


i860™ 
64-BIT 

MICROPROCESSOR 
PROGRAMMER'S 

REFERENCE 
MANUAL 

1989 



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may 
appear in this document nor does it make a commitment to update the information contained herein. 

Intel retains the right to make changes to these specifications at any time, without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel Products: 

376, 386, 386SX, 387, 387SX, 486, 4-SITE, Above, BITBUS, COMMputer, 
CREDIT, Data Pipeline, ETOX, Genius, i, t. i860, ICE, iCEL, iCS, iDBP, iDIS, 
FICE, iLBX, im, iMDDX, iMMX, Inboard, Insite, Intel, intel, Inte1376, Inte1386, 
intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent Programming, 
Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, 
KEPROM, Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME, 
MUL TIBUS, MULTICHANNEL, MUL TIMODULE, ONCE, OpenNET, OTP, 
PC BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Erase, 
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, 
SugarCube, UPI, and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, 
iSBX, iSXM, MCS, or UPI and a numerical suffix. 

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Sciences Corporation. 

*MULTIBUS is a patented Intel bus. 

CHMOS and HMOS are patented processes of Intel Corp. 

Intel Corporation and Intel's FAST PATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products. 

Additional copies of this manual or other Intel literature may be obtained from: 

©INTEL CORPORATION 1989 

Intel Corporation 
Literature Sales 
P.O. Box 58130 
Santa Clara, CA 95052-8130 

CG-020389 



CUSTOMER SUPPORT 

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE 

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software 
support, customer training, consulting services and network management services. For detailed information contact 
your local sales offices. 

After a customer purchases any system hardware or software product, service and support become major factors in 
determining whether that product will continue to meet a customer's expectations. Such support requires an inter­
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect, 
Intel's customer support is quite extensive. It can start with assistance during your development effort to network 
management. 100 Intel sales and service offices are located worldwide - in the U.S., Canada, Europe and the Far 
East. So wherever you're using Intel technology, our professional staff is within close reach. 

HARDW ARE SUPPORT SERVICES 

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity from 
the start and keep you running at maximum efficiency. Support for system or board level products can be tailored 
to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory 
service. 

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your 
development lab or provide service on your product to your end-user/customer. 

SOFTW ARE SUPPORT SERVICES 

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free 
number to provide you with direct, ready information on known, documented problems and deficiencies, as well as 
work-a rounds, patches and other solutions. 

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information 
Phone Service), updates and subscription service (product-specific troubleshooting guides and; COMMENTS 
Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which 
represent product groupings (e.g., iRMX® environment). 

CONSULTING SERVICES 

Intel provides field system engineering consulting services for any phase of your development or application effort. 
You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing 
an application, personalizing training and customizing an Intel product to providing technical and management 
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica­
tions, embedded microcontrollers, and network services. You know your application needs; we know our products. 
Working together we can help you get a successful product to market in the least possible time. 

CUSTOMER TRAINING 

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. 
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study. 
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our 
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include: 
architecture and assembly language, programming and operating systems, BITBUS™ and LAN applications. 

NETWORK MANAGEMENT SERVICES 

Today's networking products are powerful and extremely flexible. The return they can provide on your investment 
via increased productivity and reduced costs can be very substantial. 

Intel offers complete network support, from definition of your network's physical and functional design, to imple­
mentation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel's 
Networking Specialists can optimize network performance for you. 

CG/CUST /100188 



intJ PREFACE 

Preface 

The Intel i860™ Microprocessor (part number 80860) delivers supercomputer level performance 
in a single VLSI component. The 64-bit design of the i860 Microprocessor balances integer, 
floating point, and graphics performance for applications such as engineering workstations, 
scientific computing, 3-D graphics workstations, and multiuser systems. Its parallel architecture 
achieves high throughput with RISC design techniques, pipelined processing units, wide data 
paths, large on-chip caches, and fast one micron CHMOS IV silicon technology. 

This book is the basic source of the detailed information that enables software designers and 
programmers to use the i860 Microprocessor. This book explains all programmer-visible features 
of the architecture. 

Even though the principal users of this Programmer's Reference Manual will be programmers, it 
contains information that is of value to systems designers and administrators of software projects, 
as well. Readers of these latter categories may choose only to read the higher-level sections of the 
manual, skipping over much of the programmer-oriented detail. 

How to Use This Manual 

• Chapter 1, •• Architectural Overview," describes the i860 Microprocessor •• in a nutshell " and 
presents for the first time the terms that will be used throughout the book. 

• Chapter 2, "Data Types," defines the basic units operated on by the instructions of the i860 
Microprocessor. 

• Chapter 3, "Registers," presents the processor's database. A detailed knowledge of the 
registers is important to programmers, but this chapter may be skimmed by administrators. 

• Chapter 4, "Addressing," presents the details of operand alignment, page-oriented virtual 
memory, and on-chip caches. Systems designers and administrators may choose to read the 
introductory sections of each topic. 

• Chapter 5, "Core Instructions," presents detailed information about those instructions that 
deal with memory addressing, integer arithmetic, and control flow. 

• Chapter 6, .• Floating -Point Instructions," presents detailed information about those instructions 
that deal with floating-point arithmetic, long-integer arithmetic, and 3-D graphics support. 
Explains how extremely high performance can be achieved by utilizing the parallelism and 
pipelining of the i860 Microprocessor. 

• Chapter 7, "Traps and Interrupts," deals with both systems- and applications-oriented 
exceptions, external interrupts, writing exception handlers, saving the state of the processor 
(information that is also useful for task switching), and initialization. 

• Chapter 8, "Programming Model," defines standards for the use of many features of the i860 
Microprocessor. Software administrators should be aware of the need for standards and 
should ensure that they are implemented. Following the standards presented here guarantees 

iv 



inter PREFACE 

that compilers, applications programs, and operating systems written by different people and 
organizations will all work together. 

• Chapter 9, "Programming Examples," illustrates the use of the i860 Microprocessor by 
presenting short code sequences in assembly language. 

• The appendices present instruction formats and encodings, timing information, and summaries 
of instruction characteristics. These appendices are of most interest to assembly-language 
programmers and to writers of assemblers, compilers, and debuggers. 

Related Documentation 

The following books contain additional material concerning the i860 Microprocessor: 

• i860 64-bit Microprocessor (Data Sheet), order number 240296 
• i860 Microprocessor Assembler and Linker Reference Manual, order number 240436 
• i860 Microprocessor Simulator-Debugger Reference Manual, order number 240437 

Notation and Conventions 

The instruction chapters contain an algorithmic description of each instruction that uses a notation 
similar to that of the Algol or Pascal languages. The metalanguage uses the following special 
symbols: 

• A ~ B indicates that the value of B is assigned to A. 

• Compound statements are enclosed between the keywords of the "if" statement (IF . 
THEN ... , ELSE ... , FI) or of the "do" statement (DO ... , aD). 

• The operator + + indicates auto increment addressing. 

• Register names and instruction mnemonics are printed in a contrasting typestyle to make 
them stand out from the text; for example, dirbase. Individual programming languages may 
require the use of lowercase letters. 

Hexadecimal constants are written, according to the C language convention, with the prefix Ox. 
For example, OxOF is a hexadecimal number that is equivalent to decimal 15. 

Reserved Bits and Software Compatibility 

In many register and memory layout descriptions, certain bits are marked as reserved or undefined. 
When bits are thus marked, it is essential for compatibility with future processors that software 
not utilize these bits. Software should follow these guidelines in dealing with reserved or undefined 
bits: 

• Do not depend on the states of any reserved or undefined bits when testing the values of 
registers that contain such bits. Mask out the reserved and undefined bits before testing. 

v 



PREFACE 

• Do not depend on the states of any reserved or undefined bits when storing them in memory 
or in a another register. 

• Do not depend on the ability to retain information written into any reserved or undefined bits. 

• When loading a register, always load the reserved and undefined bits as zeros or reload them 
with values previously stored from the same register. 

NOTE 

Depending upon the values of reserved or undefined bits makes software dependent 
upon the unspecified manner in which the i860 Microprocessor handles these bits. 
Depending upon values of reserved or undefined bits risks making software 
incompatible with future processors that define usages for these bits. A VOID ANY 
SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED OR UN­
DEFINED BITS 

vi 



TABLE OF CONTENTS 

CHAPTER 1 Page 
ARCHITECTURAL OVERVIEW 

1.1 Overview .......................................................... 1-1 
1.2 Integer Core Unit ................................................... 1-2 
1.3 Floating-Point Unit .................................................. 1-3 
1.4 Graphics Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.5 Memory Management Unit ........................................... 1-5 
1.6 Caches............................................................ 1-5 
1.7 Parallel Architecture ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.B Software Development Environment .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.B.1 Multiprocessing for High-Performance with Compatibility . . . . . . . . . . . . . . . . 1-6 

CHAPTER 2 
DATA TYPES 

2.1 Integer............................................................. 2-1 
2.2 Ordinal ............................................................ 2-1 
2.3 Single-Precision Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
2.4 Double-Precision Real ............................................... 2-2 
2.5 Pixel .............................................................. 2-3 
2.6 Real-Number Encoding .............................................. 2-4 

CHAPTER 3 
REGISTERS 

3.1 Integer Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
3.2 Floating-Point Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
3.3 Processor Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
3.4 Extended Processor Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
3.5 Data Breakpoint Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
3.6 Directory Base Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
3.7 Fault Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-B 
3.B Floating-Point Status Register ........................................ 3-B 
3.9 KR, KI, T, and MERGE Registers ..................................... 3-11 

CHAPTER 4 
ADDRESSING 

4.1 Alignment.......................................................... 4-2 
4.2 Virtual Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
4.2.1 Page Frame .......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
4.2.2 Virtual Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 
4.2.3 Page Tables ...................................................... 4-4 
4.2.4 Page-Table Entries ................................................ 4-4 
4.2.4.1 Page Frame Address. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
4.2.4.2 Present Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 

vii 



inter TABLE OF CONTENTS 

4.2.4.3 Cache Disable Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
4.2.4.4 Write-Through Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 
4.2.4.5 Accessed and Dirty Bits .......................................... 4-6 
4.2.4.6 Writable and User Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
4.2.4.7 Combining Protection of Soth Levels of Page Tables ................. 4-7 
4.2.5 Address Translation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
4.2.6 Address Translation Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
4.2.7 Page Translation Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
4.3 Caching and Cache Flushing. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 4-9 

CHAPTER 5 
CORE INSTRUCTIONS 

5.1 Load Integer ....................................................... 5-2 
5.2 Store Integer ....................................................... 5-3 
5.3 Transfer Integer to F-P Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
5.4 Load Floating-Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 
5.5 Store Floating-Point ................................................. 5-5 
5.6 Pixel Store ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
5.7 Integer Add and Subtract ............................................ 5-6 
5.8 Shift Instructions ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 
5.9 Software Traps ..................................................... 5-9 
5.10 Logical Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 
5.11 Control-Transfer Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
5.12 Cache Flush ...................................................... 5-14 
5.13 Control Register Access ............................................ 5-16 
5.14 Bus Lock ......................................................... 5-16 

CHAPTER 6 
FLOATING-POINT INSTRUCTIONS 

6.1 Precision Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 
6.2 Pipelined and Scalar Operations ...................................... 6-1 
6.2.1 Scalar Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
6.2.2 Pipelining Status Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
6.2.3 Precision in the Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
6.2.4 Transition between Scalar and Pipelined Operations. . . . . . . . . . . . . . . . . . . . 6-4 
6.3 Multiplier Instructions ................................................ 6-4 
6.3.1 Floating-Point Multiply ............. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 
6.3:2 Floating-Point Multiply Low ......................................... 6-6 
6.3.3 Floating-Point Reciprocals ............................... . . . . . . . . . . . 6-6 
6.4 Adder Instructions ............................ " ......... ,. . . . . .. . . . . 6-6 
6.4.1 Floating-Point Add and Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 
6.4.2 Floating-Rpint Compares ........................................... 6-8 
6.4.3 Floating-Point to Integer Conversion ......... ,....................... 6-9 
6.5 Dual Operation Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 6-9 
6.6 Graphics Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 

viii 



inter TABLE OF CONTENTS 

6.6.1 Long-Integer Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 
6.6.2 3-D Graphics Operations ........................................... 6-23 
6.6.2.1 Z-Buffer Check Instructions ....................................... 6-24 
6.6.2.2 Pixel Add ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 
6.6.2.3 Z-Buffer Add .................................................... 6-28 
6.6.2.4 OR with MERGE Register ........................................ 6-30 
6.7 Transfer F-P to Integer Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31 
6.8 Dual-Instruction Mode ............................................... 6-31 
6.8.1 Core and Floating-Point Instruction Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 6-32 
6.8.2 Dual-Instruction Mode Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33 

CHAPTER 7 
TRAPS AND INTERRUPTS 

7.1 Types of Traps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
7.2 Trap Handler Invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
7.2.1 Saving State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 
7.2.2 Returning from the Trap Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 
7.2.2.1 Determining Where to Resume ......................... , . . . . .. . . . . 7-3 
7.2.2.2 Setting KNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
7.3 Instruction Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
7.4 Floating-Point Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
7.4.1 Source Exception Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 
7.4.2 Result Exception Faults ............................................ 7-6 
7.5 Instruction-Access Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 
7.6 Data-Access Fault .................................................. 7-7 
7.7 Interrupt Trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 
7.8 Reset Trap ................................................... , . . . . . 7-8 
7.9 Pipeline Preemption ................................................. 7-8 
7.9.1 Floating-Point Pipelines ............................................ 7-8 
7.9.2 Load Pipeline ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 
7.9.3 Graphics Pipeline. . . . .. . . . . . . .. .. . . . . . . .. . . .. . . .. . .. . . . . . . . . .. . . . . . 7-9 
7.9.4 Examples of Pipeline Preemption ....... , . . . . . . . . . .. .. . . . . . . .. .. . . . . . 7-9 

CHAPTER 8 
PROGRAMMING MODEL 

8.1 Register Assignment ................................................ 8-1 
8.1.1 Integer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
8.1.2 Floating-Point Registers ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers ., . . . . . 8-3 
8.1.4 Variable Length Parameter Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
8.2 Data Alignment ................................................ . . . . . 8-3 
8.3 Implementing a Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
8.3.1 Stack Entry and Exit Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
8.3.2 Dynamic Memory Allocation on the Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
8.4 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 

ix 



inter TABLE OF CONTENTS 

CHAPTER 9 
PROGRAMMING EXAMPLES 

9.1 Small Integers .............. ~ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
9.2 Single-Precision Divide .............................................. 9-1 
9.3 Double-Precision Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
9.4 Integer Multiply ..................................................... 9-3 
9.5 Conversion from Signed Integer to Double ............................. 9-3 
9.6 Signed Integer Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-4 
9.7 String Copy ........................................................ 9-5 
9.8 Floating-Point Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
9.9 Pipelining of Dual-Operation Instructions ............................... 9-6 
9.10 Dual Instruction Mode .............................................. 9-7 
9.11 Cache Strategies for Matrix Dot Product .............................. 9-8 

APPENDIX A 
INSTRUCTION SET SUMMARY 

APPENDIX B 
INSTRUCTION FORMAT AND ENCODING 

APPENDIX C 
INSTRUCTION TIMINGS 

APPENDIX D 
INSTRUCTION CHARACTERISTICS 

x 



inter TABLE OF CONTENTS 

Figures 

Figure Title Page 

2-1 Pixel Format Example ........................................... 2-4 
3-1 Register Set .................................................... 3-2 
3-2 Processor Status Register ........................................ 3-3 
3-3 Extended Processor Status Register ............................... 3-5 
3-4 Directory Base Register .......................................... 3-6 
3-5 Floating-Point Status Register .................................... 3-9 
4-1 Memory Formats ................................................ 4-1 
4-2 Format of a Virtual Address ...................................... 4-3 
4-3 Address Translation ............................................. 4-3 
4-4 Format of a Page Table Entry .................................... 4-4 
4-5 Invalid Page Table Entry ......................................... 4-5 
6-1 Pipelined Instruction Execution .................................... 6-2 
6-2 Dual-Operation Data Paths ....................................... 6-11 
6-3 Data Paths by Instruction (1 of 8) ................................. 6-13 
6-3 Data Paths by Instruction (2 of 8) ................................. 6-14 
6-3 Data Paths by Instruction (3 of 8) ................................. 6-15 
6-3 Data Paths by Instruction (4 of 8) ................................. 6-16 
6-3 Data Paths by Instruction (5 of 8) ................................. 6-17 
6-3 Data Paths by Instruction (6 of 8) ................................. 6-18 
6-3 Data Paths by Instruction (7 of 8) ................................. 6-19 
6-3 Data Paths by Instruction (8 of 8) ................................. 6-20 
6-4 Data Path Mnemonics ........................................... 6-21 
6-5 PSR Fields for Graphics Operations ............................... 6-24 
6-6 FADDP with 8-Bit Pixels ......................................... 6-26 
6-7 FADDP with 16-Bit Pixels ........................................ 6-27 
6-8 FADDP with 32-Bit Pixels ........................................ 6-28 
6-9 FADDZ with 16-Bit Z-Buffer ....................................... 6-29 
6-10 64-Bit Distance Interpolation ...................................... 6-30 
6-11 Dual-Instruction Mode Transitions (1 of 2) .......................... 6-32 
6-11 Dual-Instruction Mode Transitions (2 of 2) .......................... 6-33 
8-1 Register Allocation .............................................. 8-2 
8-2 Stack Frame Format ............................................ 8-5 
8-3 Example Memory Layout ......................................... 8-7 

Table 
2-1 
2-2 
3-1 
3-2 

Tables 

Title 
Pixel Formats ................................................. . 
Single and Double Real Encodings ............................... . 
Values of PS .................................................. . 
Values of RB .................................................. . 

xi 

Page 
2-3 
2-5 
3-4 
3-7 



3-3 
3-4 
4-1 
5-1 
6-1 
6-2 
7-1 
8-1 
A-1 

Values of RC 
Values of RM 

TABLE OF CONTENTS 

Combining Directory and Page Protection ......................... . 
,Control Register Encoding ...................................... . 
DPC Encoding ................................................. . 
FADDP MERGE Update ........................................ . 
Types of Traps ................................................ . 
Register Allocation ............................................. . 
FADDP MERGE Update ........................................ . 

Examples 

Example 
Title 

3-8 
3-9 
4-8 

5-16 
6-12 
6-26 

7-1 
8-1 
A-4 

Page 

5-1 Example of bla Usage ........................................... 5-13 
5-2 Cache Flush Procedure .......................................... 5-15 
5-3 Examples of lock and unlock Usage .............................. 5-18 
7 -1 Saving Pipeline States ........................................... 7 -10 
7 -2 Restoring Pipeline States (1 of 2) ................................. 7 -11 
7-2 Restoring Pipeline States (2 of 2) ................................. 7 -12 
8-1 Reading Misaligned 32-Bit Value .................................. 8-4 
8-2 Subroutine Entry and Exit with Frame Pointer ....................... 8-6 
8-3 Subroutine Entry and Exit without Frame Pointer .................... 8-6 
8-4 Possible Implementation of alloca ................................. 8-6 
9-1 Sign Extension ................................................. 9-1 
9-2 Loading Small Unsigned Integers ................................. 9-1 
9-3 Single-Precision Divide .......................................... 9-2 
9-4 Double-Precision Divide .......................................... 9-2 
9-5 Integer Multiply ................................................. 9-3 
9-6 Single to Double Conversion ..................................... 9-3 
9-7 Signed Integer Divide ............................................ 9-4 
9-8 String Copy .................................................... 9-5 
9-9 Pipelined Add .................................................. 9-6 
9-10 Pipelined Dual-Operation Instruction ............................... 9-7 
9-11 Dual-Instruction Mode ........................................... 9-9 
9-12 Matrix Multiply, Cached Loads Only (sheet 1 of 2) ................... 9-10 
9-12 Matrix Multiply, Cached Loads Only (sheet 2 of 2) ................... 9-11 
9-13 Matrix Multiply, Cached and Pipe lined Loads (sheet 1 of 2) ........... 9-12 
9-13 Matrix Multiply, Cached and Pipelined Loads (sheet 2 of 2) ........... 9-13 

xii 



inter TABLE OF CONTENTS 

Revision Information: 

-002: 

• Example 5-2, "Cache Flush Procedure" added 2 instructions. 
• Flush instruction usage revised (pg. 5-15). 
• Data cache not searched for Page Directories and Tables (pg. 4-9). 
• Section 4.3 revised. 
• Section 8.1.3 revised. 

xiii 





Architectural Overview 1 





Chapter 1 
Architectural Overview 

The Intel i860™ 64-bit Microprocessor defines a complete architecture that balances integer, 
floating point, and graphics performance. Target applications include engineering workstations, 
scientific computing, 3-D graphics workstations, and multiuser systems. Its parallel architecture 
achieves high throughput with RISe design techniques, pipelined processing units, wide data 
paths, and large on-chip caches. 

1.1 OVERVIEW 

The i860 Microprocessor supports more than just integer operations. The architecture includes on 
a single chip: 

• Integer operations 
• Floating-point operations 
• Graphics operations 
• Memory-management support 
• Data and instruction caches 

Having a data cache as an integral part of the architecture provides support for vector operations. 
The data cache supports integer programs in the conventional manner, without explicit 
programming. For vector operations, however, programmers can explicitly use the data cache as 
if it were a large block of vector registers. 

To sustain high performance, the i860 Microprocessor incorporates wide infonnation paths that 
include: 

• 64-bit external data bus 
• 128-bit on-chip data bus 
• 64-bit on-chip instruction bus 

Floating-point vector operations use all three busses. 

To drive the graphics and floating point hardware, the i860 Microprocessor includes a RISe 
integer core processing unit with one-clock instruction execution. This unit also processes 
conventional integer programs. It provides complete support for standard operating systems, such 
as UNIX and OS/2. 

The i860 Microprocessor supports vector floating-point operations without special vector 
instructions or vector registers. It accomplishes this by using the on-chip data cache and a variety 
of parallel techniques that include: 

• Pipelined instruction execution with delayed branch instructions to avoid breaks in the 
pipeline. 

1-1 



inter ARCHITECTURAL OVERVIEW 

• Instructions that automatically increment index registers so as to reduce the number of 
instructions needed for vector processing. 

• Parallel integer core and floating-point processing units. 

• Parallel mUltiplier and adder units within the floating-point unit. 

• Pipelined floating-point hardware units, with both scalar (nonpipelined) and vector (pipelined) 
variants of floating-point instructions. Software can switch between scalar and pipelined 
modes. 

• Large register set with 32 general-purpose integer registers, each 32-bits wide, and 32 
floating-point registers, each 32-bits wide, that can also be configured as 64- and 128-bit 
registers. The floating-point registers also serve as the staging area for data going into and out 
of the floating-point pipelines. 

There are two classes of instructions: 

• Core instructions (executed by the integer core unit). 

• Floating-point and graphics instructions (executed by the floating-point unit and graphics 
unit). 

The processor has a dual-instruction mode that can simultaneously execute one instruction from 
each class (core and floating-point). Software can switch between dual- and single-instruction 
modes. Within the floating-point unit, special dual-operation instructions (add-and-multiply, 
subtract-and-multiply) use the adder and multiplier units in parallel. With both dual-instruction 
mode and dual operation instructions, the i860 Microprocessor can execute three operations 
simultaneously. 

The integer core unit manages data flow and loop control for the floating point units. Together, 
they efficiently execute such common tasks as evaluating systems of linear equations, performing 
the Fast Fourier Transform (FFT), and performing graphics transformations. 

1.2 INTEGER CORE UNIT 

The core unit is the administrative center of the i860 Microprocessor. The core unit fetches both 
integer and floating-point instructions. It contains the integer register file, and decodes and 
executes load, store, integer, bit, and control-transfer operations. Its pipelined organization with 
extensive bypassing and scoreboarding maximizes performance. 

A complete list of its instruction categories includes ... 

• Loads and stores between memory and the integer and floating-point registers. Floating-point 
loads can be pipelined in three levels. A pixel store instruction contributes to efficient hidden­
surface elimination. 

• Transfers between the integer registers and the floating-point registers. 

1-2 



intJ ARCHITECTURAL OVERVIEW 

• Integer arithmetic for 32-bit signed and unsigned numbers. The 32-bit operations can also 
perform arithmetic on smaller (8- or 16-bit) integers. Arithmetic on large (1 28-bit or greater) 
integers can be implemented via short software macros or subroutines. (The graphics unit 
provides arithmetic for 64-bit integers.) 

• Shifts of the integer registers. 

• Logical operations on the integer registers. 

• Control transfers. There are both direct and indirect branches, a call instruction, and a branch 
that can be used to form highly efficient loops. Many of these are delayed transfers that avoid 
breaks in the instruction pipeline. One instruction provides efficient loop control by combining 
the testing and updating of the loop index with a delayed control transfer. 

• System control functions. 

1.3 FLOATING-POINT UNIT 

The floating-point unit contains the floating-point register file. This file can be accessed as 8 X 

128-bit registers, 16 x 64-bit registers, or 32 x 32-bit registers. 

The floating-point unit contains both the floating-point adder and the floating-point multiplier. The 
adder performs floating-point addition, subtraction, comparison, and conversions. The multiplier 
performs floating-point and integer multiply and floating-point reciprocal operations. Both units 
support 64- and 32-bit floating-point values in IEEE Standard 754 format. Each of these units 
uses pipelining to deliver up to one result per clock. The adder and multiplier can operate in 
parallel, producing up to two results per clock. Furthermore, the floating-point unit can operate in 
parallel with the core unit, sustaining the two-result-per-clock rate by overlapping administrative 
functions with floating point operations. 

The RISC design philosophy minimizes circuit delays and enables using of all the available chip 
space to achieve the greatest performance for floating-point operations. Due to this fact, due to 
the use of pipelining and parallelism in the floating-point unit, and due to the wide on-chip caches, 
the i860 Microprocessor achieves extremely high levels of floating-point perfonnance. 

The use of RISe design principles implies that the i860 Microprocessor does not have high-level 
math macro-instructions. High-level math (and other) functions are implemented in software 
macros and libraries. For example, the i860 Microprocessor does not have a sin instruction. The 
sin function is implemented in software on the i860 Microprocessor. The sin routine for the i860 
Microprocessor, however, will still be very fast due to the extremely high speed of the basic 
floating-point operations. Commonly used math operations, such as the sin function, are offered 
by Intel as part of a software library. 

The floating-point data types, floating-point instructions, and exception handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754- I 985) with both single­
and double-precision floating-point data types. Due to the low-level instruction set of the i860 
Microprocessor, not all functions defined by the standard are implemented directly by the 
hardware. The i860 Microprocessor supplies the underlying data types, instructions, exception 
checking, and traps to make it possible for software to implement the remaining functions of the 

1-3 



ARCHITECTURAL OVERVIEW 

standard efficiently. Intel supplies a software library that provides programs for the i860 
Microprocessor with full IEEE-compatible arithmetic. 

1.4 GRAPHICS UNIT 

The graphics unit has special 64-bit integer logic that supports 3-D graphics drawing algorithms. 
This unit can operate in parallel with the core unit. It contains the special-purpose MERGE 
register, and performs multiple additions on integers stored in the floating-point register file. 

These special graphics features focus the chip's high performance on applications that involve 
three-dimensional graphics with Gouraud or Phong color intensity shading and hidden surface 
elimination via the Z-buffer algorithm. The graphics features of the i860 Microprocessor assume 
that: 

• The surface of a solid object is drawn with polygon patches whose shapes approximate the 
original object. 

• The color intensities of the vertices of the polygon and their distances from the viewer are 
known, but the distances and intensities of the other points must be calculated by interpolation. 

The graphics instructions of the i860 Microprocessor directly aid such interpolation. Furthermore, 
the i860 Microprocessor recognizes the pixel as an 8-, 16-, or 32-bit data type. It can compute 
individual red, blue, and green color intensity values within a pixel; but it does so with parallel 
operations that take advantage of the 64-bit internal word size and 64-bit external data bus. 

The graphics unit also provides add and subtract operations for 64-bit integers, which are 
especially useful for high-resolution distance interpolation. 

In addition to the special support provided by the graphics unit, many 3-D graphics applications 
directly benefit from the parallelism of the core and floating-point units. For example, the 3-D 
rotation represented in homogeneous vector notation by . . . 

[X y Z 1] = [x y z 1] 

1 
o 
o 
o 

o 0 
cos t sin t 

sin t cos t 
o 0 

o 
o 
o 
1 

... is just one example of the kind of vector-oriented calculation that can be converted to a 
program that takes full advantage of the pipelining, dual-instruction mode, dual operations, and 
memory hierarchy of the i860 Microprocessor. 

1-4 



inter ARCHITECTURALOVER~EW 

1.5 MEMORY MANAGEMENT UNIT 

The on-chip MMU of the i860 Microprocessor performs the translation of addresses from the 
linear logical address space to the linear physical address for both data and instruction access. 
Address translation is optional; when enabled, address translation uses a two-level structure of 
page directories and page tables of I K entries each. Information from these tables is cached in a 
64-entry, four-way set-associative memory. The i860 Microprocessor provides basic features (bits 
and traps) to implement paged virtual memory and to implement user/supervisor protection at the 
page level-all compatible with the paged memory management of the 386™ and 486™ 
microprocessors. 

1.6 CACHES 

In addition to the page translation cache mentioned previously, the i860 Microprocessor contains 
separate on-chip caches for data and instructions. Caching is transparent, except to systems 
programmers who must ensure that the data cache is flushed when switching tasks or changing 
system memory parameters. The on-chip cache controller also provides the interface to the 
external bus with a pipelined structure that allows up to three outstanding bus cycles. 

The instruction cache is a two-way, set-associative memory of four Kbytes, with 32-byte blocks. 
The data cache is a write-back cache, composed of a two-way, set-associative memory of eight 
Kbytes, with 32-byte blocks. 

1.7 PARALLEL ARCHITECTURE 

The i860 Microprocessor offers a high level of parallelism in a form that is flexible enough be 
applied to a wide variety of processing styles: 

• Conventional programs and conventional compilers can use the i860 Microprocessor as a 
scalar machine and still benefit from the high-performance of the i860 Microprocessor. 

• Compilers designed for the vector model can treat the i860 Microprocessor as a vector 
machine. 

• New instruction-scheduling technology for compilers can compare the processing requirements 
and data dependencies of programs with the available resources of the i860 Microprocessor, 
and can take maximum advantage of its dual-instruction mode, pipelining, and caching. 

An established compiler technology for the vector model of computation already exists. This 
technology can be applied directly to the i860 Microprocessor. The key to treating the i860 
Microprocessor as a vector machine is choosing the appropriate vector primitives that the compiler 
assumes are available on the target machine. (Intel has defined a standard set of vector primitives.) 
The vector primitives are implemented as hand-coded subroutines; the compiler generates calls to 
these subroutines. If a compiler depends on the traditional concept of vector registers, it can 
implement them by mapping these registers to specific memory addresses. By virtue of frequent 
access to these addresses, the simulated registers will reside permanently in the data cache. 

1-5 



intJ ARCHITECTURAL OVERVIEW 

Existing programs can be upgraded to take better advantage of the parallel architecture of the i860 
Microprocessor using vector-oriented technology. Flow analysis or "vectorizing" tools can 
identify parallelism that is implicit in existing programs. When modified (either manually or 
automatically) and compiled by an appropriate compiler for the i860 Microprocessor, these 
programs can achieve even greater performance gain from the i860 Microprocessor. 

Designers of compilers for the i860 Microprocessor will find that the i860 Microprocessor offers 
more flexibility than traditional vector processing. The instruction set of the i860 Microprocessor 
separates addressing functions from arithmetic functions. Two benefits result from this separation: 

1. It is possible to address arbitrary data structures. Data structures are no longer limited to 
vectors, arrays, and matrices. Parallel algorithms can be applied to linked lists (for example) 
as easily as to matrices. 

2. A richer set of operations is available at each node of a data structure. It becomes possible to 
perform different operations at each node, and there is no limit to the complexity of each 
operation. With the i860 Microprocessor, it is no longer necessary to pass all elements of a 
vector several times to implement complex vector operations. 

1.8 SOFTWARE DEVELOPMENT ENVIRONMENT 

The software environment available from Intel for the i860 Microprocessor includes: 

• Assembler, linker, C, and FORTRAN compilers, and FORTRAN vectorizer. 

• Libraries of higher-level math functions and IEEE-standard exception support. Intel supplies 
such libraries in a form that can be utilized by a variety of compilers. 

• Simulator and debugger. 

1.8.1 Multiprocessing for High-Performance with Compatibility 

Memory organization of the i860 Microprocessor is compatible with that of the 386™ and 486™ 
microprocessors (including addresses and page-table entries)~ all data types are compatible as well 
(both integers and floating-point numbers). The page-oriented virtual memory management of the 
i860 Microprocessor is also compatible with that of the 386 and 486 microprocessors. This level 
of compatibility facilitates use of the i860 Microprocessor in multiprocessor systems with a 386 
or 486 microprocessor. Moreover, complete hardware and software support for such multiprocessor 
systems is available. 

An i860 microprocessor can be used with a 386™, 386SX™, or 486™ microprocessor system. 
The i860 microprocessor extends system performance to supercomputer levels, while the 386/ 
386SX/486 microprocessor provides binary compatibility with existing applications. The compat­
ibility processor provides access to a huge software base supporting a wide variety of I/O devices, 
communications protocols, and human-interface methods. The computation-intensive applications 
enjoy the raw computational power of the i860 Microprocessor, while having access to all 
capabilities and resources of the compatibility processor. 

1-6 



Data Types 2 





Chapter 2 
Data Types 

The i860 Microprocessor provides operations for integer and floating-point data. Integer operations 
are performed on 32-bit operands with some support also for 64-bit operands. Load and store 
instructions can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit operands. Floating-point 
operations are performed on IEEE-standard 32- and 64-bit formats. Graphics oriented instructions 
operate on arrays of 8-, 16-, or 32-bit pixels. 

Bits within data formats are numbered from zero starting with the least significant bit. Illustrations 
of data formats in this manual show the least significant bit (bit zero) at the right. 

2.1 INTEGER 

An integer is a 32-bit signed value in standard two's complement form. A 32-bit integer can 
represent a value in the range -2,147,483,648 (-231 ) to 2,147,438,647 (+231 - 1). Arithmetic 
operations on 8- and 16-bit integers can be performed by sign-extending the 8- or 16-bit values to 
32 bits, then using the 32-bit operations. 

There are also add and subtract instructions that operate on 64-bit long integers. 

Load and store instructions may also reference (in addition to the 32- and 64-bit formats previously 
mentioned) eight- and 16-bit items in memory. When an eight- or 16-bit item is loaded into a 
register, it is converted to an integer by sign-extending the value to 32 bits. When an eight- or 
16-bit item is stored from a register, the corresponding number of low-order bits of the register 
are used. 

2.2 ORDINAL 

Arithmetic operations are available for 32-bit ordinals. An ordinal is an unsigned integer. An 
ordinal can represent values in the range 0 to 4,294,967,295 (+ 232 - 1). 

Also, there are add and subtract instructions that operate on 64-bit ordinals. 

2.3 SINGLE-PRECISION REAL 

A single-precision real (also called "single real") data type is 'a 32-bit binary floating-point 
number. Bit 31 is the sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 are the fraction. In 
accordance with ANSI/IEEE standard 754, the value of a single-precision real is defined as 
follows: 

1. If e = 0 and f =1= 0 or e = 255 then generate a floating-point source-exception trap when 
encountered in a floating-point operation. 

2-1 



DATA TYPES 

31 23 0 

lSi E F 

1 t L FRACTION 

EXPONENT 

SIGN 

2. If 0 < e < 255, then the value is - IS X I.f X 2e- 127 . (The exponent adjustment 127 is 
called the bias.) 

3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN, indefinite, and denonnal generate a trap when encountered. The 
trap handler implements IEEE-standard results. (Refer to Table 2-2 for encoding of these special 
values.) 

2.4 DOUBLE-PRECISION REAL 

63 52 0 

lsi E F 

1 t L FRACTION 

EXPONENT 

SIGN 
.(f 

A double-precision real (also called "double real") data type is a 64-bit binary floating-point 
number. Bit 63 is the sign bit; bits 62 .. 52 are the exponent; and bits 51..0 are the fraction. In 
accordance with ANSVIEEE standard 754, the value of a double-precision real is defined as 
follows: 

1. If e = 0 and f =1= 0 or e = 2047, then generate a floating -point source-exception trap when 
encountered in a floating-point operation. 

2-2 



DATA TYPES 

2. If 0 < e < 2047, then the value is - 1 s x 1.r x 2c- 1023 . (The exponent adjustment 1023 is 
called the bias.) 

3. If e = 0 and r = 0, then the value is signed zero. 

The special values infinity, NaN, indefinite, and denormal generate a trap when encountered. The 
trap handler implements IEEE-standard results. (Refer to Table 2-2 for encoding of these special 
values.) 

A double real value occupies an even/odd pair of floating-point registers. Bits 31 .. 0 are stored in 
the even-numbered floating-point register; bits 63 .. 32 are stored in the next higher odd-numbered 
floating-point register. 

2.5 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on color and intensity resolution requirements. 
Regardless of the pixel size, the i860 Microprocessor always operates on 64 bits worth of pixels 
at a time. The pixel data type is used by two kinds of instructions: 

• The selective pixel-store instruction that helps implement hidden surface elimination. 

• The pixel add instruction that helps implement 3-D color intensity shading. 

To perform color intensity shading efficiently in a variety of applications, the i860 Microprocessor 
defines three pixel formats according to Table 2-1. 

Table 2-1. Pixel Formats 

Bits of 
Pixel Bits of Bits of Bits of Other 
Size Color 1 * Color 2* Color 3* Attribute 
(in bits) Intensity Intensity Intensity (Texture) 

a N (~a) bits of intensity** a - N 

16 6 6 4 

32 a a a a 

* The intensity attribute fields may be assigned to colors in any order convenient to the 
appl ication. 

** With a-bit pixels, up to a bits can be used for intensity; the remaining bits can be used for any 
other attribute, such as color. The intensity bits must be the low-order bits of the pixel. 

Figure 2-1 illustrates one way of assigning meaning to the fields of pixels. These assignments are 
for illustration purposes only. The i860 Microprocessor defines only the field sizes, not the specific 
use of each field. Other ways of using the fields of pixels are possible. 

2-3 



inter DATA TYPES 

7 5 

8-BIT PIXEL I C I 
15 9 

16-BIT PIXEL I R I G I 
31 23 15 7 

32-BIT PIXEL I R I G I B I T 

I-INTENSITY, R-RED INTENSITY, G-GREEN INTENSITY, B-BLUE INTENSITY, C-COLOR, 
T-TEXTURE 

3 

THESE ASSIGNMENTS OF SPECIFIC MEANINGS TO THE FIELDS OF PIXELS ARE FOR 
ILLUSTRATION PURPOSES ONLY. ONLY THE FIELD SIZES ARE DEFINED, NOT THE SPECIFIC 
USE OF EACH FIELD. 

Figure 2-1. Pixel Format Example 

2.6 REAL-NUMBER ENCODING 

0 

I 
0 

B I 
0 

I 

Table 2-2 presents the complete range of values that can be stored in the single and double real 
formats. Not all possible values are directly supported by the i860 Microprocessor. The supported 
values are the normals and the zeros, both positive and negative. Other values are not generated 
by the i860 Microprocessor, and, if encountered as input to a floating-point instruction, they 
trigger the floating-point source exception. Exception-handling software can use the unsupported 
values to implement denormals, infinities, and NaNs. 

2-4 



inter 

N 

A 
p N 
0 S 
S 

I 

T 
I 

V 
E 

S 

R 

E 
f--- A 

L 
S 

N 

E 

G 

A 
T 
I 
V 
E N 
S A 

N 

S 

DATA TYPES 

Table 2-2. Single and Double Real Encodlngs 

Class 

Quiet 

Signaling 

Infinity 

Normals 

Denormals 

Zero 

Zero 

Denormals 

Normals 

Infinity 

Signaling 

Quiet 

Sign 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
Single: 
Double: 

Biased 
Exponent 

11 .. 11 

11 .. 11 

11 .. 11 

11..11 

11 .. 11 

11 .. 10 

00 .. 01 

00 .. 00 

00 .. 00 

00 .. 00 

00 .. 00 

00 .. 00 

00 .. 00 

00 .. 01 

11..10 

11..11 

11 .. 11 

11 .. 11 

11 .. 11 

11 .. 11 
< 8 bits> 
< 11 bits> 

• Integer bit is implied and not stored 

2-5 

Significand 
ft--ft* 

11 .. 11 

10 .. 00 

01 .. 11 

00 .. 01 

00 .. 00 

11..11 

00 .. 00 

11 .. 11 

00 .. 01 

00 .. 00 

00 .. 00 

00 .. 01 

11 .. 11 

00 .. 00 

11 .. 11 

00 .. 00 

00 .. 01 

01 .. 11 

10 .. 00 

11 .. 11 
<- 23 bits-> 
<- 52 bits-> 





Registers 3 





Chapter 3 
Registers 

As Figure 3-1 shows, the i860 Microprocessor has the following registers: 

• An integer register file 
• A floating-point register file 
• Six control registers (psr, epsr, db, dirbase, fir, and fsr) 
• Four special-purpose registers (KR, KI, T, and MERGE) 

The control registers are accessible only by load and store control-register instructions; the integer 
and floating-point registers are accessed by arithmetic operations and load and store instructions. 
The special-purpose registers KR, KI, T, and MERGE are used by a few specific instructions. 
For information about initialization of registers, refer to the reset trap in Chapter 7. For information 
about protection as it applies to registers, refer to the st.c instruction in Chapter 5. 

3.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32-bits wide, referred to as rO through r31 , which are used for 
address computation and scalar integer computations. Register rO always returns zero when read, 
independently of what is stored in it. This special behaviour of rO makes it useful for modifying 
the function of certain instructions. For example, specifying rO as the destination of a subtract 
(thereby effectively discarding the result) produces a compare instruction. Similarly, using rO as 
one source operand of an OR instruction produces a test-for-zero instruction. 

3.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits wide, referred to as fO through f31, which are 
used for floating-point computations. Registers fO and f1 always return zero when read, 
independently of what is stored in them. The floating-point registers are also used by a set of 
integer operations, primarily for graphics computations. 

The floating-point registers act as buffer registers in vector computations, while the data cache 
performs the role of the vector registers of a conventional vector processor. 

When accessing 64-bit floating-point or integer values, the i860 Microprocessor uses an even/odd 
pair of registers. When accessing 128-bit values, it uses an aligned set of four registers (fO, f4, 
f8, ... , f30). The instruction must designate the lowest register number of the set of registers 
containing 64- or 128-bit values. Misaligned register numbers produce undefined results. The 
register with the lowest number contains the least significant part of the value. For 128-bit values, 
the register pair with the lower number contains the 64 bits at the lowest memory address; the 
register pair with the higher number contains the 64 bits at the highest address. 

3-1 



inter REGISTERS 

INTEGER FLOATING-POINT 
32 0 64 0 

rO fO 
r1 12 
r2 f4 
r3 f6 
r4 f8 
r5 f10 
r6 f12 
r7 f14 
r8 f16 
r9 f18 
r10 120 
r11 122 
r12 124 
r13 126 
r14 128 
r15 130 
r16 
r17 eesr esr 
r18 
r19 db 
r20 
r21 dirbase 
r22 
r23 fir 
r24 
r25 fsr 
r26 
r27 KR 
r28 KI 
r29 T 
r30 
r31 MERGE 

Figure 3-1. Register Set 

3.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscellaneous state information for the current process. 
Figure 3-2 shows the format of the psr. Fields marked by an asterisk in the 'figure can be changed 
only in supervisor mode. 

• BR (Break Read) and BW (Break Write) enable a data access trap when the operand address 
matches the address in the db register and a read or write (respectively) occurs. (Refer to 
section 3.5 for more about the db register.) 

• Various instructions set CC (Condition Code) according to tests they perform, as explained 
in Chapter 5. The conditional branch instructions test its value. The bla instruction described 
in Chapter 5 sets and tests LCe (Loop Condition Code). 

3-2 



REGISTERS 

BREAKREAD-------------------------------------------, 
BREAK WRITE --------------------------------------. 
CONDITION CODE 
LOOP CONDITION CODE ------------------------------...... 
INTERRUPT MODE -------------------------------...... 
PREVIOUS INTERRUPT MODE -------------------------, 
USER MODE 
PREVIOUS USER MODE ----------------_, 
INSTRUCTION TRAP -----------------, 
INTERRUPT ---------------_, 
INSTRUCTION ACCESS TRAP ------------, 
DATA ACCESS TRAP --------------__, 

FLOATING-POINT TRAP -----------1 
DELAYED SWITCH ----------__ j 
DUAL INSTRUCTION MODE J ! , 

PM 

KILL NEXT FLOATING-POINT 
INSTRUCTION 

(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

*CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL. 

Figure 3-2. Processor Status Register 

• 1M (Interrupt Mode) enables external interrupts if set; disables interrupts if clear. (Chapter 7 
covers interrupts.) 

• U (User Mode) is set when the i860 Microprocessor is executing in user mode; it is clear 
when the i860 Microprocessor is executing in supervisor mode. In user mode, writes to some 
control registers are inhibited. This bit also controls the memory protection mechanism 
described in Chapter 4. 

• PIM (Previous Interrupt Mode) and PU (Previous User Mode) save the corresponding status 
bits (1M and U) on a trap, because those status bits are changed when a trap occurs. They are 
restored into their corresponding status bits when returning from a trap handler with a branch 
indirect instruction when a trap flag is set in the psr. (Chapter 7 provides the details about 
traps.) 

• Ff (Floating-Point Trap), DAT (Data Access Trap), IAT (Instruction Access Trap), IN 
(Interrupt), and IT (Instruction Trap) are trap flags. They are set when the corresponding trap 

3-3 



inter REGISTERS 

condition occurs. The trap handler examines these bits to detennine which condition or 
conditions have caused the trap. Refer to Chapter 7 for a more detailed explanation. 

• DS (Delayed Switch) is set if a trap occurs during the instruction before dual-instruction 
mode is entered or exited. If DS is set and DIM (Dual Instruction Mode) is clear, the i860 
Microprocessor switches to dual-instruction mode one instruction after returning from the trap 
handler. If DS and DIM are both set, the i860 Microprocessor switches to single-instruction 
mode one instruction after returning from the trap handler. Chapter 7 explains how trap 
handlers use these bits. 

• When a trap occurs, the i860 Microprocessor sets DIM if it is executing in dual-instruction 
mode; it clears if it is executing in single-instruction mode. If DIM is set, the i860 
Microprocessor resumes execution in dual-instruction mode after returning from the trap 
handler. 

• When KNF (Kill Next Floating-Point Instruction) is set, the next floating-point instruction is 
suppressed (except that its dual-instruction mode bit is interpreted). A trap handler sets KNF 
if the trapped floating-point instruction should not be reexecuted. KNF is especially useful for 
returning from a trap that occurred in dual-instruction mode, because it penn its the core 
instruction to be executed while the floating-point instruction is suppressed. KNF is 
automatically reset by the i860 Microprocessor when the instruction has been successfully 
bypassed. It is possible that the core instruction may cause a trap when the floating-point 
instruction is suppressed. In this case KNF remains set, pennitting retry of the core instruction. 

• SC (Shift Count) stores the shift count used by the last right-shift instruction. It controls the 
number of shifts executed by the double-shift instruction, as described in Chapter 5. 

• PS (Pixel Size) and PM (Pixel Mask) are used by the pixel-store instruction described in 
Chapter 5 and by the graphics instructions described in Chapter 6. The values of PS control 
pixel size as defined by Table 3-1. The bits in PM correspond to pixels to be updated by the 
pixel-store instruction pst.d. The low-order bit of PM corresponds to the low-order pixel of 
the 64-bit source operand of pst.d. The number of low-order bits of PM that are actually 
used is the number of pixels that fit into 64-bits; which depends upon PS. If a bit of PM is 
set, then pst.d stores the corresponding pixel. 

Table 3-1. Values of PS 

Value 
Pixel Size Pixel Size 

in bits in bytes 

00 8 1 
01 16 2 

10 32 4 
11 (undefined) (undefined) 

3-4 



REGISTERS 

3.4 EXTENDED PROCESSOR STATUS REGISTER 

The extended processor status register (epsr) contains additional state infonnation for the current 
process beyond that stored in the psr. Figure 3-3 shows the fonnat of the epsr. Fields marked by 
an asterisk in the figure can be changed only in supervisor mode. 

INTERLOCK ------------, 

WRITE-PROTECT MODE ~ 
(RESERVED) 

INTERRUPT j 
DATA CACHE SIZE l ~ 
31 24 22 18 15 13 8 

(RESERVED) 0 B ~ DCS ~ X X W I STEPPING I 
F E M T P L NUMBER 

* * * * 

PROCESSOR 
TYPE 

1 11 ... -------- PAGE-TABLE BIT MODE 
- BIG ENDIAN MODE 

L.-_________ OVERFLOW FLAG 

·CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL. 

Figure 3-3. Extended Processor Status Register 

• The processor type is one for the i860 Microprocessor. 

o 

I 

• The stepping number has a unique value that distinguishes among different revisions of the 
processor. 

• IL (Interlock) is set if a trap occurs after a lock instruction but before the load or store 
following the subsequent unlock instruction. IL indicates to the trap handler that a locked 
sequence has been interrupted. 

• WP (Write Protect) controls the semantics of the W bit of page table entries. A clear W bit 
in either the directory or the page table entry causes writes to be trapped. When WP is clear, 
writes are trapped in user mode, but not in supervisor mode. When WP is set, writes are 
trapped in both user and supervisor modes. 

• INT (Interrupt) is the value of the INT input pin. 

• DeS (Data Cache Size) is a read-only field that tells the size of the on-chip data cache. The 
number of bytes actually available is 2 12+ Des; therefore, a value of zero indicates 4 Kbytes, 
one indicates 8 Kbytes, etc. 

• PBM (Page-Table Bit Mode) determines which bit of page-table entries is output on the PTB 
pin. When PBM is clear, the PTB signal reflects bit CD of the page-table entry used for the 

3-5 



inter REGISTERS 

current cycle. When PBM is set, the PTB signal reflects bit WT of the page-table entry used 
for the current cycle. 

• BE (Big Endian) controls the ordering of bytes within a data item in memory. Nonnally (i.e. 
when BE is clear) the i860 Microprocessor operates in little endian mode, in which the 
addressed byte is the low-order byte. When BE is set (big endian mode), the low-order three 
bits of all load and store addresses are complemented, then masked to the appropriate 
boundary for alignment. This causes the addressed byte to be the most significant byte. Refer 
to Chapter 4 for more endian information. 

• OF (Overflow Flag) is set by adds, addu, subs, and subu when integer overflow occurs. 
For adds and subs, OF is set if the carry from bit 31 is different than the carry from bit 30. 
For addu, OF is set if there is a carry from bit 31. For subu, OF is set if there is no carry 
from bit 31. Under all other conditions, it is cleared by these instructions. OF controls the 
function of the intovr instruction (refer to Chapter 5). 

3.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to generate a trap when the i860 Microprocessor accesses 
an operand at the address stored in this register. The trap is enabled by BR and BW in psr. When 
comparing, a number of low order bits of the address are ignored, depending on the size of the 
operand. For example, a 16-bit access ignores the low-order bit of the address when comparing 
to db; a 32-bit access ignores the low-order two bits. This ensures that any access that overlaps 
the address contained in the register will generate a trap. 

3.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 3-4) controls address translation, caching, 
and bus options. 

ADDRESS TRANSLATION ENABLE ------------------, 
DRAM PAGE SIZE 

BUS LOCK --------------------~ 
I-CACHE, TLB INVALIDATE ----------------, 

(RESERVED) j 
CODE SIZE 8-BIT -----------------, 1 
REPLACEMENT BLOCK 1 ! 
REPLACEMENT CONTROL ---------,l 

DIRECTORY TABLE BASE (DTB) 

Figure 3-4. Directory Base Register 

3-6 



inter REGISTERS 

• ATE (Address Translation Enable), when set, enables the virtual-address translation algorithm 
described in Chapter 4. The data cache must be flushed before changing the ATE bit. 

• DPS (DRAM Page Size) controls how many bits to ignore when comparing the current bus­
cycle address with the previous bus-cycle address to generate the NENE# signal. This feature 
allows for higher speeds when using static column or page-mode DRAMs and consecutive 
reads and writes access the same column or page. The comparison ignores the low-order 12 
+ DPS bits. A value of zero is appropriate for one bank of 256KXn RAMs, I for IMxn 
RAMS, etc. 

• When BL (Bus Lock) is set, external bus accesses are locked. The LOCK# signal is asserted 
the next bus cycle whose internal bus request is generated after BL is set. It remains set on 
every subsequent bus cycle as long as BL remains set. The LOCK# signal is deasserted on 
the next bus cycle whose internal bus request is generated after BL is cleared. Traps 
immediately clear BL and the LOCK# signal and set IL in epsr. In this case the trap handler 
should resume execution at the beginning of the locked sequence. The lock and unlock 
instructions control the BL bit (refer to Chapter 5). 

• ITI (Instruction-Cache, TLB Invalidate), when set in the value that is loaded into dirbase, 
causes the instruction cache and address-translation cache (TLB) to be flushed. The ITI bit 
does not remain set in dirbase. ITI always appears as zero when read from dirbase. The 
data cache must be flushed before invalidating the TLB. 

• When CS8 (Code Size 8-Bit) is set, instruction cache misses are processed as 8-bit bus 
cycles. When this bit is clear, instruction cache misses are processed as 64-bit bus cycles. 
This bit can not be set by software; hardware sets this bit at initialization time. It can be 
cleared by software (one time only) to allow the system to execute out of 64-bit memory after 
bootstrapping from 8-bit EPROM. A nondelayed branch to code in 64-bit memory should 
directly follow the st.c instruction that clears CS8, in order to make the transition from 8-bit 
to 64-bit memory occur at the correct time. The branch must be aligned on a 64-bit boundary. 
Refer to the CS8 mode in the i860 Hardware Reference Manual for more information. 

• RB (Replacement Block) identifies the cache block to be replaced by cache replacement 
algorithms. The high-order 'bit of RB is ignored by the instruction and data caches. RB 
conditions the cache flush instruction flush, which is discussed in Chapter 5. Table 3-2 
explains the values of RB. 

Table 3-2. Values of RB 

Value 
Replace Replace Instruction 

TLB Block and Data Cache Block 

00 0 0 
o 1 1 1 
1 0 2 0 
1 1 3 1 

3-7 



intJ REGISTERS 

• RC (Replacement Control) controls cache replacement algorithms. Table 3-3 explains the 
significance of the values of RC. The use of the RC and RB to implement data cache flushing 
is described in Chapter 4. 

• DTB (Directory Table Base) contains the high-order 20 bits of the physical addess of the 
page directory when address translation is enabled (i.e. ATE = 1). The low-order 12 bits of 
the address are zeros (therefore the directory must be located on a 4K boundary). 

Table 3-3. Values of RC 

Value Meaning 

00 Selects the normal replacement algorithm where any block in the set may be 
replaced on cache misses in all caches. 

01 Instruction, data, and TLB cache misses replace the block selected by RB. The 
instn.Jction and data caches ignore th~ high-order bit of RB. This mode is used 
for instruction cache and TLB testing. 

10 Data cache misses replace the block selected by the low-order bit of RB. 

11 Disables data cache replacement. 

3.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register (the fir) contains the address of the instruction that caused the 
trap, as described in Chapter 7. Saving fir anytime except the first time after a trap occurs saves 
the address of the Id.c instruction. 

3.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the floating-point trap and rounding-mode status 
for the current process. Figure 3-5 shows its formaL 

• If FZ (Flush Zero) is clear and underflow occurs, a result-exception trap is generated. When 
FZ is set and underflow occurs, the result is set to zero, and no trap due to underflow occurs. 

• If TI (Trap Inexact) is clear, inexact results do not cause a trap. If TI is set, inexact results 
cause a trap. The sticky inexac~ flag (SI) is set whenever an inexact result is produced, 
regardless of the setting of TI. 

• RM (Rounding Mode) specifies one of the four rounding modes defined by the IEEE standard. 
Given a true result b that cannot be represented by the target data type, the i860 
Microprocessor determines the two representable numbers a and c that most closely bracket 
b in value (a < b < c). The i860 Microprocessor then rounds (changes) b to a or c according 
to the mode selected by RM as defined in Table 3-4. Rounding introduces an error in the 
result that is less than one least-significant biL 

3-8 



inter REGISTERS 

FLUSH ZERO -----------------------------------------, 
TRAP INEXACT 
ROUNDING MODE 

UPDATE --------------------------------....., 
FLOATING-POINT TRAP ENABLE 
(RESERVED) 
STICKY INEXACT FLAG 
SOURCE EXCEPTION ----------------------..., 
MULTIPLIER UNDERFLOW -----------------...., 
MULTIPLIER OVERFLOW 

MULTIPLIER INEXACT J 
MULTIPLIER ADD ONE 1 
ADDER UNDERFLOW 1 1! ~ 
ADDER OVERFLOW ------------... ~ • • 

~ 0 

AE RR 

t t ~ ADDER INEXACT 
ADDER ADD ONE 
RESULT REGISTER 

...... ------- ADDER EXPONENT 
...... -------- (RESERVED) 

T F 
I Z 

...... ----------------- LOAD PIPE RESULT PRECISION 
...... ------------------ INTEGER (GRAPHICS) PIPE RESULT 

PRECISION 1...------------------- MULTIPLIER PIPE RESULT PRECISION 
...... -------------------- ADDER PIPE RESULT PRECISION 

1...------------------- (RESERVE~ 

Figure 3-5. Floating-Paint Status Register 

Table 3-4. Values of RM 

Value Rounding Mode Rounding Action 

00 Round to nearest or even Closer to b of a or c; if equally close, select even 
number (the one whose least significant bit is 
zero). 

01 Round down (toward - (0) a 
10 Round up (toward +(0) c 
11 Chop (toward zero) Smaller in magnitude of a or c. 

• The U-bit (Update Bit), if set in the value that is loaded into fsr by a st.e instruction, enables 
updating of the result-status bits (AE, AA, AI, AO, AU, MA, MI, MO, and MU) in the 
first-stage of the floating-point adder and multiplier pipelines. If this bit is clear, the result­
status bits are unaffected by a st.e instruction; st.e ignores the corresponding bits in the value 
that is being loaded. An st.e always updates fsr bits 21. .17 and 8 .. 0 directly. The U -bit does 

3-9 



REGISTERS 

not remain set; it always appears a zero when read. A trap handler that has interrupted a 
pipelined operation sets the U-bit to enable restoration of the result-status bits in the pipeline. 
Refer to Chapter 7 for details. 

• The PTE (Floating-Point Trap Enable) bit, if clear, disables all floating-point traps (invalid 
input operand, overflow, underflow, and inexact result). Trap handlers clear it while saving 
and restoring the floating-point pipeline state (refer to Chapter 7) and to produce NaN, 
infinite, or denormal results without generating traps. 

• SI (Sticky Inexact) is set when the last-stage result of either the multiplier or adder is inexact 
(i.e. when either AI or MI is set). SI is "sticky" in the sense that it remains set until reset 
by software. AI and MI, on the other hand, can by changed by the subsequent floating-point 
instruction. 

• SE (Source Exception) is set when one of the source operands of a floating-point operation is 
invalid; it is cleared when all the input operands are valid. Invalid input operands include 
denormals, infinities, and all NaNs (both quiet and signaling). Trap handler software can 
implement IEEE-standard results for operations on these values. 

• When read from the fsr, the result-status bits MA, MI, MO, and MU (Multiplier Add-One, 
Inexact, Overflow, and Underflow, respectively) describe the last-stage result of the multiplier. 

When read from the fsr, the result-status bits AA, AI, AO, AU, and AE (Adder Add-One, 
Inexact, Overflow, Underflow, and Exponent, respectively) describe the last-stage result of 
the adder. The high-order three bits of the II-bit exponent of the adder result are stored in 
the AE field. The trap handler needs the AE bits when overflow or underflow occurs with 
double-precision inputs and single-precision outputs. 

After a floating-point operation in a given unit (adder or multiplier), the result-status bits of 
that unit are undefined until the point at which result exceptions are reported. 

When written to the fsr with the U-bit set, the result-status bits are placed into the first stage 
of the adder and multiplier pipelines. When the processor executes pipelined operations, it 
propagates the result-status bits of a particular unit (multiplier or adder) one stage for each 
pipelined floating-point operation for that unit. When they reach the last stage, they replace 
the normal result-status bits in the fsr. 

In a floating-point dual-operation instruction (e.g. add-and-multiply or subtract-and-multiply), 
both the multiplier and the adder may set exception bits. The result-status bits for a particular 
unit remain set until the next operation that uses that unit. 

• AA (Adder Add One), if set, indicates that the adder rounded the result by adding one least 
significant bit. 

• MA (Multiplier Add One), if set, indicates the multiplier rounded the result by one least 
significant bit. 

• RR (Result Register) specifies which floating-point register (fO-f31) was the destination register 
when a result-exception trap occurs due to a scalar operation. 

3-10 



inter REGISTERS 

• LRP (Load Pipe Result Precision), IRP (Integer (Graphics) Pipe Result Precision), MRP 
(Multiplier Pipe Result Precision), and ARP (Adder Pipe Result Precision) aid in restoring 
pipeline state after a trap or process switch. Each defines the precision of the last-stage result 
in the corresponding pipeline. One of these bits is set when the result in the last stage of the 
corresponding pipeline is double precision; it is cleared if the result is single precision. These 
bits cannot be changed by software. 

3.9 KR, KI, T, AND MERGE REGISTERS 

The KR and KI ("Konstant") registers and the T (Temporary) register are special-purpose 
registers used by the dual-operation floating-point instructions described in Chapter 6. The 
MERGE register is used only by the graphics instructions also presented in Chapter 6. Refer to 
this chapter for details of their use. 

3-11 





Addressing 4 





Chapter 4 
Addressing 

Memory is addressed in byte Ullits with a paged virtual-address space of 232 bytes. Data and 
instructions can be located anywhere in this address space. Address arithmetic is performed using 
32-bit input values and produces 32-bit results. The low-order 32 bits of the result are used in 
case of overflow. 

Normally, multibyte data values are stored in memory in little endian format, i.e. with the least 
significant byte at the lowest memory address. As an option that may be dynamically selected by 
software in supervisor mode, the i860 Microprocessor also offers big endian mode, in which the 
most significant byte of a data item is at the lowest address. Code accesses are always done with 
little endian addressing. Figure 4-1 shows the difference between the two storage modes. Big 
endian and little end ian data areas should not be mixed within a 64-bit data word. Illustrations of 
data structures in this manual show data stored in little endian mode, i.e. the rightmost (low­
order) byte is at the lowest memory address. The BE bit of epsr selects the mode, as described 
in Chapter 3. 

LITTLE ENDIAN FORMAT 

63 55 47 39 31 23 15 7 0 

I I I I I I I I 
m+7 m+6 m+5 m+4 m+3 m+2 m+1 m 

BIG ENDIAN FORMAT 

63 55 47 39 31 23 15 7 0 

I I I I I I I I I 
m m+1 m+2 m+3 m+4 m+5 m+6 m+7 

m IS TH~ MEMORY ADDRESS OF THE WORD. 

Figure 4-1. MemoryFormats 

4-1 



infef ADDRESSING 

4.1 ALIGNMENT 

All data types are addressed by specifying their lowest-addressed byte. Alignment requirements 
are as follows: 

• A 128-bit value is aligned to an address divisible by 16 when referenced in memory (i.e. the 
four least significant address bits must be zero) or a data-access trap occurs. 

• A 64-bit value is aligned to an address divisible by eight when referenced in memory (i.e. 
the three least significant address bits must be zero) or a data-access trap occurs. 

• A 32-bit value is aligned to an address divisible by four when referenced in memory (i.e. the 
two least significant address bits must be zero) or a data-access trap occurs. 

• A 16-bit value is aligned to an address divisible by two when referenced in memory (i.e. the 
least significant address bit must be zero) or a data-access trap occurs. 

4.2 VIRTUAL ADDRESSING 

When address translation is enabled, the i860 Microprocessor maps instruction and data virtual 
addresses into physical addresses before referencing memory. This address transformation is 
compatible with that of the 386™ microprocessor and implements the basic features needed for 
page-oriented virtual-memory systems and page-level protection. 

The address translation is optional. Address translation is in effect only when the ATE bit of 
dirbase is set. This bit is typically set by the operating system during software initialization. The 
ATE bit must be set if the operating system is to implement page-oriented protection or page­
oriented virtual memory. 

Address translation is disabled when the processor is reset. It is enabled when a store to dirbase 
sets the ATE bit. It is disabled again when a store clears the ATE bit. 

4.2.1 Page Frame 

A page frame is a 4K-byte unit of contiguous addresses of physical main memory. Page frames 
begin on 4K-byte boundaries and are fixed in size. A page is a the collection of data that occupies 
a page frame when that data is present in main memory or occupies some location in secondary 
storage when there is not sufficient space in main memory. 

4.2.2 Virtual Address 

A virtual address refers indirectly to a physical address by specifying a page table, a page within 
that table, and an offset within that page. Figure 4-2 shows the format of a virtual address. 

4-2 



ADDRESSING 

21 11 o 

DIR PAGE OFFSET 

Figure 4-2. Format of a Virtual Address 

Figure 4-3 shows how the i860 Microprocessor converts the DIR, PAGE, and OFFSET fields of 
a virtual address into the physical address by consulting two levels of page tables. The addressing 
mechanism uses the DIR field as an index into a page directory, uses the PAGE field as an index 
into the page table determined by the page directory, and uses the OFFSET field to address a byte 
within the page determined by the page table. 

PAGE FRAME 

I DIR PAGE I OFFSET I 
I PHYSICAL 

ADDRESS 

PAGE DIRECTORY PAGE TABLE 

~ PGTBLENTRY 

---.. DIR ENTRY -

I DTB 
I 
I 

Figure 4-3. Address Translation 

4-3 



ADDRESSING 

4.2.3 Page Tables 

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and 
therefore contains 4 Kilobytes of memory or at most 1 K 32-bit entries. 

Two levels of tables are used to address a page of memory. At the higher level is a page directory. 
The page directory addresses up to 1 K page tables of the second level. A page table of the second 
level addresses up to lK pages. All the tables addressed by one page directory, therefore, can 
address 1M pages (220). Because each page contains 4Kbytes (2 12 bytes), the tables of one page 
directory can span the entire physical address space of the i860 Microprocessor (220 x 212 = 
232). 

The physical address of the current page directory is stored in DTB field of the dirbase register. 
Memory management software has the option of using one page directory for all processes, one 
page directory for each process, or some combination of the two. 

4.2.4 Page-Table Entries 

Page-table entries (PTEs) in either level of page tables have the same format. Figure 4-4 illustrates 
this format. 

PRESENT 
WRITABLE 
USER 
WRITE-THROUGH 
CACHE DISABLE ----------------­

ACCESSED -------------------~ 
DIRTY ---------------------. 
(RESERVED) 
AVAILABLE FOR SYSTEMS PROGRAMMER USE 

J , 

PAGE FRAME ADDRESS 31 .. 12 

NOTE: X INDICATES INTEL RESERVED. DO NOT USE. 

Figure 4-4. Format of a Page Table Entry 

4.2.4.1 PAGE FRAME ADDRESS 

1 

The page frame address specifies the physical starting address of a page. Because pages are 
located on 4K boundaries, the low-order 12 bits are always zero. In a page directory, the page 
frame address is the address of a page table. In a second-level page table, the page frame address 
is the address of the page frame that contains the desired memory operand. 

4-4 



inter ADDRESSING 

4.2.4.2 PRESENT BIT 

The P (present) bit indicates whether a page table entry can be used in address translation. P= 1 
indicates that the entry can be used. 

When P=O in either level of page tables, the entry is not valid for address translation, and the 
rest of the entry is available for software use; none of the other bits in the entry is tested by the 
hardware. Figure 4-5 illustrates the fonnat of a page-table entry when P=O. 

o 

AVAILABLE H 
Figure 4-5. Invalid Page Table Entry 

If P= 0 in either level of page tables when an attempt is made to use a page-table entry for address 
translation, the processor signals either a data-access fault or an instruction-access fault. In 
software systems that support paged virtual memory, the trap handler can bring the required page 
into physical memory. Refer to Chapter 7 for more infonnation on trap handlers. 

Note that there is no P bit for the page directory itself. The page directory may be not-present 
while the associated process is suspended, but the operating system must ensure that the page 
directory indicated by the dirbase image associated with the process is present in physical memory 
before the process is dispatched. 

4.2.4.3 CACHE DISABLE BIT 

If the CD (cache disable) bit in the second-level page-table entry is set, data from the associated 
page is not placed in instruction or data caches. The CD bit of page directory entries is not 
referenced by the processor, but is reserved. 

4.2.4.4 WRITE-THROUGH BIT 

The i860 Microprocessor does not implement a write-through caching policy for the on-chip 
instruction and data caches; however, the WT (write-through) bit in the second-level page-table 
entry does detennine internal caching policy. If WT is set in a PTE, on-chip caching from the 
corresponding page is inhibited. If WT is clear, the nonnal write-back policy is applied to data 
from the page in the on-chip caches. The WT bit of page directory entries is not referenced by 
the processor, but is reserved. 

To control external caches, the chip outputs on its PTB pin either CD or WT. The PBM bit of 
epsr detennines which bit is output, as described in Chapter 3. 

4-5 



ADDRESSING 

4.2.4.5 ACCESSED AND DIRTY BITS 

The A (accessed) and D (dirty) bits provide data about page usage in both levels of the page 
tables. 

The i860 Microprocessor sets the corresponding accessed bits in both levels of page tables before 
a read or write operation to a page. The processor tests the dirty bit in the second-level page table 
before a write to an address covered by that page table entry, and, under certain conditions, 
causes traps. The. trap handler then has the opportunity to maintain appropriate values in the dirty 
bits. The dirty bit in directory entries is not tested by the i860 Microprocessor. The precise 
algorithm for using these bits is specified in Section 4.2.5. 

An operating system that supports paged virtual memory can use these bits to determine what 
pages to eliminate from physical memory when the demand for memory exceeds the physical 
memory available. The D and A bits in the PTE (page-table entry) are normally initialized to zero 
by the operating system. The processor sets the A bit when a page is accessed either by a read or 
write operation. When a data- or instruction-access fault occurs, the trap handler sets the D bit if 
an allowable write is being performed, then reexecutes the instruction. 

The operating system is responsible for coordinating its updates to the accessed and dirty bits with 
updates by the CPU and by other processors that may share the page tables. The i860 
Microprocessor automatically asserts the LOCK# signal while testing and setting the A bit. 

4.2.4.6 WRITABLE AND USER BITS 

The W (writable) and U (user) bits are used for page-level protection, which the i860 
Microprocessor performs at the same time as address translation. The concept of privilege for 
pages is implemented by assigning each page to one of two levels: 

1. Supervisor level (U=O)-for the operating system and other systems software and related 
data. 

2. User level (U= 1 )-for applications procedures and data. 

The U bit of the psr indicates whether the i860 Microprocessor is executing at user or supervisor 
level. The i860 Microprocessor maintains the U bit of psr as follows: 

• The i860 Microprocessor copies the psr PU bit into the U bit when an indirect branch is 
executed and one of the trap bits is set. If PU was one, the i860 Microprocessor enters user 
level. 

• The i860 Microprocessor clears the psr U bit to indicate supervisor level when a trap occurs 
(including when the trap instruction causes the trap). The prior value of U is copied into 
PU. (The trap mechanism is described in Chapter 7; the trap instruction is described in 
Chapter 5.) 

With the U bit of psr and the Wand U bits of the page table entries, the i860 Microprocessor 
implements the following protection rules: 

• When at user level, a read or write of a supervisor-level page causes a trap. 

4-6 



inter ADDRESSING 

• When at user level, a write to a page whose W bit is not set causes a trap. 

• When at user level, st.c to certain control registers is ignored. 

When the i860 Microprocessor is executing at supervisor level, all pages are addressable, but, 
when it is executing at user level, only pages that belong to the user-level are addressable. 

When the i860 Microprocessor is executing at supervisor level, all pages are "readable. Whether a 
page is writable depends upon the write-protection mode controlled by WP of epsr: 

WP=O All pages are writable. 
WP= 1 A write to page whose W bit is not set causes a trap. 

When the i860 Microprocessor is executing at user level, only pages that belong to user level and 
are marked writable are actually writable; pages that belong to supervisor level are neither readable 
nor writable from user level. 

4.2.4.7 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES 

For anyone page, the protection attributes of its page directory entry may differ form those of its 
page table entry. The i860 Microprocessor computes the effective protection attributes for a page 
by examining the protection attributes in both the directory and the page table. Table 4-1 shows 
the effective protection provided by the possible combinations of protection attributes. 

4.2.5 Address Translation Algorithm 

The algorithm below defines how the on-chip MMU translates each virtual address to a physical 
address. Let DIR, PAGE, and OFFSET be the fields of the virtual address; let PFAI and PFA2 
be the page frame address fields of the first and second level page tables respectively; DTB is the 
page directory table base address stored in the dirbase register. 

1 . Assert LOCK# . 

2. Read the PTE (page table entry) at the physical address formed by DTB:DIR:OO. 

3. If P in the PTE is zero, generate a data- or instruction-access fault. 

4. If W in the PTE is zero, the operation is a write, and either the U bit of the PSR is set or 
WP= 1, generate a data-access fault. 

5. If the U bit in the PTE is zero and the U bit in the psr is set, generate a data- or instruction­
access fault. 

6. If A in the PTE is zero, set A. 

7. Locate the PTE at the physical address formed by PFAI :PAGE:OO. 

8. Perform the P, A, W, and U checks as in steps 3 through 6 with the second-level PTE. 

4-7 



inter ADDRESSING 

9. If D in the PTE is clear and the operation is a write, generate a data-access fault. 

10. Form the physical address as PFA2:0FFSET. 

11 . Deassert LOCK# . 

Table 4-1. Combining Directory and Page Protection 

Page Directory Page Table 
Combined Protection 

Entry 

U-bit 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

W-bit U-bit 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 
0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

U=o - Supervisor 
U=1 - User 

Entry 

W-bit 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

WP=O 

U W 

0 x 
0 x 
0 x 
0 x 
0 x 
0 x 
0 x 
0 x 
0 x 
0 x 
1 0 
1 0 
0 x 
0 x 
1 0 
1 1 

W=o - Read only 
W = 1 - Read and write 

x indicates that, when the combined U attribute is supervisor 
and WP=O, the W attribute is not checked. 

4.2.6 Address Translation Faults 

WP=1 

U 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 

W 

0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 

The address translation fault is one instance of the data-access fault. (Refer to Chapter 7 for more 
information on this and other faults.) The instruction causing the fault can be reexecuted by the 
return-from-trap sequence defined in Chapter 7. 

4.2.7 Page Translation Cache 

For greatest efficiency in address translation, the i860 Microprocessor stores the most recently 
used page-table data in an on-chip cache called the TLB (translation lookaside buffer). Only if the 
necessary paging information is not in the cache must both levels of page tables be referenced. 

4-8 



inter ADDRESSING 

4.3 CACHING AND CACHE FLUSHING 

The i860 Microprocessor has the ability to cache instruction, data, and address-translation 
infonnation in on-chip caches. Caching may use virtual-address tags. The effects of mapping two 
different virtual addresses in the same address space to the same physical address are undefined. 

Instruction, data, and address-translation caching on the i860 Microprocessor are not transparent. 
Writes do not immediately update memory, the TLB, nor the instruction cache. Writes to memory 
by other bus devices do not update the caches. Under certain circumstances, such as va 
references, self-modifying code, page-table updates, or shared data in a mUltiprocessing system, 
it is necessary to bypass or to flush the caches. i860 Microprocessor provides the following 
methods for doing this: 

• Bypassing Instruction and Data Caches. If deasserted during cache-miss processing, the 
KEN# pin disables instruction and data caching of the referenced data. If the CD or WT bit 
from the associated second-level PTE is set, internal caching of data and instructions is 
disabled. T,he value of the CD or WT bit is output on the PTB pin for use by external caches. 

• Flushing Instruction and Address-Translation Caches. Storing to the dirbase register with 
the ITI bit set invalidates the contents of the instruction and address-translation caches. This 
bit should be set when a page table or a page containing code is modified or when changing 
the DTB field of dirbase. Note that in order to make the instruction or address-translation 
caches consistent with the data cache, the data cache must be flushed before invalidating the 
other caches. 

NOTE 

The mapping of the page containing the currently executing instruction and the next 6 
instructions should not be different in the new page tables when st.c dirbase changes 
DTB or activates ITI. The 6 instructions following the st.c should be nops, and 
should lie in the same page as the st.c. 

• Flushing the Data Cache. The data cache is flushed by the software routine shown in 
Chapter 5 with the flush instruction. The data cache must be flushed prior to flushing the 
instruction or address-translation cache (as controlled by the ITI bit of dirbase) or enabling 
or disabling address translation (via the ATE bit). 

The i860 CPU searches only external memory for Page Directories and Page Tables, in the 
translation process. The data cache is not searched. Thus Page Tables and Directories should be 
kept in non-cacheable memory, or flushed from the cache by any code which accesses them. 

4-9 





Core Instructions 5 





Chapter 5 
Core Instructions 

Core instructions include loads and stores of the integer, floating-point, and control registers; 
arithmetic and logical operations on the 32-bit integer registers; and control transfers. All these 
instructions are executed by the core unit. 

Key to abbreviations in the following descriptions of core instructions: 

src/ 

srclni 

s,.c2 

rdest 

Feg 

mem.x(address) 

#const 

ctr/reg 

/brr~tl 

sbrr~tl 

brx 

src/s 

comp2 

An integer register or a 16-bit immediate constant or address offset. The 
immediate value is zero-extended for logical operations and is sign-extended 
for add and subtract operations (including addu and subu) and for all 
addressing calculations. 

Same as src/ except that no immediate constant or address offset value is 
permitted. 

An integer register. 

An integer register. 

A floating-point register. 

The contents of the memory location indicated by address with a size of x . 

A 16-bit immediate constant or address offset that the i860 Microprocessor 
sign-extends to 32 bits when computing the 
effective address. 

One of the control registers fir, epsr, psr, dirbase, db, or fsr. 

A signed, 26-bit, immediate, relative branch offset. 

A signed, 16-bit, immediate, relative branch offset. 

A function that computes the target address by shifting the offset (either 
/br(df or sbr(~ff) left by two bits, sign-extending it to 32 bits, and adding the 
result to the current instruction pointer plus four. The resulting target 
address may lie anywhere within the address space. 

An integer register or a 5-bit immediate constant that is zero-extended to 32 
bits. 

A function that returns the two's complement of its argument. 

The comments regarding optimum performance that appear in the subsections Programming 
Notes are recommendations only. If these recommendations are not followed, the i 860 
Microprocessor automatically waits the necessary number of clocks to satisfy internal hardware 
requirements. 

5-1 



CORE INSTRUCTIONS 

5.1 LOAD INTEGER 

Id.x srcl(src2), rdest 

rdest .- mem.x (srcJ + src2) 

(Load Integer) 

.x = .b (8 bits), .s (16 bits), or.! (32 bits) 

The load integer instruction transfers an 8-, 16-, or 32-bit value from memory to the integer 
registers. The srcJ can be either a 16-bit immediate address offset or an index register. Loads of 
8- or 16-bit values from memory place them in the low-order bits of the destination registers and 
sign-extend them to 32-bit values in the destination registers. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For best performance, observe the following guidelines: 

1 . The destination of a load should not be referenced as a source operand by the next instruction. 

2. A load instruction should not directly follow a store that is expected to hit in the data cache. 

Even though immediate address offsets are limited to 16 bits, loads using a 32-bit address offset 
may be implemented by the following sequence (r31 is recommended for all such addressing 
calculations): 

orh H IGH16a, rO, r31 
ld.l LOW16(r31), rdest 

Note that the i860 Microprocessor uses signed addition when it adds LOW16 to r31. If bit 15 of 
LOW16 is set, this has the effect of subtracting from r31. Therefore, when bit 15 of LOW16 is 
set, HIGH16a must be derived by adding one to the high-order 16 bits, so that the net result is 
correct. 

The assembler must align the immediate address offsets used in loads to the same boundary as the 
effective address, because the lower bits of the immediate offset are used to encode operand 
length information. 

5-2 



inter CORE INSTRUCTIONS 

5.2 STORE INTEGER 

st.x srclni, #const(src2) (Store Integer) 

mem.x (src2 + #const) .- srcl ni 

.x = . b (8 bits), .s (16 bits), or.! (32 bits) 

The store instruction transfers an 8-, 16-, or 32-bit value from the integer registers to memory. 
Stores do not allow an index register in the effective-address calculation, because srcl ni is used 
to specify the register to be stored. The #const is a signed, 16-bit, immediate address offset. An 
absolute address may be formed by using the zero register for src2. Stores of 8- or 16-bit values 
store the low-order 8 or 16 bits of the register. ' 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For best performance, a load instruction should not directly follow a store that is expected to hit 
in the data cache. 

Even though immediate address offsets are limited to 16 bits, a store using a 32-bit immediate 
address offset may be implemented by the following sequence (r31 is recommended for all such 
addressing calculations): 

orh HIGH16a, rO, r31 
st. 1 rdest, LOW16( r31 ) 

Note that the i860 Microprocessor uses signed addition when it adds LOW16 to r31. If bit 15 of 
LOW 16 is set, this has the effect of subtracting from r31. Therefore, when bit 15 of LOW16 is 
set, HIGH16a must be derived by adding one to the high-order 16 bits, so that the net result is 
correct. 

The assembler must align the immediate address offsets used in stores to the same boundary as 
the effective address, because the lower bits of the immediate offset are used to encode operand 
length information. 

5.3 TRANSFER INTEGER TO F-P REGISTER 

iXfr srcl ni, freg 

./i'eg .- src/ ni 

(Transfer Integer to F-P Register) 

The ixfr instruction transfers a 32-bit value from an integer register to a floating-point register. 

5-3 



CORE INSTRUCTIONS 

Programming Notes 

For best perfonnance, the destination of an ixfr should not be referenced as a source operand in 
the next two instructions. 

5.4 LOAD FLOATING-POINT 

fld.y 
fld.y 

pfld.z 
pfld.z 

sre 1 (sre2 ),freg 
srcl (sre2)+ + f;'eg 

freg +- mem.y (sre} + src2) 
IF auto increment 
THEN src2 +- srcJ + src2 
FI 

srcl(src2), fj-eg 
src} (src2) + +, Feg 

Floating-Point Load 
(Normal) 
(Autoincrement) 

Pipelined Floating-Point Load 
(Normal) 
(Autoincrement) 

freg +- mem.z (third previous pfld's (srcJ + sre2» 
(where .z is precision of third previous pfld.z) 

IF auto increment 
THEN src2 +- srel + src2 
FI 

.y = .I (32 bits), .d (64 bits), or.q (128 bits); .z = .1 or.d 

Floating-point loads transfer 32-, 64-, or 128-bit values from memory to the floating-point 
registers. These may be floating-point values or integers. An autoincrement option supports 
constant-stride vector addressing. If this option is specified, the i860 Microprocessor stores the 
effecti ve address into src2 . 

Floating-point loads may be either pipelined or not. The load pipeline has three stages. A pfld 
returns the data from the address calculated by the third previous pfld, thereby allowing three 
loads to be outstanding on the external bus. When the data is already in the cache, both pipelined 
and nonpipelined fonns of the load instruction read the data from the cache. The pipelined pfld 
instruction, however, does not place the data in the data cache on a cache miss. A pfld should be 
used only when the data is expected to be used once in the near future. Data that is expected to 
be used several times before being replaced in the cache should be loaded with the nonpipelined 
fld instruction. The fld instruction does not advance the load pipeline and does not interact with 
outstanding pfld instructions. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

A pfld cannot load a 128-bit operand. 

5-4 



inter CORE INSTRUCTIONS 

For best perfonnance, observe the following guidelines: 

I . The destination of a fld or pfld should not be referenced as a source operand in the next two 
instructions. 

2. A fld instruction should not directly follow a store instruction that is expected to hit in the 
data cache. There is no perfonnance impact for a pfld following a store instruction. 

3. A pfld instruction should not directly follow another pfld. 

The assembler must align the immediate address offsets used in loads to the same boundary as the 
effective address, because the lower bits of the immediate offset are used to encode operand 
length infonnation. 

5.5 STORE FLOATING-POINT 

Floating-Point Store 
fst.y 
fst.y 

ji-eg, srcJ(src2) 
freg, srcJ(src2)++ 

mem.y (sre2 + srcJ) ..- ji-eg 
IF autoincrement 
THEN sre2 ..- sre] + src2 
FI 

(Normal) 
(Autoincrement) 

.y = .I (32 bits), .d (64 bits), or.q (128 bits) 

Floating-point stores transfer 32-, 64-, or 128-bit values from the floating-point registers to 
memory. These may be floating-point values or integers. Floating-point stores allow sre] to be 
used as an index register. An auto increment option supports constant-stride vector addressing. If 
this option is specified, the i860 Microprocessor stores the effective address into src2. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For best perfonnance, observe the following guidelines: 

1 . A fld instruction should not directly follow a store instruction that is expected to hit in the 
data cache. There is no perfonnance impact for a pfld following a store instruction. 

2. Thefreg of an fst.y instruction should not reference the destination of the next instruction if 
that instruction is a pipelined floating-point operation. 

The assembler must align the immediate address offsets used in stores to the same boundary as 
the effective address, because the lower bits of the immediate offset are used to encode operand 
length infonnation. 

5-5 



CORE INSTRUCTIONS 

5.6 PIXEL STORE 

pst.d jreg, #const(src2) (Pixel store) 
pst.d jreg, #const(src2)++ (Pixel store autoincrement) 

Pixels enabled by PM in mem.d (src2 + #const) +- jreg 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement THEN src2 +- #const + src2 FI 

The pixel store instruction selectively updates the pixels in a 64-bit memory location. The pixel 
size is determined by the PS field in the psr. The pixels to be updated are selected by the low­
order bits of the PM field in the psr. Each bit of PM corresponds to one pixel, with bit 0 
corresponding to the pixel at the lowest address. 

This instruction is typically used in conjunction with the fzchks orfzchkl instructions to implement 
Z-buffer hidden-surface elimination. When used this way, a pixel is updated only when it 
represents a point that is closer to the viewer than the closest point painted so far at that particular 
pixel location. Refer to Chapter 6 for more about fzchks and fzchkl. 

Traps 

If the operand is misaligned, a data-access trap results. 

5.7 INTEGER ADD AND SUBTRACT 

In addition to their normal arithmetic functions, the add and subtract instructions are also used to 
implement comparisons. For this use, rO is specified as the destination, so that the result is 
effectively discarded, Equal and not-equal comparisons are implemented with the xor instruction 
(refer to the section on logical instructions). 

Add and subtract ordinal (unsigned) can be used to implement multiple-precision arithmetic. 

Flags Affected 

CC and OF. 

Programming ·Notes 

For optimum performance, do not perform a conditional branch in the instruction following an 
add or subtract instruction. 

Refer to Chapter 9 for an example of how to handle the sign of 8- and 16-bit integers when 
manipulating them with 32-bit instructions. 

An instruction of the form subs -1, src2, rdest yields the one's complement of src2. 

5-6 



intJ 

addu 

CORE INSTRUCTIONS 

src 1, src2, rdest 

rdest +- srcJ + src2 
OF +- bit 31 carry 
CC +- bit 31 carry 

(Add unsigned) 

adds src 1, src2, rdest (Add signed) 

rdest +- srcJ + src2 
OF +- (bit 31 carry =1= bit 30 carry) 
Using signed comparison, 

CC set if src2 < comp2 (src 1 ) 
CC clear if src2 ~ comp2 (src 1 ) 

subu src 1, src2, rdest (Subtract unsigned) 

subs 

rdest +- src 1 - src2 
OF +- NOT (bit 31 carry) 
CC +- bit 31 carry 

(i.e., using unsigned comparison, 
CC set if src2· ~ src 1 
CC clear if src2 > src 1 

src 1, src2, rdest 

rdest +- src 1 - src2 
OF +- (bit 31 carry =1= bit 30 carry) 
U sing signed comparison, 

CC set if src2 > src 1 
CC clear if src2 ~ src 1 

(Subtract signed) 

When src 1 is immediate, the immediate value is sign-extended to 32-bits even for the unsigned 
instructions addu and subu . 

These instructions enable convenient encoding of a literal operand in a subtraction, regardless of 
whether the literal is the subtrahend or the minuend. For example: 

Calculation Encoding 

Signed rS=2-rS subs 2, r5, rB 
rS=rS-2 adds - 2, r5, r6 

Unsigned rS = 2 - rS subu 2, r5, rB 
rS = rS - 2 addu - 2, r5, r6 

Note that the only difference between the signed and the unsigned fonns is in the setting of the 
condition code CC. 

5-7 



CORE INSTRUCTIONS 

The various fonns of comparison between variables and constants can be encoded as follows: 

Branch When True 
Condition Encoding 

Signed Unsigned 

var::::; const subs const, var bne 
subu const, var be 

var < const adds -const, var be 
addu - const, var* bne 

var;3 const adds -const, var bne 
addu - const, var* be 

var> const subs const, var be 
subu const, var bne 

*Valid only when const > 0 

5.8 SHIFT INSTRUCTIONS 

shl src 1, src2, rdest (Shift left) 

rdest +- src2 shifted left by src 1 bits 

shr srcJ, src2, rdest (Shift right) 

SC (in psr) +- srcl 
rdest +- src2 shifted right by srcJ bits 

shra srcl, src2, rdest (Shift right arithmetic) 

rdest +- src2 arithmetically shifted right by src 1 bits 

shrd srcJ ni, src2, rdest (Shift right double) 

rdest +- low-order 32 bits of srclni:src2 shifted right by SC bits 

The arithmetic shift does not change the sign bit; rather, it propagates the sign bit to the right src 1 
bits. 

Shift counts are taken modulo 32. A shrd right-shifts a 64-bit value with srcl being the high­
order 32 bits and src2 the low-order 32 bits. The shift count for shrd is taken from the shift count 
of the last shr instruction, which is saved in the SC field of the psr. Shift-left is identical for 
integers and ordinals. 

Programming Notes 

The shift instructions are recommended for the integer register-to-register move and for no­
operations, because they do not affect the condition code. The following assembler pseudo­
operations utilize the shift instructions: 

5-8 



inter 

mov 

nop 

fnop 

CORE INSTRUCTIONS 

src2, rdest (Register-to-register move) 

Assembler pseudo-operation, equivalent to: 
shl rO, src2, rdest 

(Core no-operation) 

Assembler pseudo-operation, equivalent to: 
shl rO, rO, rO 

(Floating-point no-operation) 

Assembler pseudo-operation, equivalent to: 
shrd rO, rO, rO 

Rotate is implemented by: 

shr 
shrd 

COUNT, rO, rO 
op, op, op 

5.9 SOFTWARE TRAPS 

trap 

intovr 

src I, src2, rdest 

Generate trap with IT set in psr 

II Only loads COUNT into SC of PSR 
II Uses SC for shift count 

(Software trap) 

(Software trap on integer overflow) 

If OF of epsr = 1, generate trap with IT set in psr 

These instructions generate the instruction trap, as described in Chapter 7. 

The trap instruction can be used to implement supervisor calls and code breakpoints. The rdest 
should be zero, because its contents are undefined after the operation. The srcl and src2 fields 
can be used to encode the type of trap. 

The intovr instruction generates an instruction trap if OF bit (overflow flag) of epsr is set. It is 
used to test for integer overflow after the instructions adds, addu, subs, and subu . 

5.10 LOGICAL INSTRUCTIONS 

The operation is performed bitwise on all 32 bits of srcJ and src2. When src I is an immediate 
constant, it is zero-extended to 32 bits. 

The "H" variant signifies "high" and forms one operand by using the immediate constant as the 
high-order 16 bits and zeros as the low-order 16 bits. The resulting 32-bit value is then used to 
operate on the src2 operand. 

5-9 



intel~ 

and 

andh 

CORE INSTRUCTIONS 

srci, src2, rdest 

rdest +- srci AND src2 

(Logical AND) 

CC set if result is zero, cleared otherwise 

#const, src2, rdest (Logical AND high) 

rdest +- (#const shifted left 16 bits) AND src2 
CC set if result is zero, cleared otherwise 

andnot sre /, src2, rdest (Logical AND NOT) 

rdest +- NOT srci AND src2 
CC set if result is zero, cleared otherwise 

andnoth #COl1st, sre2, rdest (Logical AND NOT high) 

or 

orh 

xor 

xorh 

rdest ~ NOT (#eonst shifted left 16 bits) AND sre2 
CC set if result is zero, cleared otherwise 

srci, sre2, rdest 

rdest +- sre/ OR src2 

(Logical OR) 

CC set if result is zero, cleared otherwise 

#const, src2, rdest' (Logical OR high) 

rdest +- (#eonst shifted left 16 bits) OR src2 
CC set if result is zero, cleared otherwise 

src /, src2, rdest 

rdest +- srci XOR src2 

(Logical XOR) 

CC set if result is zero, cleared otherwise 

#const, sre2, rdest (Logical XOR high) 

rdest +- (#const shifted left 16 bits) XOR sre2 
CC set if result is zero, cleared otherwise 

Flags Affected 

CC is set if the result is zero, cleared otherwise. 

5-10 



intJ CORE INSTRUCTIONS 

Programming Notes 

Bit operations can be implemented using logical operations. Srcl is an immediate constant which 
contains a one in the bit position to be operated on and zeros elsewhere. 

Bit Operation Equivalent Logical 
Operation 

Set bit or 
Clear bit andnot 
Complement bit xor 
Test bit and (CC set if bit is clear) 

5.11 CONTROL-TRANSFER INSTRUCTIONS 

Control transfers can branch to any location within the address space. However, if a relative 
branch offset, when added to the address of the control-transfer instruction plus four, produces an 
address that is beyond the 32-bit addressing range of the i860 Microprocessor, the results are 
undefined. 

Many of the control-transfer instructions are delayed transfers. They are delayed in the sense that 
the i860 Microprocessor executes one additional instruction following the control-transfer 
instruction before actually transferring control. During the time used to execute the additional 
instruction, the i860 Microprocessor refills the instruction pipeline by fetching instructions from 
the new instruction address. This avoids breaks in the instruction execution pipeline. It is generally 
possible to find an appropriate instruction to execute after the delayed control-transfer instruction 
even if it is merely the first instruction of the procedure to which control is passed. 

Programming Notes 

The sequential instruction following a delayed control-transfer instruction may be neither another 
control-transfer instruction, nor a trap instruction, nor the target of a control-transfer instruction. 

The instructions bc.t and bnc.t are delayed forms of bc and bnc. The delayed branch instructions 
bc.t and bnc.t should be used when the branch is taken more frequently than not; for example, at 
the end of a loop. The nondelayed branch instructions bc, bnc, bte, btne should be used when 
branch is taken less frequently than not; for example, in certain search routines. 

If a trap occurs on a bla instruction or the next instruction, Lee is not updated. The trap handler 
resumes execution with the bla instruction, so the LCe setting is not lost. 

5-11 



br 

bc 

bc.t 

bnc 

bnc.t 

bte 

btrie 

bla 

CORE INSTRUCTIONS 

Ibroff (Branch direct unconditionally) 

Execute one more sequential instruction. 
Continue execution at brx( Ibroff). 

Ibroff (Branch on CC) 

IF CC = 
THEN continue execution at brx( Ibroj]) 
FI 

lbroff (Branch on CC, taken) 

IF CC = 1 
THEN execute one more sequential instruction 

continue execution at brx( lbroff) 
ELSE skip next sequential instruction 
FI 

Ibroj]' (Branch on not CC) 

IF CC = 0 
THEN continue execution at brx( lbroff) 
FI 

Ibroj]' (Branch on not CC, taken) 

IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx( lbrofj) 
ELSE skip next sequential instruction 
FI 

srcl s, src2, sbroff (Branch if equal) 

IF srcls = src2 
THEN continue execution at brx( sbroff) 
PI 

src 1 s, src2, sbroff (Branch if not equal) 

IF srcl s =1= src2 
THEN continue execution at brx( sbroff) 
PI 

(Branch on LCC and add) 

LCC_temp clear if src2 < comp2(srclni) (signed) 
LCC_temp set if src2 ~ comp2(srclni) (signed) 
src2 ..- src 1 ni + src2 
Execute one more sequential instruction 
IF LCC 
THEN LCC..- LCC_temp 

continue execution at brx( sbroff) 
ELSE LCC ..- LCC _ temp 
FI 

5-12 



intJ CORE INSTRUCTIONS 

Programming Notes 

The bla instruction is useful for implementing loop counters, where src2 is the loop counter and 
srcJ is set to -1. In such a loop implementation, a bla instruction may be performed before the 
loop is entered to initialize the Lee bit of the psr. The target of this bla should be the sequential 
instruction after the next, so that the next sequential instruction is executed regardless of the 
setting of Lee. Another bla instruction placed as the next to the last instruction of the loop can 
test for loop completion and update the loop counter. The total number of iterations is the value 
of src2 before the first bla instruction, plus one. Example 5-1 illustrates this use ofbla. 

Programs should avoid calling subroutines while within a bla loop, because a subroutine may use 
bla also and change Lee. 

II EXAMPLE OF bla USAGE 

II Write zeros to an array of 16 single-precision numbers 
II Starting address of array is already in r4 

adds -1, rO, r5 II r5 <-- loop increment 
or 15, rO, r6 II r6 <-- loop count 
bla r5, r6, CLEAR LOOP II One time to initialize 
addu -4, r4, r4 II Start one lower to 

LCC 

II allow for auto increment 
CLEAR LOOP: 

bra r5, r6, CLEAR LOOP II Loop for the 16 times 
fst.l fO, 4(r4)++ II Write and auto increment 

II to next word 

Example 5-1. Example of bla Usage 

Return from a subroutine is implemented by branching to the return address with the indirect 
branch instruction bri. 

Indirect branches are also used to resume execution from a trap handler (refer to Chapter 7). The 
need for this type of branch is indicated by set trap bits in the psr at the time bri is executed. In 
this case, the instruction following the bri must be a load that restores srcJni to the value it had 
before the trap occurred. 

Programming Notes 

When using bri to return from a trap handler, programmers should take care to prevent traps from 
occurring on that or on the next sequential instruction. 1M should be zero (interrupts disabled). 

5-13 



inter 

call 

calli 

bri 

CORE INSTRUCTIONS 

(Subroutine call) 

rl +- address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at brx( [broff) 

[src IniJ (Indirect subroutine call) 

rl +- address of next sequential instruction .+ 4 
Execute one more sequential instruction 
Continue execution at address in src Inl 

(The original contents of src Ini is used even if the 
next instruction modifies src Ini. Does not trap if 
srclni is misaligned.) 

[srclniJ (Branch indirect unconditionally) 

Execute one more sequential instruction 
IF 
THEN 

any trap bit in psr is set 
copy PU to U, PIM to 1M in psr 
clear trap bits 

PI 

IF DS is set and DIM is reset 
THEN enter qual-instruction mode after executing one instruction in 

ELSE 

FI 

single-'instruction mode 
IF DS is set and DIM is set 
THEN enter single-instruction mode after executing one 

instruction in dual-instruction mode 
ELSE 

FI 

IF DIM is set 
THEN enter dual-instruction mode for next 

ELSE 

FI 

two instructions 
enter single-instruction mode for next 
two instructions 

Continue execution at address in srcJ nl 
(The original contents of src J nl is used even if the next instruction modifies 
src 1 ni. Does not trap if src Ini is misaligned.) 

5.12 CACHE FLUSH 

The flush instruction is used to force modified data in the data cache to external memory. Because 
the contents of rdest are undefined after flush, translators should encode it as zero. The address 
#const + src2 must be aligned on a 16-byte boundary. There are two 32-byte blocks in the cache 
which can be replaced by the address #const + src2. The particular block that is forced to 
memory is controlled by the RB field of dirbase. When flushing the cache before a task switch, 
the addresses used by the flush instruction should reference non-user-accessible memory to ensure 
that cached data from the old task is not transferred to the new task. These addresses must be 

5-14 



inter 

flush 
flush 

CORE INSTRUCTIONS 

(Cache flush) 
#const(src2) 
# const(src2)+ + 

(Normal) 
(Autoincrement) 

Replace the block in data cache that has address (#const + src2). 
Contents of block undefined. 
IF autoincrement 
THEN src2 ~ #const + src2 
FI 

Example 5-2 shows how to flush the data cache using the flush instruction. The code depends on 
having reserved a 4 Kbyte memory area that is not used to store data. Cache elements containing 
modified data are written back to memory by making two passes, each of which references every 
32nd byte of this area with the flush instruction. Before the first pass, the RC field in dirbase is 
set to two and RB is set to zero. This causes data-cache misses to flush element zero of each set. 
Before the second pass, RB is changed to one, causing element one of each set to be flushed. 

The flush instruction must only be used as in Example 5-2. Any other usage of flush has 
undefined results. 

II CACHE FLUSH PROCEDURE 
II Rw, Rx, Ry, Rz represent integer registers 
II FLUSH PHis the high-order 16 bits of a pointer to reserved area 
II FLUSH=P=L is the low-order 16 bits of the pointer, minus 32 

1d.c 
or 
adds 
call 
st.C 
or 
call 
st.C 
xor 

II Change 
st.C 

D FLUSH: 
orb 
or 
or 
ld.l 
sbl 
bla 
nop 

dirbase, 
Ox800, 
-1, 
D FLUSH 
Rz, 
Ox900, 
D FLUSH 
Rz, 
Ox900, 

DTB, ATE, 
Rz, 

Rz 
Rz, Rz 
rO, Rx 

dirbase 
Rz, Rz 

II RC <-- OblO (assuming was 00) 
II Rx <-- -1 (loop increment) 

II Replace in block ° 
II RB <-- Ob01 

dirbase II Replace in block 1 
Rz, Rz II Clear RC and RB 

or ITI fields here, if necessary 
dirbase 

FLUSH P H, 
FLUSH-P-L, 
127, - -

rO, 
Rw, 
rO, 

Rw 
Rw 
Ry 

II Rw <-- address minus 32 
II of flush area 
II Ry <-- loop count 

32(Rw), 
0, 
Rx, Ry, 

r3l 
r3l, r3l 

D FLUSH LOOP - -

II Clear any pending bus writes 
II Wait until load finishes 
II One time to initialize Lce 

D FLUSH LOOP: 
- bla- Rx, Ry, D_FLUSH_LOOP II Loop; execute next instruction 

II for 128 lines in cache block 
II Flush and auto increment to next line flush 

bri 
ld.l 

32 (Rw)++ 
r1 
-512(Rw), rO 

II Return after next instruction 
II Load from flush area to clear pending 
II writes. A hit is guaranteed. 

Example 5-2. Cache Flush Procedure 

5-15 



CORE INSTRUCTIONS 

5.13 CONTROL REGISTER ACCESS 

Id.c ctrlreg, rdest (Load from control register) 

rdest ~ ctrlreg 

st.c srcl ni, ctrlreg (Store to control register) 

ctrlreg ~ src 1 ni 

Ctrlreg specifies a control register that is transferred to or from a general-purpose register. The 
function of each control register is defined in Chapter 3. As shown below, some registers or parts 
of registers are write-protected when the U-bit in the psr is set. A store to those registers or bits 
is ignored when the i860 Microprocessor is in user mode. Ctrlreg is specified by a code in the 
src2 field of the instruction, as defined by Table 5-1. 

Table 5-1. Control Register Encoding 

Register Src2 Code 
User-Mode 

Write -Protected? 

Fault Instruction 0 N/A 
Processor Status 1 Yes* 
Directory Base 2 Yes 
Data Breakpoint 3 Yes 
Floating-Point Status 4 No 
Extended Process Status 5 Yes** 

* Only the psr bits BR, BW, PIM, 1M, PU, U, IT, IN, IAT, OAT, FT, OS, DIM, and KNF are write-protected. 
** The processor type, stepping number, and cache size cannot be changed from either user or supervisor level. 

Programming Notes 

Saving fir (the fault instruction register) anytime except the first time after a trap occurs saves the 
address of the Id.c instruction. 

After a scalar floating-point operation, a st.c to fsr should not change the value of RR, RM, or 
FZ until the point at which result exceptions are reported. (Refer to Chapter 7 for more details.) 

Only a trap handler should use the intruction st.c to set the trap bits (IT, IN, IAT, DAT, FT) of 
the psr. 

5.14 BUS LOCK 

These instructions allow programs running in either user or supervisor mode to perform read­
modify-write sequences in mUltiprocessor and multithread systems. The interlocked sequence must 
not branch outside of the 32 sequential instructions following the lock instruction. The sequence 
must be restartable from the lock instruction in case a trap occurs. Simple read-modify-write 
sequences are automatically restartable. For sequences with more than one store, the software 

5-16 



CORE INSTRUCTIONS 

must ensure that no traps occur after the first non-reexecutable store. To insure that no data access 
fault occurs, it must first store unmodified values in the other store locations. To insure that no 
instruction access fault occurs, the code that is not restartable should not span a page boundary. 

lock (Begin interlocked sequence) 

Set BL in dirbase. The next load or store that misses the cache locks the bus. 
Disable interrupts until the bus is unlocked. 

unlock (End interlocked sequence) 

Clear BL in dirbase. The next load or store that misses the cache unlocks 
the bus. 

After a lock instruction, the bus is not locked until the first data access that misses the data cache. 
Software in a mUltiprocessing system should ensure that the first load instruction after a lock 
references noncacheable memory. Likewise, after an unlock instruction, the bus is not unlocked 
until the first data access that misses the data cache. Software in a mUltiprocessing system should 
ensure that the first load or store instruction after an unlock references noncacheable memory. 

If a trap occurs after a lock instruction and before the load or store that follows the corresponding 
unlock, the processor clears BL and sets the IL (interlock) bit of epsr. 

If the processor encounters another lock instruction before unlocking the bus, that instruction is 
ignored. 

If, following a lock instruction, the processor does not encounter a load or store following an 
unlock instruction by the time it has executed 32 instructions, it triggers an instruction fault on 
the 32nd instruction. In such a case, the trap handler will find both IL and IT set. 

Example 5-3 shows how lock and unlock can be used in a variety of interlocked operations. 

5-17 



infef CORE INSTRUCTIONS 

II 
II 

II 

II 
// 

Ll: 

LOCKED TEST AND SET 
Value to put in semaphore is in r23 

lock 1/ 
ld.b semaphore, r22 /1 Put current value of semaphore 
unlock II 
st.b r23, semaphore II 

LOCKED LOAD-ALU-STORE 

lock 
ld.l word, 

II 
r22 II 

addu 1, r22, r22 // Can be any ALU operation 
unlock 1/ 
st.l r22, word /1 

LOCKED COMPARE AND SWAP 
Swaps r23 with word in memory, if word = r2l 

lock II 
ld.l word, r22 /1 
bte r22, r2l, Ll II 
mov r22, r23 II Executed only if not equal 
unlock /1 
st.l r23, word // 

Example 5-3. Examples of lock and unlock Usage 

5-18 

in r22 



Floating-Point 
Instructions 

6 





Chapter 6 
Floating-Point Instructions 

The floating-point section of the i860 Microprocessor comprises the floating-point registers and 
three processing units: 

1. The floating-point multiplier 
2. The floating-point adder 
3. The graphics unit 

This section of the i860 Microprocessor executes not only floating-point operations but also 64-
bit integer operations and graphics operations that utilize the 64-bit internal data path of the 
floating-point section. 

Floating-point instruction operands src 1 , src2, and rdest refer to one of the 32 floating-point 
registers; ireg refers to one of the integer registers. 

6.1 PRECISION SPECIFICATION 

Unless otherwise specified, floating-point operations accept single- or double-precision source 
operands and produce a result of equal or greater precision. Both input operands must have the 
same precision. The source and result precision are specified by a two-letter suffix to the 
mnemonic of the operation, as shown below. In this manual, the suffix .p refers to the precision 
specification. In an actual program, .p is to be replaced by the appropriate two-letter suffix. 

Suffix Source Precision Result Precision 

.55 single single 

.5d single double 

.dd double double 

6.2 PIPELINED AND SCALAR OPERATIONS 

The architecture of the floating-point unit uses parallelism to increase the rate at which operations 
may be introduced into the unit. One type of parallelism used is called "pipelining". The 
pipelined architecture treats each operation as a series of more primitive operations (called 
"stages") that can be executed in parallel. Consider just the floating-point adder unit as an 
example. Let A represent the operation of the adder. Let the stages be represented by AI, A2, 
and A3. The stages are designed such that Ai+ I for one adder instruction can execute in parallel 
with Ai for the next adder instruction. Furthermore, each Ai can be executed in just one clock. 
The pipelining within the multiplier and graphics units can be described similarly, except that the 
number of stages may be different. 

Figure 6-1 illustrates three-stage pipelining as found in the floating-point adder (also in the 
floating-point multiplier when single-precision input operands are employed). The columns of the 

6-1 



inter 

Instruc 
·1 

Instruc 
1+1 

Instruc 
1+2 

Instruc 
1+3 

Instruc 
1+4 

Instruc 
1+5 

r 

r 

r 

r 

r 

r 

FLOATING-POINT INSTRUCTIONS 

Stage 1 
results (status) 

i 
(s) 

'\ 
i + 1 

(s) 

'\ 
i + 2 

(s) 

'\ 
i +3 

(s) 

'\~ 
i + 4 

(s) 

'\ 
i +5 

(s) 

r 

r 

r 

r 

Stage 2 
results (status) 

Clockm 

CIDckm+' '\ 

i 
(s) 

CIDckm+2 '\ 

i + 1 
(s) 

CIDck m + 3 '\. 

i + 2 
(s) 

CIDCkm+4,\ 

i +3 
(s) 

CIDCkm+S'\ 

i +4 
(s) 

r 

r 

r 

r 

Stage 3 
results (status) 

i 

i + 1 

i + 2 

i +3 

Figure 6-1. Pipelined Instruction Execution 

6-2 

s 

~ 
s 

~ 
s 

~ 
s 

rdest 
1+3 

rdest 
1+4 

rdest 
1+5 



inter FLOATING-POINT INSTRUCTIONS 

figure represent the three stages of the pipeline. Each stage holds intermediate results and also 
(when introduced into the first stage by software) holds status information pertaining to those 
results. The figure assumes that the instruction stream consists of a series of consecutive floating­
point instructions, all of one type (i.e. all adder instructions or all single-precision multiplier 
instructions). The instructions are represented as i, i+ 1, etc. The rows of the figure represent the 
states of the unit at successive clock cycles. Each time a pipelined operation is performed, the 
status of the last stage becomes available in fsr, the result of the last stage of the pipeline is stored 
in the destination register rdest, the pipeline is advanced one stage, and the input operands src 1 
and src2 are transferred to the first stage of the pipeline. 

In the i860 Microprocessor, the number of pipeline stages ranges from one to three. A pipelined 
operation with a three-stage pipeline stores the result of the third prior operation. A pipelined 
operation with a two-stage pipeline stores the result of the second prior operation. A pipelined 
operation with a one-stage pipeline stores the result of the prior operation. 

There are four floating-point pipelines: one for the mUltiplier, one for the adder, and one for the 
graphics unit, and one for floating-point loads. The adder pipeline has three stages. The number 
of stages in the multiplier pipeline depends on the precision of the source operands in the pipeline; 
it may have two or three stages. The graphics unit has one stage for all precisions. The load 
pipeline has three stages for all precisions. 

Changing the FZ (flush zero), RM (rounding mode), or RR (result register) bits offsr while there 
are results in either the multiplier or adder pipeline produces effects that are not defined. 

6.2.1 Scalar Mode 

In addition to the pipelined execution mode described above, the i860 Microprocessor also can 
execute floating-point instructions in "scalar" mode. Most floating-point instructions have both 
pipelined and scalar variants, distinguished by a bit in the instruction encoding. In scalar mode, 
the floating-point unit does not start a new operation until the previous floating-point operation is 
completed. The scalar operation passes through all stages of its pipeline before a new operation is 
introduced, and the result is stored automatically. Scalar mode is used when the next operation 
depends on results from the previous few floating-point operations (or when the compiler or 
programmer does not want to deal with pipelining). 

6.2.2 Pipelining Status Information 

Result status information in the fsr consists of the AA, AI, AO, AU, and AE bits, in the case of 
the adder, and the MA, MI, MO, and MU bits, in the case of the mUltiplier. This information 
arrives at the fsr via the pipeline in one of two ways: 

1. It is calculated by the last stage of the pipeline. This is the normal case. 

2. It is propagated from the first stage of the pipeline. This method is used when restoring the 
state of the pipeline after a preemption. When a store instruction updates the fsr and the the 
U bit being written into the fsr is set, the store updates result status bits in the first stage of 
both the adder and multiplier pipelines. When software changes the result-status bits of the 
first stag~ of a particular unit (multiplier or adder), the updated result-status bits are propagated 

6-3 



FLOATING-POINT INSTRUCTIONS 

one stage for each pipelined floating-point operation for that unit. In this case, each stage of 
the adder and multiplier pipelines holds its own copy of the relevant bits of the fsr. When 
they reach the last stage, they override the normal result-status bits computed from the last­
stage result. 

At the next floating-point instruction (or at certain core instructions), after the result reaches the 
last stage, the i860 Microprocessor traps if any of the status bits of the fsr indicate exceptions. 
Note that the instruction that creates the exceptional condition is not the instruction at which the 
trap occurs. 

6.2.3 Precision in the Pipelines 

In pipelined mode, when a floating-point operation is initiated, the result of an earlier pipelined 
floating-point operation is returned. The result precision of the current instruction applies to the 
operation being initiated. The precision of the value stored in rdest is that which was specified by 
the instruction that initiated that operation. 

If rdest is the same as src1 or src2, the value being stored in rdest is used as the input operand. 
In this case, the precision of rdest must be the same as the source precision. 

The multiplier pipeline has two stages when the source operand is double-precision and three 
stages when the precision of the source operand is single. This means that a pipelined multiplier 
operation stores the result of the second previous multiplier operation for double-precision inputs 
and third previous for single-precision inputs (except when mixing precisions). 

6.2.4 Transition between Scalar and Pipelined Operations 

When a scalar operation is executed in the adder, multiplier, or graphics units, it passes through 
all stages of the pipeline; therefore, any unstored results in the affected pipeline are lost. To avoid 
losing information, the last pipelined operations before a scalar operation should be dummy 
pipelined operations that extract results from the affected pipeline. 

After a scalar operation, the values of all pipeline stages of the affected unit (except the last) are 
undefined. No spurious result-exception traps result when the undefined values are subsequently 
stored by pipelined operations; however, the values should not be referenced as source operands. 

Note that the pfld pipeline is not affected by scalar fld or Id instructions. 

For best performance a scalar operation should not immediately precede a pipelined operation 
whose rdest is nonzero. 

6.3 MULTIPLIER INSTRUCTIONS 

The multiplier unit of the floating-point section performs not only the standard floating-point 
multiply operation but also provides reciprocal operations that can be used to implement floating­
point division and provides a special type of multiply that assists in coding integer multiply 
sequences. The multiply instruction can be pipelined. 

6-4 



FLOATING-POINT INSTRUCTIONS 

Programming Notes 

Complications arise with sequences of pipelined multiplier operations with mixed single- and 
double-precision inputs because the pipeline length is different for the two precisions. The 
complications can be avoided by not mixing the two precisions; i.e., by flushing out all single­
precision operations with dummy single-precision operations before starting double-precision 
operations, and vice versa. For the adventuresome, the rules for mixing precisions follow: 

• Single to Double Transitions. When a pipelined multiplier operation with double-precision 
inputs is executed and the previous multiplier operation was pipelined with single-precision 
inputs, the third previous (last stage) result is stored, and the previous operation (first stage) 
is advanced to the second stage (now the last stage). The second previous operation (old 
second stage) is discarded. The next pipelined multiplier operation stores the single-precision 
result. 

• Double to Single Transitions. When a pipelined multiplier operation with single-precision 
inputs is executed and the previous multiplier operation was pipelined with double-precision 
inputs, the previous multiplier operation is advanced to the second stage and a single- or 
double-precision zero is placed in the last stage of the pipeline. The next pipelined multiplier 
operation stores zero instead of the result of the prior operation. 

6.3.1 Floating-Point Multiply 

fmul.p srcl, src2, rdest 

rdest ~ srcl X src2 

pfmul.p src I, src2, rdest 

rdest ~ last M-stage result 
Advance M pipeline one stage 

(Floating-Point Multiply) 

(Pipelined Floating-Point Multiply) 

M pipeline first stage ~ srcl x src2 

pfmul3.dd srcl, src2, rdest (Three-Stage Pipelined Multiply) 

rdest ~ last M-stage result 
Advance 3-stage M pipeline one stage 
M pipeline first stage ~ srcl x src2 

These instructions perform a standard multiply operation. 

Programming Notes 

Srcl must not be the same as rdest for pipelined operations. For best performance when the prior 
operation is scalar, srcl should not be the same as the rdest of the prior operation. 

The pfmul3.dd instruction is intended primarily for use by exception handlers in restoring pipeline 
contents (refer to "Pipeline Preemption" in Chapter 7). It should not be mixed in instruction 
sequences with other pipelined multiplier instructions. 

6-5 



inter FLOATING-POINT INSTRUCTIONS 

6.3.2 Floating-Point Multiply Low 

fmlow.dd srcl, src2, rdest (Floating-Point Multiply Low) 

rdest .- low-order 53 bits of (src J significand X src2 significand) 
rdest bit 53 .- most significant bit of (src J significand X src2 significand) 

The fmlow instruction mUltiplies the low-order bits of its operands. It operates only on double­
precision operands. The high-order 10 bits of the result are undefined. 

An fmlow can perform 32-bit integer multiplies. Two 64-bit values are formed, with the integers 
in the low-order 32 bits. The low-order 32-bits of the result are the same as the low-order 32 bits 
of an integer mUltiply. The fmlow instruction does not update the result-status bits offsr and does 
not cause source- or result-exception traps. 

6.3.3 Floating-Point Reciprocals 

frcp.p src2, rdest (Floating-Point Reciprocal) 

rdest .- 1 / src2 with absolute significand error < 2- 7 

frsqr.p src2, rdest (Floating-Point Reciprocal Square Root) 

rdest .- 1 / vi src2 with absolute significand error < 2- 7 

The frcp and frsqr instructions are intended to be used with algorithms such as the Newton­
Raphson approximation to compute divide and square root. Assemblers and compilers must set 
srcl to zero. A Newton-Raphson approximation may produce a result that is different from the 
IEEE standard in the two least significant bits of the mantissa. A library routine supplied by Intel 
may be used to calculate the correct IEEE-standard rounded result. 

Traps 

The instructions frcp and frsqr cause the source-exception trap if src2 is zero. An frsqr causes 
the source-exception trap if src2 < O. 

6.4 ADDER INSTRUCTIONS 

The adder unit of the floating-point section provides floating-point addition, subtraction, and 
comparison, as well as conversion from floating-point to integer formats. 

6--5 



inter FLOATING-POINT INSTRUCTIONS 

6.4.1 Floating-Point Add and Subtract 

fadd.p srcl, src2, rdest 

rdest ~ srcl + src2 

pfadd.p src 1, src2, rdest 

rdest ~ last A-stage result 
Advance A pipeline one stage 

(Floating-Point Add) 

(Pipelined Floating-Point Add) 

A pipeline first stage ~ srcl + src2 

fsub.p srcl, src2, rdest 

rdest ~ src 1 - src2 

pfsub.p src 1, src2, rdest 

rdest ~ last A-stage result 
Advance A pipeline one stage 

(Floating-Point Subtract) 

(Pipelined Floating-Point Subtract) 

A pipeline first stage ~ srcl - src2 

These instructions perfonn standard addition and subtraction operations. 

Programming Notes 

In order to allow conversion from double precIsIon to single precIsIon, an fadd or pfadd 
instruction may have double-precision inputs and a single-precision output, as long as one of its 
input operands is fO. In assembly language, this conversion is specified using the fmov or pfmov 
pseudoinstruction with the .ds suffix. 

fmov.ds srcl, rdest (Convert Double to Single) 

Equivalent to fadd.ds srcl, fO, rdest 

pfmov.ds srcl, ireg (Pipelined Convert Double to Single) 

Equivalent to pfadd.ds srcl, fO, rdest 

Conversion from single to double is accomplished by fadd.sd or pfadd.sd with fO as one input 
operand. In assembly language, this conversion is specified by the fmov or pfmov pseudoinstruction 
with the .sd suffix. 

fmov.sd srcl, rdest (Convert Single to Double) 

Equivalent to fadd.sd src 1 , fO, rdest 

pfmov.sd srcl, ireg (Pipelined Convert Single to Double) 

Equivalent to pfadd.sd src 1 , fO, rdest 

6-7 



inter FLOATING-POINT INSTRUCTIONS 

6.4.2 Floating-Point Compares 

pfgt.p 

pfle.p 

src r, src2, rdest (Pipelined Floating-Point Greater-Than Compare) 

(Assembler clears R-bit of instruction) 
rdest .- last A-stage result 
CC set if src/ > src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result 

exception occurs 

srcl, src2, rdest (Pipelined F-P Less-Than or Equal Compare) 

(Assembler pseudo-operation, identical to pfgt.p 
except that assembler sets R-bit of instruction.) 

rdest .- last A-stage result 
CC cleared if srcl :::::; src2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result 

exception occurs 

pfeq.p srcl, src2, rdest (Pipelined Floating-Point Equal Compare) 

rdest .- last A-stage result 
CC set if src / = src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result 

exception occurs 

There are no corresponding scalar versions of the floating-point compare instructions. The 
pipelined instructions can be used either within a sequence of pipelined instructions or within a 
sequence of nonpipelined (scalar) instructions. 

pfgt.p should be used for A > B and A < B comparisons. pfle.p should be used for A ~ Band 
A :::::; B comparisons. pfeq.p should be used for A = B and A =1= B comparisons. 

Traps 

Compares never cause result exceptions when the result is stored. They do trap on invalid input 
operands. 

Programming Notes 

The only difference between pfgt.p and pfle.p is the encoding of the R bit of the instruction and 
the way in which the trap handler treats unordered compares. The R bit normally indicates result 
precision, but in the case of these instructions it is not used for that purpose. The trap handler can 
examine the R bit to help determine whether an unordered compare should set or clear CC. to 

6-8 



inter FLOATING-POINT INSTRUCTIONS 

conform with the IEEE standard for unordered compares. For pfgt.p and pfeq.p, it should clear 
CC; for pfle.p, it should set CC. 

For best performance, a be or bne instruction should not directly follow a pfgt or pfeq instruction. 

6.4.3 Floating-Point to Integer Conversion 

fix.p 

pfix.p 

srcl, rdest (Floating-Point to Integer Conversion) 

rdest ~ 64-bit value with low-order 32 bits equal to integer part of src 1 rounded 

srcl, rdest (Pipelined Floating-Point to Integer Conversion) 

rdest ~ last A-stage result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits equal to integer part 

of src 1 rounded 

ftrune.p srcl, rdest (Floating-Point to Integer Truncation) 

rdest ~ 64-bit value with low-order 32 bits equal to integer part of src 1 

pftrune.p srcl, rdest Pipelined Floating-Point to Integer Truncation) 

rdest ~ last A-stage result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits equal to integer part 

of srcl 

The instructions fix and pfix must specify double-precision results. The low-order 32 bits of the 
result contain the integer part of srcl represented in twos-complement form. For fix and pfix, the 
integer is selected according to the rounding mode specified by RM in the fsr. 

The instructions ftrune and pftrunc are identical to fix and pfix, except that RM is not consulted; 
rounding is always toward zero. Src2 should contain zero. 

Traps 

The instructions fix, pfix, ftrune, and pftrune signal overflow if the integer part of src 1 is bigger 
than what can be represented as a 32-bit twos-complement integer. Underflow and inexact are 
never signaled. 

6.5 DUAL OPERATION INSTRUCTIONS 

The instructions pfam, pfsm, pfmam, and pfmsm initiate both an adder (A-unit) operation and a 
multiplier (M-unit) operation. The source precision specified by.p applies to the source operands 

6-9 



FLOATING-POINT INSTRUCTIONS 

of the multiplication. The result precision normally specified by .p controls in this case both the 
precision of the source operands of the addition or subtraction and the precision of all the results. 

pfam.p src 1, src2, rdest (Pipelined Floating-Point Add and Multiply) 

rdest .- last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage .- A-op! + A-op2 
M pipeline first stage .- M-opl x M-op2 

pfsm.p src 1, src2, rdest (Pipelined Floating-Point Subtract and Multiply) 

rdest .- last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage .- A-op! - A-op2 
M pipeline first stage .- M-opl x M-op2 

pfmam.p src 1, src2, rdest (Pipelined Floating-Point Multipiy with Add) 

rdest .- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage .- A-opl + A-op2 
M pipeline first stage .- M-opl x M-op2 

pfmsm.p src 1, src2, rdest (Pipelined Floating-Point Multiply with Subtract) 

rdest .- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage .- A-opl - A-op2 
M pipeline first stage .- M-opl x M-op2 

Precision Precision of Source 
Suffix of Source of Add or Subtract and 

of Multiplication Result of All Operations 

.ss single single 

.sd single double 

.dd double double 

The instructions pfmam and pfmsm are identical to pfam and pfsm except that pfmam and 
pfmsm transfer the last stage result of the multiplier to rdest (the adder result is lost). 

Six operands are required, but the instruction format specifies only three operands; therefore, there 
are special provisions for specifying the operands. These special provisions consist of: 

• Three special registers (KR, KI, and T), that can store values from one dual-operation 
instruction and supply them as inputs to subsequent dual-operation instructions. 

6-10 



FLOATING-POINT INSTRUCTIONS 

The constant registers KR and KI can store the value of srcJ and subsequently supply 
that value to the M-pipeline in place of srcJ . 

The transfer register T can store the last-stage result of the multiplier pipeline and 
subsequently supply that value to the adder pipeline in place of src J . 

• A four-bit data-path control field in the opcode (DPC) that specifies the operands and loading 
of the special registers. 

1. Operand-l of the multiplier can be KR, KI, or src J . 

2. Operand-2 of the multiplier can be src2, the last-stage result of the multiplier pipeline, 
or the last-stage result of the adder pipeline. 

3. Operand-l of the adder can be srcJ , the T-register, the last-stage result of the multiplier 
pipeline, or the last-stage result of the adder pipeline. 

4. Operand-2 of the adder can be src2, the last-stage result of the multiplier pipeline, or the 
last-stage result of the adder pipeline. 

Figure 6-2 shows all the possible data paths surrounding the adder and multiplier. Table 6-1 
shows how the various encodings of DPC select different data paths. Figure 6-3 illustrates the 
actual data path for each dual-operation instruction. 

src1 src2 rdest 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

Figure 6-2. Dual-Operation Data Paths 

6-11 



inter FLOATING-POINT INSTRUCTIONS 

Table 6-1. OPC Encoding 

DPe 
PFAM PFSM M-Unit M-Unit A~Unit A-Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 
0100 i2p1 i2s1 KI src2 src1 M result No No 
0101 i2pt i2st KI src2 T M result No Yes 
0110 i2ap1 i2as1 KI src2 src1 A result Yes No 
0111 i2apt i2ast KI src2 T A result Yes Yes 
1000 rat1 p2 rat1s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra1s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 
1100 iat1 p2 iat1s2 KI A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 KI A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 
0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 mi2pt mi2st KI src2 T M result No Yes 
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 
1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No 
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mim1p2 mim1s2 KI M result src1 src2 No No 
1111 mm12tpm mm12tsm src1 src2 T M result No No 

* If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the multiplier is KI. 

6-12 



inter 

src1 

src1 

FLOATING-POINT INSTRUCTIONS 

src2 

op2 

MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT 

RESULT 

r2p1 & r2s1 

src2 

op2 

MULTIPLIER UNIT 

RESULT 

op1 

ADDER UNIT 

RESULT 

r2ap1 & r2as1 

rdest 

rdest 

src1 src2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

src1 

op 

ADDER UNIT 

RESULT 

r2pt & r2st 

src2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

op1 

ADDER UNIT 

RESULT 

r2apt & r2ast 

Figure 6-3. Data Paths by Instruction (1 of 8) 

6-13 

rdest 

rdest 



inter FLOATING-POINT INSTRUCTIONS 

src1 src2 rdest src1 src2 rdest 

op1 op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

i 
op1 op2 op1 op 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

i2p1 & i2s1 i2pt & i2st 

src1 src2 rdest src1 src2 rdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

i2ap1 & i2as1 i2apt & i2ast 

Figure 6-3. Data Paths by Instruction (2 of 8) 

6-14 



inter FLOATING-POINT INSTRUCTIONS 

src1 src2 rdest src1 src2 rdest 

Op1 op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

I 

op1 op2 

ADDER UNIT ADDER UNIT 

. RESULT RESULT 

I 
ran p2 & ran s2 m12apm & m12asm 

src1 src2 rdest src1 src2 rdest 

, , 
op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

T 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
ra1 p2 & ra1s2 m12ttpa & m12ttsa 

Figure 6-3. Data Paths by Instruction (3 of 8) 

6-15 



src1 

src1 

FLOATING-POINT INSTRUCTIONS 

src2 rdest src1 src2 

op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT 

I 

op1 op2 

ADDERUN~ ADDER UNIT 

RESULT RESULT 

iat1 p2 & iat1s2 

src2 rdest 

MULTIPLIER UNIT 

RESULT 

op1 

ADDER UNIT 

RESULT 

ia1p2 & ia1s2 

I 
m12tpm & m12tsm 

src1 src2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

op1 

ADDER UNIT 

RESULT 

m12tpa & m12tsa 

Figure 6-3. Data Paths by Instruction (4 of 8) 

6-16 

rdest 

rdest 



inter FLOATING-POINT INSTRUCTIONS 

src1 src2 rdest src1 src2 rdest 

op1 op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

i 
op1 op2 op1 op 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

mr2p1 & mr2s1 mr2pt & mr2st 

src1 src2 rdest src1 src2 rdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 op2 op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

mr2mp1 & mr2ms1 mr2mpt & mr2mst 

Figure 6-3. Data Paths by Instruction (5 of 8) 

6-17 



FLOATING-POINT INSTRUCTIONS 

src1 src2 rdest src1 src2 rdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 op2 op1 op 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

mi2p1 & mi2s1 mi2pt & mi2st 

src1 src2 rdest src1 src2 rdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 op2 op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

mi2mp1 & mi2ms1 mi2mpt & mi2mst 

Figure 6-3. Data Paths by Instruction (6 of 8) 

6-18 



inter FLOATING-POINT INSTRUCTIONS 

src1 src2 rdast src1 src2 rdast 

, 
op1 op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mrmt1p2 Be mrmt1s2 mm12mpm Be mm12msm 

src1 src2 rdast src1 src2 rdast 

, , 
op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

I 

T 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mrm1 p2 Be mrm1 s2 mm12ttpm Be mm12ttsm 

Figure 6-3. Data Paths by Instruction (7 of 8) 

6-19 



FLOATING-POINT INSTRUCTIONS 

src1 src2 rdest src1 src2 rdest 

op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mimt1p2 & mimt1s2 mm12tpm & mm12tsm 

src1 src2 rdest src1 src2 rdest 

1 

op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

I 

, 
op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mim1 p2 & mim1 s2 mm12tpm & mm12tsm 

Figure 6-3. Data Paths by Instruction (8 of 8) 

6-20 



inter FLOATING-POINT INSTRUCTIONS 

Note that the mnemonics pfam.p, pfsm.p, pfmam.p, and pfmsm.p are never used as such in the 
assembly language; these mnemonics are used by this manual to designate classes of related 
instructions. Each value of DPC has a unique mnemonic associated with it. An initial "m" 
distinguishes the pfmam.p, and pfmsm.p classes from the pfam.p, and pfsm.p classes. Figure 
6-4 explains how the rest of these mnemonics are derived. 

Series 1 - Assumes the M-unit operand-2 issrc2 

M-unit 
op1 
{r,i} 

- Kl 
-KR 

M-unit 
op2 

2 

~ src2 

A-unit 
op2 

{a, m, nUll} 

Add/ 
Subtract 

{p, s} 

A-unit 
op1 
{I,t} 

~ I L ,ubtrnot ~ ~~;'d K 
~ .dd(pl~) 

M-result 
M-result, load T 

L..-___ A-result, load T 

Series 2 - Assumes no K loading 

Not all combinations are possible. Refer to Table 6-1 for possible combinations. 

M-unit 
op1 and op2 

ira, rm, ia, im, m12} 
loadT 
it, nUll} 

'-- no 
'--- yes 

'--- srci. src2 
'---- Kl, M-result 

'----- Kl, A-result 
L..-____ KR, M-result 

'-------- KR, A-result 

A-unit 
op1 

{I,a,m,t} 

Add/ 
Subtract 

{p, s} 

A-unit 

op2 
{2, m,a} 

l ILl I L A·result 

T ~ :~~;;:,~ ~;,ult 
'-- M-result 

- A-result 
L...-__ srci 

Figure 6-4. Data Path Mnemonics 

6-21 



inter FLOATING-POINT INSTRUCTIONS 

Programming Notes 

When the M-unit opJ is srcJ , srcJ must not be the same as rdest. For best performance when the 
prior operation is scalar and M-unit opJ is srcJ, srcJ should not be the same as the rdest of the 
prior operation. 

6.6 GRAPHICS UNIT 

The graphics unit operates on 32- and 64-bit integers stored in the floating-point register file. This 
unit supports long-integer arithmetic and 3-D graphics drawing algorithms. Operations are provided 
for pixel shading and for hidden surface elimination using a Z-buffer. 

Programming Notes 

In a pipelined graphics operation, if rdest is not fO, then rdest must not be the same as srcJ or 
src2. 

For best performance, the result of a scalar operation should not be a source operand in the next 
instruction, unless the next instruction is a multiplier or adder operation. 

6.6.1 Long-Integer Arithmetic 

fisub.w src J, src2, rdest (Long-Integer Subtract) 

rdest +- srcJ - src2 

pfisub.w src J, src2, rdest (Pipelined Long-Integer Subtract) 

rdest +- last-stage I-result 
last-stage I-result +- srcJ - src2 

fiadd.w src J, src2, rdest 

rdest +- src J + src2 

pfiadd.w srcJ, src2, rdest 

rdest +- last-stage I-result 
last-stage I-result +- srcJ + src2 

(Long-Integer Add) 

(Pipelined Long-Integer Add) 

.w = .ss (32 bits), or .dd (64 bits) 

The fiadd and fisub instructions implement arithmetic on integers up to 64 bits wide. Such 
integers are loaded into the same registers that are normally used for floating-point operations. 
These instructions do not set CC nor do they cause floating-point traps due to overflow. 

6-22 



inter FLOATING-POINT INSTRUCTIONS 

Programming Notes 

In assembly language, fiadd and pfiadd are used to implement the fmov and pfmov 
pseudo instructions . 

fmov.ss srcJ, rdest (Single Move) 

Equivalent to fiadd.ss srcJ, fO, rdest 

pfmov.ss srcJ, ireg (Pipelined Single Move) 

Equivalent to pfiadd.ss srcJ, fO, rdest 

fmov.dd srcJ, rdest (Double Move) 

Equivalent to fiadd srcJ, fO, rdest 

pfmov.dd srcJ, ireg (Pipelined Double Move) 

Equivalent to pfiadd srcJ , fO, rdest 

6.6.2 3-D Graphics Operations 

The i860 Microprocessor supports high-performance 3-D graphics applications by supplying 
operations that assist in the following common graphics functions: 

1. Hidden surface elimination. 
2. Distance interpolation. 
3. 3-D shading using intensity interpolation. 

The interpolation operations of the i860 Microprocessor support graphics applications in which 
the set of points on the surface of a solid object is represented by polygons. The distances and 
color intensities of the vertices of the polygon are known, but the distances and intensities of other 
points must be calculated by interpolation between the known values. 

Certain fields of the psr are used by the i860 Microprocessor's graphics instructions, as illustrated 
in Figure 6-5. 

The merge instructions are those that utilize the 64-bit MERGE register. The purpose of the 
MERGE register is to accumulate (or merge) the results of multiple-addition operations that use 
as operands the color-intensity values from pixels or distance values from a Z-buffer. The 
accumulated results can then be stored in one 64-bit operation. 

Two multiple-addition instructions and an OR instruction use the MERGE register. The addition 
instructions are designed to add interpolation values to each color-intensity field in an array of 
pixels or to each distance value in a Z-buffer. 

6-23 



intJ FLOATING-POINT INSTRUCTIONS 

31 

fps (ZZZZZZZZZZ;1 PM 

t t .... ________ PIXEL SIZE 

..... ------------ PIXEL MASK 

Figure 6-5. PSR Fields for Graphics Operations 

6.6.2.1 Z-8UFFER CHECK INSTRUCTIONS 

Consider PM as an array of eight bits PM(O) .. PM(7) , 
where PM(O) is the least-significant bit. 

fzchks src 1, src2, rdest (16-Bit Z-Buffer Check) 
Consider srci , src2, and rdest as arrays of four 16-bit fields srci (0) . . srci (3), 

src2(0) .. src2(3), and rdest(0) .. rdest(3) where zero denotes the 
least-significant field. 

PM .- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

aD 

PM [i + 4] .- src2(i) ~ srci (i) (unsigned) 
rdest(i) +- smaller of src2 (i) and src 1 (i) 

MERGE +-0 
pfzchks src 1, src2, rdest (Pipelined 16-Bit Z-Buffer Check) 

Consider srci , src2, and rdest as arrays of four 16-bit fields srci (0) . . srci (3), 
src2(0) .. src2(3), and rdest(0) .. rdest(3) where zero denotes the 
least-significant field. 

PM +- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] .- src2(i) ~ srci (i) (unsigned) 
rdest .- last-stage I-result 
last-stage I-result(i) +- smaller of src2(i) and srci (i) 

aD 
MERGE.- 0 

fzchkl srci, src2, rdest (32-Bit Z-Buffer Check) 
Consider srci , src2, and rdest as arrays of two 32-bit fields srci (O) .. srci (1), 

src2(0) .. src2(1), and rdest(O) .. rdest(1) where zero denotes the 
least-significant field. 

PM .- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

aD 

PM [i + 6] +- src2(i) ~ srci (i) (unsigned) 
rdest(i) +- smaller of src2 (i) and src 1 (i) 

MERGE +-0 

6-24 



inter FLOATING-POINT INSTRUCTIONS 

pfzchkl src 1, src2, rdest (Pipelined 32-Bit Z-Buffer Check) 
Consider src 1 , src2, and rdest as arrays of two 32-bit fields src 1 (0) .. src 1 (1), 

src2(0) .. src2(l), and rdest(O) .. rdest(l) where zero denotes the 
least-significant field. 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

OD 

PM [i + 6] +- src2(i) ~ srcl (i) (unsigned) 
rdest(i) +- last-stage I-result 

last-stage I -result +- smaller of src2 (i) and src 1 (i) 

MERGE +- 0 

A Z-buffer aids hidden-surface elimination by associating with a pixel a value that represents the 
distance of that pixel from the viewer. When painting a point at a specific pixel location, three­
dimensional drawing algorithms calculate the distance of the point from the viewer. If the point is 
farther from the viewer than the point that is already represented by the pixel, the pixel is not 
updated. The i860 Microprocessor supports distance values that are either 16-bits or 32-bits wide. 
The size of the Z-buffer values is independent of the pixel size. Z-buffer element size is controlled 
by whether the 16-bit instruction fzchks or the 32-bit instruction fzchkl is used; pixel size is 
controlled by the PS field of the psr. 

The instructions fzchks and fzchkl perform multiple unsigned-integer (ordinal) comparisons. The 
inputs to the instructions fzchks and fzchkl are normally taken from two arrays of values, each of 
which typically represents the distance of a point from the viewer. One array contains distances 
that correspond to points that are to be drawn; the other contains distances that correspond to 
points that have already been drawn (a Z-buffer). The instructions compare the distances of the 
points to be drawn against the values in the Z-buffer and set bits of PM to indicate which distances 
are smaller than those in the Z-buffer. Previously calculated bits in PM are shifted right so that 
consecutive fzchks or fzchkl instructions accumulate their results in PM. Subsequent pst.d 
instructions use the bits of PM to determine which pixels to update. 

6.6.2.2 PIXEL ADD 

faddp src 1, src2, rdest (Add with Pixel Merge) 

rdest +- src 1 + src2 
Shift and load MERGE register from src 1 + src2 as defined in Table 6-2 

pfaddp src 1, src2, rdest 

rdest +- last-stage I-result 
last-stage I-result +- srcl + src2 

(Pipelined Add with Pixel Merge) 

Shift and load MERGE register from srcl + src2 as defined in Table 6-2 

6-25 



inter FLOATING-POINT INSTRUCTIONS 

The faddp instruction implements interpolation of color intensities. The 8- and 16-bit pixel formats 
use 16-bit intensity interpolation. Being a 64-bit instruction, faddp does four 16-bit interpolations 
at a time. The 32-bit pixel formats use 32-bit intensity interpolation; consequently, is t ~ performs 
them two at a time. By itself faddp implements linear interpolation; combined with fiadd, 
nonlinear interpolation can be achieved. 

Table 6-2. FADDP MERGE Update 

Pixel 
Fields Loaded From Right Shift 

Size 
Result into MERGE 

Amount 
(from PS) (Field Size) 

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 8 
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6 
32 63 .. 56, 31 .. 24 8 

Figure 6-6 illustrates faddp when PS is set for 8-bit pixels. Since faddp adds 16-bit values in this 
case, each value can be treated as a fixed-point real number with an 8-bit integer portion and an 

63 

I 

INT I FRAC 
I 
I 

++++++ 
63 

INT FRAC 

INT FRAC 

47 31 15 o 
I I I 

INT I FRAC INT I FRAC INT I FRAC 
I I I srcl 

I I 

++++++ ++++++ 
47 31 15 

INT FRAC INT FRAC 

INT FRAC INT FRAC 

Figure 6-6. FADDP with 8-Bit Pixels 

6-26 

I 

++++++ 
o 

INT FRAC src2 

INT FRAC rdest 

o 

MERGE 



intJ FLOATING-POINT INSTRUCTIONS 

8-bit fractional portion. The real numbers are rounded to 8 bits by truncation when they are loaded 
into the MERGE register. With each faddp instruction, the MERGE register is shifted right by 8 
bits. Two faddp instructions should be executed consecutively, one to interpolate for even­
numbered pixels, the next to interpolate for odd-numbered pixels. The shifting of the MERGE 
register has the effect of merging the results of the two faddp instructions. 

Figure 6-7 illustrates faddp when PS is set for 16-bit pixels. Since faddp adds 16-bit values in 
this case, each value can be treated as a fixed-point real number with an 6-bit integer portion and 
an IO-bit fractional portion. The real numbers are rounded to 6 bits by truncation when they are 
loaded into the MERGE register. With each faddp, the MERGE register is shifted right by 6 bits. 
Normally, three faddp instructions are executed consecutively, one for each color represented in 
a pixel. The. shifting of MERGE causes the results of consecutive faddp instructions to be 
accumulated in the MERGE register. Note that each one of the first set of 6-bit values loaded into 
MERGE is further truncated to 4-bits when it is shifted to the extreme right of the 16-bit pixel. 

63 

• 
INT I 

I 
FRAC 

I 

++++++ 
63 

INT I 
I FRAC 

47 

• 
INT I 

I 
FRAC 

I 

++++++ 
47 

INT I 
I 

FRAC 

31 

• 
INT I 

I 
FRAC 

I 

++++++ 
31 

INT I 
I 

FRAC 

15 

• 
INT I 

I 
FRAC 

I 

++++++ 
15 

INT I 
I 

FRAC 

Figure 6-7. FADDP with 16-Bit Pixels 

6-27 

o 

src1 

o 

src2 

rdest 

MERGE 



intJ FLOATING-POINT INSTRUCTIONS 

Figure 6-8 illustrates faddp when PS is set for 32-bit pixels. Since faddp adds 32-bit values in 
this case, each value can be treated as a fixed-point real number with an 8-bit integer portion and 
an 24-bit fractional portion. The real numbers are rounded to 8 bits by truncation when they are 
loaded into the MERGE register. With each faddp, the MERGE register is shifted right by 8 bits. 
Normally, three faddp instructions are executed consecutively, one for each color represented in 
a pixel. The shifting of MERGE causes the results of consecutive faddp instructions to be 
accumulated in the MERGE register. 

63 47 31 15 o 

INT FRACTION INT FRACTION src1 

++++++ ++++++ ++++++ ++++++ 
63 47 31 15 o 

INT FRACTION INT FRACTION src2 

o 

INT FRACTION INT FRACTION rdest 

o 

MERGE 

Figure 6-8. FADDP with 32-Bit Pixels 

6.6.2.3 Z-BUFFER ADD 

The faddz instruction implements linear interpolation of distance values such as those that form a 
Z-buffer. With faddz, 16-bit Z-buffers can use 32-bit distance interpolation, as Figure 6-9 
illustrates. Since faddz adds 32-bit values, each value can be treated as a fixed-point real number 
with an 16-bit integer portion and a 16-bit fractional portion. The real numbers are rounded to 16 

6-28 



FLOATING-POINT INSTRUCTIONS 

bits by truncation when they are loaded into the MERGE register. With each faddz, the MERGE 
register is shifted right by 16 bits. Normally, two faddz instructions are executed consecutively. 
The shifting of MERGE causes the results of consecutive faddz instructions to be accumulated in 
the MERGE register. 

faddz sre!, src2. rdest (Add with Z Merge) 

rdest .- src! + src2 
Shift MERGE right 16 and load fields 31..16 and 63 . .48 

pfaddz srcJ, src2, rdest 

rdest .- last-stage I-result 
last-stage I-result .- sre! + sre2 

(Pipelined Add with Z Merge) 

Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from srcl + sre2 

63 

INTEGER 

++++++ 
63 

INTEGER 

INTEGER 

63 

47 31 15 

I I 

I FRACTION INTEGER I FRACTION 
I I 
I I 

++++++ + + + + ++ ++++++ 
47 31 15 

FRACTION INTEGER 

FRACTION INTEGER 

31 

Figure 6-9. FADDZ with 16-Bit Z-Buffer 

6-29 

FRACTION 

FRACTION 

0 

src1 

0 

src2 

o 

rdest 

o 

MERGE 



intJ FLOATING-POINT INSTRUCTIONS 

32-bit Z-buffers can use 32-bit or 64-bit distance interpolation. For 32-bit interpolation, no special 
instructions are required. Two 32-bit adds can be performed as an 64-bit add instruction. The fact 
that data is carried from the low-order 32-bits into the high-order 32-bits may introduce an 
insignificant distortion into the interpolation. 

For 32-bit Z-buffers, 64-bit distance interpolation is implemented (as Figure 6-10 shows) with two 
64-bit fiadd instructions. The merging is implemented with the 32-bit move fmov.ss src 1 , rdest. 

63 31 0 63 31 0 

I I 

INTEGER I FRACTION INTEGER I FRACTION 
I I 
I I 

++++++ fladd.dd ++++++ ++++++ fladd.dd ++++++ 
63 0 63 0 

INTEGER FRACTION INTEGER FRACTION 

o o 

INTEGER FRACTION INTEGER FRACTION 

63 o 

INTEGER INTEGER 

Figure 6-10. 64-Bit Distance Interpolation 

6.6.2.4 OR WITH MERGE REGISTER 

For intensity interpolation, the form instruction fetches the partially completed pixels from the 
MERGE register, sets any additional bits that may be needed in the pixels (e.g. texture values), 
and loads the result into a floating point register. Src2 should contain zero. 

6-30 



FLOATING-POINT INSTRUCTIONS 

For distance interpolation or for intensity interpolation that does not require further modification 
of the value in the MERGE register, the srcl operand of form may be fO, thereby causing the 
instruction to simply load the MERGE register into a floating point register. 

form 

pform 

srcl, rdest 

rdest .-- srcl OR MERGE 
MERGE.-- 0 

srcl, rdest 

rdest .-- last-stage I-result 

(OR with MERGE Register) 

(Pipelined OR with MERGE Register) 

last-stage I-result .-- srcl OR MERGE 
MERGE.-- 0 

6.7 TRANSFER F-P TO INTEGER REGISTER 

fxfr srcl, ireg (Transfer F -P to Integer Register) 

ireg .-- srcl 

The 32-bit floating-point register selected by src I is stored into the (32-bit) integer register 
selected by ireg. Assemblers and compilers should set src2 to zero. 

Programming Notes 

This scalar instruction is performed by the graphics unit. When it is executed, the result in the 
graphics-unit pipeline is lost. However, executing this instruction does not impact performance, 
even if the next instruction is a pipelined operation whose rdest is nonzero (refer to section 6.2). 

For best performance, ireg should not be referenced in the next instruction, and srcl should not 
reference the result of the prior instruction if the prior instruction is scalar. 

6.8 DUAL-INSTRUCTION MODE 

The i860 Microprocessor can execute a floating-point and a core instruction in parallel. Such 
parallel execution is called dual-instruction mode. When executing in dual-instruction mode, the 
instruction sequence consists of 64-bit aligned instructions with a floating-point instruction in the 
lower 32 bits and a core instruction in the upper 32 bits. 

Programmers specify dual-instruction mode either by including in the mnemonic of a floating­
point instruction a d. prefix or by using the Assembler directives .dual ... enddual. Both of the 
specifications cause the D-bit of floating-point instructions to be set. If the i860 Microprocessor is 
executing in single-instruction mode and encounters a floating-point instruction with the D-bit set, 

6-31 



inter FLOATING-POINT INSTRUCTIONS 

one more 32-bit instruction is executed before dual-mode execution begins. If the i860 
Microprocessor is executing in dual-instruction mode and a floating-point instruction is encountered 
with a clear D-bit, then one more pair of instructions is executed before resuming single­
instruction mode. Figure 6-11 illustrates two variations of this sequence of events: one for 
extended sequences of dual-instructions and one for a single instruction pair. 

63 

31 

op 

d .• p-op 

d .• p-op or core-op 

core-op d .• p-op 

co re-op fp-op 

core-op fp-op 

op 

op 

o 

Enter Dual Instruction Mode. 

Initiate Exit from 
Dual-Instruction Mode. 

1 
Leave Dual­
Instruction Mode. 

! 
Figure 6-11. Dual-Instruction Mode Transitions (1 of 2) 

When a 64-bit dual-instruction pair sequentially follows a delayed branch instruction in dual­
instruction mode, both 32-bit instructions are executed. 

The recommended floating-point NOP for dual-instruction mode is shrd rO,rO,rO. Even though 
this is a core instruction, bit 9 is interpreted as the dual-instruction mode control bit. In assembly 
language, this instruction is specified as fnop or d.fnop. Traps are not reported on fnop. Because 
it is a core instruction, d.fnop cannot be used to initiate entry into dual-instruction mode. 

6.8.1 Core and Floating-Point Instruction Interaction 

1. If one of the branch-on-condition instructions bc or bnc is paired with a floating-point 
compare, the branch tests the value of the condition code prior to the compare. 

6-32 



FLOATING-POINT INSTRUCTIONS 

31 

op 

d. fp-op 

63 
fp-op 

I core-op fp-op 

op 

op 

o 

Temporary Dual­
Instruction Mode 

I 
Figure 6-11. Dual-Instruction Mode Transitions (2 of 2) 

2. If an ixfr, fld, or pfld loads the same register as a source operand in the floating-point 
instruction, the floating-point instruction references the register value before the load updates 
it. 

3. An fst or pst that stores a register that is the destination register of the companion pipelined 
floating-point operation will store the result of the companion operation. 

4. An fxfr instruction that transfers to a register referenced by the companion core instruction 
will update the register after the core instruction accesses the register. The destination of the 
core instruction will not be updated if it is any if the integer register. Likewise, if the core 
instruction uses autoincrement indexing, the index register will not be updated. 

5. When the core instruction sets CC and the floating-point instruction is pfgt or pfeq, CC is set 
according to the result of the pfgt or pfeq. 

6.8.2 Dual-Instruction Mode Restrictions 

1. The result of placing a core instruction in the low-order 32 bits or a floating-point instruction 
in the high-order 32 bits is not defined (except for shrd rO, rO, rO which is interpreted 
as fnop). 

6-33 



inter FLOATING-POINT INSTRUCTIONS 

2. A floating-point instruction that has the D-bit set must be aligned on a 64-bit boundary (i.e. 
the three least-significant bits of its address must be zero). This applies as well to the initial 
32-bit floating-point instruction that triggers the transition into dual-instruction mode, but 
does not apply to the following instruction. 

3. When the floating-point operation is scalar and the core operation is fst or pst, the store 
should not reference the result register of the floating-point operation. When the core 
operation is pst, the floating-point instruction cannot be (p)fzchks or (p)fzchkl. 

4. When the core instruction of a dual-mode pair is a control-transfer operation and the previous 
instruction had the D-bit set, the floating-point instruction must also have the D-bit set. In 
other words, an exit from dual-instruction mode cannot be initiated (first instruction pair 
without D-bit set) when the core instruction is a control-transfer instruction. 

5. When the core operation is a Id.c or st.c, the floating-point operation must be d.fnop. 

6. When the floating-point operation is fxfr, the core instruction cannot be Id, Id.c, st, st.c, call , 
ixfr, or any instruction that updates an integer register (including auto increment indexing). 

7. In dual-instruction mode when the core instruction is an indirect branch, the psr trap bits 
cannot be set. 

8. When the core operation is bc.t or bnc. t, the floating point operation cannot be pfeq or pfgt . 
The floating point operation in th~ sequentially following instruction pair cannot be pfeq 
or pfgt, either. 

9. A transition to or from dual-instruction mode cannot be initiated on the instruction following 
a brio 

6-34 



Traps and Interrupts 7 





Chapter 7 
Traps and Interrupts 

Traps are caused by exceptional conditions detected in programs or by external interrupts. Traps 
cause interruption of normal program flow to execute a special program known as a trap handler. 

7.1 TYPES OF TRAPS 

Traps are divided into the types shown in Table 7-1 

Table 7-1. Types of Traps 

Indication Caused by 
Type PSR FSR Condition Instruction 

Instruction IT Software traps trap, intovr 
Fault Missing unlock Any 

SE Floating-point source exception Any M- or A-unit except fmlow 
Floating 

AO,MO 
Floating-point result exception Any M- or A-unit except fmlow, pfgt, 

Point FT overflow and pfeq. Reported on any F-P 
Fault AU, MU underflow instruction plus pst, fst, and 

AI, MU inexact result sometimes fld, pfld, ixfr 

Instruction 
IAT Address translation exception 

Any Access Fault during instruction fetch 

Load/store address translation Any load/store 
Data Access exception 

Fault 
DAT* Misaligned operand address Any load/store 

Operand address matches 
Any load/store db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 

* These cases can be distinguished by examining 'the operand addresses. 

7.2 TRAP HANDLER INVOCATION 

This section applies to traps other than reset. When a trap occurs, execution of the current 
instruction is aborted. The instruction is restartable as described in section 7.2.2. The processor 
takes the following steps while transferring control to the trap handler: 

1. Copies U (user mode) of the psr into PU (previous U). 

2. Copies 1M (interrupt mode) into PIM (previous 1M). 

3. Sets U to zero (supervisor mode). 

7-1 



inter TRAPS AND INTERRUPTS 

4. Sets 1M to zero (interrupts disabled). This guards against further interrupts until the trap 
infonnation can be saved. 

5. If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared. 

6. If the processor is in single-instruction mode and the next instruction will be executed in 
dual-instruction mode or if the processor is in dual-instruction mode and the next instruction 
will be executed in single-instruction mode, DS is set; otherwise, it is cleared. 

7. The appropriate trap type bits inpsr andepsr are set (IT, IN, IAT, DAT, FT, IL). Several 
bits may be set if the corresponding trap conditions occur simultaneously. 

8. An address is placed in the fault instruction register (fir) to help locate the trapped instruction. 
In single-instruction mode, the address in fir is the address of the trapped instruction itself. In 
dual-instruction mode, the address in fir is that of the floating-point half of the dual 
instruction. If an instruction- or data-access fault occurred, the associated core instruction is 
the high-order half of the dual instruction (fir + 4). In dual-instruction mode, when a data­
access fault occurs in the absence of other trap conditions, the floating-point half of the dual 
instruction will already have been executed (except in the case of the fxfr instruction). 

The processor begins executing the trap handler by transferring execution to virtual address 
OxFFFFFFOO. The trap handler begins execution in single-instruction mode. The trap handler 
must examine the trap-type bits in psr (IT, IN, IAT, DAT, FT) and epsr (lL) to detennine the 
cause or causes of the trap. 

7.2.1 Saving State 

To support nesting of traps, the trap handler must save the current state before another trap occurs. 
An interrupt stack can be implemented in software (refer to the section on stack implementation 
in Chapter 8). Interrupts can then be reenabled by clearing the trap-type bits and setting 1M to the 
value of PIM. The branch-indirect instruction is sensitive to the trap-type bits; therefore, clearing 
the trap-type bits allows nonnal indirect branches to be perfonned within the trap handler. 

The items that make up the current state may include any of the following: 

1. The fir. 
2. The psr. 
3. The epsr. 
4. The fsr. 
5. The MERGE register. 
6. The KR, KI, and T registers. 
7. Any of the four pipelines (refer to section 7.9). 
8. The floating-point and integer register files. 
9. The dirbase register. 

7-2 



inter TRAPS AND INTERRUPTS 

7.2.2 Returning from the Trap Handler 

Returning from a trap handler involves the following steps: 

1. Restoring the pipeline states, including the fsr, KR, KI, T, and MERGE registers, where 
necessary. 

2. Subtracting srel from src2, when a data-access fault occurred on an autoincrementing load/ 
store instruction and a floating-point trap did not also occur. 

3. Detelmining where to resume execution by inspecting the instruction at fir - 4. The details 
for this determination are given in section 7.2.2.1. 

4. Updating psr with the value to be used after return. It may be necessary to set the KNF bit 
in psr. The requirements for KNF are given in section 7.2.2.2. 

5. Restoring the integer and floating-point register files (except for the register that holds the 
resumption address). 

6. Executing an indirect branch to the resumption address. Neither the indirect branch nor the 
following instruction may be executed in dual-instruction mode. 

7. Restoring the register that holds the resumption address. (This is executed before the delayed 
indirect branch is completed.) 

7.2.2.1 DETERMINING WHERE TO RESUME 

To determine where to resume execution upon leaving the trap handler, examine the instruction at 
address fir - 4. If this instruction is not a delayed control instruction, then execution resumes at 
the address in fir. 

If, on the other hand, the instruction at fir - 4 is a delayed control instruction (i.e. one that 
executes the next sequential instruction on branch taken), the normal action is to resume at fir -
4 so that the control instruction (which did not finish because of the trap) is also reexecuted. If 
the instruction at fir - 4 is a bla instruction, then src I should be subtracted from src2 before 
reexecuting. 

The one variance from this strategy occurs when the instruction at fir - 4 is a conditional delayed 
branch (be.t or bne.t), the instruction at fir is a pfgt, pfle, or pfeq, and a source exception has 
occurred. To implement the IEEE standard for unordered compares, the trap handler may need to 
change the value of CC. In this case it cannot resume at fir - 4, because the new value of CC 
might cause an incorrect branch. Instead, the trap handler must interpret the conditional branch 
instruction and resume at its target. 

If the i860 Microprocessor was in dual-instruction mode and execution is to resume at fir - 4, 
DS should be set and DIM cleared in the psr used to resume execution. Clearing DIM prevents 
the floating-point instruction associated with the control instruction from being reexecuted. Setting 
DS forces the processor back to dual-instruction mode after executing the control instruction. 

7-3 



inter TRAPS AND INTERRUPTS 

Every code section should begin with a nap instruction so that fir - 4 is defined even in case a 
trap occurs on the first real instruction. Also, that nap should not be the target of any branch or 
call. 

7.2.2.2 SETTING KNF 

The KNF bit of psr should be set if the trapped instruction is a floating-point instruction that 
should not be reexecuted; otherwise, KNF is left unchanged. Floating-point instructions should 
not be reexecuted under the following conditions: 

• The trap was caused in dual-instruction mode by a data-access fault and there are no other 
trap conditions. In this case, the the floating-point instruction has already been executed. 
(The one exception is the fxfr instruction. An fxfr must be reexecuted; so do not set KNF). 

• The trap was caused by a source exception on any floating-point instruction (except when 
a pfgt, pfle, or pfeq follows a conditional branch, as already explained in section 7.2.2.1). 
The trap handler determines the result that corresponds to the exceptional inputs; therefore, 
the instruction should not be reexecuted. 

7.3 INSTRUCTION FAULT 

This fault is caused by any of the following conditions. In all cases the processor sets the IT bit 
before entering the trap handler. 

• By the trap instruction. Refer to the trap instruction in Chapter 5. 

• By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is executed. 
The trap handler should clear OF before returning. Refer to the intovr instruction in 
Chapter 5. 

• By the lack of an unlock instruction and a subsequent load or store within 32 instructions of 
a lock. In this case IL is also set. When the trap handler finds IL set, it should scan backwards 
for the lock instruction and restart at that point. The absence of a lock instruction within 32 
instructions of the trap indicates a programming error. Refer to the lock instruction in 
Chapter 5. 

7.4 FLOATING-POINT FAULT 

The floating-point faults of the i860 Microprocessor support the floating-point exceptions defined 
by the IEEE standard as well as some other useful classes of exceptions. The i860 Microprocessor 
divides these into two classes: 

1. Source exceptions. This class includes: 

• All the invalid operations defined by the IEEE standard (including operations on trapping 
NaNs). 

• Division by zero. 

7-4 



inter TRAPS AND INTERRUPTS 

• Operations on quiet NaNs, denonnals and infinities. (These data types are implemented 
by software.) 

2. Result exceptions. This class includes the overflow, underflow, and inexact exceptions 
defined by the IEEE standard. 

The floating-point fault occurs only on floating-point instructions, pst, fst, fld, pfld, and ixfr. 
However, no fault occurs when pst, fst, fld, pfld, or ixfr transfers an invalid floating-point format. 

Software supplied by Intel provides the IEEE standard default handling for all these exceptions. 

7.4.1 Source Exception Faults 

When used as inputs to the floating-point adder or mUltiplier, all exceptional operands (including 
infinities, denormalized numbers and NaNs) cause a floating-point fault and set SE in the fsr. 
Source exceptions are reported on the instruction that initiates the operation. For pipelined 
operations, the pipeline is not advanced. The trap handler can reference both source operands and 
the operation by decoding the instruction specified by fir. 

In the case of dual operations, the trap handler has to detennine which special registers the source 
operands are stored in and inspect all four source operands to see if one or both operations need 
to be fixed up. It can then compute the appropriate result and store the result in rdest, in the case 
of a scalar operation, or replace the appropriate first-stage result, in the case of a pipelined 
operation. 

Note that, in the following case, inappropriate use of the FTE bit of the fsr can produce an invalid 
operand that does not cause a source exception: 

1. Floating-point traps are masked by clearing the FTE bit. 

2. An dual-operation instruction causes underflow or overflow leaving an invalid result in the T 
register. 

3. Floating-point traps are enabled by setting the FTE bit. 

4. The invalid result in the T register is used as an operand of a subsequent instruction. 

Even though the result of an operation would nonnally cause a source exception, it can be inserted 
into the pipeline as follows: 

1. Disable traps by clearing FTE. 

2. Perfonn a pipelined add of the value with zero or a multiply by one. 

3. Set the result-status bits offsr to "nonnal" by loading fsr with the U-bit set and zeros in the 
appropriate unit's result-status bits. The other unit's status must be set to the saved status for 
the first pipeline stage. 

4. Reenable traps by setting FTE. 

7-5 



TRAPS AND INTERRUPTS 

5. Set KNF in the psr to avoid reexecuting the instruction. 

The trap handler should ignore the SE bit for faults on tid, ptld, tst, pst, and iXfr instructions 
when in single-instruction mode or when in dual-instruction mode and the companion instruction 
is not a multiplier or adder operation. The SE value is undefined in this case. 

The trap handler should process result exceptions as described below and reexecute the instruction 
before processing source exceptions. 

7.4.2 Result Exception Faults 

The class of result exceptions includes any of the following conditions: 

• Overflow. The absolute value of the rounded true result would exceed the largest finite 
number in the destination format. 

• Underflow (when FZ is clear). The absolute value of the rounded true result would be smaller 
than the smallest finite number in the destination format. 

• Inexact result (when TI is set). The result is not exactly representable in the destination 
format. For example, the fraction 1/3 cannot be precisely represented in binary form. This 
exception occurs frequently and indicates that some (generally acceptable) accuracy has been 
lost. 

The point at which a result exception is reported depends upon whether pipelined operations are 
being used: 

• Scalar (nonpipelined) operations. Result exceptions are reported on the next floating­
point, tst.x, ot pst.x (and sometimes tid, ptld, ixfr) instruction after the scalar operation. 
When a trap occurs, the last-stage of the affected unit contains the result of the scalar 
operation. 

• Pipelined operations. Result exceptions are reported when the result is in the last stage and 
the next floating-point, tst.x, or pst.x (and sometimes tid, pfld, ixfr) instruction is executed. 
When a trap occurs, the pipeline is not advanced, and the last-stage results (that caused the 
trap) remain unchanged. 

When no trap occurs (either because FIE is clear or because no exception occurred), the pipeline 
is advanced normally by the new floating-point operation. The result-status bits of the affected 
unit are undefined until the point that result exceptions are reported. At this point, the last-stage 
result-status bits (bits 29 .. 22 and 16 .. 9 of the fsr) reflect the values in the last stages of both the 
adder and multiplier. For example, if the last-stage result in the multiplier has overflowed and a 
pipelined floating-point pfadd is started, a trap occurs and MO is set. 

For scalar operations, the RR bits offsr specify the register in which the result was stored. RR is 
updated when the scalar instruction is initiated. The trap, however, occurs on a subsequent 
instruction. Programmers must prevent intervening stores to fsr from modifying the RR bits. 
Prevention may take one of the following forms: 

7-6 



intJ TRAPS AND INTERRUPTS 

• Before any store to fsr when a result exception may be pending, execute a dummy floating­
point operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and mask updates so that the RR, RM, and FZ bits 
are not changed. 

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate unit. 

In either case, the result has the same fraction as the true result and has an exponent which is the 
low-order bits of the true result. The trap handler can inspect the result, compute the result 
appropriate for that instruction (a NaN or an infinity, for example), and store the correct result. 
The result is either stored in the register specified by RR (if nonzero) or in the last stage of the 
pipeline (if RR = 0). The trap handler must clear the result status for the last stage, then reexecute 
the trapping instruction. 

Result exceptions may be reported for both the adder and multiplier units at the same time. In this 
case, the trap handler should fix up the last stage of both pipelines. 

7.5 INSTRUCTION-ACCESS FAULT 

This trap results from a page-not-present exception during instruction fetch. If a supervisor-level 
page is fetched in user mode, an exception mayor may not occur. 

7.6 DATA-ACCESS FAULT 

This trap results from an abnormal condition detected during data operand fetch or store. Such an 
exception can be due to one of the following causes: 

• An attempt is being made to write to a page whose D-bit is clear. 

• A memory operand is misaligned (is not located at an address that is a multiple of the length 
of the data). 

• The address stored in the debug register is equal to one of the addresses spanned by the 
operand. 

• The operand is in a not-present page. 

• An attempt is being made from user level to write to a read-only page or to access a 
supervisor-level page. 

7.7 INTERRUPT TRAP 

An interrupt is an event that is signaled from an external source. If the processor is executing with 
interrupts enabled (1M set in the psr), the processor sets the interrupt bit IN in the psr, and 
generates an interrupt trap. Vectored interrupts are implemented by interrupt controllers and 
software. 

7-7 



inter TRAPS AND INTERRUPTS 

7.8 RESET TRAP 

When the i860 Microprocessor is reset, execution begins in single-instruction mode at address 
OxFFFFFFOO. This is the same address as for other traps. The reset trap can be distinguished from 
other traps by the fact that no trap bits are set. The instruction cache is flushed. The bits DPS, 
BL, and ATE in dirbase are cleared. CS8 is initialized by the value at the INT pin just before the 
end of RESET. The read-only fields of the epsr are set to identify the processor, while the IL, 
WP, and PBM bits are cleared. The bits U, 1M, BR, and BW in psr are cleared. All other bits of 
psr and all other register contents are undefined. 

The software must ensure that the data cache is flushed (refer to Chapter 4) and control registers 
are properly initialized before performing operations that depend on the values of the cache or 
registers. The fir must be initialized with a Id.c fir, rO instruction. 

Reset code must initialize the floating-point pipeline states to zero, using dummy pfadd, pfmul, 
pfiadd instructions. Floating-point traps must disabled to ensure that no spurious floating-point 
traps are generated. 

After a RESET the i860 Microprocessor. starts execution at supervisor level (U = 0). Before 
branching to the first user-level instruction, the RESET trap handler or subsequent initialization 
code has to set PU and a trap bit so that an indirect branch instruction will copy PU to U, thereby 
changing to user level. 

7.9 PIPELINE PREEMPTION 

Each of the four pipelines (adder, multiplier, load, graphics) contains state information. The 
pipeline state must be saved when a process is preempted or when a trap handler performs 
pipelined operations using the same pipeline. The state must be restored when resuming the 
interrupted code. 

7.9.1 Floating-Point Pipelines 

The floating-point pipeline state consists of the following items: 

1. The current contents of the floating-point status register fsr (including the third-stage result 
status). 

2. Unstored results from the first, second, and third stages. The number of stages that exist in 
the multiplier pipeline depends on the sizes of the operands that occupy the pipeline. The 
MRP bit offsr helps determine how many stages are in the mUltiplier pipeline. 

3. The result-status bits for the first two stages. 

4. The contents of the KR, KI, and T registers. 

7-8 



inter TRAPS AND INTERRUPTS 

7.9.2 Load Pipeline 

The pipeline state for pfld instructions can be saved by perfonning three pfld instructions to a 
dummy address. Thus the pipeline is advanced three stages, causing the last three real operands 
to be stored from the pipeline into registers that are then saved in some memory area. The size of 
each saved value is indicated by the value of the LRP bit of the fsr. 

The load pipeline can be restored performing three pfld instructions using the memory addresses 
of the saved values. The pipeline will then contain the same three values it held before the 
preemption. 

7.9.3 Graphics Pipeline 

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd fO, fO, rdest. 
The only other state infonnation for the graphics unit resides in the PM bits of psr , the IRP bit of 
the fsr, and in the MERGE register. Store the MERGE register with a form instruction. Restore 
the MERGE register by using faddz instructions (see Example 7-2). 

7.9.4 Examples of Pipeline Preemption 

Example 7-1 shows how to save the pipeline state. 

Example 7-2 shows how to restore the pipeline state. Trap handlers manipulate the result-status 
bits in the floating-point pipelines while preparing for pipeline resumption. When storing to fsr 
with the U-bit set, the result-status bits are loaded into the first stage of the pipelines of the 
floating-point adder and multiplier. The updated result-status bits of a particular unit (multiplier 
or adder) are propagated one stage for each pipelined floating-point operation for that unit. When 
they reach the last stage, they override the nonnal result-status bits computed from the last-stage 
result. The result-status bits in the fsr always reflect the last-stage result status and cannot be 
directly set by software. 

7-9 



inter TRAPS AND INTERRUPTS 

II The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl, 
II Iresl, Lres, KR, KI, and T refer to 64-bit FP registers. 
II The symbols Fsr3, Fsr2, Fsrl, Mergelo32, Mergehi32, and Temp 
II refer to integer registers. 
II The symbols Lres3m, Lres2m, and Lreslm refer to memory locations. 
II The symbol Dummy represents an addressing mode that refers to some 
II readable location that is always present (e.g. O(rO)). 

II Save third, second, and first stage results 
fld.d DoubOne, f4 II get double-precision 1.0 
ld.c fsr, Fsr3 II save third stage result status 
andnot Ox20, Fsr3, Temp II clear FTE bit 
st.c Temp, fsr II disable FP traps 
pfmul. ss fa, fa, Mres3 II save third stage M result 
pfadd. ss fa, fa, Ares3 II save third stage A result 
pfld.d Dummy, Lres II save third stage pfld result 
fst.d Lres, Lres3m II in memory 
ld.c fsr, Fsr2 II save second stage result status 
pfmul. ss fa, fa, Mres2 II save second stage M result 
pfadd.ss fa, fa, Ares2 II save second stage A result 
pfld.d Dummy, Lres II save second stage pfld result 
fst.d Lres, Lres2m II in memory 
ld.c fsr, Fsrl II save first stage result status 
pfmul.ss fa, fa, Mresl II save first stage M result 
pfadd.ss fa, fa, Aresl II save first stage A result 
pfld.d Dummy, Lres II save first stage pfld result 
fst.d Lres, Lreslm II in memory 
pfiadd.dd fa, fa, Iresl II save vector-integer result 

II Save KR, KI, T, and MERGE 
r2apt.dd fa, f4, fa II M first stage contains KR 

II A first stage contains T 
i2p1. dd fa, f4, fa II M first stage contains KI 
pfmul.dd fa, fa, KR II Save KR register 
pfmul.dd fa, fa, KI II Save KI register 
pfadd.dd fa, fa, fa II adder third stage gets T 
pfadd.dd fa, fa, T II save T-register 
form fa, f2 II save MERGE register 
fxfr f2, Mergelo32 
fxfr f3, Mergehi32 

Example 7-1. Saving Pipeline States 

7-10 



TRAPS AND INTERRUPTS 

II The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl, 
II Iresl, KR, KI, and T refer to 64-bit FP registers. 
II The symbols Fsr3, Fsr2, Fsrl, Mergel032, Mergehi32, and Temp 
II refer to integer registers. 
II The symbols Lres3m, Lres2m, and Lreslm refer to memory locations. 

st.c 
II Restore 

shl 
ixfr 
shl 
ixfr 
ixfr 
ixfr 
faddz 
faddz 

MERGE 
rO, fsr 

16, Mergel032, 
rl, f2 
16, Mergehi32, 
rl, f3 
Mergel032, 
Mergehi32 , 
fa, f2, 
fa, f4, 

KR, KI, and T II Restore 
fld.l 
fld.d 
pfmul.dd 
r2pt.dd 
i2apt.dd 

II Restore 3rd 
andh 

La: 

Ll: 

bc.t 
pfadd. ss 
pfadd.dd 
orh 
andh 
bc.t 
pfld.l 
pfld.d 
andh 
bc.t 
pfmul. ss 
pfmu13.dd 

L2: or 

andnot 
st.C 

SingOne, 
DoubOne, 
f4, T, 
KR, fa, 
KI, fa, 

stage 
Ox2000, Fsr3, 
La 
Ares3, fa, 
Ares3, fa, 
ha%Lres3m, rO, 
Ox400, Fsr3, 
Ll 
1%Lres3m(r3l), 
1%Lres3m(r3l), 
OxlOOO, Fsr3, 
L2 
Mres3, 
Mres3, 
OxlO, 

f2, 
f4, 
Fsr3, 

Ox20, Temp, 
Temp, fsr 

rl 

rl 

f4 
f5 
fa 
fa 

f2 
f4 
fa 
fa 
fa 

rO 

fa 
fa 
r3l 
rO 

fa 
fa 
rO 

fa 
fa 

Temp 

Temp 

II clear FTE 

II move low 16 bits to high 16 

II move low 16 bits to high 16 

II merge low l6s 
II merge high l6s 

II get single-precision 1.0 
II get double-precision 1.0 
II put value of T in M 1st stage 
II load KR, advance t 
II load KI and T 

II test adder result precision ARP 
II taken if it was single 
II insert single result 
II insert double result 

II test load result precision LRP 
II taken if it was single 
II insert single result 
II insert double result 
II test multiplier result precision MRP 
II taken if it·was single 
II insert single result 
II insert double result 
II set U (update) bit so that st.C 
II will update status bits in pipeline 
II clear FTE bit so as not to cause traps 
II update stage 3 result status 

Example 7-2. Restoring Pipeline States (1 of 2) 

7-11 



inter TRAPS AND INTERRUPTS 

II Restore 2nd stage 
andh Ox2000, Fsr2, rO II test adder result prec1s1on ARP 
bc.t L3 II taken if it was single 
pfadd. ss Ares2, fO, fO II insert single result 
pfadd.dd Ares2, fO, fO II insert double result 

L3: orh ha%Lres2m, rO, r3l 
andh Ox400, Fsr2, rO II test load result precision LRP 
bc.t L4 II taken if it was single 
pfld.l 1%Lres2m(r3l), fO II insert single result 
pfld.d 1%Lres2m(r3l), fO II insert double result -

L4: or OxlO, Fsr2, Temp II set update bit 
andnot Ox20, Temp, Temp II clear FTE 
andh OxlOOO, Fsr2, rO II test multiplier result precision MRP 
bc.t LS II taken if it was single 
pfmul. ss Mres2, f2, fO II insert single result 
pfmu13.dd Mres2, f4, fO II insert double result 

LS: st.C Temp, fsr II update stage 2 result status 
II Restore 1st stage 

andh OxlOOO, Fsrl, rO II test multiplier result precision MRP 
bc.t L6 II skip next if double 
pfmul.ss Mresl, f2, fO II insert single result 
pfrnu13.dd Mresl, f4, fO II insert double result 

L6: andh Ox2000, Fsrl, rO II test adder result precision ARP 
bc.t L7 II taken if it was single 
pfadd.ss Aresl, fO, fO II insert single result 
pfadd.dd Aresl, fO, fO II insert double result 

L7: orh ha%Lreslm, rO, r3l 
andh Ox400, Fsrl, rO II test load result precision LRP 
bc.t L8 II taken if it was single 
pfld.l 1%Lreslm(r3l), fO II insert single result 
pfld.d 1%Lreslm(r3l), fO II insert double result 

L8: andh Ox800, Fsrl, rO II test vector-integer result precision IRP 
bc.t L9 II taken if it was single 
pfiadd.ss fO, Iresl, fO II insert single result 
pfiadd.dd fO, Iresl, fO II insert double result 

L9: or OxlO, Fsrl, Fsrl II set U (update) bit 
st.c Fsrl, fsr II update stage 1 result status 
st.c Fsr3, fsr II restore nonpipelined FSR status 

Example 7-2. Restoring Pipeline States (2 of 2) 

7-12 



Programming Model 8 





Chapter 8 
Programming Model 

This chapter defines standards for the use of certain aspects of the architecture of the i860 
Microprocessor. These standards must be followed to guarantee that compilers, applications 
programs, and operating systems written by different people and organizations will work together. 

8.1 REGISTER ASSIGNMENT 

Table 8-1 defines the standard for register allocation. Figure 8-1 presents the same information 
graphically. 

Table 8-1. Register Allocation 

Register Purpose 
Left Unchanged 

by a Subroutine? 

rO Always zero Yes 
r1 Return address Yes 
r2 Stack pointer Note1 

r3 Frame pointer Yes 
r4-r15 Local values Yes 

r16-r27 Parameters and temporaries No 
r16 Return value No 

r28-r30 Temporaries No 
r31 Addressing temporary No 

fO-f1 Always zero 
f2-f15 Local values Yes 

f16-f27 Parameters and temporaries No 
f16-f17 Return value No 
f28-f31 Temporaries No 

1 The stack pointer is normally kept unchanged across a subroutine call. However, some subroutines may allocate stack space 
and return with a different value in r2. 

NOTE 

The dividing point between locals and parameters and return value in the floating­
point registers is not yet firm. For the purpose of illustration, the dividing point is 
shown at f16, but this may change to f8. 

8.1.1 Integer Registers 

Up to 12 parameters can be passed in the integer registers. The first (leftmost) parameter is passed 
in r16 (if it is an integer), the rest in successively higher-numbered registers. If fewer parameters 
are required, the remaining registers can be used for temporary variables. If more than 12 
parameters are required, the overflow can be passed in memory on the stack. 

8-1 



PROGRAMMING MODEL 

Register r16 is both a parameter register and a return value. If a subroutine has an integer return 
value, the value is put into r16 before control is returned to the caller. 

Register r1 is the required return-address register, because the call instruction uses it to save the 
return address. Subroutines are therefore required to use r1 to return to the caller. If a subroutine 
saves r1, it may then use it as a temporary until it returns. 

A separate addressing temporary register (r31) is allocated to allow construction of 32-bit absolute­
address temporaries. The assembler uses r31 by default to construct 32-bit absolute addresses 
from 16-bit literals. 

INTEGER 
32 

ZERO 
RETURN ADDRESS 

STACK POINTER 
FRAME POINTER 

LOCALS 

PARAMETERS 

TEMPORARIES ,. 
ADDRESS TEMP. 

o 
rO 
r1 
r2 
r3 
r4 
r5 
r6 
r7 
r8 
r9 
r10 
r11 
r12 
r13 
r14 
r15 
r16 
r17 
r18 
r19 
r20 
r21 
r22 
r23 
r24 
r25 
r26 
r27 
r28 
r29 
r30 
r31 

64 
FLOATING-POINT 

ZERO 

• 
LOCALS 

PARAMETERS 

t 
TEMPORARIES 

Figure 8-1. Register Allocation 

8-2 

o 
to 
f2 
f4 
f6 
f8 
f10 
f12 
f14 
f16 
f18 
f20 
f22 
f24 
f26 
f28 
130 



PROGRAMMING MODEL 

8.1.2 Floating-Point Registers 

Floating-point and 64-bit integer values in the floating-point registers must use 116-127 when 
passed by value. The leftmost parameter is passed in 117-116 (if it is floating-point); the rest in 
successively higher-numbered registers. Single-precision parameters use two registers, just as do 
double-precision parameters. The single-precision value must be in the even-numbered register; 
the corresponding odd-numbered register is left unused in this case. A single-precision floating­
point value can be converted to double-precision with the 1mov.sd ix, fy pseudoinstlUction. 

Parameters beyond 126-127 are passed in memory on the stack. The last (i.e. rightmost) parameter 
is at the highest stack address (i.e is pushed first assuming a grow-down stack). The same registers 
used to pass the first parameter are used for the return value when the return value is a floating­
point value or 64-bit integer. A subroutine may need to save the first parameter to make room for 
the return value. 

8.1.3 Passing Mixed Integer an~ Floating-Point Parameters in Registers 

If parameter N is an integer parameter, then it is placed in integer register 16 + N, and the 
double-precision register at 16 + 2N is available for use as a local variable. If parameter M is a 
floating-point parameter, then it is placed in the floating-point register pair at 16 + 2M, and the 
integer register 16 + M is available for use as a local variable. 

NOTE 

This convention remains tentative. It may change to allow all integer and floating 
parameter registers to contain parameter values. 

8.1.4 Variable Length Parameter Lists 

Parameter passing in registers can handle variable parameters. UNIX* System V uses a special 
method to access variable-count parameters. The varargs.h file defines several functions to get at 
these parameters in a way that is independent of stack growth direction and of whether parameters 
are passed in registers or on the stack. A subroutine with variable parameters calls va _ start to 
force them onto the stack before they can be used. The routine va_start must be called at the 
beginning of a subroutine. This method works with current C standards. 

8.2 DATA ALIGNMENT 

Compilers and assemblers must do their best to keep data aligned. It is acceptable to have holes 
in data structures to keep all items aligned. In some cases (e.g. FORTRAN programs with 
overlaid data), it is necessary to have misaligned data. A lUn-time trap handler can be provided to 
handle misaligned data; however, such data would impose a performance penalty on the 
application. If a compiler must reference data that is misaligned, the compiler must generate 
separate instructions to access the data in smaller units that will not generate misaligned-data 
traps. Accessing 16-bit mIsaligned data requires two byte loads plus a shift. Storing to 32-bit 
misaligned data requires four byte stores and three shifts. The code example in Example 8-1 is 
the recommended met-hod for reading a misaligned 32-bit value whose address is in rS. 

8-3 



PROGRAMMING MODEL 

andnot 3, r8, r9 
ld.l O(r9), rIO 
ld.l 4(r9), rll 
and 3, r8, r9 
shl 3, r9, r9 
shr r9, rO, rO 
shrd rll, rIO, r9 

II If the misalignment offset (m) 
II optimized. Assume r8 points 
II of misaligned field. 

ld.l O(r8), rIO 
ld.l 4(r8), rll 
shr m*8, rO, rO 
shrd rll, rIO, r9 

II Get address aligned on 4-byte boundary 
II Get low 32-bit value 
II Get high value 32-bit 
II Get byte offset in 8-byte field 
II Convert to bit offset 
II Set shift count 
II Put 32-bit value into R9 

is known in advance, this code can be 
to next aligned address less than address 

II Get low value 
II Get high value 
II Set shift count 
II Put 32-bit value into R9 

Example 8-1. Reading Misaligned 32-Bit Value 

8.3 IMPLEMENTING A STACK 

In general, compilers and programmers have to maintain a software stack. Register r2 (called sp 
in assembly language) is the suggested stack pointer. Register r2 is set by the operating system 
for the application when the program is started. The stack must be a grow-down stack, so as to 
be compatible with that of the Inte1386™. If a subroutine call requires placing parameters on the 
stack, then the caller is responsible for adjusting the stack pointer upon return. The caller must 
also allocate space on the stack for the overflow parameters (i.e. parameters that exceed the 
capacity of the registers reserved for passing parameters) and store them there directly for the call 
operation. 

A separate frame pointer is used because C allows calls to subroutines that change the stack 
pointer to allocate space on the stack at run-time (e.g. alloca and va_start). Other languages 
may also return values from a subroutine allocated on stack space below the original top-of-stack 
pointer. Such a subroutine prevents the caller from using r2-relative addressing to get at values on 
the stack. If the compiler knows that it does not call subroutines that leave r2 in an altered state 
when they return, then no frame pointer is necessary. 

The stack must be kept aligned on 16-byte boundaries to keep data arrays aligned. Each subroutine 
must use stack space in multiples of 16 bytes. The frame pointer r3 (called fp in assembly 
language) need not point to a 16-byte boundary, as long as the compiler keeps data correctly 
aligned when assigning positions relative to r3. 

Figure 8-2 shows the stack-frame format. A fixed format is necessary to allow some minimal 
stack-frame analysis by a low-level debugger. 

8-4 



Direction 
of 

Expansion 

PROGRAMMING MODEL 

31 o • 

.... ----------------------------I-..-old sp 
RETURN POINTER 

OLD FRAME POINTER 

.... ---------------------------1-..- current 
fp 

PROGRAM­
SPECIFIC 
DYNAMIC 
STORAGE ...--------..1-..- current sp 

SP-STACK POINTER 
FP-FRAME POINTER 

Figure 8-2. Stack Frame Format 

8.3.1 Stack Entry and Exit Code 

Example 8-2 shows the recommended entry and exit code sequences. The stack pointer is restored 
to the value it had on entry into the subroutine. Assuming the subroutine needs to call another 
subroutine, it must save the frame pointer and its return address. It probably also needs to save 
some of its internal values across that call to another subroutine; therefore, the example saves one 
local register into the stack frame and subsequently reloads it. 

Languages such as Pascal that need to maintain activation records on the stack can put them 
below the frame pointer in the program-specific area. The frame pointer is optional. All stack 
references can be made relative to r2. The code example in Example 8-3 shows the recommended 
entry and exit sequences when no frame pointer is required. 

A lowest-level subroutine need not perform any stack accesses if it can run completely from the 
temporary registers. No entry/exit code is required by a lowest-level subroutine. 

8-5 



inter PROGRAMMING MODEL 

II Subroutine entry 
adds -(Locals+8), sp, sp II Allocate stack space for local variables 

II Locals+8 must be a multiple of 16 
st.l fp, Locals(sp) II Save old frame pointer below old SP 
adds Locals, sp, fp II Set new frame pointer 
st.l rl, 4(fp) II Save return address 
st.l r5, -4(fp) II Save a local register 

II Subroutine exit 
ld.l -4(fp), r5 II Restore a local register 
mov fp, sp II Deallocate stack frame 
ld.l 4 (fp) , rl II Restore return address 
ld.l o (fp) , fp II Restore old frame pointer 
bri rl II Return to caller after next instruction 
adds 8, sp, sp II Deallocate frame pointer save area 

Example 8-2. Subroutine Entry and Exit with Frame Pointer 

II Subroutine entry 
addu -Locals, 

II Subroutine exit 
bri r1 
addu Locals, 

r2, r2 II Allocate stack space for local variables 
II -Locals must be a multiple of 16 

II Return to caller after next instruction 
r2, r2 II Restore stack pointer 

Example 8-3. Subroutine Entry and Exit without Frame Pointer 

8.3.2 Dynamic Memory Allocation on the Stack 

Consider a function alloea which allocates space on the stack and returns a pointer to the space. 
The allocated space is lost when the caller returns. The function alloea . could be implemented as 
shown in Example 8-4, and a separate stack pointer and frame pointer are required. 

al1oca: : 

adds 
andnot 
subs 
bri 
mov 

II r16 has size requested 
15, r16, r16 II Round size to 0 mod 16 
15, r16, r16 II 
sp, r16, sp II Adjust stack downwards 
r1 II Return to caller after next instruction 
sp, r16 II Set return value to allocated space 

Example 8-4. Possible Implementation of alloea 

8-6 



PROGRAMMING MODEL 

8.4 MEMORY ORGANIZATION 

Figure 8-3 suggests an overall memory layout. The i860 Linker needs to know by default where 
to assign code and data inside a program. The output of the linker must normally be executable 
without fixups. Code and data of both the application and operating system can share a single 
four-gigabyte address space. The example memory map assumes paging is being used to place 
DRAM-resident code in the upper 256 Mbytes of the address space. 

OxFFFFFFFF 

OPERATING SYSTEM CODE AREA 

EMPTY 

USER CODE AREA 

OxF0400000 

FIXED SUBROUTINE ENTRIES 

OxFOOOOOOO 

OPERATING SYSTEM DATA 

SPECIAL SHARED MEMORY AREA 
BETWEEN DIFFERENT TASKS 

USER STACK SPACE 

~ UserSP 

EMPTY 

USER DYNAMIC HEAP 

USER DATA 

OxOOOOlOOO 

OPERATING SYSTEM DATA AREA 

OxOOOOOOOO 

Figure 8-3. Example Memory Layout 

The first four Kbytes (first page) of the address space are reserved for the operating system. It 
should be a supervisor-only page and should not be swappable. Uninitialized external address 
references in user programs (which are equivalent to an assembly-language address expression of 
the form O(rO») reference this first page and cause a trap. 

8-7 



inter PROGRAMMING MODEL 

The data space for the application begins at OxlOOO (second page). It is all readable and writable. 
The total data address space available to the application should be over 3500 Mbytes. The user's 
data space has the following sections: 

• A user-data portion whose size and content is defined by the program and development tools. 

• A section called the heap whose size is determined at run time and can change as the program 
executes. 

• A stack section. 

The application's stack area starts at some address set by the OS and grows downward. The 
starting address of the stack would normally be at a four-Mbyte boundary to allow easy page­
table formatting. The stack's starting address is not known in advance. It depends on how much 
address space is used by the operating system at the top of the address space. 

The operating system may also want to reserve some portion of the application's address space 
for shared memory areas with other tasks. UNIX System V allows such shared memory areas. 
The empty areas on the diagram if Figure 8-3 would normally be marked as not-present in the 
page table entries. Some special flag in the page table entry could allow the operating system to 
determine that the page is not usable instead of just not present in memory. 

A four-Mbyte area of code space is reserved starting at OxFOOOOOOO for a set of entry addresses 
to subroutines commonly used by all application programs (math libraries and vector primitives, 
for example). These code sections are shared by all application programs. The code in this area is 
directly callable from user-level code and executes at user level. Standard i860 Microprocessor 
calling conventions are used for these subroutines. The size of this area is chosen as four Mbytes, 
because that size corresponds to a directory-level page table entry that all applications tasks can 
share. It should be large enough to contain all desirable shared code. 

The application program code area starts at OxF0400000. It can be as large as 248 Mbytes. The 
application code is write-protected. The operating system and application code spaces lje in the 
upper 256 Mbytes of the address space. The operating system code is in the upper part of the 256 
Mbyte code space. The operating system code is protected from application programs. Because it 
is easier for the operating system to divide up the address space in four-Mbyte blocks, the 
minimum operating-system code allocation from the address space is probably four Mbytes. 
Additional space would be allocated in four-Mbyte increments. 

Every code section should begin with a nop instruction so that the trap handler can always 
examine the instruction at fir - 4 even in case a trap occurs on the first instruction of a section. 

The memory-mapped VO devices should also be placed in the upper operating-system data space. 
The paging hardware allows logical addresses to be different from their corresponding physical 
addresses. The VO device logical address area may be located anywhere convenient. 

8-8 



Programming Examples 9 





Chapter 9 
Programming Examples 

9.1 SMALL INTEGERS 

The 32-bit arithmetic instructions can be used to implement arithmetic on 8- or 16-bit ordinals 
and integers. The integer load instruction places 8- or 16-bit values in the low-order end of a 32-
bit register and propagates the sign bit through the high-order bits of the register. 

Occasionally, it is necessary to sign extend 8- or 16-bit integers that are generated internally, not 
loaded from memory. Example 9-1 shows how. 

II SIGN-EXTEND 8-BIT INTEGER TO 32 BITS 
II Assume the operand is already in r16 

shl 24, r16, r16 II left-justify 
shra 24, r16, r16 II right-justify all but sign bit 

Example 9-1. Sign Extension 

Example 9-2 shows how to load a small unsigned integer, converting the sign-extended fonn 
created by the load instruction to a zero-extended fonn. 

II LOADING OF 8-BIT UNSIGNED INTEGERS 
II Assume the address is already in r19 

II Load the operand (sign-extended) into r20 
ld.b O(r19), r20 

II Mask out the high-order bits 
and OxOOOOOOFF, r20, r20 

Example 9-2. Loading Small Unsigned Integers 

9.2 SINGLE-PRECISION DIVIDE 

Example 9-3 computes Z = X -7- Y for single-precision variables. The algorithm begins by using 
the reciprocal instruction frcp to obtain an initial guess for the value of lIY. The frcp instruction 
gives a result that can differ from the true value of lIY by as much as 2- 8 . The algorithm then 
continues to make guesses based on the prior guess, refining each guess until the desired accuracy 
is achieved. Let G represent a guess, and let E represent the error, i.e. the difference between G 
and the true value of lIY. For each guess ". 

Gnew = Gold(2 - Gold*Y). 
Enew = 2(Eold)2. 

9-1 



PROGRAMMING EXAMPLES 

This algorithm is optimized for high performance and does not produce results that are rounded 
according to the IEEE standard. Worst case error is about two least-significant bits. If the result 
is referenced by the next instruction, 22 clocks are required to perform the divide. 

II SINGLE-PRECISION DIVIDE 

II 
II 
II 
II 

The dividend X is in f6 
The divisor Y is in f2 
The result Z is left in f3 
f5 contains single-precision floating-point 2. 

frcp.ss f2, f3 II first guess has 2**-8 error 
froul.ss f2, f3, f4 II guess * divisor 
fsub.ss f5, f4, f4 II 2 - guess * divisor 
froul.ss f3, f4, f3 II second guess has 2**-15 error 
froul. ss f2, f3, f4 II avoid using f3 as srcl 
fsub.ss f5, f4, f4 II 2 - guess * divisor 
froul.ss f6, f3, f5 II second guess * dividend 
froul.ss f4, f5, f3 II result = second guess * dividend 

Example 9-3. Single-Precision Divide 

9.3 DOUBLE-PRECISION DIVIDE 

Example 9-4 computes Z = X -;- Y for double-precision variables. The algorithm is similar to 
that shown previously for single-precision divide. For double-precision divide, one more iteration 
is needed to achieve the required accuracy. 

This algorithm is optimized for high performance and does not produce results that are rounded 
according to the IEEE standard. Worst case error is about two least-significant bits. If the result 
is referenced by the next instruction, 38 clocks are required to perform the divide. 

II DOUBLE-PRECISION DIVIDE 

II The dividend X is in f2 
II The divisor Y is in f4 
II The result Z is left in f8 

II 

frcp.dd f4, f6 
fmul.dd f4, f6, 
fld.d flttwo, flO 
The fld.d is free. 
fsub.dd flO, f8, 
fmul.dd f6, f8, 
fmul.dd f4, f6, 
fsub.dd flO, f8, 
fmul.dd f6, f8, 
fmul.dd f4, f6, 
fsub.dd flO, f8, 
fmul.dd f6, f2, 
fmul.dd f8, f6, 

II first guess has 2**-8 error 
f8 II guess * divisor 

II load double-precision floating 2 
It completely overlaps the preceding fmul.dd 

f8 II 2 - guess * divisor 
f6 II second guess has 2**-15 error 
f8 II avoid using f6 as srcl 
f8 II 2 - guess * divisor 
f6 II third guess has 2**-29 error 
f8 II avoid using f6 as srcl 
f8 II 2 - guess * divisor 
f6 II guess * dividend 
f8 II result = third guess * dividend 

Example 9-4. Double-Precision Divide 

9-2 



inter PROGRAMMING EXAMPLES 

9.4 INTEGER MULTIPLY 

A 32-bit integer multiply is implemented in Example 9-5 by transferring the operands to floating­
point registers and using the fmlow instruction. If the result is referenced in the next instruction, 
nine clocks are required. Five clocks can be overlapped with other operations. 

II INTEGER MULTIPLY 

II The multiplier is in r4 
II The multiplicand is in r5 
II The product is left in r6 
II The registers f2, f4, and f6 are used as temporaries. 

ixfr r4, f2 
ixfr r5, f4 

II Two core instructions can be inserted here without penalty. 
fmlow.dd f4, f2, f6 

II Two core instructions can be inserted here without penalty. 
fxfr f6, r6 

II One core instruction can be inserted here without penalty. 

Example 9-5. Integer Multiply 

9.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE 

The strategy used in Example 9-6 is to use the bits of the integer to construct a value in double­
precision format. The double-precision value constructed contains two biases: 

Be A bias that compensates for the fact that the signed integer is stored in two's 
complement format. The value of this bias is 231. 

BN A bias that produces a normalized number, so that the algorithm does not cause a 
floating-point exception. The value of this bias is 252 

If the desired value is x, then the constructed value is x + Be + BN. By later subtracting Be + 
BN, the value x is left in double precision format, properly normalized by the i860 Microprocessor. 
The value of Be + BN is 252+231 (Ox4330_0000_8000_0000). 

II CONVERT SIGNED INTEGER TO DOUBLE 

II The integer is in r4 
II The double-precision floating-point result is left in f7:f6 
II The register f5:f4 contains BN+BC 

xorh Ox8000, r4, r4 II Complement sign bit (equivalent to adding BC). 
ixfr r4, f6 II Construct low half. 
fmov.ss f5, f7 II Set exponent in high half (includes BN) 

II One instruction can be inserted here without penalty. 
fsub.dd f6, f4, f6 II (x + BN + BC) - (BN + BC) = x 

II Two core instructions can be inserted here without penalty. 

Example 9-6. Single to Double Conversion 

9-3 



PROGRAMMING EXAMPLES 

The conversion requires 7 clocks if the result is referenced in the next instruction. Three clocks 
can be overlapped with other operations. 

9.6 SIGNED INTEGER DIVIDE 

Example 9-7 combines the techniques of Section 9.3 and 9.5. It requires 62 clocks (59 clocks 
without remainder). 

II SIGNED INTEGER DIVIDE 

II The denominator is in r4 
II The numerator is in r5 
II The quotient is left in r6 
II The remainder is left in r7 
II The registers f2 through fll are used as temporaries. 

II Convert Denominator and Numerator 
fld.d two52two3l, f6 II load constant 2**52 + 2**31 
xorh Ox8000, r4, r4 II 
ixfr r4, f4 II 
fmov. ss f7, f5 II 
xorh Ox8000, r5, r5 II 
fsub.dd f4, f6, f4 II 
ixfr r5, f2 II 
fmov.ss f7, f3 II 
fsub.dd f2, f6, f2 II 

II Do Floating-Point Divide 
fld.d fdtwo, flO II load floating-point two 
frcp.dd f4, f6 
fmul.dd f4, f6, f8 
fsub.dd flO, f8, f8 
fmul.dd f6, f8, f6 
fmul.dd f4, f6, f8 
fsub.dd flO, f8, f8 
fmul.dd f6, f8, f6 
fmul.dd f4, f6, f8 
fsub.dd flO, f8, f8 
fmul.dd f6, f2, f6 
fmul.dd f8, f6, f8 

II Convert Quotient to Integer 

II first guess has 2**-8 error 
II guess * divisor 
II 2 - guess * divisor 
II second guess has 2**-15 error 
II avoid using f6 as srcl 
II 2 - guess * divisor 
II third guess has 2**-29 error 
II avoid using f6 as srcl 
II 2 - guess * divisor 
II guess * dividend 
II result = third guess * dividend 

fld.d onepluseps, flO II load value 1 + 2**-40 
fmul.dd f8, flO, f8 II force quotient to be bigger than integer 
ixfr r4, flO II get denominator for remainder computation 
ftrunc.dd f8, f8 II convert to integer 

II Compute Remainder 
fmlow.dd flO, f8, 
fxfr flO, r4 
fxfr f8, r6 
subs r5, r7, 

flO II quotient * denominator 

II transfer quotient 
r7 II remainder = numerator - quotient * denominator 

Example 9-7. Signed Integer Divide 

9-4 



PROGRAMMING EXAMPLES 

9.7 STRING COpy 

Example 9-8 shows how to avoid the freeze condition that might occur when using a load in a 
tight loop such as that commonly used for copying strings. A performance penalty is incurred if 
the destination of a load is referenced in the next instruction. In order to avoid this condition, 
Example 9-8 juggles characters of the string between two registers. 

II STRING COPY 
Assumptions: II 

II 
II 
II 
II 
II 

Source address alignment unknown 
Destination address alignment unknown 
End of string indicated by NUL 

r17 - address of source string 
r16 - address of destination string 

copy_string: : 
1d.b O(rl7) , r26 II Load one character 
bte 0, r26, done II Test for NUL character 
adds 1, r17, r17 II Bump pointer to source string 
ld.b O(rl7) , r27 II Load one more character 
subs r17, r16, r18 II Use constant offset to avoid 

II incrementing two indexes 
loop:: 

st.b r26, 0(r16) II Store previous character 
adds 1, r16, r16 II Bump cornman index 
or rO, r27, r26 II Test for NUL character 
bnc.t loop II If not NUL, branch after loading 
Id.b r18(r16), r27 II next character. r18(r16) = O(rl7) 

done: : 
bri rl II Return after storing 
st.b r26, 0(r16) II the NUL character, too 

Example 9-8. String Copy 

9.8 FLOATING-POINT PIPELINE 

Most instruction sequences that use pipelined instructions can be divided into three phases: 

Priming 

Continuous Operation 

Flushing 

Filling a pipeline with known intermediate results while 
disposing of previous pipeline contents. 

Receiving expected results with the initiation of each new 
pipelined instruction. 

Retrievipg the results that remain in the pipeline after the 
pipelined instruction sequence has terminated. 

Example 9-9 shows one strategy for using the floating-point adder, which has a three-stage 
pipeline. This example assumes that the prior contents of the adder's pipeline are unimportant, 
and discards them by specifying register fO as the destination of the first three instructions. After 
performing the intended calculations, it flushes the pipeline by executing three dummy addition 
instructions with fO (which always contains zero) as the operands. 

9-5 



inter PROGRAMMING EXAMPLES 

II PIPELINED FLOATING-POINT ADD 

II Calculates flO = f4 + f5, fll = f6 + f7 
II f12 = f8 + f9, f13 = f5 + f6 

II Assume f4 = l. 0, f5 2.0, f6 = 3.0 
II f7 = 4.0, f8 = 5.0, f9 = 6.0 

II Stage 1 Stage 2 Stage 3 Result 
II Priming phase 

pfadd. ss f4, f5, fa II 1+2 ?? ?? Discard 
pfadd. ss f6, f7, fa II 3+4 1+2 ?? Discard 
pfadd. ss f8, f9, fa II 5+6 3+4 3 Discard 

II Continuous operation phase 
pfadd.ss f5, f6, flO II 2+3 5+6 7 flO= 3 

II For longer pipelined sequences, include more instructions here 

II Flushing phase 
pfadd.ss fa, fa, f11 
pfadd.ss fa, fa, f12 
pfadd.ss fa, fa, f13 

II 
II 
II 

0+0 
0+0 
0+0 

2+3 
0+0 
0+0 

Example 9-9. Pipelined Add 

11 
5 
a 

9.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS 

f11= 7 
f12=ll 
f13= 5 

When using dual-operation instructions (all of which are pipelined), code that primes and flushes 
the pipelines must take into account both the adder and multiplier pipelines. Example 9-10 
illustrates pipeline usage for a simple single-precision matrix operation: the dot product of a 1 X 8 
row matrix A with an 8X 1 column matrix B. For the purpose of tracking values through the 
pipelines, assume that the actual matrices to be multiplied have the following values: 

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0] B= 

Assume further that the two matrices are already loaded into registers thus: 

A: f4 = 1.0 B: fl2 = 8.0 
f5 = 2.0 fl3 = 7.0 
f6 = 3.0 fl4 = 6.0 
f7 = 4.0 fl5 = 5.0 
f8 = 5.0 fl6 = 4.0 
f9 = 6.0 fl7 = 3.0 
flO = 7.0 fl8 = 2.0 
fll = 8.0 fl9 = 1.0 

9-6 

8.0 
7.0 
6.0 
5.0 
4.0 
3.0 
2.0 
1.0 



PROGRAMMING EXAMPLES 

The calculation to perfonn is 1.0*8.0 + 2.0*7.0 + .. , 8.0* 1.0-a series of mUltiplications 
followed by additions. The dual-operation instructions are designed precisely to execute this type 
of calculation efficiently by using the adder and multiplier in parallel. At the heart of example 
9-10 is the dual-operation instruction m12apm, which mUltiplies its operands and adds the 
multiplier result to the result of the adder. 

The priming phase is somewhat different in Example 9-10 than in Example 9-9. Because the 
result of the adder is fed back into the adder, it is not possible to simply ignore the prior contents 
of the adder pipeline; and because the result of the multiplier is automatically fed into the adder, 
it is important to consider the effect of the multiplier on the adder pipeline as well. This example 
waits until unknown results have been flushed from the multiplier pipeline, then uses pfadd 
instructions to put zeros in all stages of the adder pipeline. 

9.10 DUAL INSTRUCTION MODE 

The previous Example 9-9 and Example 9-10 showed how the i860 Microprocessor can deliver 
up to two floating-point results per clock by using the pipelining and parallelism of the adder and 
multiplier units. These examples, however are not realistic, because they assume that the data is 

II PIPELINED DUAL-OPERATION INSTRUCTION 

II Multiplier Adder 
II Stages Stages 
II 1 2 3 1 2 3 Result 

II Priming phase 
m12apm.ss f4, f12,fO II 1*8 ?? ?? ?? ?? ?? Discard 
m12apm.ss f5, f13,fO II 2*7 1*8 ?? ?? ?? ?? Discard 
m12apm.ss f6, f14,fO II 3*6 2*7 8 ?? ?? ?? Discard 

pfadd.ss fO, fO , fO II 0 ?? ?? Discard 
pfadd. ss fO, fO ,fO II 0 0 ?? Discard 
pfadd.ss fO, fO , fO II 0 0 0 Discard 

II Continuous operation phase 
m12apm.ss f7, f15,fO II 4*5 3*6 14 8+0 0+0 0 Discard 
m12apm.ss f8, f16,fO II 5*4 4*5 18 14+0 8+0 0 Discard 
m12apm. ss f9, f17,fO II 6*3 5*4 20 18+0 14+0 8 Discard 
m12apm.ss f10,f18,fO II 7*2 6*3 20 20+8 18+0 14 Discard 
m12apm.ss f11,f19,fO II 8*1 7*2 18 20+14 20+8 18 Discard 

II For larger matrices, include more instructions here 

II Flushing phase 
m12apm.ss fO, fO, fO II 0*0 8*1 14 18+18 20+14 28 Discard 
m12apm.ss fO, fO, fO II 0*0 0*0 8 14+28 18+18 34 Discard 
m12apm.ss fO, fO, fO II 0*0 0*0 0 8+34 14+28 36 Discard 

pfadd. ss fO, fO, f20 II 0+0 8+34 42 f20=36 
pfadd. ss f20,f21,f21 II 42+36 0+0 42 f21=42 
pfadd.ss fO, fO, f20 II 0+0 42+36 0 f20=42 
pfadd. ss fO, fO, fO II 0+0 0+0 78 Discard 
pfadd. ss fO, fO, f21 II 0+0 0+0 0 f21=78 
fadd.ss f20,f21,f20 II f20=120 

Example 9-10. Pipelined Dual-Operation Instruction 

9-7 



inter PROGRAMMING EXAMPLES 

already loaded in registers. Example 9-11 goes one step further and shows how to maintain the 
high throughput of the floating-point unit while simultaneously loading the data from main 
memory and controlling the logical flow. 

The problem is to sum the single-precision elements of an arbitrarily long vector. The procedure 
uses dual-instruction mode to overlap loading, decision making, and branching with the basic 
pipelined floating-point add instruction pfadd.ss. To make obvious the pairing of core and 
floating-point instructions in dual-instruction mode, the listing in Example 9-11 shows the core 
instruction of a dual-mode pair indented with respect to the corresponding floating-point 
instruction. 

Elements are loaded two at a time into alternating pairs of registers: one time at loop1 into f20 
and f21, the next time at loop2 into f22 and f23. Performance would be slighty degraded if the 
destination of a fld.d were referenced as a source operand in the next two instructions. The 
strategy of alternating registers avoids this situation and maintains maximum performance. Some 
extra logic is needed at sumup to account for an odd number of elements. 

9.11 CACHE STRATEGIES FOR MATRIX DOT PRODUCT 

Calculations that use (and reuse) massive amounts of data may render significantly less than 
optimum performance unless their memory access demands are carefully taken into consideration 
during algorithm design. The prior Example 9-11 easily executes at near the theoretical maximum 
speed of the i860 Microprocessor because it does not make heavy demands on the memory 
subsystem. This section considers a more demanding calculation, the dot product of two matrices, 
and analyzes two memory access strategies as they apply to this calculation. 

The product of matrix A=A i,j of dimension LXM with matrix B=B i,j of dimension MXN is the 
matrix C=Ci,j of dimension LXN, where ... 

The basic algorithm for calculation of a dot product appears in Example 9-10. To extend this 
algorithm to the current problem requires adding instructions to: 

1 . Load the entries of each matrix from memory at appropriate times. 

2. Repeat the inner loop as many times as necessary to span matrices of arbitrary M dimension. 

3. Repeat the entire algorithm L*N times to produce the LXN product matrix. 

Each of the examples 9-12 and 9-13 accomplishes the above extensions through straightforward 
programming techniques. Each example uses dual-instruction mode to perform the loading and 
loop control operations in parallel with the basic floating-point calculations. The examples differ 
in their approaches to memory access and cache usage. To eliminate needless complexity, the 
examples require that the M dimension be a multiple of eight and that the B matrix be stored in 
memory by column instead of by row. Data is fetched 32 bytes beyond the higher-address end of 
both matrices. In real applications, programmers should ensure that no page protection faults 
occur due to these accesses. 

9-8 



inter PROGRAMMING EXAMPLES 

II SINGLE-PRECISION VECTOR SUM 
II input: r16 - vector address 
II r17 - vector size (must be > 5) 
II output: f16 - sum of vector elements 
spvsum: : 

fld.d 
mov 

d.pfadd.ss 
adds 

d. pfadd. ss 
bla 

d. pfadd. ss 
fld.d 

loopl: : 

rO(r16), 
-2, 

f20 II Load first two elements 
r2l II Loop decrement for bla 

. II Initiate entry into dual-instruction mode 
fa, fa, fa II Clear adder pipe (1) 
-6, r17, r17 II Decrement size by 6 

II Enter into dual-instruction mode 
fa, fa, fa II Clear adder pipe (2) 
r2l, r17, loopl II Initialize LCC 
fa, fa, fa II Clear adder pipe (3) 
8(r16)++, f22 II Load 3rd and 4th elements 

d.pfadd.ss f20, f30, f30 II Add f20 to pipeline 
bla r2l, r17, loop2 II If more, go to loop2 after 

d.pfadd.ss f2l, f3l, f3l II adding f2l to pipeline and 
fld.d 8(r16)++, f20 II loading next f20:f2l 
II If we reach this point, at least one element remains 
II to be loaded. r17 is either -4 or -3. 
II f20, f21, f22, and f23 still contain vector elements. 
II Add f20 and f22 to the pipeline, too. 

d.pfadd.ss f20, f30, f30 
br sumup 

d.pfadd.ss f2l, 
nop 

loop2: : 

f3l, 
II Exit loop after adding 

f3l II f2l to the pipeline 

d.pfadd.ss f22, f30, f30 II Add f22 to pipeline 
bla r2l, r17, loopl II If more, go to loopl after 

d.pfadd.ss f23, f3l, f3l II adding f23 to pipeline and 
fld.d 8(r16)++, f22 II loading next f22:f23 
II If we reach this point, at least one element remains 
II to be loaded. r17 is either -4 or -3. 
II f20, f21, f22, and f23 still contain vector elements. 
II Add f20 and f2l to the pipeline, too. 

d.pfadd.ss f20, f30, f30 
nop 

d.pfadd.ss 
nop 

f2l, f3l, f3l 

sumup: : II Initiate exit from dual mode 
pfadd.ss f22, f30, f30 II Still in dual mode 

mov -4, r2l 
pfadd.ss f23, f3l, f3l II Last dual-mode pair 

bte r2l, r17, done II If there is one more 
fld.l 8(r16)++, f20 II element, load it and 
pfadd.ss f20, f30, f30 II add to pipeline 
II Intermediate results are sitting in the adder pipeline. 
II Let Al:A2:A3 represent the current pipeline contents 

done: : 
pfadd. ss 
pfadd.ss 
pfadd. ss 
pfadd.ss 
pfadd. ss 
fadd.5s 

fa, 
f30, 
fa, 
fa, 
fa, 
f30, 

fa, 
f3l, 
fa, 
fa, 
fa, 
f3l, 

f30 
f3l 
f30 
fa 
f3l 
f16 

II 0:Al:A2 
II A2+A3:0:Al 
II 0:A2+A3:0 
II 0:0:A2+A3 

f30=A3 
f3l=A2 
F30=Al 

II 0:0:0 F3l=A2+A3 
II f16 = Al+A2+A3 

Example 9-11. Dual-Instruction Mode 

9-9 



PROGRAMMING EXAMPLES 

• Example 9-12 depends solely on cached loads. 
• Example 9-13 depends on a mix of cached and pipelined loads. 

Example 9-12 uses the fld instruction for all loads, which places all elements of both matrices A 
and B in the cache. This approach is ideal for small matrices. Accesses to all elements (after the 
first access to each) retrieve elements from the cache at the rate of one per clock. Using fld.q 
instructions to retrieve four elements at a time, it is possible to overlap all data access as well as 
loop control with m12apm instructions in the inner loop. 

Note, however, that Example 9-12 is "cache bound"; i.e., if the combined size of the two 
matrices is greater than that of the cache, cache misses will occur, degrading perfonnance. The 
larger the matrices, the more the misses that will occur. 

II MATRIX MULTIPLY, C = A *'B, CACHED LOADS ONLY 

II Registers loaded by calling routine 
II r16 - pointer into A, stored in memory by rows 
II r17 - pointer into B, stored in memory by columns 
II r18 - pointer into C, stored in memory by rows 
II r19 - L, the number of rows in A 
II r20 - M, the number of columns in A and rows in B 
II r2l - N, the number of columns in B 

II Registers used locally 
II r28 - rowlcolumn counter decremented by bla for loop control 
II r27 - decrementor for rowlcolumn pointers 
/1 r26 - counter of rows in A 
II r25 - counter of columns in B 
II r24 - temporary pointer into B 
II r23 - number of bytes in row of A or column of B 
II f4 .. fll - matrix A row values 
II f12 .. f19 - matrix B column values 
II f20 .. f22 - temporary results 

shl 
adds 
adds 
adds 
d.fiadd.dd 
adds 
d.fnop 

bla 
d.fnop 

subs 
start row:: 

d.pI'mul.ss 
mov 

d. pfmul. ss 
adds 

d.pfmul.ss 
fld.q 

d.pfadd.ss 
fld.q 

d.pfadd.ss 
adds 

d.pfadd.ss 
fld.q 

2,r20,r23 
..:8,rO,r27 
-8,r20,r28 
-4,r18,r18 
fO,fO,fO 
-1,r19,r26 

r27,r28,start_row 

r16,r23,r16 
II 

fO,fO,fO 
r17,r24 

fO,fO,fO 
r23,r16,r16 

fO,fO,fO 
l6(r24),f16 

fO,fO,fO 
l6(r16),f8 

fO,fO,fO 
-1,r2l,r2S 

fO,fO,fO 
0(r16),f4 

II Number of bytes in M entries 
II Set decrementor for bla 
II Initialize rowlcolumn counter 
II Start C index one entry low 
II Initiate dual-instruction mode 
II Make row counter zero relative 
II First dual-mode pair 
II Initialize LCC 
II II Start pointer to A one row low 

Executed once per row of A 
II II Point to first col of B 
II II Point to next row of A 
II II Load 4 entries of B 
II II Load 4 entries of A 
II II Initialize column counter 
II II Load 4 entries of A 

Example 9-12. Matrix Multiply, Cached Loads Only (sheet 1 of 2) 

9-10 



intJ PROGRAMMING EXAMPLES 

inner loop:: II Process eight entries of row of A with eight of col of B 
d.mI2apm.ss f8, f16,f20 II 

f1d.q 0(r24),f12 II Load 4 entries of B 
d.m12apm.ss f9, f17,f20 II 

adds 32,r16,r16 II Bump pointer to A by 8 entries 
d.m12apm.ss f10,f18,f20 II 

adds 32,r24,r24 II Bump pointer to B by 8 entries 
d.m12apm.ss f11,f19,f20 II 

f1d.q 16(r24),f16 II Load 4 entries of B 
d.m12apm.ss f4, f12,f20 II 

f1d.q 16(r16),f8 II Load 4 entries of A 
d.m12apm.ss fS, f13,f20 II 

nop II 
d.m12apm.ss f6, f14,f20 II 

b1a r27,r28,inner loop II Loop until end of rowlco1umn 
d.m12apm.ss f7, f1S~f2l II 

f1d.q 0(r16),f4 II Load 4 entries of A 
II End Inner Loop. End of rowlco1umn 

d.m12apm.ss fO, fO, f22 II 
subs r16,r23,r16 II Set A pointer back to beginning of row 

d.m12apm.ss fO, fO, f20 II 
adds -8,r20,r28 II Reinitia1ize rowlco1umn counter 

d.m12apm.ss fO, fO, f21 II 
n~ V 

d.pfadd.ss fO, fO, f22 II 
bla r27,r28,inner loop II Won't branch; initializes LCC 

d.pfadd.ss fO, fO, f20 II 
fld.q l6(r16), f8 II Load 4 entries of A 

d.pfadd.ss fO, fO, f21 II 
f1d.q 16(r24), f16 II Load 4 entries of B 

d.fadd.ss f20,f22,f22 II 
fld.q 0(r16), f4 II Load 4 entries of A 

d.fadd.ss f21,f22,f22 II 
adds -1,r2S,r25 II Decrement column counter 

d.pfadd.ss fO, fO, fO II 
fst.1 f22, 4(r18)++ II Store rowlco1umn product in C 

II Continue with next column of B? 
d.pfadd.ss fO, fO, fO II 

bnc.t inner loop II CC controlled by prior adds 
d.pfadd.ss fO, fa, fO II 

nop II 
II Continue with next row of A? 

d.fnop 
xor 

d.fnop 
bnc.t 

d.fnop 
adds 

fnop 
nop 

fnop 
nop 

r26,rO,rO 

start row 

-1,r26,r26 

II II Is row counter zero? 
II 
II 
II 
II 
II 
II 
II 
II 

Taken if row counter not zero 

Decrement row counter 
Initiate exit from dual mode 

Last dual-mode pair 
End 

Example 9-12. Matrix Multiply, Cached Loads Only (sheet 2 of 2) 

9-11 



PROGRAMMING EXAMPLES 

II MATRIX MULTIPLY, C = A * B, CACHED AND PIPELINED LOADS MIXED 

II Registers loaded by calling routine 
II r16 - pointer into A, stored in memory by rows 
II r17 - pointer into B, stored in memory by columns 
II r18 - pointer into C, stored in memory by rows 
II r19 - L, the number of rows in A 
II r20 - M, the number of columns in A and rows in B 
II r21 - N, the number of columns in B 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Registers used locally 
r29 - temporary pointer into A 
r28 - rowlcolumn counter decremented by bla for loop control 
r27 - decrementor for rowlcolumn pointers 
r26 - counter of rows in A 
r25 - counter of columns in B 
r24 - temporary pointer into B 
r23 - number of bytes in row of A or column of B 
f4 .. fll - matrix A row values 
f12 .. f19 - matrix B column values 
f20 .. f22 - temporary results 

mov 
shl 
adds 
adds 
d.fiadd.dd 
adds 
d.fnop 

r17,r24 
2,r20,r23 
-8,rO,r27 
-8,r20,r28 
fO,fO,fO 
-4,r18,r18 

-1,r19,r26 

II 
II 
II 
II 
II 
II 
II 
II 
II 

Pointer to B 
Number of bytes in M entries 
Set decrementor for bla 
Initialize rowlcolumn counter 
Initiate dual-instruction mode 
Start C index one entry low 
First dual-mode pair 
Make row counter zero relative adds 

d.fnop 
bla 

d.fnop 
r27,r28,start_row II Initialize LCC 

mov 
start row:: 

d.pImul.ss 
pfld.d 

d.pfmul.ss 
pfld.d 

d. pfmul. ss 
pfld.d 

d.pfadd.ss 
fld.q 

d. pfadd. ss 
pfld.d 

d.pfadd.ss 
adds 

d.fnop 
pfld.d 

inner loop:: I I 
d.mI2apm.ss 

fld.q 
d.m12apm.ss 

pfld.d 
d.m12apm.ss 

pfld.d 

II 
r16,r29 II Pointer to A 

II Executed once per row of A 
fO,fO,fO 

O(r24),fO 
fO,fO,fO 

8(r24)++,fO 
fO,fO,fO 

8(r24)++,fO 
fO,fO,fO 

O(r29),f4 
fO,fO,fO 

8(r24)++,f12 
fO,fO,fO 

-1,r21,r25 

II II Load 2 entries of B into load pipe 
II II Load 2 entries of B into load pipe 
II II Load 2 entries of B into load pipe 
II II Load 4 entries of A 
II II Load 2 entries of B 
II II Initialize column counter 
II 

8(r24)++,f14 II Load 2 entries of B 
Process eight entries from row of A with eight from col of B 
f4, f12,fO II 

16(r29)++,f8 II Load 4 entries of A 
f5, f13,fO II 

8(r24)++,f16 II Load 2 entries of B 
f6, f14,fO II 

8(r24)++,f18 II Load 2 entries of B 

Example 9-13. Matrix Multiply, Cached and Pipelined Loads (sheet 1 of 2) 

9-12 



PROGRAMMING EXAMPLES 

d.m12apm.ss f7, flS,fO II 
fld.q 16(r29)++,f4 II Load 4 entries of A 

d.m12apm.ss f8, f16,fO II 
n~ V 

d.m12apm.ss f9, f17,fO II 
pfld.d 8(r24)++,f12 II Load 2 entries of B 

d.m12apm.ss flO,f18,fO II 
bla r27,r28,inner loop II Loop until end of rowlcolumn 

d.m12apm.ss fll,f19,fO II 
pfld.d 8(r24)++,f14 II Load 2 entries of B 

II End Inner Loop. End of rowlcolumn 
d.m12apm.ss fa, fa, fa II 
~p V 

d.m12apm.ss fa, fa, fa II 
adds -8,r20,r28 II Reinitialize rowlcolumn counter 

d.m12apm.ss fa, fa, fa II 
mov r16,r29 II Set A pointer back to beginning of row 

d.pfadd.ss fa, fa, f22 II 
fld.q O(r29), f4 II Load first 4 entries of row of A 

d.pfadd.ss fa, fa, f20 II 
bla r27,r28,inner loop II Won't branch; initializes LCe 

d.pfadd.ss fa, fa, f21 II 
n~ V 

d.fadd.ss f20,f22,f22 II 
nop 

d.fadd.ss f21,f22,f22 
adds -1,r2S,r2S 

d.pfadd.ss fa, fa, fa 
fst.l f22, 4(r18)++ 

II Continue with next column of 
d.pfadd.ss fa, fa, fa 

bnc.t inner loop 
d.pfadd.ss fa, fO,-fO 

nop 
II End of all columns of B 

d.fnop 
mov 

d.fnop 
adds 

d.fnop 

r17,r24 

r16,r23,r16 

II 
II II Decrement column counter 
II II Store rowlcolumn product in e 
B? 
II II CC controlled by prior adds 
II 
II 
II II Point to first col of B 
II II Bump pointer to A by one row 
II 

mov r16,r29 II Set A index to beginning of next row 
II Continue with next row of A? 

d.fnop 
xor 

d.fnop 
bnc.t 

d.fnop 
adds 

fnop 
nop 

fnop 
nop 

r26,rO,rO 

start row 

-1,r26,r26 

II II Is row counter zero? 
II 
II 
II 
II 
II 
II 
II 
II 

Taken if row counter not zero 

Decrement row counter 
Initiate exit from dual mode 

Last dual-mode pair 
End 

Example 9-13. Matrix Multiply, Cached and Pipelined Loads (sheet 2 of 2) 

9-13 



inter PROGRAMMING MODEL 

Example 9-13 uses fld for all the elements of each row of A, and uses pfld to pass all columns of 
B against each row of A. This example is less cache bound, because only rows of A are placed 
in the cache. More load instructions are required, because a pfld can load at most two single­
precision operands. Still, with pipelined memory cycles, it remains possible to overlap the loading 
of the eight items- from matrix A, the eight items from matrix B, and the loop control with the 
eight m12apm instructions in the inner loop. 

The strategy of Example 9-13 is suitable for larger matrices than the strategy in Example 9-12 
because, even in the extreme case where only one row of A fits in the cache, cache misses occur 
only the first time each row is processed. However, if dimension M is so great that not even one 
row of A fits entirely in the cache, cache misses will still occur. On the other side, for small 
matrices, Example 9-13 may not perform as well as Example 9-12, because, even when there is 
sufficient space in the cache for elements of matrix B, Example 9-13 does not use it. 

9-14 



Instruction Set Summary A 





Key to abbreviations: 

src/ 

srcl ni 

src2 

rdest 

ireg 

etr/reg 

#COl1st 

mem .x( address) 

.p 

.w 

.x 

.y 

.z 

Appendix A 
Instruction Set Summary 

A register (integer or floating-point depending on class of instuction) or a 
16-bit immediate constant or address offset. The immediate value is zero­
extended for logical operations and is sign-extended for add and subtract 
operations (including addu and subu) and for all addressing calculations. 

Same as src/ except that no immediate constant or address offset is 
permitted. 

A register (integer or floating-point depending on class of instruction). 

A register (integer or floating-point depending on class of instruction). 

A floating-point register. 

An integer register. 

One of the control registers fir, psr, epsr, dirbase, db, or fsr. 

A 16-bit immediate constant or address offset that the i860 Microprocessor 
sign-extends to 32 bits when computing the effective address. 

The contents of the memory location indicated by address with a size of x . 

Precision specification. Unless otherwise specified, floating-point operations 
accept single- or double-precision source operands and produce a result of 
equal or greater precision. Both input operands must have the same 
precision. The source and result precision are specified by a two-letter 
suffix to the mne!11onic of the operation, as shown in the table below. 

Suffix Sou rce Precision Result Precision 

.ss single single 

.sd single double 

.dd double double 

.ss (32 bits), or .dd (64 bits) 

.b (8 bits),.s (16 bits), or.l (32 bits) 

.I (32 bits), .d (64 bits), or.q (128 bits) 

.I (32 bits), or.d (64 bits) 

A-1 



inter INSTRUCTION SET SUMMARY 

lbro}], A signed, 26-bit, immediate, relative branch offset 

sbroff' A signed, 16-bit, immediate, relative branch offset 

brx 

srcls 

A function that computes the target address of a branch by shifting the 
offset (either Ibro}]' or sbrqfj) left by two bits, sign-extending it to 32 bits, 
and adding the result to the address of the current control-transfer instruction 
plus four. 

An integer register or a 5-bit immediate constant that is zero-extended to 
32 bits. 

comp2 A function that returns the two's complement of its argument. 

PM The pixel mask, which is considered as an array of eight bits PM[O] .. PM[7], 
where PM[O] is the least-significant bit. 

Instruction Definitions in Alphabetical Order 

adds src I, src2, rdest ..................................... " Add Signed 
rdest ...... srcl + src2 
OF ...... (bit 31 carry =1= bit 30 carry) 
CC set if src2 < comp2(srcl) (signed) 
CC clear if src2 ~ comp2 (src I) (signed) 

addu srcl, src2, rdest ..................................... Add Unsigned 
rdest ...... srcl + src2 
OF ...... bit 31 carry 
CC ...... bit 31 carry 

and srcl, src2, rdest ...................................... Logical AND 
rdest ...... srcl and src2 
CC set if result is zero, cleared otherwise 

andh #const, src2, rdest . .............................. Logical AND High 
rdest ...... (#const shifted left 16 bits) and src2 
CC set if result is zero, cleared otherwise 

andnot srcl, src2, rdest ................................. Logical AND NOT 
rdest ...... not srcl and src2 
CC set if result is zero, cleared otherwise 

andnoth #const, src2, rdest ......................... Logical AND NOT High 

be 

rdest ...... not (#const shifted left 16 bits) and src2 
CC set if result is zero, cleared otherwise 

IF 
THEN 
FI 

Ibr(d}, ............................................. Branch on CC 
CC = 1 
continue execution at brx(lb/"(~fJ) 

A-2 



inter INSTRUCTION SET SUMMARY 

bc.t 
IF 
THEN 

ELSE 
PI 

Ibr(~fl . ...................................... Branch on CC, Taken 
CC = 1 
execute one more sequential instruction 
continue execution at bl'x( IbrqffJ 
skip next sequential instruction 

bla sl'c/ni, sl'c2, sbn?ff' . ........................ Branch on LCC and Add 

bnc 

bnc.t 

LCC-temp clear if sI'c2 < comp2(sl'cJni) (signed) 
LCC-temp set if SI'('2 ~ comp2(srcJni) (signed) 

.\'1'('2 .- Sl'cJ ni + sl'('2 
Execute one more sequential instruction 
IF LCC 
THEN LCC .- LCC-temp 

continue execution at b}'x(sbf(~ff) 
ELSE LCC .- LCC-temp 
FI 

IF 
THEN 
FI 

IF 
THEN 

ELSE 
FI 

Ibl'(df ...................................... , ., Branch on Not CC 
CC = 0 
continue execution at brx( Ibr(?ffJ 

Ibl'(dl . . , ................................ Branch on Not CC, Taken 
CC = 0 
execute one more sequential instruction 
continue execution at brx( Ibn?ffJ 
skip next sequential instruction 

br Ibl'(~ff' . ............................... Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at bl'x( Ibr(~ffJ. 

bri [SI'C / ni] ............................ Branch Indirect Unconditionally 
Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 
IF DS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF DS is set and DIM is set 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 
THEN enter dual-instruction mode 

for next two instructions 

A-3 



inter INSTRUCTION SET SUMMARY 

bte 

btne 

FI 
FI 

FI 

ELSE 

FI 

enter single-instruction mode 
for next two instructions 

Continue execution at address in srcl ni 

IF 
THEN 
FI 

IF 
THEN 
FI 

(The original contents of sre I ni is used even if the next instruction 
modifiessrclni. Does not trap ifsrclni is misaligned.) 

srcl S, sre2, sbrqfl ............................... " Branch If Equal 
srel s = sre2 
continue execution at brx(sbrqjj) 

srcls, sre2, sbrqjj' .............................. Branch If Not Equal 
srels =f:. sre2 
continue execution at brx(sbrqjj) 

call lbrqjj· . ............................................ Subroutine Call 
rl +- address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at brx(lbrqjj) 

calli [srcl niJ ................................... Indirect Subroutine Call 
rl +- address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at address in sre I ni 

(The original contents of sre J l1i is used even if the next instruction 
modifies srcll1i. Does not trap if srclni is misaligned.) 

fadd.p srcl, sre2, rdest ................................. Floating-Point Add 
rdest +- srcl + src2 

faddp srcl, sre2, rdest .............................. Add with Pixel Merge 
rdest +- sre I + sre2 
Shift and load MERGE register as defined in Table A-I 

Table A-1. FADDP MERGE Update 

Pixel 
Field Loaded From 

Right Shift 
Size 

Result into MERGE 
Amount 

(from PS) (Field Size) 

8 63 .. 56, 47 .. 40, 31..24, 15 .. 8 8 

16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6 

32 63 .. 56, 31 .. 24 8 

A-4 



inter INSTRUCTION SET SUMMARY 

faddz .'Ire I , sre2, rdest ................................. Add with Z Merge 
rdest .- sre I + sre2 
Shift MERGE right 16 and load fields 31..16 and 63 . .48 

fiadd.w srcl, sre2, rdest .................................. Long-Integer Add 
rdest .- sre I + sre2 

fisub.w srcJ, sre2, rdest ............................. Long-Integer Subtract 
rdest .- src I - src2 

fix.p srcJ, rdest ....................... Floating-Point to Integer Conversion 
rdest .- 64-bit value with low-order 32 bits equal to integer part of srcJ rounded 

fld.y srel (5re2), f;'eg ......................... Floating-Point Load (Normal) 

fld.y srel (sre2)+ + ,freg ............... Floating-Point Load (Autoincrement) 
freg .- mem.y (srel + sre2) 
IF auto increment 
THEN sre2 .- srel + sre2 
FI 

flush #eonst(sre2) ................................. Cache Flush (Normal) 
flush #eonst(sre2)++ ....................... Cache Flush (Autoincrement) 

Replace block in data cache with address (#eonst + sr(2). 
Contents of block undefined. 
IF auto increment 
THEN sre2 .- #eonst + sre2 
FI 

fmlow.p sre I, sre2, rdest ......................... Floating-Point Multiply Low 
rdest .- low-order 53 bits of sre 1 mantissa X sre2 mantissa 
rdest bit 53 .- most significant bit of mantissa 

fmov.p srel, rdest . ............................ Floating-P()int Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss sre I, rdest 
fmov.dd sre I, rdest 
fmov.sd sre 1, rdest 
fmov.ds sre I, rdest 

fmul.p sre 1, sre2, rdest 
rdest .- srcJ x sre2 

= fiadd.ss sre 1 , fO, rdest 
= fiadd.dd sre 1 , fO, rdest 
= fadd.sd srcJ, fO, rdest 
= fadd.ds srcJ , fO, rdest 

Floatmg-Point Multiply 

fnop ...................................... Floating-Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, rO, rO 

form srcJ, rdest . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. OR with MERGE Register 
rdest .- sre 1 OR MERGE 
MERGE'- 0 

A-5 



inter INSTRUCTION SET SUMMARY 

frcp.p src2, rdest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Floating-Point Reciprocal 
rdest ~ 1 / src2 with maximum mantissa error < 2-7 

frsqr.p src2, rdest .................... Floating-Point Reciprocal Square Root 
rdest ~ 1 / V src2 with maximum mantissa error < 2- 7 

fst.y freg, srcJ (src2) ......................... Floating-Point Store (Normal) 
fst.y freg, srcJ (src2)+ + .................... Floating-Point (Autoincrement) 

mem.y (src2 + srcl) ~ freg 
IF autoincrement 
THEN src2 ~ src 1 + src2 
PI 

fsub.p srcJ, src2, rdest ............................ Floating-Point Subtract 
rdest ~ srcJ - src2 

ftrunc.p src 1, rdest ....................... Floating-Point to Integer Conversion 
rdest .... 64-bit value with low-order 32 bits equal to integer part of src 1 

fxfr srcJ, ireg .......................... Transfer F-P to Integer Register 
ireg ~ srcJ 

fzchkl srcJ, src2, rdest ............................. 32-Bit Z-Buffer Check 
Consider srcJ , src2, and rdest as arrays of two 32-bit 

fields srcJ(O) .. srcJ(l), src2(0) .. src2(l), and rdest(O) .. rdest(l) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ src2(i) ~ srcJ(i) (unsigned) 
rdest(i) ~ smaller of src2(i) and srcJ (i) 

OD 
MERGE~O 

fzchks srcJ, src2, rdest ............................. 16-Bit Z-Buffer Check 
Consider src 1 , src2, and rdest as arrays of four 16-bit 

fields src 1 (0) . . src 1 (3), src 2 (0) . . src2 (3), and rde st(O) .. rde st(3) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] ~ src2 (i) ~ srcJ (i) (unsigned) 
rdest(i) ~ smaller of src2 (i) and src 1 (i) 

OD 
MERGE~O 

intovr ................................ Software Trap on Integer Overflow 
If OF = 1, generate trap with IT set in psr 

A-6 



intJ INSTRUCTION SET SUMMARY 

ixfr srclni, freg ......................... Transfer Integer to F-P Register 
freg .- srclni 

Id.c ctrlreg, rdest ............................ Load from Control Register 
rdest ~ etrlreg 

Id.x srcl (src2), rdest ...................................... Load Integer 
rdest .- mem.x (srcl + src2) 

lock ....................................... Begin Interlocked Sequence 
Set BL in dirbase. The next load or store that misses the cache locks the bus. 
Disable interrupts until the bus is unlocked. 

mov src2, rdest .................................. Register-Register Move 

nop 

Assembler pseudo-operation 
mov src2, rdest = shl rO, src2, rdest 

Assembler pseudo-operation 
nop = shl rO, rO, rO 

Core-Unit No Operation 

or srcl, src2, rdest ........................................ Logical OR 
rdest .- src 1 OR src2 
CC set if result is zero, cleared otherwise 

orh #const, src2, rdest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Logical OR high 
rdest .- (#const shifted left 16 bits) OR src2 
CC set if result is zero, cleared otherwise 

pfadd.p src 1, src2, rdest ........................ Pipelined Floating-Point Add 
rdest ~ last A-stage result 
Advance A pipeline one stage 
A pipeline first stage .- src 1 + src2 

pfaddp srcl, src2, rdest ...................... Pipelined Add with Pixel Merge 
rdest .- last-stage I-result 
last-stage I-result .- src 1 + src2 
Shift and load MERGE register from src 1 + src2 as defined in Table A-I 

pfaddz srcJ, src2, rdest ......................... Pipelined Add with Z Merge 
rdest .- last-stage I-result 
last-stage I-result .- srcJ + src2 
Shift MERGE right 16 and load fields 31..16 and 63 . .48 from srcJ + src2 

pfam.p src 1, src2, rdest ............ Pipelined Floating-Point Add and Multiply 
rdest .- last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ...... A-opl + A-op2 
M pipeline first stage .- M -op 1 x M -op2 

A-7 



inter INSTRUCTION SET SUMMARY 

pfeq.p srcJ, src2, rdest .............. Pipelined Floating-Point Equal Compare 
rdest .- last A-stage result 
CC set if src 1 = src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p srcJ, src2, rdest ....... Pipelined Floating-Point Greater-Than Compare 
(Assembler clears R-bit of instruction) 
rdest .- last A-stage result 
CC set if src 1 > src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w src 1, src2, rdest ......................... Pipelined Long-Integer Add 
rdest .- last-stage I-result 
last-stage I-result .- srcJ + src2 

pfisub.w srcJ, src2, rdest ..................... . Pipelined Long-Integer Subtract 
rdest .- last-stage I-result 
last-stage I-result .- srcJ - src2 

pfix.p src 1, rdest ............. Pipelined Floating-Point to Integer Conversion 
rdest .- last A-stage result 
Advance A pipeline one stage 
A pipeline first stage .- 64-bit value with low-order 32 bits 

equal to integer part of src 1 rounded 

Pipelined Floating-Point Load 
pfld.z srcJ(src2),jreg .......................................... (Normal) 
pfld.z srcJ (src2)+ + ,jreg ................................ (Autoincrement) 

jreg .- mem.z (third previous pfld's (srcJ + src2)) 
(where .z is precision of third previous pfld.z) 

IF auto increment 
THEN src2 .- src 1 + src2 
FI 

pfle.p srcJ, src2, rdest ........... Pipelined F-P Less-Than or Equal Compare 
Assembler pseudo-operation, identical to pfgt.p except that 

assembler sets R-bit of instruction. 
rdest .- last A-stage result 
CC clear if src 1 ~ src2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfmam.p srcl, src2, rdest ............ Pipelined Floating-Point Add and Multiply 
rdest .- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage .- A-opl + A-op2 
M pipeline first stage .- M -op 1 x M -op2 

A-a 



inter INSTRUCTION SET SUMMARY 

pfmov.p srel, rdest .................... Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss srel, rdest = pfiadd.ss srel, fO, rdest 
pfmov.dd srel, rdest = pfiadd.dd srel, to, rdest 
pfmov.sd srel, rdest = pfadd.sd srel, fO, rdest 
pfmov.ds srel, rdest = pfadd.ds srel , fO, rdest 

pfmsm.p srel, src2, rdest ......... Pipelined Floating-Point Subtract and Multiply 
rdest +- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op 1 - A-op2 
M pipeline first stage +- M-opl x M-op2 

pfmul.p srel, sre2, rdest .................... . Pipelined Floating-Point Multiply 
rdest +- last M-stage result 
Advance M pipeline one stage 
M pipeline first stage +- srel X sre2 

pfmul3.p .'Ire 1, sre2, rdest . . . . . . . . . . . . . . . . . . . . .. Three-Stage Pipelined Multiply 
rdest +- last M-stage result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage +- srel X sre2 

pform srel, rdest ......................... Pipelined OR to MERGE Register 
rdest +- last-stage I-result 
last-stage I-result +- srel OR MERGE 
MERGE +- 0 

pfsm.p srel, sre2, rdest ......... Pipelined Floating-Point Subtract and Multiply 
rdest +- last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op 1 - A-op2 
M pipeline first stage +- M-opl x M-op2 

pfsub.p srel, sre2, rdest .................... . Pipelined Floating-Point Subtract 
rdest +- last A-stage result 
Advance A pipeline one stage 
A pipeline first stage +- sre I - sre2 

pftrunc.p srel, rdest ............. Pipelined Floating-Point to Integer Conversion 
rdest +- last A-stage result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of srel 

pfzchkl srel, src2, rdest ..................... Pipelined 32-Bit Z-Buffer Check 
Consider srel , sre2, and rdest as arrays of two 32-bit 

fields srel(O) .. srcl(l), src2(O) .. sre2(l), and rdest(O) .. rdest(l) 
where zero denotes the least-significant field. 

A-9 



inter INSTRUCTION SET SUMMARY 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] +-src2(i) ~. srcJ (i) (unsigned) 
rdcst(i) +- last-stage I-result 
last-stage I-result +- smaller of src2 (i) and srcJ (i) 

OD 
MERGE +- 0 

pfzehks srcl, sr('2, rdcst ..................... Pipelined 16-Bit Z-Buffer Check 
ConsIder srcl , src2, and rdcst as arrays of four 16-bit 

fields srel (O) .. srcJ (3), sre2(0) .. sre2(3), and rdest(0) .. rdest(3) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] +- sre2(i) ~ srcJ (i) (unsigned) 
rdest +- last-stage I-result 
last-stage I-result(i) +- smaller of sre2(i) and srcl (i) 

OD 
MERGE +- 0 

pst.d freg, #eonst(src2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Pixel Store 
pst.d freg, #eonst(sre2)+ + ...................... Pixel Store Autoincrement 

Pixels enabled by PM in mem.d (src2 + #const) +-freg 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement THEN sre2 +- #const + src2 FI 

shl srcJ, src2, rdest ......................................... Shift Left 
rdest +- sre2 shifted left by srcJ bits 

shr srcJ, src2, rdest ....................................... Shift Right 
SC (in psr) +- srcJ 
rdest +- src2 shifted right by srcJ bits 

shra srcJ, sre2, rdest ............................. Shift Right Arithmetic 
rdest +- sre2 arithmetically shifted right by src 1 bits 

shrd srclni, src2, rdest ............................... Shift Right Double 
rdest +- low-order 32 bits of srcJ ni:src2 shifted right by SC bits 

st.e srcJ ni, etr/reg . ............................. Store to Control Register 
etr/reg +- srcJ ni 

st.X srcJni, #const(src2) .................................. Store Integer 
mem.x (sre2 + #const) +- srcJni 

subs srcJ, src2, rdest .................................... Subtract Signed 
rdest +- srcJ - src2 
OF +- (bit 31 carry =1= bit 30 carry) 

A-10 



INSTRUCTION SET SUMMARY 

CC set if sre2 > srcl (signed) 
CC clear if src2 ~ sre I (signed) 

subu sre I, sre2, rdest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Subtract Unsigned 
rdest +- srcI - src2 
OF +- NOT (bit 31 carry) 
CC +- bit 31 carry 
(i.e. CC set if src2 ~ srcl (unsigned) 

CC clear if src2 > src I (unsigned» 

trap srcl, sre2, rdest . .................................... Software Trap 
Generate trap with IT set in psr 

unlock ................................ '.' ...... End Interlocked Sequence 
Clear BL in dirbase. The next load or store that misses the cache unlocks the bus. 

xor srel, sre2, rdest ............................... Logical Exclusive OR 
rdest +- .'Ire I XOR sre2 
CC set if result is zero, cleared otherwise 

xorh #eonst, sre2, rdest ....................... Logical Exclusive OR High 
rdest +- (#const shifted left 16 bits) XOR src2 
CC set if result is zero, cleared otherwise 

A-11 





Instruction Format 
and Encoding 

B 





Appendix B 
Instruction Format and Encoding 

All instructions are 32 bits long and begin on a four-byte boundary. Among the core instructions, 
there are two general formats: REG-format and CTRL-format. Within the REG-format are several 
variations. 

REG-Format Instructions 

General Format 

31 25 20 15 10 o 

nulillmmedlateloffset 

16-Bit Immediate Variant (except bte and btne) 

31 25 20 15 o 

OPCODE 1 SRC2 DEST I IMMEDIATE I CONSTANT OR ADDRESS OFFSET 

st, bla, bte and btne 

31 25 20 15 10 o 

OFFSET LOW 

bte and btne with S-Bit Immediate 

31 25 20 15 10 o 

OFFSET LOW 

8-1 



inter INSTRUCTION FORMAT AND ENCODING 

The src2 field selects one of the 32 integer registers (most instructions) or one of the control 
registers (st.e and Id.e). Dest selects one of the 32 integer registers (most instructions) or floating­
point registers (fld, fst, pfld, pst, ixfr). For instructions where srci is optionally an immediate 
constant or address offset, bit 26 of the opcode (I-bit) indicates whether src I is immediate. If bit 
26 is clear, an integer register is used; if bit 26 is set, srci is contained in the low-order 16 bits, 
except for bte and btne instructions. For bte and btne, the five-bit immediate constant is contained 
in the src I field. For st, bte, btne, and bla, the upper five bits of the offset or broffset are 
contained in the dest field instead of src I , and the lower 11 bits of offset are the lower 11 bits of 
the instruction. 

For Id and st, bits 28 and zero determine operand size as follows: 

Bit 28 Bit 0 Operand Size 

0 0 8-bits 
0 1 8-bits 
1 0 16-bits 
1 1 32-bits 

When srci is immediate and bit 28 is set, bit zero of the immediate value is forced to zero. 

Forfld, fst, pfld, pst, and flush, bit 0 selects auto increment addressing if set. Bits one and two 
select the operand size as follows: 

Bit 1 Bit 2 Operand Size 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

When src J is immediate, bits zero and one of the immediate value are forced to zero to maintain 
alignment. When bit one of the immediate value is clear, bit two is also forced to zero. 

B-2 



inter INSTRUCTION FORMAT AND ENCODING 

REG-Format Opcodes 

Id.x Load Integer 
st.x Store Integer 
ixfr Integer to F-P Reg Transfer 

(reserved) 
fld.x, fst.x Load/Store F-P 
flush Flush 
pst.d Pixel Store 
Id.c, st.c Load/Store Control Register 
bri Branch Indirect 
trap Trap 

(Escape for F-P Unit) 
(Escape for Core Unit) 

bte, btne Branch Equal or Not Equal 
pfld.y Pipelined F-P Load 

(CTRL-Format Instructions) 
addu, -s, subu, -s, Add/Subtract 
shl, shr 
shrd 
bla 
shra 
and(h) 
andnot(h) 
or(h) 
xor(h) 

Logical Shift 
Double Shift 
Branch LCC Set and Add 
Arithmetic Shift 
AND 
ANDNOT 
OR 
XOR 
(reserved) 

L Integer Length 
o -8 bits 
I -16 or 32 bits (selected by bit 0) 

LS Load/Store 
o -Load 
I -Store 

SO Signed/Ordinal 
o -Ordinal 
I -Signed 

H High 
o -and, or, andnot, xor 
I -andh, orh, andnoth, xorh 

Core Escape Instructions 

31 26 15 

010011 reserved 

8-3 

SRC1 

31 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 0 L 
0 0 L 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 1 
1 1 0 
1 1 x 
0 0 SO 
0 1 0 
0 1 1 
0 1 1 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
1 x x 

AS Add/Subtract 
o -Add 
I -Subtract 

LR Left/Right 
o -Left Shift 
I -Right Shift 

E Equal 

0 
1 
1 
1 
LS 
0 
1 
LS 
0 
0 
1 
1 
E 
0 
x 
AS 
LR 
0 
0 
1 
H 
H 
H 
H 
1 

o -Branch on Not Equal 
I -Branch on Equal 
Immediate 
o -src1 is register 
1 -src1 is immediate 

10 5 o 

reserved OPCODE 

26 

I 
1 
0 
0 
I 
1 
1 
0 
0 
1 
0 
1 
I 
I 
x 
I 
I 
0 
1 
I 
I 
I 
I 
I 
0 



intJ INSTRUCTION FORMAT AND ENCODING 

Core Escape Opcodes 

4 o 

(reserved) 0 0 0 0 0 
lock Begin Interlocked Sequence 0 0 0 0 1 
calli Indirect Subroutine Call 0 0 0 1 0 

(reserved) 0 0 0 1 1 
intovr Trap on Integer Overflow 0 0 1 0 0 

(reserved) 0 0 1 0 1 
(reserved) 0 0 1 1 0 

unlock End Interlocked Sequence 0 0 1 1 1 
(reserved) 0 1 x x x 
(reserved) 1 0 x x x 
(reserved) 1 1 x x x 

CTRL-Format Instructions 

31 28 25 o 

BROFFSET 

BROFFSET is a signed 26-bit relative branch offset. 

CTRL-Format Opcodes 
28 26 

br Branch Direct 0 1 0 
call Call 0 1 1 
bc(.t) Branch on CC Set 1 0 T 
bnc(.t) Branch on CC Clear 1 1 T 

T Taken 
o -be orbnc 
1 -be.t or bnc.t 

8-4 



inter INSTRUCTION FORMAT AND ENCODING 

Floating-Point Instruction Encoding 

31 25 20 15 7 0 

010010 SRC2 OEST SRCI IplOISIRI OPCOOE 

SRCI, SRC2-Source; one of 32 floating-point registers 
DEST -Destination register 

(instructions other than fxfr) one of 32 floating-point registers 
(fxfr) one of 32 integer registers 

P Pipe lining S Source Precision 
1 -Pipe lined instruction mode 1 -Double-precision source operands 
o -Scalar instruction mode 0 -Single-precision source operands 

D Dual-Instruction Mode R Result Precision 
I -Dual-instruction mode 1 -Double-precision result 
o -Single-instruction mode 0 -Single-precision result 

Floating-Point Opcodes 

pfam 
pfmam 
pfsm 
pfmsm 
(p)fmul 
fmlow 
frcp 
frsqr 
pfmul3.dd 
(p)fadd 
(p)fsub 
(p)fix 
pfgt/pfle** 
pfeq 
(p)ftrunc 
fxfr 
(p)fiadd 
(p)fisub 
(p)fzchkl 
(p)fzchks 
(p)faddp 
(p)faddz 
(p)form 

6 

Add and Multiply* 
0 0 0 Multiply with Add* 

Subtract and Multiply* 
0 0 1 Multiply with Subtract* 

Multiply 0 1 0 
Multiply Low 0 1 0 
Reciprocal 0 1 0 
Reciprocal Square Root 0 1 0 
3-Stage Pipelined Multiply 0 1 0 
Add 0 1 1 
Subtract 0 1 1 
Fix 0 1 1 
Greater Than 0 1 1 
Equal 0 1 1 
Truncate 0 1 1 
Transfer to Integer Register 1 0 0 
Long-Integer Add 1 0 0 
Long-Integer Subtract 1 0 0 
Z-Check Long 1 0 1 
Z -Check Short 1 0 1 
Add with Pixel Merge 1 0 1 
Add with Z Merge 1 0 1 
OR with MERGE Register 1 0 1 

*pfam and pfsm have P-bit set; pfmuladd and pfmulsub have P-bit clear. 
**pfgt has R bit cleared; pfle has R bit set. 

8-5 

DPC 

DPC 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 0 0 
0 0 0 
0 0 1 
0 1 0 
0 1 0 
1 0 1 
0 0 0 
1 0 0 
1 1 0 
0 1 1 
1 1 1 
0 0 0 
0 0 0 
1 0 1 

o 

0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 





Instruction Timings c 





Appendix C 
Instruction Timings 

i860 Microprocessor instructions take one clock to execute unless a freeze condition is invoked. 
Freeze conditions and their associated delays are shown in the table below. Freezes due to multiple 
simultaneous cache misses result in a delay that is the sum of the delays for processing each miss 
by itself. Other mUltiple freeze conditions usually add only the delay of the longest individual 
freeze. 

Freeze Condition 

Instruction-cache miss 

Reference to destination of load instruction 
that misses 

fld miss 

call/calli/ixfr/fxfr/ld.c/st.c and data cache miss 
processing in progress 

Id/st/pfld/fld/fst and data cache miss process­
ing in progress 

Reference to dest of Id, call, calli, fxfr, or 
Id.c in the next instruction 

Reference to dest of fld/pfld/ixfr in the next 
two instructions 

C-1 

Delay 

Number of clocks to read instruction (from 
ADS clock to first READY# clock) plus 
time to last READY# of block when jump 
or freeze occurs during miss processing plus 
two clocks if data cache being accessed when 
instruction-cache miss occurs. 

One plus number of clocks to read data (from 
ADS clock to first READY# clock) minus 
number of instructions executed since load 
(not counting instruction that references load 
destination) 

One plus number of clocks from ADS to first 
READY 

One plus number of clocks until first READY 
returned 

One plus number of clocks until last READY 
returned 

One clock 

Two clocks in the first instruction; one in the 
second instruction 

continued 



inter INSTRUCTION TIMINGS 

Freeze Condition Delay 

bc/bnc/bc.t/bnc.t following One clock 
addu/adds/subu/subs/pfeq/pfgt 

Src 1 of multiplier operation refers to result of 
previous operation 

Floating-point operation or fst and scalar 
operation in progress other than frcp orfrsqr 

Multiplier operation preceded by a double­
precision multiply 

TLB miss 

pfld when three pfld' s are outstanding 

pfld hits in the data cache 

Store pipe full (two internal plus outstanding 
bus cycles) and st/fst miss, Id miss, or flush 
with modified block 

Address pipe full (one internal plus outstanding 
bus cycles) and Id/fld/pfld/st/fst 

Id/fld following st/fst hit 

Delayed branch not taken 

Nondelayed branch taken: 
bC,bnc 
bte, btne 

Branch indirect bri 

C-2 

One clock 

If the scalar operation is fadd, fix, fmlow, 
fmul.ss, fmul.sd, ftrunc, or fsub, three minus 
the number of instructions executed after the 
scalar operation. If the scalar operation is 
fmul.dd, four minus the number of instructions 
executed after it. Add one if the precision of 
the result of the previous scalar operation is 
different than that of the source. Add one if 
the floating-point operation is pipelined and 
its destination is not fO. If the sum of the 
above terms is negative, there is no delay. 

One clock 

Five plus the number of clocks to finish two 
reads plus the number of clocks to set A-bits 
(if necessary) 

One plus the number of clocks to return data 
from first pfld 

Two plus the number of clocks to finish all 
outstanding accesses 

One plus the number of clocks until READY# 
active on next write data 

N umber of clocks until next address can be 
issued 

One clock 

One clock 

One clock 
Two clocks 

One clock 

continued 



inter INSTRUCTION TIMINGS 

Freeze Condition 

st.c 

Result of graphics-unit instruction (other than 
fmov) used in next instruction when the next 
instruction is an adder or multiplier instruction 

Result of graphics-unit instruction used in 
next instruction when the next instruction is 
a graphics-unit instruction 

flush followed by flush 

fst followed by pipelined floating-point op­
eration that overwrites the register being 
stored 

Two clocks 

One clock 

One clock 

Two clocks 

One clock 

C-3 

Delay 





Instruction Characteristics D 





Appendix D 
Instruction Characteristics 

The following table lists some of the characterisics of each instruction. The characteristics are: 

• What processing unit executes the instruction. The codes for processing units are: 

A Floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P indicates that the instruction is pipelined. 

• Whether the instruction is a delayed branch instruction. A D marks the delayed branches. 

• Whether the instruction changes the condition code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. The codes used for exceptions are: 

IT Instruction Fault 
SE Floating-Point Source Exception 
RE Floating-Point Result Exception, including overflow, underflow, inexact result 
DAT Data Access Fault 

Note that this is not the same as specifying at which instructions faults may be reported. 
A fault is reported on the subsequent floating-point instruction plus pst, fst, and sometimes 
tid, pfld, and ixfr. 

The instruction access fault IA T and the interrupt trap IN are not shown in the table because 
they can occur for arty instruction. 

• Performance notes. These comments regarding optimum performance are recommendations 
only. If these recommendations are not followed, the i860 Microprocessor automatically 
waits the necessary number of clocks to satisfy internal hardware requirements. The following 
notes define the numeric codes that appear in the instruction table: 

1. The following instruction should not be a conditional branch (be, bne, be.t, or bne.t). 

2. The destination should not be a source operand of the next two instructions. 

3. A load should not directly follow a store that is expected to hit in the data cache. 

4. When the prior instruction is scalar, srci should not be the same as the rdest of the prior 
operation. 

D-1 



intJ INSTRUCTION CHARACTERISTICS 

5. Thefreg should not reference the destination of the next instruction if that instuction is a 
pipe lined floating-point operation. 

6. The destination should not be a source operand of the next instruction. 

7. When the prior operation is scalar and multiplier op J is src J , src2 should not be the 
same as the rdest of the prior operation. 

8. When the prior operation is scalar, src J and src2 of the current operation should not be 
the same as rdest of the prior operation. 

• Programming restrictions. These indicate combinations of conditions that must be avoided by 
programmers, assemblers, and compilers. The following notes define the alphabetic codes 
that appear in the instruction table: 

a. The sequential instruction following a delayed control-transfer instruction may not be 
another control-transfer instruction, nor a trap instruction, nor the target of a control­
transfer instruction. 

b. When using a bri to return from a trap handler, programmers should take care to prevent 
traps from occurring on that or on the next sequential instruction. 1M should be zero 
(interrupts disabled) when the bri is executed. 

c. If rdest is not zero, src J must not be the same as rdest. 

d. When the multiplier op J is src J , src J must not be the same as rdest. 

e. If rdest is not zero, src J and src2 must not be the same as rdest. 

0-2 



inter INSTRUCTION CHARACTERISTICS 

Instruction 
Execution Pipelined? Sets Faults 

Performance Programming 
Unit Delayed? CC? Notes Restrictions 

adds E CC 1 
addu E CC 1 
and E CC 
andh E CC 
andnot E CC 
andnoth E CC 
bc E 
bc.t E D a 
bla E D a 
bnc E 
bnc.t E D a 
br E D a 
bri E D a, b 
bte E 
btne E 

call E D 2 a 
calli E D 2 a 
fadd.p A SE, RE 
faddp G 8 
faddz G 8 
fiadd.w G 8 
fisub.w G 8 
fix.p A SE,RE 
fld.y E DAT 2,3 
flush E 
fmlow.p M 4 
fmul.p M SE, RE 4 
form G 8 

frcp.p M SE,RE 
frsqr.p M SE, RE 
fst.y E DAT 5 
fsub.p A SE, RE 
ftrunc.p A SE, RE 
fxfr G 6, 8 
fzchkl G 8 
fzchks G 8 
intovr E IT 
ixfr E 2 
Id.c E 
Id.x E DAT 6 
lock E 
or E CC 
orh E CC 

D-3 



inter INSTRUCTION CHARACTERISTICS 

Instruction Execution Piplined? Sets 
Faults Performance Programming 

Unit Delayed? CC? Notes Restrictions 

pfadd.p A P SE,RE 
pfaddp G P 8 e 
pfaddz G P 8 e 
pfam.p A&M P SE,RE 7 d 
pfeq.p A P CC SE 1 
pfgt.p A P CC SE 1 
pfiadd.w G P 8 e 
pfisub.w G P 8 e 
pfix.p A P SE,RE 
pfld.z E P 2 
pfmam.p A&M P SE,RE 7 d 
pfmsm.p A&M· P SE, RE 7 d 
pfmul.p M P SE,RE 4 c 
pfmul3.dd M P SE,RE 4 c 
pform G P 8 e 

pfsm.p A&M P SE, RE 7 d 
pfsub.p A P SE,RE 
pftrunc.p A P SE, RE 
pfzchkl G P 8 
pfzchks G P 8 
pst.d E OAT 
shl E 
shr E 
shra E 
shrd E 
st.c E 
st.x E OAT 
subs E CC 1 
subu E CC 1 
trap E IT 
unlock E 
xor E CC 
xorh E CC 

D-4 



inter 
DOMESTIC DISTRIBUTORS 

ALABAMA CALIFORNIA (Cont'd.) FLORIDA (Cont'd.) MARYLAND NEW HAMPSHIRE 

Arrow Electronics. Inc. tHamiiton Electro Sales tHamiiton/Avnet Electronics Arrow Electronics. Inc. ~Arrow Electronics, Inc. 
1015 Henderson Road 3170 Pullman Street ~~re~~Z:k~~:~UJeVard 8300 Guilford Drive Perimeter Road 
Huntsville 35805 Costa Mesa 92626 Suite H, River Center Manchester 03103 
Tel: (205) 837·6955 ~l~~b~5~5W~8 ~J~g~b~l!:i~~:!2 Columbia 21046 ~~6~~b~2~80~9:~ Tel: (301) 995·0003 
tHamiiton/Avnet Electronics TWX: 710·236·9005 
4940 Research Drive l~G3"~~~~~~~:kT~~ctronics tPloneer/Technologies Group, Inc. tHamilton/Avnet Electronics 
Huntsville 35805 337 S. Lake Blvd. Hamilton/Avnet Electronics 444 E. Industrial Drive 

~J~gn~iI6:;'~~ Sacramento 95834 ~J~gfb~~~o~~t 32701 6822 Oak Hall Lane Manchester 03103 
Tel: (916) 920·3150 Columbia 21045 Tel: (603) 624·9400 

~~~~~~~]~~~~:oup, Inc. ~IJe~~r~~~tiS~:~UP ~P~1 b~i.r2~15~~1 NEW JERSEY 
Pioneer{Technologies Group, Inc. 

tArrow Electronics. Inc. ~~~(~IUR)dr2~?~f60 6745, Military Trail ~~2~S~~~~~rif~cioJ~~r. Tel: (205) 837-9300 Deerfield Beach 33442 Four East Stow Road 
TWX: 810-726·2197 Tel: (305) 428-8877 Columbia 21046 Unitl1 

f~~ ~~S:~~~~O~v~~OUP TWX: 510·955-9653 Tel: (301) 290-8150 Marlton 08053 
ARIZONA TWX: 710-828-9702 ~)6~n~::i~8~09 Garden Grove 92841 GEORGIA 
tHamiiton/Avnet Electronics ~l~~b~:.;'8Wlo or 7111 

~Pioneer/TeChnologies Group, Inc. 
505 5, Madison Drive tArrow Electronics, Inc. 100 Gailher Road ~Arrow Electronics 
Te"f! 85281 3155 Northwoods Parkway Gaithersburg 20877 Ce~tury Drive 
Tel: 602) 231-5140 Wyle Distribution Group Suite A Tel: (301) 921-0660 ~:f:s(~gr>"K3~g~60 TW : 910-950-0077 11151 Sun Center Drive Norcross 30071 TWX: 710-828-0545 

Rancho Cordova 95670 Tel: (404) 449-8252 
Hamllton/Avnet Electronics Tel: (916) 838-5282 TWX: 810-766-0439 MASSACHUSETTS tHamilton/Avnet Electronics 
30 South McKiemy 

Arrow Electronics, Inc. 
1 Keystone Ave" Bldg. 36 

Chandler 85226 tWyle Distribution Group tHamilton/Avnet Electronics ¥~I~(~O~iI~g~?g?1 0 Tel: (602) 961-6669 9525 Chesapeake Drive 5825 D Peachtree Corners 25 Upton Dr. 
TWX: 910-950-0077 ~:I~ (~\e~05~~~~?71 Norcross 30092 f.;:~~1Q)~3~~~~~ TWX: 710-940-0262 

Tel: (404)447-7500 
Arrow Electronics, Inc. TWX: 910-335-1590 TWX: 810-766-0432 tHamilton/Avnet ElectroniCs 
4134 E. Wood Street tHamilton/Avnet Electronics 10 Industrial 
Phoenix 85040 tWyle Distribution Group ~;ooe~rroe,;~~g~9~e~I~~~up, Inc. 

100 Centennial Drive Fairfield 07006 
Tel: (602) 437-0750 3000 Bowers Avenue ~:~~~?1) ~1i,~~ 430 

Tel: (201) 575-5300 
TWX: 910-951-1550 Santa Clara 95051 Norcross 30071 TWX: 710-734-4388 

~tgn:;:8~0~~ ~J~g~b~86_1J5\1 TWX: 710-393-0382 

~/J~f~t~?~~~~~~~~~ Hwy. 
tMTI Systems Sales 

MTI Systems Sales 37 Kulick Rd. 
Phoenix 85023 tWyle Distribution Group ILLINOIS ~~~~~~~~8~~· Fairfield 07006 
Tel: (602) 249-2232 17872 Cowan Avenue Tel: (201) 227-5552 
TWX: 910-951-4282 Irvine 92714 Arrow Electronics, Inc. 

Tel: (714) 883-9953 1140 W. Thorndale Pioneer Electronics tPioneer Electronics 
CALIFORNIA TWX: 910-595-1572 Itasca 60143 44 Hartwell Avenue 45 Route 46 

~J~m~~~O~~9~06 i:~i(~lt~) 8~~~~~00 Pinebrook 07058 
Arrow Electronics, Inc. Wyle Distribution Group Tel: (201) 575-3510 

b~8~:s~°fo"6~~eet ~~Y:~a'Z'asAr,~o~ Rd. 
TWX: 710-326-6617 TWX: 710-734-4382 

tHamilton/Avnet Electronics 
Tef(714) 220-8300 Tel: (818) 880-9000 1130 Thorndale Avenue MICHIGAN NEW MEXICO 

TWX: 372-0232 Bensenville 60106 
Arrow Electronics, Inc. ~2~~b~6~i:l~600 Arrow Electronics, Inc. Alliance Electronics Inc. 
19748 Dearborn Street COLORADO 755 Phoenix Drive 11030 Cochiti S.E. 
Chatsworth 91311 Ann Arbor 48104 ~~~:u(~~'§)~s"2~JJ~g Tel: (213) 701-7500 Arrow Electronics, Inc. MT! Systems Sales Tel: (313) 971-8220 
TWX: 910-493-2086 7060 Soulh Tucson Way 1100 W. Thorndale TWX: 810-223-6020 TWX: 910-989-1151 

Englewood 80112 Itasca 60143 
tArow Electronics, Inc. Tel: (303) 790-4444 Tel: (312) 773-2300 ~:l~iI~~~h ASt~:~~~~t~onics Hamilton/Avnet Electronics 
521 Weddell Drive 2524 8aylor Drive S.E. 

~J,Xgfb!l~!~~~ 
tHamilton/Avnet Electronics tPioneer Electronics SpaceA5 ~~~:u(~~'§)Gi':5~iJ88 8765 E. Orchard Road 1551 Carmen Drive Grand Rapids 49508 
Suite 708 

mJ,3m~1;~~r07 
Tel: (616) 243-8805 TWX: 910-989-0614 

Englewood 80111 TWX: 810-274-6921 
Arrow Electronics, Inc. Tel: (303) 740-1017 NEW YORK 
9511 Ridgehaven Court TWX: 910-935-0787 Pioneer Electronics 

~:r (~\e~05~~~f:00 INDIANA 4504 Broadmoor S.E. tArrow Electronics, Inc. 
tWyle Distribution Group Grand Rapids 49508 3375 Brighton Henrietta Townline Rd. 

TWX: 888-084 451 E. 124th Avenue tArrow Electronics, Inc. FAX: 616-698-1831 Rochester 14623 
Thornton 80241 2495 Directors Row, Suite H ~lm3J55:i~3l6~ ~ Arrow Electronics, Inc. ~J~g~bW6~~7~30 Indianapolis 46241 tHamilton/Avnet Electronics 

961 Dow Avenue Tel: (317) 243-9353 32487 Schoolcraft Road 
Tustin 92680 TWX: 810-341-3119 Livonia 48150 Arrow Electronics, Inc. 
Tel: (714) 838-5422 CONNECTICUT Tel: (313) 522-4700 20 Oser Avenue 
TWX: 910·595-2860 ~:5&~~~:v~~!;'ectronics TWX: 810-282-8775 ~:mr~?~3;~iggo tArrow Electronics, Inc. 

~~o~~~:~~~i~~enue 12 Beaumont Road Carmel 46032 m~~e~;,~\~~an TWX: 51 0-227-6623 

Costa Mesa 92626 fe~~ll~8~)rg6~~~~ 1 ~lm~O:3~3:6 Livonia 48150 Hamilton/Avnet 
Tel: (714) 754-6071 TWX: 710-476-0162 Tel: (313) 525-1800 933 Motor Parkway 
TWX: 910-595-1928 tPioneer Electronics TWX: 810-242-3271 ~:ml~g~3; ~;:go Hamilton/Avnet Electronics 6408 Castleplace Drive 

f~:f~~r~!~~eb~i':;tronjcs Commerce Industrial Park Indianapolis 46250 MINNESOTA TWX: 510-224-6166 
Commerce Drive ~PJ~b:t~O~3709~ 

~~I~'iXO~:e7 ~~~:oo ~:I~~~~)0~~i_~800 t Arrow Electronics, Inc. tHamilton/Avnet Electronics 
5230 W. 73rd Slreet 333 Metro Park 

TWX: 910-339-9332 TWX: 710-456-9974 IOWA Edina 55435 Rochester 14623 
Tel: (612) 830-1800 Tel: (716) 475-9130 

tHamiiton/Avnet Electronics tPioneer Electronics Hamilton/Avnet Electronics TWX: 910-576-3125 TWX: 510-253-5470 
4545 Ridgeview Avenue 112 Main Street 915 33rd Avenue, S,W, 

~~~ (~\~05~~~f!00 Norwalk 06851 Cedar Rapids 52404 tHamiiton/Avnet Electronics t~:~~i~nb~~~e6~~~ctronicS Tel: (203) 853-1515 Tel: (319) 362-4757 12400 Whitewater Drive 
TWX: 910-595-2638 TWX: 710-468-3373 Minnetonka 55434 Syracuse 13206 

KANSAS Tel: (612) 932-0600 Tel: (315) 437-0288 
tHamiiton/Avnet Electronics FLORIOA TWX: 710-541-1560 
9650 Desoto Avenue Arrow Electronics tPioneer Electronics 
Chatsworth 91311 tArrow Electronics, Inc. 8208 Melrose Dr., Suite 210 7625 Golden Triange Dr. tMTI Systems Sales 
Tel: (818) 700-1161 400 Fairway Drive Lenexa 66214 SuiteG 38 Harbor Park Drive 

Suite 102 Tel: (913) 541-9542 Eden Prairi 55343 ~~I~ (~~)hj~~~~201d 050 - tHami/ton Electro Sales Deerfield Beach 33441 Tel: (612) 944-3355 
10950 W. Washington Blvd. Tel: (305) 429-8200 tHamiiton/Avnet Electronics 

¥~II:V(21gl~l~~~~8 TWX: 510-955-9456 9219 Quivera Road MISSOURI tPioneer ElectroniCS 
Overland Park 66215 68 Corporate Drive 

TWX: 910-340-6384 Arrow Electronics, Inc. ~J9m~'4~:osg~5 ~Arrow Electronics, Inc. Binghamton 13904 

~~i~ek~~~~ Drive 380 Schuetz ~J~gib:ll2~038~~ Hamilton Electro Sales 51. Louis 63141 
1361B West 190th Street Lake Marv 32746 Pioneer/Tec Gr. Tel: (314) 567-6888 
Gardena 90248 Tel: (407) 323-0252 10551 Lockman Rd. TWX: 910-764-0882 Pioneer Electronics 
Tel: (213) 217-6700 TWX: 510-959-6337 Lenexa 66215 40 Dser Avenue 

Tel: (913) 492-0500 tHamilton/Avnet Electronics ~:I~\J'j'6)gi3; ~;~lo !~~;.i~9~t=tet Electronics tHamiitonjAvnet Electronics 13743 Shoreline Court 

~~0~a~d'Z;d~~!h3~J9 KENTUCKY Earth City 83045 
OntariO 91761 Tel: (314) 344-1200 
Tel: (714) 989-9411 ~J~g~b~;d6~i:7 Hamilton/Avnet Electronics TWX: 910-762-0684 

1051 D. Newton Park 
tAvnet Electronics i:~i(~J~) 2~~~U75 20501 Plummer tHamiitonjAvnet Electronics 
Chatsworth 91351 3197 Tech Drive North 
Tel: (213) 700-6271 
TWX: 910-494-2207 

51. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

tMicrocomputer System Technical Distributor Center CG/SALE/012589 



inter 
DOMESTIC DISTRIBUTORS (Cont'd.) 

NEW YORK (Cont'd.) OKLAHOMA TEXAS (Cont'd.) WISCONSIN ONTARIO (Cont'd.) 

tPioneer Electronics Arrow Electronics, Inc. ~Hamilton/Avnet Electronics Arrow Electronics. Inc. tHamiiton/Avnet Electronics 
o Crossway Park West 1211 E.51stStreet 111 W. Walnut Hill Lane 200 N. Patrick Blvd., Ste. 100 190 Colonnade Road South 

~~:O(~~~79}t~~J~land 11797 
Suite 101 ~~:~M~P~~0-6111 Brookfield 53005 

~tJ~r}!~~foo Tulsa 74146 Tel: (414) 767-6600 
TWX: 51 0-221-2184 Tel: (918) 252-7537 TWX: 910-860-5929 TWX: 910-262-1193 

~ioneer Electronics T~f~iI~~~f;;~:.~~~:~orb~sA tHamilton/Avnet Electronics Hamilton! Avnet Electronics tZentronics 
o Fairport Park ~~~o";'Jimfj-' Suite 190 2975 Moorland Road 8 Tilbury Court 

Fairport 14450 Tulsa 74146 New Berlin 53151 

mIfJg1~~~~9:~~ Tel: (716) 381-7070 Tel: (918) 252-7297 ~,?~~61~~-Z532~ Tel: (414) 784-4510 
TWX: 510-253-7001 TWX: 910-262-1182 

OREGON 
NORTH CAROLINA tPioneer Electronics 

CANADA tZentronics 
tAlmac ElectronicS Corp. 18260 Kramer 155 Colonnade Road 

tArrow Electronics, Inc. 1885 N.W. 169th Place AUstin 78758 Unit 17 
5240 Greensdairy Road Beaverton 97005 ~lm::ii~~~~ ALBERTA Nepean K2E 7Kl 

~:II~(~~ &~~~~3132 Tel: (503) 629-8090 Tel: (613) 226-8840 
TWX: 910-467-8746 Hamilton/Avnet Electronics 

Zentronics TWX: 510-928-1856 tPioneer Electronics 2816 21st Street N.E. 
tHamilton/Avnet Electronics 6~~!~ ~~~a Road ~:I~(~'63mO~~~86 

60-1313 Border SI. 
tHamiiton/Avnet Electronics 024 S.W. Jean Road :f.:~(ro4~ ~~NJ~7 ~~l~ Stf'2r6b~orest Drive Bldg. C, Suite 10 ~~~~~6~8~60:r~~~3 TWX: 03-827-642 

Tel: (~19) 878-0819 ~J5g~r~~!£~4 Zentronics QUEBEC 
TWX: 51 0-928-1836 tPioneer Electronics 

~~OON104t~ Avenue N.E. 5853 Point West Drive t Arrow ElectroniCS Inc. 

~~'(ne~~q~~~~~~o~:~~ gr~~.p, Inc. 
Wyle Distribution Group Houston 77036 

~::~(~'63m2~621 
4050 Jean Talon Quest 

5250 N.E. Elam Young Parkway Tel: (713) 988-5555 Montreal H4P lWl 
Charlotte 28210 Suite 600 TWX: 910-881-1606 ~~~3~~l~~9~511 Tel: (919) 527-8188 Hillsboro 97124 BRITISH COLUMBIA 
TWX: 810-621-0366 Tel: (503) 640-6000 f~'g gir~~i~~~i~~~;~~~ Arrow Electronics, Inc. TWX: 910-460-2203 

l~!~~I~~n~~~~~~ectronics OHIO Richardson 75081 909 Charest Blvd. 
PENNSYLVANIA Tel: (214) 235-9953 Quebac Jl N 2C9 

Arrow Electronics, Inc. 
UTAH 

Tel: (604r 437-6667 ~~43g~ 16:la:231 
7620 McEwen Road Arrow Electronics, Inc. 
Centerville 45459 650 Seco Road 

Arrow Electronics 
Zentronics 

Tel: (513) 435-5563 Monroeville 15146 ~?~h~~g ~6~~~ort Road 
Hamilton/Avnet Electronics 

TWX: 810-459-1611 Tel: (412) 856-7000 1946 Parkway Blvd. 2795 Halpern 

~::~ (~'t,i ~~~-gm 9 
~~~8!~icili~i:5 

SI. Laurent H2E 7Kl 
tArrow Electronics, Inc. Hamilton/Avnet Electronics ~J5~th~iI1~0~ 6238 Cochran Road ~?J~b~~b~r%~~~. Solon 44139 tHamilton/Avnet Electronics MANITOBA 
Tel: (216) 248-3990 Tel: (41~) 281-4150 1585 West 2100 South Zentronics 
TWX: 810-427-9409 ~::~ (~~~i ~~~J:JJ 9 Zentronics ~:\~~Z~~~XT 1M3 Pioneer Electronics 60-1313 Border Unit 60 
tHamilton/Avnet Electronics 259 Kappa Drive TWX: 910-925-4018 

:f.:~(fo"4~ ~~~ l~~j ~J~J~~l2:v.tI500 954 Senate Drive 

~}~W6\\~!~~~ Dayton 45459 f~~ ~~~i~~~~n s~u~~p Tel: (513) 439-6733 ONTARIO 
TWX: 810-450-2531 SUite E 

Hamilton/Avnet Electronics 
tPioneerfTechnologies Group, Inc. ~e~:sI8~~I~~7 ~~~~3 Arrow Electronics, Inc. 
Delaw,are Valley 36 Antares Dr. 

~:r~e~~~~ IH~~~f~a~~~~{ 261 Glbralter Road Nepean K2E 7W5 
Horsham 19044 WASHINGTON Tel: (613) 226-6903 

Tel: (216) 349-51 0 ~lJn~6~!~~~ TWX: 810-427-9452 t Almac Electronics Corp. Arrow Electronics, Inc. 
14360 S.E. Eastgate Way 1093 Meyerside 

tHamilton/Avnet Electronics TEXAS Bellevue 98007 
~~n~ISt)u~N::fj61 M4 ~Js~:~~::,s~gB~rd. Tel: (206) 643-9992 

~Arrow Electronics, Inc. TWX: 910-444-2067 TWX: 06-218213 
Tel: (614) 882-7004 220 Commander Drive 

Carrollton 75006 Arrow Electronics, Inc. tHamilton/Avnet ElectroniCS 
tPioneer ElectroniCs Tel: (214) 380-6464 19540 68th Ave. South 6845 Rexwood Road 
4433 Interpoint Boulevard TWX: 910-860-5377 Kent 98032 Units 3-4-5 
Dayton 45424 Tel: (206) 575-4420 

~~n~ft)~N:~r31 R2 Tel: (513) 236-9900 tArrow Electronics, Inc. 
TWX: 810-459-1622 10899 Kinghurst t~~~il~w.~~ns~ts~~~~~onics TWX: 610-492-8867 

Suite 100 
tPioneer Electronics Houston 77099 Bellevue 98005 Hamilton/Avnet Electronics 
4800 E. 131st Street Tel: (713) 530-4700 Tel: (206) 643-3950 6845 Rexwood Road 
Cleveland 44105 TWX: 910-880-4439 TWX: 910-443-2469 Unit 6 
Tel: (216) 587-3600 

~~~(~f~)~N::rir81 R2 TWX: 810-422-2211 tArrow Electronics, Inc. f~gf~.~ib9~\~nS~:~e~P 2227 W. Braker Lane 
Austin 78758 Redmond 98052 
Tel: (512) 835-4180 
TWX: 910-874-1348 

Tel: (206) 881-1150 

tHamilton/A\met Electronics 
1807 W. Braker Lane 
Austin 78758 
Tel: (512) 637-8911 
TWX: 910-874-1319 

tMicrocomputer System Technical Distributor Center CG/SALE/012589 



inter 
DENMARK 

Intel Denmark A/S 
Glentevej 61, 3rd Floor 

~!~4~w~rtfn~ ~ 
TLX: 19567 

FINLAND 

Intel Finland OY 
RUQsilantie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLX: 123332 

FRANCE 

Intel Corporation S.A.R.L. 
1, Rue Edison-BP 303 
78054 SI. Quentln-en-Yveline. Cedex 
Tel: (33) (1) 30 57 70 00 
TLX: 699016 

EUROPEAN SALES OFFICES 

WEST GERMANY 

Intel Semiconductor GmbH­
Dornacher Strasse 1 
8016 Feldkirchen bei Muenchen 

:::~!~~~gm90992-0 
FAX: 904-3948 

Intel Semiconductor GmbH 
Hohenzollern Strasse 5 
3000 Hannover 1 
Tel: (49) 0511/344081 
TLX: 9-23625 

Intel Semiconductor GmbH 
Abraham Lincoln Strasse 16-18 
6200 Wiesbaden 
Tel: (49) 06121/7605-0 
TLX: 4-186183 

Intel Semiconductor GmbH 
Zetlachring lOA 

~m~bifJjr~8728-0 

ISRAEL 

Intel Semiconductor Ltd.· 
Atidlm Industrial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03-498080 
TLX: 371215 

ITALY 

Intel Corporation Italia S.p.A.· 
Milanofiori Palazzo E 
20090 Assago 
Milano 

:::~!~:m~~ 824 40 71 

NETHERLANDS 

Intel Semiconductor B.V,* 

~t6~e~vM~~~::J.~3 
Tel: (31) 10.407.11.11 
TLX: 22283 

NORWAY 

~!:~v~~~t~g Box 92 
2013 Skjetlen 
:::~(fJo(f~ 842420 

SPAIN 

Intel Iberia SA 
Zurbaran, 28 
28010 Madrid 

m!:r'J8~~0 40 04 

SWEDEN 

Intel Sweden A.B.' 

~m~"S'or~a 
Tel: (46) 8 734 01 00 
TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Ruet! bei Zuerich 

:::~!W5W?60 62 62 

UNITED KINGDOM 

~:~w.~ation (U.K.) Ltd." 

Swindon, Wiltshire SN3 1 RJ 

m!~~4~Ij~ 696000 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 

AUSTRIA WEST GERMANY NETHERLANDS UNITED KINGDOM 

Bacher ElectroniCs G.m.b.H. Electronic 2000 AG Koning en Hartman Accent Electronic Components Ltd. 
Rotenmuehlgasse 26 ~b~~~~~:~~n~n 'l2 ~6~~e~~e~:~ Jubilee House, Jubilee Road 
1120Wien Letchworth, Herts SG6 1TL 
Tel: (43) (0222) 83 56 46-0 
TLX: 131532 

Tel: (49) 089/42001-0 
TLX: 522561 

Tel: (31) 15609906 
TLX: 38250 

Tel: (44) (0462) 686666 
TLX: 826293 

BELGIUM lIT Multikomponent GmbH NORWAY ~~~;hw~~~~ab!'Xt~~ems Postlach 1265 
Inelco Belgium S.A. Bahnhofstrasse 44 Nordisk Elektronikk (Norge) A/S Western Road 
Av. des Croix de Guerre 94 

~~hW~~~~i;879 
Postboks 123 Bracknell RG12 1 RW 

1120 Bruxelles Smedsvingen 4 :::~!~~7~gr) 55333 
?10~h'~~~~~lenlaan, 94 1364 Hvalstad 

:::~!~~~) 216 01 60 Jermyn GmbH :::~!W5~~) 84 62 10 Jermyn 
1m Dachsstueck 9 Vestry Estate 

DENMARK ~~~~~)g:~'/508-0 PORTUGAL Otlord Road 
Sevenoaks 

TLX: 415257-0 Ditram Kent TN14 5EU 
IIT-Multikomponent Avenida Miguel Bombarda, 133 :::~(~,~~32) 450t44 Naverland 29 Metrologie GmbH 1000 Lisboa 
2600 Glostrup ~o~~i~~~~~~:~~19 Tel: (351) (1) 734 884 

MMD i~!~ ~~l45 66 45 TLX: 14182 
Tel: (49) 089/78042-0 Unit 8 Southview Park 
TLX: 5213189 SPAIN Caversham 

FINLAND Readin~ 
Proelectron Vertriebs GmbH ATD Electronica, S.A. Berksh"e RG4 OAF 

OY Fintronic AB Max Planck Strasse 1 ~3 Plaza Ciudad de Viena, 6 :::~!~6~lr 481666 Melkonkatu 24A 6072 Dreieich 28040 Madrid 
00210 Helsinki Tel: (49) 06103/3040 Tel: (34) (1) 234 40 00 

m!~~~2~16926022 TLX: 417903 TLX: 42754 Rapid Silicon 
Rapid House 

IRELAND IIT-SESA Denmark Street 
FRANCE ~38foM,;jl~d~irgel, 21-3 High Wycombe 

Micro Marketin~ Ltd. Buck~hamshire HPll 2ER 
Generim Glenageary OffIce Park :::~!~4~1419 54 00 Tel: (44 (0494) 442266 
Z.A. de Courtaboouf Glenageary TLX: 7931 
Av. de la Baltique~BP 88 Co. Dublin 
91943 Les Ulis Cedex Tel: (21) (353) (01) 85 63 25 SWEDEN Rapid Systems 
:::~:(3JIS689 07 78 78 TLX: 31584 Rapid House 

Nordisk Elektronik AB Denmark Street 
ISRAEL Huvudstagatan 1 High Wycombe 

~3~~lnrue des Solets 
Box 1409 ~~I~~~~~~~~~~i~~~:~' 2ER Eastronics Ltd. 17127 Solna 

Silic585 11 Rozanis Street Tel: (46) 08-734 97 70 TLX: 837931 
94663 Rungis Cedex P.O.B.39300 TLX: 105 47 

m!~oIl~i9 78 49 00 Tel-Aviv 61392 YUGOSLAVIA 
:::~(~%~3-475151 SWITZERLAND 

Rapido ElectroniC Components S.p.a. 

~ci:ro~~!~ieres Industrade A.G. Via C. Beccaria, 8 
ITALY Hertistrasse 31 34133 Trieste 

4. av. Laurent~Cely 8304 Wallisellen Italia 
92606 Asnieres Cedex Intes; :::~!~~7~8') 83 05 04 0 Tel: (39) 040/360555 
Tel: (33) (1) 47906240 DiviSione ITT Industries GmbH TLX: 460461 
TLX: 611448 Viale Milanofiori 

Tekelec-Airtronic 
PalazzoE/5 TURKEY 
20090 Assago 

Cite des Bruyeres Milano EMPA Electronic 
Rue Carle Vernet - BP 2 :::~:(~~),~~,82470' Lindwurmstrasse 95A 
92315 Sevres Cedex 8000 Muenchen 2 

m:(~d.t~~i5 34 75 35 
~f~ ~1~~r~~;:t~'M' 

:::~!~~8~~~53 80570 

20092 Cinisello Balsamo 
Milano 

i~!~~2~g440012 

-Field Application Location CG/SALE/012589 



INTERNATIONAL SALES OFFICES 

AUSTRALIA 

Intel Australia Ply. Ltd: 

~~~mCB~~~tevel 6 
Crows Nest, NSE, 2065 
Tel: 612-957-2744 
FAX: 612-923-2632 

BRAZIL 

Intel Semicondutores do Brazil LTDA 
Av. Paulista, 1159-CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 3911153146 ISDB 
F:>\X: 55-11-287-5899 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 

~:WrlN~~~850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd,· 
10fF East Tower 
Bond Center 
aueensway, Central 

~~i5~~4-555 
TLX: 63869 ISHLHK HX 
FAX: (5) 8681-989 

INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
SI. Mark's Road 

~:I~~~I~f2~~g~gJl 
TLX: 9538452354 MACH 
FAX: 091-812-563982 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
Ibarakl,300-26 
Tel: 029747-8511 
TLX: 3656-160 
FAX: 029747-8450 

Intel Japan K.K: 
Daiichi Mitsugi Bldg. 
1-8889 Fuchu-cho 

~~~'lM~~~6);~tl71163 
FAX: 0423-60-0315 

Intel Japan K.K: 

~~~~_';'t~:~~~~hrachi Bldg. 

~:::a8~~i~~:i2~~kyo 154 
FAX: 03-427-7620 

JAPAN (Cont'd.) 

~f~~j~~:tiTl~i~:saShi-kosugi Bldg. 
915 Shinmaruko, Nakahara-ku 

~:t6~:~~3;~7~ffagawa 211 

FAX: 044·733-7010 

~~e~~~e~~~'~tsU9i Bldg. 
1-2-1 Asahi-machi 

~~tu8~~~~2~:'§~~~awa 243 
FAX: 0462-29-3781 

Intel Japan K.K: 
Ryokuchi.·Eki Bldg, 
2-4-1 Terauchi 

i~r:~~~~~3~~~~saka 560 
FAX: 06-863-1084 

Intel Japan K.K. 
Shlnmaru Bldg. 
1-5-1 Marunouchi 

'i~li,vgg."2~~:3~~~YO 100 
FAX: 03-201-6850 

~::~~aGI~K.K. 
1-16·20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi450 
Tel: 052-204·1261 
FAX: 052-204-1285 

KOREA 

Intel Technology Asia, Ltd. 
Business Center 16th Floor 
61, Yoido-Dong, Young Deung Po·Ku 
Seoul 150 
Tel: (2) 784-8186,8286. 8386 
TLX: K29312 INTELKO 
FAX: (2) 784·8096 

SINGAPORE 

\nri~I~~~J'o"~~b:,;r~~I~ Ltd. 
Goldhill Square 

~~7?~Kg!181130 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch 

i~l~ei~K.60g: Tun Hua N. Road 

Tel: 886-2-716-9660 
TLX: 131591NTELTWN 
FAX: 886·2-717-2455 

INTERNA TIONAL 
DISTRIBUTORS/REPRESENTATIVES 

ARGENTINA 

DAFSYS S.R.L. 
Chacabuco, 90-6 PISO 
1069-Buenos Aires 
Tel: 54·1-334-7726 
FAX: 54-1-334-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 

~~I~~~~~~1~3~J:t-8244 
TLX: AA 30895 
FAX: 011-61-3·543-8179 

BRAZIL 

Elebra Microelectronica S.A. 
RUB Garaldo Flausina Gomes, 78 
I.OthFloor 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-534·9424 

CHILE 

DIN Instruments 
Suecia 2323 
Casilla 6055, Correo 22 
Santiago 
Tel: 56·2-225-8139 
TLX: 240.846 RUD 

CHINA/HONG KONG 

~1~~t,P;gc~~~~~f~~Jr~~~~i~~.' Ltd. 
Phase I, 26 Kwai Hei Street 
N.T., Kowloon 

~~1~~5~~8?:!23-222 
TWX: 39114 JINMI HX 
FAX: 852-0·261·602 

*Field Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 

~:f:%~lf!~, ~g~ 2~g~0-631 
011-91·812-621-455 

TLX: 9538458332 MDBG 

Micronic Devices 
Flat 403, Gagan Deep 
12. Rajendra Place 
New Delhi 110 008 
Tel: 011-91-58-97-71 

011-91·57-23509 
TLX: 9533163235 MONO 

Micronic Oevices 
No. 516 5th Floor 
SW8stik Chambers 
Sian. Trombay Road 
Chembur 

~~~8U-~~~2~~3/527896 
TLX: 9531 171447 MDEV 

S&S Corporation 
Camden Business Center 
Suite 6 
1610 Blossom Hill Rd. 
San Jose, CA 95124 

~ ¥e~·~·08) 978-6216 
TLX: 820281 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 
4-8-1 Dobashi, Miyamae·ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852·5121 
FAX: 044-877·4268 

JAPAN (Cont'd.) 

Dia Semicon Systems, Inc. 

~1;i~it~~~t~k~~~~~enjaya 
FAX: 03-487·8088 

Okaya Koki 
2·4-18 Sakae 

~~~~~~2~:?2';,a6shi 460 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1·12-22 Tsukiji 

~~I~gt~~~~6f,104 
FAX: 03-546-5044 

KOREA 

J-T ek Corporation 
6th Floor, Government PenSion Bldg. 

~~t~p~;;~~~-~u 
Tel: 82-2-782-8039 
TLX: 25299 KODIGIT 
FAX: 82·2-784-8391 

Samsung Semiconductor & 
Telecommunications Co., Ltd. 
150, 2-KA, Tafpyung-ro, Chung-ku 
Seoul 100 
Tel: 82-2-751-3987 
TLX: 27970 KORSST 
FAX: 82-2·753-0967 

MEXICO 

~~~ofe~;;ismo Sur 
268-2-PLSO 
C.P.44·100-Guadalajara 
Tel: 52-36·26-1232 
TLX: 681663 DICOME 
FAX: 52-36-26-3966 

Dicopel S.A. 
Tochtli 368 Fracc. Ind. San Antonio 

~~~~g~i6~~exico, D.F. 
Tel: 52-5·561-3211 
TLX: 1773790 DICOME 
FAX: 52-5-561-1279 

NEW ZEALAND 

Switch Enterprises 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591155 
FAX: 84-9-592681 

SINGAPORE 

Electronic Resources Pte, Ltd. 
17 Harvey Road #04-01 

¥~?~gg!381r~89.'6'8 
TWX: 56541 FRELS 
FAX: 2895327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus Street 
Meyerspark, Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8290 

TAIWAN 

Micro ElectroniCS Corporation 
~~~?5R.~i(jl Shen East Rd. 

Tel: 886·2-501-8231 
FAX: 886-2·501-4265 

Sertek 
5FL. 135 Sec. 2 
Chien-Kuo N. Rd. 

~~~.'0479 
Tel: (02) 5010055 

FAX: ~8~/ ;8Jml 
VENEZUELA 

P. Benavides S.A. 
Avilanes a Rio 
Residencia Kamarata 
Locales 4 AL 7 
La Candelaria, Caracas 
Tel: 58-2-574-8338 
TLX: 28450 
FAX: 58-2-572-3321 

CG/SALE/012589 




