiator.

• If an ITQ is currently holding transaction information from a previous delayed read, the
current transaction information is compared to the previous transaction information (based on
the setting of the DRC Alias bit in Section 15.7.38, "ATU Configuration Register - ATUCR"
on page 15-98). If there is a match and the data is in the IRQ, return the data to the master on
the PCI bus. If there is a match or the data is not available, a Retry is signaled with no other
action taken. If there is not a match and there is an ITQ available, latch the transaction
information, signal a Retry and initiate a delayed transaction. If there is not a match and there
is not an ITQ available, signal a Retry with no other action taken.

- For the case where there is a match on the transaction information and the IRQ is
currently being filled, memory read streaming is possible.

- If an address parity error is detected, address parity response defined in Section 15.6 is used.

• Once read data is driven onto the PCI bus from the IRQ, it continues until one of the following
is true:

- The initiator completes PCI transaction. Unread data left in the IRQ is flushed.

- An internal bus Target Abort was detected. In this case, the Q-word associated with the
Target Abort is never entered into the IRQ, and therefore is never returned.

- The IRQ becomes empty. In this case, the PCI interface signals a Disconnect with data to
the initiator on the last data word available.

The slave ATU interface delivers 64-bit read data if REQ64# was asserted and 32-bit read
data if REQ64# was deasserted.

• If the master inserts waitstates on the PCI bus, the ATU PCI slave interface will wait with no
premature disconnects.

• If a data parity error occurs signified by PERR# asserted from the master, no action is taken
by the slave interface. Refer to Section 15.6.2.3.

• If the transaction on the internal bus resulted in a master abort, the completion cycle is allowed
to master abort on the PCI interface. The ITQ for this transaction is flushed (Section 15.6.1.).

• When the first Q-word read on the internal bus is target-aborted, either a target-abort or a
disconnect with data is signaled to the initiator. This is based on the ATU ECC Target Abort
Enable bit (bit 0 of the PATUIMR for PATU and bit 0 of the SATUIMR for the SATU). If set, a
target abort is used, if clear, a disconnect is used.

Developer's Manual 15-11

Intel@ 80303 /10 Processor
PCI Address Translation Unit in1:et

15-12

The data flow for an inbound read transaction on the internal bus is summarized in the following
statements:

• The ATU internal bus master interface will request the internal bus when a PCI address
appears in an ITQ and transaction ordering has been satisfied.

• Once the internal bus is granted, the internal bus master interface will drive the translated
address onto the bus and wait for I_DEVSEL#. If a Retry is signaled, the request will be
repeated. If a master abort occurs, the transaction is considered complete and a master abort is
loaded into the associated IRQ for return to the PCI initiator (transaction is flushed once the
PCI master has been delivered the master abort).

• Once the translated address is on the bus and the transaction has been accepted, the internal
bus slave will start returning data with the assertion of 1_ TRDY#. Read data is continuously
received by the IRQ until one of the following is true:

- The predetermined pre fetch data amount is received. This is detailed in Section 15.5.1.2.
The ATU internal bus master interface performs a master completion in this case.

- A Target Abort is received on the internal bus from the internal bus slave. In this case, the
transaction is aborted. If a Target Abort occurs before 64 bits are ready, notify the PCI
side; otherwise, discard the Target Aborted Q-word and take no further action.

- The IRQ becomes full. In this case, the ATU master performs a master completion.

- The ATU loses ownership of the internal bus and the master latency timer has expired. A
master completion is performed on the internal bus. If less than 64-bits of data has been
fetched, the ATU IB master interface attempts to reacquire the bus. If not, the bus returns
to idle.

- A disconnect with data is received from the internal bus slave. If less than 64-bits of data
has been fetched, the ATU internal bus master interface attempts to reacquire the bus. If
not, the bus returns to idle.

If the prefetch amount of data has been read and the PCI bus is actively draining the data
on the PCI interface, the ATU will continue to read data and latch it into the IRQ to
support inbound read streaming. If the IRQ fills and the PCI interface is active, IB master
wait states are not inserted to support streaming.

• Since all inbound reads are promoted to 64-bit internal bus transactions, a disconnect from the
internal bus target with less than 8 bytes returned to the IRQ creates a problem for 64-bit PCI
requestors. To guarantee a minimum of 64-bits of data prefetched for the PO initiator, the
ATU will reacquire the internal bus.

To support PCI Local Bus Specification, Revision 2.0 devices, the ATUs can be programmed to
ignore the memory read command (Memory Read, Memory Read Line, and Memory Read
Multiple) when trying to match the current inbound read transaction with data in a DRC queue
which was read previously (DRC on target bus). If the Read Command Alias Bit in the ATUCR
register is set, the ATUs will not distinguish the read commands on transactions. For example, the
ATU enqueues a DRR with a Memory Read Multiple command and performs the read on the
internal bus. Some time later, a PCI master attempts a Memory Read with the same address as the
previous Memory Read Multiple. If the Read Command Bit is set, the ATU would return the read
data from the DRC queue and consider the Delayed Read transaction complete. If the Read
Command bit in the ATUCR was clear, the ATU would not return data since the PCI read
commands did not match, only the address.

Developer's Manual

infel·
15.2.1.4 Inbound Configuration Cycle Translation

Intel@ 80303 liD Processor
PCI Address Translation Unit

The ATU only accepts Type 0 configuration cycles with a function number of one (the bridge is
function 0 in the 80303 I/O processor). (Refer to Section 15.2.4, "PCI Multi-Function Device
Swapping/Disabling" on page 15-23 for exceptions to this statement.)

Both primary and secondary ATUs are configured through the primary ATU. This means that only
one configuration space exists for both PCI buses. All inbound configuration cycles are processed
as delayed transactions. The translation mechanism for inbound configuration cycles is defined by
the PCI Local Bus Specification, Revision 2.l.

The ATU configuration space is selected by a PCI configuration command and will claim the
access (by asserting P _ DEVSEL#) if the P _ IDSEL pin is asserted, the PCI command indicates a
configuration read or write, and address bits P _ AD[l:O] are 002 all during the address phase. The
ATU primary interface will ignore any configuration command (P IDSEL active) where
P _AD[l:O] are not 002 (e.g., Type 1 commands). During the configuration access address phase,
the PCI address is divided into a number of fields to determine the actual configuration register
access. These fields, in combination with the byte enables during the data phase create the unique
encoding necessary to access the individual registers of the configuration address space:

• P _AD[7:2] - Register Number. Selects one of 64 DWORD registers in the ATU PCI
configuration address space.

• P _ C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is
used within the DWORD address. Creates byte address ability of the register space.

• P _AD[lO:8] - Function Number. Used to select which function of a multi-function device is
being accessed. The ATUs are function 1 and therefore it will only respond to 001 2 in this bit
field and ignore all other bit combinations. (Refer to Section 15.2.4, "PCI Multi-Function
Device Swapping/Disabling" on page 15-23 for exceptions to this statement.)

The ATU configuration address space starts at internal address 0000. 1200H. Therefore P _AD[7:2]
equal to 0000002 equates to address 0000. 1200H and P _ AD[7:2] equal to 0000012 results in
address 0000. 1204H and so on.

For inbound configuration reads, the IRQ and ITQ are used in the same manner as inbound
memory read operations. The internal bus cycle that results will be a 32-bit transaction where
1_ REQ64# is not asserted. For inbound configuration writes, the PATU adds a delayed write data
queue, IDWQ, which holds data in the same manner as the IWQ. The transaction information from
the configuration write operation on the primary PCI interface is latched into the IDWQ (if full, a
Retry is signaled). The data from the delayed write request cycle is latched into the IDWQ and
forwarded to the internal bus interface. Once transaction ordering and priority have been satisfied,
the internal bus master interface will request the internal bus and deliver the write data to the target
as defined in Section IS.2.l.2.

The status of the transaction on the internal bus is returned to the PCI initiator on the primary PCI
bus. The retry cycle from the initiator is accepted once the write has been completed on the internal
bus and the status has been latched for return to the PCI master. Since Master Aborts and Target
Aborts cannot occur during configuration cycles on the internal bus, normal completion status is
returned. The data from PCI completion transaction is discarded.

Developer's Manual 15-13

Intel@ 80303 110 Processor
PCI Address Translation Unit intel.
15.2.1.5

15.2.2

15-14

Discard Timers

The ATUs implement discard timers for inbound delayed transactions. These timers prevent
deadlocks when the initiator of a retried delayed transaction fails to complete the transaction within
210 or 215 PCI clock cycles on the initiating bus. The timer starts counting when the delayed
request becomes a delayed completion by completing on the internal bus. When the originating
master on the PCI bus has not retried the transaction before the timer expires, the completion
transaction is discarded.

Discard timer values are controlled by the Bridge Control Register's Primary Discard Timer Value
bit (for the primary ATU) and the Secondary Discard Timer Value bit (for the secondary ATU). The
PATU queues covered by discard timers are the P _IRQ and the P _IDWQ. The SATU queue
covered by discard timer is the S_IRQ. After discarding a transaction, the ATUs must set the
Discard Timer Status bit in the ATU Control Register. However, unlike the PCI to PCI Bridge Unit,
the ATUs do not assert the P _SERR# signal after discarding a transaction.

Outbound Transactions

Outbound transactions initiated by the 80303 I/O processor core processor are either to the primary
PCI interface through the PArU or the secondary PCI interface through the SATU. As a PCI
master, the ATUs are capable of PCI I/O transactions, PCI memory reads (excluding the read hint
commands MRL and MRM), PCI memory writes (excluding MWI), configuration reads and
writes, and DAC cycles. Outbound transactions are performed as either 32-bit or a 64-bit PCI
transactions. Refer to Section 15.2.5 for details on 64-bit operation. Outbound memory write
operations are performed as posted operations and outbound memory read operations are all
performed as delayed read operations.

Outbound transactions use a separate set of queues from inbound transactions. Outbound write
operations have their address entered into the outbound transaction queue (OTQ) and their data
into the outbound write queue (OWQ). Outbound read transactions, performed as delayed
operations, use the same address queue, the OTQ, and get data returned into the outbound read
queue (ORQ). Refer to Section 15.5.2 for details of outbound queue architecture. Outbound
configuration transactions use a special outbound port structure. Refer to Section 15.2.3 for details.

For outbound transactions, the ATUs are slaves on the internal bus and masters on the PCI bus. PCI
master operation is defined in the PCI Local Bus Specification, Revision 2.2.

Developer's Manual

intel·
15.2.2.1

15.2.2.2

Outbound Address Translation

Intel@ 80303 I/O Processor
PCI Address Translation Unit

In addition to providing the mechanism for inbound translation, the ATUs translate i960 core
processor-initiated cycles to the PCI bus. This is known as outbound address translation.
Outbound transactions are processor reads or writes targeted at the PCI primary or secondary bus.
The ATU internal bus slave interface claims internal bus cycles and completes the cycle on the PCI
bus on behalf of the i960 core processor. The primary and secondary ATU s support two different
outbound windowing modes:

• Address Translation Windowing

• Direct Address Windowing (No translation)

Figure 15-5 shows a 80303 I/O processor memory map with all reserved address locations
highlighted. The outbound translation windows exist from 8000.0000H to 9001.FFFFH. This is a
256 Mbyte window and a 128 Kbyte window which are equally divided between the primary and
secondary ATUs. The direct addressing window is from OOOO.2000H to 7FFF.FFFFH. Both
outbound schemes are described in the following subsections.

Outbound address translation is disabled for the Primary ATU when the Bus Master Enable bit in
the Primary ATU Command Register is clear and is disabled for the Secondary ATU when the Bus
Master Enable bit in the Secondary ATU Command Register is clear. When the Bus Master Enable
bit is clear, the ATU does not claim any i960 core processor accesses. These unclaimed accesses
may result in an internal bus Master Abort. For outbound Memory transactions, the only burst
order supported is Linear Incrementing.

Outbound Address Translation Windows

Inbound translation involves a programmable inbound translation window consisting of a base and
limit register and a value register for PCI to internal bus translation. The outbound address
translation windows use a similar methodology except that the outbound translation window base
addresses and limit sizes are fixed in 80303 I/O Processor Internal Bus local address space; this
removes the need for separate base and limit registers.

Figure 15-6 illustrates the outbound address translation windows. Each ATU has three windows:
two are 64 Mbyte and one is 64 Kbyte. The primary outbound memory and DAC translation
windows range from 8000.0000H to 87FF.FFFFH and the secondary outbound memory and DAC
translation windows range from 8800.0000H to 8FFF.FFFFH. After these four windows, the
primary and secondary outbound I/O windows range from 9000.0000H to 9001.FFFFH.

Each memory and DAC window is 64 Mbytes and each I/O window is 64 Kbytes. An internal bus
cycle with an address within one outbound window initiates a read or write cycle on the targeted
PCI bus. The PCI cycle type depends on which translation window the local bus cycle "hits". The
read or write decision is based on the internal bus cycle type.

Developer's Manual 15-15

Intel@ 80303 liD Processor
PCI Address Translation Unit int:eL

Each ATU has a window dedicated to the following outbound PCI transaction types:

• Memory reads and writes - Memory Window

• I/O reads and writes - I/O Window

• Dual Address Cycle reads and writes - DAC Window

Refer to Figure 15-6 for the sub-window addresses involved in primary and secondary outbound
translation.

The windowing scheme refers to:

• a core processor read cycle that addresses a Memory Window is translated to a Memory Read
on the PCI bus

• a core processor write cycle that addresses a Memory Window is translated to a Memory Write
on the PCI bus

• a core processor read cycle that addresses the I/O Window is an I/O Read on the PCI bus

• a core processor write cycle that addresses the I/O Window is an I/O Write on the PCI bus

• a core processor read cycle that addresses a DAC Window is translated to a DAC Memory
Read on the PCI bus

• a core processor write cycle that addresses a DAC Window is translated to a DAC Memory
Write on the PCI bus

Memory Write and Invalidate (MWI), Memory Read Line, and Memory Read Multiple commands
are not supported in outbound ATU transactions on the PCI interface.

Figure 15-5. Intel® i960® Memory Map - Outbound Translation Window

15-16

Intel® i960®
Address

OOOOOOOOH

00000400H

00001000H

0OO02000H

80000000H

90020000H

FEFF FF2FH

FEFFFF60H

FFOOOOOOH

FFFFFFFFH

Core Processor Internal Data RAM

Reserved

Peripheral Memory
Mapped Registers

ATU Outbound
Direct Addressing

Window

ATU Outbound
Translation Windows

External Memory
Code/Data

initialization Boot Record (IBR)

Reserved

Intel® i960® Core Processor
Memory Mapped Register

Developer's Manual

Intel® 80303 110 Processor
PCI Address Translation Unit

The translation portion of outbound ATU transactions is accomplished with a value register in the same
manner as inbound translations. The POUDR and SOUDR contain the high order 32-bits of a dual-cycle
64-bit address. Each ATU uses the registers shown below during outbound address translation:

• Outbound Memory Window Value Register

• Outbound I/O Window Value Register

• Outbound DAC Window Value Register

• Outbound Upper 64-Bit DAC Register

• Outbound Configuration Cycle Address Register

See Section 15.7 for details on outbound translation register definition and programming constraints.
The translation algorithm used, as stated, is very similar to inbound translation. For memory and
DAC transactions, the algorithm is:

Equation 15-3. Outbound Address Translation

PCI Address = (Internal_Bus_Address & 03FF.FFFFH) I Window_Value_Register

For memory and DAC transactions, the internal bus address is bitwise ANDed with the inverse of
64 Mbytes which clears the upper 6 bits of address. The result is bitwise ORed with the outbound
window value register to create the lower 32-bits of the primary or secondary PCI address. For I/O
transactions, the algorithm is:

Equation 15-4. I/O Transactions

I PCI Address = (Internal_Bus_Address & OOOO.FFFFH) I Window_Value_Register

For I/O transactions, the internal bus address is bitwise ANDed with the inverse of 64 Kbytes
which clears the upper 16 bits of address. Address aliasing can be prevented by programming the
outbound window value registers on boundaries equivalent to the window's length, but this is only
enforced through application programming. PCI I/O addresses are byte addresses and not word
addresses. The PCI I/O address's two least significant bits are determined by byte enables that the
processor issues. For example, when the i960 core processor performs a 2-byte write and generates
byte enables of 0011 2, the ATU sets the two least significant bits of PCI I/O address to 102,

Note: When the i960 core processor data cache is enabled for accesses to the Outbound I/O Window, the
byte enables generated by the i960 core processor are always 002 for Byte and Short accesses.

Figure 15-6. Outbound Address Translation Windows

-

[80000000H 80000000H

64 Mbytes
Primary Memory Window

I 83FF FFFFH
84000000H

Primary DAC Window ATU Outbound 87FF FFFFH
Memory and DAC Cycle

88000000H
Secondary Memory Window

Translation Windows

8BFF FFFFH

I 8COO OOOOH
Secondary DAC Window

8FFF FFFFH - 8FFF FFFFH

[90000000H]
90000000H

64 Kbytes Primary 1/0 Window ATU Outbound
9000 FFFFH 1/0 Cycle

90010000H Translation Windows Secondary 1/0 Window
9001 FFFFH 9001 FFFFH

Developer's Manual 15-17

Intel@ 80303 liD Processor
PCI Address Translation Unit

15.2.2.3 Direct Addressing Window

The second method used by outbound cycles from the 80303 I/O processor to the PC! bus is the
direct addressing window. This is a window of addresses in 80303 I/O processor address space that
act in the same manner as the outbound translation windows either without any translation or with
the translation of address bit 31 only. This allows the Direct Addressing window to translate to
different address ranges on the PCI bus (0000.2000H to 7FFF.FFFFH or 8000.2000H to
FFFF.FFFFH). A 80303 I/O processor read or write to a local bus address within the direct
addressing window initiates a read or write on the PCI bus with the same address (with the possible
exception of address bit 31) as used on the internal bus. Figure 15 -7 shows two examples of
outbound writes that are through the direct addressing window.

Direct Addressing is limited to PCI memory read commands and writes only. I/O cycles, DAC
cycles, and MWI commands are not supported with direct addressing.

Figure 15-7. Direct Addressing Window

15-18

Upper 2 Gbyte
Translation Disabled

Intel@ 80303 1/0 Processor Local Address Space

00002000H

Direct Addressing Window
Internal Bus Write . PCI Write Cycle

with address6000 1008H with address60(J0 1008H

---".~r"rtli.rl~J~.if;~_; •
Upper 2 Gbyte
Translation Enabled 00002000H

7FFF FFFFH

Internal Bus Write Direct Addressing Window PCI Write Cycle
with address 6000 1008H with address EOOO 1008H

.-~~ .-
l 7FFF FFFFH I

The internal bus side of the direct addressing window address range is fixed in the lower 2 Gbytes
of the 80303 I/O processor local address space (except for the first 8 Kbytes which is reserved for
the i960 core processor internal data RAM and 80303 I/O processor memory-mapped registers).
Internal bus cycles with an address from 0000.2000H to 7FFF.FFFCH are forwarded to a PCI bus,
when enabled. The primary PCI bus is the default bus for direct addressing. The following bits
within the ATUCR affect direct addressing operation:

• ATUCR Direct Addressing Enable bit - when set, enables the direct addressing window. When
clear, addresses within the direct addressing window are not forwarded to the PCI bus.

• ATUCR Secondary Direct Addressing Select bit - when clear, all transactions through the
direct addressing window are to the primary ATU and primary PCI bus. When set, all
transactions through the direct addressing window are to the secondary ATU and secondary
PCI bus.

• ATUCR Direct Addressing Upper 2G Translation Enable - when set, the ATU will forward
internal bus cycles with an address between 0000.2000H and 7FFF.FFFFH to the PCI bus with
bit 31 of the address set (8000.2000H - FFFF.FFFFH). When clear, no translation will occur.

Developer's Manual

infel·
15.2.2.4 Outbound Write Transaction

Intel@ 80303 I/O Processor
PCI Address Translation Unit

An outbound write transaction is initiated by the i960 core processor and is targeted at a PCI slave
on either the primary or secondary PCI buses. The outbound write address and write data are
propagated from the 80303 I/O Processor Internal Bus to a PCI bus through the OTQ and OWQ,
respectively.

The ATUs internal bus slave interface claims the write transaction and forwards the write data
through to the targeted PCI bus. The data flow for an outbound write transaction on the internal bus
is summarized in the following statements:

• The ATU internal bus slave interface will latch the address from the internal bus into the OTQ
when that address is inside one of the outbound translate windows (see Section 15.5) and the
OTQ is empty.

• Once the outbound address is latched, the internal bus slave interface will store the write data
into the OWQ until the internal bus transaction completes. The initiator of the transaction will
perform a master completion when done writing data. The OWQ is capable of holding 16
bytes of data which is the maximum amount written by the core processor.

• When the OTQ is not available, the slave interface will signal a Retry on the internal bus to the
outbound cycle initiator. The ATU will signal the BIU at the time of the Retry that it should not
request the internal bus until the ATU has notified it that the OTQ is available.

• When the OTQ latches the address, the outbound cycle is enabled for transmission on the PCI
Bus and the PCI master requests the PCI bus.

The PCI interface is responsible for completing the outbound write transaction to a PCI address
translated from the OTQ and the data in the OWQ. The data flow for an outbound write transaction
on the PCI bus is summarized in the following statements:

• The ATU PCI interface will request the PCI bus when the completed internal bus transaction is
written to the OTQ (a write request). Once the bus is granted, the PCI master interface will
write the PCI translated address from the OTQ to the PCI bus and wait for the transaction to be
claimed.

• If a Master Abort is seen during the address phase, the transaction is flushed and the OTQ and
OWQ are cleared. Refer to Section 15.6.3 for full details on PCI master abort conditions
during outbound transactions.

• Once the PCI write transaction is claimed, the PCI interface will transfer data from the OWQ
to the PCI bus until one of the following is true:

- The PCI target signals a Retry or Disconnect. The ATU PCI master will attempt to
reacquire the PCI bus to complete the write transaction.

- The GNT# signal is deasserted and the master latency timer has expired. In this case, the
master interface will attempt to reacquire the PCI bus and complete the write transaction.

- The PCI target signals a Target-Abort. In this case, the OWQ and OTQ are cleared and the
transaction is aborted. The appropriate error bits are set defined in Section 15.6.4.

- The OWQ become empty signifying that the transaction is finished. The write address is
removed from the OTQ and the interface returns to idle.

If a data parity error is encountered (PERR# detected), the master interface will continue
writing data to clear the queue.

If the PCI target deasserts TRDY#, no action is taken by the ATU master other than
inserting waitstates.

Developer's Manual 15-19

Intel® 80303 I/O Processor
PCI Address Translation Unit intel·
15.2.2.5 Outbound Read Transaction

An outbound read transaction is initiated by the i960 core processor and is targeted at a PCI slave
on either the primary or secondary PCI buses. The read transaction is propagated through the
outbound transaction queue (OTQ) and read data is returned through the outbound read queue
(ORQ).

The ATUs internal bus slave interface claims the read transaction and forwards the read request
through to the PCI bus and returns the read data to the internal bus. The byte enables for the first
word only of the transaction are also passed by the ATU (to cover the case of less than 1 Dword
being requested). The fetch data amount used by the PCI side is determined by the read command
used on the internal bus by the IB master. Table 15-2 are the fetch data sizes used during outbound
ATU read transactions:

Table 15-2. Outbound Read Fetch Sizes

15-20

Internal Bus Command Outbound Fetch Size

Memory Read 4 Bytes (1 Dword)

Memory Read Line 8 Bytes (2 Dwords)

Memory Read Multiple 16 Bytes (4 Dwords)

The data flow for an outbound read transaction on the local bus is summarized in the following
statements:

• The ATU internal bus interface latches the internal bus address when the address is inside an
outbound address translation window (or the direct addressing window, if enabled) and the
OTQ is empty. When the OTQ is not empty (previous outbound transaction in progress), the
internal bus interface signals a Retry to the transaction initiator.

• Once the outbound internal address is latched into the OTQ, a Retry is signaled to the internal
bus master and a delayed read transaction is initiated. The ATU will signal the BIU at the time
of the Retry that a delayed cycle has started and that it should not request the internal bus until
the ATU has notified it that the data to be read is now available.

• If during the completion cycle on the PCI interface, a master abort is encountered, a flag is set
and the ATU notifies the BIU that it may now request the internal bus to complete the retried
transaction. A master abort condition is returned once the ill master has acquired the bus and
asserted the address of the delayed read completion cycle. The OTQ is cleared of the
transaction.

• Once the transaction completes on the PCI bus, the ATU notifies the BIU that it may now
request the internal bus to complete the retried transaction. The outbound read was
deterministic with no prefetching and data read is the data that was required per the command
used on the internal bus (see Table 15-2).

• A target abort encountered on the PCI bus is returned as a target abort to the ill master on the
first data phase. If a data parity error is signaled on PCI, the bad data is still passed through to
the IB master.

Developer's Manual

int:et Intel® 80303 110 Processor
PCI Address Translation Unit

The data flow for an outbound read transaction on the PCI bus is summarized in the following
statements:

• The ATU PCI interface will request the PCI bus when an address is written to the OTQ (a read
request). Once the bus is granted, the PCI interface will transfer the PCI translated address
from the OTQ to the PCI bus and wait for the transaction to be claimed.

• If no DEVSEL# is asserted, a master abort is signaled. This is passed through to the internal
bus slave interface.

• Once the transaction is claimed and data is provided by the target, the PCI interface continue
reading until the fetch data amount is satisfied. The master interface will stop reading under
the following circumstances:

- A disconnect is signaled from the PCI target. The master interface will attempt to
reacquire the bus and continue reading until the fetch data size is satisfied.

- The master interface loses GNT# and the interface MLT has expired. A master
completion is performed and the interface attempts to reacquire the bus and continues
reading until the fetch data size is satisfied.

- A target abort is signaled from the PCI target. The target abort is returned to the internal
bus and the PCI interface returns to idle. The appropriate error bits are set as defined in
Section 15.6.4.

- The fetch data size has been reached. The master interface performs a master completion
and the interface returns to idle.

If the PCI target inserts waitstates at any point, the PCI master interface halts until
TRDY# is asserted. No other action is taken.

Developer's Manual 15-21

Intel® 80303 110 Processor
PCI Address Translation Unit in1:et
15.2.3

15-22

Private PCI Address Space / Outbound Configuration Cycle
Translation

The secondary ATU contains special support for private address spaces on the secondary PCI bus.
A private address space is defined as a range of secondary PCI bus addresses which are not part of
the secondary PCI address space as defined by the bridge and are also not part of the primary PCI
address space. Private address space can be considered a "hole" in the PCI address space that is
only supported on the secondary PCI bus. Private address space generally falls within the primary
PCI address space and requires special bridge support so that it does not forward these addresses.
The 80303 I/O processor has several mechanisms to support private address space:

• Inbound transactions from private devices through the secondary ATU.

• Outbound transactions from the secondary ATU and DMA channel 2 to private devices.

• Outbound configuration cycles to private devices.

• Hiding private devices from PCI Type 0 configuration cycles. (See Chapter 14, "PCI-to-PCI
Bridge Unit" for more details.)

For inbound transactions from private devices, the secondary ATU can be configured outside the
valid secondary PCI address space; this creates private address space. The secondary ATU claims
private addresses and prevents the bridge from forwarding them upstream to the primary PCI bus.

For outbound transactions from the secondary ATU and DMAs, the programmer needs to defme a
private memory address range (see Section 14.5.5, "Private Address Space" on page 14-23) to
prevent the bridge from forwarding these transactions upstream to the primary PCI bus.

Outbound configuration cycles - secondary and primary - can support private PCI devices.
Outbound ATUs provide a port programming model for outbound configuration cycles. Performing
an outbound configuration cycle to either the primary or secondary PCI bus involves up to two
internal bus cycles:

1) Writing the Outbound Configuration Cycle Address Register (primary or secondary) with the
PCI address used during the configuration cycle. See the PCI Local Bus Specification,
Revision 2.2 for information regarding configuration address cycle formats. This IB bus cycle
enables the transaction.

2) Writing or reading the Outbound Configuration Cycle Data Register (primary or secondary).
The i960 core processor cycle initiates the transaction. A read causes a configuration cycle
read to the primary or secondary PCI bus with the address in the outbound configuration cycle
address register. Similarly, a write initiates a configuration cycle write to PCI with the write
data from the second processor cycle. Configuration cycles are non-burst and restricted to a
single 32-bit word cycle. Internal bus burst writes and reads to the Outbound Configuration
Cycle Data Register are disconnected after the first data phase.

Developer's Manual

in1et Inte/® 80303 I/O Processor
PCI Address Translation Unit

Master aborts during outbound configuration reads result in master abOlts being returned on the
internal bus.

When the Configuration Cycle Data Register is written, the data is latched and forwarded to the
PCI bus with the internal master issuing a disconnect with data for 32-bits only. This cycle will not
receive an I _ACK64# from the ATU and therefore is defined as 32-bit only.

When the Configuration Cycle Data Register is read, the internal bus master is retried and the
delayed cycle is issued. Refer to Section 15.2.2.5 for details on outbound read behavior.

Note that both the Configuration Cycle Address and Data registers are non-burstable. Software
should only access these 4 registers with the single Dword read or write load/store operations. A
burst attempt to these registers may result in incorrect or unexpected behavior.

Section 15.7, "Register Definitions" on page 15-54 describes an outbound configuration cycle
address and data register definition and programming constraints. Note that while the programming
model uses the register interface for outbound configuration cycles, from a hardware standpoint,
the address is entered into the OTQ, configuration write data goes through the OWQ and
configuration read data is returned in the ORQ.

Note: Outbound configuration cycle data registers are not physical registers. They are a 80303 I/O
processor memory mapped addresses used to initiate a transaction with the address in the
associated address register. Reads/writes to these registers return data from the PCI bus - not from
the register.

15.2.4 PCI Multi-Function Device Swapping/Disabling

The 80303 I/O processor, in its default state, appears on the PCI bus as a multi-function device,
with the Bridge as function 0 and the ATU as function 1. If necessary, these function numbers can
be swapped, or the 80303 I/O processor can appear as a single function device, with either the ATU
or the Bridge designated as the single function. The swapping is accomplished by setting or
clearing bit 21 of the ATU Configuration Register - ATUCR and setting the value in the ATU
Header Type Register - ATUHTR and the ATU Header Type Register - ATUHTR in the bridge
from the i960 core processor. The 80303 I/O processor must be in mode 3 (core executing and
configuration cycles retried) when executing the changes to these registers. The register settings
are summarized in Table 15-3.

Table 15-3. PCI MUlti-Function Device Swapping/Disabling Summary

ATU
Bridge Header ATU Header Configuration 803031/0 Bridge ATU Function
Type Register Type Register Register processor Function Number

(HTR) (ATUHTR) (ATUCR), Bit Device Type Number
21

1 1 0
Multi-Function Function 0 Function 1
(Default)

1 1 1 MUlti-Function Function 1 Function 0

0 0 0 Single Function Function 0 Master-Aborts

0 0 1 Single Function Master-Aborts Function 0

Note: Configuring the 80303 I/O processor as a single function device is only recommended in situations
where the host BIOS does not recognize multi-function devices and/or PCI-to-PCI Bridge
configuration headers. It is up to the user to handle/disable error reporting for the disabled unit.

Developer's Manual 15-23

Intel® 80303 110 Processor
PCI Address Translation Unit

15.2.5

15.2.5.1

15-24

54-Bit PCI Operation

Both the PATU and the SATU are capable of PCI 64-bit operation to support data transfer rates of
up to 528 MBytes/sec. The 64-bit PCl extensions add 39 additional signals to each ATU PCI
interface. These signals and there functions are

• AD[63:32] - high order address/data bus

• C/BE[7:4]# - byte enables covering high order 4 bytes of data

• PAR64 - even parity signal covering AD[63:32] and C/BE[7:4]#. Same timing as PAR

• REQ64# - used by a 64-bit master to request a 64-bit operation. Same timing as FRAME#

• ACK64# - used by a 64-bit capable target in response to REQ64# being asserted. Signifies to
the master that the transaction can be completed with 64-bit transfers. Same timing as
DEVSEL#.

At PCI bus reset, each individual PCI bus (primary and secondary) will independently sample their
respective REQ64# signals. If this signal is low, the bus is 64-bit capable. The PCI to PCI Bridge
Unit holds the information about 64-bit bus capability latched at the de-assertion of reset. The
Primary Bus 64-Bit Capable bit (bit 8) of the Extended Bridge Control Register (EBCR) tells the
PATU whether or not the bus it is connected to is 64-bit capable. The Secondary Bus 64-Bit
Capable bit (Bit 9) of the Extended Bridge Control Register (EBCR) tells the SATU if the
secondary bus is 64-bit capable. Refer to the Chapter 14, "PCl-to-Pc! Bridge Unit" for details.

64-Bit Protocol

The 64-bit PCI extensions have been developed to coincide with the existing 32-bit protocol. The
additional 32 bits of address/data require an additional 4 byte enables and a parity signal to cover
them. The bus timing, protocol, and turn-around cycles behave exactly the same for the 64-bit
signals as they do for the standard PCI interface signals with the exception of the 64-bit handshake
signals referenced below.

The 64-bit handshake signals used by the 80303 I/O processor are P _REQ64# and P _ACK64# on
the primary interface and S_REQ64# and S_ACK64#on the secondary interface. As a master, a
PCI interface of the ATU s will assert REQ64# with FRAME# to indicate to the target that a 64-bit
transaction is being requested. REQ64# is asserted and deasserted with the exact timing as
FRAME# for the master state machines. When REQ64# is asserted, the target of the memory
operation is required to assert ACK64# with the same timing as DEVSEL# to allow a 64-bit
transaction to proceed. If ACK64# is not asserted with DEVSEL#, the master interface must revert
to a 32-bit transaction. See Section 15.2.5.2 for details on 64-bit operation with 32-bit targets.

When ACK64# is asserted by the target of the transaction, a 64-bit transfer must proceed. As
stated, a 64-bit transfer behaves exactly the same as a 32-bit transfer except that up to 8 bytes of
data are transferred during each PCI data phase. For the 64-bit transfer, the AD[63:32] and
C/BE[7:4]# are reserved during the address phase (assuming a SAC transfer). During the data
phases, the master interface transfers up to 8 bytes of data on each of the 8 byte lanes defined by
C/BE[7:4]#. As in a 32-bit transfer the master is capable of asserting any (or none) of the byte
enables during each of the data phases within a burst transfer. Refer to Figure 15-8 for a diagram of
a 64-bit transfer from a 64-bit target. PAR64 for a 64-bit transfer has the same function and timing
as PAR for a 32-bit transfer. PAR64 must be asserted one clock after each address and data phase.
64-bit targets will qualify address parity checking using PAR64 with the assertion of REQ64#.
Although AD[63:32] and C/BE[7:4]# are reserved for SAC 64-bit transfers, parity must still be
preserved and therefore stable values must be driven.

Developer's Manual

Intel@ 80303 I/O Processor
PCI Address Translation Unit

Figure 15-8. PCI 64-Bit Transfer from a 64-Bit Target

ClK

2 3 4 5 6 7 8 9

FRAME# ~_~~ ____________________________________ -"! _______ ~_

REQ64# ~_~~ ___________________________________ ---L! _____ '~ _ ~

AD[31:00] -:-::- _~DDRES~ ___ C~ DATA-1) = ~~ __ D_A_T_A_-5 ____ .-Jrc~

AD[63:32] -:-::-_~ =-~~ DATA-2 > ~~ ___ D_A_T_A_-6 ___ ...JrC}~

~~---------------------------~>---~-------C/BE[3:0]# -:-::- ___ ~_ BE#'s _ ~

C/BE[7:4]# -- ----r
- - - - - -'-

)< _____ B_E_#'_S ____________________________ -J~C)~

DEVSEl# ____ ~Q _________ \->-______________________________ --'i. ____ _

ACK64# ____ ~ ~ _________ \-'-____________________ --'i. ____ _
~ 1__---------1 1__-------1

ADDRESS DATA DATA DATA
PHASE PHASE PHASE PHASE

As a target, the slave state machines of both ATU PCl interfaces are capable of responding as a
64-bit target. When a PCl memory transaction is claimed by an ATU interface and the initiating
master has requested a 64-bit transfer by asserting REQ64# with FRAME#, the ATU slave
interface will assert and deassert ACK64# with the same timing and protocol as DEVSEL#.
Furthermore, 64-bit slave operation is exactly like 32-bit operation with data being written or
returned on both AD[31:00] and AD[63:32] using C/BE[3:0]# and C/BE[7:4]#, respectively.
PAR64 must be driven with the same timing as PAR for read operations.

As a target during write operations, the ATUs must make sure they contain enough data queue
space (i.e. 8 bytes) to complete the next data transfer. Otherwise for less than 8 bytes of queue
space, a Target Disconnect with Data must be signaled in the data phase prior to the data phase
where the queue space will become full (defined as 7 bytes or less of queue space available).

Developer's Manual 15-25

Inte/@ 80303 /10 Processor
PCI Address Translation Unit

15.2.5.2

15-26

64-Bit Operation with 32-Blt Targets

When a 64-bit transfer is requested by the PeI master interfaces by the assertion of REQ64#, it is
not guaranteed that the target of the transaction is capable of performing the 64-bit request. In this
case, ACK64# will remain deasserted when the target asserts DEVSEL# to claim the transaction.
When a target signals that is cannot complete the transaction using 64-bit transfers, the ATU master
interfaces are responsible for completing the transactions as a 32-bit master. Two possible
conditions arise from a 32-bit target which does not respond with ACK64#:

1. ACK64# deasserted but a burst can be sustained

2. ACK64# deasserted but a burst can not be sustained

If a 32-bit target does not respond with ACK64# and STOP#, it is capable of continuing a burst as
a 32-bit target. For memory read requests, the ATU interfaces changes to 32-bit operation by only
expecting read data on the lower byte lanes, AD[31:0]. The master interfaces continue requesting
read data (by the continued asserting of IRDY#) as 32-bit masters. No master completions are
prematurely signaled due to 32-bit target response. For memory write operations, the master
interface may already have the first data phase on the bus by the time it is detected that ACK64#
has not been asserted. The PATU and SATU master interfaces discontinue driving data on the upper
4 bytes during the second data phase. The second data phase of the burst now contains the data
from the high 4 bytes of the first data phase. The master interface stops driving the AD[63:32] and
C/BE[7:4]# during data phase 2 and all subsequent data phases of the burst write transfer. See
Figure 15-9 for a diagram of this transaction. As a note, a disconnect after the first data phase of the
burst transfer write will result in the continuation of the write transaction as a 32-bit master only
(no REQ64#). This works similar to the write transfer disconnected in the first data phase
described in the next paragraph.

If a 32-bit target does not respond with ACK64# but asserts STOP#, the target will not continue
the burst. If a read or write request is made and STOP# without TRDY# is signaled (Retry), the
master interface must repeat the original read or write request as a 64-bit transaction. If the target
signals a disconnect with data (STOP# and TRDY#) on a write transaction, then only the lower 4
bytes of the 8 byte transfer have been delivered. The master state machines of the ATUs repeat the
request as a 32-bit master (no REQ64# assertion) using the upper 4 bytes of data from the
disconnected transaction on AD[31:00] and the next address (i.e. if address OOH was used in the
first 64-bit request, address 04H is used in the next 32-bit request). A disconnect from a 32-bit
target before an odd address results in a new transaction (if required) as a 32-bit master. A
disconnect from a 32-bit target before an even address results in a new transaction as a 64-bit
master (if required).

Note that 32-bit targets create special circumstances for FRAME# signaling. For 64-bit, single
Qword transfers, FRAME# is driven low and then high immediately in the next clock signaling
last data phase. Due to the potential of requiring two 32-bit data phases to complete what was
originally intended as one 64-bit data phase, this is not possible. FRAME# must not be deasserted
until after ACK64# is returned or not.

Developer's Manual

intet Intel® 80303 110 Processor
PCI Address Translation Unit

Figure 15-9. 64-Bit Write Request with 32-Bit Transfer

ClK

2 3 4 5 6 7 8 9

FRAME# ~_~'-____________ ~/ ___________________ ~_

REQ64# ~_~'-____________ ~{ __________________ ~

AD[31:00] - == =x ____ D_A_T_A-_3 ___ ~~~

AD[63:32] -:-=- _ ~ = ~ -
CfBE[3:0]# -:-=-.~ BE#'s-3

CfBE[7:4]# -:-=-_ ~ = ~ -- - - -- -- - - -
-~\ ~

IRDY# ______ "::-:" ___ L-ffi ___ ffi-" _____ j ffi-.l ____ __
LL LL LL
00 00 00
Z Z f- f- f- Z
<I: <I: <c « « <I:

TRDY# ____ ~9_l~ ___ ~~~_~~_~~_~~~ _____ _
« <I: <I:
o 0 0

DEVSEl# __ • _ ~ ~ _ ~L----' ___ ~ _____ -'--______ --'(___ __

ACK64#

~ ~4'-----~.~ 44r----~.~ 44r-~~-~.~
ADDRESS DATA DATA DATA

PHASE PHASE PHASE PHASE

Developer's Manual 15-27

Intel@ 80303 liD Processor
PCI Address Translation Unit intet·
15.2.6

15-28

66 MHz Operation

Both the PATU and the SATU of the 80303 I/O processor are capable of PCI 66 MHz operation to
support data transfer rates of up to 264 MB ytes/sec with a 32-bit bus or 528 Mbytes/sec with a
64-bit bus. Differences between 33 MHz PCI and 66 MHz PCI are minimal. Both share the same
protocol, and signal definitions. The 66 MHz PCI extension adds one additional signal to each PCI
interface. The signal and its function is

• M66EN - when asserted for a PCI interface, indicates that interface will run at 66 MHz

Additionally, bit 5 of the Primary ATU Status Register - PATUSR is set to a 12 indicating that the
PATU is capable of 66 MHz operation.

At PCI bus reset, each individual PCI bus (primary and secondary) will independently sample their
respective M66EN signals. If this signal is high, the bus is 66 MHz capable, and in the case of the
primary bus, the clock unit will be configured to accept a 66 MHz Primary PCI Bus clock.

The 66 MHz capable 80303 I/O processor supports the following primary and secondary bus
frequency combinations:

• 66 MHz primary bus, 66 MHz secondary bus

• 66 MHz primary bus, 33 MHz secondary bus

• 33 MHz primary bus, 33 MHz secondary bus

The 80303 I/O processor does not support 33 MHz primary/66 MHz secondary bus operation,
where the secondary bus is operating at twice the frequency of the primary bus. If P _ M66EN is
low (primary bus at 33 MHz), then the 80303 I/O processor pulls down S _ M66EN to indicate that
the secondary PCI bus is operating at 33 MHz.

The 80303 I/O processor generates clock signals S _ CLKOUT[6:0] for the secondary bus devices
and its own secondary interface (S _ CLKIN). The 80303 I/O processor divides the primary bus
clock P _ CLK by two to generate the secondary bus clock outputs whenever the primary bus is
operating at 66 MHz and the secondary bus is operating at 33 MHz. The 80303 I/O processor
detects this condition when P _ M66EN is high and S _ M66EN is low.

For more details on the 80303 I/O processor's 66 MHz PCI clock scheme and the operation of the
secondary PCI bus clocks, please see Chapter 25, "Clocking and Reset".

Developer's Manual

intel·
15.3 Messaging Unit

Intel® 80303 110 Processor
PCI Address Translation Unit

The Messaging Unit (MU) transfers data between the PCI system and the 80303 I/O processor and
notifies the respective system when new data arrives. The MU is described in Chapter 16,
"Messaging llnit".

The primary PCI window for messaging transactions is always the first 4 Kbytes of the inbound
translation window defined by the Primary Inbound ATU Base Address Register (PIABAR) and
the Primary Inbound ATU Limit Register (PIALR).

Access to the Messaging Unit from the secondary PCI interface is supported through a
combination of the PCI-to-PCI Bridge Unit and the Secondary ATU. If bit 12 of the ATUCR is set,
the first 4 KB of the SATU address is not claimed by the SATU but is allowed to be claimed by the
secondary interface of the bridge. This address space must be within the range that is normally
decoded and forwarded from secondary to primary by the bridge. Once the transaction is forwarded
through the bridge, the setting of bit 12 allows the 80303 I/O processor to act as a master (bridge)
and slave (ATU/Messaging Unit) at the same time on the primary interface. Refer to
Section 15.7.38, "'ATU Configuration Register - ATUCR" on page 15-98 for details of bit 12. The
bridge unit does not perform any special "steering" of transactions from the secondary interface to
the primary ATU/MU. The upstream bridge transaction must have a valid MU address to access the
MU (first 4 KB of primary ATU address space).

All of the Messaging Unit errors are reported in the same manner as PATU errors. Error conditions
and status can be found in the PATUSR and the PATUISR, see Section 15.6, "ATU Error
Conditions" on page 15-38.

Developer's Manual 15-29

Inte/® 80303 liD Processor
PCI Address Trans/ation Unit intet
15.4

15-30

Expansion ROM Translation Unit

The primary inbound ATU supports one address range (defined by a base/limit register pair) used
for the Expansion ROM. Refer to the PCI Local Bus Specification, Revision 2.2 for details on
Expansion ROM format and usage.

During a powerup sequence, initialization code from Expansion ROM is executed once by the host
processor to initialize the associated device. The code can be discarded once executed. Expansion
ROM registers are described inSection 15.7.14, Section 15.7.32, and Section 15.7.33.

The inbound primary ATU supports an inbound Expansion ROM window which works like the
inbound translation window. A read from the expansion ROM windows is forwarded to the internal
bus and to the Memory Controller. The address translation algorithm is the same as the inbound
translation; see Section 15.2.1.1, "Inbound Address Translation" on page 15-6. The only width
Expansion ROM supported by the 80303 I/O processor Memory Controller is an 8-bit non-volatile
device (FLASH/EPROM/ROM). The PATU uses standard 64-bit accesses on the internal bus and
the responsibility for packing the data from the 8-bit device resides with the Memory Controller.

The Expansion ROM unit uses the primary ATU inbound transaction queue and the inbound read
data queue. The address of the inbound delayed read cycle is entered into the P _ITQx queue and
the delayed read completion data is returned in the P _IRQ. Expansion ROM writes are not
supported and result in a Target Abort. The internal bus master interface will fill the P _IRQ read
queue with a minimum of 8-bytes in response to a read on the PCI bus. As a PCI target, the
Expansion ROM interface behaves as a standard ATU interface and is capable of returning a
64-byte access by the assertion of P _ ACK64# in response to a 64-bit request.

Developer's Manual

infel ..
15.5

15.5.1

ATU Queue Architecture

Intel® 80303 I/O Processor
PCI Address Translation Unit

ATU operation and performance depends on the queueing mechanism implemented between the
internal bus interface and PCI bus interface. As indicated in Figure 15-2, the ATU queue
architecture consists of separate inbound and outbound queues for ATU. The function of each
queue is described in the following sections.

Inbound Queues

The inbound data queues of the ATUs support transactions initiated on a PCI bus and targeted at
either 80303 I/O processor local memory or a 80303 I/O processor memory mapped register.
Table 15-4 details the name and sizes of the PATU and SATU inbound data queues.

Table 15-4. Inbound Queues

ATU Queue Mnemonic Queue Name Queue Size (Bytes)

P_IWQ Primary Inbound Write Data Queue 256

P_IWQAD Primary Inbound Write Address Queue 4 Transaction Addresses

PATU
P_IRQ Primary Inbound Read Data Queue 256

P_IDWQ Primary Inbound Delayed Write Queue 8

P_ITQ1 Primary Inbound Transaction Queue 1 Address/Command

P_ITQ2 Primary Inbound Transaction Queue 2 Address/Command

S_IWQ Secondary Inbound Write Data Queue 256

S_IWQAD Secondary Inbound Write Address Queue 4 Transaction Addresses

SATU S_IRQ Secondary Inbound Read Data Queue 256

S_ITQ1 Secondary Inbound Transaction Queue 1 Address/Command

S_ITQ2 Secondary Inbound Transaction Queue 2 Address/Command

Developer's Manual 15-31

Intel® 80303 I/O Processor
PCI Address Translation Unit

15.5.1.1

15-32

Inbound Write Queue Structure

The PATU and SATU Inbound Write Queues consist of the inbound write data queues and the
inbound write address queues. The inbound write data queue hold the data for memory write
transactions moving from a PCI Bus to the internal bus and the address queues hold the
corresponding address of the transactions in the data queues. The primary inbound write queue,
P _IWQ, has a queue depth of 256 bytes and moves write transactions from the primary PCI bus to
the internal bus. The corresponding address queue, P _IWQAD, is capable of holding 4 address
entries. The queue pair is capable of holding up to 4 memory write (or MWI) transactions up to the
size of the queue in a manner similar to the bridge unit write queues.

The secondary inbound write queue (S_IWQ) has a depth of 256 bytes and moves write
transactions from the secondary PCI bus to the internal bus. The corresponding address queue,
S_IWQAD, is capable of holding 4 address entries. This queue pair functions the same as the
primary queue pair, holding up to 4 transactions of variable length up to the size of the data queue.

Memory write transactions fill the tail of the queue on the PCI bus and are drained from the head of
the queue on the internal bus. The following rules apply to the PCI bus interface and govern the
acceptance of data into the tail of IWQ and address into the tail of the IWQAD:

• A memory write operation claimed by the slave PCI interface on the PCI bus is accepted into
the address and data queues if the queues are in a non-full state (see Section 15.7.49, "Primary
ATU Queue Control Register - PAQCR" on page 15-112 and Section 15.7.50, "Secondary
ATU Queue Control Register - SAQCR" on page 15-113). A Retry is signaled if this condition
is not true when a transaction is first claimed by the slave interface.

• If the IWQ reaches a full state while filling, a disconnect with data is signaled to the master of
the transaction on the data phase that fills the queue to a completely full state (no queue bytes
remaining).

Memory write transactions are drained from the head of the queue when the master interface has
acquired bus ownership and transaction ordering and priority have been satisfied (see
Section 15.5.3). A memory write transaction is considered drained from the queue when the entire
amount of data entered on the PCI bus has been accepted by the internal bus target. Error
conditions resulting in the cancellation of a write transaction (master-abort) only flush the
transaction at the head of the data and address queue. All other transactions within the queues are
considered still valid. Memory Write and Invalidate transactions are treated like Memory Write
transactions on the PCI interface and use the Memory Write command on the internal bus.

Transactions entering the tail of an empty queue (no previous write transactions reside in queue)
are forwarded immediately to the head of the queue. A queue entry (8 bytes for either 64-bit or
32-bit data) is immediately added to the tail of the data queue when drained from the head of the
queue on the target bus.

Developer's Manual

in1:et
15.5.1.2

Intel® 80303 I/O Processor
PCI Address Translation Unit

Inbound Read Queues and Inbound Transaction Queues

The inbound read queues are responsible for retrieving data from local memory and returning it to
the PCI busses in response to a delayed read transaction initiated from a PCI master. The ATU s
each have one IRQ for data only. The address of the transaction is held in a dedicated ITQ. P _ITQ I
and P _ITQ2 are dedicated to P _IRQ with a similar arrangement for the secondary ATU queues.
Each IRQ holds the data from only one read transaction from the PCI bus. The read request cycle
on PCI latches the read command and the address into the ITQ when the cycle is first initiated by
the PCI master. The ATU IE master interface takes the translated address and the command and
performs a read on the internal bus. Reads can be any of the PCI memory read command types
using the ATU inbound translation or an inbound configuration read using the specific
configuration cycle translation. The data from the read on the IE is stored in the IRQ until the PCI
master initiates a read cycle that matches the initial request cycle in both command and address.
Any data left in an IRQ after the delivery of a completion cycle on PCI is flushed. This is possible
since all internal bus memory is considered prefetchable with no read side effects.

The exact amount of data read by the master state machine on the IE interface depends upon the
read command used and how much data the PCI target device delivers. Table 15-5 shows the
amount of data attempted to be read for the different memory read commands for both the primary
and secondary ATUs. In addition, memory read streaming is used. This means that if an IRQ is
currently being drained while it is being filled and the pre fetch size is reached, the ATU internal
bus master maintains the transaction and continues filling read data into the IRQ until it fills up. If
the IRQ reaches a full state while being drained, the ATU internal bus master relinquishes the bus.
No master wait states are inserted. If additional read prefetch data is entered into the queue after the
draining master gives up the PCI bus, the data is flushed.

The function of the two transaction queues for each data queue is to allow the acceptance of up to
two delayed read requests. While only 1 read completion can be occurring at anyone time, the
second DRR can be accepted to reduce the latency of accepting another DRR after the previous
DRC has completed. For example, a DRR can be accepted into P _ITQl. After the DRR has been
accepted and the read starts on the internal bus, data will start filling P _IRQ from the internal bus
side. While this is occurring the PCI slave interface is capable of accepting another independent
read request into P _ITQ2. This read will only begin on the internal bus after a PCI master has
performed a read completion cycle on PCI and has drained the read data associated with P _ITQ 1
from P _IRQ. Under no circumstances will the read data queue hold read data from more than one
transaction queue at a time.

Internal bus error conditions override all pre fetch amounts. i.e. a master-abort and target-abort
conditions.

Table 15-5. Inbound Read Prefetch Data Sizes

ATU PCI Read Command Prefetch Size (Bytes)

Memory Read 32

PATU Memory Read Line 128

Memory Read Multiple 256

Memory Read 32

SATU Memory Read Line 128

Memory Read Multiple 256

Developer's Manual 15-33

Intel@ 80303 110 Processor
PCI Address Translation Unit

15.5.1.3

15.5.2

Inbound Delayed Write Queue

The IDWQ is present only in the primary ATU and is used specifically for inbound configuration
write cycles to the ATUs. I/O Write transactions are not accepted by the PATU or SATU, and result
in a Master Abort.

The IDWQ contains both address and data of a configuration write cycle. When the delayed write
cycle is initiated on the PCI bus, the address and data are entered into the 8 byte queue, forwarded
to the IE bus. The address translation, is specific configuration translation (Section 15.2.1.4). The
transaction is forwarded to the IE bus once transaction ordering is satisfied and the translated write
cycle is performed on the internal bus IE memory write command. The status of the transaction
(normal completion) is maintained in the IDWQ for return to the PCI master on the initiating bus.

The IDWQ can only hold 32-bit data and should never be accessed from PCI with P _ REQ64#
active. In addition, the cycle should always return only 32-bits of data on the internal bus and
should never receive an I ACK64#.

Outbound Queues

The outbound ATU queues are used to hold read and write transactions from the core processor,
directed at the PCI busses. Each ATU outbound queue structure has a separate read, write, and
address queue. Table 15-6 contains information about both PATU and SATU outbound queues.

Table 15-6. Outbound Queues

15-34

ATU Queue Mnemonic Queue Name Queue Size (Bytes)

P_OWQ Primary Outbound Write Queue 16

PATU P_ORQ Primary Outbound Read Queue 16

P_OTQ Primary Outbound Transaction Queue Address/Command

S_OWQ Secondary Outbound Write Queue 16

SATU S_ORQ Secondary Outbound Read Queue 16

S_OTQ Secondary Outbound Transaction Queue Address/Command

The outbound queues are capable of holding outbound memory read and write, I/O read, I/O write,
and DAC transactions. The type of transaction used is defined by the internal bus address and the
command used on the internal bus (memory write, memory read, memory read line, memory read
multiple). See Section 15.2.2.1 and Section 15.2.2.2 for details on outbound address translation.
For DAC cycles, each outbound transaction queue contains a separate register which contains the
upper 32-bits of a 64-bit outbound transactions (see Section 15.7.29 and Section 15.7.44).

When the core processor (BIU) initiates an outbound write transaction, the address is entered into
the OTQ (if empty). The data from the internal bus write is then entered into the OWQ and the
transaction is forwarded to the PCI bus. When the write completes (or an error occurs), the address
is flushed from the OTQ. Data is flushed only from master abort or target abort cases.

For outbound reads, the address is entered into the OTQ (if empty) and a retry is signaled to the
master on the internal bus. Read data is pre fetched (amounts based on Table 15-2) into the ORQ
and once the full prefetch amount (or a target abort or master abort error) is reached, the data is
allowed to be returned to the master on the internal bus.

The amount of data read during an outbound read cycle, depends on the internal bus read command
presented during the address phase. Since all outbound reads are deterministic and not speCUlative
prefetching, the ATU must complete the read before allowing the internal bus master access to the
data. Table 15-2 shows read sizes used by the primary and secondary ATUs during outbound reads.

Developer's Manual

15.5.3 Transaction Ordering

Intel® 80303 110 Processor
PCI Address Translation Unit

Because the ATUs can process multiple transactions, they must maintain proper ordering to avoid
deadlock conditions and improve throughput. The ATU transaction ordering rules used by the
80303 I/O processor are listed in Table 15-7 for the inbound direction and Table 15-8 for the
outbound direction. The tables are based on the direction the transaction is moving, (i.e., the data
for outbound delayed read moves in the same direction as the data for an inbound write or the
address/command for an inbound read).

Table 15-7. ATU Inbound Data Flow Ordering Rules

Inbound Write
Inbound Inbound Outbound

Row Pass Column? Read
Configuratio Read

ATUlnbound MU Inbound Request n Write Completion
Writes Writes Request

ATU1

Inbound No No No/Yes2 No Yes
Inbound

Writes

Write
MU3

Inbound No No No No Yes
Writes

Inbound Read Request No No No No Yes

Inbound Configuration
Write Request" No No No No Yes

Outbound Read No No Yes No No Completion

1. ATU Primary and Secondary Inbound Write Queues.
2. The only situation where an ATU inbound write can pass an inbound read request is if there is both a delayed read comple

tion and an inbound read request pending.
3. Messaging Unit Inbound Queue (Primary Only).
4. Not valid in Secondary ATU.

Table 15-8. ATU Outbound Data Flow Ordering Rules

Outbound Read Inbound Read Inbound
Row Pass Column? Outbound Write Request Completion Delayed Write

Completion

Outbound Write No No Yes Yes

Outbound Read Request No No Yes Yes

Inbound Read Completion No Yes No Yes

Inbound Delayed Write
Completion 1 Yes Yes Yes No

1. Not valid for Secondary ATU.

Developer's Manual 15-35

Intel® 80303 I/O Processor
PCI Address Translation Unit

Tenn definitions used in Table 15-7 and Table 15-8 (PCI tenns noted in parenthesis) are as follows:

• Inbound Write (PMW) - Data from a write cycle initiated on PCI and targeted at the internal
bus. Note that the address is in a separate transaction queue and is not referenced. Inbound
writes can also come in through the Messaging Unit which is part of the primary ATU.

• Inbound Read Request (DRR) - Address information from read transactions retried and
delayed on PCI bus. Mastered on internal bus to retrieve data for Inbound Read Completion.

• Inbound Configuration Write Request - (DWR) - Address and data associated with a
configuration write transaction from primary PCI and targeted at ATU PCI configuration
address space. Once completed on internal bus, creates an Inbound Configuration Write
Completion. Only available in the PATU.

• Outbound Read Completion (DRC) - Data read on PCI in process of being returned to the BIU
on the internal bus. This data is completion cycle resulting from Outbound Read Request.

• Outbound Write (PMW) - Address and data from a write initiated on the internal bus and
eventually completing on the PCI bus.

• Outbound Read Request (DRR) - Address/command of a delayed read cycle initiated on the
internal bus. The read data is returned in the Outbound Read Completion cycle.

• Inbound Read Completion (DRC) - Data read on the internal bus in the process of being
returned to the PCI bus. This data is the completion cycle for an Inbound Read Request.

• Inbound Configuration Write Completion (DWC) - Status of an inbound write configuration
cycle traveling from internal bus back towards primary PCI bus. Only present in the PATU.

These transaction ordering rules define the way data moves in both directions through the ATUs. In
Table 15-7 and Table 15-8 a NO response in a box means that based on ordering rules, the current
transaction (row) can not pass previous transaction (column) under any circumstance. A Yes
response in box means the current transaction is allowed to pass the previous transaction, but is not
required to, based on whether a consistent view of data or prevention of deadlocks is needed.

In the case of inbound write operations, multiple transactions may exist within the x_IWQ and the
corresponding x_IWQAD at any point in time. The ordering of these transactions is based on a
time stamp basis. Transactions entering the queue are stamped with a relative time in relation to all
other transactions moving in a similar direction.

Example 15-1. Inbound Queue Completion

Outbound Read Queue

Inbound Write Queue

PCIBus Internal Bus

Outbound Read Queue

Inbound Write Queue

A6499·01

15-36 Developer's Manual

infel .. Intel® 80303 I/O Processor
PCI Address Translation Unit

In Example 15-1 on page 15-36, the inbound write and outbound read queues of an ATU are
shown. In this example, transaction A entered the write queue at Time O. Next, the ATU entered
read data into the outbound read queue at Time 1 (Transaction B). Finally, before the previous
transactions could be cleared, another inbound write, Transaction C, was entered into the IWQ. The
ordering in Table 15-7 states that nothing can pass an inbound write and therefore Transaction A
must complete on the internal bus before Transaction B since an outbound read completion can not
pass an inbound write. Also, Transaction A must complete before Transaction C since an inbound
write can not pass another inbound write. Once Transaction A completes, Transaction C moves to
the head of the IWQ. The two transactions at the head of the queues moving data in an inbound
direction are now Transaction C, an inbound write, and Transaction B, an outbound read
completion. Ordering states that an inbound write may pass an outbound read completion. This
means that the priority mechanism now takes over to decide which will complete (defined in the
next section). In this case, if the BIU acquires the internal bus first, Transaction B will complete. If
the ATU acquires the internal bus first, Transaction C will complete. Note that ordering enforced
the completion of Transaction A but priority dictated the completion of Transactions Band C.

The first action performed to determine which transaction is allowed to proceed (either inbound or
outbound) is to apply the rules of ordering as defined in Table 15-7 and Table 15-8. Any box
marked No must be satisfied first. For example, if an inbound read request is in P _ITQ 1 and it was
latched after the data in the P _IDWQ arrived (this is a configuration write), then ordering states
that an Inbound Read Request may not pass an Inbound Configuration Write Request. Therefore,
the Inbound Configuration Write Request must be cleared out of P _IDWQ before the Inbound
Read Request is attempted on the internal bus. Once transaction ordering is satisfied, the boxes
marked Yes are now resolved.

Developer's Manual 15-37

Intel@ 80303 /10 Processor
PCI Address Translation Unit in1:et
15.6

15-38

ATU Error Conditions

PCI and internal bus error conditions cause the ATU state machines to exit normal operation and
return to idle states. In addition, status bits are set to inform error handling code of the exact cause
of the error condition. The 80303 I/O processor ATU s use a similar error handling scheme for PCI
interrupts as the PCI to PCI Bridge Unit. All of the Messaging Unit errors are reported in the same
manner as PATU errors. Error conditions and status can be found in the PATUSR and the
PATUISR. The basic flow for a PCI error is as follows:

• Set the bit in the ATU Status Register which corresponds to the error condition (master abort,
target abort, etc.)

• Set the bit in the ATU Interrupt Status Register which corresponds to the error condition
(master abort, target abort, etc.). This function is maskable for all PeI error conditions.

• The setting of the bit in the ATU Interrupt Status Register results in a NMI# interrupt being
driven to the i960 core processor

Error conditions on one side of the ATU are generally propagated to the other side of the ATU and
have different effects depending on the error. Error conditions and their effects are described in the
following sections.

PCI bus error conditions and the action taken on the bus are defined within the PCI Local Bus
Specification, Revision 2.2. The ATU adheres to the error conditions defined within the PCI
specification for both master and slave operation. Error conditions on the internal bus are caused by
an ECC error from the Memory Controller (see Section 13.4, "Interrupts/Error Conditions" on
page 13-42 for details on memory controller error conditions) or by incorrect addressing resulting
in an internal master abort. All actions on the PCI Bus for error situations are dependent on the
error control bits found in the Primary ATU and Secondary ATU Control Registers. See
Section 15.7, "Register Definitions" on page 15-54.

The following sections detail all ATU error conditions on the PCI bus and the 80303 I/O processor
internal bus, action taken on these conditions, and the status and control bits associated with error
handling.

Developer's Manual

15.6.1

Intel@ 80303 110 Processor
PCI Address Translation Unit

Address Parity Errors on the PCI Interface

The ATUs must detect and report address parity errors for transactions on both PCI buses. If an
address parity error occurs on the PCI interface of either ATU, the 80303 I/O processor performs
the following actions based on the constraints specified:

Table 15-9. Address Parity Errors on the PCI Interface

Primary ATU Secondary ATU

If the Parity Error Response bit in the PATUCMD is If the Parity Error Response bit iii the SATUCMD is
set, the PATU will not claim the transaction by not set, the SATU will not claim the transaction by not
asserting P _DEVSEL#, allowing a master abort to asserting S_DEVSEL#, allowing a master abort to
occur. If the Parity Error Response Enable bit in the occur. If the Parity Error Response Enable bit in the
PATUCMD is cleared, the PATU takes normal action SATUCMD is cleared, the SATU takes normal action
and allows the transaction to proceed. and allows the transaction to proceed.

Assert P SERR# if the P SERR# Enable bit and Assert S_SERR# if the S_SERR# Enable bit and
Parity Error Response bitin the PATUCMD are both Parity Error Response bit in the SATUCMD are both
set. set.

Set the P _SERR# Asserted bit in the PATUSR if the Set the S_SERR# Asserted bit in the SATUSR if the
P _SERR# Enable bit and Parity Error Response bit in S_SERR# Enable bit and Parity Error Response bit in
the PATUCMD are both set. the SATUCMD are both set.

Set the Detected Parity Error bit in the PATUSR Set the Detected Parity Error bit in the SATUSR

If the PATU P _SERR# Asserted Interrupt Mask Bit in If the SATU S_SERR# Asserted Interrupt Mask Bit in
the PATUIMR is clear, set the P _SERR# Asserted bit the SATUIMR is clear, set the S_SERR# Asserted bit
in the PATUISR, if set, no action. in the SATUISR, if set, no action.

If the PATU P _SERR# Detected Interrupt Mask Bit in If the SATU S_SERR# Detected Interrupt Mask Bit in
the ATUCR is clear, set the P _SERR# Detected bit in the ATUCR is clear, set the S_SERR# Detected bit in
the PATUISR, if set, no action. the SATUISR, if set, no action.

If the PATU Detected Parity Error Interrupt Mask bit in If the SATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error bit the SATUIMR is clear, set the Detected Parity Error bit
in the PATUISR. If set, no action in the SATUISR. If set, no action

Developer's Manual 15-39

Intel® 80303 liD Processor
PCI Address Translation Unit intel·
15.6.2

15.6.2.1

Data Parity Errors on the PCllnterface

Two kinds of data parity errors can occur on the PCI interface; errors as a master and errors as a
slave. For errors as a master (outbound transactions), the ATUs will detect data parity errors on
reads and record data parity errors occurring at the target for writes. For errors as a slave device
(inbound transactions), the ATUs will detect data parity errors during write transactions and take no
action for data parity errors during read transactions.

Outbound Read Data Parity Errors - Master

Data parity errors occurring during read operations initiated by the ATU are recorded, PERR# is
asserted (if enabled) and the data is returned to the initiator on the internal bus. The entire prefetch
amount of data is read and the transaction is never terminated with master completion in response
to the data parity error. Specifically, the following actions with the given constraints are taken on
both the primary and secondary ATUs:

Table 15-10. Outbound Read Data Parity Errors - Master

15-40

Primary ATU Secondary ATU

P _PERR# is asserted two clocks cycles following the S_PERR# is asserted two clocks cycles following the
data phase in which the data parity error is detected data phase in which the data parity error is detected
on the primary bus. This is only done if the Parity on the secondary bus. This is only done if the Parity
Error Response bit in the PATUCMD is set. Error Response bit in the SATUCMD is set.

The Master Parity Error bit in the PATUSR is set if the The Master Parity Error bit in the SATUSR is set if the
Parity Error Response bit in the PATUCMD is set. Parity Error Response bit in the SATUCMD is set.

The Detected Parity Error bit in the PATUSR is set The Detected Parity Error bit in the SATUSR is set

If the PATU PCI Master Parity Error Interrupt Mask Bit If the SATU PCI Master Parity Error Interrupt Mask Bit
in the PATUIMR is clear, set the PCI Master Parity in the SATUIMR is clear, set the PCI Master Parity
Error bit in the PATUISR, if set, no action. Error bit in the SATUISR, if set, no action.

If the PATU Detected Parity Error Interrupt Mask bit in If the SATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error bit the SATUIMR is clear, set the Detected Parity Error bit
in the PATUISR. If set, no action in the SATUISR. If set, no action

Outbound read parity errors, as stated, will result in the bad data being delivered back to the
initiator on the internal bus of the 80303 I/O processor.

Developer's Manual

intel·
15.6.2.2 Outbound Write Data Parity Errors - Master

Inte/@ 80303 110 Processor
PCI Address Translation Unit

Data parity errors occurring during write operations initiated by the ATU may record the assertion
of PERR# from the target on the PCI Bus. When an error occurs, the ATUs will continue writing
data to the target to clear the OWQ of the current outbound write transaction. Specifically, the
following actions with the given constraints are taken on both the primary and secondary ATUs:

Table 15-11. Outbound Write Data Parity Errors - Master

15.6.2.3

15.6.2.4

Primary ATU Secondary ATU

If P _PERR# is sampled active and the Parity Error If S_PERR# is sampled active and the Parity Error
Response bit in the PATUCMD is set, set the Master Response bit in the SATUCMD is set, set the Master
Parity Error bit in the PATUSR. If the Parity Error Parity Error bit in the SATUSR. If the Parity Error
Response bit in the PATUCMD is clear, no action is Response bit in the SATUCMD is clear, no action is
taken. taken.

If the PATU PCI Master Parity Error Interrupt Mask Bit If the SATU PCI Master Parity Error Interrupt Mask Bit
in the PATUIMR is clear, set the PCI Master Parity in the SATUIMR is clear, set the PCI Master Parity
Error bit in the PATUISR, if set, no action. Error bit in the SATUISR, if set, no action.

Outbound write parity errors, as stated, will not result in a master completion. In addition, if the
target terminates the transaction (disconnect), the ATU master must reinitiate the transaction to
clear the data from the OWQ.

Inbound Read Data Parity Errors - Slave

Inbound read data parity errors occur when read data delivered from the IRQ is detected as having
bad parity by the master of the transaction who is receiving the data. The master may optionally
report the error to the system by asserting PERR#. As a slave device in this scenario, no action is
required and no error bits are set.

Inbound Write Data Parity Errors - Slave

Data parity errors occurring during write operations received by the ATU may assert PERR# on
the PCI Bus. When an error occurs, the ATU s will continue accepting data until the master of the
write transaction completes or a queue fill condition is reached. Specifically, the following actions
with the given constraints are taken on both the primary and secondary ATUs:

Table 15-12. Inbound Write Data Parity Errors - Slave

Primary ATU Secondary ATU

P _PERR# is asserted two clocks cycles following the S_PERR# is asserted two clocks cycles following the
data phase in which the data parity error is detected data phase in which the data parity error is detected
on the primary bus. This is only done if the Parity on the secondary bus. This is only done if the Parity
Error Response bit in the PATUCMD is set. Error Response bit in the SATUCMD is set.

The Detected Parity Error bit in the PATUSR is set The Detected Parity Error bit in the SATUSR is set

If the PATU Detected Parity Error Interrupt Mask bit in If the SATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error bit the SATUIMR is clear, set the Detected Parity Error bit
in the PATUISR. If set, no action in the SATUISR. If set, no action

Developer's Manual 15-41

Intel® 80303 I/O Processor
PCI Address Translation Unit int'et
15.6.2.5

15-42

Inbound Configuration Write Data Parity Errors - Slave

To allow for correct data parity calculations for delayed write transactions, the primary ATU will
delay the assertion of P _STOP# (signalling a Retry) until P _PAR is driven by the master. A parity
error during a delayed write transaction (inbound configuration write cycle) can occur in any of the
following parts of the transactions:

• During the initial Delayed Write Request cycle on the primary PCI bus when the PATU latches
the address/command and data for delayed delivery to the internal configuration register.

• During the Delayed Write Completion cycle on the primary PCI bus when the ATU will
deliver the status of the operation back to the original master.

The 80303 I/O processor's primary ATU PCI interface has the following responses to a delayed
write parity error for inbound transactions during Delayed Write Request cycles with the given
constraints:

• If the Parity Error Response bit in the PATUCMD is set, the primary ATU asserts P TRDY#
(disconnects with data) and two clock cycles later asserts P _PERR# notifying the initiator of
the parity error. The delayed write cycle in not enqueued and forwarded to the internal bus.

If the Primary Parity Error Response bit in the PATUCMD is cleared, the primary ATU
retries the transaction by asserting P _ STOP# and enqueues the Delayed Write Request
cycle to be forwarded to the internal bus. P _ PERR# is not asserted.

• The Detected Parity Error bit is set in the Primary ATU Status Register (PATUSR).

• If the PATU Detected Parity Error Interrupt Mask bit in the PATUIMR is clear, set the
Detected Parity Error bit in the PATUISR. If set, no action

For the original write transaction to be completed, the initiator will retry the transaction on the PCI
bus and the PATU will return the status from the internal bus, completing the transaction.

For the Delayed Write Completion transaction on the primary PCI bus where a data parity error
occurs and therefore does not agree with the status being returned from the internal bus (i.e. status
being returned is nonnal completion) the primary ATU performs the following actions with the
given constraints:

• If the Parity Error Response Bit is set in the PATUCMD, the primary ATU asserts P _ TRDY#
(disconnects with data) and two clocks later asserts S_PERR#. The Delayed Completion cycle
in the IDWQ remains since the data of retried command did not match the data within the
queue.

If the Parity Error Response Bit is clear in the PATUCMD, the primary ATU will retry the
transaction with no other response. A new transaction is not enqueued due to queue archi
tecture constraints (see Section 15.5.1.1).

• The Detected Parity Error bit is set in the Primary ATU Status Register (PATUSR).

• If the PATU Detected Parity Error Interrupt Mask bit in the PATUIMR is clear, set the
Detected Parity Error bit in the PATUISR. If set, no action.

Developer's Manual

intel·
15.6.3 Master Aborts on the pel Interface

Intel® 80303 I/O Processor
PCI Address Translation Unit

As a master on the PCI bus, the ATU s can encounter master abort conditions during outbound read
and write transactions. A master abort is signaled when the target of the transaction does not assert
DEVSEL# within 5 clocks of the assertion of FRAME#. The following action with the given
constraints are performed by the primary and secondary ATUs when a master abort is detected by
the PCI master interface during an outbound read or write transaction:

Table 15-13. Master Aborts on the PCI Interface

Primary ATU Secondary ATU

Set the Master Abort bit (bit 13) in the PATUSR Set the Master Abort bit (bit 13) in the SATUSR

If the PATU PCI Master Abort Interrupt Mask bit in the If the SATU PCI Master Abort Interrupt Mask bit in the
PATUIMR is clear, set the PCI Master Abort bit in the SATUIMR is clear, set the PCI Master Abort bit in the
PATUISR. If set, no action SATUISR. If set, no action

If an outbound write. flush the write data in the If an outbound write, flush the write data in the
P _OWO and the address in the P _OTO S_OWO and the address in the S_OTO

If an outbound read, return the master abort condition If an outbound read, return the master abort condition
to the internal master when the completion cycle is to the internal master when the completion cycle is
allowed to proceed on the internal bus. Flush the allowed to proceed on the internal bus. Flush the
address from the P _OTO. address from the S_OTO.

For the read case, the BIU is responsible for completing a transaction to the core processor (see
Chapter 22, "I2C Bus Interface Unit").

As a target, the ATU PCI interface is capable of creating a master abort case during inbound reads.
If the inbound read transaction is master aborted on the internal bus, the ATU holding the Delayed
Request Cycle will purposely master abort the PCI initiator during a Delayed Completion retry
cycle on the PCI bus. After this has occurred, the read transaction is flushed from the Inbound
Transaction Queue (ITQ).

Developer's Manual 15-43

Intel® 80303 I/O Processor
PCI Address Translation Unit

15.6.4 Target Aborts on the PCI Interface

Target abort can be signaled to the ATUs by PCl targets during outbound transactions and a target
abort can be initiated by the ATUs during inbound transactions where the internal bus cycle
resulted in a Target Abort from the memory controller due to an ECC error.

An inbound read transaction will result in a PCl bus target abort when an ECC error was received
from the internal bus memory controller, the ATU ECC Target Abort Enable bit is set, and the Qword
aligned data phase that received a target abort on the internal bus is requested on the PCl bus.

The following actions with the given constraints are performed by the primary and secondary
ATU s when a target abort is signaled by the PCl slave interface during an inbound read or write
transaction:

Table 15-14. Target Aborts on the PCllnterface

Primary ATU Secondary ATU

Set the Target Abort (target) bit (bit 11) in the PATUSR Set the Target Abort (target) bit (bit 11) in the SATUSR

If the PATU PCI Target Abort (target) Interrupt Mask If the SATU PCI Target Abort (target) Interrupt Mask
bit in the PATUIMR is clear, set the PCI Target Abort bit in the SATUIMR is clear, set the PCI Target Abort
(target) bit in the PATUISR. If set, no action (target) bit in the SATUISR. If set, no action

If an inbound read, the P _'RO is flushed after the If an inbound read, the S_'RO is flushed after the
completion cycle is performed on the primary PCI completion cycle is performed on the secondary PCI
bus. bus.

As a master during outbound transactions, the ATUs can receive target aborts from their PCl
targets. For outbound writes, the transaction in the OWQ is flushed and for outbound reads, the
target abort is delivered back to the initiator on the internal bus. The following actions with the
given constraints are performed by the primary and secondary ATUs when a target abort is detected
by the PCl master interface during an outbound read or write transaction:

Table 15-15. Target Aborts on the Primary and Secondary ATUs

Primary ATU Secondary ATU

Set the Target Abort (master) bit (bit 12) in the Set the Target Abort (target) bit (bit 12) in the
PATUSR SATUSR

If the PATU PCI Target Abort (master) Interrupt Mask If the SATU PCI Target Abort (master) Interrupt Mask
bit in the PATUIMR is clear, set the PCI Target Abort bit in the SATUIMR is clear, set the PCI Target Abort
(master) bit in the PATUISR. If set, no action (master) bit in the SATUISR. If set, no action

If an outbound write transaction, flush the P _CWO If an outbound write transaction, flush the S_OWO
and the P _OTO. and the S_OTO.

If an outbound read transaction, return the target If an outbound read transaction, return the target
abort condition to the initiator on the internal bus abort condition to the initiator on the internal bus
through the P _ORO. through the S_ORO.

15-44 Developer's Manual

15.6.5 SERR# Assertion and Detection

Intel® 80303 liD Processor
PCI Address Translation Unit

The primary and secondary ATUs are capable of reporting error conditions through the use of the
P _SERR# output and the S_SERR# output respectively.

The following conditions may result in the assertion of P _SERR# by the primary ATU:

• An address parity error is detected by the PATU PCI interface and the Parity Error Response
bit and the P SERR# Enable are set in the PATUCMD.

• An inbound write transaction is target aborted when the transaction is attempted on the internal
bus, the Primary ATU Inbound Error P _SERR# Enable bit in the PATUIMR is set by the memory
controller, and the P _ SERR# Enable bit is set in the PATUCMD.

• An inbound write transaction is master aborted on the internal bus, the Primary ATU Inbound
Error P _ SERR# Enable bit in the PATUIMR is set, and the P _ SERR# Enable bit is set in the
PATUCMD.

• The P _SERR# Manual Assertion bit in the ATUCR has been set by the core processor and the
P SERR# Enable bit is set in the PATUCMD.

The following conditions may result in the assertion S_SERR# by the secondary ATD:

• An address parity error is detected by the SATU PCI interface and the Parity Error Response
bit and the S_SERR# Enable are set in the SATDCMD.

• An inbound write transaction is target aborted by the memory controller when the transaction
is attempted on the internal bus, the Secondary ATD Inbound Error S_SERR# Enable bit in the
SATUIMR is set, and the S_SERR# Enable bit is set in the SATDCMD.

• An inbound write transaction is master aborted on the internal bus, the Secondary ATD
Inbound Error S_SERR# Enable bit in the SATUIMR is set, and the S_SERR# Enable bit is set
in the SATUCMD.

• The S_SERR# Manual Assertion bit in the ATDCR has been set by the core processor and the
S_SERR# Enable bit is set in the SATDCMD.

Note that the SERR# manual assertion bits must be cleared manually before they can be set again
resulting in SERR# asserted. Refer to Section 15.7.38, "ATD Configuration Register - ATDCR" on
page 15-98 for details. For S_SERR# assertions by the SATD, the bridge must be programmed to
pass the error upstream for detection by a host processor.

The following actions with the given constraints are performed by the primary and secondary
ATDs when SERR# is asserted by the PCI interface:

Table 15-16. SERR# Assertion on the Primary and Secondary ATUs

Primary ATU Secondary ATU

Set the P _SERR# Asserted bit in the PATUSR Set the S_SERR# Asserted bit in the SATUSR

If the PATU P _SERR# Asserted Interrupt Mask bit in If the SATU S_SERR# Asserted Interrupt Mask bit in
the PATUIMR is clear, set the P _SERR# Asserted bit the SATUIMR is clear, set the S_SERR# Asserted bit
in the PATUISR. If set, no action in the SATUISR. If set, no action

If the PATU P _SERR# Detected Interrupt Mask bit in If the SATU S_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the P _SERR# Detected bit in the ATUCR is clear, set the S_SERR# Detected bit in
the PATUISR. If set, no action the SATUISR. If set, no action

Developer'S Manual 15-45

Intel® 80303 110 Processor
PCI Address Translation Unit

The following actions with the given constraints are performed by the primary and secondary
ATUs when SERR# is detected by the PCI interface:

Table 15-17. SERR# Detection On the Primary and Secondary ATUs

Primary ATU Secondary ATU

If the PATU P _SERR# Detected Interrupt Mask bit in If the SATU S_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the P _SERR# Detected bit in the ATUCR is clear, set the S_SERR# Detected bit in
the PATUISR. If set, no action the SATUISR. If set, no action

Note: Whenever the ATU asserts SERR#, both the asserted and detected status bits are set in the
corresponding ISR. To mask an NMI# interrupt to the core when either the PATU or SATU asserts
SERR#, both the SERR# asserted mask bit and the SERR# detected mask bit must be set. To
mask and NMI# when either of the ATU s have detected SERR# (from some other device on one of
the PCI interfaces), just the corresponding SERR# detected mask bit must be set.

15-46 Developer's Manual

int:et
15.6.6

15.6.6.1

Internal Bus Error Conditions

Intel® 80303 110 Processor
PCI Address Translation Unit

The 80303 I/O processor internal bus uses a protocol similar to the PCI specification. As such,
master abort and target abort conditions are valid error states on the bus. The error handling
protocol for internal bus conditions is similar to the PCI bus error protocol. An internal bus error
will result in a bit being set in the Primary or Secondary Interrupt Status Registers at which time an
interrupt is driven to the core processor. Unlike PCI errors, internal bus error conditions are not
maskable.

The following sections detail internal bus error conditions for the primary and secondary ATUs.

Master Abort on the Internal Bus

A master abort on the internal bus is seen by the ATUs when the inbound translated address
presented on the internal bus is not claimed by the assertion of 1_ DEVSEL#. As a slave device, the
ATUs will return a master abort (by not asserting I_DEVSEL#) during an outbound read DRC
cycle on the internal bus in response to a master abort on the PCI interface.

The following action with the given constraints are performed by the primary and secondary ATUs
when a master abort is detected by the internal master interface during an inbound write
transaction:

Table 15-18. Master Abort During an Inbound Write Transaction

Primary ATU Secondary ATU

Set the Internal Bus Master Abort bit (bit 7) in the Set the Internal Bus Master Abort bit (bit 7) in the
PATUISR SATUISR

If the inbound write transaction is still active on the If the inbound write transaction is still active on the
primary PCI interface, notify the primary PCI slave secondary PCI interface, notify the secondary PCI
interface to disconnect the transaction. slave interface to disconnect the transaction.

If the Primary Inbound Error P _SERR# Enable bit is If the Secondary Inbound Error S_SERR# Enable bit
set and the P _SERR# Enable bit is set in the is set and the S_SERR# Enable bit is set in the
PATUCMD, assert P _SERR# on the primary SATUCMD, assert S_SERR# on the secondary
interface. If both bits are not set, take no action. interface. If both bits are not set, take no action.

If P _SERR# is asserted, set the P _SERR# Asserted If S_SERR# is asserted, set the S_SERR# Asserted
bit in the PATUSR bit in the SATUSR

If P SERR# is asserted and the PATU P SERR# If S_SERR# is asserted and the SATU S_SERR#
Asserted Interrupt Mask bit in the PATUIMR is clear, Asserted Interrupt Mask bit in the SATUIMR is clear,
set the P _SERR# Asserted bit in the PATUISR. If set, set the S_SERR# Asserted bit in the SATUISR. If set,
no action no action

If P SERR# is asserted and the PATU P SERR# If S_SERR# is asserted and the SATU S_SERR#
Detected Interrupt Mask bit in the ATUCRis clear, set Detected Interrupt Mask bit in the ATUCR is clear, set
the P _SERR# Detected bit in the PATUISR. If set, no the S_SERR# Detected bit in the SATUISR. If set, no
action action

Flush the transaction that was master aborted from Flush the transaction that was master aborted from
the P_IWQ. the S_IWQ.

The Internal Bus Master Abort bit is non-maskable and always results in an NMI# interrupt being
driven to the core processor.

Developer's Manual 15-47

Intel® 80303 I/O Processor
PCI Address Translation Unit intel·

The following action with the given constraints are performed by the primary and secondary ATUs
when a master abort is detected by the internal master interface during an inbound read transaction:

Table 15-19. Master Abort During an Inbound Read Transaction

15-48

Primary ATU Secondary ATU

Set the Internal Bus Master Abort bit (bit 7) in the Set the Internal Bus Master Abort bit (bit 7) in the
PATUISR SATUISR

Return a master abort condition to the initiating Return a master abort condition to the initiating
master during the delayed completion cycle on the master during the delayed completion cycle on the
primary PCI bus. No data is ever read from the secondary PCI bus. No data is ever read from the
internal bus and returned to the primary PCI bus. internal bus and returned to the secondary PCI bus.

Flush the transaction that was master aborted from Flush the transaction that was master aborted from
the P _ITO after the master abort is delivered on the the S_ITO after the master abort is delivered on the
PCI interface. PCI interface.

The Internal Bus Master Abort bit is non-maskable and will always result in an NMI# interrupt
being driven to the core processor.

As a slave device on the internal bus, the ATU s can return a master abort to the BIU in response to
a master abort seen on the PCI interface during a delayed read cycle. In this scenario, the master
abort is detected on the PCI interface during the read. Once this occurs, the ATU notifies the
internal bus arbiter to allow the BIU to acquire the bus and after the assertion of 1_ FRAME#, the
ATU fails to return an 1_ DEVSEL# signalling a master abort to the internal bus master (the BIU).
No error conditions are recorded by the slave interface of the ATUs during master abort operations,
since they are already recorded by the PCI interface.

Developer'S Manual

intel·
15.6.6.2 Target Abort on the Internal Bus

Inte/® 80303 110 Processor
PCI Address Translation Unit

Target Aborts can be seen by the internal bus master interface during inbound read and write operations
to the memory controller. They are signaled as a slave device in response to a target abort encountered
during outbound read. During inbound operations, the memory controller is capable of signalling a
target abort when a multi-bit, unrecoverable ECC error is encountered. This can occur during writes of
less than 64-bits and during any read operation. During outbound read operations, a delayed read cycle,
that is target aborted on the PCI bus, results in a target abort being driven back to the BIU on the internal
bus. Outbound writes will not see target aborts because they are always fully posted.

The following action with the given constraints are performed by the primary and secondary ATUs
when a target abort is detected by the internal master interface during an inbound write transaction:

Table 15-20. Target Abort During an Inbound Write Transaction

Primary ATU Secondary ATU

If the Primary Inbound Error P _SERR# Enable bit is If the Secondary Inbound Error S_SERR# Enable bit
set and the P SERR# Enable bit is set in the is set, and the S_SERR# Enable bit is set in the
PATUCMD, assert P _SERR# on the primary SATUCMD, assert S_SERR# on the secondary
interface. If both bits aren't set, take no action. interface. If both bits aren't set, take no action.

If P _SERR# is asserted, set the P _SERR# Asserted If S_SERR# is asserted, set the S_SERR# Asserted
bit in the PATUSR. bit in the SATUSR.

If P _SERR# is asserted and the PATU P _SERR# If S_SERR# is asserted and the SATU S_SERR#
Asserted Interrupt Mask bit in the PATUIMR is clear, Asserted Interrupt Mask bit in the SATUIMR is clear,
set the P _SERR# Asserted bit in the PATUISR. If set, set the S_SERR# Asserted bit in the SATUISR. If set,
no action. no action.

If P _SERR# is asserted and the PATU P _SERR# If S_SERR# is asserted and the SATU S_SERR#
Detected Interrupt Mask bit in the ATUCR is clear, set Detected Interrupt Mask bit in the ATUCR is clear, set
the P _SERR# Detected bit in the PATUISR. If set, no the S_SERR# Detected bit in the SATUISR. If set, no
action action

If the inbound write transaction is still active on the If the inbound write transaction is still active on the
primary PCI interface, notify the primary PCI slave primary PCI interface, notify the secondary PCI slave
interface to disconnect the transaction. interface to disconnect the transaction.

The Memory Controller is responsible for creating the core processor NMI# interrupt. The inbound
write queue (IWQ) is not cleared and the ATU internal bus master interface will re-arbitrate for the
internal bus and eventually drain the transaction which was target aborted from the queue.

The following action with the given constraints are performed by the primary and secondary ATUs
when a target abort is detected by the internal master interface during an inbound read transaction:

Table 15-21. Target Abort During an Inbound Read Transaction

Primary ATU Secondary ATU

If the data word which was target aborted on the If the data word which was target aborted on the
internal bus is actually requested and delivered on the internal bus is actually requested and delivered on the
primary PCI Bus, and the Primary ATU ECC Target secondary PCI Bus, and the Secondary ATU ECC
Abort Enable bit is set in the PATUIMR, a target abort Target Abort Enable bit is set in the SATUIMR, a
is returned to the PC I initiator on that data word. If the target abort is returned to the PCI initiator on that data
Primary ATU ECC Target Abort Enable bit is clear in word. If the Secondary ATU ECC Target Abort Enable
the PATUIMR, a disconnect with data is returned to bit is clear in the SATUIMR, a disconnect with data is
the PCI initiator during the data word that was target returned to the PCI initiator during the data word that
aborted on the internal bus. was target aborted on the internal bus.

The Memory Controller is responsible for creating the NMI# interrupt to the core processor. Note
target aborts are signalled on a Qword basis. If either Dword of a Qword target aborts, both will be
considered to have target aborted.

Developer's Manual 15-49

Intel@ 80303 I/O Processor
PCI Address Translation Unit infel·
15.6.7 ATU Error Summary

Table 15-22 through Table 15-25 summarize the ATU error reporting for PCI bus errors
(Table 15-22 and Table 15-23) and internal bus errors (Table 15-24 and Table 15-25). The tables
assume that all error reporting is enabled through the appropriate command registers (unless
otherwise noted). The Primary and Secondary ATU Status Registers record PCI bus errors. Note
that the SERR# Asserted bit in the Status Register is set only when the SERR# Enable bit in the
Command Register is set. The Primary and Secondary ATU Interrupt Status Registers record i960
core processor interrupt status infonnation.

Note: When an external agent violates PCI protocol, Primary and Secondary ATU behavior may be
unpredictable/undefined.

Table 15-22. Primary ATU Error Reporting Summary - PCllnterface

Error Bits Set in Bits Set in Interrupt Mask Bit in
Primary ATU Status Register Primary ATU Interrupt Status Condition

(PATUSR) Register (PATUISR)
PATUIMR or ATUCR

Inbound Write Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 7

Address Parity P _SERR# Asserted - bit 14 P _SERR# Asserted - bit 10 PATUIMR bit 6
Error N/A P _SERR# Detected - bit 4 ATUCR bit9

Inbound Write

Data Parity Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 7
Error

Inbound Write P _SERR# Asserted - bit 14 P _SERR# Asserted - bit 10 PATUIMR bit 6

Master or Target N/A P _SERR# Detected - bit 4 ATUCR bit9 Abort

Inbound Read Detected Parity Error - bit 1 5 Detected Parity Error - bit 9 PATUIMR bit 7

Address Parity P _SERR# Asserted - bit 14 P _SERR# Asserted - bit 10 PATUIMR bit 6
Error N/A P _SERR# Detected - bit 4 ATUCR bit9

Inbound Read

Data Parity N/A N/A N/A
Error

Inbound Read

Target Abort
Target Abort (target) - bit 11 PCI Target Abort (target) - bit 1 PATUIMR bit 3

Outbound Write
Master Abort - bit 13 PCI Master Abort - bit 3 PATUIMR bit 5

Master Abort

Outbound Write
Data Parity Master Parity Error - bit 8 PCI Master Parity Error - bit 0 PATUIMR bit 2
Error

Outbound Write
Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 PATUIMR bit 4

Target Abort

Outbound Read
Master Abort - bit 13 PCI Master Abort - bit 3 PATUIMR bit 5 Master Abort

Outbound Read Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 7
Data Parity

Master Parity Error - bit 8 PCI Master Parity Error - bit 0 PATUIMR bit 2 Error

Outbound Read
Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 PATUIMR bit 4 Target Abort

P_SERR# N/A P _SERR# Detected - bit 4 ATUCR bit 9
Detected

15-50 Developer's Manual

infel· Intel® 80303 110 Processor
PCI Address Translation Unit

Table 15-23. Secondary ATU Error Reporting Summary - PCI Interface

Bits Set in
Bits Set in Error Secondary ATU Status

Secondary ATU Interrupt
Interrupt Mask Bit in

Condition Register SATUIMR or ATUCR
(SATUSR) Status Register (SATUISR)

Inbound Write Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 7

Address Parity S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 6
Error

N/A S_SERR# Detected - bit 4 ATUCR Bit 10

Inbound Write

Data Parity Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 7
Error

Inbound Write S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 6

Master or Target
N/A S_SERR# Detected - bit 4 ATUCR Bit 10 Abort

Inbound Read Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 7

Address Parity S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 6
Error

N/A S_SERR# Detected - bit 4 ATUCR Bit 10

Inbound Read

Data Parity N/A N/A N/A
Error

Inbound Read
Target Abort (target) - bit 11

Target Abort
PCI Target Abort (target) - bit 1 SATUIMR bit 3

Outbound Write Master Abort - bit 13 PCI Master Abort - bit 3 SATUIMR bit 5 Master Abort

Outbound Write
Data Parity Master Parity Error - bit 8 PCI Master Parity Error - bit 0 SATUIMR bit 2
Error

Outbound Write
Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 SATUIMR bit 4

Target Abort

Outbound Read
Master Abort - bit 13 PCI Master Abort - bit 3 SATUIMR bit 5

Master Abort

Outbound Read Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 7
Data Parity

Master Parity Error - bit 8 Error PCI Master Parity Error - bit 0 SATUIMR bit 2

Outbound Read Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 SATUIMR bit 4
Target Abort

S_SERR# N/A S_SERR# Detected - bit 4 ATUCR Bit 10 Detected

Developer's Manual 15-51

Intel@ 80303 liD Processor
PCI Address Translation Unit

Table 15-24. Primary ATU Error Reporting Summary -Internal Bus Interface

Error Bits Set in Bits Set in
Primary ATU Status Register Primary ATU Interrupt Status

Condition (PATUSR) Register (PATUISR)

N/A Internal Bus Master Abort - bit 7
Inbound Write

P _SERR# Asserted - bit 14 P _SERR# Asserted - bit 10
Master Abort

N/A P _SERR# Detected - bit 4

Inbound Write P _ SER R# Asserted - bit 14 P _SERR# Asserted - bit 10

Target Abort N/A P _SERR# Detected - bit 4

Inbound Read
N/A Internal Bus Master Abort - bit 7

Master Abort

Inbound Read
N/A N/A

Target Abort

Outbound Write
N/A N/A

Master Abort1

Outbound Write
N/A N/A

Target Abort2

Outbound Read
N/A N/A

Master Abort3

Outbound Read

Target Abort
N/A N/A

1. Never occurs since outbound writes are always completely posted.
2. Never occurs since outbound writes are always completely posted.

Interrupt Mask Bit in
PATUIMR or ATUCR

N/A

PATUIMR bit 6

ATUCR bit9

PATUIMR bit 6

ATUCR bit9

N/A

N/A

N/A

N/A

N/A

N/A

3. In response to a master abort during the ORC on the primary PCI bus. No errors posted in the PATU, only in the BIU.

15-52 Developer's Manual

Table 15-25.

Intel@ 80303 I/O Processor
PCI Address Translation Unit

Secondary ATU Error Reporting Summary - Internal Bus Interface

Error
Bits Set in Bits Set in

Interrupt Mask Bit in
Secondary ATU Status Secondary ATU Interrupt

Condition Register (SATUSR) Status Register (SATUISR)
SATUIMR or ATUCR

N/A Internal Bus Master Abort - bit 7 N/A
Inbound Write

S_SERR# Asserted - bit 14
Master Abort

S_SERR# Asserted - bit 10 SATUIMR bit 6

N/A S_SERR# Detected - bit 4 ATUCR Bit 10

Inbound Write S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 6

Target Abort N/A S_SERR# Detected - bit 4 ATUCR Bit 10

Inbound Read

Master Abort
N/A Internal Bus Master Abort - bit 7 N/A

Inbound Read

Target Abort
N/A N/A N/A

Outbound Write
N/A N/A N/A

Master Abort 1

Outbound Write

Target Abort2
N/A N/A N/A

Outbound Read
N/A N/A N/A

Master Abort3

Outbound Read
N/A N/A N/A

Target Abort

1. Never occurs since outbound writes are always completely posted.
2. Never occurs since outbound writes are always completely posted.
3. In response to a master abort during the ORC on the secondary PCI bus. No errors posted in the SATU, only in the BIU.

Developer's Manual 15-53

Intel@ 80303 110 Processor
PCI Address Translation Unit intel.
15.7 Register Definitions

Every PCI device implements its own separate configuration address space and configuration
registers. The PCI Local Bus Specification, Revision 2.2 requires that configuration space be
256 bytes, and the first 64 bytes must adhere to a predefined header format.

Figure 15-10 defines the header format. Table 15-13 shows the PCI configuration registers, listed
by internal bus address offset. Table 15-14 shows the entire ATU configuration space (including
header and extended registers) and the corresponding section that describes each register. Note that
all configuration read and write transactions will be accepted on the internal bus as 32-bit
transactions. Refer to Appendix C, "Peripheral Memory-Mapped Registers".

Figure 15-10. ATU Interface Configuration Header Format

15-54

ATU Device 10 Vendor 10

Primary Status Primary Command

ATU Class Code Revision 10

BIST I Header Type Latency Timer Cacheline Size

Primary Inbound ATU Base Address

Reserved

ATU Subsystem 10 ATU Subsystem Vendor 10

Expansion ROM Base Address

Capabilities Pointer

Maximum Latency I Minimum Grant Interrupt Pin Interrupt Line

OOH

04H

08H

OCH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

Primary and secondary ATU s are programmed via a Type 0 configuration command on the primary
interface. See Section 15.2.1.4, "Inbound Configuration Cycle Translation" on page 15-131. ATU
configuration space is function number one of the 80303 I/O processor multi-function PCI device.
(Refer to Section 15.2.4, "PCI Multi-Function Device Swapping/Disabling" on page 15-23 for
exceptions to this statement.)

Beyond the required 64 byte header format, ATU configuration space implements extended register
space in support of the units functionality. Refer to the PCI Local Bus Specification, Revision 2.2
for details on accessing and programming configuration register space.

The ATU unit includes an 8 byte extended capability configuration space beginning at
configuration offset 80H. The extended configuration space can be accessed by a device on the
primary interface through a mechanism defined in the PCI Local Bus Specification, Revision 2.2.

Developer's Manual

intel· Intel® 80303 liD Processor
PCI Address Translation Unit

In the Primary ATU Status Register (Section IS.7.4) the appropriate bit is set indicating that the
Extended Capability Configuration space is supported. When this bit is read, the device can then
read the Capabilities Pointer register (Section 1S.7 .IS) to determine the configuration offset of the
Extended Capabilities Configuration Header. The format of this header is depicted in Figure IS-II.

Figure 15-11. ATU Interface Extended Configuration Header Format

Power Management Capabilities

Reserved

Next Item Pointer I Capability Identifier

Power Management Control/Status

80H

84H

The first byte at the Extended Configuration Offset is the ATU Capability Identifier Register
(Section lS.7.34). This will identify this Extended Configuration Header space as the type defined
by the PCI Bus Power Management InteJ1ace Specification, Revision 1.1.

Following the Capability Identifier Register will be the single byte Next Item Pointer Register
(Section lS.7.3S) which will indicate the configuration offset of an additional Extended
Capabilities Header, if supported. In the ATU, the Next Item Pointer Register is set to OOH
indicating that there are no additional Extended Capabilities Headers supported in the ATUs
configuration space.

To enable the PCI Bus Power Management Interface Specification, Revision 1.1 compliance
support, the Power State Transition interrupt mask in bit 8 ofthe PATUIMR needs to be cleared and
the PCI extended Capabilities enable in bit 4 of the PATUSR needs to be set. It is the configuration
software responsibility to properly enable and initialize the ATUs Power Management Interface
before the Configuration Cycle Retry Bit in the Chapter 14, "Extended Bridge Control Register -
EBCR" is cleared in order for the ATU to be Advanced Configuration and Power Interface
Specification, Revision 1.0 compliant.

The following sections describe the ATU and Expansion ROM configuration registers.
Configuration space consists of 8, 16,24, and 32-bit registers arranged in a predefined format.
Each register is described in functionality, access type (read/write, read/clear, read only) and reset
default condition.

See Section 1.3, "Terminology and Conventions" on page 1-S for a description of reserved, read
only, and read/clear. All registers adhere to the definitions found in the PCI Local Bus
Specification, Revision 2.2 unless otherwise noted.

The PCI register number for each register is given in Table lS-13. As stated, a Type a configuration
command on the primary bus with an active P _IDSEL or a memory-mapped internal bus access is
required to read or write these registers.

Note: Each configuration register's access type is individually defined for PCI configuration accesses.
Some PCI read-only configuration registers have read/write capability from the 80303 I/O
processor core CPU. See also Appendix C, "Peripheral Memory-Mapped Registers".

Developer's Manual 15-55

Intel@ 80303 110 Processor
PCI Address Translation Unit

Table 15-26. Address Translation Unit Registers (Sheet 1 of 2)

Register Name

ATU Vendor to Register - ATUVID

Device 10 Register - DID (80303 1/0 processor)

Primary ATU Command Register - PATUCMD

Primary ATU Status Register - PATUSR

ATU Revision 10 Register - ATURID

ATU Class Code Register - ATUCCR

ATU Cacheline Size Register - ATUClSR

ATU latency Timer Register - ATUl T

ATU Header Type Register - ATUHTR

ATU BIST Register - ATUBISTR

Primary Inbound ATU Base Address Register - PIABAR

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

ATU Subsystem Vendor 10 Register - ASVIR

ATU Subsystem ID Register - ASIR

Expansion ROM Base Address Register -ERBAR

ATU Capabilities Pointer Register - ATU_Cap_Ptr

Reserved

Reserved

Reserved

ATU Interrupt line Register - ATUllR

ATU Interrupt Pin Register - ATUIPR

ATU Minimum Grant Register - ATUMGNT

ATU Maximum latency Register - ATUMLAT

Primary Inbound ATU limit Register - PIAlR

Primary Inbound ATU Translate Value Register - PIATVR

Secondary Inbound ATU Base Address Register - SIABAR

Secondary Inbound ATU limit Register - SIAlR

Secondary Inbound Translate ATU Value Register - SIATVR

Primary Outbound Memory Window Value Register - POMWVR

Reserved

15-56

Bits

16

16

16

16

8

24

8

8

8

8

32

32

32

32

32

32

32

16

16

32

8

8

16

32

8

8

8

8

32

32

32

32

32

32

32

PCI
Configuration

Internal Bus Cycle
Address Register

Number

0 0000.1200H

0 0000.1202H

1 0000.1204H

1 0000.1206H

2 0000.1208H

2 0000.1209H

3 0000.120CH

3 0000.120DH

3 0000.120EH

3 0000.120FH

4 0000.1210H

5 0000.1214H

6 0000.1218H

7 0000.121CH

8 0000.1220H

9 0000.1224H

10 0000.1228H

11 0000.122CH

11 0000.122EH

12 0000.1230H

13 0000.1234H

13 0000.1235H

13 0000.1236H

14 0000.1238H

15 0000.123CH

15 0000.123DH

15 0000.123EH

15 0000.123FH

16 0000.1240H

17 0000.1244H

18 0000.124BH

19 0000.124CH

20 0000.1250H

21 0000.1254H

22 0000.1258H

Developer's Manual

intel~
Table 15·26. Address Translation Unit Registers (Sheet 2 of 2)

Register Name

Primary Outbound 1/0 Window Value Register - POIOWVR

Primary Outbound DAC Window Value Register - PODWVR

Primary Outbound Upper 64-bit DAC Register - POUDR

Secondary Outbound Memory Window Value Register - SOMWVR

Secondary Outbound 1/0 Window Value Register - SOIOWVR

Reserved

Expansion ROM Limit Register - ERLR

Expansion ROM Translate Value Register - ERTVR

Reserved

ATU~Capability Identifier Register - ATU~Cap~ID

ATU Next Item Pointer Register - ATU~NexUtem~Ptr

ATU Power Management Capabilities Register - APMCR

ATU Power Management Control/Status Register - APMCSR

Reserved

ATU Configuration Register - ATUCR

Reserved

Primary ATU Interrupt Status Register - PATUISR

Secondary ATU Interrupt Status Register - SATUISR

Secondary ATU Command Register - SATUCMD

Secondary ATU Status Register - SATUSR

Secondary Outbound DAC Window Value Register - SODWVR

Secondary Outbound Upper 64-bit DAC Register - SOU DR

Primary Outbound Configuration Cycle Address Register - POCCAR

Secondary Outbound Configuration Cycle Address Register - SOC CAR

Primary Outbound Configuration Cycle Data Register - POCCDR

Secondary Outbound Configuration Cycle Data Register - SOCCDR

Primary ATU Queue Control Register - PAOCR

Secondary ATU Queue Control Register - SAOCR

Primary ATU Interrupt Mask Register - PATUIMR

Secondary ATU Interrupt Mask Register - SATUIMR

Developer's Manual

Intel® 80303 I/O Processor
PCI Address Translation Unit

PCI
Configuration

Internal Bus
Bits Cycle

Address Register
Number

32 23 0000.125CH

32 24 0000.1260H

32 25 0000.1264H

32 26 0000.1268H

32 27 0000.126CH

32 28 0000.1270H

32 29 0000.1274H

32 30 0000.1278H

32 31 0000.127CH

8 32 0000.1280H

8 32 0000.1281 H

16 32 0000.1282H

16 33 0000.1284H

16 33 0000.1286H

32 34 0000.1288H

32 35 0000.128CH

32 36 0000.1290H

32 37 0000.1294H

16 38 0000.1298H

16 38 0000.129AH

32 39 0000.129CH

32 40 0000.12AOH

32 41 0000.12A4H

32 42 0000.12A8H

Not Available in
32 PCI Configu- 0000.12ACH

ration Space

Not Available in
32 PCI Configu- 0000.12BOH

ration Space

32 45 0000.12B4H

32 46 0000.12B8H

32 47 0000.12BCH

32 48 0000.12COH

15-57

Intel® 80303 liD Processor
PCI Address Translation Unit int'et
Table 15·27. ATU PCI Configuration Register Space (Sheet 1 of 2)

Internal
Bus

ATU PCI Configuration Register Section, Name, Page
Address

Offset

OOH Section 15.7.1, "ATU Vendor 10 Register - ATUVIO" on page 15-60

02H Section 15.7.2, "ATU Device 10 Register - ATUOID" on page 15-61

04H Section 15.7.3, "Primary ATU Command Register - PATUCMO" on page 15-62

06H Section 15.7.4, "Primary ATU Status Register - PATUSR" on page 15-63

08H Section 15.7.5, "ATU Revision 10 Register - ATURIO" on page 15-65

09H Section 15.7.6, "ATU Class Code Register - ATUCCR" on page 15-66

OCH Section 15.7.7, "ATU Cacheline Size Register - ATUCLSR" on page 15-67

OOH Section 15.7.8, "ATU Latency Timer Register - ATULT" on page 15-68

OEH Section 15.7.9, "ATU Header Type Register - ATUHTR" on page 15-69

OFH Section 15.7.10, "ATU BIST Register - ATUBISTR" on page 15-70

10H Section 15.7.11, "Primary Inbound ATU Base Address Register - PIABAR" on page 15-71

2CH Section 15.7.12, "ATU Subsystem Vendor 10 Register - ASVIR" on page 15-72

2EH Section 15.7.13, "ATU Subsystem 10 Register - ASIR" on page 15-73

30H Section 15.7.14, "Expansion ROM Base Address Register - ERBAR" on page 15-74

34H Section 15.7.15, "ATU Capabilities Pointer Register - ATU_Cap_Ptr" on page 15-75

3CH Section 15.7.17, "ATU Interrupt Line Register - ATUILR" on page 15-77

30H Section 15.7.18, "ATU Interrupt Pin Register - ATUIPR" on page 15-78

3EH Section 15.7.19, "ATU Minimum Grant Register - ATUMGNT" on page 15-79

3FH Section 15.7.20, "ATU Maximum Latency Register - ATUMLAT" on page 15-80

40H Section 15.7.21, "Primary Inbound ATU Limit Register - PIALR" on page 15-81

44H Section 15.7.22, "Primary Inbound ATU Translate Value Register - PIATVR" on page 15-82

48H Section 15.7.23, "Secondary Inbound ATU Base Address Register - SIABAR" on page 15-83

4CH Section 15.7.24, "Secondary Inbound ATU Limit Register - SIALR" on page 15-84

50H Section 15.7.25, "Secondary Inbound ATU Translate Value Register - SIATVR" on page 15-85

54H Section 15.7.26, "Primary Outbound Memory Window Value Register - POMWVR" on page 15-86

5CH Section 15.7.27, "Primary Outbound I/O Window Value Register - POIOWVR" on page 15-87

60H Section 15.7.28, "Primary Outbound DAC Window Value Register - PODWVR" on page 15-88

64H Section 15.7.29, "Primary Outbound Upper 64-bit OAC Register - POUDR" on page 15-89

68H Section 15.7.30, "Secondary Outbound Memory Window Value Register - SOMWVR" on page 15-90

6CH Section 15.7.31, "Secondary Outbound I/O Window Value Register - SOIOWVR" on page 15-91

74H Section 15.7.32, "Expansion ROM Limit Register - ERLR" on page 15-92

78H Section 15.7.33, "Expansion ROM Translate Value Register - ERTVR" on page 15-93

80H Section 15.7.34, "ATU_Capability Identifier Register - ATU_Cap_IO" on page 15-94

81H Section 15.7.35, "ATU Next Item Pointer Register - ATU_NexUtem_Ptr" on page 15-95

82H Section 15.7.36, "ATU Power Management Capabilities Register - APMCR" on page 15-96

84H Section 15.7.37, "ATU Power Management Control/Status Register - APMCSR" on page 15-97

15-58 Developer's Manual

int'et Intel® 80303 I/O Processor
PCI Address Translation Unit

Table 15-27. ATU PCI Configuration Register Space (Sheet 2 of 2)

Internal
Bus

ATU PCI Configuration Register Section, Name, Page
Address
Offset

88H Section 15.7.38, "ATU Configuration Register - ATUCR" on page 15-98

90H Section 15.7.39, "Primary ATU Interrupt Status Register - PATUISR" on page 15-100

94H Section 15.7.40, "Secondary ATU Interrupt Status Register - SATUISR" on page 15-102

98H Section 15.7.41, "Secondary ATU Command Register - SATUCMD" on page 15-104

9AH Section 15.7.42, "Secondary ATU Status Register - SATUSR" on page 15-105

9CH Section 15.7.43, "Secondary Outbound DAC Window Value Register - SODWVR" on page 15-106

AOH Section 15.7.44, "Secondary Outbound Upper 64-bit DAC Register - SOU DR" on page 15-107

A4H
Section 15.7.45, "Primary Outbound Configuration Cycle Address Register - POCCAR" on
page 15-108

A8H Section 15.7.46, "Secondary Outbound Configuration Cycle Address Register - SOCCAR" on
page 15-109

ACH Section 15.7.47, "Primary Outbound Configuration Cycle Data Register - POCCDR" on page 15-110

BOH Section 15.7.48, "Secondary Outbound Configuration Cycle Data Register - SOCCDR" on
page 15-111

B4H Section 15.7.49, "Primary ATU Queue Control Register - PAQCR" on page 15-112

B8H Section 15.7.50, "Secondary ATU Queue Control Register - SAQCR" on page 15-113

BCH Section 15.7.51, "Primary ATU Interrupt Mask Register - PATUIMR" on page 15-114

COH Section 15.7.52, "Secondary ATU Interrupt Mask Register - SATUIMR" on page 15-115

Developer's Manual 15-59

Intel@ 80303 110 Processor
PCI Address Translation Unit

15.7.1 ATU Vendor 10 Register - ATUVIO

ATU Vendor ID Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2.

Table 15-28. ATU Vendor 10 Register - ATUVIO

lOP [
Attributes

PCI [
Attributes

15 12 8 4 o

Intel® i960® Core Local Bus Address

1200H

PCI Configuration Address Offset

OOH - 01H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:00 0530C

15-60

NA = Not Accessible

Description

ATU Vendor 10 - This is a 16-bit value assigned to Intel. This register, combined with the DID, uniquely
identify the PCI device. Access type is ReadIWrite to allow the 80303 I/O processor to configure the
register as a different vendor 10 to simulate the interface of a standard mechanism currently used by
existing application software.

Developer's Manual

int:et
15.7.2 ATU Device ID Register - ATUDID

Intel® 80303 110 Processor
PCI Address Translation Unit

ATU Device ID Register bits adhere to the definitions in the PCl Local Bus Specification,
Revision 2,2.

Table 15-29. Device 10 Register - DID (80303 1/0 processor)

101' [
Atll'lOUk'; ...

FCI [
Attributt. .. ·~

Intel® i960® Core Local Bus Address

1202H

Bit Default

PCI Configuration Address Offset

02H - 03H

Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

15:00 5309H
ATU Device 10 - This is a 16-bit value assigned to the ATU. This 10, combined with the VID, uniquely
identify any PCI device.

Developer's Manual 15-61

Inte/@ 80303 liD Processor
PCI Address Translation Unit in1:et
15.7.3 Primary ATU Command Register - PATUCMD

ATU Command Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2 and in most cases, affect the behavior of the primary PCI ATU and devices on the
primary PCI bus.

Table 15-30. Primary ATU Command Register - PATUCMD

lOP [
Attributes

PCI[
Attributes

Intel® i960® Core Local Bus Address

1204H

PCI Configuration Address Offset

04H - 05H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:10 0000002

09 O2

08 O2

07 O2

06 O2

05 O2

04 O2

03 O2

02

01

00

15-62

NA = Not Accessible

Description

Reserved

Fast Back to Back Enable - When cleared, the ATU primary interface is not allowed to generate fast
back-to-back cycles on its bus.

P _SERR# Enable - When cleared, the ATU primary interface is not allowed to assert P _SERR# on the
primary PCI interface.

Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit field.

Parity Error Response - When set, the primary ATU and DMA channels 0 and 1 take normal action when
a parity error is detected. When cleared, parity checking is disabled.

VGA Palette Snoop Enable - The primary ATU interface does not support 110 writes and therefore, does
not perform VGA palette snooping.

Memory Write and Invalidate Enable - When set, DMA channels 0 and 1 may generate MWI commands.
When clear, DMA channels 0 and 1 use Memory Write commands instead of MWI.

Special Cycle Enable - The ATU interface does not respond to special cycle commands in any way. Not
implemented and a reserved bit field.

Bus Master Enable - The primary ATU interface can act as a master on the PCI bus. When cleared,
disables the device from generating PCI accesses. When set, allows the device to behave as a PCI bus
master.

This enable bit also controls DMA channels 0 and 1 master interface. The bit must be set before
initiating a DMA transfer on the PCI bus.

Memory Enable - Controls the primary ATU interface's response to PCI memory addresses. When
cleared, the ATU interface does not respond to any memory access on the PCI bus.

110 Space Enable - Controls the ATU interface response to I/O transactions on the primary side. Not
implemented and a reserved bit field.

Developer's Manual

infel·
15.7.4 Primary ATU Status Register - PATUSR

Intel® 80303 liD Processor
PCI Address Translation Unit

The Primary ATU Status Register bits adhere to the PCI Local Bus Specification, Revision 2,2
definitions, The read/clear bits can only be set by internal hardware and cleared by either a reset
condition or by writing a 12 to the register.

Table 15-31. Primary ATU Status Register - PATUSR (Sheet 1 of 2)

15 12 (I

Pc] [
/\Uribuit~\

Intel® i960® Core Local Bus Address

1206H

PCI Configuration Address Offset

06H - 07H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15

14

13

12

11

10:09

Developer's Manual

NA = Not Accessible

Description

Detected Parity Error - set when a parity error is detected on the primary PCI bus even when the
PATUCMD register's Parity Error Response bit is cleared. Set under the following conditions:

• Write Data Parity Error when the PATU is a slave (inbound write).

• Read Data Parity Error when the PATU, DMA Channel 0, or DMA Channell is a master (outbound
read).

• Any Address Parity Error on the Primary Bus (including one generated by the PATU or DMA
Channels 0 &1).

P _SERR# Asserted - set when P _SERR# is asserted on the PCI bus by the primary ATU.

Master Abort - set when a transaction initiated by the primary ATU PCI master interface, DMA Channel
0, or DMA Channell ends in a Master-Abort. Setting of this bit due to an error condition from either
DMA Channel will not cause an ATU interrupt to the core.

Target Abort (master) - set when a transaction initiated by the primary ATU PCI master interface, DMA
Channel 0 master interface or DMA Channell master interface ends in a target abort. Setting of this bit
due to an error condition from either DMA Channel will not cause an ATU interrupt to the core.

Target Abort (target) - set when the primary ATU interface, acting as a target. terminates the transaction
on the primary PCI bus with a target abort.

DEVSEL# Timing - These bits are read-only and define the slowest DEVSEL# timing for a target device
(except configuration accesses).
002 = Fast
01 2 = Medium
102 = Slow
112 = Reserved

In general, the primary and secondary ATU interfaces use Medium timing.

However, if the Messaging Unit is enabled and the Inbound/Outbound Message Ports (Primary ATU
Inbound Window offset 40h) are hit with a 64-bit access (P _REQ64# asserted), the need to pre-decode
the P _C/BE[3:0]# bus forces the PATU to claim the access using Slow decode timing.

Though this occurrence is rather unlikely, the PCI Local Bus Specification, Revision 2.2 requires that this
field of the status register indicate the slowest DEVSEL# possible by a target device.

In the event that a subtractive decode agent is present on the PATU bus segment, the indication that the
PATU could claim positively with Slow decode will prevent the users of this bus from programming the
subtractive decode agent to claim with Slow decode timing.

15-63

Intel@ 80303 110 Processor
PCI Address Translation Unit

Table 15-31. Primary ATU Status Register - PATUSR (Sheet 2 of 2)

lOP [
Anributes

PCI[
Attribute,

n

~+-+-~~~~~-+~~~~

Intel® i960® Core Local Bus Address

1206H

PCI Configuration Address Offset

06H - 07H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RD = Read Only

Bit Default

08

07 12

06 O2

05 12

04 12

03:00 000002

15-64

NA = Not Accessible

Description

Master Parity Error - The primary ATU interface sets this bit under the following conditions:

• The PATU, DMA Channel 0, or DMA Channel 1 asserted S_PERR# itself or the PATU observed
S_PERR# asserted.

• And the PATU, DMA Channel 0, or DMA Channel 1 acted as the bus master for the operation in
which the error occurred.

• And the PATUCMD register's Parity Error Response bit is set

Setting of this bit due to an error condition from either DMA Channel will not cause an ATU interrupt to
the core.

Fast Back-to-Back - The ATu/Messaging Unit interface is capable of accepting fast back-to-back
transactions when the transactions are not to the same target.

UDF Supported - User Definable Features are not supported

66 MHz. Capable - 66 MHz operation is supported.

capabilities - When set, this function implements extended capabilities.

Reserved

Developer's Manual

intel ..
15.7.5 ATU Revision 10 Register - ATURID

Intel® 80303 liD Processor
PCI Address Translation Unit

Revision ID Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2.

Table 15-32. ATU Revision 10 Register - ATURIO

1 I)

IO!' [
:\ttributes ,,,/w/,/w/"/'/,,/\\/

PC! [
Attrjbute~ co \0\0\"'''\'\0\0\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

1208H 08H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH ATU Revision - identifies the 80303 I/O processor's revision number.

Developer's Manual 15-65

/nte/® 80303 liD Processor
PCI Address Translation Unit

15.7.6 ATU Class Code Register - ATUCCR

Class Code Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2. Auto
configuration software reads this register to determine the PCI device function.

Table 15-33. ATU Class Code Register - ATUCCR

lOP [
Attributes

PCI[
Attributes

23

Intel® i960® Core Local Bus Address

1209H

20 16 12

PCI Configuration Address Offset

09H - OBH

8

Bit Default Description

23:16 05H Base Class - Memory Controller

15:08 80H Sub Class - Other Memory Controller

07:00 OOH Programming Interface - None defined

15-66

4

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Developer's Manual

infel· Intel@ 80303 I/O Processor
PCI Address Translation Unit

15.7.7 ATU Cacheline Size Register - ATUCLSR

Cacheline Size Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2. This
register is programmed with the system cacheline size in DWORDs (32-bit words). Cacheline Size
is restricted to either 0,8 or 16 DWORDs; the ATU interprets any other value as "0".

Table 15-34. ATU Cacheline Size Register - ATUCLSR

-; 4 0

lOP [
Attributes ~v/r~/w/r,/w/rwfw/~v/

PCI [
Attributes PN~rw\rw\rw\w'r'r1rw\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RS = Read/Set

120CH OCH RV = Reserved RW = Read/Write

PR = Preserved RC = Read Clear

Bit Default Description

07:00 OOH
ATU Cacheline Size - specifies the system cacheline size in DWORDs. Cacheline size is restricted to
either 0, 8 or 16 DWORDs.

Developer's Manual 15-67

Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.8 ATU Latency Timer Register - ATULT

intel.

ATU Latency Timer Register bit definitions apply to both the primary and secondary PCI
interfaces.

Table 15·35. ATU Latency Timer Register· ATULT

7 4 0

lOP [
Attributes rNflrn/~w/ro!o/rol

PCI[
Attributes rN\rn\rn\rn\rw\royo \0\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

1200H OOH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:03 000002
Programmable Latency Timer - This field varies the latency timer for the primary interlace from 0 to 248
clocks.

02:00 0002
Latency Timer Granularity - These Bits are read only giving a programmable granularity of 8 clocks for
the latency timer.

15-68 Developer's Manual

intel· Intel® 80303 I/O Processor
PCI Address Translation Unit

15.7.9 ATU Header Type Register - ATUHTR

Header Type Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2. This
register indicates the layout of ATU and Messaging Unit register configuration space bytes lOH to
3FH. The MSB indicates whether or not the device is multi-function. (Refer to Section 15.2.4,
"PCl Multi-Function Device Swapping/Disabling" on page J 5-23 for using this register in other
than its default state.)

Table 15-36. ATU Header Type Register - ATUHTR

7 4 0

lOP [
Attributes rN/rw/r\!w/w/r~f,v/rw/

PCI [
Attributes ro\o\:o\o\o\o\o\o\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

120EH OEH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07 12 Single Function/Multi-Function Device - Identifies the ATU as a multi-function PCI device.

06:00 0000002
PCI Header Type - This bit field indicates the type of PCI header implemented. The ATU interface
header conforms to PCI Local Bus Specification, Revision 2.2.

Developer's Manual 15-69

Intef@ 80303 110 Processor
PCI Address Translation Unit in1:et
15.7.10 ATU BIST Register - ATUBISTR

The ATU BIST Register controls the functions the i960 core processor performs when BIST is
initiated. This register is the interface between the host processor requesting BIST functions and
the 80303 I/O processor replying with the results from the software implementation of the BIST
functionality.

Table 15-37. ATU BIST Register - ATUBISTR

lOP [
Attributes

PCi [
Attributes

7 4 o

Intel® i960® Core Local Bus Address

120FH

PCI Configuration Address Offset

OFH
Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

07

06

05:04

03:00

15-70

NA = Not Accessible

Description

BIST Capable - This bit value is always equal to the ATUCR ATU BIST Interrupt Enable bit. See
Section 15.7.38, "ATU Configuration Register - ATUCR" on page 15-98~

Start BIST - When the ATUCR BIST Interrupt Enable bit is set:

Setting this bit generates an interrupt to the i960 core processor to perform a software BIST function.
The i960 core processor clears this bit when the BIST software has completed with the BIST results
found in ATUBISTR register bits [3:0].

When the ATUCR BIST Interrupt Enable bit is clear:

Setting this bit does not generate an interrupt to the i960 core processor and no BIST functions is
performed. The i960 core processor does not clear this bit.

Reserved

BIST Completion Code - when the ATUCR BIST Interrupt Enable bit is set and the ATUBISTR Start
BIST bit is set (bit 6):

The i960 core processor places the results of the software BIST in these bits. A nonzero value indicates
a device-specific error.

Developer's Manual

in1:et Intel@ 80303 110 Processor
PCI Address Translation Unit

15.7.11 Primary Inbound ATU Base Address Register - PIABAR

The Primary Inbound ATU Base Address Register (PIABAR) defines the block of memory
addresses where the primary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the 80303 I/O processor internal bus with a translated address to map
into 80303 I/O processor local memory. The PIABAR defines the base address and describes the
required memory block size; see Section 15.7.16, "Determining Block Sizes for Base Address
Registers" on page 15-76. Bits 31 through 12 of the PIABAR will be either read/write bits or read
only with a value of 0 depending on the value located within the PIALR. This configuration allows
the PIABAR to be programmed per PCI Local Bus SpecifIcation, Revision 2.2.

The first 4 Kbytes of memory defined by the PIABAR and the PIALR is reserved for the
Messaging Unit.

The programmed value within the base address register must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus SpecifIcation, Revision 2.2 for
additional information on programming base address registers.

Table 15-38. Primary Inbound ATU Base Address Register - PIABAR

PCI [
Attributes

Intel® i960® Core Local Bus Address

1210H

PCI Configuration Address Offset

10H-13H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = ReadlSet

RW = ReadlWrite
RC = Read Clear
RO = Read Only

Bit Default

31 :12 OOOOOH

11 :04 OOH

03 12

02:01 002

00 O2

Developer's Manual

NA = Not Accessible

Description

Primary Translation Base Address - These bits define the actual location the Primary translation function
is to respond to when addressed from the PCI bus. The default base address is undefined.

Reserved.

Prefetchable Indicator - Defines the memory spaces as prefetchable.

Address Type - These bits define where the block of memory can be located. The base address must be
located anywhere in the first 4 Gbyte of address space (lower 32 bits of address).

Memory Space Indicator - This bit field describes memory or 1/0 space base address. The primary ATU
does not occupy 1/0 space, thus this bit must be zero.

15-71

Intel@ 80303 110 Processor
PCI Address Translation Unit

15.7.12 ATU Subsystem Vendor 10 Register - ASVIR

intel~

ATU Subsystem Vendor ID Register bit definitions adhere to PCI Local Bus Specification,
Revision 2.2.

Table 15-39. ATU Subsystem Vendor 10 Register - ASVIR

lOP [
Attributes

PCI [
Attributes

Intel® i960® Core Local Bus Address

122CH

PCI Configuration Address Offset

2CH - 20H

Bit Default Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

15:0 OOOOH Subsystem Vendor 10 - This register uniquely identifies the add-in board or subsystem vendor.

15-72 Developer's Manual

infel·
15.7.13 ATU Subsystem 10 Register - ASIR

Intel® 80303 I/O Processor
PCI Address Translation Unit

ATU Subsystem ID Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2.

Table 15-40. ATU Subsystem ID Register - ASIR

lOP [
Attributes

PCI [
Attributes

Intel® i960® Core Local Bus Address

122EH

15 12 13

PCI Configuration Address Offset

2EH - 2FH

Bit Default Description

4 o

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

15:0 OOOOH Subsystem ID - uniquely identifies the add-in board or subsystem.

Developer's Manual

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

15-73

Intel@ 80303 110 Processor
PCI Address Translation Unit infel·
15.7.14 Expansion ROM Base Address Register - ERBAR

The Expansion ROM Base Address Register defines the block of memory addresses used for
containing the Expansion ROM. It permits the inclusion of multiple code images, allowing the
device to be initialized. The code image supplied consists of either executable code or an
interpreted code. Each code image must start on a 512 byte boundary and each must contain the
PCI Expansion ROM header. Image placement in ROM space depends on the length of code
images which precede it within ROM. ERBAR defines the base address and describes the required
memory block size; see Section 15.7.16. Expansion ROM address space (limit size) can be a
maximum of 16 MBytes. Bits 31 through 12 of the ERBAR will be either read/write bits or read
only with a value of 0 depending on the value located within the ERLR. This configuration allows
the ERBAR to be programmed per PCI Local Bus Specification, Revision 2.2.

The Expansion ROM Base Address Register's programmed value must comply with the PCI
programming requirements for address alignment. Refer to the PCI Local Bus Specification,
Revision 2.2 for additional information on programming Expansion ROM base address registers.

Table 15·41. Expansion ROM Base Address Register ·ERBAR

PCI [
Attributes

31 28 24 20 16 12 8 4 o

Intel® i960® Core Local Bus Address

1230H

PCI Configuration Address Offset

30H - 33H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31 :12 OOOOOH

11 :01 OOOH

00

15-74

NA = Not Accessible

Description

Expansion ROM Base Address - These bits define the actual location where the Expansion ROM
address window resides when addressed from the primary PCI bus on any 4 Kbyte boundary.

Reserved

Address Decode Enable - This bit field shows the ROM address decoder is enabled or disabled. When
cleared, indicates the address decoder is disabled.

Developer's Manual

intel~
Intel® 80303 I/O Processor

PCI Address Translation Unit

15.7.15 ATU Capabilities Pointer Register - ATU_Cap_Ptr

The Capabilities Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register provides an offset in this function's PCI Configuration Space for the
location of the first item in the Capabilities linked list. In the case of the 80303 I/O processor, this
is the PCI Bus Power Management extended capability as defined by the PCI Bus Power
Management Inte/jace Specification, Revision 1.1.

Table 15-42. ATU Capabilities Pointer Register - ATU_Cap_Ptr

l 4 0

iOP [
Attributes 10/0/0/0/0/0/0/01

PC! [
Attributes \OXO\OXo~o\o\o\o\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

0000 1234H 34H RV = Reserved
PR = Preserved

RC = Read Clear
RO = Read Only

RS = Read/Set NA = Not Accessible

36 Default Description Bit

07:00 80H Capability List Pointer - This provides an offset in this function's configuration space that points to the
80303 I/O processor's PCI Bus Power Management extended capability.

Developer's Manual 15-75

Intel® 80303 I/O Processor
PCI Address Translation Unit intel ..
15.7.16 Determining Block Sizes for Base Address Registers

The required address size and type can be determined by writing ones to a base address register and
reading from the registers. By scanning the returned value from the least-significant bit of the base
address registers upwards, the programmer can determine the required address space size. The
binary-weighted value of the first non-zero bit found indicates the required amount of space.
Section 15-43 describes the relationship between the values read back and the byte sizes the base
address register requires.

Table 15-43. Memory Block Size Read Response Table

Response After Writing all1s Size Response After Writing all1s Size
to the Base Address Register (in Bytes) to the Base Address Register (in Bytes)

FFFFFFFOH 16 FFFOOOOOH 1 M

FFFFFFEOH 32 FFEOOOOOH 2M

FFFFFFCOH 64 FFCOOOOOH 4M

FFFFFF80H 128 FF800000H 8M

FFFFFFOOH 256 FFOOOOOOH 16 M

FFFFFEOOH 512 FEOOOOOOH 32 M

FFFFFCOOH 1K FCOOOOOOH 64M

FFFFF800H 2K F8000000H 128 M

FFFFFOOOH 4K FOOOOOOOH 256 M

FFFFEOOOH 8K EOOOOOOOH 512 M

FFFFCOOOH 16K COOOOOOOH 1 G

FFFF8000H 32K 80000000H 2G

FFFFOOOOH 64K

FFFEOOOOH 128K
Register not imple-

OOOOOOOOH mented, no
FFFCOOOOH 256K address space

FFF80000H 512K
required.

As an example, assume that FFFF.FFFFH is written to the ATU Primary Inbonnd Base Address
Register (PIABAR) and the value read back is FFFO.0004H. Bit zero is a zero, so the device
requires memory address space. Bits 2: 1 are 002, so the memory can be located anywhere within
32-bit address space (4 Gbytes). Bit three is one, so the memory does supports prefetching.
Scanning upwards starting at bit four, bit twenty is the first one bit found. The binary-weighted
value of this bit is 1,048,576, indicated that the device requires 1 Mbyte of memory space.

Both the Primary and Secondary Inbound ATU Base Address Registers and the Expansion ROM
Base Address Register use their associated limit registers to enable which bits within the base
address register are read/write and which bits are read only (0). This allows the programming of
these registers in a manner similar to other PCI devices even though the limit is variable.

Table 15-44. ATU Base Registers and Associated Limit Registers

Base Address Register Limit Register Description

Primary Inbound ATU Primary Inbound ATU Defines the inbound translation window from the
Base Address Register Limit Register primary PCI bus.

Secondary Inbound ATU Secondary Inbound ATU Defines the inbound translation window from the
Base Address Register Limit Register secondary PCI bus.

Expansion ROM Base ExpanSion ROM Limit Defines the window of addresses used by a primary
Address Register Register bus master for reading from an Expansion ROM.

15-76 Developer's Manual

intel· Intel® 80303 I/O Processor
PCI Address Translation Unit

15.7.17 ATU Interrupt line Register - ATUILR

ATU Interrupt Line Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2.
This register identifies the system interrupt controller's interrupt request lines which connect to the
device's PCI interrupt request lines (as specified in the intelTupt pin register).

In a PC environment, for example, the register values and cOlTesponding connections are:

• 0 (OOH) through 15 (OFH) correspond to IRQO through IRQ15

• 16 (lOH) through 254 (FEH) are reserved

• 255 (FFH) indicates "unknown" or "no connection"

The operating system or device driver can examine each device's intelTupt pin and intelTupt line
register to determine which system interrupt request line the device uses to issue requests for
service.

Table 15-45. ATU Interrupt Line Register - ATUILR

I 7 4 0'
lOP [

Attributes tw/wj,.!w/w}w/~'/wl

pel [
Attributes \W\rw'xW\rN\N~\rw\W\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

123CH 3CH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

Interrupt Assigned - system-assigned value identifies which system interrupt controller's interrupt

07:00 FFH
request line connects to the device's PCI interrupt request lines (as specified in the interrupt pin
register).

A value of FFH signifies "no connection" or "unknown".

Developer's Manual 15-77

Intel® 80303 110 Processor
PCI Address Translation Unit intet
15.7.18 ATU Interrupt Pin Register - ATUIPR

ATU Interrupt Pin Register bit definitions adhere to PCI Local Bus Specification, Revision 2.2.
This register identifies the interrupt pin the ATU and Messaging Unit interface uses. The 80303 I/O
processor is, by default, a PCl multi-function device and, as such, can generate more than one
interrupt output. The interrupt output is for the Messaging Unit on P _INTA#, P _INTB#,
P _ INTC#, or P _ INTD#. The i960 core processor modifies the pin register to match the PCI
interrupts which the Messaging Unit generates.

Table 15-46. ATU Interrupt Pin Register - ATUIPR

7 4 0

lOP [
Attributes ~¥Jrw/r,/w/w/rW/rNi4

Atlrib~~;~ [ro\o \0\0\0\0\0\0\
Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

123DH 3DH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 01H Interrupt Used - A value of 01 H signifies that the ATU interface unit uses INTA# as the interrupt pin.

15-78 Developer's Manual

intel· Intel@ 80303 /10 Processor
PCI Address Translation Unit

15.7.19 ATU Minimum Grant Register - ATUMGNT

ATU Minimum Grant Register bit definitions adhere to PCI Local Bus Specifi'cation, Revision 2.2.
This register specifies the burst period the device requires in increments of 8 PCI clocks.

This register and the ATU Maximum Latency register are information-only registers which the
configuration uses to determine how often a bus master typically requires access to the PCI bus and
the duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCI bus arbiter.

Table 15-47. ATU Minimum Grant Register - ATUMGNT

7 4 0

lOP [
Attributes rw/w/r~/\/rw/w/wlv/

PCI [
Attributes ro \0 ~o\o\ro 'xo ~o\o\

Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

123EH 3EH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH This register specifies how long a burst period the device needs in increments of 8 PCI clocks. A zero
value indicates the device has no stringent requirement.

Developer's Manual 15-79

Intef® 80303 110 Processor
PCI Address Translation Unit inlet
15.7.20 ATU Maximum Latency Register - ATUMLAT

ATU Maximum Latency Register bit definitions adhere to PCl Local Bus Specification,
Revision 2.2. This register specifies how often the device needs to access the PCl bus in increments
of 8 PCl clocks.

This register and the Minimum Grant Register are information-only registers which the
configuration uses to determine how often a bus master typically requires access to the PCl bus and
the duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCl bus arbiter.

Table 15-48. ATU Maximum Latency Register - ATUMLAT

7 4 0

lOP [Attributes ~/w/rwfvlwfw/w/rw/

PCI [Attributes ro\o,(o\o\ro\o\o\o\
Intel® i960® Core Local Bus Address PCI Configuration Address Offset Attribute Legend: RW = Read/Write

123FH 3FH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 OOH
Specifies frequency (how often) the device needs to access the PCI bus in increments of 8 PCI clocks. A
zero value indicates the device has no stringent requirement.

15-80 Developer's Manual

15.7.21

Intel® 80303 liD Processor
PCI Address Translation Unit

Primary Inbound ATU Limit Register - PIALR

Primary inbound address translation occurs for data transfers occurring from the PCI bus
(originated from the primary PCI bus) to the 80303 I/O processor internal bus. The address
translation block converts PCI addresses to internal bus addresses.

The primary inbound translation base address is specified in Section 15.7.11. When determining
block size requirements - as described in Section 15.7.16 - the primary translation limit register
provides the block size requirements for the primary base address register. The remaining registers
used for performing address translation are discussed in Section 15.2.1.1.

The 80303 I/O processor value register'S programmed value must be naturally aligned with the
base address register's programmed value. The limit register is used as a mask; thus, the lower
address bits programmed into the 80303 I/O processor value register are invalid. Refer to the PCI
Local Bus Specification, Revision 2.2 for additional information on programming base address
registers.

Bits 31 to 12 within the PIALR have a direct effect on the PIABAR register, bits 31 to 12, with a
one to one correspondence. A value of 0 in a bit within the PIALR makes the corresponding bit
within the PIABAR a read only bit which always returns O. A value of 1 in a bit within the PIALR
makes the corresponding bit within the PIABAR read/write from PCl. Note that a consequence of
this programming scheme is that unless a valid value exists within the PIALR, all writes to the
PIABAR will have no effect since a value of all zeros within the PIALR makes the PIABAR a read
only register.

Table 15-49. Primary Inbound ATU Limit Register - PIALR

PCI [
Attributes

31 28

Intel® i960® Core Local Bus Address

1240H

Bit Default

24 20 16

PCI Configuration Address Offset

40H - 43H

12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :12 FFOOOH Primary Inbound Translation Limit - This readback value determines the memory block size required for
the primary ATU translation unit. This defaults to an inbound window of 16MB.

11 :00 OOOH Reserved

Developer's Manual 15-81

Intel@ 80303 1;0 Processor
PCI Address Translation Unit in1'et
15.7.22 Primary Inbound ATU Translate Value Register - PIATVR

The Primary Inbound ATU Translate Value Register (PIATVR) contains the internal bus address
used to convert primary PCI bus addresses. The converted address is driven on the internal bus as a
result of the primary inbound ATU address translation.

Table 15·50. Primary Inbound ATU Translate Value Register - PIATVR

31 28 24 20 16 12

lOP [
Attributes frwJrrwi'rw/rwlrw/n.V/lrw/,wl,w/rw/rw/nNlnN/nllJ/nllJ/""In.M/"W/"!J/",vl

~~r;~~-+-+~~-r-r~~~~4r~~-r-

PCI [
Attributes \rw\rw'Irwl .. w1I,rw\n!J\rw 'OW""\""'\"'N\""'-"'.\"'.\"'" \ .. " "", \".,\""'\""''' rv

Intel® i960® Core Local Bus Address

1244H

PCI Configuration Address Offset

44H - 47H

Bit Default Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Primary Inbound ATU Translation Value - This value is used to convert the primary PCI address to
31 :12 00001 H internal bus addresses. This value must be 64-bit aligned on the internal bus. The default address

allows the ATU to access the internal 80303 I/O processor memory-mapped registers.

11 :00 OOOH Reserved

15-82 Developer's Manual

intel· Intel® 80303 I/O Processor
PCI Address Translation Unit

15.7.23 Secondary Inbound ATU Base Address Register - SIABAR

The Secondary Inbound ATU Base Address Register (SIABAR) defines the block of memory
addresses where the secondary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the 80303 I/O processor internal bus with a translated address to map
into the 80303 I/O processor internal memory. The SIABAR defines the base address and describes
the required memory block size; see Section 15.7.16, "Determining Block Sizes for Base Address
Registers" on page 15-76. Bits 31 through 12 of the SIABAR will be either read/write bits or read
only with a value of 0 depending on the value located within the SIALR. This configuration allows
the SIABAR to be programmed per PCI Local Bus Specification, Revision 2.2.

The base address register's programmed value must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus Specification, Revision 2.2 for
additional information on programming base address registers.

Note: When trying to access the Messaging Unit from the Secondary PCI bus through the Bridge (see
Section 15.7.38, "ATU Configuration Register - ATUCR" on page 15-98, Secondary Bus
Messaging Unit Access Enable Bit), the SIABAR must be programmed the same as the PIABAR.

Table 15-51. Secondary Inbound ATU Base Address Register - SIABAR

31 28 24 20 16 12 8 4 o
lOP [

Attributes
~~~~~-4-+~-+-+-+~-+-+~~~~~ 

PCI [ 
Attributes \rw'lrw'lrw"nllt'rw\rw\,rw'.rw"rw'\rw\(\I\/\rvol'rvv\r>V\f\!/'\fli'J'~w\rw\rw\I'w\ 

Intel® i960® Core Local Bus Address 

1248H 

PCI Configuration Address Offset 

48H - 4BH 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

31 :12 OOOOOH 

11 :04 OOH 

03 12 

02:01 002 

00 O2 

Developer'S Manual 

NA = Not Accessible 

Description 

Secondary Translation Base Address - These bits define the actual location to which the Secondary 
Translation function responds when addressed from the secondary PCI bus. The default block size is 
indeterminate. 

Reserved. 

Prefetchable Indicator - This bit defines the memory spaces as prefetchable. 

Address Type - These bits define where the block of memory can be located. The base address must be 
located anywhere in the first 4 Gbyte of address space (lower 32-bits of address). 

Memory Space Indicator - This bit shows the register contents describes memory or I/O space base 
address. The ATU does not occupy I/O space; thus, this bit must be zero. 

15-83 



Intel® 80303 110 Processor 
PCI Address Translation Unit 

15.7.24 Secondary Inbound ATU Limit Register - SIALR 

Secondary inbound address translation occurs for data transfers occurring from the secondary PCI 
bus to the 80303 I/O processor internal bus. The address translation block converts the PCI 
addresses to internal bus addresses. 

The secondary translation base address is specified in Section lS.7.23, "Secondary Inbound ATU 
Base Address Register - SIABAR" on page IS-83. When determining the block size requirements 
as described in Section IS.7.16, "Determining Block Sizes for Base Address Registers" on 
page lS-76, the secondary limit register provides the block size requirements for the secondary 
base address register. The remaining registers used for performing address translation are discussed 
in Section IS.2.1.1, "Inbound Address Translation" on page lS-6. 

The programmed value within the 80303 I/O processor value register must be naturally aligned 
with the programmed value found in the base address register. The limit register is used as a mask 
thus the lower address bits programmed into the 80303 I/O processor value register is invalid. The 
default value for the limit register is FFFFEOOOH, which is a 8 KByte limit. Refer to the PCI Local 
Bus Specification, Revision 2.2 for additional information on programming base address registers. 

Bits 31 to 12 within the SIALR have a direct effect on the SIABAR register, bits 31 to 12, with a 
one to one correspondence. A value of 0 in a bit within the SIALR makes the corresponding bit 
within the SIABAR a read only bit which always returns O. A value of 1 in a bit within the SIALR 
makes the corresponding bit within the SIABAR read/write from PCl Note that a consequence of 
this programming scheme is that unless a valid value exists within the SIALR, all writes to the 
SIABAR will have no effect since a value of all zeros within the SIALR makes the SIABAR a read 
only register. 

Table 15-52. Secondary Inbound ATU Limit Register - SIALR 

31 28 24 20 16 12 

lOP [ 
Attributes I nAIl rwl rwl rwr nAIl rwl rwl """ rv", I n.,1 n.,1 n.rI nA,/rwl 

~~r4~~~-4~-4-+-+~~~~~~~+-

PCI [ 
Attributes \tW\tW\rw\rIAIlrw\rw\rw\rw\.n..'\""'\""'\r ... """"\l'\i\/\I'\>\/\r\,\,\.nA,\""'\ .... '\rw\. 

Intel® i960® Core Local Bus Address 

124CH 

PCI Configuration Address Offset 

4CH - 4FH 

Bit Default Description 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :12 FFFFEH Secondary Inbound ATU Limit - This is the read back value that determines the block size of memory 
required for the secondary ATU translation unit. Default size is 8 KB. 

11 :00 OOOH Reserved 

15-84 Developer's Manual 



15.7.25 

Intel® 80303 I/O Processor 
PCI Address Translation Unit 

Secondary Inbound ATU Translate Value Register - SIATVR 

The Secondary Inbound ATU Translate Value Register (SIATVR) contains the 80303 I/O processor 
internal bus address used to convert the secondary PCl bus address to a internal bus address. This 
address is driven on the 80303 I/O processor internal bus as a result of the secondary inbound ATU 
address translation. 

Table 15-53. Secondary Inbound Translate ATU Value Register - SIATVR 

PCI [ 
Attributes 

31 28 24 20 16 12 8 4 o 

Intel® i960® Core Local Bus Address 

1250H 

PCI Configuration Address Offset 

50H - 53H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

31 :12 00001H 

11 :00 OOOH 

Developer's Manual 

NA = Not Accessible 

Description 

Secondary Inbound ATU Translate Value - Used to convert the secondary PCI address to a internal bus 
address. The secondary inbound address translation value must be 64-bit aligned on the 80303 110 
processor internal bus. (The default value of the entire register is 0000 1000H.) 

Reserved 

15-85 



Intel® 80303 110 Processor 
PCI Address Translation Unit 

15.7.26 Primary Outbound Memory Window Value Register -
POMWVR 

The Primary Outbound Memory Window Value Register (POMWVR) contains the primary PCI 
address used to convert 80303 I/O processor internal bus addresses for outbound transactions. This 
address is driven on the primary PCI bus as a result of the primary outbound ATU address 
translation. See Section 15.2.2.1, "Outbound Address Translation" on page 15-15 for details on 
outbound address translation. 

The primary memory window is from internal bus address 8000 OOOH to 83FF FFFFH with the 
fixed length of 64 Mbytes. 

Table 15-54. Primary Outbound Memory Window Value Register - POMWVR 

31 28 24 20 16 12 8 4 o 

PCI [ 
Attributes \rw1irw1,rw\,l"\III1.rw\!W 1Vi'\rw~\rw\rw'\rw1lrw1~rw1'rw'.rw\,rw',rw',rw',rw',rw'tw\rw\il"\lll1.l'W\lw\rw\rw'rv 

Intel® i960® Core Local Bus Address 

1254H 

PCI Configuration Address Offset 

54H - 57H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

31:04 OOOOOOOH 

03:02 

01:00 

15-86 

NA = Not Accessible 

Description 

Primary Outbound MW Value - Used to convert 80303 I/O processor internal bus addresses to PCI 
addresses. 

Reserved 

Burst Order - This bit field shows the address sequence during a memory burst. Only linear 
incrementing mode is supported. 

Developer's Manual 



int:et 
15.7.27 

Intel® 80303 I/O Processor 
PCI Address Translation Unit 

Primary Outbound 1/0 Window Value Register - POIOWVR 

The Primary Outbound I/O Window Value Register (POIOWVR) contains the primary PCI I/O 
address used to convert the internal bus access to a PCI address. This address is driven on the 
primary PCI bus as a result of the primary outbound ATU address translation. See Section 15.2.2.1. 
"Outbound Address Translation" on page IS-IS for details on outbound address translation. 

The primary I/O window is from 80303 I/O processor internal bus address 9000 OOOH to 
9000 FFFFH with the fixed length of 64 Kbytes. 

Table 15-55. Primary Outbound 1/0 Window Value Register - POIOWVR 

PCI [ 
Attributes 

31 28 

Intel® i960® Core Local Bus Address 

125CH 

24 20 16 

PCI Configuration Address Offset 

5CH - 5FH 

12 

Bit Default Description 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :04 OOOOOOOH Primary Outbound I/O Window Value - Used to convert internal bus addresses to PCI addresses. 

03:00 OH Reserved 

Developer's Manual 15-87 



Inte/@ 80303 liD Processor 
PCI Address Translation Unit intel· 
15.7.28 Primary Outbound DAC Window Value Register - PODWVR 

The Primary Outbound DAC Window Value Register (PODWVR) contains the primary PCI DAC 
address used to convert a 80303 I/O processor internal bus address. This address is driven on the 
primary PCI bus as a result of the primary outbound ATU address translation. See Section 15.2.2.1, 
"Outbound Address Translation" on page 15-15 for details on outbound address translation. This 
register is used in conjunction with the Primary Outbound Upper 64-Bit DAC Register. The 
primary DAC window is from 80303 I/O processor internal bus address 8400 OOOR to 
87FF FFFFH with the fixed length of 64 Mbytes. 

Table 15-56. Primary Outbound DAC Window Value Register - PODWVR 

31 28 24 20 16 12 8 4 o 

PCI [ Attributes \rw'lrw'lrwl.n",',rw\nM\rw\r""'rw\rw\,'w\r'",,.w\,rw\rw 

Intel® i960® Core Local Bus Address 

1260H 

PCI Configuration Address Offset 

60H - 63H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

31 :04 OOOOOOOH 

03:02 

01:00 

15-88 

NA = Not Accessible 

Description 

Primary Outbound DAC Window Value - This value the primary ATU uses to convert 80303 I/O 
processor internal bus addresses to PCI addresses. 

Reserved 

Burst Order - This bit field shows the address sequence during a memory burst. Only linear 
incrementing mode is supported. 

Developer's Manual 



intet· Intel® 80303 liD Processor 
PCI Address Translation Unit 

15.7.29 Primary Outbound Upper 64-bit DAC Register - POUDR 

The Primary Outbound Upper 64-bit DAC Register (POUDR) defines the upper 32-bits of address 
used during a dual address cycle. This enables the primary outbound ATU to directly address 
anywhere within the 64-bit host address space. 

Table 15-57. Primary Outbound Upper 64-bit DAC Register - POUDR 

31 23 

Intel® i960® Core Local Bus Address 

1264H 

Bit Default 

24 20 16 

PCI Configuration Address Offset 

64H - 67H 

12 

Description 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :00 OOOOOOOOH These bits define the upper 32-bits of address driven during the dual address cycle (OAC). 

Developer's Manual 15-89 



Intel® 80303 110 Processor 
PCI Address Translation Unit in1:et 
15.7.30 Secondary Outbound Memory Window Value Register -

SOMWVR 

The Secondary Outbound Memory Window Value Register (SOMWVR) contains the secondary 
PCl address used to convert 80303 I/O processor internal bus addresses for outbound transactions. 
This address is driven on the secondary PCl bus as a result of the secondary outbound ATU address 
translation. See Section 15.2.2.1, "Outbound Address Translation" on page 15-15 for details on 
outbound address translation. 

The secondary memory window is from 80303 I/O processor internal bus address 8800 OOOH to 
8BFF FFFFH with the fixed length of 64 Mbytes. 

Table 15-58. Secondary Outbound Memory Window Value Register - SOMWVR 

31 28 24 20 16 12 8 4 o 
lOP [ 

Attributes Irw,f"",,'rwj',wJ'rwJ'rwJ'rw/'rwl'rw/rw/rw/rwln 

~~~~~~~~~~~-4-+-+~~~~~~~~~+-+-+-~ 

PCI [
Attributes \rW UW"!Wl""""'." 1W\IW\IW\lw\!w\rw\rw\rw\rw\rINmv\rvv\rvt\I"I!/\I'\!t\ I'V\f\rw'\IW\rw'lrw'Vw1~'1IW\

Intel® i960® Core Local Bus Address

1268H

PCI Configuration Address Offset

68H - 6BH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:04 OOOOOOOH

03:02

01:00

15-90

NA = Not Accessible

Description

Secondary Outbound Memory Window Value - Used to convert 80303 I/O processor internal bus
addresses to PCI addresses.

Reserved

Burst Order - This bit field shows the address sequence during a memory burst. Only linear
incrementing mode is supported.

Developer's Manual

15.7.31

Intel@ 80303 I/O Processor
PCI Address Translation Unit

Secondary Outbound I/O Window Value Register -
SOIOWVR

The Secondary Outbound I/O Window Value Register (SOIOWVR) contains the secondary PCl
I/O address used to convert 80303 I/O processor internal bus addresses. This address is driven on
the secondary PCI bus as a result of the secondary outbound ATU address translation. See
Section 15.2.2.1, "Outbound Address Translation" on page 15-15 for details on outbound address
translation.

The secondary I/O window is from 80303 I/O processor internal bus address 9001 OOOOH to
9001 FFFFH with the fixed length of 64 Kbytes.

Table 15-59. Secondary Outbound 1/0 Window Value Register - SOIOWVR

31 28 24 20 16

PCI[Attributes \'VJ\rw\rw\rw'n"'\rw'\rw'\r\IJ1~rw'\rw'\rw1\rw1\roi\f'\rw'\rw'\rw'lrw'\rw

Intel® i960® Core Local Bus Address

126CH

PCI Configuration Address Offset

6CH - 6FH

12

Bit Default Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :04 0000 OOOH Secondary Outbound I/O Window Value - Used to convert internal bus addresses to PCI addresses.

03:00 OH Reserved

Developer's Manual 15-91

Intel® 80303 liD Processor
PCI Address Translation Unit

15.7.32 Expansion ROM Limit Register - ERLR

The Expansion ROM Limit Register (ERLR) defines the block size of addresses the primary ATU
will define as Expansion ROM address space. The block size is programmed by writing a value
into the ERLR from the i960 core processor.

Bits 31 to 12 within the ERLR have a direct effect on the ERBAR register, bits 31 to 12, with a one
to one correspondence. A value of 0 in a bit within the ERLR makes the corresponding bit within
the ERBAR a read only bit which always returns O. A value of 1 in a bit within the ERLR makes
the corresponding bit within the ERBAR read/write from PCI.

Table 15-60. Expansion ROM limit Register - ERLR

Intel® i960® Core Local Bus Address

1274H

PCI Configuration Address Offset

74H -77H

Bit Default Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Expansion ROM Limit - Block size of memory required for the Expansion ROM translation unit. Default
31 :12 OOOOOOH value is 0, which indicates no Expansion ROM address space and all bits within the ERBAR are read

only with a value of O.

11 :00 OOOH Reserved

15-92 Developer's Manual

intel· Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.33 Expansion ROM Translate Value Register - ERTVR

The Expansion ROM Translate Value Register contains the 80303 I/O processor internal bus
address which the primary ATU will convert the primary PCI bus access. This address is driven on
the internal bus as a result of the primary Expansion ROM address translation.

Table 15-61. Expansion ROM Translate Value Register - ERTVR

PCI [
Attributes

31 28 24 20 16 12 8 o

Intel® i960® Core Local Bus Address

1278H

PCI Configuration Address Offset

78H -7BH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = ReadlSet

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31 :12 OOOOOH

11 :00 OOOH

Developer's Manual

NA = Not Accessible

Description

Expansion ROM Translation Value - Used to convert PCI addresses to 80303 1/0 processor internal bus
addresses for Expansion ROM accesses. The Expansion ROM address translation value must be word
aligned on the internal bus.

Reserved

15-93

Intel@ 80303 110 Processor
PCI Address Translation Unit int:et
15.7.34 ATU_Capability Identifier Register - ATU_Cap_ID

The Capability Identifier Register bits adhere to the definitions in the PCl Local Bus Specification,
Revision 2.2. This register in the PCI Extended Capability header identifies the type of Extended
Capability contained in that header. In the case of the 80303 I/O processor, this is the PCI Bus
Power Management extended capability with an ID ofOlH as defined by the PCl Bus Power
Management lntelface Specification, Revision 1.1.

Table 15-62. ATU_Capability Identifier Register - ATU_Cap_ID

7 4 0

lOP [
Attributes {ofro/ ro/ro/rofro/ro/ro/

PCI [
Attributes \o\o\ro\o\o\ro\o\o\

Intel® i960® Core Local Bus Address PCI Configuration Offset Attribute Legend: RW = ReadIWrite

0000 12S0H SOH RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

07:00 01H Cap_ld - This field with its' 01 H value identifies this item in the linked list of Extended Capability Headers
as being the PCI Power Management Registers.

15-94 Developer's Manual

intel· Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.35

The Next Item Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
Revision 2.2. This register describes the location of the next item in the function's capability list.
For the 80303 I/O processor, the Power Management Registers are the only Extended Capability
Supported, thus the NexcItem_Ptr is set to DOH, indicating the end of the Capabilities List.

Table 15-63. ATU Next Item Pointer Register - ATU_Next_ltem_Ptr

7 4 0

lOP [
Attributes f%fo/rofr%f·%l

PCI [
Attributes ro'x0"o\o\0'x0~0'x0\

Intel® i960® Core Local Bus Address PCI Configuration Offset Attribute Legend: RW = Read/Write

0000 1281 H 81H RV = Reserved
PR = Preserved

RC = Read Clear
RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

NexC Item_ Pointer - This field provides an offset into the function's configuration space pointing to the
07:00 OOH next item in the function's capability list. Since there are no other Extended Capabilities besides PCI

Power Management in the 80303 I/O processor, the register is set to OOH.

Developer's Manual 15-95

Intel® 80303 liD Processor
PCI Address Translation Unit

15.7.36 ATU Power Management Capabilities Register - APMCR

Power Management Capabilities bits adhere to the definitions in the PCI Bus Power Management
Interface Specification, Revision 1.1. This register is a 16-bit read-only register which provides
information on the capabilities of the ATU function related to power management.

Table 15-64. ATU Power Management Capabilities Register - APMCR

15 12 8 4 0

lOP [
Attributes /ro/ro/ro/rcto/ro!o/~/ro/ ro!1 /rofofo/

PCI[
Attributes \o\o\:o\o\o\o\ro\o\o\ro\ro1 ,~o\o\o\

Intel® i960® Core Local Bus Address PCI Configuration Offset Attribute Legend: RW = Read/Write

0000 1282H 82- 83H RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

Bit Default Description

15:11 000002
PME_Support - This function is not capable of asserting the PME# signal in any state, since PME# is not
supported by the 80303 I/O processor, thus the value of PME_Support is set to OOOOOB.

10 O2
02_Support - This bit is set to O2 indicating that the 80303 I/O processor does not support the 02 Power
Management State

9 O2
01_Support - This bit is set to 02 indicating that the 80303 I/O processor does not support the 01 Power
Management State

Aux_Current - This field is set to 0002 indicating that the 80303 I/O processor has no current
8:6 0002 requirements for the 3.3Vaux signal as defined in the PCI Bus Power Management Interface

Specification, Revision 1.1.

5 O2
OSI - This field is set to O2 meaning that this function will require a device specific initialization sequence
following the transition to the 00 un initialized state.

4 O2 Reserved.

3 O2
PME Clock - Since the 80303 liD processor does not support PME# signal generation, this value is set
to O2

2:0 0102
Version - Setting these bits to 0102 means that this function complies with PCI Bus Power Management
Interface Specification, Revision 1.1.

15-96 Developer's Manual

15.7.37

Intel® 80303 I/O Processor
PCI Address Translation Unit

ATU Power Management Control/Status Register - APMCSR

Power Management Control/Status bits adhere to the definitions in the PCI Bus Power
Management Interface SpecifIcation, Revision 1.1. This 16-bit register is the primary control and
status interface for the power management extended capability.

Table 15-65. ATU Power Management Control/Status Register - APMCSR

lOP [
Attributes

PCI [
Attributes

15 12 8 4 o

Intel® i960® Core Local Bus Address

0000 1284H

PCI Configuration Offset

84- 85H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15

14:9 OOH

8

7:2 0000002

1 :0

Developer's Manual

NA = Not Accessible

Description

PME_Status - This function is not capable of asserting the PME# signal in any state, since PME# is not
supported by the 80303 I/O processor, thus the value of PME_Status is set to O2 and is read-only.

Reserved

PME_En - This bit is hardwired to read-only O2 since this function does not support PME# generation
from any power state.

Reserved

Power State - This 2-bit field is used both to determine the current power state of a function and to set
the function into a new power state. The definition of the values is:

002 - DO

01 2 - Dl (Unsupported)

102 - D2 (Unsupported)

112 - D3hot

The 80303 I/O processor supports only the DO and D3hot states.i960 core processor

15-97

Intef@ 80303 110 Processor
PCI Address Translation Unit infel·
15.7.38 ATU Configuration Register - ATUCR

The ATU Configuration Register controls the outbound address translation for both the primary
and secondary outbound translation units. It also contains bits for DRC aliasing, discard timer
status, P _SERR# and S_SERR# manual assertion, access to the messaging unit from the secondary
PCl bus, P _SERR# and S_SERR# detection interrupt masking, and ATU Bist interrupt enabling.

Table 15·66. ATU Configuration Register - ATUCR (Sheet 1 of 2)

101' [
Attribl!tc~

PCl [
Attribute,

Intel® i960® Core Local Bus Address

1288H

PCI Configuration Address Offset

88H - 8BH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = ReadIWrite
RC = Read Clear
RO = Read Only

Bit Default

31:22 OOH

21

20

19

18

17

16

15

14:13

15-98

NA = Not Accessible

Description

Reserved

Bridge Function Number - this bit in conjunction with the ATU Header Type Register (ATUHTR) and the
Bridge Header Type Register (HTR), can swap the Bridge and the ATU device numbers as they appear
to the PCI bus, or it can set the 80303 I/O processor as a single function device with either the ATU or
the Bridge as the single function. (Refer to Section 15.2.4, "PCI Multi-Function Device
Swapping/Disabling" on page 15-23 for programming information.)

SATU DRC Alias - when set, the secondary ATU does not distinguish read commands when attempting
to match a current PCI read transaction with read data enqueued within the DRC buffer. When clear, a
current read transaction must have the exact same read command as the ORR for the secondary ATU
to deliver DRC data.

PATU DRC Alias - when set, the primary ATU does not distinguish read commands when attempting to
match a current PCI read transaction with read data enqueued within the DRC buffer. When clear, a
current read transaction must have the exact same read command as the ORR for the primary ATU to
deliver DRC data.

Direct Addressing Upper 2Gbytes Translation Enable - When set, with Direct Addressing enabled (bit 7
of the ATUCR set), the ATU will forward internal bus cycles with an address between 0000.2000H and
7FFF.FFFFH to the PCI bus with bit 31 of the address set (8000.2000H - FFFF.FFFFH). When clear, no
translation will occur.

S_SERR# Manual Assertion - when set, the SATU will assert S_SERR# for one clock on the secondary
PCI interface. Until cleared, S_SERR# may not be manually asserted again. Once cleared, operation
will proceed as specified.

P _SERR# Manual Assertion - when set, the PATU will assert P _SERR# for one clock on the primary
PCI interface. Until cleared, P _SERR# may not be manually asserted again. Once cleared, operation
will proceed as specified.

ATU Discard Timer Status - when set, one of the 3 discard timers within the PATU and SATU has
expired and discarded the delayed completion transaction within the queue. When clear, no timer has
expired.

Reserved

Developer's Manual

int'et Intel® 80303 110 Processor
PCI Address Translation Unit

Table 15-66. ATU Configuration Register - ATUCR (Sheet 2 of 2)

101' [
Altrihu1C'<.,

pc; [
Altrihut:;:~

Intel® i960® Core Local Bus Address

1288H

PCI Configuration Address Offset

88H - 8BH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

12

11

10

09

08

07 O2

06:04 0002

03 O2

02 O2

01 O2

00 O2

Developer's Manual

NA = Not Accessible

Description

Secondary Bus Messaging Unit Access Enable - If set, the secondary addresses which fall within the
first 4 KB of the SATU inbound address space and are also capable of being claimed by the secondary
interface of the bridge will default to the bridge for forwarding to the MUon the primary interface. If clear,
the SATU has priority and will claim addresses that are both within the first 4 KB of the SATU and/or are
capable of being claimed by the bridge unit.

Setting this bit will simultaneously allow the Messaging Unit to claim target cycles which are mastered
by the primary interface of the Bridge Unit.

Reserved

S_SERR# Interrupt Enable - When set, the i960 core processor will be signalled an NMI# interrupt if the
SATU detects that S_SERR# was asserted on the secondary interface. When clear, the i960 core
processor will not be interrupted when S_SERR# is detected as asserted on the secondary interface.

P _SERR# Interrupt Enable - When set, the i960 core processor will be signalled an NMI# interrupt if the
PATU detects that P _SERR# was asserted on the primary interface. When clear, the i960 core
processor will not be interrupted when P _SERR# is detected as asserted on the primary interface.

Direct Addressing Enable - Setting this bit will enable direct outbound addressing through the ATUs.
Internal bus cycles with an address between 0000.2000H and 7FFF.FFFFH will automatically be
forwarded to the PCI bus with or without translation of address bit 31 based on the setting of bit 18 of
theATUCR.

Secondary Direct Addressing Select - When set, results in direct addreSSing outbound transactions to
be forwarded through the secondary ATU to the secondary PCI bus. When clear, direct addressing uses
the primary ATU and the primary PCI bus. The Direct Addressing Enable bit must be set to enable direct
addressing.

Reserved

ATU BIST Interrupt Enable - When set, enables an interrupt to the i960 core processor when the start
BIST bit is set in the ATUBISTR register. This bit is also reflected as the BIST Capable bit 7 in the
ATUBISTR register.

Secondary Outbound ATU Enable - When set, enables the secondary outbound address translation
unit. When cleared, disables the secondary outbound ATU.

Primary Outbound ATU Enable - When set, enables the primary outbound address translation unit.
When cleared, disables the primary outbound ATU.

Reserved

15-99

Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.39 Primary ATU Interrupt Status Register - PATUISR

The Primary ATU Interrupt Status Register is used to notify the core processor of the source of a
Primary ATU interrupt. In addition, this register is written to clear the source of the interrupt to the
interrupt unit of the 80303 I/O processor. All bits in this register are Read/Clear.

Bits 4:0 are a direct reflection of bits 14:11 and bit 8 (respectively) of the Primary ATU Status
Register (these bits are set at the same time by hardware but need to be cleared independently). Bit
7 is set by an error associated with the internal bus of the 80303 I/O processor. Bit 8 is for software
BIST. The conditions that result in a Primary ATU interrupt are cleared by writing a 1 to the
appropriate bits in this register.

Note that bits 4:0, bits 12: 11, bit 9 and bit 7 can result in an NMI# interrupt being driven to the i960
core processor.

Table 15-67. Primary ATU Interrupt Status Register - PATUISR (Sheet 1 of 2)

lOP [
/\!tribll!t~~

PCI [
AHrlb"HC~J

Intel® i960® Core Local Bus Address

1290H

PCI Configuration Address Offset

90H - 93H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31 :12 OOOOOH

11

10

09

08

07

06:05 002

04

03

15-100

NA = Not Accessible

Description

Reserved

Power State Transition - When the Power State Field of the ATU Power Management Control/Status
Register is written to transition the ATU function Power State from either 03 to DO or DO to D3 and the
ATU Power State Transition Interrupt mask bit is cleared, this bit is set.

P _SERR# Asserted - set when P _SERR# is asserted on the PCI bus by the primary ATU.

Detected Parity Error - set when a parity error is detected on the primary PCI bus even when the
PATUCMD register's Parity Error Response bit is cleared. Set under the following conditions:

• Write Data Parity Error when the PATU is a slave (inbound write).

• Read Data Parity Error when the PATU is a master (outbound read). Read Data Parity Errors when
DMA Channel 0 or DMA Channel 1 is the master ARE NOT logged here, and instead are logged in
the appropriate DMA CSR.

• Any Address Parity Error on the Primary Bus (including one generated by the PATU or DMA
Channels 0 & 1 when loop back is enabled).

ATU BIST Interrupt - When set, the host processor has set the start BIST, ATUBISTR register bit 6, and
the ATU BIST interrupt enable (ATUCR register bit 12) is enabled. The i960 core processor can initiate
the software BIST and store the result in ATUBISTR register bits 3:0.

Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus master interface
ends in a Master-abort.

Reserved.

P _SERR# Detected - set when P _SERR# is detected on the PCI bus by the primary ATU.

PCI Master Abort - set when a transaction initiated by the ATU PCI master interface ends in a
Master-abort.

Developer's Manual

intel· Intel® 80303 I/O Processor
PCI Address Translation Unit

Table 15-67. Primary ATU Interrupt Status Register - PATUISR (Sheet 2 of 2)

lUI' [
/\ltrihuh:'"~

PCI [
}\Hribute;,

Intel@; i960® Core Local Bus Address

1290H

PCI Configuration Address Offset

90H - 93H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

02

01

00

Developer's Manual

NA = Not Accessible

Description

PCI Target Abort (master) - set when a transaction initiated by the ATU PCI master interface ends in a
Target-abort.

PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates the transaction on
the PCI bus with a target abort.

PCI Master Parity Error - The ATU interface sets this bit when three conditions are met:

• the PATU asserted S_PERR# or observed S_PERR# asserted

• the PATU acted as the bus master for the operation in which the error occurred

• Parity Error Response bit is set (in the Primary ATU Command Register)

15-101

Intel® 80303 110 Processor
PCI Address Translation Unit intel·
15.7.40 Secondary ATU Interrupt Status Register - SATUISR

The Secondary ATU Interrupt Status Register is used to notify the core processor of the source of a
Secondary ATU interrupt. In addition, this register is written to clear the source of the interrupt to
the interrupt unit of the 80303 I/O processor. All bits in this register are Read/Clear.

Bits 4:0 are a direct reflection of bits 14: 11 and bit 8 (respectively) of the Secondary ATU Status
Register (these bits are set at the same time by hardware but need to be cleared independently).
Bit 7 is set by an error associated with the internal bus of the 80303 I/O processor. The conditions
that result in a Secondary ATU interrupt are cleared by writing a 1 to the appropriate bits in this
register.

Note that bits 4:0, bit 7, and bit 9 can result in an NMI# interrupt being driven to the i960 core
processor.

Table 15-68. Secondary ATU Interrupt Status Register - SATUISR (Sheet 1 of 2)

lOP [
Attribute,

PC1[
Allribule,

Intel® i960® Core Local Bus Address

1294H

PCI Configuration Address Offset

94H - 97H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = ReadlWrite
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

31:11 OOOOOOH Reserved

10 O2 S_SERR# Asserted - set when S_SERR# is asserted on the PCI bus by the secondary ATU.

09

08 O2

07 O2

06:05 002

04 02

03 O2

02 02

01 O2

15-102

Detected Parity Error - set when a parity error is detected on the secondary PCI bus even when the
SATUCMD register's Parity Error Response bit is cleared. Set under the following conditions:

• Write Data Parity Error when the SATU is a slave (inbound write).

• Read Data Parity Error when the SATU is Master (outbound read). Read Data Parity Errors when
DMA Channel 2 is a master ARE NOT logged here, and instead are logged in the DMA Channel 2
CSR.

• Any Address Parity Error on the Secondary Bus (including one generated by the SATU or DMA
Channel 2 when loopback is enabled).

Reserved

Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus master interface
ends in a Master-abort.

Reserved

S_SERR# Detected - set when S_SERR# is detected on the PCI bus by the secondary ATU.

PCI Master Abort - set when a transaction initiated by the ATU PCI master interface ends in a
Master-abort.

PCI Target Abort (master) - set when a transaction initiated by the ATU PCI master interface ends in a
Target-abort.

PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates the transaction on
the PCI bus with a target abort.

Developer's Manual

Intel® 80303 liD Processor
PCI Address Translation Unit

Table 15-68. Secondary ATU Interrupt Status Register - SATUISR (Sheet 2 of 2)

)2 4

PCI [
Attribute')

Intel® i960® Core Local Bus Address

1294H

PCI Configuration Address Offset

94H - 97H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

PCI Master Parity Error - The secondary ATU interface sets this bit when three conditions are met:

• the SATU asserted S_PERR# or observed S_PERR# asserted

• the SATU acted as the bus master for the operation in which the error occurred
00

• Parity Error Response bit is set (in the Secondary ATU Command Register)

Developer's Manual 15-103

Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.41 Secondary ATU Command Register - SATUCMD

Secondary ATD Command Register bits adhere to the defmitions in the PCI Local Bus
Specification, Revision 2.2 and in most cases affect the behavior of the device on the secondary
PClbus.

Table 15-69. Secondary ATU Command Register - SATUCMD

lOP
Attributes

PCI
Attributes

15 12 8 4 o

Intel® i96o® Core Local Bus Address

1298H

PCI Configuration Address Offset

98H - 99H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

15:10 OOH

09 O2

08 O2

07 O2

06 O2

05 O2

04 O2

03 O2

02

01

00

15-104

NA = Not Accessible

Description

Reserved

Fast Back to Back Enable - When this bit is cleared, the secondary ATU interface is not allowed to
generate fast back-to-back cycles on its bus.

S_SERR# Enable - When this bit is cleared. the secondary ATU interface is not allowed to assert
S_SERR# on the PCI interface.

Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit field

Parity Error Response - When this bit is set, the secondary ATU and DMA channel 2 must take normal
action when a parity error is detected. When it is cleared, parity checking is disabled.

VGA Palette Snoop Enable - The secondary ATU interface does not support I/O writes and therefore,
does not perform VGA palette snooping.

Memory Write and Invalidate Enable - When this bit is set, DMA channel 2 may generate MWI
commands. When this bit is clear, DMA channel 2 must use Memory Write commands instead of MWI.

Special Cycle Enable - The ATU interface does not respond to special cycle commands in any way. Not
implemented and a reserved bit field

Bus Master Enable - The secondary ATU interface has the ability to act as a master on the PCI bus. A
value of 0 disables the secondary ATU from claiming i960 core processor accesses and from generating
PCI accesses. A value of 1 allows the secondary ATU to claim i960 core processor accesses and to
behave as a PCI bus master.

This enable bit also controls the master interface of the DMA channel 2. The bit must be set before
initiating an DMA transfer on the PCI bus.

Memory Enable - Controls the secondary ATU interface's response to PCI memory addresses. When
this bit is cleared, the ATU interface will not respond to any memory access on the PCI bus.

I/O Space Enable - Controls the ATU interface response to I/O transactions on the primary side. Not
implemented and a reserved bit field.

Developer's Manual

in1:et Intel@ 80303 110 Processor
PCI Address Translation Unit

15.7.42 Secondary ATU Status Register - SATUSR

Secondary ATU Status Register bits adhere to the definitions in the PCI Local Bus Spec(fication,
Revision 2.2. The read/clear bits can only be set by the internal hardware and are cleared by either
a reset condition or by writing a 12 to the register.

Table 15-70. Secondary ATU Status Register - SATUSR

lOP [
Attributes

PCI[
Attributes

15

f-r-r-I---1f--

4 o

Intel® i960® Core Local Bus Address

129AH

PCI Configuration Address Offset

9AH - 9BH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = ReadlWrite
RC = Read Clear
RO = Read Only

Bit Default

15

14

13

12

11

10:09

08

07:00 OOH

Developer's Manual

NA = Not Accessible

Description

Detected Parity Error - set when a parity error is detected on the secondary PCI bus even when the
SATUCMD register's Parity Error Response bit is cleared. Set under the following conditions:

• Write Data Parity Error when the SATU is a slave (inbound write).

• Read Data Parity Error when the SATU or DMA Channel 2 is a master (outbound read).

• Any Address Parity Error on the Secondary Bus (including one generated by the SATU or DMA
Channel 2).

S_SERR# Asserted - set when S_SERR# is asserted by the secondary ATU.

Master Abort - set when a transaction initiated by the secondary ATU PCI master interface, or DMA
Channel 2 ends in a Master-abort. Setting of this bit due to an error condition from a DMA Channel will
not cause an ATU interrupt to the core.

Target Abort (master) - set when a transaction initiated by the secondary ATU PCI master interface or
the DMA Channel 2 master interface ends in a Target-abort. Setting of this bit due to an error condition
from a DMA Channel will not cause an ATU interrupt to the core.

Target Abort (target) - set when the secondary ATU PCI interface, acting as a target, terminates the
transaction on the secondary PCI bus with a Target-abort.

Reserved

Master Parity Error - The secondary ATU interface sets this bit under the following conditions:

• The SATU or DMA Channel 2 asserted S_PERR# itself or the SATU observed S_PERR# asserted.

• And the SATU or DMA Channel 2 acted as the bus master for the operation in which the error
occurred.

• And the SATUCMD register's Parity Error Response bit is set

Setting of this bit due to an error condition from a DMA Channel will not cause an ATU interrupt to the
core.

Reserved

15-105

Intel® 80303 I/O Processor
PCI Address Translation Unit int:et
15.7.43 Secondary Outbound DAe Window Value Register -

SODWVR

The Secondary Outbound DAC Window Value Register (SODWVR) contains the secondary PCI
DAC address used to convert an 80303 I/O processor internal bus address. This address is driven
on the secondary PCI bus as a result of the secondary outbound ATU address translation. See
Section 15.2.2.1, "Outbound Address Translation" on page 15-15 for details on outbound address
translation. This register is used in conjunction with the Secondary Outbound Upper 64-Bit DAC
Register.

The secondary DAC window is from 80303 I/O processor internal bus address 8COO OOOH to
8FFF FFFFH with the fixed length of 64 Mbytes.

Table 15-71. Secondary Outbound DAC Window Value Register - SODWVR

PCI [
Aiiributes

31 28 24 20 16 12 8 4 o

Intel® i960® Core Local Bus Address

129CH

PCI Configuration Address Offset

9CH - 9FH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31 :04 OOOOOOOH

03:02

01:00

15-106

NA = Not Accessible

Description

Secondary Outbound DAC Window Value - The secondary ATU uses this value to convert 80303 I/O
processor internal bus addresses to PCI addresses.

Reserved

Burst Order - This bit field shows the address sequence during a memory burst. Only linear
incrementing mode is supported.

Developer's Manual

Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.44 Secondary Outbound Upper 64-bit DAC Register - SOUDR

The Secondary Outbound Upper 64-bit DAC Register (SOUDR) defines the upper 32-bits of
address used during a dual address cycle. This enables the secondary outbound ATU to directly
address anywhere within the 64-bit host address space.

Table 15-72. Secondary Outbound Upper 64-bit DAC Register - SOUDR

31 28

Intel® i960® Core Local Bus Address

12AOH

Bit Default

24 20 16

PCI Configuration Address Offset

AOH - A3H

12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :00 0000 OOOOH Secondary Outbound Upper 64-bit OAC Address - These bits define the upper 32-bits of address driven
during the dual address cycle (OAC).

Developer's Manual 15-107

Intel@ 80303 110 Processor
PCI Address Translation Unit int:et
15.7.45 Primary Outbound Configuration Cycle Address Register -

POCCAR

The Primary Outbound Configuration Cycle Address Register is used to hold the 32-bit PCI
configuration cycle address. The i960 core processor writes the PCI configuration cycles address
which then enables the primary outbound configuration read or write. The i960 core processor then
performs a read or write to the Primary Outbound Configuration Cycle Data Register to initiate the
configuration cycle on the primary PCI bus.

Table 15-73. Primary Outbound Configuration Cycle Address Register - POCCAR

31 28

Intel® i960® Core Local Bus Address

12A4H

Bit Default

24 20 16

PCI Configuration Address Offset

A4H - A7H

12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:00 0000 OOOOH Primary Configuration Cycle Address - These bits define the 32-bit PCI address used during an
outbound configuration read or write cycle.

15-108 Developer's Manual

Inte/@ 80303 /10 Processor
PCI Address Translation Unit

15.7.46 Secondary Outbound Configuration Cycle Address
Register - SOCCAR

The Secondary Outbound Configuration Cycle Address Register is used to hold the 32-bit PCI
configuration cycle address. The i960 core processor writes the PCI configuration cycles address
which then enables the secondary outbound configuration read or write. The i960 core processor
then performs a read or write to the Secondary Outbound Configuration Cycle Data Register to
initiate the configuration cycle on the secondary PCI bus.

Table 15-74. Secondary Outbound Configuration Cycle Address Register - SOCCAR

31 28

Intel® i960® Core Local Bus Address

12A8H

Bit Default

PCI Configuration Address Offset

A8H - ABH

12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:00 0000 OOOOH Secondary Configuration Cycle Address - These bits define the 32-bit PCI address used during an
outbound configuration read or write cycle.

Developer's Manual 15-109

Intel@ 80303 flO Processor
PCI Address Translation Unit

15.7.47 Primary Outbound Configuration Cycle Data Register -
POCCDR

The Primary Outbound Configuration Cycle Data Register is used to initiate a configuration read
or write on the primary PCI bus. The register is logical rather than physical meaning that it is an
address not a register. The i960 core processor will read or write the data registers memory -mapped
address to initiate the configuration cycle on the PCI bus with the address found in the POCCAR.
For a configuration write, the data is latched from the internal bus and forwarded directly to the
P _OWQ. For a read, the data is returned directly from the P _ORQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).

The POCCDR is only visible from 80303 I/O processor internal bus address space and appears as a
reserved value within the ATU configuration space.

Table 15-75. Primary Outbound Configuration Cycle Data Register - POCCDR

31 28

Intel® i960® Core Local Bus Address

12ACH

Bit Default

24 20 16 12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :00 0000 OOOOH Primary Configuration Cycle Data - These bits define the data used during an outbound configuration
read or write cycle.

15-110 Developer's Manual

inteL Inte/@ 80303 I/O Processor
PCI Address Translation Unit

15.7.48 Secondary Outbound Configuration Cycle Data Register -
SOCCDR

The Secondary Outbound Configuration Cycle Data Register is used to initiate a configuration read
or write on the secondary PCI bus. The register is logical rather than physical meaning that it is an
address not a register. The i960 core processor will read or write the data registers memory-mapped
address to initiate the configuration cycle on the PCI bus with the address found in the SOCCAR.
For a configuration write, the data is latched from the internal bus and forwarded directly to the
S_OWQ. For a read, the data is returned directly from the S_ORQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).

The SOCCDR is only visible from 80303 I/O processor internal bus address space and appears as a
reserved value within the ATU configuration space.

Table 15-76. Secondary Outbound Configuration Cycle Data Register - SOCCDR

31 28

Intel® i960® Core Local Bus Address

12BOH

Bit Default

24 20 16 12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:00 OOOOOOOOH Secondary Configuration Cycle Data - These bits define the data used during an outbound configuration
read or write cycle.

Developer's Manual 15-111

Intel® 80303 110 Processor
PCI Address Translation Unit

15.7.49 Primary ATU Queue Control Register - PAQCR

intel·

The Primary ATU Queue Control Register contains programmable parameters affecting operation
of the primary ATU queues.

Table 15·77. Primary ATU Queue Control Register· PAQCR

lOP [
Atfributes

PCI[
Attributes

Intel® i960® Core Local Bus Address

12B4H

PCI Configuration Address Offset

B4H - B7H

Bit Default Description

31 :06 OOH Reserved

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Memory Write Non-Full State - these bits define the definition of what a non-full state is for the primary
ATU inbound posted memory write queue (P _IWQ).

05:04

03:00 OH

15-112

00 - A non-full queue has 8 bytes or more free
01 - A non-full queue has 16 bytes or more free
10 - A non-full queue has 32 bytes or more free
11 - Reserved (treated like 00)

These bits define when the PCI interface of the primary ATU will accept a posted memory write operation
based on the number of bytes in a queue.

Reserved

Developer's Manual

int'et Intel@ 80303 liD Processor
PCI Address Translation Unit

15.7.50 Secondary ATU Queue Control Register - SAQCR

The Secondary ATU Queue Control Register contains programmable parameters affecting
operation of the secondary ATU queues.

Table 15-78. Secondary ATU Queue Control Register - SAQCR

lOP [
;\[lrlbu!t~

PCI [
Attribmt>,

Intel® i960® Core Local Bus Address

12B8H

PCI Configuration Address Offset

B8H - BBH

Bit Default Description

31 :06 OOH Reserved

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Memory Write Non-Full State - these bits define the definition of what a non-full state is for the secondary
ATU inbound posted memory write queue (S_IWQ).

05:04

03:00 OH

Developer's Manual

00 - A non-full queue has 8 bytes or more free
01 - A non-full queue has 16 bytes or more free
10 - A non-full queue has 32 bytes or more free
11 - Reserved (treated like 00)

These bits define when the PCI interface of the secondary ATU will accept a posted memory write
operation based on the number of bytes in a queue.

Reserved

15-113

Intel@ 80303 110 Processor
PCI Address Translation Unit intel.
15.7.51 Primary ATU Interrupt Mask Register - PATUIMR

The Primary ATU Interrupt Mask Register contains the control bit to enable and disable interrupts
generated by the primary ATU.

Table 15-79. Primary ATU Interrupt Mask Register - PATUIMR

lOP [
i\!lributes

PCI [
Attributes

Intel® i960® Core Local Bus Address

12BCH
PCI Configuration Address Offset

BCH - BFH

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:09 OOOOOOH

08

07

06

05

04

03

02

01

00

15-114

NA = Not Accessible

Description

Reserved

Power State Transition Interrupt Mask - When this bit is set and the ATU Power Management
Control/Status Register is written to transition the ATU Function Power State from either DO to D3 or D3 to
DO, bit 11 of the PATUISR is not set.

PATU Detected Parity Error Interrupt Mask - When set, a parity error detected on the primary PCI bus that
sets bit 15 of the PATUSR will not result in bit 9 of the PATU ISR being set. When clear, an error that sets
bit 15 of the PATUSR will result in bit 9 of the PATUISR being set.

PATU P _SERR# Asserted Interrupt Mask - When set, asserting P _SERR# on the primary interface
resulting in bit 14 of the PATUSR being set will not result in bit 10 of the PATUISR being set. When clear,
an error that sets bit 14 of the PATUSR will cause bit 10 of the PATUISR to be set. Note that this bit is
specific to the PATU asserting P _SERR# and not detecting P _SERR# from another master.

PATU PCI Master Abort Interrupt Mask - When set, a master abort error resulting in bit 13 of the PATUSR
being set will not result in bit 3 of the PATU ISR being set. When clear, an error that sets bit 13 of the
PATUSR will cause bit 3 of the PATUISR to be set.

PATU PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting in bit 12 of the
PATUSR being set will not result in bit 2 of the PATUISR being set. When clear, an error that sets bit 12 of
the PATUSR will cause bit 2 of the PATUISR to be set.

PATU PCI Target Abort (Target) Interrupt Mask- When set, a target abort error resulting in bit 11 of the
PATUSR being set will not result in bit 1 of the PATUISR being set. When clear, an error that sets bit 11 of
the PATUSR will cause bit 1 of the PATUISR to be set.

PATU PCI Master Parity Error Interrupt Mask - When set, a parity error resulting in bit 8 of the PATUSR
being set will not result in bit 0 of the PATUISR being set. When clear, an error that sets bit 8 of the
PATUSR will cause bit 0 of the PATUISR to be set.

Primary ATU Inbound Error P _SERR# Enable - When set, the PATU will assert (if enabled through the
PATUCMD) P _SERR# on the primary interface in response to a master abort on the internal bus during
an inbound write transaction or a target abort from the memory controller (ECC Error) during an inbound
write transaction. When clear, P _SERR# will not be asserted under the previous conditions.

Primary ATU ECC Target Abort Enable - When set, the PATU will perform a target abort on the primary
PCI interface in response to a target abort (ECC error) from the memory controller on the internal bus.
This action only occurs when during an inbound read transaction where the data phase that was target
aborted on the internal bus is actually requested from the inbound read queue. When clear, the response
under the same conditions is a disconnect with data (the data being up to 64 bits of 1 's) on the PCI bus
instead of a target abort.

Developer's Manual

intel· Inte/® 80303 I/O Processor
PCI Address Translation Unit

15.7.52 Secondary ATU Interrupt Mask Register - SATUIMR

The Secondary ATU Interrupt Mask Register contains the control bit to enable and disable
interrupts generated by the secondary ATU.

Table 15·80. Secondary ATU Interrupt Mask Register· SATUIMR

101' [
!\~1:ribUk~

PC! [
AHriIJlHe~,

Intel® i960® Core Local Bus Address

12COH

PCI Configuration Address Offset

COH - C3H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

Bit Default

31:08 OOOOOOH

07

06

05

04

03

02

01

00

Developer's Manual

NA = Not Accessible

Description

Reserved

SATU Detected Parity Error Interrupt Mask - When set, a parity error detected on the secondary PCI bus
that sets bit 15 of the SATUSR will not result in bit 9 of the SATU ISR being set. When clear, an error that
sets bit 15 of the SATUSR will result in bit 9 of the SATUISR being set.

SATU S_SERR# Asserted Interrupt Mask - When set, asserting S_SERR# on the secondary interface
resulting in bit 14 of the SATUSR being set will not result in bit 10 of the SATUISR being set. When clear,
an error that sets bit 14 of the SATUSR will cause bit 10 of the SATUISR to be set. Note that this bit is
specific to the SATU asserting S_SERR# and not detecting S_SERR# from another master.

SATU PCI Master Abort Interrupt Mask - When set, a master abort error resulting in bit 13 of the SATUSR
being set will not result in bit 3 of the SATUISR being set. When clear, an error that sets bit 13 of the
SATUSR will cause bit 3 of the SATUISR to be set.

SATU PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting in bit 12 of the
SATUSR being set will not result in bit 2 of the SATUISR being set. When clear, an error that sets bit 12 of
the SATUSR will cause bit 2 of the SATUISR to be set.

SATU PCI Target Abort (Target) Interrupt Mask - When set, a target abort error resulting in bit 11 of the
SATUSR being set will not result in bit 1 of the SATUISR being set. When clear, an error that sets bit 11 of
the SATUSR will cause bit 1 of the SATUISR to be set.

SATU PCI Master Parity Error Interrupt Mask - When set, a parity error resulting in bit 8 of the SATUSR
being set will not result in bit 0 of the PATUISR being set. When clear, an error that sets bit 8 of the
SATUSR will cause bit 0 of the SATUISR to be set.

Secondary ATU Inbound Error S_SERR# Enable - When set, the SATU will assert (if enabled through the
SATUCMD) S_SERR# on the secondary interface in response to a master abort on the internal bus
during an inbound write transaction or a target abort from the memory controller (ECC Error) during an
inbound write transaction. When clear, S_SERR# will not be asserted under the previous conditions.

Secondary ATU ECC Target Abort Enable - When set, the SATU will perform a target abort on the
secondary PCI interface in response to a target abort (ECC error) from the memory controller on the
internal bus. This action only occurs during an inbound read transaction where the data phase that was
target aborted on the internal bus is actually requested from the inbound read queue. When clear, the
response under the same conditions is a disconnect with data (the data being up to 64 bits of 1's) on the
PCI bus instead of a target abort.

15-115

intel·
Messaging Unit 16

16.1

This chapter describes the Messaging Unit (MU) of the lntel® 80303 I/O processor. The MU is
closely related to the Primary Address Translation Unit (PATU) described in Chapter 15, "PCl
Address Translation Unit".

Overview

The Messaging Unit provides a mechanism for data to be transferred between the PCI system and
the lntel® i960® core processor and notifies the respective system of the arrival of new data
through an interrupt. The MU can be used to send and receive messages.

The MU has four distinct messaging mechanisms. Each allows a host processor or external PCI
agent and the i960 core processor to communicate through message passing and interrupt
generation. The four mechanisms are:

• Message Registers - allow the i960 core processor and external PCI agents to communicate
by passing messages in one of four 32-bit Message Registers. In this context, a message is any
32-bit data value. Message registers combine aspects of mailbox registers and doorbell
registers. Writes to the message registers may optionally cause interrupts.

• Doorbell Registers - allow the i960 core processor to assert the PCI interrupt signals and
allow external PCI agents to generate an interrupt to the i960 core processor.

• Circular Queues - support a message passing scheme that uses four circular queues.

• Index Registers - support a message passing scheme that uses a portion of the 80303 I/O
processor local memory to implement a large set of message registers.

Each of the above is available to the system designer at the same time. No special mode selection is
needed.

Developer's Manual 16-1

Intel® 80303 110 Processor
Messaging Unit intel~

16.2

16-2

Theory of Operation

The MU has four independent messaging mechanisms. The four Message Registers are similar to a
combination of mailbox and doorbell registers. Each holds a 32-bit value and generates an interrupt
when written.

The two Doorbell Registers support software interrupts. When a bit is set in a Doorbell Register, an
interrupt is generated.

The Circular Queues support a message passing scheme that uses four circular queues. The four
circular queues are implemented in 80303 I/O processor local memory. Two queues are used for
inbound messages and two are used for outbound messages. Interrupts may be generated when the
queue is written.

The Index Registers use a portion of the 80303 I/O processor local memory to implement a large
set of message registers. When one of the Index Registers is written, an interrupt is generated and
the address of the register written is captured.

Interrupt status for all interrupts is recorded in the Inbound Interrupt Status Register and the
Outbound Interrupt Status Register. Each interrupt generated by the Messaging Unit can be masked.

Multi-word PCI burst accesses are not supported by the Messaging Unit, with the exception of
multi-word reads to the index registers. The MU terminates multi-word PCI transactions (other
than index register reads) with a disconnect after the next Qword boundary, with the exception of
queue ports.

All registers needed to configure and control the Messaging Unit are memory-mapped registers.

The MU uses the first 4 Kbytes of the primary inbound translation window in the Primary Address
Translation Unit (PATU). This PCI address window is used for PCI transactions that access the
80303 I/O processor local memory. The PCI address of the primary inbound translation window is
contained in the Primary Inbound ATU Base Address Register. See Chapter 15, "PCI Address
Translation Unit" for more details on inbound ATU addressing and the PATU.

From the PCI perspective, the Messaging Unit is part of the Primary Address Translation Unit. The
Messaging Unit uses the PCI configuration registers of the Primary ATU for control and status
information. The Messaging Unit must observe all PCI control bits in the Primary ATU Command
Register and ATU Configuration Register. The Messaging Unit reports all PCI errors in the Primary
ATU Status Register. The Messaging Unit can be accessed from the 803031/0 processor secondary
PCI bus by sending the cycle through the PCI-to-PCI Bridge Unit. Refer to Chapter 14, "PCI-to-PCI
Bridge Unit" for details of the correct configuration options to support this feature.

Parts of the Messaging Unit can be accessed as a 64-bit PCI device. The register interface, message
registers, doorbell registers, and index registers return a P _ACK64# in response to a P _REQ64# on
the primary interface. Up to 1 Qword of data can be read or written per transaction (except Index
Register reads, see Section 16.6, on page 16-15). The Inbound and Outbound Queue Ports are
always 32-bit addresses and the MU never asserts P _ACK64# to offsets 40H and 44H.

Developer's Manual

Figure 16-1.

Table 16-1.

PCI Memory Map

First 4 Kbytes of the

Intel@ 80303 110 Processor
Messaging Unit

Primary ATU Inbound PCI Address Space

OOOOH

0004H

0008H

OOOCH

0010H

0014H

0018H

001CH

0020H

0024H

0028H

002CH

0030H

0034H

0038H

003CH

0040H

0044H

0048H

004CH

0050H

OFFCH

Reserved

Reserved

Reserved

Reserved

Inbound Message Register 0

Inbound Message Register 1

Outbound Message Register 0

Outbound Message Register 1

Inbound Doorbell Register

Inbound Interrupt Status Register

Inbound Interrupt Mask Register

Outbound Doorbell Register

Outbound Interrupt Status Register

Outbound Interrupt Mask Register

Reserved

Reserved

Inbound Queue Port

Outbound Queue Port

Reserved

Reserved

Intel® 80303 Processor
Local Memory

4 Message Registers

2 Doorbell Registers
and
4 Interrupt Registers

I2 Queue Ports

1004 Index Registers

A8044-01

Table 16-1 provides a summary of the four messaging mechanisms used in the Messaging Unit.

MU Summary

Assert PCllnterrupt
Generate Intel® i960®

Mechanism Quantity Core Processor
Signals?

Interrupt?

Message Registers 2 Inbound and 2 Outbound Optional Optional

Doorbell Registers 1 Inbound and 1 Outbound Optional Optional

Circular Queues 4 Circular Queues Under certain conditions Under certain conditions

Index Registers 1004 32-bit Memory Locations No Optional

Developer's Manual 16-3

Intel® 80303 110 Processor
Messaging Unit inlel..
16.2.1 Transaction Ordering

From a PCI standpoint, the Messaging Unit is a piece of the primary ATU and therefore must
maintain some ordering requirements against PATU transactions. Transaction ordering is achieved
for the Index Registers, the Doorbell Register, and the Message Registers since these transactions
are routed through the standard set of PATU read/write queues.

The Circular Queues (Inbound/Outbound Queue Port) are separate queue structures and therefore
require ordering. The Inbound Post Queue (contains PCI writes) must be ordered against the
inbound write queue of the PATU to allow the data that is represented by the Inbound Post interrupt
to be written to local memory before the interrupt is delivered. See Table 16-2 for a summary of
Messaging Unit transaction ordering.

Table 16-2. Circular Queue Ordering ReqUirements

Messaging Unit Feature Transaction Ordering Mechanism

Message Registers

Doorbell Registers Through PATU Queues

Index Registers

Inbound Post
Ordered Against PATU Inbound Write Queue (PMW

Can Not Pass Another PMW)

Circular Queues Inbound Free

Outbound Post No Specific Hardware Ordering

Outbound Free

16-4 Developer's Manual

16.3

16.3.1

16.3.2

Message Reg isters

Intel® 80303 flO Processor
Messaging Unit

Messages can be sent and received by the i960 core processor through the use of the Message
Registers. When written, the Message Registers may cause an interrupt to be generated to either the
i960 core processor or the PCI interrupt signals. Inbound messages are sent by the host processor and
received by the 80303 I/O processor. Outbound messages are sent by the i960 core processor and
received by the host processor.

The interrupt status for outbound messages is recorded in the Outbound Interrupt Status Register.
Interrupt status for inbound messages is recorded in the Inbound Interrupt Status Register.

Outbound Messages

When an outbound message register is written by the i960 core processor, an interrupt may be
generated on the P _INTA#, P _INTB#, P _INTC#, or P _INTD# interrupt pins. Which interrupt pin
used is determined by the value of the ATU Interrupt Pin Register (Chapter 15. "PCI Address
Translation Unif').

The PCI interrupt is recorded in the Outbound Interrupt Status Register. The interrupt causes the
Outbound Message Interrupt bit to be set in the Outbound Interrupt Status Register. This is a
Read/Clear bit that is set by the MU hardware and cleared by software.

The interrupt is cleared when an external PCI agent writes a value of" 1" to the Outbound Message
Interrupt bit in the Outbound Interrupt Status Register to clear the bit.

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register.

Inbound Messages

When an inbound message register is written by an external PCI agent, an interrupt may be
generated to the i960 core processor. The interrupt may be masked by the Mask bits in the Inbound
Interrupt Mask Register.

The i960 core processor interrupt is recorded in the Inbound Interrupt Status Register. The interrupt
causes the Inbound Message Interrupt bit to be set in the Inbound Interrupt Status Register. This is
a Read/Clear bit that is set by the MU hardware and cleared by software.

The interrupt is cleared when the i960 core processor writes a value 01'''1'' to the Inbound Message
Interrupt bit in the Inbound Interrupt Status Register.

Developer's Manual 16-5

Intef@ 80303 110 Processor
Messaging Unit intet
16.4

16.4.1

16.4.2

16-6

Doorbell Registers

There are two Doorbell Registers: the Inbound Doorbell Register and the Outbound Doorbell
Register. The Inbound Doorbell Register allows external PCI agents to generate interrupts to the
i960 core processor. The Outbound Doorbell Register allows the i960 core processor to generate a
PCI interrupt. Both Doorbell Registers may generate interrupts whenever a bit in the register is set.

Outbound Doorbells

When the Outbound Doorbell Register is written by the i960 core processor, an interrupt may be
generated on the P _INTA#, P _INTB#, P _INTC#, or P _INTD# interrupt pins. An interrupt is
generated when any of the bits in the doorbell register is written to a value of" 1". Writing a value
of "0" to any bit does not change the value of that bit and does not cause an interrupt to be
generated. Once a bit is set in the Outbound Doorbell Register, it cannot be cleared by i960 core
processor.

Which PCI interrupt pin used is determined by the value of the ATU Interrupt Pin Register
(Chapter 15, "PCI Address Translation Unit"),

The interrupt is recorded in the Outbound Interrupt Status Register.

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register. When the
Mask bit is set for a particular bit, no interrupt is generated for that bit. The Outbound Interrupt
Mask Register affects only the generation of the interrupt and not the values written to the
Outbound Doorbell Register.

The interrupt is cleared when an external PCI agent writes a value of "1" to the bits in the
Outbound Doorbell Register that are set. Writing a value of "0" to any bit does not change the
value of that bit and does not clear the interrupt.

In summary, the i960 core processor generates an interrupt by setting bits in the Outbound Doorbell
Register and external PCI agents clear the interrupt by also setting bits in the same register.

Inbound Doorbells

When the Inbound Doorbell Register is written by an external PCI agent, an interrupt may be
generated to the i960 core processor. An interrupt is generated when any of the bits in the doorbell
register is written to a value of" 1 ". Writing a value of "0" to any bit does not change the value of
that bit and does not cause an interrupt to be generated. Once a bit is set in the Inbound Doorbell
Register, it cannot be cleared by any external PCI agent.

The interrupt is recorded in the Inbound Interrupt Status Register.

The interrupt may be masked by the Inbound Doorbell Interrupt Mask bit in the Inbound Interrupt
Mask Register. When the mask bit is set for a particular bit, no interrupt is generated for that bit.
The Inbound Interrupt Mask Register affects only the generation of the interrupt and not the values
written to the Inbound Doorbell Register.

One bit in the Inbound Doorbell Register is reserved for an NMI interrupt.

The interrupt is cleared when the i960 core processor writes a value of "1" to the bits in the
Inbound Doorbell Register that are set. Writing a value of "0" to any bit does not change the value
of that bit and does not clear the interrupt.

Developer's Manual

intel.
16.5 Circular Queues

Intel@ 80303 liD Processor
Messaging Unit

The MU implements four circular queues. There are two inbound queues and two outbound
queues. In this case, inbound and outbound refer to the direction of the tlow of posted messages.

Inbound messages are either:

• posted messages by other processors for the i960 core processor to process or

• free (or empty) messages that can be reused by other processors.

Outbound messages are either:

• posted messages by the i960 core processor for other processors to process or

• free (or empty) messages that can be reused by the i960 core processor.

Therefore, free inbound messages tlow away from the i960 core processor and free outbound
messages tlow toward the i960 core processor.

The four Circular Queues are used to pass messages in the following manner. The two inbound
queues are used to handle inbound messages and the two outbound queues are used to handle
outbound messages. One of the inbound queues is designated the Free queue and it contains inbound
free messages. The other inbound queue is designated the Post queue and it contains inbound posted
messages. Similarly, one of the outbound queues is designated the Free queue and the other outbound
queue is designated the Post queue. Table 16-3 contains a summary of the queues.

Table 16-3. Circular Queue Summary

Queue Name Purpose Action on PCI Interface

Queue for inbound messages from other wocessors
Inbound Post Queue waiting to be processed by the Intel® i960® core Written

processor

Inbound Free Queue
Queue for empty inbound messages from the i960

Read
core processor available for use by other processors

Queue for outbound messages from the i960 core
Outbound Post Queue processor that are being posted to the other Read

processors

Queue for empty outbound messages from other
Outbound Free Queue processors available for use by the i960 core Written

processor

The two outbound queues allow the i960 core processor to post outbound messages in one queue
and to receive free messages returning from the host processor. The i960 core processor posts
outbound messages, the host processor receives the posted message and when it is finished with the
message, places it back on the outbound free queue for reuse by the i960 core processor.

The two inbound queues allow the host processor to post inbound messages for the i960 core
processor in one queue and to receive free messages returning from the i960 core processor. The
host processor posts inbound messages, the i960 core processor receives the posted message and
when it is finished with the message, places it back on the inbound free queue for reuse by the host
processor.

Developer's Manual 16-7

fntel® 80303 I/O Processor
Messaging Unit

Figure 16-2 provides an overview of the Circular Queue operation.

The circular queues are accessed by external PCI agents through two port locations in the PCI
address space: Inbound Queue Port and Outbound Queue Port. The Inbound Queue Port is used by
external PCI agents to read the Inbound Free Queue and write the Inbound Post Queue. The
Outbound Queue Port is used by external PCI agents to read the Outbound Post Queue and write
the Outbound Free Queue. Note that a PCI transaction to the inbound or outbound queue ports with
null byte enables (P _C/BE[3:0]# = 1111 2) does not cause the MU hardware to increment the queue
pointers. This is treated as if the PCI transaction did not occur. The Inbound and Outbound Queue
Ports never respond with P _ACK64# on the primary PCI interface.

Figure 16-2. Overview of Circular Queue Operation

16-8

Interrupt when data in -r--;;:;:rl--k-----
prefetch buffer is valid ""lIE - - - - - - head -

Outbound
free messages

Outbound
Post Queue

tail

head

Outbound
Free Queue

tail

Outbound posted
messages

Intel® 80303
1/0 Processor

Host Processor
Inbound

posted messages
-----~ .. ~r---;:h:e:ad~-It- _____ _ >- Interrupt when

queue is written

Inbound
Post Queue

tail

head

Inbound
Free Queue

tail

Inbound free
messages

AB045-01

The data storage for the circular queues must be provided by the 80303 I/O processor local
memory. The base address of the circular queues is contained in the Queue Base Address Register
(Section 16.8.10, "Queue Base Address Register - QBAR" on page 16-27). Each entry in the queue
is a 32-bit data value. Each read from or write to the queue may access only one queue entry.
Multi-word accesses to the circular queues are not allowed. Sub-word accesses are promoted to
32-bit word accesses.

Developer's Manual

intel· Intel@ 80303 flO Processor
Messaging Unit

Each circular queue has a head pointer and a tail pointer. The pointers are offsets from the Queue
Base Address. Writes to a queue occur at the head of the queue and reads occur from the tai\. The
head and tail pointers are incremented by either the i960 core processor or the Messaging Unit
hardware. Which unit maintains the pointer is determined by the writer of the queue. More details
about the pointers are given in the queue descriptions below. The pointers are incremented after the
queue access. Both pointers wrap around to the first address of the circular queue when they reach
the circular queue size.

The Messaging Unit generates an interrupt to the i960 core processor or generate a PCl interrupt
under certain conditions. In general, when a Post queue is written, an interrupt is generated to
notify the receiver that a message was posted.

The size of each circular queue can range from 4K entries (16 Kbytes) to 64K entries (256 Kbytes).
All four queues must be the same size and may be contiguous. Therefore, the total amount of local
memory needed by the circular queues ranges from 64 Kbytes to I Mbyte. The Queue size is
determined by the Queue Size field in the MU Configuration Register.

There is one base address for all four queues. It is stored in the Queue Base Address Register (QBAR).
The starting addresses of each queue is based on the Queue Base Address and the Queue Size field.
Table 16-4 shows an example of how the circular queues should be set up based on the Intelligent 1/0
(120) Architecture Specification. Other ordering of the circular queues is possible, however.

Table 16-4. Queue Starting Addresses

Queue Starting Address

Inbound Free Queue QBAR

Inbound Post Queue QBAR + Queue Size

Outbound Post Queue QBAR + 2 * Queue Size

Outbound Free Queue QBAR + 3 * Queue Size

Developer's Manual 16-9

Inte/® 80303 110 Processor
Messaging Unit intet

Figure 16-3 provides a more detailed diagram of the usage of the Circular Queues.

Figure 16-3. Circular Queue Operation

High Address Memory

External ..:w~rit~ern;7th~:;;:;-.. """"""--:~ ____ ~ •
PCI t------fooIIf- __ I- - - - --I

Agent Read Incremented by
Outbound

r-+_t~F~re~e~=~Ha:~} _____ :-

Incremented by
i960 Core Processor

Inter® Read

i96()® Core :~;.~:::::::::::~_~~====~ •
Processor Write - -I- - - - - -I

Outbound Incremented by .. _ r:-:--:-=-:-:-"I

1-__ o_st_-t ... iE-96: ~} ::~s: _: -

High Address Memor'.---- Incremented by Hardware

External ...:W=rit:erIr;h,;:;-;;:rl .. """"""--:~ ____ -1 •
PCI 1-------fooIIE---I------1

Agent Read Incremented by .. _
Jnbound r:-::;.;::;=,~~~

r-+-1I=~P~o~s~t=tE-ha:w~} _____ :-

Incremented by
i960 Core Processor

i960 Core ... Rlfe_a_d ______1

Processor ~W~r;ite:---------t+t:====1..... - -t -----I
Inbound Incremented by .. -

1-__ re_e_-t ... iE-96~ ~} ::e~s: _: - ~~:;:::-~~

Low Address Memory
Incremented by Hardware

i960 RM/RN 110 Processor Local Memory

A6765·01

16-10 Developer's Manual

intel·
16.5.1 Inbound Free Queue

Intel® 80303 110 Processor
Messaging Unit

The Inbound Free Queue holds free inbound messages placed there by the i960 core processor for
other processors to use. This queue is read from the queue tail by external PCl agents. It is written
to the queue head by the i960 core processor. The tail pointer is maintained by the MU hardware.
The head pointer is maintained by the i960 core processor.

For a PCI read transaction that accesses the Inbound Queue Port, the MU attempts to read the data at
the local memory address in the Inbound Free Tail Pointer:

• When the queue is not empty (head and tail pointers are not equal), or full (head and tail
pointers are equal but the head pointer was last written by software), the data is returned.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF.FFFFH) is
returned.

• When the queue was hot empty and the MU succeeded in returning the data at the tail, the MU
hardware must increment the value in the Inbound Free Tail Pointer Register.

To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate
accesses to the Inbound Free Queue. The MU hardware prefetches the data at the tail of the
Inbound Free Queue and loads it into an internal pre fetch register. When the PCI read access
occurs, the data is read directly from the prefetch register.

The pre fetch mechanism loads a value of -1 (FFFF.FFFFH) into the prefetch register when the head
and tail pointers are equal and the queue is empty. To update the prefetch register when messages
are added to the queue and it becomes non-empty, the prefetch mechanism automatically starts a
prefetch when the prefetch register contains FFFF.FFFFH and the Inbound Free Head Pointer
Register is written. The i960 core processor needs to update the Inbound Free Head Pointer
Register when it adds messages to the queue.

A prefetch must appear atomic from the perspective of the external PCI agent. When a pre fetch is
started, any PCI transaction that attempts to access the Inbound Free Queue is signalled a Retry
until the prefetch is completed.

The i960 core processor may place messages in the Inbound Free Queue by writing the data to the
local memory location pointed to by the Inbound Free Head Pointer Register. The processor must
then increment the Inbound Free Head Pointer Register.

Developer's Manual 16-11

Intel® 80303 110 Processor
Messaging Unit

16.5.2

16-12

Inbound Post Queue

The Inbound Post Queue holds posted messages placed there by other processors for the i960 core
processor to process. This queue is read from the queue tail by the i960 core processor. It is written
to the queue head by external PCI agents. The tail pointer is maintained by the i960 core processor.
The head pointer is maintained by the MU hardware.

For a PCI write transaction that accesses the Inbound Queue Port, the MU writes the data to the
local memory location address in the Inbound Post Head Pointer Register.

When the data written to the Inbound Queue Port is written to local memory, the MU hardware
increments the Inbound Post Head Pointer Register.

An i960 core processor interrupt may be generated when the Inbound Post Queue is written. The
Inbound Post Queue Interrupt bit in the Inbound Interrupt Status Register indicates the interrupt
status. The interrupt is cleared when the Inbound Post Queue Interrupt bit is cleared. The interrupt
can be masked by the Inbound Interrupt Mask Register. When the Inbound Post Queue reaches a
full state (head pointer equals tail pointer), the PCI interface retries all further writes until software
increments the tail pointer or the Inbound Post Queue Interrupt bit is cleared. To prevent an
indefinite retry, software must be aware of the state of the Inbound Post Queue Interrupt Mask bit
to guarantee that the full condition is recognized by the core processor. In addition, to guarantee
that the queue is not overwritten, software must remove data from the tail of the queue before
clearing the interrupt (and incrementing the tail pointer).

From the time that the PCI write transaction is received until the data is written in local memory
and the Inbound Post Head Pointer Register is incremented, any PCI transaction that attempts to
access the Inbound Post Queue Port is signalled a Retry.

The i960 core processor may read messages from the Inbound Post Queue by reading the data from
the local memory location pointed to by the Inbound Post Tail Pointer Register. The i960 core
processor must then increment the Inbound Post Tail Pointer Register. When the Inbound Post
Queue is full, the hardware retries any PCI writes until a slot in the queue becomes available, by
the i960 core processor either clearing the inbound post queue interrupt or incrementing the tail
pointer. When the head pointer and tail pointer become equal, software must clear the inbound post
queue interrupt bit to avoid indefinite retries by the MU.

Developer's Manual

16.5.3 Outbound Post Queue

Intel® 80303 I/O Processor
Messaging Unit

The Outbound Post Queue holds outbound posted messages placed there by the i960 core
processor for other processors to process. This queue is read from the queue tail by external PCI
agents. It is written to the queue head by the i960 core processor. The tail pointer is maintained by
the MU hardware. The head pointer is maintained by the i960 core processor.

For a PCI read transaction that accesses the Outbound Queue Port, the MU attempts to read the data at the
local memory address in the Outbound Post Tail Pointer Register:

• When the queue is not empty (head and tail pointers are not equal), or full (head and tail
pointers are equal but the head pointer was last written by software), the data is returned.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF.FFFFH) is
returned.

• When the queue was not empty and the MU succeeded in returning the data at the tail, the MU
hardware must increment the value in the Outbound Post Tail Pointer Register.

To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate
accesses to the Outbound Post Queue. The MU hardware prefetches the data at the tail of the
Outbound Post Queue and load it into an internal prefetch register. When the PCI read access
occurs, the data is read directly from the prefetch register.

The prefetch mechanism loads a value of -1 (FFFEFFFFH) into the prefetch register when the head
and tail pointers are equal and the queue is empty. To update the prefetch register when messages
are added to the queue and it becomes non-empty, the prefetch mechanism automatically starts a
prefetch when the pre fetch register contains FFFEFFFFH and the Outbound Post Head Pointer
Register is written. The i960 core processor needs to update the Outbound Post Head Pointer
Register when it adds messages to the queue.

A prefetch must appear atomic from the perspective of the external PCI agent. When a pre fetch is
started, any PCI transaction that attempts to access the Outbound Post Queue is signalled a Retry
until the prefetch is completed.

A PCI interrupt may be generated when data in the prefetch buffer is valid. When the prefetch
queue is clear, no interrupt is generated. The Outbound Post Queue Interrupt bit in the Outbound
Interrupt Status Register indicates the status of the prefetch buffer data and therefore the interrupt
status. The interrupt is cleared when any prefetched data is read from the Outbound Queue Port.
The interrupt can be masked by the Outbound Interrupt Mask Register.

The i960 core processor may place messages in the Outbound Post Queue by writing the data to the
local memory address in the Outbound Post Head Pointer Register. The processor must then
increment the Outbound Post Head Pointer Register.

Developer's Manual 16-13

Intel® 80303 110 Processor
Messaging Unit in1:et
16.5.4 Outbound Free Queue

The Outbound Free Queue holds free messages placed there by other processors for the i960 core
processor to use. This queue is read from the queue tail by the i960 core processor. It is written to
the queue head by external PCI agents. The tail pointer is maintained by the i960 core processor.
The head pointer is maintained by the MU hardware.

For a PCI write transaction that accesses the Outbound Queue Port, the MU writes the data to the
local memory address in the Outbound Free Head Pointer Register. When the data written to the
Outbound Queue Port is written to local memory, the MU hardware increments the Outbound Free
Head Pointer Register.

When the head pointer and the tail pointer become equal and the queue is full, the MU may signal
an NMI interrupt to the i960 core processor to register the queue full condition. This interrupt is
recorded in the Inbound Interrupt Status Register. The NMI# interrupt is cleared and the Outbound
Free Queue accepts writes when the Outbound Free Queue Full Interrupt bit is cleared and not by
writing to the head or tail pointers. The interrupt can be masked by the Inbound Interrupt Mask
Register. To prevent an indefinite retry, software must be aware of the state of the Outbound Free
Queue Interrupt Mask bit to guarantee that the full condition is recognized by the core processor.

From the time that a PCI write transaction is received until the data is written in local memory and
the Outbound Free Head Pointer Register is incremented, any PCI transaction that attempts to
access the Outbound Free Queue Port is signalled a retry.

The i960 core processor may read messages from the Outbound Free Queue by reading the data
from the local memory address in the Outbound Free Tail Pointer Register. The processor must
then increment the Outbound Free Tail Pointer Register. When the Outbound Free Queue is full,
the hardware must retry any PCI writes until a slot in the queue becomes available.

Table 16·5. Circular Queue Summary

Generate

Queue Name PCI Port Generate i96o® Core Head Pointer Tail Pointer
PCI Interrupt? Processor maintained by maintained by

Interrupt?

Inbound Post No Yes, when MU hardware i960 core
Queue Inbound Queue queue is written processor

Inbound Free Port i960 core No No MU hardware
Queue processor

Outbound Post Yes, when data i960 core
in prefetch No MU hardware

Queue Outbound buffer is valid processor

Queue Port
Outbound Free No Yes, when the MU hardware i960 core

Queue queue is full processor

16-14 Developer's Manual

intel·
16.6

16.7

Index Registers

Intel® 80303 110 Processor
Messaging Unit

The Index Registers are a set of 1004 registers that, when written by an external PCI agent, can
generate an interrupt to the i960 core processor. These registers are for inbound messages only. The
interrupt is recorded in the Inbound Interrupt Status Register.

The storage for the Index Registers is allocated from the 80303 I/O processor local memory. PCI
write accesses to the Index Registers write the data to local memory. PCI read accesses to the Index
Registers read the data from local memory. The local memory used for the Index Registers ranges
from Primary Inbound ATU Translate Value Register + 050H to Primary Inbound ATU Translate
Value Register + FFFH. Chapter 15, "PCI Address Translation Unit'" describes how PCI addresses
are translated to local memory addresses.

The address of the first write access is stored in the Index Address Register. This register is written
during the earliest write access and provides a means to determine which Index Register was
written. Once updated by the MU, the Index Address Register is not updated until the Index
Register Interrupt bit in the Inbound Interrupt Status Register is cleared. When the interrupt is
cleared, the Index Address Register is re-enabled and stores the address of the next Index Register
write access.

Writes by the i960 core processor to the local memory used by the Index Registers does not cause
an interrupt and does not update the Index Address Register.

The index registers can be accessed with multi-word reads and single quad-word aligned writes.

Messaging Unit Error Conditions

The Messaging Unit, like the Primary ATU, encounters error conditions on the PCI interface as
well as the internal bus interface. As a PCI target, all PCI errors (parity and aborts) are captured
and recorded in the Primary ATIJ Status Register and can be masked using the PATU mechanisms.
Refer to Chapter 15, "PCI Address Translation Unit" for further details.

Developer's Manual 16-15

Inte/@ 80303 110 Processor
Messaging Unit

16.8

16-16

Register Definitions

The following registers are located in the primary PCI address space and in the Peripheral
Memory-Mapped Register (PMMR) address space. They are accessible through primary PCI bus
transactions and through i960 core processor internal bus accesses. In the primary PCI address
space, they are mapped into the first 80 bytes of the primary inbound address window of the
Primary ATU.

• Inbound Message 0 Register

• Inbound Message 1 Register

• Outbound Message 0 Register

• Outbound Message 1 Register

• Inbound Doorbell Register

• Inbound Interrupt Status Register

• Inbound Interrupt Mask Register

• Outbound Doorbell Register

• Outbound Interrupt Status Register

• Outbound Interrupt Mask Register

The following registers are located in the Peripheral Memory-Mapped Register (PMMR) address
space as described in Appendix C, "Peripheral Memory-Mapped Registers".

• MU Configuration Register

• Queue Base Address Register

• Inbound Free Head Pointer Register

• Inbound Free Tail Pointer Register

• Inbound Post Head Pointer Register

• Inbound Post Tail Pointer Register

• Outbound Free Head Pointer Register

• Outbound Free Tail Pointer Register

• Outbound Post Head Pointer Register

• Outbound Post Tail Pointer Register

• Index Address Register

Reading or writing a register that is reserved is undefined.

Developer's Manual

intel·
Intel@ 80303 I/O Processor

Messaging Unit

Table 16·6. Message Unit Register Table

Internal
Bus Section, Register Name - Acronym (Page)

Address

1310H Section 16.8.1, "Inbound Message Register - IMRx" on page 16-18

1314H Section 16.8.1, "Inbound Message Register - IMRx" on page 16-18

1318H Section 16.8.2, "Outbound Message Register - OMRx" on page 16-19

131CH Section 16.8.2, "Outbound Message Register - OM Rx" on page 16-19

1320H Section 16.8.3, "Inbound Doorbell Register - IDR" on page 16-20

1324H Section 16.8.4, "Inbound Interrupt Status Register - IISR" on page 16-21

1328H Section 16.8.5, "Inbound Interrupt Mask Register - IIMR" on page 16-22

132CH Section 16.8.6, "Outbound Doorbell Register - ODR" on page 16-23

1330H Section 16.8.7, "Outbound Interrupt Status Register - OISR" on page 16-24

1334H Section 16.8.8, "Outbound Interrupt Mask Register - OIMR" on page 16-25

1350H Section 16.8.9, "MU Configuration Register - MUCR" on page 16-26

1354H Section 16.8.10, "Queue Base Address Register - QBAR" on page 16-27

1360H Section 16.8.11 , "Inbound Free Head Pointer Register - I FHPR" on page 16-28

1364H Section 16.8.12, "Inbound Free Tail Pointer Register - IFTPR" on page 16-29

1368H Section 16.8.13, "Inbound Post Head Pointer Register - IPHPR" on page 16-30

136CH Section 16.8.14, "Inbound Post Tail Pointer Register - IPTPR" on page 16-31

1370H Section 16.8.15, "Outbound Free Head Pointer Register - OFHPR" on page 16-32

1374H Section 16.8.16, "Outbound Free Tail Pointer Register - OFTPR" on page 16-33

1378H Section 16.8.17, "Outbound Post Head Pointer Register - OPHPR" on page 16-34

137CH Section 16.8.18, "Outbound Post Tail Pointer Register - OPTPR" on page 16-35

1380H Section 16.8.19, "Index Address Register - IAR" on page 16-36

Developer's Manual 16-17

Intel@ 80303 110 Processor
Messaging Unit int'et
16.8.1 Inbound Message Register - IMRx

There are two Inbound Message Registers: IMRO and IMRI. When the IMR register is written, an
interrupt to the i960 core processor may be generated. The interrupt is recorded in the Inbound
Interrupt Status Register and may be masked by the Inbound Message Interrupt Mask bit in the
Inbound Interrupt Mask Register.

Table 16-7. Inbound Message Register -IMRx

16-18

Bit

IMRO
IMR1

Intel® 80960RM/RN internal bus address

1310H
1314H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = ReadlWrite

RC = Read Clear

RO = Read Only

NA = Not Accessible

31:00 OOOOOOOOH Inbound Message - This is a 32-bit message written by an external PCI agent. When
written, an interrupt to the i960 core processor may be generated.

Developer's Manual

intel·
16.8.2 Outbound Message Register - OMRx

Intel® 80303 110 Processor
Messaging Unit

There are two Outbound Message Registers: OMRO and OMRl. When the OMR register is
written, a PCI interrupt may be generated. The interrupt is recorded in the Outbound Interrupt
Status Register and may be masked by the Outbound Message Interrupt Mask bit in the Outbound
Interrupt Mask Register.

Table 16-8. Outbound Message Register - OMRx

OMRO
OMR1

Intel@ 80960RM/RN internal bus address

1318H
131CH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Bit Default Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Outbound Message - This is 32-bit message written by the i960 core processor. When
31 :00 OOOOOOOOH written, an interrupt may be generated on the PCI Interrupt pin determined by the ATU

Interrupt Pin Register.

Developer's Manual 16-19

Intef@ 80303 //0 Processor
Messaging Unit int:et
16.8.3 Inbound Doorbell Register - lOR

The Inbound Doorbell Register (IDR) is used to generate interrupts to the i960 core processor. Bit
31 is reserved for generating an NMI interrupt. When bit 31 is set, an NMI interrupt may be
generated to the i960 core processor. All other bits, when set, cause the XINT7 interrupt line of the
i960 core processor to be asserted, when the interrupt is not masked by the Inbound Doorbell
Interrupt Mask bit in the Inbound Interrupt Mask Register. The bits in the IDR register can only be
set by an external PCI agent and can only be cleared by the i960 core processor.

Table 16-9. Inbound Doorbell Register - lOR

UJ
131 28 24 20 16 12 8 4 01

m[rcfrc/rc/rcfrc/rcfrc/rc/rcfrc/rcfrcfrcfrc/rc/rc/rcfrc/rc/rcfrc/rcfc/rc/rcfcfc/rcfc/rc/rc/rc/ 0."5
Q€
~

(/J

~ I ['xs\s\rs\rs\rs\rs\rs\s\rs\s\rs\s\rs\rs\rs\rs\rs\rs\rs'xs\sxs\rs\rs\rs\rs\s\s\s\rs\rsys\
Intel® 80960RM/RN internal bus address Attribute Legend: RW = Read/Write

lOR 1320H RV = Reserved RC = Read Clear

PR = Preserved RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

31 O2 NMI Interrupt - Generate an NMllnterrupt to the i960 core processor.

30:00 OOOOOOOOH
XINT7 Interrupt - When any bit is set, generate an XINT7 interrupt to the i960 core
processor. When all bits are clear, do not generate an XINT7 interrupt.

16-20 Developer's Manual

intel·
16.8.4 Inbound Interrupt Status Register - IISR

Intel® 80303 110 Processor
Messaging Unit

The Inbound Interrupt Status Register (IISR) contains hardware interrupt status. It records the
status of i960 core processor interrupts generated by the Message Registers, Doorbell Registers,
and the Circular Queues. All interrupts are routed to the XINT7 interrupt input of the i960 core
processor, except for the NMI Doorbell Interrupt and the Outbound Free Queue Full interrupt;
these two are routed to the NMI interrupt input. The generation of interrupts recorded in the
Inbound Interrupt Status Register may be masked by setting the corresponding bit in the Inbound
Interrupt Mask Register. Some bits in this register are Read Only. For those bits, the interrupt must
be cleared through another register.

Table 16-10. Inbound Interrupt Status Register -IISR

IISR

Bit

Intel® 80960RM/RN internal bus address

1324H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

31 :07 OOOOOOOH O2 Reserved

06

05

04

03

02

01

00

Developer's Manual

Index Register Interrupt - This bit is set by the MU hardware when an Index Register
is written after a PCI transaction.

Outbound Free Queue Full Interrupt - This bit is set when the Outbound Free Head
Pointer becomes equal to the Tail Pointer and the queue is full. An NMI interrupt is
generated for this condition.

Inbound Post Queue Interrupt - This bit is set by the MU hardware when the Inbound
Post Queue has been written.

NMI Doorbell Interrupt - This bit is set when the NMllnterrupt of the Inbound Doorbell
Register is set. To clear this bit (and the interrupt), the NMI Interrupt bit of the Inbound
Doorbell Register must be clear.

Inbound Doorbell Interrupt - This bit is set when at least one XINT7 Interrupt bit in the
Inbound Doorbell Register is set. To clear this bit (and the interrupt), the XINT7
Interrupt bits in the Inbound Doorbell Register must all be clear.

Inbound Message 1 Interrupt - This bit is set by the MU hardware when the Inbound
Message 1 Register has been written.

Inbound Message 0 Interrupt - This bit is set by the MU hardware when the Inbound
Message 0 Register has been written.

16-21

Intel@ 80303 liD Processor
Messaging Unit intet
16.8.5 Inbound Interrupt Mask Register - IIMR

The Inbound Interrupt Mask Register (IIMR) provides the ability to mask i960 core processor
interrupts generated by the Messaging Unit. Each bit in the Mask register corresponds to an
interrupt bit in the Inbound Interrupt Status Register.

Setting or clearing bits in this register does not affect the Inbound Interrupt Status Register. They
only affect the generation of the i960 core processor interrupt.

Table 16-11. Inbound Interrupt Mask Register - IIMR

16-22

IIMR

Bit

Intel® 80960RM/RN internal bus address

1328H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = ReadIWrite

RC = Read Clear

RO = Read Only

NA = Not Accessible

31 :07 OOOOOOH O2 Reserved

06

05

04

03

02

01

00

Index Register Interrupt Mask - When set, this bit masks the interrupt generated by
the MU hardware when an Index Register has been written after a PCI transaction.

Outbound Free Queue Full Interrupt Mask - When set, this bit masks the NMI interrupt
generated when the Outbound Free Head Pointer becomes equal to the Tail Pointer
and the queue is full.

Inbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated
by the MU hardware when the Inbound Post Queue has been written.

NMI Doorbell Interrupt Mask - When set, this bit masks the NMI Interrupt when the
NMI Interrupt bit of the Inbound Doorbell Register is set.

Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated
when at least one XINT? Interrupt bit in the Inbound Doorbell Register is set.

Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 1
Interrupt generated by a write to the Inbound Message 1 Register.

Inbound Message 0 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

Developer's Manual

int:et
16.8.6 Outbound Doorbell Register - ODR

Intel® 80303 I/O Processor
Messaging Unit

The Outbound Doorbell Register (ODR) allows software interrupt generation. It allows the i960
core processor to generate PCI interrupts to the host processor by writing to the Software Interrupt
bits or to a specific PCI interrupt bit. The generation of PCI interrupts through the Outbound
Doorbell Register may be masked by setting the Outbound Doorbell Interrupt Mask bit in the
Outbound Interrupt Mask Register.

The Software Interrupt bits in this register can only be set by the i960 core processor and can only
be cleared by an external PCI agent.

Table 16-12. Outbound Doorbell Register - aDR

(j)
131 28 24 20 16 12 8 4 01 2[rs/rs/s/rsts/s!s!sts!s!s/~/rs/rs!s!s/ ffi!S!S~.s/fSfrSfrS!sts/s/rs!s/rs/s/s!s/ D...::: g,g

~

if>

~[-:5 fC\C\CXc,c\c\c\rc\c\c\cxcycxc\c\c,c\rc\c'xC\C\C\C\C'c\c\c\cyc\c\c\c\ ~~
<t

Intel® 80960RM/RN internal bus address Attribute Legend: RW = ReadlWrite
ODR 132CH RV = Reserved RC = Read Clear

PR = Preserved RO = Read Only

RS = Read/Set NA = Not Accessible

Bit Default Description

31 °2
PCI Interrupt D - When set, this bit causes the P _INTD# signal to be asserted. When
this bit is cleared, the P _INTD# signal is deasserted.

30 °2
PCI Interrupt C- When set, this bit causes the P _INTC# signal to be asserted. When
this bit is cleared, the P _INTC# signal is deasserted.

29 °2
PCI Interrupt B- When set, this bit causes the P _INTB# signal to be asserted. When
this bit is cleared, the P _INTB# signal is deasserted.

28 °2
PCI Interrupt A- When set, this bit causes the P _INTA# signal to be asserted. When
this bit is cleared, the P _INTA# signal is deasserted.

Software Interrupt - When any bit is set, generate a PCI interrupt. The PCI interrupt
27:00 OOOOOOH pin used is determined by the ATU Interrupt Pin Register. When all bits are clear, do

not generate a PCI interrupt.

Developer's Manual 16-23

Intel® 80303 110 Processor
Messaging Unit intel·
16.8.7 Outbound Interrupt Status Register - OISR

The Outbound Interrupt Status Register (OISR) contains hardware interrupt status. It records the
status of PCI interrupts generated by the Message Registers, Doorbell Registers, and the Circular
Queues. The generation of PCI interrupts recorded in the Outbound Interrupt Status Register may be
masked by setting the corresponding bit in the Outbound Interrupt Mask Register. Some bits in this
register are Read Only. For those bits, the interrupt must be cleared through another register.

Table 16-13. Outbound Interrupt Status Register - OISR

OISR

Bit

31:08

07

06

05

04

03

02

01

00

16-24

Intel® 80960RM/RN internal bus address

1330H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = ReadlWrite

RC = Read Clear

RO = Read Only

Default

OOOOOOH

NA = Not Accessible

Description

Reserved

PCI Interrupt D - This bit is set when the PCllnterrupt D bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt D bit must be
cleared.

PCI Interrupt C - This bit is set when the PCI Interrupt C bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt C bit must be
cleared.

PCI Interrupt B - This bit is set when the PCI Interrupt B bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt B bit must be
cleared.

PCllnterrupt A - This bit is set when the PCI Interrupt A bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCllnterrupt A bit must be
cleared.

Outbound Post Queue Interrupt - This bit is set when data in the prefetch buffer is
valid. This bit is cleared when any prefetch data has been read from the Outbound
Queue Port.

Outbound Doorbell Interrupt - This bit is set when at least one Software Interrupt bit in
the Outbound Doorbell Register is set. To clear this bit (and the interrupt), the
Software Interrupt bits in the Outbound Doorbell Register must all be clear.

Outbound Message 1 Interrupt - This bit is set by the MU when the Outbound
Message 1 Register is written. Clearing this bit clears the interrupt.

Outbound Message 0 Interrupt - This bit is set by the MU when the Outbound
Message 0 Register is written. Clearing this bit clears the interrupt.

Developer's Manual

16.8.8

Intel@ 80303 110 Processor
Messaging Unit

Outbound Interrupt Mask Register - OIMR

The Outbound Interrupt Mask Register (OIMR) provides the ability to mask outbound PCI
interrupts generated by the Messaging Unit. Each bit in the mask register corresponds to a
hardware interrupt bit in the Outbound Interrupt Status Register. When the bit is set, the PCI
interrupt is not generated. When the bit is clear, the interrupt is allowed to be generated.

Setting or clearing bits in this register does not affect the Outbound Interrupt Status Register. They
only affect the generation of the PCI interrupt.

Table 16-14. Outbound Interrupt Mask Register - OIMR

OIMR

Bit

31 :08

07

06

05

04

03

02

01

00

Developer's Manual

Default

Intel® 80960RM/RN internal bus address

1334H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOOOOH Reserved

PCI Interrupt D Mask - When set, this bit masks the PCI Interrupt D signal when the
PCI Interrupt D bit in the in the Outbound Doorbell Register is set.

PCI Interrupt C Mask - When set, this bit masks the PCI Interrupt C signal when the
PCI Interrupt C bit in the in the Outbound Doorbell Register is set.

PCI Interrupt B Mask - When set, this bit masks the PCI Interrupt B signal when the
PCI Interrupt B bit in the in the Outbound Doorbell Register is set.

PCI Interrupt A Mask - When set, this bit masks the PCI Interrupt A signal when the
PCI Interrupt A bit in the in the Outbound Doorbell Register is set.

Outbound Post Queue Interrupt Mask - When set, this bit masks the PCI interrupt
generated when data in the prefetch buffer is valid.

Outbound Doorbell Interrupt Mask - When set, this bit masks the Software Interrupt
generated by the Outbound Doorbell Register.

Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound
Message 1 Interrupt generated by a write to the Outbound Message 1 Register.

Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound
Message 0 Interrupt generated by a write to the Outbound Message 0 Register.

16-25

Intel@ 80303 I/O Processor
Messaging Unit intel ..
16.8.9 MU Configuration Register - MUCR

The MU Configuration Register (MUCR) contains the Circular Queue Enable bit and the size of
one Circular Queue. The Circular Queue Enable bit enables or disables the Circular Queues. The
Circular Queues are disabled at reset to allow the software to initialize the head and tail pointer
registers before any PCI accesses to the Queue Ports. Each of the four Circular Queues may range
from 4K entries (16 Kbytes) to 64K entries (256 Kbytes).

Table 16-15. MU Configuration Register - MUCR

16-26

MUCR

Bit

Intel@ 80960RM/RN internal bus address

1350H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

31 :06 OOOOOOOH O2 Reserved

05:01

00

Circular Queue Size - This field determines the size of each Circular Queue. All four
queues are the same size.

• 00001 2 - 4K Entries (16 Kbytes)

• 000102 - 8K Entries (32 Kbytes)

• 001002 - 16K Entries (64 Kbytes)

• 010002 - 32K Entries (128 Kbytes)

• 100002 - 64K Entries (256 Kbytes)

Circular Queue Enable - This bit enables or disables the Circular Queues. When clear
the Circular Queues are disabled; however, the MU accepts PCI accesses to the
Circular Queue Ports but ignores the data for Writes and returns FFFF.FFFFH for
Reads. Interrupts is not generated to the core when disabled. When set, the Circular
Queues are fully enabled.

Developer's Manual

16.8.10 Queue Base Address Register - QBAR

Intel@ 80303 110 Processor
Messaging Unit

The Queue Base Address Register (QBAR) contains the local memory address of the Circular
Queues. The base address must be located on a 1 Mbyte address boundary.

All Circular Queue head and tail pointers are based on the QBAR. When the head and tail pointer
registers are read, the Queue Base Address is returned in the upper 12 bits. Writing to the upper 12
bits of the head and tail pointer registers does not affect the Queue Base Address or Queue Base
Address Register.

Table 16-16. Queue Base Address Register - QBAR

QBAR

Bit

31 :20

19:00

Developer's Manual

Intel® 80960RM/RN internal bus address

1354H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

OOOOOH Reserved

16-27

Intel® 80303 I/O Processor
Messaging Unit

16.8.11 Inbound Free Head Pointer Register - IFHPR

The Inbound Free Head Pointer Register (IFHPR) contains the local memory offset from the Queue
Base Address of the head pointer for the Inbound Free Queue. The Head Pointer must be aligned
on a word address boundary. When read, the Queue Base Address is provided in the upper 12 bits
of the register. Writes to the upper 12 bits of the register are ignored. This register is maintained by
software.

Table 16·17. Inbound Free Head Pointer Register - IFHPR

16-28

IFHPR

Bit

31 :20

Intel@ 80960RM/RN internal bus address

1360H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Inbound Free Head Pointer - Local memory offset of the head pointer for the Inbound
Free Queue.

01 :00 Reserved

Developer's Manual

16.8.12

Intel@ 80303 liD Processor
Messaging Unit

Inbound Free Tail Pointer Register - IFTPR

The Inbound Free Tail Pointer Register (IFTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Free Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of the
register. Writes to the upper 12 bits of the register are ignored.

Table 16-18. Inbound Free Tail Pointer Register -IFTPR

IFTPR

Bit

31:20

Intel@ 80960RM/RN internal bus address

1364H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Inbound Free Tail Pointer - Local memory offset of the tail pointer for the Inbound Free
Queue.

01 :00 Reserved

Developer's Manual 16-29

Intel® 80303 110 Processor
Messaging Unit int:et
16.8.13 Inbound Post Head Pointer Register - IPHPR

The Inbound Post Head Pointer Register (IPHPR) contains the local memory offset from the Queue
Base Address of the head pointer for the Inbound Post Queue. The Head Pointer must be aligned on
a word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of
the register. Writes to the upper 12 bits of the register are ignored.

Table 16-19. Inbound Post Head Pointer Register - IPHPR

16-30

IPHPR

Bit

31 :20

Intel@ 80960RM/RN internal bus address

1368H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Inbound Post Head Pointer - Local memory offset of the head pointer for the Inbound
Post Queue.

01 :00 Reserved

Developer's Manual

16.8.14

Intel® 80303 flO Processor
Messaging Unit

Inbound Post Tail Pointer Register - IPTPR

The Inbound Post Tail Pointer Register (IPTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Post Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of the
register. Writes to the upper 12 bits of the register are ignored.

Table 16-20. Inbound Post Tail Pointer Register - IPTPR

Q~[
~ ~r-r-~~r-r-+-~+-+-+-+-+-+-+-~+-+-+-~+-+-+-+-+-+-+-~r-

IPTPR

Bit

31 :20

Intel@ 80960RM/RN internal bus address

136CH

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Inbound Post Tail Pointer - Local memory offset of the tail pointer for the Inbound Post
Queue.

01 :00 Reserved

Developer's Manual 16-31

Intel® 80303 110 Processor
Messaging Unit int'et
16.8.15 Outbound Free Head Pointer Register - OFHPR

The Outbound Free Head Pointer Register (OFHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Free Queue. The Head Pointer must be
aligned on a word address boundary. This register is maintained by software. When read, the
Queue Base Address is provided in the upper 12 bits of the register. Writes to the upper 12 bits of
the register are ignored.

Table 16-21. Outbound Free Head Pointer Register - OFHPR

16-32

OFHPR

Bit

31:20

Intel® 80960RM/RN internal bus address

1370H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Outbound Free Head Pointer - Local memory offset of the head pointer for the
Outbound Free Queue.

01 :00 Reserved

Developer'S Manual

16.8.16

Intel® 80303 110 Processor
Messaging Unit

Outbound Free Tail Pointer Register - OFTPR

The Outbound Free Tail Pointer Register (OFTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Free Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-22. Outbound Free Tail Pointer Register - OFTPR

OFTPR

Bit

31 :20

Intel® 80960RM/RN internal bus address

1374H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Outbound Free Tail Pointer - Local memory offset of the tail pointer for the Outbound
Free Queue.

01 :00 Reserved

Developer's Manual 16-33

Intel® 80303 /10 Processor
Messaging Unit intel·
16.8.17 Outbound Post Head Pointer Register - OPHPR

The Outbound Post Head Pointer Register (OPHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Post Queue. The Head Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-23. Outbound Post Head Pointer Register - OPHPR

16-34

OPHPR

Bit

31 :20

Intel® 80960RM/RN internal bus address

1378H

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Outbound Post Head Pointer - Local memory offset of the head pointer for the
Outbound Post Queue.

01 :00 Reserved

Developer's Manual

16.8.18

Intel@ 80303 110 Processor
Messaging Unit

Outbound Post Tail Pointer Register - OPTPR

The Outbound Post Tail Pointer Register (OPTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Post Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-24. Outbound Post Tail Pointer Register - OPTPR

OPTPR

Bit

31 :20

Intel@ 80960RM/RN internal bus address

137CH

Default

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OOOH Queue Base Address - Local memory address of the circular queues.

19:02 OOOOH 002
Outbound Post Tail Pointer - Local memory offset of the tail pointer for the Outbound
Post Queue.

01 :00 Reserved

Developer's Manual 16-35

Intel® 80303 I/O Processor
Messaging Unit

16.8.19 Index Address Register - IAR

The Index Address Register (IAR) contains the offset of the least recently accessed Index Register.
It is written by the MU when the Index Registers are written by a PCI agent. The register is not
updated until the Index Interrupt bit in the Inbound Interrupt Status Register is cleared.

The local memory address of the Index Register least recently accessed is computed by adding the
Index Address Register to the Primary Inbound ATU Translate Value Register.

Table 16-25. Index Address Register - IAR

16.9

16-36

IAR

Bit

31 :12

11 :02

01:00

Intel@ 80960RM/RN internal bus address

1380H

Default

OOOOOOH Reserved

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Index Address - is the local memory offset of the Index Register written (050H to
FFCH)

Reserved

Power/Default Status

Software is responsible for initializing the Circular Queue Size in the MU Configuration Register
and all head and tail pointer registers before setting the Circular Queue Enable hit.

Developer's Manual

intel·
IntefDJ 80303110 Processor Arbitration17

17.1

This chapter describes the components which comprise Intel® 80303 I/O processor arbitration,
which include two PCI Bus Arbiters, one PCI Selector, and two Latency Timers. The operation
modes, setup, and implementation of these components are described in this chapter.

Arbitration Overview

The 80303 110 processor interfaces two PCI buses and contains an internal PCI-like bus.
Therefore, there are three PCI buses which need an arbitration mechanism. In addition, the 80303
I/O processor contains a secondary PCI arbiter for arbitrating multiple agents on the secondary PCI
bus. Figure 17-1 illustrates all the potential PCI bus masters and which arbitration components are
responsible for them.

Figure 17-1. Intel@ 80303 1/0 Processor Arbitration Block Diagram

Developer's Manual

PCI Selector
(PSEL)

Configuration
Registers

BDG

PCI Bus Arbiter
(SARB)

S_REQ#(5:0)
S_GNT#(5:0)

A4658-01

17-1

Inte/@ 80303 I/O Processor intet IntefY 80303 I/O Processor Arbitration

17.2

17-2

The four components which comprise 80303 110 processor arbitration are:

• PCI Arbiter (page 17-2) - The PCI Arbiter arbitrates between multiple PCI masters. The
arbitration scheme is a round-robin with priority/promotion capabilities. The 80303 110
processor contains two PCI arbiters: the Secondary PCI Arbiter and the Internal Bus Arbiter.

- The Secondary Arbiter (SARB) arbitrates between six potential off-chip secondary PCI
bus masters and the three 80303 I/O processor secondary bus masters (Bridge, Secondary
ATU, and DMA Channel 2).

- The Internal Bus Arbiter (IARB) arbitrates between the eight potential internal bus
masters (Primary and Secondary ATUs, three DMA Channels, Messaging Unit,
Application Accelerator, and the Bus Interface Unit for the core).

• PCI Selector (page 17-11) - ThePCI selector arbitrates between the 80303 I/O processorPCI
masters for a single REQ#/GNT# pair. The selector uses a simple round-robin arbitration scheme.

- The Primary PCI Selector (PSEL) selects one of the four primary PCI masters (Primary
ATU, DMA Channels 0 and 1, and the Bridge). This selector arbitrates for
P _REQ#/P _ GNT# on the primary PCI bus.

• Master Latency Timer (page 17-11) - PCI protocol requires each PCI master to use a master
latency timer (MLT). This timer counts the number of PCI cycles a master uses in a single
transaction. Once the timer expires, the master must relinquish the PCI bus. The 80303 110
processor implements three MLTs: one each for the Primary PCI bus, the Secondary PCI bus,
and the Internal bus. Once the timer expires, a signal indicates to the current PCI bus master
that its time has expired and must relinquish the bus if it no longer maintains its GNT#.

• Arbitration Configuration Registers (page 17-13) - Priorities and latency timer values for the
arbitration mechanism are programmable, as defined in the Arbitration Configuration Registers.

pel Arbiter Overview

The PCI Local Bus Specification, Revision 2.2 requires a central arbitration resource for each PCI
bus within a system environment. This section details the operation of the PCI Arbiter block.

The PCI Arbiter supports:

• Up to nine PCI bus masters three priority levels for each bus master

• A "fairness" algorithm which ensures that each potential bus master is granted access to the
PCI bus independent of other requests

• Hidden, access-based arbitration

PCI uses the concept of access-based arbitration rather than the traditional time slot approach. If a
bus master requires the PCI bus for a transaction, the device requests the arbitration logic for the
PCI bus. PCI arbitration consists of a simple REQ# and GNT# handshake protocol. When a device
requires the secondary PCI bus, it asserts its REQ# output. The arbitration unit allows the
requesting agent access to the bus by asserting that agent's GNT# input.

PCI arbitration is a hidden arbitration scheme where the arbitration sequence occurs in the
background while another bus master may currently control the bus. Hidden arbitration has the
advantage of not consuming any PCI bandwidth for arbitration overhead.

The arbiter is required by the PCI Local Bus Specification, Revision 2.2 to implement a ''fair''
arbitration algorithm. The PCI Arbiter's algorithm guarantees there is only one GNT# active on the
PCI bus at anyone time.

Developer's Manual

intet·
17.2.1

17.2.1.1

Theory of Operation

Intel® 80303 I/O Processor
IntefBJ 80303 I/O Processor Arbitration

The purpose of the PCI Arbiter is to provide a fair arbitration scheme for all masters on the PCI bus.
The PCI Arbiter adheres to all the requirements of the PC! Local Bus Specification, Revision 2.2.

Priority Mechanism

The PCI Arbiter supports up to nine bus masters. Each request can be programmed to one of three
priority levels or be disabled. Application software programs the Secondary Arbiter Control
Register (SACR) and the Internal Arbiter Control Register (IACR) to set the initial priority for
each bus master. The arbiter promotes the bus master priority levels using a round-robin scheme.

Figure 17-2 is an example showing the three priority levels and reserved slots for the promoted requester.

Figure 17-2. Secondary PCI Arbitration Example

Highest Priority

Priority 002

. "':

Lowest Priority

Priority 102

Disabled

A8046-01

In Figure 17-2, the bus masters are initially programmed to the priorities shown in Table 17-1. The
SACR register defines the initial priority levels for the SARB while the IACR defines the initial
priority levels for the IARB.

Developer's Manual 17-3

Intel@ 80303 I/O Processor in1:et Inte~ 80303 I/O Processor Arbitration

Table 17-1. Bus Master I Programmed Priorities

Bus Master Programmed Priority

80303 liD Processor Bridge High - 002
Device 0 Medium - 01 2
Device 3 Medium - 01 2
Device 4 Medium - 01 2
Device 1 Low - 102
Device 2 Low - 102
DeviceS Disabled - 112

Table 17-8 shows the 2-bit values that correspond to each priority level. A priority level of 112
effectively disables the associated device by removing it from the arbitration sequence. A device
programmed with a 112 priority never receives a grant to gain access to the bus.

The priority of the individual bus master determines the level to which the device is placed in the
round-robin scheme. The programmed priority determines the starting priority or the lowest priority
the device is. lfthe application programs the device for low priority, the device may be promoted up
to medium and then high priority until it is granted the local bus. Once the SARB grants the bus and
the device asserts S_FRAME#, the device is reset to its initially programmed priority.

Note: If a low priority master requests the bus and there is no other higher priority agent requesting the bus, that
master is granted the bus the following clock. The promotion mechanism does not consume bus cycles.

The round-robin arbitration scheme supports three levels of round-robin arbitration: low, medium,
and high priority. Using a round-robin mechanism ensures there is a winner for each priority level.
To enforce the concept of fairness, a slot is reserved for the winner of each priority level (except the
highest) in the next higher priority level. When the winner of a priority level is not granted the bus
during that particular arbitration sequence, it is promoted to the next higher level of priority.

17.2.1.2 Priority Example with Three Bus Masters

Table 17-2 presents an example of bus arbitration with three bus masters:

Table 17-2. Bus Arbitration Example - Three Bus Masters

17-4

Priority Initial Winning Bus Master
Level State A B A C A B A c
High A 8 A C A 8 A C A

\!;f.()}~l::: b ' .. ,:~ e ~:)

Low C C
NOTE: In this example, all bus masters are continually requesting the bus.

Each of the bus masters (A, B, and C) are constantly requesting the bus and each is at a different
priority level. The top row of Table 17-2 lists the current bus master/winner of the highest priority
group. The three rows labelled as high, medium and low represent the actual priority levels that
devices are currently at based on either their initial programmed priority or promotion through the
levels. For example, device C starts out at low priority. Because it is the only device at this priority, it
is the winner at low priority and is promoted to medium priority. Later, it wins at the medium priority
level (against device B) and is promoted to high priority where it wins the level (against device A)
and the bus. Device C is then put back at its programmed priority of low and starts the cycle over.

Continuing with Table 17-2, the winning bus master pattern follows as:

ABACABACABACABAC

Developer's Manual

inteJ·
17.2.1.3 Priority Example with Six Bus Masters

Intel® 80303 I/O Processor
IntefB> 80303 I/O Processor Arbitration

Table 17-3 illustrates an example of bus arbitration with six bus masters:

Table 17-3. Bus Arbitration Example - Six Bus Masters

Priority Initial Winning Bus Master

Level State
A B C A B D A B E

High AS BC AC AB SO AD AS BE AE AB
..... :

Low EF F F F F F F - - -

NOTE: In this example, all bus masters are continually requesting the bus.

Each of the six bus masters (A through F) are constantly requesting the bus. There are two masters
programmed at each priority level. The top row of Table 17-3 lists the current bus master/winner of
the highest priority group. The three rows labelled as high, medium and low represent the actual
priority levels that devices are currently at based on either their initial programmed priority or
promotion through the levels.

Continuing with Table 17-3, the winning bus master pattern follows as:

ABCABDABFABCABDABEABCABDABF

Developer's Manual 17-5

Inte!® 80303 I/O Processor
IntefW 80303 I/O Processor Arbitration

17.2.1.4 Arbitration Signalling Protocol

The PCI Arbiter interfaces to all requesting agents on the bus through the REQ#IGNT#
handshaking protocol. A bus master asserts its REQ# to request ownership of the PCI bus. When
the arbiter determines an agent may use the bus, it asserts the agent's GNT# input. Agents must
only assert its REQ# to signal a true need for the bus and not to reserve the bus. Figure 17-3
illustrates secondary arbitration between masters of equal priority.

Figure 17-3. Arbitration Between Two Masters

17-6

I

I I II S_REQ(O)# --!-I _-' __ ~_-'-_-I-_-: __ ~_~_--!-_--''-'.
I I

--L. I
S_REQ(1)# I \, ---r--r--"--~--r---r--JI I

I I
I I I

S_GNT(O)# ~ : : \I...-t----r: --t----t-
I I I I

: \1...-4--1----'---1-1 _--1:-1/ : :
o 0 : : 0 :

--:---"'---,\ _-,--_~I \ I J I ~ I I
i \...T-J I I I o Q I 0 I I

--r--~---4:~\I...~ __ ~ __ ~~/~~--~41~~r~--~:~~

SJRAME#

o 0 0 I I

~--~-~~~\I...~_~--~/ i ~ i ~ S_TRDY#

I I I
I

A6767-01

An agent can be granted the bus while a previous bus owner still has control of the PCI bus (hidden
arbitration). The arbiter is responsible for deciding which PCI device is granted the bus next while
each master is responsible for determining when the PCI bus actually becomes free and is allowed
to initiate its transaction by asserting FRAME#.

The PC! Local Bus Specification, Revision 2.2 indicates that a master may de assert its REQ# pin
before the arbiter grants the PCI bus to that master. If a master deasserts its REQ# pin, the PCI
Arbiter re-arbitrates and give bus ownership to the next master based on the priority algorithm
defined in Section 17.2.1.1, "Priority Mechanism" on page 17-3.

The PCI Arbiter may deassert an agent's GNT# on any clock. An agent must ensure its GNT# is
asserted on the clock edge where it initiates a transaction by asserting FRAME#. If GNT# is
deasserted, the transaction may not proceed.

Developer's Manual

fntel@ 80303 110 Processor
Inte~ 80303 110 Processor Arbitration

If any of the below three rules are satisfied, the arbiter may deassert one master's GNT# in order to
service a higher priority master:

Rule 1: When GNT# is deasserted and FRAME# is asserted, the bus transaction is valid and continues.

Once a master initiates a transaction by asserting FRAME# because the arbiter has granted
that master the PCI bus, the arbiter may deassert its GNT# to service the next master.

If the bus master asserts FRAME# and the PCI Arbiter removes its grant on the same
cycle, the master assumes ownership of the bus and the arbiter behaves as if the bus was
granted and claimed by the original master.

Rule 2: One GNT# can be deasserted coincident with another GNT# being asserted if the bus is
not in the idle state. Otherwise, a one clock delay is added between the deassertion of a
GNT# and the assertion of the next GNT#. This prevents contention on the AD[63:0] bus.

An idle state is defined as a cycle where FRAME# and IRDY# are deasserted. If the PCI
bus appears to be idle, a master may actually be using "stepping" to drive the PCI bus.
Stepping requires the master to drive AD[63:0] one cycle prior to the master's assertion
ofFRAME#. Refer to the PCl Local Bus Specification, Revision 2.2 for more details on
address/data stepping.

The PCI Arbiter always satisfies this rule since the arbiter always asserts a master's
GNT# one cycle after deasserting another master's GNT#.

Rule 3: While FRAME# is deasserted, GNT# may be deasserted any time in order to service
another master, or in response to the associated REQ# being deasserted.

The PCI Arbiter continually updates the bus owner for the next transaction. For
example, assume the arbiter grants the next transaction to a device of medium priority
(MastecA). If a high priority device (MastecB) requests the PCI bus prior to MastecA
claiming the bus by asserting FRAME#, the arbiter deasserts MastecA's GNT# and
assert MastecB's GNT# one clock later.

Note: The PCI Arbiter arbitrates the PCI bus by checking REQ[8:0]# on every cycle independent
of any transactions on the busl.

By monitoring REQ[8:0]#, the arbiter can control the arbitration algorithm described in
Section] 7.2.1.1, "Priority Mechanism" on page 17-3. The arbiter asserts GNT# two clocks after
REQ# is asserted if the agent has won the bus. An example of arbitration flow is shown below in
Table 17-4.

Table 17-4. Arbitration Flow

Cycle Event

The arbiter is currently driving Master_A's GNT#. The arbitration flow is independent of
0 whether or not Master_A is involved with a transaction. For example, the PCI bus could be

parked with Master_A.

1 Master_B asserts its REQ# for PCI bus ownership. The arbitration logic calculates that
Master_B has a higher priority than MastecA.

2 The arbiter deasserts GNT# for MastecA since Master_B is higher priority.

3 The arbiter asserts GNT# for MastecB.

When Master_B drives FRAME#, any of the priority winners that were not granted the bus
4 are promoted to a higher priority level if the reserved promotion slot is unoccupied

(Section 17.2.1.1, "Priority Mechanism" on page 17-3).

1. Rule 2 above, indicates that the idle state must be monitored on the PCI bus. The arbiter always asserts a master's GNT# one cycle after
deasserting another master's GNT# so the idle state is unimportant.

Developer's Manual 17-7

fntel® 80303 110 Processor in1:el. IntefW 80303 110 Processor Arbitration

17.2.1.5 Secondary PCI Bus Arbitration Parking

Arbitration parking occurs when the arbiter asserts GNT# to a selected PCI bus agent and no agent
is currently using or requesting the bus.

Upon reset, the IARB parks the internal bus with the BIU and the SARB parks the secondary PCI
bus with the bridge. After a master requests, and is granted the bus, the arbiter parks the bus with
that master. In other words, the last master that was granted the bus is responsible for parking.

When the secondary PCI bus is parked, the last master continues to assert S_AD[31:0],
S_CIBE[3:0]#, and S_PAR. This prevents the PCI bus from floating.

Note: The 64-bit extension signals (S_AD[63:32], S_C/BE[7:4]#, and S_PAR64) are not actively driven
when the secondary PCI bus is parked on the 80303 110 processor. Per the PCI Local Bus
Specification, Revision 2.2, pull-ups provided on the motherboard ensure that these signals are stable.

When a PCI bus is parked during an idle state, the parked agent loses the bus when the arbiter
asserts another agent's GNT#. The parked agent relinquishes the bus and stops driving the address
and command signals in one clock and parity one clock after that (for the secondary PCI bus).
When the arbiter removes GNT# and simultaneously an agent drives FRAME# on the bus, the
agent completes the initiated bus transaction.

17.2.2 Atomic Accesses

17-8

The 80303 I/O processor core is capable of pelforming atomic operations to the memory
subsystem. Since the BIU (Chapter 12, "Core Processor and Internal Operation") and MCU
(Chapter 13, "Memory Controller") reside on the internal bus, the arbiter provides a mechanism for
guaranteeing that no other master may access local memory while the core is performing an atomic
operation.

Developer'S Manual

17.2.3

17.2.3.1

fntei@ 80303 liD Processor
IntefB> 80303 liD Processor Arbitration

Internal and Secondary PCI Arbiter Differences

There is one difference between the secondary arbiter (SARB) and the internal bus arbiter (IARB):

• The IARB maintains a Multi-Transaction Timer (MTT) for the BIU

The 80303 I/O processor core has an inherently small burst size. For this reason, a busy internal
bus could inhibit data tratIic for the core. To address this issue, the IARB implements a
Multi-Transaction Timer (MIT) which allocates a minimum timeslice where the IARB keeps
GNT[8]# asserted. Refer to Section 17.2.3.1, "Multi-Transaction Timer" on page 17-9 for details.

Multi-Transaction Timer

The Internal Arbiter incorporates a Multi-Transaction Timer (MIT) allowing the BIU more internal
bus utilization regardless of its inherently small burst size. PCI is a transaction based protocol. In a
system with long bursting agents, an agent such as the BIU with a small burst size could get starved.

The MIT overcomes this potential bottleneck by guaranteeing a programmed timeslice during which the
BIU is granted the internal bus. Once the IARB grants the internal bus to the BIU and the BIU initially
asserts CFRAME#, the MIT is loaded with the value programmed in the Multi-Transaction Timer
Register (MTTR) and begins to decrement. The arbiter does not remove the BIU's grant (GNT[8]#) unless:

• The BIU no longer requests the bus by deasserting REQ[8]#.

• The BIU continues to drive REQ[8]# and the MIT expires.

Note: Even if a higher-priority master requests the internal bus, the arbiter does not de assert the BIU's
grant (GNT[8]#) unless any of the above conditions occur.

Figure 17-4 illustrates an example of how the BIU uses the MIT for efficient back-to-back
transactions. For this example, the MTTR is programmed for 13 cycles.

Figure 17-4. BIU Back-to-Back Transactions with MTT enabled

L_CLK 3 4 7 12
I I I I
I I I I

I REQ(8)# I I I I
I I I I
I I I I

GNT(8)# \ I I I I I I
0 I I I 0 I I I

I_FRAME# ! \ I I I I I \ I
0 I I I 0 I I I

URDY# I \ I I I I : \ I I I
I 0 I I
I I I

LDEVSEL# I I I
I

Q
I

I I , ,
'_TRDY# , I \ I I

I I I I I I I

t Load/Start MTT MTT Expired J

r

A6768-01

Developer's Manual 17-9

fntef® 80303 liD Processor
Inte~ 80303 I/O Processor Arbitration

17-10

Note: The MTT is tightly coupled with the Master Latency Timer (MLT). The Master Latency Timer
keeps track of the maximum time a single transaction may keep the bus. The MLT governs the PCI
master and is detailed in Section 17.4, "Master Latency Timer Operation" on page 17-11. The
Multi-Transaction Timer keeps track of the minimum time that multiple BIU transactions may
keep the internal bus. The MTT governs the internal arbiter.

If the MTTR is programmed with zero, the MTT is effectively disabled.

Developer'S Manual

17.3

17.3.1

PCI Selector Operation

Intel@ 80303 I/O Processor
InteP 80303 I/O Processor Arbitration

Figure 17-1 shows the block diagram of all the arbitration components in the 80303 I/O processor.
80303 I/O processor arbitration includes one PCI selector block. The responsibility of the PCI
selector is to assert an external REQ# on behalf of one of the internal masters. The PCI selector
also routes the external GNT# to the requesting internal agent.

The Primary PCI bus has four potential masters from the 80303 I/O processor: DMAO, DMA1,
PATU, and BDG. If one of the 80303 I/O processor masters needs the primary PCI bus and asserts
its REQ#, the Primary PCI selector (PSEL) asserts P _REQ#. When the Primary PCI slave asserts
P _ GNT#, the PSEL asserts the GNT# for the master requesting the bus.

When a primary master asserts one of the four REQ# signals, the PSEL asserts P _ REQ#. For the
case of multiple requests, the selector must arbitrate between the requesting agents. The arbitration
is a simple round-robin algorithm.

Primary PCI Bus Arbitration Parking

When the primary PCI bus is parked on the 80303 I/O processor, the last master continues to assert
P _AD[31:0], P _ C/BE[3:0]#, and P _PAR. This prevents the PCI bus from floating.

Note: The 64-bit extension signals (P _AD[63:32], P _ C/BE[7:4]#, and P _PAR64) are not actively driven
when the secondary PCI bus is parked on the 80303 I/O processor. Per the PCI Local Bus
Specification, Revision 2.2, pull-ups provided on the motherboard ensure that these signals are stable.

17.4

17.4.1

17.4.2

Master Latency Timer Operation

Each PCI device must contain a Master Latency Timer (MLT). This timer defines the minimum
time a PCI master may own the PCI bus. If no other agent is requesting the bus once the MLT
expires, the master may continue to use the bus. Once another agent requests the PCI bus and the
current bus master's latency timer has expired, the current master must release the bus as soon as
possible to allow the requesting agent bus ownership.

Primary and Secondary PCI Master Latency Timers

Each PCI interface of the 80303 I/O processor (primary and secondary) contains a master latency
timer (MLT) for use by the internal resources when they are acting as PCI bus masters. Both ATUs,
the DMA channels, and the bridge interfaces use an MLT. MLT usage is explained in the PCI Local
Bus Specification, Revision 2.2.

As defined by the PCI specification, a PCI bus master must release bus ownership as soon as possible
when it has lost its GNT# and the MLT has expired. After the MLT expires, the bus master must
relinquish the bus when an external device or one of the internal resources requests the bus.

Internal Master Latency Timer

All the internal bus masters use a common Internal Master Latency Timer (IMLT). After the IMLT
expires, the current internal bus master must relinquish the bus if the arbiter de asserts its GNT#.
The 12-bit IMLT is preloaded with the value programmed into the MLTR.

Developer's Manual 17-11

Inte/@ 80303 I/O Processor int'et Inte(@ 80303 I/O Processor Arbitration

17.5 Reset Conditions

Table 17-5 shows all the arbitration blocks and the signal responsible for resetting its logic:

Table 17-5. Arbitration Block and Reset Signals

17.5.1

17-12

Arbitration Block Reset With:

Secondary Arbiter (SARS) S~RST#

Internal Arbiter (lARS) P~RST#

Primary PCI Selector (PSEL) P~RST#

Primary Master Latency Timer P~RST#

Secondary Master Latency Timer S~RST#

When the secondary bus is reset with S_RST#, the SARB logic is reset which effectively moves all
secondary PCI devices to their programmed priority levels and starts the round robin arbitration
sequence on the lowest number device at each priority level. Similarly, I RST# moves all the
internal agents to their programmed priority levels and starts the round robin arbitration sequence
on the lowest number device at each priority level.

Because the SACR is located in the bridge configuration register space, it is reset when P _RST# is
asserted. Refer to Section 17.6.1, "Secondary Arbitration Control Register - SACR" on page 17-14
for its value during reset.

S_REQ64# Control

While P ~RST# is asserted, the SARB samples the 32BITPCI EN# pin. The SARB uses the
sampled value to drive S REQ64# while S_RST# is asserted.-

• If 32BITPCI _ EN# is deasserted while P _RST# is asserted, S _ REQ64# is asserted during the
assertion of S_RST#. After the deassertion of S_RST#, S _ REQ64# is driven high (deasserted)
for one to two clocks before floating the S _ REQ64# pin.

• If 32BITPCI_EN# is asserted while P _RST# is asserted, S_REQ64# floats to allow the
motherboard to pull-up.

S _ REQ64# remains valid for one clock (P _ CLK) after S_RST# deasserts.

Developer's Manual

17.6 Register Definitions

Intel® 80303 I/O Processor
IntefEJ 80303 I/O Processor Arbitration

Table 17-6 lists Arbitration configuration registers which are detailed further in proceeding sections.

Table 17-6. Secondary Arbiter Register Table

Section, Register Name - Acronym (Page)

Section 17.6.1, "Secondary Arbitration Control Register - SACR" on page 17-14

Section 17.6.2, "Internal Arbitration Control Register - IACR" on page 17-15

Section 17.6.3, "Master Latency Timer Register - MLTR" on page 17-16

Section 17.6.4, "Multi-Transaction Timer Register - MTTR" on page 17-17

Developer's Manual 17-13

Intel@ 80303 liD Processor
IntefW 80303 liD Processor Arbitration

17.6.1 Secondary Arbitration Control Register - SACR

The Secondary Arbitration Control Register (SACR) sets the arbitration priority of each device that
uses the secondary PCI bus. This register is part of the bridge configuration register space and is
accessible from both the primary PCI bus and the 80303 1/0 processor core.

Table 17-7. Secondary Arbitration Control Register - SACR

Bit Default

31 :14 o
13:12

11 :10

9:8

7:6

5:4

3:2

1 :0

Internal Bus Address

104CH

Reserved

Device 5 Priority

Device 4 Priority

Device 3 Priority

Device 2 Priority

Device 1 Priority

Device 0 Priority

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Secondary PCI Interface Priority (Bridge, DMA Channel 2, or Secondary ATU)

Each device is given a 2-bit priority shown in Table 17-8. The default values for the SACR give all
external secondary PCI devices the lowest priority level and the highest priority to the 80303 1/0
processor.

Table 17-8. 2-Bit Priorities

2-Bit Programmed Value Priority Level

High Priority

Low Priority

Disabled

17-14 Developer's Manual

int:et
17.6.2

Intel@ 80303 I/O Processor
Intef8> 80303 I/O Processor Arbitration

Internal Arbitration Control Register - IACR

The Internal Arbitration Control Register (IACR) sets the arbitration priority of each device that
uses the internal bus. This register is part ofthe local arbitration configuration register space and is
accessible from the 80303 1/0 processor core.

Table 17-9. Internal Arbitration Control Register - IACR

Bit Default

31 :14 0

13:12 002

11 :10 002

9:8 002

7:6 002

5:4 002

3:2 002

1 :0 002

Internal Bus Address

1600H

Reserved

Application Accelerator Priority

BIU Priority

DMA Channel 2 Priority

DMA Channel 1 Priority

DMA Channel 0 Priority

Secondary ATU Priority

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

Primary ATU and Messaging Unit Priority

RC = Read Clear

RO = Read Only

NA = Not Accessible

Each device is given a 2-bit priority shown in Table 17-8. The default values for the IACR give all
the internal bus masters the highest priority.

Developer's Manual 17-15

intel® 80303 110 Processor intet· IntefiY 80303 110 Processor Arbitration

17.6.3 Master Latency Timer Register - MLTR

The Master Latency Timer Register defines preload value for the Internal Bus Master Latency
Timer. The preload is a 12-bit value. This register is part of the local arbitration configuration
register space and is accessible from the 80303 110 processor core.

Table 17-10. Master Latency Timer Register - MLTR

Bit Default

31 :12 o

11 :0 FFFH

17-16

Internal Bus Address

1604H

ReseNed

Attribute Legend:

RV = ReseNed

PR = PreseNed

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Master Latency Timer Preload Value - Indicates the minimum number of clocks a
master is allowed to hold the PCI bus for a single transaction.

Developer'S Manual

intel·
17.6.4

Intel® 80303 I/O Processor
InteflY 80303 I/O Processor Arbitration

Multi-Transaction Timer Register - MTTR

The Multi-Transaction Timer Register defines the duration, which the i960 core access, through the
BIU, retains GNT[8]# across back-to-back transactions. This is an 8-bit value allowing up to 255
dedicated internal bus cycles for as long as REQ[8]# is asserted. A value of zero effectively disables the
MTT. This register is part of the local arbitration configuration register space and is accessible from the
80303 110 processor core.

Table 17-11. Multi-Transaction Timer Register - MTTR

Bit Default

31:8 OOOOOOH

7:0 OOH

Developer's Manual

Internal Bus Address

1608H

Reserved

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

Description

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Multi-Transaction Timer Preload Value - Indicates the minimum number of clocks a
master is allowed to hold the PCI bus for a single transaction.

17-17

Timers 18

This chapter describes the Intel® 80303 I/O processors dual-independent 32-bit timers. Topics
include timer registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer
register values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped within the
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-defined
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also
user-configurable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4 or 8.
The timers can be programmed to either stop when the count value reaches zero (single-shot mode)
or run continuously (auto-reload mode). When a timer's count reaches zero, the timer's interrupt
unit signals the processor's interrupt controller. Figure 18-1 shows a diagram of the timer
functions. See also Figure 18-2 for the Timer Unit state diagram.

Figure 18-1. Timer Functional Diagram

Internal
CPU
Bus

v

I Address I
Detect I

Fault
Output

-

'"

User/
Supervisor
Status

Table 18-1. Timer Performance Ranges

Bus Frequency (MHz)

100

Developer's Manua!

~ Timer Mode Register I

Timer Reload Register
32-Bit Register

f
Timer Count Register

32-Bit Register

I 32-Bit Compare
Against Zero

I
Terminal Count

Interrupt Unit :

I ,
Interrupt
Output

Max Resolution (ns)

10

~ Unit

Selected
Clock

Bu s
ck Clo
I

A6769-01

Max Range (mins)

5.73

18-1

Inte/@ 80303 liD Processor
Timers intel.
18.1 Timer Registers

As shown in Table 18-2, each timer has three memory-mapped registers:

• Timer Mode Register - programs the specific mode of operation or indicates the current
programmed status of the timer. This register is described in Section 18.1.1. "Timer Mode
Registers - TMRO: 1" on page 18-3.

• Timer Count Register - contains the timer's current count. See Section 18.1.2, "Timer Count
Register - TCRO: 1" on page 18-6.

• Timer Reload Register - contains the timer's reload count. See Section 18.1.3. "Timer Reload
Register - TRRO: 1" on page 18-7.

Table 18-2. Timer Registers

Timer Unit Register Acronym Register Name

TMRO Timer Mode Register 0

Timer 0 TCRO Timer Count Register 0

TRRO Timer Reload Register 0

TMR1 Timer Mode Register 1

Timer 1 TCR1 Timer Count Register 1

TRR1 Timer Reload Register 1

For register memory locations, see Table 18-2, "Timer Registers" on page 18-2.

18-2 Developer's Manual

intel·
18.1.1 Timer Mode Registers - TMRO:1

Intel® 80303 110 Processor
Timers

The Timer Mode Register (TMRx) lets the user program the mode of operation and determine the
current status of the timer. TMRx bits are described in the subsections following Table 18-3 and are
summarized in Table 18-7.

Table 18M 3. Timer Mode Register - TMRx

18.1.1.1

PCI[

LBA: CH 0-0308H
CH 1-0318H

PCI: NA

31 :06 0000 OOOH

05:04 002

Legend:NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80303 local bus addressPCI = PCI Configuration Address Offset

Reserved. Initialize to O.

Timer Input Clock Selects - TMRx.cseI1:0
(00) 1:1 Timer Clock = Bus Clock
(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8

Timer Register Supervisor Write Control - TMRx.sup
(0) Supervisor and User Mode Write Enabled
(1) Supervisor Mode Only Write Enabled

Timer Auto Reload Enable - TMRx.reload
(0) Auto Reload Disabled
(1) Auto Reload Enabled

Timer Enable - TMRx.enable
(0) Disabled
(1) Enabled

Terminal Count Status - TMRx.tc
(0) No Terminal Count
(1) Terminal Count

Bit 0 - Terminal Count Status Bit (TMRx.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2
(TMRx.reload) is not set for a timer. The TMRx.tc bit allows applications to monitor timer status
through software instead of interrupts. TMRx.tc remains set until software accesses (reads or
writes) the TMRx. The access clears TMRx.tc. The timer ignores any value specified for TMRx.tc
in a write request.

When auto-reload is selected for a timer and the timer is enabled, the TMRx.tc bit status is
unpredictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is enabled.

The processor also clears the TMRx.tc bit upon hardware or software reset. Refer to Section 11.2,
"Intel® 80303 1/0 Processor Initialization" on page 11-2.

Developer's Manual 18-3

Inte!® 80303 I/O Processor
Timers

18.1.1.2

18.1.1.3

18-4

Bit 1 - Timer Enable (TMRx.enable)

The 1MRx.enable bit allows user software to control the timer's RUN/STOP status. When:

TMRx.enable == 1

TMRx.enable == a

The Timer Count Register (TCRx) value decrements every Timer
Clock (TCLOCK) cycle. TCLOCK is determined by the Timer Input
Clock Select (TMRx.csel bits 0-1). See Section 18.1.1.5. When
TMRx.reload==O, the timer automatically clears TMRx.enable when the
count reaches zero. When TMRx.reload==l, the bit remains set. See
Section 18.1.1.3.

The timer is disabled and ignores all input transitions.

User software sets this bit. Once started, the timer continues to run, regardless of other processor
activity. Three events can stop the timer:

• User software explicitly clearing this bit (i.e., TMRx.enable == 0).

• TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit == O.

• Hardware or software reset. Refer to Section 1 J .2, "Intel® 80303 110 Processor Initialization"
on page 11-2.

Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The 1MRx.reload bit determines whether the timer runs continuously or in single-shot mode.
When TCRx == 0 and TMRx.enable == 1 and:

TMRx.reload == 1 The timer runs continuously.

The processor:

I. Automatically loads TCRx with the value in the Timer Reload Register (TRRx), when TCRx
value decrements to O.

2. Decrements TCRx until it equals 0 again.

Steps 1 and 2 repeat until software clears TMRx bits 1 or 2.

TMRx.reload == a The timer runs until the Timer Count Register == O. TRRx has no effect
on the timer.

User software sets this bit. When TMRx.enable and TMRx.reload are set and TRRx does not equal
0, the timer continues to run in auto-reload mode, regardless of other processor activity. Two events
can stop the timer:

• User software explicitly clearing either TMRx.enable or TMRx.reload.

• Hardware or software reset.

The processor clears this bit upon hardware or software reset.

Developer's Manual

infel·
18.1.1.4

18.1.1.5

Intel@ 80303 I/O Processor
Timers

Bit 3 - Timer Register Supervisor ReadlWrite Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit's condition. Software can read
these registers from either mode.

When:

TMRx.sup = 1

TMRx.sup = a

The timer generates a TYPE.MISMATCH fault when a user mode task
attempts a write to any of the timer registers; however, supervisor mode
writes are allowed.

The timer registers can be written from either user or supervisor mode.

The processor clears TMRx.sup upon hardware or software reset. Refer to Section 11.2. "Intel®
80303 I/O Processor Initialization" 011 page 11-2.

Bits 4, 5 - Timer Input Clock Select (TMRx.cseI1 :0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency. See
Table J 8-4. As shown in Figure 18-1, the bus clock is an input to the timer clock unit. These bits
allow the application to specify whether TCLOCK runs at or slower than the bus clock frequency.

Table 18-4. Timer Input Clock (TCLOCK) Frequency Selection

Bit 5 Bit 4 Timer Clock (TCLOCK) TMRx.csel1 TMRx.cseiO

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock).

Developer's Manual 18-5

Intel® 80303 I/O Processor
Timers

18.1.2 Timer Count Register - TCRO:1

The Timer Count Register (TCRx) is a 32-bit register that contains the timer's current count. The
register value decrements with each timer clock tick. When this register value decrements to zero
(terminal count), a timer interrupt is generated. When 1MRx.reload is not set for the timer, the
status bit in the timer mode register (1MRx.tc) is set and remains set until the TMRx register is
accessed. Table 18-5 shows the timer count register.

Table 18-5. Timer Count Register - TCRx

18-6

LBA: CH 0-0304H Legend:NA = Not Accessible,RO = Read Only, RV = Reserved,PR = Preserved,
CH 1-0314H RW = ReadlWrite, RS = Read/Set,RC = Read Clear, LBA = 80303 local bus address,

PCI: na PCI = PCI Configuration Address Offset

31 :00 0000 OOOOH Timer Count Value - TCRx.d31:0

The valid programmable range is from 1 H to FFFF FFFFH. Avoid programming TCRx to 0 as it
will have varying results as described in Section 18.5, "Uncommon TCRx and TRRx Conditions"
on page 18-10.

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of 1MRx
determines user read/write control (Section 18.1.1.4). The TCRx value is undefined after hardware
or software reset.

Developer's Manual

int:et
18.1.3 Timer Reload Register - TRRO:1

Intel@ 80303 liD Processor
Timers

The Timer Reload Register (TRRx; Tahle 18-6) is a 32-bit register that contains the timer's reload
count. The timer loads the reload count value into TCRx when TMRx.reload is set (I),
TMRx.enable is set (I) and TCRx equals zero.

As with TCRx, the valid programmable rangc is from I H to FFFF FFFFH. Avoid programming a
value of 0, as it may prevent TlNTx from asserting continuously. (See Section IS.S, "Uncommon
TCRx and TRRx Cond.itions" on page 18-10 for more information.)

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRx determines
read/write control (Section 18.1.1.4, "Bit 3 - Timer Register Supervisor ReadIWrite Control
(TMRx.sup)" on page 18-5). TRRx value is undefined after hardware or software reset.

Table 18-6. Timer Reload Register - TRRx

LBA: CH 0-0300H
CH 1-0310H

PCI: NA

31 :00 OOOOOOOOH

Developer's Manual

Legend:NA = Not Accessible,RO = Read Only, RV = Reserved,PR = Preserved,
RW = Read/Write, RS = Read/Set,RC = Read Clear, LBA = 80303 local bus address,
PCI = PCI Configuration Address Offset

Timer Auto-Reload Value - TRRx.d31:0

18-7

Intel® 80303 110 Processor
Timers intel®
18.2

18.2.1

Timer Operation

This section summarizes timer operation and describes load/store access latency for the timer registers.

Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop
counting. The supervisor (TMRx.sup) bit controls write access to the enable bit. This allows the
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period
with the same 32-bit TCRx value.

Software can read or write the TCRx value whether the timer is running or stopped. This lets the
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer
allow or prevent user mode writes to TCRx, TMRx and TRRx.

When the TCRx value decrements to zero, the unit's interrupt request signals the processor's
interrupt controller. See Section 18.3, "Timer Intermpts" on page 18-10 for more information. The
timer checks the value of the timer reload bit (TMRx.reload) setting. When TMRx.reload. = I, the
processor:

• Automatically reloads TCRx with the value in the Timer Reload Register (TRRx).

• Decrements TCRx until it equals ° again.

This process repeats until software clears TMRx.reload or TMR.enable.

When TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRx.tc). This bit
remains set until user software reads or writes the TMRx register. Either access type clears the bit.
The timer ignores any value specified for TMRx.tc in a write request.

Table 18-7. Timer Mode Register Control Bit Summary

0: :0 Qi'
III i5

::l >< ><
0 III

Mil! N"Qi .-1:
:: >< Il: Il: =:~ ... w Action
mil: Il: 0 m>< m><

::iE l- I- Il: Il:
t::.. ::iE ::iE

t::.. t::..
X X X X 0 Timer disabled.

NOTE: X = don't care
N = a number between 1H and FFFF FFFFH

18-8 Developer's Manual

intet
18.2.2

Intel@ 80303 I/O Processor
Timers

Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register completes and all state changes take effect before the next instruction
begins execution. The exception to this is when disabling a timer. Latency associated with the
disabling action is such that a timer interrupt may be posted immediately after the disabling
instruction completes. This can occur when the timer is near zero as the store to 1MRx occurs. In
this case, the timer interrupt is posted immediately after the store to 1MRx completes and before
the next instruction can execute. Table 18-8 summarizes the timer access and response timings.
Refer also to the individual register descriptions for details.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units.

The processor ensures that the 1MRx.tc bit is cleared within one bus clock after a load or store
instruction accesses 1MRx.

Table 18-8. Timer Responses to Register Bit Settings

Name Status Action

Timer clears this bit when user software accesses TMRx. This bit can be set
(TMRx.tc) READ 1 bus clock later. The timer sets this bit within 1 bus clock of TCRx reaching

Terminal Count zero when TMRx.reload=O.

Bit 0 Timer clears this bit within 1 bus clock after the software accesses TMRx.
WRITE The timer ignores any value specified for TMRx.tc in a write request.

(TMRx.enable) READ Bit is available 1 bus clock after executing a read instruction from TMRx.
Timer Enable Writing a '1' enables the bus clock to decrement TCRx within 1 bus clock

Bit 1 WRITE
after executing a store instruction to TMRx.

(TMRx.reload) READ Bit is available 1 bus clock after executing a read instruction from TMRx.
Timer Auto Reload Writing a '1' enables the reload capability within 1 bus clock after the store

Enable
Bit2

WRITE instruction to TMRx has executed. The timer loads TRRx data into TCRx and
decrements this value during the next bus clock cycle.

(TMRx.sup) READ Bit is available 1 bus clock after executing a read instruction from TMRx.
Timer Register

Supervisor Write Writing a '1' locks out user mode writes within 1 bus clock after the store
Control WRITE instruction executes to TMRx. Upon detecting a user mode write the timer

Bit3 generates a TYPE.MISMATCH fault.

(TMRx.cseI1 :0) READ
Bits are available 1 bus clock after executing a read instruction from

Timer Input Clock TMRx.csel1 :0 bit(s).

Select The timer re-synchronizes the clock cycle used to decrement TCRx within
Bits 4-5 WRITE

one bus clock cycle after executing a store instruction to TMRx.cseI1:0 bit(s).

The current TCRx count value is available within 1 bus clock cycle after

(TCRx.d31 :0) READ executing a read instruction from TCRx. When the timer is running, the

Timer Count pre-decremented value is returned as the current value.

Register The value written to TCRx becomes the active value within 1 bus clock cycle.
WRITE When the timer is running, the value written is decremented in the current

clock cycle.

The current TRRx count value is available within 1 bus clock after executing a

READ
read instruction from TRRx. When the timer is transferring the TRRx count

(TRRx.d31 :0) into TCRx in the current count cycle, the timer returns the new TCRx count
Timer Reload value to the executing read instruction.

Register The value written to TRRx becomes the active value stored in TRRx within 1
WRITE bus clock cycle. When the timer is transferring the TRRx value into the TCRx,

data written to TRRx is also transferred into TCRx.

Developer'S Manual 18-9

Intel@ 80303 I/O Processor
Timers

18.3

18.4

Timer Interrupts

Each timer is the source for one intenupt. When a timer detects a zero count in its TCRx, the timer generates
an internal edge-detected Timer Intenupt signal (TINTx) to the interrupt controller, and the interrupt-pending
(IPND.tipx) bit is set in the intenupt controller. Each timer interrupt can be selectively masked in the Interrupt
Mask (IMSK) register or handled as a dedicated hardware-requested interrupt. Refer to Chapter 8, "PCI and
Peripheral Interrupt Controller Unit"' for a description of hardware-requested interrupts.

When the interrupt is disabled after a request is generated, but before a pending interrupt is serviced, the
interrupt request is still active (the Interrupt Controller latches the request). When a timer generates a
second interrupt request before the CPU services the fIrst interrupt request, the second request may be lost.

When auto-reload is enabled for a timer, the timer continues to decrement the value in TCRx even
after entry into the timer interrupt handler.

Powerup/Reset Initialization
Upon power up, external hardware reset or software reset (sysctl), the timer registers are initialized
to the values shown in Table 18-9.

Table 18-9. Timer Powerup Mode Settings

Mode/Control Bit Notes

TMRx.tc = a No terminal count

TMRx.enable = a Prevents counting and assertion of TINTx

TMRx.reload = a Single terminal count mode

TMRx.sup = a Supervisor or user mode access

TMRx.cseI1:a = a Timer Clock = Bus Clock

TCRx.d31 :a = a Undefined

TRRx.d31:a = a Undefined

TINTx output Deasserted

18.5 Uncommon TCRx and TRRx Conditions
Table 18-7 summarizes the most common settings for programming the timer registers. Under certain
conditions, however, it may be useful to set the TImer Count Register or the TImer Reload Register to zero
before enabling the timer. Table 18-10 details the conditions and results when these conditions are set.

Table 18-10. Uncommon TMRx Control Bit Settings

TRRx TeRx Bit 2 Bit 1 Action (TMRx.reload) (TMRx.enable)

X a a 1 TMRx.tc and TINTx set, TMR.enable cleared

a a 1 1
Timer and auto reload enabled, TINTx not generated and timer
enable remains set.

a N 1 1 Timer and auto reload enabled. TINT.x set when TCRx=a. The
timer remains enabled but further TINTx's are not generated.

NOTE: X = don't care
N = a number between 1 Hand FFFF FFFFH

18-10 Developer's Manual

intel·
18.6 Timer State Diagram

Intel@ 80303 110 Processor
Timers

Figure 18-2 shows the common states of the Timer Unit. For uncommon conditions see
Section 18.5. "Uncommon TCRx and TRRx Conditions" on pagc 18-10.

Figure 18-2. Timer Unit State Diagram

Developer's Manual

TMRx.enable = 0
TMRx.reload = 0
TMRx.sup = 0
TMRx.csel1 :0 = 0
IPND.tip = 0

SWWrite
(TMRx.enable = 0) Bus Clock or SW Read

TMRx.enable = 1

SW Write (TMRx.enable = 1

TMRx.enable = 1
TMRx.reload = user value
TMRx.sup = user value
TMRx.cseI1:0 = user value

SW Read

TCRx=O
See Section 18.5,

"Uncommon TCRX and 1----.-. TRRX Conditions"
'---"""1"----' on page 18-10

TCRx!= °

TC= 1

Clock Unit Tick
and TCRx!= °

TMRx.reload = user value
TMRx.sup = user value

... _T_M_R_x_.e_n_ab_le_=_o .. TMRx.cseI1:0 = user value
IPND.tip = 1
TMRx.enable = 0

TC=O
TMRx.enable = 1
TCRx=TRRx

SW Write Reload = 1

SW Read SW Read/Write & Reload = °
~---------~

A6770-01

18-11

DMA Controller Unit 19

19.1

This chapter describes the integrated Direct Memory Access (DMA) Controller Unit. The
operation modes, setup, external interface, and implementation of the DMA Controller are detailed
in this chapter.

Overview

The DMA Controller provides low-latency, high-throughput data transfer capability. The DMA
Controller optimizes block transfers of data between the PCI bus and the local processor memory.
The DMA is an initiator on the PCI bus with burst capabilities providing a maximum throughput of
528 Mbytes/sec when the PCI bus is operating in 64-bit/66 MHz mode.

The DMA Controller hardware is responsible for executing data transfers and for providing the
programming interface. The DMA Controller features:

• Three Independent Channels

• 256-byte queues in Ch-O and Ch-l

• 64-byte queue in Ch-2

• Utilization of the Intel® 80303 110 processor Memory Controller Interface

• 232 addressing range on the Internal Bus interface

• 264 addressing range on the primary and secondary PCI interfaces by using PCI Dual Address
Cycle (DAC)

• Independent PCI interfaces to the primary and secondary PCI buses

• Hardware support for unaligned data transfers for both the PCI bus and the Internal Bus

• Up to 528 Mbytes/sec burst support for both the PCI bus and the 80303 I/O processor internal
bus

• Direct addressing to and from the PCI bus

• Fully programmable directly from the Internal Bus

• Support for automatic data chaining for gathering and scattering of data blocks

• 64-bit/66 MHz PCI and 80303 110 processor Internal Bus interface.

Developer's Manual 19-1

Inte/@ 80303 liD Processor
DMA Controller Unit

Figure 19-1 shows the connections of the DMA channels to the PCI busses.

Figure 19-1. DMA Controller

Primary PC! Bus

.I DMA Channel 0 I
I I

DMA Channel 1 I
I J

I PCI-to-PCI Bridge I
·1 DMA Channel 2 I

I

Secondary PC! Bus

19-2

intel·

internal bus

Developer's Manual

19.2 Theory of Operation

IntelllJ) 80303 I/O Processor
OMA Controller Unit

The DMA Controller provides three channels of high throughput PCI-to-Memory transfers.
Channels 0 and I transfer blocks of data between the primary PCI bus and I/O processor local
memory.

Channel 2 transfers blocks of data between the secondary PCI bus and I/O processor local memory.
AI1 channels operate identically. Each channel has a PCI bus interface and an internal bus interface.
Figure 19-2 shows the block diagram for one channel of the DMA Controller.

Figure 19-2. DMA Channel Block Diagram

pel Gus

DMA Channel

Master PCI
Bus Interface

Data Queue
Alignment

Unit

Channel Control Register

Channel Status Register

Descriptor Address Register

Next Descriptor Address Register

PCI Address Register

PCI Upper Address Register
Intel"" i960® Local Address Register

Byte Count Register

Descriptor Control Register

Internal
Bus Interiace

IntemalBus

Each DMA channel uses direct addressing for both the PCI bus and the internal bus. It supports
data transfers to and from the full 64-bit address range of the PCI bus. This includes 64-bit
addressing using PCI DAC command. The channel provides a special register which contains the
upper 32 address bits for the 64-bit address. The DMA channels do not support data transfers that
cross a 32-bit address boundary.

Both the PCI interface and the internal bus interface support large burst lengths up to 4 KBytes.

The channel programming interface is accessible from the internal bus through a memory-mapped
register interface. Each channel is programmed independently and has its own set of registers. A
DMA transfer is configured by writing the source address, destination address, number of bytes to
transfer, and various control information into a chain descriptor in I/O processor local memory.
Chain descriptors are described in detail in Section 19.3.

Each channel supports chaining. Chain descriptors that describe one DMA transfer each can be
linked together in I/O processor local memory to form a linked list. Each chain descriptor contains
all the necessary information for transferring a block of data in addition to a pointer to the next
chain descriptor. The end of the chain is indicated when the pointer is zero.

Each channel contains a hardware data alignment unit. This unit enables data transfers from or to
unaligned addresses in either the PCI address space or the I/O processor local address space. All
combinations of unaligned data are supported with the data alignment unit.

The DMA Controller supports 64-bit and 32-bit wide PCI bus widths. Refer to Section 19.4 for
additional information on various PCI bus width transfer mechanisms.

Developer'S Manual 19-3

Intel@ 80303 110 Processor
DMA Controller Unit intel·
19.3

Table 19-1.

19-4

DMA Transfer

A DMA transfer is a block move of data from one memory address space to another. DMA
transfers are configured and initiated through a set of memory-mapped registers and one or more
chain descriptors located in local memory. A DMA transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded into
the chain descriptor before a DMA transfer begins. On the 80303 110 processor internal bus, the
DMA controller will attempt all transactions as 64-bit transfers.

DMA Registers

Register Abbreviation Description

Channel Control Register CCR Channel Control Word

Channel Status Register CSR Channel Status Word

Descriptor Address Register DAR Address of Current Chain DeSCriptor

Next Descriptor Address Register NDAR Address of Next Chain Descriptor

PCI Address Register PADR Lower 32-bit PCI Address of Source/Destination

PCI Upper Address Register PUADR Upper 32-bit PCI Address of Source/Destination

IntefID 80303 I/O processor Local
LADR 80303 Address of Source/Destination

Address Register

Byte Count Register BCR Number of Bytes to transfer

Descriptor Control Register DCR Chain Descriptor Control Word

Developer'S Manual

intel·
19.3.1 Chain Descriptors

Inte/@ 80303 I/O Processor
DMA Controller Unit

All DMA transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one data transfer. A single DMA transfer has only
one chain descriptor in memory. Chain descriptors can be linked together to form more complex
DMA operations.

To perform a DMA transfer, one or more chain descriptors must first be written to 80303 local
memory. Figure 19-3 shows the format of an individual chain descriptor. Every descriptor requires
six contiguous words in 80303 memory and is required to be aligned on an 8-word boundary. All
six words are required.

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the DMA control registers.

• The first word is the 80303 memory address of the next chain descriptor. A value of zero
specifies the end of chain. This value is loaded into the Next Descriptor Address Register.
Because chain descriptors must be aligned on an 8-word boundary, the channel may ignore bits
04:00 of this address.

• The second word is the lower 32-bit PCI source/destination address. This address will be
generated on the PCI bus. This value is loaded into the PCI Address Register.

• The third word is the upper 32-bit PCI source/destination address, if needed. This address will
be used during Dual Address Cycles for driving 64-bit PCI addresses. The address will be
ignored if DAC is disabled. This value will be loaded into the PCI Upper Address Register.

• The fourth word is the Intel® i960® source/destination address. This address will be driven on
the internal bus. This value will be loaded into the 80960 Local Address Register.

• The fifth word is the Byte Count value. This value determines the number of bytes to transfer.
This value will be loaded into the Byte Count Register.

• The sixth word is the Descriptor Control word. This word configures the DMA channel for
one DMA transfer. It contains the PCI command type, which determines the direction of the
data transfer. This value will be loaded into the Descriptor Control Register.

There are no data alignment requirements for either the PCI address or the 80960 address.

Refer to Section 19.14 for additional descriptions about the DMA Controller registers.

Figure 19-3. DMA Chain Descriptor

Chain Descriptor in Intel® i960® Description

Next Descriptor Address (NDA) Address of Next Chain Descriptor

PCI Address [31 :0] (PAD) Lower 32-bit PCI Source/Destination Address

PCI Upper Address [63:32] (PUAD) Upper 32-bit PCI Source/Destination Address

80960 Local Address (LAD) 80960 Local Source/Destination Address

Byte Count (BC) Number of Bytes to Transfer

Descriptor Control (DC) Descriptor Control

Developer's Manual 19-5

Intel® 80303 110 Processor
DMA Controller Unit intel·

A series of chain descriptors can be built in local memory to transfer data between the PCI buses
and the internal bus. For example, the application can build multiple chain descriptors to transfer
many blocks of data which have different source addresses within the local memory. When
multiple chain descriptors are built in 80960 memory, the application can link each of these chain
descriptors using the Next Descriptor Address in the chain descriptor. This address logically links
the chain descriptors together. This allows the application to build a list of DMA transfers which
may not require the 80960 processor until all of the DMA transfers are complete. Figure 19-4
shows a list of DMA transfers built in external memory and how they are linked together.

Figure 19-4. DMA Chaining Operation

19-6

r l-__ N_ex_t_D_e_s_cr_i~_lt(_Jr_A_d_d_rp __ S_S_(_N_D_A_) --I

PCI Address [31 :0] (pr\D)

PCI Upper AcJrJress [63:32] (PUAD)

Intel@ i96d') Local Address (LAD)

Byte Count (BC)

'---------' \
Descriptor Control (DC)

Next Descriptor Address (NDA)

PCI Address [31 :0] (PAD)

PCI Upper AejrJress [63:32] (PUAD)

80960 Local Address (LAD)

Byte Count (BC)

Descriptor Control (DC)

Next Descriptor Adejress (NDA)

PCI ArJdress [31 :0] (PAD)

PCI Upper Address [63:32] (PUAD)

80860 Local Address (LAO)

Byte Count (BC)

Descriptor Control (DC)

DMA Controller Register

Linked Descriptors In Local Memory'

Buffer Transfers

End of Cflain
)I (Null Value Detected)

Developer's Manual

19.3.2 Initiating DMA Transfers

intel® 80303 I/O Processor
DMA Controller Unit

A DMA transfer is started by building one or more chain descriptors in 80960 local memory. Each
chain descriptor takes the form shown in Figure 19-3. The chain descriptors are required to be
aligned on an 8-word boundary in the 80960 local memory.

The following describes the steps for initiating a new DMA transfer:

1. The channel must be inactive prior to starting a DMA transfer. This can be checked by
software by reading the Channel Active bit in the Channel Status Register (CSR). If this bit is
clear, the channel is inactive. If this bit is set, the channel is currently active with a DMA
transfer.

2. The CSR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Next Descriptor Address
Register.

4. The software sets the Channel Enable bit in the Channel Control Register (CCR). Since this is
the start of a new DMA transfer and not the resumption of a previous transfer, the Chain
Resume bit in the CCR should be clear.

5. The channel starts the DMA transfer by reading the chain descriptor at the address contained
in the Next Descriptor Address Register. The channel loads the chain descriptor values into the
channel control registers and begins data transfer. The Descriptor Address Register will now
contain the address of the chain descriptor just read and the Next Descriptor Address Register
will now contain the Next Descriptor Address from the chain descriptor just read.

The last descriptor in the DMA chain list will have zero in the next descriptor address field
specifying the last chain descriptor. The NULL value notifies the DMA channel not to read
additional chain descriptors from memory.

Once a DMA transfer is active, it may be temporarily suspended by clearing the Channel Enable
bit in the CCR. Note that this does not abort the DMA transfer. The channel resumes the DMA
transfer when the Channel Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the channel to access the next chain
descriptor plus the time required to set up for the next DMA transfer.

See Section 19.9 for a state diagram of the channel programming model.

Developer's Manual 19-7

fnte!@ 80303 I/O Processor
DMA Controller Unit intel·
19.3.3 Scatter Gather DMA Transfers

The DMA Controller can be used to perform typical scatter gather data transfers. This consists of
programming the chain descriptors to gather the data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location such that once all data
has been transferred, the data will be contiguous in memory. Figure 19-5 shows how the
destination pointers can gather data.

Figure 19-5. Example of Gather Chaining

19-8

~ source buffers

buffer
r-I-------,I destination

L..... ___ • __ -' ~ r---------l
• I I

t---------1
I I
I I t---------1
I I

PUAD ~ 0" / ~---------j
IpAD IpUAD~1 I/l---------]

End of Chain
Null Value Detected

NDA = Next Descriptor Address
PAD = PCI Address
PUAD = PCI Upper Address
LAD = Intel® i960® Local Address
BC = Byte Count
DC = Descriptor Control

Developer's Manual

int'et
19.3.4

Intel® 80303 110 Processor
DMA Controller Unit

Synchronizing a Program to Chained Transfers

Chained DMA transfers can be synchronized to a program executing on the Intel® i960® core
processor through the use of processor interrupts. The channel will generate an interrupt to the i960
core processor under certain conditions. They are:

1. [Interrupt & Continue] The channel completes the data transfer for a chain descriptor and the
Next Descriptor Address Register is non-zero. If the Interrupt Enable bit within the Descriptor
Control Register is set, an interrupt will be generated to the i960 core processor. This interrupt
is for synchronization purposes only. The channel will set the End Of Transfer Interrupt flag in
the Channel Status Register. Since it is not the last chain descriptor in the list, the DMA
channel will start to process the next chain descriptor without requiring any processor
interaction.

2. [End of Chain] The DMA channel completes the data transfer for a DMA chain descriptor and
the Next Descriptor Address Register is zero specifying the end of the chain. If the Interrupt
Enable bit within the Descriptor Control Register is set, an interrupt will be generated to the
i960 core processor. The channel will set the End Of Chain Interrupt flag in the Channel Status
Register.

3 . [Error] An error condition occurs (refer to Section 19.12 for DMA error conditions) during a
DMA transfer. The channel will halt operation on the current chain descriptor and not proceed
to the next chain descriptor.

Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control
word. This bit enables an independent channel interrupt upon completion of the data transfer for
the chain descriptor. This bit can be set or clear within each chain descriptor. Control of interrupt
generation within each descriptor aids in synchronization of the executing software with DMA
transfers.

Figure 19-6 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor IA generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last
descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 19-6 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.

Developer's Manual 19-9

Inte/@ 80303 110 Processor
DMA Controller Unit

Figure 19-6. Synchronizing to Chained Transfers

19-10

Independent Interrupt after Completing any Descriptor

chain descri ptors

Descriptor 1 A

I •

Descriptor 2A

No Interru

Descriptor nA

Optional interrupt
generated to

interrupt procedure

i
" I

I • I
I I
I RET I L _________ ,

pt on this Descriptor

interrupt procedure
.. ---------,
I I
I * I

L-______ ~»~I * I
I I
I I
LB.§..T _______ J

intel·

Interrupt after Completing Last Descriptor

chain descriptors

Descriptor i B

Descriptor 28

•
•
•

Descriptor oB

IL--___ i~::~~~~.:.d~.:.,
I • I
I • I
I • I
I I
I RET I L _________ ,

Developer's Manual

intel·
19.3.5 Appending to The End of a Chain

Inte/@ 80303 I/O Processor
DMA Controller Unit

Once a channel has started processing a chain of DMA descriptors, the application software may
need to append a chain descriptor to the current chain without interrupting the transfer in progress.
The mechanism used for performing this action is controlled by the Chain Resume bit in the
Channel Control Register.

The channel reads the subsequent chain descriptor each time the channel completes the current
chain descriptor and the Next Descriptor Address Register is non-zero. The Next Descriptor
Address Register will always contain the address of the next chain descriptor to be read and the
Descriptor Address Register will always contain the address of the current chain descriptor.

The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Address in that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the Channel Control Register
for the channel. It does not matter if the channel is active or not.

The channel examines the Chain Resume bit of the CCR when the channel is idle or upon
completion of a chain of DMA transfers. If this bit is set, the channel will re-read the Next
Descriptor Address of the current chain descriptor and load it into the Next Descriptor Address
Register. The address of the current chain descriptor is contained in the Descriptor Address
Register. The channel will clear the Chain Resume bit and then examine the Next Descriptor
Address Register. If the Next Descriptor Address Register is not zero, the channel will read the
chain descriptor using this new address and begin a new DMA transfer. If the Next Descriptor
Address Register is zero, the channel will remain or return to idle.

There are three cases to consider:

I. The channel completes a DMA transfer and it is not the last descriptor in the chain. In this
case, the channel clears the Chain Resume bit and reads the next chain descriptor. The
appended descriptor will be read when the channel reaches the end of the original chain.

2. The channel completes a DMA transfer and it is the last descriptor in the chain. In this case,
the channel examines the state of the Chain Resume bit. If the bit is set, the channel re-reads
the current descriptor to get the address of the appended chain descriptor. If the bit is clear, the
channel returns to idle.

3. The channel is idle. In this case, the channel examines the state of the Chain Resume bit when
the CCR is written. If the bit is set, the channel re-reads the last descriptor from the
most-recent chain to get the appended chain descriptor.

Developer's Manual 19-11

Intef® 80303 I/O Processor
DMA Controller Unit intel·
19.4

19.4.1

19.4.2

19-12

64 .. bit Transfers on a 64 .. bit PCI Bus

The PC! Local Bus Specification, Revision 2.2 provides a mechanism that permits a 64-bit bus
master to perform data transfers with a 64-bit target. 64-bit transactions on PCI are dynamically
negotiated between the master and the target. The 64-bit PCI extensions add an additional 39 signal
pins. The signal definitions and functions are detailed below:

• AD[63:32]: High order address/data bus.

• CIBE[7:4]#: Byte enables for the high order 4 bytes of data.

• PAR64#: Even parity for the upper double word.

• REQ64#.: Request 64-bit transfer. This signal is generated by the current 64-bit master to
initiate a 64-bit operation. It has the same timing as the FRAME# signal.

• ACK64#: Acknowledge 64-bit transfer. This signal is generated by the currently addressed
target in response to a REQ64#. assertion by the initiator. It has the same timing as the
DEVSEL# signal.

If either master or target, or both, do not support 64-bit data transfers, 32-bit data transfers are used
instead. For 64-bit transfers, all timings during data transfers are identical to that used for 32-bit
transfers. Refer to the PCl Local Bus Specification, Revision 2.2 for details on the 64-bit
Extension.

64-bit Operation with 64-bit Targets

The 64-bit protocol is implemented uniformly for the various internal masters (PCI-to-PCI Bridge
Unit, DMA Ch-O, Ch-l, Ch-2 and Address Translation Units) on the 80303 I/O processor.

A 64-bit transfer is initiated by the DMA controller by the assertion of REQ64#. If the target
device can perform 64-bit transfers, ACK64# will be asserted when the target asserts DEVSEL# to
claim the transaction. When a target signals the ability to complete a transaction as a 64-bit
transaction, the master interface of the DMA controller completes the transaction as a 64-bit
master. In this instance, up to eight bytes are transferred in each data phase. The DMA channel will
decrement the byte count by 8 for every successful data transfer cycle.

Refer to Section 14.6.3.1, "64-Bit Protocol" on page 14-32 for complete details on 64-bit Initiator
and 64-bit Target Operation.

64-bit Operation with 32-bit Targets

A 64-bit transfer is initiated by the DMA controller by the assertion of REQ64# •. If the target
device cannot perform 64-bit transfers, ACK64# will remain deasserted when the target asserts
DEVSEL# to claim the transaction. When a target signals its inability to complete a transaction as
a 64-bit transaction, the master interface of the DMA controller completes the transaction as a
32-bit master. In this instance, up to four bytes are transferred in each data phase. The DMA
channel will decrement the byte count by 4 for every successful data transfer cycle.

Should a slave disconnect on an even word boundary, then all future transfers will be carried out as
32-bit transfers for the current chain descriptor transaction.

Refer to Section 14.6.3.2, "64-Bit Operation with 32-Bit Targets" on page 14-34 for complete
details on 64-bit Initiator and 32-bit Target Operation.

Developer's Manual

in1:et
19.4.3

19.4.4

64-bit Addressing

Inte/@ 80303 liD Processor
DMA Controller Unit

The standard PCI bus transactions support a 32-bit address. 64-bit addressing generated by any
DMA channel on the PCI bus using the PCI DAC command allows for an extension to the 32-bit
addressing space. During DAC cycles on a 32-bit bus, none of the signals listed as a 64-bit
extension are used. During DAC cycles on a 64-bit bus, the upper 32-bits of the PCI address
bus(AD[63:32]) are driven during both address phases. Also, the associated data command for the
transaction (e/BE 7:4]) is driven during both address phases.

Refer to Section 14.5.4, "64-Bit Address Decoding - Dual Address Cycles" on page 14-21 for
complete details on the 64-bit addressing protocol.

66 MHz Operation

All of the 80303 I/O processor DMA channels are capable of PCI 66 MHz operation to support
data transfer ratcs of up to 264 MBytes/sec with a 32-bit bus or 528 Mbytes/sec with a 64-bit bus.
Differences between 33 MHz PCI and 66 MHz PCI are minimal. Both share the same protocol, and
signal definitions. The 66 MHz PCI extension adds one additional signal to each PCI interface. The
signal and its function is

• P _M66EN - when asserted, indicates that the Primary PCI bus will run at 66 MHz

• S_M66EN - when asserted, indicates that the Secondary PCI bus will run at 66 MHz

At PCI bus reset, each individual PCI bus (primary and secondary) will independently sample their
respective M66EN signals. If this signal is high, the bus is 66 MHz capable, and in the case of the
primary bus, the clock unit will be configured to accept a 66 MHz Primary PCI Bus clock.

The 66 MHz capable 80303 I/O processor supports the following primary and secondary bus
frequency combinations:

• 66 MHz primary bus, 66 MHz secondary bus

• 66 MHz primary bus, 33 MHz secondary bus

• 33 MHz primary bus, 33 MHz secondary bus

The 80303 I/O processor does not support 33 MHz primary/66 MHz secondary bus operation,
where the secondary bus is operating at twice the frequency of the primary bus. If P _M66EN is
low (primary bus at 33 MHz), then the 80303 I/O processor pulls down S_M66EN to indicate that
the secondary PCI bus is operating at 33 MHz.

For more details on the 80303 I/O processor's 66 MHz PCI clock scheme and the operation of the
secondary PCI bus clocks, please see Chapter 25, "Clocking and Reset".

Developer's Manual 19-13

InteJ@ 80303 I/O Processor
DMA Controller Unit intet
19.5

19.5.1

19.5.2

19-14

Data Transfers

The 80303 1/0 processor's DMA controller is optimized to perform data transfers between the PCI
bus and local memory. These transfers are summarized in the following sections. The DMA
Controller does not support Master-Initiated wait states on either interface.

PCI-to-Local Memory Transfers

PCI-to-Local memory transfers perform read cycles on the PCI bus and place the data into the
DMA channel queues. Once data is placed into the queue, the internal bus interface of the DMA
channel will request the internal bus and drain the queue by writing the data to the local memory.

The application software can use the various PCI command types to improve system performance
for these transfers. The three defined PCI read commands include: Memory Read, Memory Read
Line, and Memory Read Multiple. Refer to the PCI Local Bus Specification, Revision 2.2 for full
description of these PCI commands.

For example, a Memory Read Multiple command can be programmed if the block size is larger
than a cache line. This is used to notify the PCI target that the DMA channel intends to transfer a
large block of data and the target should try to read ahead and anticipate the DMA controller read
requests.

The application software determines which command type best meets the needs of the system.

Local Memory to PCI Transfers: Memory Write Command

Local memory to PCI transfers perform read cycles on the internal bus and place the data into the
DMA channel queues. Once data is placed into the queue, the PCI bus interface of the DMA
channel will request the PCI bus and drain the queue by writing the data to the PCI bus. Memory
Write commands can be used for all data transfers to the PCI bus.

Local memory to PCI transfers generate two PCI write command types: Memory Write and
Memory Write and Invalidate. The application software can use the appropriate PCI command
type. However, the PCI target may provide better system performance by using the Memory Write
and Invalidate command.

Developer's Manual

19.5.3

19.5.4

Intel® 80303 110 Processor
OMA Controller Unit

Local Memory to PCI Transfers: Memory Write and
Invalidate Command

The second mechanism for performing local memory to PCI transfers may improve system
performance based on the PCI target capabilities. The Memory Write and Invalidate (MWI)
command improves system performance when the target is cacheable memory.

The DMA channel will attempt to use the Memory Write and Invalidate command on the PCI bus
whenever programmed by the application software. The DMA channel will request the PCI bus
once a complete cache line is available in the DMA queue. However, there are a number of
circumstances which may prevent the DMA channel from actually initiating the MWI command. It
is the responsibility of the application software to meet the requirements for the MWI command.

If any of the following three conditions is not met, the channel will convert the MWI command to a
Memory Write command for the complete DMA transfer:

1. The ATU Cacheline Size Register (ATUCLSR), located in the ATU configuration space, must
have a valid value other than zero. This register is programmed by host software.

2. The ATUCLSR must have a legal value which is less than or equal to the number of queue
entries in the DMA channel queue. (The channel must guarantee an entire cache line can be
transferred during an MWI bus transaction).

3. The Memory Write and Invalidate Enable bit in the Primary ATU Command Register (for
channels 0 and 1) or the Secondary ATU Command Register (for channel 2) must be set.

If the above conditions are met, the DMA channel provides full MWI support. For example, to
transfer an 80 byte block to a PCI address of 800lCH while the ATUCLSR is 8 DWORDs, the
DMA channel will perform three PCI transactions:

1. Transfer of 4 bytes at address 8001 CH using the Memory Write command.

2. Transfer of 64 bytes at address 80020H using the MWI command.

3. Transfer of 12 bytes at address 80060H using the Memory Write command.

Exclusive Access

The DMA Controller does not support exclusive access through the PCI LOCK# signal.

Developer'S Manual 19-15

Intel@ 80303 liD Processor
DMA Controller Unit

19.6

19-16

Data Queues

DMA Ch-O and Ch-l each contain a 256-byte, bidirectional data queue. DMA Ch-2 on the
secondary side contains a 64-byte, bidirectional data queue. These queues temporarily hold data to
increase performance of data transfers in both directions.

Developer's Manual

intel·
19.7

19.7.1

Data Alignment

Intel(£?) 80303 I/O Processor
DMA Controller Unit

Each channel contains a hardware data alignment unit to support unaligned data transfers between
the source and destination busses. The data alignment unit optimizes data transfers to and from 32
and 64-bit memory. The channel will reformat data words for the correct bus data width.

Aligned data transfers involve data accesses that fall on natural boundaries. For example; double
words are aligned on 8-byte boundaries and words are aligned on 4-byte boundaries. DMA
transfers can occur with both the source and destination addresses unaligned.

54-bit Unaligned Data Transfers

Figure 19-7 illustrates a DMA transfer between unaligned 64-bit source and destination addresses.

Figure 19-7. Optimization of an Unaligned DMA

64-bit Sou ree bus
(PCI Bus)

RE064#.and
ACK64# sample

asserted

Destination
(internal bus)

Programmed Values

CCR 00000001H I
PADR AOOO0201H I
PUADR OOOOOOOOH I
LADR 4001 0307H I
BCR 00000014H I
OCR 00000006H I

Developer's Manual

Memory LSB

byte number

ADDRESS

AOOO 0200H

AOOO 0208H

AOOO 0210H

40010300H

40010308H

40010310H

40010318H

Bus operation

SOURCE
double word load@ A0000200
double word load@ A0000208
double word load@ A0000210

DESTINATION

byte store@ 40010307
double word store@ 40010308
double word store@ 40010310
3-byte store@ 40010318

19-17

!ntef® 80303 110 Processor
DMA Controller Unit

19.7.2 64/32-bit Unaligned Data Transfers

Figure 19-8 illustrates a DMA transfer between an unaligned 32-bit source address and an
unaligned 64-bit destination address.

Figure 19-8. Optimization of an Unaligned DMA

MSB

64-bit Destination bus
(internal bus)

Programmed Values

CCR 00000001H I
PADR AOOO0201H I
PUADR OOOOOOOOH I
LADR 40010303H I
BCR 00000010H I
OCR 00000006H I

19-18

LSB----~--------------~

MSB --,!--t

32-bit Source bus
(PCI Bus)

byte number

SOURCE
word load@ A0000200
word load@ A0000204
word load@ A0000208
word load@ A000020C
word load@ AO000210

ADDRESS

AOOO 0200H

AOOO 0204H

AOOO 0208H

AOOO 020CH

AOOO 0210H

4001 0300H

4001 0308H

4001 0310H

Bus operation

DESTINATION

5-byte store@ 40010303
8-byte store@ 40010308
3-byte store@ 40010310

Developer's Manual

int:et
19.8 Channel Priority

fntel@ 80303 110 Processor
OMA Controller Unit

The 80960 internal bus arbitration logic determines which internal bus master has access to the
internal bus. Each DMA channel has an independent bus Request/Grant signal pair to the internal
bus arbitration. Chapter 17, "Intel@ 80303 1/0 Processor Arbitration" further describes the priority
scheme between all the bus masters on the internal bus. Also described is the priority mechanism
used between the three DMA channels.

Developer's Manual 19-19

Intel@ 80303 I/O Processor
DMA Controller Unit

19.9 Programming Model State Diagram

in1:et

The channel programming model diagram is shown in Figure 19-9. Error condition states are not
shown.

Figure 19-9. DMA Programming Model State Diagram

NOAR != 0 && !Internal Bus error

19-20 Developer's Manual

intet@
19.10

19.10.1

Inte/® 80303 flO Processor
DMA Controller Unit

DMA Channel Programming Examples

The software for the DMA channels falls into the following categories:

• Channel initialization

• Start DMA transfer

• Suspend channel

Examples for each of the software is shown in the following sections as pseudo code flow.

Software DMA Controller Initialization

The DMA Controller is designed to have independent control of the interrupts, enables, and
control. The initialization consists of virtually no overhead as shown in Figure 19-10.

Figure 19-10. Software Example for Channel Initialization

19.10.2

CCRO = Oxoooo 0000 ; Disable channel
Call setup_channel

Software Start DMA Transfer

The DMA channel control register provides independent control per channel based on each time
the DMA channel is configured. This provides the greatest flexibility to the applications
programmer. The example shown in Figure 19-11 describes the pseudo code for starting a DMA
transfer on channel O.

Figure 19-11. Software Example for DMA Transfer

; Set up descriptor in local memory at address d

d. nad = a No chaining

d.pad = OxOOOOFOOO Source address of OOOOFOOOH

d.puad = 0 DAC is not used
d.lad = OxBOOOOOOO Destination address BOOOOOOOH

d.bc 64 byte count of 64
d.dc = Ox00000016 PCI Memory Read command, DAC disabled,

Interrupt processor after transfer

; Check for inactive channel & no interrupts pending
if (CSRO != 0) exit; If channel is not ready, exit

; Start transfer

NDARO = &d Set up descriptor address

CCRO = OxOOOOOOOl Set Channel Enable bit to start

Developer's Manual 19-21

Intel® 80303 liD Processor
DMA Controller Unit

19.10.3 Softwa.re Suspend Cha.nnel

The channel may need to be suspended for various reasons. The channel provides the ability to
suspend the state of the channel without losing the current status. The channel will resume DMA
operation without requiring the software to save the channel configuration. The example shown in
Figure 19-12 describes the pseudo code for suspending channel O.

Figure 19-12. Software Example for Channel Suspend

CCRO = OxOOOO 0000 ; Suspend Channel 0

Channel suspended

CCRO OxOOOO 0001 Resume Channel 0

19-22 Developer's Manual

19.11 Interrupts

Intel@ 80303 110 Processor
DMA Controller Unit

Each channel can generate an interrupt to the i960 core processor. The Interrupt Enable bit in the
Descriptor Control Register (DCRx.ie) determines whether the channel generates an interrupt upon
successful error-free completion of a DMA transfer. Error conditions described in Section 19.12
also generate an interrupt. Each channel has one interrupt output connected to the PCI and
Peripheral Interrupt Controller described in Chapter 8, "PCI and Peripheral Interrupt Controller
Unit" summarizes the status flags and conditions when interrupts are generated in the Channel
Status Register (CSRx).

Table 19-2. DMA Interrupt Summary

Channel Status Register (eSR) Flags
Interrupt

Generated?

... ~ (; (; ~ Interrupt .f!:! t: .!l W ~ II) '(5 .!l W W « « Cil
Condition Cil t: J: II) (Jl 0 ro ... :> t=- o .Sl W ~ :::l .!!! n '0 til III .!!1 - II) ... ~ iii a: a: « 0 ro {!. 1:1 :2 Il. 0

1:1 t: 0 E Ci 0
t: W 0 0 .l!l Ci
W Il. Il. Il. .:

Byte count == 0 &&
NDARx != NULL 1 1 0 0 0 0 0 y N
(End of Transfer)

Byte Count == 0 &&
NDARx == NULL 0 0 1 0 0 0 0 y N

(End of Chain)

PCI Master-Abort 0 0 0 1 0 0 0 y y

PCI Target-Abort 0 0 0 0 1 0 0 y y

PCI Parity Error 0 0 0 0 0 1 0 Y Y

Internal Bus Error 0 0 0 0 0 0 1 Y Y

Note: End-of-Transfer and End-of-Chain flags will be set only when DCR.ie = 1. If DCR.ie = 0, then the
above flags are always set to 0. End-of-Transfer Interrupt and End-of-Chain Interrupt can only be
reported in the CSR if the DMA transfer completed without any reportable errors.The channel shall
never report an End-of-Transfer interrupt or End-of-Chain interrupt along with any PCI error
conditions. Multiple error conditions may occur and be reported together. Also, because the
channel does not stop after reporting the End-of- Transfer Interrupt, internal bus errors may occur
before the End-of-Transfer interrupt is acknowledged and cleared.

Developer's Manual 19-23

fnte/® 80303 liD Processor
DMA Controller Unit

19.12

19.12.1

19.12.2

19-24

Error Conditions

There are four error conditions that may occur during a DMA transfer that are recorded by the
channel. All error conditions are reported by setting the appropriate bit in the Channel Status
Register (CSR). The DMA controller must satisfy all "retries" even when an error condition occurs
on the opposite bus.

The possible error conditions are:

• PCI Master-Abort

• PCI Target-Abort

• PCI Data Parity Error

• Internal Bus Errors

pel Errors

• If a PCI Master-Abort occurs during a DMA transfer, the channel will set bit 3 in the CSR. The
channel will also reflect the error to the Address Translation Units (PATU or SATU depending
on which channel was the master while the error occurred). The ATU will in turn, record this
error condition by setting the appropriate bit in its status register (PATUSR or SATUSR). Refer
!2 Chapter 15, "PCI Address Translation Unie for complete details.

• If a PCI Target-Abort (Master) occurs during a DMA transfer, the channel will set bit 2 in the
CSR. The channel will also reflect the error to the Address Translation Units (PATU or SATU
depending on which channel was the master while the error occurred). The ATU will in tum,
record this error condition by setting the appropriate bit in its status register (PATUSR or
SATUSR). Refer to Chapter 15, "PCI Address Translation Unit" for complete details.

• If a PCI data parity error occurs during a DMA transfer, the channel will set bit 0 in the CSR.
The channel will also reflect the error to the Address Translation Units (PATU or SATU
depending on which channel was the master while the error occurred). The ATU will in tum,
record this error condition by setting the appropriate bit in its status register (PATUSR or
SATUSR). For PCI parity errors, data with incorrect parity is never transferred to local
memory. Refer to Chapter 15, "PCI Address Translation Unit" for complete details.

Internal Bus Errors

• If an error occurs during a read of the Chain Descriptor or Next Descriptor Address, the
channel may set the Internal Bus Master-abort error flag in the CSR. Then, the channel will
load the registers (if possible) and stop.

• If an error occurs when the DMA channel is mastering a transaction on the PCI bus, the
channel will prematurely end the transaction and stop transferring data as soon as possible.

• If the channel has asserted its PCI request signal, but not yet started the transaction, the
channel will deassert its request.

• If the channel has not yet asserted a request for the PCI bus, the channel will never assert a
request for the bus.

When an error condition occurs, the actions taken are detailed below:

Developer's Manual

intel· fntel@ 80303 liD Processor
DMA Controller Unit

• The channel shall cease data transfers for the current chain descriptor and clear the Channel
Active flag in the CSR.

• The channel will invalidate any data held in the queue and not read any new chain descriptors.

• The channel will set the appropriate error flag in the Channel Status Register. For example; if a
PCI Master-Abort occurred during a DMA transfer, the channel will set bit 3 in the CSR.
During an MWI transaction, the channel will complete the transfer of the cache line before
stopping.

• The channel also signals an interrupt to the i960 core processor.

• The channel will not restart a DMA transfer after any error condition. It is the responsibility of
the application software to configure the channel to complete any remaining transfers.

Note: IB errors (Target-abort only) that occur while a DMA channel is the master on the internal bus are
recorded by the MCU and interrupt the core. For correct operation of the DMA channel, user
software has to disable the channel before clearing the error condition. Further, the channel needs
to be re-enabled by writing a 1 to CCR.ce before initiating a new operation.

Accesses to the MCU can be 64-bits or smaller. In both cases, there are three possible scenarios for
multi-bit ECC errors on reads or writes. These errors conditions are handled as detailed below:

• Multi-bit ECC error on MCU Data Read: Refer to Chapter 13, "Memory Controller" for
complete details regarding error handling.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the first data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, "Memory Controller" for complete details regarding error handling.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the last data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, "Memory Controller" for complete details regarding error handling.

Developer's Manual 19-25

Intel@ 80303 liD Processor
DMA Controller Unit int:et
19.13

19.14

Power-up/Default Status

Upon power-up, an external hardware reset, the DMA Registers will be initialized to their default
values.

Register Definitions

The DMA controller contains registers for controlling each channel. Each channel has nine
memory-mapped control registers for independent operation. In register titles, x is 0, I, or 2 for
channel 0, I, or 2 respectively.

There is read/write access only to the Channel Control Register, Channel Status Register, and the
Next Descriptor Address Register. The remaining registers are read-only and are loaded with new
values from the chain descriptor whenever the channel reads a chain descriptor from memory.

Table 19-3. DMA Controller Unit Registers

Section, Register Name, Acronym (page)

Section 19.14.1, "Channel Control Register - CCR" on page 19-27

Section 19.14.2, "Channel Status Register - CSR" on page 19-28

Section 19.14.3, "Next Descriptor Address Register - NDAR" on page 19-30

Section 19.14.4, "Descriptor Address Register - DAR" on page 19-31

Section 19.14.5. "Byte Count Register - BCR" on page 19-32

Section 19.14.6, "PCI Address Register- PADR" on page 19-33

Section 19.14.7. "PCI Upper Address Register - PUADR" on page 19-34

Section 19.14.8, "Intel® i960® Local Address Register - LADR" on page 19-35

Section 19.14.9. "Descriptor Control Register - DCR" on page 19-36

19-26 Developer's Manual

intel·
19.14.1

Table 19-4.

101" [
Attributes

PC! [
AI.t,-;butes

Channel Control Register - CCR

Inte/@ 80303 liD Processor
OMA Controller Unit

The Channel Control Register (CCR) specifies parameters that dictate the overall channel
operating environment. The CCR should be initialized prior to any other DMA register following a
system reset. Figure 19-4 shows the register format for the CCR. This register can be read or
written while the DMA channel is active.

Channel Control Register - CCR

Channel #

o
Intel® i960® Core internal bus address

1400H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only 1

2
1440H
1480H NA = Not Accessible

Bit Default Description

31 :02 OOOOOOOOH Reserved

01

00

Developer'S Manual

Chain Resume - when set, causes the channel to resume chaining by re-reading the current descriptor
located at the address in the Descriptor Address Register when the channel is idle (CA bit in the CSR is
clear) or when the channel completes a DMA transfer. This bit is cleared by the hardware when either:

• The channel completes a DMA transfer and the Next Descriptor Address Register is zero. In this
case, the channel proceeds to the next descriptor in the chain.

• The channel re-reads the chain descriptor located at the address in the Descriptor Address Register
and loads the Next Descriptor Address of that descriptor into the Next Descriptor Address Register

Channel Enable - When set, the channel enables DMA transfers. When clear, the channel disables DMA
transfers. Clearing this bit once the channel is active suspends the current DMA transfer at the earliest
opportunity by halting all internal bus transactions. The PCI interface may continue with the current
transfer until the data queue either fills or empties. The channel does not initiate any new DMA transfers
when this bit is cleared. Data held in queues remains valid. Setting this bit after the channel is
suspended causes the channel to resume the DMA transfer.

The Channel Enable bit works in conjunction with the Bus Master Enable bit of the Primary ATU
Command Register for DMA Channel 0 and 1 and with the Bus Master Enable bit of the Secondary ATU
Command Register for DMA Channel 2. The respective Bus Master Enable bit must be set for the DMA
channel to start a transaction on the PCI bus.

19-27

~

Inte/@ 80303 110 Processor
DMA Controller Unit int:et
19.14.2 Channel Status Register - CSR

The Channel Status Register (CSR) contains status flags that indicate the channel status. This
register is typically read by software to examine the source of an interrupt. See Section 19.12 for a
description of the error conditions that are reported in the CSR. See Section 19.11 for a description
of interrupts caused by the DMA channel.

If a DMA error occurs, application software must check the status of the Channel Active flag
before processing the interrupt. It is possible that the channel may still be active completing
outstanding pcr transactions.

Table 19-5. Channel Status Register - CSR (Sheet 1 of 2)

lOP [
Attributes

8 4 o

PCI [
Attributes \na\nalml\nI~\Oia\na\n.a\n!a\rla\rl!!\rla\!1a\na\na\na'l1a',nal~a'\na\na\na\nal\nel\nel\m~\n.a\'1ia\n,a\na\nla\rla\rla'

Channel #

o
1
2

Bit Default

Intel® i960® Core internal bus address

1404H
1444H
1484H

Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :11 OOOOOOH Reserved

10

09 O2

08 O2

07:06 O2

05 O2

04 O2

03 O2

02 O2

19-28

Channel Active Flag - indicates the channel is either active (in use) or inactive (available). When set,
indicates the channel is in use and actively performing DMA data transfers. When clear, indicates the
channel is inactive and available to be configured to transfer data. The channel clears the Channel
Active flag when the previously configured DMA transfer completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value detected for Next
Descriptor Address in chain descriptor)

• PCI Master-abort occurred on the PCI interface

• PCI Target-abort occurred on the PCI interface

• PCI parity error occurred on the PCI interface

• Internal Bus Errors

The Channel Active flag is set when a Chain Descriptor is read from memory.

End of Transfer Interrupt Flag - set when the channel has signalled an interrupt to the Intel® i960® core
processor after successfully completing an error-free DMA transfer but it is not the last descriptor in a
chain.

End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the i960 core processor
after successfully completing an error-free DMA transfer that is the last of a chain.

Reserved

Internal Bus Master-Abort Flag - All Master-aborts when the channel is the master on the internal bus
will be reflected by setting this bit.

Reserved

PCI Master Abort Flag - set when the channel has initiated a transaction on the PCI bus and has
detected a Master-abort.

PCI Target Abort Flag - set when the channel has initiated a transaction on the PCI bus and has
detected a Target-abort.

Developer's Manual

Table 19-5.

101" [
Attributes

PCI [
Attrii'Jutes

Channel #

o
1
2

Channel Status Register - CSR (Sheet 2 of 2)

31 28 24 20

Intel® i960® Core internal bus address

1404H
1444H
1484H

16 12

Intel® 80303 liD Processor
DMA Controller Unit

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 (1

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Bit Default Description

01 Reserved

PCI Parity Error Flag - is set when the following conditions are met:

00 • DMA channel asserted PERR# or has observed PERR# asserted

• DMA channel was the master for the transaction during which the error occurred

Developer's Manual 19-29

Intef® 80303 liD Processor
DMA Controller Unit intel·
19.14.3 Next Descriptor Address Register - NDAR

The Next Descriptor Address Register (NDARx) contains the address of the next chain descriptor
in 80960 local memory for a DMA transfer. When starting a DMA transfer, this register contains
the address of the first chain descriptor. Table 19-6 depicts the Next Descriptor Address Register.

All chain descriptors are required to be aligned on an eight 32-bit word boundary. The channel may
set bits 04:00 to zero when loading this register.

Note: The Channel Enable bit in the CCR and the Channel Active bit in the CSR must both be clear prior
to writing the Next Descriptor Address Register. Writing a value to this register while the channel
is active may result in undefined behavior.

Table 19-6. Next Descriptor Address Register - NDAR

31 28 24 20 16 ',2 8

lOP [
Attributes

r4~~~-+-+-+~-r-r-r~-r-r~~~~~~~~+-+-+-+-

Channel #

o
1
2

Bit

Intel® i960® Core internal bus address

1410H
1450H
1490H

Default

00000000000

Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31 :05 00000000000 Next Descriptor Address - local memory address of the next chain descriptor to be read by the channel.
000002

04:00 000002 Reserved

19-30 Developer's Manual

intel·
19.14.4 Descriptor Address Register - DAR

Inte/@ 80303 I/O Processor
DMA Controller Unit

The Descriptor Address Register (DARx) contains the address of the current chain descriptor in
80960 local memory for a DMA transfer. This register read-only and is loaded when a new chain
descriptor is read. Table 19-7 depicts the Descriptor Address Register.

All chain descriptors are aligned on an eight 32-bit word boundary

Table 19-7. Descriptor Address Register - DAR

20

PCI [
Attdbutes !.

Channel #

o
1
2

Bit

Intel® i960® Core internal bus address

140CH
144CH
148CH

Default

16 12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

00000000000
31:05 00000000000

000002

Current Descriptor Address - local memory address of the current chain descriptor that was read by the
channel.

04:00 000002 Reserved

Developer's Manual 19-31

Intel@ 80303 I/O Processor
DMA Controller Unit

19.14.5 Byte Count Register - BeR

The Byte Count Register (BCRx) contains the number of bytes to transfer for a DMA transfer. This
is a read-only register that is loaded from the Byte Count word in a chain descriptor. It allows for a
maximum DMA transfer of 16 Mbytes. A value of zero is a valid byte count and results in no data
words being transferred and no cycles generated on either the PCI bus or the internal bus.

Anytime this register is read by the i960 core processor, it contains the number of bytes left to
transfer on the internal bus. Note that valid data may be in the channel's data queue. This register is
decremented by 1 through 8 bytes for every successful transfer from the source to destination
locations. Table 19-8 shows the Byte Count Register

Note: The byte count value is not required to be aligned to a 32-bit word boundary.

Table 19-8. Byte Count Register - BeR

lOP [
Attributes

Channel #

o
1
2

31 28 24 20

Intel® i960® Core internal bus address

1420H
1460H
14AOH

16 12

Bit Default Description

31 :24 OOH Reserved

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

23:00 OOOOOOH Byte Count - is the number of bytes to transfer for a DMA transfer.

19-32

4 o

RW = ReadlWrite
RC = Read Clear
RO = Read Only

NA = Not Accessible

Developer's Manual

19.14.6 pel Address Register - PADR

Intel@ 80303 liD Processor
DMA Controller Unit

The PCI Address Register (PADR) contains the 32-bit PCI address for SAC cycles or the lower
32-bit PCI address of a 64-bit PCI address for DAC cycles. This address is the source or destination
of the DMA transfer. This register is read-only and is loaded when a chain descriptor is read from
memory.

Tahle 19-9 shows the PCI Address Register.

The channel will drive the P _AD[1:0] or S_AD[1:0] to a value of 002 indicating linear addressing.
Refer to the PCI internal bus specification for additional information.

Note: The application programmer must not program the channel to transfer data across a 4 Gbyte
boundary (i.e., the lower 32-bit address must not increment past the maximum address of
FFFF.FFFFH). The channel will not notify the application of this condition.

Table 19-9. PCI Address Register - PADR

Channel #

o
1
2

Intel® i960® Core internal bus address

1414H
1454H
1494H

Bit Default Description

31:00 OOOOOOOOH PCI Address - is the PCI source/destination address.

Developer's Manual

Attribute Legend: RW = Read/Write
RV = Reserved RC = Read Clear
PR = Preserved RO = Read Only
RS = Read/Set NA = Not Accessible

19-33

Intel® 80303 110 Processor
DMA Controller Unit

19.14.7 pel Upper Address Register - PUADR

infel·

The PCI Upper Address Register (PUADRx) contains the upper 32-bit address of a 64-bit address.
Table 19-10 shows the register. This register is read-only and is loaded when a chain descriptor is
read from memory

Table 19-10. PCI Upper Address Register - PUADR

PCi [
;\!tributes

Channel #

o
1
2

31 28 24 20

Intel® i960® Core internal bus address

1418H
1458H
1498H

Bit Default Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

31 :00 OOOOOOOOH PCI Upper Address - is the PCI source/destination upper address.

19-34

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

Developer's Manual

intel·
19.14.8

Intel® 80303 I/O Processor
DMA Controller Unit

Intel® i960® Local Address Register - LADR

The 80960 Local Address Register (LADRx) contains the 32-bit 80960 local address. The 80960
address space is a 32-bit, byte addressable address space. Table 19-1] shows the 80960 Local
Address Register. This read-only register is loaded when a chain descriptor is read from memory.

Note: Access to the Peripheral Memory-Mapped Registers through a DMA transfer is not allowed. The
LADRx should not be programmed with values less than 0000 2000H, as this address space is
reserved. The hardware must ensure that all internal bus accesses to this address space are properly
terminated

Table 19-11. Intel® i960® Local Address Register - LADR

Channel #

o
1
2

31 28 24 20

Intel® i960® Core internal bus address

141CH
145CH
149CH

16 12

Bit Default Description

8

Attribute Legend:
RV == Reserved
PR == Preserved
RS == Read/Set

31 :00 OOOOOOOOH Intel® i960® Local Address - the 80960 local source/destination address.

Developer's Manual

4 o

RW == Read/Write
RC == Read Clear
RO == Read Only

NA == Not Accessible

19-35

Intel@ 80303 110 Processor
DMA Controller Unit

19.14.9 Descriptor Control Register - DCR

The Descriptor Control Register contains control values for the DMA transfer on a per-chain
descriptor basis. This read-only register is loaded whenever a chain descriptor is read from
memory. These values may vary from chain descriptor to chain descriptor. Table] 9-12 shows the
definition of the Descriptor Control Register.

Table 19-12. Descriptor Control Register - OCR

lOP [
Attributes

31 28 24 20 16 12 8 4 o

Channel #

o
Intel® i960® Core internal bus address

1424H

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only 1

2

Bit Default

31:06 OOOOOOH

05

04

03:00

19-36

1464H
14A4H NA = Not Accessible

Description

Reserved

Dual Address Cycle Enable - determines the address cycle type generated on the PCI bus. When set,
the channel uses Dual Address Cycle (DAC) to transfer a 64-bit address. When clear, the channel uses
Single Address Cycle (SAC) to transfer a 32-bit address. For DAC, the PCI Address Register (PADRx)
contains the lower 32-bit address used on the first address cycle. The PCI Upper Address Register
(PUADRx) contains the upper 32 bits address cycle used on the second address cycle. The upper 32 bit
address of a DAC transaction is required to be non-zero. Refer to Section 19.4 for details on 54-bit
addressing.

Interrupt Enable - when set, the channel generates an interrupt to the Intej® 80303 I/O processor upon
completion of a DMA transfer. When clear, no interrupt is generated.

PCI Command - determines PCI bus command type for this DMA transfer. This value is used directly for
the PCI bus command; e.g., when PCI Command is 00002, the PCI Command is 00002, a reserved
command type. See Table 19-13. Hardware does not check for reserved or unsupported command
types.

Developer's Manual

intel·
19.14.9.1 PCI Commands Support

Intel@ 80303 I/O Processor
DMA Controller Unit

The Memory Write and Invalidate command is fuJly supported by aJl channels of the DMA
controller. Refer to Section 19.5.3. "Local Memory to PCI Transfers: Memory Write and Invalidate
Command" on page 19-15 for a complete description of the behavior of the DMA channel during
this PCI bus cycle.

Table 19-13. PCI Commands

C/BE[3:0]# PCI Command Type Description

00002 Intack Not Supported

0001 2 SpCyc Not Supported

00102 I/O Read Not Supported

0011 2 I/O Write Not Supported

01002 reserved Not Supported

0101 2 reserved Not Supported

01102 Memory Read Memory Read of less than one cacheline

0111 2 Memory Write Memory Write

10002 reserved Not Supported

1001 2 reserved Not Supported

10102 Configuration Read Not Supported

1011 2 Configuration Write Not Supported

11002 Memory Read Multiple Memory Read of more than one cacheline

1101 2 reserved Not Supported

11102 Memory Read Line Memory Read of one cacheline

11112
Memory Write and Memory Write which guarantees the transfer of complete cache

Invalidate line (s) during the current transaction

Developer's Manual 19-37

intel· Intel® 80303 liD Processor
Application Accelerator Unit

Application Accelerator Unit 20

20.1

This chapter describes the integrated Application Accelerator (AAU) Unit. The operation modes,
setup, external interface, and implementation of the AAU are detailed in this chapter.

Overview

The Application Accelerator provides low-latency, high-throughput data transfer capability
between the AAU and Intel® 80303 I/O processor local memory. It executes data transfers to and
from 80303 local memory and also provides the necessary programming interface. The Application
Accelerator performs the following functions:

• Transfers data (read) from memory controller.

• Performs an optional boolean operation (XOR) on read data.

• Transfers data (write) to memory controller.

The AAU features:

• 1 K -byte, arranged as 8-byte x 128-deep store queue.

- Configurable to a 512-byte, arranged as 8-byte x 64-deep store queue.

• Utilization of the 80303 110 processor memory controller Interface.

• 232 addressing range on the Intel® 80960 local memory interface.

• Hardware support for unaligned data transfers for the internal bus.

• Fully programmable from the Intel® i960® core processor.

• Support for automatic data chaining for gathering and scattering of data blocks.

Figure 20-1 shows a simplified connection of the Application Accelerator to the 80303 I/O
processor internal bus.

Figure 20-1. Application Accelerator Unit

Application Accelerator Unit
)

internal bus

Developer's Manual 20-1

Intel® 80303 liD Processor
Application Accelerator Unit in1:et
20.2 Theory of Operation

The Application Accelerator is a master on the internal bus and performs data transfers to and from
local memory. It does not interface to either the primary PCI or secondary PCI bus. The AAU uses
direct addressing for the memory controller.

The Application Accelerator Unit implements the XOR algorithm in hardware. It performs the
XOR operation on multiple blocks of source (incoming) data and stores the result back in 80960
local memory. The source and destination addresses are specified through chain descriptors
resident in 80960 local memory. Figure 20-2 shows the block diagram of the AAD. The AAU can
also be used to perform memory-to-memory transfers of data blocks controlled by the 80303 1/0
processor memory controller unit.

Figure 20-2. Application Accelerator Block Diagram

20-2

Application Accelerator Un

Data Queue

Control Registers

Packing/

Boolean Unit unp~~~ing

Accelerator Control Register
Accelerator Status Register

Accelerator Descriptor Address Register
Accelerator Next Descriptor Address Register

80960 Local Source Address Register
80960 Local Destination Address Register

Accelerator Byte Count Register
Accelerator Descriptor Control Register

Intel@ 80960
Bus Interface ~ 54-bit

Internal Bus

The Application Accelerator programming interface is accessible from the internal bus through a
memory-mapped register interface. Data for the XOR operation is configured by writing the source
addresses, destination address, number of bytes to transfer, and various control information into a
chain descriptor in local memory. Chain descriptors are described in detail in Section 20.3.2,
"Chain Descriptor Format (Four Source Addresses)" on page 20-4.

The Application Accelerator unit contains a hardware data packing and unpacking unit. This unit
enables data transfers from and to unaligned addresses in 80960 local memory. All combinations of
unaligned data are supported with the packing and unpacking unit. Data is held internally in the
Application Accelerator until ready to be stored back to local memory. This is done using a
lK-byte holding queue (arranged as an 8-byte x 128-deep queue). Data to be written back to 80960
local memory can either be aligned or unaligned.

Each chain descriptor contains the necessary information for initiating an XOR operation on blocks
of data specified by the source addresses. The Application Accelerator unit supports chaining.
Chain descriptors that specify the source data to be XORed can be linked together in 80960 local
memory to form a linked list.

Developer'S Manual

intel·
20.3

20.3.1

Hardware-Assist XOR Unit

Inte/® 80303 110 Processor
Application Accelerator Unit

The Application Accelerator Unit implements the XOR algorithm in hardware. It performs the
XOR operation on multiple blocks of source (incoming) data and stores the result back in 80960
local memory.

• The process of reading source data, executing the XOR algorithm, and storing the XOR data
will hereafter be referred to as XOR-transfer.

• The process of reading or writing data will hereafter be referred to as data transfer.

The source and destination addresses are specified through chain descriptors resident in 80960
local memory.

Data Transfer

All transfers are configured and initiated through a set of memory-mapped registers and one or
more chain descriptors located in local memory. A transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded in the
chain descriptor before a transfer begins. Table 20-1 describes the registers that need to be
configured for any operation.

Table 20-1. Register Description

Register Abbreviation Description

Accelerator Control Register ACR Application Accelerator Control Word

Accelerator Status Register ASR Application Accelerator Status Word

Accelerator Descriptor Address Register ADAR Address of Current Chain Descriptor

Accelerator Next Descriptor Address
ANDAR Address of Next Chain Descriptor

Register

Source Address Register SAR1.. SARB Local memory addresses of source data

Destination Address Register DAR Local memory address of destination data

Accelerator Byte Count Register ABCR Number of Bytes to transfer

Accelerator Descriptor Control Register ADCR Chain Descriptor Control Word

Developer's Manual 20-3

Inte/@ 80303 110 Processor
Application Accelerator Unit

20.3.2 Chain Descriptor Format (Four Source Addresses)

All transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one transfer. A single transfer has only one chain
descriptor in memory. Chain descriptors can be linked together to form more complex operations.

To perform a transfer, one or more chain descriptors must first be written to 80960 local memory.
Figure 20-3 shows the format of an individual chain descriptor. Every descriptor requires eight
contiguous words in 80960 local memory and is required to be aligned on an 8-word boundary. All
eight words are required.

Figure 20-3. Chain Descriptor Format

20-4

Chain Descriptor in Intel® 80960 Memory
Description

Next Descriptor Address (NDA) Address of Next Chain Descriptor

80960 Source Address (SAR1)
Source Address for first block of data

80960 Source Address (SAR2) Source Address for second block of data

80960 Source Address (SAR3) Source Address for third block of data

80960 Source Address (SAR4) Source Address for fourth block of data

80960 Source AdcJress (DAR) Destination Address

Byte Count (BC) Number of bytes

Descriptor Control (DC) Descriptor Control

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

• The first word is the 80960 local memory address of the next chain descriptor. A value of zero
specifies the end of the chain. This value is loaded into the Accelerator Next Descriptor
Address Register. Because chain descriptors must be aligned on an 8-word boundary, the unit
may ignore bits 04:00 of this address.

• The second word is the address of the first block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into the Source Address
Register 1.

• The third word is the address of the second block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into the Source Address
Register 2.

• The fourth word is the address of the third block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into the Source Address
Register 3.

• The fifth word is the address of the fourth block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into the Source Address
Register 4.

Developer's Manual

intel· fntef@ 80303 110 Processor
Application Accelerator Unit

• The sixth word is the destination address where data will be stored in 80960 local memory.
This address will be driven on the internal bus. This value is loaded into the Destination
Address Register.

• The seventh word is the Byte Count value. This value specifies the number of bytes of data in
the current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

• The eighth word is the Descriptor Control Word. This word configures the Application
Accelerator for one operation. This value is loaded into the Accelerator Descriptor Control
Register.

There are no data alignment requirements for any of the source addresses or the destination
address. However, maximum performance is obtained from aligned transfers, especially small
transfers. See Section 20.4.

Refer to Section 20.11 for additional description on the control registers.

To perform an XOR-transfer, a series of chain descriptors can be built in local memory to XOR
multiple blocks of source data resident in 80960 local memory. The XOR-ed result is then stored
back in 80960 local memory. An application can build multiple chain descriptors to XOR many
blocks of data which have different source addresses within the local memory.

Developer's Manual 20-5

Intel® 80303 I/O Processor
Application Accelerator Unit

When multiple chain descriptors are built in 80960 local memory, the application can link each of
these chain descriptors using the Next Descriptor Address in the chain descriptor. This address
logically links the chain descriptors together. This allows the application to build a list of transfers
which may not require the processor until all transfers are complete. Figure 20-4 shows an example
of a linked-list of transfers specified in external memory.

Figure 20-4. XOR Chaining Operation

r~ ___ N~e_xt_D_e_s_c_ri~p_to_r_A_d_d_re_S_S~(_N_D_A~) __ ~
Intel'"' 80960 Source Address (SAR1)

80960 Source Address (SAR2)

80960 Source Address (SAR3)
80960 Source Mdress (SAR4)

80960 Source Address (DAR)

Byte Count (Be)

Dffscriptor Controi (DC)

Next Descriptor Address (NDA)

80960 Source Address (SAFl1)
80960 Source Address (SAP2)

80960 Source Address (SAR3)

80960 Source Address (SAR4)

80960 Source Address (DAR)

Byte Count (Be)

Descriptor Control (DC)

!'Jffxt Descriptor Acldmss (NDA)

80960 Source Acldress (SARi)

80960 Source Address (SAR2)
80960 Source Address (SAR3)

80960 Source Address (SAR4)

80960 Source Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

20-6

)0

Accelerator Control Register

Linked Descriptors In L.ocal Mffmory

Buffer Transfers

First Chain Descriptor
XOR

Operation

End of Chain
(!'Jull Value Detected)

Nth Chain Descriptor
XOR

Operation

Developer's Manual

20.3.3

Intel@ 80303 110 Processor
Application Accelerator Unit

Chain Descriptor Format (Eight Source Addresses)

To perform an XOR-transfer with more than 4 source blocks of data (up to 8), a special chain
descriptor needs to be configured:

• The first part (principal-descriptor) contains the address of the first 4 source data blocks along
with other information.

• The second part (mini-descriptor) contains 4, 32-bit words containing the address of the
additional four (SAR5 - SAR8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

To perform a transfer, both parts (principal and mini-descriptor) must be written to 80960 local
memory. Figure 20-5 shows the format of this configuration. Every descriptor requires twelve
contiguous words in 80960 local memory and is required to be aligned on an 8-word boundary. All
twelve words are required.

Figure 20-5. Chain Descriptor Format for Eight Source Addresses (XOR Function)

Chain Descriptor in Intel@ 80960

Next Descriptor Address (NDA)

80960 Source Address (SARi)

80960 Source Address (SAR2)

80960 Source Address (SARS)

80960 Source Address (SAR4)

80960 Source Address (DAR)

Byte Count (BC)

Descriptor Control (DC)

80960 Source Address (SARS)

80960 Source Address (SAR6)

80960 Source Address (SAR7)

80960 Source Address (SARB)

Description

Address of Next Chain Descriptor

Source Address for first block of data

Source Address for second block of data

Source Address for third block of data

Source Address for fourth block of data

Destination Address of XOR-ed data

Number of bytes to XOR

Descriptor Control

Source Address for fifth data block

Source Address for sixth data block

Source Address for seventh data block

Source Address for eighth data block

• The first word is the 80960 local memory address of the next chain descriptor. A value of zero
specifies the end of the chain. This value is loaded into the Accelerator Next Descriptor
Address Register. Because chain descriptors must be aligned on an 8-word boundary, the unit
may ignore bits 04:00 of this address.

• The second word is the address of the first block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into SARl.

• The third word is the address of the second block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into SAR2.

• The fourth word is the address of the third block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into SAR3.

• The fifth word is the address of the fourth block of data resident in 80960 local memory. This
address will be driven on the internal bus. This value is loaded into SAR4.

Developer's Manual 20-7

Intel® 80303 I/O Processor
Application Accelerator Unit

20-8

• The sixth word is the destination address where the XOR-ed data will be stored in 80960 local
memory. This address will be driven on the internal bus. This value is loaded into the
Destination Address Register.

• The seventh word is the Byte Count value. This value determines the total number of bytes of
data to XOR in the current chain descriptor. This value is loaded into the Accelerator Byte
Count Register.

• The eighth word is the Descriptor Control Word. This word configures the Application
Accelerator for one operation. This value is loaded into the Accelerator Descriptor Control
Register.

• The ninth word (1 st word of mini-descriptor) is the address of the fifth block of data resident in
80960 local memory. This address will be driven on the internal bus. This value is loaded into
SAR5.

• The tenth word (2nd word of mini-descriptor) is the address of the sixth block of data resident
in 80960 local memory. This address will be driven on the internal bus. This value is loaded
into SAR6.

• The eleventh word (3rd word of mini-descriptor) is the address of the seventh block of data
resident in 80960 local memory. This address will be driven on the internal bus. This value is
loaded SAR7.

• The twelfth word (4th word of mini-descriptor) is the address of the eighth block of data
resident in 80960 local memory. This address will be driven on the internal bus. This value is
loaded into SAR 8.

A series of chain descriptors can be built in local memory to XOR multiple blocks of source data
resident in 80960 local memory. The XOR-ed result is then stored back in 80960 local memory. An
application can build multiple chain descriptors to XOR many blocks of data which have different
source addresses within the local memory.

Developer's Manual

intel· Inte/@ 80303 liD Processor
Application Accelerator Unit

When multiple chain descriptors are built in 80960 local memory, the application can link each of
these chain descriptors using the Next Descriptor Address in the chain descriptor. This address
logically links the chain descriptors together. This allows the application to build a list of transfers
which may not require the processor until all transfers are complete. Figure 20-6 shows an example
of a linked-list of transfers specified in external memory.

Figure 20-6. XOR Chaining Operation

Descriptor Address Re9ister .q .. " .. :,~::~. ::<:',-" ::::':~':'::::,", "e:,:,::',: :~~: .. : ~,:';~W::' : ::~:~ ::;~: ;~.; :;:':: ,.:;,,:,.,.,": .. :::~:':*::*:~:

~ Next Descriptor Address (f'JOf\)

Accelerator Control Register

Linke,] Descriptors In l.ocal rVlf:molY

Intel'" SOH60 Source Address (S.AR1) Buffer Transfers

80960 Source Address (SAR2)
80960 Source Address (SAf-13) • 80960 Source Address (SAR4)
80960 Source Address (DAR)

Bvte Count (BC)
Descriptor Control (DC)

S0960 Source Address (SAR5)
80960 SourcH Address (SARS)
80960 Source Address (SARl)
80960 ::inurce Address (SARB)

· · ·
Next Descriptor Address (NOA) • End ot Chain

80960 Source Address (SAR1) (Nl JII Value Detected)

80960 Source Address ISAR2)
80960 Source Address (SAR:.1)
80960 Source Address (SAR4)
80960 Source Address (DAR)

Ei'Lte Count (BC)
Descriptor Control IOC)

80960 Source Address (SARS)
80960 Source Address (SARG) • 80960 Source Address (SAR?)
80960 Source Address (SAR8)

Developer's Manual 20-9

Intel® 80303 I/O Processor
Application Accelerator Unit in1:et
20.3.4 The Bitwise-XOR Algorithm

Figure 20-7 describes the XOR algorithm implementation. In this illustrative example, there are
four blocks of source data to be XOR-ed. The intermediate result is kept by the store queue in the
AAU before being written back to 80960 local memory. The source data is located at addresses
AOOO 0400H, AOOO 0800H, AOOO OCOOH and AOOO lOOOH respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The Application Accelerator as a master on the internal bus initiates data transfer. The
algorithm is implemented such that as data is read from local memory, the boolean unit executes
the XOR operation on incoming data.

Figure 20-7. The Bit-wise XOR Algorithm

20-10

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

l' ...
E9

Intel® 80960 Local Memory

MSB LSB

I

yt ~ bytes 1·8 ~

bitwise-XOR

(64-bit wide) 1024 bytes ~ . bytes 1-8 ~

b-.~e'1 I I byte 8 JYI'
,~---'-----=.::jt

•••• lig •• IIE •• \ BOOO 0400H

1K byte
128-Deep

Store Queue

Control Register Values

SAR1 ::: AOOO 0400H

SAR2 ::: AOOO 0800H

SAR3 '" ACOO OCOOH
SAR4 :::: AOOO 1000H

DAR:::: BOOO 0400H

ABCR ::: 0000 0400H

ADCR '" 8000 049FH

Developer's Manual

int'et Intel@ 80303 I/O Processor
Application Accelerator Unit

Figure 20-8. Hardware Assist XOR Unit

XOR
data

New Data

Each existing bit is XORed with n 1 ew data
cation and stored back to the same bit 10

EB ... •
Vj)IIil ,;:1'\1 ij;. • .• J ····.1 i/

Byte 1 =' Byte 1 EB Byte 1 EB Byte 1 EB Byte 1

bytes 1 - 8
bytes 9-16

bytes 1021-1024

Block 1 Block 2 Block 3 Block 4

Byte 1024 =' Byte 1024 EB Byte 1024 EB Byte 1024 EB Byte 1024

Block 1 Block 2 Block 3 Block 4

The XOR algorithm and methodology followed once a chain descriptor has been configured is
detailed below:

1. The Application Accelerator as a master on the bus initiates data transfer from the address
pointed at by the First Source Address Register (SAR 1). As this is the first transfer in the
current chain descriptor, the data is transferred directly to the store queue. The number of bytes
transferred to the store queue is IK (or 512 Bytes if the 512 Byte Buffer Enable Bit in the ACR
register is set). The total number of bytes to XOR-transfer is specified by the Byte Count (BC)
field in the chain descriptor.

Note: The Application Accelerator operates on a buffer of 1 K or 512 bytes of data at a time depending on
the value of the 512 Byte Buffer Enable bit. If the Byte Count Register contains a value greater
than the buffer size, the AAU completes the XOR-transfer operation on the first buffer of data
obtained from each Source Register (SARI - SAR4), then proceeds with the next butfer of data.
This process is repeated until the BCR contains a zero value.

2. The Application Accelerator transfers the first eight bytes of data from the address pointed at
by the Second Source Address Register (SAR2).

3. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of data read from SARI (bytes 1-8) which are stored in the
queue and the first eight bytes of data just read from SAR2 (bytes 1-8).

4. The XOR-ed result is transferred to the store queue and stored in the first eight bytes
(bytes 1-8) overwriting previously stored data.

5. The Application Accelerator transfers the next eight bytes of data (bytes 9-16) from address
pointed at by the Second Source Address Register (SAR2).

Developer's Manual 20-11

Intel® 80303 110 Processor
Application Accelerator Unit

6. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the next eight bytes of data read from SARI (bytes 9-16 stored in the queue) and
the eight bytes of data read from SAR2 in Step-5.

7. Step-5 and Step-6 (Data transfer & XOR) are repeated until all data pointed at by SARI is
XOR-ed with the corresponding data pointed at by SAR2. The store queue now contains a
buffer full of XOR-ed data, the source addresses for which were specified in SARI and SAR2.

8. Steps 1-7 are repeated once again. The first input to the XOR unit is the data held in the store
queue and the second input is the data pointed at by SAR3.

9. The above steps are repeated once more. The first input to the XOR unit is the data held in the
store queue and the second input is the data pointed at by SAR4.

10. Once Steps 1-9 are completed, the XOR operation is complete for the first full buffer of the
current chain descriptor. If the Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) is set, the data in the store queue is written to local memory at the
address pointed to by the Destination Address Register (DAR). If the Destination Write Enable
Bit in the ADCR is not set, the data is not written to local memory and is held in the queue.
Steps 1-9 are repeated until all the bytes of data have undergone the XOR-transfer operation.

Note: If the ABCR register contains a value greater than the buffer size and the ADCR.dwe bit is cleared,
the AAU will only read the first buffer of data and perform the specified function. It wiII not read
the remaining bytes specified in the ABCR. Further, the AAU will proceed to process the next
chain descriptor if it is specified.

20-12 Developer's Manual

20.3.5 Initiating the XOR Operation

Intel@ 80303 liD Processor
Application Accelerator Unit

An XOR operation is initiated by building one or more chain descriptors in 80960 local memory.
Figure 20-9 shows the format of a principal descriptor.

Figure 20-9. Example of Gather Chaining for Four Source Blocks

~sourcebuffers
r__--r---r--~---r-__,r__-r____,r___., 11K-byte. 64 deep

L-___I.~ r_.:~~~~f~ __ l

----------ISAR1 ISAR2 ISAR31sAR41DARIBC IDe I

End of Chain
Null Value Detected

I==~I//.I-- -- --- ----I
I I
1 1

I···········~
1 1
1 1
I 1
I I
1 1
1············1 L _________ J

NDA = Next Descriptor Address
SAR1 = Source Address Register 1
SAR2 = Source Address Register 2
SAR3 = Source Address Register 3
SAR4 = Source Address Register 4
DAR = Destination Address Register
BC = Byte Count
DC = Descriptor Control

The following describes the steps for initiating a new XOR operation:

1. The AAU must be inactive prior to starting an XOR operation. This can be checked by
software by reading the Accelerator Active bit in the Accelerator Status Register. If this bit is
clear, the unit is inactive. If this bit is set, the unit is currently active.

2. The ASR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Accelerator Next Descriptor
Address Register (ANDAR).

4. The software sets the Accelerator Enable bit in the Accelerator Control Register (ACR).
Because this is the start of a new XOR operation and not the resumption of a previous
operation, the XOR Resume bit in the ACR should be clear.

S. The AAU starts the XOR operation by reading the chain descriptor at the address contained in
ANDAR. The AAU loads the chain descriptor values into the ADAR and begins data transfer.
The Accelerator Descriptor Address Register (ADAR) contains the address of the chain
descriptor just read and ANDAR will now contain the Next Descriptor Address from the chain
descriptor just read.

Developer's Manual 20-13

Intel@ 80303 110 Processor
Application Accelerator Unit

20.3.6

20.3.7

20-14

The last descriptor in the XOR chain list will have zero in the next descriptor address field
specifying the last chain descriptor. A NULL value notifies the AAU not to read additional chain
descriptors from memory.

Once an XOR operation is active, it can be temporarily suspended by clearing the Accelerator
Enable bit in the ACR. Note that this does not abort the XOR operation. The unit resumes the
process when the Accelerator Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the AAU to access the next chain
descriptor plus the time required to set up the next XOR-transfer.

Scatter Gather Transfers

The Application Accelerator can be used to perform typical scatter gather transfers. This consists
of programming the chain descriptors to gather data which may be located in non-contiguous
blocks of memory. The chain descriptor will specify the destination location such that once all data
has been processed, the data will be contiguous in memory. Figure 20-9 shows how the destination
pointers can gather data.

Synchronizing a Program to Chained Operation

Any operation involving the AAU can be synchronized to a program executing on the i960® core
processor through the use of processor interrupts. The AAU will generate an interrupt to the i960®
core processor under certain conditions. They are:

I. [Interrupt & Continue] The AAU completes processing a chain descriptor and the Accelerator
Next Descriptor Address Register (ANDAR) is non-zero. If the Interrupt Enable bit within the
Accelerator Descriptor Control Register (ADCR) is set, an interrupt will be generated to the
i960® core processor. This interrupt is for synchronization purposes. The AAU will set the
End Of Transfer Interrupt flag in the Accelerator Status Register (ASR). Since it is not the last
chain descriptor in the list, the AAU will start to process the next chain descriptor without
requiring any processor interaction.

2. [End of Chain] The AAU completes processing a chain descriptor and the Accelerator Next
Descriptor Address Register is zero specifying the end of the chain. If the Interrupt Enable bit
within the ADCR is set, an interrupt will be generated to the i960® core processor. The AAU
will set the End Of Chain Interrupt flag in the ASR.

3. [Error] An error condition occurs (refer to Section 20.9, "Error Conditions" on page 20-24 for
Application Accelerator error conditions) during a transfer. The AAU will halt operation on
the current chain descriptor and not proceed to the next chain descriptor.

Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control
word. This bit enables an independent interrupt once a chain descriptor is processed. This bit can
be set or clear within each chain descriptor. Control of interrupt generation within each descriptor
aids in synchronization of the executing software with XOR operation.

Figure 20-] 0 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor lA generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last

Developer's Manual

inteJ·
Intel@ 80303 liD Processor

Application Accelerator Unit

descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 20-10 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.

Figure 20-10. Synchronizing to Chained XOR Operation

Independent Interrupt after Completing any Descriptor

Developer's Manual

chain descriptors

Descriptor 1 A Optional interrupt
generated to

interrupt procedure

I I i
I • I

L-____ ~I • I

I • I
I RET I L _________ .1

Descriptor 2A

No Interrupt on this Descriptor

. .
Descriptor nA

Interrupt after Completing L.ast Descriptor

~------------------------------~
chain descriptors

Descriptor ,8

Descriptor 28

• .
Descriptor nB

interrupt procedu re
L-_____ j---------l

I • I
I • I
I • I
I I
I RET I L _________ 01

20-15

Intel® 80303 liD Processor
Application Accelerator Unit intet
20.3.8

20-16

Appending to The End of a Chain

Once the AAU has started processing a chain of descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. The
mechanism used for performing this action is controlled by the Chain Resume bit in the
Accelerator Control Register (ACR).

The AAU reads the subsequent chain descriptor each time it completes the current chain descriptor
and the Accelerator Next Descriptor Address Register (ANDAR) is non-zero. ANDAR always
contains the address of the next chain descriptor to be read and the Accelerator Descriptor Address
Register (ADAR) always contains the address of the current chain descriptor.

The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Address in that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the ACR. It does not matter
if the unit is active or not.

The AAU examines the Chain Resume bit of the ACR when the unit is idle or upon completion of
a chain of transfers. If this bit is set, the AAU will re-read the Next Descriptor Address of the
current chain descriptor and load it into ANDAR. The address of the current chain descriptor is
contained in ADAR. The AAU clears the Chain Resume bit and then examines ANDAR. If
ANDAR is not zero, the AAU will read the chain descriptor using this new address and begin a
new operation. If ANDAR is zero, the AAU will remain or return to idle.

There are three cases to consider:

1. The AAU completes an XOR-transfer and it is not the last descriptor in the chain. In this case,
the AAU clears the Chain Resume bit and reads the next chain descriptor. The appended
descriptor will be read when the AAU reaches the end of the original chain.

2. The channel completes an XOR-transfer and it is the last descriptor in the chain. In this case,
the AAU examines the state of the Chain Resume bit. If the bit is set, the AAU re-reads the
current descriptor to get the address of the appended chain descriptor. If the bit is clear, the
AAU returns to idle.

3. The AAU is idle. In this case, the AAU examines the state of the Chain Resume bit when the
ACR is written. If the bit is set, the AAU re-reads the last descriptor from the most-recent
chain to get the appended chain descriptor.

Developer's Manual

intel·
20.4

20.4.1

Packing and Unpacking

lntel® 80303 I/O Processor
Application Accelerator Unit

The Application Accelerator contains a hardware data packing and unpacking unit to support data
transfers between unaligned source and destination addresses. Source and destination addresses
can either be unaligned or aligned on natural boundaries. The packing unit optimizes data transfers
to and from 32 and 64-bit memory. It reformats data words for the correct bus data width. When the
read data needs to be packed or unpacked, the data is held internally and does not need to be
re-read.

Aligned data transfers are those that fall on natural boundaries. For example; double words are
aligned on 8-byte boundaries and words are aligned on 4-byte boundaries. Data transfers can take
place in two instances:

• The source and destination addresses are both aligned.

• All or some source addresses are unaligned and the destination address is aligned or unaligned.

54-bit Unaligned Data Transfers

Figure 20-11 illustrates a data transfer between unaligned 64-bit, source and destination addresses.

Developer's Manual 20-17

Intel® 80303 110 Processor
Application Accelerator Unit

Figure 20-11. Optimization of an Unaligned Data Transfer

20-18

64-bit Source bus
(I nternal Bus)

AAU perfonrns a
Transfer

64-bit Destination bus
(Internal bus)

Programmed Values

ACR 00000001H I
SAR1 AOOO 0201H I
DAR 40010307H I
ABCR 00000014H I
ADCR 8000000EH I

ADDRESS

AOOO 0200H

AOOO 0208H

AOOO 0210H

40010300H

40010308H

4001 0310H

40010318H

L byte number Bus operation

SOURCE
double word load@ A0000200
double word load@ A0000208
double word load@ A0000210

DESTINATION

byte store@ 40010307
double word store@ 40010308
double word store@ 40010310
3-byte store@ 40010318

Developer's Manual

20.5 Application Accelerator Priority

fnte/® 80303 I/O Processor
Application Accelerator Unit

The internal bus arbitration logic determines which internal bus master has access to the 80303 I/O
processor internal bus. The Application Accelerator has an independent Bus Request/Grant signal
pair to the internal bus arbitration logic. Chapter 17, "Intel@ 80303 1/0 Processor Arbitration"
describes in detail the priority scheme between all of the bus masters on the internal bus.

Developer's Manual 20-19

fntel® 80303 110 Processor
Application Accelerator Unit

20.6 Programming Model State Diagram

intel ..

The AAU programming model diagram is shown in Figure 20-12. Error condition states are not
shown.

Figure 20-12. Application Accelerator Programming Model State Diagram

ANDAR != 0 && !Internal Bus error

20-20 Developer's Manual

intel·
20.7

20.7.1

Intel@ 80303 110 Processor
Application Accelerator Unit

Programming the Application Accelerator

The software for initiating an XOR-transfer using the Application Accelerator falls into the
following categories:

• AAU initialization

• Start XOR transfer

• Suspend AAU

An example for each category is shown in the following sections as pseudo code flow.

Application Accelerator Initialization

The AAU is designed to have independent control of the interrupts, enables, and control. The
initialization consists of virtually no overhead as shown in Figure 20- LL

Figure 20-13. Pseudo Code: Application Accelerator Initialization

20.7.2

ACR = OxOOOO 0000 ; Disable the application accelerator
Call setup_accelerator

Start XOR Transfer

The AAU control register provides independent control each time the AAU is configured. This
provides the greatest flexibility to the applications programmer. The example shown in
Figure 20-14 describes the pseudo code for initiating an XOR operation with the AAU.

Figure 20-14. Pseudo Code: XOR Transfer Operation

; Set up descriptor in Intel® 80960 local memory at address d

d.nda 0 /* No chaining */

d.SARl OxAOOO 0400/* Source address of Data Block 1 */

d.SAR2 OxAOOO 0800/* Source address of Data Block 2 */

d.SAR3 OxAOOO OCOO/* Source address of Data Block 3 */

d.SAR4 OxAOOO 1000/* Source address of Data Block 4 */

d.DAR OxBOOO 0100/* Destination address of XOR-ed data */

d.ABCR 1024 /* Byte Count of 1024 */

d.ADCR Ox8000 049F/* Direct fill data from Block 1 */
/* XOR with data from Block 2,Block 3 and

Block 4

/* Store the result & interrupt

; Check for Inactive AAU & no pending interrupts

if (ASR != 0) exit /* If AAU is not ready, exit */

; Start Operation

ANDAR &d

ACR = OxOOOOOOOl

Developer's Manual

Set up descriptor address

Set AAU Enable bit

*/

processor */

20-21

Intel® 80303 110 Processor
Application Accelerator Unit infel.
20.7.3 Suspend Application Accelerator

The Application Accelerator unit provides the ability to suspend the current state without losing
status information. The AAU will resume without requiring application software to save the
current configuration. The example shown in Figure 20-15 describes pseudo-code for suspending
the ongoing operation and then restarting.

Figure 20-15. Pseudo Code: Suspend Application Accelerator

ACR = Oxoooo 0000 ; Suspend ongoing AAU transfer

; Suspend Application Accelerator

ACR = OxOOOO 0001 ; Resume AAU transfer

20-22 Developer's Manual

intel· fnte/® 80303 liD Processor
Application Accelerator Unit

20.8 Interrupts

The Application Accelerator can generate an interrupt to the i960 core processor. The Interrupt
Enable bit in the Accelerator Descriptor Control Register (ADCR.ie) determines whether the AAU
generates an interrupt upon successful, error-free completion. Error conditions described in
Section 20.9 also generate an interrupt. The AAU has one interrupt output connected to the PCI
and Peripheral Interrupt Controller described in Chapter 8. "PCI and Peripheral Interrupt
Controller Unit".

Once the AAU is enabled, the AAU loads the chain descriptor fields into the respective registers. A
special case exists if ADCR.dwe = 0, then an interrupt will be generated (if enabled) after the
descriptor is fetched and processed as defined by the block control fields in the ADCR. Table 20-2
summarizes the status flags and conditions when interrupts are generated in the Accelerator Status
Register (ASR).

Table 20-2. AAU Interrupts

Accelerator Status Register Interrupt
(ASR) Flags Generated?

... -.!!! c ro 0
Interrupt Condition (f) "iii J:l CI) CI)

Cll c .s:::. < (/) (3
('(!

~ ~
0~

.~
0 '0 $1 ci
< 'l5 (f) 0 II:

'0 ('(! 0
"0 C :2i 0 0 c w !E < < w

(ADCR.dwe == 0 II byte count == 0)

&& ANDAR != NULL 1 1 0 0 y N
(End of Transfer)

(ADCR.dwe == 0 II byte count == 0)

&& ANDAR == NULL 0 0 1 0 Y N
(End of Chain)

IB Master Abort 0 0 0 1 Y y

IB Target Abort 0 0 0 0 N N

Note: End-of-Transfer and End-of-Chain flags will be set only when ADCR.ie = 1. If ADCR.ie = 0, then
the above flags are always set to O. End-of-Transfer Interrupt and End of Chain Interrupt can only
be reported in the ASR if the descriptor fetch and processing completed without any reportable
errors. However, multiple error conditions may occur and be reported together. Also, because the
AAU does not stop after reporting the End-of-Transfer interrupt, an IB master-abort error may
occur before the End-of-Transfer interrupt is serviced and cleared.

Developer's Manual 20-23

Intel® 80303 I/O Processor
Application Accelerator Unit intet
20.9

20-24

Error Conditions

Master Aborts that occur during a transfer are recorded by the Application Accelerator.

When an error occurs, the actions taken are detailed below:

• The AAV shall cease the ongoing transfer for the current chain descriptor and clear the
Application Accelerator Active flag in the ASR.

• The AAV will not read any new chain descriptors.

• The AAV will set the error flag in the Accelerator Status Register. For example; if an IB
master-abort occurred during a transfer, the channel will set bit 5 in the ASR.

• The AAV signals an interrupt to the i960® core processor.

• The Application Accelerator will not restart the transfer after an error condition. It is the
responsibility of the application software to reconfigure the AAV to complete any remaining
transfers.

Note: Target-aborts that occur while the AAV is the master on the internal bus are recorded by the MCV
and interrupt the core. For correct operation of the AAV, user software has to disable the AAV
before clearing the error condition. Further, the AAV needs to be re-enabled by writing a 1 to
ACR.ae before initiating a new operation.

There are three possible scenarios for multi-bit ECC errors on reads or writes. These errors
conditions are handled as detailed below:

• Multi-bit ECC error ou MCV Data Read: Refer to Chapter 13, "Memory Controller" for
details on error handling in this instance.

• Multi-bit ECC error ou MCV Data Write: This instance covers the case where the first data
write is less than a 64-bit value forcing the MCV to execute a read-modify-write operation.
Refer to Chapter 13, "Memory Controller" for complete details.

• Multi-bit ECC error on MCV Data Write: This instance covers the case where the last data
write is less than a 64-bit value forcing the MCV to execute a read-modify-write operation.
Refer to Chapter 13, "Memory Controller" for complete details.

Developer's Manual

infel·
20.10

20.11

Power-up/Default Status

Inte/@ 80303 110 Processor
Application Accelerator Unit

Upon power-up, an external hardware reset, the Application Accelerator Registers will be
initialized to their default values.

Register Definitions

The Application Accelerator Unit contains fifteen memory-mapped registers for controlling its
operation. There is read/write access only to the Accelerator Control Register, Accelerator Status
Register, and the Accelerator Next Descriptor Address Register. All other registers are read-only
and are loaded with new values from the chain descriptor whenever the AAU reads a chain
descriptor from memory.

Table 20-3. Application Accelerator Unit Registers

Section, Register Name - Acronym (page)

Section 20.11.1, "Accelerator Control Register - ACR" on page 20-26

Section 20.11.2, "Accelerator Status Register - ASR" on page 20-27

Section 20.11.3, "Accelerator Descriptor Address Register - ADAR" on page 20-28

Section 20.11.4, "Accelerator Next Descriptor Address Register - AN DAR" on page 20-29

Section 20.11.5, "80960 Source Address Register - SAR" on page 20-30

Section 20.11.6, "80960 Destination Address Register - DAR" on page 20-31

Section 20.11.7, "Accelerator Byte Count Register - ABCR" on page 20-32

Section 20.11.8, "Accelerator Descriptor Control Register - ADCR" on page 20-33

Developer's Manual 20-25

Intel@ 80303 I/O Processor
Application Accelerator Unit

20.11.1 Accelerator Control Register - ACR

The Accelerator Control Register (ACR) specifies parameters that dictate the overall operating
environment. The ACR should be initialized prior to all other AAU registers following a system
reset. Table 20-4 shows the register format. This register can be read or written while the AAU is
active.

Table 20-4. Accelerator Control Register - ACR

Bit

lOP [
Attributes

31 28 24 20 16 12 8 4 o

PCI [
Attributes \'''>'r'''\r'''\n~''''''\l1a\na.\nal\nf!\nl.\n.a\nla\rla\r\a\!1a\ina\na\.na'.na'Ula"na\n8,\n,!\nfl\n'i\n,a\na\na\r!a\rla\11a\1111

Intel® 80960 Core Internal bus address

1800H

Default Description

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

31:03 o Reserved

02

01

00

20-26

512 Byte Buffer Enable - when set, causes the AAU to use only 512 bytes of the 1 KB data buffer while
processing all descriptors.

NOTES: The 1 KB data buffer consumes 128 data cycles on the Internal bus every time the AAU is
granted the Internal Bus (assuming BC remains> 1 K). Depending on the application, overall
performance may be improved by throttling down the IB usage to 64 data cycles per Internal Bus grant.

Chain Resume - when set, causes the AAU to resume chaining by re-reading the current descriptor
located at the address in the Accelerator Descriptor Address Register when the AAU is idle (AAU Active
bit in the ASR is clear) or when the AAU completes a transfer. This bit is cleared by hardware when
either:

• The AAU completes a transfer and the Accelerator Next Descriptor Address Register is non-zero. In
this case, the AAU proceeds to the next descriptor in the chain.

• The AAU re-reads the chain descriptor located at the address in the Accelerator Descriptor Address
Register and loads the Next Descriptor Address of that descriptor into the Accelerator Next
Descriptor Address Register

AAU Enable - When set, the AAU enables transfers. When clear, the AAU disables any transfer.
Clearing this bit when the AAU is active suspends the current transfer at the earliest opportunity by
halting all internal bus transactions. The AAU does not initiate any new transfers when this bit is cleared.
Data held in queues remains valid. Setting the bit after the AAU is suspended causes the AAU to
resume the previously ongoing transfer.

Developer's Manual

20.11.2 Accelerator Status Register - ASR

Intel@ 80303 I/O Processor
Application Accelerator Unit

The Accelerator Status Register (ASR) contains status flags that indicate status. This register is
typically read by software to examine the source of an interrupt. See Seclion 20.9 for a description
of the error conditions that are reported in the ASR. See Section 20.8 for a description of interrupts
caused by the Application Accelerator.

If an AAU error occurs, application software should check the status of Accelerator Active flag
before processing the interrupt.

Table 20-5. Accelerator Status Register - ASR

lOP [
Attributes

31 28 24 20 16 12 8 4 I]

Intel® 80960 Core Internal bus address

1804H

Attribute Legend:
RV :: Reserved
PR :: Preserved
RS = Read/Set

RW = Read/Write
RC = Read Clear
RO = Read Only

NA :: Not Accessible

Bit Default Description

31: 11 OOOOOOH Reserved

10

09 O2

08 O2

07:06 O2

05 O2

04:00 O2

Developer's Manual

Accelerator Active Flag - indicates the AAU is either active (in use) or idle (available). When set,
indicates the AAU is in use and actively performing an operation. When clear, indicates the channel is
idle and available to be configured for a new operation. The AAU clears the Accelerator Active flag when
the previously configured transfer completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value detected for Next
Descriptor Address in chain descriptor)

• Internal Bus Errors

• Last chain descriptor is processed (NULL value detected for Next Descriptor Address in chain
descriptor) and ADCR.dwe = O.

The Accelerator Active flag is set once a Chain Descriptor is read from memory.

End of Transfer Interrupt Flag - set when the AAU has signalled an interrupt to the 80960 processor after
processing a descriptor but it is not the last descriptor in a chain.

End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the 80960 processor
after processing a descriptor that is the last in a chain.

Reserved

This bit is set if a Master-abort occurs during a transaction when the AAU is the master on the internal
bus.

Reserved

20-27

Intel@ 80303 110 Processor
Application Accelerator Unit intel.
20.11.3 Accelerator Descriptor Address Register - ADAR

The Accelerator Descriptor Address Register (ADAR) contains the address of the current chain
descriptor in 80960 local memory for an XOR-transfer. This read-only register is loaded when a
new chain descriptor is read. Table 20-6 depicts the Accelerator Descriptor Address Register. All
chain descriptors are aligned on an eight, 32-bit word boundary.

Table 20-6. Accelerator Descriptor Address Register - ADAR

Bit

31:05

04:00

20-28

31 28 24 20

Intej® 80960 Core Internal bus address

1808H

Default

16 12

Description

8

Attribute Legend:
RV = Reserved
PR = Preserved
RS = Read/Set

4 o

RW = Read/Write
RC = Read Clear
RO = Read Only

NA = Not Accessible

~~~~~~~~~~~ Curr~nt .Descriptor Address - local memory address of the current chain descriptor read by the 
000002 Application Accelerator. 

000002 Reserved 

Developer's Manual 



int:et Intel@ 80303 I/O Processor 
Application Accelerator Unit 

20.11.4 Accelerator Next Descriptor Address Register - ANDAR 

The Accelerator Next Descriptor Address Register (ANDAR) contains the address of the next 
chain descriptor in 80960 local memory for an XOR-transfer. When starting a transfer, this register 
contains the address of the first chain descriptor. Table 20-7 depicts the Accelerator Next 
Descriptor Address Register. 

All chain descriptors are aligned on an eight 32-bit word boundary. The AAU may set bits 04:00 to 
zero when loading this register. 

Note: The Accelerator Enable bit in the ACR and the Accelerator Active bit in the ASR must both be 
clear prior to writing the ANDAR. Writing a value to this register while the AAU is active may 
result in undefined behavior. 

Table 20-7. Accelerator Next Descriptor Address Register - ANDAR 

31 28 24 20 16 12 8 4 o 

PCI [ 
Attributes \n"'\n"\r",,\,,,,1ln,,\o,,'\n"\n,,"n"\n~,\n.c\n"'ln"\n," na'na\na'nfl'.na'na\f)8\na"na'11a\!"fl~na'r1a'na\na\na\na'na\ 

Bit 

31:05 

04:00 

Intel@ 80960 Core Internal bus address 

180CH 

Default Description 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

00000000000 
00000000000 

000002 

Next Descriptor Address - local memory address of the next chain descriptor to be read by the 
Application Accelerator. 

000002 Reserved 

Developer's Manual 20-29 



Intel® 80303 liD Processor 
Application Accelerator Unit in1:et 
20.11.5 80960 Source Address Register - SAR 

The 80960 Source Address Register (SARx) contains a 32-bit, 80960 local memory address. There 
are eight Source Address Registers (SARI - SAR8). Each of these registers is loaded with the 
address of the blocks of data to be operated upon by the Application Accelerator. The ADCR 
register (Table 20-1 ] ) controls the operation performed on each data block referenced by the 
registers (SARI - SAR8). The 80960 local memory address space is a 32-bit, byte addressable 
address space. 

Reading the SARx registers once the AAU has started a chain descriptor will return the current 
source addresses. Once an XOR operation is initiated, these registers contain the current source 
addresses. For example; if the Byte Count is initially 4096 bytes and the AAU has completed the 
XOR-transjer operation on the first three IK-byte data blocks, the value in register SARI will be 
the equal to the programmed descriptor value + 3072 (SARI + 3072). 

Table 20-8 shows the 80960 Source Address Register. These read-only registers are loaded when a 
chain descriptor is read from memory. 

Table 20-8. 80960 Source Address Register - SARx 

31 28 24 20 

PCI [ 
Attributes Ie 

SAR1 
SAR2 
SAR3 
SAR4 
SAR5 
SAR6 
SAR7 
SAR8 

Bit 

Intel® 80960 Core Internal bus address 

1810H 
1814H 
1818H 
181CH 
182CH 
1830H 
1834H 
1838H 

Default 

16 12 

Description 

31:00 OOOOOOOOH 80960 Local Address - The 80960 local source address. 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

20-30 Developer's Manual 



inial. 
20.11.6 

Intel@ 80303 liD Processor 
Application Accelerator Unit 

80960 Destination Address Register - DAR 

The 80960 Destination Address Register (DAR) contains a 32-bit, 80960 local memory address. 
This address is the destination of the XOR-transfer - 80960 local memory address where XOR-ed 
data will be stored. The 80960 local memory address space is a 32-bit, byte addressable address 
space. 

Reading the DAR once the AAU has started a chain descriptor will return the current destination 
address. For example; if the Byte Count is initially 4096 bytes and the AAU has completed the 
XOR-transfer operation on the first three I K-byte data blocks, the value in the Destination Address 
Register (DAR) will be the equal to the programmed descriptor value + 3072 (DAR + 3072). 

Table 20-9 shows the 80960 Destination Address Register. This read-only register is loaded when a 
chain descriptor is read from memory 

Table 20-9. 80960 Destination Address Register - DAR 

Bit 

Intel® 80960 Core Internal bus address 

1820H 

Default Description 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

31 :00 OOOOOOOOH 80960 Local Address - The 80960 local destination address. 

Developer's Manual 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

20-31 



Intel® 80303 110 Processor 
Application Accelerator Unit 

20.11.7 Accelerator Byte Count Register - ABCR 

int:et 

The Accelerator Byte Count Register (ABCR) contains the number of bytes to transfer for an 
XOR-transfer operation. This is a read-only register that is loaded from the Byte Count word in a 
chain descriptor. It allows for a maximum XOR-transfer of 16 Mbytes. A value of zero is a valid 
byte count and results in no read or write cycles being generated to the Memory Controller Unit. 
No cycles are generated on the 80303 I/O processor internal bus. 

Table 20-10. Accelerator Byte Count Register - ABCR 

lOP [ 
Attributes 

~;1 28 

Attribl~~~ [ \na'\nH'lflallnal""".\.rm\na 

24 

Intel@ 80960 Core Internal bus address 

1824H 

16 12 

Bit Default Description 

31 :24 OOH Reserved 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

23:00 OOOOOOH Byte Count - is the number of bytes to transfer for an XOR-fransferoperation. 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

Note: Anytime this register is read by the i960® core processor, it contains the number of bytes left to 
XOR-transfer on the 80303 110 processor internal bus. Note that valid data may be present in the 
Application Accelerator store queue. This register is decremented by 1 through 8 for every 
successful transfer from the store queue to the destination location. Table 20-10 shows the 
Accelerator Byte Count Register. The byte count value is not required to be aligned to a 32-bit 
word boundary (i.e., the byte count value can be a double word aligned, word aligned, short 
aligned, or byte aligned). 

20-32 Developer's Manual 



20.11.8 

Intel@) 80303 I/O Processor 
Application Accelerator Unit 

Accelerator Descriptor Control Register - ADCR 

The Accelerator Descriptor Control Register contains control values for data transfer on a 
per-chain descriptor basis. This read-only register is loaded when a chain descriptor is read from 
memory. These values may vary from chain descriptor to chain descriptor. The AAU determines 
whether a mini-descriptor is appended to the end of the current chain descriptor by examining 
bits 26:25. Table 20-11 shows the definition of the Accelerator Descriptor Control Register. 

Table 20-11. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 3) 

101" [ 
Attributes 

PCI [ 
Attributes 

31 
sbel b8ec blGC IJ6ce b5cc Mce b3cc b2cc b1 cc 

2B rlI24 II 20 II 161 1112 fI II 411 0 

Intel® 80960 Core Internal bus address 

1828H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

Bit Default 

31 

30:27 OH 

26:25 00 

24:22 o 

Developer's Manual 

NA = Not Accessible 

Description 

Destination Write Enable - Determines whether data present in the store queue will be written out to 
80960 local memory. When set, data in the queue will be written to the address specified in the 
Destination Address Register (DAR) after performing the specified operation on data referenced by the 
four SARx registers. When clear, data will be held in the queue. 
NOTE: If the ABCR register contains a value greater than the buffer size and this bit is cleared, the 

AAU will only read the first buffer of bytes and perform the specified function. It will not read the 
remaining bytes specified in the ABCR. Further, the AAU will proceed to process the next chain 
descriptor if it is specified. 

Reserved 

Supplemental Block Control Interpreter - This bit field specifies the number of data blocks on which the 
XOR-transferoperation is executed. 
00 0 Blocks - This specifies that no additional data blocks exist. The AAU will not read the mini-descriptor to initialize 

registers SAR5 - SAR8. 
01 4 Blocks - This specifies that there are up to 4 additional data blocks. The AAU will therefore read the mini-descrip

tor to initialize registers SAR5 - SAR8. 
10 Reserved 
11 Reserved 

Block 8 Command Control - This bit field specifies the type of operation to be carried out on the data 
pointed at by SAR8 register. 
000 Null command - This implies that Block 8 Data can be disregarded forthe current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 8 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
011 Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

20-33 



fnte/@ 80303 110 Processor 
Application Accelerator Unit int:et 
Table 20-11. Accelerator Descriptor Control Register - ADCR (Sheet 2 of 3) 

sbci b8cc b7cc b6cc b5cc b4cc b3cc b2cc b1 cc 
31 28 r-J124 " 20 " 161 1112 "8 4i1 o 

IOf' [ 
Attributes 

Bit 

21 :19 

18:16 

15:13 

12:10 

20-34 

Intel@ 80960 Core Internal bus address 

1828H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Default 

o 

o 

o 

o 

NA = Not Accessible 

Description 

Block 7 Command Control - This bit field specifies the type of operation to be carried out on the data 
pOinted at by SAR7 register. 
000 Null command - This implies that Block 7 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 7 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
011 Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

Block 6 Command Control - This bit field specifies the type of operation to be carried out on the data 
pOinted at by SAR6 register. 
000 Null command - This implies that Block 6 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 6 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
011 Reserved 
100 Reserved 
10 1 Reserved 
110 Reserved 
111 Reserved 

Block 5 Command Control - This bit field specifies the type of operation to be carried out on the data 
pointed at by SAR5 register. 
000 Null command - This implies that Block 5 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 5 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
011 Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

Block 4 Command Control - This bit field specifies the type of operation to be carried out on the data 
pointed at by SAR4 register. 
000 Null command - This implies that Block 4 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 4 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
011 Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

Developer's Manual 



intel· 
Intel@ 80303 110 Processor 
Application Accelerator Unit 

Table 20-11. Accelerator Descriptor Control Register - ADCR (Sheet 3 of 3) 

lOP [ 
Attributes 

fOCi [ 
Attribut.es 

81 
sbci baec a7ec b6cc b5cc b4cc 

28 rir 24 II ",u II 161 1112 
b3cc b2cc b1 cc 
8 II 4 II (I 

Intel® 80960 Core Internal bus address 

1828H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

09:07 o 

06:04 o 

03:01 o 

00 o 

Developer's Manual 

NA = Not Accessible 

Description 

Block 3 Command Control - This bit field specifies the type of operation to be carried out on the data 
pOinted at by SAR3 register. 
000 Null command - This implies that Block 3 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 3 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
all Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

Block 2 Command Control - This bit field specifies the type of operation to be carried out on the data 
pOinted at by SAR2 register. 
000 Null command - This implies that Block 2 Data can be disregarded for the current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 2 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
all Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Reserved 

Block 1 Command Control - This bit field specifies the type of operation to be carried out on the data 
pointed at by SARI register. 
000 Null command - This implies that Block 1 Data can be disregarded forthe current chain descriptor. The Application 

Accelerator will not transfer data from this block while processing the current chain descriptor. 
001 XOR command - This implies that Block 1 Data will be transferred to the Application Accelerator to execute the 

XOR function. 
010 Reserved 
all Reserved 
100 Reserved 
101 Reserved 
110 Reserved 
111 Direct Fill- This implies that Block 1 Data will be transferred directly from 80960 local memory to the store queue. 

In this instance, the data will bypass the Boolean Execution Unit within the Application Accelerator. 

Interrupt Enable - When set, the Application Accelerator generates an interrupt to the 80303 1/0 
processor upon completion of a transfer. When clear, no interrupt is generated. 

20-35 





Performance Monitoring Unit 21 

21.1 

This chapter describes the Performance Monitoring features integrated on the lntel® 80303 I/O 
processor. These features aid in measuring and monitoring various system parameters that 
contribute to the overall performance of the processor. Also described are the operation modes, 
setup mechanisms, registers and interrupts. 

The monitoring facility is generically referred to as PMON - Performance Monitoring. The 
facility is model specific, not architectural; its intended use is to gather performance measurements 
that can be used to retune/refine code for better system level performance. 

Overview 

The PMON facility provided on the 80303 I/O processor comprises: 

• One dedicated Global Time Stamp counter, and 

• Fourteen (14) Programmable Event Counters. 

The global time stamp counter is a dedicated, free running 32-bit counter. 

The programmable event counters are 32-bits wide. Each counter can be programmed to observe 
an event from a defined set of events. An event consists of a set of parameters which define a start 
condition and a stop condition. The monitored events are selected by programming an event select 
register (ESR). 

Developer's Manual 21-1 



Intel® 80303 liD Processor 
Performance Monitoring Unit 

21.2 

21.2.1 

21.2.2 

21-2 

Theory of Operation 

The PMON facility provided on the 80303 110 processor comprises: 

• One dedicated Global Time Stamp counter, and 

• Fourteen (14) programmable event counters. 

The global time stamp counter is a dedicated, free running 32-bit counter clocked at one quarter the 
internal bus frequency. It provides a time base for monitoring all events on the 80303 1/0 
processor. Event counters are used to monitor events across different interfaces of the processor. 

Global Time Stamp 

The Global Time Stamp Counter is a dedicated, 32-bit counter provided on-chip. It contains a 
divisor which provides the input clock to the global time stamp counter. Typically the counter is 
clocked at one quarter the internal bus frequency. The counter is cleared upon the deassertion of the 
Internal Bus Reset signal. The counter interrupts the processor core if the interrupt bit (bit 0) in the 
Global Timer Mode Register (GTMR) is set. With the bit set, the counter sets bit 0 in the Event 
Monitoring Interrupt Status Register (EMISR) when it overflows. When this bit is set, an interrupt 
is generated to the core processor on the XINT6# interrupt pin. An overflow condition is defined as 
a counter rolling over from FFFF FFFFH to 0000 OOOOH. 

Once the counter reaches the maximum value, it rolls over to zero and increments at the clock 
frequency. The value in the counter is accessible at all times by reading the memory mapped, 
Global Time Stamp Register (GTSR). The GTSR is a read-only register. 

Programmable Event Counters 

There are fourteen (14) general-purpose, 32-bit wide Programmable Event Counters (PECx). Each 
counter is programmed to monitor an event from a predetermined list of events. Depending on the 
monitored interface, the event tracked in any counter varies. Each counter is accessible through a 
memory-mapped, read-only register. 

The programmable event counters provide real-time monitoring capability. The current count value 
contained in any counter is obtained by accessing the corresponding memory-mapped register. 

Any counter that overflows sets the corresponding bit in the Event Monitoring Interrupt Status 
Register (EMISR). Once a counter reaches the maximum value, it rolls over to zero and starts 
incrementing. For example, when PECI overflows, it will set bit! in the EMISR. Similarly, when 
any other counter (PEC2 - PECI4) overflows, the corresponding bit in the EMISR (bit2:14) is set. 
Once a bit in the EMISR is set, an interrupt is generated to the core processor on the XINT6# 
interrupt pin. 

All event counters and the Global Time Stamp Counter are disabled after RESET and the values 
contained are undefined. All counters including the Global Time Stamp Counter are initialized to 
zero when a specific monitoring mode is chosen by writing a value to the Event Select Register 
(ESR) during performance monitoring. The fourteen programmable event counters monitor both 
kinds of events: occurrence events and duration events. 

Developer's Manual 



21.2.2.1 

Table 21-1. 

Inte/@ 80303 liD Processor 
Performance Monitoring Unit 

Occurrence Events 

An occurrence event is counted each time the event occurs. Table 21-1 lists the various occurrence 
events that are monitored on the 80303 I/O processor. 

Occurrence Events 

Observed Interface Monitored Event 

Number of grants to the Bridge 

Number of grants to Secondary Address Translation Unit 

Secondary PCI bus Number of grants to DMA Ch-2 

Number of grants to the Inte~ 80303 I/O processor 

Number of grants to external PCI masters 0 .. 5 

Number-of grants to the Bridge 

Primary PCI bus Number of grants to Primary Address Translation Unit (PATU) 

Number of grants to DMA Ch-O and Ch-1 

Number of grants to Intel® i960® core processor. 

Number of grants to DMA Ch-O, Ch-1 and Ch-2 

Number of grants to Application Accelerator 

80303 I/O processor Number of times backoff (BOFF) asserted by Primary Address Translation Unit 
internal bus (PATU) 

Number of times backoff (BOFF) asserted by Secondary Address Translation Unit 
(SATU) 

Number of grants to PATU and SATU 

Developer's Manual 21·3 



Intel@) 80303 110 Processor 
Performance Monitoring Unit in1'et 
21.2.2.2 

Table 21-2. 

21-4 

Duration Events 

For a duration event, the counter counts the number of clocks during which a particular condition 
or set of conditions is true. Acquisition latency measurements comprise: 

• Arbitration Latency: This represents the elapsed time between the bus master's request to 
use the bus until the requesting master is granted the bus. 

• Bus Acquisition Latency: This represents the elapsed time between the requesting bus master 
being granted the bus and the current bus master surrendering the bus allowing the requesting 
bus master to initiate the next transaction. 

Table 21-2 lists the various duration events that are monitored on the 80303 I/O processor. 

Duration Events 

Observed Interface Monitored Event 

Number clocks the PCI bus is busy 

Number of clocks the PCI bus is idle 

Acquisition latency and ownership metrics for the PATU and SATU 

Acquisition latency and ownership metrics for DMA Ch-O, Ch-1 and Ch-2 
Primary and Secondary 

Acquisition latency and ownership metrics for the Bridge PCI buses 

Acquisition latency and ownership metrics for external masters 0 .. 5 and the Intel® 
80303 I/O processor (summation of all internal masters on secondary interface) 
on the secondary PCI bus 

Acquisition latency and ownership metrics for the 80303 I/O processor on the 
primary PCI bus 

Acquisition latency and ownership metrics for the Intej® i960® core processor 

Acquisition latency and ownership metrics for DMA Channels 0,1 and 2 
80303 110 processor 

Acquisition latency and ownership metrics for Application Accelerator 
internal bus 

Acquisition latency and ownership metrics for the PATU 

Acquisition latency and ownership metrics for the SATU 

Developer's Manual 



infel· 
21.2.3 Performa.nce Monitoring 

lntel® 80303 I/O Processor 
Performance Monitoring Unit 

The Event Select Register (ESR) determines the interface to be monitored. Tahle 21-3 shows the 
relationship between the monitored mode specified in the ESR and the monitored interface. 
Performance Monitoring consists of a collection of event primitives which can then be used by the 
user for statistical calculations. 

Table 21-3. Relationship between the Monitored mode and Monitored Interface 

Monitoring Mode Monitored Interface 

MO Performance Monitoring Disabled 

M1 Primary PCI bus and internal agents (bridge, dma ChO. dma Ch1. patu) 

M2 Secondary PCI bus and intemal agents (bridge, dma Ch2, satu) 

M3 
Secondary PCI bus and PCI agents (extemal masters 0 .. 2 and Intel® 80303 I/O 
processor) 

M4 
Secondary PCI bus and PCI agents (external masters 3 .. 5 and 80303 I/O 
processor) 

M5 80303 I/O processor internal bus. DMA Channels and Application Accelerator 

M6 80303 I/O processor internal bus, PATU, SATU and Intel® i960® processor 

M7 
80303 I/O processor internal bus, Primary PCI bus, Secondary PCI bus and 
Secondary PCI agents (external masters 0 .. 5 & 80303 I/O processor) 

Events across various interfaces are monitored by programming the event select register (ESR). 
The various interfaces that can be monitored on the 80303 1/0 processor are: 

• Primary PCI bus and internal agents: The different events monitored in this mode provide 
information about the primary PCI bus and the internal agents. The internal agents monitored 
are: Bridge, PATU, DMA Ch-O and DMA Ch-l. 

• Secondary PCI bus and internal agents: The different events monitored in this mode 
provide information about the secondary PCI bus and the internal agents. The internal agents 
monitored are: Bridge, SATU and DMA Ch-2. 

• Secondary PCI bus interface and external agents: The different events monitored in this 
mode provide information about the secondary PCI bus and agents. There are seven PCI 
agents monitored: six external agents and the 80303 110 processor. 

• 80303 1/0 processor internal bus and bus masters: The different events monitored in this 
mode provide information about the internal bus and the internal bus masters. The internal bus 
masters are: i960 core processor, Three DMA channels, Two Address Translation Units and 
the Application Accelerator. 

• 80303 110 processor internal bus and Secondary PCI bus: The different events monitored in 
this mode provide information about the internal bus and the PCI bus. 

Developer's Manual 21-5 



Intef@ 80303 110 Processor 
Performance Monitoring Unit intel· 
21.3 

21.3.1 

21.3.2 

21.3.2.1 

21.3.2.2 

21-6 

Event Description 

Events monitored on the 80303 I/O processor can either be duration events or occurrence events. 
There are 98 events monitored on the 80303 I/O processor. A maximum offourteen (14) events can 
be monitored concurrently. There are ten monitoring modes implemented as described below: 

• Mode 0: Performance Monitoring disabled on the 80303 I/O processor. 

• Mode 1: Monitors events on the Primary PCI bus. 

• Mode 2: Monitors events on the Secondary PeI bus. 

• Mode 3: Monitors events on the Secondary PCI bus. 

• Mode 4: Monitors events on the Secondary PCI bus. 

• Mode 5: Monitors events on the 80303 I/O processor internal bus. 

• Mode 6: Monitors events on the 80303 I/O processor internal bus. 

• Mode 7: Monitors events on the Primary PCI bus, Secondary PCI bus and 80303 I/O 
processor internal bus. 

ModeO: Performance Monitoring Disabled 

Programming ModeO (MO) in the ESR disables performance monitoring on the 80303 I/O 
processor. Reading any counter including the OTSR in Mode 0 returns undefined results. 

Mode1: Primary PCI bus and Internal Agents 

Programming Model (Ml) in the ESR enables performance monitoring on the primary PCI bus. 
All counters are clocked at the primary PCI bus frequency. There are four internal agents 
monitored: PCI bridge, DMA Ch-O, DMA Ch-l and PATU. The following sections describe the 
monitored events in Mode 1. 

M1 PPCIBus_idle 

This duration event increments the counter every PCI idle cycle. An idle cycle occurs when there is 
no activity on the bus due to data being transferred and/or the bus is not in an overhead cycle. An 
overhead cycle is a cycle when a master owns the bus, however the master is unable to send data or 
the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every PCI data cycle. Data cycles comprise of two 
instances: 

• The 80303 I/O processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 I/O processor or to other masters on 
the bus. 

Developer'S Manual 



21.3.2.3 

21.3.2.4 

21.3.2.5 

21.3.2.6 

21.3.2.7 

21.3.2.8 

21.3.2.9 

Intel@ 80303 liD Processor 
Performance Monitoring Unit 

This duration event counts the number of clocks spent by the bridge acquiring the PCI interface. 
The counter increments on every clock cycle after the bridge requests the PCI bus but has not 
actively driven the PCI bus as a master. The counter will also increment for aU clock cycles when 
this agent's Request Signal is asserted but bus ownership currently belongs to another master. This 
is an event primitive, used in conjunction with another event primitive (number of grants granted to 
bridge) to calculate the average acquisition latency for the bridge. 

This duration event counts the duration for which the bridge is the master on the PCI interface. The 
counter increments on every clock cycle during which the bridge is the bus master. 

This duration event counts the number of clocks spent by the DMA Ch-O acquiring the PCI 
interface. The counter increments on every clock cycle after the channel requests the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for aU clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to DMA Ch-O) to calculate the average acquisition latency for the channel. 

This duration event counts the duration for which DMA Ch-O is the master on the PCI interface. 
The counter increments on every clock cycle during which the channel is the bus master. 

This duration event counts the number of clocks spent by the DMA Ch-l acquiring the PCI 
interface. The counter increments on every clock cycle after the channel requests the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master .. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to DMA Ch-l) to calculate the average acquisition latency for the channel. 

This duration event counts the duration for which DMA Ch-l is the master on the PCI interface. 
The counter increments on every clock cycle during which the channel is the bus master. 

This duration event counts the number of clocks spent by the PATU acquiring the PCI interface. 
The counter increments on every clock cycle after the unit requests the PCI bus but has not actively 
driven the PCI bus as a master. The counter will also increment for all clock cycles when this 
agent's Request Signal is asserted but bus ownership currently belongs to another master. This is an 
event primitive, used in conjunction with another event primitive (number of grants granted to 
PATU) to calculate the average acquisition latency for the unit. 

Developer's Manual 21-7 



Intel@ 80303 liD Processor 
Performance Monitoring Unit 

21.3.2.11 

21-8 

This duration event counts the duration for which PATU is the master on the PCI interface. The 
counter increments on every clock cycle during which the unit is the bus master. 

This occurrence event monitors the number of times DMA Ch-O is granted the PCI bus. This event 
increments the counter when the channel is the PCl bus master. The counter is incremented once 
for every new transaction. For multi-cycle transactions, the counter increments once on the first 
cycle. 

This occurrence event monitors the number of times DMA Ch-l is granted the PCI bus. This event 
increments the counter when the channel is the PCI bus master. The counter is incremented once 
for every new transaction. For multi-cycle transactions, the counter increments once on the first 
cycle. 

This occurrence event monitors the number of times the PATU is granted the PCI bus. This event 
increments the counter when the unit is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times the bridge is granted the PCI bus. This event 
increments the counter when the bridge is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

Developer's Manual 



21.3.3 

21.3.3.1 

21.3.3.2 

21.3.3.3 

21.3.3.4 

21.3.3.5 

21.3.3.6 

Intel@ 80303 liD Processor 
Performance Monitoring Unit 

Mode 2: Secondary pel Bus and Internal Agents 

Programming Mode2 (M2) in the ESR enables performance monitoring on the secondary PCI bus. 
All counters are clocked at the secondary PCI bus frequency. There are three internal agents 
monitored: PCI Bridge, DMA Ch-2 and the Secondary Address Translation Unit (SATU). The 
following sections describe the monitored events in Mode 2. 

This duration event increments the counter every secondary PCI idle cycle. An idle cycle occurs 
when there is no activity on the bus due to data being transferred and/or the bus is not in an 
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is 
unable to send data or the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every secondary PCI data cycle. Data cycles comprise 
of two instances: 

• The 80303 110 processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 110 processor or to other masters on 
the bus. 

This duration event counts the number of clocks spent by the SATU acquiring the PCI interface. 
The counter increments on every clock cycle after the unit requests the PCI bus but has not actively 
driven the PCI bus as a master. The counter will also increment for alI clock cycles when this 
agent's Request Signal is asserted but bus ownership currently belongs to another master. This is an 
event primitive, used in conjunction with another event primitive (number of grants granted to 
SATU) to calculate the average acquisition latency for the unit. 

This duration event counts the duration for which SATU is the master on the PCI interface. The 
counter increments on every clock cycle during which the unit is the bus master. 

This duration event counts the number of clocks spent by the bridge acquiring the secondary PCI 
interface. The counter increments on every clock cycle after the bridge requests the PCI bus but has 
not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to bridge) to calculate the average acquisition latency for the bridge. 

This duration event counts the duration for which the bridge is the master on the secondary PCI 
interface. The counter increments on every clock cycle during which the bridge is the bus master. 

Developer's Manual 21-9 



inte!® 80303 110 Processor 
Performance Monitoring Unit in1:et 
21.3.3.7 

21.3.3.8 

21.3.3.9 

21.3.3.10 

21.3.3.11 

21.3.3.12 

21.3.3.13 

21.3.3.14 

21-10 

This duration event counts number of clocks spent by DMA Ch-2 acquiring PCI interface. The 
counter increments every clock cycle after the channel requests the PCI bus, but has not actively 
driven the PCI bus as master. The counter also increments for all clock cycles when agent Request 
Signal is asserted, but bus ownership currently belongs to another master. This is an event 
primitive, used in conjunction with another event primitive (number of grants granted to DMA 
Ch-2) to calculate average acquisition latency for the channel. 

This duration event counts the duration for which DMA Ch-2 is the master on the PCI interface. 
The counter increments on every clock cycle during which the channel is the bus master. 

This occurrence event monitors number of times the bridge is granted the secondary PCI bus. This 
event increments the counter when the bridge is the PCI bus master. The counter is incremented once 
for every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times the SATU is granted the PCI bus. This event 
increments the counter when the unit is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times DMA Ch-2 is granted the PCI bus. This event 
increments the counter when the channel is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This duration event increments the counter every primary PCI idle cycle. An idle cycle occurs 
when there is no activity on the bus due to data being transferred and/or the bus is not in an 
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is 
unable to send data or the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every primary PCI data cycle. Data cycles comprise of 
two instances: 

• The 80303 110 processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 110 processor or other masters on the bus. 

This duration event increments the counter on every internal bus data cycle. This enables 
calculation of data utilization of the bus. 

Developer's Manual 



intel· 
21.3.4 

21.3.4.1 

21.3.4.2 

21.3.4.3 

21.3.4.4 

21.3.4.5 

Intel@) 80303 I/O Processor 
Performance Monitoring Unit 

Mode 3: Secondary PCI Bus and External Agents 

Programming Mode3 (M3) in the ESR enables performance monitoring on the secondary PCI bus. 
In addition, performance monitoring is done for external agents (80303 110 processor, MasterO, 
Masterl, Master2) on the secondary PCI bus. MasterO indicates the external PCI device that is 
connected to the REQO and GNTO signals of the internal arbiter in the 80303 110 processor. The 
nomenclature is similar for all other external PCI masters; Master I through Master 5. There are 
four external agents monitored including the 80303 1/0 processor. 

All counters are clocked at the secondary PCI bus frequency. The following sections describe the 
monitored events in Mode 3. 

This duration event increments the counter every PCI idle cycle. An idle cycle occurs when there is 
no activity on the bus due to data being transferred andlor the bus is not in an overhead cycle. An 
overhead cycle is a cycle when a master owns the bus, however the master is unable to send data or 
the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every PCI data cycle. Data cycles comprise of two 
instances: 

• The 80303 I/O processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 I/O processor or to other masters on 
the bus. 

This duration event counts number of clocks spent by the 80303 I/O processor (includes the bridge, 
dma Ch-2, and satu) acquiring the secondary PCI interface. The counter increments on every clock 
cycle after the processor has requested use of the secondary PCI bus but has not actively driven the 
secondary PCI bus as a master. The counter will also increment for all clock cycles when this 
agent's Request Signal is asserted but bus ownership currently belongs to another master. This is an 
event primitive, used in conjunction with another event primitive (number of grants granted to 
80303 110 processor) to calculate the average acquisition latency for the processor. 

This duration event counts the duration for which the 80303 I/O processor is the master on the 
secondary PCI interface. The counter increments on every clock cycle during which the processor 
is the bus master. 

This duration event counts the number of clocks spent by PCI Master 0 acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 0) to calculate the average acquisition latency for the device. 

Developer's Manual 21-11 



Intel® 80303 I/O Processor 
Performance Monitoring Unit in1:et 
21.3.4.6 

21.3.4.7 

21.3.4.8 

21.3.4.9 

21.3.4.10 

21.3.4.11 

21.3.4.12 

21-12 

This duration event counts the duration for which PCI Master 0 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 0 is the bus master. 

This duration event counts the number of clocks spent by PCI Master I acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 1) to calculate the average acquisition latency for the device. 

This duration event counts the duration for which PCI Master 1 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 1 is the bus master. 

This duration event counts the number of clocks spent by PCI Master 2 acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 2) to calculate the average acquisition latency for the device. 

This duration event counts the duration for which PCI Master 2 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 2 is the bus master. 

This occurrence event monitors the number of times the 80303 I/O processor is granted the 
secondary PCI bus. It increments the counter when the processor is the secondary PCI bus master. 
The counter is incremented once for every new transaction. For multi-cycle transactions, the 
counter increments once on the first cycle. The count value is a summation of the individual grants 
received by the bridge, satu and dma Ch-2. 

This occurrence event monitors the number of times PCI Master 0 is granted the PCI bus. It 
increments the counter when the device is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

Developer's Manual 



21.3.4.13 

21.3.5 

21.3.5.1 

21.3.5.2 

21.3.5.3 

Inte/@ 80303 //0 Processor 
Performance Monitoring Unit 

This occurrence event monitors the number of times PCI Master I is granted the PCI bus. It 
increments the counter when the device is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times PCI Master 2 is granted the PCI bus. It 
increments the counter when the device is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

Mode 4: Secondary pel Bus and External Agents 

Programming Mode4 (M4) in the ESR enables performance monitoring on the secondary PCI bus. 
In addition, performance monitoring is done for external agents (80303 110 processor, Master3, 
Master4 and Master5) on the PCI bus. Master3 indicates the external PCI device that is connected 
to the REQ3 and GNTI signals of the internal arbiter in the 80303 I/O processor. The nomenclature 
is similar for all other external PCI masters; Master I through Master 5. 

All counters are clocked at the secondary PCI bus frequency. The following sections describe the 
monitored events in Mode 4. 

This duration event increments the counter every PCI idle cycle. An idle cycle occurs when there is 
no activity on the bus due to data being transferred and/or the bus is not in an overhead cycle. An 
overhead cycle is a cycle when a master owns the bus, however the master is unable to send data or 
the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every PCI data cycle. Data cycles comprise of two 
instances: 

• The 80303 I/O processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 I/O processor or to other masters on 
the bus. 

This duration event counts the number of clocks spent by PCI Master 3 acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 3) to calculate the average acquisition latency for the device. 

Developer's Manual 21-13 



intel® 80303 I/O Processor 
Performance Monitoring Unit 

21.3.5.4 

21.3.5.5 

21.3.5.6 

21.3.5.7 

21.3.5.8 

21.3.5.9 

21.3.5.10 

21.3.5.11 

21-14 

This duration event counts the duration for which PCI Master 3 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 3 is the bus master. 

This duration event counts the number of clocks spent by PCI Master 4 acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 4) to calculate the average acquisition latency for the device. 

This duration event counts the duration for which PCI Master 4 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 4 is the bus master. 

This duration event counts the number of clocks spent by PCI Master 5 acquiring the PCI interface. 
The counter increments on every clock cycle after the device has requested use of the PCI bus but 
has not actively driven the PCI bus as a master. The counter will also increment for all clock cycles 
when this agent's Request Signal is asserted but bus ownership currently belongs to another master. 
This is an event primitive, used in conjunction with another event primitive (number of grants 
granted to PCI Master 5) to calculate the average acquisition latency for the device. 

This duration event counts the duration for which PCI Master 5 is the master on the PCI interface. 
The counter increments on every clock cycle during which PCI Master 5 is the bus master. 

This occurrence event monitors the number of times PCI Master 3 is granted the PCI bus. It 
increments the counter when the device is the pcr bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times PCI Master 4 is granted the PCI bus. It 
increments the counter when the device is the PCI bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occutrence event monitors the number of times PCI Master 5 is granted the PCI bus. It 
increments the counter when the device is the pcr bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

Developer's Manual 



intel· 
21.3.5.12 

21.3.6 

21.3.6.1 

21.3.6.2 

21.3.6.3 

Inte/@ 80303 110 Processor 
Performance Monitoring Unit 

This occurrence event monitors the number of times the 80303 I/O processor is granted the 
secondary PCI bus. It increments the counter when the processor is the secondary PCI bus master. 
The counter is incremented once for every new transaction. For multi-cycle transactions, the 
counter increments once on the first cycle. The count value is a summation of the individual grants 
received by the bridge, satu and dma Ch-2. 

This duration event counts number of clocks spent by the 80303 I/O processor (includes the bridge, 
dma Ch-2, and satu) acquiring the secondary PCI interface. The counter increments on every clock 
cycle after the processor has requested use of the secondary PCI bus but has not actively driven the 
secondary PCI bus as a master. The counter will also increment for all clock cycles when this 
agent's Request Signal is asserted but bus ownership currently belongs to another master. This is an 
event primitive, used in conjunction with another event primitive (number of grants granted to the 
80303 I/O processor) to calculate the average acquisition latency for the processor. 

This duration event counts the duration for which the 80303 110 processor is the master on the 
secondary PCI interface. The counter increments on every clock cycle during which the processor 
is the bus master. 

Mode 5: Intel® 80303 1/0 Processor Bus and Agents Events 

Programming Mode 5 (M5) in the ESR, enables 80303 110 processor performance monitoring on the 
internal bus. In addition, performance monitoring is done for selected agents. In this mode, monitored 
agents are: DMA channels (Ch-O, Ch-l and Ch-2) and the Application Accelerator. All counters are 
clocked at internal bus frequency. The following sections describe monitored events in Mode 5. 

This duration event increments the counter every internal bus idle cycle. An idle cycle occurs when 
there is no activity on the bus due to data being transferred and/or the bus is not in an overhead 
cycle. An overhead cycle is a cycle when a master owns the bus, however the master is unable to 
send data or the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter on every internal bus data cycle. This enables 
calculation of data utilization of the bus. 

This duration event counts the number of clocks spent by the Application Accelerator (AA) 
acquiring the internal bus interface. The counter increments on every clock cycle after the AA has 
requested use of the bus but has not actively driven the bus as a master. The counter will also 
increment for all clock cycles when this agent's Request Signal is asserted but bus ownership 
currently belongs to another master. This is an event primitive, used in conjunction with another 
event primitive (number of grants granted to AA) to calculate the average acquisition latency. 

Developer's Manual 21-15 



Intel@ 80303 110 Processor 
Performance Monitoring Unit infel· 
21.3.6.4 

21.3.6.5 

21.3.6.6 

21.3.6.7 

21.3.6.8 

21.3.6.9 

21.3.6.10 

21-16 

This duration event counts the duration for which the AA is the master on the internal bus. The 
counter increments on every clock cycle during which the AA is the bus master. 

This duration event counts the number of clocks spent by DMA Ch-O acquiring the internal bus 
interface. The counter increments on every clock cycle after Ch-O has requested use of the bus but 
has not actively driven the internal bus as a master. The counter will also increment for all clock 
cycles when this agent's Request Signal is asserted but bus ownership currently belongs to another 
master. This is an event primitive, used in conjunction with another event primitive (number of 
grants granted to Ch-O) to calculate the average acquisition latency. 

This duration event counts the duration for which DMA Ch-O is the master on the internal bus. The 
counter increments on every clock cycle during which Ch-O is the bus master. 

This duration event counts the number of clocks spent by DMA Ch-l acquiring the internal bus 
interface. The counter increments on every clock cycle after Ch-l has requested use of the bus but 
has not actively driven the internal bus as a master. The counter will also increment for all clock 
cycles when this agent's Request Signal is asserted but bus ownership currently belongs to another 
master. This is an event primitive, used in conjunction with another event primitive (number of 
grants granted to Ch-l) to calculate the average acquisition latency. 

This duration event counts the duration for which DMA Ch-l is the master on the internal bus. The 
counter increments on every clock cycle during which Ch-l is the bus master. 

This duration event counts the number of clocks spent by DMA Ch-2 acquiring the internal bus 
interface. The counter increments on every clock cycle after Ch-2 has requested use of the bus but 
has not actively driven the internal bus as a master. The counter will also increment for all clock 
cycles when this agent's Request Signal is asserted but bus ownership currently belongs to another 
master. This is an event primitive, used in conjunction with another event primitive (number of 
grants granted to Ch-2) to calculate the average acquisition latency. 

This duration event counts the duration for which DMA Ch-2 is the master on the internal bus. The 
counter increments on every clock cycle during which Ch-2 is the bus master. 

Developer's Manual 



21.3.6.11 

21.3.7 

21.3.7.1 

21.3.7.2 

Intel@ 80303 I/O Processor 
Performance Monitoring Unit 

This occurrence event monitors the number of times the AA is granted the bus. It increments the 
counter when the AA is the bus master. The counter is incremented once for every new transaction. 
For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times DMA Ch-O is granted the bus. It increments 
the counter when DMA Ch-O is the bus master. The counter is incremented once for every new 
transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times DMA Ch-l is granted the bus. It increments 
the counter when DMA Ch-l is the bus master. The counter is incremented once for every new 
transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence cvent monitors the number of times DMA Ch-2 is granted the bus. It increments 
the counter when DMA Ch-2 is the bus master. The counter is incremented once for every new 
transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

Mode 6: Intel@ 80303110 Processor Bus and Agents Events 

Programming Mode6 (M6) in the ESR enables performance monitoring on the 80303 I/O 
processor internal bus. In addition, performance monitoring is also done for selected agents. In this 
mode, the monitored agents are Primary Address Translation Unit (PATU), Secondary Address 
Translation Unit (SATU) and i960 processor. All counters are clocked at the internal bus frequency. 
The following sections describe the monitored events in Mode 6. 

This duration event counts number of clocks spent by i960 processor acquiring the internal bus 
interface. The counter increments every clock cycle after the i960 processor has requested use of the 
bus, but has not actively driven the internal bus as a master. The counter also increments for all clock 
cycles when the agent Request Signal is asserted, but bus ownership currently belongs to another master. 

This duration event counts the duration for which the i960 processor is the master on the internal 
bus. The counter increments on every clock cycle when the i960 processor is the bus master. 

Developer's Manual 21-17 



Intel® 80303 I/O Processor 
Performance Monitoring Unit intel· 
21.3.7.3 

21.3.7.4 

21.3.7.5 

21.3.7.6 

21.3.7.7 

21.3.7.8 

21.3.7.9 

21-18 

This duration event counts the number of clocks spent by PATU acquiring the internal bus 
interface. The counter increments on every clock cycle after the PATU has requested use of the bus 
but has not actively driven the internal bus as a master. The counter will also increment for all clock 
cycles when this agent's Request Signal is asserted but bus ownership currently belongs to another 
master. This is an event primitive, used in conjunction with another event primitive (number of 
grants granted to PATU) to calculate the average acquisition latency for the unit. 

This duration event counts the duration for which the PATU is the master on the internal bus. The 
counter increments on every clock cycle during which the PATU is the bus master. 

This duration event counts the number of clocks spent by SATU acquiring the internal bus 
interface. The counter increments on every clock cycle after the SATU has requested use of the bus 
but has not actively driven the internal bus as a master. The counter will also increment for all clock 
cycles when this agent's Request Signal is asserted but bus ownership currently belongs to another 
master. This is an event primitive, used in conjunction with another event primitive (number of 
grants granted to SATU) to calculate the average acquisition latency for the unit. 

This duration event counts the duration for which the SATU is the master on the internal bus. The 
counter increments on every clock cycle during which the SATU is the bus master. 

This duration event counts the duration for which the backoff (PBOFF) signal is asserted by the 
PATU. This is an event primitive, used in conjunction with another event primitive (PBOFF _cnt) to 
calculate the average duration. The backoff signal is asserted by the PATU when it is busy with an 
outbound read transaction and the Bus Interface Unit (BIU) attempts to perform another 
transaction before the read transaction completes. 

This occurrence event counts the number of times the PATU asserts the PBOFF signal. This 
occurrence event increments the counter on every instance of PBOFF assertion. 

This duration event counts the duration for which the backoff (SBOFF) signal is asserted by the 
SATU. This is an event primitive, used in conjunction with another event primitive (SBOFF _cnt) 
to calculate the average duration. The backoff signal is asserted by the SATU when it is busy with 
an outbound read transaction and the Bus Interface Unit (BIU) attempts to perform another 
transaction before the read transaction completes. 

Developer'S Manual 



21.3.7.10 

21.3.7.11 

0.0.0.1. 

21.3.8 

21.3.8.1 

Intel@ 80303 liD Processor 
Perlormance Monitoring Unit 

This occurrence event counts the number of times the SATU asserts the SBOFF signal. This 
occurrence event increments the counter on every instance of SBOFF assertion. 

This occurrence event monitors the number of times the PATU is granted the bus. This event 
increments the counter when the PATU is the bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times the SATU is granted the bus. This event 
increments the counter when the SATU is the bus master. The counter is incremented once for 
every new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event monitors the number of times the core is granted the bus. This event 
increments the counter when the core is the bus master. The counter is incremented once for every 
new transaction. For multi-cycle transactions, the counter increments once on the first cycle. 

This occurrence event counts the number of retries issued by the Primary Address Translation Unit 
(PATU) on the primary PCI bus due to the inbound write queue being unable to accept a new 
transaction. Retries issued by the PATU in response to configuration writes will not be included in 
this metric. 

Mode 7: Intel® 80303 110 Processor Internal Bus, Secondary 
PCI Bus and Primary PCI Bus Events 

Programming Mode 7 (M7) in the ESR enables performance monitoring on the internal bus, 
secondary PCI bus and primary PCI bus. In addition, performance monitoring is done for external 
agents (80303 110 processor and external masters 0.5) on the secondary bus and for 80303 I/O 
processor on the primary bus. MasterO designates the external secondary PCI device that is 
connected to the REQO and ONTO signals of the internal arbiter in the 80303 I/O processor. The 
nomenclature is similar for all other external PCI masters; Master 1 through Master 5. 

In this mode, counters monitoring events on the internal bus are clocked at the internal bus 
frequency and counters monitoring PCI events are clocked at the respective PCI bus frequencies. 
The following sections describe the monitored events in Mode 7. 

This duration event increments the counter every internal bus idle cycle. An idle cycle occurs when 
there is no activity on the bus due to data being transferred and/or the bus is not in an overhead 
cycle. An overhead cycle is a cycle when a master owns the bus, however the master is unable to 
send data or the target is unable to receive data - hence no data is transferred. 

Developer's Manual 21-19 



Inte/® 80303 I/O Processor 
Performance Monitoring Unit intel. 
21.3.B.2 

21.3.B.3 

21.3.B.4 

21.3.B.5 

21.3.B.6 

21.3.B.7 

21.3.B.B 

21.3.B.9 

21-20 

This duration event increments the counter every internal bus data cycle. This enables calculation 
of data utilization of the bus. 

This duration event increments the counter every secondary PCl bus idle cycle. An idle cycle 
occurs when there is no activity on the bus due to data being transferred and/or the bus is not in an 
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is 
unable to send data or the target is unable to receive data - hence no data is transferred. 

This duration event increments the counter every secondary PCl data cycle. Data cycles comprise 
of two instances: 

• The 80303 I/O processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 I/O processor or to other masters on 
the bus. 

This duration event counts the duration for which the 80303 I/O processor is the master on the 
secondary PCl bus. The counter increments on every clock cycle during which the processor is the 
bus master. 

This duration event counts the duration for which PCl Master 0 is the master on the secondary PCl 
bus. The counter increments on every clock cycle during which PCI Master 0 is the bus master. 

This duration event counts the duration for which PCI Master 1 is the master on the secondary PCI 
bus. The counter increments on every clock cycle during which PCI Master 1 is the bus master. 

This duration event counts the duration for which PCl Master 2 is the master on the secondary PCI 
bus. The counter increments on every clock cycle during which PCI Master 2 is the bus master. 

This duration event counts the duration for which PCI Master 3 is the master on the secondary PCI 
bus. The counter increments on every clock cycle during which PCl Master 3 is the bus master. 

This duration event counts the duration for which PCl Master 4 is the master on the secondary PCl 
bus. The counter increments on every clock cycle during which PCI Master 4 is the bus master. 

Developer's Manual 



inteJ· 
21.3.8.11 

21.3.8.12 

21.3.8.13 

21.4 

21.5 

Intel@ 80303 I/O Processor 
Performance Monitoring Unit 

This duration event counts the duration for which PCl Master 5 is the master on the secondary PCI 
bus. The counter increments on every clock cycle during which PCI Master 5 is the bus master. 

This duration event counts the duration for which the 80303 1/0 processor is the master on the 
primary PCI bus. The counter increments on every clock cycle during which the processor is the 
bus master. 

This duration event increments the counter ever y primary PCI bus idle cycle. An idle cycle occurs 
when there is no activity on the bus due to data being transferred andlor the bus is not in an 
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is 
unable to send data or the target is unable to receive data - hence no data is transferred. 

This duration event increments counter every PCI data cycle. Data cycles comprise two instances: 

• The 80303 110 processor as a master on the bus is involved in data transfers to other masters. 

• External masters initiate data transfers to either the 80303 110 processor or to other masters on 
the bus. 

Interrupts 

The Programmable Event Counters and the Global Time Stamp Counter generate interrupts to the 
80303110 processor. When bit 0 (enable/disable bit) in the Global Timer Mode Register (GTMR) 
is set, the Global Time Stamp Counter interrupts the core processor on an overflow. Any 
Programmable Event Counter interrupts the processor on an overflow by setting the corresponding 
bit in the Event Monitoring Interrupt Status Register (EMISR). Setting a bit in this register 
generates an interrupt to the XINT6# interrupt pin of the core processor. When multiple counters 
overflow, each counter that overflows sets the corresponding bit in the EMISR. 

The XINT6# pin of the core processor receives interrupts from multiple sources through the 
XINT6 interrupt latch. A valid interrupt from any source sets the bit in the latch and outputs a 
level-sensitive interrupt to the core processor XINT6# pin. 

Reset Conditions 

The Global Time Stamp Counter is cleared upon deassertion of the Internal Bus Reset signal. The 
Global Timer Mode Register (GTMR) is cleared on reset. The Event Select Register (ESR) defaults 
to Mode 0 upon reset: performance monitoring is disabled and all counters are disabled in this 
mode. The Programmable Event Counters (PECRx) values are undefined upon reset. 

Developer's Manual 21-21 



Intel® 80303 I/O Processor 
Performance Monitoring Unit in1:et 
21.6 Register Definitions 

The performance monitoring facility on 80303110 processor consists of eighteen (\8) 
memory-mapped registers for controlling operation and monitoring various events. Each register is 
32-bits wide. Each of these registers is accessed as a memory-mapped 32-bit register with a unique 
memory address. Access is accomplished through regular memory-format instructions from the 
i960 core processor. 

Three registers control the mode of operation. They are; Global Timer Mode Register (GTMR), 
Event Monitoring Interrupt Status Register (EMISR), and the Event Select Register (ESR). The 
GTMR controls operation of the Global Time Stamp Counter. The EMISR is used to indicate an 
overflow condition in any counter during performance monitoring. An overflow condition in the 
Global Time Stamp Counter is also indicated in the EMISR when the mode is enabled. The value 
programmed into the Event Select Register (ESR) determines the monitored interface. 

Fourteen(14) registers(pECRl - PECR14) contain the current count value from the programmable 
event counters (PECI - PECI4). The Global Time Stamp Register (GTSR) contains the current 
count value of the Time Stamp Counter. The event registers (PECRI - PECR14) and the GTSR are 
read-only registers. 

Table 21-4 identifies the registers used for performance monitoring. Each register is described in 
the subsections following Table 21-4. 

Table 21-4. Event Monitor Register Table 

Section, Register Name - Acronym (Page) 

Section 21.6.1, "Global Timer Mode Register (GTMR)" on page 21-23 

Section 21.6.2, "Event Select Register (ESR)" on page 21-24 

Section 21.6.3, "Event Monitoring Interrupt Status Register (EMISR)" on page 21-25 

Section 21.6.4, "Global Time Stamp Register (GTSR)" on page 21-27 

Section 21.6.5, "Programmable Event Counter Register (PECRx)" on page 21-27 

21-22 Developer's Manual 



infel· 
21.6.1 Global Timer Mode Register (GTMR) 

fnte/® 80303 flO Processor 
Performance Monitoring Unit 

The Global Timer Mode Register (GTMR) programs the mode of operation or indicates the current 
mode of the Global Time Stamp Counter as shown in Table 21-5. This is a 32-bit, read-write 
register. Bit 0 controls the interrupt capability of the Global Time Stamp Counter. When enabled, 
an interrupt is generated to the i960 core processor processor on the XINT6# interrupt pin when the 
Global Time Stamp Counter overflows. Bit 2 is an enable/disable bit. When set (I), the 
Programmable Event Counters and the Global Time Stamp Counter are disabled and retain their 
previous values. This bit needs to be rewritten to enable all counters. 

Table 21-5. Global Timer Mode Register (GTMR) 

10,' [ 
Attribute~: 

PC! [ 
Attributes 

31 28 24 20 

Intel@ 80303 Core Internal Bus Address 

0000 1100H 

16 12 8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

Bit Default Description 

31:03 o 

2 

Reserved 

Bit value determines if the Global Time Stamp Counter and the Programmable Event Counters are 
enabled or disabled. 

o = All counters enabled (enable counting) 
1 = All counters disabled (disable counting) 

O2 Reserved 

o 

Developer'S Manual 

Bit value determines whether the Global Time Stamp Counter interrupts the processor on an overflow 
condition. 

o = Interrupt disabled 
1 = Interrupt enabled 

21-23 



Intel@ 80303 110 Processor 
Performance Monitoring Unit int:et 
21.6.2 Event Select Register (ESR) 

The Event Select Register (ESR) controls the specific mode of operation or indicates the current 
mode of performance monitoring. There are eight (8) modes supported. To change the monitored 
mode, it is necessary to write the entire ESR. The Programmable Event Counters and the Global 
Time Stamp Counter are reset when a new value is written to the ESR. Performance monitoring is 
disabled in the default mode. 

Table 21-6 describes the various monitoring modes and the programmed values for those modes. 

Table 21-6. Event Select Register (ESR) - External Version 

lOP [ 
Attributes 

PCI [ 
Attributes 

31 28 24 20 16 12 8 4 o 

Intel® 80303 Core Internal Bus Address 

0000 1104H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Bit Default 

31:17 o 

16 

15:3 o 

2:0 o 

NA = Not Accessible 

Description 

Reserved 

PECRx Master Interrupt Enable: When set (1), any/all the programmable event counters will interrupt 
the InteJ® i960® processor on an overflow. When clear (0), none of the programmable event counters 
will interrupt the processor on an overflow. In this mode, any counter that has an overflow condition will 
roll over to zero and start incrementing. 

Reserved 

Value in this bit field determines the monitored interface on the InteJ® 80303 I/O processor. 

000 Mode OPerformance Monitoring Disabled 

001 Mode 1 Primary PCI Bus & Internal Agents 

010 Mode 2Secondary PCI Bus & Internal Agents 

011 Mode 3Secondary PCI Bus & PCI Agents 

100 Mode 4Secondary PCI Bus & PCI Agents (external masters 3 .. 5) 

101 Mode 5 80303 I/O processor internal bus, DMA Channels & AA 

110 Mode 6 803031/0 processor internal bus, PATU, SATU & i960 processor 

111 Mode 7 80303 I/O processor internal bus, PCI buses (primary & secondary) 

21-24 Developer's Manual 



int:et Inte/@ 80303 //0 Processor 
Performance Monitoring Unit 

21.6.3 Event Monitoring Interrupt Status Register (EMISR) 

The Event Monitoring Interrupt Status Register (EMISR) generates interrupts to the 80303 I/O 
processor. Bits 14:0 when set indicate an overtlow condition in either the Global Time Stamp 
Counter or the Programmable Event Counters. This generates an interrupt on the XINT6# pin of 
the core processor. Bits 14:0 can only be set by the Event Counters and/or the Global Time Stamp 
Counter and can only be cleared by the core processor. 

When this register is read by the core processor and multiple bits are set, it is the responsibility of 
the application software to record the value and prioritize the sequence of actions. Any bit 
(bits 14:0) once set is cleared by writing a 1 to the specific bit field. 

Note: It is the responsibility of the application software to clear the individual bit fields in the register 
once a new mode is programmed into the ESR. 

Table 21-7. Event Monitoring Interrupt Status Register (EMISR) (Sheet 1 of 2) 

Bit 

lOP [ 
Attributes 

Attrib~~~ [ 
3i 28 24 20 

Intel@ 80303 Core Internal Bus Address 

0000 1108H 

Default 

16 12 8 

Attribute Legend: 

Description 

RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 0 
RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31:15 
° 

Reserved 

14 °2 

13 O2 

12 °2 

11 °2 

10 °2 

9 O2 

8 °2 

Developer's Manual 

Bit value indicates status of the Programmable Event Counter 14 (PEC14) during event monitoring. 
When clear (0), no PEC14 overflow interrupt is pending. When set (1), a PEC14 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 13 (PEC13) during event monitoring. 
When clear (0), no PEC13 overflow interrupt is pending. When set (1), a PEC13 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 12 (PEC12) during event monitoring. 
When clear (0), no PEC12 overflow interrupt is pending. When set (1), a PEC12 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 11 (PEC11) during event monitoring. 
When clear (0), no PEC11 overflow interrupt is pending. When set (1), a PEC11 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 10 (PEC1 0) during event monitoring. 
When clear (0), no PEC10 overflow interrupt is pending. When set (1), a PEC10 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 9 (PEC9) during event monitoring. 
When clear (0), no PEC9 overflow interrupt is pending. When set (1), a PEC9 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 8 (PEC8) during event monitoring. 
When clear (0), no PEC8 overflow interrupt is pending. When set (1), a PEC8 overflow interrupt is 
pending. 

21-25 



Intel® 80303 I/O Processor 
Performance Monitoring Unit intet· 
Table 21-7. Event Monitoring Interrupt Status Register (EMISR) {Sheet 2 of 2} 

Bit 

? 

6 

S 

4 

3 

2 

o 

21-26 

PCI [ 
Attributes 

~;1 28 24 20 16 12 8 4 Q 

Intel® 80303 Core Internal Bus Address 

0000 1108H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

Default 

NA = Not Accessible 

Description 

Bit value indicates the status of the Programmable Event Counter? (PEC?) during event monitoring. 
When clear (0), no PEC? overflow interrupt is pending. When set (1), a PEC? overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter 6 (PEC6) during event monitoring. 
When clear (0), no PEC6 overflow interrupt is pending. When set (1), a PEC6 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event CounterS (PECS) during event monitoring. 
When clear (0), no PECS overflow interrupt is pending. When set (1), a PECS overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counter4 (PEC4) during event monitoring. 
When clear (0), no PEC4 overflow interrupt is pending. When set (1), a PEC4 overflow interrupt is 
pending. 

Bit value indicates Programmable Event Counter3 (PEC3) status during event monitoring. When clear 
(0), no PEC3 overflow interrupt is pending. When set (1), a PEC3 overflow interrupt is pending. 

Bit value indicates the status of the Programmable Event Counter2 (PEC2) during event monitoring. 
When clear (0), no PEC2 overflow interrupt is pending. When set (1), a PEC2 overflow interrupt is 
pending. 

Bit value indicates the status of the Programmable Event Counterl (PEC1) during event monitoring. 
When clear (0), no PECl overflow interrupt is pending. When set (1), a PECl overflow interrupt is 
pending. 

Bit value indicates the status of the Global Time Stamp Counter (GTS) during event monitoring. When 
clear (0), no GTS overflow interrupt is pending. When set (1), a GTS overflow interrupt is pending. 

Developer's Manual 



int'el. Intel® 80303 I/O Processor 
Performance Monitoring Unit 

21.6.4 Global Time Stamp Register (GTSR) 

The Global Time Stamp register (GTSR) is a 32-bit, read-only register. Writes to the GTSR have no 
effect. The GTSR contains the current count value of the Global Time Stamp Counter. The counter 
frequency is one-quarter the Internal Bus clock frequency. When a new mode is chosen by writing 
a value to the ESR, this register is reset to zero. This register can be read at any time and will return 
the current count value. 

Table 21-8. Global Time Stamp Register - GTSR 

Bit Default 

31:00 x 

8 

Attribute Legend: 

Description 

RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

This is a 32-bit, read-only register. When accessed, it returns the current count value in the Global Time 
Stamp Counter. 

21.6.5 Programmable Event Counter Register (PECRx) 

There are 14 programmable event counter registers (PECR] - PEeR 14) that contain the current 
count value in the 14 event counters (PECI - PEC14). Each register is a 32-bit, read-only register. 
Writing to the Programmable Event Counter Registers (PECRI - PECR14) has no effect. 

The value in any register is incremented based on the current programmed ESR value and the 
descriptions shown in Table 21-1 through Table 21-4. When a new mode is chosen by writing a 
value to the ESR, these registers are reset to zero. Each of these registers can be read at any time, 
and return the current count value with a two event granularity (see note). 

Note: These counters will increment from bits 3]:1 with a two event granularity. For instance, after one 
event has occurred the counter will read 0000 OOOOH, while after two events has occurred the 
counter will read 0000 0002H. 

Developer's Manual 21-27 



Intel@ 80303 liD Processor 
Performance Monitoring Unit 

Table 21-9. Programmable Event Counter Register - PECRx 

Bit 

31 28 24 20 

IntetID 80303 Core Internal Bus Address 

PECR1 0000 1114H 
PECR2 0000 1118H 
PECR3 0000 111CH 
PECR4 0000 1120H 
PECRS 0000 1124H 
PECR6 0000 1128H 
PECR? 0000 112CH 
PECR8 0000 1130H 
PECR9 0000 1134H 
PECR10 0000 1138H 
PECR11 0000 113CH 
PECR12 0000 1140H 
PECR13 0000 1144H 
PECR14 0000 1148H 

Default 

16 12 8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Description 

4 0 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

31 :01 x This is a 32-bit, read-only register. When accessed, it returns the current count value in the 
respective event counter. 

00 Reserved 

21-28 Developer's Manual 



intel· 
Pc Bus Interface Unit 22 

22.1 

This chapter describes the 12C (Inter-Integrated Circuit) bus interface unit of the Intel® 80303 I/O 
processor, including the operation modes and setup. Throughout this manual, this peripheral is 
referred to as the 12C unit. 

Overview 

The 12C Bus Interface Unit allows the 80303 I/O processor to serve as a master and slave device 
residing on the 12C bus. The 12C bus is a serial bus developed by Philips Corporation consisting of 
a two-pin interface. SDA is the data pin for input and output functions and SCL is the clock pin for 
reference and control of the 12C bus. 

The 12C bus allows the 80303 I/O processor to interface to other 12C peripherals and 
microcontrollers for system management functions. The serial bus requires a minimum of 
hardware for an economical system to relay status and reliability information on the 80303 liD 
processor subsystem to an external device. 

The 12C Bus Interface Unit is a peripheral device that resides on the 80303 I/O processor internal 
bus. Data is transmitted to and received from the 12C bus via a buffered interface. Control and 
status information is relayed through a set of memory-mapped registers. Refer to the 12C Bus 
Specification for complete details on 12C bus operation. 

Developer's Manual 22-1 



Intel@ 80303 110 Processor 
Pc Bus Interface Unit 

22.2 Theory of Operation 

The I2C bus defines a serial protocol for passing information between agents on the I2C bus using 
only a two pin interface. The interface consists of a Serial Data/Address (SDA) line and a Serial 
Clock Line (SCL). Each device on the I2C bus is recognized by a unique 7-bit address and can 
operate as a transmitter or as a receiver. In addition to transmitter and receiver, the 12C bus uses the 
concept of master and slave. Table 22-1 lists the 12C device types. 

Table 22-1. J2C Bus Definitions 

12C Device Definition 

Transmitter Sends data to the 12C bus. 

Receiver Receives data from the 12 C bus. 

Master Initiates a transfer, generates the clock signal, and terminates the transactions. 

Slave The device addressed by a master. 

Multi-master 
More than one master can attempt to control the bus at the same time without corrupting 
the message. 

Arbitration Procedure to ensure that, when more than one master simultaneously tries to control the 
bus, only one is allowed. This procedure ensures that messages are not corrupted. 

As an example of I2C bus operation, consider the case of the 80303 I/O processor acting as a 
master on the bus (see Figure 22-1). The 80303 I/O processor, as a master, addresses an EEPROM 
as a slave to receive data. The 80303 I/O processor is a master-transmitter and the EEPROM is a 
slave-receiver. When the 80303 I/O processor reads data, the 80303 I/O processor is a 
master-receiver and the EEPROM is a slave-transmitter. In both cases, the master generates the 
clock, initiates the transaction and terminates it. 

Figure 22-1. ,2C Bus Configuration Example 

22-2 

Intej® 80303 
liD Processor EEPROM 

I SCL I 
SDA 

1 I 
Gate 

Microcontroiler 
Army 

The 12C bus allows for a multi-master system, which means more than one device can initiate data 
transfers at the same time. To support this feature, the I2C bus arbitration relies on the wired-AND 
connection of all J2C interfaces to the J2C bus. Two masters can drive the bus simultaneously 
provided they are driving identical data. The first master to drive SDA high while another master 
drives SDA loses the arbitration. The SCL line consists of a synchronized combination of clocks 
generated by the masters using the wired-AND connection to the SCL line. 

Developer's Manual 



int:et 

22.2.1 

Inte/@ 80303 liD Processor 
Pc Bus Interface Unit 

The 12C bus serial operation uses an open-drain wired-AND bus structure, which allows multiple 
devices to drive the bus lines and to communicate status about events such as arbitration, wait 
states, error conditions and so on. For example, when a master drives the clock (SCL) line during a 
data transfer, it transfers a bit on every instance that the clock is high. When the slave is unable to 
accept or drive data at the rate that the master is requesting, the slave can hold the clock line low 
between the high states to insert a wait interval. The master's clock can only be altered by a slow 
slave peripheral keeping the clock line low or by another master during arbitration. 

12C transactions are either initiated by the 80303 I/O processor as a master or are received by the 
processor as a slave. Both conditions may result in the processor doing reads, writes, or both to the 
12C bus. 

Operational Blocks 

The 12C Bus Interface Unit is a slave peripheral device that is connected to the internal bus. The 
80303 110 processor interrupt mechanism can be used for notifying the 80303 I/O processor that 
there is activity on the 12C bus. Polling can be also be used instead of interrupts, although it would 
be very cumbersome. Figure 22-2 shows a block diagram of the 12C Bus Interface Unit and its 
interface to the internal bus. 

The 12C Bus Interface Unit consists of the two wire interface to the 12C bus, an 8-bit buffer for 
passing data to and from the 80303 I/O processor, a set of control and status registers, and a shift 
register for parallel/serial conversions. 

Figure 22-2. 12C Bus Interface Unit Block Diagram 

Developer's Manual 22-3 



Intel® 80303 110 Processor 
~C Bus Interface Unit 

22.2.2 

Table 22-2. 

22-4 

The I2C interrupts are signalled through 80303 1/0 processor interrupt XINT7# and the XINT7 
Interrupt Status Register (X7ISR) in the PCI and PeriQheral Interrupt Controller (See Chapter 8, 
"PCI and Peripheral Interrupt Controller Unit"). The I2C Bus Interface Unit can set a bit within the 
X7ISR register when a buffer is full, buffer empty, slave address detected, arbitration lost, or bus 
error condition occurs. All interrupt conditions must be cleared explicitly by software. See 
Section 22.S.2, "I2C Status Register- ISR" all page 22-32} for details. 

The I2C Data Buffer Register (IDBR) is an 8-bit data buffer that receives a byte of data from the 
shift register interface o( the I2C bus on one side and parallel data from the S0303 1/0 processor's 
internal bus on the other side. The serial shift register is not user accessible. 

The control and status registers are located in the I2C memory-mapped address space (l680H to 
1690H). The registers and their function are defined in Section 22.S. 

The I2C Bus Interface Unit supports fast mode operation of 400 Kbits/sec. Fast mode logic levels, 
formats, and capacitive loading, and protocols are exactly the same as the 100 Kbits/sec standard 
mode. Because the data setup and hold times differ between the fast and standard mode, the I2C 
will be designed to meet the slower, standard mode requirements for these two specifications. 
Refer to the 12C Bus Specification for details. 

12C Bus Interface Modes 

The 12C Bus Interface Unit can be in different modes of operation to accomplish a transfer. 
Table 22-2 summarizes the different modes. 

Modes of Operation 

Mode Definition 

· 12C Bus Interface Unit acts as a master. 

· Used for a write operation. 

Master - Transmit · 12C Bus Interface Unit sends the data. 

· 12C Bus Interface Unit is responsible for clocking. 

· Slave device will be in slave-receive mode 

· 12C Bus Interface Unit acts as a master. 

· Used for a read operation. 

Master - Receive · 12C Bus Interface Unit receives the data. 

· 12C Bus Interface Unit is responsible for clocking. 

· Slave device will be in slave-transmit mode 

· 12C Bus Interface Unit acts as a slave. 

· Used for a read (master) operation. 
Slave - Transmit · 12C Bus Interface Unit sends the data. 

• Master device will be in master-receive mode. 

· 12C Bus Interface Unit acts as a slave. 

· Used for a write (master) operation. 
Slave - Receive (default) · 12C Bus Interface Unit receives the data. 

• Master device will be in master-transmit mode. 

While the I2C Bus Interface Unit is in idle mode (neither receiving or transmitting serial data), the 
unit defaults to Slave-Receive mode. This allows the interface to monitor the bus and receive any 
slave addresses that might be intended for the 80303 I/O processor. 

Developer's Manual 



22.2.3 

intel@ 80303 I/O Processor 
12C Bus Interface Unit 

When the I2C Bus Interface Unit receives an address that matches the 7-bit address found in the 
I2C Slave Address Register (ISAR) or the General Call Address (OOH), the interface will either 
remain in Slave-Receive mode or transition to Slave-Transmit mode. This is determined by the 
ReadlWrite (R/W#) bit (the least significant bit of the byte containing the slave address). If the 
RIW# bit is low, the master initiating the transaction intends to do a write and the I2C Bus Interface 
Unit will remain in Slave-Receive mode. If the R/W# is high, the initiating master wants to read 
data and the slave transitions to Slave-Transmit mode. Slave operation is further defined in 
Section 22.3.6, "Slave Operations" on page 22-18. 

When the 80303 1/0 processor wants to initiate a read or write on the I2C bus, the 12C Bus Interface 
Unit will transition from the default Slave-Receive mode to Master-Transmit mode. If the 80303 
I/O processor wants to write data, the interface remains in Master-Transmit mode after the address 
transfer has completed. (see Section 22.2.3.1, "START Condition" on page 22-6) for START 
information). Ifthe 80303 1/0 processor wants to read data, the 12C Bus Interface Unit will 
transmit the start address, then transition to Master-Receive mode. Master operation is further 
defined in Section 22.3.5; "Master Operations" on page 22-14. 

Start and Stop Bus States 

The I2C bus defines a transaction START and a transaction STOP bus state that are used at the 
beginning and end of the transfer of one to an unlimited number of bytes on the bus. 

The 80303 I/O processor uses the START and STOP bits in the I2C Control Register (ICR) to: 

• initiate an additional byte transfer 

• initiate a START condition on the 12C bus 

• enable Data Chaining (repeated START) 

• initiate a STOP condition on the I2C bus 

Table 22-3 summarizes the definition of the START and STOP bits in the ICR. 

Table 22·3. START and STOP Bit Definitions 

STOP STAR 
Condition Notes 

bit T bit 

0 0 
No START or · No START or STOP condition is sent by the 12C Bus Interface Unit. 

STOP This is used when multiple data bytes need to be transferred. 

· The 12C Bus Interface Unit will send a START condition and transmit 
the contents of the 8 bit IDBR after the START. The IDBR must 
contain the 7-bit address and the R/w# bit before a START is 

START initiated. 
Condition and 

0 1 · For a repeated start, the IDBR contents will contain the target slave 
Repeated address and the R/w# bit. This enables multiple transfers to different 

START slaves without giving up the bus. 

· The interface will stay in Master-Transmit mode if a write is used or 
transition to master-receive mode if a read is requested. 

· In Master-Transmit mode, the 12C Bus Interface Unit will transmit the 
8-bit IDBR and then send a STOP on the 12C bus. 

· In Master-Receive mode, the AckiNack Control bit in the ICR must 
1 X STOP Condition be changed to a negative Ack (see Section 22.3.3). The 12C Bus 

Interface Unit will write the Nack bit (AckiNack Control bit must be 
1), receive the data byte in the IDBR, then send a STOP on the 12C 
bus. 

Developer's Manual 22-5 



Intel@ 80303 liD Processor 
Pc Bus Interface Unit 

Figure 22-3 shows the relationship between the SDA and SCL lines for a START and STOP 
condition. 

Figure 22-3. Start and Stop Conditions 

22.2.3.1 

22.2.3.2 

22-6 

SDA[ 
:: 

sel [ 

Start Condition 

START Condition 

\ 
r , 

:Ii 

L.. .J 

Stop Condition 

The START condition (bits 1:0 of the ICR set to 01 2) initiates a master transaction or repeated 
START. Software must load the target slave address and the R/W# bit in the IDBR (see 
Section 22.8.4, "I2C Data Buffer Register- IDBR" on page 22-35) before setting the START ICR 
bit. The START and the IDBR contents are transmitted on the I2C bus when the ICR Transfer Byte 
bit is set. The 12C bus stays in master-transmit mode when a write is requested or enters 
master-receive mode when a read is requested. For a repeated start (a change in read or write or a 
change in the target slave address), the IDBR contains the updated target slave address and the 
RJW# bit. A repeated start enables multiple transfers to different slaves without giving up the bus. 

The START condition is not cleared by the I2C unit. When arbitration is lost while initiating a 
START, the I2C unit may re-attempt the START when the bus becomes free. See Section 22.3.4, 
"Arbitration" on page 22-12 for details on how the I2C unit functions under those circumstances. 

No START or STOP Condition 

No START or STOP condition (bits 1:0 of the ICR set to 002) is used in master-transmit mode 
while the 80303 110 processor is transmitting multiple data bytes (see Figure 22-3). Software 
writes the data byte, sets the IDBR Transmit Empty bit in the ISR (and interrupt when enabled), 
and clears the Transfer Byte bit in the ICR. The software then writes a new byte to the IDBR and 
sets the Transfer Byte ICR bit, which initiates the new byte transmission. This continues until the 
software sets the START or STOP bit. The START and STOP bits in the ICR are not automatically 
cleared by the I2C unit after the transmission of a START, STOP or repeated START. 

After each byte transfer (including the AcklNack bit) the I2C unit holds the SCL line low (inserting 
wait states) until the Transfer Byte bit in the ICR is set. This action notifies the I2C unit to release 
the SCL line and allow the next information transfer to proceed. 

Developer's Manual 



intal. 
22.2.3.3 STOP Condition 

Inte/@ 80303 liD Processor 
12C Bus Interlace Unit 

The STOP condition (bits 1:0 of the ICR set to 1°2) terminates a data transfer. In master-transmit 
mode, the STOP bit and the Transfer Byte bit in the ICR must be set to initiate the last hyte transfer 
(see Figure 22-3). In master-receive mode, to initiate the last transfer the 803m 1/0 processor must 
set the Ack/Nack bit, the STOP bit, and the Transfer Byte bit in the ICR. Software must clear the 
STOP condition after it is transmitted. 

Figure 22-4. START and STOP Conditions 

No START or STOP Condition 

Data byte I ~~~k I 
START Condition 

STOP Condition 

Data Byte 

Developer's Manual 22-7 



Intel@ 80303 liD Processor 
fc Bus Interface Unit int'et 
22.3 

22.3.1 

12C Bus Operation 

The 12C Bus Interface Unit transfers in I byte increments. A data transfer on the J2C bus always 
follows the sequence: 
I) START 
2) 7-bit Slave Address 
3) R!W#Bit 
4) Acknowledge Pulse 
5) 8 Bits of Data 
6) AcklNack Pulse 
7) Repeat of Step 5 and 6 for Required Number of Bytes 
8) Repeated START (Repeat Step I) or STOP 

Serial Clock Line (SCl) Generation 

The 80303 lID processor's J2C unit is required to generate the 12C clock output when in master 
mode (either receive or transmit). SCL clock generation is accomplished through the use of the 
ICCR value, which is programmed at initialization. The ICCR value is used in the following 
equation to determine the SCL transition period: 

Equation 22-1. SCL Transition Period 

BeL Transition Period = ICCR Decimal Value * 80303 1/0 processor Internal Bus 
Clock Period 

The SCL transition period is the amount of time the clock spends in the high or low state. When 
wait states are inserted or synchronization with another master is necessary, the 12C unit performs 
the necessary clock synchronization. The ICCR provides a simple method for determining 12C 
clock frequencies. Table 22-4 details sample programming values for the ICCR. 

Table 22-4. ICCR Programming Values 

Intel@ 80303 
SCl 

I/O Processor 
ICCRValue Transition 

12C Clock Frequency = 
Internal Bus 

Period 
[1/(SCl Transition Per. • 2)] 

Frequency 

000111111 2 03FH 63 1.26 115 396.8 KHz 
50 MHz 

0111110102 OFAH 250 5.00115 100.0 KHz 

0010101002 054H 84 1.26 115 396.8 KHz 
66 MHz 

1010011012 14DH 333 5.00115 100.1 KHz 

0011111102 07DH 125 1.25 115 400.0 KHz 
100 MHz 

1111101002 1F4H 500 5.00115 100.0 KHz 

Programming a value less than 30R results in undefined behavior. 

22-8 Developer's Manual 



inteL 
22.3.2 Data and Addressing Management 

Intel® 80303 110 Processor 
/2C Bus Interface Unit 

Data and slave addressing is managed via the 12C Data Buffer Register (IDBR) and the 12C Slave 
Address Register (ISAR). The IDBR (see Section 22.8.4, "[2C Data Buffer Register-lDBR" on 
page 22-35) contains data or a slave address and R/W# bit. The ISAR contains the 80303 I/O 
processor's programmable slave address. Data coming into the 12C unit is received into the IDBR 
after a full byte is received and acknowledged. To transmit data, the processor writes to the IDBR, 
and the 12C unit passes this onto the serial bus when the Transfer Byte bit in the ICR is set. See 
Section 22.8.1, "J2C Control Register- ICR" on page 22-29. 

When the 12C unit is in transmit mode (master or slave): 

1. Software writes data to the IDBR over the internal bus. This initiates a master transaction or 
sends the next data byte, after the IDBR Transmit Empty bit is sent. 

2. The 12C unit transmits the data from the IDBR when the Transmit Empty bit in the ICR is set. 

3. When enabled, an IDBR Transmit Empty interrupt is signalled when a byte is transferred on 
the 12C bus and the acknowledge cycle is complete. 

4. When the I2C bus is ready to transfer the next byte before the processor has written the IDBR 
(and a STOP condition is not in place), the I2C unit inserts wait states until the processor 
writes a new value into the IDBR and sets the ICR Transfer Byte bit. 

When the 12C unit is in receive mode (master or slave): 

1. The processor reads the IDBR data over the internal bus after the IDBR Receive Full interrupt 
is signalled. 

2. The 12C unit transfers data from the shift register to the IDBR after the Ack cycle completes. 

3. The I2C unit inserts wait states until the IDBR is read. Refer to Section 22.3.3, "I2C 
Acknowledge" on page 22-11 for acknowledge pulse information in receiver mode. 

4. After the processor reads the IDBR, the 12C unit writes the ICR's AckiNack Control bit and 
the Transfer Byte bit, allowing the next byte transfer to proceed. 

Developer's Manual 22-9 



Intel® 80303 I/O Processor 
12C Bus Interface Unit int:et 
22.3.2.1 Addressing a Slave Device 

As a master device, the 12C unit must compose and send the first byte of a transaction. This byte 
consists of the slave address for the intended device and a R/W# bit for transaction definition. The 
slave address and the RJW# bit are written to the IDBR (see Figure 22-5). 

Figure 22-5. Data Format of First Byte in Master Transaction 

22-10 

Read/Write Transaction ------------.1 
(0) Write 
(1) Read 

7-Bit 12C Slave Address -------, I ! ' 
I 11 

11I111111 
I 

MSB 
4 o 

LSB 

The first byte transmission must be followed by an Ack pulse from the addressed slave. When the 
transaction is a write, the 12C unit remains in master-transmit mode and the addressed slave device 
stays in slave-receive mode. When the transaction is a read, the I2C unit transitions to 
master-receive mode immediately following the Ack and the addressed slave device transitions to 
slave-transmit mode. When a Nack is returned, the 12C unit aborts the transaction by automatically 
sending a STOP and setting the ISR bus error bit. 

When the I2C unit is enabled and idle (no bus activity), it stays in slave-receive mode and monitors 
the 12C bus for a START signal. Upon detecting a START pulse, the I2C unit reads the first seven 
bits and compares them to those in the I2C Slave Address Register (ISAR) and the general call 
address (OOH). When the bits match those of the ISAR register, the 12C unit reads the eighth bit 
(RJW# bit) and transmits an Ack pulse. The 12C unit either remains in slave-receive mode (RIW# = 
0) or transitions to slave-transmit mode (RJW# = 1). See Section 22.3.7, "General Call Address" on 
page 22-20 for actions when a general call address is detected. 

Developer's Manual 



intel· 
22.3.3 12C Acknowledge 

Inte/® 80303 I/O Processor 
12C Bus Interface Unit 

Every I2C byte transfer must be accompanied by an acknowledge pulse, which is always generated 
by the receiver (master or slave). The transmitter must release the SDA line for the receiver to 
transmit the acknowledge pulse (see Figure 22-6). 

In master-transmit mode, when the target slave receiver device cannot generate the acknowledge 
pulse, the SDA line remains high. This lack of acknowledge (Nack) causes the 12C unit to set the 
bus error detected bit in the ISR and generate the associated interrupt (when enabled). The I2C unit 
aborts the transaction by generating a STOP automatically. 

In master-receive mode, the I2C unit signals the slave-transmitter to stoE sending data by using the 
negative acknowledge (Nack). The AcklNack bit value driven by the I C bus is controlled by the 
Ack/Nack bit in the ICR. The bus error detected bit in the ISR is not set for a master-receive mode 
Nack (as required by the I2C bus protocol). The 12C unit automatically transmits the Ack pulse, 
based on the AcklNack ICR bit, after receiving each byte from the serial bus. Before receiving the 
last byte, software must set the AckiNack Control bit to Nack. Nack is then sent after the next byte 
is received to indicate the last byte. 

In slave mode, the I2C unit automatically acknowledges its own slave address, independent of the 
AckiNack bit setting in the ICR. As a slave-receiver, an Ack response is automatically given to a 
data byte, independent of the AckiNack bit setting in the ICR. The 12C unit sends the Ack value 
after receiving the eighth data bit of the byte. 

In slave-transmit mode, receiving a Nack from the master indicates the last byte is transferred. The 
master then sends either a STOP or repeated START. The ISR's unit busy bit (2) will remain set 
until a STOP or repeated START is received. 

Figure 22-6. Acknowledge on the 12C Bus 

I 
SDA released 

Data Output I ~, /:~X:=XI ~: ~/ : 
by Transmitter I: i~. -.,----. 

(SDA) '-.. • SDA pulled low 

- -----.,.----+------f---ll------+-----, by Receiver (ACK) 

~~r \ I' r 
by Receiver ! . . 

(SDA) L I 

Developer's Manual 

SCL from [ 
Master 

Start Condition 

I 

I 
Clock Pulse 

for Acknowledge 

22-11 



Inte/® 80303 110 Processor 
~C Bus Interface Unit in1:et 
22.3.4 

22.3.4.1 

Arbitration 

Arbitration on the I2C bus is required due to the multi-master capabilities of the I2C bus. 
Arbitration is used when two or more masters simultaneously generate a START condition within 
the minimum I2C hold time of the START condition. 

Arbitration can continue for a long period. If the address bit and the R/W# are the same, the 
arbitration moves to the data. Due to the wired-AND nature of the I2C bus, no data is lost if both 
(or all) masters are outputting the same bus states. If the address, the RIW# bit, or the data are 
different, the master which outputted the high state (master's data will be different from SDA) will 
lose arbitration and shut its data drivers off. When losing arbitration, the I2C Bus Interface Unit 
will shut off the SDA or SCL drivers for the remainder of the byte transfer, set the Arbitration Loss 
Detected bit, then return to idle (Slave-Receive) mode. 

SCL Arbitration 

Each master on the I2C bus generates its own clock on the SCL line for data transfers. With 
masters generating their own clocks, clocks with different frequencies may be connected to the 
SCL line. Since data is valid when the clock is in the high period, a defined clock synchronization 
procedure is needed during bit-by-bit arbitration. 

Clock synchronization is accomplished by using the wired-AND connection of the I2C interfaces 
to the SCL line. When a master's clock transitions from high to low, this causes the master to hold 
down the SCL line for its associated period (see Figure 22-7). The low to high transition of the 
clock may not change when another master has not completed its period. Therefore, the master 
with the longest low period holds down the SCL line. Masters with shorter periods are held in a 
high wait-state during this time. Once the master with the longest period completes, the SCL line 
transitions to the high state, masters with the shorter periods can continue the data cycle. 

Figure 22-7. Clock Synchronization During the Arbitration Procedure 

22-12 

CLK1 [ 

CLK1 [ 

SCL [ 

The first master to complete its high Start Counting 

period pulls the SCL line low. 1<111-'------
Wait _____ High Period 
State ~ I---=-

The master with the longest clock 
period holds the SCL line low. 

Developer's Manual 



22.3.4.2 SOA Arbitration 

Intel® 80303 I/O Processor 
/2C Bus Interface Unit 

Arbitration on the SDA line can continue for a long period, starting with address and R/W# bits and 
continuing with data bits. Figure 22-8 shows the arbitration procedure for two masters (more than 
two may be involved depending on how many masters are connected to the bus). When the address 
and R/W# are the same, arbitration moves to the data. Due to the wired-AND nature of the 12C bus, 
no data is lost when both (or all) masters are outputting the same bus states. When address, RlW#, 
or data is different, the master that output the first low data bit loses arbitration and shuts its data 
drivers off. When the 12C unit loses arbitration, it shuts off the SDA or SCL drivers for remainder 
of byte transfer, sets arbitration loss detected ISR bit, then returns to idle (Slave-Receive) mode. 

Figure 22-8. Arbitration Procedure of Two Masters 

Data 1 [ 

Data 2 

SDA 

SCL [ 

r Transmitter 1 Leaves Arbitration Data 1 SDA 
, __ ~ ____ I ___ ---1 

I 
I 

\'----+-----I!; 
\ r-

r 
I 

When the I2C unit loses arbitration during transmission of the seven address bits and the 80303 110 
processor is not being addressed as a slave device, the 12C unit re-sends the address when the 12C 
bus becomes free. This is possible because the IDBR and ICR registers are not overwritten when 
arbitration is lost. 

When the arbitration loss is to due to another bus master addressing the 80303 110 processor as a 
slave device, the I2C unit switches to slave-receive mode and the original data in the 12C data 
buffer register is overwritten. Software is responsible for clearing the start and re-initiating the 
master transaction at a later time. 

Note: Software must not allow the I2C unit to write to its own slave address. This can cause the 12C bus to 
enter an indeterminate state. 

Boundary conditions exist for arbitration when an arbitration process is in progress and a repeated 
START or STOP condition is transmitted on the 12C bus. To prevent errors, the 12C unit, acting as a 
master, provides for the following sequences: 

• No arbitration takes place between a repeated START condition and a data bit 

• No arbitration takes place between a data bit and a STOP condition 

• No arbitration takes place between a repeated START condition and a STOP condition 

These situations arise only when different masters write the same data to the same target slave 
simultaneously and arbitration is not resolved after the first data byte transfer. 

Note: Typically, software is responsible for ensuring arbitration is lost soon after the transaction begins. 
For example, the protocol might insist that all masters transmit their 12C address as the first data 
byte of any transaction ensuring arbitration is ended. A restart is then sent to begin a valid data 
transfer (the slave can then discard the master's address). 

Developer's Manual 22-13 



Inte/® 80303 I/O Processor 
Pc Bus Interface Unit 

22.3.5 

Table 22-5. 

22-14 

Master Operations 

When software initiates a read or write on the 12C bus, the 12C unit transitions from the default 
slave-receive mode to master-transmit mode. The start pulse is sent followed by the 7-bit slave 
address and the R/w# bit. After the master receives an acknowledge, the 12C unit has the option of 
two master modes: 

• Master-Transmit - The 80303 I/O processor writes data 

• Master-Receive - The 80303 110 processor reads data 

The 80303 110 processor initiates a master transaction by writing to the ICR register. Data is read 
and written from the 12C unit through the memory-mapped registers. 

Table 22-5 describes the 12C Bus Interface Unit responsibilities as a master device. 

Master Transactions (Sheet 1 ·of 3) 

J2C Master Mode of 
Definition 

Action Operation 

· The master always drives the SCL line. 

Generate clock Master-transmit • The ICCR register is written. 
output Master-receive • The SCL Enable bit must be set. 

· The Unit Enable bit must be set. 

• The IntefID i960® core processor writes to IDBR bits 7-1 before a 
Write target Master-transmit START condition is enabled. 
slave address to • First 7 bits sent on bus after START. 
IDBR Master-receive 

· See Section 22.2.3. 

• The i960 core processor writes to the least significant IDBR bit with 

Write R/w# Bit Master-transmit 
the target slave address. 

• If low, the master remains a master-transmitter. If high, the master 
to IDBR Master-receive transitions to a master-receiver. 

• See Section 22.3.2. 

• See "Generate clock outpuf' above. 

• Performed after the target slave address and the R/w# bit are in the 
IDBA. 

Signal START Master-transmit 
i960 core processor sets the START bit. · Condition Master-receive 

• i960 core processor sets the Transfer Byte bit which initiates the start 
condition. 

· See Section 22.2.3. 

· i960 core processorwrites byte to IDBR 

Initiate first data Master-transmit • 12C Bus Interface Unit transmits the byte when the Transfer Byte bit 

byte transfer Master-receive 
is set. 

· 12C Bus Interface Unit clears the Transfer Byte bit and sets the IDBR 
Transmit Empty bit when the transfer is complete. 

Developer'S Manual 



intel· Intel® 80303 liD Processor 
j2C Bus Interface Unit 

Table 22-5. Master Transactions (Sheet 2 of 3) 

12C Master Mode of 
Definition Action Operation 

· If two or more masters signal a start within the same clock period, 
arbitration must occur. 

· The 12C Bus Interface Unit will arbitrate for as long as necessary. 
Arbitration takes place during slave address, R/W# bit, and data 
transmission and continues until all but one master loses the bus. No 
data is lost during arbitration. 

Arbitrate for 12C Master-transmit · If the 12C Bus Interface Unit loses arbitration, it will set the Arbitration 
Bus Master-receive Loss Detect ISR bit after byte transfer is complete and transition to 

slave-receive (default) mode. 

· If 12C Bus Interface Unit loses arbitration while attempting to send the 
target address byte, the 12C Bus Interface Unit will attempt to resend 
it when the bus becomes free. 

· The system designer must ensure the boundary conditions described 
in Section 22.3 do not occur. 

· Data transmit mode of 12C master operation. 

· Occurs when the IDBR Transmit Empty ISR bit is set and the 
Transfer Byte bit is clear. If enabled, the IDBR Transmit Empty 

Write one data Master-transmit Interrupt is signalled to the i960 core processor. 
byte to the IDBR only · i960 core processor will write 1 data byte to the IDBR, set the 

appropriate START/STOP bit combination, and then set the Transfer 
Byte bit to send the data. Eight bits are written on the serial bus 
followed by a STOP if requested. 

· As a master-transmitter, the 12C Bus Interface Unit will generate the 
Wait for clock for the acknowledge pulse. The 12C Bus Interface Unit is 
Acknowledge Master-transmit responsible for releasing the SDA line to allow slave-receiver Ack 
from only transmission. 
slave-receiver · See Section 22.3.3. 

· Data receive mode of 12C master operation. 

· Eight bits are read from the serial bus, collected in the shift register 
then transferred to the IDBR after the AckiNack bit is read. 

· The i960 core processor reads the IDBR when the IDBR Receive Full 
bit is set and the Transfer Byte bit is clear. If enabled, a IDBR 
Receive Full Interrupt is signalled to the i960 core processor. 

· When the IDBR is read, if the AckiNack Status is clear (indicating 
Ack), the i960 core processor will write the AckiNack Control bit and 

Read one byte 
Master-receive set the Transfer Byte bit to initiate the next byte read. 

of 12C Data from 
the IDBR only · If the AckiNack Status bit is set (indicating Nack), Transfer Byte bit is 

clear, STOP bit in the ICR is set, and Unit Busy bit in the ISR is set, 
then the last data byte has been read into the IDBR and the 12C Bus 
Interface Unit is sending the STOP. 

· If the AckiNack Status bit is set (indicating Nack), Transfer Byte bit is 
clear, but the STOP bit is clear, then the i960 core processor has two 
options: 1. set the START bit, write a new target address to the IDBR, 
and set the Transfer Byte bit which will send a repeated start 
condition, 2. set the Master Abort bit and leave the Transfer Byte 
clear which will send a STOP only. 

· As a master-receiver, the 12C Bus Interface Unit will generate the 

Transmit 
clock for the acknowledge pulse. The 12C Bus Interface Unit is also 

Master-receive responsible for driving the SDA line during the Ack cycle. 
Acknowledge to only · If the next data byte is to be the last transaction, the i960 core 
slave-transmitter 

processor will set the AckiNack Control bit for Nack generation. 

· See Section 22.3.3. 

Developer's Manual 22-15 



Intel® 80303 I/O Processor 
Pc Bus Interface Unit in1:et 
Table 22-5. Master Transactions (Sheet 3 of 3) 

12C Master Mode of Definition 
Action Operation 

· If data chaining is desired, a repeated START condition is used 
instead of a STOP condition. 

Generate a · This occurs after the last data byte of a transaction has been written 
Repeated Master-transmit to the bus. 
START to chain Master-receive · The i960 core processor will write the next target slave address and 
12C transactions the RIW# bit to the IDBR, set the START bit, and set the Transfer 

Byte bit. 

• See Section 22.2.3~ 

· Generated after the i960 core processor writes the last data byte on 
the bus. 

Generate a Master-transmit 
i960 core processor generates a STOP condition by setting the • STOP Master-receive STOP bit in the ICR. 

· See Section 22.2.3. 

22-16 Developer's Manual 



int:et Intel@ 80303 I/O Processor 
12C Bus Interface Unit 

When the 80303 I/O processor needs to read data, the 12C unit transitions from slave-receive mode 
to master-transmit mode to transmit the start address and immediately following the ACK pulse 
transitions to master-receive mode to wait for the reception of the read data from the slave device 
(see Figure 22-9). It is also possible to have multiple transactions during an 12C operation such as 
transitioning from master-receive to master-transmit through a repeated start or Data Chaining (see 
Figure 22-10). Figure 22-11 shows the wave forms of SDA and SCL for a complete data transfer. 

Figure 22-9. Master-Receiver Read from Slave-Transmitter 

START 

D 
Master to Slave 

R!W# 
Slave Address 

First Byte Read 

Slave to Master 

Default 
Slave-Receive 

Mode 

ACK STOP 

N Bytes + ACK 

Figure 22-10. Master-Receiver Read from Slave-Transmitter I Repeated Start! Master-Transmitter 
Write to Slave-Receiver 

Slave R/W# 
START Address 

Slave R!W# 
Address 0 

Read 

D 
N Bytes + ACK 

Master to Slave Slave to Master 

Figure 22-11. A Complete Data Transfer 

. I I I I 

Repeated 
Start 

Data Chaining 

SCL[-W~7 I 

,-, ~ ~ ~ '-------v-----' 

Start Address R!W# ACK Data 
Condition 

Developer's Manual 

Write 

I 

~ 
ACK 

N Bytes + ACK 

I I 

'----..r-----' 
Data 

I 

~ 
ACK 

r '"1 

L. .J 

Stop 
Condition 

22-17 



Intel® 80303 liD Processor 
J2c Bus Interface Unit 

22.3.6 Slave Operations 

intel· 

Table 22-6 describes the I2C Bus Interface Unit's responsibilities as a slave device. 

Table 22-6. Slave Transactions 

!2C Slave Action Mode of Definition 
Operation 

0 12C Bus Interface Unit monitors all slave address transactions. 
0 The 12C Bus Interface Unit Enable bit must be set 
0 12C Bus Interface Unit monitors bus for START conditions. When a 

START is detected, the interface reads the first 8 bits and compares 
the most significant 7 bits with the 7 bit 12C Slave Address Register 
and the General Call address (OOH). If there is a match, the 12C Bus 

Slave-receive Slave-receive 
Interface Unit sends an Ack. 

(default mode) only 0 If the first 8 bits are all zero's, this is a general call address. If the 
General Call Disable bit is clear, both the General Call Address 
Detected bit and the Slave Mode Operation bit in the ISR will be set. 
See Section 22.3.7. 

0 If the 8th bit of the first byte (R/w# bit) is low, the 12C Bus Interface 
Unit stays in slave-receive mode and the Slave Mode Operation bit is 
cleared. If the R/w# bit is high, the 12C Bus Interface Unit transitions 
to slave-transmit mode and the Slave Mode Operation bit is set. 

0 Indicates the interface has detected an 12C operation that addresses 

Setting the Slave 
the InteJ® 80303 I/O processor (this includes general call address). 

Slave-receive The Intel® i960® core processor can distinguish an ISAR match from 
Address Detected 

Slave-transmit a General Call by reading the General Call Address Detected bit. 
bit 

0 An interrupt is signalled (if enabled) after the matching slave address 
is received and acknowledged. 

0 Data receive mode of 12C slave operation. 
0 Eight bits are read from the serial bus into the shift register. When a 

full byte has been received and the AckiNack bit has completed, the 
byte is transferred from the shift register to the IDBR. 

Read one byte of 
0 Occurs when the IDBR Receive Full bit in the ISR is set and the 

12C Data from the 
Slave-receive Transfer Byte bit is clear. If enabled, the IDBR Receive Full Interrupt 

IDBR 
only is signalled to the i960 core processor. . i960 core processor will read 1 data byte from the IDBR. When the 

IDBR is read, the i960 core processor will write the desired AckiNack 
Control bit and set the Transfer Byte bit. This causes the 12C Bus 
Interface Unit to stop inserting wait states and let the master 
transmitter write the next piece of information. 

0 As a slave-receiver, the 12C Bus Interface Unit is responsible for 
Transmit Slave-receive 

pulling the SDA line low to generate the Ack pulse during the high 
Acknowledge to only 

SCl period. 
master-transmitter 0 The AckiNack Control bit controls the Ack data the 12C Bus Interface 

Unit drives. See Section 22.3.3. 

0 Data transmit mode of 12C slave operation. 

Write one byte of 
0 Occurs when the IDBR Transmit Empty bit is set and the Transfer 

12C data to the 
Slave-transmit Byte bit is clear. If enabled, the IDBR Transmit Empty Interrupt is 

IDBR 
only signalled to the i960 core processor. 

0 i960 core processor will write a data byte to the IDBR and set the 
Transfer Byte bit to initiate the transfer. 

Wait for 0 As a slave-transmitter, the 12C Bus Interface Unit is responsible for 
Acknowledge Slave-transmit releasing the SDA line to allow the master-receiver to pull the line 
from only low for the Ack. 
master-receiver 0 See Section 22.3.3. 

22-18 Developer's Manual 



intel· Intel@ 80303 I/O Processor 
12C Bus Interface Unit 

Figure 22-12 through Figure 22-14 are examples of 12C transactions. These show the relationships 
between master and slave devices. 

Figure 22-12. Master-Transmitter Write to Slave-Receiver 

START Slave Address 

First Byte 

D 

R/w# 
o 

Write 

Master to Slave Slave to Master 

Figure 22-13. Master-Receiver Read to Slave-Transmitter 

START Slave Address 

First Byte 

D 

R/w# 
1 

Read 

Default 
Slave-Receive 

Mode 

Master to Slave Slave to Master 

STOP 

N Bytes + ACK 

ACK# STOP 

N Bytes + ACK 

Figure 22-14. Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Transmitter 
Write to Slave-Receiver 

Developer's Manual 

D 

Slave 
Address 

Master to Slave 

Read N Bytes +ACK 

Slave to Master 

Slave 
SR Address 

i 
Repeated 
START 

Data Chaining 

Write N Bytes + ACK 

22-19 



Intel® 80303 110 Processor 
Pc Bus Interface Unit intel· 
22.3.7 General Call Address 

The 12C unit supports both sending and receivin:f general call address transfers on the 12C bus. 
When sending a general caB message from the I C unit, software must set the General Call Disable 
bit in the ICR to keep the 12C unit from responding as a slave. Failure to set this bit causes the 12C 
Bus to enter an indeterminate state. 

A general caB address is defined as a transaction with a slave address of OOH. When a device 
requires the data from a general call address, it acknowledges the transaction and stays in 
slave-receiver mode. Otherwise, the device can ignore the general call address. The second and 
following bytes of a general caB transaction are acknowledged by every device using it on the bus. 
Any device not using these bytes must not Ack. The meaning of a general call address is defined in 
the second byte sent by the master-transmitter. Figure 22-15 shows a general caB address 
transaction. The least significant bit (B) of the second byte defines the transaction. Table 22-7, 
"General Call Address Second Byte Definitions" on page 22-20 shows the valid values and 
definitions when B=O. 

When the 80303 1/0 processor is acting as a slavez and the 12C unit receives a general caB address 
and the ICR General Call Disable bit is clear the I C unit: 

• Sets the ISR general caIl address detected bit 

• Sets the ISR slave address detected bit 

• Interrupts (when enabled) the 80303 I/O processor 

When the 12C unit receives a general call address and the ICR General Call Disable bit is set, the 
12C unit wiIl ignore the general call address. 

Figure 22-15. General Call Address 

START 00000000 

First Byte 

D 

Second Byte 0 

Second Byte i N Bytes +ACK 

Least Significant Bit of Master Address 
Defines Transaction 

STOP 

Master to Slave Slave to Master 

Table 22-7. General Call Address Second Byte Definitions 

Least 
Significant Bit Second Byte Definition of Second Byte Value 

(B) 

0 06H 2-byte transaction where the second byte tells the slave to reset and 
then store this value in the programmable part of their slave address. 

0 04H 2-byte transaction where the second byte tells the slave to store this 
value in the programmable part of their slave address. No reset. 

0 OOH Not allowed as a second byte 

22-20 Developer's Manual 



intel· Intel@ 80303 I/O Processor 
12C Bus Interface Unit 

When directed to reset, the I2C Bus Interface Unit will return to its default reset condition with the 
exception of the ISAR. The 80303 110 processor is responsible for ensuring this occurs, not the 12C 
Bus Interface Unit hardware. 

When B=l, the sequence is used as a hardware general caB by hardware masters only they cannot 
transmit a slave address, only their own address. The I2C Bus Interface Unit does not support this 
mode of operation. 

12C 10-bit addressing and CBUS compatibility are not supported. 

Developer's Manual 22-21 



Intel@ 80303 110 Processor 
Pc Bus Interface Unit intel· 
22.4 

22.4.1 

22.4.2 

22.4.3 

22-22 

Slave Mode Programming Examples 

Initialize Unit 

1. Write ICCR: Set clock count 

2. Write ISAR: Set slave address 

3. Write ICR: Enable all interrupts, set Unit Enable 

Write 1 Byte as a Slave 

1. Wait for Slave Address Detected interrupt. 
Read ISR: Slave Address Detected (set), Unit Busy (set), R/W# bit (0), AcklNack (Clear
Ack) 

2. Write IDBR: Load data byte to transfer 

3. Write ICR: Set Transfer Byte bit 

4. Wait for IDBR Transmit Empty interrupt. 
Read ISR: IDBR Transmit Empty (set), AcklNack (set - indicates last byte write), R/W# bit (0) 

5. Clear interrupt by clearing the IDBR Transmit Empty Interrupt bit. 

6. Wait for interrupt. 
Read ISR: Unit Busy (clear), Slave STOP Detected (set) 

7. Clear interrupt by clearing Slave STOP Detected Interrupt bit. 

Read 2 Bytes as a Slave 

1. Wait for Slave Address Detected interrupt. 
Read ISR: Slave Address Detected (set), Unit busy (set), R/W# bit (0) 

2. Read byte 1 on I2C bus 
Write ICR: Set Transfer Byte bit to initiate the transfer 

3. Wait for interrupt. 
Read ISR: IDBR Receive Full (set), AcklNack (clear), R/W# bit (0) 
Clear interrupt by clearing IDBR Receive Full bit. 
Read IDBR: To get the data. 

4. Read byte 2 on 12C bus 
Write ICR: Set Transfer Byte bit to initiate the transfer 

5. Wait for interrupt. 
Read ISR: IDBR Receive Full (set), AcklNack (clear), R/W# bit (0) 
Clear interrupt by clearing IDBR Receive Full bit. 
Read IDBR: To get the data. 
Write ICR: Set Transfer Byte bit (to release 12C bus allowing next transfer) 

6. Wait for interrupt. 
Read ISR: Unit busy (clear), Slave STOP Detected (set) 
Clear interrupt by clearing Slave STOP Detected bit. 

Developer's Manual 



intel~ 

22.5 

22.5.1 

22.5.2 

Master Programming Examples 

Initialize Unit 

1. Write ICCR: Set clock count 

2. Write ISAR: Set slave address 

Intel® 80303 I/O Processor 
Fe Bus Interface Unit 

3. Write ICR: Enable all interrupts (except Arb Loss), set SCL Enable, set Unit Enable 

Write 1 Byte as a Master 

1. Write IDBR: Target slave address and R/W# bit (0 for write) 

2. Write ICR: Set START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access 

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives: 
Read status register: IDBR Transmit Empty (set), Unit Busy (set), RIW# bit (clear) 
Clear IDBR Transmit Empty Interrupt bit to clear the interrupt. 

Note: The Arbitration Loss Detected bit may be set. Because the Arb Loss interrupt was disabled, if 
arbitration was lost, an address retry would occur when the bus became free. Clear the Arbitration 
Loss Detected bit if set. 

22.5.3 

4. Send byte with STOP 
Write IDBR: With data byte to send 
Write ICR: Clear START bit, Set STOP bit, Enable Arb Loss interrupt, Set Transfer Byte bit to 
initiate the access 

5. Wait for Buffer empty interrupt. When interrupt arrives (Note: Unit will be sending STOP): 
Read status register: IDBR Transmit Empty (set), Unit busy (set - maybe), RIW# bit (clear) 
Clear IDBR Transmit Empty Interrupt bit to clear the interrupt. 
Clear ICR STOP bit (optional) 
Wait until Unit busy is clear before clearing the ICR SCL Enable bit. (optional) 

Read 1 Byte as a Master 

1. Write IDBR: Target slave address and RIW# bit (1 for read) 

2. Write ICR: Set START bit, Clear STOP bit, Disable Arb loss interrupt, Set Transfer Byte bit to 
initiate the access 

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives: 
Read status register: IDBR Transmit Empty (set), Unit busy (set), RIW# bit (set) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

4. Read byte with STOP 
Write ICR: Clear START bit, Set STOP bit, Enable arb loss interrupt, Set AcklNack bit 
(Nack), Set Transfer Byte bit to initiate the access 

5. Wait for Buffer full interrupt. When interrupt arrives (Note: Unit will be sending STOP): 
Read status register: IDBR Receive Full (set), Unit Busy (set - maybe), RIW# bit (Set), 
AckiNack bit (Set) 
Clear IDBR Receive Full bit to clear the interrupt. 
Read IDBR data. 

Developer's Manual 22-23 



Intel@ 80303 liD Processor 
fc Bus Interface Unit 

22.5.4 

22.5.5 

22-24 

Clear ICR STOP bit (optional), Clear ICR AcklNack Control bit (optional) 
Wait until Unit busy is clear before clearing the ICR SCL Enable bit. (optional) 

Write 2 Bytes and Repeated Start Read 1 Byte as a Master 

1. Write IDBR: Target slave address and RIW# bit (0 for write) 

2. Write ICR: Set START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access 

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives: 
Read status register: IDBR Transmit Empty (set), Unit busy (set), RIW# bit (clear) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

4. Send byte 1 
Write IDBR: With data byte to send 
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Set Transfer Byte bit 
to initiate the access 

5. Wait for Buffer empty interrupt. 
Read status register: IDBR Transmit Empty (set), Unit busy (set), RIW# bit (clear) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

6. Send byte 2 
Write IDBR: With data byte to send 
Write ICR: Clear START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access 

7. Wait for Buffer empty interrupt. 
Read status register: IDBR Transmit Empty (set), Unit busy (set), RIW# bit (clear) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

8. Send repeated start as a master 
Write IDBR: Target slave address and RIW# bit (1 for read) 
Write ICR: Set START bit, Clear STOP bit, Disable Arb Loss interrupt, Set Transfer Byte bit 
the initiate the access 

9. Wait for IDBR Transmit Empty interrupt. When interrupt comes. 
Read status register: IDBR Transmit Empty (set), Unit busy (set), RIW# bit (set) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

10. Read byte with STOP 
Write ICR: Clear START bit, Set STOP bit, Enable arb loss interrupt, Set AcklNack bit 
(Nack), Set Transfer Byte bit to initiate the access 

11. Wait for Buffer full interrupt. When interrupt comes (Note: Unit will be sending STOP). 
Read status register: IDBR Receive Full (set), Unit busy (set - maybe), RIW# bit (Set), 
AcklNack bit (Set) 
Clear IDBR Receive Full bit to clear the interrupt. 
Read IDBR data. 
Clear ICR STOP bit (optional), Clear ICR AcklNack Control bit (optional) 
Wait until Unit busy is clear before clearing the ICR SCL Enable bit. (optional) 

Read 2 Bytes as a Master - Send STOP Using the Abort 

1. Write IDBR: Target slave address and RIW# bit (1 for read) 

2. Write ICR: Set START bit, Clear STOP bit, Disable Arb loss interrupt, Set Transfer Byte bit to 
initiate the access 

Developer's Manual 



infel· Intel® 80303 I/O Processor 
Pc Bus Interface Unit 

3. Wait for IDBR Transmit Empty interrupt. When interrupt comes. 
Read status register: IDBR Transmit Empty (set), Unit Busy (set), R/w# bit (set) 
Clear IDBR Transmit Empty bit to clear the interrupt. 

4. Read byte 1 
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Clear Ack/Nack bit 
(Ack), Set Transfer Byte bit to initiate the access 

5. Wait for Buffer full interrupt. 
Read status register: IDBR Receive Full (set), Unit busy (set), R/W# bit (Set), AcklNack bit 
(Clear) 
Clear IDBR Receive Full bit to clear the interrupt. 
Read IDBR data. 

6. Read byte 2 with Nack (STOP is not set because STOP or Repeated START will be decided on 
the byte read) 
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Set AckiNack bit 
(Nack), Set Transfer Byte bit to initiate the access 

7. Wait for Buffer full interrupt. 
Read status register: IDBR Receive Full (set), Unit Busy (set), RlW# bit (Set), AcklNack bit 
(Set) 
Clear IDBR Receive Full bit to clear the interrupt. 
Read IDBR data. 

There are now two options based on the byte read: 

• Send a repeated START 

• Send a STOP only 

Here, a STOP abort is sent. 

Note: Had a NACK not been sent, the next transaction must involve another data byte read. 

8. Send STOP abort condition. (STOP with no data transfer.) 
Write ICR: Set Master abort. 

Developer's Manual 22-25 



Inte/® 80303 110 Processor 
Pc Bus Interface Unit 

22.6 

22-26 

Glitch Suppression Logic 

The 12C Bus Interface Unit has built-in glitch suppression logic. Glitches will be suppressed 
according to: 4 * internal bus clock period. For example, with a 66 MHz (15 ns period) 80303 I/O 
processor clock, glitches of 60ns or less will be suppressed. At 40 MHz (25 ns period) clock, 
glitches of 100 ns or less will be suppressed. This is within the 50 ns glitch suppression 
specification. 

Developer's Manual 



intel· 
22.7 Reset Conditions 

Intel® 80303 110 Processor 
Fe Bus Interface Unit 

The I2C unit is reset with CRST#. Software is responsible for ensuring the I2C unit is not busy 
(ISR[3]) before asserting reset. Software is also responsible for ensuring the I2C bus is idle when 
the unit is enabled after reset. When directed to reset, the I2C unit returns to its default reset 
condition with the exception of the ISAR. ISAR is not affected by a reset. 

When the Unit Reset bit in the ICR is set, only the 80303 1/0 processor I2C unit resets, the 
associated I2C MMRs remain intact. When resetting the I2C unit with the ICR's unit reset, use the 
following guidelines: 

I. In the ICR register, set the reset bit and clear the remainder of the register. 

2. Clear the ISR register. 

3. Clear reset in the ICR. 

Developer's Manual 22-27 



Intel@ 80303 110 Processor 
Pc Bus Interface Unit in1:et 
22.8 Register Definitions 

The following registers are associated with the I2C Bus Interface Unit. They are all located within 
the peripheral memory- mapped address space of the 80303 I/O processor. See Section 22.8, 
"'Register Definitions" on page 22-28 for the register addresses 

Table 22-8. 12C Register Summary Table 

Section, Register Name, Page 

Section 22.B.1, "12C Control Register- ICR" on page 22-29 

Section 22.B.2, "12C Status Register- ISR" on page 22-32 

Section 22.B.3, "12C Slave Address Register- ISAR" on page 22-34 

Section 22.B.4, "12C Data Buffer Register- IDBR" on page 22-35 

Section 22.B.5, "12C Clock Count Register- ICCR" on page 22-36 

Section 22.S.6, "12C Bus Monitor Register- IBMR" on page 22-37 

22-28 Developer's Manual 



intet Intel® 80303 liD Processor 
12C Bus Interface Unit 

22.8.1 12c Control Register- ICR 

Table 22-9. 

The 80303 I/O processor uses the bits in the 12C Control Register (lCR) to control the 12C unit. 

,2C Control Register - leR (Sheet 1 of 3) 

PC: [ 
Attributes 

Intel@ 80960 Core Local Bus Address 

1680H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = ReadlSet 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

Bit Default 

31:14 OOOOH 

14 

13 

12 

11 

10 

09 

08 

Developer's Manual 

Reserved 

Unit Reset: 

0= No reset. 
1 = Reset the 12C unit only. 

NA = Not Accessible 

Description 

Slave Address Detected Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the Intel@ 80303 1/0 processor upon detecting a slave address 

match or a general call address. 

Arbitration Loss Detected Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the 80303 1/0 processor upon losing arbitration while in master 

mode. 

Slave STOP Detected Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the 80303 1/0 processor when it detects a STOP condition while in 

slave mode. 

Bus Error Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the 80303 1/0 processor for the following 12C bus errors: 

• As a master transmitter, no Ack was detected after a byte was sent. 

• As a slave receiver, the 12C unit generated a Nack pulse. 
NOTE: Software is responsible for guaranteeing that misplaced START and STOP conditions do not 

occur. See Section 22.6, "Glitch Suppression Logic" on page 22-26. 

IDBR Receive Full Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the 80303 1/0 processor when the IDBR has received a data byte 

from the 12C bus. 

IDBR Transmit Empty Interrupt Enable: 

o = Disable interrupt. 
1 = Enables the 12C unit to interrupt the 80303 110 processor after transmitting a byte onto the 12C bus. 

22-29 



Intef@ 80303 110 Processor 
12C Bus Interface Unit infel. 
Table 22-9. 12C Control Register - ICR (Sheet 2 of 3) 

Bit 

07 

06 

05 

04 

03 

02 

22-30 

lOP [ 
Attributes 

28 24 20 16 12 4 o 

Intel@ 80960 Core Local Bus Address 

1680H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

Default 

NA = Not Accessible 

Description 

General Call Disable: 

o = Enables the 12C unit to respond to general call messages. 
1 = Disables 12C unit response to general call messages as a slave. 

This bit must be set when sending a master mode general call message from the 12C unit. 

12C Unit Enable: 

o = Disables the unit and does not master any transactions or respond to any slave transactions. 
1 = Enables the 12C unit (defaults to slave-receive mode). 

Software must guarantee the 12C bus is idle before setting this bit. 

SCL Enable: 

0= Disables the 12C unit from driving the SCL line. 
1 = Enables the 12C clock output for master mode operation. 

The ICCR (see Section 22.8.5, "12C Clock Count Register- ICCR" on page 22-36) must be programmed 
with a valid value before setting this bit. 

Master Abort: used by the 12C unit when in master mode to generate a STOP without transmitting 
another data byte. 

o = The 12C unit transmits STOP using the STOP ICR bit only. 
1 = The 12C unit sends STOP without data transmission. 

When in Master transmit mode, after transmitting a data byte, the ICR's Transfer Byte bit is clear and 
IDBR Transmit Empty bit is set. When no more data bytes need to be sent, setting master abort bit 
sends the STOP. The Transfer Byte bit (03) must remain clear. 

In master-receive mode. when a Nack is sent without a STOP (STOP ICR bit was not set) and the 80303 
I/O processor does not send a repeated START, setting this bit sends the STOP. Once again, the 
Transfer Byte bit (03) must remain clear. 

Transfer Byte: used to send/receive a byte on the 12C bus. 

o = Cleared by 12C unit when the byte is sent/received. 
1 = Send/receive a byte. 

The 80303 I/O processor can monitor this bit to determine when the byte transfer has completed. In 
master or slave mode, after each byte transfer including AckiNack bit, the 12C unit holds the SCL line 
low (inserting wait states) until the Transfer Byte bit is set. 

AcklNack Control: defines the type of Ack pulse sent by the 12C unit when in master receive mode. 

o = The 12C unit sends an Ack pulse after receiving a data byte. 
1 = The 12C unit sends a negative Ack (Nack) after receiving a data byte. 

The 12C unit automatically sends an Ack pulse when responding to its slave address or when responding 
in slave-receive mode, independent of the AckiNack control bit setting. 

Developer's Manual 



Intel® 80303 110 Processor 
j2C Bus Interface Unit 

Table 22-9. ,2C Control Register - ICR (Sheet 3 of 3) 

Bit 

01 

00 

lOP [ 
Attributes 

2() 16 12 (I 

Intel® 80960 Core Local Bus Address 

1680H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

Default 

NA = Not Accessible 

Description 

STOP: used to initiate a STOP condition after transferring the next data byte on the 12C bus when in 
master mode. In master-receive mode, the Ack/Nack control bit must be set in conjunction with this bit. 
See Section 22.2.3.3, "STOP Condition" on page 22-7 for more details on the STOP state. 

o = Do not send a STOP. 
1 = Send a STOP. 

START: used to initiate a START condition to the 12C unit when in master mode. See Section 22.2.3.1, 
"START Condition" on page 22-6 for more details on the START state. 

0= Do not send a START. 
1 = Send a START. 

Developer's Manual 22-31 



Intel® 80303 I/O Processor 
Fe Bus Interface Unit intet 
22.8.2 12C Status Register- ISR 

I2C interrupts are signalled through XINT7# and the XINT7 Interrupt Status Register (X7ISR), 
which shows the pending XINT7 interruRts (see Chapter 8, "PC I and Peripheral Interrupt 
Controller Unit"). XINT7# is set by the I2C Interrupt Status Register (ISR). Software uses the ISR 
bits to check the status of the I2C unit and bus. ISR bits (bits 9-5) are updated after the AcklNack 
bit has completed on the I2C bus. 

The ISR is also used to clear interrupts signalled from the I2C Bus Interface Unit. These are: 

• IDBR Receive Full 

• IDBR Transmit Empty 

• Slave Address Detected 

• Bus Error Detected 

• STOP Condition Detect 

• Arbitration Lost 

Table 22-10. J2C Status Register - ISR (Sheet 1 of 2) 

lOP [ 
Attributes 

PCI[ 
Attributes 

31 28 24 

Intel® 80960 Core Local Bus Address 

1684H 

20 16 12 8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

Bit Default Description 

31:11 OOOOOOH Reserved 

10 

09 

08 

22-32 

Bus Error Detected: 

o = No error detected. 
1 = The 12C unit sets this bit when it detects one of the following error conditions: 

• As a master transmitter, no Ack was detected on the interface after a byte was sent. 

• As a slave receiver, the 12C unit generates a Nack pulse. 
NOTE: When an error occurs, 12C bus transactions continue. Software must guarantee that misplaced 

START and STOP conditions do not occur. See Section 22.3.4, "Arbitration" on page 22-12. 

Slave Address Detected: 

0= No slave address detected. 
1 = 12C unit detected a 7-bit address that matches the general call address or ISAR. An interrupt is 

signalled when enabled in the ICA. 

General Call Address Detected: 

o = No general call address received. 
1 = 12C unit received a general call address. 

Developer's Manual 



int:et Inte/® 80303 I/O Processor 
j2C Bus Interface Unit 

Table 22-10. 12C Status Register - ISR (Sheet 2 of 2) 

Bit 

07 

06 

05 

04 

03 

02 

01 

00 

IOF' [ 
Attributes 

PCI [ 
AttriiJutes 

31 28 24 20 16 12 8 4 o 

Intel@ 80960 Core Local Bus Address 

1684H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

Default 

NA = Not Accessible 

Description 

IDBR Receive Full: 

0= The IDBR has not received a new data byte or the 12C unit is idle. 
1 = The IDBR register received a new data byte from the 12C bus. An interrupt is signalled when 

enabled in the ICR. 

IDBR Transmit Empty: 

o = The data byte is still being transmitted. 
1 = The 12C unit has finished transmitting a data byte on the 12C bus. An interrupt is signalled when 

enabled in the ICA. 

Arbitration Loss Detected: used during mUlti-master operation. 

o = Cleared when arbitration is won or never took place. 
1 = Set when the 12C unit loses arbitration. 

Slave STOP Detected: 

o = No STOP detected. 
1 = Set when the 12C unit detects a STOP while in slave-receive or slave-transmit mode. 

12C Bus Busy: 

0= 12C bus is idle or the 12C unit is using the bus (I.e., unit busy). 
1 = Set when the 12C bus is busy but the Intel@ 80303 I/O processor's 12C unit is not involved in the 

transaction. 

Unit Busy: 

o = 12C unit not busy. 
1 = Set when the 80303 I/O processor's 12C unit is busy. This is defined as the time between the first 

START and STOP. 

AcklNack Status: 

o = The 12C unit received or sent an Ack on the bus. 
1 = The 12C unit received or sent a Nack. 

This bit is used in slave transmit mode to determine when the byte transferred is the last one. This bit is 
updated after each byte and AcklNack information is received. 

ReadlWrite Mode: 

o = The 12C unit is in master-transmit or slave-receive mode. 
1 = The 12C unit is in master-receive or slave-transmit mode. 

This is the R/w# bit of the slave address. It is automatically cleared by hardware after a stop state. 

Developer's Manual 22-33 



Intel@ 80303 110 Processor 
t2c Bus Interface Unit intel" 
22.8.3 12C Slave Address Register- ISAR 

The 12C Slave Address Register (see Table 22-11) defines the 12C unit's 7-bit slave address to 
which the 80303 I/O processor responds when in slave-receive mode. This register is written by the 
80303 I/O processor before enabling 12C operations. The register is fully programmable (no 
address is assigned to the 12C unit) so it can be set to a value other than those of hard-wired 12C 
slave peripherals that might exist in the system. The ISAR is not affected by the 80303 I/O 
processor being reset. The ISAR register default value is 00000002, 

Table 22-11. ,2C Slave Address Register -ISAR 

lOP [ 
Attributes 

31 28 24 20 16 12 8 4 o 

PCI [ Attributes \na'\na1~nll1~ml'lna',na\na\na\;na\!la\rla\rm\rl!l\n;a\na\na\na\na'\na'\na'~'1'~na1~!1a'lna',na',"a\na\na\na\na\lna' 

Intel® 80960 Core Local Bus Address 

1688H 

Bit Default Description 

31 :07 OOOOOOH Reserved 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

06:00 OOH 12C Slave Address: The 7·bit address to which the ,2C unit responds when in slave-receive mode. 

22-34 Developer's Manual 



inial· 
22.8.4 12C Data Buffer Register- IDBR 

Intel® 80303 liD Processor 
12C Bus Interface Unit 

The 12C Data Buffer Register is used by the 80303 1/0 processor to transmit and receive data from 
the 12C bus. The accesses the IDBR by the 80303 110 processor on one side and by the 12C shift 
register on the other. Data coming into the 12C Bus Interface Unit is received into the IDBR after a 
full byte has been received and acknowledged. Data going out of the 12C Bus Interface Unit is 
written to the IDBR by the 80303 1/0 processor core and sent to the serial bus. 

When the 12C Bus Interface Unit is in transmit mode (master or slave), the 80303 1/0 processor 
writes data to the IDBR over the internal bus. This occurs when a master transaction is initiated or 
when the IDBR Transmit Empty Interrupt is signalled. Data is moved from the IDBR to the shift 
register when the Transfer Byte bit is set. The IDBR Transmit Empty Interrupt will be signalled (if 
enabled) when a byte has been transferred on the 12C bus and the acknowledge cycle is complete. If 
the IDBR is not written by the 80303 1/0 processor (and a STOP condition was not in place) before 
the 12C bus is ready to transfer the next byte packet, the 12C Bus Interface Unit will insert wait 
states until the i960 core processor writes the IDBR and sets the Transfer Byte bit. 

When the 12C Bus Interface Unit is in receive mode (master or slave), the processor will read IDBR 
data over the internal bus. This occurs when the IDBR Receive Full Interrupt is signalled. The data 
is moved from the shift register to the IDBR when the Ack cycle is complete. The 12C Bus 
Interface Unit will insert wait states until the IDBR has been read. Refer to Section 22.3.3, "I2C 
Acknowledge" on page 22-11 for acknowledge pulse information in receiver mode. After the 
80303 110 processor reads the IDBR, the AckiNack Control bit is written and the Transfer Byte bit 
is written, allowing the next byte transfer to proceed on the I2C Bus. The IDBR register is OOH 
after reset. 

Table 22-12. 12C Data Buffer Register -IDBR 

lOP [ 
Attributes 

31 28 24 

Intel@ 80960 Core Local Bus Address 

168CH 

20 16 12 

Bit Default Description 

31 :08 OOOOOOH Reserved 

07:00 OOH 12C Data Buffer: Buffer for 12C bus send/receive data. 

Developer's Manual 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = Read/Write 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

22-35 



Inte/@ 80303 I/O Processor 
Pc Bus Interface Unit in1:et 
22.8.5 12C Clock Count Register- ICCR 

The 12C Clock Count Register (ICCR) defines the multiplier used to generate the 12C SCL clock. 
This register is used with an internal 9-bit counter. When the SCL enable bit in the ICR is set, this 
counter decrements from the programmed ICCR value to zero, then resets to the programmed 
ICCR value and decrements again. This continues until the SCL enable bit in the ICR is cleared. 
Each time the counter reaches zero, the SCL line transitions from low to high or vice versa, 
depending on the current state. This creates the 12C clock output during 12C master operations. 

Changing this register while the SCL enable bit is set results in undefined behavior. 

Table 22-13. 12C Clock Count Register -ICCR 

Bit 

lOP [ 
Attributes 

31 28 24 

Intel® 80960 Core Local Bus Address 

1690H 

Default 

31:10 OOOOOOH Reserved 

20 16 12 

Description 

8 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

4 o 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

09:00 o 12C Clock Count: 9 bit count value used to generate an 12C clock from the Intel@ 80303 I/O processor 
internal bus clock. 

22-36 Developer's Manual 



int:el. 
22.8.6 12C Bus Monitor Register- IBMR 

Intel@ 80303 I/O Processor 
12C Bus Interface Unit 

The 12C Bus Monitor Register (IBMR) tracks the status of the SCL and SDA pins. The values of 
these pins are recorded in this read-only register so that software may determine if the 12C bus is 
hung and the 12C unit must be reset. 

Table 22-14. 12C Bus Monitor Register -IBMR 

lOP [ 
A1tril)utes 

PCI[ 
Attributes 

Intel® 80960 Core Local Bus Address 

1694H 

Attribute Legend: 
RV = Reserved 
PR = Preserved 
RS = Read/Set 

Bit Default Description 

31:02 o Reserved 

01 SCl Status: This bit continuously reflects the value of the SCl pin. 

00 SDA Status: This bit continuously reflects the value of the SDA pin. 

Developer's Manual 

RW = ReadlWrite 
RC = Read Clear 
RO = Read Only 

NA = Not Accessible 

22-37 





intet 
General Purpose Input Output (GPIO) 23 

23.1 

23.1.1 

23.1.2 

23.1.3 

This chapter describes the Intel® 80303 1/0 processor General Purpose Input Output (GPIO) Unit. 

General Purpose Input Output Support 

Eight pins are provided as General Purpose Input Out~ut (GPIO) pins. The eight pins are 
GPIO[7:0]. These pins can be used by the Intel® i960 R JF processor to control or monitor external 
devices in the 1/0 subsystem. 

General Purpose Inputs 

The current state ofthe eight GPIO pins can be read in Section 23.2.2, '"GPIO Input Data Register
GPID" on page 23-4). 

General Purpose Outputs 

The output function of the GPIO pins is controlled by two registers, as stated in Section 23.2.3, 
"GPIO Output Data Register - GPOD" on page 23-5) and Section 23.2.1, "GPIO Output Enable 
Register - GPOE" on page 23-2). 

The output enables are mapped on a per bit basis to each of the data bits in the GPIO Output Data 
Register. When a bit of the GPIO Output Enable Register is cleared, the corresponding data bit 
value in the GPIO Output Data Register will be actively driven on the appropriate GPIO pin. 

Reset Initialization of General Purpose Input Output 
Function 

Both the GPIO Output Data Register and the GPIO Input Data Register will be initialized to OOH 
upon assertion of P _RST#. 

The GPIO Output Enable Register is initialized to the value of the eight associated GPIO pins upon 
assertion ofP _RST#. The I/O pin design will provide internal weak pull-up devices that are driven 
on the GPIO pin during P _RST# assertion. 

In order to enable a particular GPIO pin to operate as an output following the deassertion of 
P _RST#, the user will need to provide a weak pull-down on the GPIO pin, to overdrive the internal 
weak pull-up device. 

Developer's Manual 23-1 



Intel® 80303 110 Processor intel. General Purpose Input Output (GPIO) 

23.2 

23.2.1 

23-2 

Register Definitions 

All ten registers are visible as 80303 1/0 processor memory mapped registers and can be accessed 
through the internal memory bus. Each is a 8-bit register and is memory-mapped in the 80303 
processor memory space. The memory-mapped addresses of the GPIO control registers are found 
in Appendix C, "Peripheral Memory-Mapped Registers." 

There are four control and status registers for the PCI And Peripheral Interrupt Controller: 

• GPIO Output Enable Register 

• XINT6 Interrupt Status Register 

• XINTI Interrupt Status Register 

• NMI Interrupt Status Register 

The PCI Interrupt Routing Select Register is accessible from the internal memory bus and also 
during PCI configuration cycles through the PCI configuration register space (function #0). See 
Chapter 15, "PCl Address Translation Unit" for additional information regarding the PCI 
configuration cycles that access the PCI Interrupt Routing Select Register. The programmer's 
interface to the interrupt controller is through ten memory-mapped control registers. Table C-19, 
"Peripheral Memory-Mapped Register Locations" on page C-6 describes these registers. 

GPIO Output Enable Register - GPOE 

The GPIO Output Enable Register enables on a per pin basis the output value contained in the 
GPIO Output Data Register onto the appropriate pin. 

The GPIO Output Enable Register is initialized to the value of the eight associated GPIO pins upon 
assertion of P _RST#. The I/O pin design will provide internal weak pull-up devices that are driven 
on the GPIO pin during P _RST# assertion. 

In order to enable a particular GPIO pin to operate as an output following the deassertion of 
P _RST#, the user will need to provide a weak pull-down on the GPIO pin, to overdrive the internal 
weak pull-up device. 

Developer's Manual 



in1:el. Intel® 80303 flO Processor 
General Purpose Input Output (GPIO) 

Table 23-1. GPIO Output Enable Register - GPOE 

., 
.< U 

M'r;b~?:.: [ /,,fw/w//rwl,f,,/,\j 

PCl [ 
/\ftrib,ite:-- ~"\'J'xl1l\,a\"~'iJ\'r~'l\\ 

Intel® 80960 Core Local Bus Address Attribute Legend: RW = Read/Write 

0000 171CH RV = Reserved RC = Read Clear 
PR = Preserved RO = Read Only 
RS = Read/Set NA = Not Accessible 

Bit Default Description 

GPIO[7] 

07 during GPI07 Output Enable -- When clear, bit 7 of the GPIO Output Data Register will be enabled onto the 
P _RST# GPIO[7] pin. 
assertion 

GPIO[6] 

06 
during GPI06 Output Enable -- When clear, bit 6 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[6] pin. 
assertion 

GPIO[5] 

05 
during GPI05 Output Enable -- When clear, bit 5 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[5] pin. 
assertion 

GPIO[4] 

04 
during GPI04 Output Enable -- When clear, bit 4 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[4] pin. 
assertion 

GPIO[3] 

03 
during GPI03 Output Enable -- When clear, bit 3 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[3] pin. 
assertion 

GPIO[2] 

02 
during GPI02 Output Enable -- When clear, bit 2 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[2] pin. 
assertion 

GPIO[1] 

01 during GPI01 Output Enable -- When clear, bit 1 of the GPIO Output Data Register will be enabled onto the 
P_RST# GPIO[1] pin. 
assertion 

GPIO[O] 

00 
during GPIOO Output Enable -- When clear, bit 0 of the GPIO Output Data Register will be enabled onto the 

P_RST# GPIO[O] pin. 
assertion 

Developer's Manual 23-3 



Intef® 80303 110 Processor 
General Purpose Input Output (GPIO) 

23.2.2 GPIO Input Data Register - GPID 

The GPIO Input Data Register will reflect the state of the appropriate IRQ bus pin following the 
deassertion of P _RST#. 

Table 23-2. GPIO Input Data Register - GPID 

··1 f) 

AIUi,,;::: [ I"j·,/,,!,,!,,;',j,,j,,/ 

PCI [ 
Altributes ~"~iJ\\f1"e\W\lilxa~a\ 

Intel® 80960 Core Local Bus Address Attribute Legend: RW = Read/Write 

0000 1720H RV = Reserved RC = Read Clear 
PR = Preserved RO = Read Only 
RS = Read/Set NA = Not Accessible 

Bit Default Description 

07 O2 GPI07 Input Data -- This bit will reflect the state of the GPIO[7] pin following the deassertion of P _RST#. 

06 O2 GPI06 Input Data -- This bit will reflect the state of the GPIO[6] pin following the deassertion of P _RST#. 

05 O2 GPI051npui Data -- This bit will reflect the state of the GPIO[5] pin following the deassertion of P _RST#. 

04 O2 GPI041nput Data -- This bit will reflect the state of the GPIO[4] pin following the deassertion of P _RST#. 

03 O2 GPI031nput Data -- This bit will reflect the state of the GPIO[3] pin following the deassertion of P _RST#. 

02 O2 GPI02 Input Data -- This bit will reflect the state of the GPIO[2] pin following the deassertion of P _RST#. 

01 O2 GPI01 Input Data -- This bit will reflect the state of the GPIO[1] pin following the deassertion of P _RST#. 

00 O2 GPIOO Input Data -- This bit will reflect the state of the GPIO[O] pin following the deassertion of P _RST#. 

23-4 Developer's Manual 



23.2.3 

Inte/@ 80303 I/O Processor 
General Purpose Input Output (GPIO) 

GPIO Output Data Register - GPOD 

The GPIO Output Data Register will be driven on a per bit basis on the appropriate IRQ bus pin 
following the deassertion of P _RST# if the corresponding bit in the GPOE register is cleared. 

Table 23-3. Output Data Register - GPOD 

j" .. () 

A1trib~?:: [ /,/r,,j,v,f,l,,l/r .. ,,j,,/ 

PCI [ 
/\UTibuJe::- \,,,\,"\,,\,a\"\';\';\)1\ 

IntefID 80960 Core Local Bus Address Attribute Legend: RW = Read/Write 

0000 1724H RV = Reserved RC = Read Clear 
PR = Preserved RO = Read Only 
RS = Read/Set NA = Not Accessible 

Bit Default Description 

07 °2 
GPI07 Output Data -- This bit value will be driven on the GPIO[7] pin if bit 7 of the GPOE register is 
cleared. 

06 °2 
GPI06 Output Data -- This bit value will be driven on the GPIO[6] pin if bit 6 of the GPOE register is 
cleared. 

05 °2 
GPI05 Output Data -- This bit value will be driven on the GPIO[5] pin if bit 5 of the GPOE register is 
cleared. 

04 °2 
GPI04 Output Data -- This bit value will be driven on the GPIO[4] pin if bit 4 of the GPOE register is 
cleared. 

03 °2 
GPI03 Output Data .- This bit value will be driven on the GPIO[3] pin if bit 3 of the GPOE register is 
cleared. 

02 °2 
GPI02 Output Data -- This bit value will be driven on the GPIO[2] pin if bit 2 of the GPOE register is 
cleared. 

01 °2 
GPI01 Output Data -- This bit value will be driven on the GPIO[1] pin if bit 1 of the GPOE register is 
cleared. 

00 °2 
GPIOO Output Data -- This bit value will be driven on the GPIO[O] pin if bit ° of the GPOE register is 
cleared. 

Developer's Manual 23-5 





Test Features 24 

24.1 

This chapter describes the Intet® 80303 I/O processor test features, including ONCE (On-Circuit 
Emulation) and boundary-scan (JTAG). Together these two features create a powerful environment 
for design debug and fault diagnosis. 

On-Circuit Emulation (ONCE) 

On-circuit emulation aids board-level testing. This feature allows a mounted 80303 I/O processor 
to electrically "remove" itself from a circuit board. This allows for system-level testing where a 
remote tester exercises the processor system. In ONCE mode, the processor presents a high 
impedance on every pin, except for the JTAG test data Output (TDO). All pull-up transistors 
present on input pins are also disabled and internal clocks stop. In this state the processor's power 
demands on the circuit board are nearly eliminated. 

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 24.1.2. "ONCE Mode and 
Boundary-Scan (JTAG) are Incompatible" on page 24-2. 

24.1.1 Entering/Exiting ONCE Mode 

The ONCE# pin, in concert with the RESET# pin, invokes ONCE mode. 

To invoke ONCE mode, assert the ONCE# pin (low) while the processor is in the reset state. (The 
processor recognizes the ONCE# pin signal only while RESET# is asserted.) The processor enters 
ONCE mode immediately. The rising edge of RESET# latches the ONCE# pin state until 
RESET# goes true again. 

Enter ONCE mode by asserting the following sequence with an external tester: 

1. Drive the ONCE# pin low (overcoming the internal pull-up resistor). 

2. Initiate a normal reset cycle. 

3. After the RESET# pin goes high again, the ONCE# pin can be deasserted. 

Exit ONCE mode, by performing a normal reset with the RESET# pin while holding the ONCE# 
pin high. A power off-on cycle is not necessary to exit ONCE mode. 

See the Intef!JS0960RM I/O Processor Data Sheet for specific timing of the ONCE# pin and the 
characteristics of the on-circuit emulation mode. 

Developer'S Manual 24-1 



Inte/® 80303 I/O Processor 
Test Features 

24.1.2 

24.1.2.1 

24.2 

ONCE Mode and Boundary-Scan (JTAG) are Incompatible 

Permanent damage can occur when an in-circuit emulator is used concurrently with boundary-scan 
(ITAG). Do not use any system that relies on ONCE mode when using boundary-scan. Signal 
contentions and resultant damage may occur if an external system, such as an emulator 
development system, invokes ONCE mode and manipulates the 80303 I/O processor signals while 
JTAG is active. 

Since the 80303 110 processor complies fully with IEEE Std. 1149.1, JTAG boundary-scan 
instructions always override ONCE mode. While ONCE mode intends to disable all processor 
outputs so an external emulator can drive them, ITAG boundary-scan can enable those outputs, 
causing contention with the external emulator. 

To avoid damage, and as a general design rule, force TRST# low to disable boundary-scan 
whenever ONCE mode is active. 

DEN# Alternatives 

To use an ICE with your 80303 design, alternatives to DEN# are: 

• Ground the OE# pin of the transceiver 

• Re-create a DEN# signal with the circuit shown below 

Boundary-Scan (JTAG) 

The 80303 110 processor provides test features compliant to IEEE standard test access port and 
boundary-scan architecture (IEEE Std. 1149.1). ITAG ensures that components function correctly, 
connections between components are correct, and components interact correctly on the printed 
circuit board. 

To date, the i960 Hx, Ix and Rx processors implement IEEE 1149.1 standard test access port and 
boundary-scan architecture, and i960 Kx, Sx and Cx processors do not. For information about 
using JTAG in a design, refer to IEEE Std. 1149 .1 (available from the Institute of Electrical and 
Electronics Engineers Inc., 345 E. 47th St., New York, NY 10017). 

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 24.1.2, "ONCE Mode and 
Boundary-Scan (JTAG) are Incompatible" on page 24-2. 

24-2 Developer's Manual 



intel@ 
24.2.1 Boundary-Scan Architecture 

Intel@ 80303 liD Processor 
Test Features 

Boundary-scan test logic consists of a boundary-scan register and support logic. These are accessed 
through a Test Access Port (TAP). The TAP provides a simple serial interface that allows all 
processor signal pins to be driven and/or sampled, thereby providing direct control and monitoring 
of processor pins at the system level. 

This mode of operation is valuable for design debugging and fault diagnosis since it permits 
examination of connections not normally accessible to the test system. The following subsections 
describe the boundary-scan test logic elements: TAP pins, instruction register, test data registers 
and TAP controller. Figure 24-1 illustrates how these pieces fit together to form the JTAG unit. 

Figure 24-1. Test Access Port Block Diagram 

TAP Pins 

TOI 

TMS 

TCK 

TRST# 

Developer's Manual 

0 
0 

Processor Systems Pins 

000-----0 Lr ,""ruotioo I 
Register I 

t-I Boundary-Scan Register 

I-- ~I Device ID Register 

I-- - ~L Bypass Register 

~ f-- - ~ RUNBIST Register 

.- Tap ~ '--- - -.1 Controller I 
Control and Clock Signals 

l~ 
.......... 

~ ~ o TOO 

A6805-01 

24-3 



Intel® 80303 110 Processor 
Test Features in1:et 
24.2.2 TAP Pins 

The 80303 I/O processor's TAP pins form a serial port composed of four input connections (TMS, 
TCK, TRST# and TDI) and one output connection (TDO). These pins are described in Table 24-1. 
The TAP pins provide access to the instruction register and the test data registers. 

Table 24-1. TAP Controller Pin Definitions 

Pin Type Definition 

TCK Input Test Clock provides the clock for the JTAG logic. The JTAG test logic retains its state 
indefinitely when TCK is stopped at "0" or"1 ". 

TMS Input Test Mode is decoded by the TAP controller state machine to control test operations. TMS is 
sampled by the test logic on the rising edge of TCK. TMS is pulled high intemally when not driven. 

Test Data Input is the serial port where test instructions and data is received by the test 

TOI Input logic. Signals presented at TOI are sampled into the test logic on the rising edge of TCK. 
TOI is pulled high internally when not driven. Data shifted into TOI is not inverted on its way 
to the TOO input. 

Test Data Output is the serial output for test instructions and data from the JTAG test logic. 
TOO Output Changes in the state of TOO occur only on the falling edge of TCK. The TOO output is 

active only during data shifting (SHOR or SHIR); it is inactive (high-Z) at all other times. 

Test Reset provides for an asynchronous initialization of the TAP controller. Asserting a logic 
"0" on this pin puts the TAP controller state machine and all other test logic on the processor in 

TRST# Input the Test-Logie-Reset (initial) state. TRST# is pulled high internally when not driven. 

Note: The system must ensure that TRST# is asserted after power-up in order to put the TAP 
controller in a known state. Failure to do so may cause improper processor operation. 

24.2.3 Instruction Register 

24-4 

The Instruction Register (IR) holds instruction codes. These codes are shifted in through the Test 
Data Input (TDI) pin. The instruction codes are used to select the specific test operation to be 
performed and the test data register to be accessed. 

The instruction register is a parallel-Ioadable, master/slave-configured 4-bit wide, serial-shift 
register with latched outputs. Data is shifted into and out of the IR serially through the TDI pin 
clocked by the rising edge ofTCK when the TAP controller is in the ShifCIR state. The shifted-in 
instruction becomes active upon latching from the master stage to the slave stage in the Update_IR 
state. At that time the IR outputs along with the TAP finite state machine outputs are decoded to 
select and control the test data register selected by that instruction. Upon latching, all actions 
caused by any previous instructions terminates. 

The instruction determines the test to be performed, the test data register to be accessed, or both 
(Table 24-2). The IR is four bits wide. When the IR is selected in the ShifCIR state, the most 
significant bit is connected to TDI, and the least significant bit is connected to TDO. The value 
presented on the TDI pin is shifted into the IR on each rising edge of TCK, as long as the TAP 
controller remains in the ShifCIR state. When the TAP controller changes to the Capture_IR state, 
fixed parallel data (0001 2) is captured. During ShifUR, when a new instruction is shifted in 
through TDI, the value 00012 is always shifted out through TDO, least significant bit first. This 
helps identify instructions in a long chain of serial data from several devices. 

Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the 
idcode instruction. When the TAP controller moves into the TesCLogic_Reset state other than by 
reset activation, the opcode changes as TDI is shifts, and becomes active on the falling edge of 
TCK. See Figure 24-4 for an example of loading the instruction register. 

Developer's Manual 



intet· 
24.2.3.1 Boundary-Scan Instruction Set 

Intel@ 80303 I/O Processor 
Test Features 

The 80303 I/O processor supports three mandatory boundary-scan instructions (bypass, 
sample/preload and extest) plus four additional public instructions (idcode, clamp, highz and 
runbist). Table 24-2 lists the 80303 I/O processor's boundary-scan instruction codes. Those codes 
listed as "not used" or "private" should not be used. 

Table 24-2. Boundary-Scan Instruction Set 

Instruction Code Instruction Name Instruction Code Instruction Name 

00002 extest 10002 highz 

0001 2 sample/preload 1001 2 not used 

00102 idcode 10102 not used 

0011 2 not used 1011 2 private 

01002 clamp 11002 private 

0101 2 not used 1101 2 not used 

01102 not used 11102 not used 

0111 2 runbist 11112 bypass 

Developer's Manual 24-5 



Intef@ 80303 liD Processor 
Test Features 

Table 24-3. IEEE Instructions 

Instruction I 
Opcode 

Requisite 

extest 
IEEE 1149.1 00002 

Required 

sample! 
preload 

0001 2 IEEE 1149.1 
Required 

idcode 
IEEE 1149.1 00102 

Optional 

runbist 
Intel@ 80303 

0111 2 1/0 processor 
Optional 

bypass 
IEEE 1149.1 11112 

Required 

highz 100°2 

clamp 01002 

24-6 

intel· 

Description 

extest initiates testing of external circuitry, typically board-level interconnects and 
off chip circuitry. extest connects the boundary-scan register between TDI and TDO 
in the Shift_DR state only. When extest is selected, all output signal pin values are 
driven by values shifted into the boundary-scan register and may change only on 
the falling edge of TCK in the Update_DR state. Also, when extest is selected, all 
system input pin states must be loaded into the boundary-scan register on the 
rising-edge of TCK in the Capture_DR state. Values shifted into input latches in the 
boundary-scan register are never used by the processor's internal logic. 

sample/preload performs two functions: . When the TAP controller is in the Capture-DR state, the sample instruction 
occurs on the rising edge of TCK and provides a snapshot of the component's 
normal operation without interfering with that normal operation. The instruction 
causes boundary-scan register cells associated with outputs to sample the 
value being driven by or to the processor. . When the TAP controller is in the Update-DR state, the preload instruction 
occurs on the falling edge of TCK. This instruction causes the transfer of data 
held in the boundary-scan cells to the slave register cells. Typically the slave 
latched data is applied to the system outputs via the extest instruction. 

idcode is used in conjunction with the device identification register. It connects the 
device identification register between TDI and TDO in the Shift_DR state. When 
selected, idcode parallel-loads the hard-wired identification code (32 bits) into the 
device identification register on the rising edge of TCK in the Capture_DR state. 
NOTE: Device identification register is not altered by data being shifted in on TDI. 

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and 
connects it to TDO. It also initiates the processor's built-in self test (BIST) feature 
which is able to detect approximately 82% of all the possible stuck-at faults on the 
device. The processor AC/DC specifications for Vee and ClKIN must be met and 
RESET# must be de-asserted prior to executing runbist. 

After loading runbist instruction code into the instruction register, the TAP controller 
must be placed in the Run-Test/Idle state. BIST begins on the first rising edge of 
TCK after the Run-Test/Idle state is entered. The TAP controller must remain in the 
Run-Test/Idle state until BIST is completed. runbist requires approximately 
414,000 core cycles to complete BIST and report the result to the RUNBIST 
register. The results are stored in bit 0 of the RUNBIST register. After the report 
completes, the value in the RUNBIST register is shifted out on TDO during the 
Shift-DR state. A value of 0 being shifted out on TDO indicates BIST completed 
successfully. A value of 1 indicates a failure occurred. After BIST completes, the 
processor must be cycled through the reset state to resume normal operation. 

bypass instruction selects the one-bit bypass register between TDI and TDO pins 
while in SHIFT _DR state, effectively bypassing the processor's test logic. 02 is 
captured in the CAPTURE_DR state. This is the only instruction that accesses the 
bypass register. While this instruction is in effect, all other test data registers have 
no effect on system operation. Test data registers with both test and system 
functionality perform their system functions when this instruction is selected. 

Executing highz generates a signal that is read on the rising-edge of RESET#. 
When this signal is found asserted, the device is put into the ONCE rnode (all output 
pins are floated). Also, when this instruction is active, the Bypass register is 
connected between TDI and TDO. This register can be accessed via the JTAG 
Test-Access Port throughout the device operation. Access to the Bypass register 
can also be obtained with the bypass instruction. highz provides an alternate 
method of entering ONCE mode. 

clamp instruction allows the state of the signals driven from the Intej® i960® Jx 
processor pins to be determined from the boundary-scan register while the 
BYPASS register is selected as the serial path between TDI and TDO. Signals 
driven from the component pins does not change while the clamp instruction is 
selected. 

Developer's Manual 



24.2.4 

24.2.4.1 

24.2.4.2 

24.2.4.3 

TAP Test Data Registers 

Inte/® 80303 I/O Processor 
Test Features 

The 80303 I/O processor contains four test data registers (device identification, bypass, RUNBIST 
and boundary-scan). Each test data register selected by the TAP controller is connected serially 
between TDI and TDO. IDI is connected to the test data register's most significant bit. TDO is 
connected to the least significant bit. Data is shifted one bit position within the register towards 
IDO on each rising edge of TCK. While any register is selected, data is transferred from IDI to 
IDO without inversion. The following sections describe each of the test data registers. See 
Figure 24-5 for an example of loading the data register. 

Device Identification Register 

The device identification register is a 32-bit register containing the manufacturer's identification 
code, part number code, version code and other information in the format shown in the 
IntefiD 80960RM I/O Processor Data Sheet. The identification register is selected only by the Idcode 
instruction. When the TAP controller's TesCLogic_Reset state is entered, idcode is asynchronously 
loaded into the instruction register. The device identification register loads the fixed parallel input 
value in the Capture_DR state. 

Bypass Register 

The required bypass register, a one-bit shift register, provides the shortest path between TDI and 
IDO when a bypass instruction is in effect. This allows rapid movement of test data to and from 
other components on the board. This path can be selected when no test operation is being 
performed on the processor. 

RUNBIST Register 

The RUNBIST register, a one-bit register, contains the result of the execution of the processor's 
BIST routine. After the built-in self-test completes, the processor must be cycled through the reset 
state to resume normal operation. See Chapter 11. '"Initialization and System Requirements" for 
details of the built-in self test algorithm. The processor runs the BIST routine when the TAP 
controller enters the TesCLogic_Reset state while the runbist instruction is selected. 

Developer's Manual 24-7 



Intel® 80303 110 Processor 
Test Features 

24.2.4.4 

Table 24-4. 

24-8 

Boundary-Scan Register 

The boundary-scan register contains a cell for each pin as well as control cells for I/O and the 
HIGHZ pin. 

Table 24-4 shows the bit order of the 80303 I/O processor boundary-scan register. All table cells 
that contain "Control" select the direction of bidirectional pins or HIGHZ output pins. When a "0" 
is loaded into the control cell, the associated pines) are HIGHZ or selected as input. 

The boundary-scan register is a required set of serial-shiftable register cells, configured in 
master/slave stages and connected between each of the 80303 I/O processor's pins and on-chip 
system logic. The Vee, V ss and JTAG pins are NOT in the boundary-scan chain. 

The boundary-scan register cells are dedicated logic and do not have any system function. Data 
may be loaded into the boundary-scan register master cells from the device input pins and output 
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading 
takes place on the rising edge of TCK in the Capture_DR state. 

Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clocked 
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded into the 
master-cell stages, it can be driven into the system logic at input pins or onto the output pins on the 
falling edge of TCK in the Update_DR state. Data may also be shifted out of the boundary-scan 
register by means of the TDO serial output pin at the falling edge of TCK. 

Intel@> 80303 110 Processor Boundary Scan Register Bit Order (Sheet 1 of 9) 

"0 (CBSC_1, dq(44), bidir, X, 85, 1, Z), "& 
"1 (CBSC_1, dq(45), bidir, X, 89, 1, Z), "& 
"2 (CBSC_1, dq(43), bidir, X, 85, 1, Z), "& 
"3 (CBSC_1, dq(13), bidir, X, 78, 1, Z), "& 
"4 (CBSC_1, dq(46), bidir, X, 89, 1, Z), "& 
"5 (CBSC_1, dq(15), bidir, X, 78, 1, Z), "& 
"6 (CBSC_1, dq(14), bidir, X, 78, 1, Z), "& 
"7 (CBSC_1, dq(12), bidir, X, 78, 1, Z), "& 
"8 (CBSC_1, dq(47), bidir, X, 89, 1, Z "& 
"9 (CBSC_1, scb(5), bidir, X, 83, 1, Z), "& 
"10 (CBSC_1, scb(1), bidir, X, 80, 1, Z), "& 
"11 (CBSC_1, scb(O), bidir, X, 79, 1, Z), "& 
"12 (CBSC_1, scb(4), bidir, X, 83, 1, Z), "& 
"13 (BC_1, scasz, output3, X, 90, 1, Z), "& 
"14 (CBSC_1, sdqm(O), bidir, X, 84, 1, Z), "& 
"15 (CBSC_1, sdqm(4), bidir, X, 84, 1, Z), "& 
"16 (BC_1, scez(1 ), output3, X, 90, 1, Z), "& 
"17 (BC_1, swez, output3, X, 90, 1, Z), "& 
"18 (CBSC_1, sdqm(5), bidir, X, 84, 1, Z), "& 
"19 (BC_1, scez(O), output3, X, 90, 1, Z), "& 
"20 (BC_1, sa(1), output3, X, 90, 1, Z), "& 
"21 (CBSC_1, sdqm(1), bidir, X, 84, 1, Z), "& 
"22 (BC_1, sa(2), output3, X, 90, 1, Z), "& 
"23 (BC_1, srasz, output3, X, 90, 1, Z), "& 
"24 (BC_1, sa(O), output3, X, 90, 1, Z), "& 
"25 (BC_1, sa(4), output3, X, 90, 1, Z), "& 
"26 (BC_1, sa(6), output3, X, 90, 1, Z), "& 

Developer's Manual 



intel· 
Inte/@ 80303 I/O Processor 

Test Features 

Table 24-4. Intel® 80303 1/0 Processor Boundary Scan Register Bit Order (Sheet 2 of 9) 

"27 (BC_1, sa(8), output3, X, 90, 1, Z), "& 

"28 (BC_1, sa(5), output3, X, 90, 1, Z), "& 

"29 (BC_1, scke(O), output3, X, 90, 1, Z), "& 

"30 (BC_1, sa(3), output3, X, 90, 1, Z), "& 

"31 (BC_1, sa(10), output3, X, 90, 1, Z), "& 

"32 (BC_1, sba(1), output3, X, 90, 1, Z), "& 

"33 (BC_1, sa(9), output3, X, 90, 1, Z), "& 

"34 (BC_1, scke(1), output3, X, 90, 1, Z), "& 

"35 (BC_1, sa(7), output3, X, 90, 1, Z), "& 

"36 (CBSC_1, sdqm(6), bidir, X, 84, 1, Z), "& 

"37 (BC_1, sba(O), output3, X, 90, 1, Z), "& 

"38 (CBSC_1, scb(2), bidir, X, 81, 1, Z), "& 

"39 (BC_1, sa(11), output3, X, 90, 1, Z), "& 

"40 (CBSC_1, sdqm(2), bidir, X, 84, 1, Z), & 

"41 (CBSC_1, sdqm(3), bidir, X, 84, 1, Z), "& 

"42 (CBSC_1, scb(3), bidir, X, 82, 1, Z), "& 

"43 (CBSC_1, sdqm(7), bidir, X, 84, 1, Z), "& 

"44 (CBSC_1, sCb(7), bidir, X, 87, 1, Z), "& 

"45 (CBSe 1, scb(6), bidir, X, 86, 1, Z), "& 

"46 (CBSC_1, dq(48), bidir, X, 89, 1, Z), "& 

"47 (CBSC_1, dq(17), bidir, X, 78, 1, Z), "& 

"48 (CBSC_1, dq(16), bidir, X, 78, 1, Z), "& 

"49 (CBSC_1, dq(18), bidir, X, 78, 1, Z), "& 

"50 (CBSC_1, dq(49), bidir, X, 89, 1, Z), "& 

"51 (CBSC_1, dq(50), bidir, X, 89, 1, Z), "& 

"52 (CBSC_1, dq(19), bidir, X, 78, 1, Z), "& 

"53 (CBSC_1, dq(52), bidir, X, 89, 1, Z), "& 

"54 (CBSC_1, dq(51), bidir, X, 89, 1, Z), "& 

"55 (CBSC_1, dq(20), bidir, X, 78, 1, Z), "& 

"56 (CBSC_1, dq(53), bidir, X, 88, 1, Z), "& 

"57 (CBSC_1, dq(21), bidir, X, 78, 1, Z), "& 

"58 (CBSC_1, dq(23), bidir, X, 78, 1, Z), "& 

"59 (CBSC_1, dq(22), bidir, X, 78, 1, Z), "& 

"60 (CBSC_1, dq(24), bidir, X, 78, 1, Z), "& 

"61 (CBSC_1, dq(54), bidir, X, 88, 1, Z), "& 

"62 (CBSC_1, dq(56), bidir, X, 88, 1, Z), "& 

"63 (CBSC_1, dq(57), bidir, X, 85, 1, Z), "& 

"64 (CBSC_1, dq(55), bidir, X, 88, 1, Z), "& 

"65 (CBSC_1, dq(58), bidir, X, 85, 1, Z), "& 

"66 (CBSC_1, dq(25), bidir, X, 78, 1, Z), "& 

"67 (CBSC_1, dq(27), bidir, X, 78, 1, Z), "& 

"68 (CBSC_1, dq(26), bidir, X, 78, 1, Z), "& 

"6 (CBSC_1, dq(60), bidir, X, 85, 1, Z), "& 

"70 (CBSC_1, dq(59), bidir, X, 85, 1, Z), "& 

"71 (CBSC_1, dq(28), bidir, X, 78, 1, Z), "& 

"72 (CBSC_1, dq(29), bidir, X, 78, 1, Z), "& 

"73 (CBSC_1, dq(31), bidir, X, 78, 1, Z), "& 

"74 (CBSC_1, dq(30), bidir, X, 78, 1, Z), "& 

"75 (CBSC_1, dq(61), bidir, X, 85, 1, Z), "& 

Developer's Manual 24-9 



Intel@ 80303 110 Processor intet Test Features 

Table 24-4. Intel@ 80303 1/0 Processor Boundary Scan Register Bit Order (Sheet 3 of 9) 

"76 (CBSC_1, dq(62), bidir, X, 85, 1, Z), "& 
"77 (CBSC_1, dq(63), bidir, X, 85, 1, Z), "& 
"78 (BC_1, control, 1 ), "& 
"79 (BC_1, control, 1 ), "& 
"80 (BC_1, control, 1 ), "& 
"81 (BC_1, control, 1 ), "& 
"82 (BC_1, control, 1 ), "& 
"83 (BC_1, control, 1 ), "& 
"84 (BC_1, control, 1 ), "& 
"85 (BC_1, control, 1 ), "& 
"86 (BC_1, control, 1 ), "& 
'87 (BC_1, control, 1 ), "& 
"88 (BC_1, control, 1 ), "& 
"89 (BC_1, control, 1 ), "& 
"90 (BC_1, control, 1 ), "& 
"91 (BC_4, s_reqz(3), input, X), "& 
"92 (BC_4, s_reqz(5), input, X), "& 
"93 (CBSC_1, S-9ntz(3), bidir, X, 184, 1, Z), "& 
"94 (CBSC_1, s-9ntz(5), bidir, X, 184, 1, Z), "& 
"95 (BC_4, s_reqz(1), input, X), "& 
"96 (BC_4, s_reqz(4), input, X), "& 
"97 (CBSC_1, s_gntz(4), bidir, X, 184, 1, Z), "& 
"98 (BC_4, s_reqz(2), input, X), "& 
"99 (CBSC_1, s-9ntz(1), bidir, X, 184, 1, Z), "& 
'100 (CBSC_1, s_ad(31), bidir, X, 189, 1, Z), "& 
"101 (CBSC_1, s-9ntz(2), bidir, X, 184, 1, Z), "& 
"102 (CBSC_1, S-9ntz(O), bidir, X, 184, 1, Z), "& 
"103 (BC_1, s_rstz, output3, X, 205, 1, Z), "& 
'104 (CBSC_1, s_ad(27), bidir, X, 189, 1, Z), "& 
"105 (CBSC_1, s_ad(28), bidir, X, 189, 1, Z), U& 
"106 (BC_4, s_reqz(O), input, X), '& 
"107 (CBSC_1, s_ad(30), bidir, X, 189, 1, Z), "& 
'108 (CBSC_1, s_ad(29), bidir, X, 189, 1, Z), "& 
'109 (CBSC_1, s_cbez(3), bidir, X, 193, 1, Z), "& 
"110 (CBSC_1, s_ad(24), bidir, X, 189, 1, Z), "& 
"111 (CBSC_1, s_ad(25), bidir, X, 189, 1, Z), "& 
"112 (CBSC_1, s_ad(26), bidir, X, 189, 1, Z), "& 
"113 (CBSC_1, s_ad(20), bidir, X, 190, 1, Z), "& 
"114 (CBSC_1, s_ad(23), bidir, X, 190, 1, Z), "& 
"115 (CBSC_1, s_ad(21), bidir, X, 190, 1, Z), "& 
"116 (CBSC_1, s_ad(17), bidir, X, 190, 1, Z), "& 
"117 (CBSC_1, s_ad(22), bidir, X, 190, 1, Z), '& 
"118 (CBSC_1, s_ad(18), bidir, X, 190, 1, Z), '& 
"119 (CBSC_1, s_ad(16), bidir, X, 190, 1, Z), "& 
"120 (CBSC_1, s_framez, bidir, X, 204, 1, Z), "& 
"121 (CBSC_1, s_ad(19), bidir, X, 190, 1, Z), "& 
"122 (CBSC_1, s_trdyz, bidir, X, 202, 1, Z), "& 
"123 (CBSC_1, sJ>errz, bidir, X, 200, 1, Z), n& 
"124 (CBSC_1, s_i rdyz , bidir, X, 203, 1, Z), "& 

24-10 Developer's Manual 



int'et Intel® 80303 flO Processor 
Test Features 

Table 24-4. Intel@) 80303 1/0 Processor Boundary Scan Register Bit Order (Sheet 4 of 9) 

"125 (CBSC_1, s_lockz, bidir, X, 201, 1, Z), "& 

"126 (CBSC_ 1, s_cbez(2), bidir, X, 193, 1, Z), "& 

"127 (CBSC_1, s_par, bidir, X, 198, 1, Z), "& 

"128 (CBSC_1, s_stopz, bidir, X, 202, 1, Z), "& 

"129 (CBSC_1, s_ad(15), bidir, X, 191,1, Z), "& 

"130 (CBSC_1, s_serrz, bidir, X, 199, 1, Z), "& 

"131 (CBSC_1, s_devselz, bidir, X, 202, 1, Z), "& 

"132 (CBSC_1, s_ad(11), bidir, X, 191, 1, Z), "& 

"133 (CBSC_1, s_cbez(1), bidir, X, 193, 1, Z), "& 

"134 (CBSC_1, s_cbez(O), bidir, X, 193, 1, Z), "& 

"135 (CBSC_1, s_ad(14), bidir, X, 191, 1, Z), "& 

"136 (CBSC_1, s_ad(12), bidir, X, 191, 1, Z), "& 

"137 (CBSC_1, s_ad(9), bidir, X, 191, 1, Z), "& 

"138 (CBSC_1, s_ad(13), bidir, X, 191, 1, Z), "& 

"139 (CBSC_1, s_ad(4), bidir, X, 192, 1, Z), "& 

"140 (CBSC_1, s ad(10), bidir, X, 191, 1, Z), "& 

"141 (CBSC_1, s_ad(8), bidir, X, 191, 1, Z), "& 

"142 (CBSC_1, s_ad(7), bidir, X, 192,1, Z), "& 

"143 (CBSC_1, s_ad(5), bidir, X, 192, 1, Z), "& 

"144 (CBSC_1, s_ad(6), bidir, X, 192, 1, Z), "& 

"145 (CBSC_1, s_ad(3), bidir, X, 192, 1, Z), "& 

"146 (CBSC_1, s_cbez(6), bidir, X, 194, 1, Z), "& 

"147 (CBSC_1, s_ad(1), bidir, X, 192,1, Z), "& 

"148 (CBSC_1, s_ad(2), bidir, X, 192, 1, Z), "& 

"149 (CBSC_1, s_ad(59), bidir, X, 185, 1, Z), "& 

"150 (CBSC_1, s_ad(O), bidir, X, 192, 1, Z), "& 

"151 (CBSC_1, s_ack64z, bidir, X, 195,1, Z), "& 

"152 (CBSC_1, s_req64z, bidir, X, 196, 1, Z), "& 

"153 (CBSC_1, s_cbez(7), bidir, X, 194, 1, Z), "& 

"154 (CBSC_1, s_cbez(4), bidir, X, 194,1, Z), "& 

"155 (CBSC_1, s_cbez(5), bidir, X, 194, 1, Z), "& 

"156 (CBSC_1, s_par64, bidir, X, 197,1, Z), "& 

"157 (CBSC_1, s_ad(63), bidir, X, 185, 1, Z), "& 

"158 (CBSC_1, s_ad(51), bidir, X, 186, 1, Z), "& 

"159 (CBSC_1, s_ad(62), bidir, X, 185, 1, Z), "& 

"160 (CBSC_1, s_ad(61), bidir, X, 185, 1, Z), "& 

"161 (CBSC_1, s_ad(57), bidir, X, 185, 1, Z), "& 

"162 (CBSC_1, s_ad(60), bidir, X, 185, 1, Z), "& 

"163 (CBSC_1, s_ad(55), bidir, X, 186, 1, Z), "& 

"164 (CBSC_1, s_ad(58), bidir, X, 185, 1, Z), "& 

"165 (CBSC_1, s_ad(53), bidir, X, 186, 1, Z), "& 

"166 (CBSC_1, s_ad(56), bidir, X, 185, 1, Z), "& 

"167 (CBSC_1, s_ad(50), bidir, X, 186, 1, Z), "& 

"168 (CBSC_1, s_ad(54), bidir, X, 186, 1, Z), "& 

"169 (CBSC_1, s_ad(47), bidir, X, 187, 1, Z), "& 

"170 (CBSC_1, s_ad(52), bidir, X, 186, 1, Z), "& 

"171 (CBSC_1, s_ad(42), bidir, X, 187, 1, Z), "& 

"172 (CBSC_1, s_ad(49), bidir, X, 186, 1, Z), "& 

"173 (CBSC_1, s_ad(45), bidir, X, 187, 1, Z), "& 

Developer's Manual 24-11 



fntel® 80303 I/O Processor 
Test Features inteJ· 
Table 24-4. Intel® 80303 110 Processor Boundary Scan Register Bit Order (Sheet 5 of 9) 

24-12 

"174 (CBSC_1, s_ad(48), bidir, X, 186, 1, Z), "& 

"175 (CBSC_1, s_ad(43), bidir, X, 187, 1, Z), "& 

"176 (CBSC_1, s_ad(41), bidir, X, 187, 1, Z), "& 

"177 (CBSC_1, s_ad(46), bidir, X, 187, 1, Z), "& 

"178 (CBSC_1, s_ad(39), bidir, X, 188, 1, Z), "& 

"179 (CBSC_1, s_ad(44), bidir, X, 187, 1, Z), "& 

"180 (CBSC_1, s_ad(37), bidir, X, 188, 1, Z), "& 

"181 (CBSC_1, s_ad(40), bidir, X, 187, 1, Z), "& 

"182 (CBSC_1, s_ad(36), bidir, X, 188, 1, Z), "& 

"183 (CBSC_1, s_ad(38), bidir, X, 188, 1, Z), "& 

"184 (BC_1, control, 1), "& 

"185 (BC_1, control, 1), "& 

"186 (BC_1, control, 1), "& 

"187 (BC_1, control, 1)," & 

"188 (BC_1, 

"189 (BC_1, 

"190 (BC_1, 

"191 (BC_1, 

"192 (BC_1, 

"193 (BC_1, 

"194 (BC1, 

"195 (BC_1, 

"196 (BC_1, 

"197 (BC_1, 

"198 (BC_1, 

"199 (BC_1, 

"200 (BC_1, 

"201 (BC_1, 

"202 (BC_1, 

"203 (BC1, 

"204 (BC_1, 

"205 (BC_1, 

"206 (CBSC_1, 

"207 (CBSC_1, 

"208 (CBSC_1, 

"209 (CBSC_1, 

"210 (BC_4, 

"211 (CBSC_1, 

"212 (CBSC_1, 

"213 (CBSC_1, 

"214 (CBSC_1, 

"215 (CBSC_1, 

"216 (CBSC_1, 

"217 (CBSC_1, 

"218 (CBSC_1, 

"219 (CBSC_1, 

"220 (CBSC_1, 

"221 (CBSC_1, 

"222 (CBSC_1, 

s_ad(33), 

s_ad(35), 

s_ad(32), 

s_ad(34), 

nC1, 

p_ad(33), 

p_ad(34), 

p_ad(32), 

p_ad(40), 

p_ad(36), 

p_ad(37), 

p_ad(39), 

p_ad(35), 

p_ad(43), 

p_ad(41), 

p_ad(49), 

p_ad(38), 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

control, 

bidir, 

bidir, 

bidir, 

bidir, 

input, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1) , 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

1 ), 

X, 

X, 

X, 

X, 

X), 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 
X, 

X, 

X, 

"& 

"& 

" & 

" & 

" & 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

292, 1, 

292, 1, 

292, 1, 

292, 1, 

"& 

293, 1, 

293, 1, 

293, 1, 

294, 1, 

293, 1, 

293, 1, 

293, 1, 

293, 1, 

294, 1, 

294, 1, 

295, 1, 

293, 1, 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

Developer's Manual 



int:et fntel@ 80303 liD Processor 
Test Features 

Table 24-4. Intel@ 80303 1/0 Processor Boundary Scan Register Bit Order (Sheet 6 of 9) 

"223 (CBSC_1, p_ad(45), bidir, X, 294, 1, Z), "& 

"224 (CBSC_1, p_ad(48), bidir, X, 295, 1, Z), "& 

"225 (CBSe 1, p_ad(44) , bidir, X, 294, 1, Z), "& 

"226 (CBSC_1, p_ad(46), bidir, X, 294, 1, Z), "& 

"227 (CBSC_1, p_ad(42), bidir, X, 294, 1, Z), "& 

"228 (CBSC_1, p_ad(51), bidir, X, 295, 1, Z), "& 

"229 (CBSC_1, p_ad(47), bidir, X, 294, 1, Z), "& 

"230 (CBSC_1, p_ad(53), bidir, X, 295, 1, Z), "& 

"231 (CBSC_1, p_ad(50), bidir, X, 295, 1, Z), "& 

"232 (CBSC_1, P3d(52), bidir, X, 295, 1, Z), "& 

"233 (CBSC_1, p_ad(57), bidir, X, 296, 1, Z), "& 

"234 (CBSC_1, p_ad(56), bidir, X, 296, 1, Z), "& 

"235 (CBSC_1, p_ad(55) , bidir, X, 295, 1, Z), "& 

"236 (CBSC_1, p_ad(54), bidir, X, 295, 1, Z), "& 

"237 (CBSC_1, p_ad(58), bidir, X, 296, 1, Z), "& 

"238 (CBSC_1, p_ad(60), bidir, X, 296, 1, Z), "& 

"239 (CBSe 1, p_ad(61), bidir, X, 296, 1, Z), "& 

"240 (CBSC_1, p_par64, bidir, X, 306, 1, Z), "& 

"241 (CBSC_1, p_ad(59), bidir, X, 296, 1, Z), "& 

"242 (CBSC_1, p_ad(63) , bidir, X, 296, 1, Z), "& 

"243 (CBSC_1, p_cbez(4), bidir, X, 310, 1, Z), "& 

"244 (CBSC_1, p_cbez(5), bidir, X, 310, 1, Z), "& 

"245 (CBSC_1, p_ad(62), bidir, X, 296, 1, Z), "& 

"246 (CBSC_1, p_ack64z, bidir, X, 311, 1, Z), "& 

"247 (CBSC_1, p_req64z, bidir, X, 303, 1, Z), "& 

"248 (CBSC_1, p_cbez(7), bidir, X, 310, 1, Z), "& 

"249 (CBSC_1, p_ad(2), bidir, X, 297, 1, Z), "& 

"250 (CBSC_1, p_cbez(6), bidir, X, 310, 1, Z), "& 

"251 (CBSC_1, p_ad(3) , bidir, X, 297, 1, Z), "& 

"252 (CBSC_1, p_ad(1), bidir, X, 297, 1, Z), "& 

"253 (CBSC_1, p_ad(7), bidir, X, 297, 1, Z), "& 

"254 CBSC_1, p_ad(O), bidir, X, 297, 1, Z), "& 

"255 (CBSC_1, p_cbez(O), bidir, X, 309, 1, Z), "& 

"256 (CBSC_1, P3d(4), bidir, X, 297, 1, Z), "& 

"257 (CBSC_1, p_ad(6), bidir, X, 297, 1, Z), "& 

"258 (CBSC_1, p_ad(9), bidir, X, 298, 1, Z), "& 

"259 (CBSC_1, P3d(5), bidir, X, 297, 1, Z), "& 

"260 (CBSC_1, p_ad(10), bidir, X, 298, 1, Z), "& 

"261 (CBSC_1, p_ad(8), bidir, X, 298, 1, Z), "& 

"262 (CBSC_1, p_ad(13), bidir, X, 298, 1, Z), "& 

"263 (CBSC_1, p_ad(11), bidir, X, 298, 1, Z), "& 

"264 (CBSC_1, p_ad(12), bidir, X, 298, 1, Z), "& 

"265 (CBSC_1, p_ad(14), bidir, X, 298, 1, Z), "& 

"266 (CBSC_1, p_ad(15), bidir, X, 298, 1, Z), "& 

"267 (CBSC_1, p_cbez(1), bidir, X, 309, 1, Z), "& 

"268 (CBSC_1, p_par, bidir, X, 305, 1, Z), "& 

"269 (CBSC_1, p_perrz, bidir, X, 304, 1, Z), "& 

"270 (CBSC_1, p_serrz, bidir, X, 302, 1, Z), "& 

"271 (CBSC_1, p_stopz, bidir, X, 301, 1, Z), "& 

Developer's Manual 24-13 



Intel® 80303 liD Processor 
Test Features 

Table 24-4. Intej® 80303 I/O Processor Boundary Scan Register Bit Order (Sheet 7 of 9) 

"272 (CBSC_1, p_devselz, bidir, X, 301, 1, Z), "& 

"273 (BC_ 4, p_lockz, input, X), "& 

"274 (CBSe 1, p_trdyz, bidir, X, 301, 1, Z), "& 

"275 (CBSC_1, p_irdyz, bidir, X, 307, 1, Z), "& 

"276 (CBSe 1, p_cbez(2) , bidir, X, 309, 1, Z), "& 

"277 (CBSC_1, p_framez, bidir, X, 308, 1, Z), "& 

"278 (CBSC_1, p_ad(18), bidir, X, 299, 1, Z), "& 

"279 (CBSC_1, p_ad(17), bidir, X, 299, 1, Z), "& 

"280 (CBSC_1, p_ad(16), bidir, X, 299, 1, Z), "& 

"281 (CBSC_1, p_ad(20), bidir, X, 299, 1, Z), "& 

"282 (CBSC_1, p_ad(19), bidir, X, 299, 1, Z), "& 

"283 (CBSC_1, p_ad(22), bidir, X, 299, 1, Z), "& 

"284 (CBSC_1, p_ad(21), bidir, X, 299, 1, Z), "& 

"285 (CBSC_1, p_ad(23), bidir, X, 299, 1, Z), "& 

"286 (CBSC_1, p_cbez(3), bidir, X, 309, 1, Z), "& 

"287 (CBSC_1, p_ad(24), bidir, X, 300, 1, Z), "& 

"288 (BC_4, p_idsel, input, X), "& 

"289 (CBSC_1, p_ad(26) , bidir, X, 300, 1, Z), "& 

"290 (CBSC_1, p_ad(25), bidir, X, 300, 1, Z), "& 

"291 (CBSC_1, p_ad(27), bidir, X, 300, 1, Z), "& 

"292 (BC_1, control, 1)," & 

"293 (BC_1, control, 1)," & 

"294 (BC_1, control, 1)," & 

"295 (BC_1, control, 1)," & 

"296 (BC_1, control, 1)," & 

"297 (BC_1, control, 1)," & 

"298 (BC_1, control, 1)," & 

"299 (BC_1, control, 1)," & 

"300 (BC_1, control, 1)," & 

"301 (BC_1, control, 1)," & 

"302 (BC_1, control, 1)," & 

"303 (BC_1, control, 1)," & 

"304 (BC_1, control, 1)," & 

"305 (BC_1, control, 1)," & 

"306 (BC_1, control, 1)," & 

"307 (BC_1, control, 1)," & 

"308 (BC_1, control, 1), "& 

"309 (BC_1, control, 1)," & 

"310 (BC_1, control, 1)," & 

"311 (BC_1, control, 1)," & 

"312 (BC_1, control, 1)," & 

"313 (CBSC_1, p_ad(28), bidir, X, 401, 1, Z), "& 

"314 (CBSC_1, p_ad(30), bidir, X, 401, 1, Z), "& 

"315 (CBSC_1, p_ad(31), bidir, X, 401,1, Z), "& 

"316 (CBSC_1, p_reqz, bidir, X, 402, 1, Z), "& 

"317 (BC_1, p_intz(2), output3, X, 398, 1, Z), "& 

"318 (BC_1, p_intz(3), output3, X, 397, 1, Z), "& 

"319 (CBSC_1, p_ad(29), bidir, X, 401, 1, Z), "& 

"320 (BC_ 4, p_rstz, input, X), "& 

24-14 Developer's Manual 



Intel@ 80303 flO Processor 
Test Features 

Table 24-4. Intel® 80303 110 Processor Boundary Scan Register Bit Order (Sheet 8 of 9) 

"321 (BC_4, 

"322 (BC_1, 

"323 (BC_1, 

"324 (CBSC_1, 

"325 (CBSC_1, 

"326 (BC_4, 

"327 (BC_4, 

"328 (BC_4, 

"329 (BC_4, 

"330 (BC_4, 

"331 (BC_4, 

"332 (BC_4, 

"333 (BC_4, 

"334 (BC_1, 

"335 (BC_4, 

"336 (BC_1, 

"337 (CBSC_1, 

"338 (CBSC_1, 

"339 (CBSC_1, 

"340 (CBSC_1, 

"341 (CBSC_1, 

"342 (CBSC_1, 

"343 (CBSC_1, 

"344 (CBSC_1, 

"345 (CBSC_1, 

"346 (CBSC_1, 

"347 (CBSC_1, 

"348 (CBSC_1, 

"349 (CBSC_1, 

"350 (CBSC_1, 

"351 (CBSC_1, 

"352 (CBSC_1, 

"353 (CBSC_1, 

"354 (BC_1, 

"355 (CBSC_1, 

"356 (CBSC_1, 

"357 (BC_4, 

"358 (BC_1, 

"359 (BC_4, 

"360 (BC_1, 

"361 (BC_4, 

"362 (BC_4, 

"363 (CBSC_1, 

"364 (BC_1, 

"365 (BC_4, 

"366 (CBSC_1, 

"367 (CBSC_1, 

"368 (CBSC_1, 

"369 (CBSC_1, 

Developer's Manual 

P_9ntz, 
p_intz(1 ), 

p_intz(O), 

sda, 

sci, 

s_intz_xintz(2) , 

s_intz_xintz(1) , 

scnmodez, 

s_intz_xintz(O), 

nmiz, 

xint5z, 

xint4z, 

s_intz_xintz(3), 

Ustz, 

scbodz, 

failz, 

rad(3), 

rad(O), 

rad(2), 

rad(7), 

rad(5), 

rad(1 ), 

rad(4), 

rad(6), 

rad(15), 

rad(10), 

rad(9), 

rad(11 ), 

rad(12), 

rad(8) , 

rad(13), 

rad(14), 

rad(16), 

rale, 

rcez(1 ), 

rcez(O), 

p_clk, 

rwez, 

Icdinitz, 

roez, 

p_cclk, 

oncez, 

dq(32), 

dclkout, 

dclkin, 

dq(36), 

dq(O), 

dq(33), 

dq(1), 

input, 

output3, 

output3, 

bidir, 

bidir, 

input, 

input, 

input, 

input, 

input, 

input, 

input, 

input, 

output3, 

input, 

output3, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

bidir, 

output3, 

bidir, 

bidir, 

input, 

output3, 

input, 

output3, 

input, 

input, 

bidir, 

output3, 

input, 

bidir, 

bidir, 

bidir, 

bidir, 

X), 

X, 

X, 

X, 

X, 

X), 

X), 

X), 

X), 

X), 

X), 

X), 

X), 

X, 

X), 

X, 

X, 

X, 

X, 

X, 

X, 

X, 
X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X, 

X), 

X, 

X), 

X, 

X), 

X), 

X, 

X, 

X), 

X, 

X, 

X, 

X, 

"& 

399, 1, 

400, 1, 

388, 1, 

389, 1, 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

403, 1, 

"& 

403, 1, 

390, 1, 

390, 1, 

390, 1, 

390, 1, 

390, 1, 

390, 1, 

390, 1, 

390, 1, 

391, 1, 

391, 1, 

391, 1, 

391, 1, 

391, 1, 

390, 1, 

391, 1, 

391, 1, 

391, 1, 

403, 1, 

395, 1, 

394, 1, 

"& 

403, 1, 

"& 

403, 1, 

"& 

"& 

396, 1, 

403, 1, 

"& 

396, 1, 

396, 1, 

396, 1, 

396, 1, 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Z), 

Zl, 

Z), 

Z), 

Z), 

Z), 

Z), 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

& 
"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

"& 

24-15 



Inte!® 80303 liD Processor 
Test Features 

Table 24-4. Intel@ 80303 110 Processor Boundary Scan Register Bit Order (Sheet 9 of 9) 

"370 (CSSC_1, dq(34), bidir, X, 396, 1, l), 

"371 (CSSC_1, dq(2), bidir, X, 396, 1, l), 

"372 (CSSC_1, dq(35), bidir, X, 396, 1, l), 

"373 (CSSC_1, dq(3), bidir, X, 396, 1, l), 

"374 (CBSC_1, dq(6), bidir, X, 396, 1, l), 

"375 (CBSC_1, dq(4), bidir, X, 396, 1, l), 

"376 (CBSC1, dq(38), bidir, X, 392, 1, l), 

"377 (CBSC_1, dq(5), bidir, X, 396, 1, l), 

"378 (CBSC_1, dq(8), bidir, X, 396, 1, l), 

"379 (CBSC_1, dq(40), bidir, X, 392, 1, l), 

"380 (CBSC_1, dq(37), bidir, X, 396, 1, l), 

"381 (CBSC_1, dq(39), bidir, X, 392, 1, l), 

"382 (CBSC_1, dq(7), bidir, X, 396, 1, l), 

"383 (CBSC_1, dq(9), bidir, X, 396. 1, l), 

"384 (CSSC_1, dq(10). bidir, X. 396, 1, l). 

"385 (CBSC1, dq(41), bidir, X, 392, 1, l), 

"386 (CBSC_1, dq(11 ), bidir. X, 396, 1, l), 

"387 (CBSC_1, dq(42), bidir, X, 393, 1, l), 

"388 (BC_1, * control, 1 ), "& 
"389 (BC1, * control, 1 ), "& 
"390 (BC_1, * control, 1 ), "& 
"391 (BC_1, * control. 1) , "& 
"392 (BC_1, * control, 1 ), "& , 
"393 (BC_1, * control, 1 ). "& , 
"394 (BC_1, * control, 1 ). "& 
"395 (BC_1, * control, 1 ), "& 
"396 (BC_1, * control, 1 ). " & · 
"397 (BC_1, * control. 1 ). "& · 
"398 (BC_1, * control. 1 ), "& 

"399 (BC_1, * control, 1 ), "& 
"400 (BC_1, * control, 1 ), "& · 
"401 (BC_1, * control, 1 ), "& , 
"402 (BC_1, * control. 1 ), "& , 
"403 (BC_1, * control. 1 )"; , 

"& 
"& 
"& 
"& 
"& 
'& 
"& 
"& 
"& 
"& 

"& 
"& 
"& 
"& 
"& 
"& 
"& 
"& 

24-16 Developer's Manual 



intel· 
24.2.5 TAP Controller 

Intel® 80303 110 Processor 
Test Features 

The TAP (Test Access Port) controller is a l6-state synchronous finite state machine that controls 
the sequence of test logic operations. The TAP can be controlled via a bus master. The bus master 
can be either automatic test equipment or a component (i.e., PLD) that interfaces to the TAP. The 
TAP controller changes state only in response to a rising edge of TCK. The value of the test mode 
state (TMS) input signal at a rising edge of TCK controls the sequence of state changes. The TAP 
controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP 
controller can be initialized by applying a high signal level on the TMS input for a minimum of 
five TCK periods. See Figure 24-2 for the state diagram of the TAP controller. An uninitialized 
TAP controller can result in erratic processor behavior even when there is no intention to use the 
JTAG portion of the processor. 

The behavior of the TAP controller and other test logic in each controller state is described in the 
following subsections. For greater detail on the state machine and the public instructions, refer to 
the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available 
from the IEEE). 

Figure 24-2. TAP Controller State Diagram 

TRST# = 0 

NOTE: All state transitions are based on the value of TMS. 

A6806·01 

Developer's Manual 24-17 



Intel@ 80303 liD Processor 
Test Features intet 
24.2.5.1 

24.2.5.2 

24.2.5.3 

24.2.5.4 

24.2.5.5 

24-18 

Test Logic Reset State 

In this state, test logie is disabled to allow normal operation of the 80303 I/O processor. Upon 
entering the TesCLogic_Reset state, the device identification register is loaded. No matter what the 
present state of the controller, it enters Test-Logic-Reset state when the TMS input is held high (12) 
for at least five rising edges of TCK. The controller remains in this state while TMS is high. The 
TAP controller is also forced to enter this state asynchronously by asserting TRST#. 

When the controller exits the Test-Logie-Reset controller state as a result of an erroneous low 
signal on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external 
interference), it returns to the Test-Logie-Reset state following three rising edges ofTCK with the 
TMS line at the intended high logic level. 

Run-Test/Idle State 

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains 
in this state as long as TMS is held low. When the runbist instruction is selected, it executes during 
the Run-Test/Idle state and the result is reported in the RUNBIST register. Instructions that do not 
call functions generate no activity in the test logie while the controller is in this state. The 
instruction register and all test data registers retain their current state. When TMS is high on the 
rising edge of TCK, the controller moves to the Select-DR-Scan state. The instruction register does 
not change while the TAP controller is in this state. 

Select-OR-Scan State 

The Select-DR-Scan state is a transitional controller state. While in the Select-DR-Scan state, the 
test data registers selected by the current instruction retain their previous states. When TMS is held 
low on the rising edge of TCK, the controller moves into the Capture-DR state. When TMS is held 
high on the rising edge of TCK, the controller moves into the Select -IR -Scan state. See 
Section 24.2.5.1 0, "Select-IR Scan State" on page 24-19. The instruction register does not change 
while the TAP controller is in this state. 

Capture-DR State 

In this state, the selected test data register is loaded with its parallel value on the rising edge of 
TCK. When the controller is in the Capture-DR state and the current instruction is sample/preload, 
the boundary-scan register captures input pin data on the rising edge of TCK. Test data registers 
that do not have a parallel input are not changed. The boundary-scan registers cannot be updated 
from the parallel inputs any other way. The instruction register does not change while the TAP 
controller is in this state. 

When TMS is high on the rising edge of TCK, the controller enters the Exitl-DR state. When TMS 
is low on the rising edge of TCK, the controller enters the Shift-DR state. 

Shift-DR State 

In the Shift-DR state, the test data register selected by the current instruction shifts data one bit 
position nearer to the IDO serial output on each rising edge of TCK. All other test data registers 
retain their previous values during this state. 

The instruction register does not change while the TAP controller is in this state. 

When TMS is high on the rising edge of TCK, the controller enters the Exitl-DR state. When TMS 
is low on the rising edge of TCK, the controller remains in the Shift-DR state. 

Developer's Manual 



24.2.5.6 

24.2.5.7 

24.2.5.8 

24.2.5.9 

Exit1-DR State 

Intel@ 80303 110 Processor 
Test Features 

Exitl-DR is a temporary controller state. When the TAP controller is in the Exitl-DR state and 
TMS is held high on the rising edge of TCK, the controller enters the Update-DR state, which 
terminates the scanning process. When TMS is held low on the rising edge of TCK, the controller 
enters the Pause-DR state. 

The instruction register does not change while the TAP controller is in this state. All test data 
registers selected by the current instruction retain their previous value during this state. 

Pause-DR State 

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the 
test data register in the serial path between TDI and TDO. The test data register selected by the 
current instruction retains its previous value during this state. The instruction register does not 
change in this state. 

The controller remains in this state as long as TMS is low. When TMS is high on the rising edge of 
TCK, the controller moves to the Exit2-DR state. 

Exit2-DR State 

Exit2-DR is a temporary state. When TMS is held high on the rising edge of TCK, the controller 
enters the Update-DR state, which terminates the scanning process. When TMS is held low on the 
rising edge of TCK, the controller re-enters the Shift-DR state. 

The instruction register does not change while the TAP controller is in this state. All test data 
registers selected by the current instruction retain their previous value during this state. 

Update-DR State 

The boundary-scan register is provided with a latched parallel output. This output prevents changes 
at the parallel output while data is shifted in response to the extest, sample/preload instructions. 
When the boundary-scan register is selected while the TAP controller is in the Update-DR state, 
data is latched onto the boundary-scan register's parallel output from the shift-register path on the 
falling edge of TCK. The data held at the latched parallel output does not change unless the 
controller is in this state. 

While the TAP controller is in this state, all of the test data register's shift-register bit positions 
selected by the current instruction retain their previous values. The instruction register does not 
change while the TAP controller is in this state. 

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the 
controller re-enters the Select-DR-Scan state. When TMS is held low on the rising edge of TCK, 
the controller re-enters the Run-Test/Idle state. 

24.2.5.10 Select-IR Scan State 

Select-IR is a temporary controller state. The test data registers selected by the current instruction 
retain their previous states. In this state, when TMS is held low on the rising edge of TCK, the 
controller enters the Capture-IR state and a scan sequence for the instruction register is initiated. 
When TMS is held high on the rising edge of TCK, the controller re-enters the Test-Logic-Reset 
state. The instruction register does not change in this state. 

Developer's Manual 24-19 



Intel@ 80303 110 Processor 
Test Features 

24.2.5.11 Capture-IR State 

When the controller is in the Capture-IR state, the shift register contained in the instruction register 
appends the instruction with the fixed value 01 2 on the rising edge ofTCK. 

The test data register selected by the current instruction retains its previous value during this state. 
The instruction does not change in this state. While in this state, holding TMS high on the rising 
edge of TCK causes the controller to enter the Exitl-IR state. When TMS is held low on the rising 
edge of TCK, the controller enters the Shift-IR state. 

24.2.5.12 Shift-IR State 

When the controller is in this state, the shift register contained in the instruction register is 
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each 
rising edge of TCK. The test data register selected by the current instruction retains its previous 
value during this state. The instruction register does not change. 

When TMS is held high on the rising edge of TCK, the controller enters the Exitl-IR state. When 
TMS is held Iowan the rising edge of TCK, the controller remains in the Shift-IR state. 

24.2.5.13 Exin-IR State 

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters 
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising 
edge of TCK, the controller enters the Pause-IR state. 

The test data register selected by the current instruction retains its previous value during this state. 

The instruction does not change and the instruction register retains its state. 

24.2.5.14 Pause-IR State 

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the 
instruction register. The test data registers selected by the current instruction retain their previous 
values during this state. The instruction does not change and the instruction register retains its state. 

The controller remains in this state as long as TMS is held low. When TMS is high on the rising 
edges of TCK, the controller enters the Exit2-IR state. 

24.2.5.15 Exit2-IR State 

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters 
the Update-IR state, which terminates the scanning process. When TMS is held Iowan the rising 
edge of TCK, the controller re-enters the Shift-IR state. 

This test data register selected by the current instruction retains its previous value during this state. 
The instruction does not change and the instruction register retains its state. 

24.2.5.16 Update-IR State 

24-20 

The instruction shifted into the instruction register is latched onto the parallel output from the 
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the current 
instruction. Test data registers selected by the current instruction retain their previous values. 

When TMS is held high on the rising edge of TCK, the controller re-enters the Select-DR-Scan state. 
When TMS is held Iowan the rising edge of TCK, the controller re-enters the Run-TestlIdle state. 

Developer's Manual 



intel® 
24.2.6 Boundary-Scan Example 

intel® 80303 liD Processor 
Test Features 

The folJowing example describes two command actions. The example assumes the TAP controller 
starts in the Test-Logic-Reset state. The TAP controller then loads and executes a new instruction. 
See Figure 24-3 for an illustration of the waveforms involved in this example. The steps are: 

1. Load the sample/preload instruction into the instruction register: 

a. Use TMS to select the Shift-IR state. While in the Shift-IR state, shift in the new 
instruction, least significant byte first. 

b. Use the Shift-IR state four times to read the least- through most-significant instruction bits 
into the instruction register (one does not care what old instruction is being shifted out of 
the TDO pin). 

c. Enter the Update-IR state to make the instruction take effect. 

2. Capture pin data and shift the data out through the TDO pin: 

a. Use TMS to select the Select-DR-Scan state. 

b. Transition the TAP controller to the Capture-DR state to latch pin data in the 
boundary-scan register cells. 

c. Enter and stay in the Shift-DR state for 110 TCK cycles. These IDO values are compared 
against expected data to determine if component operation and connection are correct. 
Record the TDO values after each cycle. New serial data enters the boundary-scan register 
through the TDI pin, while old data is scanned out. 

d. Pass through the Exitl-DR state to the Update-DR state. Here boundary-scan data to be 
driven out of the system output pins is latched and driven. 

e. Transition back to the Select-DR state to begin another iteration. 

This example does not use Pause states. These states allow software to pause the JTAG state 
machine to accommodate slow board-level data paths. The Pause states allow indefinite 
interruptions in the shifting while thc external tester performs other tasks. 

The old instruction was abed in the example. The original instruction register value becomes the ID 
code since the example starts from the reset state. Other times it represents the previous opcode. 
The new instruction opcode is 0001 2 (sample/preload). All pins are captured into the serial 
boundary-scan register and the values are output to the IDO pin. 

The TCK signal at the top of the diagram shows a continuous pulse train. In many designs, 
however, TCK is more irregular. In such cases, software controls TCK by writing to a port bit. 
Software writes the TMS and IDI signals and toggles the clock high. Typically, software drives 
TCK low quickly. The program monitors the TDO pin values as they are shifted out. 

Developer's Manual 24-21 



Intel@ 80303 liD Processor 
Test Features 

Figure 24-3. Example Showing Typical JTAG Operations 

TCK 

TMS 

TOI 

IR Shift Reg 
4 bits long 

Parallel Out 
OflR 

DR Shift Reg 
(n bits long) 

Register 
Selected 

1,1: 

Don't 
care 

Old Ins! = abed 

Doni 
care 

I I 1 00 0 

l4\\ \ 
o 1 o 0 0 
o 0 1 0 0 
00 o 1 0 
1 0 00 1 

I I 

1--
000 0 ~s 0010 o:~oioooo: 

I i I I I II I I ::II I I I I 
I:' I 

" 

Don't 
Care 

. I 

N'ew Ins! = 0001 2 :: 

I ~ 
I 

' + : + 

Boundary sca~ Reg. : I 
I I 

: + + . , + + ' 

TOO d c b a _:-:-
p p p p p p p p p pp 
o 0 o 0 00 0 n n n n 
o 1 2 3 45 6 -4 -3 -2 -1 

:--_:-!-

A6B07-01 

24-22 Developer's Manual 



/nte/@ 80303 liD Processor 
Test Features 

Figure 24-4. Timing Diagram Illustrating the Loading of Instruction Register 

Developer's Manual 

TCK 

TMS~ __ ~[l~ ____ ~[l~ ____ ~r--\~ ________ _ 

Controller 
State 

TOI 

Data Input 
to IR 

IR 
shift-register 

Parallel 
output of IR 

Data input 
to TOR 

TOR 
shift-register 

Parallel 
output ofTOR 

Register 
selected 

TOO 
enable 

TOO 

1i) 

'" " a: 

c c 

'" '" u u (fJ (/) 

I> 
0", a: Ef 0 
.3 
i> 
~ 

1) 1) 
Q) " a; a; 

(fJ (/) 

Ef 
Q) 

% 
'" () 

Ef Ef Ef 

"" E Ox ~ 
(fJ w w 

Ef 
.;, 
1ii 
" c. 
::J 

1;; 

" a: 

m ~------CXJCX)-----------
0 
'ill ~-------~~------

__________________ �_o_C_o_d_e ____________________ -JX~ _____ N_e_w_l_ns_t_ru_c_tio_n __ _ 

__________________________________________ -JX~ ________ O_ld __ o_ru_a __ _ 

__________ JX~ _____________ ln_st_ru_c_ti_on __ R_eg~i_st_er ________ _JX~ ________________ _ 

Inactive Inactive Inactive 

----------~m~------CXJCX)~----------

D = Don't Care or Undefined 

A6808-01 

24-23 



Figure 24-5. Timing Diagram Illustrating the Loading of Data Register 

24-24 

TMS 

Controller 
State 

TOI 

Data Input 
to IR 

IR 
Shift-register 

Parallel 
output of IR 

Data Input 
toTDR 

TDR 
Shift-register 

Parallel 
output of TDR 

Register 
selected 

TDO 
enable 

_---'n'__~n'__--Jn'--_ __'I\'_____'/ 

---~ooo~-----oooo------

Instruction V"'fi') 

----------------------------------------------------------~ 

----------()-----------------------------------------
_______ ~(XX) ___ ~~ _________ __ 

____________________ O_ld_D_a_t_a ____________________ ~X~ _______ N_e_w_D_a_t_a __ __ 

__________ ~X~ _______ Te_s_t_D_a_m_R_e_g_iS_re_r _____ ~X~ ______________ _ 
Inactive Inactive Inactive 

TDO ------OOO---~OOOO~-----

D = Don't Care or Undefined 

AS809-01 



intel· 
Clocking and Reset 25 

25.1 

This chapter describes the clocking and reset function. The intent of this chapter is to elaborate and 
clarify descriptions of the clocking and reset mechanisms. 

Clocki ng Overview 

The Intel® 80303 I/O processor contains various clocking boundaries internally. The clocks for all of 
the units within the 80303 I/O processor are generated from a single input clock. This input feeds the 
Phase Lock Loop (PLL) circuitry which generates all of the internal clocks. The block diagram of the 
80303 I/O processor, shown in Figure 25-1, highlights the four clocking regions. 

Figure 25-1. Clocking Regions Diagram 

25.1.1 

A4661-01 

Within each of the clocking regions identified in Figure 25 -1, exists various clock requirements for the 
80303 I/O processor units and for the output clocks pins provided for the external subsystem. 

Clocking Theory of Operation 

Each region within the 80303 I/O processor contains different clocking requirements. These 
requirements are summarized in the following sections. 

Developer's Manual 25-1 



Inte/® 80303 liD Processor 
Clocking and Reset inteJ~ 

25.1.2 

25.1.3 

Clocking Region 1 

Region 1 contains the main input clock for providing the 80303 I/O processor with all of its clock 
sources. This input clock is provided by the system designer. This input clock, called the primary 
PCI bus clock, is connected to the input pin P _ CLK. The 80303 I/O processor supports an input 
frequency of 33MHz for normal PCI bus operation on the primary PCI interface. The secondary 
interface of Region 1 obtains its input clock from the clocking unit specified in clocking Region 1 
by P_CLK. 

Clocking Region 2 

Region 2 obtains its input clock from the clocking unit specified in clocking region 1. This region 
is the internal bus of the 80303 I/O processor. It supports clock frequencies up to a maximum of 66 
MHz operation. The clocking unit provides one SDRAM output clock, based on a dedicated PLL. 
The clocking unit contains one output clock, called DCLKOUT and one SDRAM input clock 
called DCLKIN. The DCLKOUT output is used by external circuitry (clock buffering) to 
generate the clocks for the SDRAM memory subsystem. The DCLKIN signal is used to skew 
DCLKOUT appropriately to accommodate flight time and clock buffer delays. Refer to 
Figure 25-2 for a diagram that describes the SDRAM clocking requirements. 

Figure 25-2. SDRAM Clocking Diagram 

25-2 

A4662-01 

Region 2 also contains an output clock used for the 12C bus interface (Chapter 22, "I2C Bus 
Intelface Unit"). The output clock frequency for I2C operation is 100KHz or 400KHz. This clock is 
generated from internal bus clock. In order to use the 12C interface, a clock divider value must be 
written into the 12C Clock Count Register. 

Developer's Manual 



25.1.4 

25.1.5 

Clocking Region 3 

Intel@ 80303 I/O Processor 
Clocking and Reset 

Region 3 obtains its input clock from the clocking unit specified in clocking region 1. This region 
is the i960 Core Processor and the Bus Interface Unit. It supports clock frequencies up to a 
maximum of 100 MHz operation. The region 4 clock is a multiple of the P _ CLK. 

Clocking Region Summary 

Table 25-1 summarizes all of the input clock pins, output clock pins, and clock strapping option 
pins used in the 80303 I/O processor. 

Table 25·1. Clock Pin Summary 

Pin Input/Output Description 

P_ClK Input Primary PCI Input Clock 

DClKIN Input SDRAM Input Clock 

DClKOUT Output SDRAM Output Clock 

SCl Output 12C Output Clock 

Table 25-2 summarizes all of the clocks generated to the three regions within the 80303 I/O 
processor. 

Table 25·2. Clock Region Summary 

Input Clock Region/Clock 

Region 1: 1x P _ClK 

P _ClK= 33 MHz Region 2: 2x P _ClK 

Region 3: 3x P _ClK 

Developer's Manual 25-3 



Intel@ 80303 /10 Processor 
Clocking and Reset intel· 
25.2 Reset Overview 

There are three ways to reset the 80303 I/O processor. The main reset is controlled through the 
primary PCI bus reset signal (P _RST#). When the primary PCI bus asserts this signal, the entire 
80303 I/O processor is placed in a reset state. In addition to the primary PCI reset pin, the 80303 
I/O processor provides software control of units within the 80303 I/O processor and the secondary 
PCI interface. 

Figure 25-3 shows the logical block diagram of the reset conditions. 

Figure 25-3. Reset Block Diagram 

25-4 

Primary 
RST# 

')-
Ul 
::J 

CD 

0 
a.. 
~ 
en 
E 
~ 

PCI-to-PCI 
Bridge 

Unit 

I 
~ 
(/) 
a: 
0.. 1 

= 
iii 
Q5 
<Jl 
Q) 

a: Ul 
Ul ::J 
::J CD 

CD 0 
~ a.. en 
1:l >, 
c rn 
0 1:l 0 c 
Q) 0 (/) 0 

Q) 
(/) 

It 
Secondary 

RST# " 

DMA 
Channels 

Address 
Translation 

Unit 

Address 
Translation 

Unit 

Reset CPU 

Reset Internal Bus Bit II P RST# 

~ 

~ 

~ 

Address 
Translation 

Unit 

DMA 
Channel 

Secondary 
PCI 

Arbiter 

" 6 Req/Gnt 
Pairs 

~ 

~ 

~ ;0.. 

t-

en 
;::) 
ID 
.... 
~ 
a: 
UJ 
l-
~ 

~ 

L 
V 

Memory 
Controller 

Intel® i960® 
Core 

Processor 

Local Bus 
Arbitration 

Unit 

Application 
Accelerator 

Unit 

FC 
Interface 

Unit 

I 

I 

nternal 
Bus Reset 
_RST# 

A6810-01 

When the primary PCI signal (P _RST#) is asserted, the reset signal causes all configuration 
registers, internal control and enable signals, state machines, and output buffers to their initialized 
state. The specification is well defined for signal attached to the PCI bus. 

Developer's Manual 



in1:et 
25.2.1 Primary PCI Reset 

Intel@ 80303 110 Processor 
Clocking and Reset 

When the primary PCI bus reset signal P _RST# is asserted, the 80303 I/O processor: 

• asserts the secondary PCI bus reset signal S_RST# 

• resets the Intel® i960® core processor and the internal bus 

• resets all internal units 

• resets all Memory Mapped Registers 

• latches all configuration straps on the rising edge of P _RST#, refer to Section 25.3 

• latches P _ REQ64# to determine the primary PCI bus interface width 

• asserts the LRST# output signal 

The assertion and deassertion of the PCI reset signal (P _RST#) is asynchronous with respect to 
P _ CLK. The rising edge of the P _RST# signal must be monotonic through the input switching 
range and must meet the minimum slew rate. The PCI local bus specification defines the assertion 
of P _RST# for a period of 1 ms after power is stable. 

Upon the assertion of P _RST#, all units within the 80303 I/O processor are reset. This reset will 
reset all internal memory mapped registers (MMRs) to their default configuration state. The reset 
value for each register is defined within each register description. 

Upon the deassertion of P _RST#, the 80303 I/O processor samples a series of strapping pins to set 
configuration modes (refer to Section 25.3, "Reset Strapping Options" on page 25-7). One strap 
which alters the behavior of the 80303 I/O processor on the deassertion of P _RST# is the 
RST _ MODE# strap. If the RST _ MODE# pin is asserted on the rising edge of P _RST#, the 80303 
I/O processor will continue to assert the individual reset to the i960 core processor. This mode, will 
hold the i960 core processor in reset until the Core Processor Reset Bit in the Extended Bridge 
Configuration Register (PCI Bridge) is cleared, thus allowing the i960 core processor to enter its 
initialization procedure. 

The primary PCI interface of the 80303 I/O processor samples the P _ REQ64# signal to determine 
if the 80303 I/O processor is connected to a 64-bit data path. The central resource is required to 
drive the P _ REQ64# signal low during the time that P _RST# is asserted. The state of P _ REQ64# 
on the rising edge of the P _RST# signal notifies the primary ATU, DMA channel 0, DMA channel 
1, and the primary interface of the PCI bridge that the 80303 I/O processor is connected to a 64-bit 
or 32-bit PCI bus. 

Developer's Manual 25-5 



Intel® 80303 110 Processor 
Clocking and Reset 

25.2.2 

25.2.3 

25-6 

Secondary PCI Reset 

When the secondary PCI bus reset signal S_RST# is asserted, the 80303 I/O processor: 

• asserts the secondary PCI bus reset signal S_RST# 

• resets the SATU 

• resets DMA channel 2 

• resets all Memory Mapped Registers in the SATU and DMA2 

• latches S _ REQ64# to determine the secondary PCI bus interface width 

Upon the assertion of P _RST#, the 80303 I/O processor asserts the secondary PCI reset output 
(S_RST#). S_RST# remains asserted for the same period as P _RST#. The secondary PCI arbiter is 
connected to the S_RST#. As with the primary PCI interface, the secondary PCI interface is 
required to sample S REQ64# on the rising edge of S_RST# to determine whether the 80303 I/O 
processor is connected to a 64-bit or a 32-bit wide PCI bus. Since the secondary PCI arbiter is 
integrated into the 80303 I/O processor, the secondary arbiter is required to drive S _ REQ64# on 
the rising edge of S_RST# based on the strapping option pin 32BITPCI _ EN#. Refer to 
Chapter 17, "Intel® 80303 I/O Processor Arbitration" for additional information. 

Secondary PCI reset is also available through the Bridge Control register (BCR) in the PCI to PCI 
Bridge Unit. The secondary PCI reset unit contains sideband signals from and to the SATU and 
DMA2. These sideband signals are used to ensure a graceful completion of these units on the 
internal bus during the secondary PCI reset. 

Internal Bus Reset 

The Reset Internal Bus bit in the Extended Bridge Control Register resets the i960 core ·processor 
and all units on the internal bus. Before resetting, the DMA channels and the ATUs shall gracefully 
halt all PCI bus transactions. It is the responsibility of the software to ensure that the 12C bus is idle 
before the reset occurs. The i960 core processor mayor may not be held in reset when the Reset 
Local Bus bit is cleared by software. This depends on the default value of the Core Processor Reset 
bit in the EBCR. The Local Bus Reset does not reset the PCI to PCI Bridge Unit or its 
configuration registers. 

When the reset local bus bit in the Extended Bridge Control Register is set, there are sideband 
signals notifying the BIU. PATU, SATU, and the DMAs that a reset is coming. 

Developer's Manual 



infel· 
25.3 Reset Strapping Options 

Inte/@ 80303 110 Processor 
Clocking and Reset 

There are many initialization modes that can be selected when the processor is reset. Table 25-3 
shows the configuration modes. All of the configuration modes defined are determined on the 
rising edge of P _RST#. 

Table 25-3. Configuration Modes 

NAME DESCRIPTION 

RAD[4]/STEST 
SELF TEST enables or disables the processor's internal self-test feature at 
initialization. STEST is examined at the end of P _RST#. 

RAD[3]/RETRY 
RETRY is sampled at the end of P _RST# to determine if the Primary PCI 
interface will be disabled. 

RAD[6]/RST_MODE# 
RESET MODE is sampled at the end of P _RST# to determine if the 80303 110 
processor is to be held in reset. 

RAD[1]/32BITPCLEN# 
32-BIT Secondary PCI Enable is sampled at the end of P _RST# to notify the 
secondary PCI arbiter if the 64-bit protocol is enabled on the secondary PCI bus. 

32-BIT MemoryEnable is sampled at the end of P _RST# to notify the memory 
RAD[2]/32BITMEM_EN# controller if 32-bit wide SDRAM memories are connected to the memory 

controller. 

ONCE# ONCE MODE: is sampled during reset to stop all clocks and float all output pins 
of the i960® core processor except the TOO pin. 

Developer's Manual 25-7 





Machine-Level Instruction Formats A 

A.1 

This appendix describes the encoding format for instructions used by the Intel® i960® processors. 
Included is a description of the four instruction formats and how the addressing modes relate to 
these formats. Refer also to Appendix B, "Opcodes and Execution Times". 

General Instruction Format 

The Intel® i960® architecture defines four basic instruction encoding formats: REG, COBR, CTRL 
and MEM (Figure A-1). Each instruction uses one of these formats, which is defined by the 
instruction's opcode field. All instructions are one word long and begin on word boundaries. MEM 
format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB supports an 
optional second word to hold a displacement value. The following sections describe each format's 
instruction word fields. 

Figure A-1. Instruction Formats 

31 28 

Opcode REG 
(8 bits) 

31 28 12 8 4 

Opcode displacement COBR 
(8 bits) (11 bits) 

31 28 24 20 16 12 8 4 

Opcode displacement CTRL 
(8 bits) (22 bits) 

31 28 24 8 4 0 

Opcode Offset MEMA 
(8 bits) (12 bits) 

MODE 

31 28 24 4 0 

Opcode Index 
(8 bits) (5 bits) 

MEMB 

Optional Displacement 

A6811-01 

Developer's Manual A-1 



Inte/® 80303 110 Processor 
Machine-Level Instruction Formats 

Table A-1. Instruction Field Descriptions 

Instruction Field Description 

Opcode 
The opcode of the instruction. Opcode encodings are defined in Section 6.1.8, 
"Opcode and Instruction Format" on page 6-5. 

src1 An input to the instruction. This field specifies a value or address. In one case of 
the COBR format, this field is used to specify a register in which a result is stored. 

src2 An input to the instruction. This field specifies a value or address. 

src/dst 
Depending on the instruction, this field can be (1) an input value or address, (2) 
the register where the result is stored, or (3) both of the above. 

abase A register whose value is used in computing a memory address. 

INDEX A register whose value is used in computing a memory address. 

DISPLACEMENT A signed two's complement number. 

Offset An unsigned positive number. 

Optional Displacement A signed two's complement number used in the two-word MEMB format. 

A specification of how a memory address for an operand is computed and, for 
MODE MEMB, specifies whether the instruction contains a second word to be used as a 

displacement. 

SCALE 
A specification of how a register's contents are multiplied for certain addressing 
modes (i.e., for indexing). 

M1, M2, M3 
These fields further define the meaning of the src 1, src2, and src/dst fields 
respectively as shown in Table A-3. 

When a particular instruction is defined as not using a particular field, the field is ignored. 

A-2 Developer's Manual 



A.2 REG Format 

Intel@ 80303 I/O Processor 
Machine-Level Instruction Formats 

REG format is used for operations performed on data contained in registers. Most of the i960 
processor family's instructions use this format. 

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between 
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, bits 24 
through 31 contain 59H and bits 7 through 10 contain 1H. 

srcl and src2 fields specify the instruction's source operands. Operands can be global or local 
registers or literals. Mode bits (M1 for srcl and M2 for src2) and the instruction type determine 
what an operand specifies. Table A-3 shows this relationship. 

Table A-2. Encoding of src1 and src2 in REG Format 

M1 or M2 Src1 or Src2 Operand Register Number Literal Value 
Value 

00000 ... 01111 rO ... r15 NA 
0 

1 0000 ... 11111 gO ... g15 NA 

1 00000 ... 11111 NA 0 ... 31 

The src!dst field can specify a source operand, a destination operand or both, depending on the 
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src!dst 
operand is a global or local register that is encoded as shown in Table A-3. If M3 is set, the src!dst 
operand can be used as a source-only operand that is a literal. 

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit 
value and used as the operand. When the instruction defines an operand to be larger than 32 bits, 
values specified by literals are zero-extended to the operand size. 

Table A-3. Encoding of src/dst in REG Format 

M3 src/dst src Only dst Only 

0 gO ... g15 gO ... g15 gO ... g15 
rO ... r15 rO ... r15 rO ... r15 

1 Reserved Reserved reserved 

Developer's Manual A-3 



Intel® 80303 I/O Processor 
Machine-Level Instruction Formats 

A.3 COBR Format 

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions 
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits). 

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify 
either a global or local register or a literal as determined by mode bit MI. The src2 field can only 
specify a global or local register. Table A-4 shows the MI, src1 relationship and Table A-5 shows 
the S2, src2 relationship. 

Table A-4. Encoding of sre1 in COBR Format 

M1 src1 

o gO ... g15 
rO ... r15 

Literal 

Table A-5. Encoding of sre2 in COBR Format 

52 src2 

A.4 

A-4 

o gO ... g15 
rO ... r15 

reserved 

The displacement field contains a signed two's complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction to which 
the J'rocessor branches as a result of the comparison. The displacement field's value can range from 
_21 to 210 -1. To determine the target instruction's IP, the processor converts the displacement 
value to a byte displacement (i.e., multiplies the value by 4). It then adds the resulting byte 
displacement to the IP of the current instruction. 

CTRL Format 

The CTRL format is used for instructions that branch to a new IP, including the BRANCH<cc>, bal 
and call instructions. Note that balx, bx and calix do not use this format. ret also uses the CTRL 
format. The CTRL opcode field is eight bits (two hexadecimal digits). 

A branch target address is specified with the displacement field in the same manner as COBR 
format instructions. The displacement field specifies a word displacement as a signed, two's 
complement number in the range _221 to 221_1. The processor ignores the ret instruction's 
displacement field. 

Developer's Manual 



A.5 MEM Format 

Intel® 80303 I/O Processor 
Machine-Level Instruction Formats 

The MEM format is used for instructions that require a memory address to be computed. These 
instructions include the LOAD, STORE and Ida instructions. Also, the extended versions of the 
branch, branch-and-link and call instructions (bx, balx and calix) use this format. 

The two MEM-format encodings are MEMA and MEME. MEMB can optionally add a 32-bit 
displacement (contained in a second word) to the instruction. Bit 12 of the instruction's first word 
determines whether MEMA (clear) or MEMB (set) is used. 

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local 
register. For load instructions, srcldst specifies the destination register for a word loaded into the 
processor from memory or, for operands larger than one word, the first of successive destination 
registers. For store instructions, this field specifies the register or group of registers that contain the 
source operand to be stored in memory. 

The mode field determines the address mode used for the instruction. Table A-6 summarizes the 
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are 
described in the following sections. 

Table A-G. Addressing Modes for MEM Format Instructions 

Format MODE Addressing Mode Address Computation # of Instr 
Words 

00 Absolute Offset offset 1 
MEMA 

10 Register Indirect with Offset (abase) + offset 1 

0100 Register Indirect (abase) 1 

0101 IP with Displacement (IP) + displacement + 8 2 

0110 Reserved reserved NA 

0111 Register Indirect with Index (abase) + (index) * 2scale 1 

MEMB 1100 Absolute Displacement displacement 2 

1101 Register Indirect with 
(abase) + displacement 2 Displacement 

1110 Index with Displacement (index) * 2scale + displacement 2 

1111 Register Indirect with Index (abase) + (index) * 2scale + displacement 2 and Displacement 

NOTES: 
1. In these address computations, a field in parentheses indicates that the value in the specified register is 

used in the computation. 
2. Usage of a reserved encoding may cause generation of an OPERATION.INVALlD_OPCODE fault. 

Developer's Manual A-5 



Intel@ 80303 110 Processor 
Machine-Level Instruction Formats int'et 
A.S.l 

A.S.2 

MEMA Format Addressing 

The MEMA format provides two addressing modes: 

• Absolute offset 

• Register indirect with offset 

The ojj~'et field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global 
or local register that contains an address in memory. 

For the absolute-offset addressing mode (MODE = 00), the processor interprets the ojj~'et field as 
an offset from byte 0 of the current process address space; the abase field is ignored. Using this 
addressing mode along with the Ida instruction allows a constant in the range 0 to 4096 to be loaded 
into a register. 

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to 
the address in the abase register. Clearing the offset value creates a register indirect addressing 
mode; however, this operation can generally be carried out faster by using the MEMB version of 
this addressing mode. 

MEMB Format Addressing 

The MEMB format provides the following seven addressing modes: 

• absolute displacement 

• register indirect 

• register indirect with displacement 

• register indirect with displacement 

• register indirect with index and displacement 

• index with displacement 

• IP with displacement 

The abase and index fields specify local or global registers, the contents of which are used in 
address computation. When the index field is used in an addressing mode, the processor 
automatically scales the index register value by the amount specified in the SCALE field. 
Table A -7 gives the encoding of the scale field. The optional displacement field is contained in the 
word following the instruction word. The displacement is a 32-bit signed two's complement value. 

Table A·7. Encoding of Scale Field 

A-6 

Scale Scale Factor (Multiplier) 

000 1 

001 2 

010 4 

011 8 

100 16 

101 to 111 Reserved 

NOTE: Usage of a reserved encoding causes an unpredictable result. 

For the IP with displacement mode, the value of the displacement field plus eight is added to the 
address of the current instruction. 

Developer's Manual 



intel· 
Opcodes and Execution Times 

B.1 Instruction Reference by Opcode 

This section lists the instruction encoding for each Intel® 80303 I/O processor instruction. 
Instructions are grouped by instruction format and listed by opcode within each format. 

Table B-8. Miscellaneous Instruction Encoding Bits 

M3 M2 M1 S2 S1 T Description 

REG Format 

x x 0 x 0 - src1 is a global or local register 

x x 1 x 0 - src1 is a literal 

x x 0 x 1 - reserved 

x x 1 x 1 - reserved 

x 0 x 0 x - src2 is a global or local register 

x 1 x 0 x - src2 is a literal 

x 0 x 1 x - reserved 

x 1 x 1 x - reserved 

0 x x x x - src/dstis a global or local register 

B 

src/dst is a literal when used as a source. M3 may not be 1 when 
1 x x x x - srcldst is used as a destination only or is used both as a source and 

destination in an instruction (atmod, modify, extract, modpc). 

COBR Format 

- - 0 0 - x src1, src2 and dst are global or local registers 

- - 1 0 - x src1 is a literal, src2 and dst are global or local registers 

- - 0 1 - x reserved 

- - 1 1 - xO reserved 

Developer's Manual B-1 



Intel@ 80303 110 Processor 
Opcodes and Execution Times 

Table B·9. REG Format Instruction Encodings (Sheet 1 of 4) 

Cycles 
Opcode Opcode Mnemonic to src/dst src2 

Execute (11-4) 

[31,24) [23,19) [18,14) 

58:0 notbit 1 01011000 dst src 

58:1 and 1 0101 1000 dst src2 

58:2 andnot 1 0101 1000 dst src2 

58:3 setbit 1 01011000 dst src 

58:4 notand 1 0101 1000 dst src2 

58:6 xor 1 0101 1000 dst src2 

58:7 or 1 0101 1000 dst src2 

58:8 nor 1 0101 1000 dst src2 

58:9 xnor 1 0101 1000 dst src2 

58:A not 1 0101 1000 dst 

58:8 ornot 1 01011000 dst src2 

58:C clrbit 1 0101 1000 dst src 

58:D notor 1 0101 1000 dst src2 

58:E nand 1 01011000 dst src2 

58:F alterbit 1 0101 1000 dst src 

59:0 addo 1 0101 1001 dst src2 

59:1 addi 1 0101 1001 dst src2 

59:2 subo 1 0101 1001 dst src2 

59:3 subi 1 0101 1001 dst src2 

59:4 cmpob 1 0101 1001 src2 

59:5 cmpib 1 0101 1001 src2 

59:6 cmpos 1 01011001 src2 

59:7 cmpis 1 0101 1001 src2 

59:8 shro 1 0101 1001 dst src 

59:A shrdi 6 0101 1001 dst src 

59:8 shri 1 0101 1001 dst src 

59:C shlo 1 0101 1001 dst src 

59:D rotate 1 0101 1001 dst src 

59:E shU 1 0101 1001 dst src 

5A:0 cmpo 1 0101 1010 src2 

5A:1 cmpi 1 01011010 src2 

5A:2 concmpo 1 01011010 src2 

5A:3 concmpi 1 01011010 src2 

5A:4 cmpinco 1 0101 1010 dst src2 

1. Execution time based on function perfonned by instruction. 

8-2 

intel .. 

Opcode Special Mode src1 
(3-0) Flags 

13 12 11 [10,7) 6 5 [4,0) 

M3 M2 M1 0000 82 81 bitpos 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 bitpos 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0110 82 81 src1 

M3 M2 M1 0111 82 81 src1 

M3 M2 M1 1000 82 81 src1 

M3 M2 M1 1001 82 81 src1 

M3 M2 M1 1010 82 81 src 

M3 M2 M1 1011 82 81 src1 

M3 M2 M1 1100 82 81 bitpos 

M3 M2 M1 1101 82 81 src1 

M3 M2 M1 1110 82 81 src1 

M3 M2 M1 1111 82 81 bitpos 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0101 82 81 src1 

M3 M2 M1 0110 82 81 src1 

M3 M2 M1 0111 82 81 src1 

M3 M2 M1 1000 82 81 len 

M3 M2 M1 1010 82 81 len 

M3 M2 M1 1011 82 81 len 

M3 M2 M1 1100 82 81 len 

M3 M2 M1 1101 82 81 len 

M3 M2 M1 1110 82 81 len 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

Developer's Manual 



intel· 
Table 8-9. REG Format Instruction Encodings (Sheet 2 of 4) 

Cycles 
Opcode Opcode Mnemonic to src/dst src2 

Execute 
(11-4) 

5A:5 cmpinci 1 0101 1010 dst src2 

5A:6 cmpdeco 1 0101 1010 dst src2 

5A:7 cmpdeci 1 0101 1010 dst src2 

5A:C scan byte 1 0101 1010 src2 

5A:0 bswap 10 0101 1010 dst 

5A:E chkbit 1 0101 1010 src 

58:0 addc 1 01011011 dst src2 

58:2 subc 1 01011011 dst src2 

58:4 intdis 4 01011011 

58:5 inten 4 01011011 

5C:C mov 1 01011100 dst 

50:8 eshro 11 01011101 dst src2 

50:C movl 4 01011101 dst 

5E:C movt 5 01011110 dst 

5F:C movq 6 0101 1111 dst 

61 :0 atmod 24 01100010 dst src2 

61 :2 atadd 24 01100010 dst src2 

64:0 spanbit 6 01100100 dst 

64:1 scanbit 5 01100100 dst 

64:5 modac 10 01100100 mask src 

65:0 modify 6 01100101 src/dst src 

65:1 extract 7 01100101 src/dst len 

65:4 modtc 10 01100101 mask src 

65:5 modpc 17 01100101 src/dst mask 

65:8 intctl 12-16 01100101 dst 

65:9 sysctl 10-1001 01100101 src/dst src2 

65:8 icctl 10-1001 01100101 src/dst src2 

65:C dcctl 10-1001 01100101 src/dst src2 

65:0 halt . 01100101 

66:0 calls 30 01100110 

66:8 mark 8 01100110 

66:C fmark 8 01100110 

66:0 flush reg 15 01100110 

66:F syncf 4 01100110 

67:0 emul 7 01100111 dst src2 

1. Execution time based on function performed by instruction. 

Developer's Manual 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

Intel® 80303 110 Processor 
Opcodes and Execution Times 

Opcode Special Mode src1 
(3-0) Flags 

M2 Ml 0101 S2 Sl srcl 

M2 Ml 0110 S2 Sl srcl 

M2 Ml 0111 S2 Sl srcl 

M2 Ml 1100 S2 Sl srcl 

M2 Ml 1101 S2 Sl srcl 

M2 Ml 1110 82 81 bitpos 

M2 Ml 0000 82 81 srcl 

M2 Ml 0010 82 81 srcl 

M2 Ml 0100 S2 81 

M2 Ml 0101 82 81 

M2 Ml 1100 82 81 src 

M2 Ml 1000 82 81 srcl 

M2 Ml 1100 82 81 src 

M2 Ml 1100 82 81 src 

M2 Ml 1100 82 81 src 

M2 Ml 0000 S2 81 srcl 

M2 Ml 0010 82 81 srcl 

M2 Ml 0000 82 81 src 

M2 Ml 0001 82 81 src 

M2 Ml 0101 82 81 dst 

M2 M1 0000 82 81 mask 

M2 Ml 0001 82 81 bitpos 

M2 Ml 0100 82 81 dst 

M2 Ml 0101 82 81 src 

M2 Ml 1000 82 81 srcl 

M2 Ml 1001 S2 81 srcl 

M2 Ml 1011 82 81 srcl 

M2 Ml 1100 82 81 srcl 

M2 Ml 1101 82 81 srcl 

M2 Ml 0000 82 81 src 

M2 Ml 1011 82 81 

M2 Ml 1100 82 81 

M2 Ml 1101 82 81 

M2 Ml 1111 82 81 

M2 Ml 0000 S2 Sl srcl 

8-3 



Inte/@ 80303 110 Processor 
Opcodes and Execution Times 

Table 8-9. REG Format Instruction Encodings (Sheet 3 of 4) 

Cycles Opcode Opcode Mnemonic to (11-4) src/dst src2 
Execute 

67:1 ediv 40 0110 0111 dst src2 

70:1 mulo 2-4 01110000 dst src2 

70:8 remo 40 01110000 dst src2 

70:8 divo 40 01110000 dst src2 

74:1 muli 2-4 01110100 dst src2 

74:8 remi 40 01110100 dst src2 

74:9 modi 40 01110100 dst src2 

74:8 divi 40 01110100 dst src2 

78:0 addono 1 01111000 dst src2 

78:1 addino 1 0111 1000 dst src2 

78:2 subono 1 01111000 dst src2 

78:3 subino 1 01111000 dst src2 

78:4 selno 1 0111 1000 dst src2 

79:0 addog 1 01111001 dst src2 

79:1 addig 1 01111001 dst src2 

79:2 subog 1 01111001 dst src2 

79:3 subig 1 0111 1001 dst src2 

79:4 selg 1 01111001 dst src2 

7A:0 addoe 1 0111 1010 dst src2 

7A:1 addie 1 0111 1010 dst src2 

7A:2 suboe 1 0111 1010 dst src2 

7A:3 subie 1 01111010 dst src2 

7A:4 sele 1 0111 1010 dst src2 

78:0 addoge 1 0111 1011 dst src2 

78:1 addige 1 01111011 dst src2 

78:2 suboge 1 01111011 dst src2 

78:3 subige 1 01111011 dst src2 

78:4 selge 1 0111 1011 dst src2 

7C:0 addol 1 01111100 dst src2 

7C:1 addil 1 0111 1100 dst src2 

7C:2 subol 1 0111 1100 dst src2 

7C:3 subil 1 0111 1100 dst src2 

7C:4 sell 1 0111 1100 dst src2 

70:0 addone 1 0111 1101 dst src2 

70:1 addine 1 0111 1101 dst src2 

1. Execution time based on function performed by instruction. 

8-4 

int'et 

Opcode Special Mode (3-0) Flags src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 1000 82 81 src1 

M3 M2 M1 1011 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 Ml 1000 82 81 src1 

M3 M2 M1 1001 82 81 src1 

M3 M2 M1 1011 82 81 src1 

M3 M2 M1 0000 82 81 srcl 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

M3 M2 M1 0010 82 81 src1 

M3 M2 M1 0011 82 81 src1 

M3 M2 M1 0100 82 81 src1 

M3 M2 M1 0000 82 81 src1 

M3 M2 M1 0001 82 81 src1 

Developer's Manual 



int:et 
Table 8-9. REG Format Instruction Encodings (Sheet 4 of 4) 

Cycles 
Opcode Opcode Mnemonic to (11-4) src/dst src2 

Execute 

70:2 subone 1 01111101 ds! src2 

70:3 subine 1 0111 1101 ds! src2 

70:4 seine 1 0111 1101 ds! src2 

7E:0 addole 1 0111 1110 ds! src2 

7E:1 addile 1 01111110 ds! src2 

7E:2 subole 1 0111 1110 ds! src2 

7E:3 subile 1 0111 1110 ds! src2 

7E:4 selle 1 0111 1110 ds! src2 

7F:0 addoo 1 01111111 ds! src2 

7F:1 addio 1 01111111 ds! src2 

7F:2 suboo 1 01111111 ds! src2 

7F:3 subio 1 01111111 ds! src2 

7F:4 sello 1 0111 1111 ds! src2 

I. Execution time based on function perfonned by instruction. 

Developer's Manual 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

M3 

Inte/@ 80303 liD Processor 
Opcodes and Execution Times 

Opcode Special Mode (3-0) Flags src1 

M2 M1 0010 S2 S1 src1 

M2 M1 0011 S2 S1 src1 

M2 M1 0100 S2 S1 src1 

M2 M1 0000 S2 S1 src1 

M2 M1 0001 S2 S1 src1 

M2 M1 0010 S2 S1 src1 

M2 M1 0011 S2 S1 src1 

M2 M1 0100 S2 S1 src1 

M2 M1 0000 S2 S1 src1 

M2 M1 0001 S2 S1 src1 

M2 M1 0010 S2 S1 src1 

M2 M1 0011 S2 S1 src1 

M2 M1 0100 S2 S1 src1 

8-5 



Intel® 80303 110 Processor 
Opcodes and Execution Times 

Table 8-10. C08R Format Instruction Encodings 

Cycles 
Opcode Mnemonic to Opcode 

Execute 

[31,24] 

20 testno 4 00100000 

21 testg 4 00100001 

22 teste 4 00100010 

23 testge 4 00100011 

24 testl 4 00100100 

25 testne 4 00100101 

26 testle 4 00100110 

27 teste 4 00100111 

30 bbc 2 + l' 0011 0000 

31 cmpobg 2+1 0011 0001 

32 cmpobe 2+1 0011 0010 

33 cmpobge 2+1 0011 0011 

34 cmpobl 2+1 0011 0100 

35 cmpobne 2+1 0011 0101 

36 cmpoble 2+1 00110110 

37 bbs 2 + 1 0011 0111 

38 cmpibno 2+1 0011 1000 

39 cmpibg 2 + 1 0011 1001 

3A cmpibe 2 + 1 0011 1010 

38 cmpibge 2+1 0011 1011 

3C cmpibl 2+1 0011 1100 

3D cmpibne 2+1 0011 1101 

3E cmplble 2+1 0011 1110 

3F cmpibo 2+1 00111111 

src1 src2 M Displacement T 52 

[23,19] [18,14] 13 [12,2] 1 0 

dst M1 T 82 

dst M1 T 82 

dst M1 T 82 

dst M1 T 82 

dst M1 T 82 

dst M1 T S2 

dst M1 T 82 

dst M1 T S2 

bitpos src M1 targ T 82 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T S2 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T S2 

bitpos src M1 targ T 82 

src1 src2 M1 targ T S2 

src1 src2 M1 targ T S2 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T S2 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T 82 

src1 src2 M1 targ T S2 

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the T A get 
instruction when the branch is taken. 

8-6 Developer's Manual 



intet .. 
Table B·ll. CTRL Format Instruction Encodings 

Opcode Mnemonic Cycles to Execute 

08 b 1 + 11 

09 call 7 

OA ret 6 

OB bal 1 + 1 

10 bno 1 + 1 

11 bg 1 + 1 

12 be 1 + 1 

13 bge 1 + 1 

14 bl 1 + 1 

15 bne 1 + 1 

16 ble 1 + 1 

17 bo 1 + 1 

18 faultno 13 

19 faultg 13 

1A faulte 13 

1B faultge 13 

1C faultl 13 

1D faultne 13 

1E faultle 13 

1F faulto 13 

Intel@ 80303 I/O Processor 
Opcodes and Execution Times 

Opcode Displacement T 0 

[31,24) [23,2) 1 0 

00001000 targ T 0 

00001001 targ T 0 

00001010 T 0 

00001011 targ T 0 

00010000 targ T 0 

00010001 targ T 0 

00010010 targ T 0 

0001 0011 targ T 0 

0001 0100 targ T 0 

0001 0101 targ T 0 

00010110 targ T 0 

00010111 targ T 0 

00011000 T 0 

0001 1001 T 0 

00011010 T 0 

0001 1011 T 0 

0001 1100 T 0 

0001 1101 T 0 

0001 1110 T 0 

0001 1111 T 0 

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the target 
instruction when the branch is taken. 

Table B·12. Cycle Counts for sysctl Operations 

Operation Cycles to Execute 

Post Interrupt 20 

Purge I-cache 19 

Enable I-cache 20 

Disable I-cache 22 

Software Reset 329+bus 

Load Control Register Group 26 

Request Breakpoint Resource 21-22 

Developer's Manual 8-7 



Intel@ 80303 110 Processor 
Opcodes and Execution Times 

Table 8-13. Cycle Counts for ieetl Operations 

Operation 

Disable I-cache 

Enable I-cache 

Invalidate I-cache 

Load and Lock I-cache 

I-cache Status Request 

I-cache Locking Status 

Table 8-14. Cycle Counts for dectl Operations 

Operations 

Disable D-cache 

Enable D-cache 

Invalidate D-cache 

Load and Lock D-cache 

D-cache Status Request 

Quick Invalidate D-cache 

Table 8-15. Cycle Counts for intetl Operations 

Operation 

Disable Interrupts 

Enable Interrupts 

Interrupt Status Request 

8-8 

in1:et 

Cycles to Execute 

18 

16 

18 

5193 

21 

20 

Cycles to Execute 

18 

18 

19 

19 

16 

14 

Cycles to Execute 

13 

13 

8 

Developer's Manual 



in1:et 
Table 8-16. MEM Format Instruction Encodings 

[31 :24] [23:19] [18:14] 

Opcode src/dst ABASE 

[31 :24] [23:19] [18:14] 

Opcode src/dst ABASE 

Effective Address 

efa = offset Opcode dst 

offset( reg) Opcode dst reg 

(reg) .Opcode dst reg 

disp + 8 (IP) Opcode dst 

(reg1)[reg2' scale] Opcode dst reg1 

disp Opcode dst 

disp{reg) Opcode dst reg 

disp[reg * scale] Opcode I dst I 

disp( reg 1) [reg2* scale] Opcode I dst I reg1 

Opcode Mnemonic Cycles to 
Execute 

80 Idob 

82 stob 

84 bx 4-7 

85 balx 5-8 

86 calix 9-12 

88 Idos 

8A stos 

8C Ida 

90 Id 

92 st 

98 Idl 

Intel® 80303 I/O Processor 
Opcodes and Execution Times 

[13:12] [11 :0] 

Mode Offset 

[13:10] [9:7] [6:5] [4:0] 

Mode Scale 00 Index 

Displacement 

0 I 0 I offset 

I 1 I 0 I offset 

I 0 I 1 0 I 0 I 00 

I 0 I 1 0 I 1 I 00 

Displacement 

0 I 1 I 1 I 1 scale 00 reg2 

I 1 I 1 0 I 0 I 00 

Displacement 

I 1 I 1 I 0 I 1 00 

Displacement 

I 1 I 1 I 1 I 0 I scale I 00 I reg 

Displacement 

I 1 I 1 I 1 I 1 I scale I 00 I reg2 

Displacement 

Opcode Mnemonic Cycles to 
Execute 

9A stl 

AO Idt 

A2 stt 

BO Idq 

B2 stq 

CO Idib 

C2 stib 

C8 Idis 

CA stis 

1. The number of cycles required to execute these instructions is based on the addressing mode used (see 
Table B-10). 

Developer's Manual 8-9 



Intel® 80303 /10 Processor 
Opcodes and Execution Times 

Table 8-17. Addressing Mode Performance 

Mode 

Absolute Offset 

Absolute Displacement 

Register Indirect 

Register Indirect with Offset 

Register Indirect with 
Displacement 

Index with Displacement 

Register Indirect with Index 

Register Indirect with Index + 
Displacement 

Instruction Pointer with 
Displacement 

8-10 

Assembler Syntax 

exp 

exp 

(reg) 

exp(reg) 

exp(reg) 

exp[reg*scale] 

(reg)[reg*scale] 

exp(reg)[reg*scale] 

exp(IP) 

in1:et 

Memory 
Number of 

Cycles to Instruction 
Format 

Words 
Execute 

MEMA 1 1 

MEMB 2 2 

MEMB 1 1 

MEMA 1 1 

MEMB 2 2 

MEMB 2 2 

MEMB 1 6 

MEMB 2 6 

MEMB 2 6 

Developer's Manual 



Intel® 80303 110 Processor 
Peripheral Memory-Mapped Registers 

Peripheral Memory-Mapped Registers C 

C.1 

This chapter describes the memory-mapped registers for the integrated peripherals. 

Overview 

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and 
modify internal control registers. Each of these registers is accessed as a memory-mapped 32-bit 
register with a unique memory address. Access is accomplished through regular memory-format 
instructions from the Intel® i960® core processor. 

These memory-mapped registers are specific to the Intel® 80303 I/O processor only. They support 
the: 

• DMA Controller Unit • PCI-to-PCI Bridge Unit 

• Memory Controller • PCI Address Translation Unit 

• I2C Bus Interface Unit • Performance Monitoring Unit 

• PCI and Peripheral Interrupt Controller Unit • Application Accelerator Unit 

• Messaging Unit • General Purpose Input Output (GPIO) 

• Intel® 80303 I/O Processor Arbitration • 

Each of these peripherals fully describe the independent functionality of the registers, control and 
usage. 

Portions of the 80303 I/O Processor address space are already reserved by the i960 core processor. 
Addresses 0000 OOOOH through 0000 03FFH are reserved for the processor internal data RAM. 
This memory is dedicated to the i960 core processor only and is inaccessible from internal bus 
masters. Addresses FFOO OOOOH through FFFF FFFFH are reserved for the processor specific 
memory-mapped registers. Accesses to this address space do not generate external bus cycles. 

The PMMR interface provides full accessibility from the Primary ATU, Secondary ATU, and the 
i960 core processor. Addresses 0000 1000H through 0000 17FFH are allocated to the PMMR 
interface. 

Developer's Manual C-1 



Intef® 80303 110 Processor in1'el. Peripheral Memory-Mapped Registers 

C.2 

C-2 

Accessing the Peripheral Memory-Mapped 
Registers 

The PMMR interface is a slave device connected to the 80303 I/O Processor internal bus. This 
interface accepts data transactions which appear on the internal bus from the Primary ATU, 
Secondary ATU, and the i960 core processor. 

The PMMR interface allows these devices to perform read, write, or read-modify-write 
transactions. The specific actions taken when modifying any value in the PMMR space is 
independently defined within each chapter which describes the functionality of the register. 

Note: The PMMR interface does not support multi-word burst accesses from any internal bus master. 

All PMMR transactions shall be allowed from the i960 core processor operating in either user 
mode or supervisor mode. In addition, the PMMR shall not provide any access fault to the i960 
core processor. 

The following PMMR registers have read/write access from the internal bus (for both the PCI 
Bridge and ATU): 

• Vendor ID Register • Header Type Register 

• Device ID Register • Subsystem ID Register (ATU Only) 

• Revision ID Register • Subsystem Vendor ID Register (ATU Only) 

• Class Code Register 

For accesses through PCI configuration cycles, access is specified in the register definition located 
in the appropriate chapter. 

For PCI Configuration Read transactions, the PMMR shall return a value of zero for registers 
declared as "reserved". For PCI Configuration Write transactions, the PMMR shall discard the 
data. For all other types of access, reading or writing a register declared as "reserved" is undefined. 

Developer's Manual 



C.3 

Inte/@ 80303 I/O Processor 
Peripheral Memory-Mapped Registers 

Architecturally Reserved Memory Space 

The 80303 I/O Processor provides 4 Gbytes of address space. Portions of this address space is 
architecturally reserved and refrained from use by the customers. Figure C-2 shows the reserved 
address space. 

Addresses FFOO OOOOH through FFFF FFFFH are reserved for implementation-specific functions. 
This address range is termed "reserved" for future Intel® 80960 architecture implementations. 
Future 80960 architecture implementations may use these addresses for special functions such as 
mapped registers or data structures. Therefore, to ensure complete object level compatibility, 
portable code must not access or depend on values in this region. 

Addresses 0000 OOOOH through 0000 03FFH are reserved for the internal data RAM of the i960 
core processor. This internal data RAM contains interrupt vectors plus RAM available to the 
application software for variable allocation or data structures. Loads and stores directed to these 
addresses access internal memory; instruction fetches from these addresses are not allowed for the 
80303 I/O Processor. 

Addresses 0000 0400H through 0000 IFFFH are reserved for 80303 I/O Processor use and should 
not be used by the system designer. 

Addresses 0000 lOOOH through 0000 18FFH are allocated to the PMMR interface. These registers 
are reserved for 80303 I/O Processor use and should not be written by the system designer. 

Developer's Manual C-3 



Intel® 80303 I/O Processor 
Peripheral Memory-Mapped Registers intel .. 

Figure C-2 shows the 80303 address space and addresses available to the applications. 

Figure C-2. Intel® 803031/0 Processor Address Space 

C-4 

ADDRESS 
OOOOOOOOH 

000003FFH 
00000400H 

000007FFH 
00001000H 

0000 18FFH 
0000 1900H 

00001FFFH 
00002000H 

FEFF FF2FH 
FEFF FF30H 

FEFF FF5FH 
FEFF FF60H 

FEFF FFFFH 
FFOO OOOOH 

FFFF FFFFH 

I 

Code/Data 
Architecturally Defined Data Structures 

External Memory 

ATU Outbound Translation Windows 

Reserved 
Address 
Space 

Developer's Manual 



in1et 
C.4 

Intef@ 80303 110 Processor 
Peripheral Memory-Mapped Registers 

Peripheral Memory-Mapped Register Address 
Space 

The PMMR address space is divided to support the integrated peripherals on the 80303 I/O 
Processor. Table C-18 shows all of the 80303 I/O Processor integrated peripheral memory -mapped 
registers and their internal bus addresses. 

Table C-1B. Intel® B0960 Local Addresses Assigned to Integrated Peripherals 

Integrated Peripheral Internal Address Block 

PCI to PCI Bridge Unit 0000 1 OOOH through 0000 10FFH 

Performance Monitoring Unit 0000 11 DOH through 0000 11 FFH 

Address Translation Unit 0000 1200H through 0000 12FFH 

Messaging Unit 0000 1300H through 0000 13FFH 

DMA Controller 0000 1400H through 0000 14FFH 

Memory Controller 0000 1500H through 0000 15FFH 

Internal Arbitration Unit 0000 1600H through 0000 163FH 

Bus Interface Unit 0000 1640H through 0000 167FH 

12C Bus Interface Unit 0000 1680H through 0000 16FFH 

PCI And Peripheral Interrupt Controller 0000 1700H through 0000 17FFH 

Application Accelerator Unit 0000 1800H through 0000 18FFH 

The registers accessible via PCl configuration transactions are: 

• PCl-to-PCI Bridge Unit 

• Address Translation Units 

The registers which must have the address translation logic configured to translate PCI addresses 
into the 80960 address space, to access the memory-mapped registers are: 

• DMA Controllers 

• Bus Interface Unit 

• Memory Controller 

• 12C Bus Interface Unit 

• Messaging Unit 

• Application Accelerator Unit 

• Internal Arbitration Unit 

• Performance Monitoring 

• PCI and Peripheral Interrupt Controller 

Developer's Manual C-5 



Inte!@ 80303 110 Processor 
Peripheral Memory-Mapped Registers in1:et 
Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 1 of 8) 

Intel@ 80303 Register PCI 

I/O Processor Register Description (Name) Size in 
Internal Bus Configuration 

Peripheral Bits Address Space Register 
Number 

Vendor ID Register 16 00001000H DOH 

Device ID Register 16 00001002H DOH 

Primary Command Register 16 00001004H 01H 

Primary Status Register 16 00001006H 01H 

Revision ID Register 8 0000 1008H 02H 

Class Code Register 24 00001009H 02H 

Cacheline Size Register 8 0000100CH 03H 

Primary Latency Timer Register 8 0000 100DH 03H 

Header Type Register 8 0000100EH 03H 

0000100FH 04H 
Reserved x through through 

0000 1017H 05H 

Primary Bus Number Register 8 0000 1018H 06H 

Secondary Bus Number Register 8 00001019H 06H 

Subordinate Bus Number Register 8 0000101AH 06H 

Secondary Latency Timer Register 8 0000101BH 06H 

I/O Base Register 8 0000101CH 07H 

I/O Limit Register 8 0000101 DH 07H 
c 

Secondary Status Register 16 0000101EH 07H ::J 
(J) 

Memory Base Register 16 08H 0> 00001020H 
"0 

~ Memory Limit Register 16 0000 1022H 08H 
0 Prefetchable Memory Base Register 16 00001024H 09H Il.. 

.9 Prefetchable Memory Limit Register 16 00001026H 09H 
0 00001028H OAH Il.. 

Reserved x through through 
0000 1033H OCH 

Capabilities Pointer Register 8 0000 1034H ODH 

0000 1035H ODH 
Reserved x through through 

0000103DH OFH 

Bridge Control Register 16 0000 103EH OFH 

Extended Bridge Control Register 16 0000 1040H 10H 

Secondary IDSEL Control Register 16 00001042H 10H 

Primary Bridge Interrupt Status Register 32 0000 1044H 11 H 

Secondary Bridge Interrupt Status Register 32 00001048H 12H 

Secondary Arbitration Control Register 32 0000104CH 13H 

PCI Interrupt Routing Select Register 32 0000 1050H 14H 

Secondary I/O Base Register 8 0000 1054H 15H 

Secondary I/O Limit Register 8 0000 1055H 15H 

Reserved x 0000 1056H 15H 

Secondary Memory Base Register 16 0000 1058H 16H 

Secondary Memory Limit Register 16 0000 105AH 16H 

Secondary Decode Enable Register 16 0000 105CH 17H 

C-6 Developer's Manual 



intel· 
Intel® 80303 liD Processor 

Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 2 of 8) 

Intel@ 80303 Register PCI 
Internal Bus Configuration 

I/O Processor Register Description (Name) Size in 
Address Space Register 

Peripheral Bits 
Number 

Queue Control 16 0000105EH 17H 

Reserved 32 00001060H 18H 

Reserved 32 00001064H 19H 

Capability Identifier Register 8 00001068H 1AH 

Next Item Pointer Register 8 00001069H 1AH 

Power Management Capabilities Register 16 0000106AH 1AH 

Power Management Control/Status Register 16 0000106CH 1BH 

PMCSR PCI to PCI Bridge Support 8 0000106EH 1BH 

0000106FH 
Reserved x through 

000010FFH 

Global Timer Mode Register 32 0000 1100H 
If) 

Event Select Register 32 0000 1104H 
If) 
<D 
-0 

Event Monitoring Interrupt Status Register 32 0000 1108H "0 « 
Reserved x 0000 110CH "0 

<D a. 
Global Time Stamp Register 32 0000 1110H a. co 

Programmable Event Counter Register 1 32 0000 1114H 
2 
>. 

Programmable Event Counter Register 2 32 0000 1118H a 
E 

"c <D 

::J Programmable Event Counter Register 3 32 0000 111CH 2 
0> 0 

Programmable Event Counter Register 4 32 0000 1120H (0 c (j) 
"C 0 
.8 Programmable Event Counter Register 5 32 0000 1124H <Xl 
"c @ 
0 Programmable Event Counter Register 6 32 0000 1128H Qi 
2 E <D Programmable Event Counter Register 7 32 0000 112CH u <D 
C £; co Programmable Event Counter Register 8 32 0000 1130H E .8 a Programmable Event Counter Register 9 32 0000 1134H If) 

't: If) 

<D ~ a.. Programmable Event Counter Register 10 32 0000 1138H "0 
"0 

Programmable Event Counter Register 11 32 0000 113CH co 
0 

Programmable Event Counter Register 12 32 0000 1140H a.. 
<D 

Programmable Event Counter Register 13 32 0000 1144H iii 
Ui 

Programmable Event Counter Register 14 32 0000 1148H c co 

0000 114CH 
~ 
Cii 

Reserved x through ::J 

000011 FFH 2 

Developer's Manual C-7 



fnte/® 80303 110 Processor 
Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 3 of 8) 

Intel@ 80303 Register 
Internal Bus 

110 Processor Register Description (Name) Size in 
Address 

Peripheral Bits 

ATU Vendor ID Register 16 0000 1200H 

ATU Device ID Register 16 0000 1202H 

Primary ATU Command Register 16 0000 1204H 

Primary ATU Status Register 16 0000 1206H 

ATU Revision ID Register 8 0000 1208H 

ATU Class Code Register 24 0000 1209H 

ATU Cacheline Size Register 8 0000 120CH 

ATU Latency Timer Register 8 0000 120DH 

ATU Header Type Register 8 0000 120EH 

BIST Register 8 0000 120FH 

·c Primary Inbound ATU Base Address Register 32 0000 1210H 
=> 
c Reserved 32 0000 1214H 
0 
.~ Reserved 32 0000 1218H 
(jj 
c Reserved 32 0000 121CH ro 
t= Reserved 32 0000 1220H 
<JJ 
<JJ 

Reserved 32 0000 1224H ~ 
"0 
"0 Reserved 32 0000 1228H <C 

ATU Subsystem Vendor ID Register 16 0000 122CH 

ATU Subsystem ID Register 16 0000 122EH 

Expansion ROM Base Address Register 32 0000 1230H 

ATU Capabilities Pointer Register 8 0000 1234H 

Reserved 24 0000 1235H 

Reserved 32 0000 1238H 

ATU Interrupt Line Register 8 0000 123CH 

ATU Interrupt Pin Register 8 0000 123DH 

ATU Minimum Grant Register 8 0000 123EH 

ATU Maximum Latency Register 8 0000 123FH 

C-8 

PCI 
Configuration 

Space Register 
Number 

DOH 

OOH 

01H 

01H 

02H 

02H 

03H 

03H 

03H 

03H 

04H 

05H 

06H 

07H 

08H 

09H 

OAH 

OBH 

OBH 

OCH 

ODH 

ODH 

OEH 

OFH 

OFH 

OFH 

OFH 

Developer's Manual 



intel· 
Intel® 80303 liD Processor 

Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 4 of 8) 

Intel® 80303 Register PCI 

I/O Processor Register Description (Name) Size in 
Internal Bus Configuration 

Peripheral Bits Address Space Register 
Number 

Primary Inbound ATU Limit Register 32 0000 1240H 10H 

Primary Inbound ATU Translate Value Register 32 0000 1244H 11 H 

Secondary Inbound ATU Base Address Register 32 0000 1248H 12H 

Secondary Inbound ATU Limit Register 32 0000 124CH 13H 

Secondary Inbound ATU Translate Value Register 32 0000 1250H 14H 

Primary Outbound Memory Window Value Register 32 0000 1254H 15H 

Reserved 32 0000 1258H 16H 

Primary Outbound I/O Window Value Register 32 0000 125C 17H 

Primary Outbound DAC Window Value Register 32 0000 1260H 18H 

Primary Outbound Upper 64-bit DAC Register 32 0000 1264H 19H 

UJ Secondary Outbound Memory Window Value Register 32 0000 1268H 1AH 
CD 

Secondary Outbound I/O Window Value Register 32 0000 126CH 1BH (jj 
00, 

Reserved 32 0000 1270H 1CH ill 
a: 
c Expansion ROM Limit Register 32 0000 1274H 1DH 0 

~ Expansion ROM Translate Value Register 32 0000 1278H 1EH :s 
02' Reserved 32 0000 127CH 1FH 
'E 
0 ATU Capability Identifier Register 8 0000 1280H 20H 0 
"0 ATU Next Item Pointer Register 8 0000 1281H 20H ill 
"0 c ATU Power Management Capabilities Register 16 0000 1282H 20H $ 
x 

ATU Power Management Control/Status Register 16 0000 1284H 21H LlJ -°c Reserved 16 0000 1286H 21H ::J 
c ATU Configuration Register 32 0000 1288H 22H oQ 
rn Reserved 32 0000 128CH 23H Cii 
c 
ro Primary ATU Interrupt Status Register 32 0000 1290H 24H 
t= 
UJ Secondary ATU Interrupt Status Register 32 0000 1294H 25H UJ 
ill 

Secondary ATU Command Register -0 16 0000 1298H 26H 
"0 « Secondary ATU Status Register 16 0000 129AH 26H 

Secondary Outbound DAC Window Value Register 32 0000 129CH 27H 

Secondary Outbound Upper 64-bit DAC Register 32 0000 12AOH 28H 

Primary Outbound Configuration Cycle Address Register 32 0000 12A4H 29H 

Secondary Outbound Configuration Cycle Address Register 32 0000 12A8H 2AH 

Primary Outbound Configuration Cycle Data Register 32 0000 12ACH Reserved 

Secondary Outbound Configuration Cycle Data Register 32 0000 12BOH Reserved 

Primary ATU Queue Control Register 32 0000 12B4H 2DH 

Secondary ATU Queue Control Register 32 0000 12B8H 2EH 

Primary ATU Interrupt Mask Register 32 0000 12BCH 2FH 

Secondary ATU Interrupt Mask Register 32 0000 12COH 30H 

0000 12C4H 
Reserved x through 

0000 12FFH 

Developer's Manual C-9 



Intel® 80303 liD Processor 
Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 5 of 8) 

Intel® 80303 
1/0 Processor 

Peripheral 

C-10 

Register Description (Name) 

Reserved 

Inbound Message Register a 
Inbound Message Register 1 

Outbound Message Register a 
Outbound Message Register 1 

Inbound Doorbell Register 

Inbound Interrupt Status Register 

Inbound Interrupt Mask Register 

Outbound Doorbell Register 

Outbound Interrupt Status Register 

Outbound Interrupt Mask Register 

Reserved 

MU Configuration Register 

Queue Base Address Register 

Reserved 

Reserved 

Inbound Free Head Pointer Register 

Inbound Free Tail Pointer Register 

Inbound Post Head Pointer Register 

Inbound Post Tail Pointer Register 

Outbound Free Head Pointer Register 

Outbound Free Tail Pointer Register 

Outbound Post Head Pointer Register 

Outbound Post Tail Pointer Register 

Index Address Register 

Reserved 

Register 
Size in 

Bits 

x 

32 

32 

32 

32 

32 

32 

32 

32 

32 

32 

x 

32 

32 

32 

32 

32 

32 

32 

32 

32 

32 

32 

32 

32 

x 

Internal Bus 
Address 

0000 1300H 
through 

0000 130CH 

0000 1310H 

0000 1314H 

0000 1318H 

0000 131CH 

0000 1320H 

0000 1324H 

0000 1328H 

0000 132CH 

0000 1330H 

0000 1334H 

0000 1338H 
through 

0000 134FH 

0000 1350H 

0000 1354H 

0000 1358H 

0000 135CH 

0000 1360H 

0000 1364H 

0000 1368H 

0000 136CH 

0000 1370H 

0000 1374H 

0000 1378H 

0000 137CH 

0000 1380H 

0000 1384H 
through 

0000 13FFH 

PCI 
Configuration 

Space Register 
Number 

Developer's Manual 



intel· 
Intel® 80303 liD Processor 

Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 6 of 8) 

Intel® 80303 Register 
PCI 

Internal Bus Configuration 
110 Processor Register Description (Name) Size in 

Address Space Register 
Peripheral Bits Number 

Channel a Channel Control Register 32 0000 1400H 

Channel a Channel Status Register 32 0000 1404H 

Reserved 32 0000 1408H 

Channel a Descriptor Address Register 32 0000 140CH 

Channel a Next Descriptor Address Register 32 0000 1410H 

Channel a PCI Address Register 32 0000 1414H 

Channel a PCI Upper Address Register 32 0000 1418H 

Channel a Internal Bus Address Register 32 0000 141CH 

Channel a Byte Count Register 32 0000 1420H 

Channel a Descriptor Control Register 32 0000 1424H en en 
0000 1428H 

OJ 
-0 

Reserved x through -0 
<t: 

0000 143FH -0 
OJ 

Channel 1 Channel Control Register 32 0000 1440H c. c. 
co 

Channel 1 Channel Status Register 32 0000 1444H ~ 
Reserved 32 0000 1448H ~ 

0 
E 

Channel 1 Descriptor Address Register 32 0000 144CH OJ 
~ 

~ Channel 1 Next Descriptor Address Register 32 0000 1450H 0 
<0 e Channel 1 PCI Address Register 32 0000 1454H 
en 
0 

C <Xl 
0 

Channel 1 PCI Upper Address Register 32 0000 1458H OJ 
0 -£ 
<t: Channel 1 Internal Bus Address Register 32 0000 145CH .8 ~ 
0 en 

Channel 1 Byte Count Register 32 0000 1460H en 
~ 

Channel 1 Descriptor Control Register 32 0000 1464H 
-0 
-0 co 

0000 1468H -
0 

Reserved x through 0.. 

0000 147FH * Channel 2 Channel Control Register 32 0000 1480H 
Ui 
c 
~ 

Channel 2 Channel Status Register 32 0000 1484H I-
(jj 

Reserved 32 0000 1488H :J 
~ 

Channel 2 Descriptor Address Register 32 0000 148CH 

Channel 2 Next Descriptor Address Register 32 0000 1490H 

Channel 2 PCI Address Register 32 0000 1494H 

Channel 2 PCI Upper Address Register 32 0000 1498H 

Channel 2 Internal Bus Address Register 32 0000 149CH 

Channel 2 Byte Count Register 32 0000 14AOH 

Channel 2 Descriptor Control Register 32 0000 14A4H 

0000 14A8H 
Reserved x through 

0000 14FFH 

Developer's Manual C-11 



Intel® 80303 110 Processor 
Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 7 of 8) 

Intel® 80303 Register 
1/0 Processor Register Description (Name) Size in 

Internal Bus 

Peripheral Bits Address 

SDRAM Initialization Register 32 0000 1500H 

SDRAM Control Register 32 0000 1504H 

SDRAM Base Register 32 0000 1508H 

SDRAM Bank 0 Size Register 32 0000 150CH 

SDRAM Bank 1 Size Register 32 0000 1510H 

Reserved 32 0000 1514H 

Reserved 32 0000 1518H 

Reserved 32 0000 151CH 

Reserved 32 0000 1520H 

Reserved 32 0000 1524H 

Reserved 32 0000 1528H 

Reserved 32 0000 152CH 

~ Reserved 32 0000 1530H 
e ECC Control Register 32 0000 1534H C 
0 ECC Log 0 Register 32 0000 1538H () 

~ ECC Log 1 Register 32 0000 153CH 0 
E 
cD ECC Address 0 Register 32 0000 1540H 

::2: 
ECC Address 1 Register 32 0000 1544H 

ECC Test Register 32 0000 1548H 

Flash Base 0 Register 32 0000 154CH 

Flash Base 1 Register 32 0000 1550H 

Flash Bank 0 Size Register 32 0000 1554H 

Flash Bank 1 Size Register 32 0000 1558H 

Flash Wait State 0 Register 32 0000 155CH 

Flash Wait State 1 Register 32 0000 1560H 

Memory Controller Interrupt Status Register 32 0000 1564H 

Refresh Frequency Register 32 0000 1568H 

0000 156CH 
Reserved x through 

0000 15FFH 

Internal Arbitration Control Register 32 0000 1600H 

Master Latency Timer Register 32 0000 1604H 
Internal Multi-Transaction Timer Register 32 0000 1608H 

Arbitration Unit 
0000 160CH 

Reserved x through 
0000 163FH 

BIU Control Register 32 0000 1640H 

Bus Interface BIU Interrupt Status Register 32 0000 1644H 

Unit 0000 1648H 
Reserved x through 

0000 167FH 

C-12 

intel. 

PCI 
Configuration 

Space Register 
Number 

(f) 
(f) 
cD 
-t; 
"0 
<!: 
"0 
cD 
a. a. 
C\l 

!i= 
~ 
0 
E 
cD 

::2: 
a 
<0 
OJ a 
CXl 
cD 
:5 
.9 
(f) 
(f) 
cD 
-t; 
"0 
C\l 

0 
Cl.. 
cD 
iii 
Ui 
c 
C\l 

~ 
Ui 
::J 

::2: 

Must Translate 
PCI address to the 

80960 
Memory-mapped 

Address 

Must Translate 
PCI address to the 

80960 
Memory-mapped 

Address 

Developer's Manual 



Intel® 80303 liD Processor 
Peripheral Memory-Mapped Registers 

Table C-19. Peripheral Memory-Mapped Register Locations (Sheet 8 of 8) 

Intel@ 80303 Register PCI 
Internal Bus Configuration 

1/0 Processor Register Description (Name) Size in 
Address Space Register Peripheral Bits 

Number 

12C Control Register 32 0000 1680H 

12C Status Register 32 0000 1684H 

12C Slave Address Register 32 0000 1688H Must Translate 

12C Bus 
12C Data Buffer Register 32 0000 168CH PCI address to the 

Interface Unit 12C Clock Control Register 32 0000 1690H 80960 
Memory-mapped 

I~C Bus Monitor Register 32 0000 1694H Address 

0000 1698H 
Reserved x through 

0000 16FFH 

NM I Interrupt Status Register 32 0000 1700H Must Translate 

XINT7 Interrupt Status Register 32 0000 1704H PCI address to the 
80960 

~ 
XINT6 Interrupt Status Register 32 0000 1708H Memory-mapped 

Address 
e See PCI to E 
0 PCI Bridge 
() 

a PCI Interrupt Routing Select Register 32 Configuration 14H 
::: Space 
(j) (0000 1050H) E 
rn Processor Device ID Register 32 0000 1710H 
(j) 

Reserved 32 0000 1714H .c 
0-
·ai Reserved 32 0000 1718H 
a... 
-c GPIO Output Enable Register 32 0000 171CH 
c: en « GPIO Input Data Register 32 0000 1720H 

en 
Q) 

0 -0 
a... GPIO Output Data Register 32 0000 1724H -c « 

0000 1728H -c 
Q) 

Reserved x through 0-
0-

0000 17FFH co 
E 

Accelerator Control Register 32 0000 1800H >. 
(5 

Accelerator Status Register 32 0000 1804H E 
Q) 

Accelerator Descriptor Address Register 32 0000 1808H :2 
0 

Accelerator Next Descriptor Address Register 0000 180CH 
to 

32 (j) 
0 

80960 Source Address 1 Register 32 0000 1810H 
to 
Q) - :E ·c 80960 Source Address 2 Register 32 0000 1814H Sl :::> 

(5 80960 Source Address 3 Register 32 0000 1818H en en 
15 Q) 

(j) 80960 Source Address 4 Register 32 0000 181CH -0 
a; -c 

80960 Destination Address Register 32 0000 1820H 
co 

0 
0 0 « 

Accelerator Byte Count Register 32 0000 1824H a... 
c: 
0 Q) 

·in Accelerator Descriptor Control Register 32 0000 1828H 15 
(ii 

.!.2 
80960 Source Address 5 Register 0000 182CH 

c: 
0. 32 co 
0- ~ « 80960 Source Address 6 Register 32 0000 1830H Cii 

80960 Source Address 7 Register 32 0000 1834H 
::J 
:2 

80960 Source Address 8 Register 32 0000 1838H 

0000 183CH 
Reserved x through 

0000 18FFH 

Developer's Manual C-13 





Intel around the world 

UNITED STATES AND CANADA 

Intel Corporation 
Robert Noyce Building 
2200 Mission College Boulevard 
P.O. Box581 19 
Santa Clara, CA 95052-81 19 

USA 
Phone: (800) 628-8686 

EUROPE 

Intel Corporation (UK) Ltd . 
Pipers Way 
Swindon 
Wiltshire SN3 1 RJ 

UK 

Phone: 
England (44) 1793 403 000 
Germany (49) 89 99143 0 
France (33) 1 4571 7171 
Italy (39) 2 575 441 
Israel (972) 2 589 7111 
Netherlands (31) 1 0 286 6111 
Sweden (46) 8 705 5600 

ASIA - PACIFIC 

Intel Semiconductor Ltd. 
32/F Two Pacific Place 
88 Queensway, Central 

Hong Kong, SAR 
Phone: (852) 2844 4555 

JAPAN 

Intel Kabushiki Kaisha 
. P.O. Box 115 Tsukuba;gakuen 

5-6 Tokodai, Tsukuba-shi. 

Ibaraki-ken 305 
Japan 
Phone: (81) 298 47 8522 

SOUTH AMERICA 

Intel Semicondutores do Brazil 
Rue Florida, 1703-2 and CJ22 
CEP 04565-001 Sao Paulo-SP 

Brazil 
Phone: (55) 11 5505 2296 

FOR MORE INFORMATION 

To learn more about Intel Corporation, visit our site 

on the World Wide Web at www.intel.com 

© 2000 Intel Corporation. All rights reserved. 
'Other brands and names are the property 
of their respective owners. 
Printed in USA 

infel· 


