

intal

i1860™

64-BIT
MICROPROCESSOR
PROGRAMMER’S
REFERENCE
MANUAL

1989

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The foliowing are trademarks of Intel Corporation and may only be used to identify Intel Products:

376, 386, 386SX, 387, 387SX, 486, 4-SITE, Above, BITBUS, COMMputer,
CREDIT, Data Pipeline, ETOX, Genius, i, 1, i860, ICE, iCEL, iCS, iDBP, iDIS,
ICE, iLBX, iy, iIMDDX, iMMX, Inboard, Insite, Intel, intgl, Intel376, Intel386,
intglBOS, Intel Certified, Intelevision, intgligent Identifier, intgligent Programming,
Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM,
KEPROM, Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME,
MULTIBUS, MULTICHANNEL, MULTIMODULE, ONCE, OpenNET, OTP,
PC BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD,
SugarCube, UPI, and VLSIiCEL, and the combination of ICE, iCS, iRMX, iSBC,
iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
‘mark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales

P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1989 CG-020389

intal

CUSTOMER SUPPORT
INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, consulting services and network management services. For detailed information contact
your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an inter-
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel’s customer support is quite extensive. It can start with assistance during your development effort to network
management. 100 Intel sales and service offices are located worldwide — in the U.S., Canada, Europe and the Far
East. So wherever you’re using Intel technology, our professional staff is within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity from
the start and keep you running at maximum efficiency. Support for system or board level products can be tailored
to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory
service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your
development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as well as
work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and; COMMENTS
Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which
represent product groupings (e.g., iIRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application effort.
You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing
an application, personalizing training and customizing an Intel product to providing technical and management
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica-
tions, embedded microcontrollers, and network services. You know your application needs; we know our products.
Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, BITBUS™ and LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your investment
via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to imple-
mentation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel’s
Networking Specialists can optimize network performance for you.

CG/CUST/100188

|ntel PREFACE

Preface

The Intel i860™ Microprocessor (part number 80860) delivers supercomputer level performance
in a single VLSI component. The 64-bit design of the i860 Microprocessor balances integer,
floating point, and graphics performance for applications such as engineering workstations,
scientific computing, 3-D graphics workstations, and multiuser systems. Its parallel architecture
achieves high throughput with RISC design techniques, pipelined processing units, wide data
paths, large on-chip caches, and fast one micron CHMOS IV silicon technology.

This book is the basic source of the detailed information that enables software designers and
programmers to use the 1860 Microprocessor. This book explains all programmer-visible features
of the architecture.

Even though the principal users of this Programmer’s Reference Manual will be programmers, it
contains information that is of value to systems designers and administrators of software projects,
as well. Readers of these latter categories may choose only to read the higher-level sections of the
manual, skipping over much of the programmer-oriented detail.

How to Use This Manual

® Chapter 1, ‘‘Architectural Overview,’’ describes the 1860 Microprocessor ‘‘in a nutshell’” and
presents for the first time the terms that will be used throughout the book.

® Chapter 2, ““Data Types,”’ defines the basic units operated on by the instructions of the i860
Microprocessor.

® Chapter 3, ‘‘Registers,”” presents the processor’s database. A detailed knowledge of the
registers is important to programmers, but this chapter may be skimmed by administrators.

® Chapter 4, ‘“‘Addressing,”” presents the details of operand alignment, page-oriented virtual
memory, and on-chip caches. Systems designers and administrators may choose to read the
introductory sections of each topic.

® Chapter 5, “‘Core Instructions,”” presents detailed information about those instructions that
deal with memory addressing, integer arithmetic, and control flow.

® Chapter 6, ‘‘Floating-Point Instructions,’’ presents detailed information about those instructions

‘ that deal with floating-point arithmetic, long-integer arithmetic, and 3-D graphics support.
Explains how extremely high performance can be achieved by utilizing the parallelism and
pipelining of the 1860 Microprocessor.

® Chapter 7, ‘““Traps and Interrupts,” deals with both systems- and applications—oriented
exceptions, external interrupts, writing exception handlers, saving the state of the processor
(information that is also useful for task switching), and initialization.

® Chapter 8, ‘‘Programming Model,”” defines standards for the use of many features of the i860
Microprocessor. Software administrators should be aware of the need for standards and
should ensure that they are implemented. Following the standards presented here guarantees

Inter PREFACE

that compilers, applications programs, and operating systems written by different people and
organizations will all work together.

® Chapter 9, ‘‘Programming Examples,”’ illustrates the use of the i860 Microprocessor by
presenting short code sequences in assembly language.

® The appendices present instruction formats and encodings, timing information, and summaries
of instruction characteristics. These appendices are of most interest to assembly-language
programmers and to writers of assemblers, compilers, and debuggers.

Related Documentation

The following books contain additional material concerning the i860 Microprocessor:

® 860 64-bit Microprocessor (Data Sheet), order number 240296

® 860 Microprocessor Assembler and Linker Reference Manual, order number 240436

® 860 Microprocessor Simulator-Debugger Reference Manual, order number 240437
Notation and Conventions

The instruction chapters contain an algorithmic description of each instruction that uses a notation
similar to that of the Algol or Pascal languages. The metalanguage uses the following special
symbols:

® A <4— B indicates that the value of B is assigned to A.

® Compound statements are enclosed between the keywords of the ““if”’ statement (IF . . . ,
THEN . . ., ELSE . . ., FI) or of the ““do’’ statement (DO . . . , OD).

® The operator ++ indicates autoincrement addressing.

® Register names and instruction mnemonics are printed in a contrasting typestyle to make
them stand out from the text; for example, dirbase. Individual programming languages may
require the use of lowercase letters.

Hexadecimal constants are written, according to the C language convention, with the prefix 0x.
For example, OxOF is a hexadecimal number that is equivalent to decimal 15.

Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved or undefined .
When bits are thus marked, it is essential for compatibility with future processors that software
not utilize these bits. Software should follow these guidelines in dealing with reserved or undefined
bits:

® Do not depend on the states of any reserved or undefined bits when testing the values of
registers that contain such bits. Mask out the reserved and undefined bits before testing.

intel PREFACE

® Do not depend on the states of any reserved or undefined bits when storing them in memory
or in a another register.

® Do notdepend on the ability to retain information written into any reserved or undefined bits.

® When loading a register, always load the reserved and undefined bits as zeros or reload them
with values previously stored from the same register.

NOTE

Depending upon the values of reserved or undefined bits makes software dependent
upon the unspecified manner in which the i860 Microprocessor handles these bits.
Depending upon values of reserved or undefined bits risks making software
incompatible with future processors that define usages for these bits. AVOID ANY
SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED OR UN-
DEFINED BITS ‘

vi

TABLE OF CONTENTS

CHAPTER 1 Page

ARCHITECTURAL OVERVIEW
1.1 OVEIVIBW o e e e 1-1
1.2 Integer Core Unit i 1-2
1.3 Floating-Point Unit 1-3
1.4 Graphics Unit i e e 1-4
1.5 Memory Management Unit i 1-5
18 CaChES ..t e e 1-5
1.7 Parallel Architecture i e 1-5
1.8 Software Development Environment, 1-6
1.8.1 Multiprocessing for High-Performance with Compatibility 1-6
CHAPTER 2

DATA TYPES
2. INBger . o e 2-1
2.2 0rdinal e 2-1
2.3 Single-Precision Realcoiiiiiiiiiii i 2-1
2.4 Double-Precision Realo i 2-2
2.5 PiXel ..o e e 2-3
2.6 Real-Number Encoding oot 2-4
CHAPTER 3

REGISTERS
3.1 Integer Register File i i 3-1
3.2 Floating-Point Register File i i i 3-1
3.3 Processor Status Registero 3-2
3.4 Extended Processor Status Register 3-5
3.5 Data Breakpoint Register. 3-6
3.6 Directory Base Registert 3-6
3.7 Fault Instruction Register e 3-8
3.8 Floating-Point Status Register, 3-8
3.9 KR, KI, T, and MERGE Registerscciiiiiiiiiiiiiinan. 3-11
CHAPTER 4

ADDRESSING
41 AlgNMeNt ... e 4-2
4.2 Virtual Addressingt 4-2
421 Page Frame ... oo i e 4-2
4.2.2 Virtual Addressouonee 4-2
423 Page Tables ...t e 4-4
4.2.4 Page-Table ENESooiuiinit i e i 44
4241 Page Frame AdAressoviiiiit i i i i 4-4
4242 Present Bit 4-5

vii

|ntel’ TABLE OF CONTENTS

4243 Cache Disable Bit...........cov it e e 4-5
4.24.4 Write-Through Bit e 4-5
4245 Accessed and Dirty Bits i 4-6
4246 Writable and User Bits i i 4-6
4.2.4.7 Combining Protection of Both Levels of Page Tables 4-7
4.2.5 Address Translation Algorithm o i 4-7
4.2.6 Address Translation Faults o i i 4-8
427 Page Translation Cache i i, 4-8
4.3 Caching and Cache Flushing i, 4-9
CHAPTER 5
CORE INSTRUCTIONS
5.1 Load Integer ... e 5-2
5.2 Store Integer ... e 5-3
5.3 Transfer Integerto F-P Register it 5-3
5.4 Load Floating-Point 5-4
5.5 Store Floating-Point 5-5
5.6 PiXel StOreot 5-6
5.7 Integer Add and Subtract 5-6
5.8 Shift Instructions e 5-8
5.9 Software Trapscoeiiiii e 59
5.10 Logical Instructions i 5-9
5.11 Control-Transfer Instructions i 5-11
512 Cache Flush 5-14
5.13 Control Register ACCESSt e e 5-16
514 BUS LOCK ...ttt et e 5-16
CHAPTER 6
FLOATING-POINT INSTRUCTIONS

6.1 Precision Specificationl 6-1
6.2 Pipelined and Scalar Operations oo, 6-1
6.2.1 Scalar Mode . ..ot e 6-3
6.2.2 Pipelining Status Information i 6-3
6.2.3 Precision inthe Pipelines i 6-4
6.2.4 Transition between Scalar and Pipelined Operations 6-4
6.3 Multiplier Instructions 6-4
6.3.1 Floating-Point Multiply e 6-5
6.3.2 Floating-Point Multiply Low 6-6
6.3.3 Floating-Point Reciprocalsot 6-6
6.4 Adder Instructionsl R e 6-6
6.4.1 Floating-Point Add and Subtractl 6-7
6.4.2 Floating-Rpint Compares ...ttt 6-8
6.4.3 Floating-Point to Integer Conversion 6-9
6.5 Dual Operation Instructions i, e 6-9
6.6 Graphics Unit e 6-22

viii

Inter TABLE OF CONTENTS

6.6.1 Long-Integer Arithmetic.......... i 6-22
6.6.2 3-D Graphics Operationsc.c.cueiriiiiinieeneana i, 6-23
6.6.2.1 Z-Buffer Check Instructions 6-24
6.6.2.2 Pixel Add o 6-25
6.6.2.3 Z-Buffer Add e 6-28
6.6.2.4 OR with MERGE Registerccooviiiineuiiiiiiiiiiinns 6-30
6.7 Transfer F-P to Integer Register i it 6-31
6.8 Dual-Instruction Mode i 6-31
6.8.1 Core and Floating-Point Instruction Interaction 6-32
6.8.2 Dual-Instruction Mode Restrictionso, 6-33
CHAPTER 7
TRAPS AND INTERRUPTS
7.1 TYpes Of TraPs . ..o ot e 7-1
7.2 Trap Handler Invocationt 7-1
721 Saving State 7-2
7.2.2 Returning fromthe Trap Handler o it 7-3
7.2.2.1 Determining Whereto Resume 7-3
7222 Setting KNF e 7-4
7.3 Instruction Fault e 7-4
7.4 Floating-Point Fault e 7-4
7.4.1 Source Exception Faults i, 7-5
7.4.2 Result Exception Faults i i, 7-6
7.5 Instruction-Access Fault i i i 7-7
7.6 Data-Access Fault ... e 7-7
7.7 INterrupt Trap ..o e e 7-7
7.8 ReSet Trap . ..ot i e 7-8
7.9 Pipeline Preemption i e 7-8
7.9.1 Floating-Point Pipelines it 7-8
792 Load Pipeline i i e 7-9
7.9.3 Graphics Pipeline it e 7-9
7.9.4 Examples of Pipeline Preemption i, 7-9
CHAPTER 8
PROGRAMMING MODEL

8.1 Register Assignment i 8-1
8.1.1 Integer Registerst 8-1
8.1.2 Floating-Point Registersot 8-3
8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers 8-3
8.1.4 Variable Length Parameter Lists o i iiiaia, 8-3
8.2 Data Alignment it e 8-3
83 Implementinga Stack............ ... i i 8-4
8.3.1 Stack Entry and Exit Codet 8-5
8.3.2 Dynamic Memory Allocationon the Stack 8-6
8.4 Memory Organization ittt 8-7

Inte[TABLE OF CONTENTS

CHAPTER 9
PROGRAMMING EXAMPLES

9.1 Small Integers P
9.2 Single-Precision Divide i
9.3 Double-Precision Divideovviiiiiin i

9.4 Integer Multiply
9.5 Conversion from Signed Integer to Double

APPENDIX A
INSTRUCTION SET SUMMARY

APPENDIX B
INSTRUCTION FORMAT AND ENCODING

APPENDIX C
INSTRUCTION TIMINGS

APPENDIX D
INSTRUCTION CHARACTERISTICS

9.6 SignedIntegerDivide i e
9.7 StNG COPY ..ttt e
9.8 Floating-Point Pipeline i i,
9.9 Pipelining of Dual-Operation Instructions
9.10 Dual Instruction Mode
9.11 Cache Strategies for Matrix Dot Product

9-1

9-2
9-3
9-3

94

9-5
9-5
9-6
9-7
9-8

TABLE OF CONTENTS

Figure

2-1
3-1

3-3
3-4
35

4-2
4-3

4-5
6-1
6-2
6-3
6-3
6-3
6-3
6-3
6-3
6-3

6-4
6-5
6-6

6-8
6-9
6-10
6-11
6-11
8-1

8-3

Table
2-1

3-1
3-2

Figures

Title

Pixel Format Example it
Register Set e
Processor Status Registero,
Extended Processor Status Register
Directory Base Register,
Floating-Point Status Register
Memory Formatscooniiiitiiii et
Format of a Virtual Address ot
Address Translationccoiiiiiiiiiiian,
Format of a Page Table Entry
Invalid Page Table Entry oot
Pipelined Instruction Execution
Dual-Operation Data Paths
Data Paths by Instruction (10of 8)
Data Paths by Instruction 20f8)
Data Paths by Instruction (30f8)
Data Paths by Instruction (40f8)
Data Paths by Instruction (50f8)
Data Paths by Instruction 6of 8)
Data Paths by Instruction (7of 8)
Data Paths by Instruction (8 0f8)
Data Path Mnemonics,
PSR Fields for Graphics Operations
FADDP with 8-Bit Pixels
FADDP with 16-Bit Pixels,
FADDP with 32-Bit Pixels
FADDZ with 16-Bit Z-Buffer
64-Bit Distance Interpolation,
Dual-Instruction Mode Transitions (1 of2)
Dual-Instruction Mode Transitions (2 0of2)
Register Allocation il
Stack Frame Format oo,
Example Memory Layout i,

Pixel Formatsc. it
Single and Double Real Encodings
Values of PS
Values of BBttt eieeiiines

Xi

Page

2-4
3-2

3-5
3-6
3-9
4-1
4-3
4-3
4-4
4-5
6-2

6-11

6-13

6-14

6-15

6-16

6-17

6-18

6-19

6-20

6-21

6-24

6-26

6-27

6-28

6-29

6-30

6-32

6-33
8-2
8-5
8-7

Page
2-3

3-4
3-7

TABLE OF CONTENTS

3-3 Values of RC i
34 Valuesof RM
4-1 Combining Directory and Page Protection
5-1 Control Register Encodingo
6-1 DPC ENCOAINGottt e e e
6-2 FADDP MERGE Updatec..ciiiriiiiii i
7-1 TYPES Of Traps ...ttt e e
8-1 Register Allocation
A-1 FADDP MERGE Update i
Examples

Example Title

5-1 Example of blaUsage
5-2 Cache Flush Procedure i
5-3 Examples of lock andunlock Usage
7-1 Saving Pipeline States i
7-2 Restoring Pipeline States (1 0of2) L.
7-2 Restoring Pipeline States (2 0f2) i
8-1 Reading Misaligned 32-Bit Value
8-2 Subroutine Entry and Exit with Frame Pointer
8-3 Subroutine Entry and Exit without Frame Pointer
8-4 Possible Implementation ofalloca
9-1 Sign EXtension e
9-2 Loading Small Unsigned Integers o i i
9-3 Single-Precision Divide
9-4 Double-Precision Divide i
9-5 Integer MUltiply
9-6 Single to Double Conversion i i, .
9-7 Signed Integer Divide
9-8 SHING COPY i i ettt
9-9 Pipelined Add ...
9-10 Pipelined Dual-Operation Instruction
9-11 Dual-Instruction Mode i
9-12 Matrix Multiply, Cached Loads Only (sheet10of2)
9-12 Matrix Multiply, Cached Loads Only (sheet2of2)
9-13 Matrix Multiply, Cached and Pipelined Loads (sheet 1 of2)
9-13 Matrix Multiply, Cached and Pipelined Loads (sheet20f2)

Xii

3-9
4-8
5-16
6-12
6-26
7-1

A-4

intel TABLE OF CONTENTS

Revision Information:

-002:

® Example 5-2, ““Cache Flush Procedure’ added 2 instructions.

® Flush instruction usage revised (pg. 5-15). _
® Data cache not searched for Page Directories and Tables (pg. 4-9).
® Section 4.3 revised.

® Section 8.1.3 revised.

Xiii

Architectural Overview

Chapter 1
Architectural Overview

The Intel i860™ 64-bit Microprocessor defines a complete architecture that balances integer,
floating point, and graphics performance. Target applications include engineering workstations,
scientific computing, 3-D graphics workstations, and multiuser systems. Its parallel architecture
achieves high throughput with RISC design techniques, pipelined processing units, wide data
paths, and large on-chip caches.

1.1 OVERVIEW

The 1860 Microprocessor supports more than just integer operations. The architecture includes on
a single chip:

Integer operations
Floating-point operations
Graphics operations
Memory-management support
Data and instruction caches

Having a data cache as an integral part of the architecture provides support for vector operations.
The data cache supports integer programs in the conventional manner, without explicit
programming. For vector operations, however, programmers can explicitly use the data cache as
if it were a large block of vector registers.

To sustain high performance, the 1860 Microprocessor incorporates wide information paths that
include:

® 64-bit external data bus
® 128-bit on-chip data bus
® 64-bit on-chip instruction bus

Floating-point vector operations use all three busses.

To drive the graphics and floating point hardware, the 1860 Microprocessor includes a RISC
integer core processing unit with one-clock instruction execution. This unit also processes
conventional integer programs. It provides complete support for standard operating systems, such
as UNIX and OS/2.

The i860 Microprocessor supports vector floating-point operations without special vector
instructions or vector registers. It accomplishes this by using the on-chip data cache and a variety
of parallel techniques that include: '

® Pipelined instruction execution with delayed branch instructions to avoid breaks in the
pipeline.

|nte| ARCHITECTURAL OVERVIEW

® Instructions that automatically increment index registers so as to reduce the number of
instructions needed for vector processing.

® Parallel integer core and floating-point processing units.
® Parallel multiplier and adder units within the floating-point unit.

® Pipelined floating-point hardware units, with both scalar (nonpipelined) and vector (pipelined)
variants of floating-point instructions. Software can switch between scalar and pipelined
modes.

® Large register set with 32 general-purpose integer registers, each 32-bits wide, and 32
floating-point registers, each 32-bits wide, that can also be configured as 64- and 128-bit
registers. The floating-point registers also serve as the staging area for data going into and out
of the floating-point pipelines.

There are two classes of instructions:
® Core instructions (executed by the integer core unit).

® Floating-point and graphics instructions (executed by the floating-point unit and graphics
~unit),

The processor has a dual-instruction mode that can simultaneously execute one instruction from
each class (core and floating-point). Software can switch between dual- and single-instruction
modes. Within the floating-point unit, special dual-operation instructions (add-and-multiply,
subtract-and-multiply) use the adder and multiplier units in parallel. With both dual-instruction
mode and dual operation instructions, the i860 Microprocessor can execute three operations
simultaneously.

The integer core unit manages data flow and loop control for the floating point units. Together,
they efficiently execute such common tasks as evaluating systems of linear equations, performing
the Fast Fourier Transform (FFT), and performing graphics transformations.

1.2 INTEGER CORE UNIT

The core unit is the administrative center of the i860 Microprocessor. The core unit fetches both
integer and floating-point instructions. It contains the integer register file, and decodes and
executes load, store, integer, bit, and control-transfer operations. Its pipelined organization with
extensive bypassing and scoreboarding maximizes performance.

A complete list of its instruction categories includes ...
® Loads and stores between memory and the integer and floating-point registers. Floating-point
loads can be pipelined in three levels. A pixel store instruction contributes to efficient hidden-

surface elimination.

® Transfers between the integer registers and the floating-point registers.

Inter | ARCHITECTURAL OVERVIEW

® Integer arithmetic for 32-bit signed and unsigned numbers. The 32-bit operations can also
perform arithmetic on smaller (8- or 16-bit) integers. Arithmetic on large (128-bit or greater)
integers can be implemented via short software macros or subroutines. (The graphics unit
provides arithmetic for 64-bit integers.)

® Shifts of the integer registers.
® Logical operations on the integer registers.

] Control transfers. There are both direct and indirect branches, a call instruction, and a branch
that can be used to form highly efficient loops. Many of these are delayed transfers that avoid
breaks in the instruction pipeline. One instruction provides efficient loop control by combining
the testing and updating of the loop index with a delayed control transfer.

® System control functions.

1.3 FLOATING-POINT UNIT

The floating-point unit contains the floating-point register file. This file can be accessed as 8 X
128-bit registers, 16 X 64-bit registers, or 32 X 32-bit registers.

The floating-point unit contains both the floating-point adder and the floating-point multiplier. The
adder performs floating-point addition, subtraction, comparison, and conversions. The multiplier
performs floating-point and integer multiply and floating-point reciprocal operations. Both units
support 64- and 32-bit floating-point values in IEEE Standard 754 format. Each of these units
uses pipelining to deliver up to one result per clock. The adder and multiplier can operate in
parallel, producing up to two results per clock. Furthermore, the floating-point unit can operate in
parallel with the core unit, sustaining the two-result-per-clock rate by overlapping administrative
functions with floating point operations.

The RISC design philosophy minimizes circuit delays and enables using of all the available chip
space to achieve the greatest performance for floating-point operations. Due to this fact, due to
the use of pipelining and parallelism in the floating-point unit, and due to the wide on-chip caches,
the 1860 Microprocessor achieves extremely high levels of floating-point performance.

The use of RISC design principles implies that the 1860 Microprocessor does not have high-level
math macro-instructions. High-level math (and other) functions are implemented in software
macros and libraries. For example, the i860 Microprocessor does not have a sin instruction. The
sin function is implemented in software on the i860 Microprocessor. The sin routine for the 1860
Microprocessor, however, will still be very fast due to the extremely high speed of the basic
floating-point operations. Commonly used math operations, such as the sin function, are offered
by Intel as part of a software library.

The floating-point data types, floating-point instructions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) with both single-
and double-precision floating-point data types. Due to the low-level instruction set of the i860
Microprocessor, not all functions defined by the standard are implemented directly by the
hardware. The 1860 Microprocessor supplies the underlying data types, instructions, exception
checking, and traps to make it possible for software to implement the remaining functions of the

|ntef ARCHITECTURAL OVERVIEW

standard efficiently. Intel supplies a software library that provides programs for the i860
Microprocessor with full [EEE-compatible arithmetic.

1.4 GRAPHICS UNIT

The graphics unit has special 64-bit integer logic that supports 3-D graphics drawing algorithms.
This unit can operate in parallel with the core unit. It contains the special-purpose MERGE
register, and performs multiple additions on integers stored in the floating-point register file.

These special graphics features focus the chip’s high performance on applications that involve
three-dimensional graphics with Gouraud or Phong color intensity shading and hidden surface
elimination via the Z-buffer algorithm. The graphics features of the i860 Microprocessor assume
that:

® The surface of a solid object is drawn with polygon patches whose shapes approximate the
original object.

® The color intensities of the vertices of the polygon and their distances from the viewer are
known, but the distances and intensities of the other points must be calculated by interpolation.

The graphics instructions of the i860 Microprocessor directly aid such interpolation. Furthermore,
the 1860 Microprocessor recognizes the pixel as an 8-, 16-, or 32-bit data type. It can compute
individual red, blue, and green color intensity values within a pixel; but it does so with parallel
operations that take advantage of the 64-bit internal word size and 64-bit external data bus.

The graphics unit also provides add and subtract operations for 64-bit integers, which are
especially useful for high-resolution distance interpolation.

In addition to the special support provided by the graphics unit, many 3-D graphics applications
directly benefit from the parallelism of the core and floating-point units. For example, the 3-D
rotation represented in homogeneous vector notation by . . .

1 0 0 0

3 0 cost sint 0
(XYzil= [xyzl] 0 —sinf cost 0
0 0 0 1

. is just one example of the kind of vector-oriented calculation that can be converted to a
program that takes full advantage of the pipelining, dual-instruction mode, dual operations, and
memory hierarchy of the i860 Microprocessor.

1-4

mtel“ ARCHITECTURAL OVERVIEW

1.5 MEMORY MANAGEMENT UNIT

The on-chip MMU of the i860 Microprocessor performs the translation of addresses from the
linear logical address space to the linear physical address for both data and instruction access.
Address translation is optional; when enabled, address translation uses a two-level structure of
page directories and page tables of 1K entries each. Information from these tables is cached in a
64-entry, four-way set-associative memory. The i860 Microprocessor provides basic features (bits
and traps) to implement paged virtual memory and to implement user/supervisor protection at the
page level—all compatible with the paged memory management of the 386™ and 486™
MiCroprocessors.

1.6 CACHES

In addition to the page translation cache mentioned previously, the i860 Microprocessor contains
separate on-chip caches for data and instructions. Caching is transparent, except to systems
programmers who must ensure that the data cache is flushed when switching tasks or changing
system memory parameters. The on-chip cache controller also provides the interface to the
external bus with a pipelined structure that allows up to three outstanding bus cycles.

The instruction cache is a two-way, set-associative memory of four Kbytes, with 32-byte blocks.
The data cache is a write-back cache, composed of a two-way, set-associative memory of eight
Kbytes, with 32-byte blocks.

1.7 PARALLEL ARCHITECTURE

The i860 Microprocessor offers a high level of parallelism in a form that is flexible enough be
applied to a wide variety of processing styles:

® Conventional programs and conventional compilers can use the 1860 Microprocessor as a
scalar machine and still benefit from the high-performance of the 1860 Microprocessor.

® Compilers designed for the vector model can treat the 1860 Microprocessor as a vector
machine.

® New instruction-scheduling technology for compilers can compare the processing requirements
and data dependencies of programs with the available resources of the 1860 Microprocessor,
and can take maximum advantage of its dual-instruction mode, pipelining, and caching.

An established compiler technology for the vector model of computation already exists. This
technology can be applied directly to the i860 Microprocessor. The key to treating the i860
Microprocessor as a vector machine is choosing the appropriate vector primitives that the compiler
assumes are available on the target machine. (Intel has defined a standard set of vector primitives.)
The vector primitives are implemented as hand-coded subroutines; the compiler generates calls to
these subroutines. If a compiler depends on the traditional concept of vector registers, it can
implement them by mapping these registers to specific memory addresses. By virtue of frequent
access to these addresses, the simulated registers will reside permanently in the data cache.

1-5

|nter ARCHITECTURAL OVERVIEW

Existing programs can be upgraded to take better advantage of the parallel architecture of the i860
Microprocessor using vector-oriented technology. Flow analysis or ‘‘vectorizing’ tools can
identify parallelism that is implicit in existing programs. When modified (either manually or
automatically) and compiled by an appropriate compiler for the i860 Microprocessor, these
programs can achieve even greater performance gain from the 1860 Microprocessor.

Designers of compilers for the 1860 Microprocessor will find that the i860 Microprocessor offers
more flexibility than traditional vector processing. The instruction set of the i860 Microprocessor
separates addressing functions from arithmetic functions. Two benefits result from this separation:

1. It is possible to address arbitrary data structures. Data structures are no longer limited to
vectors, arrays, and matrices. Parallel algorithms can be applied to linked lists (for example)
as easily as to matrices.

2. Aricher set of operations is available at each node of a data structure. It becomes possible to
perform different operations at each node, and there is no limit to the complexity of each
operation. With the i860 Microprocessor, it is no longer necessary to pass all elements of a
vector several times to implement complex vector operations.

1.8 SOFTWARE DEVELOPMENT ENVIRONMENT
The software environment available from Intel for the 1860 Microprocessor includes:
® Assembler, linker, C, and FORTRAN compilers, and FORTRAN vectorizer.

® Libraries of higher-level math functions and IEEE-standard exception support. Intel supplies
such libraries in a form that can be utilized by a variety of compilers.

® Simulator and debugger.

1.8.1 Multiprocessing for High-Performance with Compatibility

Memory organization of the i860 Microprocessor is compatible with that of the 386™ and 486™
microprocessors (including addresses and page-table entries); all data types are compatible as well
(both integers and floating-point numbers). The page-oriented virtual memory management of the
1860 Microprocessor is also compatible with that of the 386 and 486 microprocessors. This level
of compatibility facilitates use of the i860 Microprocessor in multiprocessor systems with a 386
or 486 microprocessor. Moreover, complete hardware and software support for such multiprocessor
systems is available.

An 1860 microprocessor can be used with a 386™, 386SX™, or 486™ microprocessor system.
~ The 1860 microprocessor extends system performance to supercomputer levels, while the 386/
386SX/486 microprocessor provides binary compatibility with existing applications. The compat-
ibility processor provides access to a huge software base supporting a wide variety of /O devices,
communications protocols, and human-interface methods. The computation-intensive applications
enjoy the raw computational power of the i860 Microprocessor, while having access to all
capabilities and resources of the compatibility processor.

1-6

Data Types

Chapter 2
Data Types

The 1860 Microprocessor provides operations for integer and floating-point data. Integer operations
are performed on 32-bit operands with some support also for 64-bit operands. Load and store
instructions can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit operands. Floating-point
operations are performed on IEEE-standard 32- and 64-bit formats. Graphics oriented instructions
operate on arrays of 8-, 16-, or 32-bit pixels.

Bits within data formats are numbered from zero starting with the least significant bit. Illustrations
of data formats in this manual show the least significant bit (bit zero) at the right.

2.1 INTEGER

An integer is a 32-bit signed value in standard two’s complement form. A 32-bit integer can
represent a value in the range -2,147,483,648 (—231) to 2,147,438,647 (+23! — 1). Arithmetic
operations on 8- and 16-bit integers can be performed by sign-extending the 8- or 16-bit values to
32 bits, then using the 32-bit operations.

There are also add and subtract instructions that operate on 64-bit long integers.

Load and store instructions may also reference (in addition to the 32- and 64-bit formats previously
mentioned) eight- and 16-bit items in memory. When an eight- or 16-bit item is loaded into a
register, it is converted to an integer by sign-extending the value to 32 bits. When an eight- or

16-bit item is stored from a register, the corresponding number of low-order bits of the register
are used.

2.2 ORDINAL

Arithmetic operations are available for 32-bit ordinals. An ordinal is an unsigned integer. An
ordinal can represent values in the range 0 to 4,294,967,295 (+232 — 1).

Also, there are add and subtract instructions that operate on 64-bit ordinals.

2.3 SINGLE-PRECISION REAL

A single-precision real (also called ‘‘single real’’) data type is'a 32-bit binary floating-point
number. Bit 31 is the sign bit; bits 30..23 are the exponent; and bits 22..0 are the fraction. In
accordance with ANSVIEEE standard 754, the value of a single-precision real is defined as
follows:

1. Ife= 0andf # 0ore= 255 then generate a floating-point source-exception trap when
encountered in a floating-point operation.

2-1

|nte[DATA TYPES

31 23 0
S E F
T L FRACTION
b EXPONENT
SIGN

2. If0 < e < 255, then the value is —15 X 1.f X 267127 (The exponent adjustment 127 is
called the bias.)

3. Ife= 0andf = 0, then the value is signed zero.
The special values infinity, NaN, indefinite, and denormal generate a trap when encountered. The

trap handler implements IEEE-standard results. (Refer to Table 2-2 for encoding of these special
values.)

2.4 DOUBLE-PRECISION REAL

63 52 0
S E F
T L FRACTION
EXPONENT
SIGN
%

A double-precision real (also called ‘‘double real’’) data type is a 64-bit binary floating-point
number. Bit 63 is the sign bit; bits 62..52 are the exponent; and bits 51..0 are the fraction. In
accordance with ANSI/IEEE standard 754, the value of a double-precision real is defined as
follows: '

1. Ife= 0andf = 0ore= 2047, then generate a floating-point source-exception trap when
encountered in a floating-point operation.

2-2

DATA TYPES

intel

2. If0 < e < 2047, then the value is —15 X 1.f X 2671023 (The exponent adjustment 1023 is
called the bias.)

3. Ife= 0andf= 0, then the value is signed zero.

The special values infinity, NaN, indefinite, and denormal generate a trap when encountered. The
trap handler implements IEEE-standard results. (Refer to Table 2-2 for encoding of these special
values.)

A double real value occupies an even/odd pair of floating-point registers. Bits 31..0 are stored in

the even-numbered floating-point register; bits 63..32 are stored in the next higher odd-numbered
floating-point register.

2.5 PIXEL

A pixel may be 8, 16, or 32 bits long depending on color and intensity resolution requirements.
Regardless of the pixel size, the i860 Microprocessor always operates on 64 bits worth of pixels
at a time. The pixel data type is used by two kinds of instructions:

® The selective pixel-store instruction that helps implement hidden surface elimination.

® The pixel add instruction that helps implement 3-D color intensity shading.

To perform color intensity shading efficiently in a variety of applications, the i860 Microprocessor
defines three pixel formats according to Table 2-1.

Table 2-1. Pixel Formats

Bits of
Pixel Bits of Bits of Bits of Other
Size Color 1* Color 2* Color 3* Attribute
(in bits) Intensity Intensity Intensity (Texture)
8 N (=<8) bits of intensity** 8- N
16 6 6 4
32 8 8 8 8

* The intensity attribute fields may be assigned to colors in any order convenient to the
application.

** With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any
other attribute, such as color. The intensity bits must be the low-order bits of the pixel.

Figure 2-1 illustrates one way of assigning meaning to the fields of pixels. These assignments are
for illustration purposes only. The i860 Microprocessor defines only the field sizes, not the specific
use of each field. Other ways of using the fields of pixels are possible.

|nter DATA TYPES

8-BIT PIXEL C |

15 9 3 0

16-BIT PIXEL R G B

31 23 15 7 0

32-BIT PIXEL R G B T

I—INTENSITY, R—RED INTENSITY, G—GREEN INTENSITY, B—BLUE INTENSITY, C—COLOR,
T—TEXTURE

THESE ASSIGNMENTS OF SPECIFIC MEANINGS TO THE FIELDS OF PIXELS ARE FOR
Illj.é.élso'l":REA;(I:OHNFI:EULFBPOSES ONLY. ONLY THE FIELD SIZES ARE DEFINED, NOT THE SPECIFIC

Figure 2-1. Pixel Format Example

2.6 REAL-NUMBER ENCODING

Table 2-2 presents the complete range of values that can be stored in the single and double real
formats. Not all possible values are directly supported by the i860 Microprocessor. The supported
values are the normals and the zeros, both positive and negative. Other values are not generated
by the i860 Microprocessor, and, if encountered as input to a floating-point instruction, they
trigger the floating-point source exception. Exception-handling software can use the unsupported
values to implement denormals, infinities, and NaNs.

2-4

ntel

DATA TYPES

Table 2-2. Single and Double Real Encodings

« Integer bit is implied and not stored

2-5

. Biased Significand
Class Sign Exponent o5+
0 1.1 11.11
N Quiet : :
0 11.11 10..00
A
PN 0 1.1 01..11
O | S| signaling : .
S 0 1.1 00..01
I
T Infinity 0 11.11 00..00
|
v 0 11..10 1.1
E Normals : '
s 0 00..01 00..00
0 00..00 1.1
Denormals . .
0 00..00 00..01
R
E | Zero 0 00..00 00..00
A
L | Zero 1 00..00 00..00
S 1 00..00 00..01
Denormals :)
1 00..00 11..11
N 1 00..01 00..00
E Normals ; :
G 1 11..10 11..11
A
T Infinity 1 1.1 00..00
I
Vv 1 11..11 00..01
E N Signaling T :
1 11..11 01..11
S |a
N 1 11.11 10..00
S| Quiet : :
1 1.1 11..11
Single: < 8bits> <- 23 bits ->
Double: <11bits> | <-52 bits >

Registers

Chapter 3
Registers

As Figure 3-1 shows, the i860 Microprocessor has the following registers:

An integer register file

A floating-point register file

Six control registers (psr, epsr, db, dirbase, fir, and fsr)
Four special-purpose registers (KR, KI, T, and MERGE)

The control registers are accessible only by load and store control-register instructions; the integer
and floating-point registers are accessed by arithmetic operations and load and store instructions.
The special-purpose registers KR, KI, T, and MERGE are used by a few specific instructions.
For information about initialization of registers, refer to the reset trap in Chapter 7. For information
about protection as it applies to registers, refer to the st.c instruction in Chapter 5.

3.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32-bits wide, referred to as r0 through r31, which are used for
address computation and scalar integer computations. Register r0 always returns zero when read,
independently of what is stored in it. This special behaviour of r@ makes it useful for modifying
the function of certain instructions. For example, specifying r0 as the destination of a subtract
(thereby effectively discarding the result) produces a compare instruction. Similarly, using r0 as
one source operand of an OR instruction produces a test-for-zero instruction.

3.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits wide, referred to as f0 through f31, which are
used for floating-point computations. Registers f0 and f1 always return zero when read,
independently of what is stored in them. The floating-point registers are aiso used by a set of
integer operations, primarily for graphics computations.

The floating-point registers act as buffer registers in vector computations, while the data cache
performs the role of the vector registers of a conventional vector processor.

When accessing 64-bit floating-point or integer values, the 1860 Microprocessor uses an even/odd
pair of registers. When accessing 128-bit values, it uses an aligned set of four registers (f0, f4,
8, ... , 130). The instruction must designate the lowest register number of the set of registers
containing 64- or 128-bit values. Misaligned register numbers produce undefined results. The
register with the lowest number contains the least significant part of the value. For 128-bit values,
the register pair with the lower number contains the 64 bits at the lowest memory address; the
register pair with the higher number contains the 64 bits at the highest address.

|nter REGISTERS

INTEGER FLOATING-POINT

0 64 0
1] fo
r f2
r2 4
3 6
r4 8
5 f10
4] f12
7 f14
8 f16
'] f18
rio f20
i f22
ri2 f24
ri3 f26
ri4 f28
ri5 30
ri6
n7 i epsr | | psr 1
r8
r9
r20
21
r22
3 —=
r24
25
r26
r27 KR
r2s Ki
r29 T
r30 —
r31 L MERGE]

Figure 3-1. Register Set

3.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscellaneous state information for the current process.
Figure 3-2 shows the format of the psr. Fields marked by an asterisk in the figure can be changed
only in supervisor mode.

® BR (Break Read) and BW (Break Write) enable a data access trap when the operand address
matches the address in the db register and a read or write (respectively) occurs. (Refer to
section 3.5 for more about the db register.)

® Various instructions set CC (Condition Code) according to tests they perform, as explained
in Chapter 5. The conditional branch instructions test its value. The bla instruction described
in Chapter 5 sets and tests LCC (Loop Condition Code).

nte[REGISTERS

BREAK READ
BREAK WRITE
CONDITION CODE
LOOP CONDITION CODE
INTERRUPT MODE
PREVIOUS INTERRUPT MODE
USER MODE
PREVIOUS USER MODE
INSTRUCTION TRAP
INTERRUPT
INSTRUCTION ACCESS TRAP
DATA ACCESS TRAP
FLOATING-POINT TRAP
DELAYED SWITCH
DUAL INSTRUCTION MODE 1
1 YYYYYVY
31 23 21 1715 7 0
KPPl b L el 1P L klc|Ble
PM X
o] oo PEREFREFFELEREERD
* x %k kK kX k kK k Kk k % % * %
t———- KILL NEXT FLOATING-POINT
INSTRUCTION
(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK
*CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL.

Figure 3-2. Processor Status Register

IM (Interrupt Mode) enables external interrupts if set; disables interrupts if clear. (Chapter 7
covers interrupts.)

U (User Mode) is set when the i860 Microprocessor is executing in user mode; it is clear
when the 1860 Microprocessor is executing in supervisor mode. In user mode, writes to some
control registers - are inhibited. This bit also controls the memory protection mechanism
described in Chapter 4.

PIM (Previous Interrupt Mode) and PU (Previous User Mode) save the corresponding status
bits (IM and U) on a trap, because those status bits are changed when a trap occurs. They are
restored into their corresponding status bits when returning from a trap handler with a branch
indirect instruction when a trap flag is set in the psr. (Chapter 7 provides the details about
traps.)

FT (Floating-Point Trap), DAT (Data Access Trap), IAT (Instruction Access Trap), IN
(Interrupt), and IT (Instruction Trap) are trap flags. They are set when the corresponding trap

|nter REGISTERS

condition occurs. The trap handler examines these bits to determine which condition or
conditions have caused the trap. Refer to Chapter 7 for a more detailed explanation.

® DS (Delayed Switch) is set if a trap occurs during the instruction before dual-instruction
mode is entered or exited. If DS is set and DIM (Dual Instruction Mode) is clear, the 1860
Microprocessor switches to dual-instruction mode one instruction after returning from the trap
handler. If DS and DIM are both set, the i860 Microprocessor switches to single-instruction
mode one instruction after returning from the trap handler. Chapter 7 explains how trap
handlers use these bits.

® When a trap occurs, the i860 Microprocessor sets DIM if it is executing in dual-instruction
mode; it clears if it is executing in single-instruction mode. If DIM is set, the i860
Microprocessor resumes execution in dual-instruction mode after returning from the trap
handler.

® When KNF (Kill Next Floating-Point Instruction) is set, the next floating-point instruction is
suppressed (except that its dual-instruction mode bit is interpreted). A trap handler sets KNF
if the trapped floating-point instruction should not be reexecuted. KNF is especially useful for
returning from a trap that occurred in dual-instruction mode, because it permits the core
instruction to be executed while the floating-point instruction is suppressed. KNF is
automatically reset by the 1860 Microprocessor when the instruction has been successfully
bypassed. It is possible that the core instruction may cause a trap when the floating-point
instruction is suppressed. In this case KNF remains set, permitting retry of the core instruction.

® SC (Shift Count) stores the shift count used by the last right-shift instruction. It controls the
number of shifts executed by the double-shift instruction, as described in Chapter 5.

® PS (Pixel Size) and PM (Pixel Mask) are used by the pixel-store instruction described in
Chapter 5 and by the graphics instructions described in Chapter 6. The values of PS control
pixel size as defined by Table 3-1. The bits in PM correspond to pixels to be updated by the
pixel-store instruction pst.d. The low-order bit of PM corresponds to the low-order pixel of
the 64-bit source operand of pst.d. The number of low-order bits of PM that are actually
used is the number of pixels that fit into 64-bits, which depends upon PS. If a bit of PM is
set, then pst.d stores the corresponding pixel.

Table 3-1. Values of PS

Pixel Size Pixel Size
Value in bits in bytes
00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

mtel REGISTERS

3.4 EXTENDED PROCESSOR STATUS REGISTER

The extended processor status register (epsr) contains additional state information for the current
process beyond that stored in the psr. Figure 3-3 shows the format of the epsr. Fields marked by
an asterisk in the figure can be changed only in supervisor mode.

INTERLOCK
WRITE-PROTECT MODE
(RESERVED)
INTERRUPT
DATA CACHE SIZE _—j l
31 24 22 18 15 13 8 0
P] ‘
o}B |} STEPPING PROCESSOR
(RESERVED) E EIABHI DCS ¥ X XML NUMBER TYPE
x* & * &
Iy t
| PAGE-TABLE BIT MODE
BIG ENDIAN MODE
OVERFLOW FLAG
*CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL.

Figure 3-3. Extended Processor Status Register

® The processor type is one for the i860 Microprocessor.

® The stepping number has a unique value that distinguishes among different revisions of the
processor.

L IL (Interlock) is set if a trap occurs after a lock instruction but-before the load or store
following the subsequent unlock instruction. IL indicates to the trap handler that a locked
sequence has been interrupted.

® WP (Write Protect) controls the semantics of the W bit of page table entries. A clear W bit
in either the directory or the page table entry causes writes to be trapped. When WP is clear,
writes are trapped in user mode, but not in supervisor mode. When WP is set, writes are
trapped in both user and supervisor modes.

® INT (Interrupt) is the value of the INT input pin.

® DCS (Data Cache Size) is a read-only field that tells the size of the on-chip data cache. The
number of bytes actually available is 212+ DCS; therefore, a value of zero indicates 4 Kbytes,
one indicates 8 Kbytes, etc.

® PBM (Page-Table Bit Mode) determines which bit of page-table entries is output on the PTB
pin. When PBM is clear, the PTB signal reflects bit CD of the page-table entry used for the

3-5

intal REGISTERS

current cycle. When PBM is set, the PTB signal reflects bit WT of the page-table entry used
for the current cycle.

® BE (Big Endian) controls the ordering of bytes within a data item in memory. Normally (i.e.
when BE is clear) the 1860 Microprocessor operates in little endian mode, in which the
addressed byte is the low-order byte. When BE is set (big endian mode), the low-order three
bits of all load and store addresses are complemented, then masked to the appropriate
boundary for alignment. This causes the addressed byte to be the most significant byte. Refer
to Chapter 4 for more endian information.

® OF (Overflow Flag) is set by adds, addu, subs, and subu when integer overflow occurs.
Foradds and subs, OF is set if the carry from bit 31 is different than the carry from bit 30.
For addu, OF is set if there is a carry from bit 31. For'subu, OF is set if there is no carry
from bit 31. Under all other conditions, it is cleared by these instructions. OF controls the
function of the intovr instruction (refer to Chapter 5).

3.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to generate a trap when the 1860 Microprocessor accesses
an operand at the address stored in this register. The trap is enabled by BR and BW inpsr. When
comparing, a number of low order bits of the address are ignored, depending on the size of the
operand. For example, a 16-bit access ignores the low-order bit of the address when comparing
todb; a 32-bit access ignores the low-order two bits. This ensures that any access that overlaps
the address contained in the register will generate a trap.

3.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure 3-4) controls address translation, caching,
and bus options.

ADDRESS TRANSLATION ENABLE
DRAM PAGE SIZE
BUS LOCK
I-CACHE, TLB INVALIDATE
(RESERVED)
CODE SIZE 8-BIT
REPLACEMENT BLOCK '
REPLACEMENT CONTROL
' !
31 12,10 7 4 0
. cl. I ls A
DIRECTORY TABLE BASE (DTB) RC|RB g X ':' ol ors E

Figure 3-4. Directory Base Register

3-6

ntel REGISTERS

ATE (Address Translation Enable), when set, enables the virtual-address translation algorithm
described in Chapter 4. The data cache must be flushed before changing the ATE bit.

DPS (DRAM Page Size) controls how many bits to ignore when comparing the current bus-
cycle address with the previous bus-cycle address to generate the NENE# signal. This feature
allows for higher speeds when using static column or page-mode DRAMs and consecutive
reads and writes access the same column or page. The comparison ignores the low-order 12
+ DPS bits. A value of zero is appropriate for one bank of 256KXn RAMs, 1 for IMXn
RAMS, etc.

When BL (Bus Lock) is set, external bus accesses are locked. The LOCK# signal is asserted
the next bus cycle whose internal bus request is generated after BL is set. It remains set on
every subsequent bus cycle as long as BL remains set. The LOCK# signal is deasserted on
the next bus cycle whose internal bus request is generated after BL is cleared. Traps
immediately clear BL and the LOCK# signal and set IL in epsr. In this case the trap handler
should resume execution at the beginning of the locked sequence. The lock and unlock
instructions control the BL bit (refer to Chapter 5).

ITI (Instruction-Cache, TLB Invalidate), when set in the value that is loaded into dirbase,
causes the instruction cache and address-translation cache (TLB) to be flushed. The ITT bit
does not remain set in dirbase. ITI always appears as zero when read from dirbase. The
data cache must be flushed before invalidating the TLB.

When CS8 (Code Size 8-Bit) is set, instruction cache misses are processed as 8-bit bus
cycles. When this bit is clear, instruction cache misses are processed as 64-bit bus cycles.
This bit can not be set by software; hardware sets this bit at initialization time. It can be
cleared by software (one time only) to allow the system to execute out of 64-bit memory after
bootstrapping from 8-bit EPROM. A nondelayed branch to code in 64-bit memory should
directly follow the st.c instruction that clears CS8, in order to make the transition from 8-bit
to 64-bit memory occur at the correct time. The branch must be aligned on a 64-bit boundary.
Refer to the CS8 mode in the i860 Hardware Reference Manual for more information.

RB (Replacement Block) identifies the cache block to be replaced by cache replacement
algorithms. The high-order 'bit of RB is ignored by the instruction and data caches. RB
conditions the cache flush instruction flush, which is discussed in Chapter 5. Table 3-2
explains the values of RB. '

Table 3-2. Values of RB

Value Replace Replace Instruction
TLB Block and Data Cache Block
00 0 0
01 1 1
10 2 0
11 3 1

intel REGISTERS

RC (Replacement Control) controls cache replacement algorithms. Table 3-3 explains the
significance of the values of RC. The use of the RC and RB to implement data cache flushing
is described in Chapter 4.

DTB (Directory Table Base) contains the high-order 20 bits of the physical addess of the

page directory when address translation is enabled (i.e. ATE = 1). The low-order 12 bits of
the address are zeros (therefore the directory must be located on a 4K boundary).

Table 3-3. Values of RC

Value Meaning

00 Selects the normal replacement algorithm where any block in the set may be
replaced on cache misses in all caches.

01 Instruction, data, and TLB cache misses replace the block selected by RB. The
instruction and data caches ignore the high-order bit of RB. This mode is used
for instruction. cache and TLB testing.

10 Data cache misses replace the block selected by the low-order bit of RB.

11 Disables data cache replacement.

3.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register (the fir) contains the address of the instruction that caused the
trap, as described in Chapter 7. Saving fir anytime except the first time after a trap occurs saves
the address of the ld.c instruction.

3.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the floating-point trap and rounding-mode status
for the current process. Figure 3-5 shows its format.

If FZ (Flush Zero) is clear and underflow occurs, a result-exception trap is generated. When
FZ is set and underflow occurs, the result is set to zero, and no trap due to underflow occurs.

If TI (Trap Inexact) is clear, inexact results do not cause a trap. If TI is set, inexact results
cause a trap. The sticky inexact flag (SI) is set whenever an inexact result is produced,
regardless of the setting of TI.

RM (Rounding Mode) specifies one of the four rounding modes defined by the IEEE standard.
Given ‘a true result b that cannot be represented by the target data type, the i860
Microprocessor determines the two representable numbers a and ¢ that most closely bracket
b in value (a < b < ¢). The 1860 Microprocessor then rounds (changes) b to a or ¢ according
to the mode selected by RM as defined in Table 3-4. Roundmg introduces an error in the
result that is less than one least-significant bit. ,

3-8

ntel

REGISTERS

FLUSH ZERO

TRAP INEXACT
ROUNDING MODE

UPDATE

FLOATING-POINT TRAP ENABLE

(RESERVED)

STICKY INEXACT FLAG

SOURCE EXCEPTION

MULTIPLIER UNDERFLOW
MULTIPLIER OVERFLOW

MULTIPLIER INEXACT

MULTIPLIER ADD ONE

ADDER UNDERFLOW
ADDER OVERFLOW

31 25 22

Y

<
-
-
-«
oy
<
-

17 15

X} AE RR

> >
—>
- I~
>
m={n
C
P
z
NT jo

AJAIMIMIMEMIS
OJUJA] ! JOJUJE

i
1

AH

| L ADDER INEXACT
ADDER ADD ONE

RESULT REGISTER
ADDER EXPONENT

P e o °F 1

(RESERVED)

LOAD PIPE RESULT PRECISION

INTEGER (GRAPHICS) PIPE RESULT
PRECISION

MULTIPLIER PIPE RESULT PRECISION

ADDER PIPE RESULT PRECISION

(RESERVED)

Figure 3-5. Floating-Point Status Register

Table 3-4. Values of RM

Value Rounding Mode Rounding Action
00 Round to nearest or even Closer to b of a or c; if equally close, select even
number (the one whose least significant bit is
zero).
01 Round down (toward —x) | a
10 Round up (toward +x) c
11 Chop (toward zero) Smaller in magnitude of a orc.

The U-bit (Update Bit), if set in the value that is loaded into fsr by a st.c instruction, enables
updating of the result-status bits (AE, AA, Al, AO, AU, MA, MI, MO, and MU) in the
first-stage of the floating-point adder and multiplier pipelines. If this bit is clear, the result-
status bits are unaffected by ast.c instruction; st.c ignores the corresponding bits in the value
that is being loaded. An st.c always updates fsr bits 21..17 and 8..0 directly. The U-bit does

3-9

ntel REGISTERS

not remain set; it always appears a zero when read. A trap handler that has interrupted a
pipelined operation sets the U-bit to enable restoration of the result-status bits in the pipeline.
Refer to Chapter 7 for details.

The FTE (Floating-Point Trap Enable) bit, if clear, disables all floating-point traps (invalid
input operand, overflow, underflow, and inexact result). Trap handlers clear it while saving
and restoring the floating-point pipeline state (refer to Chapter 7) and to produce NaN,
infinite, or denormal results without generating traps.

SI (Sticky Inexact) is set when the last-stage result of either the multiplier or adder is inexact
(i.e. when either Al or MI is set). SI is “‘sticky’’ in the sense that it remains set until reset
by software. Al and MI, on the other hand, can by changed by the subsequent floating-point
instruction. :

SE (Source Exception) is set when one of the source operands of a floating-point operation is
invalid; it is cleared when all the input operands are valid. Invalid input operands include
denormals, infinities, and all NaNs (both quiet and signaling). Trap handler software can
implement IEEE-standard results for operations on these values.

When read from the fsr, the result-status bits MA, MI, MO, and MU (Multiplier Add-One,
Inexact, Overflow, and Underflow, respectively) describe the last-stage result of the multiplier.

When read from the fsr, the result-status bits AA, Al, AO, AU, and AE (Adder Add-One,
Inexact, Overflow, Underflow, and Exponent, respectively) describe the last-stage result of
the adder. The high-order three bits of the 11-bit exponent of the adder result are stored in
the AE field. The trap handler needs the AE bits when overflow or underflow occurs with
double-precision inputs and single-precision outputs.

After a floating-point operation in a given unit (adder or multiplier), the result-status bits of
that unit are undefined until the point at which resuit exceptions are reported.

When written to the fsr with the U-bit set, the result-status bits are placed into the first stage
of the adder and multiplier pipelines. When the processor executes pipelined operations, it
propagates the result-status bits of a particular unit (multiplier or adder) one stage for each
pipelined floating-point operation for that unit. When they reach the last stage, they replace
the normal result-status bits in the fsr. '

In a floating-point dual-operation instruction (e.g. add-and-multiply or subtract-and-multiply),
both the multiplier and the adder may set exception bits. The result-status bits for a particular
unit remain set until the next operation that uses that unit.

AA (Adder Add One), if set, indicates that the adder rounded the result by adding one least
significant bit.

MA (Multiplier Add One), if set, indicates the multiplier rounded the result by one least
significant bit.

RR (Result Register) specifies which floating-point register (f0-f31) was the destination register
when a result-exception trap occurs due to a scalar operation.

|ntef REGISTERS

® [RP (Load Pipe Result Precision), IRP (Integer (Graphics) Pipe Result Precision), MRP
(Multiplier Pipe Result Precision), and ARP (Adder Pipe Result Precision) aid in restoring
pipeline state after a trap or process switch. Each defines the precision of the last-stage result
in the corresponding pipeline. One of these bits is set when the result in the last stage of the
corresponding pipeline is double precision; it is cleared if the result is single precision. These
bits cannot be changed by software.

3.9 KR, KI, T, AND MERGE REGISTERS

The KR and KI (“‘Konstant’’) registers and the T (Temporary) register are special-purpose
registers used by the dual-operation floating-point instructions described in Chapter 6. The
MERGE register is used only by the graphics instructions also presented in Chapter 6. Refer to
this chapter for details of their use.

Addressing

Chapter 4
Addressing

Memory is addressed in byte units with a paged virtual-address space of 232 bytes. Data and
instructions can be located anywhere in this address space. Address arithmetic is performed using
32-bit input values and produces 32-bit results. The low-order 32 bits of the result are used in
case of overflow.

Normally, multibyte data values are stored in memory in little endian format, i.e. with the least
significant byte at the lowest memory address. As an option that may be dynamically selected by
software in supervisor mode, the 1860 Microprocessor also offers big endian mode, in which the
most significant byte of a data item is at the lowest address. Code accesses are always done with
little endian addressing. Figure 4-1 shows the difference between the two storage modes. Big
endian and little endian data areas should not be mixed within a 64-bit data word. Illustrations of
data structures in this manual show data stored in little endian mode, i.e. the rightmost (low-
order) byte is at the lowest memory address. The BE bit of epsr selects the mode, as described
in Chapter 3.

LITTLE ENDIAN FORMAT
63 55 47 39 31 23 15 7 0
m+7 m+6 m+5 m+4 m+3 . m+2 m+l m
BIG ENDIAN FORMAT
63 55 47 39 31 23 15 7 0
m m+1 m+2 ° m+3 m+4 m+5 m+6 m+7
m IS THE MEMORY ADDRESS OF THE WORD.

Figure 4-1. Memory Formats

intel ADDRESSING

4.1 ALIGNMENT

All data types are addressed by specifying their lowest-addressed byte. Alignment requirements
are as follows:

® A 128-bit value is aligned to an address divisible by 16 when referenced in memory (i.e. the
four least significant address bits must be zero) or a data-access trap occurs.

® A 64-bit value is aligned to an address divisible by eight when referenced in memory (i.e.
the three least significant address bits must be zero) or a data-access trap occurs.

® A 32-bit value is aligned to an address divisible by four when referenced in memory (i.e. the
two least significant address bits must be zero) or a data-access trap occurs.

® A 16-bit value is aligned to an address divisible by two when referenced in memory (i.e. the
least significant address bit must be zero) or a data-access trap occurs.

4.2 VIRTUAL ADDRESSING

When address translation is enabled, the 1860 Microprocessor maps instruction and data virtual
addresses into physical addresses before referencing memory. This address transformation is
compatible with that of the 386™ microprocessor and implements the basic features needed for
page-oriented virtual-memory systems and page-level protection.

The address translation is optional. Address translation is in effect only when the ATE bit of
dirbase is set. This bit is typically set by the operating system during software initialization. The
ATE bit must be set if the operating system is to implement page-oriented protection or page-
oriented virtual memory.

Address translation is disabled when the processor is reset. It is enabled when a store to dirbase
sets the ATE bit. It is disabled again when a store clears the ATE bit.

- 4.2.1 Page Frame

A page frame is a 4K-byte unit of contiguous addresses of physical main memory. Page frames
begin on 4K-byte boundaries and are fixed in size. A page is a the collection of data that occupies
a page frame when that data is present in main memory or occupies some location in secondary
storage when there is not sufficient space in main memory.

4.2.2 Virtual Address

A virtual address refers indirectly to a physical address by specifying a page table, a page within
that table, and an offset within that page. Figure 4-2 shows the format of a virtual address.

ADDRESSING

31

21

11

DIR

PAGE

OFFSET

Figure 4-3 shows how the i860 Microprocessor converts the DIR, PAGE, and OFFSET fields of
a virtual address into the physical address by consulting two levels of page tables. The addressing
mechanism uses the DIR field as an index into a page directory, uses the PAGE field as an index
into the page table determined by the page directory, and uses the OFFSET field to address a byte

within the page determined by the page table.

Figure 4-2. Format of a Virtual Address

PAGE FRAME

PAGE TABLE

PG TBL ENTRY

PHYSICAL
ADDRESS

DIR PAGE OFFSET
PAGE DIRECTORY
> DIR ENTRY
3
DTB

Figure 4-3. Address Translation

intgl ADDRESSING

4.2.3 Page Tables

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and
therefore contains 4 Kilobytes of memory or at most 1K 32-bit entries.

Two levels of tables are used to address a page of memory. At the higher level is a page directory.
The page directory addresses up to 1K page tables of the second level. A page table of the second
level addresses up to 1K pages. All the tables addressed by one page directory, therefore, can
address 1M pages (220). Because each page contains 4Kbytes (212 bytes), the tables of one page
di3r2ectory can span the entire physical address space of the i860 Microprocessor (220 x 212 =
2°%).

The physical address of the current page directory is stored in DTB field of the dirbase register.

Memory management software has the option of using one page directory for all processes, one
page directory for each process, or some combination of the two.

4.2.4 Page-Table Entries

Page-table entries (PTEs) in either level of page tables have the same format. Figure 4-4 illustrates
this format.

PRESENT
WRITABLE
USER
WRITE-THROUGH
CACHE DISABLE
ACCESSED

DIRTY
(RESERVED) 1
AVAILABLE FOR SYSTEMS PROGRAMMER USE ——1 1

31 12 9 7 5

o0

==]v ~—
-t

PAGE FRAME ADDRESS 31..12 AVAILEX XID AI

NOTE: X INDICATES INTEL RESERVED. DO NOT USE.

Figure 4-4. Format of a Page Table Entry

4241 PAGE FRAME ADDRESS

The page frame address specifies the physical starting address of a page. Because pages are
located on 4K boundaries, the low-order 12 bits are always zero. In a page directory, the page
frame address is the address of a page table. In a second-level page table, the page frame address
is the address of the page frame that contains the desired memory operand.

4-4

mtel' ADDRESSING

4.2.4.2 PRESENT BIT

The P (present) bit indicates whether a page table entry can be used in address translation. P=1
indicates that the entry can be used.

When P=0 in either level of page tables, the entry is not valid for address translation, and the
rest of the entry is available for software use; none of the other bits in the entry is tested by the
hardware. Figure 4-5 illustrates the format of a page-table entry when P=0.

31 0

AVAILABLE 0

Figure 4-5. Invalid Page Table Entry

If P=0 in either level of page tables when an attempt is made to use a page-table entry for address
translation, the processor signals either a data-access fault or an instruction-access fault. In
software systems that support paged virtual memory, the trap handler can bring the required page
into physical memory. Refer to Chapter 7 for more information on trap handlers.

Note that there is no P bit for the page directory itself. The page directory may be not-present
while the associated process is suspended, but the operating system must ensure that the page
directory indicated by the dirbase image associated with the process is present in physical memory
before the process is dispatched.

4.24.3 CACHE DISABLE BIT

If the CD (cache disable) bit in the second-level page-table entry is set, data from the associated
page is not placed in instruction or data caches. The CD bit of page directory entries is not
referenced by the processor, but is reserved.

4.24.4 WRITE-THROUGH BIT

The 1860 Microprocessor does not implement a write-through caching policy for the on-chip
instruction and data caches; however, the WT (write-through) bit in the second-level page-table
entry does determine internal caching policy. If WT is set in a PTE, on-chip caching from the
corresponding page is inhibited. If WT is clear, the normal write-back policy is applied to data
from the page in the on-chip caches. The WT bit of page directory entries is not referenced by
the processor, but is reserved.

To control external caches, the chip outputs on its PTB pin either CD or WT. The PBM bit of
epsr determines which bit is output, as described in Chapter 3.

45

|nte[ADDRESSING

4.24.5 ACCESSED AND DIRTY BITS

The A (accessed) and D (dirty) bits provide data about page usage in both levels of the page
tables.

The 1860 Microprocessor sets the corresponding accessed bits in both levels of page tables before
a read or write operation to a page. The processor tests the dirty bit in the second-level page table
before a write to an address covered by that page table entry, and, under certain conditions,
causes traps. The trap handler then has the opportunity to maintain appropriate values in the dirty
bits. The dirty bit in directory entries is not tested by the i860 Microprocessor. The precise
algorithm for using these bits is specified in Section 4.2.5.

An operating system that supports paged virtual memory can use these bits to determine what
pages to eliminate from physical memory when the demand for memory exceeds the physical
memory available. The D and A bits in the PTE (page-table entry) are normally initialized to zero
by the operating system. The processor sets the A bit when a page is accessed either by a read or
write operation. When a data- or instruction-access fault occurs, the trap handler sets the D bit if
an allowable write is being performed, then reexecutes the instruction.

The operating system is responsible for coordinating its updates to the accessed and dirty bits with
updates by the CPU and by other processors that may share the page tables. The i860
Microprocessor automatically asserts the LOCK# signal while testing and setting the A bit.

4.2.4.6 WRITABLE AND USER BITS

The W (writable) and U (user) bits are used for page-level protection, which the 1860
Microprocessor performs at the same time as address translation. The concept of privilege for
pages is implemented by assigning each page to one of two levels:

1. Supervisor level (U=0)—for the operating system and other systems software and related
data.

2. User level (U=1)—for applications procedures and data.

The U bit of the psr indicates whether the i860 Microprocessor is executing at user or supervisor
level. The i860 Microprocessor maintains the U bit of psr as follows:

® The 1860 Microprocessor copies the pst PU bit into the U bit when an indirect branch is
executed and one of the trap bits is set. If PU was one, the 1860 Microprocessor enters user
level.

® The i860 Microprocessor clears the psr U bit to indicate supervisor level when a trap occurs
(including when the trap instruction causes the trap). The prior value of U is copied into
PU. (The trap mechanism is described in Chapter 7; the trap instruction is described in
Chapter 5.)

With the U bit of psr and the W and U bits of the page table entries, the i860 Microprocessor
implements the following protection rules:

® When at user level, a read or write of a supervisor-level page causes a trap.

4-6

|ntel’ ADDRESSING

® When at user level, a write to a page whose W bit is not set causes a trap.

® When at user level, st.c to certain control registers is ignored.

When the i860 Microprocessor is executing at supervisor level, all pages are addressable, but,
when it is executing at user level, only pages that belong to the user-level are addressable.

When the i860 Microprocessor is executing at supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection mode controlled by WP of epsr:

WP=0 All pages are writable.
WP=1 A write to page whose W bit is not set causes a trap.

When the i860 Microprocessor is executing at user level, only pages that belong to user level and

are marked writable are actually writable; pages that belong to supervisor level are neither readable
nor writable from user level.

4.24.7 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES

For any one page, the protection attributes of its page directory entry may differ form those of its
page table entry. The i860 Microprocessor computes the effective protection attributes for a page
by examining the protection attributes in both the directory and the page table. Table 4-1 shows
the effective protection provided by the possible combinations of protection attributes.

4.2.5 Address Translation Algorithm

The algorithm below defines how the on-chip MMU translates each virtual address to a physical
address. Let DIR, PAGE, and OFFSET be the fields of the virtual address; let PFA1 and PFA2
be the page frame address fields of the first and second level page tables respectively; DTB is the
page directory table base address stored in the dirbase register.

1. Assert LOCK#.

2. Read the PTE (page table entry) at the physical address formed by DTB:DIR:00.

3. If Pin the PTE is zero, generate a data- or instruction-access fault.

4. If W in the PTE is zero, the operation is a write, and either the U bit of the PSR is set or
WP=1, generate a data-access fault.

5. If the U bit in the PTE is zero and the U bit in the psr is set, generate a data- or instruction-
access fault.

6. If A in the PTE is zero, set A.
7. Locate the PTE at the physical address formed by PFA1:PAGE:00.

8. Perform the P, A, W, and U checks as in steps 3 through 6 with the second-level PTE.

47

mte[ADDRESSING

9. If D in the PTE is clear and the operation is a write, generate a data-access fault.

10. Form the physical address as PFA2:OFFSET,

11. Deassert LOCK#.

Table 4-1. Combining Directory and Page Protection

Page Directory Page Table Combined Protection
Entry Entry WP=0 WP=1
U-bit W-bit U-bit W-bit U w U w
0 0 0 0 0 X 0 0
0 0 0 1 0 X 0 0
0 0 1 0 0 X 0 0
0 0 1 1 0 X 0 0
0 1 0 0 0 X 0 0
0 1 0 1 0 X 0 1
0 1 1 0 0 X 0 0
0 1 1 1 0 X 0 1
1 0 0 0 0 X 0 0
1 0 0 1 0 X 0 0
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 0
1 1 0 0 0] X 0 0
1 1 0 1 0 X 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1
U=0 ~ Supervisor W=0 - Read only
U=1 - User W=1 - Read and write

x indicates that, when the combined U attribute is supervisor
and WP=0, the W atlrib_ute is not checked.

4.2.6 Address Translation Faults
The address translation fault is one instance of the data-access fault. (Refer to Chapter 7 for more

information on this and other faults.) The instruction causing the fault can be reexecuted by the
return-from-trap sequence defined in Chapter 7.

4.2.7 Page Translation Cache

For greatest efficiency in address translation, the i860 Microprocessor stores the most recently
used page-table data in an on-chip cache called the TLB (translation lookaside buffer). Only if the
necessary paging information is not in the cache must both levels of page tables be referenced.

4-8

|ntel’ ADDRESSING

4.3 CACHING AND CACHE FLUSHING

The 1860 Microprocessor has the ability to cache instruction, data, and address-translation
information in on-chip caches. Caching may use virtual-address tags. The effects of mapping two
different virtual addresses in the same address space to the same physical address are undefined.

Instruction, data, and address-translation caching on the 1860 Microprocessor are not transparent.
Writes do not immediately update memory, the TLB, nor the instruction cache. Writes to memory
by other bus devices do not update the caches. Under certain circumstances, such as I/O
references, self-modifying code, page-table updates, or shared data in a multiprocessing system,
it is necessary to bypass or to flush the caches. i860 Microprocessor provides the following
methods for doing this:

® Bypassing Instruction and Data Caches. If deasserted during cache-miss processing, the
KEN# pin disables instruction and data caching of the referenced data. If the CD or WT bit
from the associated second-level PTE is set, internal caching of data and instructions is
disabled. The value of the CD or WT bit is output on the PTB pin for use by external caches.

® Flushing Instruction and Address-Translation Caches. Storing to the dirbase register with
the ITI bit set invalidates the contents of the instruction and address-translation caches. This
bit should be set when a page table or a page containing code is modified or when changing
the DTB field of dirbase. Note that in order to make the instruction or address-translation
caches consistent with the data cache, the data cache must be flushed before invalidating the
other caches.

NOTE

The mapping of the page containing the currently executing instruction and the next 6
instructions should not be different in the new page tables when st.c dirbase changes
DTB or activates ITI. The 6 instructions following the st.c should be nops, and
should lie in the same page as the st.c.

® Flushing the Data Cache. The data cache is flushed by the software routine shown in
Chapter 5 with the flush instruction. The data cache must be flushed prior to flushing the
instruction or address-translation cache (as controlled by the ITI bit of dirbase) or enabling
or disabling address translation (via the ATE bit).

The 1860 CPU searches only external memory for Page Directories and Page Tables, in the

translation process. The data cache is not searched. Thus Page Tables and Directories should be
kept in non-cacheable memory, or flushed from the cache by any code which accesses them.

4-9

Core Instructions

Chapter 5
Core Instructions

Core instructions include loads and stores of the integer, floating-point, and control registers;
arithmetic and logical operations on the 32-bit integer registers; and control transfers. All these
instructions are executed by the core unit.

Key to abbreviations in the following descriptions of core instructions:

srel

srelni

sre2

rdest

freg
mem.x(address)

#const

ctrireg
lbroff
sbroff

brx

srcls

comp2

An integer register or a 16-bit immediate constant or address offset. The
immediate value is zero-extended for logical operations and is sign-extended
for add and subtract operations (including addu and subu) and for all
addressing calculations.

Same as src¢/ except that no immediate constant or address offset value is
permitted.

An integer register.

An integer register.

A floating-point register.

The contents of the memory location indicated by address with a size of x.
A 16-bit immediate constant or address offset that the i860 Microprocessor
sign-extends to 32 bits when computing the

effective address.

One of the control registers fir, epsr, psr, dirbase, db, or fsr.

A signed, 26-bit, immediate, relative branch offset.

A signed, 16-bit, immediate, relative branch offset.

A function that computes the target address by shifting the offset (either
lbroff or sbroff) left by two bits, sign-extending it to 32 bits, and adding the
result to the current instruction pointer plus four. The resulting target

address may lie anywhere within the address space.

An integer register or a 5-bit immediate constant that is zero-extended to 32
bits.

A function that returns the two’s complement of its argument.

The comments regarding optimum performance that appear in the subsections Programming
Notes are recommendations only. If these recommendations are not followed, the 1860
Microprocessor automatically waits the necessary number of clocks to satisfy internal hardware

requirements.

5-1

intel ~ * CORE INSTRUCTIONS

5.1 LOAD INTEGER

Id.x srcl(src2), rdest (Load Integer)
rdest €— mem.x (srcl + src2)

.x = .b (8 bits), .s (16 bits), or.l (32 bits)

The load integer instruction transfers an 8-, 16-, or 32-bit value from memory to the integer
registers. The src/ can be either a 16-bit immediate address offset or an index register. Loads of
8- or 16-bit values from memory place them in the low-order bits of the destination registers and
sign-extend them to 32-bit values in the destination registers.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For best performance, observe the following guidelines:

1. The destination of a load should not be referenced as a source operand by the next instruction.
2. A load instruction should not directly follow a store that is expected to hit in the data cache.
Even though immediate address offsets are limited to 16 bits, loads using a 32-bit address offset

may be implemented by the following sequence (r31 is recommended for all such addressing
calculations):

orh HIGH16a, r0, r31
1d.1 LOW16Cr31), rdest

Note that the 1860 Microprocessor uses signed addition when it adds LOW16 to r31. If bit 15 of
LOWI16 is set, this has the effect of subtracting from r31. Therefore, when bit 15 of LOW16 is
set, HIGH16a must be derived by adding one to the high-order 16 bits, so that the net result is
correct.

The assembler must align the immediate address offsets used in loads to the same boundary as the
effective address, because the lower bits of the immediate offset are used to encode operand
length information.

|ntel“ CORE INSTRUCTIONS

5.2 STORE INTEGER

st.x srclni, #const(src2) (Store Integer)
mem.x (src2 + #const) €= srcini

X = .b (8 bits), .8 (16 bits), or .l (32 bits)

The store instruction transfers an 8-, 16-, or 32-bit value from the integer registers to memory.
Stores do not allow an index register in the effective-address calculation, because src/ni is used
to specify the register to be stored. The #const is a signed, 16-bit, immediate address offset. An
absolute address may be formed by using the zero register for src2. Stores of 8- or 16-bit values
store the low-order 8 or 16 bits of the register. -

Traps
If the operand is misaligned, a data-access trap results.
Programming Notes

For best performance, a load instruction should not directly follow a store that is expected to hit
in the data cache.

Even though immediate address offsets are limited to 16 bits, a store using a 32-bit immediate
address offset may be implemented by the following sequence (r31 is recommended for all such
addressing calculations):

orh HIGH16a, r0, r31
st.1l rdest, LOW16Cr31)

Note that the 1860 Microprocessor uses signed addition when it adds LOW16 to r31. If bit 15 of
LOWI16 is set, this has the effect of subtracting from r31. Therefore, when bit 15 of LOW16 is
set, HIGH16a must be derived by adding one to the high-order 16 bits, so that the net result is
correct.

The assembler must align the immediate address offsets used in stores to the same boundary as

the effective address, because the lower bits of the immediate offset are used to encode operand
length information.

5.3 TRANSFER INTEGER TO F-P REGISTER

ixfr srclni, freg (Transfer Integer to F-P Register)
Jfreg = srclni

The ixfr instruction transfers a 32-bit value from an integer register to a floating-point register.

5-3

intel | CORE INSTRUCTIONS

Programming Notes

For best performance, the destination of an ixfr should not be referenced as a source operand in
the next two instructions.

5.4 LOAD FLOATING-POINT

Floating-Point Load
fild.y srcl(src2) freg (Normal)
fld.y srel(src2)++ freg (Autoincrement)
freg 4— mem.y (srcl + src2)
IF autoincrement
THEN src2 44— srcl + src2

FI
Pipelined Floating-Point Load
pfld.z srcl(src2), freg (Normal)
pfid.z srel(sre2)++, freg (Autoincrement)

freg 4— mem.z (third previous pfld’s (src/ + src2))
(where .z is precision of third previous pfld.z)

IF autoincrement

THEN src2 44— srcl + src2

FI

5y = .1 (32 bits), .d (64 bits), or.q (128 bits); .z = .1 or.d

Floating-point loads transfer 32-, 64-, or 128-bit values from memory to the floating-point
registers. These may be tloating-point values or integers. An autoincrement option supports
constant-stride vector addressing. If this option is specified, the i860 Microprocessor stores the
effective address into sr¢2.

Floating-point loads may be either pipelined or not. The load pipeline has three stages. A pfid
returns the data from the address calculated by the third previous pfld, thereby allowing three
loads to be outstanding on the external bus. When the data is already in the cache, both pipelined
and nonpipelined forms of the load instruction read the data from the cache. The pipelined pfld
instruction, however, does not place the data in the data cache on a cache miss. A pfld should be
used only when the data is expected to be used once in the near future. Data that is expected to
be used several times before being replaced in the cache should be loaded with the nonpipelined
fid instruction. The fld instruction does not advance the load pipeline and does not interact with
outstanding pfld instructions.

Traps
If the operand is misaligned, a data-access trap results.
Programming Notes

A pfld cannot load a 128-bit operand.

|nter CORE INSTRUCTIONS

For best performance, observe the following guidelines:

1. The destination of afld or pfld should not be reférenced as a source operand in the next two
instructions.

2. Afid instruction should not directly follow a store instruction that is expected to hit in the
data cache. There is no performance impact for a pfld following a store instruction.

3. A pfld instruction should not directly follow another pfid.
The assembler must align the immediate address offsets used in loads to the same boundary as the

effective address, because the lower bits of the immediate offset are used to encode operand
length information.

5.5 STORE FLOATING-POINT

Floating-Point Store
fsty freg, srcl(src2) (Normal)
fsty freg, srcl(src2)++ (Autoincrement)

mem.y (src2 + srcl) 4= freg
IF autoincrement

THEN src2 4= srcl + src2
FI

.y = .1 (32 bits), .d (64 bits), or.q (128 bits)
Floating-point stores transfer 32-, 64-, or 128-bit values from the floating-point registers to
memory. These may be floating-point values or integers. Floating-point stores allow src/ to be
used as an index register. An autoincrement option supports constant-stride vector addressing. 1f
this option is specified, the i860 Microprocessor stores the effective address into src2.
Traps
If the operand is misaligned, a data-access trap results.
Programming Notes

For best performance, observe the following guidelines:

1. Afld instruction should not directly follow a store instruction that is expected to hit in the
data cache. There is no performance impact for a pfld following a store instruction.

2. The freg of an fst.y instruction should not reference the destination of the next instruction if
that instruction is a pipelined floating-point operation.

The assembler must align the immediate address offsets used in stores to the same boundary as

the effective address, because the lower bits of the immediate offset are used to encode operand
length information.

5-5

intel | CORE INSTRUCTIONS

5.6 PIXEL STORE

pst.d freg, #const(src2) (Pixel store) ;
pstd freg, #const(src2)++ (Pixel store autoincrement)

Pixels enabled by PM in mem.d (src2 + #const) 4— freg
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement THEN src2 €= #const + src2 FI

The pixel store instruction selectively updates the pixels in a 64-bit memory location. The pixel
size is determined by the PS field in the psr. The pixels to be updated are selected by the low-
order bits of the PM field in the psr. Each bit of PM corresponds to one pixel, with bit O
corresponding to the pixel at the lowest address.

This instruction is typically used in conjunction with the fzchks or fzchkl instructions to implemeht
Z-buffer hidden-surface elimination. When used this way, a pixel is updated only when it
represents a point that is closer to the viewer than the closest point painted so far at that particular
pixel location. Refer to Chapter 6 for more about fzchks and fzchkl.

Traps

If the operand is misaligned, a data-access trap results.
5.7 INTEGER ADD AND SUBTRACT

In addition to their normal arithmetic functions, the add and subtract instructions are also used to
implement comparisons. For this use, r0 is specified as the destination, so that the result is
effectively discarded. Equal and not-equal comparisons are implemented with the xor instruction
(refer to the section on logical instructions).

Add and subtract ordinal (unsigned) can be used to implement multiple-precision arithmetic.
Flags Affected

CC and OF.

Programming Notes

For optimum performance, do not perform a conditional branch in the instruction following an
add or subtract instruction.

Refer to Chapter 9 for an example of how to handle the sign of 8- and 16-bit integers when
manipulating them with 32-bit instructions.

An instruction of the form subs -1, src2, rdest yields the one’s complement of src2.

5-6

Inter CORE INSTRUCTIONS

addu srcl, src2, rdest (Add unsigned)

rdest 4— srcl + src2
OF <4 bit 31 carry
CC <4 bit 31 carry

adds : srcl, src2, rdest (Add signed)

rdest 4= srcl + src2
OF 44— (bit 31 carry # bit 30 carry)
Using signed comparison,
CC set if src2 < comp2(srcl)
CC clear if src2 = comp2(srcl)

subu srcl, src2, rdest (Subtract unsigned)

rdest 4= srcl — src2
OF 44— NOT (bit 31 carry)
CC 44— bit 31 carry
(i.e., using unsigned comparison,
CC set if src2. < srcl
CC clear if src2 > srcl

subs srcl, src2, rdest (Subtract signed)

rdest 4— srcl — src2
OF 4— (bit 31 carry # bit 30 carry)
Using signed comparison,

CC set if src2 > srcl

CC clear if src2 < srcl

When src/ is immediate, the immediate value is sign-extended to 32-bits even for the unsigned
instructions addu and subu.

These instructions enable convenient encoding of a literal operand in a subtraction, regardless of
whether the literal is the subtrahend or the minuend. For example:

Calculation Encoding

. r6=2-15 subs 2, 5, 16
Signed r6=r5-2 adds — 2, r5, 16

. r6=2-r5 subu 2, 15, 16
Unsigned =r5-2 addu — 2, 15, 16

Note that the only difference between the signed and the unsigned forms is in the setting of the
condition code CC.

5-7

Intel

CORE INSTRUCTIONS

The various forms of comparison between variables and constants can be encoded as follows:

Branch When True
Condition Encoding
Signed Unsigned
subs const, var bnc
=
var < const subu const, var .bc
adds —const, var bc
var < const addu —const, var® bnc
adds —const, var bnc
; £l
var = const addu —const, var* bc
subs const, var be
var > const subu const, var bnc

*Valid only when const > 0

5.8 SHIFT INSTRUCTIONS

shi

shr

shra

shrd

srcl, src2, rdest (Shift left)
rdest 4— src2 shifted left by srcl bits

srcl, src2, rdest (Shift right)
SC (in psr) 4— srcl
rdest 4— src2 shifted right by srcl bits

srcl, sre2, rdest (Shift right arithmetic)
rdest 4— src2 arithmetically shifted right by srcl bits

srclni, src2, rdest (Shift right double)
rdest €— low-order 32 bits of srclniisrc2 shifted right by SC bits

The arithmetic shift does not change the sign bit; rather, it propagates the sign bit to the right src/

bits.

Shift counts are taken modulo 32. A shrd right-shifts a 64-bit value with src/ being the high-
order 32 bits and src2 the low-order 32 bits. The shift count for shrd is taken from the shift count
of the last shr instruction, which is saved in the SC field of the psr. Shift-left is identical for

integers and ordinals.

Programming Notes

The shift instructions are recommended for the integer register-to-register move and for no-
operations, because they do not affect the condition code. The following assembler pseudo-

operations utilize the shift instructions:

5-8

ntel CORE INSTRUCTIONS

mov src2, rdest (Register-to-register move)

Assembler pseudo-operation, equivalent to:
shl r0, src2, rdest

nop (Core no-operation)
Assembler pseudo-operation, equivalent to:
shl r0, r0, r0
fnop (Floating-point no-operation)

Assembler pseudo-operation, equivalent to:
shrd r0, r0, r0

Rotate is implemented by:

shr COUNT, r0, r0 // Only loads COUNT into SC of PSR
shrd op, op, op // Uses SC for shift count

5.9 SOFTWARE TRAPS

trap srel, src2, rdest (Software trap)

Generate trap with IT set in psr

intovr (Software trap on integer overflow)

If OF of epsr = 1, generate trap with IT set in psr

These instructions generate the instruction trap, as described in Chapter 7.

The trap instruction can be used to implement supervisor calls and code breakpoints. The rdest
should be zero, because its contents are undefined after the operation. The src/ and src2 fields
can be used to encode the type of trap.

The intovr instruction generates an instruction trap if OF bit (overflow flag) of epsr is set. It is

~ used to test for integer overflow after the instructions adds, addu, subs, and subu.

5.10 LOGICAL INSTRUCTIONS

The operation is performed bitwise on all 32 bits of sr¢/ and sre2. When srel is an immediate
constant, it is zero-extended to 32 bits.

The ““H”’ variant signifies ‘‘high’’ and forms one operand by using the immediate constant as the
high-order 16 bits and zeros as the low-order 16 bits. The resulting 32-bit value is then used to
operate on the src2 operand.

5-9

Inte| ~ CORE INSTRUCTIONS

and srcl, src2, rdest (Logical AND)
rdest 4— srcl. AND src2
CC set if result is zero, cleared otherwise

andh #const, src2, rdest (Logical AND high)
rdest 4— (#const shifted left 16 bits) AND src2
CC set if result is zero, cleared otherwise

andnot srel, sre2, rdest (Logical AND NOT)
rdest 4— NOT srcl AND src2
CC set if result is zero, cleared otherwise

andnoth #const, src2, rdest (Logical AND NOT high)
rdest €— NOT (#const shifted left 16 bits) AND src2
CC set if result is zero, cleared otherwise

or srel, src2, rdest (Logical OR)
rdest 4= srcl OR src2
CC set if result is zero, cleared otherwise

orh #const, src2, rdest- (Logical OR high)
rdest 4— (#const shifted left 16 bits) OR src2
CC set if result is zero, cleared otherwise

xor srel, sre2, rdest (Logical XOR)
rdest 4= srcl XOR sr¢2
CC set if result is zero, cleared otherwise

xorh #const, src2, rdest (Logical XOR high)

rdest €— (#const shifted left 16 bits) XOR src2
CC set if result is zero, cleared otherwise

Flags Affected

CC is set if the result is zero, cleared otherwise.

5-10

Int‘e[CORE INSTRUCTIONS

Programming Notes

Bit operations can be implemented using logical operations. Sr¢/ is an immediate constant which
contains a one in the bit position to be operated on and zeros elsewhere.

BitOperation Equivalent Logical
Operation
Set bit or
Clear bit andnot
Complement bit xor
Test bit and (CC set if bit is clear)

5.11 CONTROL-TRANSFER INSTRUCTIONS

Control transfers can branch to any location within the address space. However, if a relative
branch offset, when added to the address of the control-transfer instruction plus four, produces an
address that is beyond the 32-bit addressing range of the i860 Microprocessor, the results are
undefined. '

Many of the control-transfer instructions are delayed transfers. They are delayed in the sense that
the 1860 Microprocessor executes one additional instruction following the control-transfer
instruction before actually transferring control. During the time used to execute the additional
instruction, the i860 Microprocessor refills the instruction pipeline by fetching instructions from
the new instruction address. This avoids breaks in the instruction execution pipeline. It is generally
possible to find an appropriate instruction to execute after the delayed control-transfer instruction
even if it is merely the first instruction of the procedure to which control is passed.

Programming Notes

The sequential instriction following a delayed control-transfer instruction may be neither another
control-transfer instruction, nor a trap instruction, nor the target of a control-transfer instruction.

The instructions be.t and bne.t are delayed forms of be and bnc. The delayed branch instructions
be.t and bne.t should be used when the branch is taken more frequently than not; for example, at
the end of a loop. The nondelayed branch instructions be, bne, bte, btne should be used when
branch is taken less frequently than not; for example, in certain search routines.

If a trap occurs on abla instruction or the next instruction, LCC is not updated. The trap handler
resumes execution with the bla instruction, so the LCC setting is not lost.

5-11

nter CORE INSTRUCTIONS

br lbroff (Branch direct unconditionally)

Execute one more sequential instruction.
Continue execution at brx(lbroff).

be lbroff (Branch on CC)
IF cC=1
THEN continue execution at brx(lbroff)
FI
be.t lbroff (Branch on CC, taken)
IF cC=1
THEN execute one more sequential instruction
continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI
bnc Ibroff (Branch on not CC)
IF cCC=0
THEN continue execution at brx(lbroff)
FI
bne.t Ibroff (Branch on not CC, taken)
IF cc=0
THEN execute one more sequential instruction
continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI
bte srcls, src2, sbroff (Branch if equal)
IF srels = src2
THEN continue execution at brx(sbroff)
FI
btne srcls, src2, sbroff (Branch if not equal)
IF srcls #+ sre2
THEN continue execution at brx(sbroff)
FI
bla (Branch on LCC and add)

LCC__temp clear if src2 < comp2(srcini) (signed)
LCC__temp set if src2 = comp2(srcini) (signed)
src2 4= srclni + src2

Execute one more sequential instruction

IF LCC
THEN LCC 4— LCC__temp
continue execution at brx(sbroff)
ELSE LCC 4— LCC__temp
FI

5-12

|ntel“ CORE INSTRUCTIONS

Programming Notes

The bla instruction is useful for implementing loop counters, where src2 is the loop counter and
srcl is set to — 1. In such a loop implementation, a bla instruction may be performed before the
loop is entered to initialize the LCC bit of the psr. The target of this bla should be the sequential
instruction after the next, so that the next sequential instruction is executed regardless of the
setting of LCC. Another bla instruction placed as the next to the last instruction of the loop can
test for loop completion and update the loop counter. The total number of iterations is the value
of src2 before the first bla instruction, plus one. Example 5-1 illustrates this use of bla.

Programs should avoid calling subroutines while within a bla loop, because a subroutine may use
bla also and change LCC.

// EXAMPLE OF bla USAGE

// Write zeros to an array of 16 single-precision numbers
// Starting address of array is already in ré4

adds -1, r0, r5 [// r5 <-- loop increment

or 15, r0, r6 // r6 <-- loop count

bla r5, r6, CLEAR_LOOP // One time to initialize LCC

addu -4, r4, r4 // Start one lower to

// allow for autoincrement

CLEAR_LOOP:

bla r5, r6, CLEAR_LOOP // Loop for the 16 times

fst.1 fo, 4(xbd)++ // Write and autoincrement

// to next word

Example 5-1. Example of bla Usage

Return from a subroutine is implemented by branching to the return address with the indirect
branch instruction bri.

Indirect branches are also used to resume execution from a trap handler (refer to Chapter 7). The
need for this type of branch is indicated by set trap bits in the psr at the time bri is executed. In
this case, the instruction following the bri must be a load that restores src/ni to the value it had
before the trap occurred.

Programming Notes

When using bri to return from a trap handler, programmers should take care to prevent traps from
occurring on that or on the next sequential instruction. IM should be zero (interrupts disabled).

5-13

mtel : CORE INSTRUCTIONS

call ” (Subroutine ca_ll)

rl 4— address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [srelni) (Indirect subroutine call)

11 €— address of next sequential instruction + 4

Execute one more sequential instruction

Continue execution at address in src/ni
(The original contents of src/ni is used even if the
next instruction modifies src/ni. Does not trap if
srclni is misaligned.)

bri [srclnil (Branch indirect unconditionally)

Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to IM in psr
clear trap bits

IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one instruction in
single-instruction mode
ELSE IF DS is set and DIM is set
THEN enter single-instruction mode after executing one
instruction in dual-instruction mode
ELSE IF DIM is set
THEN enter dual-instruction mode for next
two instructions
ELSE enter single-instruction mode for next

two instructions
FI
FI
FI

FI
Continue execution at address in src/ni

(The original contents of src/ni is used even if the next instruction modifies

srcini. Does not trap if src/ni is misaligned.)

5.12 CACHE FLUSH

The flush instruction is used to force modified data in the data cache to external memory. Because
the contents of rdest are undefined after flush, translators should encode it as zero. The address
#const + src2 must be aligned on a 16-byte boundary. There are two 32-byte blocks in the cache
which can be replaced by the address #const + src2. The particular block that is forced to
memory is controlled by the RB field of dirbase. When flushing the cache before a task switch,
the addresses used by the flush instruction should reference non-user-accessible memory to ensure
that cached data from the old task is not transferred to the new task. These addresses must be

5-14

II"Ite[CORE INSTRUCTIONS

(Cache flush)
flush #const(src2) (Normal)
flush #const(src2)++ (Autoincrement)

Replace the block in data cache that has address (#const + src2).
Contents of block undefined.

IF autoincrement

THEN src2 44— #const + src2

FI

Example 5-2 shows how to flush the data cache using the flush instruction. The code depends on
having reserved a 4 Kbyte memory area that is not used to store data. Cache elements containing
modified data are written back to memory by making two passes, each of which references every
32nd byte of this area with the flush instruction. Before the first pass, the RC field in dirbase is
set to two and RB is set to zero. This causes data-cache misses to flush element zero of each set.
Before the second pass, RB is changed to one, causing element one of each set to be flushed.

The flush instruction must only be used as in Example 5-2. Any other usage of flush has
undefined results.

// CACHE FLUSH PROCEDURE

// Rw, Rx, Ry, Rz represent integer registers

// FLUSH_P H is the high-order 16 bits of a pointer to reserved area
// FLUSH_P_L is the low-order 16 bits of the pointer, minus 32

ld.c dirbase, Rz
or 0x800, Rz, Rz // RC <-- 0bl0 (assuming was 00)
adds -1, r0, Rx // Rx <-- -1 (loop increment)
call D _FLUSH
st.c Rz, dirbase // Replace in block O
or 0x900, Rz, Rz // RB <-- 0b01
call D_FLUSH
st.c Rz, dirbase // Replace in block 1
xor 0x900, Rz, Rz // Clear RC and RB

// Change DTB, ATE, or ITI fields here, if necessary
st.c Rz, dirbase

D_FLUSH:
orh FLUSH_P H, 1O, Rw // Rw <-- address minus 32
or FLUSH_P L, Rw, Rw // of flush area
or 127, r0, Ry // Ry <-- loop count
14.1 32(Rw), r3l // Clear any pending bus writes
shl , r3l, r3l // Wait until load finishes
bla Rx, Ry, D_FLUSH_LOOP // One time to initialize LCC
nop

D_FLUSH_LOOP:
bla Rx, Ry, D_FLUSH_LOOP // Loop; execute next instruction

// for 128 lines in cache block

flush 32(Rw)++ // Flush and autoincrement to next line
bri rl / Return after next instruction
1d.1 -512(Rw), r0 // Load from flush area to clear pending

// writes. A hit is guaranteed.

Example 5-2. Cache Flush Procedure

5-15

|nte| CORE INSTRUCTIONS

5.13 CONTROL REGISTER ACCESS

Id.c ctrireg, rdest (Load from control register)
rdest 4= ctrireg

st.c srclni, ctrlreg (Store to control register)

ctrireg 4— srclni

Ctrireg specifies a control register that is transferred to or from a general-purpose register. The
function of each control register is defined in Chapter 3. As shown below, some registers or parts
of registers are write-protected when the U-bit in the psr is set. A store to those registers or bits
is ignored when the i860 Microprocessor is in user mode. Ctrireg is specified by a code in the
src2 field of the instruction, as defined by Table 5-1.

Table 5-1. Control Register Encoding

. User-Mode
Register Sre2 Code Write-Protected?
Fault Instruction 0 N/A
Processor Status 1 Yes*
Directory Base 2 Yes
Data Breakpoint 3 Yes
Floating-Point Status 4 No
Extended Process Status 5 Yes**

* Only the psr bits BR, BW, PIM, IM, PU, U, IT, IN, IAT, DAT, FT, DS, DIM, and KNF are write-protected.
** The processor type, stepping number, and cache size cannot be changed from either user or supervisor leve!.

Programming Notes

Saving fir (the fault instruction register) anytime except the first time after a trap occurs saves the
address of the ld.c instruction.

After a scalar floating-point operation, a st.c to fsr should not change the value of RR, RM, or
FZ until the point at which result exceptions are reported. (Refer to Chapter 7 for more details.)

Only a trap handler should use the intruction st.c to set the trap bits (IT, IN, IAT, DAT, FT) of
the psr.

5.14 BUS LOCK

These instructions allow programs running in either user or supervisor mode to perform read-
modify-write sequences in multiprocessor and muitithread systems. The interlocked sequence must
not branch outside of the 32 sequential instructions following the lock instruction. The sequence
must be restartable from the lock instruction in case a trap occurs. Simple read-modify-write
sequences are automatically restartable. For sequences with more than one store, the software

5-16

intel CORE INSTRUCTIONS

must ensure that no traps occur after the first non-reexecutable store. To insure that no data access
fault occurs, it must first store unmodified values in the other store locations. To insure that no
instruction access fault occurs, the code that is not restartable should not span a page boundary.

lock (Begin interlocked sequence)

Set BL in dirbase. The next load or store that misses the cache locks the bus.
Disable interrupts until the bus is unlocked.

unlock (End interlocked sequence)

Clear BL in dirbase. The next load or store that misses the cache unlocks
the bus.

After alock instruction, the bus is not locked until the first data access that misses the data cache.
Software in a multiprocessing system should ensure that the first load instruction after a lock
references noncacheable memory. Likewise, after an unlock instruction, the bus is not unlocked
until the first data access that misses the data cache. Software in a multiprocessing system should
ensure that the first load or store instruction after an unlock references noncacheable memory.

If a trap occurs after a lock instruction and before the load or store that follows the corresponding
unlock, the processor clears BL and sets the IL (interlock) bit of epsr.

If the processor encounters another lock instruction before unlocking the bus, that instruction is
ignored.

If, following a lock instruction, the processor does not encounter a load or store following an
unlock instruction by the time it has executed 32 instructions, it triggers an instruction fault on
the 32nd instruction. In such a case, the trap handler will find both IL and IT set.

Example 5-3 shows how lock and unlock can be used in a variety of interlocked operations.

5-17

intal CORE INSTRUCTIONS

// LOCKED TEST AND SET ,
// Value to put in semaphore is in r23

lock
1d.b semaphore, r22 // Put current value of semaphore in r22

unlock //
st.b r23, semaphore //

// LOCKED LOAD-ALU-STORE

lock //
1d.1 word, r22 //
addu 1, r22, r22 // Can be any ALU operation
unlock //
st.1l r22, word //

// LOCKED COMPARE AND SWAP
// Swaps r23 with word in memory, if word = r21

lock //

1d.1 word, r22 //

bte r22, r21, L1

mov r22, r23 // Executed only if not equal
L1l: unlock //

st.1 r23, word //

Example 5-3. Examples of lock and unlock Usage

5-18

Floating-Point
Instructions

Chapter 6
Floating-Point Instructions

The floating-point section of the i860 Microprocessor comprises the floating-point registers and
three processing units:

1. The floating-point multiplier
2. The floating-point adder
3. The graphics unit

This section of the i860 Microprocessor executes not only floating-point operations but also 64-
bit integer operations and graphics operations that utilize the 64-bit internal data path of the
floating-point section. ‘

Floating-point instruction operands src/, src2, and rdest refer to one of the 32 floating-point
registers; ireg refers to one of the integer registers.

6.1 PRECISION SPECIFICATION

Unless otherwise specified, floating-point operations accept single- or double-precision source
operands and produce a result of equal or greater precision. Both input operands must have the
same precision. The source and result precision are specified by a two-letter suffix to the
mnemonic of the operation, as shown below. In this manual, the suffix .p refers to the precision
specification. In an actual program, .p is to be replaced by the appropriate two-letter suffix.

Suffix Source Precision ‘ Result Precision
.SS single single
.sd single double
.dd double double

6.2 PIPELINED AND SCALAR OPERATIONS

The architecture of the floating-point unit uses parallelism to increase the rate at which operations
may be introduced into the unit. One type of parallelism used is called ‘‘pipelining’’. The
pipelined architecture treats each operation as a series of more primitive operations (called
‘“‘stages’”) that can be executed in parallel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder. Let the stages be represented by Aj, Aj,
and Aj. The stages are designed such that A;+ for one adder instruction can execute in parallel
with A; for the next adder instruction. Furthermore, each A; can be executed in just one clock.
The pipelining within the multiplier and graphics units can be described similarly, except that the
number of stages may be different.

Figure 6-1 illustrates three-stage pipelining as found in the floating-point adder (also in the
floating-point multiplier when single-precision input operands are employed). The columns of the

6-1

ntel

FLOATING-POINT INSTRUCTIONS

Instruc
|

Instruc
i+1

Instruc
1+2

Instruc
I+3

Instruc
i+4

Instruc
I+5

Stage 1
results (status)

Stage 2
results (status)

Stage 3
results (status)

Clock m
i
r (s)
Clockm +1
i+1 i
r (s) (s)
Clockm +2 \
i+2 i+1 i
r (s) (s) s
\ Clockm +3
i+3 i+2 i+1
r (s) (s) b
\ Clock m + 4\
i+4 i+3 i+2
v (s) (s) s
Clockm +5 \
i+5 i+4 i+3

(s)

rdest
i+3

rdest
i+4

rdest
i+8

Figure 6-1. Pipelined Instruction Execution

6-2

intel FLOATING-POINT INSTRUCTIONS

figure represent the three stages of the pipeline. Each stage holds intermediate results and also
(when introduced into the first stage by software) holds status information pertaining to those
results. The figure assumes that the instruction stream consists of a series of consecutive floating-
point instructions, all of one type (i.e. all adder instructions or all single-precision multiplier
instructions). The instructions are represented as i, i+1, etc. The rows of the figure represent the
states of the unit at successive clock cycles. Each time a pipelined operation is performed, the
status of the last stage becomes available in fsr, the result of the last stage of the pipeline is stored
in the destination register rdest, the pipeline is advanced one stage, and the input operands src/
and src2 are transferred to the first stage of the pipeline.

In the 1860 Microprocessor, the number of pipeline stages ranges from one to three. A pipelined
operation with a three-stage pipeline stores the result of the third prior operation. A pipelined
operation with a two-stage pipeline stores the result of the second prior operation. A pipelined
operation with a one-stage pipeline stores the result of the prior operation.

There are four floating-point pipelines: one for the multiplier, one for the adder, and one for the
graphics unit, and one for floating-point loads. The adder pipeline has three stages. The number
of stages in the multiplier pipeline depends on the precision of the source operands in the pipeline;
it may have two or three stages. The graphics unit has one stage for all precisions. The load
pipeline has three stages for all precisions.

Changing the FZ (flush zero), RM (rounding mode), or RR (result register) bits of fsr while there
are results in either the multiplier or adder pipeline produces effects that are not defined.

6.2.1 Scalar Mode

In addition to the pipelined execution mode described above, the 1860 Microprocessor also can
execute floating-point instructions in ‘‘scalar’’ mode. Most floating-point instructions have both
pipelined and scalar variants, distinguished by a bit in the instruction encoding. In scalar mode,
the floating-point unit does not start a new operation until the previous floating-point operation is
completed. The scalar operation passes through all stages of its pipeline before a new operation is
introduced, and the result is stored automatically. Scalar mode is used when the next operation
depends on results from the previous few floating-point operations (or when the compiler or
programmer does not want to deal with pipelining).

6.2.2 Pipelining Status Information

Result status information in the fsr consists of the AA, Al, AO, AU, and AE bits, in the case of
the adder, and the MA, MI, MO, and MU bits, in the case of the multiplier. This information
arrives at the fsr via the pipeline in one of two ways:

1. Itis calculated by the last stage of the pipeline. This is the normal case.

2. It is propagated from the first stage of the pipeline. This method is used when restoring the
state of the pipeline after a preemption. When a store instruction updates the fsr and the the
U bit being writtert into the fsr is set, the store updates result status bits in the first stage of
both the adder and multiplier pipelines. When software changes the result-status bits of the
first stage’ of a particular unit (multiplier or adder), the updated result-status bits are propagated

6-3

mtel FLOATING-POINT INSTRUCTIONS

one stage for each pipelined floating-point operation for that unit. In this case, each stage of
the adder and multiplier pipelines holds its own copy of the relevant bits of the fsr. When
they reach the last stage, they override the normal result-status bits computed from the last-
stage result.

At the next floating-point instruction (or at certain core instructions), after the result reaches the
last stage, the i860 Microprocessor traps if any of the status bits of the fsr indicate exceptions.
Note that the instruction that creates the exceptional condition is not the instruction at which the
trap occurs.

6.2.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is initiated, the result of an earlier pipelined
floating-point operation is returned. The result precision of the current instruction applies to the
operation being initiated. The precision of the value stored in rdest is that which was specified by
the instruction that initiated that operation.

If rdest is the same as srcl or src2, the value being stored in rdest is used as the input operand.
In this case, the precision of rdest must be the same as the source precision.

The multiplier pipeline has two stages when the source operand is double-precision and three
stages when the precision of the source operand is single. This means that a pipelined multiplier
operation stores the result of the second previous multiplier operation for double-precision inputs
and third previous for single-precision inputs (except when mixing precisions).

6.2.4 Transition between Scalar and Pipelined Operations

When a scalar operation is executed in the adder, multiplier, or graphics units, it passes through
all stages of the pipeline; therefore, any unstored results in the affected pipeline are lost. To avoid
losing information, the last pipelined operations before a scalar operation should be dummy
pipelined operations that extract results from the affected pipeline.

After a scalar operation, the values of all pipeline stages of the affected unit (except the last) are
undefined. No spurious result-exception traps result when the undefined values are subsequently
stored by pipelined operations; however, the values should not be referenced as source operands.

Note that the pfld pipeline is not affected by scalar fld or ld instructions.

For best performance a scalar operation should not immediately precede a pipelined operation
whose rdest is nonzero.

6.3 MULTIPLIER INSTRUCTIONS

The multiplier unit of the floating-point section performs not only the standard floating-point
multiply operation but also provides reciprocal operations that can be used to implement floating-
point division and provides a special type of multiply that assists in coding 1nteger multiply
sequences. The multiply instruction can be pipelined.

|ntef FLOATING-POINT INSTRUCTIONS

Programming Notes

Complications arise with sequences of pipelined multiplier operations with mixed single- and
double-precision inputs because the pipeline length is different for the two precisions. The
complications can be avoided by not mixing the two precisions; i.e., by flushing out all single-
precision operations with dummy single-precision operations before starting double-precision
operations, and vice versa. For the adventuresome, the rules for mixing precisions follow:

® Single to Double Transitions. When a pipelined multiplier operation with double-precision
inputs is executed and the previous multiplier operation was pipelined with single-precision
inputs, the third previous (last stage) result is stored, and the previous operation (first stage)
is advanced to the second stage (now the last stage). The second previous operation (old
second stage) is discarded. The next pipelined multiplier operation stores the single-precision
result.

® Double to Single Transitions. When a pipelined multiplier operation with single-precision
inputs is executed and the previous multiplier operation was pipelined with double-precision
inputs, the previous multiplier operation is advanced to the second stage and a single- or
double-precision zero is placed in the last stage of the pipeline. The next pipelined multiplier
operation stores zero instead of the result of the prior operation.

6.3.1 Floating-Point Multiply

fmul.p srcl, src2, rdest (Floating-Point Multiply)
rdest 4— src¢l X src2

pfmul.p srcl, src2, rdest (Pipelined Floating-Point Multiply)

rdest 4— last M-stage result
Advance M pipeline one stage
M pipeline first stage €— src/ X src2

pfmui3.dd srcl, sre2, rdest (Three-Stage Pipelined Multiply)

rdest 4— last M-stage result
Advance 3-stage M pipeline one stage
M pipeline first stage €— srcl X src2

These instructions perform a standard multiply operation.
Programming Notes

Srcl must not be the same as rdest for pipelined operations. For best performance when the prior
operation is scalar, src/ should not be the same as the rdest of the prior operation.

The pfmul3.dd instruction is intended primarily for use by exception handlers in restoring pipeline
contents (refer to ‘‘Pipeline Preemption’” in Chapter 7). It should not be mixed in instruction

sequences with other pipelined multiplier instructions.

6-5

Inter FLOATING-POINT INSTRUCTIONS

6:3.2 Floating-Point Multiply Low

fmlow.dd srcl, src2, rdest (Floating-Point Multiply Low)

rdest 4— low-order 53 bits of (src/ significand X src2 significand)
rdest bit 53 4— most significant bit of (src/ significand X src2 significand)

The fmlow instruction multiplies the low-order bits of its operands. It operates only on double-
precision operands. The high-order 10 bits of the result are undefined.

An fmlow can perform 32-bit integer multiplies. Two 64-bit values are formed, with the integers
in the low-order 32 bits. The low-order 32-bits of the result are the same as the low-order 32 bits
of an integer multiply. The fmlow instruction does not update the result-status bits of fsr and does
not cause source- or result-exception traps.

6.3.3 Floating-Point Reciprocals

frep.p src2, rdest (Floating-Point Reciprocal)
rdest €= 1/ src2 with absolute significand error < 277

frsqrp src2, rdest (Floating-Point Reciprocal Square Root)
rdest 4— 1/ Vsrc2 with absolute significand error < 277

The frep and frsqr instructions are intended to be used with algorithms such as the Newton-
Raphson approximation to compute divide and square root. Assemblers and compilers must set
srcl to zero. A Newton-Raphson approximation may produce a result that is different from the
IEEE standard in the two least significant bits of the mantissa. A library routine supplied by Intel
may be used to calculate the correct IEEE-standard rounded result.

Traps

The instructions frep and frsqr cause the source-exception trap if src2 is zero. An frsgr causes
the source-exception trap if src2 < 0.

6.4 ADDER INSTRUCTIONS

The adder unit of the floating-point section provides floating-point addition, subtraction, and
comparison, as well as conversion from floating-point to integer formats.

6-5

intel FLOATING-POINT INSTRUCTIONS

6.4.1 Floating-Point Add and Subtract

fadd.p srcl, src2, rdest (Floating-Point Add)
rdest €= srcl + src2

pfadd.p srcl, src2, rdest (Pipelined Floating-Point Add)

rdest 4— last A-stage result
Advance A pipeline one stage
A pipeline first stage €— src! + src2

fsub.p srcl, src2, rdest (Floating-Point Subtract)
rdest 4— srcl — src2

pfsub.p srcl, src2, rdest (Pipelined Floating-Point Subtract)

rdest 4— last A-stage result
Advance A pipeline one stage
A pipeline first stage €— srcl — src2

These instructions perform standard addition and subtraction operations.

Programming Notes

In order to allow conversion from double precision to single precision, an fadd or pfadd
instruction may have double-precision inputs and a single-precision output, as long as one of its
input operands is f0. In assembly language, this conversion is specified using the fmov or pfmov
pseudoinstruction with the .ds suffix. :

fmov.ds srcl, rdest (Convert Double to Single)

Equivalent to fadd.ds src/, f0, rdest

pfmov.ds srcl, ireg (Pipelined Convert Double to Single)
Equivalent to pfadd.ds src/, f0, rdest

Conversion from single to double is accomplished by fadd.sd or pfadd.sd with f0 as one input

operand. In assembly language, this conversion is specified by the fmov or pfmov pseudoinstruction
with the .sd suffix.

fmov.sd srcl, rdest (Convert Single to Double)

Equivalent to fadd.sd src/, f0, rdest

pfmov.sd srcl, ireg (Pipelined Convert Single to Double)
Equivalent to pfadd.sd src/, f0, rdest

6-7

mte[FLOATING-POINT INSTRUCTIONS

6.4.2 Floating-Point Compares

pfgt.p srcl, src2, rdest (Pipelined Floating-Point Greater-Than Compare)

(Assembiler clears R-bit of instruction)

rdest 4— last A-stage result

CC set if srcl > src2, else cleared

Advance A pipeline one stage

A pipeline first stage is undefined, but no result
exception occurs

pfle.p srcl, src2, rdest (Pipelined F-P Less-Than or Equal Compare)

(Assembler pseudo-operation, identical to pfgt.p
except that assembler sets R-bit of instruction.) -

rdest 4— last A-stage result

CC cleared if srcl =< src2, else set

Advance A pipeline one stage

A pipeline first stage is undefined, but no result
exception occurs

pfeq.p srcl, src2, rdest (Pipelined Floating-Point Equal Compare)

rdest €4— last A-stage result

CC set if srcl = src2, else cleared

Advance A pipeline one stage

A pipeline first stage is undefined, but no result
exception occurs

There are no corresponding scalar versions of the floating-point compare instructions. The
pipelined instructions can be used either within a sequence of pipelined instructions or within a
sequence of nonpipelined (scalar) instructions.

pfgt.p should be used for A > B and A < B comparisons. pfle.p should be used for A = B and
A < B comparisons. pfeq.p should be used for A = B and A # B comparisons.

Traps

Compares never cause result exceptions when the result is stored. They do trap on invalid input
operands.

Programming Notes

The only difference between pfgt.p and pfle.p is the encoding of the R bit of the instruction and
the way in which the trap handler treats unordered compares. The R bit normally indicates result
precision, but in the case of these instructions it is not used for that purpose. The trap handler can
examine the R bit to help determine whether an unordered compare should set or clear CC to

intel FLOATING-POINT INSTRUCTIONS

conform with the IEEE standard for unordered compares. For pfgt.p and pfeq.p, it should clear
CC,; for pfle.p, it should set CC.

For best performance, abe orbne instruction should not directly follow a pfgt or pfeq instruction.

6.4.3 Floating-Point to Integer Conversion

fix.p srcl, rdest (Floating-Point to Integer Conversion)

rdest €— 64-bit value with low-order 32 bits equal to integer part of src/ rounded

pfix.p srcl, rdest (Pipelined Floating-Point to Integer Conversion)

rdest 4— last A-stage result

Advance A pipeline one stage

A pipeline first stage €— 64-bit value with low-order 32 bits equal to integer part
of srcl rounded

ftrunc.p srcl, rdest (Floating-Point to Integer Truncation)

rdest 4— 64-bit value with low-order 32 bits equal to integer part of src/

pftrunc.p src/, rdest Pipelined Floating-Point to Integer Truncation)

rdest 4— last A-stage result

Advance A pipeline one stage

A pipeline first stage €— 64-bit value with low-order 32 bits equal to integer part
of srcl

The instructions fix and pfix must specify double-precision results. The low-order 32 bits of the
result contain the integer part of src/ represented in twos-complement form. For fix and pfix, the
integer is selected according to the rounding mode specified by RM in the fsr.

The instructions ftrunc and pftrunc are identical to fix and pfix, except that RM is not consulted;
rounding is always toward zero. Src2 should contain zero.

Traps
The instructions fix, pfix, ftrunc, and pftrunc signal overflow if the integer part of src/ is bigger

than what can be represented as a 32-bit twos-complement integer. Underflow and inexact are
never signaled.

6.5 DUAL OPERATION INSTRUCTIONS

The instructions pfam, pfsm, pfmam, and pfmsm initiate both an adder (A-unit) operation and a
multiplier (M-unit) operation. The source precision specified by .p applies to the source operands

|nter FLOATING-POINT INSTRUCTIONS |

of the multiplication. The result precision normally specified by .p controls in this case both the
precision of the source operands of the addition or subtraction and the precision of all the results.

pfam.p’ srcl, src2, rdest (Pipelined Floating-Point Add and Multiply)

rdest 4— last A-stage result

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage €4— A-opl + A-op2

M pipeline first stage €— M-opl X M-op2

pfsm.p srcl, src2, rdest (Pipelined FloatingéPoint Subtract and Multiply)

rdest 4— last A-stage result

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage 4— A-opl — A-op2

M pipeline first stage €— M-opl X M-op2

pfmam.p srcl, src2, rdest (Pipelined Floating-Point Multiply with Add)

rdest 4— last M-stage result

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage 4— A-opl + A-op2

M pipeline first stage €— M-opl X M-op2

pfmsm.p srcl, src2, rdest (Pipelined Floafing-Point Multiply with Subtract)

rdest 4— last M-stage result

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage €4— A-opl — A-op2

M pipeline first stage €— M-opl X M-op2

Precision Precision of Source
Suffix of Source of Add or Subtract and
of Multiplication Resutt of All Operations
.SS single single
.sd single double
.dd double double

The instructions pfmam and pfmsm are identical to pfam and pfsm except that pfmam and
pfmsm transfer the last stage result of the multiplier to rdest (the adder result is lost).

Six operands are required, but the instruction format specifies only three operands; therefore, there
are special provisions for specifying the operands. These special provisions consist of:

® Three specia] registers (KR, KI, and T), that can store values from one dual-operation
instruction and supply them as inputs to subsequent dual-operation instructions.

6-10

|ntef FLOATING-POINT INSTRUCTIONS

— The constant registers KR and KI can store the value of src/ and subsequently supply
that value to the M-pipeline in place of src/.

— The transfer register T can store the last-stage result of the multiplier pipeline and
subsequently supply that value to the adder pipeline in place of src/.

® A four-bit data-path control field in the opcode (DPC) that specifies the operands and loading
of the special registers.

1. Operand-1 of the multiplier can be KR, KI, or src/.

2. Operand-2 of the multiplier can be src2, the last-stage result of the multiplier pipeline,
or the last-stage result of the adder pipeline.

3. Operand-1 of the adder can be src/, the T-register, the last-stage result of the multiplier
pipeline, or the last-stage result of the adder pipeline.

4. Operand-2 of the adder can be src2, the last-stage result of the multiplier pipeline, or the
last-stage result of the adder pipeline.

Figure 6-2 shows all the possible data paths surrounding the adder and multiplier. Table 6-1
shows how the various encodings of DPC select different data paths. Figure 6-3 illustrates the
actual data path for each dual-operation instruction.

src1 src2 rdest
3
KiI | KR
[IR IR KX
op1 op2
MULTIPLIER UNIT
RESULT
T
\AA \AA
opi op2
ADDER UNIT
RESULT

Figure 6-2. Dual-Operation Data Paths

6-11

intel

FLOATING-POINT INSTRUCTIONS

Table 6-1. DPC Encoding
DPC PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load”
0000 r2pt r2s1 KR src2 srci M result | No No
0001 rept r2st KR src2 T M result | No Yes
0010 r2ap1 r2asi KR src2 src Aresult | Yes No
0011 r2apt r2ast KR src2 T Aresult | Yes Yes
0100 i2p1 i2s1 Kl src2 srci M result | No No
0101 i2pt i2st Ki src2 T M result | No Yes
0110 i2apt i2as1 Kl src2 srci Aresult | Yes No
0111 i2apt i2ast Ki src2 T Aresult | Yes Yes
1000 ratip2 rat1s2 KR A result srci src2 Yes No
1001 m12apm mi2asm src src2 A result M resuit | No No
1010 ralp2 rals2 KR A result srct src2 No No
1011 m12ttpa m12itsa srct src2 T Aresult | Yes No
1100 iat1p2 iat1s2 Kl A result srct src2 Yes No
1101 m12tpm m1i2tsm src1 src2 T M result | No No
1110 ia1p2 ials2 Ki A result srct src2 No No
1111 m1i2tpa mi2tsa srct src2 T Aresult | No No
DPC PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load | Load*
0000 mr2p1 mr2s1 KR src2 srci M result | No No
0001 mr2pt mr2st KR src2 T M result | No Yes
0010 mr2mp1 mr2ms1 KR src2 src M result | Yes No
0011 mr2mpt mr2mst KR src2 T M result | Yes Yes
0100 mi2p1 mi2s1 Ki src2 src M result | No No
0101 mi2pt mi2st Kl src2 T M result | No Yes
0110 mi2mp1 mi2ms1 Kl src2 srci M result | Yes No
0111 mi2mpt mi2mst Kl src2 T M result | Yes Yes
1000 mrmt1p2 mrmt1s2 KR M result src src2 Yes No
1001 mm12mpm mmi2msm srcl src2 M result M result | No No
1010 mrm1p2 mrmis2 KR M result srci src2 No No
1011 mm12ttpm mm12ttsm srcl src2 T M result | Yes No
1100 mimt1p2 mimt1s2 KI M result src src2 Yes No
1101 mm12tpm mm12tsm srcl src2 T M result | No No
1110 mim1p2 mim1s2 Ki M result srci src2 No No
1111 mm12tpm mm12tsm srct src2 T M result | No No

* If K-load is set, KR is loaded when operand-1 of the multiplier is KR; Kl is loaded when operand-1 of the multtiplier is KI.

6-12

ntel

FLOATING-POINT INSTRUCTIONS

srel src2 rdest srcl src2 rdest
A 1 4
KR KR
) J \
op1 op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
L | N
] \ Y
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT
r2p1 & r2s1 r2pt & r2st
srel src2 rdest srcil src2 rdest
\ l /'y
KR KR
Y Y
opi op2 opi op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT

r2ap1 & r2as1

r2apt & r2ast

Figure 6-3. Data Paths by Instruction (1 of 8)

ntel

FLOATING-POINT INSTRUCTIONS

srel src2 rdest src1 src2 rdest
/'y ‘ [}
Ki Kl
) \
op1 op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
[| I
\ |
op1 op2 op1 op
ADDER UNIT ADDER UNIT
RESULT RESULT
i2p1 & i2s1 i2pt & i2st
srel src2 rdest srcl src2 rdest
lr l '\
Ki Kl
\ /
op1 op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT
i2ap1 & i2as1 i2apt & i2ast

Figure 6-3. Data Paths by Instruction (2 of 8)

6-14

ntel

FLOATING-POINT INSTRUCTIONS

src1 src2 rdest srel stc2 rdest
! {k
KR
opt op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
| I
\ \ A/ \
opt op2 op1 opd
ADDER UNIT ADDER UNIT
" RESULT RESULT
rat1p2 & rat1s2 m1i12apm & m12asm
srct src2 rdest src1 src2 rdest
3 4
KR
\ 1 1
op1 op2 op1 op2

R

MULTIPLIER UNIT

RESULT

—

op1 op2
ADDER UNIT

RESULT

ralp2 & rais2

MULTIPLIER UNIT

RESULT

—

op1 op2
ADDER UNIT

RESULT

I

m12ttpa & m12ttsa

Figure 6-3. Data Paths by Instruction (3 of 8)

FLOATING-POINT INSTRUCTIONS

srel src2 rdest srci src2 rdest
A 4
Ki
op1 op2 opl op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
|
é
\ y Y
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT
iat1p2 & iat1s2 mi2tpm & mi2tsm
src1 src2 rdest srcl src2 rdest
h 'y
Kl
‘ i
op1 op2 opi op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT
ialp2 & ia1s2 mi2tpa & mi2tsa ‘

Figure 6-3. Data Paths by Instruction (4 of 8)

6-16

ntel

FLOATING-POINT INSTRUCTIONS

src

sre2

KR

op1 op2
MULTIPLIER UNIT

RESULT

rdest

\ i

op1 op2
ADDER UNIT

RESULT

mr2p1 & mr2st

srct src2
KR
op1 op2

MULTIPLIER UNIT

RESULT

rdest

Y

opt opd
ADDER UNIT

RESULT

mr2pt & mr2st

srel

src2

KR

op1 op2
MULTIPLIER UNIT

RESULT

rdast

!)

op1 op2
ADDER UNIT

RESULT

mr2mp1 & mr2ms1

srci sre2 rdest
l /'y
KR
A
opt op2
MULTIPLIER UNIT
RESULT
\
\
op1 op2
ADDER UNIT
RESULT

mr2mpt & mr2mst

Figure 6-3. Data Paths by Instruction (5 of 8)

ntel

FLOATING-POINT INSTRUCTIONS

srcl src2 rdest srct1 src2 rdest
4 ‘)
KI Ki
A\
opi op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
l 1
y Y
opi op2 op1 op:.
ADDER UNIT ADDER UNIT
RESULT RESULT
| |
mi2p1 & mi2s1 mi2pt & mi2st
srcl src2 rdest srcl src2 rdest
'} l 3
Kl Ki
\ JV
op1 op2 op1 op2
" MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
\
1‘ y i \
opt op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT

mi2mp1 & mi2ms1

mi2mpt & mi2mst

Figure 6-3. Data Paths by Instruction (6 of 8)

ntel

FLOATING-POINT INSTRUCTIONS

srci src2 rdest srci src2 rdest
4 4}
KR
op1 op2 opl op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
\ \ \ \
op1 op2 op1 op2
ADDER UNIT ADDER UNIT
RESULT RESULT
mrmt1p2 & mrmtis2 mmi2mpm & mmi12msm
srcl src2 rdest srct src2 rdest
A 4
KR
op1 op2 op1 op2
MULTIPLIER UNIT MULTIPLIER UNIT
RESULT RESULT
I 1
opi op2 opt op2
ADDER UNIT ADDER UNIT
RESULT RESULT

mrm1p2 & mrmis2

mmi2ttpm & mm1i2itsm

Figure 6-3. Data Paths by Instruction (7 of 8)

6-19

FLOATING-POINT INSTRUCTIONS

Ki

srct src2

op1 op2
MULTIPLIER UNIT

RESULT

opi op2
MULTIPLIER UNIT

RESULT

\ \

l

N

\

op1 op2
ADDER UNIT
RESULT

op1 op.
ADDER UNIT

RESULT

mimt1p2 & mimtis2

mmi2tpm & mm1i2tsm

I

Ki

\ \

srct src2

op1 op2
MULTIPLIER UNIT

RESULT

op1 op2
MULTIPLIER UNIT

RESULT

—

opt op2
ADDER UNIT

RESULT

mim1p2 & mimis2

y

op1 op2
ADDER UNIT

RESULT

mm12tpm & mmi2tsm

Figure 6-3. Data Paths by Instruction (8 of 8)

Il’ltel FLOATING-POINT INSTRUCTIONS

Note that the mnemonics pfam.p, pfsm.p, pfmam.p, and pfmsm.p are never used as such in the
assembly language; these mnemonics are used by this manual to designate classes of related
instructions. Each value of DPC has a unique mnemonic associated with it. An initial “‘m
distinguishes the pfmam.p, and pfmsm.p classes from the pfam.p, and pfsm.p classes. Figure
6-4 explains how the rest of these mnemonics are derived.

Series 1 - Assumes the M-unit operand-2 issrc2

M-unit M-unit A-unit Add/ A-unit
op1 op2 op2 Subtract op1
{r, i} 2 {a, m, null} {p, s} {I t]

T, load K
srel
subtract
add (plus)
M-result
M-result, load T
A-result,load T

Series 2 - Assumes no K loading

— src2

L K1
L KR

Not all combinations are possible. Refer to Table 6-1 for possible combinations.

M-unit A-unit Add/ A-unit
op1 and op2 load T opi Subtract op2
{ra, rm, ia, im, m12} {t, nuil} {l,a,m, t} {p, s} {2, m, a}
l I— A-result
M-result
src2
subtract
add (plus)
T
M-result
A-result
srel
— no
. yes
— srcl, src2
KI, M-result
KI, A-result
KR, M-result
KR, A-result

Figure 6-4. Data Path Mhemonics

6-21

|nter FLOATING-POINT INSTRUCTIONS

Programming Notes
When the M-unit op/ is srcl, srcl must not be the same as rdest. For best performance when the

prior operation is scalar and M-unit op/ is src/, srcl should not be the same as the rdest of the
prior operation.

6.6 GRAPHICS UNIT

The graphics unit operates on 32- and 64-bit integers stored in the floating-point register file. This
unit supports long-integer arithmetic and 3-D graphics drawing algorithms. Operations are provided
for pixel shading and for hidden surface elimination using a Z-buffer.

Programming Notes

In a pipelined graphics operation, if rdest is not f0, then rdest must not be the same as src/ or
src2.

For best performance, the result of a scalar operation should not be a source operand in the next
instruction, unless the next instruction is a multiplier or adder operation.

6.6.1 Long-Integer Arithmetic

fisub.w srcl, src2, rdest (Long-Integer Subtract)
rdest 4— srcl — src2

pfisub.w srcl, src2, rdest (Pipelined Long-Integer Subtract)
rdest 4— last-stage I-result

last-stage I-result €= src/ — src2
fiadd.w srcl, src2, rdest (Long-Integer Add)
rdest 4— srcl + src2

pfiadd.w srcl, src2, rdest (Pipelined Long-Integer Add)

rdest 4— last-stage I-result
last-stage I-result €= srcl + src2

.w = .8s (32 bits), or.dd (64 bits)

The fiadd and fisub instructions implement arithmetic on integers up to 64 bits wide. Such
integers are loaded into the same registers that are normally used for floating-point operations.
These instructions do not set CC nor do they cause floating-point traps due to overflow.

6-22

intel FLOATING-POINT INSTRUCTIONS

Programming Notes

In assembly language, fiadd and pfiadd are used to implement the fmov and pfmov
pseudoinstructions.

fmov.ss srcl, rdest (Single Move)
Equivalent to fiadd.ss src/, 0, rdest

pfmov.ss srcl, ireg (Pipelined Single Move)
Equivalent to pfiadd.ss src/, f0, rdest

fmov.dd srcl, rdest (Double Move)
Equivalent to fiadd src/, f0, rdest

pfmov.dd srcl, ireg (Pipelined Double Move)

Equivalent to pfiadd src/, 10, rdest

6.6.2 3-D Graphics Operations

The i860 Microprocessor supports high-performance 3-D graphics applications by supplying
operations that assist in the following common graphics functions:

1. Hidden surface elimination.
2. Distance interpolation.
3. 3-D shading using intensity interpolation.

The interpolation operations of the 1860 Microprocessor support graphics applications in which
the set of points on the surface .of a solid object is represented by polygons. The distances and
color intensities of the vertices of the polygon are known, but the distances and intensities of other
points must be calculated by interpolation between the known values.

Certain fields of the psr are used by the 1860 Microprocessor’s graphics instructions, as illustrated
in Figure 6-5.

The merge instructions are those that utilize the 64-bit MERGE register. The purpose of the
MERGE register is to accumulate (or merge) the results of multiple-addition operations that use
as operands the color-intensity values from pixels or distance values from a Z-buffer. The
accumulated results can then be stored in one 64-bit operation.

Two multiple-addition instructions and an OR instruction use the MERGE register. The addition

instructions are designed to add interpolation values to each color-intensity field in an array of
pixels or to each distance value in a Z-buffer.

6-23

lntd FLOATING-POINT INSTRUCTIONS

“ 1 1 7777777777

Figure 6-5. PSR Fields for Graphics Operations

6.6.2.1 Z-BUFFER CHECK INSTRUCTIONS

Consider PM as an array of eight bits PM(0)..PM(7),

where PM(0) is the least-significant bit.
fzchks srcl, src2, rdest (16-Bit Z-Buffer Check)

Consider srcl, src2, and rdest as arrays of four 16-bit fields srci(0)..srci (3),
src2(0)..src2(3), and rdest(0)..rdest(3) where zero denotes the
least-significant field.

PM <— PM shifted right by 4 bits

FORi=0to3

DO
PM [i + 4] 4— src2(i) < srcl (i) (unsigned)
rdest(i) €— smaller of src2(1) and srcl (i)

OD
MERGE <4— 0
pfzchks srcl, src2, rdest (Pipelined 16-Bit Z-Buffer Check)

Consider srcl , src2, and rdest as arrays of four 16-bit fields srcl(0)..srcl(3),
src2(0)..src2(3), and rdest(0)..rdest(3) where zero denotes the
least-significant field.

PM <4— PM shifted right by 4 bits

FORi= 0to3

DO
PM[i + 4] € src2(i) < srcl(i) (unsigned)
rdest 4— last-stage I-result
last-stage I-result(i) €— smaller of src2(i) and srcl (i)

OD

MERGE €4— 0 ‘

fzchkl srcl, src2, rdest (32-Bit Z-Buffer Check)

Consider srcl, src2, and rdest as arrays of two 32-bit fields srcl(0)..srcl (1),
src2(0)..src2 (1), and rdest(0)..rdest(1) where zero denotes the
least-significant field.

PM <— PM shifted right by 2 bits

FORi=0to1

DO
PM[i + 6] 44— src2(i) < srcl(i) (unsigned)

rdest(i) €4— smaller of src2(i) and srcl (i)

OD

MERGE <4— 0

6-24

mter FLOATING-POINT INSTRUCTIONS

pfzchkl srcl, src2, rdest (Pipelined 32-Bit Z-Buffer Check)

Consider srcl, src2, and rdest as arrays of two 32-bit fields src/(0)..srcl(1),
src2(0)..src2(1), and rdest(0)..rdest(1) where zero denotes the
least-significant field.

PM <— PM shifted right by 2 bits

FORi=0to1

DO
PM[i + 6] € src2(i) < srcl(i) (unsigned)
rdest(i) €— last-stage I-result
last-stage I-result €— smaller of src2(i) and srcl (i)

OD

MERGE 4— 0

A Z-buffer aids hidden-surface elimination by associating with a pixel a value that represents the
distance of that pixel from the viewer. When painting a point at a specific pixel location, three-
dimensional drawing algorithms calculate the distance of the point from the viewer. If the point is
farther from the viewer than the point that is already represented by the pixel, the pixel is not
updated. The i860 Microprocessor supports distance values that are either 16-bits or 32-bits wide.
The size of the Z-buffer values is independent of the pixel size. Z-buffer element size is controlled
by whether the 16-bit instruction fzchks or the 32-bit instruction fzchkl is used; pixel size is
controlled by the PS field of the psr.

The instructions fzchks and fzchkl perform multiple unsigned-integer (ordinal) comparisons. The
inputs to the instructions fzchks and fzchkl are normally taken from two arrays of values, each of
which typically represents the distance of a point from the viewer. One array contains distances
that correspond to points that are to be drawn; the other contains distances that correspond to
points that have already been drawn (a Z-buffer). The instructions compare the distances of the
points to be drawn against the values in the Z-buffer and set bits of PM to indicate which distances
are smaller than those in the Z-buffer. Previously calculated bits in PM are shifted right so that
consecutive fzchks or fzchkl instructions accumulate their results in PM. Subsequent pst.d
instructions use the bits of PM to determine which pixels to update.

6.6.2.2 PIXEL ADD

faddp srcl, src2, rdest (Add with Pixel Merge)

rdest 44— srcl + src2

Shift and load MERGE register from srcl + src2 as defined in Table 6-2
pfaddp srcl, src2, rdest (Pipelined Add with Pixel Merge)

rdest 4— last-stage I-result
last-stage I-result €— srcl + src2
Shift and load MERGE register from src/ + src2 as defined in Table 6-2

6-25

Iﬂter ~ FLOATING-POINT INSTRUCTIONS

The faddp instruction implements interpolation of color intensities. The 8- and 16-bit pixel formats
use 16-bit intensity interpolation. Being a 64-bit instruction, faddp does four 16-bit interpolations
at a time. The 32-bit pixel formats use 32-bit intensity interpolation; consequently, & t tz performs
them two at a time. By itself faddp implements linear interpolation; combined with fiadd,
nonlinear interpolation can be achieved.

Table 6-2. FADDP MERGE Update

Fé‘i’;ee' Fields Loaded From RE;LE::“
(from PS) Result into MERGE (Field Size)
8 63..56, 47..40, 31..24, 15.8 8
16 63.58, 47.42, 31.26 15.10 6
32 63.56. 31,24 8

Figure 6-6 illustrates faddp when PS is set for 8-bit pixels. Since faddp adds 16-bit values in this
case, each value can be treated as a fixed-point real number with an 8-bit integer portion and an

63 47 31 15 0
L] L | | |]
INT : FRAC INT : FRAC INT : FRAC INT : FRAC srcl
[| I]
++ 4+ ++ 4+ + 4+t + 4+ 4+
63 47 31 15 0
LB |]] 1
INT : FRAC INT : FRAC INT = FRAC INT : FRAC src2
[| |

FRAC INT FRAC rdest

MERGE

Figure 6-6. FADDP with 8-Bit Pixels

6-26

Intel FLOATING-POINT INSTRUCTIONS

8-bit fractional portion. The real numbers are rounded to 8 bits by truncation when they are loaded
into the MERGE register. With each faddp instruction, the MERGE register is shifted right by 8
bits. Two faddp instructions should be executed consecutively, one to interpolate for even-
numbered pixels, the next to interpolate for odd-numbered pixels. The shifting of the MERGE
register has the effect of merging the resuits of the two faddp instructions.

Figure 6-7 illustrates faddp when PS is set for 16-bit pixels. Since faddp adds 16-bit values in
this case, each value can be treated as a fixed-point real number with an 6-bit integer portion and
an 10-bit fractional portion. The real numbers are rounded to 6 bits by truncation when they are
loaded into the MERGE register. With each faddp, the MERGE register is shifted right by 6 bits.
Normally, three faddp instructions are executed consecutively, one for each color represented in
a pixel. The shifting of MERGE causes the results of consecutive faddp instructions to be
accumulated in the MERGE register. Note that each one of the first set of 6-bit values loaded into
MERGE is further truncated to 4-bits when it is shifted to the extreme right of the 16-bit pixel.

63 47 31 15 0
L] k| LI
INT : FRAC INT : FRAC INT : FRAC INT : FRAC srel
]] | 1
P) + 4+ + o+ +++++ +H o+
63 47 31 15 1]
1 -
INT : FRAC FRAC sre2

v,
4

INT FRAC INT FRAC rdest

MERGE

Figure 6-7. FADDP with 16-Bit Pixels

6-27

Inter FLOATING-POINT INSTRUCTIONS

Figure 6-8 illustrates faddp when PS is set for 32-bit pixels. Since faddp adds 32-bit values in
this case, each value can be treated as a fixed-point real number with an 8-bit integer portion and
an 24-bit fractional portion. The real numbers are rounded to 8 bits by truncation when they are
loaded into the MERGE register. With each faddp, the MERGE register is shifted right by 8 bits.
Normally, three faddp instructions are executed consecutively, one for each color represented in
a pixel. The shifting of MERGE causes the results of consecutive faddp instructions to be
accumulated in the MERGE register.

63 47 31 15 0
1 !
INT = FRACTION INT : FRACTION srel
1 |
+ 4t + 4+t R +
63 47 31 15 0
1 L|
INT : FRACTION INT : FRACTION src2

61\ Sh 0

INT

FRACTION INT FRACTION rdest

63 § § 47 31 15 0

R

MERGE

=K N N
bt ey
o — g
pon wwn . -y
o s o e

Figure 6-8. FADDP with 32-Bit Pixels

'6.6.2.3 Z-BUFFER ADD

The faddz instruction implements linear interpolation of distance values such as those that form a
Z-buffer. With faddz, 16-bit Z-buffers can use 32-bit distance interpolation, as Figure 6-9
illustrates. Since faddz adds 32-bit values, each value can be treated as a fixed-point real number
with an 16-bit integer portion and a 16-bit fractional portion. The real numbers are rounded to 16

6-28

intel

FLOATING-POINT INSTRUCTIONS

bits by truncation when they are loaded into the MERGE register. With each faddz, the MERGE
register is shifted right by 16 bits. Normally, two faddz instructions are executed consecutively.
The shifting of MERGE causes the results of consecutive faddz instructions to be accumulated in

the MERGE register.

faddz

pfaddz

srcl, src2, rdest
rdest €= src] + sr¢2
Shift MERGE right 16 and load fields 31..16 and 63..48
srcl, src2, rdest

rdest 4— last-stage I-result
last-stage I-result €= src/ + src2
Shift MERGE right 16 and load fields 31..16 and 63..48 from src¢/ + src2

(Add with Z Merge)

(Pipelined Add with Z Merge)

'«%:0:0:0
A

63

31

QO
«‘:4
\J

’\'0:0:0:0:0’
\0’0’0
KX

63 47 31 15
|
INTEGER : FRACTION INTEGER : FRACTION
i |
++++ 4+ + o+ o+
63 47 31 15
1 1
INTEGER i FRACTION INTEGER | FRACTION

INTEGER

/4

FRACTION
1

3

srcl

src2

rdest

MERGE

6-29

Figure 6-9. FADDZ with 16-Bit Z-Buffer

Inter FLOATING-POINT INSTRUCTIONS

32-bit Z-buffers can use 32-bit or 64-bit distance interpolation. For 32-bit interpolation, no special
instructions are required. Two 32-bit adds can be performed as an 64-bit add instruction. The fact
that data is carried from the low-order 32-bits into the high-order 32-bits may introduce an
insignificant distortion into the interpolation.

For 32-bit Z-buffers, 64-bit distance interpolation is implemented (as Figure 6-10 shows) with two
64-bit fiadd instructions. The merging is implemented with the 32-bit move fmov.ss src/, rdest.

63 N 0 63 31 1]
I]
INTEGER : FRACTION INTEGER : FRACTION
i | _1
++++ 4+ + fladddd + + + + + + +4+++++ fladddd + + + + + +
63 0 63 0
] | |
INTEGER : FRACTION INTEGER : FRACTION
CRAAAAARNRY ~ A VAV AAVAVAVAY r—
»\\// '\g:::::::«/
0.0 9,002
WX X] OO
Sa%% 7. \ % &
63 \ NN il NN\ 4
INTEGER : FRACTION INTEGER : FRACTION
[] 1
tmov.ss FA, FB \\g
1]
INTEGER = INTEGER
|

Figure 6-10. 64-Bit Distance Interpolation

6.6.2.4 OR WITH MERGE REGISTER

For intensity interpolation, the form instruction fetches the partially completed pixels from the
MERGE register, sets any additional bits that may be needed in the pixels (e.g. texture values),
and loads the result into a floating point register. Src2 should contain zero.

6-30

|ntel FLOATING-POINT INSTRUCTIONS

For distance interpolation or for intensity interpolation that does not require further modification
of the value in the MERGE register, the src¢/ operand of form may be f0, thereby causing the
instruction to simply load the MERGE register into a floating point register.

form srcl, rdest (OR with MERGE Register)
rdest 4— src/ OR MERGE
MERGE €4— 0
pform srcl, rdest (Pipelined OR with MERGE Register)

rdest 4— last-stage I-result
last-stage I-result €— sr¢/ OR MERGE
MERGE <4— 0

6.7 TRANSFER F-P TO INTEGER REGISTER

fxfr srcl, ireg (Transfer F-P to Integer Register)
ireg 44— srcl

The 32-bit floating-point register selected by src/ is stored into the (32-bit) integer register
selected by ireg. Assemblers and compilers should set src2 to zero.

Programming Notes

This scalar instruction is performed by the graphics unit. When it is executed, the result in the
graphics-unit pipeline is lost. However, executing this instruction does not impact performance,
even if the next instruction is a pipelined operation whose rdest is nonzero (refer to section 6.2).

For best performance, ireg should not be referenced in the next instruction, and src/ should not
reference the result of the prior instruction if the prior instruction is scalar.

6.8 DUAL-INSTRUCTION MODE

The 1860 Microprocessor can execute a floating-point and a core instruction in parallel. Such
parallel execution is called dual-instruction mode. When executing in dual-instruction mode, the
instruction sequence consists of 64-bit aligned instructions with a floating-point instruction in the
lower 32 bits and a core instruction in the upper 32 bits.

Programmers specify dual-instruction mode either by including in the mnemonic of a floating-
point instruction a d. prefix or by using the Assembler directives .dual ... enddual. Both of the
specifications cause the D-bit of floating-point instructions to be set. If the 1860 Microprocessor is
executing in single-instruction mode and encounters a floating-point instruction with the D-bit set,

6-31

Inter FLOATING-POINT INSTRUCTIONS

one more 32-bit instruction is executed before dual-mode execution begins. If the i860
Microprocessor is executing in dual-instruction mode and a floating-point instruction is encountered
with a clear D-bit, then one more pair of instructions is executed before resuming single-
instruction mode. Figure 6-11 illustrates two variations of this sequence of events: one for
extended sequences of dual-instructions and one for a single instruction pair.

3 0

op

d. fp-op

d. fp-op or core-op

63 v
core-op d. fp-op Enter Dual Instruction Mode.
Initiate Exit from
core-op fp-op Dual-Instruction Mode.
core-op fp-op 1
° Leave Dual-
P Instruction Mode.

—

Figure 6-11. Dual-Instruction Mode Transitions (1 of 2)

When a 64-bit dual-instruction pair sequentially follows a delayed branch instruction in dual-
instruction mode, both 32-bit instructions are executed.

The recommended floating-point NOP for dual-instruction mode is shrd r0,r0,r0. Even though
this is a core instruction, bit 9 is interpreted as the dual-instruction mode control bit. In assembly

language, this instruction is specified as fnop or d.fnop. Traps are not reported on fnop. Because
it is a core instruction, d.fnop cannot be used to initiate entry into dual-instruction mode.

6.8.1 Core and Floating-Point Instruction Interaction

1. If one of the branch-on-condition instructions b¢c or bne is paired with a floating-point
compare, the branch tests the value of the condition code prior to the compare.

6-32

nte| FLOATING-POINT INSTRUCTIONS

AN 0

op

d. fp-op

o f Temporary Dual-
core-op p-op Instruction Mode

op

op

Figure 6-11. Dual-Instruction Mode Transitions (2 of 2)

If an ixfr, fid, or pfid loads the same register as a source operand in the floating-point
instruction, the floating-point instruction references the register value before the load updates
it.

An fst or pst that stores a register that is the destination register of the companion pipelined
floating-point operation will store the result of the companion operation.

An fxfr instruction that transfers to a register referenced by the companion core instruction
will update the register after the core instruction accesses the register. The destination of the
core instruction will not be updated if it is any if the integer register. Likewise, if the core
instruction uses autoincrement indexing, the index register will not be updated.

When the core instruction sets CC and the floating-point instruction is pfgt or pfeq, CC is set
according to the result of the pfgt or pfeq.

6.8.2 Dual-Instruction Mode Restrictions

The result of placing a core instruction in the low-order 32 bits or a floating-point instruction
in the high-order 32 bits is not defined (except for shrd r0, r0, r0 which is interpreted

as fnop).

6-33

|ntel : FLOATING-POINT INSTRUCTIONS

2. A floating-point instruction that has the D-bit set must be aligned on a 64-bit boundary (i.e.
the three least-significant bits of its address must be zero). This applies as well to the initial
32-bit floating-point instruction that triggers the transition into dual-instruction mode, but
does not apply to the following instruction. ‘

3. When the floating-point operation is scalar and the core operation is fst or pst, the store
should not reference the result register of the floating-point operation. When the core
operation is pst, the floating-point instruction cannot be (p)fzchks or (p)fzchkl.

4. When the core instruction of a dual-mode pair is a control-transfer operation and the previous
instruction had the D-bit set, the floating-point instruction must also have the D-bit set. In
other words, an exit from dual-instruction mode cannot be initiated (first instruction palr
without D-bit set) when the core instruction is a control-transfer instruction.

5. When the core operation is ald.c or st.c, the floating-point operation must be d.fnop.

6. When the floating-point operation is fxfr, the core instruction cannot beld, Id.c, st, st.c, call,
ixfr, or any instruction that updates an integer register (including autoincrement indexing).

7. In dual-instruction mode when the core instruction is an indirect branch, the psr trap bits
cannot be set.

8. When the core operation is be.t or bne.t, the floating point operation cannat be pfeq or pfgt.
The floating point operatlon in the sequentially following instruction palr cannot be pfeq
or pfgt, either.

9. A transition to or from dual-instruction mode cannot be initiated on the instruction following
abri.

6-34

Traps and Interrupts

Chapter 7
Traps and Interrupts

Traps are caused by exceptional conditions detected in programs or by external interrupts. Traps
cause interruption of normal program flow to execute a special program known as a trap handler.

7.1 TYPES OF TRAPS

Traps are divided into the types shown in Table 7-1

Table 7-1. Types of Traps

Indication Caused by
Type PSR FSR Condition Instruction
Instruction T Software traps trap, intovr
Fault Missing unlock Any
SE Floating-point source exception | Any M- or A-unit except fmlow
Floating Floating-point result exception | Any M- or A-unit except fmlow, pfgt,
Point FT AO, MO overflow and pfeq. Reported on any F-P
Fault AU, MU underflow instruction plus pst, fst, and
Al, MU inexact result sometimes fid, pfld, ixfr
Instruction IAT Address translation exception An
Access Fault during instruction fetch Y
Loggézt&irgnaddress translation Any load/store
Da;zull\tccess DAT* Misaligned operand address Any load/store
Operand address matches Any load/st
db register ny loaa/store
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signal

* These cases can be distinguished by examining the operand addresses.

7.2 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When a trap occurs, execution of the current
instruction is aborted. The instruction is restartable as described in section 7.2.2. The processor
takes the following steps while transferring control to the trap handler:

1. Copies U (user mode) of the psr into PU (previous U).

2. Copies IM (interrupt mode) into PIM (previous IM).

3. Sets U to zero (supervisor mode).

In'l'e[TRAPS AND INTERRUPTS

Sets IM to zero (interrupts disabled). This guards against further interrupts until the trap
information can be saved.

If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared.

If the processor is in single-instruction mode and the next instruction will be executed in
dual-instruction mode or if the processor is in dual-instruction mode and the next instruction
will be executed in single-instruction mode, DS is set; otherwise, it is cleared.

The appropriate trap type bits in psr and epsr are set (IT, IN, IAT, DAT, FT, IL). Several
bits may be set if the corresponding trap conditions occur simultaneously.

An address is placed in the fault instruction register (fir) to help locate the trapped instruction.
In single-instruction mode, the address infir is the address of the trapped instruction itself. In
dual-instruction mode, the address in fir is that of the floating-point half of the dual
instruction. If an instruction- or data-access fault occurred, the associated core instruction is
the high-order half of the dual instruction (fir + 4). In dual-instruction mode, when a data-
access fault occurs in the absence of other trap conditions, the floating-point half of the dual
instruction will already have been executed (except in the case of the fxfr instruction).

The processor begins executing the trap handler by transferring execution to virtual address
OxFFFFFF00. The trap handler begins execution in single-instruction mode. The trap handler
must examine the trap-type bits in psr (IT, IN, IAT, DAT, FT) and epsr (IL) to determine the
cause or causes of the trap.

7.2.1 Saving State

To support nesting of traps, the trap handler must save the current state before another trap occurs.
An interrupt stack can be implemented in software (refer to the section on stack implementation
in Chapter 8). Interrupts can then be reenabled by clearing the trap-type bits and setting IM to the
value of PIM. The branch-indirect instruction is sensitive to the trap-type bits; therefore, clearing
the trap-type bits allows normal indirect branches to be performed within the trap handler.

The items that make up the current state may include any of the following:

WX B WD -

The fir.

The psr.

The epsr.

The fsr.

The MERGE register.

The KR, KI, and T registers.

Any of the four pipelines (refer to section 7.9).
The floating-point and integer register files.
The dirbase register.

7-2

Inte[TRAPS AND INTERRUPTS

7.2.2 Returning from the Trap Handler
Returning from a trap handler involves the following steps:

1. Restoring the pipeline states, including the fsr, KR, KI, T, and MERGE registers, where
necessary.

2. Subtracting src/ from sre2, when a data-access fault occurred on an autoincrementing load/
store instruction and a floating-point trap did not also occur.

3. Determining where to resume execution by inspecting the instruction at fir — 4. The details
for this determination are given in section 7.2.2.1.

4. Updating psr with the value to be used after return. It may be necessary to set the KNF bit
in psr. The requirements for KNF are given in section 7.2.2.2.

5. Restoring the integer and floating-point register files (except for the register that holds the
resumption address).

6. Executing an indirect branch to the resumption address. Neither the indirect branch nor the
following instruction may be executed in dual-instruction mode.

7. Restoring the register that holds the resumption address. (This is executed before the delayed
indirect branch is completed.)

7.2.2.1 DETERMINING WHERE TO RESUME

To determine where to resume execution upon leaving the trap handler, examine the instruction at
address fir — 4. If this instruction is not a delayed control instruction, then execution resumes at
the address in fir.

If, on the other hand, the instruction at fir — 4 is a delayed control instruction (i.e. one that
executes the next sequential instruction on branch taken), the normal action is to resume at fir —
4 so that the control instruction (which did not finish because of the trap) is also reexecuted. If
the instruction at fir — 4 is a bla instruction, then sr¢/ should be subtracted from sr¢2 before
reexecuting.

The one variance from this strategy occurs when the instruction at fir — 4 is a conditional delayed
branch (bc.t or bne.t), the instruction at fir is a pfgt, pfle, or pfeq, and a source exception has
occurred. To implement the IEEE standard for unordered compares, the trap handler may need to
change the value of CC. In this case it cannot resume at fir — 4, because the new value of CC
might cause an incorrect branch. Instead, the trap handler must interpret the conditional branch
instruction and resume at its target.

If the 1860 Microprocessor was in dual-instruction mode and execution is to resume at fir — 4,
DS should be set and DIM cleared in the psr used to resume execution. Clearing DIM prevents
the floating-point instruction associated with the control instruction from being reexecuted. Setting
DS forces the processor back to dual-instruction mode after executing the control instruction.

mtel TRAPS AND INTERRUPTS

Every code section should begin with a nop instruction so that fir — 4 is defined even in case a
trap occurs on the first real instruction. Also, that nop should not be the target of any branch or
call.

7.22.2 SETTING KNF

The KNF bit of psr should be set if the trapped instruction is a ﬂoating-point instruction that
should not be reexecuted; otherwise, KNF is left unchanged. Floating-point instructions should
not be reexecuted under the following conditions:

® The trap was caused in dual-instruction mode by a data-access fault and there are no other
trap conditions. In this case, the the floating-point instruction has already been executed.
(The one exception is the fxfr instruction. An fxfr must be reexecuted; so do not set KNF).

® The trap was caused by a source exception on any floating-point instruction (except when
a pfgt, pfle, or pfeq follows a conditional branch, as already explained in section 7.2.2.1).
The trap handler determines the result that corresponds to the exceptional inputs; therefore,
the instruction should not be reexecuted.

7.3 INSTRUCTION FAULT

This fault is caused by any of the following conditions. In all cases the processor sets the IT bit
before entering the trap handler.

® By the trap instruction. Refer to the trap instruction in Chapter 5.

® By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is executed.
The trap handler should clear OF before returning. Refer to the intovr instruction in
Chapter 5. :

® By the lack of an unlock instruction and a subsequent load or store within 32 instructions of
alock. In this case IL is also set. When the trap handler finds IL set, it should scan backwards
for the lock instruction and restart at that point. The absence of alock instruction within 32

instructions of the trap indicates a programming error. Refer to the lock instruction in
Chapter 5. ‘

7.4 FLOATING-POINT FAULT

The floating-point faults of the i860 Microprocessor support the floating-point exceptions defined
by the IEEE standard as well as some other useful classes of exceptions. The i860 Microprocessor
divides these into two classes:

1. Source exceptions. This class includes:

® All the invalid operations defined by the IEEE standard (including operations on trapping
NaNs).

® Division by zero.

7-4

Intel TRAPS AND INTERRUPTS

® Operations on quiet NaNs, denormals and infinities. (These data types are implemented
by software.)

2. Result exceptions. This class includes the overflow, underflow, and inexact exceptions
defined by the IEEE standard.

The floating-point fault occurs only on floating-point instructions, pst, fst, fid, pfld, and ixfr.
However, no fault occurs when pst, fst, fld, pfld, or ixfr transfers an invalid floating-point format.

Software supplied by Intel provides the IEEE standard default handling for all these exceptions.

7.4.1 Source Exception Faults

When used as inputs to the floating-point adder or multiplier, all exceptional operands (including
infinities, denormalized numbers and NaNs) cause a floating-point fault and set SE in the fsr.
Source exceptions are reported on the instruction that initiates the operation. For pipelined
operations, the pipeline is not advanced. The trap handler can reference both source operands and
the operation by decoding the instruction specified by fir.

In the case of dual operations, the trap handler has to determine which special registers the source
operands are stored in and inspect all four source operands to see if one or both operations need
to be fixed up. It can then compute the appropriate result and store the result in rdest, in the case
of a scalar operation, or replace the appropriate first-stage result, in the case of a pipelined
operation.

Note that, in the following case, inappropriate use of the FTE bit of the fsr can produce an invalid
operand that does not cause a source exception:

1. Floating-point traps are masked by clearing the FTE bit.

2. An dual-operation instruction causes underflow or overflow leaving an invalid result in the T
register.

3. Floating-point traps are enabled by setting the FTE bit.
4. The invalid result in the T register is used as an operand of a subsequent instruction.

Even though the result of an operation would normally cause a source exception, it can be inserted
into the pipeline as follows:

1. Disable traps by clearing FTE.

2. Perform a pipelined add of the value with zero or a multiply by one.

3. Set the result-status bits of fsr to ‘‘normal’’ by loading fsr with the U-bit set and zeros in the
appropriate unit’s result-status bits. The other unit’s status must be set to the saved status for

the first pipeline stage.

4. Reenable traps by setting FTE.

7-5

intel TRAPS AND INTERRUPTS

5. Set KNF in the psr to avoid reexecuting the instruction.

The trap handler should ignore the SE bit for faults on fid, pfid, fst, pst, and ixfr instructions
when in single-instruction mode or when in dual-instruction mode and the companion instruction
is not a multiplier or adder operation. The SE value is undefined in this case.

The trap handler should process result exceptions as described below and reexecute the instruction
before processing source exceptions.

7.4.2 Result Exception Faulits
The class of result exceptions includes any of the following conditions:

® Overflow. The absolute value of the rounded true result would exceed the largest finite
number in the destination format.

® Underflow (when FZ is clear). The absolute value of the rounded true result would be smaller
than the smallest finite number in the destination format.

® Inexact result (when TI is set). The result is not exactly representable in the destination
format. For example, the fraction 1/3 cannot be precisely represented in binary form. This
exception occurs frequently and indicates that some (generally acceptable) accuracy has been
lost.

The point at which a result exception is reported depends upon whether pipelined operations are
being used:

® Scalar (nonpipelined) operations. Result exceptions are reported on the next floating-
point, fst.x, or pst.x (and sometimes fld, pfld, ixfr) instruction after the scalar operation.
When a trap occurs, the last-stage of the affected unit contains the result of the scalar
operation.

® Pipelined operations. Result exceptions are reported when the result is in the last stage and
the next floating-point, fst.x, or pst.x (and sometimes fld, pfld, ixfr) instruction is executed.
When a trap occurs, the pipeline is not advanced, and the last-stage results (that caused the
trap) remain unchanged.

When no trap occurs (either because FTE is clear or because no exception occurred), the pipeline
is advanced normally by the new floating-point operation. The result-status bits of the affected
unit are undefined until the point that result exceptions are reported. At this point, the last-stage
result-status bits (bits 29..22 and 16..9 of the fsr) reflect the values in the last stages of both the
adder and multiplier. For example, if the last-stage result in the multiplier has overflowed and a
pipelined floating-point pfadd is started, a trap occurs and MO is set.

For scalar operations, the RR bits of fsr specify the register in which the result was stored. RR is
updated when the scalar instruction is initiated. The trap, however, occurs on a subsequent
instruction. Programmers must prevent intervening stores to fsr from modifying the RR bits.
Prevention may take one of the following forms:

7-6

intal TRAPS AND INTERRUPTS

® Before any store to fsr when a result exception may be pending, execute a dummy floating-
point operation to trigger the result-exception trap.

® Always read from fsr before storing to it, and mask updates so that the RR, RM, and FZ bits
are not changed.

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate unit.

In either case, the result has the same fraction as the true result and has an exponent which is the
low-order bits of the true result. The trap handler can inspect the result, compute the result
appropriate for that instruction (a NaN or an infinity, for example), and store the correct result.
The result is either stored in the register specified by RR (if nonzero) or in the last stage of the
pipeline (if RR = 0). The trap handler must clear the result status for the last stage, then reexecute
the trapping instruction.

Result exceptions may be reported for both the adder and multiplier units at the same time. In this -
case, the trap handler should fix up the last stage of both pipelines.

7.5 INSTRUCTION-ACCESS FAULT

This trap results from a page-not-present exception during instruction fetch. If a supervisor-level
page is fetched in user mode, an exception may or may not occur.

7.6 DATA-ACCESS FAULT

This trap results from an abnormal condition detected during data operand fetch or store. Such an
exception can be due to one of the following causes:

® An attempt is being made to write to a page whose D-bit is clear.

® A memory operand is misaligned (is not located at an address that is a multiple of the length
of the data).

® The address stored in the debug register is equal to one of the addresses spanned by the
operand.

® The operand is in a not-present page.

® An attempt is being made from user level to write to a read-only page or to access a
supervisor-level page.

7.7 INTERRUPT TRAP

An interrupt is an event that is signaled from an external source. If the processor is executing with
interrupts enabled (IM set in the psr), the processor sets the interrupt bit IN in the psr, and
generates an interrupt trap. Vectored interrupts are implemented by interrupt controllers and
software.

7-7

Inte[TRAPS AND INTERRUPTS

7.8 RESET TRAP

When the i860 Microprocessor is reset, execution begins in single-instruction mode at address
OxFFFFFFO0O0. This is the same address as for other traps. The reset trap can be distinguished from
other traps by the fact that no trap bits are set. The instruction cache is flushed. The bits DPS,
BL, and ATE in dirbase arc cleared. CSS8 is initialized by the value at the INT pin just before the
end of RESET. The read-only fields of the epsr are set to identify the processor, while the IL,
WP, and PBM bits are cleared. The bits U, IM, BR, and BW in psr are cleared. All other bits of
psr and all other register contents are undefined.

The software must ensure that the data cache is flushed (refer to Chapter 4) and control registers
are properly initialized before performing operations that depend on the values of the cache or
registers. The fir must be initialized with a Id.c fir, rO instruction.

Reset code must initialize the floating-point pipeline states to zero, using dummy pfadd, pfmul,
pfiadd instructions. Floating-point traps must disabled to ensure that no spurious floating-point
traps are generated.

After a RESET the i860 Microprocessor starts execution at supervisor level (U=0). Before
branching to the first user-level instruction, the RESET trap handler or subsequent initialization

code has to set PU and a trap bit so that an indirect branch instruction will copy PU to U, thereby
changing to user level.

7.9 PIPELINE PREEMPTION

Each of the four pipelines (adder, multiplier, load, graphics) contains state information. The
pipeline state must be saved when a process is preempted or when a trap handler performs
pipelined operations using the same pipeline. The state must be restored when resuming the
interrupted code.

7.9.1 Floating-Point Pipelines

The floating-point pipeline state consists of the following items:

1. The current contents of the floating-point status register fsr (including the third-stage result
status).

2. Unstored results from the first, second, and third stages. The number of stages that exist in
the multiplier pipeline depends on the sizes of the operands that occupy the pipeline. The
MRP bit of fsr helps determine how many stages are in the multiplier pipeline.

3. The result-status bits for the first two stages.

4. The contents of the KR, KI, and T registers.

intel TRAPS AND INTERRUPTS

7.9.2 Load Pipeline

The pipeline state for pfld instructions can be saved by performing three pfld instructions to a
dummy address. Thus the pipeline is advanced three stages, causing the last three real operands
to be stored from the pipeline into registers that are then saved in some memory area. The size of
each saved value is indicated by the value of the LRP bit of the fsr.

The load pipeline can be restored performing three pfld instructions using the memory addresses
of the saved values. The pipeline will then contain the same three values it held before the
preemption.

7.9.3 Graphics Pipeline

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd f0, f0, rdesr.
The only other state information for the graphics unit resides in the PM bits of psr, the IRP bit of
the fsr, and in the MERGE register. Store the MERGE register with a form instruction. Restore
the MERGE register by using faddz instructions (see Example 7-2).

7.9.4 Examples of Pipeline Preemption
Example 7-1 shows how to save the pipeline state.

Example 7-2 shows how to restore the pipeline state. Trap handlers manipulate the result-status
bits in the floating-point pipelines while preparing for pipeline resumption. When storing to fsr
with the U-bit set, the result-status bits are loaded into the first stage of the pipelines of the
floating-point adder and multiplier. The updated result-status bits of a particular unit (multiplier
or adder) are propagated one stage for each pipelined floating-point operation for that unit. When
they reach the last stage, they override the normal result-status bits computed from the last-stage
result. The result-status bits in the fsr always reflect the last-stage result status and cannot be
directly set by software.

7-9

intel

TRAPS AND INTERRUPTS

// The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl,

// 1Iresl, Lres, KR, KI, and T refer to 64-bit FP registers.

// The symbols Fsr3, Fsr2, Fsrl, Mergelo32, Mergehi32, and Temp
// refer to integer registers.

// The symbols Lres3m, Lres2m,
// The symbol Dummy represents

and Lreslm refer to memory locations.
an addressing mode that refers to some
always present (e.g. 0(r0)).

// readable location that is

// Save third, second, and first stage
fld.d DoubOne, //
1d.c fsr, Fsr3 //
andnot 0x20, Fsr3, Temp //
st.c Temp, fsr //
pfmul.ss fo, f0, Mres3 //
pfadd.ss fo, f0, Ares3 //
pfld.d Dummy, Lres /
fst.d Lres, Lres3m //
1d.c fsr, Fsr2 //
pfmul.ss fo, fo, Mres2 //
pfadd.ss fo, fo, Ares2 //
pfld.d Dummy, Lres //
fst.d Lres, Lres2m //
ld.c fsr, Fsrl //
pfmul.ss f0, £0, Mresl //
pfadd.ss £0, fo, Aresl //
pfld.d Dummy, Lres //
fst.d Lres, Lreslm //
pfiadd.dd fO, fo, Iresl //

// Save KR, KI, T, and MERGE
r2apt.dd f0, f4, £0 . //

//
i2pl.dd f0, f4, £f0 //
pfmul.dd f0, f0, KR //
pfmul.dd fo, f0, KI //
pfadd.dd fo, fO0, fo //
pfadd.dd £0, fo, T //
form fo, f2 //
fxfr f2, Mergelo32
fxfr f3, Mergehi32
Example 7-1.

T save

results

get double-precision 1.0

save third stage result status
clear FTE bit

disable FP traps

save third stage M result

save third stage A result

save third stage pfld result
in memory

second stage result status
second stage M result
second stage A result
second stage pfld result
in memory

first stage result status
first stage M result
first stage A result
first stage pfld result
in memory

vector-integer result

save
save
save
save

save
save
save
save
M first
A first

stage contains KR
stage contains T
stage contains KI
register

Save KI register

adder third stage gets T
save T-register

save MERGE register

Saving Pipeline States

intel

TRAPS AND INTERRUPTS

// The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl,
// 1Iresl, KR, KI, and T refer to 64-bit FP registers.
// The symbols Fsr3, Fsr2, Fsrl, Mergelo32, Mergehi32, and Temp

// refer to integer registers.

// The symbols Lres3m, Lres2m, and Lreslm refer to memory locations.

st.c r0, fsr
// Restore MERGE
shl 16, Mergelo32,
ixfr rl, f£2
shl 16, Mergehi32,
ixfr rl, £3
ixfr Mergelo32,
ixfr Mergehi32,
faddz fo, f2,
faddz fo, f4,
// Restore KR, KI, and T
fld.1 SingOne,
fld.d DoubOne,
pfmul.dd f4, T,
r2pt.dd KR, fo0,
i2apt.dd KI, fo,
// Restore 3rd stage
andh 0x2000, Fsr3,
be.t LO
pfadd.ss Ares3, f0,
pfadd.dd Ares3, fO,
10: orh hagLres3m, xO,
andh 0x400, Fsr3,
bec.t L1
pfld.1l 1$Lres3m(r3l),
pfld.d 1gLres3m(r3l),
Ll: andh 0x1000, Fsr3,
bc.t L2
pfmul.ss Mres3, f2,
pfmul3.dd Mres3, f4,
L2: or 0x10, Fsr3,
andnot 0x20, Temp,
st.c Temp , fsr

Example 7-2.

//
rl //
rl //
f4
f5
fo //
€0/
2 //
£4 7/
0 //
to //
£f0 //
0 //

//
fo //
fo //
r3l
r0 //

//
fo //
o //
0 //

//
to //
to //

Temp //
Temp //
/

clear FTE
move low 16 bits to high 16

move low 16 bits to high 16

merge low lés

/ merge high l6s

get single-precision 1.0

get double-precision 1.0

put value of T in M 1lst stage
load KR, advance t

load KI and T

test adder result precision ARP
taken if it was single

insert single result

insert double result

test load result precision LRP
taken if it was single
insert single result
insert double result
test multiplier result precision MRP
taken if it .was single
insert single result
insert double result
set U (update) bit so that st.c
will update status bits in pipeline
clear FTE bit so as not to cause traps

/ update stage 3 result status

Restoring Pipeline States (1 of 2)

intef

TRAPS AND INTERRUPTS

// Restore 2nd stage

L3:

L4

L5:

andh
be.t
pfadd.ss
pfadd.dd
orh

andh
bec.t
pfld.1
pfld.d
or
andnot
andh
be.t
pfmul.ss
pfmul3.dd
st.c

0x2000, Fsr2,
L3

Ares?2, fO,
Ares2, f0,
hasLres2m, 1O,
0x400, Fsr2,
L4
1%Lres2m(r3l),
1%Lres2m(r3l),
0x10, Fsr2,

0x20, Temp,
0x1000, Fsr2,

L5

Mres2, f2,
Mres2, f4,
Temp, fsr

// Restore lst stage

L6:

L7:

18:

19:

andh
be.t
pfmul.ss
pfmul3.dd
andh

bc.t
pfadd.ss
pfadd.dd
orh

andh
be.t
pfld.1
pfld.d
andh

be.t
pfiadd.ss
pfiadd.dd
or

st.c

st.c

0x1000, Fsrl,

L6

Mresl, f£2,
Mresl, f4,
0x2000, Fsrl,
L7

Aresl, fO,
Aresl, fO0,
hasLreslm, rO0,
0x400, Fsrl,
L8
1%Lreslm(r3l),
1$Lreslm(r3l),

0x800, Fsrl,
L9

f0, Iresl, f0
£f0, Iresl, fO

0x10, Fsrl,

Fsrl, fsr

Fsr3, fsr
Example 7-2.

r0 // test adder result precision ARP
// taken if it was single

f0 // insert single result

f0 // insert double result

r3l

r0 // test load result precision LRP
// taken if it was single

fO0 // insert single result

f0 // insert double result -

Temp // set update bit
Temp // clear FTE

r0 // test multiplier result precision MRP
// taken if it was single

f0 // insert single result

fO // insert double result
// update stage 2 result status

r0 // test multiplier result precision MRP
// skip next if double

fO0 // insert single result

f0 // insert double result

r0 // test adder result precision ARP
// taken if it was single

fO0 // insert single result

f0 // insert double result

r3l

r0 // test load result precision LRP
// taken if it was single

f0 // insert single result

fO0 // insert double result

r0 // test vector-integer result precision IRP
// taken if it was single
// insert single result
/ insert double result

/
Fsrl // set U (update) bit

// update stage 1 result status
// restore nonpipelined FSR status

Restoring Pipeline States (2 of 2)

7-12

Programming Model

Chapter 8
Programming Model

This chapter defines standards for the use of certain aspects of the architecture of the i860
Microprocessor. These standards must be followed to guarantee that compilers, applications
programs, and operating systems written by different people and organizations will work together.

8.1 REGISTER ASSIGNMENT

Table 8-1 defines the standard for register allocation. Figure 8-1 presents the same information
graphically.

Table 8-1. Register Allocation

. Left Unchanged
Register Purpose by a Subroutine?
ro Always zero Yes
r Return address Yes
r2 Stack pointer Note'
r3 Frame pointer Yes
r4-ri5 Local values Yes
r16-r27 Parameters and temporaries No
r16 Return value No
r28-r30 Temporaries No
r31i Addressing temporary No
fo-f1 Always zero
f2-f15 Local values Yes
f16-f27 Parameters and temporaries No
f16-f17 Return value No
f28-131 Temporaries No

1 The stack pointer is nomaily kept unchanged across a subroutine call. However, some subroutines may allocate stack space
and return with a different value in r2.

NOTE

The dividing point between locals and parameters and return value in the floating-
point registers is not yet firm. For the purpose of illustration, the dividing point is
shown at f16, but this may change to f8.

8.1.1 Integer Registers

Up to 12 parameters can be passed in the integer registers. The first (leftmost) parameter is passed
inr16 (if it is an integer), the rest in successively higher-numbered registers. If fewer parameters
are required, the remaining registers can be used for temporary variables. If more than 12
parameters are required, the overflow can be passed in memory on the stack.

8-1

Inter PROGRAMMING MODEL

Register r16 is both a parameter register and a return value. If a subroutine has an integer return
value, the value is put into r16 before control is returned to the caller.

Register r1 is the required return-address register, because the call instruction uses it to save the
return address. Subroutines are therefore required to use r1 to return to the caller. If a subroutine
saves I't, it may then use it as a temporary until it returns.

A separate addressing temporary register (r31) is allocated to allow construction of 32-bit absolute-
address temporaries. The assembler uses r31 by default to construct 32-bit absolute addresses
from 16-bit literals.

INTEGER o 6 FLOATING-POINT
ZERO 10 ZERO fo
RETURN ADDRESS | r1 _A f2
STACK POINTER | r2 4
FRAME POINTER | 13 t6
r4 LOCALS t8
5 f10
16 12
r7 [] 14
r8 [y f16
LOCALS r9 f18
ri0 PARAMETERS 120
rm f22
r2 124
r3 [] 126
r4 f28
5 TEMPORARIES 30
* ri6
n7
ri8
rg
r20
r21
PARAMETERS | r22
r23
r24
25
26
L] r27
A r28
TEMPORARIES | r29
- r30
ADDRESS TEMP. | r31

Figure 8-1. Register Allocation

8-2

intel PROGRAMMING MODEL

8.1.2 Floating-Point Registers

Floating-point and 64-bit integer values in the floating-point registers must use f16-f27 when
passed by value. The leftmost parameter is passed in f17-f16 (if it is floating-point); the rest in
successively higher-numbered registers. Single-precision parameters use two registers, just as do
double-precision parameters. The single-precision value must be in the even-numbered register;
the corresponding odd-numbered register is left unused in this case. A single-precision floating-
point value can be converted to double-precision with the fmow.sd fx, fy pseudoinstruction.

Parameters beyond f26-f27 are passed in memory on the stack. The last (i.e. rightmost) parameter
is at the highest stack address (i.e is pushed first assuming a grow-down stack). The same registers
used to pass the first parameter are used for the return value when the return value is a floating-
point value or 64-bit integer. A subroutine may need to save the first parameter to make room for
the return value.

8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers

If parameter N is an integer parameter, then it is placed in integer register 16 + N, and the
double-precision register at 16 + 2N is available for use as a local variable. If parameter M is a
floating-point parameter, then it is placed in the floating-point register pair at 16 + 2M, and the
integer register 16 + M is available for use as a local variable.

NOTE

This convention remains tentative. It may change to allow all integer and floating
parameter registers to contain parameter values.

8.1.4 Variable Length Parameter Lists

Parameter passing in registers can handle variable parameters. UNIX* System V uses a special
method to access variable-count parameters. The varargs.h file defines several functions to get at
these parameters in a way that is independent of stack growth direction and of whether parameters
are passed in registers or on the stack. A subroutine with variable parameters calls va__start to
force them onto the stack before they can be used. The routine va__start must be called at the
beginning of a subroutine. This method works with current C standards.

8.2 DATA ALIGNMENT

Compilers and assemblers must do their best to keep data aligned. It is acceptable to have holes
in data structures to keep all items aligned. In some cases (e.g. FORTRAN programs with
overlaid data), it is necessary to have misaligned data. A run-time trap handler can be provided to
handle misaligned data; however, such data would impose a performance penalty on the
application. If a compiler must reference data that is misaligned, the compiler must generate
separate instructions to access the data in smaller units that will not generate misaligned-data
traps. Accessing 16-bit misaligned data requires two byte loads plus a shift. Storing to 32-bit
misaligned data requires four byte stores and three shifts. The code example in Example 8-1 is
- the recommended method for reading a misaligned 32-bit value whose address is in r8.

|nter PROGRAMMING MODEL

andnot 3, r8, r9 // Get address aligned on 4-byte boundary
14.1 0(r9), rlo // Get low 32-bit value

14.1 4(r9), rll // Get high value 32-bit

and 3, r8, r9 // Get byte offset in 8-byte field

shl 3, r9, r9 // Convert to bit offset

shr r9, r0, r0 // Set shift count

shrd rll, rl0, r9 // Put 32-bit value into R9

// If the misalignment offset (m) is known in advance, this code can be
// optimized. Assume r8 points to next aligned address less than address
// of misaligned field.

1d4.1 0(r8), rl0 // Get low value

14.1 4(r8), rll // Get high value

shr m*8, r0, r0 // Set shift count

shrd rll, rlo0, r9 // Put 32-bit value into R9

Example 8-1. Reading Misaligned 32-Bit Value

8.3 IMPLEMENTING A STACK

In general, compilers and programmers have to maintain a software stack. Register r2 (called sp
in assembly language) is the suggested stack pointer. Register r2 is set by the operating system
for the application when the program is started. The stack must be a grow-down stack, so as to
be compatible with that of the Intel386™. If a subroutine call requires placing parameters on the
stack, then the caller is responsible for adjusting the stack pointer upon return. The caller must
also allocate space on the stack for the overflow parameters (i.e. parameters that exceed the
capacity of the registers reserved for passing parameters) and store them there directly for the call
operation.

A separate frame pointer is used because C allows calls to subroutines that change the stack
pointer to allocate space on the stack at run-time (e.g. alloca and va__start). Other languages
may also return values from a subroutine allocated on stack space below the original top-of-stack
pointer. Such a subroutine prevents the caller from using r2-relative addressing to get at values on
the stack. If the compiler knows that it does not call subroutines that leave r2 in an altered state
when they return, then no frame pointer is necessary.

The stack must be kept aligned on 16-byte boundaries to keep data arrays aligned. Each subroutine
must use stack space in multiples of 16 bytes. The frame pointer r3 (called fp in assembly
language) need not point to a 16-byte boundary, as long as the compiler keeps data correctly
aligned when assigning positions relative to 3. '

Figure 8-2 shows the stack-frame format. A fixed format is necessary to allow some minimal
stack-frame analysis by a low-level debugger.

8-4

Inte[PROGRAMMING MODEL

31 0
[| "
Direction
of |
Expansion old
sp
RETURN POINTER
OLD FRAME POINTER
~$— current
fp
Y
PROGRAM-
] SPECIFIC 1
1 DYNAMIC]
STORAGE
-&— current
sp

SP-STACK POINTER
FP-FRAME POINTER

Figure 8-2. Stack Frame Format

8.3.1 Stack Entry and Exit Code

Example 8-2 shows the recommended entry and exit code sequences. The stack pointer is restored
to the value it had on entry into the subroutine. Assuming the subroutine needs to call another
subroutine, it must save the frame pointer and its return address. It probably also needs to save
some of its internal values across that call to another subroutine; therefore, the example saves one
local register into the stack frame and subsequently reloads it.

Languages such as Pascal that need to maintain activation records on the stack can put them
below the frame pointer in the program-specific area. The frame pointer is optional. All stack
references can be made relative tor2. The code example in Example 8-3 shows the recommended
entry and exit sequences when no frame pointer is required.

A lowest-level subroutine need not perform any stack accesses if it can run completely from the
temporary registers. No entry/exit code is required by a lowest-level subroutine.

8-5

mtel“ PROGRAMMING MODEL

// Subroutine entry

adds -(Locals+8), sp, sp // Allocate stack space for local variables
/ Locals+8 must be a multiple of 16

st.l fp, Locals(sp) // Save old frame pointer below old SP

adds Locals, sp, fp // Set new frame pointer

st.1 rl, 4(fp) // Save return address

st.1 r5, -4(fp) // Save a local register

// Subroutine exit

1d.1 -4(fp), 5 // Restore a local register

mov fp, sp // Deallocate stack frame

1d.1 4(fp), rl // Restore return address

1d.1 0(fp), f£p // Restore old frame pointer

bri rl // Return to caller after next instruction
adds 8, sp, sp // Deallocate frame pointer save area

Example 8-2. Subroutine Entry and Exit with Frame Pointer

// Subroutine entry
addu -Locals, r2, r2 // Allocate stack space for local variables
// -Locals must be a multiple of 16

// Subroutine exit
bri rl // Return to caller after next instruction
addu Locals, r2, r2 // Restore stack pointer

Example 8-3. Subroutine Entry and Exit without Frame Pointer

8.3.2 Dynamic Memory Allocation on the Stack

Consider a function alloca which allocates space on the stack and returns a pointer to the space.
The allocated space is lost when the caller returns. The function alloca could be implemented as
shown in Example 8-4, and a separate stack pointer and frame pointer are required.

alloca::
- // rlé has size requested
adds 15, rleé, rl6 // Round size to O mod 16
andnot 15, rl6, rlée //
subs sp, rl6, sp // Adjust stack downwards
bri rl // Return to caller after next instruction
mov sp, rlé // Set return value to allocated space

Example 8-4. Possible Implementation of alloca

lnte[PROGRAMMING MODEL

8.4 MEMORY ORGANIZATION

Figure 8-3 suggests an overall memory layout. The i860 Linker needs to know by default where
to assign code and data inside a program. The output of the linker must normally be executable
without fixups. Code and -data of both the application and operating system can share a single
four-gigabyte address space. The example memory map assumes paging is being used to place
DRAM-resident code in the upper 256 Mbytes of the address space.

O0XFFFFFFFF
OPERATING SYSTEM CODE AREA
EMPTY
USER CODE AREA
0xF0400000
FIXED SUBROUTINE ENTRIES
0xF0000000

OPERATING SYSTEM DATA

SPECIAL SHARED MEMORY AREA
BETWEEN DIFFERENT TASKS

.

USER STACK SPACE
~@—— User SP

EMPTY
USER DYNAMIC HEAP
USER DATA
0x00001000
OPERATING SYSTEM DATA AREA
0x00000000

Figure 8-3. Example Memory Layout

The first four Kbytes (first page) of the address space are reserved for the operating system. It
should be a supervisor-only page and should not be swappable. Uninitialized external address
references in user programs (which are equivalent to an assembly-language address expression of
the form 0(r0)) reference this first page and cause a trap.

8-7

Intel PROGRAMMING MODEL

The data space for the application begins at 0x1000 (second page). It is all readable and writable.
The total data address space available to the application should be over 3500 Mbytes. The user’s
data space has the following sections:

® A user-data portion whose size and content is defined by the program and development tools.

® A section called the heap whose size is determined at run time and can change as the program
executes.

® A stack section.

The application’s stack area starts at some address set by the OS and grows downward. The
starting address of the stack would normally be at a four-Mbyte boundary to allow easy page-
table formatting. The stack’s starting address is not known in advance. It depends on how much
address space is used by the operating system at the top of the address space.

The operating system may also want to reserve some portion of the application’s address space
for shared memory areas with other tasks. UNIX System V allows such shared memory areas.
The empty areas on the diagram if Figure 8-3 would normally be marked as not-present in the
page table entries. Some special flag in the page table entry could allow the operating system to
determine that the page is not usable instead of just not present in memory.

A four-Mbyte area of code space is reserved starting at 0xFO000000 for a set of entry addresses
to subroutines commonly used by all application programs (math libraries and vector primitives,
for example). These code sections are shared by all application programs. The code in this area is
directly callable from user-level code and executes at user level. Standard i860 Microprocessor
calling conventions are used for these subroutines. The size of this area is chosen as four Mbytes,
because that size corresponds to a directory-level page table entry that all applications tasks can
share. It should be large enough to contain all desirable shared code.

The application program code area starts at 0xF0400000. It can be as large as 248 Mbytes. The
application code is write-protected. The operating system and application code spaces lie in the
upper 256 Mbytes of the address space. The operating system code is in the upper part of the 256
Mbyte code space. The operating system code is protected from application programs. Because it
is easier for the operating system to divide up the address space in four-Mbyte blocks, the
minimum operating-system code allocation from the address space is probably four Mbytes.
Additional space would be allocated in four-Mbyte increments.

Every code section should begin with a nop instruction so that the trap handler can always
examine the instruction at fir — 4 even in case a trap occurs on the first instruction of a section.

The memory-mapped I/O devices should also be placed in the upper operating-system data space.

The paging hardware allows logical addresses to be different from their corresponding physical
addresses. The I/O device logical address area may be located anywhere convenient.

8-8

Programming Examples

Chapter 9
Programming Examples

9.1 SMALL INTEGERS

The 32-bit arithmetic instructions can be used to implement arithmetic on 8- or 16-bit ordinals
and integers. The integer load instruction places 8- or 16-bit values in the low-order end of a 32-
bit register and propagates the sign bit through the high-order bits of the register.

Occasionally, it is necessary to sign extend 8- or 16-bit integers that are generated internally, not
loaded from memory. Example 9-1 shows how.

// SIGN-EXTEND 8-BIT INTEGER TO 32 BITS
// Assume the operand is already in rlé6
shl 24, rlé, rlé // left-justify
shra 24, rlé, rlé // right-justify all but sign bit

Example 9-1. Sign Extension

Example 9-2 shows how to load a small unsigned integer, converting the sign-extended form
created by the load instruction to a zero-extended form.

// LOADING OF 8-BIT UNSIGNED INTEGERS
// Assume the address is already in rl9

// Load the operand (sign-extended) into r20
1d.b 0(rl9), r20

// Mask 6ut the high-order bits
and 0x000000FF, r20, r20

Example 9-2. Loading Small Unsigned Integers

9.2 SINGLE-PRECISION DIVIDE

Example 9-3 computes Z = X + Y for single-precision variables. The algorithm begins by using
the reciprocal instruction frep to obtain an initial guess for the value of 1/Y. The frep instruction
gives a result that can differ from the true value of 1/Y by as much as 278, The algorithm then
continues to make guesses based on the prior guess, refining each guess until the desired accuracy
is achieved. Let G represent a guess, and let E represent the error, i.e. the difference between G
and the true value of 1/Y. For each guess ..

Grew = Gold(2 = Ggg*Y).
Epew = 2(Eold)2~

9-1

mtel’ PROGRAMMING EXAMPLES

This algorithm is optimized for high performance and does not produce results that are rounded
according to the IEEE standard. Worst case error is about two least-significant bits. If the result
is referenced by the next instruction, 22 clocks are required to perform the divide.

// SINGLE-PRECISION DIVIDE

// The dividend X is in f6

// The divisor Y is in f2

// The result Z is left in f3

// f5 contains single-precision floating-point 2.
frep.ss f2, f3 // first guess has 2**-8 error
fmul.ss £f2, f3, f4 // guess * divisor
fsub.ss £5, f4, f4 // 2 - guess * divisor
fmul.ss 3, f4, f3 // second guess has 2%%-15 error
fmul.ss £2, £3, f4 // avoid using f3 as srcl
fsub.ss £5, f4, t4 // 2 - guess * divisor
fmul.ss £6, f3, f5 // second guess * dividend
fmul.ss f4, f5, f3 // result = second guess * dividend

Example 9-3. Single-Precision Divide

9.3 DOUBLE-PRECISION DIVIDE

Example 9-4 computes Z = X <+ Y for double-precision variables. The algorithm is similar to
that shown previously for single-precision divide. For double-precision divide, one more iteration
is needed to achieve the required accuracy.

This algorithm is optimized for high performance and does not produce results that are rounded
according to the IEEE standard. Worst case error is about two least-significant bits. If the result
is referenced by the next instruction, 38 clocks are required to perform the divide.

// DOUBLE-PRECISION DIVIDE

// The dividend X is in f2
// The divisor Y is in f4
// The result Z is left in f8
frep.dd f4, f6 // first guess has 2**-8 error
fmul.dd f4, f6, f8 // guess * divisor
: fld.d flttwo, £f10 // load double-precision floating 2
// The fld.d is free. It completely overlaps the preceding fmul.dd
fsub.dd £10, £8, £f8 // 2 - guess * divisor
fmul.dd f6, f8, f6 // second guess has 2%*-15 error
fmul.dd f4, f6, f8 // avoid using f6 as srcl
fsub.dd £10, £8, f8 // 2 - guess * divisor
fmul.dd f6, f8, f6 // third guess has 2%*-29 error
fmul.dd f4, f6, f8 // avoid using f6 as srcl
fsub.dd f10, f8, £8 // 2 - guess * divisor
fmul.dd f£6, f2, f6 // guess * dividend
fmul.dd f£8, fé6, f8 // result = third guess * dividend

Example 9-4. Double-Precision Divide

9-2

Inter PROGRAMMING EXAMPLES

9.4 INTEGER MULTIPLY

A 32-bit integer multiply is implemented in Example 9-5 by transferring the operands to floating-
point registers and using the fmlow instruction. If the result is referenced in the next instruction,
nine clocks are required. Five clocks can be overlapped with other operations.

// INTEGER MULTIPLY

// The multiplier is in r4

// The multiplicand is in r5

// The product is left in ré

// The registers f2, f4, and f6 are used as temporaries.
ixfr r4, £2
ixfr r5, f4

// Two core instructions can be inserted here without penalty.
fmlow.dd f4, £2, f6

// Two core instructions can be inserted here without penalty.
fxfr fe6, r6

// One core instruction can be inserted here without penalty.

Example 9-5. Integer Multiply

9.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE

The strategy used in Example 9-6 is to use the bits of the integer to construct a value in double-
precision format. The double-precision value constructed contains two biases:

BC A bias that compensates for the fact that the signed integer is stored in two’s
complement format. The value of this bias is 23!.

BN A bias that produces a normalized number, so that the algorithm does not cause a
floating-point exception. The value of this bias is 252

If the desired value is x, then the constructed value is x + BC + BN. By later subtracting BC +
BN, the value x is left in double precision format, properly normalized by the i860 Microprocessor.
The value of BC + BN is 2524231 (0x4330__0000__8000__0000).

// CONVERT SIGNED INTEGER TO DOUBLE

// The integer is in r4
// The double-precision floating-point result is left in £7:f6
// The register f5:f4 contains BN+BC
xorh 0x8000, r4, r4 // Complement sign bit (equivalent to adding BC).
ixfr r4, f6 // Construct low half.
fmov.ss £5, f£7 // Set exponent in high half (includes BN)
// One instruction can be inserted here without penalty.
fsub.dd f6, - f4, f6 // (x + BN + BC) - (BN + BC) = x

// Two core instructions can be inserted here without penalty.

Example 9-6. Single to Double Conversion

intel

PROGRAMMING EXAMPLES

The conversion requires 7 clocks if the result is referenced in the next instruction. Three clocks
can be overlapped with other operations.

9.6 SIGNED INTEGER DIVIDE

Example 9-7 combines the techniques of Section 9.3 and 9.5. It requires 62 clocks (59 clocks
without remainder).

// SIGNED INTEGER DIVIDE

registers f2 through fll are used as temporaries.

load constant 2%%*52 + 2%%*31

load floating-point two

first guess has 2%*-8 error
guess * divisor

2 - guess * divisor

second guess has 2%*-15 error
avoid using f6 as srcl

2 - guess * divisor

third guess has 2**-29 error
avoid using f6 as srcl

2 - guess * divisor

guess * dividend

result = third guess * dividend

load value 1 + 2%*-40

force quotient to be bigger than integer
get denominator for remainder computation
convert to integer

quotient * denominator

transfer quotient
remainder = numerator - quotient * denominator

// The denominator is in r4

// The numerator is in r5

// The quotient is left in r6

// The remainder is left in r7

// The

// Convert Denominator and Numerator
fld.d two52two3l, f6 //
xorh 0x8000, r4, r4h J/
ixfr 4, f4 //
fmov.ss f7, £5 //
xorh 0x8000, r5, 5 //
fsub.dd f4, f6, fa //
ixfr r5, £2 //
fmov.ss f7, £3 //
fsub.dd £2, f6, £2 //

// Do Floating-Point Divide
fld.d fdtwo, f£10 //
frep.dd f4, 1) //
fmul.dd f4, f6, f8 //
fsub.dd f10, £8, £8 //
fmul.dd £6, £8, f6 //
fmul.dd f4, fé6, £8 //
fsub.dd f10, £8, £8 //
fmul.dd f6, f8, f6 //
fmul.dd f4, f6, f8 //
fsub.dd f10, £8, £8 //
fmul.dd f6, £2, f6e //
fmul.dd £8, fe6, f8 //

// Convert Quotient to Integer
fld.d onepluseps, f10 //
fmul.dd £8, f1o0, £f8 //
ixfr rh, f10 //
ftrunc.dd f8, f8 //

// Compute Remainder
fmlow.dd f10, f8, f10 //
fxfr f10, rh
fxfr 8, r6 //
subs r5, xr7, 7 //

Example 9-7.

Signed Integer Divide

|nte| PROGRAMMING EXAMPLES

9.7 STRING COPY

Example 9-8 shows how to avoid the freeze condition that might occur when using a load in a
tight loop such as that commonly used for copying strings. A performance penalty is incurred if
the destination of a load is referenced in the next instruction. In order to avoid this condition,
Example 9-8 juggles characters of the string between two registers.

// STRING COPY
// Assumptions:

// Source address alignment unknown
// Destination address alignment unknown
// End of string indicated by NUL

// rl7 - address of source string
// rlé - address of destination string

copy_string:
1d.b 0(r17) r26 // Load one character
bte 0, r26, done // Test for NUL character
adds 1, rl7, rl7 // Bump pointer to source string
1d.b 0(rl7), r27 // Load one more character
subs rl7, rlé, rl8 // Use constant offset to avoid
// incrementing two indexes
loop::
st.b r26, 0(rl6) // Store previous character
adds 1, rlé6, rlé // Bump common index
or r0, r27, r26 // Test for NUL character
bne.t loop // If not NUL, branch after loading
1d.b rl8(rlé6), r27 // next character. r18(rl6) = 0(rl7)
done::
bri rl // Return after storing
st.b r26, 0(rl6) // the NUL character, too

Example 9-8. String Copy

9.8 FLOATING-POINT PIPELINE

Most instruction sequences that use pipelined instructions can be divided into three phases:

Priming Filling a pipeline with known intermediate results while
disposing of previous pipeline contents.

Continuous Operation Receiving expected results with the initiation of each new
pipelined instruction.

'Flushing Retrieving the results that remain in the pipeline after the
pipelined instruction sequence has terminated.

Example 9-9 shows one strategy for using the floating-point adder, which has a three-stage
pipeline. This example assumes that the prior contents of the adder’s pipeline are unimportant,
and discards them by specifying register f0 as the destination of the first three instructions. After
performing the intended calculations, it flushes the pipeline by executing three dummy addition
instructions with fO (which always contains zero) as the operands.

mtel PROGRAMMING EXAMPLES

// PIPELINED FLOATING-POINT ADD

// Calculates f10 f4 + £5, f11

= + £7

// f12 £8 + £f9, f£f13 = £5 + £6
// Assume f4 =1.0, f5 = 2.0, f6 = 3.0
// ; f7 = 4.0, f8 =5.0, f9=6.0
// Stage 1 Stage
// Priming phase

pfadd.ss f4, f5, f0O // 142 ??

pfadd.ss f6, f7, f0 // 3+4 1+2

pfadd.ss £8, £f9, f0 // 5+6 3+4

// Continuous operation phase
pfadd.ss £f5, f6, fl0 // 2+3 5+6
// For longer pipelined sequences, include more

// Flushing phase

pfadd.ss £0, £0, f11 // 040 2+3
pfadd.ss £f0, £0, £f12 /7 0+0 0+0
pfadd.ss £f0, £0, £13 // 040 0+0

2 Stage 3
??

??
3

7

Result
Discard

Discard
Discard

£10= 3

instructions here

11
5
0

Example 9-9. Pipelined Add

fll= 7
f12=11
f13= 5

9.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS

When using dual-operation instructions (all of which are pipelined), code that primes and flushes
the pipelines must take into account both the adder and multiplier pipelines. Example 9-10
illustrates pipeline usage for a simple single-precision matrix operation: the dot product of a 1X8
row matrix A with an 8X1 column matrix B. For the purpose of tracking values through the

pipelines, assume that the actual matrices to be multiplied have the following values:

A =1[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]

Assume further that the two matrices are already loaded into registers thus:

A: f4=1.0 B:
f5=2.0
f6 = 3.0
f7=4.0
f8 =5.0
f9=6.0
fl10= 7.0
fl1 = 8.0

f12 = 8.0
f13=170
fl4 = 6.0
f15= 5.0
fl6 = 4.0
f17 = 3.0
f18 = 2.0
f19= 1.0

mtel PROGRAMMING EXAMPLES

The calculation to perform is 1.0%*8.0 + 2.0%7.0 + ... 8.0¥1.0—a series of multiplications
followed by additions. The dual-operation instructions are designed precisely to execute this type
of calculation efficiently by using the adder and multiplier in parallel. At the heart of example
9-10 is the dual-operation instruction mi12apm, which multiplies its operands and adds the
multiplier result to the result of the adder.

The priming phase is somewhat different in Example 9-10 than in Example 9-9. Because the
result of the adder is fed back into the adder, it is not possible to simply ignore the prior contents
of the adder pipeline; and because the result of the multiplier is automatically fed into the adder,
it is important to consider the effect of the multiplier on the adder pipeline as well. This example
waits until unknown results have been flushed from the multiplier pipeline, then uses pfadd
instructions to put zeros in all stages of the adder pipeline.

9.10 DUAL INSTRUCTION MODE

The previous Example 9-9 and Example 9-10 showed how the 1860 Microprocessor can deliver
up to two floating-point results per clock by using the pipelining and parallelism of the adder and
multiplier units. These examples, however are not realistic, because they assume that the data is

// PIPELINED DUAL-OPERATION INSTRUCTION

// Multiplier Adder

// Stages Stages

// 1 2 3 1 2 3 Result

// Priming phase
ml2apm.ss f4, f12,£0 // 1%8 ?? ?? ?? ?? ?? Discard
ml2apm.ss f5, f13,£f0 // 2%7 1%8 2?7 ?7? 7? ?? Discard
ml2apm.ss f6, fl14,f0 // 3*%6 2%7 8 ?7? ?7? ?? Discard
pfadd.ss f0, f0 ,f0 // 0 ?? ?? Discard
pfadd.ss f0, f0O ,f0 // 0 0 ?? Discard
pfadd.ss £0, f0 ,f0 // 0 0 0 Discard

// Continuous operation phase

ml2apm.ss f7, £15,f0 // 4%5 3%6 14 8+0 0+0 0 Discard
ml2apm.ss £8, f16,f0 // 5%4 4%5 18 1440 8+0 0 Discard
ml2apm.ss £9, £f17,f0 // 6%3 5%4 20 1840 14+0 8 Discard
ml2apm.ss f10,f18,f0 // 7%2 6*3 20 20+8 18+0 14 Discard
ml2apm.ss f11,f19,f0 // 8%1 7%2 18 20+14 20+8 18 Discard

// For larger matrices, include more instructions here

// Flushing phase
ml2apm.ss f0, fO, £f0 // 0*0 81 14 18+18 20+14 28 Discard
ml2apm.ss £0, £0, £f0 ,// O0*0 O*0 8 14+28 18+18 34 Discard
ml2apm.ss £0, f0, £f0 // 0%0 Ox0 O 8+34 14428 36 Discard

pfadd.ss £0, f0, £20 // 0+0 8+34 42 £20=36
pfadd.ss £20,f21,£21 // 42436 0+0 42 £21=42
pfadd.ss £f0, f0, £20 // 0+0 42436 O £20=42
pfadd.ss f0, f0, fO // 0+0 0+0 78 Discard
pfadd.ss £0, f0, £f21 // : 0+0 0+0 O f21=78
fadd.ss £20,£21,£20 // £20=120

Example 9-10. Pipelined Dual-Operation Instruction

mtel“ PROGRAMMING EXAMPLES

already loaded in registers. Example 9-11 goes one step further and shows how to maintain the
high throughput of the floating-point unit while simultaneously loading the data from main
memory and controlling the logical flow.

The problem is to sum the single-precision elements of an arbitrarily long vector. The procedure
uses dual-instruction mode to overlap loading, decision making, and branching with the basic
pipelined floating-point add instruction pfadd.ss. To make obvious the pairing of core and
floating-point instructions in dual-instruction mode, the listing in Example 9-11 shows the core
instruction of a dual-mode pair indented with respect to the corresponding floating-point
instruction.

Elements are loaded two at a time into alternating pairs of registers: one time at loop1 into f20
and f21, the next time at loop2 into f22 and f23. Performance would be slighty degraded if the
destination of a fld.d were referenced as a source operand in the next two instructions. The
strategy of alternating registers avoids this situation and maintains maximum performance. Some
extra logic is needed at sumup to account for an odd number of elements.

9.11 CACHE STRATEGIES FOR MATRIX DOT PRODUCT

Calculations that use (and reuse) massive amounts of data may render significantly less than
optimum performance unless their memory access demands are carefully taken into consideration
during algorithm design. The prior Example 9-11 easily executes at near the theoretical maximum
speed of the i860 Microprocessor because it does not make heavy demands on the memory
subsystem. This section considers a more demanding calculation, the dot product of two matrices,
and analyzes two memory access strategies as they apply to this calculation.

The product of matrix A=A4;; of dimension LXM with matrix B=B; j of dimension MXN is the
matrix C=Cj; of dimension LXN, where ...

Ci’j = Ai,lBl,j+Ai,ZBZ,j+ e +Ai,MBM,j (fOI‘ 1sis L, 1 $_] = N)

The basic algorithm for calculation of a dot product appears in Example 9-10. To extend this
algorithm to the current problem requires adding instructions to:

1. Load the entries of each matrix from memory at appropriate times.
2. Repeat the inner loop as many times as necessary to span matrices of arbitrary M dimension.
3. Repeat the entire algorithm L*N times to produce the LXN product matrix.

Each of the examples 9-12 and 9-13 accomplishes the above extensions through straightforward
programming techniques. Each example uses dual-instruction mode to perform the loading and
loop control operations in parallel with the basic floating-point calculations. The examples differ
in their approaches to memory access and cache usage. To eliminate needless complexity, the
examples require that the M dimension be a multiple of eight and that the B matrix be stored in
memory by column instead of by row. Data is fetched 32 bytes beyond the higher-address end of
both matrices. In real applications, programmers should ensure that no page protection faults
occur due to these accesses.

9-8

|ntel' PROGRAMMING EXAMPLES

// SINGLE-PRECISION VECTOR SUM
// input: 1rlé6 - vector address
// rl7 - vector size (must be > 5)
// output: flé6 - sum of vector elements
spvsum: :
fid.d r0(rl6), £20 // Load first two elements
mov -2, r2l // Loop decrement for bla
. // Initiate entry into dual-instruction mode
d.pfadd.ss fO, f0, f0 // Clear adder pipe (1)
adds -6, r17, rl7 // Decrement size by 6
// Enter into dual-instruction mode
d.pfadd.ss fo, fo0, f0 // Clear adder pipe (2)
bla r21, rl7, 1loopl // Initialize LCC
d.pfadd.ss fo0, fo, - f0 // Clear adder pipe (3)
fld.d 8(rlé)++, f22 // Load 3rd and 4th elements
loopl::
d.pfadd.ss £20, £30, £30 // Add £20 to pipeline
bla r2l, rl7, 1loop2 // If more, go to loop2 after
d.pfadd.ss £21, £31, £31 // adding f21 to pipeline and
fld.d 8(rl6)++, £20 // loading next £20:f21
// 1f we reach this point, at least one element remains
/ to be loaded. rl7 is either -4 or -3.
/ £20, £f21, £22, and f23 still contain vector elements.
// Add £20 and f22 to the pipeline, too.
d.pfadd.ss £20, £30, £30
br sumup // Exit loop after adding
d.pfadd.ss £21, £31, £31 // £21 to the pipeline
nop
loop2::
d.pfadd.ss £22, £30, £30 // Add £22 to pipeline
bla r2l, rl7, 1loopl // If more, go to loopl after
d.pfadd.ss £23, £31, £31 // adding £23 to pipeline and
fld.d 8(rl6)++, £22 // loading next £22:£23
// 1f we reach this point, at least one element remains
// to be loaded. rl7 is either -4 or -3.
// £20, £21, £22, and £23 still contain vector elements.
// Add £f20 and f21 to the pipeline, too.
d.pfadd.ss £20, £30, £30
nop
d.pfadd.ss 21, £31, £31
nop
sumup: : // Initiate exit from dual mode
pfadd.ss f22, £30, £30 // Still in dual mode
mov -4, r2l
pfadd.ss £23, £31, £31 // Last dual-mode pair
bte r2l, rl7, done // If there is one more
fld.1 8(rl6)++, £20 // element, load it and
pfadd.ss £20, £30, £30 // add to pipeline
// Intermediate results are sitting in the adder pipeline.
// Let Al:A2:A3 represent the current pipeline contents
done: :
pfadd.ss fo0, fo, £30 // 0:A1:A2 £30=A3
pfadd.ss £30, £31, £31 // A2+A3:0:A1 £31=A2
pfadd.ss fo, f0, £30 // 0:A2+A3:0 F30=A1
pfadd.ss fo, fo0, f0 // 0:0:A2+A3
pfadd.ss fo, f0, £31 // 0:0:0 F31=A2+A3
fadd.ss £30, £31, fl6 // f16 = A1+A2+A3

Example 9-11. Dual-Instruction Mode

|ntel PROGRAMMING EXAMPLES

® Example 9-12 depends solely on cached loads.
® Example 9-13 depends on a mix of cached and pipelined loads.

Example 9-12 uses the fld instruction for all loads, which places all elements of both matrices A
and B in the cache. This approach is ideal for small matrices. Accesses to all elements (after the
first access to each) retrieve elements from the cache at the rate of one per clock. Using fid.q
instructions to retrieve four elements at a time, it is possible to overlap all data access as well as
loop control with m12apm instructions in the inner loop.

Note, however, that Example 9-12 is ‘‘cache bound’’; i.e., if the combined size of the two
matrices is greater than that of the cache, cache misses will occur, degrading performance. The
larger the matrices, the more the misses that will occur.

// MATRIX MULTIPLY, C = A *- B, CACHED LOADS ONLY

// Registers loaded by calling routine

// 1rl6 - pointer into A, stored in memory by rows

// rl7 - pointer into B, stored in memory by columns
// 1rl8 - pointer into C, stored in memory by rows

// rl9 - L, the number of rows in A

// 120 - M, the number of columns in A and rows in B
// r2l - N, the number of columns in B

// Registers used locally

// 128 - row/column counter decremented by bla for loop control
// 127 - decrementor for row/column pointers

// 1¥26 - counter of rows in A

// 125 - counter of columns in B

// r24 - temporary pointer into B

// 123 - number of bytes in row of A or column of B
// f4..fll - matrix A row values
// fl2..f19 - matrix B column values
// £20..£22 - temporary results
shl 2,r20,r23 // Number of bytes in M entries
adds -8,r0,r27 // Set decrementor for bla
adds -8,r20,r28 // Initialize row/column counter
adds -4,r18,r18 // Start C index one entry low
d.fiadd.dd £0,£0, f0 // Initiate dual-instruction mode
adds -1,r19,r26 // Make row counter zero relative
d. fnop // First dual-mode pair
bla r27,r28,start row // Initialize LCC
d. fnop //
subs r16,r23,rl6 // Start pointer to A one row low
start row:: // Executed once per row of A
d.pfmul.ss £0,f0, f0 /
mov rl7,x24 // Point to first col of B
d.pfmul.ss f0, £0, f0O
adds r23,rl6,rl6 // Point to next row of A
d.pfmul.ss £0,£0,£0 //
fld.q l6(x24),fl6 // Load 4 entries of B
d.pfadd.ss £0,f0, f0 /
fld.q 16(rl6),f8 // Load 4 entries of A
d.pfadd.ss £0,£0,f0 /
adds -1,r21,r25 // Initialize column counter
d.pfadd.ss £0,£0,£0 /
fld.q 0(rls6), f4 // Load 4 entries of A

Example 9-12. Matrix Multiply, Cached Loads Only (sheet 1 of 2)

9-10

intel

PROGRAMMING EXAMPLES

inner loop

:: // Process eight entries of row of A with eight of col of B

//
// Load 4 entries of B

// Bump pointer to A by 8 entries
// Bump pointer to B by 8 entries
// Load 4 entries of B

/
// Load 4 entries of A

//
//
//

// Loop until end of row/column
/

/
// Load 4 entries of A

// Set A pointer back to beginning of row

// Reinitialize row/column counter

//
//
//
// Won't branch; initializes LCC

;; Load 4 entries of A

;? Load 4 entries of B

/; Load 4 entries of A

;; Decrement column counter

// Store row/column product in C

B?

//
// CC controlled by prior adds

//
//

// Is row counter zero?
//
// Taken if row counter not zero

// Decrement row counter
// Initiate exit from dual mode

//
// Last dual-mode pair

d.mI2apm.ss £8, £f16,£20
fld.q 0(r24),f12
d.ml2apm.ss f9, £17,£20
adds 32,rxl6,rlé6
d.ml2apm.ss £10,f18,£20
adds 32,r24,r24
d.ml2apm.ss £11,£19,£20
fld.q 16(r24),fl16
d.ml2apm.ss f4, £12,£20
fld.q 16(rl6),£8
d.ml2apm.ss £5, £13,£20
nop
d.ml2apm.ss f6, f14,£20
bla r27,r28,inner_loop
d.ml2apm.ss £7, £15,£21
fld.q 0(rle6),f4
// End Inner Loop. End of row/column
d.ml2apm.ss fo, f0, f22
subs rl6,r23,rl6
d.ml2apm.ss £0, fO, f20
adds -8,r20,r28
d.ml2apm.ss f0, fO, f21
nop
d.pfadd.ss fo, f0, f22
bla r27,r28,inner_loop
d.pfadd.ss f0, f0, f20
fld.q 16(rl6), f8
d.pfadd.ss fo, f0, f21
fld.q 16(r24), flé
d.fadd.ss £20,£22,£22
fld.q 0(rle), f4
d.fadd.ss £21,£22,£22
adds -1,r25,r25
d.pfadd.ss £f0, f0, fO
fst.1 £22, 4(rl8)++
// Continue with next column of
d.pfadd.ss f0, fo0, fO
bne.t inner loop
d.pfadd.ss £0, £0, fO
nop
// Continue with next row of A?
d. fnop
xor r26,r0,r0
d. fnop
bne.t start_row
d. fnop
adds -1,r26,r26
fnop
nop
fnop
nop

// End

Example 9-12.. Matrix Multiply, Cached Loads Only (sheet 2 of 2)

|nte|. . PROGRAMMING EXAMPLES

// MATRIX MULTIPLY, C = A * B, CACHED AND PIPELINED LOADS MIXED

// Registers loaded by calling routine

// r%6 - pointer into A, stored in memory by rows

// rl] - pointer into B, stored in memory by columns
// rl8 - pointer into C, stored in memory by rows

// rl9 - L, the number of rows in A

// 120 - M, the number of columns in A and rows in B
// 21 - N, the number of columns in B

// Registers used locally

// 1r29 - temporary pointer into A

// 128 - row/column counter decremented by bla for loop control
// 1r27 - decrementor for row/column pointers

// 1r26 - counter of rows in A

// 25 - counter of columns in B

// 124 - temporary pointer into B

// 23 - number of bytes in row of A or column of B
// f4..fll - matrix A row values
// f£12..f19 - matrix B column values
- // £20..£22 - temporary results
mov rl7,r24 // Pointer to B
shl 2,r20,r23 // Number of bytes in M entries
adds -8,r0,r27 - // Set decrementor for bla
adds -8,r20,r28 // Initialize row/column counter
d.fiadd.dd £0,£0,£0 // Initiate dual-instruction mode
adds -4,r18,r18 // Start C index one entry low
d. fnop // First dual-mode pair
adds -1,r19,r26 // Make row counter zero relative
d. fnop
bla r27,r28,start_row // Initialize LCC
d. fnop //
mov rl6,r29 // Pointer to A
start_row:: // Executed once per row of A
d.pfmul.ss £0, f0, £f0 /
pfld.d 0(r24),f0 // Load 2 entries of B into load pipe
d.pfmul.ss f0, £0, £f0 //
pfld.d 8(r24)++,f0 // Load 2 entries of B into load pipe
d.pfmul.ss £0, £0, £0 //
pfld.d 8(r24)++,f0 // Load 2 entries of B into load pipe
d.pfadd.ss f0, £0, f0 //
fld.q 0(r29),f4 // Load 4 entries of A
d.pfadd.ss £0,£0, f0 //
pfld.d 8(r24)++,f12 // Load 2 entries of B
d.pfadd.ss f0,£0,£0 //
adds -1,r21,r25 // Initialize column counter
d. fnop //
pfld.d 8(r24)++,f14 // Load 2 entries of B

inner_loop:: // Process eight entries from row of A with eight from col of B

d.ml2apm.ss f4, £12,f£0 /

fld.q 16(r29)++,f8 // Load 4 entries of A
d.ml2apm.ss £5, f13,£0 //

pfld.ad 8(r24)++,f16 // Load 2 entries of B
d.ml2apm.ss f6, fl4,f0 //

pfld.d 8(r24)++,f18 // Load 2 entries of B

Example 9-13. Matrix Multiply, Cached and Pipelined Loads (sheet 1 of 2)

9-12

intel

PROGRAMMING EXAMPLES

//
/7
//
//
//
/7
//
/7
/

Load 4 entries of A

Load 2 entries of B

Loop until end of row/column

8(r24)++,f14 // Load 2 entries of B

Reinitialize row/column counter
Set A pointer back to beginning of row
Load first 4 entries of row of A

Won’t branch; initializes LCC

Decrement column counter

Store row/column product in C

CC controlled by prior adds

Point to first col of B
Bump pointer to A by one row

Set A index to beginning of next row

Is row counter zero?
Taken if row counter not zero

Decrement row counter
Initiate exit from dual mode

Last dual-mode pair

d.ml2apm.ss £f7, £15,f0
fld.q 16(xr29)++,f4
d.ml2apm.ss f8, fl6,f0
nop
d.ml2apm.ss f9, f17,f0
pfld.d 8(r24)++,f12
d.ml2apm.ss f10,£f18,f0
bla r27,r28,inner loop
d.ml2apm.ss f11,£19,f0
pfld.d
// End Inner Loop. End of row/column
d.ml2apm.ss £0, f0, fO
nop
d.ml2apm.ss f0, f0, fO
adds -8,r20,r28
d.ml2apm.ss f0, f0, fO
mov rl6,r29
d.pfadd.ss f0, f0, f22
fld.q 0(r29), f4
d.pfadd.ss f0o, £0, f20
bla r27,r28,inner loop
d.pfadd.ss fo, fo, f21
nop
d.fadd.ss £20,£22,£22
nop
d.fadd.ss £21,£22,£22
adds -1,r25,r25
d.pfadd.ss fo, fo, fO
fst.1 £22, 4(rl8)++
// Continue with next column of
d.pfadd.ss fo, fo0, fO
bne.t inner_ loop
d.pfadd.ss f0, £0, fO
nop
// End of all columns of B
d.fnop
mov rl7,r24
d. fnop
adds rl6,r23,rl6
d. fnop
mov rl6,r29
// Continue with next row of A?
d. fnop
Xor r26,r0,r0
d.fnop
bnec.t start_row
d.fnop
adds -1,r26,r26
fnop
nop
fnop
nop

End

Example 9-13. Matrix Multiply, Cached and Pipelined Loads (sheet 2 of 2)

Inter "~ PROGRAMMING MODEL

Example 9-13 uses fld for all the elements of each row of A, and uses pfld to pass all columns of
B against each row of A. This example is less cache bound, because only rows of A are placed
in the cache. More load instructions are required, because a pfld can load at most two single-
precision operands. Still, with pipelined memory cycles, it remains possible to overlap the loading
of the eight items: from matrix A, the eight items from matrix B, and the loop control with the
eight m12apm instructions in the inner loop.

The strategy of Example 9-13 is suitable for larger matrices than the strategy in Example 9-12
because, even in the extreme case where only one row of A fits in the cache, cache misses occur
only the first time each row is processed. However, if dimension M is so great that not even one
row of A fits entirely in the cache, cache misses will still occur. On the other side, for small
matrices, Example 9-13 may not perform as well as Example 9-12, because, even when there is
sufficient space in the cache for elements of matrix B, Example 9-13 does not use it.

9-14

Instruction Set Summary

Key to abbreviations:

srcl

srclni

sre2
rdest
freg
ireg
ctrireg

#const

mem.x(address)

P

Appendix A
Instruction Set Summary

A register (integer or floating-point depending on class of instuction) or a
16-bit immediate constant or address offset. The immediate value is zero-
extended for logical operations and is sign-extended for add and subtract
operations (including addu and subu) and for all addressing calculations.

Same as src¢/ except that no immediate constant or address offset is
permitted.

A register (integer or floating-point depending on class of instruction).
A register (integer or floating-point depending on class of instruction).
A floating-point register.

An integer register.

One of the control registers fir, psr, epsr, dirbase, db, or fsr.

A 16-bit immediate constant or address offset that the i860 Microprocessor
sign-extends to 32 bits when computing the effective address.

The contents of the memory location indicated by address with a size of x.

Precision specification. Unless otherwise specified, floating-point operations
accept single- or double-precision source operands and produce a result of
equal or greater precision. Both input operands must have the same
precision. The source and result precision are specified by a two-letter
suffix to the mnemonic of the operation, as shown in the table below.

Suffix Source Precision Result Precision
) single ' single
.sd single double
.dd double double

.8s (32 bits), or.dd (64 bits)
b (8 bits), .s (16 bits), or.l (32 bits)
I (32 bits), .d (64 bits), or.q (128 bits)

J (32 bits), or.d (64 bits)

A-1

|nte| INSTRUCTION SET SUMMARY

Ibroff A signed, 26-bit, immediate, relative branch offset
sbroff A signed, 16-bit, immediate, relative branch offset
brx A function that computes the target address of a branch by shifting the

offset (either /broff or sbroff) left by two bits, sign-extending it to 32 bits,
and adding the result to the address of the current control-transfer instruction

plus four.

srcls ' An integer register or a 5-bit immediate constant that is zero-extended to
32 bits.

comp2 A function that returns the two’s complement of its argument.

PM The pixel mask, which is considered as an array of eight bits PM[0]..PM[7],

where PM[0] is the least-significant bit.

Instruction Definitions in Alphabetical Order

adds srcl, sre2, rdest ... Add Signed
rdest 4— srcl + src2
OF 44— (bit 31 carry # bit 30 carry)
CC set if src2 < comp2(srcl) (signed)
CC clear if src2 = comp2(srcl) (signed)

addu srel, sre2, rdest oo Add Unsigned
rdest 4— srcl + src2
OF < bit 31 carry
CC 44— bit 31 carry

and srel, sre2, rdest oo Logical AND
rdest 4— srcl and sr¢2
CC set if result is zero, cleared otherwise

andh #Fconst, sre2, rdest ... o Logical AND High
rdest 4— (#const shifted left 16 bits) and sr¢2
CC set if result is zero, cleared otherwise

andnot srel, sre2, rdest oo Logical AND NOT
rdest 4— not src¢l and src2
CC set if result is zero, cleared otherwise

andnoth #const, src2, rdest ... o Logical AND NOT High
rdest €— not (#const shifted left 16 bits) and sr¢2
CC set if result is zero, cleared otherwise

bc broff o Branch on CC
IF CC =
THEN continue execution at brx(lbroff)
FI

A-2

INSTRUCTION SET SUMMARY

bc.t
IF
THEN

ELSE
FI

bla

roff ..o

cC=1

execute one more sequential instruction
continue execution at brx(lbroff)

skip next sequential instruction

srelni, sre2, sbroff ..o o o
LCC-temp clear if sre2 < comp2(srelni) (signed)
LCC-temp set if sre2 = comp2(srclni) (signed)

src2 4= srclni + sre2
Execute one more sequential instruction

IF
THEN

ELSE
FI

bnc
IF
THEN
FI

bnc.t
IF
THEN

ELSE
FI

br

LCC

LCC 4— LCC-temp

continue execution at brx(sbroff)
LCC 44— LCC-temp

continue execution at brx(lbroff)

broff ... o

cC=20

execute one more sequential instruction
continue execution at brx(lbroff)

skip next sequential instruction

broff ... o

Execute one more sequential instruction.
Continue execution at brx(lbroff).

bri

IF
- THEN

..... Branch on CC, Taken

Branch on LCC and Add

....... Branch on Not CC

Branch on Not CC, Taken

Branch Direct Unconditionally

[srelnil ©ooo oo Branch Indirect Unconditionally
Execute one more sequential instruction '

any trap bit in psr is set
copy PU to U, PIM to IM in psr
clear trap bits

[F DS is set and DIM is reset
THEN enter dual-instruction mode after executing one
instruction in single-instruction mode
ELSE IF DS is set and DIM s set
THEN enter single-instruction mode after executing one

instruction in dual-instruction mode

ELSE IF DIM is set

THEN enter dual-instruction mode
for next two instructions

A-3

INSTRUCTION SET SUMMARY

intel

ELSE enter single-instruction mode
for next two instructions
FI
FI
FI
FI

Continue execution at address in src¢/ni

(The original contents of sre/ni is used even if the next instruction
modifies src/ni. Does not trap if sre/ni is misaligned.)

bte srels, sre2, shroff .o Branch If Equal
IF srcls = src2
THEN continue execution at brx(sbroff)
FI

btne srels, sre2, sbroff ... Branch If Not Equal
IF srels # sre2
THEN continue execution at brx(sbroff)
FI

call broff . . e Subroutine Call

r1 <— address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at brx({broff)

calli [srelnil ©oo oo Indirect Subroutine Call
r] 4 address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at address in sr¢/ni
(The original contents of sr¢/ni is used even if the next instruction
modifies src/ni. Does not trap if sic/ni is misaligned.)

fadd.p srel, sre2, rdest © oL Floating-Point Add
rdest €— srcl + src2

faddp srel, sre2, rdest .o Add with Pixel Merge

rdest 4= src¢l + src2

Shift and load MERGE register as defined in Table A-1

Table A-1. FADDP MERGE Update

';ii)fel Field Loaded From R;?n':tof:tlﬂ
(from PS) Result into MERGE (Field Size)
8 63..56, 47..40, 31..24, 15..8 8
16 63..58, 47.42, 31..26, 15.10 6
32 63..56, 31..24 8

A-4

|ntef INSTRUCTION SET SUMMARY

faddz SFC, SFC2, rdest ..o e Add with Z Merge
rdest 4— srcl + src2
Shift MERGE right 16 and load fields 31..16 and 63..48

fiadd.w srel, sre2, rdest oo Long-Integer Add
rdest 4— srel + sre2

fisub.w srel, Sre2, rdest ..o Long-Integer Subtract
rdest 4= srcl — src2

fix.p srel, rdest oo Floating-Point to Integer Conversion
rdest 4— 64-bit value with low-order 32 bits equal to integer part of sr¢/ rounded

fid.y SPCl(SIe2), freg oo e Floating-Point Load (Normal)

fid.y srel(sre2)++ freg oo L Floating-Point Load (Autoincrement)
freg 4— mem.y (srcl + src2)
IF autoincrement
THEN src2 4— srcl + src2
FI

flush FECONSISTCD) v e e e e e e e e e e Cache Flush (Normal)
flush #const(sre2)++ . Cache Flush (Autoincrement)
Replace block in data cache with address (#const + src2).
Contents of block undefined. '
IF autoincrement
THEN sic2 4— #const + src2
FI

fmlow.p srcl, src2, rdest Floating-Point Multiply Low
rdest €4— low-order 53 bits of src/ mantissa X src2 mantissa
rdest bit 53 €=~ most significant bit of mantissa

fmov.p srcl, rdest ..o Floating-Point Reg-Reg Move
Assembler pseudo-opetation _
fmov.ss srcl, rdest = fiadd.ss src/, f0, rdest
fmov.dd src/, rdest = fiadd.dd src/, 0, rdest
fmov.sd srcl, rdest = fadd.sd src/, f0, rdest
fmov.ds srcl, rdest = fadd.ds src/, 10, rdest
fmul.p srcl, sre2, rdest ... Floating-Point Multiply

rdest 4— srcl X src2

fNOP Floating-Point No Operation
Assembler pseudo-operation
fnop = shrd r0, r0, r0

form srcl, rdest e OR with MERGE Register

rdest 4— src] OR MERGE
MERGE 44— 0

A-5

|nter INSTRUCTION SET SUMMARY

frep.p SFC2, rdest .. oo o e Floating-Point Reciprocal
rdest €— 1 / sr¢2 with maximum mantissa error < 277

frsqr.p src2, rdest P Floating-Point Reciprocal Square Root
rdest €— 1]V src2 with maximum mantissa error < 277/

fsty freg, srcl(Sre2) oo Floating-Point Store (Normal)
fsty freg, srcl(src2)t+ ..o Floating-Point (Autoincrement)
mem.y (src2 + srcl) 4 freg
IF autoincrement
THEN src2 4— srcl + src2
FI

fsub.p srcl, src2, rdest ... Floating-Point Subtract
rdest 4— srcl — src2

ftrunc.p srel, rdest ..o Floating-Point to Integer Conversion
rdest €— 64-bit value with low-order 32 bits equal to integer part of src/

xfr srclyireg oo Transfer F-P to Integer Register
ireg 4= srcl
fzchkl srcl, src2, rdest ... 32-Bit Z-Buffer Check

Consider srcl, src2, and rdest as arrays of two 32-bit
fields srcl(0)..srcl (1), src2(0)..src2(1), and rdest(0)..rdest(1)
where zero denotes the least-significant field.
PM 44— PM shifted right by 2 bits
FORi=0to 1
DO
PM [i + 6] €= src2(i) < srcl (i) (unsigned)
rdest(i) 4— smaller of src2(i) and srcl (i)

oD
MERGE <4— 0
fzchks srel, src2, rdest 16-Bit Z-Buffer Check

Consider srcl, src2, and rdest as arrays of four 16-bit
fields srcl(0)..src1(3), src2(0)..src2(3), and rdest(0). .rdest(3)
where zero denotes the least-significant field.
PM <— PM shifted right by 4 bits
FORi=0to3
DO
PM [i + 4] 4— src2(i) =< srcl(i) (unsigned)
rdest(i) 4— smaller of src2(i) and srcl (i)
OD
MERGE €4— 0

infovr Software Trap on Integer Overflow
If OF = 1, generate trap with IT set in psr

Inter INSTRUCTION SET SUMMARY

ixfr srelni, freg ool Transfer Integer to F-P Register
Jfreg €= srclni

Id.c ctrlreg, rdest o Load from Control Register
rdest 4— ctrireg

Id.x Srel(Sre2), rdesto Load Integer
rdest 4— mem.x (srcl + src2)

lock Begin Interlocked Sequence
Set BL in dirbase. The next load or store that misses the cache locks the bus.
Disable interrupts until the bus is unlocked.

mov SPC2, FAeSt .. oo e Register-Register Move
Assembler pseudo-operation
mov src2, rdest = shl r0, src2, rdest

MOP e Core-Unit No Operation
Assembler pseudo-operation
nop = shl rQ, r0, r0

or srcl, sre2, rdest ... Logical OR
rdest 4— srcl OR src2
CC set if result is zero, cleared otherwise

orh #const, src2, rdest Logical OR high
rdest 4— (#const shifted left 16 bits) OR src2
CC set if result is zero, cleared otherwise

pfadd.p srcl, src2, rdest L o Pipelined Floating-Point Add
rdest 4— last A-stage result
Advance A pipeline one stage
A pipeline first stage €— srcl + src2

pfaddp srcl, sre2, rdest Pipelined Add with Pixel Merge
rdest 4— last-stage I-result
last-stage I-result €— srcl + src2
Shift and load MERGE register from src/ + src2 as defined in Table A-1

pfaddz srcl, sre2, rdest L Pipelinéd Add with Z Merge
rdest 4— last-stage I-result
last-stage I-result €— srcl + src2
Shift MERGE right 16 and load fields 31..16 and 63..48 from srcl + src2

pfam.p srcl, src2, rdest Pipelined Floating-Point Add and Multiply
rdest €— last A-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage 4— A-opl + A-op2
M pipeline first stage 4— M-opl X M-op2

Inte| INSTRUCTION SET SUMMARY

pfeq.p srcl, src2, rdest Pipelined Floating-Point Equal Compare
rdest 4— last A-stage result
CC set if srcl = src2, else cleared
Advance A pipeline one stage
* A pipeline first stage is undefined, but no result exception occurs

pfat.p srcl, src2, rdest Pipelined Floating-Point Greater-Than Compare
(Assembler clears R-bit of instruction)
rdest 4— last A-stage result
CC set if srcl > src2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfiadd.w srel, sre2, rdest ... Pipelined Long-Integer Add
rdest 4— last-stage I-result
last-stage I-result €— srcl + src2

pfisub.w srcl, sre2, rdest o Pipelined Long-Integer Subtract
rdest 4— last-stage I-result
last-stage I-result €— srcl — src2

pfix.p srcl, rdest Pipelined Floating-Point to Integer Conversion
rdest €— last A-stage result
Advance A pipeline one stage
A pipeline first stage €= 64-bit value with low-order 32 bits
equal to integer part of src/ rounded

; Pipelined Floating-Point Load
pfid.z SrCI(SrC2), freg oo (Normal)
pfid.z srcl(sre2) v+, freg oo (Autoincrement)

freg €— mem.z (third previous pfld’s (srcl + src2))
(where .z is precision of third previous pfld.z)

IF autoincrement

THEN src2 44— srcl + src2

FI :

pfle.p srcl, src2, rdest Pipelined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that
assembler sets R-bit of instruction.
rdest 4— last A-stage result
CC clear if srcl = src2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfmam.p srcl, src2, rdest Pipelined Floating-Point Add and Multiply
rdest 4— last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage 4— A-opl + A-op2
M pipeline first stage €— M-opl X M-op2

A-8

Intel INSTRUCTION SET SUMMARY

pfmov.p srel, rdest ..o Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation '
pfmov.ss src/, rdest = pfiadd.ss srcl, f0, rdest
pfmov.dd src/, rdest = pfiadd.dd src/, 10, rdest
pfmov.sd src/, rdest = pfadd.sd src/, 0, rdest
pfmov.ds src/, rdest = pfadd.ds src/, f0, rdest

pfmsm.p srcl, sre2, rdest Pipelined Floating-Point Subtract and Multiply
rdest 4— last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage €4— A-opl — A-op2
M pipeline first stage €— M-opl X M-op2

pfmul.p srel, sre2, rdest L. Pipelined Floating-Point Multiply
rdest 4— last M-stage result
Advance M pipeline one stage
M pipeline first stage €— src/ X src2

pfmul3.p srel, sre2, rdest ..o oo Three-Stage Pipelined Multiply
rdest 4— last M-stage result
Advance 3-Stage M pipeline one stage
M pipeline first stage €— srel X src2

pform srel, rdest oo Pipelined OR to MERGE Register
rdest 4— last-stage I-result
last-stage I-result €— sr¢c/ OR MERGE
MERGE 4— 0

pfsm.p srcl, src2, rdest Pipelined Fleating-Point Subtract and Multiply
rdest 44— last A-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage €4— A-opl — A-op2
M pipeline first stage €4— M-opl X M-op2

pfsub.p srel, sre2, rdest oL o Pipelined Floating-Point Subtract
rdest 4— last A-stage result
Advance A pipeline one stage
A pipeline first stage €— srcl — src2

pftrunc.p srel, rdest ... Pipelined Floating-Point to Integer Conversion
rdest 4— last A-stage result .
Advance A pipeline one stage
A pipeline first stage €— 64-bit value with low-order 32 bits
equal to integer part of src/

pfzchkl srcl, sre2, rdest .o Pipelined 32-Bit Z-Buffer Check
Consider srcl, src2, and rdest as arrays of two 32-bit
fields srcl(0)..srcl (1), src2(0)..src2(1), and rdest(0)..rdest(1)
where zero denotes the least-significant field.

A-9

mtel ' INSTRUCTION SET SUMMARY

PM <4— PM shifted right by 2 bits

FORi=0to 1

DO
PM [i + 6] €—src2(i) < srcl(i) (unsigned)
rdest(i) €— last-stage I-result
last-stage I-result €— smaller of src2 (i) and srcl (i)

OD
MERGE 44— 0
pfzchks srel, sre2, rdest oo oo Pipelined 16-Bit Z-Buffer Check

pst.d

pst.d

shl

shr

shra

shrd

st.c

st.x

subs

Consider srcl, src2, and rdest as arrays of four 16-bit
fields src¢l(0)..srcl(3), sre2(0)..sr¢2(3), and rdest(0)..rdest(3)
where zero denotes the least-significant field.
PM <4— PM shifted right by 4 bits
FORi= 0to 3
DO
PM [i + 4] 44— src2(i) < srcl(i) (unsigned)
rdest 4— last-stage I-result
last-stage I-result(i) €— smaller of src¢2(i) and src/ (i)

OD

MERGE 4 0
freg, FCONSI(SIC2) oo oo Pixel Store
freg, #const(sre2)++ ... Pixel Store Autoincrement

Pixels enabled by PM in mem.d (src2 + #const) 4— freg
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement THEN src2 €— #const + src2 Fl

SECT, SFC2, Fdest ... v Shift Left
rdest 4— src2 shifted left by src/ bits

srel, Sre2, rdest ..o Shift Right
SC (in psr) 4— srcl '
rdest 4— src2 shifted right by srcl bits

srel, sre2, rdest ... Shift Right Arithmetic
rdest 4= src2 arithmetically shifted right by src/ bits

srelni, sre2, rdest ..o L o Shift Right Double
rdest 44— low-order 32 bits of src/ni:src2 shifted right by SC bits :

srelni, ctrlreg ..o Store to Control Register
ctrireg 44— srclni

srelni, #ConSI(SFC2) o e Store Integer
mem.x (src2 + #const) 4— srclni

srel, sre2, rdest .« Subtract Signed

rdest €= srcl — sr¢2
OF <— (bit 31 carry # bit 30 carry)

A-10

Inte[INSTRUCTION SET SUMMARY

CC set if sre2 > srel (signed)
CC clear if src2 < srel (signed)

subu srel, sre2, rdest .o Subtract Unsigned
rdest 4— srcl — src2
OF 44— NOT (bit 31 carry)
CC 4 bit 31 carry
(i.e. CC set if sre2 < src¢l (unsigned)
CC clear if src2 > srcl (unsigned))

trap sred, Sre2, rdest ..o Software Trap
Generate trap with IT set in psr

unlock e e End Interlocked Sequence
Clear BL in dirbase. The next load or store that misses the cache unlocks the bus.

xor srel, sre2, rdest ..o Logical Exclusive OR
rdest 4— src! XOR src2
CC set if result is zero, cleared otherwise

xorh #const, src2, rdest ... o o Logical Exclusive OR High

rdest 4— (#const shifted left 16 bits) XOR src2
CC set if result is zero, cleared otherwise

A-11

InstrUCtion Format
and Encoding

Appendix B
Instruction Format and Encoding

All instructions are 32 bits long and begin on a four-byte boundary. Among the core instructions,
there are two general formats: REG-format and CTRL-format. Within the REG-format are several
variations. ’

REG-Format Instructions

General Format
31 25 20 15 10 0

OPCODE/N SRC2 DEST SRC1 null/immediate/offset

16-Bit Immediate Variant (except bte and btne)
3 25 20 15 0

IMMEDIATE
CONSTANT OR ADDRESS OFFSET

OPCODE |1 SRC2 DEST

st, bla, bte and btne
31 25 20 15 10 0

OFFSET SRC1
OPCODE/T SRC2 HIGH SRC1S OFFSET LOW

bte and btne with 5-Bit Immediate
31 25 20 15 10 0

orcooe J1| smec2 °:f::7 IMMEDIATE OFFSET LOW

|nte[: INSTRUCTION FORMAT AND ENCODING

The src2 field selects one of the 32 integer registers (most instructions) or one of the control
registers (st.c and ld.c). Desr selects one of the 32 integer registers (most instructions) or floating-
point registers (fld, fst, pfld, pst, ixfr). For instructions where src/ is optionally an immediate
constant or address offset, bit 26 of the opcode (I-bit) indicates whether src/ is immediate. If bit
26 is clear, an integer register is used; if bit 26 is set, src] is contained in the low-order 16 bits,
except for bte and btne instructions. For bte and btne, the five-bit immediate constant is contained
in the srcl field. For st, bte, btne, and bla, the upper five bits of the offser or broffset are
contained in the dest field instead of srcl, and the lower 11 bits of offser are the lower 11 bits of
the instruction.

For Id and st, bits 28 and zero determine operand size as follows:

Bit 28 Bit O Operand Size
0 0 8-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When srcl is immediate and bit 28 is set, bit zero of the immediate value is forced to zero.

For fid, fst, pfld, pst, and flush, bit O selects autoincrement addressing if set. Bits one and two
select the operand size as follows: ‘

Bit 1 Bit 2 Operand Size
0 0 64-bits
0 1 128-bits
1 0 32-bits
1 1 32-bits

When srel is immediate, bits zero and one of the immediate value are forced to zero to maintain
alignment. When bit one of the immediate value is clear, bit two is also forced to zero.

ntel

INSTRUCTION FORMAT AND ENCODING

REG-Format Opcodes

31 26
Id.x Load Integer 010 0 L 0 I
st.x Store Integer OjJo| O L 1 1
ixfr Integerto F-P Reg Transfer | 0 | O | O | O] 0

(reserved) 010] O 1 1 0
fld.x, fst.x Load/Store F-P 0] 0 1 0 LS I
flush Flush 010 1 1 0 1
pst.d Pixel Store 010 1 1 1 1
Id.c, st.c Load/Store Control Register | 0 | 0 1 1 LS 0
bri Branch Indirect 0 1 0 0 0 0
trap Trap 01 0] 0 0 1
(Escape for F-P Unit) 01 0] 0 1 0
(Escape for Core Unit) 0 1 0 0 | 1
bte, btne Branch Equal or Not Equal 0 1 0 1 E I
pfld.y Pipelined F-P Load 0 1 1 0 0 I
(CTRL-Format Instructions) 0 1 1 X X X
addu, -s, subu, -s, Add/Subtract 1 0 0 SO AS I
shl, shr Logical Shift 1 0 1 0 LR I
shrd Double Shift 1 0 1 1 0 0
bla Branch LCC Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 I
and(h) AND 1 1 0 0 H [
andnot(h) ANDNOT 1 1 0 1 H I
or(h) OR 1 1 1 0 H I
xor(h) XOR 1 1 1 1 H I
(reserved) 1 1 X X 1 0
L Integer Length AS Add/Subtract
0 —8 bits 0 —Add
1 —16 or 32 bits (selected by bit 0) 1 —Subtract
LS Load/Store LR Left/Right
0 —Load 0 —Left Shift
1 —Store 1 —Right Shift
SO Signed/Ordinal E Equal
0 -—Ordinal 0 —Branch on Not Equal
I —Signed 1 —Branch on Equal
H High I Immediate
0 —and, or, andnot, xor 0 —srcl is register
1 —andh, orh, andnoth, xorh 1 —srel is immediate
Core Escape Instructions
31 26 15 10 5 0
010011 SRC1 reserved OPCODE

reserved

B-3

lnter INSTRUCTION FORMAT AND ENCODING

Core Escape Opcodes

»

(=)

(reserved) 0 0 0 0 0

lock Begin Interlocked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0
(reserved) 0 0 0 1 1

intovr Trap on Integer Overflow 0 0 1 0 0
(reserved) 0 0 1 0 1

(reserved) . 0 0 1 1 0

unlock End Interiocked Sequence 0 0 1 1 1
(reserved) 0 1 X X X

(reserved) 1 0 X X X

(reserved) 1 1 X X X

CTRL-Format Instructions
31 28 25 ‘ 0
011 | opc BROFFSET
BROFFSET is a signed 26-bit relative branch offset.
CTRL-Format Opcodes
28

br Branch Direct 0 1 0

call Call 0 1 1

bc(.t) Branch on CC Set 1 0 T

bnc(.1) Branch on CC Clear 1 1 T

T Taken
0 —bc orbne
1 —bctorbnet

B-4

mtel INSTRUCTION FORMAT AND ENCODING

Floating-Point Instruction Encoding

31 25 20 15 7 0

010010 SRC2 DEST SRC1 P|DJS|R OPCODE

SRCI1, SRC2—Source; one of 32 floating-point registers

DEST —Destination register
(instructions other than fxfr) one of 32 floating-point registers
(fxfr) one of 32 integer registers

P Pipelining S Source Precision
1 —Pipelined instruction mode 1 —Double-precision source operands
0 —Scalar instruction mode 0 —Single-precision source operands
D Dual-Instruction Mode R Result Precision
I —Dual-instruction mode 1 —Double-precision result
0 —Single-instruction mode 0 —Single-precision result

Floating-Point Opcodes

6
pfam Add and Multiply* 0 0 0 DPC
pfmam Multiply with Add*
pfsm Subtract and Multiply* 0 0 1 DPC
pfmsm Multiply with Subtract*

(p)fmul Multiply 0 1 0 0 0 0
fmlow Multiply Low 0 1 0 0 0 0
frcp Reciprocal 0 1 0 0 0 1
frsqr Reciprocal Square Root 0 1 0 0 0 1
pfmul3.dd 3-Stage Pipelined Multiply 0 1 0 0 1 0
(p)fadd Add 0 1 1 0 0 0
(p)fsub Subtract 0 1 1 0 0 0
(pYix Fix 0 1 1 0 0 1
pfgt/pfle** Greater Than 0 1 1 0 1 0
pfeq Equal 0 1 1 0 1 0
(p)ftrunc Truncate 0 1 1 1 0 1
fxfr Transfer to Integer Register 1 0 0 0 0 0
(p)fiadd Long-Integer Add 1 0 0 1 0 0
(p)fisub Long-Integer Subtract 1 0 0 1 1 0
(p)fzchkl Z-Check Long 1 0 1 0 1 1
(p)fzchks Z-Check Short 1 0 1 1 1 1
(p)faddp Add with Pixel Merge 1 0 1 0 0 0
(p)faddz Add with Z Merge 1 0 1 0 0 0
(p)form OR with MERGE Register 1 0 1 1 0 1

O O—= =~ OO0~ 00~ OO~ O~

*pfam and pfsm have P-bit set; pfmuladd and pfmulsub have P-bit clear.
**pfgt has R bit cleared; pfle has R bit set.

Instruction Timings

Appendix C
Instruction Timings

i860 Microprocessor instructions take one clock to execute unless a freeze condition is invoked.
Freeze conditions and their associated delays are shown in the table below. Freezes due to multiple
simultaneous cache misses result in a delay that is the sum of the delays for processing each miss
by itself. Other multiple freeze conditions usually add only the delay of the longest individual

freeze.

Freeze Condition

Delay

Instruction-cache miss

Reference to destination of load instruction
that misses

fld miss

call/calli/ixfr/fxfr/ld.c/st.c and data cache miss
processing in progress

Id/st/pfid/fld/fst and data cache miss process-
ing in progress

Reference to dest of Id, call, calli, fxfr, or
Id.c in the next instruction

Reference to dest of fid/pfld/ixfr in the next
two instructions

Number of clocks to read instruction (from
ADS clock to first READY# clock) plus
time to last READY# of block when jump
or freeze occurs during miss processing plus
two clocks if data cache being accessed when
instruction-cache miss occurs.

One plus number of clocks to read data (from
ADS clock to first READY# clock) minus
number of instructions executed since load
(not counting instruction that references load
destination)

One plus number of clocks from ADS to first
READY

One plus number of clocks until first READY
returned -

One plus number of clocks until last READY
returned

One clock

Two clocks in the first instruction; one in the
second instruction

continued

intel

INSTRUCTION TIMINGS

Freeze Condition

Delay

beibne/be.tbne.t following
addu/adds/subu/subs/pfeq/pfgt

Srcl of multiplier operation refers to result of
previous operation

Floating-point operation or fst and scalar
operation in progress other than frep or frsqr

Multiplier operation preceded by a double-
precision multiply

TLB miss

pfld when three pfld’s are outstanding
pfld hits in the data cache

Store pipe full (two internal plus outstanding
bus cycles) and st/fst miss, Id miss, or flush
with modified block

Address pipe full (one internal plus outstanding
bus cycles) and Id/fld/pfid/st/fst

id/fld following st/fst hit

Delayed branch not taken

Nondelayed branch taken:
be, bne

bte, btne

Branch indirect bri.

One clock

One clock

If the scalar operation is fadd, fix, fmlow,
fmul.ss, fmul.sd, ftrunc, or fsub, three minus
the number of instructions executed after the
scalar operation. If the scalar operation is
fmul.dd, four minus the number of instructions
executed after it. Add one if the precision of
the result of the previous scalar operation is
different than that of the source. Add one if
the floating-point operation is pipelined and
its destination is not f0. If the sum of the
above terms is negative, there is no delay.

One clock
Five plus the number of clocks to finish two
reads plus the number of clocks to set A-bits

(if necessary)

One plus the number of clocks to return data
from first pfid

Two plus the number of clocks to finish all
outstanding accesses

One plus the number of clocks until READY#
active on next write data

Number of clocks until next address can be
issued

One clock

One clock

One clock

Two clocks

One clock

C-2

continued

Inte[INSTRUCTION TIMINGS

Freeze Condition

Delay

st.c

Result of graphics-unit instruction (other than
fmov) used in next instruction when the next
instruction is an adder or multiplier instruction

Result of graphics-unit instruction used in
next instruction when the next instruction is
a graphics-unit instruction

flush followed by flush

fst followed by pipelined floating-point op-
eration that overwrites the register being
stored

Two clocks

One clock

One clock

Two clocks

One clock

Instruction Characteristics D

Appendix D
Instruction Characteristics

The following table lists some of the characterisics of each instruction. The characteristics are:

What processing unit executes the instruction. The codes for processing units are:

A Floating-point adder unit

E Core execution unit

G Graphics unit

M Floating-point muitiplier unit

Whether the instruction is pipelined or not. A P indicates that the instruction is pipelined.

Whether the instruction is a delayed branch instruction. A D marks the delayed branches.

Whether the instruction changes the condition code CC. A CC marks those instructions that
change CC.

Which faults can be caused by the instruction. The codes used for exceptions are;

IT Instruction Fault

SE Floating-Point Source Exception

RE Floating-Point Result Exception, including overflow, underflow, inexact result

DAT Data Access Fault

Note that this is not the same as specifying at which instructions faults may be reported.
A fault is reported on the subsequent floating-point instruction plus pst, fst, and sometimes

fid, pfid, and ixfr.

The instruction access fault IAT and the interrupt trap IN are not shown in the table because
they can occur for any instruction.

Performance notes. These comments regarding optimum performance are recommendations
only. If these recommendations are not followed, the i860 Microprocessor automatically
waits the necessary number of clocks to satisfy internal hardware requirements. The following
notes define the numeric codes that appear in the instruction table:

1. The following instruction should not be a conditional branch (bc, bne, be.t, or bne.t).
2. The destination should not be a source operand of the next two instructions.

3. A load should not directly follow a store that is expected to hit in the data cache.

4. When the prior instruction is scalar, src/ should not be the same as the rdest of the prior
operation.

D-1

INSTRUCTION CHARACTERISTICS

The freg should not reference the destination of the next instruction if that instuction is a
pipelined floating-point operation.

The destination should not be a source operand of the next instruction.

When the prior operation is scalar and multiplier op/ is srcl, src2 should not be the
same as the rdest of the prior operation.

When the prior operation is scalar, src/ and src2 of the current operation should not be
the same as rdest of the prior operation.

Programming restrictions. These indicate combinations of conditions that must be avoided by
programmers, assemblers, and compilers. The following notes define the alphabetic codes
that appear in the instruction table:

a.

The sequential instruction following a delayed control-transfer instruction may not be
another control-transfer instruction, nor a trap instruction, nor the target of a control-
transfer instruction.

When using a bri to return from a trap handler, programmers should take care to prevent
traps from occurring on that or on the next sequential instruction. IM should be zero
(interrupts disabled) when the bri is executed.

If rdest is not zero, srcl must not be the same as rdest.

When the multiplier op! is srcl, srcl must not be the same as rdest.

If rdest is not zero, srcl and src2 must not be the same as rdest.

D-2

ntel

INSTRUCTION CHARACTERISTICS

Instruction

Execution
Unit

Pipelined?
Delayed?

Faults

Performance
Notes

Programming
Restrictions

adds
addu
and
andh
andnot
andnoth
be

be.t
bla
bnc
bnc.t
br

bri

bte
btne

O0oQ0 OO0

1
1

PO® o
o

call
calli
fadd.p
faddp
faddz
fiadd.w
fisub.w
fix.p
fid.y
flush
fmlow.p
fmul.p
form

(wlw)

SE, RE

SE, RE
DAT

SE, RE

NN

w

[

frep.p
frsqr.p
fsty
fsub.p
ftrunc.p
fxfr
fzchki
fzchks
intovr
ixfr
Id.c
Id.x
lock
or

orh

mmmmmMmMMOOOP>PMIZ | OZIIMM>O000>MM | mMmmMmmMmMmMMMMMMMMmMMMM

CcC

SE, RE
SE, RE
DAT

SE, RE
SE, RE

DAT

© o o» o
©

N

D-3

ntel

-~

INSTRUCTION CHARACTERISTICS

. Execution Piplined? Sets Performance | Programming
Instruction Unit Delayed? cec? Faults Notes Restrictions
pfadd.p A P SE, RE
pfaddp G P 8 e
pfaddz G P 8 e
pfam.p A&M P SE, RE 7 d
pfeq.p A P CC | SE 1
pfgt.p A P CC | SE 1
pfiadd.w G P 8 e
pfisub.w G P 8 e
pfix.p A P SE, RE
pfld.z E P 2
pfmam.p A&M P SE, RE 7 d
pfmsm.p A&M . P SE, RE 7 d
pfmul.p M P SE, RE 4 c
pfmui3.dd M P SE, RE 4 c
pform G P 8 e
pfsm.p A&M P SE, RE 7 d
pfsub.p A P SE, RE
pftrunc.p A P SE, RE
pfzchkl G P 8
pfzchks G P 8
pst.d E DAT
shi E
shr E
shra E
shrd E
st.c E
st.x E DAT
subs E CcC 1
subu E CcC 1
trap E IT
unlock E
xor E cC
xorh E CC

D-4

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805

Tel: (205) 837-6955

xHﬂmillCln/AVnsl Electronics
0 R h Drive

Tel)EZOS) 837-7210
TWX: 810-726-2162

Pioneer/Technologies Group, inc.

4825 Universil uare
Huntsville 35805

Tel: (205) 837-¢ 9900
TWX: 810-726-2197

ARIZONA

Humllmn/Avnet Electronics
05 . Madisor

8528 1
Tel: (602) 231-5140
TWX: 910-850-0077
Hamiiton/Avnet Electronics
30 South McKiemy
Chandler 85226
Tel: (602) 961-6669
TWX: 910-850-0077

Arrow Electronics, Inc.
4134 E. Wood Street

Phoenix
Tel: (602) 437-0750
TWX: 910-951-1550

W;Ie Distribution Group
Black Canyon Hwy.
Pnoemx 85023
l: (602) 249-2232
910-951-4282

CALIFORNIA

Arrow Electronics, Inc.
10824 Ho S reet

0631
Tzﬁa 14) 220-6300
Arrow Electronics, Inc.
19743 Dearbom Slresl

Tel (21 3}7-7409‘37250%06

TArow Electwnlcs Inc.
521 W ddell D

Tel: 03} 745»6600
- 910-339-9371

Arrow Electronics, Inc.

9511 Ridgehaven Court

San Diego 92123

Tel (61 565-4800
888-064

Arrow Electronics, Inc.

96! Dow Avenu

92680
Ton 7 ae-5422
TWX: 910-595-2860

Avnet Electronics

50 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6071
TWX: 910-595-1928

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd.)

tHamilton Electro Sales
3170 Pullman Street
T i
ol
TW)é 910-595-2638

tHamiltcrrt\l:;vnat Electronics
4103 Nox

Sacramentt 834

Tel: (316) 920 3150

Wyle DlS!ﬂbUﬂOﬂ Grou
! ng Sireot °

Tel s313) 322- 8100
V?'ie Dnstnbuno: Group

Gavden Grove 92641
Tel: (714) 891-1717
TWX: 91 -348-7140 or 7111

Wylo Distribution Group

1 Sun Center Drive
Ram:ho Cordova 95670
Tel: (916) 638-5282

gWyle Distribution Group
Chesapeake Drive

San Dleg
el) 565-9171
: 910-335-1580

1Wyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
TBI:)é4OS&727-2500
TWX: 910-338-0296

1Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714

Tel: (714) 863-9953
TWX: 910-595-1572

Wyle Distribution Group
26677 W. Agoura Rd.
Calabasas 91302

Tel: (818) 880-9000
TWX: 872-0232

COLORADO

Arrow Electronics, Inc.
060 South Tucson Way

En lewood 80112

Tel: (303) 790-4444

fHamulton/Av»el Electronics
8765 E. Orchard Road
Suite 7
Englewood 80111
Tel: 303) 740-1017

: 910-935-0787

tWyle Distribution Group
51 E. 124th Avenue
Thorntan 80241

T)}303) 457-9953

TWX: 910-936-0770

CONNECTICUT

TArrow Etectronics, Inc.
12 Beaumont Road

Wallnn ford 06492

265-7741

TW 710-476-0162

Hamlllon/Avnat Electronics
Indu:

IHav il istrial Park
175 Bordeaux Drive Commerce Drive
Sunnyvale 9408 810
Tel: (08) 743-3300 Tel: (2&!) 797-2800
: 910-339-9332 TWX: 710-456-9974
‘tHamilton/Avnet Electronics tPioneer Electronics
éi}‘,s Rldgevi)aw Avenue 112 Ma Stree
571-7500 TQI: (203) 853-1515
TWX: 910-595-2638 TWX: 710-468-3373
‘tHamilton/Avnet Electronics FLORIDA
9650 Desoto Avenue
Chatsworth 91311 TArrow Electronics, Inc.
Tel: (818) 700-1161 éoq(:airway Drive
ui
fHamilton Eectro Sales - Deerfield Beach 33441
10950 W. Washington Bivd. Te|;305) 429-8200
TWX: 510-955-9456

Culver cng 2
Tel: (21 3%_ 58-2458
TWX: 910-340-6364

Hamilton Electro Sales
1361 B West 190th Street
Gardena 90248

Tel: (21 3) 21 7-6700

Arrow Electronics, Inc.
37 Sk Ime Drive
Suite

Lake Marv 32746
Tel: 14075323-0252
TWX: 510-859-6337

1 i /
3002 ‘G’ Strest 6801 N.W. 15th Way
Ontario 91761 Ft. Lauderdale 33309
Tek: (714) 989-9411 Tel: (305) 9712900
510-956-3097

Aunet Electronics

0501 Plu r tHamilton/Avnet Electronics
Chatswar

Tel: (213) 70(}6 71
TWX: 910-494-2207

3:97 Tech Drive N

tMicrocomputer System Technical Distributor Center

FLORIDA (Cont'd.)

tHamilton/Avnet Electronics
6947 University Boulevard
Winter Park 32792

Tel: (305) 628-36888

TWX: 810-853-0322

{Pioneer/Technologies Group, Inc.
. Lal

337'S. Lake Blvd.
Alta Monte S ;in s 32701

Tel: (407) 8:
TWX: 81 -0284
Ploneer[‘l’achnologles Group, Inc.

€74 S, Miitary Tral
Deerfield each 9,:3442

Tel: (305) 42|
TWX: 510-¢ 955 9653
GEORGIA

‘TArrow Elsctronics, Inc.
3155 Norlhwoods Parkway

Norcross 30071
Tel: (404) 449-8252
TWX: 810-766-0439

tHamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 300!

Tel: (404) 447-7500

TWX: 810-766-0432

Pioneer/Technolof les Gmnp Inc.
3100 F onhwoo s P

Tel: (404) 448-|7||
TWX: 810-766-4515

ILLINOIS

Arrow Electronics, Inc.
1140 W. 'l1‘horndale

Itasca 60143
Tel: (31 2% 250-0500
TWX: 312-250-0916

‘tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 6010
Tel: (312 860-7780
-227-0060

MT! Systems Sales
1100 W Thomdale

L 1312) 2300

tPioneer Electronics

1551 Carmen Drive

Elk Grove Village 60007

Tel: 312 437-9680
-222-1834

INDIANA

TArrow Electronics, Inc.
2495 Dlrectors Row Suite H
Indiana 6241

Tel (31 243 9353

TWX: 810-341-3119

Hamilton, Avnel Electromcs

el (317 844-9333
TWX: 810-260-3966

tPioneer Electronics
6408 Castlep\ace Drive
Indlana lis 46250
)23 849-7300
TWX: 810-260-1794

10WA

Hamilton/Avnet Electronics
91 d Avenue, S.W.
Cedar Rapids 52404

Tel: (319) 362-4757
KANSAS

Arrow Electronics

8208 Melrose Dr., Suite 210

Lenexa 66214
Tel: (913) 541-9542

Pioneer/Tec Gr.
10551 Lockman Rd.
Lenexa 66215

Tel: (913) 492-0500

KENTUCKY
?amiltol%Avnet Electronics

Lexing
Tel: (69‘6) 259-] 475

MARYLAND

Arrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046

Tel: (301)995-0003
TWX: 710-236-9005

amulton/AvneI Electlomcs
6322

Tel: 301 995—3500
TW)E }) 862-1861

Mesa Technology Col

720 Patuxem \:?Y g
Tel: (301)290 -8150
‘TWX: 710-828-9702

Pioneer/Technologies Group, Inc.
110 Gt Roag i
Galmersburg 20877
Tel:)E

710- 523-0545

MASSACHUSETTS

Arrow Elsglronlcs‘ fnc.

Wipmaton 61887
Tel: (617) 935-5134

tHamulton/Avnet Electromcs
10D canlennlal Drive

Tel: (51% a0
TWX: 710-393-0382

MT| Systerns sales
83 Cambrid, Dg
Burlington 18!3

Puoneav Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
: 710-326-6617

NEW HAMPSHIRE

"Arrow Electronics, Inc.
Perimeter Road
Manchester 03103
Tel 603) 668-6968
: 710-220-1684

tHamilton/Avnet Electronics
444 E. Industrial Drive
Manchester 031

Tel: (803) 624-9400

NEW JERSEY

tTArrow Elsclrcmcs. Inc.
Four Easl Stow Road

Unit 11

Marlton 08053

Tel:)} b 596-800
897 0329

Arrow Electronics

Tet: (201) 538-0900
1Ham||ton/Avnet Elaclromcs
idg. 36

03
Tel: {)424~0|10
TWX: 710-940-0262

fHam\Iton/Avne« Electronics
10 Industrial

Fairfisld 07006

Tel)!?m 575-5300
TWX:710-734-4388

TMTI Systems Sates
37 Kulick

Fairfield 07006

Tel: (201) 227-5662

1Pioneer Electronics

45 Roul 6

Pinebr

Tel: 1201)575 3510
TWX: 710-734-4382

MICHIGAN NEW MEXICO
Arrow Electronics, Inc. Alliance Electronics Inc.
755 Phoenix Drive 11030 Cochiti S.E.
Ann Arbor 48104 Albu%er ue 87123
Tel: (313) 971-8220 Tel: (505) 292-3360
TWX: 810-223-6020 TWX:910-989-1151
2215 29I‘| Street SE. 2524 Baylor Drive S.E.
p ce Al A'b“%o ue 87106
Grand Rapids 49508 Tel: (505) 765-1500
Tel: (616) 243-8805 TWX: 910-989-0614
WX: 810-274-6921
NEW YORK
Pioneer Electronics
4504 Broadmoor S.E. tArrow Electronics, Inc.
Grand Rapids 49508 3375 Brlgmcm Henrietta Townline Rd.
FAX: 616-698-1831 1462!
Tel)é7|s) 275 0300
THamxllon/Avnel Electronics 53-4766
7 Schoolcraft Road
ia 48150 Arrow Eleﬂmnlcs. Inc.
Tel: (313 522-4700 20 Osar A
TWX: 810-282-8775 ;a
Tel (516) 231 -1 ooo
TPioneer/Micor:gan TWX: 510-227-6623
13485 Stamf

Livonia 48150

Tel: (313) 525-1800
TWX: 810-242-3271
MINNESOTA
TNSJW Electrunlcs, Inc.
Edina 5543

Tel: (612) 830-1800
TWX: 910-576-3125

Hamilton/Avnet
Motov Parkway

Hauppat

Tel: (¢ |s) 231-9800

TWX: 510-224-6166

THamIIIon/Qvnet Electronics

333 Meti
ochester 14623
Tel (716%475 -9130
-253-5470

THamlllon/Avnel i
4 0 Wmtewater Drive

Tel: (612) 932»0600

tPioneer Electronics

éslzs Golden Triange Dr.

Eden Prairi 55343

Tel: (612) 944-3355

MISSOURI

;Arrow Electronics, Inc.
80 Schuetz

St. Louis 63141

Tel: (314) 567-6888

TWX: 910-764-0882

tHamilton/Avnet Electronics
13743 Shorsline Court
Earth City 63045

Tel: (314) 344-1200

TWX: 910-762-0684

103 Twin Oaks Drive

Syrecuse 13206
A 4350288
T T Saioreso

+MTI Systems Sales

:sa Harbor Park Drive
rt Washington 11050

Tel: (516) 621-6200

TPmnsar Electronics
Corporate Drive
alnghamton 13904
Tel: (607) 722-9300
TWX: 610-252-0893

Pioneer Electronics
40 Oser Avenue

Hauppauge 11787
Tel: (516) 231-9200

CG/SALE/012589

NEW YORK (Cont'd.)

Pioneer Elecuomcs
Crossway
Woodbury, Long Island 11797
Tel: (516) 9
TWX: 10—221 -2184
Pioneer Electronics
0 Fairport Park
Fairport 14450
Tel: (716) 381-7070
:510-253-7001

NORTH CAROLINA

TArrow Electronics, Inc.

5240 Greensdairy Road
h 27604

Te1 {319) 876-3132

TWX: 510-928-1856

Enamlnon/Avnel Electronics
510 Spnn Forest Drive

s (319) 780819
TWX: 510-928-1836

voneev/T echnclogles Gmup. Inc.
ne B

%an A- sauth?m
Tel: (9\9; 527-8188
TWX: 810-621-0366

OHI0

Arrow Electronics, Inc.

tArrow Electronics, Inc.
6238 Cocﬂran Road

Tel)}21 5&244287-3&9&

fHam-lton/Avne\ Electronics
s

Tel: (51 3&439 -6733

TWX: 810-450-2531
Hamilton/Avnet Electronics
4588 Emery industrial Pkwy.
Warrensville Heights 4412

Tel: (216) 349-51
TWX: 810-427-9452

1Hamn|lon[Avnel Eleclromcs
777 Brool

Westerville B

Tel:(614) 852 7004

tPioneer Electronics
4433 |n|erpoum Boulevard
Dayton 4542

Tel (513 236 9900

TWX: 810-459-1622

Pioneer Electronics

Tel: (215 587-3600
-422-2211

OKLAHOMA

Arrow Eleciromcs‘ Inc.
1211 E. S1st Street
Suite 1 01

Tulsa 74146

Tel: (918) 252-7537

tHamlIwn Avnet Electronics
l21 E‘ 165t St., Suite 102A

Tal: (91 8) 252-7297

OREGON

-Almac Electronics Corp.
885 N.W. 169th Place
97005

ol: (503) 629-8090
TWX: 910-467-8746

TWX 9 -455 8179

Wyle Dlslnbm-on Group.
50 LE. Elam Young Parkway

te 600
Fitebor 87124
Tel: (503) 640-6000
TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, nc.
650 Seco Road
Monroev‘lle 15146
Tek: (412) 856-7000

Hammon/Avnet Elsctronics
800 Liber

T (412q> ber4150

Pioneer Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: 782-2300
TWX: 710-795-3122

tPioneer/T¢ echnologlss Group, Inc.

Delaware Valley
261 Glbraﬂer Road

19044
Tel>§215 674-4000
-665-6778

TEXAS

Arrow Electronics, nc.
20 Commander Drive
Carraliton 75006
Tel: (214) 380-6464
TWX: 910-860-5377

‘tArrow Electronics, Irc.
10899 nghu st

Housmn 77099
Tel;?‘a 530-4700
-880-4439

TArrow Electronics, Inc.
2227 W. Braker Lane

Austin 78758
Tel:)!512 835-4180
TWX: 910-874-1348

Tef: (512) 7-8011
TWX: 910-874-1319

tMicrocomputer System Technical Distributor Center

TEXAS (Cont’d.)

;Hamllton/Avnsl Electronics
W. Walnut Hill Lane

Irving 75038
TSI‘?ZN%SSO -6111

5929
THammon/Avnet Electrcmcs
4850 nt Rd., Suite 190
Staffor d 7477
Tel: (713 240-7733
TWX: 910-881-5523

TPioneer Elecmmlcs
l 8260 K

8
Tel (512 835 -4000
TWX: 910-874-1323

{Picneer Electronics
137100m ja Road

Tel: ;2‘4) 3067300
910-850-5563

tPioneer Electronics
5853 Point West Drive
Te ‘13)797&?-65555
el

TW)} 910-881-1606
W ie Distribution Group

10 Greenville Avenue
Rlchards 75081
Tel: (214) 235-9953

UTAH

Arrow Electronics
1946 Parkway Blvd.
Salt Lake Cl 341 19
Tel: (801) 973-6913

A 1™

DOMESTIC DISTRIBUTORS (Cont’d.)

WISCONSIN

Arrow Electromcs Inc.
200 N. Patrick Bivd., Ste. 100
Brookfield 53005
Tel: (-m) 767-6600
TWX: 910-262-1193

Hamilton/Avnet Electronws
2975 Moorland R
New Berlin 53151
Tel: (414) 784-4510

WX: 910-262-1182

CANADA

ALBERTA

Hammon/l\vnel Elemronu:s
816 21st S

T2E
Tel: (433) 230-3586
TWX: 03-827-642
Zentronics

33 lo. 1
3300 14!h Avenus N.E.
Calg: 843 A 6J4

Tel: (463) 272-1021

BRITISH COLUMBIA

‘tHamilton/Avnet Electronics
105-2550 Bound:

Burmalay V5M 3

Tek: (W¥ 437-6667

Zentronics
108-11400 Bric ‘Port Road
Rlchmoﬂd VBX

t

1585 West 21 DD South
Salt Lake City 84119
Tel' (801) 972-2800
TWX: 910-925-4018

Wyle Distribution Group
1 25 West 2200 South

WestVﬂII 84119
Tel: (801) 974-9953

WASHINGTON

tA!mac Eectronics Corp.
.E Ea tgate Way

eeNeR) oasase
TWX: 910-444-2067

Arrow Electronics, inc.
19540 68th Ave. South

nt 98032
Tel: (205) 575-4420
?Hamil!orgmnel Electronics
14212 N.E. 21st Street
Bellevue 98005

: (206) 643-3950
TWX: 910-443-2469

Wyle Distribution Group
15385 N.E. 90th Street
Redmond 98052
Tel: (206) 881-1150

Zentronics

60-1313 Border Unit 60

Winnij ; R3H 0Xx4

Tel: { 043 694-1957

ONTARIO

Arrow Electronics, Inc.
ntares Dr.

Nepean K2E 7W5

Tel: (613) 226-6903

Arrow Electronics, Inc.

1093 Meyerside

MEn
Sy
TW)} 06-218213

{Hamiiton/Avnet Electronics
8845 Rexwood Road
5345
sissauga L4T IR
Tel (416) 677- 7432
TWX: 610-492-8867

Hamilton/Avnet Electronics
6845 Rexwood Road

Unit 6
Mississauga L4T 1R2
Tel: (416) 277-0484

ONTARIO (Cont'd.)

‘tHamilton/Avnet Electronics
190 Colonnade Road South

Nepean K2E 7L5

Tel: (613) 226-1700

TWX: 05-349-71
Zentronics
Tllbu Coun

Tsl)8?16) 451sssno

fZentronics

155 ?glonnude Road

Ne

Tel: (svs) Soeboa0
Zentronics
60-1313 Border St.
Winnipeg R3H 014
Tel: (204) 694-7957
QUEBEC

"Arrow Efectronics Inc.
Jean Talon Quest

Montreal H4P 1W1
Tel: (514) 735-5511
TWX: 05-25590

Arrow Electronics, Inc.
909 Charest Bvd.

Quebec JIN 2C9
Tel:)éﬂ 8) 687-4231
TWX: 05-13388
Hum!ltonlAvrm Electronics
2795 Halj

1000
: 61 0<42\ -3731
Zentronics

Mcca"rex

t. Laurent HAT 1M3
514) 737-9700

: 05-827-535

CG/SALE/012589

DENMARK

Intel Denmark A/S
Glentevej 61, 3rd Floor

2400 Copenhagen NV
Tel: (1059?'(:0!) 1380 33
TLX: 19567
FINLAND

Intet Finland OY
Huosnlanne 2

Tel (358) 0 544 644

FRANCE
Intet Covpcration SAR.L.
l, Rue ison-BP
smln-en -Yvelines Cedex

Tel (33) (1) 30 5770 00
lntel Corp oranon S ARL.

ual e El
Tel: (333 (16573 42 40 89
TLX: 30518

WEST GERMANY

Intet Semiconductor GmbH*
Dornacher Strasse 1

8016 Feldkrrcnen bel Muenchen
Tel: (49)

TLX: 5-- 317

FAX: 904-3948

Intel Semiconductor GmbH
Hohenzollern Strasse 5

3000 Hannover 1

Tel: (48) 0511/344081

TLX: 9-23625

Intel Semiconductor GmbH
Abraham Lincoln Strasse 16-18
6200 Wiesbaden

Tel: (49) 08121/7605-0

TLX: 4-186183

Intel Semlccnductor GmbH

EUROPEAN SALES OFFICES

ISRAEL

Intel Semiconductor L

Atidim Industrial Park-! Nave Sharet
Box 432

Tel-Aviv 6143

Tel: (972) 03-498080

TLX: 371215

ITALY

Intel Corporation Italia S.p.A."
Milanofiori Palazzo E
20090 Assago

w (3&(02 8244071

NETHERLANDS

Intel Semiconductor B.V.*
Marten Meesweg 93
3068 AV Rotterdam

Tel: (32 10.407.11.11
TLX: 22283

NORWAY

Intel Norway A/S
Hvamvenen 4-PO Box 92
jetten

Tel (47) (Gg 842 420

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

Tel (346) 4104004

SWEDEN

Intel Sweden A.B.*
Dalvagen 24

171 36 Solna

Tel: (46) 8 734 01 00

TLX: 12261

SWITZERLAND

intel Semnoonduclav AG.
Zuerichst

8185 Wlnkal Rueu bai Zuerich
Tel: (41) 01/850 6262

TLX: 825977

UNITED KINGDOM

lnlei Cwovancn (UK) Ltd.*

Swnnaon Wlllshura SN3 1RJ
Tel: (4? 1079 3 696000
TLX: 444447/

EUROPEAN DISTRIBUTORS /REPRESENTATIVES

AUSTRIA

Bacher Electronics G.m.b.H.
Rotenmushigasse 26

1120 Wien

Tel: (43) (0222) 83 56 46-0
TLX: 131532

BELGIUM

ineico Belgium

Av. aers croux ds Guerre 94
1120 By

Qor! skrmsenlaan 94

1120
Tel: (32) (02 216 0160
A

DENMARK

ITT-Multikomponent
Naverland 29

2600 Glostrup
Tel:(4353) (0) 245 66 45
TLX: 5

FINLAND

OY Fintronic AB
Melkonkam 24A

golzlgsn; 0) 2925022
el
et

FRANCE

Av. de la Baltique-BP 88
91943 Les Ulis Cedex
Tet: (33) (}& 9077878
TLX: 691

Jermgn

753-7 , rue des Solets
94553 Rungls Cedex

Tet: (33 1 49784900

Metrol

Tour d'Asnieres

4, av. Laurent-Cely
92606 Asnieres Cedex
Tel: (33) (41147 9062 40
TLX: 611448

Tekelec-Airtronic
Cite des Bruyeres
Rue caslle Vernet - BP 2

*Field Application Location

WEST GERMANY

Electronic 2000 AG
Stahl mbemng 12

8000
ok (49) 0B/ 4001-0
TLX: 522561

T Mumko%gonem GmbH

7141 M

Tel (4906314?/4379
Jermyn GmbH

Im Dachsstueck 9
6250 Limbury g
Tel («1) 064 1/508 0
Metrologie GmbH
Meglingerstrasse 49
8000 Muenchen 71

Tel: (49) 089/78042-0
TLX: 5213189
Proelectron Vennabs GmbH
Max Planck Strasse 1-3
Tsl (49) os103/3040

IRELAND

Micro Marketing Ltd.

g:enageary Oftice Park
len

Tel (21) (353) (0185 6325

ISRAEL

Eastronics Ltd.
’|’ 1 Hozams Street

Tel- Avl I
Tsl (9723303 475151

si
Divisione ITT Industries GmbH
Viale Milanofiori
Palazzo E/5
Assago

Milano
Tel: (39) 02;82470‘
TLX: 311351

Lasi Elettronica S.p.A.
V. le Fulvio Testi, 126
20092 Cinisello Balsamo

Mitano
Tel: (%? 02/2440012
TLX: 0

NETHERLANDS

Koning en Hartman
1 Energiewe

e
Tel: (31) 15609906
TLX: 38250
NORWAY
Novdlsk Elsklromkk {Norge) A/S
Postboks 123
Smedsvmgen 4
':'sls“(:;v%sé)agt% 6210
el:
TLX: 7)545
PORTUGAL

Avenlda ngusl Bombarda, 133
Tel (351) (l) 734 884

SPAIN

ATD Electronica, S.A.
Plaza Cnudad de Viena, 6

Tel (34) gz 534 4000

Calle M,iuel Angel, 21-3
Tal (34} (1) 419 54 00

SWEDEN

Nordisk Elek(vonlk AB
Huvudstagat

Box 14
17127 Solna

Tek: (48) 08- Saa 0770
SWITZERLAND
Industrade A.G.

Tek; (41) (80 (60733 05 04.0

TURKEY

EMPA Electronic
g‘-]nuwurmslrasse 95A

luenchen 2
Tel: [492) ossysa 80 570
TLX: 52857

UNITED KINGDOM

Accent Electronic Components Ltd.
Jubilee House, Jubilee Road
Letchworth, Herts SG6 1TL.

Tel: (4842) (0462) 686666

TLX: 826293

Bytech-Comway Systems
he Western Centre

Weslsrn

Bracknell RG12 1RW
Tel: 4:? (0344) 55333
TLX: 847201

vestry Eslate

Oﬂord Road

0akKs
Kam 14 5EU
Tel (44)(0752) 450144
TLX: 95142

MMD
Unit8 Soulhvlew Park
Cavers|

eadin
Berksmgre RG4 OAF
Tel (44) (0734 48 16 66

Rapid Silicon
Rapid House
Denr hmark Street

Bucking Yhumshlre HP11 2ER
Tel: (%45 (349) 442266
TLX: 837931

Rapid Systems
Hagld Psi%use
m’"\z’y.:: Street
i
Bugckm hamshlrs HP11 2ER
g) 450244

YUGOSLAVIA
Rapido Electronic Components Sp.2.
Via C. Beccaria, 8

3413 Triasts

tali

ia
Tel: (393 0407360555
TLX: 460461

CG/SALE/012589

INTERNATIONAL SALES OFFICES

AUSTRALIA

Crows Ni
Tel: 612-957-2744
FAX: 612-923-2632

BRAZIL

Intel Semicondutores do Brazrl LTDA
Av. Paulista, 115943.1 104/40!
01311 - Sao Paulo - S.P.

Tel: 55-11 237 -589¢

TLX: 3911153146 ISDB

FAX: 55-11-287-5899

CHINA/HONG KONG

intel PRC Corporation

15/F, Office 1, Citic Blag
Jian Gu% aﬁgn Wai Street

0-4850
547 INTEL ON
o (1)500-2953
|ﬂle| Semlconductor Ltd.”
Jo7r East Tow

Bond Cent
Queensway Central

Tel "?5)
To 83869 JSRLHK HX
FAX: (5) 8681.989

ARGENTINA
DAFSYS S| R L.

; 54-1-
FAX: 54- 1 334-1871
AUSTRALIA
Email Electronics
15-17 Hume Street
Huntingdale, 3166
Tel: 011-61-3-544-8244
TLX: AA 3089
FAX:011-61-3-543-8179
BRAZIL

Elebra Microelectronica S.A.
Rua Geraldo Flausina Gomes, 78

10th Floor

04575 - Sao Paulo - S.P.
Tel: 55-11-534-9641

TLX: 55-11-54593/54591
FAX: 65-11-534-9424
CHILE

DIN Instruments

Suecia 2323
Caslla 6055 Correo 22

Tel 56 2 225—8139

CHINA/HONG KONG

Nove! Pracision Machinery. Co., Ltd.
Flat D, 20 Kingsford Ind. Bldg.
Phase 1, 2[6 wai Hei Street

TelngSZ 0-223-22;
TWX:

39114 JINMI HX
FAX: 852-0-261-602

*Field Application Location

INDIA

Intel Asia Elsmromcs‘ Inc.
4/2, Samrah Plaza
sl Mark’s Road

jalore 560001
Tel: 11-812-567201
TLX: 9538452354 MACH
FAX: 091-812-563982

JAPAN

intél Japan K.K

5-6 Tokodai, Tsukuba-shi
Iparaki, 300-26

Tel: 020747-8511

FAX; 0297478450

Intel Japan K.K.*
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: 0423-60-7871
FAX: 0423-60-0315

Intel Japan
Flower-Hill Shln machx Bldg.
-23—9 Shinmachi
2y, Tokyo 154
Te| 3-426-2231
FAX: 03-427-7620

Intel Japan K.K.*

Bldg. Kumagaya

2-6/ ch-che

Kum: g&shl Baitama 360
Tel O 8!

FAX: 0485-24-; 7518

JAPAN (Cont'd.)

Intet Japan K.K.*.

Mitsui-Seimei Musasm-kosugl Bidg.
915 Shinmaruko, Nakahara-ku
Kawasaki-shi, Kanagawa 211

Tel 044.733-7011

FAX: 044- 733-7010

intel Japan K.| K
Nihon' Seimi
Asal n

TOI 8462 -29-3731
FAX: 0462-20-3781

Intel Japar
2Ryokuthkl Blﬂg
?;onaka-sm. Osaka 560
06-863-109°
X: 06-863-1 034

Intel Japan K.K.
Stinmaru Bidg.
CrogeriIono 100
a-ku, Tokyo
Tel 03 201 352 3

Intel Jagun K.K.
Green Bldg.
Nk Nagoya-shi
aka-ku, Nagoya-shi
Aichi 450 9o
Te!: 052-204-1261
FAX: 052-204-1285

| INTERNATIONAL |
DISTRIBUTORS/REPRESENTATIVES

INDIA

Micronic Devices
Arun Complex
No. 65 D.V.G. Road

Ban jalore 560 004
1‘ 91-812-600-631

2-621-455

TLXA MDBG

Micronic Devices.

Flat 403, Gagan Deep
Rajendra Place

Nsw Delhi 110 008

Tel: 011-91-58-97-71
011-91-57-23509

TLX: 9533163235 MDND

Micronic Devices
No. 516 5th Floor
Swastik Chambers
Slon Tromb&y Road

Te| 01 I Al 523963/527895
TLX: 9531 171447 MDEV

S&S Corporation
Camden Business Center
Suite 6

1610 Biossom Hill Rd.
San Jose, CA 95124

~USA,
Tet: (408) 978-6216
TLX: 820281

JAPAN
Asahi Electronics Co. Ltd.

KMM Bldg. 2-14-1 Asano
Kokurakita-ku

FAX: 093-551-7861

C. Itoh Techno-Science Co., Ltd.

4-8-1 Dobashi, Miyamae-ku
Kawasaki-shi, Kanagawa 213
Tel: 044-852-5121

FAX: 044-877-4268

JAPAN (Cont'd.)

Dia Semicon Systems, Inc.
Wacore 64, 1-37-8 san%enlaya
Setageaymku , Tokyo 15

FAX: 03-487-8088

Okaya Koki

2-4-18 Sakae

Naka-ku, Nagog‘e -shi 460
Tel: 052-2(

FAX: 052-204-2901

Ryoryo Electro Corp.

Konwa Bldg.
1-12-22 Tsukiji
Chuo ku Tok 0104
Te!: 0: 11
FAX: 03 54&5044
KOREA

J-Tek Corporati

6th Floor, Govermnsm Pension Bldg.

$4—3ch)21 lo-Don
‘oungdeungpo-}
Seoul150 o0

eoul
Tel: 82-2-782-8039
TLX: 25299 KODIGIT
FAX: 82-2-784-8391

Samsung Semiconductor &

Tg‘!,ecommumtf:;lyt:‘ms Co‘éhtd k
ing-ro, Chung-ku

Seoul 100 . o

Tel: 82-2-751-3987

TLX: 27970 KORSST

FAX: 82-2-753-0967

MEXICO

Dicope! S.

Av. edsfahsmo Sur
268-2-PLSO

C.P. 44-100-¢ Guadnle]ara
Tel: 52-36-26-1232
TLX: 681663 DICOME
FAX: 52-36-26-3966

Dicopel S.A.

Tochll: 368 Fracc. Ind. San Antonio
Azcag otzalco

? 2760-Mexico, D.F.

52-5-561
LX: 1773790 DICOME
FAX: 52-5-661-1279

KOREA

Intel Technology Asia, Ltd.
Business Center 16th Floor
61 Yond%—Dong. Young Deung Po-Ku

Tel (2) 7848166, 8266, 6385

9312 INTELKO'
e (2) 784-8096
SINGAPORE

Intel Singapore Technol Lw‘
101 Thomson Road #21-
are

FAX: 250-9256
TAIWAN

I1r_1ls| Tschnology Far East Ltd.
‘aiwan Bran
10[F No. 205, Tun Hua N. Road

Telpg% 2-716-9660
TLX: 13159 INTELTWN
FAX: 886-2-717-2455

NEW ZEALAND

Switch Enterprises
36 Olive Road

Penrose, Auckland
Tel 011- 64-9-591 155
FAX: 64-9-59268°

SINGAPORE
Electronic Resources Pte, Ltd.
04-01

B S cane.2
8, 289-1618
TWX 56541 FRELS

SOUTH AFRICA
Electronic Building Elements
7 Er mus S\reet

oria, 0184
Tel 011-2712 803- 680
FAX: 011-2712-803-8290

TAIWAN

Micr Electronics Corporation
No. 5 Shen East Rd.
Taipei, ho

Tel: 886-2-501-8231

FAX: 886-2-501-4265

VENEZUELA

P. Benavides S.A.

Avilanes a Rio

Resldsﬂcla Kamara\a

tocales 4

La Candelana, Caraoas
58 -2-574-6331

FAX 8-2-572-3321

CG/SALE/012569

;] N /' o A ¥
' UNITED STATES o
Intel Corporation oA T e S
3065 Bowers Avenue’ 32 L
Santa Clara, CA 95051 $;

JAPAN Al iy e

Intel Japan K.K. i iy

5-6 Tokodai, Tsukuba-shi i e GBI T
Ibaraki, 300-26 i -

FRANCE s 5] e
Intel Corporation S.A.R.L. =~ =~ REaty o
1, Rue Edison, BP 303] &

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM N
Intel Corporation (U.K.) Ltd. ‘ Ko
Pipers Way : .
Swindon ' ;
Wiltshire, England SN31RJ - - -«

WEST GERMANY > =
Intel Semiconductor GmbH
Dornacher Strasse 1] it e
8016 Feldkirchen bei Muenchen

HONG KONG
Intel Semiconductor Ltd.
10/F East Tower
Bond Center
Queensway, Central

CANADA
Intel Semiconductor of Canada, Ltd.
* 190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

¥

ISBN 1-55512-080-6

Order Number: 240329-002

Printed in U.S.A./SMD309/2K/0289/ML RJ
Microprocessors
©Intel Corporation, 1989

