

int:eL

Intel Corporation is a leading supplier of microcomputer components,
modules and systems. When Intel first introduced the microprocessor in 1971,

it created the era of the microcomputer. Today, Intel architectures are considered
world standards. Intel products are used in a wide variety of applications including,

embedded systems such as automobiles, avionics systems and telecommunications
equipment, and as the CPU in personal computers, network servers and

supercomputers. Others bring enhanced capabilities to systems and networks.
Intel's mission is to deliver quality products through leading-edge technology.

MULTIMEDIA AND
SUPERCOMPUTING

PROCESSORS

1992

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales. office. to obtain the latest specifications before placing your order.
. , . . .

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital
Studio, DVI, EtherExpress, ETOX, FaxBACK, Grand Challenge, i, i287,
i386, i387, i486, i487, i750, i860, i960, ICE, iLBX, Inboard, Intel, Intel287,
Intel386, Intel387, Intel486, Inte1487, intel inside., Intellec, iPSC, iRMX,
iSBC, iSBX, iWARP, LAN Print, LANSelect, LAN Shell, LANSight,
LANSpace, LANSpool, MAPNET, Matched, MCS, Media Mail, NetPort,
NetSentry, OpenNET,PR0750, ProSolver, READY-LAN, Reference Point,
RMX/80, SatisFAXtion, Snapln 386, Storage Broker, SugarCube, The
Computer Inside., TokenExpress, Visual Edge, and WYPIWYF.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark
of Mohawk Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products.

Additional copies' of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

@INTEL CORPORATION 1991

intaL

INTEL SERVICE

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Intel Service is a complete support program that provides Intel customers with hardware support, software
support, customer training, and consulting services. For detailed information conta~t your local sales offices.

Service and support are major factors in determining the success of a product or program. For Intel this
support includes an international service organization and a breadth of service programs to meet a variety of
customer needs. As you might expect, Intel service is extensive. It can start with On-Site Installation and
Maintenance for Intel and non-Intel systems and peripherals, Repair Services for Intel OEM Modules and
Platforms, Network Operating System support for Novell NetWare and Banyan VINES software, Custom
Integration Services for Intel Platforms, Customer Training, and System Engineering Consulting Services. Intel
maintains service locations worldwide. So wherever you're using Intel technology, our professional staff is
within close reach.

ON-SITE INSTALLATION AND MAINTENANCE

Intel's installation and maintenance services are designed to get Intel and Intel-based systems and the net­
works they use up and running-fast. Intel's service centers are staffed by trained and certified Customer
Engineers throughout the world. Once installed, Intel is dedicated to keeping them running at maximum
efficiency, while controlling costs.

REPAIR SERVICES FOR INTEL OEM MODULES AND PLATFORMS

Intel offers customers of its OEM Modules and Platforms a comprehensive set of repair services that reduce
the costs of system warranty, maintenance, and ownership. Repair services include module or system testing
and repair, module exchange, and spare part sales.

NETWORK OPERATING SYSTEM SUPPORT

An Intel software support contract for Novell NetWare or Banyan VINES software means unlimited access to
troubleshooting expertise any time during contract hours - up to seven days per week, twenty-four hours per
day. To keep networks current and compatible with the latest software versions, support services include access
to minor releases and "patches" as made available by Novell and Banyan.

CUSTOM SYSTEM INTEGRATION SERVICES

Intel Custom System Integration Services enable resellers to order completely integrated systems assembled
from a list of InteI386'" and InteI486'" microcomputers and validated hardware and software options. These
services are designed to complement the reseller's own integration capabilities. Resellers can increase business
opportunities, while controlling overhead and support costs.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to five days a limited number of individuals learn more in a single workshop than in weeks of
self-study. Covering a wide variety of topics, Intel's major course categories include: architecture and assembly
language, programming and operating systems, BITBUS''', and LAN applications.

SYSTEM ENGINEERING CONSULTING

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Working together, we can help you get a successful product to market in the least
possible time.

int:eL

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it
relates to the product. The marking appears in the upper, right~hand corner of the data
sheet. The following is the definition of these markings:

Data Sheet Marking

Product Preview

Advanced Information

Preliminary

No Marking

Description

Contains, information on products in the design phase of
development. . Do not finalize a design with this
information. Revised information will be published when
the product becomes available.

Contains. information on products being sampled or III

the initial produ~tion phase of development. *

Contains preliminary information on new products in
production. * . ,.

Contains information on products in full production. *

"Specifications within these data sheets are subject· to change without notice:'Verify with your local Intel sales
office that you have the latest data sheet before finalizing a design.

i750™ Microprocessor Family

i860™ Microprocessor Family

i960™ Microprocessor Family

Memories and Peripherals

Development Support Tools

Table of Contents

Alphanumeric Index ' ~

i750TM MICROPROCESSOR FAMILY
Chapter 1

i750™ PROCESSOR DATA SHEETS
82750DB Display Processor ... '.
82750PB Pixel Processor

i860™ MICROPROCESSOR FAMILY
Chapter 2

i860TM PROCESSOR DATA SHEETS AND APPLICATION NOTES
i860 XP Microprocessor :
i860 XR 64-Bit Microprocessor "
82495XP Cache Controller/82490XP Cache RAM
AP-434 Using i860 Microprocessor Graphics Instructions for 3-D Rendering
AP-435 Fast Fourier Transforms on the i860 Microprocessor. ,
AP-452 Designing a Memory Bus Controller for the 82495/82490 Cache

i960™ MICROPROCESSOR FAMILY
Chapter 3

i960TM PROCESSOR PRODUCT OVERVIEWS AND DATA SHEETS
80960SA/80960SB Embedded 32-Bit Processors with 16-Bit Burst Data Bus
i960 KA/ KB Processor Product Overview
80960KA Embedded 32-Bit Processor ;
80960KB Embedded 32-Bit Processor with Integrated Floating-Point Unit
80960CA Product Overview .. .
80960CA-33, -25, -16, 32-Bit High Performance Embedded Processor
i960™ MC Processor Product Overview
80960MC Embedded 32-Bit Microprocessor with Integrated Floating-Point Unit and

Memory Management Unit
M82965 Fault Tolerant Bus Extension Unit

MEMORIES AND PERIPHERALS
Chapter 4

DATA SHEETS
85C960 1-Micron CHMOS 80960 K-Series Bus Control microPLD
27960CX Pipelined Burst Access 1 M (128K x 8) CHMOS EPROM
27960KX Burst Access 1 M (128K x 8) CHMOS EPROM
82596CA High-Performance 32-Bit Local Area Network Coprocessor

DEVELOPMENT SUPPORT TOOLS
Chapter 5

i960 Family of Software Debuggers
EXV960MC Execution Vehicle
80960SA/SB Development Support .. .
ICE-960SB and ICE-960KB In-Circuit Emulators
ICE-960MC In-Circuit Emulator
QT960 Evaluation and Prototyping Board•....
DB960CADIC In-Circuit Debugger .. .
Intel Development Tools Software Services
iRMK 960 Real-Time Kernel
EV80960CA Evaluation Board
i960 SA/SB Evaluation Board .. .

ix

x

1-1
1-57

2-1
2-164
2-243
2-378
2-393
2-447

3-1
3-29
3-34
3-81

3-128
3-166
3-233

3-238
3-276

4-1
4-19
4-40
4-59

5-1
5-6
5-8

5-15
5-25
5-33
5-36 .
5-41
5-43
5-49
5-52

Alphanume.ric Index

27960CX Pipelined Burst Access 1 M (128Kx 8) CHMOS EPROM. , , 4-19
27960KX Burst Access 1 M (128K x 8) CHMOS EPROM 4-40
80960CA Product Overview 3-128
80960CA-33, -25, -16, 32-Bit High Performance Embedded Processor ... , 3-166
80960KA Embedded 32-Bit Processor. 3-34
80960KB Embedded 32-Bit Processor with Integrated Floating-Point Unit. 3-81
80960MC Embedded 32-Bit Microprocessor with Integrated Floating-Point Unit and

Memory Management Unit , .. ; , 3-238
80960SAl80960SB Embedded 32-Bit Processors with 16-Bit Burst Data Bus............ 3-1
80960SAlSB Development Support , , 5-8
82495XP Cache Controller 182490XP Cache RAM .. : 2-243
82596CA High-Performance 32-Bit Local Area Network Coprocessor , ... : 4-59
82750DBDispiay Processor ~ , 1-1
82750PB Pixel Processor ... , ~ 1-57
85C960 1-Micron CHMOS 80960 K-Series BusControlmicroPLD 4-1
AP-434 Using i860 Microprocessor Graphics Instructions for 3-0 Rendering 2-378
AP-435 Fast Fourier Transforms on the i860 Microprocessor 2-393
AP-452 Designing a Memory Bus Controller for the 82495/82490 Cache. 2-447
DB960CADIC In-Circuit Debugger. 5-36
EV80960CA Evaluation Board ..•...... , ; , ; .. • 5-49
EXV960MC Execution Vehicle '.: ;.......... 5-6
i860 XP Microprocessor. " ; ' ..•.. :, 2-1
i860 XR 64-Bit Microprocessor ;............................ 2-164
i960 Family of Software Debuggers '" .. ,• '.•. 5-1
i960 KAlKB Processor Product Overview ; , 3-29
i960™ MC Processor· Product Overview.: ; , .: 3-233
i960 SA/SB Evaluation Board ... 5-52
ICE-960MC In-Circuit Emulator , " .. :' .. , ; . . •. 5-25
ICE-960SB and ICE-960KB In-Circuit Emulators. 5-15
lritel Development Tools Software Services•..... ' ;. 5-41
iRMK 960 Real-Time Kernel........•.......................... 5-43
M82965 Fault Tolerant Bus Extension Unit. .. 3-276
OT960 Evaluation and Prototyping Board 5-33

x

i750™ Microprocessor Family 1

8275008
DISPLAY PROCESSOR

• Programmable Video Timing
- 28 MHz and 45MHz Operating Frequency
- Pixel/Line Address Range to 4096
- Fully Programmable Sync,

Equalization, and Serration
Components

- Fully Programmabl~ Blanking and
Active Display Start and Stop Times

- Genlocking Capability

• Flexible Display Characteristics
- 8-, Pseudo 16-, 16-, and 32-BitlPixel

Modes '
- Selectable Pixel Widths of 1.0, 1.5,

2.0, 2.5, through 14 Periods of the
Input Frequency

- Support Popular Display Resolutions:
VGA, XGA, NTSC, PAL, and SECAM

- On-Chip Triple DAC for Analog RGB/
YUV Output'

- Mix Graphics and Video Images on a
Pixel by Pixel Basis

- Real Time Expansion of the Reduced
Sample Density Video Color
Components (U, V) to Full Resolution

- Three Independently Addressable
Color Palettes

- Programmable 2X Horizontal
Interpolation of Y Channel

-16 x 16 x 2-Bit Cursor Map with
Independently Programmable 2X
Expansion Factors in X and Y
Dimensions

- YUV to RGB Color Space Conversion
- 2X Vertical Replication of V, U, and V

Data for Displaying Full Motion Video
on VGA Monitor

- Register and Function Compatible
with the 82750DA

Intel's 8275008 is a custom designed VLSI chip used for processing and displaying video graphic information.
It is register and function compatible with the 827500A,

Reset inputs allow the 827500B to be genlocked to an external sync source. By programming internal control
registers, this sync can be modified to accommodate a wide variety of scanning frequencies. A large selection
of bits/pixel; pixels/line, and pixel widths are programmable, allowing a wide latitude in trading·off image
quality vs update rate and VRAM requirements.

The 827500B can operate in a'digitizing mode, wherein it generates timing and control signals to the 82750P8
and VRAM, but does not output display information. Besides digitizer support signals and video synchroniza·
tion, the 827500B outputs digital and analog RGB or YUV information and an8-bit digital word of alpha data.
This alpha channel data may be used to obtain a fractional mix of 827500B outputs with another video source.

Video
MI •• r,
=~7·1+~~w...J

Video Input

8275008 Subsystem Diagram

VRAM

Serial Shift
Register

240855-.1

Intel Corporation assumes no responsibility for the use of any circuitry other than cirCUitry embodied in an Intel product. No other circuit patent
licenses are implied, Information contained herein supersedes previously published specifications on these devices from Intel. February 1991
© INTEL CORPORATION, 1991 1-1 Order Number: 240855-003

8275008 Display Processor

CONTENTS PAGE CONTENTS PAGE

1.08275008 PIN DESCRIPTION 4.0 PROGRAMMING THE 8275008
Pinout•........................ 1-4 Overview 1-33

Quick Pin Reference 1-8 Pipeline Delay through the 82750DB 1-33

2.0 ARCHITECTURE
Overview 1-11

Programming Considerations 1-34

Cursor Registers ~ 1-34

Sync Generation and Timing 1-11

VBUS Control 1-14

Display Timing Registers 1-35

VBUSCode Registers 1-37

VB US Code Description 1-16

Pixel Processing Path 1-19

VU Interpolation 1-19

Colormap Lookup Table (CLUT)

Color Registers 1-38

Control Registers 1-38

Color Map Registers ,....... 1-42

8275008 Register Summary 1-43

Operation • 1-20 5.0. ELECTRICAL DATA
8-BitiPixel Graphics Mode 1-21 D.C. Characteristics 1-44
8-BitiPixel Video Mode 1-21 A. C. Characteristics 1-45
8-BitiPixel Mixed Mode 1-21 Digital to Analog Converter Electrical
Pseudo 16-BitiPixel Graphics Mode .. 1-21 Characteristics .. 1-50

Ps.eudo 16-Bit/Pixel Video Mode 1-21 Output Delay and Rise Time versus Load

Pseudo 16-BitiPixelMixed Mode 1-22 Capacitance 1-52

16-BitiPixel Graphics Mode 1-22 6.0 MECHANICAL DATA
16-BitlPixei Video Mode 1-22 Packaging Outlines and Dimensions 1-53

16-BitiPixel Mixed Mode 1-22 Package Thermal Specifications 1-56

32-BitiPixel Graphics Mode 1-22

32-BitiPixel Video Mode 1-22

32-BitiPixel Mixed Mode 1-22

Y Interpolator 1-23

FIGURES
Figure 1-1 82750DB Pinout 1-4

Figure 1-2 82750DB Functional Signal
Groupings 1-7

Cursor ; 1-23 Figure 2-1 82750DB Unit Level
YUV to RGB Converter , 1-25 Diagram 1-12

Output Equalization ; 1-26

Digital to Analog. Converters 1-27

Figure 2-2 Horizontal Programming
Parameters 1-13

Figure 2-3 Vertical Programming
3.0 HARDWARE INTERFACE Parameters 1-13

82750DB Reset Operations 1-28

InputiOutput Transformation 1-28

Genlocking on the 82750DB 1-29

Figure 2-4 82750PB/82750DB
Communication 1-14

Figure 2-5 82750DB 1 X Shift Clock
Operation 1-15

Digitizing Images with the 82750DB 1-30 Figure 2-6 82750DB 1;2X Shift Clock
Operation 1-15

Figure 2-7 82750DB 1;3X Shift Clock
Operation 1-15

Figure 2-8 . Mask Operation on CLUT
Address .. ;................. 1-20

1-2

CONTENTS PAGE

Figure 2-9 Divide by 2.5 Pixel Clock 1-27

Figure 3-1 Horizontal and Vertical Reset
Timing " 1-30

Figure 3-2 Digitizing Example 1-31
Figure 3-3' Digitizing Example with Line

Replicate " " 1-32

Figure 4-1 Programming the Video Sync
Outputs 1-36

Figure 5-1 Clock Waveforms 1-47

Figure 5-2 Output Waveforms 1-47

Figure 5-3 Input Waveforms 1-47

Figure 5-4 1 X SCLK Mode 1-48

Figure 5-5 1;2X SCLK Mode 1-48

Figure 5-6 1;3X SCLK Mode 1-48

Figure 5-7 PIXCLK Waveforms 1-49

Figure 5-8 Output Setup and Hold 1-49

Figure 5-9 TEST ACT # Float Delay 1-49

Figure 5-10 DISDIG to Digital Output
Delay 1-50

Figure 5-11 DISDAC to Analog Output
Delay 1-50

Figure 5-12 Typical Output
Configuration 1-51

Figure 5-13 Typical Output Valid Delay
, Versus Load Capacitance

under Worst Case
Conditions 1-52

Figure 5-14 Typical Output Rise Time
Versus Load Capacitance
under Worst Case
Conditions 1-52

Figure 6-1 Principle Dimensions of the
82750DB in the 132-Lead PQFP
Package 1-53

Figure 6-2 132-Lead PQFP Mechanical
Package Detail-Typical
Lead , ;........... 1-54

Figure 6-3 132-Lead PQFP Mechanical
Package Detail-Protective
Bumper 1-54

Figure 6-4 Detailed Dimensions of the
82750DB in the 132-Lead
PQFP Package-Molded
Details , ,.............. 1-54

Figure 6-5 Detailed Dimensions of the
82750DB in the 132-Lead
PQFP Package-Terminal
Details 1-55

1-3

CONTENTS PAGE

TABLES
Table 1-1 Pin Cross Reference by Pin

Name , ,........... 1-5

Table 1-2 Pin Cross Reference QY
Location .. 1-6

Table 1-3 Pin Descriptions , 1-8

Table 1-4 Input Pins 1-11

Table 2-1 VU Transfer Request
Patterns , ,... 1-17

Table 2-2 VU Transfer Request Patterns
with Line Replicate ,.,' 1-17

Table 2-3 CLUT Modes 1-20

Table 2-4 Control Bit Settings and
Resulting Interpolator
Output ,............ 1-23

Table 2-5 Cursor Color Registers 1-24

Table 2-6 Cursor Sizes 1-24

Table 2-7 82750DB Active T-Cycle
Patterns , .. , .. 1-26

Table 2-8 Digital to Analog Converter
Pins , ,' 1-27

Table 3-1 Selecting Alpha Outputs 1-29

Table 4-1 VU Sampling 1-39

Table 4-2 Pixel Times 1-39

Table 4-3 Number of Bits/Pixel 1-40

Table 4-4 Test Mode Select Coding 1-40

Table 4-5 Coding of Transfer Timing
Select Bits ... ,............... 1-42

Table 4-6 82750DB Register Space 1-43

Table 5-1 Absolute Maximum
Requirements 1-44

Table 5-2 D.C. Characteristics 1-44

Table 5-3 A.C., Characteristics at
28 MHz , , 1-45

Table 5-4 A.C. Characteristics at
45 MHz 1-46

Table 5-5 DAC D.C. Characteristics 1-50

Table 5-6 DAC A.C. Characteristics 1-51

Table 6-1 PQFP Symbol List 1-53

Table 6-2 Intel Case Outline Drawings for
PQFP at 0.025 Inch Pitch 1-53

Table 6-3 Thermal Resistances
(OC/W) 1-56

Table 6-4 Maximum TA at Various
Airflows 1-56

82750D8

1.0 8275008 PIN DESCRIPTION

Pinout

1
2

3
4

132 130 128 126 124 122 120 118 118 114 112 110 108 ,108, 104 102 100
131 129 127 125 123 121 119 117 115 113 111 109 107 105 103 101

o 0 ~oo 0 0 0 0 0 0 0 ~ I~~O 0 0 0 0 0 0000000 OJ 0 0
vee VSS GY vee AVSS vee, VGCS\ SS VSS I ' I ~SS , VSS vee

o VSS Avee RV VSS BU vee ORV[7] " VSS 0
o vee • ' "PIXCLK DBU[3:D) DBU[8:4) ALPHA[o) vee 0

99
98

o _ DRV(8) DBU[7] ALPHA[3:1) 0
97
98

o }' IREFIN DRV(5) '{ 0

,5 '0 ' ' DRV[4:o) 0 95
8
7
8
9

10
11

12
13
14
15
18
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

o ' ~O

o ALPHA(4) 0
o ALPHA(5) 0
o vee 0
o ALPHA(6) 0
o ~O
o DGY[7:o) ALPHA(7) 0
O~~O

o 8275008 Pinout BPP[o) 0

~ vss TOP VIEW D~;~I~) ~
o VSS CB 0

o vee 0

94
93

92
91
90

89
98
87
88
85
84

83
82

81
80
79 ~ VBUS[3:o) { ~

o 0' 78

o SCLK[I) 0
o DATAIN[13:o) VSS 0
o vee 0
o ~o
o RESETB# 0
o CSYNCO
o ,HSYNCO

77
78
75
74
73
72
71

o DATAIN(31) TESTACT# VSYNC 0 70 o 000 69

o VSS DATAlN[18:14) 'DATAlN{21:17) DATAlN[25:22) DATAIN[3O:26) ~~~SRe::ET#~~~:EQIN vss 0 - 69

o vee ~VSS" 'I ' ~vss-.L,vee I ws \,' '\: vee 0 87
vss vccr----l , I i'CC" II ,I, I . \fCO _\vcc DISDAC
OOOOO~OOOOOOOOOOOOOOOOOOOOOOOOOOO

240855-2

Figure 1-1.8275008 Pinout

1-4

8275008

Table 1-1'. Pin Cross Reference by Pin Name

Pin Name Location Pin Name Location Pin Name Location Pin Name Location

ACTDIS 87 DATAIN(15) 37 DRV(7) 114 Vee 82

ALPHA[7] 88 DATAIN(14) 36 DRV(6) 118 Vee 91

ALPHA[6] 90 DATAIN(13) 31 DRV[5) 119 Vee 98

ALPHA[5] 92 DATAIN(12) 30 DRV(4) 3 Vee 100

ALPHA[4] 93 DATAIN(11) 29 DRV[3] 4 Vee 104

ALPHA[3] 95 DATAIN(10) 28 DRV[2] 5 Vee 109

ALPHA[2] 96 DATAIN(9) 27 DRV(1) 6 Vee 116

ALPHA[ll 97 DATAIN(8) 26 DRV[O) . 7 Vee 123

ALPHA[O] 102 DATAIN(7) 25 FCO 61 Vee 127

AVCC 128 DATAIN(6) 24 FREQIN 64 Vee 132

AVSS 125 DATAIN[5] 23 GY 129 VGCS 121

BG
)

69 DATAIN(4) 22 HRESET# 60 VRESET# 59

BPP[1] 85 DATAIN(3) 21 HYSNC 71 Vss 1

BPP[O] 86 DATAIN(2) 20 IREFIN 130 Vss 16

BU 122 DATAIN[1) 19 PIXCLK 120 Vss 17

CB 83 DATAIN[O) 18 RESETB# 73 Vss 32

CSYNC 72 DBU(7) 103 RV 126 Vss 34

DATAIN[31] 58 DBU[6) 105 SCLK[1] 77 Vss 39

DATAIN[30] 56 DBU(5) 106 SCLK[O) 74 Vss 48

DATAIN[29] 55 DBU(4) 107 TEST# 63 Vss 57

DATAIN[28] 54 DBU[3) 110 TESTACT# 62 Vss 66

DATAIN[27] 53 DBU[2) 111 VBUS[3] 81 Vss 68

DATAIN[26] 52 DBU(1) 112 VBUS[2) 80 Vss 76

DATAIN[25] 50 DBU[O) 113 VBUS[1] 79 Vss 89

DATAIN[24] 49 DGY(7) 8 VBUS[O] 78 Vss 94

DATAIN[23] 47 DGY(6) 9 Vee 2 Vss 99

DATAIN[22] 46 DGY(5) 10 Vee 33 Vss 101

DATAIN[21] 44 DGY(4)· 11 Vee 35 Vss 108

DATAIN[20] 43 DGY[3] 12 Vee 45 Vss 115

DATAIN(19) 42 DGY[2] 13 Vee 51 Vss 117

DATAIN(18) 41 DGY(1) 14 Vee 65 Vss 124

DATAIN(17) 40 DGY[O) 15 Vee 67 Vss 131

DATAIN[16] 38 DISDAC 66 Vee 75 VSYNC 70

DISDIG 84

1-5

8275008

Table 1·2. Pin Cross Reference by Location

Location Pin Name Location Pin Name Location Pin Name Location pin Name

1 VSS 34 Vss 67 Vee 100 Vee

2 Vee 35 Vee 68 Vss 101 Vss

3 DRV[4] 36 DATAIN[14] 69 BG 102 ALPHA[O]

4 DRV[3] 37 DATAIN[15] 70 VSYNC 103 DBU[7]

5 DRV[2] 38 DATAIN[16] 71 HSYNC 104 Vee

6 DRV[1] 39 Vss 72 CSYNC 105 DBU[6]

7 DRV[O] 40 DATAIN[17] 73 RESETB# 106 DBU[5]

8 DGY[7] 41 DATAIN[18] 74 SCLK[O] 107 DBU[4]

9 DGY[6] 42 DATAIN[19] 75 Vee 108 Vss

10 DGY[5] 43 DATAIN[20] 76 Vss 109 Vee

11 DGY[4] 44 DATAIN[21] 77 SCLK[1] 110 DBU[3]

12 DGY[3] 45 Vee 78 VBUS[O] 111 DBU[2]

13 DGY[2] 46 DATAIN[22] 79 VBUS[1] 112 DBU[1]

14 DGY[1] 47 DATAIN[23] 80 VBUS[2] 113 DBU[O]

15 DGY[O] 48 Vss 81 VBUS[3] 114 DRV[7]

16 VSS 49 DATAIN[24] 82 Vee 115 Vss

17 VSS 50 DATAIN[25] 83 CB 116 Vee

18 DATAIN[O] 51 Vee 84 DISDIG 117 Vss

19 DATAIN[1] 52 DATAIN[26] 85 BPP[1] 118 DRV[6]

20 DATAIN[2] 53 DATAIN[27] 86 BPP[O] 119 DRV[5]

21 DATAIN[3] 54 DATAIN[28] 87 ACTOIS 120 PIXCLK

22 DATAIN[4] 55 DATAIN[29] 88 ALPHA[7] 121 VGCS

23 DATAIN[5] 56 DATAIN[30] 89 Vss 122 BU

24 DATAIN[6] 57 Vss 90 ALPHA[6] 123 Vee

25 DATAIN[7] 58 DATAIN[31] 91 Vee 124 Vss

26 DATAIN[8] 59 VRESET# 92 ALPHA[5] 125 AVss

27 DATAIN[9] 60 HRESET# 93 ALPHA[4] 126 RV

28 DATAIN[10] 61 FCD 94 Vss 127 Vee

29 DATAIN[11] 62 TESTACT# 95 ALPHA[3] 128 AVee

30 DATAIN[12] 63 TEST# 96 ALPHA[2] 129 GY

31 DATAIN[13] 64 FREQIN 97 ALPHA[1] 130 IREFIN

32 VSS

33 Vee

65

66

98 Vee

99 Vss

131 I Vss
132 Vee

1-6

VDP{
INTERFACE

--r---
VRAM

INTERFACE

_J ____ _

82750D8

FREQIN

VBUS[3:0]

< VDP COM. BUS

SCLK[l :OJ

< SHIFT CONTROL ,

82750D8

DATAIN[31 :0]

DATA BUS >
FCO

Y/G

VIR

U/B

<l

HSYNC

VSYNC

CSYNC

CB

BG

PIXCLK

ACTDIS

GY

RV

BU

ALPHA[7:0]

DATA OUT

DGY[7:OJ

DATA OUT

DRV[7:OJ

DATA OUT

DBY[7:OJ

DATA OUT

DISDAC

DISDIG

RESETB#

BPP[1:0]

BITS/PIXEL

TESTACT#

HRESET#

VRESET#

Vee

Vss

-IANALOG
OUTPUT

DISPLAY
INTERFACE

}
EXTERNAL
TIMING
CONTROL

}
POWER
CONNECTIONS

Figure-1-2. 8275008 Functional Signal Groupings

1-7

240855-3

inteL 8275008

Quick Pin Reference

Table 1-3. Pin Descriptions

Symbol Type Name and Function

FREQIN I FREQUENCY INPUT CLOCK: In normal use, the 8275008 supplies refresh
timing for an associated VRAM through the 82750PB. This places a lower limit
on the line frequency, which is a programmed multiple of FREOIN. It must
generate enough refresh cycles, so a minimum line rate of 4 kHz is required.
Furthermore, the 82750P8 may run no less than Ya the speed of the 827500B,
since the 82750PB samples the timing and control signals generated by the

.. 8275008. The period of FREOIN is known as a "T" cycle .

RESET8# I EXTERNAL RESET: Input signal which places all units in the 827500B into an
initialized state, and sets the transfer rate to a default value of 1j.3X the
operating frequency. It is an edge sensitive iniput which must be held low for a
minimum of ten T-cycles. The slowest transfer rate is selected to ensure that
the 8275008 will read the register information correctly during the first register
transfer, independent of the speed of the VRAMs. Ouring the reset state, the
analog video outputs and digital outputs are set to the black level. This will
occur a maximum of four cycles after RESETB # is set to a zero. This signal is
also used in conjunction with the TESTACT# input to disable outputs.

VRESET# I VERTICAL RESET: 8y programming a bit in an internal register, the 827500B
may be placed in the Genlock mode. If this mode is selected, assertion of
VRESET# resets all vertical timing to the first line of the next field. It does not
affect the horizontal timing, but does generate the on-chip end of field signals. It
is an edge sensitive input that is sampled in the 827500B at the internal time
corresponding to the rising edge of FREOIN. If the Genlock mode has not been
enabled, this signal will have no effect on the sync timing. The 827500B will
then operate in a free-running mode. Refer to Chapter 3 for a detailed
description of genlocking the 827500B.

HRESET# I HORIZONTAL RESET: When in the Genlock mode, this input will reset all of
the horizontal timing to the start of the line (beginning of horizontal sync).
HRESET # does not affect vertical timing (except for an up-to one-line delay) or
any other 827500B registers. This signal is an edge sensitive input that is
sampled in the 827500B at that internal time corresponding to the rising edge
of FREOIN. As was the case with the VRESET# signal, this input will be
ignored when not in the Genlock mode.

VBUS[3:0] 0 VDP COMMUNICATION BUS: The 827500B outputs status and VRAM transfer
requests over these lines to the 82750P8, for 2 to 16 T-cycles (as programmed
by the user). Transfer requests can tie up the 827500BIVRAM, 82750PB/
VRAM, or 82750PB/827500B (VBUS) interfaces for a longer period due to
VRAM arbitration. When signals are not being sent out, the VBUS has value
1111, the "null command."

SCLK[1:0] 0 VRAM SHIFT CLOCKS: Transfer requests to the 82750PB cause a VRAM
address to be set up, and the VRAM serial registers loaded (in the case of
displaying) or unloaded (in the case of digitizing). These signals are used to shift
data out of and into the VRAMs. Both signals are identical, and run at a
maximum rate of 1 X of the pixel frequency, except during transfer requests, at
which time they run at 1 X, 1 /2X, or 1 /3X of the operating frequency of the
827500B, as programmed by the user.

OATAIN[31:0] I DATA INPUT BUS: This is the input data clocked in from VRAM by the
SCLK[1 :0] signals. The format of the input data is a function of the programmed
number of bits/pixel and of the type of transfer cycle being executed. Oata will
be sampled internally on the rising edge of FREOIN.

1-8

8275008

Table 1·3. Pin Descriptions (Continued)

Symbol Type Name and Function

FCO 0 FRAME CAPTURE ON: This is the output signal which indicates to the digitizer
that the VRAM serial port has been turned from read mode to write mode. The
digitizer may then drive the (common) VRAM serial register data I/O pins. FCO
will be asserted after the programmer specifies digitization, five lines after the
start of the active vertical display, at the time of HSYNC. This gives the external
logic time to. switch directions of the VRAM serial data bus. This signal will end
four lines after vertical active stops, at the next HSYNC, to make sure the digitizer
is off before the next beginning-of-field register transfer.

HSYNC 0 HORIZONTAL SYNCHRONIZATION: Video synchronization signal which is
asserted at the beginning of every line and ends a programmed time later. (The
duration of this signal is specified in T-cycles.)

VSYNC 0 VERTICAL SYNCHRONIZATION: Video synchronization signal which can be
programmed to start (once) and end (once) in every field. (The start and stop
position may be specified in half-line units.)

CSYNC 0 COMPOSITE SYNCHRONIZATION PULSE: This contains the programmed
vertical serration and equalization information, as well as horizonal
synchronization pulses.

CB 0 COMPOSITE BLANKING: This signal can be programmed to end once and start
once in each line, and end once and start once every field.

BG 0 BURST GATE: This signal starts and stops at user-programmable horizontal
positions in each line, in a programmable vertical group of lines. The primary use
of this signal is to provide a "window" during which the BURST output should be
inserted to generate a basebandNTSC signal. The output frequency is set by an
integer divisor (0-31) and the rate of the FREQIN clock input. To use this
effectively, the 82750DB must operate at an integer multiple of the NTSC 3.58
MHz color subcarrier. The number is programmed in two's complement form in
the General Control register.

PIXCLK 0 PIXEL CLOCK: This output signals valid data on the DGY, DRV, DBU, GY, RV,
and BUlines. PIXCLK becomes active one-half of a T-cycle after valid data
appears on DGY, DRV, or DBU, and coincident with GY, RV, and BU. During
active display time it is issued at a steady rate of 1 /(T-cycles/pixel) times per T-
cycle, and otherwise at a steady rate of once per T-cycle. Its duration is one-half
of a: T-cycle, and its rising edge may synchronize with either rising or falling edges
of FREQIN depending on the pixel frequency. This signal may be used to
synchronize off-chip processing of the pixel data outputs.

GY, RV, BU 0 ANALOG PIXEL OUTPUTS: These signals are the processed pixel data from the
82750DB in analog form. During the display, these signals may be programmed to
output pixel data in either YUV or RGB format.

Output
DGY DRV DBU

Format

YUV Y V U
RGB G R B

DGY[7:0], 0 DIGITAL VIDEO OUTPUTS: These are the digital outputs of the GY, RV, and BU
DRV[7:0], channels, respectively. They are valid with respect to the rising edge of PIXCLK.
DBU[7:0]

ALPHA[7:0] 0 ALPHA CHANNEL: These 8 bits are used to output a digital value for mixing the
82750DB output with another video signal off-chip. The alpha channel information
may be included in the pixel data, or may be output based on a comparison ofthe
pixel data with user-programmed values.

ACTOIS 0 ACTIVE DISPLAY: This is the active portion of the display as programmed by the
user. It is delayed by the pipeline through the 82750DB, which is 5 lines vertically
and a variable number horizontally, depending on the display mode.

1-9

82750D8

Table 1"3. Pin Descriptions (Continued)

Symbol Type Name and Function

BPP[1:0] 0 BITS PER PIXEL: During the nonactive display, the user programmed bits/pixel is
encoded on these lines. During active display, the BPP[O] signal is multiplexed
with a signal, Cursor Active, which indicates if the cursor data is currently active
(non·transparent). When the Cursor Active output signal is asserted, this indicates
that cursor overlay data is currently being output. Also during the active display,
the BPP[1] signal is multiplexed with a signal, VUGR, which indicates whether the
82750DB is operating in a graphics or video mode. When the VUGR output signal
is asserted, this indicates the G, R, and B outputs are derived from the
subsampled VU data. These pins allow users to latch the BPP [1 :0] signals during
nonactive display time (as indicated by ACTDIS being zero) for post-processing of
the 82750DB output. The active cursorwindow on BPP[O] can be used during
active display, to multiplex in other video streams into the output display. The
following table illustrates the encoding on the BPP signals.

Bits/Pixel ACTDIS BPP[O] BPP[1]

8 0 0 0
16 0 0 1
32 0 1 0

pseudo16 0 1 1
8 1 Cursor Active VUGR

16 1 Cursor Active VUGR
32 1 Cursor Active VUGR

pseudo 16 1 Cursor Active VUGR

DISDAC I DISABLE ANALOG OUTPUTS: When this input is active, the Analog Pixel
Outputs are set to a high-impedance state.

DISDIG I DISABLE DIGrrAL OUTPUTS: When this input is aCtive, the digital outputs of the
82750DB will be set to zero. In applications that use only the analog outputs of the
82750DB, the digital outputs must be disabled.

TESTACT# I TEST ACTIVE: Active low signal that is used in conjunction with the RESETB #
signal to allow the chip to perform orie of the following functions:

RESETB# TESTACT# 82750DB State

0 1 Enter Reset State
0 0 Enter Reset State

Tristate All Outputs
Analog Outputs are Zero

1 1 Normal Operation
1 0 Reserved

TEST# I TEST INPUT: This signal must be set to VCC to guarantee correct chip operation.

VGCS 0 INTERNAL VOLTAGE REFERENCE: This signal must be decoupled to AVCC.

IREFIN I ANALOG CURRENT REFERENCE: Under normal operation, this signal should be
tied to a temperature compensated current reference to AVSS. This signal must
be decoupled to AVCC.

AVec I ANALOG POWER pin provides + 5 VDe supply to the Digital to Analog Converter.

AVss I ANALOG GROUND pin provides the OV connection to which the analog outputs
are referenced. This must be connected to VSS.

Vee I POWER pins provide + 5 VDe supply input.

VSS I GROUND pins provide the OV connection to which all inputs and outputs are
referenced.

1-10

intet 8275008

Table 1·4. Input Pins

Name
Active Synchronous!
Level Asynchronous

FREQIN HIGH Synchronous

RESETB# LOW Asynchronous

VRESET# LOW Asynchronous

HRESET# LOW Asynchronous

OISOIG HIGH Asynchronous

TESTACT# LOW Asynchronous

TEST# LOW ASynchronous

All output pins have an active level of HIGH, and are
floated when RESETB # and TEST ACT # are set to
a zero. The exceptions are GY, RV, and BU which
will be forced to a zero level.

2.0 ARCHITECTURIE

Overview

There are 10 units in the 8275008. Each of the units
operates independently at the maximum clock rate
input to the chip. The control information for each
block is distributed in programmable registers
throughout the chip. These registers are loaded on
user-specified lines during the horizontal and vertical
blanking intervals of the field. The register data that
was read in from VRAM is passed from block to
block during the blanking intervals of the display, on
the same lines that the pixel information is passed
during the active display. The Functional BlOck Dia­
gram is shown in Figure 2-1.

In order to maximize speed and compensate for pro­
cessing delays, the chip is heavily pipelined. All in­
ter-block information is delay-equalized to accom­
modate the different pipeline lengths in each mod­
ule. As a result, the total pipeline delay is dependent
on the number of processing units that are used to
generate the display. Chapter 4 describes how the
user programming is affected by these pipeline de­
lays.

Each of the units are described in more detail in the
following sections of this chapter.

Sync Generation and Timing

The sync generation and timing block generates all
of the internal timing and control signals, as well

1-11

as the video synchronization signals. Sync and tim­
ing information may be derived from two sources:
from the master clock, in which case the control reg­
isters on the 827500B are programmed to provide
the desired display frequency in terms of periods of
the master clock (T-cycles), or from the horizon­
tal and vertical external reset signals. (The latter
is known as the genlock mode.) Characteristics
such as line rate, blanking and border intervals, and
composite synchronization parameters can be in­
dependently set. Since the 827500B can be
reprogrammed once each line, horizontal strips of
different resolutions can be supported on the same
display. However, the horizontal strips that can be
supported are limited by the host processor's re­
sponse to redefining the bitmap pointers resident on
the 82750PB.

The horizontal and vertical display parameters are
fully programmable. Figure 2-2 illustrates the hori­
zontal programming parameters. The line starts at
the programmed start position, with the length of
half of a line programmed in T-cycles. The length of
the total line is twice the half-line length. Parameters
such as horizontal sync start, horizontal sync width,
horizontal blanking start and stop, and horizontal ac­
tive start and stop are all specified by the user. Note
that the border time is not explicitly programmed, but
is defined as the region of the display line where
neither active display nor blanking is programmed to
occur. In order for the 827500B to function correctly,
the width of the horizontal active display should be
programmed such that the end of the horizontal ac­
tive display coincides with the end of the last dis­
played pixel.

Figure 2-3 shows the vertical programmingparame­
ters. The basic unit for vertical programming is in
units of half lines, with the half-line count for each
field starting at zero. Where appropriate for a param­
eter, the count is programmed in units of full lines.
The length of the complete field is programmed in
half lines, which makes it convenient for distinguish­
ing between interlaced and non-interlaced displays.
(For interlaced displays, the number of half lines is
odd, for non-interlaced displays, it is even.) The ver­
tical active and blanking regions may be indepen­
dently programmed, with the border time defined as
the region where blanking and active display is not
on.

NOTE:

Sync parameters are completely independent of
the display parameters. This allows the sync sig­
nals to be positioned anywhere in the field (even
during active display).

intel· 8275008

OATAIN[31:0j
(from VRAM . Ik1

,...----.L~......,...,~--..-t-----,..-,---,,' _y,P'lX
Sync

Generation
and

Control Timing

CONTROL

~
a
go
z
a
'-'

CONTROL'

r---

,.
r--

VU UFLAG Pixel
Interpolator ~ Processinq

Alpha Dol

" U V

VSUS Canlrol
--.. pixclklx

--.. pixclk2x

Alpha Dolo

pixc/kh

.. ,~
V

" ...
V

V
CLUT U ...

3x256.8 m.S.
U

m.s.byl'" byle l :"
-" ,.

.

~~ V ,
V V

U'
Oera

U

m.s.byle' m.s.bYle/oIPho

AlphaOol~
I , '-----

16x16 Cursor Uop

pixclk2x ... Border and
pixclk2x Blanking Conlrol

+
J m .•. byle/olpha I U -

'Pix~r

2)(Horizontal
Interpolator

Delay

V Y

YUV 10 RCB Jh,.------......,f-+-.....J
r----; lAolrix

, -
B R G

L..-__ ..J

t-oIJt-+---i-~-i----"-~
1~,U/8 J ~
I ,-;-;;::- V Deloy ~

ViR ~
pixClk2~ Equalizer

V/G _-

~~~~~~·~~U/~8----~ 

ViR Y/G 

~ ~l 
AIPhOOUl4 ,', 'if [7:0] 

D8U[7~0] ORV[7:0] O,Gy\7:0] , 

Triple 8-bit GAC I 
Oigilol Oulpuls Pixel Clo<;k 

if if 
BU RV GV 

240855-4 

Figure 2-1. 8275008 Unit Level Diagram 

1-12 



infel· 8275008 

Start of Horizontal Sync 

r' End Of Horlzonlal Sync 'j Of Horlzonlal Blanking " 

End Of Horizontal Active Display i Sitar! Of Horizonl~1 Blanking 
. Start Of Horizontal Active Ef of Une Count 

• All horizontal programming parameters are in periods of the master clock. 

• Border may be ellmlnaled by programming Ihe blanking time to abut the active display. 

• Pixel widths must be an Integer divisor of horizontal active width. 

• Border Time" D AcIIve Display 

Figure 2·2. Horizontal Programming Parameters 

StaltOf Reid 
(Halt-line cDUnlls 

End Of Vertical Blanking 

Start Of Vertical AcIIve 

End Of Vertical Active 

Start Of Vertical Blanking' 

End Of Reid 
(Programmed half­
line count reached.) 

• All vertical programming parameter. shown ar.ln halt line •. 

• Vertical border may be eliminated by. abutting active display and blanking tim ••. 

• Pcaltlonlng of vertical blanking and aync are fully Independ.nt 

Programming Blanking BordarTlme 

240855':'5 

240855-6 

Figure 2·3. Vertical Programming Parameters 

1-13 



8275008 

VBUS Control 

The VB US controller sends all 827500B requests 
for display bitmaps, VRAM refresh, and synchroniza­
tion information to the 82750PB, at programmable 
times during a field: Transfer requests are scheduled 
to occur on a line basis, so only their vertical position 
(or line) is specified by the user. Other commands, 
like refresh requests, occur every line, and their hori­
zontal position (or dot position) in the line must be 
specified by the user. Transfer requests are given 
the highest priority by the VBUS control circuit and 
are performed first during a blanking interval. The 
programmer has the responsibility of scheduling the 
line oriented codes, like refresh, so that they do not 
collide with the transfer requests. 

Besides arbitrating the scheduled transfer requests, 
the VB US controller also reads the data from the 
VRAM shift registers using the two shift clock out­
puts (SCLK[1 :0)). The code corresponding to the 
type of data to be isad is asserted fa; a piogramrna .. 
ble number of cycles on the 4-bit VBUS. The 
827500B then waits a programmable delay before 
reading the data from the VRAM. This delay should 
be long enough to guarantee that the 82750PB has 
completed loading the information into the serial 
shift register of the VRAM. Both signals are off while 
the code causing the transfer cycle is active on the 
VB US, as well as during the read delay time .. Figure 
2-4 illustrates this communication between the 
82750PB and the 827500B. 

When the delay wait is over, the shift clock outputs 
are activated. The SCLK[1 :0] signals' behavior is 
dependent on the transfer rate that the user has se­
lected-either 1 X, 1/2X, or 1/3X the operating fre­
quency. Note that if the RESETB # signal is applied, 
the transfer rate is automatically set to 1/3X during 
the first automatic register transfer, regardless of the 
state of the transfer rate selection. The transfer rate 
may be changed in the first register transfer after 
RESETB # is set to a logic one value. 

Figure 2-5 illustrates how the SCLKs operate in the 
1X mode in a system. SCLK[1:0] signals will toggle 
between zero and one on the rising edge of 
FREQIN, after an internal logic delay. The data is 
read into the 827500B on the rising edge of the in­
ternal clock, one 827500B clock cycle after the 
SCLK outputs are asserted. Since there are 32 data 
input pins, each SCLK can read in the serial data 
from eight 256 x 4 VRAM memory devices. Adding 
external buffering to the SCLKs (to drive more mem­
ory) will also add delay to the memory access. The 
delay increase may require more than one T-cycle 
before the VRAM data is valid. In this case, the time 
between the rising edge of the internal 827500B 
clock that generates the SCLKs and the edge that 
latches the data must be increased. 

There are two solutions, the operating frequency of 
82750DB can be lowered to accommodate a longer 
T-cycle, or the 1/2X SCLK mode may be selected 
(as shown in Figure 2-6). When using the 1/2X 
transfer rate, the data is read into the 827500B on 
the rising edge of the internal clock, two 827500B 
clo.ck cycles after the SCLK outputs are asserted. 

Programmable 8275008 Delay 
(2.255 821S00B Clock Cycle,) 

82rSOD8 Sample. Data 

I 

i 
I 

..... : tdVSUS 

VBUS[3:01 ... : -f __ V...::.I...::ld...:.Tr...::.n...:: • ...::ler:..C...::od.:.:._--l~ ___ -i--+_-l-__ +-

SCl.K(1:01,_+-______ -'-_+-___ +, -+-1 
: , ' 

, 'I 
, 'I 

: :: DATA 0 DATA 2 

~::I~ 
, " 
I " 

The 8275008 Initiates The 82750P9 mUlt have The 827SOPB must have executed 
Iran.fer request finished decoding \he the 8275OD6 transfer request 

VBUS code. (DATA should be In the •• rlal 
'hilt register of the VRAM.) 

Figure 2-4. 82750PB/82750DB Communication 

1-14 

240855-7 



8275008 

Figure 2-7 illustrates 1 13X (default) shift clock oper­
ation that is used during the RESET mode or may be 
programmed by the user. The first word of data is 
latched by the 8275008 on the rising ede of the 
FREQIN that is three T-cycles after the SCLK out­
puts were asserted. This allows three full 8275008 

cycles for the VRAMs to output valid data, which 
gives extra margin for applications that need longer 
shift read cycles (due to slower memories or exter­
nal logic delays) and do not wish to operate the 
8275008 at a slower speed. 

:--- 1 T-CYCLE-; , 
82750D8 , 

FREQIN ' 

----' ;..- T OSCLK 

SCLK[1 :OJ 

VRAM 
data 

I' 

, 
:_ T ACCESS .... ; , 

------~Xr--~r----------------­
, 

'*'--•. ': TSETUP 

Figure 2·5. 8275008 1X Shift Clock Operation 

2 T-CYCLES Ii 

82750D8 V \ I FREQIN \_~V 
----' ;..- TOSCLK 

SCLK[1 :OJ \ I 
~--------------~i , 

VRAM 
data 

;: ... ----- TACCESS ------,, 
, --------.....,X,.--+---

, 
:'" .----.: TSETUP 

Figure 2·6. 8275008 1/2X Shift Clock Operation 

" 

82750D8 ' 
FREQIN 

3 T-CYCLES ----->0., 

_I ; __ T DSCLK 

240655-6 

240655-9 

SCLK[1:OJ --.-l: 
, \ Y ~ ______________ .J, \ ..... _----

VRAM 
data 

:~ TACCESS -----.; 
, , 

----~; ------------~X~-~---------------
, , 

~'" .---_.~ : T SETUP 

240655-10 

Figure 2·7. 8275008 1j.3X Shift Clock Operation 

1-15 



intel® 8275008 

When reading data from memory during active dis­
play, the SCLK[1 :01 outputs operate at a rate re­
quired to support the programmed display rate. This 
rate is determined from the following equation: 

RATE = _____ ...:(_#_o_f_bi_ts_I'-pi_xe--'I)'--___ _ 
(32-bitlword)' (# word/fetch) • (#T-cycle/pixel) 

where: # bits/pixel and # T-cycles/pixel are user~ 
programmed 

# word/fetch is: 1 

The SCLK[1 :01 outputs will be the same frequency 
as the input clock in the 1 X shift clock mode, and 
one half the input clock frequency when using the 
1/2X mode. The frequency will be one third in the 
input clock when using the 1/3X mode. In the 1/3X 
mode the SCLK[1 :0] outputs will be high for one 
T-cycle, and low for 2 T-cycles. 

VBUS CODE DESCRIPTION 

When the 827500B is actively fetching and display­
ing pixels, VUXFER, BMXIYBMNPX, and REGX are 
typically sent over the VBUS. Of the three codes, 
REGX has top priority, followed by VUXFER, and 
last by BMXIYBMNPX. These commands may be 
programmed to occur each active line during the 
blanking interval for the line just completed. If a reg­

. ister transfer has been programmed for an active 
line, it takes priority and is executed first. Otherwise, 
immediately after the register. transfer, any sched­
uled VUXFER and BMXIYBMNPX commands are 
executed. The programmer has the responsibility for 
verifying that the sum of times required by these 
commands does not exceed horizontal non-active 
display time. The 827500B will commence fetching 
pixels at the subsequent start of active display. A 
detailed explanation of the different types of VBUS 
commands and their corresponding codes follows. 

Transfer Requests 

The following. commands request the 82750PB to 
transfer information from the VRAM array into the 
VRAM shift register. When multiple requests are pro­
grammed for a given line, they are listed in the priori­
ty they are sent. When asserting a transfer request, 
the programmer must be aware of two other pro­
grammed parameters, VBLEN and SCLK delay. 

The VBLEN parameter is a user programmed value 
whose bits lie in the General Control Register. It is 
the length of time, in 827500B T-cycles, that a par­
ticular VB US code will be held at the outputs. It is 
used to ensure that the asynchronously operating 
82750PB chip will have enough time to recognize 
and begin operating on an 827500B transfer re­
quest. 

1-16 

The other parameter the programmer needs to set is 
the SCLK delay. This can be found in the Pixel Con­
trol Register. It is the number of 827500B clock cy­
cles that the DB will wait before clocking in data, out 
of the VRAM, after the initiation of a transfer request 
on the VB US outputs. 

REGX (0010) This command requests that the 
82750PB transfer 827500B register information into 
the VRAM shift· registers. Besides the automatic 
827500B register transfer that occurs on the second 
line (line 2) of each field, the programmer can speci­
fy the next horizontal line on which another register 
transfer is to take place. The transfers may be 
scheduled many times during the field. On the first 
transfer, the 82750PB uses the contents of its 
827500Bc register as the starting address of the 
827500B register data. On each subsequent ac­
cess, the programmed pitch value in 82750PB's 
827500Bc-PITCH register is added to the accumu­
lated start address. The programmer must ensure 
that the data is stored in VRAM at the correct ad­
dress. Since the pitch remains constant, the longest 
register load will determine the pitch value. 

The VBUS unit performs a vertical checksum on all 
the register information. Each bit in the register word 
undergoes an exclusive-OR with the corresponding 
bit in the previous data word. The· 827500B com­
pares this information with the user generated 
checksum, which is the last 32-bit data word read 
into the 827500B during a register transfer. If the 
values do not match, the 827500B will disable all of 
its digital sync and data outputs, enter the reset 
state, and send a SHUTDOWN code (827500BSO) 
to the 82750PB over the VBUS[3:0] outputs. If the 
new checksum is correct, the new register values 
will take effect immediately. 

VUXFER(0001) This code is used to request VU 
data, providing new VU data is required by the 
827500B .. This command is issued only on vertically 
active lines (as programmed in the register, not as 
seen on the screen) and possibly the four lines after. 
On each line, a row of V and/or U samples are loadc 

ed into the VU interpolator line stores. The pattern of 
requests depends upon the mode in which the VU 
interpolator is operating. In the interlaced VU mode, 
one line of samples for both the V and U compo­
nents are fetched during each transfer; in the non-in­
terlaced VU mode, only one line of samples for ei­
ther the V or U components is fetched. Table 2-1 
illustrates the pattern of requests. M is the pro­
grammed first vertical active line, and N the last ac­
tive line. The modes listed have VU transfer re­
quests following the end of horizontal active of the 
lines specified, stopping with the last line, N + 4. 



nn~ ® 8275008 

Table 2-1 VU Transfer Request Patterns Table 2-2. VU Transfer Request Patterns 

Mode 
Active 

Request VU Data 
Line 

2x Non-Interlaced M Fetch 1 st Line of V 
M + 1 Fetch 1 st Line of U 
M+4 Fetch 2nd Line of V 
M+5 Fetch 2nd Line of U 
N+4 Fetch Last Line of V 

2x Interlaced M Fetch 1 st Line of V and U 
(Odd and Even M+4 Fetch 2nd Line of V and U 
Fields) M+5 Fetch 3rd Line of V and U 

N+4 Fetch Last Line of V and U 

4x Non-Interlaced M Fetch 1 st Line of V 
M + 1 Fetch 1 st Line of U 
M+4 Fetch 2nd Line of V 
M+5 Fetch 2nd Line of U 
M+8 Fetch 3rd Line of V 
N+4 Fetch Last Line of V 

4x Interlaced M Fetch 1 st Line of V and U 
(Odd and Even M+4 Fetch 2nd Line of V and U 
Fields) M+6 Fetch 3rd Line of V and U 

N+4 Fetch Last Line of V and U 

The 82750PB uses another internal pointer to cause 
the VRAM to load the desired VU data into its shift 
registers (incrementing the pointer by a pitch value). 
This command is asserted for a programmable num­
ber of T-cycles (m), as specified in the Miscellane­
ous Control register. Then, the 827500B fetches 
them, tying up the 827500BIVRAM interface for 
(n + 2) cycles, where n is % the programmable total 
number of 8-bit samples of V and U fetched. Note 
that one extra word, which may overlap the next 
VBUS command, is fetched. 

By setting a bit in the Miscellaneous Control register, 
it is possible to replicate lines of V and U generated 
by the interpolator for the entire field. Since each 
line of VU data is displayed twice, the rate that the 
VU sample map has to be fetched from VRAM is 
reduced by %. Table 2-2 lists the sequence of VU 
loads. 

In some cases, the VU interpolator may cover only a 
portion of the display. In those instances, M in the 
above examples would be the first line that VU inter­
polation is enabled. N would be the last line that VU 
interpolation is enabled. Regardless of the state of 
the Line Replicate bit, there would be no vertical 
pipeline delay between the loading of the first line of 
samples and the second line of samples. The first 
line of samples would be loaded at M-1, and the 
second line at M. This reduces the delay between 
switching interpolation modes during a single dis­
play. 

1-17 

with Line Replicate 

Active 
Request Mode 

Line 

2x Non-Interlaced M Fetch 1 st Line of V 
M +1 Fetch 1 sl Line of U 
M+4 Fetch 2nd Line of V 
M+5 Fetch 2nd Line of U 
M+8 Fetch 3rd Line of V . 
M+9 Fetch 3rd Line of U 

. N + 4 Fetch Last Line of V 

2x Interlaced M Fetch 1st Line of V and U 
(Odd and Even M+4 Fetch 2nd Line of V and U 
Fields) M+6 Fetch 3rd Line of V and U 

N+4 Fetch Last Line of V and U 

4x Non-Interlaced M Fetch 1st Line of V 
M + 1 Fetch 151 Line of U 
M + 4 Fetch 2nd Line of V 
M+5 Fetch 2nd Line of U 
M +12 Fetch 3rd Line of V 
M + 13 Fetch 3rd Line of U 
N+4 Fetch Last Line of V 

4x Interlaced M Fetch .15t Line of V and U 
(Odd and Even M + 4 Fetch 2nd Line of V and U· 
Fields) M+8 Fetch 3rd Line of V and U 

N+4 Fetch Last Line of V and U 

BM){ (0000) This command requests a bitmap. 
BMX (0000) is sent after horizontal active stops, be­
ginning on the fifth line after vertical act!ve sta~s, 
and continuing until the fifth line after vertical active 
stops. (There is a vertical pipeline delay of five lines 
through the 827500B, due to internal timing reqUlre.­
ments.) A line programmed to start at line M, wll 
have its first active line displayed at line M + 5.The 
82750PB uses an internal pointer to cause the 
VRAM shift registers to be loaded with pixel values. 
The 827500B subsequently fetches them as re­
quired for display. This command is asserted on the 
VBUS for the user-programmed number of T-cycles 
and must be completed before active display begins. 

YBMNP){ (0100) This command performs a·Y bit­
map transfer without performing a pitch calc~latio~. 
When the line replicate mode is selected by Bit 22 In 
the Miscellaneous Control register, this code is as­
serted every other display line so that the same line 
of information can be used twice. 



8275008 

Digitizer Commands 

When· in the line replicate mode, and digitizing an 
NTSC source. (for example, when genlocking an 
NTSC source to a system that uses only a VGA 
monitor),. each line of captured data is effectively 
output at twice the rate. Since each line need only 
be stored once in memory (it is duplicted automati­
cally in the display mode) only one WROIGI code, 
followed by aWROIGINP, is sent every other line. 
On alternate lines, two WROIGINP are sent and will 
select the last address that was written, without in­
crementing the 82750PB bitmap address pointer. 
This is described in detail in Chapter 3. 

WRDIGI (0011) This command requests a write of 
digitized data. The operation of this command is de­
pendent upon the external hardware and is dis­
cussed in the section on genlocking (page 29). If 
digitizing is enabled, this command is .asserted on 
the VBUS for a programmable number of T-cycles. 
The pointer is then incremented by a pitch value. 
Since each horizontal line is·stored in a single row of 
memory, this pitch value is equal to the horizontal 
resolution, in bytes, for non-interlaced bitmaps. For 
interlaced bitmaps, the pitch value is equal to twice 
the horizontal resolution, in bytes. This allows alter­
nate lines of data to be skipped over in successive 
fields. 

WRDIGINP (0111) This command allows access 
to digitized data without performing a pitch calcula­
tion. WROIGINP (0111) requests that the 82750PB 
perform a transfer request at the last calculated ad­
dress. Note that oniy a memory transfer cycie is per­
formed-the pitch value is. not added to this ad­
dress. This will always ensure that the digitized data 
is written into the last selected memory address, in 
case a physical memory boundary has been 
crossed. This command is asserted after the WRDI­
GI transfer has completed. 

Refresh and Control Commands 

The following signals are used to pass refresh re­
quests and control information to the 82750PB. 

DFL (1000) The Display Format Load command is 
a maskable host processor interrupt that can be pro­
grammed to occur at any time during the display. 
This is used by the 82750PB to transfer the shadow 
register contents into the working register set in the 
VRAM interface. This· is useful in supporting split­
screen-type applications, where it is desirable to 
change the bitmap pointers at some point before the 
end of the display. 

1-18 

82750D8SD (1001) This command is the 
827500B Shut Down code. During every register 
transfer, the 827500B keeps an internal vertical ex­
clusive-or checksum of the register data as it is read 
onto the chip. The last word of data that is read 
during the register transfer is the user-generated 
checksum. If the two checksums match, operation 
proceeds as normal. If they do not match, the 
827500B enters the reset state and sends this code 
to the 82750PB. The 827500B will remain reset until 
the reset pin is asserted and negated by the host 
processor. 

REFRESH (1010) This command asks the 
82750PB to generate up to 15 refresh cycles every 
horizontal line. The 827500B transfer cycles have a 
higher priority than refresh requests in the 82750PB. 
REFRESH will not be asserted if programmed to oc­
cur at the same time as a transfer request code. 

Video Synchronization Information 

The following codes are lJsedto pass the video line 
and field information from 827500B to the pixel 
processor. 

VEVEN (1101) This code indicates the start of an 
even (i.e. second) field of a frame. This command is 
sent coincident with line one of each even field. 
When genlocking to an external source (see pg. 29), 
the occurence of a vreset signal during programmed 
horizontal active time will cause the 827500B to out­
put a VEVEN code on the VBUS. 

VODD (1100) This code indicates the start of an 
odd (Le. first or only) field of a frame. This command 
is always sent immediately after RESETB# is neg­
ated, and coincident with line one of the odd field. 
Similarly, when genlocking, the occurence of a 
vreset signal during any time other than horizontal 
active time will cause the 827500B to output a 
VOOO code on the VBUS. 

HUN (1110) This code marks every horizontal line 
at a programmable point in the line. HLiN is used by 
the 82750PB to increment its horizontal line counter. 



Intel" 8275008 

Pixel Processing Path 

This logic accepts the 32-bit word from the input 
latch and divides the word into the programmed pix­
el format. This will result in either four 8-bit pixels, 
two 16-bit pixels, one 32-bit pixel, or an 8-bit pixel 
with an 8-bit alpha value (pseudo 16-bit mode). The 
pixels act as addresses to the color table, or may 
bypass the table completely as described below. 

Pixel information may be mixed with the output of 
the VU interpolator, which outputs interpolated sam­
ples derived from a reduced sample bitmap. The 
least significant bit of Y or LSB of U can be pro­
grammed to act as a switch between using the ex­
plicit pixel value of YUV or using the luminance por­
tion of the pixel with the VU portion obtained from 
the interpolator. If the value of the LSB of Y (or U, 
whichever is selected) is zero, the pixel data is used. 
If the LSB of Y (or U) is one, the output of the VU 
interpolator is used. Note that if the LSB of Y is used 
as the switch flag, the luminance portion of the word 
will be only 7 bits wide. 

The alpha information is also processed in this 
block. The alpha data may come from one of two 
sources: it may be explicitly coded in the pixel word, 
as is the case in the 32-bitJpixel and pseudo 16-bitl 
pixel mode, or it may be obtained by comparing the 
Y portion of the pixel with a preprogrammed value 
and outputting one pre programmed value if they 
match and a different value if they do not match. 
This latter capability is known as Alpha Trap. 

VU Interpolation 

When VU interpolation is enabled by the program­
mer, and when the display is in the active region, 
"VU data" will be fetched, as required by the inter­
polator (by the mechanisms discussed previously in 
the section titled "VB US Code Description"). This 
data has the format V, V, ... , V, U, U, ... , U where 
each V or U is 8 bits, and the bytes are grouped into 
32-bit double-words with. earliest in lowest order. 
The number, "N", of V bytes and U bytes is the 
same; N is programmed to be either 256 samples, or 
one of 32 to 192 samples in 32-byte increments. 

The first V data and the first U data fetched on the 
first line of VU interpolation supplies the VU value for 
the first active pixel on that line. All the other VU 
pairs. that are fetched define values for the grid of 
pixels defined below and to the right of this one by 
the VU expansion factor every other or every fourth 
horizontally and vertically. Most other VU values are 
filled in recursively by interpolation. Wherever there 
is a pixel which lies between two pixels with known 

1-19 

values, it is given the value of the weighted average 
of the known values. Values are understood to be 
non:negative integers. When the final value is out­
putted, any fractions are truncated or rounded to the 
closest odd integer according to the programmed 
value of the interpolation round flag. This process is 
iterated until all pixels have assigned color values. If 
the number of VU data samples loaded into the 
82750DB is not enough to cover the active display 
area, then the last data sample will be replicated 
horizontally across the active display window. 

As mentioned previously in the VBUS Control dis­
cussion, each line of VU data can be used twice by 
setting the Line Replicate bit in the Miscellaneous 
Control register. Also, each horizontal VU sample 
can be replicated by setting the VU Replicate bit in 
the Pixel Control register. This will cause the V and 
U pixels generated by the VU interpolator every pixel 
time to be used twice. This can result in an effective 
8X horizontal expansion, which is useful when hori­
zontal blanking time is at a premium. This bit affects 
the horizontal interpolation algorithm only, and will 
not affect the line loading sequence for VU during 
the active display. 

When interpolation is turned on by the programmer 
(by specifying a non-zero number of samples to be 
fetched), VU interpolation may nevertheless be dis­
abled for each pixel if the following conditions are 
met: 

1. Conditional interpolation has been selected by 
the programmer, 

AND 
Either of the two user-programmed conditions: 

a. Switching on the LSB of the U bit has been 
selected, and the lowest-order bit of the U val­
ue fetched for the upper left pixel in the block 
has value zero. This allows switching to occur 
on a 2 x 2-pixel or 4 x 4-pixel grid, depending 
on the expansion mode the user has selected. 
The full 8 bits of Y and V are used, but the 
usable space of U has been decreased to 7 
bits. 

b. Switching on the LSB of the Y bit has been 
selected, and the low order bit of the Y value 
for the current pixel has a value of zero. 

2. Display of fetched and interpolated VU values 
may also be suppressed by setting the Interpola­
tion Output Enable bit (in the miscellaneous con­
trol register) to zero. This will allow VU data to be 
loaded into the VU line stores without displaying 
VU data. This is useful when a mid-screen tran­
sition is made between two interpolation modes, 
to compensate for the vertical latency of the in­
terpolation process. 



intel® 827500B 

Colormap Lookup Table (CLUT) 
Operation ' 

The 82750DB contains three 256 x 8-bit color look­
up tables. The color maps can be accessed sepa­
rately, or may act as one large 256 x 24-bit table. 
The manner in which the tables are addressed is 
determined by the programmed bits/pixel and de­
pends on whether the pixel'is a graphics or video 
pixel. Also each Y, U, and V color table address can 
be masked. The masks can be used in all the bit! 
pixel modes, but are most useful with the 16-bit!pix­
el mode. In this mode, the mask allows the YUV 
values to be mapped to 8-bit values instead of 6-5-5. 

Each channel (Y, U, V) has a MASK SET register 
and a MASK DATA register that selects the color 
lookup address bit to be changed and the new value 
of the bit, respectively. A simple mask operation on 
one channel is illustated in Figure 2-8. 

The CLUT address mask operation is determined by 
a logical equation given by: 

Result ~ (mask set and mask data) I (mask set and data byte) 

Each bit of the Result byte is determined individually 
by this equation. The Result byte is then further pro­
cessed in order to produce theCLUT RAM address. 

Bit 

For modes that require both, video and graphics to 
pass through the color table, the table can be split 
into two halves: one half for graphics and the other 
for video pixels. By,using theSPLITCLUT bit in the 
Miscellaneous Control register in conjunction, with 
the LSB of Y or U, the color table address is forced 
to either the video table or graphics table automati­
cally. In this case, the masking operation is still used, 
but the address is forced to either an even or odd 
entry, regardless of the results of the masking oper­
ation. ,The flag bit that decides between the, two 
types of pixels automatically selects the correct por­
tion of the CLUT table for a single channel. Note the 
LSB of Y or U selects the proper half of the CLUT for 
that single component. The SPLIT CLUT mode as­
sures the proper half ,of the CLUT is used for all 
three components. ' 

The color table can be bypassed completely when 
displaying either graphics or video, independent of 
the programmed bits/pixel. This is programmed by 
the user via the VIDEO PASS and GRAPHICS PASS 
bits in the Miscellaneous Control register. Table 2-3 
summarizes the various modes when using the 
CLUT. 

MASK SET Register (0 x 41) 

MASK DATA Register (0 x 42) 

Result 

Data Byte 

240855-11 

Figure 2·8. Mask Operation on CLUT Address 

Table 2·3 CLUT Modes 

Graphics Video LSB Y orU SPLITCLUT Colormap Address Pass Pass 

0 X 0 0 Masked Graphics Data 

1 X 0 X Graphics Pixels Bypass CLUT 

X 0 ,1 0 Masked Video Data 

X 1 1 X Video Pixels Bypass CLUT 

0 X 0 1 Even Address Only (Graphics) 

X 0 1 1 Odd Address Only (Video) 

1. 1 X X CLUT Not Used at All 

1-20 



8275008 

When writing to the CLUT, the most significant byte 
of the data word corresponds to the address, and 
the least significant 24 bits are the YUV data (least 
significant to most significant, respectively). An in­
dex register is used to allow the 6-bit address to be 
mapped to an 8-bit number. (Refer to Chapter 4 for 
more information.) By resetting the 827500A Dis­
able bit, it is possible to make the CLUT look like the 
reduced entry color lookup table on the 827500A. 

The following paragraphs summarizes the possible 
bit/pixel modes, using the LSB of Y or U switching 
ability and the various graphics and video bypass 
modes. Note that there are modes where the LSB of 
Y or U are not used to switch between graphics and 
video. 

8-BIT/PI){EL GRAPHICS MODE 

This is the graphics-only mode, in which the 8 bits 
are used as inputs to all three color tables. This 
makes the color maps look like a single, 256 x 24-bit 
CLUT and allows 256 unique colors from a palette of 
16 million to be available at any given time. If the 
Graphics Pass bit is asserted, the CLUT will be by­
passed and the 8-bit values of the Y, U, and V chan­
nels will be input to each channel of the converter 
matrix. 

8-BIT/PI){EL VIDEO MODE 

When used with subsampled VU information from 
the interpolator, the 8 bits are actually a luminance 
value. The Y portion addresses the Y color table, V 
the V color table, and U the U color table. By using 
the color table, a one-to-one mapping exists, allow­
ing non-linear transformations to be applied to the 
pixel data to enhance the quality of the reconstruct­
ed image. By asserting the VIOEOPASS bit in the 
Miscellaneous Control register, the color table can 
be bypassed. 

8-BIT IPIXEL MIXED MODE 

In the 8-bit/pixel mixed mode the LSB of Y or U is 
used as a switch flag to change the index to the 
color tables. When the switch flag is set to a one, 
the Y value corresponds to a luminance value, and 
the VU values are the chrominance information ob-

1-21 

tained from the VU interpolator. In this case each 
video component is used as an address to its corre­
sponding CLUT as described above. When the 
switch flag is set to a zero, the VU values are not 
used and the Y value is used as the address to all 
color tables. These pixels are treated the same as in 
the 8-bit/pixel graphics mode. 

In this mode the applications programmer must en, 
sure that the proper information has been loaded 
into specific areas of the color maps. For example, 
all the video pixels will use the odd address values. 
By restricting the address used in the graphics and 
video mode, two unique maps may coexist in the 
tables. One map is used for non-linear transforma­
tions on video data, and the other for graphics color 
lookup table applications. 

As illustrated above, the CLUT can be bypassed by 
asserting either or bo!h of the bypass controls. 

PSEUDO 16-BIT/PIXEL GRAPHICS MODE 

In the pseudo 16-bit/pixel graphics mode each 
32-bit data word is made up of two, 16-bit pixel 
words. The 827500B processes each 16-bit pixel 
word, so that the least significant 8 bits correspond 
to pixel information, and the most significant 8 bits 
are used as alpha information. The 827500B uses 
the lower 8 bits as inputs to all three color tables. 
This makes the color maps look like a single, 256 x 
24-bit color table. If the Graphics Pass bit is assert­
ed, the CLUT will be bypassed and the 8-bit values 
of the Y, U, and V channels will be input to each 
channel of the converter matrix. 

PSEUDO 16-BIT/PIXEL VIDEO MODE 

When used with subsampled VU information, the 
least significant 8 bits of the pixel word are actually a 
luminance value. The most significant 8 bits are 
used as alpha information. The VU information is 
generated by the 827500B interpolator. Each of the 
color maps uses the corresponding 8-bit video com­
ponent as an addess. By asserting the Video Pass 
bit in the Miscellaneous Control register, the color 
table can be bypassed. 



8275008 

PSEUDO 16-BIT/PIXEL MIXED MODE 

In this mode the LSB of Y or U is used as switch flag 
to change the index to the color tables. When. the 
LSB of Y or U is set to a one, the lower 8-bit value 
corresponds to a luminance value, and the V and U 
values are the chrominance information. In this 
case, each video component of the 827500B is 
used as a colormap address as described above. 
When the LSB of Y or U is set to zero, the V and U 
values from the interpolator are not used, and the Y 
value is used as the address to all color tables. 

16-BIT/PIXEL GRAPHICS MODE 

The 16-bit pixel word is broken up on the 827500B 
to yield 6 bits of Y, and 5 bits each of V and U. The Y 
bits are the least significant, and the U bits are the 
most significant. These values are then padded with 
zeros in the lower order bits, to obtain an 8-bit word 
for each pixel component. Each component ad­
dresses its respective GLUT. However, the Y chan­
nel may access only 64 unique locations, and 5-bit 
resolution for VU restricts them to 32 unique loca­
tions each. The address range may be extended by 
using the colormap mask registers to add 2 bits of 
precision in the least significant bits for Y and 3 least 
significant bits each for VU channels. This allows the 
programmer to access all the entries in the color 
table by reprogramming the MASK OATA and MASK 
SET registers during the blanking interval. 

16-BIT/PIXEL VIDEO MODE 

This mode works like the 8-bit/pixel video mode de­
scribed above, except that the 827500B has pro­
cessed the information so that the Y channel con­
tains the least significant 8 bits of the 16-bit data 
word. The V and U information is generated by the 
VU interpolator. If the SPLITGLUT mode is selected, 
the LSB of the address is forced to an odd entry in 
the three color tables. 

16-BIT/PIXEL MIXED MODE 

When the switch flag is zero, the graphics mode is 
selected and the inputs to the GLUT are the respec­
tive YUV data in the 6-5-5 format. These pixel values 
are extended by using the colormap masking regis-

1-22 

ters. When the switch flag indicates the video mode, 
the lower 8 bits of the 16-bit pixel word and the VU 
values obtained from the interpolar are input to their 
respective GLUTs. If the SPLITGLUT mode is seleCt­
ed, the LSB of the address is forced to either an odd 
or even entry in the three color tables, depending on 
whether the data is video or graphics information. 

32-BIT/PIXEL GRAPHICS MODE 

Eight bits each of Y, U, and V are used as addresses 
to each segment of the color table. Since the size of 
the addressable color space is not increased, the 
advantage of using the color map is for special ef­
fects or gamma correction. The most significant 8 
bits of the 32-bit data word are used for the alpha 
channel data. If the Graphics Pass bit is asserted, 
the GLUT will be bypassed and the 8-bit values of 
the Y, V, and U will be input to each channel of the 
converter matrix. 

32-BIT IPIXEL VIDEO MODE 

The Y channel contains the least significant 8 bits of 
the 32-bit data word. The U and V information is 
generated by the VU interpolator. The YUV channels 
are input to their respective color tables. The size of 
the addressable color space is not increased, but 
this can be used to take advantage of a non-linear 
transformation, which may aid in the decompression 
process. The most significant 8 bits of the data word 
are used for the alpha channel data. 

32-BIT IPIXEL MIXED MODE 

When the switch flag is zero, the graphics mode is 
selected, and the inputs to the GLUT are the respec­
tive 8 bits each of YUV data. These pixel values may 
be masked by using the colormap mask data and 
mask set registers. When the switch flag indicates 
the video mode, the lower 8 bits of the pixel word 
and the VU values obtained from the interpolator are 
input to their respective GLUTs. If the SPLITGLUT 
mode is selected, the LSB of the address is set to 
either an odd or even entry in the three color tables, 
depending on whether the data is video or graphics 
information. The most significant 8 bits of the data 
word are used for the alpha channel data. 



intei® 8275008 

Y Interpolator 

The Y Interpolator performs a 2X horizontal linear 
interpolation on each line of Y values. When Y inter­
polation is enabled, the internal pixel clock is twice 
the frequency of PIXCLK output. 

NOTE: 

If Y interpolation is enabled, then only the integer 
values of pixel times greater than IX may be 
used. 

The interpolation may be separately controlled for 
both video and graphics pixels, via the Viden and 
Gren bits (bits 12 and 11) of the General Control 
register. A video pixel is defined as one generated 
using VU interpolated values. A graphics pixel does 
not use the VU interpolator. The effects of setting 
the control bits, the 827500B enable flag, and vid­
eo/graphics pixel switch (V /G Switch) on the output 
of the Interpolator are summarized in Table 2-4. 

Because of the asymmetric nature of the internal 
pixel clock used on 827500B, the number of T-cy­
cles between successive Y pixels varies depending 
on the programmed pixel width. When enabled 
there is a pipeline delay through the Y Interpolato; 
eql!al to the number of T-cycles between each inter­
nal pixel clock. 

When the interpolator is bypassed as described 
p.bove, there. is a fixed delay through this block. The 
V and U data are delayed by one pixel clock to allow 
the chroma data to line up with the luminance data. 
Other control signals, such as the register address 
byte (most significant byte of the 32-bit data word 
read from VRAM), the pixel clock, horizontal and 
~ertical active displays, composite blanking, and reg­
Ister load enable signals are also delayed by one 
pixel clock in order to line up with the YUV data. The 
programmer must ensure that the active display tim­
Ing IS programmed to take the appropriate delay 
through the Y Interpolator into account. 

1-23 

Table 2-4. Control Bit Settings and 
Resulting Interpolator Output 

827500B 
Viden 

V/G 
Enable 

Gren 
Switch 

Result 

0 X X X Interpolator 
Bypassed 

1 0 0 X Interpolator 
Bypassed 

1 0 1 0 Interpolate 
Graphics Pixel 

1 0 1 1 Do Not 
Interpolate 
Video Pixel 

1 1 0 1 Interpolate 
Video Pixel 

1 1 0 0 Do Not 
Interpolate 
Graphics Pixel 

1 1 1 X Interpolate 
Both Video 
and Graphics 
Pixels 

Cursor 

Hardware support for a 16 x 16-pixel cursor has 
been included on the 827500B. The cursor is capa­
ble of providing sharp color transitions, when using 
subsampled VU bitmaps. Software intervention· is 
minimized, leaving the host with more processing cy­
cles to perform other operations. 

Under normal operation, the XYstarting display po­
sition of the cursor is loaded into the Cursor Control 
register during a 827500B register load. On the dis­
play line corresponding to the Y start position, the 



8275008 

cursor is displayed when the X starting position 
(specified in T-cycles) is reached. On the following 
15 lines, the cursor will be displayed at this X posi­
tion everY line, for both interlaced and non~inter­
laced displays. 

A normal 8275008 register transfer is used to load 
the entire 16 x 16 x 2 bits (16 words of 32 bits each) 
of cursor data. During this register transfer, the cur- . 
sor data is distinguished from normal register data 
by placing the Cursor Control register immediately 
before the 16 words of cursor data. When the 
8275008 loads the Cursor Control register, it will in­
terpret the next sixteen 32-bit words of register data 
as the cursor bitmap, and will disable the other regis­
ters on the· 8275008 from decoding the address 
field of the 32-bit data word. (The checksum of the 
8275008 register data is not performed during the 
loading of the cursor bitmap data.) The cursor bit­
map will be loaded a line at a time, starting at line 
zero and continuing in sequential order to line 15. 
Each line in the cursor map actually contains sixteen 
2-bit cursor pixels, with the two least significant bits 
corresponding to the first cursor pixel in that line, 
and the two most significant bits corresponding to 
the 16th cursor pixel on that line. Each 2-bit pixel 
may select one of the three Cursor Color registers or 
transparency, according to the format indicated in 
Table 2-5. 

Table 2-5. Cursor Color Registers 

Cursor Pixel Output 

00 Transparency 
(CUiSOi Pixel Not Displayed) 

01 Cursor Color Register 1 

10 Cursor Color Register 2 

11 Cursor Color Register 3 

Three 24-bit color registers that hold the color infor­
mation for the cursor may be written to at any time 
during the register load. The cursor may be loaded 
any time during the blanking intervals of the display. 
For displays that do not program the cursor during 
the display, the cursor bitmap may be loaded during 
the vertical blanking interval. 

When the T-cycle count equals the value pro­
grammed into the X start position of the Cursor Con­
trol register, the first cursor pixel can be displayed. 

1-24 

Each 2-bit cursor pixel will select one of the three 
Cursor Color registers or transparency. The 24-bit 
output of one of the three color registers (or the ac­
tual display pixel data if transparency is used) is in­
put to the YUV converter. 

The cursor bitmap length is 16 lines, and the width is 
16 pixels. Although the length of the cursor may be 
changed dynamically by chaining register loads to 
update the cursor map, the size of the cursor is de­
pendent on the type of display. For interlaced dis­
plays, each line of cursor data will appear on the 
same line of each field. This results in a cursor of 
16 x 32 pixels. For non-interlaced displays, the same 
line of cursor information will appear on the same 
line every field. The cursor in this case will be 16 x 
16 pixels. The size of the cursor may be doubled 
independently in the horizontal and/or vertical direc­
tion by setting the 2X Horizontal Cursor or 2X Verti­
cal Cursor bit in the General Control register. In this 
case, no new data is loaded into the cursor map; the 
data is just replicated in the corresponding dimen­
sion. Table 2-6 summarizes some of the possible 
cursor sizes. Note that by loading the cursor bitmap 
with different data at the start of every field, cursor 
sizes not listed below may be achieved. 

Table 2-6. Cursor Sizes 

2X Horz. 2X Vert. 
Display 

Cursor Size 
Cursor Cursor (in Pixels) 

Off Off Interlaced 16 x 32 

On Off Interlaced 32 x32 

Off On Interlaced 16 x 64 

On On Interlaced 32x64 

Off Off Non-Interlaced 16 x 16 

On Off Non-Interlaced 32 x 16 

Off On Non-Interlaced 16 x 32 

On On Non-Interlaced 32x32 

There is a complex relationship between the cursor 
and the pixel data especially when using non-inte­
gral divisors of the pixel clocks. Since the pixel data 
output from the 8275008 pixel path always changes 
coincident with the rising edge of the clock, the cur­
sor start position must be positioned on the rising 

·edge of any period of the pixel clock. The program­
mer "must enforce the corresponding restrictions on 
the start and stop position of the cursor. 



8275008 

YUV to RGB Converter 

The following equations give the theoretical relation­
ship between analog RGB components, R, G, B, and 
analog YUV components, Y, U, V. 

Y ~ 0.298822 R + 0.586816 G + 0.114363 B 

V ~ R - Y~ 0.701178 R - 0.586816G - 0.114363 B 

U ~ B - Y ~ -0.298822 R - 0.586816 G + 0.885637 B 

where: 0.0 < G, R, B < 1.0 

0.0 < Y < 1.0 

-0.701 < V < +0.701 

-0.886 < U < -0.886 

(1 a) 

(1 b) 

(1 c) 

Solving for G, R, B, we can obtain the inverse rela­
tionship: 

G ~ Y - 0.509228 V - 0.194888 U 

R~Y+V 

B~Y+U 

where: 0.0 < G, R, B < 1.0 

0.0 < Y < 1.0 

-0.701 < V < +0.701 

- 0.886 < U < + 0.886 

(2a) 

(2b) 

(2c) 

The luminance channel for the YUV inputs is pre­
sumed to swing between O.OV and 1.0V. However, 
the chroma components do not and need to be nor­
malized to a OV to 1 V range. The offset binary en­
coding used to obtain unsigned numbers must also 
be accounted for. This encoding should center the V 
and U inputs at the midpoint of the voltage range. 
The equations for the normalized version of Y, V, 
and U (Y', V', and U' respectively) are: 

Y' ~ Y 

V' ~ 0.5V + 0.5 
0.701 

U' ~~+0.5 
0.886 

where: 0.0 < Y', V' U' < 1.0 

0.0 <Y < 1.0 

-0.701 < V < +0.701 

-0.886 < U < +0.886 

(3a) 

(3b) 

(3c) 

1-25 

When converting the normalized analog values Y', 
V', U' to digital y, v. u values, the D.C. offset and 
conversion ranges are compatible with the CCIR 
601 standard for digital video. The ranges for the 
components and the corresponding Digital to Ana­
log equivalent equations are given below: 

y ~ (235 - 16) Y' + 16 

where: 16 < Y < 235 

v ~ (240 - 16) v' + 16 

where: 16 < v < 240 

u ~ (240 - 16) U' + 16 

where: 16 < u < 240 

(4a) 

(4b) 

(4c) 

Substituting the normalized analog voltages of 
Equation 3 into Equation 4, we obtain the digital ver­
sion of the input data, used in the DVITM Technology 
system: 

y ~ (219)Y + 16 

112V 
v ~ -- + 128 

0.701 

112U 
u ~ -- + 128 

0.886 

where: 0.0 < Y < 1.0 
- 0.886 < U < 0.886 

-0.701 < V < 0.701 

16 < Y < 235 

16 < v, u < 240 

(5a) 

(5b) 

(5c) 

By solving equations 5 for Y, U. V, and substituting 
into Equation 2, we get the relationship between an­
alog R, G, B and the digital DVI y, u, v data: 

G ~ 0.004566y - 0.003187 v - 0.001541 u + 0.532242 (6a) 

R ~ 0.004566 Y + 0.006259 v - 0.874202 (6b) 

B ~ 0.004566 Y + 0.007911 u - 1.085631 

where: 0.0 < R. G, B < 1.0 

16 < Y < 235 
16 < v, u < 240 

(6c) 



8275008 

If the inputs of the Digital to Analog Converter are 
scaled to accommodate the nominal'input range otO 
to 219, we obtain the ,following relationship between 
the inputs to the DVI Technology system" (y, v, u) 
and inputs to the Digital to Analog Converters (r; g, 
b). Note that all out of range AGB values (>. 255 or 
< 0 due to excursions in the inputs) are clipped to 
255 or O. 

9 = Y - 0.698001 v - 0.337633 u + 116.56116 (7a) 

r = y + 1.370705 v - 191.45029 (7b) 

b = y + 1.732446 u - 237.75314 

where: 16 < y.< 235 

16 < v, u < 240 

o < g, r, b < 255 

(7c) 

By substitution of Equation 5 into Equation 1, and by 
converting G, A, and 8 to digital values, we can ob­
tain the inverse relationship of Equation 7: 

y = +0.298822r + 0.586816g + 0.114363b + 16 (8a) 

u = -0.172486r - 0.338721 g+ 0.511206b +128 (8b) 

ipv = +0:511545 r - 0.428112g - 0.083434 b+ 128' (8c) 

where: 16 < y < 235 

16 < v, u< 240 

o < g, r, b < 255 

Output Equalization 

The units on the 8275008 process the pixel informa­
tion at the operating frequency of the chip: If the 
output pixel rate is not equal to the maximum fre­
quency, the units have null states during which pro­
cessing is suspended. This type of operation is nec­
, essary on the 8275008 because of the large 

. amount of pipelining. Table 2-7 gives the pattern of 
T-cycles on the 8275008 during which processing is 
active, according to the programming shown in Ta-
ble 4-2. ' 

The pixel information must be. output at a rate that js 
some sub-multiple of the operating frequency. The 
divisor is programmed by the user, and may be from 
1 to 12 times slower than the period of FAEQIN, in 
increments of %. Divisors of 13 and 14 are also pro­
grammable. Because non-integral divisors are used, 
it is necessary for the 82750DB to output different 
information on both phases of FAEQIN. This is illus­
trated in Figure 2-9, which uses a 2.5 divisor for the 
clock. Notice that the pixel clock output (PIXCLK) 

transitions fall alternately on the active and inactive 
phase of the input frequency, while the internal pixel 
clock transitions always occur on the active phase. 
Also . note that PIXCLK does not have a 50% duty 
cycle. 

The equalizing logiC derives a clock that has a peri­
od equal to,the programmed pixel rate, providing an 
edge to sample the output information. This allows 
the Digital to Analpg Converter to directly sample 
the output of the pixel data path before performing 
the analog conversion. 

Table 2-7. 8275008 Active T-Cycle Patterns 

Pixel Time Pattern Of Internal 
(T-Cycles) Pixel Clock 

1 Always On 

1.5 1 On/1 On/1. Off 

2 - 1 On/1 Off 

2.5 1 On/1 Off/1 On/2 Off 

3 1 On/2 Off 

3.5 1 On/20ff/1 On/3 Off 

4 1 On/3 Off 

4.5 1 On/3 Offl1 On/4 Off 

5 1 On/4 Off 

5.5 1 On/40ff/1 On/5 Off 

6 ,1 On/5 Off 

6.5 1 On/5 Off/1 On/6 Off 

7 1 On/6 Off 

7.5 1 On/6 Offl1 On/7 Off 

8 10n17 Off 

8.5 1 Onl7 Offl1 On/8 Off 

9 1 On/8 Off " 

9.5 1 On/8 Off/1 On/9 Off 

10 1 On/9 Off 

, 10.5 1 On/9 Off/1 On/10 Off 

11 1 On/10 Off 

11.5 1 On/10 Off/1 On/11 Off 

12 1 On/11 Off 

13 1 On/12 Off 

14 1 On/13 Off 

1-26 



8275008 

FREQIN 

Internal 
Pixel. 
Clock 

PIXCLK 

I 
I 
I 
I 

Y 
I 
I 
I 
I 

: 

\'-----r--'/ 

I 
I 

\'--------'/ 

I I 

~: 1/2T-cyclo + td 
240855-12 

Figure 2-9 Divide by 2.5 Pixel Clocl( 

Digital to Analog Converters 

The Digital to Analog Converters (DACs) take three 
channels of video information output from the pixel 
data path, converting it from B-bit digital values to 
analog voltage levels typically between OV and 1V. 
The conversion is monotonic, and a pixel clock is 
used to derive a two-phase clock internal to the 
DAC. The data is sampled from the output of either 
the pixel path, or the YUV to RGB matrix on the 
rising edge of the internal active phase of this clock .. 
The DISDAC input pin can be asserted to disable the 
analog outputs· and place· them into a high-imped­
ance state. 

The analog outputs of the triple DAC are referenced 
to an external current source, which must be con­
nected to the IREFIN pin. All the analog outputs are 
scaled by this current reference. The value of the 
analog output full scale is as follows: 

Ifs = Iref • 255 
18.5 

where: Iref is the magnitude of the reference 
current. 

The output voltage generated at full scale is: 

Vfs = lis' Rext 

Rext is the load resistance value. 

A typical output load for the analog outputs (RV, BU, 
GY) is 75Q. The speed of the DAC analog output 
rise and fall times is determined by the time con-
stant: . 

Rext • (Cext + Cout) 

1-27 

where: Cext is the external capacitance applied and 
Cout is the intrinsic capacitance of an ana­
log output. 

For high performance the objective would be to 
minimize Rext and Cext. The voltage Voutfs can be 
determined by any combination of Ifs and Rext, but 
must not exceed 1.5V. In addition Ifs must not ex­
ceed 22 mA. The analog outputs must go through 
an external buffer to drive doubly-terminated 75Q 
coax line. 

Table 2-B lists pins Which are used to configurethe 
triple DAC. 

Table 2-8. Digital To Analog Converter Pins 

Signal Description 

IREFIN Analog Current Reference. Must Be 
Decoupled to A VCC. 

VGCS Internal Voltage Reference. Must 
Be Decoupled to AVCC. 

AVcc Analog Power 

AVss Analog Ground 

GY, RV, BU Analog Pixel Outputs 

DISDIG Disable Digital Outputs 

.DISDAC Disable Analog Outputs 

NOTE: 
-

The digital video outpvts must be disabled by 
setting DISDIG high whenever the analog out­
puts are used. Otherwise the A.G. and D.C. char­
acteristics of the DAG are not guaranteed. 



intei· 8275008 

3.0 HARDWARE INTERFACE 

8275008 Reset Operation 

Upon power-up, the 827500B is in an indeterminate 
state and must be reset. The RESETB# signal as­
serted by the host processor is sampled on the ris­
ing edge of FREOIN. The 827500B will enter the 
reset state a maximum of four cycles after 
RESETB# is sampled. The 827500B will request 
the 82750PB to generate VRAM refresh cycles by 
asserting a REFRESH code on the VB US for 16 T­
cycles. This code is repeated every 256 T-cycles, 
until RESETB# is negated. 

NOTE: 

The RESET8# input is an edge-triggered input. 
After power-up, the host processor must set the 
RESET8# input low for a minimum of ten T-cy­
cles in order to reset the 82150D8. The host 
must then set the RESETB# input high to start 
normal operation. 

When the RESETB# input is released, a Start of 
Vertical Field command (VOOO) is sent for 16 T-cy­
cles to the 82750PB via the VBUS. This code is im­
mediately followed by a Register Transfer Request 
command (REGX) that is held for 256 T-cycles. This 
256 T-cycle wait assures that the 82750PB has am­
ple .time to honor the 827500B register transfer re­
quest. The register data is then read into the 
827500B from the serial port of the VRAMs at a rate 
that is equal to Va of the operating frequency. If the 
register transfer does not terminate after 256 T -cy­
cles, the 827500B will automatically stop the trans­
.fer, send an 827500BSO code to the a2750PB, and 
re-enter the reset state. 

Ouring this register transfer, and on all subsequent 
register transfers (programmed or automatic), the 
827500B performs a vertical checksum on the regis­
ter data. The last 32-bit word read in during a regis­
ter transfer is the user-generated checksum of that 
register data. If the 827500B-generated checksum 
error does not match the user-generated checksum, 
the 827500B sends a SHUTOOWN code to the 
82750PB via the VBUS, and will automatically re-en­
ter the reset state. The 827500B will remain in the 
reset state until the RESETB# input is toggled by 
the hostprocessor. Any VRAfyI requests or control 
signals programmed to occur during this time will be 
ignored. 

Normal programmed operations start after the first 
successful register load. Frame timing will start at 

1-28 

the beginning of a horizontal line and at the begin­
ning of the first field sometimes referred to as line 1 
of field 1. There will not be a horizontal sync pulse 
on the first line after reset, but HSYNC will be gener­
ated on every line thereafter. All horizontal and verti­
cal programming parameters as well as scheduling 
of any transfer requests and control information to 
be sent on the VBUS must be set up by the user 
during the first register load. Included in the control 
information are parameters for the 82750PB to re­
fresh the VRAM. Refresh must occur on every line. 
This requires that the line rate of the 827500B must 
be at least 4 kHz to guarantee that enough refresh 
cycles are generated. Additional register transfers 
(up to one per line) may be programmed to occur on 
any line during the field. As a result of this transfer 
display characteristics and programming parameters 
may be changed. 

After the first· field, automatic register transfers will 
occur on the second line of each subsequent field. 
Note that all register transfers will occur at 1/3 of 
the operating frequency of the 827500B, unless the 
1 X or 1/2X SCLK mode has been programmed by 
the user. 

Throughout the reset process, the states of all out­
puts become valid at various times. Specifically, af­
ter being held low for at least 10 T-cycles, 
RESETB # must transition to a high state in order 
to initiate normal operation. By the time RESETB # 
reaches this low to high transition, the states of 
SCLK[1:0j, VBUS[3:0], HSYNC, VSYNC, CSYNC, 
and FCOare valid. 10 T-cycles following 
RESETS # 's transition from iow to high, the states of 
BG, CB, ACTOIS, PIXCLK, OGY[7:0j, ORV[7:0], and 
OBU[7:0] become valid. ALPHA[7:0j and BPP[1:0j 
signals reach a valid state 10 T-cycles following the 
completion of the first register load following reset. 

Input/Output Transformation 

In general, the control outputs, including the sync 
signals, are delayed by pipelining effects from their 
corresponding inputs. If the output sync signals are 
taken as the time base, the first pixel in a line is 
actually fetched by an SCLK that is up to 19 T-cycles 
before its corresponding PIXCLK. Some later pixels 
may be delayed by an additional number of T-cycles, 
depending upon bits/pixels, pixel timing, and wheth~ 
er Y interpolation is enabled. 

Outside of the active display region and before the 
blanking output is asserted, border pixels are output. 
Where the blanking region has been entered and the 
display is not active, U1e output is the value con­
tained in the Blanking Color register. 



Intel, 8275008 

Pixel handling in the active region is defined by three 
parameters: 

1. The bits/pixel parameter. 

2. Whether VU interpolation is in effect or not. 

3. If the 8275008 Enable bit has been selected. 

VU interpolation is in effect for a given pixel if: 

1. The VU interpolator is turned on (VU sample load 
set to non-zero load value), 

AND 

2. VU interpolation display is permitted (VU interpo­
lation display operations bit equals 1), 

AND 

3. One of the two following conditions is met: 

a. Either the interpolation is unconditional, 

OR 

b. The controlling Y or the controlling U sample 
for this pixel has a least significant bit of 1. 

The value of the alpha output may come from one of 
the following three sources: 

1. It may be explicitly coded into the pixel data (32-
bit/pixel and pseudo 16-bit/pixel with Alpha 
modes only). 

2. It may be output from one of two programmable 
registers, AlphaO and Alpha1. 

3. Ouring the portion of the display when the border 
is active, the 8 most significant bits of the 80rder 
Alpha register may be output. ' 

Table 3-1 illustrates how the Alpha outputs are se­
lected; 

Table 3·1. Selecting Alpha Outputs 

Alpha Alpha 
Alpha Output 

Enable Trap Select 

0 X AlphaO Register 

1 0 AlphaO Register 
(8,16 bpp) 

1 0 MS 8yte of Pixel 
(32, Pseudo 16 bpp) 

1 1 Trap Match = 0, 
AlphaO Register 

1 1 Trap Match = 1, 
Alpha1 Register 

1-29 

Genlocking on the 8275006 

The genlocking algorithm on the 8275008 uses hori­
zontal and vertical resets, HRESET # and 
VRESET #, obtained from an external device. When 
the Genlock bit in the Miscellaneous Control register 
is off, the 8275008 will ignore all signals present on 
it's HRESET # and VRESET # inputs. The 8275008 
will resync itself when the programmed end of line 
count is received. This allows the user to turn off 
genlock without having to worry about the state of 
the input video. 

When the Genlock bit is set to one, the 8275008 will, 
use the external resets to reset its internal horizontal 
and vertical sync counters. In this case, the width of 
the active line is determined by the HRESET # sig­
nal, and the length of the field is governed by 
VRESET #. The programmed values for these reg­
isters will be ignored. As shown in Figure 3-1, 
when asserted VRESET # and HRESET # are ef­
fected just after the third falling edge of FREOIN. 
VRESET # has no effect on the 8275008 if the first 
half of the first line of an odd field or the second (and 
only) half of the first line of an even field is already in 
progress. HRESET # has no effect on the 8275008 
if itoccur$ during the programmed first half of the 
line. The user may decrease the effect of jitter by 
reducing the "window" during which the vertical re­
set signal is supposed to occur. This can be done by 
scheduling a register load to occur after the vertical 
active display time has ended, thereby decreasing 
the programmable horizontal active window to a size 
acceptable for the video source. When VRESET# is 
received during this reduced, programmed hori­
zontal active window, the 82750D8 is reset to an 
even vertical field. When VRESET# occurs at any 
other time in the horizontal scan line, the 8275008 
is set to ari odd field. 



int'et 8275008 

FREQIN 

HRESET# \\.. __________ ---J I 
HSYNC ~l ~ 

/ VRESET#,\\.. _____ '-jl'/-'I ____ --' 

IF 

VSYNC 

240855-13 

Fjgure 3~1; Horizontal, and Vertical Reset Timing 

Digitizing Images with the 8275008 ,', 

Digitizing is enabled by setting theDigitizej::nablebit 
in the Miscellaneous Control register. Note that en~ 
abling the digitize mode does not aytomatically en­
able genlocking. The Genlock bit m'ust be set sepa­
rately, if it is required. When digitizing, the .827500B 
is used to shift digitized data .into the VRAM shift 
registers, an9 then transfer Jhis data into the VRAM 
array. 

The 82750DB also provides an external "digitizer 
window" signal, FCD. This signal defines the vertical 
active region that the digi~izer enabled. Typically, the' 
user sets up the display parameters to reflect the 
"window" of the display to be digitized. The horizon~ 
tal and vertical active window size can be selected 
by programming the Active Start and Stop registers. 
FCD is derived from the Vertical Start and Stop reg­
isters, and is used to enable the digitizer to drive the 
VRAM bus. During the programmed vertical blanking 
interval the FCD signal will be negated, and there­
fore, the digitizer is prohibited from driving the VRAM 
bus. This will allow data to be read from the VRAM 
serial data bus during the automatic register transfer 
that is performed at the start of the field. Note that it 
will still be possible to program the 82750DB to digi­
tize during the vertical blanking interval, in order, for 
example, to capture time codes from a VCR. 

Wh~~ capturing and di~~laying NTSC data ,during 
the horizontal blanking interval of the first display 
line,. a WRDIGINP command is sent on the VB US to 
the 82750PB. (Refer to Figure 3-2.) Recall that there 
is a 5-line vertical pipeline delay through the 
82750DB. If the first display line is programmed to 
be n, the first display line will occur at n + 5. Similar­
ly, if the last line is programmed to be m, then the 
last display will, be line m + 5. The WRDIGINP 
VB US code causes a, dummy, write transfer cycle 
that" places the VRAMs in the write mode. The 
827~OPB then sets the bitmap pointers to the first 
line's address (LO). This code is immediately fol­
lowed by another WRDIGINP command that causes 
the 82750PB to perform a write transfer cycle at the 
L'O address. Since no digitized data has been read 
.in, invalid data is loaded into row LO of the VRAM 
array. 

During the aCtive display of the first display line, the 
,82750DB provides shift clocks at the programmed 
pixel rate. The digitized data is shifted into the 
VRAMs while the user-programmed horizontal active 
window, is active. During the horizontal blanking in­
terval of the hext line, the 82750DB sends a WRDIGI 
code to the 82750PB, thereby transferring the LO 
data from the shift register to the VRAM array at the 
LO address. The 82750PB performs a pitch calcula­
tion, pointing it to the L 1 row. After the WRDIGI 



8275008 

WRDIGINP WRDIGINP 
WRDtGINP Place VRAUS in wr ite mode 

Sel 82750PB po;nler 10 LO 
WRQIGINP Transfer (]orboge to LO address 

(Seled LO) 

Iinen+4 lJ 
t t 

reo Asserted WRDIGI WRDIGINP 
WRDtGI Transfer lO doto to LO address 

Set 82750PB pointer to II 
WRDIGINP Transfer LO to II address 

(Selecl LI) /t 
Iinen+S lJ 

Digitized Dolo LO t t 

WROIGI WRDIGINP 
WROIGI Transfer L1 dolo to 1I address 

Set 82750PB pointer to L2 
WRDtGINP Transfer 11 10 l2 address 

(Soled L2) 

linen+6 lJ 

DiqitilCd Dolo L1 t t 

WRDlGI WROIGINP 
WROIGllronsfer Lf doto to If address 

Set 82750PB pointer to Lf+ 1 
WRDIGINP Transfer U 10 If+1 address 

(Seled Lt+ 1) 

Iinem+slJ 

I Losl Line Ot Dolo ul . t t 

reo Negoled ./t 
Iinem+6lJ 

240855-14 

Figure 3-2. Digitizing Example 

transfer has finished, the 82750DB issues a 
WDIGINP command to the 82750PB that performs a 
write transfer cycle at L 1 address. This will write the 
LO data into the L 1 address. The next line the L 1 row 
will be written over with L 1 data. This same proce­
dure continues for the entire active display, until the 
last active line is reached (m + 5). A final pair of 
WRDIGI and WRDIGINP codes are sent to the 
82750PB to load in the last line of data. At the start 
of horizontal sync of the next line, the FCD signal 
will be negated. 

The purpose of the WDIGINP may not be apparent 
at first glance. This signal ensures that the correct 
data is written into the last selected VRAM address. 
This is necessary when crossing the. physical bound­
aries of VRAM memory. 

When the 82750D8 is genlocked, the digitizing 
device must also provide the HRESET # and 
VRESET# signals. The device must ensure that 
VRESET# is never asserted during the start of the 
line. This al.lows a register transfer (which shortens 
the active display and is required for digitizing) to 
complete before the start of a field register transfer. 

1-31 

The vertical sync pulses are buffered, so the start of 
the field transfer request can be honored immediate­
ly after the previous transfer request is finished. 

Also, captured NTSC data may be displayed on a 
VGA-type monitor. This requires the 82750DB to op­
erate at a VGA frequency (approximately 31.5 kHz), 
which ·is tWice that of NTSC. Each line of captured 
NTSC data is read into the 82750DB twice. Setting 
the line replicate bit makes doubling of memory un­
necessary. Figure 3-3 illustrates how the 82750DB 
operates in such a mode. The Line Replicate, Digitiz­
er, . and Genlock bits in the Miscellaneous Control 
register are assumed to be set to one. During the 
HBI of the first display line, a dummy write transfer 
cycle. (WRDIGINP) places the VRAMs in the write 
mode. The 82750PB then sets the bitmap pointers 
to the first line's address (LO). This code is immedi­
ately followed by a WDIGINP command, causing the 
82750PB to perform a write transfer cycle at the LO 
address. Since no digitized data has been read in, 
unknown values are loaded into row LO of the VRAM 
array. 



8275008 

WRDlGINP WRDlGINP 

Iinen+4 lJ t t 

reo Asserted WRDrCINP WRDIGINP 

.. I mgilized Data LD Itt 
linen+5 lJ 

WROIGI WROIGINP 

linen+6 lJ I Digi[;led 0010 LD Itt 

WRorC:1NP WRQIGINP 

linen+7 LJ 
I Oigilized Ooto II Itt 

WROIGI WROIGINP 

linen+8 lJ 

I Dig;{;zed Data Ll Itt 

WRDIGI WROIGINP 

linem+5lJ 

I,o,t lin, Of OQI~ If t t 

FCO Negated .. 
linem+6lJ 

WRDIGI Place VRAUs in write mode 
Set 82750PB pointer 10 LO 

WRDIGINP Transfer garbage to LO address 
(Select LO) 

WRDIGINP Transfer LO doto 10 LO address 
(Select LO) 

WRDIGINP Transfer lO data to LO address 
(Select LO) 

WROIGI Transfer LO dota to LO address 
Set B2750PB pai"ter to II 

WRDIGINP Transfer LO to II address 
(Select lI) 

WROICINP T ronsfer II dolo to L 1 address 
(Select ll) 

WRDICINP T rQnsfe~ L t dolo to II address 
(Select ll) 

WRDIGI Transfer L 1 dolo to II address 
Set 82750PB pointer to L2 

WRDIGINP Transfer l1 to l2 address 
(Select l2) 

WRDIGI Transfer Lf do to to Lf address 
Set 82750P8 pointer to U+' 

(If WRDIGINP then select ro .... If+ I) 
WRDIGINP Trar"lsfer Lf to Lf+1 oddress 

(Select If. 1) 

Figure 3-3. Digitizing Example with Line Replicate 

240855-15 

At the end of the first line the 82750DB sends two 
WRDIGINP codes to the 82750PB, thereby transfer· 
ring the LO data from the shift register to the VRAM 
array at the LOaddress. The 82750PB does not per· 
form a pitch calculation, so the pointer remains at 
the address for LO. After the second display line 
(which has the same data as the first line),· a 
WRDIGI code is sent to the 82750PB that writes the 
LO data to the LO address and updates the bitmap 
pointer to L 1. The WRDIGINP signal immediately fol­
lowing this selects the L 1 address. After the third 
line of data, two WRDIGINP codes that select 

the L 1 address are sent. After the fourth line, (which 
has the same data as the third line) a write operation 
is performed to load L 1 data into the L 1 address, 
and the 82750PB pointer is updated to address L2. 
A WRDIGINP code is sent to select the L2 address. 
This same procedure continues for the entire active 
display, until the last active line is reached (m + 5). 
A final pair of WRDIGI and WRDIGINP or two 
WRDIGINP codes are set to the 82750PB to load in 
the last line of data. At the start of horizontal sync of 
the next line, the FCO signal will be negated. 

1-32 



inlet 8275008 

4.0 PROGRAMMING THE 827500B Pipeline Delay through the 827500B 

Overview 

All registers are loaded by the issuance of a REGX 
command from the 82750DB to the 82750PB over 
the VBUS. This causes the 82750PB to load a se­
quence of register values into the VRAM serial out­
put registers from an address designated by a 
82750DB register pointer. After the request is grant­
ed, a new 82750DB register word is read in with 
each SCLK. Each 32-bit word consists of a register 
address in the high byte and register values in the 
rest of the word. The sequence is terminated by a 
stop code that corresponds to the address byte be­
ing equal to Oxff. A variable number of 32-bit words 
can be loaded. During reset, if a stop bit is not found 
within 256 T-cycles, the register transfer is terminat­
ed, a SHUTDOWN code is asserted on the VBUS, 
and the 82750DB returns to the reset state. All 
transfer requests are terminated at the start of a new 
field. This ensures that non-terminating register 
transfers caused by bad register data will be halted. 

During this register transfer, and on all subsequent 
register transfers (programmed or automatic), the 
82750DB performs a vertical checksum on the regis­
ter data. The last 32-bit word read in during a regis­
ter transfer is the user-generated checksum of that 
register data. If the 82750DB-generated checksum 
error does not match the user-generated checksum, 
the 82750DB sends out a SHUTDOWN code to the 
82750PB via the VBUS, and will automatically re-en­
ter the reset state. 

1-33 

The actual horizontal pipeline delay through the 
82750DB is dependent on processing elements 
used to generate the output. If Y interpolation is not 
used, the pipeline delay is: 

Horiz. Active Pipeline Delay = 16 cycles + 
SCLK Transfer Timing Delay 

Here the SCLK Transfer Timing Delay is 1 for 1 X, 2 
for 1/2X, and 3 for 1/3X. 

If Y interpolation is used, the pipeline delay is: 

Horiz. Pipeline Delay = 16 cycles + 
SCLK Transfer Timing Delay + Integer (Pixel Time) 

The integer (Pixel Time) is simply the integer value 
of the programmed pixel time. The horizontal pipeline 
delay for blanking differs from that of active. When y­
interpoloation is on or off, the pipeline delay for hori­
zontal blanking is: 

Horiz. Blanking Pipeline Delay = 10 cycles + 
SCLK Transfer Timing Delay 

The horizontal sync pipeline delay is always equal to 
o cycles. 

Thus all horizontal parameters, (e.g. horizontal 
blanking start, active stop) must be programmed to 
account for the total horizontal pipeline delay. The 
vertical pipeline delay. The vertical blanking and 
vertical sync pipeline delay are always equal to 0 
lines. All vertical parameters must be programmed 
so that this delay is taken into account. 



8275008 

PROGRAMMING CONSIDERATIONS 

The user must ensure that the 827500B is pro­
grammed correctly. Illegal or illogical combinations 
of display parameters are not corrected in hardware, 
and may cause the 827500B to output erroneous 
display or timing information. The following list high­
lights some basic guidelines to follow when pro­
gramming the 827500B. 

1. The maximum rate that data may be read into the 
827500B is determined by the type of memory 
used. This in turn effects the maximum rate and 
depth of data that can be displayed. If 32 bits of 
data can only be read into the 827500B every 
two clock cycles, only 16 bits of data may be dis­
played every clock cycle. The programmer 
should match the transfer rate (1 X, 1/2X, or 
1/3X) with the memory speed, and the display 
pixel rate with the pixel depth and memory band­
width. 

2. Blanking intervals of the display are defined by 
the non-active programmed time. During this por­
tion of the display, programmed transfers take 
place. If a transfer does not complete before the 
start of the active display, it is terminated, and 
active display data is shifted into the 827500B at 
the programmed rate. During horizontal blanking 
intervals, the user should allow enough time for 
all programmed register, colormap, and VU data 
transfers to complete. 

3. When digitizing (capturing) images, no other bit­
map transfers (e.g., REGX,VU) should be sched­
uled to occur during the active portion of the field. 

4. Active start and stop times shouid not be pro­
grammed to overlap the blanking stop and start 
times, taking the pipeline delay through the 
827500B into account. 

5. Programming the Y interpolation to occur in a 
non-integral pixel width will cause the Y channel 
to output incorrect data. 

CURSOR REGISTERS 

The following registers are used to program the 
characteristics of the on-chip cursor. 

Cursor Position Update Register Ox5b 

31 24 23 12 11 o 
01011011 Vertical Position Horizontal Position 

- Horizontal Position in units of T-cycles 
- Vertical Position in units of full lines 

This register gives the horizontal and vertical posi­
tion of the cursor. The cursor will extend 16-pixel 
periods, starting at the prescribed horizontal posi­
tion, for the next 16 lines. (Or 32-pixel periods for 32 
lines if the 2X Cursor Mode bits in the General Con­
trol register are set to one. 1-34 

Cursor Control Register Ox5a 

31 24 23 12 11 o 
01011010 Vertical Position Horizontal Position 

- Horizontal Position in units of T -cycles 
- Vertical Position in units of full lines 

This register also gives the horizontal and vertical 
position of the cursor. The cursor will extend 16-pixel 
periods, starting at the prescribed horizontal posi­
tion, for the next 16 lines. (Or 32-pixel periods for 32 
lines if the 2X Cursor Mode bits in the General Con­
trol register are set to one.) Receipt of this address 
also. causes the 827500B to interpret the next six­
teen 32-bit words of register data as the 16 x 16 x 
2-bit cursor map. This will cause the register address 
decoding logic internal to the 827500B to be dis­
abled, and the next 16 words of information will be 
loaded into the Cursor table. Each 32-bit word will be 
interpreted as a line (16 pixels) of cursor data, with 
the two least significant bits corresponding to the 
first cursor pixel to be displayed. 

Cursor Color 3 Ox59 

If the cursor is enabled and the 24 bits of data in this 
register are selected, the data will be sent directly to 
the YUV conversion matrix during active display. The 
bits should be programmed as RGB values when the 
YUV to RGB matrix is not being used. 

Cursor Color 2 Ox 58 

If the cursor is enabled and the 24 bits of data in this 
register are selected, the data will be sent directly to 
the YUV conversion matrix during active display. The 
bits should be programmed as RGB values when the 
YUV to RGB matrix is not being used.· 

Cursor Color 1 Ox57 

If the cursor is enabled and the 24 bits of data in ihis 
register are selected, the data will be sent directly to 
the YUV conversion matrix during active display. The . 
bits should be programmed as RGB values when the 
YUV to RGB matrix is not being used. 



8275008 

DISPLAY TIMING REGISTERS 

Each register has two, 12-bit components, listed 
with. least significant bits first, followed by the 12 
most significant bits. Horizontal timing is measured 
in units of T-cycles (periods of the master clock) 
from the start of horizontal sync. The register con­
tent defines the number of T-cycles that elapse be­
fore the event controlled by this register takes place. 
The exception to this rule is the base counter, which 
specifies the number of T-cycles/half line, Zero is 
not an allowable value; use the total number of T-cy­
cles per half line or full line instead. Unused bits 
should be zero. Sync signals are RESET to initial 
values as specified for each; "start" means to set to 
1, and "stop" means to be reset to zero. 

Base Counter Ox56 

23 12 11 o 
# of Lines/Field #of T-Cycles/Half Lines 

- T-cycles/Hal Line in units of T-cycles (Periods of the 
master Clock) 

- Half Lines/Field in units of half lines 

As defined by NTSC standards, vertical timing can 
be measured from the start of a field in one of two 
ways: either in units of half lines, or in units of full 
lines. When programmed for an interlaced display, 
(Le. an odd number of half lines per field) the st'art of 
a field coincides with the start of a line on odd fields 
and with the midpoint of a line on even fields. In the 
latter case, for an event that is programmed in full 
lines, the first half line is ignored, and counting be­
gins with the first full line. With this interpretation, the 
register content defines the number of half or full 
lines that elapse before the event controlled by this 
register takes place. The same may be said for the 
horizontal component, which is defined by the num­
ber of T-cycles/half line. The hardware does not 
look for nor correct illogical combinations of register 
settings. The monitor should be protected from dam­
age with external circuitry when debugging is in 
progress. 

All of the internal timing is derived from comparing 
the programmed values with the values of this regis­
ter. The horizontal base counter is programmed us­
ing the least significant 12 bits. In this case the val­
ues loaded into this register should be one less than 
the desired value. Bits 23 through 12 are used to 
specify the number of half lines per field. 

1-35 

Sync Stops Ox55 

31 24 23 12 11 o 
01010101 VSYNC Stop HSYNC Stop 

- HSYNC Stop in units of T-cycles 
- VSYNC Stop in units of half lines 

Sync Starts Ox54 

31 11 o 
o 1 0 1 0 1 0 0 VSYNC Start HSYNCStart 

- HSYNC Start in units of T-cycles 
- VSYNC Start in units of half lines 

The Sync Stops and Sync Starts registers are used 
in conjunction with one another to specify the start 
and stop locations of the horizontal sync, HSYNC, 
and vertical sync, VSYNC, output signals. VSYNC 
may be programmed to start and stop at any time 
during a given field as defined on a half-line interval. 
Bits 23 through 12 in the Sync Starts and Sync 
Stops registers are used to define the start and stop 
times for VSYNC, respectively. Similarly, HSYNC 
may be programmed to start and stop at any line 
position as defined in units of T -cycles. Bits 11 
through 0 in the Sync Starts and Sync Stops regis­
ters are used to define the start and stop positions 
for HSYNC, respectively. 

The horizontal component of the Sync Stops register 
also affects the composite sync, of CSYNC output. In 
this case, the CSYNC output will be the same as the 
HSYNC output, except during the vertical sync and 
equalization interval. In the latter case, the CSYNC 
output is determined by the Serration and Equaliza­
tion registers. 

Blanking Stops Ox53 

23 12 11 o 
o 1 0 1 001 1 Vertical Blank Stop Horizontal Blank Stop 

- HB Stop in units of T-cycles 
- VB Stop in units of half lines 

The Blanking Start and Stop registers control the 
composite blanking output (CB). The horizontal 
blanking start and stop position, in units of T-cycles, 
can be specified to occur at any time during the line. 
By the same token, the vertical blanking start and 
stop positions can be programmed to occur at any 
half-line interval. 



827500B 

The CB output combines both the horizontal and 
vertical· blanking pulses programmed using these 
two registers. This information is independent from 
the HSYNC, VSYNC, arid CSYNC outputs, so the 
user must specify the proper blanking intervals for 
the monitor that is being used. If .the programmer 
specifies the blanking period to end before the ac­
tive line starts, or start after the active line has end­
ed, the border color is output. Due to internal pipe­
line delays on the 827500B, the values should be 
one less than desired for VB Start and Stop. For HB 
Start and Stop subtract the total horizontal pipeline 
delay. 

Blanking Starts Ox52 

31 2~ 23 

01010010 

- HB' Start in units of T-cycles Resets to 1 
- VB Start in units of half lines Resets to 1 

Pr~gram values one less .than desired for VB Start 
and Stop. FClr horizontal blanking start, load num­
bers less than the total horizontal pipeline delay. 

Serration Start Ox51 

31 24 23' 12 11 o 
o 1 0 1 000 1 Not Used Serration Start 

- SER Start In units of T-cycles Resets to 0 
- (not used) 

The vertical component of the CSYNC (composite 
sync) signal is ·made up of two types of pulses: 
equalization and serration pulses. The window dur­
ing which the serration pulses are active,is deter­
mined by the VSYNC start and stop positions, as 
shown in Figure 4-1. When vertical sync (VSYNC) is 
active, 'in this' case on line 3, the first serration pulse 
is output on the CSYNC signal. This pulse will start 
at the T-cycle count specified in Bits 11 to 0 of the 
Serration Start register. The pulse will end when the 
half-line count specified in the Base Counter register 
has been reached. This pulse will be repeated for 
every half line that the VSYNC output is pro­
grammed to be active, regardless of the position in 
the field. iri Figure 4-1, this continues until half line 
12, or line 6. 

Pre·Equalization I... 'Pulses )a I Serration Pulses , 

Start 01 Odd .,eld 

,,~Ho" rizontalEqualization Stop , 

Vertical Serration Start f ' , vfical Equalization Stop 

CSYNC 

VSYNC 

HSYNC 

uneCount ~ + + + + ++ + + + + + + + + ~4 + + + +. 
O' 1 2 3 4" 5 6 7' 8 9 

240855-16 

Figure 4-1_ Programming the Video Sync Outputs 

1-36 



8275008 

Equalization Parameters O){50 

1211 o 
o 1 0 1 0 0 0 0 Vertical Equaliza1ion Stop Horizontal Equalization Stop 

- EOH Stop in units of T-cycles Resets to 1 
- EOV Stop in units of half lines Resets to 1 

During the vertical equalizing period, which starts at 
field-beginning, an equalization, pulse is output on 
the CSYNC signal at the beginning of each half line, 
as shown in Figure 4-1. The width of this equaliza­
tion pulse is determined by the value in bits 11 to 0 
of this register. The half line on which these pulses 
are to stop is programmed in bits 23 through 12 of 
this register. If VSYNC is programmed to occur dur­
ing the equalization interval (as it is for NTSC type 
displays), the serration pulses are output on the 
CSYNC signal. 

Active Region Stops Olc4f 

31 2423 12 11 o 
01001111 Vertical Active Stop Horizontal Active Stop 

- Actdis Stop in units of T-cycles 
- Vertical Stop in units of full lines 

The active region window, during which pixels to be 
displayed are fetched from VRAM, is defined by the 
Active Region Start and Stop registers, The first dis­
play line is actually five lines after the line indicated 
in the vertical region of the Active Region Start regis­
ter. The position of the active region on a horizontal 
line is determined by the horizontal component of 
the Active Region Start register. Pixels will be 
fetched, from VRAM at a rate determined by the 
number of bits/pixel and pixel widths. In order for the 
827500B to operate properly, the horizontal width of 
the active region window must be an integral number 
of display pixel widths, taking into account the hori­
zontal pipeline delay, Also, the Active Region Start 
and Stop must fall within a single line boundary, as 
dictated by the Base Counter register. When,the first 
pixel actually appears at the output of the 827500B, 
the output is a function. of the processing elements 
used as discussed above. ' 

When the active region is over, the border color is 
output until the programmed blanl<ing time is 
reached. Both the border and blanking information is 
output at the transfer rate programmed by the user. 

1-37 

Active Region Starts Ox4e 

31 o 
01001,110 Horizontal Active Start 

- Actdis Start in units of T-cycles 
- Vertical Start in units of full lines 

Burst Gate Stop Ox4d 

31 24 23 12 11 o 
o 1 001 1 0 1 Vertical BG Stop Horizontal BG Stop 

- Horizontal Stop Position in units of T-cycles 
- Vertical Stop Position in units of full lines 

The Burst Gate Horizontal and Vertical Start and 
Stop registers allow the user to program a window 
into which burst can be added. This is useful when 
modulating the outputs of the 827500B. 

Burst Gate Start Ox4c 

31 24 23 12 11 o 
01001100 Vertical BG Start Horizontal BG Start 

- Horizontal Start Position in units of T-cycles 
- Vertical Start Position in units of full lines 

VBUS CODE REGIS-rERS 

The following group of registers are used by the pro: 
gram mer to schedule when VBUS transfer or control 
codes are to be sent to the 82750PB by the 
827500B. 

Display Format Load Interrupt O){4b 

31 2 23 1211 

01001011 Vertical DFL Position Horizontal DFL Positio 

- Horizontal Position in units of T-cycles 
- Vertical Position in units of full lines 

This is the programmable XY interrupt, used by the 
82750PB to perform a load of the Shadow Copy reg­
isters.This interrupt is sent on the VBUS when the 
bits 23 to 12 match the current display line position, 
and, bits 11 to 0 match the T-cycle count. 

o 



827500B 

Line Notification Timing Ox4a 

11 o 
Horizontal HLiN Position 

This indicates the position on each line to send a 
HLiNE code on the VB US. The 82750PB requires 
this information to keep track of the current display 
line when drawing graphics. 

Refresh and Register Transfer Ox49 

o 

- REFRESH horizontal timing in units of T-cycles 
- Register Transfer line number in units of full lines 

When the T-cycle count matches the value pro­
grammed into bit 11 to 0 of this register, a refresh 
code is sent to the 82750PB. Since these codes tie 
up the 82750PB for at least eight 82750PB cycles, 
the programmer must ensure that no transfer re­
quests are scheduled to occur during this time. 

The line number for the next register transfer is 
specified in bits 23 to 12 of this register. If pro­
grammed to occur, REGX will always be the first 
transfer request sent to the. 82750PB, immediately 
after the end of active display. 

COLOR REGISTERS 

The following registers specify the state of DBU, 
DRV, DGY, and ALPHA signals during the field. 

Border Color Ox48 

The 24 bits of data in this register are sent directly to 
the YUV conversion matrix during border time. Bor­
der time is defined as the region in which neither 
active display nor blanking is programmed to occur. 
The bits should be programmed as RGB values 
when the YUV to RGB matrix is not being used. 

1-38 

Alpha Register Ox47 

The least significant 8 bits are for the ALPHAO regis­
ter and are used during blanking and if the alpha trap 
value is not matched. The next 8 bits are for the 
ALPHA 1 register when the alpha trap value is 
matched. The most significant 8 bits provide the al­
pha channel value during the border time. 

Blanking Color Ox46 

The 24 bits of data in this register are sent directly 
through the YUV conversion matrix during the pro­
grammed blanking time. . 

CONTROL REGISTERS 

The following registers are used to define the oper­
ating modes ofthe82750DB. 

Pixel Control Ox45 

23 22 21 19 18 14 13 11 10 9 B 7 6 0 

I I I I I I I I II I 

I j 1 j J 11 i Int.rp~:i~KR~~: 
. 

. . co. nditionalinterpolation Enable 
: VU Interlace Enable 

4xVUExpand 
VU Sample Seieel 

. Pixel Time 
Bils/Pixel 

VU Pixel Replicate 
Pseudo 16-BIt Mode 

240855-17 

Bits 6:D-SCLK Delay 

The number "m" of T-cyc!es· from initiation of a 
transfer request on the VBUS until the first SCLK is 
asserted by the 82750DB. 



8275008 

Bit 7-VU Interpolation Round 

When equal to 0, this bit means truncate during in­
terpolation. When set to one, this bit means round to 
odd during interpolation. 

Bit S-Conditional Interpolation Enable 

When reset to zero, this bit means all values of Y 
and U are a full 8 bits of precision. When set to one, 
this bit means the least bit of the Y sample or the U 
sample controls the switching between VU interpola­
tion and graphics mode. 

Bit 9-VU Interlace Enable 

Setting this bit to a one causes the interpolator to 
output different data on the odd and even fields. 
During the odd field, the odd lines of the interpola­
tion sequence will be output. During the even field, 
the even ,lines of the interpolation sequence will be 
output. Full lines of the programmed number of sam­
ples of both the V and U data will be read in during 
each VU transfer. Setting this bit to a zero will cause 
horizontally and vertically interpolated data to be 
output on both fields. Only a full line of either V or U 
samples will be read in during each transfer request 
in this mode. 

Bit 10-4X VU Ellpand 

When this bit is set to a zero, a 2X expansion in both 
directions is performed. By setting this bit to a one, a . 
4X expansion is performed. 

Bits 13:11-VU Sample Select 

Table 4-1 provides the code and number of V andU 
samples for bits 13: 11. 

Table 4·1. VU Sampling 

Code Number of V And U Samples 

000 o Samples for Each V and U \ 

111 32 Samples for Each V and U 

110 64 Samples for Each of V and U 

101 96 Samples for Each of V and U 

100 128 Samples for Each of V and U 

011 160 Samples for Each of V and U 

010 192 Samples for Each of V and U 

001 '256 Samples for Each of V and U 

1-39 

Bits 1S:14-Pixel Time 

Table 4-2 lists the codes and pixel duration for bits 
18:14. 

Table 4·2. Pixel Times 

Code Duration of Pixel 

00001 1.0 T-cycle 

00010 1.5 T-cycles 

00100 2.0 T-cycles 

01000 2.5 T-cycles 

10000 3.0 T-cycles 

10001 3.5 T-cycles 

10010 4.0 T-cycles 

10100 4.5 T -cycles 

11000 5.0 T-cycles 

11001 5.5 T-cycles 

11010 6.0 T-cycles 

11100 6.5T-cycles 

11101 7.0T-cycles 

11110 7.5 T-cycles 

00011 8~0 T-cycles 

00101 8.5 T-cycles 

00110 9.0 T-cycles 

00111 9.5 T-cycles 

01001 10.0 T-cycles 

01010 10.5 T-cycles 

01011 11.0 T-cycles 

01100 '11.5 T-cycles 

01101 12.0 T-cycles 

01110 13.0 T -cycles 

01111 14.0 T-cycles 



82750D8 

Bits 21:19-Bits/Pixel 

Table 4-3 provides the code and number of bits/pix­
el for bits 21 :19. 

Table 4-3. Number of Bits/Pixel 

Code Number of Bits/Pixel 

001 8 

010 16 

100 32 

Bit 22-VU Pixel Replicate 

When set to one, each pixel generated by the VU 
Interpolator IS held for 2-pixel times. This allows an 
effective 8X expansion of VU data. This is useful for 
high resolution applications where the blanking time 
is not sufficient to support higher VU sample loads. 

Bit 23-Pseudo 16-Bit Mode 

When set to one and 16 bits per pixel is chosen (bits 
21:19), the 8275008 is in the 16-bit with Alpha 
mode. Setting this signal to zero while in the 16-bit/ 
pixel mode puts the 8275008 into the 16-bit (655) 
mode. This bit represents a "don't care" input for all 
other values of bit/pixel. 

General Control Ox44 

23 17 16 13 12 11 10 9 8 7 6 5 4 

t 
Reserved - Sel To Zero I 

Vblen 

I II I '·1' I 

11 j II I t B",jM~t;p1e t CUrsOf Enable 
2x Horizontal Cursor 

2x Vertical Cursor 
Channel Test Select 

Sync Test 
Gren 

Viden 

240855-18 

Bits 4:0-Burst Multiple 

These bits are used to program a divisor of the 
FREQIN clock input in order to recover the 
3.58 MHz NTSC color subcarrier. The programmed 
value is the two's complement of the desired divisor. 
The allowed range of values is 00001 through 11111 
which corresponds to divisions of 31 through 1. Note 
that the 827500B must be operating at an integer 
multiple of 3.58 MHz for this to work effectively. 

Bit 5-Cursor Enable 

When set to one, the hardware cursor will output the 
cursor data at prescribed intervals if programmed to 
do so. 

1-40 

Bit 6-2X Horizontal Cursor 

When this bit is set to one, and the Cursor Enable bit 
is set to one, every pixel on each line of the cursor 
will be replicated once. Thus a cursor that was 
16 x 16 pixels will become 32 x 16 pixels. 

Bit 7-2X Vertical Cursor 

When this bit is set to one, and the Cursor Enable bit 
is set to one, each line of the cursor will be replicat­
ed once. Thus a cursor that was 16 x 16 pixels will 
become a 16 x 32-pixel cursor. 

Bit 9:8-Channel Select 

These two bits control which output channel is 
muxed onto the alpha digital outputs. It allows Y, U, 
or V data to be available at the alpha channel. The 
coding is provided in Table 4-4. 

Table 4-4. Test Mode Select Coding 

Code Alpha Channel Output 

00 Alpha Channel 

01 YChannel 

10 V Channel 

11 U Channel 

Bit 10-Sync Test 

This bit must be set to zero for proper operation. 

Bit 11-Gren 

This is the Graphics Enable bit for the Y Interpolator. 
When this bit is set to one and the pixel is a graphics 
pixel, switch is zero, a 2X interpolation will be per­
formed on the pixel. 

Bit 12-Viden 

This is the Video Enable bit of the Y Interpolator. 
When this bit is set to one and the pixel is a video 
pixel, switch is one, a 2X interpolation will be per­
formed on the pixel. 

Bit 16:13-Vblen 

These bits program the T-cycle length of each VB US 
code. The VBUS code length will be one T-cycle 
longer than the programmed value. These bits must 
have a minimum Value of 2, and a maximum value of 
15. 



intel" 8275008 

Miscellaneous Control Ox43 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 B 7 

I I I I II I I I I II I I I I 

... 1 I Reserved 
fwli.'.~"(I) 

Line 
Replicale 

Enable 

8275009 
Mod. 
Enablo 

II j ·jl11 ~ Alt"'T"PV"", t Alpha Trap Select 
Border Alpha Enable 

Digitize Enable 
vu Interpolator Output Enable 

Alpha Enable 
Switch on LSB Of Y 

Genlock Enable 
Bypass Conversion Matrix 

S~'CLUT Transfer Timing 
Select Graphics Pass 

Video Pass 

Bits 7:0-Alpha Trap 

240855-19 

Bits 7:0 are 8-bit values used for comparison with 
the current pixel's Y value, to select one of two pro­
grammable alpha values. 

Bit 8-Alpha Trap Select. 

A value of one enables the Y value of the current 
pixel to be compared with the value in the Alpha 
Trap register. If the two values match and Alpha has 
been enabled via the Alpha Enable bit, the contents 
of the ALPHA1 register are output on ALPHA[7:0]. If 
the two values don't match and Alpha Enable has 
been set to one, the content of the ALPHAO register 
is output. When Alpha Trap Select is set to a zero in 
the pseudo 16- or 32-bit mode, the niost significant 
byte of the pixel word is output When Alpha Trap 
Select is set to zero in all other modes, the value of 
the ALPHAO register is output. 

Bit 9-Border Alpha Enable 

A value of one enables the eight most significant bits 
in the ALPHA register to be output. When set to a 
zero, the ALPHAO register is output during border 
time. 

Bit 10-Digitize Enable 

When this bit is set to a one, the FCC signal will be 
set to a one, and the transfer codes for bitmaps will 
indicate that write operations should occur. 

Bit 11-VU Interpolator Output Enable 

This bit enables VU interpolation data to be dis­
played. When set to a zero, all pixels are treated as 
graphic pixels. 

1-41 

Bit 12-Alpha Enable 

When set to one, the alpha output is governed by 
the alpha trap value, as described ;:tbove. When re­
set to zero, the contents of the ALPHAO register is 
the alpha output in the 8- and 16-bit modes, and the 
explicit ALPHA data encoded in the pseudo 16- and 
32-bit modes. 

Bit 13-Switch on LS Bit of Y 

When set to one, the least significant bit of Y is used 
as ·a Video/Graphics switch in all modes. When re­
set to zero, the least significant bit of U from the 
interpolator acts as a switch. 

Bit 14-Genlock·Enable 

This bit enables the genlock mode of the 82750DB. 
In this mode, receipt of the external HRESET# sig­
nal during the second half of a scan line will cause 
the termination of that scan line. Similarly, receipt of 
the externally produced VRESET # Signal will termi­
nate the field. In both cases, terminate denotes that 
the proper on-chip signals are produced to signify 
end of the line and end of the field. 

Bit 15-Bypass Conversion Matrix· 

When this bit is set to a.one the YUV to RGB matrix 
will be bypassed, and the y, ·U, and V data will feed 
directly into the Digital to Analog Converters. 

Bit 16-Split CLUT 

This bit divides the CLUT into an odd. and an even 
half, depending on the polarity of the Video/Graph­
ics switch. This switch is selectable and may be ei­
ther the LSB of U from the interpolator or Y from the 
pixel word. The LSB of the CLUT address is set to 
one (odd address) if the Video/Graphics switch is 
one; the LSB of the CLUT address is set to zero 
(even address) if the Video/Graphics switch is zero. 

Bit 17~raphics Pass. 

Setting this bit to a one bypasses the CLUT for 
graphics pixels, even in non-mixed modes. 

Bit 18-Video Pass 

When set to a one, all video pixels (luminance val­
ues associated with sub-sampled UV values) will by­
pass the color table. For mixed modes, this corre­
sponds to the switch flag having a value of one. 



inteL 82750D8 

Bit 20:19-Transfer Timing Select 

These bits are two-bit codes that select one of three 
possible transfer shift clock rates. This al.lows the 
operating speed ofthe 82750DB to be tailored to the 
external memory access time. After RESET, the 
transfer rate is set to the slowest possible clock rate 
(1 /3X). The programmed rate is used during all non­
active display times for transferring data from 
VRAMs. It also defines the rate that the border and 
blanking data is output: During active display, the 
data is read as needed from VRAM using the pro­
grammed timing. The coding of these bits is listed in 
Table 4-5. . 

Table 4-5. Coding of Transfer Timing Select Bits 

Bit 20 Bit 19 Result 

0 0 1 13X Transfer (Default) 

0 1 1 12X Transfer 

1 0 1X Transfer 

Bit 21....;..827500B Enable 

When set to zero, the 82750DB will be the register 
equivalent of a 82750DA. When set to a one all the 
features of the 82750DB will be enabled. 

Bit 22~Line Replicate Enable 

When this bit is set to one, every line in the active 
display is generated twice. Each new bitmap transfer 
occurs at half the line rate, with a new VB US code 
being used to indicate that a transfer is to take place 
without the pitch calculation. The VU Interpolator will 
also duplicate the lines it generates, yielding more 
time between transfer cycles. This mode is useful for 
obtaining a2X increase in vertical resolution without 
the need for increasing the VRAM transfer band­
width. 

COLOR MAP REGISTERS 

The following registers are used to access and con-
trol the three 256 x 8-bit Color Lookup Tables. . 

Mask Data Registers Ox42 

1-42 

Each of the three 8-bit registers contains .the bit pat­
tern used when the corresponding bit in the Mask 
Set register is asserted. 

Mask Set Registers OX41 

This is a 24-bit register that contains the mask bit 
pattern for the RGBIYUV color map addresses. 
When a bit in this register is asserted, the corre­
sponding bit in the address is set to the value de­
fined in the Mask Data registers. 

CLUT Index Register Ox40 

The CLUT Index register is an 8-bitregister used for 
loading the color tables. This register maps the user­
specified6-bit color. map address into an 8-bit ad­
dress: A logical OR operation is performed between, 
the 6-bit address and the a-bit index word to obtain 
the new CLUT address. 

Color Lookup.Table Addresses' OxOO-Ox3f 

If the 82750DB, Enable mode bit in the Miscellane­
ous Control register is set to zero, the CLUT ad­
dresses are decoded to ,appear as addresses to the 
reduced-size 82750DA color table. The least signifi­
cant four bits of the address are used for the Y color 
table address, and the upper nibble is used to ad­
dress the V and U color table simultaneously. This is 
a compatibility mode for the 82750DA, which has a 
reduced-size color table, 

If the 82750DB Enable mode bit is set to one, the full 
color table is used. In this case, the most significant 
byte of the 32-bit data word is used as an address to 
the color table. The address is ORed with the most 
recently loaded CLUT Index register. 



8275008 

8275008 Register Summary 

The following table illustrates the register space of the 82750DB. 

Table 4·6. 8275008 Register Space 

Address 8275008 Register Address 8275008 Register 

OxOO-OxOf CLUT Locations 0-15 Ox53 Blanking Stop 

Ox10-0x30 CLUT Locations 16-48 Ox54 Sync Start 

Ox31 CLUT Location 49 Ox55 Sync Stop 

Ox32 CLUT Location 50 Ox56 Base Counters 

Ox33 CLUT Location 51 Ox57 Cursor Color 1 

Ox34 CLUT Location 52 Ox58 Cursor Color 2 

Ox35-0x37 CLUT Location 53-55 Ox59 Cursor Color 3 

Ox38 CLUT Location 56 Ox5a Cursor Control 

Ox39-0x3f CLUT Location 57 -63 Ox5b Not Used 

Ox40 CLUT Index Register Ox5c Not Used 

Ox41 CLUT Mask Set Register Ox5d Not Used 

0><42 CLUT Mask Data Register Ox5e Not Used 

Ox43 Miscellaneous Control Ox5f Not Used 

Ox44 General Control Ox60 Not Used 

Ox45 Pixel Control Ox61 Not Used 

Ox46 Blanking Color Ox62 Not Used 

Ox47 Alpha Register Ox63 Not Used 

Ox48 Border Color Ox64 Not Used 

Ox49 Register Transfer Ox65 Not Used 

Ox4a Line Notification and Timing Ox66 Not Used 

Ox4b DFL Load Ox67 
, 

Not Used 

Ox4c Burst Gate Start Ox68 Not Used 

Ox4d Burst Gate Stop Ox69-0x6e Not Used 

Ox4e Active Region Start Ox6f Not Used 

Ox4f Active Region Stop Ox70 Not Used 

Ox 50 Equaliz(ition Parameters Ox71-0x7f Not Used 

Ox51 Serration Start Ox80-0xfe Not Used 

Ox52 Blanking Start Oxff Stop Code 

1-43 



82750D6 

5.0 ELECTRICAL DATA 

Maximum Ratings 
Table 5-1 is a stress rating only, and functional operation 
at the maximums is not guaranteed. Functional operat­
ing conditions are given in the DC and AC Characteris­
tics (Tables 5-2, 5-3, 5-4, and 5-5). 

Exposure to the Maximum Ratings may affect device 
reliability. Furthermore, aithough the 827500B con­
tains protective circuitry to resist damage from static 
electrical .. discharge, always take precautions to 
avoid high static voltages or electric fields.' 

Taible 5~1. Absolute Maximum Requlreinents 

Condition 
"Maximum 
Requirement 

Case Temperature under Bias -65·C to 110·C 

Storage Temperature - '65·C to 11 O·C 

Voltage on Any Pin with Respect to Ground ':'O.5Vto Vce + 0.5V 

Supply Voltage with Respect to Vss -'0.5V to + 6.5V 

DC Characteristics 

Table 5-2. DC Characteristics Vcc = 5V ±10%,TcASE ;':' O°C to 95°C 

Symbol Parameter Min Typ Unit Notes 

V1L Input LOW Voltage -0.3 V 

VIH InputHIGH Voltage V 

VOL Output LOW Voltage "V IOL = 4.0.mAIII 

VOH Output HIGH Voltage V IOH = -1.0 mAIII 

IlL Input Leakage Current ~ VSS<'-"N<VCC 

loz Output Leakage Current +10 ~ VSS<'-"N<VCC 

ICCT Power Supply Current 250 mA 28 MHzl21 

ICCNT 190 .rnA 28 MHzl'l 

ICCT Power Supply Cur 280 375 ... ' mA 45 MHzI2) 

ICCNT 215 285 mA 45 MHzl'1 

CIN Input CapaCitance 10.0 pF Fc = 1 MHzl'l 

COUT Output Capacitance 12.0 pF ,Fe = 1 MHzl'l 

CFREQIN FREQIN Input Capacitance 20.0 pF Fc = 1 MHzl'l 

NOTES: 
1. Measured with FREQIN = 7 MHz. 
2. Typical current value measured under typical conditions with the Digital Outputs (DGY, DRV, and DBU) toggling. Maximum 
current value guaranteed with 50 pF maximum output loading. Analog Outputs disabled. 
3. Typical current value measured under typical conditions with the Digital Outputs (DGY, DRV, and DBU) not toggling. 
Maximum current value guaranteed with 50 pF maximum output loading. Analog Supply Current IACC not incllided, 
4. Not 100% tested. 

1-44 



intel" 8275008 

AC Characteristics 

Table 5-3. AC Characteristics at 28 MHz Vee = 5V ± 10%, TeAsE = O°C to 95°C, CL = 50 pF 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 7 28 MHz lXClock 

t1 FREQIN Period 35 140 ns 5-1 

t2 FREQIN High Time 12 23 ns 5-1 (Note 1) 

t3 FREQIN Low Time 12 23 ns 5-1 (Note 1) 

t4 FREQIN Fall Time 4 ns 5-1 

t5 FREQIN Rise Time 4 ns 5-1 

tsa HSYNC,VSYNC,CSYNC,BG, 
FCO Valid Delay 

24 ns 5-2 

tSb VBUS[3:0] Valid Delay 26 ns 5-2 

t7 RESETB#, VRESET#, HRESET#, 
DISDIG, TESTACT Setup 

0 ns 5-3 

t8 RESET #, VRESET#, HRESET#, 
DISDIG, TESTACT Hold 

13 

t9 SCLK[l :0] Valid Delay High 1X Mode 

t10 SCLK[l :0] Valid Delay Low 1X Mode 

t11 SCLK[1 :0] Valid Delay 1/2X, 1/3X Mode 

t12 DATAIN[31 :0] Setup 

t13 DATAIN[31 :0] Hold 

t14 5-7 (Note 2) 

t15 ns 5-7 (Note 3) 

t1S ns 5-8 

t17 DR 1~DBU[7: , 15 ns 5-8 
ALPHA[7: DIS, CB, BPP[O], 
BPP[1] Output Hold 

t18 VBUS[3.0], SCLK[1.0], FCO, 
HSYNC,VSYNC,CSYNC,CB,BG, 

30 ns 5-9 (Note 4) 

PIXCLK, DRV[7:0], DGY[7:0], 
DBU[7:0], ALPHA[7:0], ACTOIS, 
BPP[O], BPP[1] Float Delay 

t19 DISDIG, DRV[7:0], DGY[7:0], 
DBU[7:0], Digital Output 

3t1 ns 5"10 

Disable Delay 

t20 DISDIG, DRV[7:0], DGY[7:0]! 
DBU[7:0], Digital Output 

3t1 ns 5-10 

Enable Delay 

t21 DISDAC, RV, GY, BU Analog 19 ns 5c11 (Note 6) 
Output Disable Delay 

t22 DISDAC, RV, GY, BU Analog 
Output Enable Delay 

19 ns 5-11 (Note 6) 

1;:45 



. . . 
InTel~ 8275008 

NOTES: 
1. This assumes a 35 ns period. For other speeds, the FREQIN High and Low Times should fall within a 40% to 60% duty 
cycle. 
2. For integer pixel times t14 is the Valid Delay on all assertions of PIXCLK duringaclive display time. 
3. For non-integer pixel times t15 is the Valid Delay on alternating assertions of PIXCLK during active display time. 
4. Not 100% tested. 
5. All A.C. specifications are measured at the 1.5V crossing point with a 50 pF load. 
6. Analog output delay is measured at the 50% level of the full scale transition with RL " 750 and CL = 25 pF. 

AC Characteristics 

Table 5-4. AC Characteristics at 45 MHz Vcc = 5V ± 10%, TCASE = O°C to 95°C, CL = 50 pF 

Symbol Parameter Min Max Unit Figure Notes 

.Frequency 7 45 MHz 1 XC lock 

tl FREQIN Period 22 140 ns 5-1 

t2 FREQIN High Time 7 15 ns 5-1 (Note 1) 

t3 FREQIN Low Time 7 15 ns 5-1 (Note 1) 

t4 FREQIN Fall Time 4 5-1 

ts FREQIN Rise Time 5-1 

t6a HSYNC, VSYNC, CSYNC, BG,. 5-2 
FCO Valid Delay 

t6b VBUS[3:0] Valid Delay 5-2 

t7 RESETB#, VRESET#, HRESET#, 5-3 
DISDIG, TESTACT Setup 

ts RESET B#, VRESET#, HRESET#, 5-3 
DISDIG, TESTACT Hold 

t9 SCLK[1 :0] Valid Delay High 5-4 1X Mode 

t10 SCLK[1 :0] Valid Delay Low 5-4 1X Mode 

tll SCLK[1 :0] Valid Delay . ns 5-5,5"6 1/2X, 1/3X Mode 

t12 DATAIN[31:0] Setup ns 5-4, 5-5, 5-6 

t13 DATAIN[31:0] Hold ns 5-4, 5-5, 5-6 

t14 1/2tl +20 ns 5-7 (Note 2) 

t15 . PIXCLK Valid Delat 20 ns 5-7 (Note 3) 

t16 DRV[7:0], DGY[ ns 5-8 
ALPHA[7:0], A. 
BPP[1]NUG 

t17 DRV[7:0], DQY[7:0], D [7:0], 10 ns 5-8 
ALPHA[7:0], ACTOIS, CB, BPP[O], 
BPP[1]NUGR Output Hold 

t18 VBU8[3.0], SCLK[1.0], FCO, 30 ns 5-9 (Note 4) 
HSYNC, VSYNC, DRV[7:0], 
DGY[7:0], ALPHA[7:0], ACTOIS, 
BPP[O], BPP[1]NUGR Float Delay 

t19 DISDIG, DRV[7:0], DGY[7:0], 
DBU[7:0], Digital Output 

3t1 ns ~ 5-10. 

Disable Delay 

1-46 



D8il~. 8275008 

AC Characteristics (Continued) 

Table 5-4. AC Characteristics at 45 MHz Vcc = 5V ± 10%,.TcASE = O°C to 95°C, CL = 50 pF 

Symbol Parameter Min Max .. ····'·Unit Figure Notes 

t20 DISDIG, DRV[7:0], DGY[7:0], 
DBU[7:0], Digital Output 

5-10 

Enable Delay 

t21 DISDAC, RV, GY, BU Analog 5-11 (Note 6) 
Output Disable Delay 

t22 DISDAC, RV, GY, BU Analog ns 5-11 (Note 6) 
Output Enable Delay 

NOTES: 
1. This assumes a 22 ns period.~?f.oih:\~gye s, FREQIN High and Low Times should fall within a 40% to 60% duty 
cycle. .'.'.. ....; ..... 
2. For integer pixel times t14 is the Valid Qefay on all assertions of PIXCLK during active display time. 
3. Fo~ non-integer pixel times t15 is the Valid Delay on alternating assertion's of PIXCLK during active display time. 
4. Not 100% tested. 
5. All A.C. specifications are measured at the 1.5V crossing point with a 50 pF load. 
6. Analog output delay is measured at the 50% level of the full scale transition with RL = 75Q and CL = 25 pF. 

FREQIN 

i<f-:- t2 , 
2.0V: , 

1.sy I 
O.8V , 

__ -,I ' 

~15!~ 
''--__ 0/: 
4-- ' , , 

:<t'{'----- ----»1 

Figure 5-1. Clock Waveforms 

1.5V 

i 
lea,16b :<t-

-----.... ' ,-------------
_____ ~~~_1._5V _________ ___ 

Figure 5-2. Output Waveforms 

'--_--I: 
~:181~ , , 

-,"--', 17 ,~ i 

------~~~~~~.~~---------
1.5V7\\.. __ ---JJ'\\.. ________ _ 

Figure 5-3. Input Waveforms 

1-47 

240855-20 

240855-21 

240855-22 



8275008 

FREOIN 

SCLK[l :OJ 

DATAIN[31 :OJ 

240855-23 

Figure 5·4. 1X SCLK Mode 

FREOIN 

SCLK[1:0J 
I 

DATAIN[31 :OJ 

tl1: : t12 : t13 -: '-- ~ 

... ------------------~~--------.... 
240855-24 

Figure 5·5. 1/2X SCLK Mode 

FREOIN Ah/\ I 
-- I - I --... ""--" 

I 

SCLK[l :OJ 

DATAIN[31 :OJ 

I ',... _____ "" --.3- 1.5V : \,, ________________ ,..,t 
I I I I t12: t 13 

-: :-t11 _~ :- tl1 ;.....:..:---.: 

-----------------------------... ~ 240855-25 

Figure 5·6. 1I3X SCLK Mode 

1-48 



int'et 

FREQIN 

PIXCLK 

8275008 

:_t1--; 

~' J\.-T' 1.5V , 
I • I I 

, " 

~I:: J-FPLI, I' 
, , 1.5V , ' , 

L tit I I 

-' '-- 15, 't' -' '-- t15 
I' I 1..- 14 ----.J " 

:-+- t14~ " 

Figure 5-7. PIXCLK Waveforms 

PIXCLK 

, 

________ 1_.5_V~-------­
~,--' 

'tHi t17' 

Figure 5-8. Output Setup and Hold 

TESTACT# ~ I-, , 
, 

=t) 
, 

( , , 
'--' '--' 
't18 ' 't18 ' 

240855-27 

240855-26 

240855-28 

Figure 5-9. TESTACT# Float Delay 

1·49 



8275008 

fREQIN 

DISDIG ) 1.5V \\---....;.-.--
DRV[7:01 
DGY[7:01 
DBU[7:01 

XXX\1.5V IXX'! 
, , 

'----'19---. :-t20 -: 

Figure 5·10. DIS DIG to Digital Output Delay 

DISDAC ---f- 1.5V \: I I~-------

RV 
GY 
BU 

~ INDICATES HIGH-IMPEDANCE STATE 

240855-39 

Figure 5·11. DISDAC to Analog Output Delay 

Digital to Analog Converter Electrical Characteristics 

Table 5·5. DAC D.C. Characteristics AVec = 5V ± 10%; 

Symbol Parameter Min Typ 

Iref Reference 
Current 

lIs Output Current* 0.93 *(255/18.5) * Iref 
(Full Scale) 

VIs Output Voltage 
(Full Scale) 

INL Integral 
Nonlinearity 

DNL Differential 
Nonlinearity 

IACC Analog Supply 3' Ifs + 8 
Current 

DOTR OAC to OAC 5.0 
Tracking at Full 
Scale 

Cout Output 12 
Capacitanc 

NOTES: 
1. Maximum Its allowed = 22 mA. 
2. Maximum IACC allowed = 74 mA. Typical value 01 IACC = 3 • lIs + 6 
3. Maximum deviation between RV. GY and BU outputs at fullscale output voltage. 
4. Not 100% tested. 
5. All DAC testing done with Iref = 1500 >tA. 1-50 

Unit 

~A 

mA 

V 

LSB 

LSB 

mA 

% 

pF 

240855-38 

Notes 

(Note 1) 

(Note 2) 

(Note 3) 

(Note 4) 



int:eL 8275008 

Table 5-6. DAC A.C. Characteristics 

Symbol Parameter Min Typ ft4~.)!; Unit Notes 

tr, tf Rise/Fall Time ns (Note 1) 

ClkF Clock Feedthrough dB (Note 2) 

GlEn Glitch Energy pV-sec (Notes 2, 3) 

Skew Output Skew ns 

Xtlk Crosstalk pV-sec (Note 2) 

NOTES: 
1. Maximum value is for RL = 750 and CL = % to 90% fuliscale transmission. 
2. Assumes an 80 MHz filter on output. 
3. Glitch energy generated from the il)!l. 
4. DISDIG must be tied high.<;;t 
5. Assumes the use of 0.1 IlF capacitor be n VGCS and AVcc and 0.1 IlF and 10 IlF capacitors between IREFIN and AVcc. 

IRE FIN 

VGCS 

8275008 Avss 

Avec 

R 

G 

8 

Ground 

f-~~---+---+--- +5V (AveC> 

tis = 255 * Iref 
18.5 

Vb = If II * RL 

where: 

R, = 750 

RL = Load Resistance 

C, =0.1 ~F 

CL :::: Load Capacitance 

o <lout < If II 

o ~Vout ~ Vfll 

Ground 

Figure 5-12. Typical Output Configuration 

1-51 

240855-29 

To 
Monitor 



82750DB 

Output Delay and Rise Time versus Load Capacitance 

NOTE: 

Typical 
Output 
Delay 
(ns) 

nom + 6 ...----,...--.----,..."';""';".---..., 

nom + 4 1-~-+---I---+-----zfI----1 

nom + 2 f---'-+--h.f'-+--r 

nom f---i;f'---f--", 

This graph will not be linear outside of the CL ran 

oL-_..J..._--" __ ..L.-_-L-_.....J 

25 50 75 100 125 150 

CL (picoferads) 

NOTE: 
This graph will not be linear outside of the CL range shown. 

240855-30 

240855-31 

Figure 5-14. Typical Output Rise Time versus Load Capacitance under Worst Case Conditions 

1-52 



8275008 

6.0 MECHANICAL DATA 

Packaging Outlines and Dimensions 

Intel packages the 82750DB in a Plastic Quad Flat 
Pack (PQFP). Table 6-1 gives the symbol list for the 
PQFP. 

Table 6-1. PQFP Symbol List 

Letter or Description of Dimensions Symbol 

A Package Height: Distance from 
Seating Plane to Highest Point of 
Body 

A, Standoff: Distance from Seating 
Plane to Base Plane 

DIE Overall Package Dimension: Lead 
Tip to Lead Tip 

D,/E, Plastic Body Dimension 

D2/E2 Bumper Distance 

DJE3 Footprint 

DJE4 Foot Radius Location 

L, Foot Length 

N Total Number of Leads 

The PQFP has the following specifications: 

1. All dimensions and tolerances conform to ANSI 
Y14.5M-1982. 

2. Datum plane-H-is located at the mold parting line 
and coincident with the bottom of the lead where 
lead exits plastic body. 

mm (inch) 

3. Datums A-B and -0- are to be determined where 
center leads exit plastic body at datum plane -H-. 

4. Controlling dimension is the inch. 

5. Dimensions 01. 02. E1. and E2 are measured at 
the mold parting line and do not include mold pro­
trusion. Allowable mold protrusion is 0.18 mm 
(0.007 in.) per side. 

6. Pin 1 identifier is located within one of the two 
zones indicated. 

7. Measured at datum plane -H-. 

8. Measured at seating plane datum -Co. 

Table 6-2 provides outline characteristics for 
0.025-in. pitch. 

Table 6-2. Intel Case Outline Drawings 
for PQFP at 0.025 Inch Pitch 

Symbol Description Min Max 

N Leadcount 132 132 

A Package Height 0.160 0.180 

A, Standoff 0.020 0.040 

D.E Terminal Dimension 1.070 1.090 

D,. E, Package Body 0.947 0.953 

D2• E2 Bumper Distance 1.097 1.103 

D3• E3 Lead Dimension O.BOO REF O.BOO REF 

D4 • E4 Foot Radius 1.023 1.037 
Location 

L, Foot Length 0.020 0.030 

240855-32 

Figure 6-1. Principal Dimensions of the 82750DB in the 132-Lead PQFP Package 

1-53 



mm (inch) 

mm (inch) 

8275008 

.®::;~ ~ ::i~: tJ::1:!!:...;C=~=*l 
8.28 (.18S) 
8.14 (,885) 

1.31 (,812)-11-
'.21 (.18S) -::O/E4 

• 1.18.21 UIS>(9)lcIA®-8®lo®1& 
~ .1-. S CEG • 

1 CEG. 

DETAIL J DETAIL L 
240855-36 

Figure 6-2. 132-Lead PQFP Mechanical Package Detail-Typical Lead 

.. " , .. ". ",.1 
~ E2 

1.32 ('SS2) 
1.22 <-0848) . ~ 

8.~S (.835) MIN. 

2.83 (.888) 
1.'3 <'871:0) 

mm (inch) 

----02 ----I 

DETAILM 240855-34 

Figure 6~3. 132-Lead PQFP Mechanical Package Detail-Protective Bumper, 

240855-33 

Figure 6-4. Detailed Dimensions of the 82750DB In the ·132~Lead PQFP Package-Molded Details 

1-54 



mm (inch) 

8275008 

'1 110 .1.35 (0.925>1 

SEE DETAIL L 

,-+-.j.j...- SEE DETAIL J 

I--- D3/E3---i 

1------ D4/E4 ----~ 

~----D/E----~ 
240855-35 

Figure 6-5. Detailed Dimensions of the 82750D8 in the 132-Lead PQFP Packag&'-Terminal Details 

NOTES, 

ALL OIt'£NSIONS »4) TOLERANCES CONFeR< TO ANSI Yl4.5I1-1'82 

OATI..t1 PLANE rn LOCATED AT THE I'Q.O PARTING LlN£ AND 
COINCIDENT 1IITH TI-£ BOTTOH OF THE LEAD IIt£RE LEAD EXITS PLASTIC BODY 

OATI..t1S ~ Ar«l ga TO BE DETEMIIIN£O MRE CENTER LEADS EXIT 
PLASTIC BOOY AT OAT\.I'I I'LANE rn 

CONTROl.LlNO OIP€NSION, INCH 

OIP€NSIONS 01, 02, El AND E2 ARE Mt4SUl£O AT THE rQ.D PARTING LINE. 
01 AND El 00 NOT INCLi..IJ£ AH ALLOllASl..! rQ.D PROTRUSION OF 1.18 1'91 
(.817 IN> PER SIDE. 02 AND E2 00 "ilT INCLlJlE A TOTAL ALL01lAllLE 
rQ.O PROTRUSION OF D.18 I9t (.BII7 INI AT I1AXII'U'I PACKAOE SIZE. 

PIN 1 IDENTIFIER 18 LOCATED UITHltl ()j£ OF TI-£ niO ZONES 1r«lICATED 

1-55 

240855-37 



· . . Inlel® 8275008 

Package Thermal Specifications 

The 8275008 is specified for operation when T c 
(the case temperature) is within the range of ooe to 
95°. T c may be measured in any environment to de­
termine whether the 8275008 is within specified op­
erating range. The case temperature should be mea­
sured at the center of the top surface. 

T A (the ambient temperature) can' be calculated 
from eCA (thermal resistance from case to ambient) 
with the following equation: 

T A = T C - P • fiCA 

Typical values for eCA at various airflows are given 
in Table 6-3 for the 132-lead PQFP package. When 
using the digital outputs, Table 6-4 shows the maxi­
mum TA allowable (without exceeding Tel at various 
airflows. The power dissipation (P) is calculated by 
using the typical supply currents at 5V as shown in 
Table 5-2. 

Similarly, when using the analog outputs, the maxi­
mum TA allowed is a function of Ifs. The equation for 
calculating the power is given in the following 
equation which can then be used in calculating the 
maximum TA-

P = 5V * (lCCNT + (3 * Its + 6)) 

Table 6-3. ThermanResistances (OCIW) 

eCA Versus Airflow-ft/min (m/sec) 

Package 
0 200 400 600 800 1000 

(0) (1.01 ) (2.02) (3.04) (4.06) (5.07) 

132-Lead PQFP 26.0 17.5 14.0 11.5 9.5 8.5 

Table 6-4. Maximum T A at Various Airflows ee) 
T A Versus Airflow-ft/min (m/sec) 

Package 
Frequency 0 200 400 600 800 1000 

(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

132-Lead PQFP 28 71 79 82 84 86 87 

45 59 71 75 79 82 83 

1-56 



• 
• 
• 
II 

• 
II 

II 

II 

82750PB 
PIXEL PROCESSOR 

25 MHz Clock with Single Cycle • Pixel Interpolator 
Execution II High Performance Memory Interface 
Zero Branch Delay - 32-Bit Memory Data Bus 

Wide Instruction Word Processor - 50 MBytes per Second Maximum 
- 25 MBytes per Second with Standard 

512 x 48-Bit Instruction RAM VRAMs or DRAMs 
512 x 16-Bit Data RAM II 16 General-Purpose Registers 
Two Internal 16-Bit Buses III 4 Gbyte Linear Address Space 
ALU with Dual-Add-With-Saturation III 132-Pin PQFP 
Mode 

Compatible with the 82750PA II 
Variable Length Sequence Decoder 

Intel's 82750PB is a 25 MHz wide instruction processor that generates and manipulates pixels. When paired 
with its companion chip, the 82750DB, and used to implement a DVI Technology video subsystem, the 
82750PB provides real time (30 images/sec) pixel processing, real time video compression, interactive motion 
video playback and real time video effects. 

Real time pixel manipulations, including 30 images/sec video compression, are supported by the 25 MHz 
instruction rate. On-chip instruction RAM provides programmability for execution of a wide range of algorithms 
that support motion video decompression, text, and 2D and 3D graphics. Inner loops are optimized with the 
integration of sixteen 16-bit quad ported registers, on-chip DRAM, and two loop counters that provide zero 
delay two-way branching "free" in any instruction. Two, 16-bit internal buses enable two parallel register 
transfers on each 82750PB instruction, contributing to the real time performance of the video processing. 
Another feature that adds to the processing power of the 82750PB is the 16-bit ALU, which includes an 8-bit 
dual-add-with-saturate operation critical for pixel arithmetic. Other specialized features for pixel processing 
include a 2D pixel interpolator for image processing functions and a variable length sequence decoder for 
decoding compressed data. 

The 827.50PB is implemented using Intel's low-power CHMOS IV Technology and is packaged in a 132-lead 
space-saving, plastic quad flat pack (PQFP) package. 

Video Output 

Video 
Mlxer/ 
Display 
Device 

Video Input 

CSYNC 

B!U 

R/V 
G/Y 

ALPHA[7:0] 

VRESElI 

HRESEl# 

82750PB Subsystem Diagram 

VRAM 

Seriol Shift 
Register 

240854-1 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. February 1991 
© INTEL CORPORATION, 1991 1-57 Order Number: 240854-003 

• 



iniet 82750PB 

82750PB Pixel Processor 
CONTENTS PAGE CONTENTS PAGE 

1.0 82750PB PIN DESCRIPTION ....... 1-61 
VRAM Pointers ................... 1-86 , 

Pinout ................................ 1-61 
Shadow Copy ..................... 1-86 

Quick Pin Reference ................. 1-65 
Host Interface ........................ 1-87 

Host Register.Access ............. 1-88 
2.0 ARCHITECTURE ................... 1-68 Host VRAM Access ............... 1-89 

Overview ............................. 1-68 Host External Access ............. 1-89 
Registers ............................ 1-68 Host Register Address Mapping ... 1-89 
ALU ................................. 1-69 Initializing the 82750PB .............. 1-96 
Barrel Shifter ...................... , .. 1-70 Performance Monitoring .............. '1-97 
Data RAM ........................... 1-70 HostlVRAM Timing Diagrams ........ 1-97 
Loop Counters ....................... 1-70 

Microcode RAM ...................... 1-71 
4.0 MICROCODE INSTRUCTION 

FORMAT ............................ 1-102 
Horizontal Line Counter .............. 1-72 Overview ........................... 1-102 
Field.Counter ........................ 1-72 

Input FIFOs ............. : ............ 1-72 
.Instruction Sequencing .............. 1 c 102 

Instruction Word Field Descriptions .. 1-102 
Output FIFOs ........................ 1-73 NADDR-Next Instruction Address 
Statistical Decoder .................... 1-74 Field ........................... 1-102 

Pixel Interpolator ..................... 1-79 CFSEL-Condition Flag Select 
Mode Select .......... ~ . .. . ... .. . .. 1-80 Field ............................ 1-102 

Reset ............................. 1-80 ASRC-A Bus Source Select 
Field ........................... 1-103 

Pairing ............................ 1-80 
ADST -A Bus Destination Select 

Phase .... : ....................... 1"80 . Field ...... , .................... 1-103 

Pipelining ......................... 1-80 BSRC-B Bus Source Select 
Reserved ......................... 1-81 Field ........................... 1-103 

Signature Register ................... 1-81 

Display Format Registers ............. 1-81 

3.0 HARDWARE INTERFACE .......... 1-82 

BDST -B Bus Destination Select 
Field ........................... 1-103 

CNT -Decrement Loop Counter . 
Bit ............................. 1-103 

VRAM Interface ...................... 1-82 LIT-Literal Select Bit ............ 1-103 

VRAM Accesses .................. 1-83 SHFT -Shift Control Field ........ 1-104 

FastVRAM Cycles ............ , .... 1-84 ALUSS-ALU Source Select Bits . 1-104 , 

VBUS Codes ...................... 1-84 

Priority ............................ 1-85 

ALUOP-ALU Operation Code 
. Field, ..... : .................... 1-104 

LC-Loop Counter Select Bit· ..... 1-104 

1-58 



intel" 82750PB 

82750PB Pixel Processor 
CONTENTS PAGE CONTENTS PAGE 

5.0 ELECTRICAL DATA ............... 1-110 

D.C. Characteristics .................... 1-110 

A.C. Characteristics .................... 1-111 

Output Delay and Rise Time Versus Load 
Capacitance ......................... 1-113 

6.0 MECHANICAL DATA .............. 1-114 

Packaging Outlines and Dimensions .... 1-114 

Package Thermal Specifications ........ 1-119 

FIGURES 

Figure 1-1. 82750PB Pinout ............. 1-61 
J ' 

Figure 1-2. 82750PB Functional Signal 
Groupings ................... 1-64 

Figure 2-1. 82750PB Block Diagram ..... 1-68 

Figure 2-2. Input FIFO Control Register .. 1-72 

Figure 2-3. Output FIFO Control 
Register ..................... 1-73 

Figure 2-4. Statistical Decode CONTROL 
Register ..................... 1-77 

Figure 2-5. VRAM Bitstream Decoding 
Addresses ................... 1-78 

Figure 2-6. Pixel Interpolation ............ 1c79 

Figure 2-7. Sequential-2D. Pixel , 
Interpolation ................. 1-79 

, Figure 2-8. Pixel Interpolator Control 
Register ..................... 1-80 

Figure 2-9. Pixel Pair Phases ............ 1,-81 

Figure 3-1. Access State Diagram ....... 1-83 

Figure 3-2. Cyclic Ordering of FIFOs ..... 1-86 

Figure 3-3. VRAM Addressing ........... 1-86 

Figure 3-4. VRAM Read and Write 
Cycles ................... . . .. 1-98 

Figure 3-5. VRAM Transfer and Refresh 
Cycles ....................... 1-98 

Figure 3-6. Host Register Read and Write 
Cycles .... . . . . . . . . . . . . . . . . . .. 1-99 

Figure 3-7. Host External Cycles ........ 1-100 

Figure 3-8. Host VRAM Read and Write 
Cycles .................... 1-101 

Figure4-1. Literal Field Mapping onto a 
Bus ......................... 1-104 

Figure 4-2. 82750PB Instruction, Word 
Format ..................... 1-108 

1-59 

Figure 5"1. Clock Waveforms ........... 1-112 

Figure 5-2. Output Waveforms .......... 1-112 

Figure 5-3. Input Wavef6rms ........... 1-112 

Figure 5-4. CLKOUTWaveforms ....... 1-112 

Figure 5-5. Typical Output Valid Delay 
Versus Load Capacitance 
under Worst Case 
Conditions .................. 1-113 

Figure 5-6. Typical Output Rise Time 
Versus Load Capacitance 
under Worst Case 
Conditions .................. 1-113 

Figure 6-1. Principal Dimensions of the 
82750PB in the 132-Lead 
PQFP Package ............. 1-115 

Figure 6-2. Detailed Dimensions of the 
82750PB in the 132-Lead 
PQFP-Molding Details ..... i -116 

Figure 6-3. Detailed Dimensions of the 
82750PB in the 132-Lead 
PQFP-Terminal Details .... 1-116 

Figure 6-4. 132-Lead PQFP Mechanical 
Package Detail-Protective 
Bumper ...... " ............. 1-117 

Figure 6-5. 132-Lead PQFP Mechanical 
Package Detail-Typical 
Lead ., ...................... 1-117 

TABLES 

Table 1-1. Pin Cross Reference by Pin 
Name ............. ' .......... 1-62 

Table 1-2. Pin Cross Reference by 
Location .................... 1-63 

Table 1-3. Pin Descriptions ............. 1-65 

Table 1-4. Output Pins ................. 1-67 

Table 1-5. Input Pins ................... 1-67 

Table 1-6. Input/Output Pins ........... 1-67 

Table 2-1. Bit Assignment for cc 
Register .................... 1-69 

Table 2-2. ALU Opcodes ............... 1-69 

Table 2-3. Circular Buffer Register ..... 1-73 

Table 2-4. Sample Code Description 
Table ....................... 1-75 

Table 2-5. Decoded Values ............ 1-75 

Table 2-6. END Mode Decoded 
Values .... , ................. 1-75 



82750PB 

82750PB Pixel Processor 
CONTENTS PAGE 

Table 2-7. END Flag Decoded Values .. 1-76 

Table 2-8. Packed 3-Bit Field Decoded 
Values ........................ 1-76 

Table 2-9. VRAM Bitstream Decoded 
Values ...................... 1-78 

Table 2-10., Decod(ng Symbols .......... 1-78 

Table 2-11. Mode Select Operating 
Modes ...................... 1-80 

Table 2-12. Pipelining Delay for 
Sequential-2D NON-PAIR 
Mode ........................ 1-81 

Table 2-13. Signature Values ............ 1-81 

Table 2-14. Display Registers ........... H2 

Table 3-1. VRAM Interface Signals ..... 1-82 

Table 3-2. 82750PB VRAM Access 
States ....................... 1-83 

Table 3-3. VB US Codes ............... , 1-85 

Table 3-4. Priority of VRAM 
Operations ................. , 1-85 

Table 3-5. Host Interface Signals ....... 1-87 

Table 3-6. Host, VRAM and External 
Device Signals. , ........... , 1-87 

Table 3-7. 82750PB Host Transaction 
States ...................... 1-88 

Table 3-8. Host Cycle Types ., ......... 1-88 

Table 3-9. Host Address Mapping ...... 1-90 

Table 3-10. Bit Assignments for 
Microcode Processor 
CONTROL Register ......... 1-91 

Table 3-11. Bit Assignments for 
INTERRUPT FLAG 
Register .................... 1-92 

1-60 

CONTENTS 
Table 3-12. Bit Assignments for 

PROCESSOR STATUS 

PAGE 

Register .................... 1-93 

Table 3-13. 82750PB A Bus 
Source/Destination Register 
Mapping .................. ,. 1-94 

Table 3-14. 82750PB B Bus 
Source/Destination Register 
Mapping .................... 1-95 

Table 3-15. VRAM Pointer RAM 
Mapping .................... 1-96 

Table 4-1. Mirocode Next Instruction 
Selection .................. 1-102 

Table 4-2. PC Load Example .......... 1-103 

Table 4-3. Condition Flag Select Field 
Assignments ............... 1-103 

Table 4-4. SHIFT Control Field 
Coding ..................... 1-104 

Table 4-5. 82750PB Source/Destination 
Coding ..................... 1-106 

Table 5-1. Absolute Maximum 
Requirements .............. 1-110 

Table 5-2. D.C. Characteristics., ...... 1-110 

Table 5-3. A.C. Characteristics at 
25 MHz .................... 1-111 

Table 6-1. PQFP Symbol List ...... , ... 1:;14 

Table 6-2. Intel Case Outline Drawings 
for PQFP at 0.025-lnch 
Pitch ....... , ............... 1-115 

Table 6-3. Thermal Resistances 
eC/W) ..... , ............... 1-119 

Table 6-4. Maximum T A at Various 
Airflows .................... 1-119 



82750PB 

1.0 82750PB PIN DESCRIPTION 

Pinout 

9 

10 

11 

12 

.3 
14 

.~ 

16 

17 

18 

19 

20 

2' 

22 

23 

24 

2~ 

26 

27 

28 

29 

3D 

J. 

32 

Jl 

131 129 127 125 123 121 119 117 ,,~ 11] ,11 109 107 10!t 103 101 

132 'lO '28 '26 '2' 122 120 118· 116 ", 112 liD 'DB 106 '04 102 'DO 

000000000000000000000000000000000 
023 vee 

o IISS 
022 024 

• 
D26 vee 

025 \ISS 

02. 030 VSSi \ISS All A29 \ICC 

027 029 031 vee ClKOUl AJO A28 

82750PB Pinout 
TOP VIEW 

A27 A25 

\ISS A26 vec A23 

A22 

A21 

A20 

.'9 
A18 

IItC 

0" 

AI6 

A'5 

A14 

All 

.'2 

.'0 
AD 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o IICC 

0021 

0020 

0019 

o 01B 

0017 

0016 

0015 

OIlSS 
001. 

0013 

0012 

o 011 

0010 

009 

o IISS 

008 

007 

006 

01lSS 
005 

00. 

003 

o IISS 

002 

AI! 0 
07 0 
AI! 0 

\ISS 0 
vee 

AS 

Om M 

000 M 

o \ISS NlClr5l, A2 

o HINT' H.DY'~ UROY PM'Al' 

~ :" TAN'.'~ HAAIIIi,UAEZ' t,.::;~' T~ 
o IICC HBUSEN'~ HR[C, B[2' BED' \ISS \ISS WUs[J) 7U12:01 I HALEN' _ ~ £ \ISS YCC 

\ISS vee b bBEJI b8Et ' I vee bClk'Nb WE' bVCC I l1li[0' I bllCC \ISS 
00 0 0 000 0 0 0000000 00 

o 
o 
o 
o 
o 
o 
o 
o 
o 

99 

98 

97 

96 

95 

9' 

9) 

92 

91 

go 

89 

88 

87 

as 
05 

84 

0) 

B2 

81 

80 

7t 

78 

n 
78 

75 

7. 

73· 

72 

71 

70 

69 

88 

67 

240854-2 

Figure 1-1. 82750PB Pinout 

1-61 



82750PB. 

Table 1-1. Pin Cross Reference by Pin Name 

Pin 
Location Name 

Pin 
Location 

Name 
Pin 

Location 
Name 

Pin 
Location 

Name 

A2 71 BE3# 41 030 119 Vee 100 
A3 72 ClKIN 47 031 118 Vee 104 
A4 73 ClKOUT 114 HAlEN# 55 Vss 94 
A5 74 DO .28 HAlT# 31 Vee 109 
A6 77 01 27 HBUSEN# 36 Vee 116 
A7 78 02 26 HINT# 30 Vee 123 
A8 79 03 24 HRAM# 58 Vee 127 
A9 80 04 23 HROY# 38 Vee 132 
A10 81 05 22 HREG# 40 Vss 1 
A11 83 06 20 HREQ# 56 Vss 32 
A12 84 07 19 MROY# 60 Vss 34 
A13 85 08 18 MREQ# 59 Vss 39 
A14 86 09 16 NXTFST# 61 Vss 48 
A15 87 010 15 PMFRZ# 70 Vss 57 
A16 88 011 14 RESET# 63 Vss 66 
A17 90 012 13 RFSH# 62 Vss 68 
A18 92 013 12 TEST# 69 Vss 76 
A19 93 014 11 TRNFR# 37 Vss 89 
A20 95 015 9 VBUS[O] 54 Vss 99 
A21 96 016 8 VBUS[1] 53 Vss 101 
A22 97 017 7 VBUS[2] 52 Vss 108 
A23 102 018 6 VBUS[3] 50 Vss 115 
A24 103 019 5 Vee 2 Vss 117 
A25 105 020 4 Vee 33 Vss 124 
A26 106 021 3 Vee 35 Vss 131 
A27 107 022 130 Vee 45 Vss 10 
A28 110 023 129 Vee .- 51 Vss 17 
A29 111 024 128 Vee 65 Vss 21 
A30 112 025 126 Vee 67 Vss 25 
A31 113 026 125 Vee 75 Vss 29 
BEO# 44 027 122 Vee 82 Vss 46 
BE1# 43 028 121 Vee 91 Vss 64 
BE2# 42 029 120 Vee 98 WE# 49 

1-62 



82750PB 

Table 1-2. Pin Cross Reference by location 

location 
Pin 

Name 
location 

Pin 
Name 

location 
Pin 

Name 
location 

Pin 
Name 

1 VSS 34 VSS 67 Vee 100 Vee 
2 Vee 35 Vee 68 Vss 101 VSS 
3 021 36 HBUSEN# 69 TEST# 102 A23 
4 020 37 TRNFR# 70 PMFRZ# 103 A24 
5 019 38 HROY# 71 A2 104 Vee 
6 018 39 VSS 72 A3 105 A25 
7 017 40 HREG# 73 A4 106 A26 
8 016 41 BE3# 74 A5 107· A27 
9 015 42 BE2# 75 Vee 108 Vss 

10 VSS 43 BE1# 76 VSS 109 Vee 
11 014 44 BEO# 77 A6 110 A28 
12 013 45 Vee 78 A7 111 A29 
13 012 46 VSS 79 A8 112 A30 
14 011 47 ClKIN 80 A9 113 A31 
15 010 48 VSS 81 A10 114 CLKOUT 
16 09 49 WE# 82 Vee 115 VSS 
17 VSS 50 VBUS[3] 83 A11 116 Vee 
18 08 51 Vee 84 A12 117 VSS 
19 07 52 VBUS[2] 85 A13 118 031 
20 06 53 VBUS[1] 86 A14 119 030 
21 VSS 54 VBUS[O] 87 A15 120 029 
22 05 55 HALEN# 88 A16 121 028 
23 04 56 HREQ# 89 VSS 122 027 
24 03 57 VSS 90 A17 123 Vee 
25 Vss 58 HRAM# 91 Vee 124 VSS 
26 02 59 MREQ# 92 A18 125 026 
27 01 60 MROY# 93 A19 126 025 
28 DO 61 NXTFST# 94 VSS 127 Vee 
29 VSS 62 RFSH# 95 A20 128 024 
30 HINT# 63 RESET# 96 A21 129 023 
31 HAlT# 64 VSS 97 A22 130 022 
32 VSS 65 Vee 98 Vee 131 VSS 
33 Vee 66 VSS 99 VSS 132 Vee 

1-63 



HOST 
INTERFACE 

VDP I 
INTERFACE L 

82750PB 

eLKIN 

RESET# 

CLKOUT 

82750PB 
HREQ# 

HREG# 

HRAM# 

HALEN# 

HRDY# 

HBUSEN# 

-HINT# 

YBUS[3:0) 
"-

VDP COM_ BUS) 

AJ31:9) .. 
ADDRESS BUS) --

MREQ# 

TRNFR# 

RFSH# .. 
NXTFST# 

MRDY# 

A 
AJ8:2) 

ADDRESS BUS 

A BE#[3:D) 

VRAM 
TERFACE IN 

--

--

... 
/BYTE ENABLE BUS 

SHARED 
BETWEEN 
HOST AND 
VRAM 

INTERFACE 
WE# 

D[31:D) "-

. K DATA BUS 
r 

HALT# 

PMFRU 

VCC 

VSS 

---

} MICROCODE 
SIGNALS 

~POWER 
jCONNECTIONS 

Figure 1-2. 82750PB Functional Signal Groupings 

1-64 

24.0854-3 



intel® 82750PB 

Quick Pin Reference 

Table 1-3 provides descriptions of 82750PB pins. 

Table 1-3. Pin Descriptions 

Symbol Type Name and Function 

ClKIN I ClKIN is a 1X ClOCI{ INPUT that provides the fundamental timing for the 
82750PB. One cycle of ClKIN is denoted as one T-cycle. 

RESET# I The 82750PB is reset and initialized by holding this signal active for at least t\3n 
T-cycles. Refer to Initializing the 82750PB Section in Chapter 3. 

HREQ# I The HOST REQUEST signal is a request from the host CPU to perform a read 
or write access to either registers on the 82750PB, an external device, or to 
VRAM shared by the 82750PB and the host. The type of access that is 
requested is determined by the host access definition signals: HREG #, 
HRAM#, and WE#. 

HREG,# I The HOST REGISTER and HOST RAM signals, when validated by HREQ#, 
HRAM# are used to define three host access cycles. HRAM# active indicates the host 

is requesting a VRAM read or write cycle. HREG # active indicates that the 
host is requesting a 82750PB register read or register write cycle. When both 
signals are inactive, a host external cycle is requested. 

HBUSEN# 0 HOST BUS ENABLE is asserted by the 82750PB at the start of a host access 
to indicate that the 82750PB Address and Data buses (A[31 :2], BE# [3:0], and 
D[31 :0]) have been tri-stated. This allows the host to drive the same buses 
either for accessing shared VRAM or the 82750PB internal registers. 

HAlEN# I The HOST ADDRESS LATCH ENABLE signal is used to indicate to the 
82750PB that the host has asserted a valid address (A[31:2], BE# [3:0]) and 
write enable (WE#). 

HRDY# 0 HOST READY is asserted by the 82750PB at the end of a host access to 
indicate that the access cycle is ready for data transfer. For a host write cycle, 
HRDY # indicates that the 82750PB is ready to accept data from the host. For 
a host VRAM write cycle, HRDY # indicates that the VRAM has latched the 
data from the host. For a host read cycle, HRDY # indicates that output data 
from the 82750PB or VRAM is ready to be latched by the host. 

HINT# 0 HOST INTERRUPT: This output is asserted when an interrupt condition is 
detected by the 82750PB, and the enable bit in the PROCESSOR CONTROL 
register corresponding to that interrupt condition is set to a ONE. HINT # stays 
active until the host CPU reads the INTERRUPT STATUS register. If an 
interrupt condition that is enabled occurs during the same cycle that the 
INTERRUPT STATUS register is being read, HINT# remains active. 

D[31 :0] I/O The DATA BUS is used to transfer data between: 
1. The 82750PB and VRAM, and 
2. The Host CPU and internal 82750PB registers. During host VRAM accesses, 
this bus is tri-stated to allow the host to share the same VRAM data bus. During 
host accesses to internal 82750PB registers all 32 bits are used for data 
transfer. 

A[31 :9] 0 The ADDRESS BUS is shared between the 82750PB and the host for 
A[8:2] I/O addreSSing VRAM. This 30-pin bus addresses 32-bit double words in VRAM. 

Byte Enable signals are used to address individual bytes or words within a 
double word in VRAM. In addition, the address for host accesses to internal . 
82750PB registers are communicated to the 82750PB using the lower seven 
pins, A[8:2], and the BE # pins. During host access cycles to either VRAM or 
82750PB internal registers, A[31 :2] are tri-stated. For internal register 
accesses, as indicated by HREG# being low, the lower seven bits, A[8:21, are 
used as the host address input. 

ClKOUT 0 The CLOCK OUTPUT signal is one of the two internal clocks and is 
synchronized with ClKIN. It is always driven and will have a 50% duty cycle. 

1-65 



82750PB 

Table 1-3. Pin Descriptions (Continued)' 

Symbol Type Name and Function 
BE#[3:0] I/O The BYTE ENABLE BUS, is shared by the 82750PB and the host for 

addressing VRAM down to the byte level. The correspondence between 
the four Byte Enable pins and the D[31 :0] pins is: BE # [3]-D[31 :24], 
BE# [2]-D[23:16], BE#[1l-D[15:81, and BE#[0],,-D[7:0]. During VRAM 
read cycles, the 82750PB enables all four bytes. During write cycles the' 
82750PB only enables those bytes that are to be written. Bytes that are 
not enabled are not to be altered in VRAM. During host accesses to 
82750PB on~chip registers, the BE # [0] pin is used as an input to select 
whether the even or odd word is being accessed; the double word 
address is provided by the host on the A[8:2] pins. BE # [0] = 0 indicates 
that data is transferred on D[15:0]. BE# [0] = 1 indicates that data is 
transferred on D[31:16]. 

MREQ# 0 MEMORY REQUEST is asserted for the first cycle, T1, of each VRAM 
cycle. 

TRNFR#, 0 The MEMORY CYCLE DEFINITION SIGNALS: Transfer, Refresh and 
RFSH# Write Enable are asserted at the same time as MREQ #, but stay active 

for the entire VRAM cycle. TRNFR # active indicates a VRAM transfer 
cycle. RFSH # active indicates a VRAM refresh cycle. If neither TRNFR # 
nor R FSH # are active, a VRAM data read or write cycle is requested. 

WE# I/O The WRITE ENABLE pin is used as an output during a 82750PBIVRAM 
cycle to drive the WE # signal, which defines the access as a VRAM read 
cycle (when inactive) or write cycle (when active). During HostlVRAM 
and Host External cycles, the 82750PB tri-states this pin to allow the host 
to drive the VRAM write enable signals directly. During Host/register 
cycles, this pin is used as an input for the Host Write Enable signal to 
determine whether the host is reading or writing the 82750PB register. 

NXTFST# 0 The NEXT FAST signal indicates that the following vram cycle can be 
performed with a page-mode or bank-interleaved access. This signal is 
asserted during the first of a pair of VRAM cycles that is guaranteed to be 
within the same VRAM page and in opposite banks-a pair of accesses 
to two sequential double wOids in VRAM ai addresses Even Address and 
Even Address + 1. In other words, A[2] is a zero for the first cycle and a 
one for the second cycle. 

MRDY# I The MEMORY READY input indicates that the VRAM cycle has 
progressed to the point where it is ready to perform the data transfer; For 
a VRAM read cycle, the VRAM data can be latche9 by the transition of 

. MRDY # to an active state. For a VRAM write cycle, MRDY # indicates 
that the data has been latched into the VRAMs. 

VBUS[3:0] I The VDP COMMUNICATION BUS is used to communicate from the 
82750DB to the 82750PB. Codes sent over this bus indicate interrupt 
requests, transfer requests, and status information. Since the 82750DB 
and 82750PB run asynchronously, the VBUS signals are sampled on the 
falling edge of ClKIN and compared with the previous sample. For a 
VBUS code to be detected by the 82750PB, it must be valid for two 
successive samples. 

HAlT# I The HALT signal causes the microcode processor on the 82750PB to 
halt prior to executing the next instruction. This signal does not halt the 
VRAM interface. The Halt signal will allow the design of a hardware 
emulator for the 82750PB based on an 82750PB chip. 

TEST # I The TEST signal is used for test purposes only and must remain high for 
normal operation. 

1-66 



InteL 82750PB 

Table 1-3. Pin Descriptions (Continued) 

Symbol' Type Name and Function 

PMFRZ# 0 The PERFORMANCE MONITORING AND FREEZE signal is toggled by 
specific microcode instructions and can be used to determine the time 
required to execute certain sections of microcode. 

Vee I POWER pins provide the + 5V D.C. supply input. 

Vss I GROUND pins provide the OV connection to which all inputs and outputs 
are referenced. 

Table 1-4. Output Pins Table 1-5. Input Pins 

Name 
Active When 
Level Floated 

Name 
Active Synchronous/ 
Level Asynchronous 

CLKOUT High Always Driven CLKIN High Synchronous 

A[31:9] . High Reset', Host Cycle RESET# Low Asynchronous 

HBUSEN# Low Reset' HREQ# Low Asynchronous* 

HRDY# Low Reset' HREG# Low Synchronous 

HINT# Low Reset' HRAM# Low Synchronous 

MREQ# Low Reset' MRDY# Low Synchronous 

TRNFR#, Low Reset' VBUS[3:0] High Asynchronous 
RFSH# HALT# Low Synchronous 
NXTFST# Low Reset' HALEN# Low Asynchronous* 
PMFRZ# Low Reset' *Can be programmed to accept synchronous Inputs. 

"The reset state IS caused by RESET # being active low. 

Table 1-6. Input/Output Pins 

Name Active Level When Floated Synch/Async 

D[31:0] High Reset', Host Cycle Synchronous 

A[S:2] High Reset', Host Cycle Synchronous 

BE#[3:0] Low Reset', Host Cycle Synchronous 

WE# Low Reset', Host Cycle Synchronous 
"The reset state IS caused by RESET # being active low. 

All output pins are floated when RESET is active low. 



82750PB 

2.0 ARCHITECTURE 

Overview 

The 82750PB includes a wide instruction word 
processor that comprises a· number of processing, 
storage, and input! output elements. The wide in­
struction word architecture allows a number of these 
elements to operate in parallel. The 82750PB exe­
cutes one instruction every internal clock cycle or 
T-cycle. The various elements are connected via 
two 16-bit buses, the A bus and B bus, as shown in 
Figure 2-1. During each instruction execution cycle, 
data can be transferred from a bus source to a bus 
destination element on both buses. 

Registers 

IrN; N = 0-15) 

There are 16 general-purpose data registers, each 
16 bits wide, that are connected to both the A bus 
and B bus as both sources and destinations. These 
registers are designated rO-r15. All the registers are 

SEQUENCER 

~ICROCODE 
RAM 

MICROCOOE 
INSTRUCTION 

AlU 

REGISTER 
FILE 

BARREL 
SHIFTER 

COUNTERS 

PIXEL 
INTERPOLATOR 

functionally identical except rO, which also includes 
logic for bit shifting and byte swapping. A register 
can source both the A bus and the B bus in the 
same cycle. A register cannot be the destination of 
both the A bus and the B bus in a single instruction . 

. Because the registers are doubly latched, the same 
register may be both a source and destination in the 
same cycle. Theresult is that the data in the register 
prior to the current cycle will be driven on the source 
bus, and the data on the destination bus will be 
latched into the register at the end of the cycle. 

Register rO has additional logic to allow bit shifting 
and byte swapping. The value in rO can be. shifted 
left or right one bit position per instruction cycle. For 
a right shift, the new MSB is equal to the old MSB; in 
other words, the value is sign-extended. For left 
shifting, the new LSB is equal to zero. RO can not be 
shifted and loaded in the same instruction. Byte 
sWapping, on the other hand, only occurs whenrO is 
being loaded with a value from the A bus or B bus. 
Byte swapping causes the most significant byte and 
the least significant byte. of the 16-bit value being 
loaded into rO to be interchanged. Refer to Chapter 
4 for a description of the SHFT microcode field that 
controls the shifting and swapping operations in rOo 

DATA 
RAM 

0[31:0] 

..--___ ---, A[31 :2] 
BE6[3:0] 

VRA~ 
POINTERS 

HOST/VRA~ 
INTERFACE 

240854-4 

Figure 2-1. 82750PB Block Diagram 

1-68 



82750PB 

ALU 
{atu, eel 

The ALU performs 16-bit arithmetic and logic opera­
tions, and can also be operated as two independent 
8-bit ALUs for the Dual-Add-with-Saturate operation. 
There are two fields in the microcode instruction that 
affect the operation of the ALU: the ALUOP field 
specifies the operation to be performed, and the 
ALUSS field specifies the source of the two ALU 
inputs. Refer to Chapter 4 for further information on 
these .fields. 

The two ALU operands either come from values 
held in the ALU input latches or from "eavesdrop­
ping" on the A or S buses. The result of any ALU 
operation is latched in the ALU output register, atu. 
In a subsequent instruction this result can be trans­
ferred to any A or S destination. 

The ALU has four condition flag outputs: CarryOut, 
Sign, Overflow, and Zero. CarryOut is the carry out 
of the most significant bit position. Sign is equal to 
the value of the most significant bit of the result. 
Overflow is the exclusive-OR of CarryOut and the 
Carryln to the most significant bit position of the re­
sult. Zero is true (a value of1) if all 16 bits of the 
ALU result are equal to zero. CarryOut and Overflow 
are defined as equal to zero for all logical opera­
tions. For most ALU operations, the state of these 
four condition flags are latched when the operation 
is complete. There are eight operations (nop, a*, b*, 
+), -I, 0*, prof and int) that are exceptions. These 
operations are performed without disturbing the 
condition state of the previous ALU operation. 

Microcode routines can read and write the ALU con­
dition flag register, cc. This can be used to save and 
restore the state of these flags. The bit ordering of 
the ALU condition flags within cc are given in Table 
2-1.A complete list of ALU opcodes is given in Table 
2-2. 

Table 2-1. Bit Assignments for cc Register 

Bit Condition 

SitO False (This bit of the cc is always read as 
a zero.)' 

Sit 1 ALU Carry Out 

Sit 2 ALU Overflow 

Sit3 ALU Sign 

Sit 4 ALU Zero 

Sit 5 Loop Counter Zero' 

Sit 6 RO LSS' 

Sit 7 RO MSS' 

Sit 15:8 RESERVED. The state of these bits is 
undefined when read; write as zeros. 

'These are read·only values and are not affected by writes to the cc 
register. . . . 

Table 2-2. ALU Opcodes 

Operation Mnemonic 

No Operation nop 

pass a a 

pass b b 
1 's compliment of a -a 

1 's compliment of b -b 

aANDb & 
(NOTa)ANDb -& 
aAND (NOT b) &-
aORb 1 
aXORb A 

a+b + 

a+b+1 ++ 
a-b -

-a + b -+ 
2'5 compliment of a -a 
2'5 compliment of b -b 

Incrementa a++ 

Increment b b++ 

Decrement a a--

Decrement b b--

Dual Add with Sat. +] 
a + b + (Prev. Carry) +< 

a - b - (Prev. Sorrow) -< 

- a + b - (Prev. Sorrow) -+< 
I nterrupt Host int 

Zero 0* 

Pass a, Don't Latch Flags a' 
Pass b, Don't Latch Flags b* 
(NOTa) OR b -I 

.aOR (NOT b) 1-
Dual Sub: with Sat. -] 
Perform. Monitor/Profile prof 

The Dual-Add-with~Saturate operation performs in­
dependent 8-bit ADDs on the upper and lower bytes 

·of the two ALU operands. The two bytes of the A 
operand are treated as unsigned binary numbers 
(00:FF16 corresponds to .0:25510). The two bytes of 
the S operand are treated as offset binary numbers 

1-69 



82750PB 

with an offset of + 128 (OO:FF16 corresponds to 
-12810: 12710). The upper and lower byte results 
are treated as 9-bit offset binary, including the carry 
output of each byte, with a + 128 offset (000:1FF16 
corresponds to -12810:38310) and are saturated to 
a range of 0-25510. A result that is less than zero is 
set equal to zero or 0016 and a result that is greater 
than + 255 is set equal to + 255 or FF 16. 

In fact, this operation is symmetric. Either the A op­
erand or the 8 operand can be defined as the un­
signed binary value, and the other operand will be 
treated as the offset signed binary value .. 

Dual-subtract-with-saturate is similar to dual-add­
with-saturate. It calculates A - 8 + 128 on each 
8-bit half of the two 16-bit inputs, and clamps the 
results to 0 and 255. This can be viewed as subtract­
ing an offset-binary signed byte (-128 to 127) from 
an unsigned byte (0 to 255). 

The ALU opcode 'int' generates the MCINT (micro­
code interrupt) condition. When this condition is de­
tected by interrupt logic in the host CPU interface, 
and if the Enable MCINT bit in the PROCESSOR 
CONTROL register is set to a ONE, the host inter­
rupt output, HINT#, will be asserted. Refer to Chap­
ter 3 for further information on host interface. 

The 'prof' opcode activates the PMFRZ# pin, and is 
primarily used for performance monitoring and/or 
debugging. 

Barrel Shifter 

(shift, shift-r, shift-r!. shift-II 

The barrel shifter performs a single cycle, n-bit left or 
right shift. The barrel shifter operates independent of 
the ALU. The three barrel shifter operations are: 
Shift-r for a right shift with sign extend; Shift-rl for 
right shift with zero fill; and Shift-I for a left shift with 
zero fill. The shift operation is invoked by writing a 
4-bit value (the shift amount) to one of three A bus 
registers, depending on which of the three opera­
tions is to be performed. The operand is taken from 
the B bus, and the result is stored in the barrel shift­
er output register, Shift. Like the ALU result register, 
the value in Shift can be read onto the A bus. or B 
bus in the following instruction cycle. 

A barrel shifter operation does not affect any of the 
condition flags. 

1-70 

Data RAM 

IdramN, 'dramN, + +, - -; N = 1-41 

The Data RAM holds 512, 16-bit words that are ac­
cessed using four pointers. To access a value in a 
particular location, the microcode routine must first 
load a pOinter with the address to be accessed, and 
then perform a read or write using the same pointer. 
In parallel with the data RAM access, the pointer 
can optionally be post-incremented or post-decre­
mented. The four pOinters, referred to as dram 1-
dram4, can be written and read via the A bus. When 
a dram pointer, which is only 9 bits wide, is read onto 
the A bus, its upper seven bits are set to zeros. 

NOTE: 

The width of the dram pointers may change in 
later versions of the 82750PB. Software should 
not rely on the width of a pointer to, for exam­
ple, mask the upper seven bits of a value to 
zero. 

All four pointers can be used to read or write the 
Data RAM from either the A or B bus. Only one Data 
RAM access can be performed in any cycle. A Data 
RAM access is referred to, using C language syntax, 
as *dram1. The' means "the value pointed to by". 
As another example, *dram3+ + means access the 
Data RAM using the pointer dram3 and increment 
dram3. The symbol - - in place of the + + would 
indicate auto decrement. 

Loop Counters 

Icnt,cnt21 

Two 16-bitloop counters are available to microcode 
programs for automatically counting iterations of a 
microcode loop. In parallel with other operations 
performed in an instruction, either loop counter can 
be decremented, and a conditional branch can be 
made based on the loop counter value being equal 
or not. equal to zero. Since the two loop counters 
can be written and read on the A bus, as cnt and 
cnt2 respectively, they can also be used fo; variable 
storage when not being used as loop counters. The 
loop counters can be written to and decremented 
during the same instruction· cycle. The value in the 
counter at the start of the next cycle will be the value 
written to the counter minus one. 

The LC microcode bit determines the loop counter 
that is selected iar decrementing and/or branching 
in an instruction. The LC microcode bit does not af­
fect the loop counter that is written or read over the 
A bus, since· each loop counter is separately ad­
dressable as a A bus source or destination. Refer to 



82750PB 

Chapter 4 for a description of the CNT - - micro­
code bit that causes the select loop counter to be 
decremented, and for a description of the CFSEL 
microcode field that is used to perform a conditional 
branch based on the selected loop counter's value. 

Microcode RAM 

{meodel-3, maddr, pel 

The 82750PB executes instructions stored in an on­
chip microcode RAM. This RAM holds 512 instruc­
tions and each instruction is 48 bits wide. Normally, 
to start the microcode processor, the host CPU will 
load a microcode program into the microcode RAM, 
point the program counter, pc, to the start of the 
program, and then release the HALT bit to start exe­
cuting the microcode program. The microcode proc­
essor can also load its own microcode RAM to over­
lay new routines and therefore, qoes not require 
constant intervention by the host to perform multiple 
operations. 

Writing an instruction into Microcode RAM is done 
by first loading the three registers mcode3, mcode2, 
and mcode 1 with the three 16-bit words of the in­
struction (the most significant word goes into 
mcode1), and then loading the address where the 
instruction should be written into maddr. 

The host CPU can also read the Microcode RAM by 
first loading the pc with the address of the instruc-

Example 1: 

tion to be read and then reading the three 16-bit 
words of the instruction from the mcode1-mcode3 
registers. Normally, this would be done by the Host 
CPU while the 82750PB is halted. Since mcode1-
mcode3 hold the instruction pointed to by the pc (Le. 
the instruction that is about to be executed), normal­
ly reading these three registers froin a microcode 
routine is not useful. 

The read registers named mcode1-mcode3 and the 
write registers also named mcode1-mcode3 are in 
fact different registers. Writing values into mcode1-
mcode3 and then reading the values of mcode1-
mcode3 will not read back the same values just writ· 
ten. The read registers hold the instruction stored ir 
the instruction latch (the instruction to be executed). 
The write registers hold an instruction that is about 
to be written into microcode RAM. 

After writing to maddr to load an instruction into mi­
crocode RAM, a one cycle freeze occurs and during 
the freeze a write to the microcode RAM takes 
place. The instruction following the write to maddr 
can either jump to the address just loaded or start 
loading the mcode 1-mcode3 registers with the next 
instruction to be written. 

Here are two examples that illustrate the fact that 
the. 82750PB requires at least one instruction be­
tween the write to maddr and the execution of the 
instruction that is loaded by the write to maddr. 

maddr = ADDRl 
jmp addrl 

/* load instruction */ 

ADDR1: 
????n????? 

Example 2: 

maddr = INST 
nop 
INST: 
?f????????? 

/* jump to it, this is the extra inst. required between */ 
/* uriting to maddr and executing the loaded inst. */ 

/* here '.s where new instruction gets loaded * / 

/* extra instruction */ 

/* instruction gets loaded here */ 

When a microcode routine writes to pc, one more instruction is executed before the jump to the new address 
takes effect. For example: . 

pc ADDRl 
rO = rl jmp ADDR2 1* this instruction gets executed but */ 

/* its jump to ADDR2 is ignored. */ 

ADDR1: 
r3 = rO /* after this instruction executes r3 = rO = rl */ 

1-71 



82750PB 

When the host CPU writes to the pc, the instruction 
at the address that was written is loaded into the· 
mcade 1-mcode3 registers and, when the micro­
code processor is released from its Halt condition, 
this is the first instruction that will be executed. 

When the host CPU reads the pc, the result returned 
is the address of the instruction that will be executed 
when Halt is released, that is, the address of the 
instruction held in the mcade1-mcade3 registers. 

Horizontal Line Counter 

!lent) 

The 12-bit Horizontal Line Counter is updated by 
VB US codes from the 82750DB to track the horizon­
tal display line that is currently being scanned by the 
82750DB. The counter is reset by a VODD code and 
incremented each time an HLiNE code is received. 
A value can also be written into a Horizontal Line 
Counter but this is used primarily for testing the 
82750PB. The upper four bits will always read zeros. 

Field Counter 

{tent) 

The 4-bit field counter is updated by VBUS codes 
from the display processor to keep track of the field 
count being displayed by 82750DB. The counter is 
incremented each "time a VODD code or VEVEN code 
is received. When reading the field counter, the up­
per 12 bits will read zeiOS. This counter wiii not be 
initialized upon reset. 

Input FIFOs 

(inN-1o, inN-hi, inN-e, 'inN; N = 1, 2) 

There are two input channels, referred to as input 
FIFOs, through which the processor can read pixels 
or data from VRAM. Each channel automatically 
fetches 64-bit quad words from VRAM and breaks 
them into 8-bit bytes or 16-bit words that are read by 
microcode. Each input FIFO operates independently 
and can be programmed to automatically increment 
or decrement through bytes or words in VRAM. The 
FIFOs are double buffered so that while values are 
being extracted from one quad word (64 bits), the 
next quad word is being prefetched from VRAM. 

bits: 15 ... 6 
Set to Zeros 

5 
BY -32 tv10DE 

4 
CB 

The mode control register for each input FIFO, des­
ignated in1-c or in2-c, contains four mode bits as 
seen in Figure 2-2. The WORD/BYTE bit (bit 0) de­
termines whether the input FIFO is in word mode 
(WORD/BYTE = 0) or byte mode (WORD/BYTE = 

1). In byte mode, the FIFO can start reading on any 
byte boundary and in word mode on any word 
boundary. 

The INC/DEC bit (bit 1) determines the order that 
bytes or words. are read from VRAM. In INCRE­
MENT mode, with INC/DEC = 0, the FIFO reads 
from the least significant byte or word to the most 
significant byte or word of each double word and 
increments through double words in VRAM. In DEC­
REMENT mode, with INC/DEC = 1, the FIFO reads 
from most significant byte or word to least significant 
byte or word within a double word and decrements 
through double words in VRAM. 

The AHOLD bit (Bit 2) is used by the address hold 
mode. When asserted, (bit 2 = 1) the automatic ad­
dress increment/decrement function will be disabled 
and input FIFOs will not double buffer VRAM data. In 
other words, at the end of a VRAM cycle, when the 
FIFO has been updated with 64 bits of VRAM data, 
the input FIFO will not issue another MREQ# until 
there is a write to the address-Io registers OR a roll­
over/roil-under read access of the input FIFO. If a 
roll-over/roll-under occurs, then a memory request 
will be issued to fetch data from the same VRAM 
location. If there is a write to the address-Io register, 
the FIFO will then fetch data from the new location. 

The PREFETCH OFF bit (bit 3) specifies whether 
the FIFO will automaticallyprefetch successive quad 
words from VRAM or will only fetch a new quad word 
when a value from that quad word is requested. In 
PREFETCH-ON mode, bit 3 = 0, the input FIFO pre­
fetches successive quad words from VRAM as nec­
essary to keep its buffer full (either from ascending 
or descending addresses, depending on the state of 
the INC/DEC bit). In PREFETCH-OFF mode, the 
FIFO will still prefetch the first two quad words to fill 
its buffer (when started at a new address location), 
but will only fetch a new quad word when a read 
request is made to the FIFO for a value in the next 
unfetched quad word. 

The CB bit (bit 4) allows circular buffers of sizes 
64 Kbytes, 128 Kbytes, or 256 Kbytes to be created 
in VRAM memory. The choice of different sizes of 
buffers are determined by programming the least 
signficant 3 bits of the circular buffer register (cir-

3 
PFOFF 

2 
AHOLD 

1 
INC/DEC 

o 
WORD/BYTE 

Figure 2-2. Input FIFO Control Register 

1-72 



82750PB 

cbuf). To enable this feature, the CB bit has to be 
set to a 1, then depending on the buffer size 
selected, the appropriate address pin that goes off 
chip will be forced to a 0 (register pointers remain 
unchanged). Table 2-3 shows the programming 
combinations of the circular buffer register. 

It is important to note that the internal address 
counters themselves are not affected by the circbuf 
function. Only the selected external address pin is 
forced to '0'. 

Table 2-3. Circular Buffer Register (circbuf) 

Bits [2:0] Buffer Size 
Effect on PB Address Bus 

(If Function Enabled) 

000 Disabled None 

100 256 Kbytes Address Pin 18 Forced to 0 

010 128 Kbytes Address Pin 17 Forced to 0 

001 64 Kbytes Address Pin 16 Forced to 0 

In "BY-32" MODE (bit 3), the pointer increments or 
decrements by 32 bits, independent of whether the 
FIFO is in 8-bit pixel mode or 16-bit pixel mode. This 
mode was added to facilitate microcode that oper­
ates on one component of a 32-bit per pixel image. 

The standard sequence for initializing an input FIFO 
is to write to the control register (in-c), the high ad­
dress (in-hi), and then the low address (in-fa) of the 
appropriate FIFO. Refer to the access state diagram 
in Chapter 3. The write to in-fa causes the FIFO to 
start reading from VRAM. A byte or word is then 
read from 'in. Successive reads from 'in will read 
sequential bytes or words from VRAM. Writing to the 
control register each time the FIFO is started at a 
new address is not necessary, except to change the 
FIFO's mode. Also, if the new address is within the 
same 64 kByte page of VRAM, only the lo-address 
needs to be written in order to start the FIFO reading 
from the new address. 

If microcode attempts to read a value from an empty 
input FIFO, the processor is frozen prior to the exe­
cution of the instruction, until the FIFO's control log­
ic has fetched another double word from VRAM and 
extracted the next value. At this point, the processor 
is released from the frozen state, and the instruction 
that reads the value is executed. When the proces­
sor is frozen waiting for a particular FIFO that isn't 
yet ready, that FIFO's VRAM access priority is raised 
above all other FIFOs. 

Output FIFOs 

loutN-lo, outN-hi, outN-c, 'outN, outN+ + .. N = 1, 21 

There are two output channels, referred to as output 
FIFOs, through which the graphics processor writes 
pixels or data to VRAM. Each channel automatically 
collects bytes or words into 64-bit quad words and 
writes the quad words to VRAM. Each output FIFO 
operates independently and can be programmed to 
write bytes or words into sequential addresses in 
VRAM (either incrementing or decrementing). The 
FIFOs are double buffered so that while one quad 
word is waiting to be written to VRAM, the next quad 
word can be assembled from individual bytes or 
words. 

The mode control register for each output FIFO, 
designated outl-c or out2-c, contains six mode bits 
as shown in the Figure 2-3. The WORD/BYTE bit 
(bit 0) determines whether the output FIFO is in word 
mode (WORD/BYTE = 0) or byte mode (WORD/ 
BYTE = 1). In byte mode the FIFO can start writing 
on any byte boundary in VRAM and in word mode on 
any word boundary. 

The INC/DEC bit (bit 1) determines the order that 
bytes or words are written to VRAM. In INCREMENT 
mode, with INC/DEC = 0, the FIFO writes from the 
least significant byte or word to the most significant 
byte or word in a double word and increments 
through double words in VRAM. In DECREMENT 
mode, with INC/DEC = 1, the FIFO writes from 
most significant byte or word to least significant byte 
or word within a double word and decrements 
through double words in VRAM. 

When the AHOLD bit (bit 2) is set, th~ output FIFO 
quad word address is not incremented or decre­
mented. In this mode, the FIFO continues to output 
to a single quad word in VRAM. 

The FORCE-LSB bits (bits 3 and 4) are used to force 
the least significant bit of each byte written to VRAM 
to either a zero or a one. This can be used, for ex­
ample, to force the LSB to the correct polarity when 
writing to the U bitmap during motion video decom­
pression. In certain display modes for the 82750DB, 
the LSB of the 8-bit samples in the U or Y bitmap are 
used to select VIDEO or GRAPHICS display mode 
for the n x n group of display pixels corresponding to 
the particular U or Ysample. A one in the FORCE-

bits: 15-6 5 4 3 2 1 0 
Set to Zeros BY-32 MODE FORCE-LSB FORCE-LSB AHOLD INC/DEC WORD/BYTE 

ENABLE VALUE 

Figure 2.-3. Output FIFO Control Register 

1-73 



82750PB 

LSB ENABLE bit (bit 4) enables the forcing; a zero 
results in normal operation. The FORCE-LSB VAL­
UE bit (bit 3) is used as the value to which the LSB is 
forced. Whether in byte mode or word mode, the 
LSB of each byte is forced to the FOR9E-LSB value. 

In "BY-32" MODE (bit 5), the pointer increments or 
decrements by 32 bits, independent of whether the 
FIFO is in 8-bit pixel mode or 16-bit pixel mode. This 
mode is used to facilitate microcode that operates 
on one component of a 32-bit per pixel image. The 
bytes or words that are skipped over will be un­
changed in VRAM. 

The standard sequence for initializing an output 
FIFO is to write to the control register (out-c), the 
low address (out-to), and then the high address (out­
hi) of the appropriate FIFO. A series of bytes or 
words is then written to 'out. Refer to the access 
state diagram in Chapter 3 (Figure 3-1). 

In order to flush any remaining data in an output 
FIFO before changing its VRAM pointer, it is neces­
sary to write to the control register. When pointing to 
a new location in VRAM, if the new address is within 
the same 64 kByte page of VRAM, only the lo-ad­
dress needs to be written. 

There must be one instruction between the write to 
the output FIFOs low address and the first write to 
·outN. Therefore, it is recommended that outN-lo be 
written before outN-hi. The write to outN-hi insures 
that this requirement is met. If only the outN-lo value 
is being changed, it is still necessary to have one 
additional instruction before the first write to ·outN. 

When writing bytes or words to VRAM through an 
output FIFO, a byte or word can be skipped over by 
writing to outN+ + instead of 'outN. When the val­
ues are written to VRAM, any byte or word that was 
skipped will retain its original value in VRAM, and its 
value is not altered by the VRAM write. This can be 
used when writing a series of pixels, some of which 
are "transparent", allowing whatever was behind 
them to show through. 

If the microcode routine attempts to write a value to 
a full output FIFO, the processor is frozen prior to 
the execution of the instruction. The processor re­
mains frozen until the FIFO has a chance to write 
one of the buffered quad words to VRAM. At that 
point, the processor is released from the frozen 
state, and the instruction that writes the value is exe­
cuted. When the processor is frozen, waiting for a 
particular FIFO that isn't yet ready, that FIFO's 
VRAM access priority is raised above all other 
FIFOs. 

1-74 

Statistical Decoder 

I stat-1o, stat-hi, stat-c, stat-ram, 'stat, 'stat# I 

The Statistical Decoder (also referred to as the Huff­
man Decoder) is a specialized input channel that 
can read a variable-length bit sequence from VRAM 
and convert it into a fixed-length bit sequence that is 
read by the microcode processor. In image com­
pression, as well as in other applications such as 
text compression,' certain values occur more fre­
quently than others. A means of compressing this 
data is to use fewer bits to encode more frequently 
occurring values and more bits to encode less fre­
quently occurring values. This type of encoding re­
sults in a variable-length sequence in which the 
length of a symbol (the group of bits used to encode 
a single value) can range for example, from one bit 
to sixteen bits. 

The statistical code that the statistical decoder can 
decode is of either of the two forms: . 

Ox 1x 
10x 01x 
110xxx 001 xxx 
1110xxxxx 0001xxxxx 

or 
11111110xxxxxx 00000001 xxxxxx 
111111110xxxxxx 000000001 xxxxxx 

Each symbol of a given length (one per line as 
shown here) consists of a run-in sequence followed 
by some number of x-bils. The run-in sequence is 
defined as a series of zero or more ONEs followed 
by a ZERO or, as in the code on the right above, 
zero or more ZEROs followed by a ONE. The re­
mainder of this description will use examples of the 
code on the left. A bit in the decoder's control regis­
ter determines the polarity of the run-in sequence 
bits. 

In the example on the left, there would be two sym­
bols of length two: 00 and 01. Each x-bit can take on 
a ZERO or ONE value. The number of x-bits follow­
ing a run-in sequence can range from zero to six. 
Since the goal, in general, is to have a few short 
codes and a larger number of long codes, typically, 
codes with fewer run-in bits will have fewer x's fol­
lowing. However, this is not a hardware constraint. A 
code of this form is completely described by a code 
description table indicating: for each length of run-in 
sequence, R = the number of ONEs in the run-in, 
and how many x-bits follow the ZERO. The value of 
R is used as an index into the code description table. 
Due to the hardware implementation, the number 
actually stored in the table is 2x, where x is the num­
ber of x-bits. 

For the example above, the corresponding code de­
scription values are given in Table 2-4. 



int:eL 82750PB 

Table 2·4. Sample Code Description Table where X(r) corresponds to the X value in the table 

R X 2X(dec.) 2X(bin.) 

0 1 2 0000010 
1 1 2 0000010 
2 3 8 0001000 
3 5 32 0100000 

... 
7 6 64 1000000 

Note that the table only goes up to symbols with 
seven ONEs in the run-in. For symbols with more 
than seven ONEs, the value of X and 2X for seven 
ONEs is used for all symbols having seven or more 
ONEs in the run-in sequence. For example, in the 
code above a symbol with eight or more ONEs in tne 
run-in sequence has six x-bits following the ZERO, 
which is the same as symbols having seven ONEs. 

For each different symbol, including all symbols of 
the same run-in length with different x-bit values, the 
decoder generates a unique fixed-length, 16-bit val­
ue. Some of the decoded values for the sample 
code given above are provided in Table 2-5. 

Table 2·5. Decoded Values 

Symbol' Decoded Value 

00 0 

01 1 

" 100 2 

101 3 

110000 4 

110001 5 

110010 6 

... . .. 
110111 11 

111000000 12 

... . .. 
111011111 43 

... 0., • . The x·blts of the symbol are In boldface for clarity. 

Th!3 algorithm for generating a decoded value from a 
symbol is as follows: all symbols of a given run-in 
length are assigned a base value, B; the value corre­
sponding to a particular symbol is equal to B plus the 
binary value of the x-bits in the symbol. The base 
valule B for a symbol with a run-in length of R is 
calculated by: 

B(R) = SUM[2X(rl] with r = 0 to R - 1, 

1-75 

entry corresponding to R = r. 

For example, in the above code: 
B(O) = 0, B (0) is always zero 
B(1) = 0 + 2 = 2 
B(2) = 0 + 2 + 2 = 4 
B(3) = 0 + 2 + 2 + 8 = 12 
B(4) = 0 + 2 + 2 + 8 + 32 = 44 

This is one of the "reasons that the table holds 2x 
instead of X. The calculation of B(R) are easier to 
implement in logic. 

There are two enhancements that are made to this 
coding scheme in the implementation on the 
82750PB. These two modes are referred to as END 
mode and SHORT mode. If neither END nor SHORT 
mode are enabled, the decoding is performed as de­
scribed above. SHORT mode allows the decoder to 
be switched easily to a simpler code format without 
having to reload the code description table. In the 
SHORT form, all symbols have the same number of 
x-bits, as though all entries in the table had been 
filled with the same value of 2x. When SHORT mode 
is invoked, this value of 2x is obtained from a field in 
the statistical decoder's CONTROL word, instead of 
from the individual table entries. 

END mode is added in recognition of the fact that, 
for codes with few symbols, some increase in effi­
ciency is possible by not having to place a zero at 
the end of the longest run-in sequence. For exam­
ple, consider the code: 

o 
10x 
110x 

The END mode allows us to shorten the last symbol 
to 11 x instead of 11 Ox. The trailing ZERO is not re­
quired because the decoder has been told that the 
maximum length of a run-in is two ONEs. The result­
ing symbol set and corresponding decoded values 
are given in Table 2-6. ' 

Table 2·6. END Mode Decoded Values 

Symbol Decoded Value 

0 0 

100 1 

101 2 

110 3 

111 4 



82750PB 

The number of x;bits must be. constant for all sym­
bols of the same run-in length. Therefore, a code 
such as: 

o 
10xx 
11xxx +- NOT CORRECT! ... Must be 11xx. 

is not allowed. The last symbol (11 xxx, in this case) 
uses the same table entry for 2x as the next to last 
symbol (10xx) and, therefore, the last symbol will. be 
11xx. 

The maximum length of the run-in sequence in END 
mode is specified by placing an END flag in the code 
description table. For example, a code and the cor­
responding table is shown in Table 2-7. 

Table 2-7. END F:lag Decoded Values 

Table Entries 
, 

Code 
Index END Bit 2X 

0 0 0 0 

10xx 1 I O· 4. 

110xxx 2 1 8 

111xxx 3 . - -
4 .. - -
5 '. -
6 - -
7 - -

The hyphens indicate that those table entries aren't 
used to decode this code. Note that the symbol 
111 xxx has three x-bits because of the value of 2x in 
Index 2; it is not based on the 2x value in Il"!dex 3. 

The SHORTED and END modes can be invoked 
simultaneously, resulting in a code such as: 

Ox 
10x 
110x 
111x 

with a SHORT - 2x value = 2 (for 1, x-bit in each 
symbol) and the END bit set in Index 2. 

Packed binary fields with one to seven bits per field 
can be read using the statistical decoder by setting 
the END bit in Index 0 and by programming the X 
value to be N -1, where N is the number of bits per 
field. For example, packed three-bit fields could be 
decoded as shown in Table 2-8. 

1-76 

Code 

oxx' 

1xx 

Table2-S.Packed 3-Bit 
Field Decoded Values 

Table Entries 

Index END Bit 2x 

0 1 41 N = 3, so X = 21 

1 - -
2 - -
3 - -
4 - -
5 - - : 

6 - -
7 - -

The unpacked bits are in reverse order relative to 
how they are stored in VRAM. For example, if thr!3e­
bifvaluesare packed in VRAM,the pattern 110in 
VRAMis read from right to left and gives an un-
packed or decoded value of 3; . 

The CONTROL register for the statistical decoder 
(stat~c) is used to specify the mode to use for decod­
ing, as well as to invoke certain m()des for writing 
and reading the ccide description table. Flefer to. the 
bit aSSignments for this register below. To write to 
the code description. table, the WRITE bit (bit 4) is 
set to a ONE; the starting table index is reset to· 
zero. Each write to the table causes the index to 
increment by one. This index will wrap around from 
seilen back to zero. For example, to write all eight 
table entries the user would write a value of Oic10 to 
stat-c register and then write eight a-bit values to the 
register stat-ram. The most significant bit of each 
8-bit value is the END bit, and the lower ~even bits 
are the values of 2x. To read the code description 
table, the TEST bit (bit 5) of the CONTROL register 
is set to a one. The table entries are then read from 
the decoder's data register (·stat). Reads and writes 
always start at table entry zero. 

NOTE: 

When reading the code description table, it is 
necessary to' wait one instruction time between 
the write to stat-c and the first read from ·stat. 
An access diagram showing all legal sequences 
ior read and write' FIFO registers is shown in 
Chapter 3 (Figure 3-1). 



intel~ 82750PB 

The-code for reading the eight table entries into the first eight locations of data RAM would be: 

dram3 = 0 stat-c =, Ox20 Itest mode to read the stat-ram (the table) 
cnt = 8 Iwait one inst. before first read 
LOOP: 

'dram3+ + = 'stat cnt- -
jcp loop Itwo inst. loop necessary to wait one inst. 

Ibetween each read from ·stat. 

Bits 15 14 13 12:8 7 6 5 4 3 
RSVO* 

2:0 
Starting 
Stat-ram 

ADDRESS 

POL RSVD' CB SVAL SHORT END TEST WRITE 

• Reserved: write zeros to these bits. 

Figure 2·4. Statistical Decode CONTROL Register 

END mode is enabled by setting the END bit (bit 6) 
in the CONTROL register to a ONE. The SHORT 
mode is enabled by setting the SHORT bit (bit 7) in 
the CONTROL register to a ONE. When in SHORT 
mode, the five SVAL bits (bits 12:8) in the CON­
TROL register are used as the SHORT - 2x value. 

The POL bit (bit 15) determines the polarity of the 
run-in sequence bits. If bit 15 = 0, then ONEs end­
ing in ZERO (e.g., 111 Oxxx) sequence is selected. If 
bit 15= 1, the ZEROs ending in ONE (e.g., 0001 xxx) 
sequence is selected. ' 

The CB bit (bit 13) allows circular buffers of sizes 
64 Kbytes, 128 Kbytes, or 256 Kbytes to be created 
in memory, as in the case of the input FIFO. The 
choice, of different sizes of buffers are determined 
by programming the least significant 3 bits of the 
circular buffer register (circbuf). To enable this fea­
ture, the CB bit has to be set to a 1, then depending 
on the buffer size selected, the appropriate address 
pin that goes off chip will be forced to a 0 (register 
pointers remain unchanged). Table 2-3 shows the 
programming combination of the circular buffer 
register. 

The decoding parameters may be changed between 
symbols by writing to the CONTROL register and, if 
necessary, writing new values into the, code descrip­
tion table. The correct procedure for changing the 
code type or decode mode is to read the last value 
from the decoder prior to the change, using *stat# 
instead of *stat. This keeps the decoder from auto­
matically starting to decode the next symbol. At this 
point, the code description table and the SHORT 

, and END mode bits can be changed as desired. The 
next time the CONTROL register is written with both 
TEST = 0 and WRITE = 0, the decoder will begin 
to decode the next symbol using the new parame­
ters. 

The statistical decoder buffers one quad word read 
from VRAMso that the decoding of bits in one 32-bit 

1-77 

word and the fetch of the next 32-bit word may over­
lap. As with the input and output FIFOs, the decoder 
has a VRAM pointer associated with it that points to 
the location in VRAM from which it is reading data. 
This pointer increments twice each time a new quad 
word is read; there is no decrement mode. When the 
least significant word of the decoder's pointer (stat­
Io) is written, any data that had previously been pre­
fetched from VRAM is ignored" and the decoder 
fetches one quad word starting from this new loca­
tion. 

The 82750PB assumes that the statistically encoded 
bitstream in VRAM starts with the least significant bit 
of a double word. That is, the two LSBs of the ad­
dress written to start-Io are ignored. 

The statistical decoder decodes data at a rate of 
one bit per T-cycle. To a first approximation, the de­
code time for an N-bit symbol is: 

decode time (in T-cycles) = N + 1 

Since it takes at least 64 T-cycles to decode data 
from one quad word, which is the time required fo 
eight quad word reads from VRAM, the decoder 
should rarely run out of data. Therefore, the above 
estimate should very accurately model the actual 
decoding rate of the statistical decoder. 

The statistical decoder always begins to read the 
bitstream from the least significant bit of the double 
word found at the starting location in VRAM. That is, 
the decoder does not start on a byte or word bound­
ary as an input FIFO or output FIFO does, but only 
on double word boundaries. The bitstream moves 
from the least significant bit to the most significant 
bit of a double word and then to the least significant 
bit of the next double word (at the next higher ad-



iniei~ 82750PB 

dress location). For the x-bits. the first x-bit read 
from the bitstream becomes the most significant bit 
of the x-bit field when it is interpreted as a binary 
number. The example below shows a code defini­
tion. a bitstream stored in VRAM. and the resulting 
decoded values. 

Table 2-10. Decoding Syril60ts- -_. 

The code definition and range of values for each 
symbol length are indicated in Table 2-9. 

Table 2-9. VRAM Bitstream Decode Values 

Symbol Values Comments 

0 0 

10x 1.2 100=1.101=2 

110xx 3-6 11000 = 3 •...• 11011 = 6 

1110xxx 7-14 1110000 = 7 •...• 1110111 = 14 

Decoding starts at address 0 in this example. The 
two double words at addresses 0 and 1 are: 

0: OxAC98E14D 

1: Ox372E74CB 

The bitstream in VRAM. with colons dividing the 
symbols (read from right to left starting at LSB of 
address 0) is shown in Figure 2-5. 

Table 2-10 lists the symbols. in the order they are 
encountered in the bitstream. and the corresponding 
decoded values. 

Symbol Value Comments 
101 2 Starts at LSB. 

AddressO. 
Scanning Left 

. 100 1 
101 2 
0 0 
0 0 
0 0 

0 0 
1110001 8 
100 1 
100 1 
11010 5 
1110100 11 Spans First and 

Second Double Word 
11001 4 
0 0 
1110011 10 
101 2 
0 0 
0 0 
1110110 13 
... . .. 

Address MSB l1li( Read bltstream from LSB to MSB 0( LSB 

Start 
o 1: 0 1 0 1 1 : ~ 0 1 : 00 1 : 1 0 0 0 1 1 1 : 0 : 0 : 0 : 0 : 1 0 1 : 0 0 1 : 10 1+ Here 

First bit of a symbol, continued at LSB of next double word 

0:0110111: 0: 0: 101: 1100111: 0: 10011 :001011 

240854-5 

Figure 2-5. VRAM Bitstream Decoding Addresses 



82750PB 

v 

o 
AI 

0-0· 

4-· 

B-· 

v=10/16 - - •• 

12-· 

15-· 
o 

c 

h h=6~16 

4 B 
I I 

• W. 

12 
I 

15 
I B 
·0 

o 
o 

240654-6 

Figure 2-6. Pil{el Interpolation 

lPixellnterpolator 

(Pixint-c, Pixint) 

The pixel interpolator performs bilinear interpolation 
on four 8-bit pixels to generate, in effect, a pixel 
shifted by a fraction of a pixel position. See Figure 
2-6. If the four pixels have values of A, B, C, and D; 
and the horizontal weight and vertical weight are h 
and v, respectively, the interpolated value W, ignor­
ing any quantization effects, is given by: . 

W = A*(1-h)(1-v)+ B*h(1-v)+C*(1-h)v+D*hv 

The values of hand v are even multiples of 1/16. 
Figure 2-6 illustrates pixel interpolation with an h 
weight of 6/16 or 3/8 and a v weight of 10/16 or 
5/8. 

The pixel interpolar can operate in two modes: se­
quential-2D and random-2D. Sequential-2D mode is 
used for motion video decoding and wheri an array 
of pixels are interpolated with a common weighting. 
Random-2D mode is used either when the pixel ar­
rays to be interpolated are not adjacent pixels in two 
rows or when the weight is changed for each inter­
polation_ (The word random is used here to mean 
non-sequential.) 

1-79 

The example in Figure 2-7 shows a single row of 
pixels being interpolated in Sequential-2D mode us­
ing two rows from the original (source) bitmap. The h 
and v weighting are constant for ali the interpolated 
pixels. In this case, the weights appear to be approx­
imately h = 10/16 and v = 6/16. 

ABE F -First Input Row 
W X y Z -Interpolated Row 

C D G H K --Second Input Row 

Figure 2-7. Sequential-2D Pixel Interpolation 

The pixel interpolator is pipelined and requires some 
startup sequence to fill the pipeline. Once .filled, the 
pixel interpolator generates a new interpolated pixel 
every two T-cycles when in Sequential-2D mode. 
Source pixels are written into the interpolator as pix­
el pairs. In the case above, the pixel pair BA would 
be written first, followed by the pixel pair DC. It would 
seem more natural to refer to the pixel pair as AB, 
but because of the way 8-bit pixels are arranged in 
16-bit words in VRAM, the left-most pixel on the 
screen is the least significant byte position. For ex­
ample, if pixel A had a hex value of OxAA and B had 
a value of OxBB, the 16-bit word containing pixels A 
and B would have a value of OxBBAA. _ 

Then, two pixels are read from the interpolator. Be­
cause the pipeline isn't full yet, these pixels are read 
and discarded. This loop of writing two pixel pairs 
and reading two output pixels continues four times. 
The two pixels that are read this fourth time are the 
first two valid output pixels: Wand X. The interpola­
tor may also collect output (interpolated) pixels into 
pixel pairs. For exmple, pixels Wand X, instead of 
being output separately, would be combined into a 
16-bit pixel pair XW. Since there are two possible 
phase relationships between the input pixel pairs 
and output pixel pairs, the desired phasing (either X 
and W paired or Y and X paired) can be specified. 



intei® 82750PB 

bits 15 14 13 12 11 10 9 8 7:4 3:0 
'RESERVED-Write as ZERO 

'Pipelining Select (1 = Fast,O = Standard) 
'Phase (0 = In Phase, 1 = Opposite Phase) 

'RESERVED-Write as ZERO 
'Pairing (1 = Output Pixel Pairs, 0 = Single Pixels) 

'Reset Bit (1 = Reset, 0 = Normal) 
Mode Select Bits - - - - - - - - - - - - - - - - - - -' - - - - - - -' 

Vertical Weight - - --' 
Horizontal Weight - - - - - -' 

Figure 2-8. Pixel Interpolator Control Register 

Random-2D interpolation is used either when the 
pixels to be interpolated are not in horizontal rows or 
when the weight is changed for each interpolated 
pixel. Examples for this are smooth warping or 
smooth scaling operations. In the case of Random-
2D, the processing for successive interpolated pix­
els can not take advantage of pipelining; each pixel 
is considered to be the first pixel of a Sequential 
mode interpolation. The weight and the two input 
pixel-pairs are written into the interpolator. After 
waiting at least 10 T-cycles, the one interpolated pix­
el can be read. (The delay is 10 cycles when in the 
standard mode (bit 14 = 0) and 6 T-cycles when in 
the fast mode (bit 14 = 1 ).) Then, the next two input 
pixel-pairs and if necessary, the new weight value, 
are written, and 10 cycles later the next interpolated 
pixel can be read. 

The h and v weight values, the mode selection, and 
other control bits are written to the pixel interpolator 
contiOl register (avg-c). The bit assignment for this 
register is in Figure 2-8. The least significant byte 
holds the 4-bit v value (bits 7:4) and the 4-bit h value 
(bits 3:0). ' 

NOTE: 

The values used for h and v here are numerators 
of the fraction where the implied denominator is 
16. 

MODE SELECT 

Bits 8 and 9 are used to select on of four operating 
modes, of which only two are presently defined. 
These modes are given in Table 2-11. 

Table 2-11. Mode Select Operating Modes 

Bits 9:8 Mode 

00 RANDOM-2D 

01 Sequential-2D 

10 RESERVED 

11 RESERVED 

1-80 

RESET 

Writing a ONE to bit 10 resets the pixel interpolator. 
The pixel interpolator must be reset prior to chang­
ing modes. 

PAIRING 

A ZERO in bit 11 causes the pixel interpolator to 
output individual pixels. A ONE causes the interpola­
tor to collect adjacent pixels (in Sequential-2D 
mode) into 16-bit pixel pairs. This feature assists in 
motion video decoding, when combined with the 
ALU's dual-add-with-saturate operation, by allowing 
two pixels to be processed each cycle. The phasing 
used in collecting the pixel pairs is determined by the 
Phase bit described below. 

PHASE 

When output pixels are collected into pixel pairs, 
there are two possible alignments of the input pixel 
pairs to the output pixel pairs. The Phase bit (bit 13) 
selects the alignment to be used, based on the rela­
tive word alignment of the source and destination 
bitmaps in VRAM. When the Phase bit is set to a 
ZERO, this indicates that the bitmaps are in-phase. 
In this case, the first two output pixels are grouped 
into. one 16-bit pixel pair (with the first pixel in the 
least significant byte). When the Phase bit is set to a 
ONE, the bitmaps are out-of-phase. In this case, the 
first pixel is placed in the most significant byte of the 
first pixel pair, with invalid data in the least significant 
byte, and the second and third output pixels are col­
lected into the second pixel pair. This is illustrated in 
Figure 2-9. 

PIPELINING 

A ZERO in bit 14 causes the pixel interpolator to use 
the standard amount of pipeline delay. A ONE in this 
field will select the fast mode that has less pipeline 
delay. Table 2-12 shows the pipelining delay for both 
modes. Note that the effect of the phase bit is to add 
an extra pixel delay. 



82750PB 

In-Phase: 
A __ B E __ F I __ J 1 st Row of Input Pixels Pairs 

W __ X Y __ Z Output Pixel Pairs 

C __ O 

Out-of-Phase: 
~B 

G __ H 

E __ F 

K __ L 2nd Row of Input Pixel Pairs 

I __ J 1 st Row of Input Pixels Pairs 

?? __ W ~y Z __ ?? Output Pixel Pairs 

C __ O G __ H K __ L 2nd Row of Input Pixel Pairs 

Figure 2-9. Pixel Pair Phases 

Table 2-12. Pipelining Delay for 
Sequeniial-2D NON-PAIR Mode 

Pipelining Phase Pipeline Delay 
Bit Bit in Output 

(Bit 14) (Bit 13) Pillels 

0 0 6 

0 1 7 

1 0 2 

1 1 3 

When in PAIR mode (with bit 11 = one), the amount 
of pixel delay does not change, but half as many 
reads and writes are required to fill the pipeline be­
cause each read or write of the averager transfers 
two pixels. For example, when in the standard mode 
(bit 14 = 0), with zero phase (bit 13 = 0) and pair 
mode (bit 11 = 1), three indeterminate pixel pairs 
must be read before the first good pixel pair is read. 
In the same case but with the phase bit = 1, the 
fourth pixel pair read contains one good pixel and 
one indeterminate pixel, and the fifth pixel pair read 
contains two good pixels. 

RESERVED 

Bits 15 and 12 are reserved for future use. Write 
ZEROs into these bit positions. 

Signature Register 

{hwid! 

The signature register can be read either by the host 
CPU or by microcode to determine the version of the 
82750PB. The value of the signature register can be 
used to distinguish between the 82750PB in the 

1-81 

82750PA emulation mode, and the 82750PB in na­
tive mode. The currently defined signature values 
given in Table 2-13. 

Table 2-13. Signature Values 

Value Definition 

OxFFFE The 82750PB Emulating the 82750PA 

OXFFFC The 82750PB in Native Mode 

All other signature values are presently undefined 
but may be used in the future to denote other ver­
sions of the 82750 architecture. 

Display format Registers 

{yeven, yodel, VU, vptrl 

The 82750PB's processor can write to the display 
registers in the VRAM interface. These registers are 
pointers and pitch values that address display bit­
maps and 827500B register loads in VRAM. Point­
ers are 32-bit values that specify the specify the 
starting byte address of a bitmap or register load 
within a 4 GByte address space. The bottom two 
address bits are ignored since display bitmaps and 
register loads must start on a double word boundary. 
Therefore, the internal representation of a pointer is 
a 30-bit value. The pitch value associated with each 
pointer indicates the number of bytes between the 
start of two lines of a display bitmap or between the 
start of two register loads. The pitch is a single 16-bit 
value with its two least significant bits ignored, since 
the pitch must be an integer number of double 
words. Currently, there is also a restriction in the 
8275008 limiting all display bitmap pitches to pow­
ers of two; so, the maximum display bitmap pitch is 
± 214 Bytes = ± 16 kBytes. The display registers 
are described in Table 2-14. 



82750PIB 

Table 2·14. Display Registers 

Register Description 

yeven-Io, hi This register pair points to the start of the Y bitmap or main bitmap that 
is to be displayed during an even field scan. 

yodd-Io, hi This register pair points to the start of the Y bitmap or main bitmap that 
is to be displayed during the odd field scan. 

ypitch The value in this register is added to the current Y bitmap pointer value 
each time a Y transfer is performed. 

vu-Io, hi This register pair points to the start of the VU bitmap. This bitmap is 
read to generate the VU values for both odd and even field scans. 

vupitch This value is added to the current VU bitmap pointer value each time a 
VU transfer is performed. 

vptr-Io, hi This register pair points to the start of a series of 8275008 register 
loads stored in VRAM. 

vpitch This value is added to the current 8275008 register load pointer each 
time a 8275008 register load is performed. The pitch is equal to the 
number of bytes from the start of one register load to the start of the 
next register load. 

3.0 HARDWARE INTERFACE o Arbitrates VRAM accesses between the two input 
FIFOs, the two output FIFOs, the statistical de­
coder, the transfer request logic, the VRAM re­
fresh logic, and the external VRAM a~cess logic. VRAM Interface 

The VRAM interface performs the following opera­
tions: 

• Maintains VRAM pointers for the two input FIFOs, 
the two output FIFOs, the statistical decoder, the 
Y (main) bitmap, the VU bitmap, and the 
8275008 register load. 

e Decodes V8US codes and takes appropriate ac­
tions such as generating a transfer cycle, sched­
.uling refresh cycles, or generating interrupt condi­
tions. 

o During a memory cycle, performs appropriate ad­
dress arithmetic on the VRAM pointer used for 
that memory cycle . 

o As a result of certain V8US codes, performs a 
shadow copy that consists of copying display-re­
lated VRAM pointer values"from shadow registers 
(that are loaded by the host CPU or the micro­
code processor) to working registers where the 
various pointers are used for transfer cycles 
when the 8275008 is refreshing the display 
screen. 

Table 3·1. VRAM Interface Signals 

Signal Description 

MREQ# MEMORY REQUEST is asserted during the first cycle of a VRAM 
memory access. 

TRNFR# The TRANSFER output indicates the current memory cycle is a result 
of a 8275008 transfer request. 

RFSM# The REFRESH output indicates the current memory cycle is a result of 
a 8275008 refresh request. 

NXTFST# The NEXT FAST output indicates the next memory access will use the 
same row address as the current memory access. This facilitates the 
use of page mode memory accesses. 

MROY# The MEMORY READY input indicates the availability of valid data on 
the 0[31 :0] pins. 

1-82 



intel· 82750PB 

VRAM ACCESSES 

The 82750PB can initiate five different types of 
memory accesses: FIFO read, FIFO write, transfer 
read, transfer write, and refresh. In addition, the 
82750PB supports VRAM accesses by external log­
ic. During an external access VRAM cycle, the 
82750PB tri-states its VRAM address and data bus­
es and performs a host VRAM read or host VRAM 
write cycle. There is another operation performed by 
the 82750PB, a shadow copy, that is not a VRAM 
cycle but is arbitrated as though it were, since no 
VRAMcycles can take place during a shadow copy. 

The seven types of VRAM cycles initiated by the 
82750PB, including host VRAM read and host 
VRAM write, begin with the 82750PB asserting a 
combination of its three VRAM cycle definition out­
puts: TRNFR#, RFSH#, and WE#. External logic 
detects the state of these signals, validated by 
MREQ#, and produces the appropriate sequence of 
VRAM control signals (RAS, CAS, etc.) to perform 
the type of memory cycle the 82750PB has request­
ed. The 82750PB requires that each of these VRAM 
cycles take a minimum of two T-cycles, or T-states, 
denoted T1 and T2. External logic can insert addi­
tional T2 states in order to stretch the VRAM cycle 
to more than two T -cycles. The start of a new VRAM 
access cycle is signaled by the assertion of MREQ# 
for the first T-cycle, T1. The VRAM access cycle 

FIFO ACCESS 
........ -..... ------------........ ,, -- , / ' , \ 

/ \ 
/ I 

/ I 

// / 
1 1 

/ I 
1 1 

I I 
, I 
I 
I 

1roI[1.40RY NOT 
REAoY 

\ 

\" 
''-........ _-

R[rRESH 
CYCLE 

definition signals, TRNFR#, RFSH#, and WE#, are 
asserted at the start of T1 and remain asserted until 
the end of the last T2. Other VRAM operations can 
be described similarly by sequences of T-states. Re­
fer to Figure 3-4 and 3-5 on page 42 for timing dia­
grams. 

Table 3-2 defines the states used for all VRAM ac­
cess operations. A state diagram for the VRAMI 
Host Interface is provided in Figure 3-1. This dia­
gram includes the FIFO access states 

Table 3·2. 82750PB VRAM Access States 

State 

Ti 

T1, TF1 

T2, TF2 

TSC 

TTX1 

TTX2 

TRF1 

TRF2 

Description 

Idle State, No VRAM Activity 

First State of a VRAM FIFO Cycle 

Last State of a VRAM FIFO Cycle 

The T-State required to perform a 
shadow copy 

First State of a VRAM Transfer Cycle 

Last State of a VRAM Transfer Cycle 

First State of a VRAM Refresh Cycle 

Last State of a VRAM Refresh Cycle 

HOST ACCESS 

/1/ 

1 
/ 

1 

I 
I 
I 
I 
I 

! 

240854-7 

Figure 3·1. Access State Diagram 
1-83 



• _ l! !I 

InTeD~ 82750PB 

Note that during successive VRAM cycles it is not 
necessary to go back to the idle state, Ti, between 
each cycle; the T F2 state can be followed directly by 
a T1 state: starting at the next VRAM. cycle. This 
results in efficient utilization of the 82750PBIVRAM 
bandwidth by allowing a VRAM cycle time of 2 
T-states. 

FAST VRAM CYCLES 

When the 82750PB performs Data Read or Data 
Write VRAM cycles for the input or output FIFOs, it 
performs two 32-bit accesses to read or write one 
54-bit value. These accesses are always performed 
in a sequence of EvenAddress followed by EvenAd­
dress + 1, which guarantees both that the two se­
quential accesses will be in opposite banks and that 
the two accesses will be within the same VRAM 
page. This allows external logic to use either bank­
interleaving or a page-mode access to complete the 
second access of the sequence and improve the 
VRAM bandwidth. However, the second access 
does not need to be handled differently from the 
first. Except for the assertion of the NXTFST # sig­
nal, both accesses are treated as standard VRAM 
accesses. External logic can ignore the NXTFST # 
signal, though, and treat the two accesses as two 
normal data read or data write cycles. Note that 
NXTFST # is not asserted for transfer, refresh, or 
host memory accesses. 

1-84 

The NXTFST # output signal is provided for cases 
when external logic can generate a faster access for 
the second access of the'two sequential accesses. 
During such a pair of accesses, NXTFST # is assert­
ed during the first of the two accesses in order to 
provide sufficient time for the external logic to gener­
ate the appropriate fast memory cycle for the sec­
ond access. Refer to the timing diagrams in Figures 
3-4 and 3-5 (page 42) for examples illustrating the 
use of the NXTFST # signal. 

VBUS CODES 

Transfer request, interrupt, and synchronization 
codes are sent over.the BUS from the 827500B to 
the 82750PB. The codes recognized by the 
82750PB are listed in Table 3-3, along with the ac­
tions taken by the 82750PB as a result of receiving 
each code. Codes that cause TRANSFER cycles 
must be asserted for at least two clock cycles of the 
82750PB to insure that, in the worst case, the 
82750PB completes the transfer cycle before the 
code is released and the 827500B starts shifting 
data from the VRAM shift registers. Other codes 
must also be asserted for a minimum of two 
82750PB clock cycles. Only the codes given in the 
Table 3-3 are valid codes for the VBUS. Other codes 
are reserved for future use and should not be used. 
Once a transfer cycle code is sent to the 82750PB, 
any non-transfer code may be sent immediately. A 
subsequent transfer cycle code should be sent only 
after the. current transfer cycle is completed. 



InteL 82750PB 

Table 3-3. VBUS Codes 

Binary Name Action 

0000 YBMX TXRO Cycle Using Yc; Yc = Yc + Yp' 

0001 VUBMX TXRO Cycle Using VUc; VUc = VUc + VUp 

0010 REGX TXRO Cycle Using Vc; Vc = Vc + Vp 

0011 WROIGX TXWR Cycle Using Yc; Yc = Yc + Yp 

0100 YNPBMX TXRO Cycle Using Yc; Yc = Yc 

0101 Reserved Reserved 

0110 Reserved Reserved 

0111 WROIGNPX TXWR Cycle Using Yc; Yc = Yc 

1000 OFL OFL Int; Shadow Copy" 

1001 827500B80 827500B Shutdown Interrupt 

1010 REFRESH Schedule N Refresh Cycles 

1011 Reserved Reserved 

1100 VOOO VBllnt; OF Int; Shadow Copy Odd; Hline = 0'" 

1101 VEVEN VBllnt; EF Int; Shadow Copy Even 

1110 HLiNE Icnt + + (Increment Line Counter) 

1111 NULL No Action 

NOTES: 
'Yc-Y bitmap pOinter, current; Yp-Y bitmap pitch; VU-VU bitmap; V-82750DB register load . 

• 'Shadow Copy with Yc = Y-start-odd in odd field; Yc = Y-start-even in even field . 
• , 'Hline-Horizontal Line Counter. 

PRIORITY 

Each time the VRAM state machine completes a 
VRAM operation and returns to the Ti state, it exam­
ines all pending VRAM access requests and selects 
the highest priority request for the next VRAM oper­
ation. The priority ordering of these requests are list­
ed in Table 3-4. 

Table 3-4. Priority of VRAM Operations 

Request Type Priority 

Transfer Cycle Highest 

Shadow Copy • 
Host Access • 
VRAM Refresh • 
FIFO Read/Write Lowest 

NOTE: 
The shadow copy is treated as a VRAM operation even 
though it does not result in an access to VRAM. 

The VRAM refresh operation is placed low on the 
priority list to reduce the latency in servicing transfer 
requests and external VRAM requests. Since a sin-

1-85 

gle REFRESH code from the 827500B schedules a 
number of refresh cycles, a higher priority for refresh 
would cause all the refresh cycles to occur in a burst 
that would lock out all lower priority requests until all 
refresh cycles completed. Instead, the following 
restriction applies to all request types with higher 
priority than refresh: high priority requests, such as 
transfer cycles, shadow copies, and external VRAM 
access must occur infrequently enough to allow 
proper refresh of the VRAM chips. Transfer cycles 
and shadow copies, by their nature, occur infre­
quently so they are not generally a problem. 

There is a separate priority scheme for the five FIFO 
channels. The scheme used is rotating priority with 
automatic override and single cycle arbitration. Ro­
tating priority means that the priority is assigned in a 
fixed cyclic order with the lowest priority given to the 
FIFO channel that "won" the last FIFO access. 
There is only one level of memory, so the order that 
requests arrive is not a factor in the arbitration. The 
cyclic order is given in Figure 3-2. 

As an example, if input FIFO 0 (abbreviated if 0) was 
the last channel to perform a cycle, the priority order 
for the next FIFO access (from highest to lowest) 
would be: if1, sd, of 0, of1, and il0. 

II 



82750PB 

Automatic override that the rotating cyclic priority 
can be bypassed if there is an URGENT condition 
for one of the channels. A channel is urgent if the 
microcode processor is frozen because the proces­
sor is waiting for that channel to be ready. The chan­
nel can be either an input channel that is empty or 
an output channel that is full. In this case, the urgent 
channel gets the next available cycle. However, the 
priority will still be lower than non-FIFO requests, 
such as refresh cycles. 

Single clock cycle arbitration means that the selec­
tion of the next channel that will get an access oc­
curs in a single T-cycle or T-state, either in a Ti state 
or during the last T2 state of the previous VRAM 
cycle: 

VRAM POINTERS 

The VRAM interface maintains VRAM pointers for 
the FIFOs, as well as display-related pointers for the 
82750DB. Internally each pointer or address is 
stored as a 30-bit value addressing a double word in 
VRAM. The pointer values are read and written as 
two 16-bit words representing a 32-bit byte address 
(refer to the Figure 3-3). With a 30-bit double word 
address, the 82750PB can decode a VRAM address, 
space of 1 G double words or 4 GBytes. 

Input and output FIFOs can address down to a sin­
gle word or byte in VRAM. A FIFO's pointer is post­
incremented or post-decremented in parallel with its 
VRAM read or write cycle. 

The statistical decoder can only start decoding bit­
streams on double word boundaries.in VRAM and 
can only increment through VRAM. The decoder's 
pointer is post-incremented in parallel with each of 
its VRAM read cycles. 

Display-related pointers are updated by adding a 
pitch value to the current value during the corre­
sponding transfer cycle. 

If a VRAM pointer appears on the B-Bus as source 
or as a destination then the following rules apply: 

Rule 1 

If a B-Bus destination refers to an address that is 
both Even and > Ox1 f, then the source is restricted 
to "-10" pointers if the source refers to a pointer. 

Rule 2 

If a B-Bus destination refers to an address that is 
both Odd and >Ox1f, then the source is restricted to 
"-hi" pointers if the source refers to a pointer. 

SHADOW COPY 

When a VODD, VEVEN, or DFL code is received 
from the 82750DB over the VBUS, a shadow copy is 
scheduled. The actual shadow copy will occur as 
soon as the priority logic allows. Any VRAM access 
in progress must complete and a pending transfer 
cycle, if any, must be performed before the shadow 
copy can start. During the operation, shadow regis­
ters for the Y-START, Y-PITCH, VU-START, VU­
PITCH, 82750DB-START, and 82750DB-PITCH are 
copied into the corresponding working registers. 
During display refresh, the address arithmetic is per­
formed on the working registers. The shadow regis­
ters can be loaded by the host CPU or by a micro­
code routine with less critical timing constraints, and 
then copied instantly by a shadow copy with it is time 
to update the registers, either prior to the next field 
or during the active display for split screen effects. 

--+ in FIFO 1 --+ InFlFO 0 --+ outFIFO 1 --+ out FIFO 0 --+ Statistical Decoder 

t 1 
240854-8 

Figure 3-2. Cyclic Ordering of FIFOs 

31 30 29 24 23 16 15 3 2 1 0 
<- - - - - - - - - - - - - - - - - - VRAM Address - - - - - - - - - - - - - - - - 30 bits - - - - - - - - - - - - > 

Byte Address within Double-Word ......................................................... <- - -'> 
<- Most Sig. Word of VRAM Address. -> I <- Least Sig. Wd. of VRAM Addr.-> 

Figure 3-3. VRAM Addressing 

1-86 



82750PB 

There are actually two shadow registers for Y­
START. One for start of odd fields and one for start 
of even fields. A VODD code causes Y-START-ODD 
to be copied into the working register Y-CURRENT. 
Similarly, a VEVEN code causes the Y-START­
EVEN to be copied into Y-CURRENT. A DFL code 
causes the Y-START-ODD value to be copied if the 
most recent start of field code received is a VODD, 
or a Y-START-EVEN value if the most recent start of 
field code was a VEVEN. This allows a simple inter­
laced or non-interleaced display to be refreshed with 

Host Interface 

The Host Interface provides the following functions: 

" Arbitrates host CPU and 82750PB access to 
VRAM. 

.. Provides the host access to external devices. 

o Provides the host access to 82750PB internal 
registers and memories. 

Signals specific to the Host Interface are listed in 
Table 3-5. . no host CPU intervention. For more complex dis­

plays, such as split screens, the host CPU must up­
date the shadow registers prior to each shadow 
copy. A shadow copy operation requires 2 T-cycles. 

Table 3-5. Host Interface Signals 

Signal Description 

HREQ# HOST REQUEST: Asynchronous request from the host for all types of 
host access. Used both to request and release system buses. 

HREG# HOST REGISTER: Single-ranked control to request host access to 
82750PB internal registers in concert with HRAM #. 

HRAM# HOST VRAM: Single-ranked control to request host access to VRAM in 
concert with HREG #. 

HALEN# HOST ADDRESS LATCH ENABLE: Asynchronous status from the host 
indicating the presence of valid address, write enable (transaction 
direction control), and the byte enables at the interface of the 82750PB. 

HBUSEN# HOST BUS ENABLE: 82750PB synchronous status granting the host 
access to the address, write enable, data bus, and byte enables at the 
interface of the 82750PB. 

HRDY# HOST READY: 82750PB synchronous status to the host indicating the 
presence of valid data appearing at the 82750PB's databus for VRAM 
and register accesses and optionally for external accesses. 

HINT# HOST INTERRUPT: 82750PB synchronous interrupt to the host, set 
under direct or indirect microprogram control. 

Signals common to the host, VRAM, and external device interfaces are listed in Table 3-6. 

Table 3-6. Host, VRAM, and External Device Interfaces 

Signal Description 

A[31:2] ADDRESS BUS: System address bus used to select unique VRAM, the 
82750PB register, and external device locations that will be accessed 
under host control. The lower seven bits A[8:2] are bidirectional and are 
used during register accesses 

0[31:0] DATA BUS: Bidirectional system data bus used to transfer data to and 
from all sources and destinations. When transferring 16-bit host register 
values, the data bus MSH and LSH will both carry identical values. 

WE# WRITE ENABLE: Bidirectional, single-ranked signal used to determine 
the data transfer direction. When active during host register cycles, data 
flows from the host to an 82750PB destination. During host VRAM cycles, 
WE# active will define the data direction to be from th,e host to VRAM. 

BE[3:0]# BYTE ENABLE: Bidirectional signals used to select the bytes that will be 
modified during data transactions. All host register transactions are 
performed 16 bits at a time, while VRAM may be modified 8 bits at a time. 

1-87 

II 



82750PB 

As with VRAM operations, host operations are described through a sequence of T-states. Table 3-7 defines 
the T-states used to implement all host transactions with VRAM, external devices, and the 82750PB. 

The master execution state diagram that defines the VRAM/Host transactions is provided in Figure 3-1. 

Table 3-7. 82750PB Host Transaction States 

State Description 

TA First state of any host transaction. Entry into TA will be granted after 
HREQ# has been asserted. During this state, the 82750PB will tri-state 
its address, data bus, write enable, and byte enable signals to provide a 
full cycle of "dead-band" before the assertion of HBUSEN #. In the state 
immediately following TA HBUSEN # will assert, allowing the host to drive 
the host buses. 

TB First cyCle in which the host is granted bus access for register or VRAM 
transactions. The sequencerwill remain in TB until HALEN # is received, 
indicating that the address write enable and byte enable signals are 
stable at the 82750PB pins. 

TC1 First cyclethat output data is valid. 

TCn This state is entered to wait for the completion of the current host cycle. 
The cycle is defined as complete when HREQ # deasserts. HRDY # is 
asserted along with valid data until the transition to state TD occurs. 

TO The last cycle of a host transaction. HBUSEN# is deasserted allowing 
one dead-band cycle to allow control of the address, data, write enable, 
and byte enable signals to be returned to the 82750PB. 

TV1 First cycle of a Host VRAM transaction. Memory is requested and is 
followed by a transition to TV2. 

TV2 Last cycle of a Host VRAM transaction. The sequencer will remain in TV2 
until MRDY # is received. 

A single stage of .input synchronization is employed 
for HREG#, HRAM#, WE#, and BE[O]#, while 
HREQ# and HALEN# are programmable to have 
one or two stages by bit 12 of the Microcode Proc­
essor Control Register. See Table 3-10. T-state tran­
sitions are caused by the synchronized versions of 
these signals. 

HOST REGISTER ACCESS 

The host has access to the 82750PB's internal reg­
isters and memories to monitor and control the oper: 
ation of the microcode processor, provide a means 
of debugging microprogram routines, and to function 
as the primary test port for production testing. 

The synchronized versions of HREG# and HRAM# 
must be stable before entry into T-state TA. The 
synchronized versions of WE#, BE[O]#, and 
HALEN # should be stable before exiting T -State 
TB. Once .asserted, all of the above signals should 
remain stable until the deassertion of HBUSEN #. 

The type of host cycle to perform is determined by 
the states of HREG # and HRAM # as indicated in 
Table 3-8. 

Table 3-8. Host Cvcle Types -
HREG# HRAM# Host Cycle 

Type 

1 1 External 

0 1 Register 

1 0 VRAM 

0 0 Reserved 

1-88 

Register access is initiated by the host asserting 
HREQ#, HREG#, and HRAM# as shown in Table 
3-8 and in the timing diagrams on pages 42 through 
45. After the host has been granted bus access by 
an active HBUSEN# in state TB, the address, write 
enable, and byte enables may be driven. After these 
signals have stabilized HALEN # is asserted, en­
abling a read or a write operation to occur. 



82750PB 

In the case of a register read, state TC1 is entered 
and the data bus is driven with the internal value. 
One cycle later, a transition to state TC occurs, and 
HRDY # activates, signaling the presence of stabi­
lized data at the 82750PB data pins. This state (TC) 
will be maintained until the host deasserts HREQ #, 
signaling the completion of the cycle that caused a 
transition to state TO. 

In the case of a register write, TC1 is again entered 
(from TB), but the data bus may now be driven by 
the host. (During host cycles, data bus drive activity 
is indirectly controlled by WE # and an additional 
dead-band is provided by entry into state TC1 to al­
low for internal WE # stabilization.) Stable data at 
the 82750PB interface, as well as the completion of 
the write cycle, is signaled by the deassertion of 
HREQ#. As with reads, the deactivation of HRDY# 
signals-the transition to state TO. 

As state TO is entered, HRDY # and HBUSEN # 
deassert, the address data, write enable, and byte 
enables tri-state, and bus control is returned to the 
82750PB in the following cycle. 

HOST VRAM ACCESS 

Because the 82750PB is so closely coupled with 
VRAM, host accesses to VRAM are arbitrated and 
controlled by the 82750PB. VRAM access is initiated 
by the host asserting HREQ#, HREG#, and 
HRAM # as shown in the Host Cycle Table above 
and in the timing diagrams on pages 42 through 45. 
After the host has been granted bus access by an 
active HBUSEN #, the address, write enable, and 
byte enables may then be driven. After these signals 
have stabilized at the memory devices (or longest 
relevant propagation path), HALEI'>J # is asserted, 
enabling a read or a write operation to occur. 

Because VRAM will not drive the data bus until after 
a memory request, a transition into state TC1 to al­
low for data bus direction stabilization is not re­
quired. Instead, a transition to state TV1 occurs, 
which asserts MREQ# for a single cycle and is fol­
lowed by a transition to TV2. TV2 will remain the 
current state until the reception of an active 
MRDY#. 

In the case of a VRAM read, the memory data bus 
will be driven during TV1, and valid data will appear 
in state TV2. Data will be guaranteed valid coinci­
dent with the deassertion of MRDY # from memory. 

In the case of a VRAM write, the memory data bus is 
driven with valid data during TV1. Again the recep­
tion of MRDY # will serve to indicate the completion 
of the memory operation. 

1-89 

NOTE: 
The host device must be able to transmit or receive 
memory data in order to be valid at the trailing 
edge of MRDY # at the data's destination (memory 
or host). 

After MRDY # becomes active, a transition from TV2 
into TC1 is accomplished to allow time to propagate 
data to the host. TC is then entered to await the 
deassertion of HREQ# (if it has not already oc­
curred). TO is then entered, duplicating the dead­
banding previously described. 

HOST EXTERNAL ACCESS 

In addition to VRAM and register host access, an 
external device access mechanism is provided_ Dur­
ing this access, upon the receipt of HREQ# with 
HREQ# and HRAM# inactive, the 82750PB releas­
es the address, data, write enable, and byte enables 
in state TA. 

The difference here is that state TC1 is directly en­
tered from T A, thereby ignoring any transitions of 
HALEN #. Since the 82750PB also ignores the data 
bus direction control (write enable) the host and an 
external device may communicate unencumbered 
by the 82750PB. 

Entry into state. TC directly follows TC1 in the ex­
pected sequence and remains there until HREQ# is 
released. This is followed by entry into TO. 
HBUSEN # is asserted during the timing that TC1 
and TCN are active. 

During an external access, HRDY # is not asserted 
unless the external logic asserts MRDY # as shown 
in Figure 3-7. 

HOST REGISTER ADDRESS MAPPING 

Table 3-9 shows the host address mapping of the 
on-chip registers and memories, in terms of the off­
set in bytes, from the base address for 82750PB 
accesses_ Note that the 82750PB only supports 
word accesses to these registers. Therefore, the 
least significant bit of the byte offset should be set to 
zero. The 82750PB forms the register address from 
inputs on the A[31 :2] pins and BE# [3:0] pins. The 
A[31 :2] specify the double word address of the reg­
ister, and combinations of the BE # pins determine 
which of the two words with the double word is being 
addressed. BE # [3:0] = 110°2 selects the least sig­
nificant word within a double word, and BE # [3:0] = 
00112 selects the most significant word within a 
double word. These are the only two valid patterns 
for BE # inputs during a host register access cycle. 

II 



intei® 82750PB 

Table 3-9. Host Address Mapping 

Byte Description 
Address 

OxOOO-Ox07E (a) A source and 
destination registers 

Ox080-0xOFE (b) B source and 
destination registers 

Ox100-0x17E (c) Microcode processor control 
and status registers 

Ox180-0x1 FE (d) VRAM pointer RAM 

NOTE: 

The host should only perform 16-M word reads 
or writes to 82750PB registers. The 82750PB 
does not support byte reads or writes or double 
wordreads or writes to on-chip registers. 

When the host CPU reads or writes to areas (a, b, or 
d) and the 82750PB is not already in a HAL Tstate, 
the m,icrocode processor is automatically HALTED 
for the one T-cycle actually required to complete the 
data transfer, and then the processor is restarted 
after the transfer is complete. If the 82750PB is in a 
HALT state when the host access is initiated, it will 
remain in the HALT state following the completion of 
the access. This is transparent to both the host CPU 
and the microcode processor. 

1-90 

During an access to areas (a) or (b), bits 6:1 of the 
byte offset should be set to the source or de~tina­
tion code for the register that will be read or wntten. 
The coding is the same as used in the microcode 
instruction word. Bit 0 is always set to a zero. Refer 
to the 82750PB Source and Destination Coding 
Table found in Chapter 4, 

Area (c) contains one write-only register, the CON­
TROL register, and two read-only registers, the IN­
TERRUPT FLAG register and the microcode PROC­
ESSOR STATUS register. The CONTROL register is 
used to halt or single-step the microcode processor, 
which enables or masks interrupts to the host CPU, 
selects the signal that is output via the PMON/FRZ 
pin, and enables or disables the 82750PAemulati?n 
mode. The bit assignments for the CONTROL regIs­
ter are given in Table 3-10. 

During reset of the 82750PB, the HALT bit is set to a 
one, the six Interrupt Enable bits are reset to zero, 
the Disable SYNC bit is set to zero, the PMON/FRZ 
bit is set to zero (so that the FRZ signal is output), 
and the Enable 82750PB bit is reset to zero (so that 
on reset, the 82750PB starts in a 82750PA emula­
tion mode). 



Bit 

BitO 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Bit 5 

Bit 6 

Bit 7 

Bits 8-11 * 

Bit 12 

Bit 13 

Bit 14 

Bit 15 

82750PB 

Table 3-10. Bit Assignments for Microcode Processor CONTROL 
Register [Write-Only, Byte Offset = Ox1001 

Name Description 

HALT 1 = Microcode Processor Halt 
o = Microcode Processor Run 

SINGLE-STEP 1 = Execute One" Instruction and then Halt 
(Only when Already Halted, Bit 0 = 1) 

0= No Action 

Enable MCINT 1 = Enable Microcode Interrupts to Host CPU 
o = Mask Microcode Interrupts 

Enable VBI 1 = Enable Vertical Blanking Interrupt to Host CPU 
o = Mask Vertical Blanking Interrupt 

Enable DFL 1 = Enable DFL Interrupt to Host CPU 
o = Mask DFL Interrupt 

Enable SD 1 = Enable 82750DB Shutdown Interrupt to Host 
o = Mask SD Interrupt 

Enable OFI 1 = Enable Odd Field Interrupt 
o = Mask OF Interrupt 

Enable EFI 1 = Enable Even Field Interrupt 
o = Mask EF Interrupt 

1 = RESERVED; Write as Zeros 

Disable SYNC 1 = Disable Synchronizers for HREQ# IHALEN # 
o = Enable Synchronizers for HREQ# IHALEN# 

PMON/FRZ 1 = Output FRZ # Signal on PMFRZ # Pin 
o = Output PMON # Signal on PMFRZ # Pin 

1 = RESERVED; Write as Zero 

Enable 82750PB 1 = Enable 82750PB Mode 
o = Enable 82750PA Emulation Mode 

'AII other bits are reserved for future use, and should be written as zeros. 

1-91 



82750PB 

The INTERRUPT FLAG register holds a flag for 
each of the six interrupt sources. A flag bit is set to a 
one when the interrupt condition is detected (inde­
pendent of the state of the corresponding Interrupt 
Enable/Mask bit in the CONTROL register), and all 
flags are cleared to zero each time the INTERRUPT 
FLAG register is read. If this register is read during 
the same cycle that an interrupt condition is detect­
ed, the flag bit corresponding to that interrupt condi­
tion will remain at a one. This new interrupt condition 
will then be seen by the host processor when it next 
reads the INTERRUPT FLAG register. The flag in­
sures that an interrupt is not lost if it occurs at the 
same cycle that the INTERRUPT FLAG register is 
read (and reset). In addition, the Microcode Interrupt 
source has an overflow flag that indicates if more 
than one Microcode Interrupt has occurred since the 
Interrupt Flag register was last read. The bit assign­
ments for the INTERRUPT FLAG register are listed 
in Table 3-11. 

The PROCESSOR STATUS register holds four 
status bits: HALT, FREEZE, PMON, and SYNC 
status. HALT indicates that the processor is HALT­
ED due to a HALT bit in the CONTROL register be­
ing set to a ONE or due to the HALT # pin being 
asserted. FREEZE indicates that the processor is 
waiting for one of the VRAM channels to become 
ready or is waiting for an access to the VRAM point­
er RAM. PMON is a signal that can be.toggled by a 
special ALU opcode or a special B source code. 
This signal can be used for performance monitoring 
of microcode. SYNC status bit indicates the pres­
ence or absence of the internal synchronizers for 
HREQ# -and HALEN# inputs. In addition, the Inter­
rupt Mask bits that are written into the PROCESSOR 
CONTROL register can be read from this register. 
These mask bits are read in the same polarity that 
they are written, but note that the bit positions and 
bit ordering are not consistent with the PROCES­
SOR CONTROL register. The bit aSSignments for 
this register are given in Table 3-12. 

Address mapping for areas (a), (b), and (d) are given 
in Tables 3-13 to 3-15. 

Table 3-11. Bit Assignments for INTERRUPT FLAG Register 
(Read-Only, Byte Offset = Ox100) 

Bit Description 

Bit 8:0 Not Used, the State of These Bits Are Not Specified 

Bit 9 EF Interrupt Flag 

Bit 10 OF Interrupt Flag 

Bit 11 MCINT Overflow Flag 

Bit 12 82750DB Shutdown Interrupt 

Bit 13 MCINT Microcode Interrupt 

Bit 14 VBI Vertical Blanking Interrupt 

Bit 15 DFL Display Format Load Interrupt 

1-92 



Bit 

BitO 

Bit 1 

Bit 2 

Bit 3 

Bit 9:4 

Bit 10 

Bit 11 

Bit 12 

Bit 13 

Bit 14 

Bit 15 

82750PB 

Table 3·12. Bit Assignments for PROCESSOR STATUS Register 
(Read·Only, Byte Offset = Ox102) 

Description 

HALT (1 = Halted,O = Running) 

FREEZE (1 = Frozen, 0 = Running) 

PMON (1 = Active, 0 = Inactive) 

Synchronizers on HREQ# IHALEN # (0 = Enabled, 1 = Disabled) 

Not Used, the State of These Bits is Not Specified 

MCINT Microcode Interrupt Mask 

VBI Vertical Blanking Interrupt Mask 

DFL Display Format Load Interrupt Mask 

82750DB Shutdown Interrupt Mask 

OF Interrupt Mask 

EF Interrupt Mask 

1-93 



82750PB 

Table 3-13. 82750PB A Bus Source/Destination AddresS Mapping 

Address (Hex) ADST ASRC Address (Hex) ADST ASRC 

OxOOO Null Null Ox042 out1 + + 'in2 

OxOO2 hwid· Ox044 shift-hi 'stat 

OxOO4 ee Ox046 out1-hi *stat# 

OxOO6 maddr Ox048 'out2 

OxOO8 alu Ox04A out2+ + 

OxOOA ent ent Ox04C shift-r 

OxOOC ent2 ent2 Ox04E out2-hi 

OxOOE lent lent Ox050 out1-e 

Ox010 rO rO Ox052 in1-e 

Ox012 r1 r1 Ox054 shift-I 

Ox014 r2 r2 Ox056 in1-hi 

Ox016 r3 r3 Ox058 out2-e 

Ox018 r4 r4 Ox05A in2-e 

Ox01A r5 r5 Ox05C 

Ox01C r6 r6 Ox05E in2-hi 

Ox01E r7 r7 Ox060 r8 r8 

Ox020 meode3 meode3 Ox062 r9 r9 

Ox022 meode2 meode2 Ox064 r10 r10 

Ox024 meode1 meode1 Ox066 r11 r11 

Ox026 pc pc Ox068 r12 r12 

Ox028 pixint-e Ox06A r13 r13 

Ox02A pixint pixint Ox06C r14 r14 

Ox02C *dram1 *dram1 Ox06E r15 r15 

Ox02E *dram2 *dram2 Ox070 ee shift 

Ox030 *dram1 + + *dram1 + + Ox072 fent fent 

Ox032 *dram2+ + *dram2+ + Ox074 *dram3 *dram3 

Ox034 *dram1- - *dram1- - Ox076 *dram4 *dram4 

Ox036 *dram2- - *dram2- - Ox078 *dram3+ + *dram3+ + 

Ox038 dram1 dram1 Ox07A *dram4+ + *dram4+ + 

Ox03A dram2 dram2 Ox07C *dram3- - *dram3--

Ox03C dram3 dram3 Ox07E *dram4- - *dram4- -

Ox03E dram4 dram4 

Ox040 *out1 *in1 

1-94 



intel® 82750PB 

Table 3-14. 82750PB B Bus Source/Destination Address Mapping 

Address (Hex) BDST BSRC Address (Hex) BDST BSRC 

OxOSO Null Null OxOC2 out1 + + 

OxOS2 alu OxOC4 out1-lo out1-lo 

OxOS4 *dram3 *dram3 OxOC6 out1-hi out1-hi 

OxOS6 *dram4 *dram4 OxOCB *out2 stat-Io 

OxOSS *dram3+ + *dram3+ + OxOCA out2+ + stat-hi 

OxOSA *dram4+ + *dram4+ + 

OxOSC *dram3- - *dram3- -

OxOSE *dram4- - *dram4- -

OxOCC out2-lo out2-lo 

OxOCE out2-hi out2-hi 

OxODO out1-c out1-c II 
Ox090 rO rO OxOD2 in1-c in1-c 

Ox092 r1 r1 OxOD4 in1-lo in1-lo 

Ox094 r2 r2 OxOD6 in1-hi in1-hi 

Ox096 r3 r3 OxODB out2-c out2-c 

Ox09S r4 r4 OxODA in2-c in2-c 

Ox09A r5 r5 OxODC in2-lo in2-lo 

Ox09C r6 r6 OxODE in2-hi in2-hi 

Ox09E r7 r7 OxOEO stat-ram rB 

OxOAO rS *in1 OxOE2 stat-c r9 

OxOA2 r9 *in2 OxOE4 stat-Io r10 

OxOA4 r10 * stat OxOE6 stat-hi r11 

OxOA6 r11 'stat# OxOEB yeven-Io r12 

OxOAS r12 circbuf OxOEA yeven-hi r13 

OxOAA r13 OxOEC yodd-Io r14 

OxOAC r14 OxOEE yodd-hi r15 

OxOAE r15 OxOFO ypitch shift 

OxOBO circbuf literal 0 OxOF2 stat-c 

OxOB2 literal 1 OxOF4 vu-Io *dram1 

OxOB4 *dram1 literal 2 OxOF6 vu-hi *dram2 

OxOB6 *dram2 literal 3 OxOFB vupitch *dram1 + + 

OxOBB *dram1 + + literal 4 OxOFA vpitch *dram2+ + 

OxOBA *dram2+ + literal 5 OxOFC vptr-Io *dram1- -

OxOBC *dram1- - literal 6 OxOFE vptr-hi *dram2- -

OxOBE *dram2- - literal 7 

OxOCO 'out1 prof 

1-95 



inlet 82750PB 

Table 3-15. VRAM Pointer RAM Mapping 

Byte Address Name Description 

Ox180 Yw-Io Working Copy of Y Pointer 
Ox182 YW-hi 

Ox184 out1-lo Output FIFO 1 Pointer 
Ox186 out1-hi 

Ox188 Yw-pitch Working Copy of Y Pitch 

Ox18A RESERVED 

Ox18C out2-lo Output FIFO 2 Pointer 
Ox18E out2-hi 

Ox190 VUw-lo Working Copy of VU Pointer 
Ox192 VUw-hi 

Ox194 in1-lo Input FIFO 1 Pointer 
Ox196 in1-hi 

Ox198 VUpitchw Working Copy of VU Pitch 

Ox19A vpitchw Working Copy of 82750DB Pitch 

Ox19C in2-lo Input FIFO 2 Pointer 
Ox19E in2-hi 

Ox1AO vptrw-Io Working Copy of 82750DB Pointer 
Ox1A2 vptrw-hi 

Ox1A4 stat-Io Working Copy of Statistical Decoder Pointer 
Ox1A6 stat-hi 

Ox1A8 Yeven-Io Shadow Copy of Y Start Even Pointer 
Ox1AA Yeven-hi 

Ox1AC Yodd-Io Shadow Copy ofY Start Odd Pointer 
Ox1AE Yodd-hi 

Ox1BO Ypitch Shadow Copy of Y Pitch 

Ox1B2 rfcnt RFSH Cycles per RFSH Code from 82750DB 

Ox1B4 VU-Io Shadow Copy of VU Start Pointer 
Ox1B6 VU-hi 

Ox1B8 VUpitch Shadow Copy of VU Pitch 

Ox1BA vpitch Shadow Copy of 82750DB Pitch 

Ox1BC vptr-Io Shadow Copy of 82750DB Pointer 
Ox1BE vptr-hi 

NOTE: Register rfont wnte only register and should never be read. 

Initializing the 82750PB 

The 82750PB is placed in a RESET state by assert­
ing RESET# for at least ten T-cycles. In the RESET 
state, which continues until RESET # is released, all 
of the 82750PB's outputs are tri-stated for compati­
bility with board test requirements. 

Proper initialization of the 82750PB requires that the 
82750PB is held in a RESET state by keeping RE­
SET # active for at least 10 T -cycles, and then re-

1-96 

leasing RESET #. This is referred to as the INITIAL 
state. In the INITIAL state: 

• The microcode processor is halted. 

• All six interrupts are masked, and the interrupt 
latches are cleared. 

• The 82750PAl82750PB instruction format select 
bit is set to the 82750PA. 

• The VRAM interface is ready to service VRAM 
requests; however, none of the VRAM pointers 
are valid. 



int:eL 82750PB 

• The number of refresh cycles that will be generat­
ed each time a RFSH code is received from the 
827500B is set to 14 cycles. 

• All bidirectional I/O pins are tristated. 

After the 82750PB has been initialized, i.e., placed in 
the INITIAL state, but prior to releasing the 
827500B's reset signal, the following operations 
must be performed: 

• Load the REFRESH-CYCLES-PER-LiNE register 
with the appropriate value (the equation for the 
value is: VALUE = (2N - 1), where N is the Ilum­
ber of cycles; for example, 5 refresh cycles would 
result in VALUE = 25 - 1 = 3110 = 001 F16. 
The refresh register is 14 bits wide and the way it 
works is to generate one refresh every time a right 
shift results in a '1' bit. It continues the right sifting 
until it finds a '0' bit and halts. Hence from program­
ming point of view: 001 F16 = FFOF16 = 5 refresh 
cycles per line. 

o Load the shadow copies of Y, VU, and 827500B 
pointers'and pitches. 

• Load the appropriate 827500B Register Load list 
into VRAM starting at the address pointed to by 
the 827500B pointer. 

Prior to releasing the microcode processor from its 
HALTed state to run a microcode program, the fol­
lowing operations must be performed: . 

• If 82750PB code is to be executed, bit 15 of the 
82750PB CONTROL register must be set to a 
one. 

• Load a microcode program into microcode RAM 
on the 82750PB by writing to the three instruction 
word registers (meode 1 - the most significant 
word of the instruction, meode2, and 
meode3 ~ the least significant word of the in­
struction, the one containing the next address 
field) and then writing to maddr, the address in 
microcode RAM where the instruction will be 
loaded. 

• Load the PC with the address in microcode RAM 
of the first instruction to be executed. 

• Write to the 82750PB CONTROL register with the 
HALT bit (bit 0) set to zero, causing the processor 
to start executing an instruction sequence, or with 
the SINGLE-STEP bit (bit 1) set to a one (keeping 
HALT also set to one), causing the processor to 
execute a single instruction. 

Performance Monitoring 

Two signals, FRZ# and PMON#, w~ich are useful 
for microcode performance monitoring, are available 

1-97 

both as external signals, multiplexed on a single out­
put pin, and as bits in the Processor Status register. 
FRZ# is active for each T-cycle when the micro­
code processor is frozen, waiting for access to 
VRAM or to the VRAM Pointer RAM. PMON # can 
be toggled by a special ALU opcode or a special B 
bus source code. This allows PMON # to be used to 
indicate what particular segment of microcode is be­
ing execute. The PMON/FRZ bit in the Processor 
Control register selects the signal that is being out­
put. 

Freezes may indicate that the microcode routine is 
not making the most efficient use of the input and 
output FIFO buffering. This is particularly important 
for the inner loops of graphics and video routines 
that are memory-bandwidth limited. Ideally, inner 
loops should be balanced so that the rate pixels are 
processed is equal to the rate that they can be read 
from and written to VRAM with no freezes. The buff­
ering in the input and output FIFOs serve to make 
sequential reads and writes to VRAM more efficient 
by performing full 54-bit reads and writes, instead of 
individual 8-bit or 15-bit accesses. This has the ef­
fect of averaging the VRAM read/write rate over a 
number of instruction times. For example, if the 
82750PB is performing a 54-bit read or write every 8 
T-cycles, for an average 018 bits per T-cycle, a two 
instruction inner loop could read one 8-bit pixel and 
write one 8-bit pixel without any freezes occurring 
(assuming the source pixels and the destination pix­
els are each sequential). 

The PMON# provides a more standard performance 
monitoring capability by indicating when a particular 
segment of microcode, bracketed by special instruc­
tions that toggle the PMON# signal, is being exe­
cuted: This allows either absolute execution-time 
measurement or measurement of the fraction of the 
total execution time that is required by the segment. 
Either the ALU opcode'prof' or the B bus source 
code 'prof' will toggle the PMON signal. 

An external HALT pin is provided on the 82750PB to 
allow external debugging hardware to immediately 
halt the microcode processor. Activating this input 
causes the microcode processor to halt prior to exe­
cuting the next instruction. When the processor is 
halted, the VRAM interface portion of the 82750PB 
continues to operate normally, performing transfer 
cycles, refresh cycles, and shadow copies as re­
quested by the 827500B. 

Host/VRAIVl Timing Diag~ams 

Figures 3-4 through 3-8 are HostlVRAM Timing Oia­
grams. 



CLK 

MREQ# 

A[31:3] 

A[2] 

BEiI[3:0J 

WE# 

NXTFST# 

TRNFR# 

RFSH# 

O[31:0J 

MROY# 

NOTES:; 

82750PB 

1 Ti .1 TI 1 T2 .1 TFI 1 TFl.l Tl. 1 Tl.1 Tl ,I TFI 1 TFl .I Ti .. 1 
"---..~~~~ 
__ -+1, 1 1 i! ~----,li-__ 

----~lhXr------~--------~ I I 
__ -+~\~ _____ ·~I~/r-----~ 

=====~XC========blxc========b ----~h\~ ________ _+I----------_4J 
----~h\~ ____ ~i Ir-----h 

! 

X x== 
e I· i 

! \ ! I I \ I i X X ! K 
I ! 

I c= 
! 

I \ I c= 

------<=~!~ill~!X==!===::>--_t---<~ to 8l750PB)......h. .. (lfrom8l750PBK > LV-- ~ , 
'I--...J.(c-D..K ..aK-LK':-XO-L>.K\.l.--L.1..LJKwK>-AX ..aK'--"\_-L(~KO-L>.K...cKwK~'l.l \KX\ I KKK K K\ a:y:y: 

r----------------+--------------------41. 
8l750PB VRAM Write Cycle Pair 8l750PB VItAM Read Cycle Pair 
(zero wait states for both cycles) (first cyde has one wait ~~te) 

240854-9 

1. Address pin A[2) is always ZERO for the first cycle of a cycle pair and ONE for the second cycle. 
2. The two cycles of a cycle pair are both writes or both reads. 

CLK 

.. MREQ# 

A[31:2] 

BE#[~:O] 

WE# 

NXTFST# 

TRNFR# 

RFSH# 

0[31:0J 

MROY# 

Figure 3-4 VRAM Read and Write Cycles 

1 TI 1 Tal 1 Tt'l. 1 Ttxl.1 Tal .I TrfI 1 Tr12.1 Tr12 .1 Trl2.1 Tr12.1 Ti 1 
~~~~~~~ 

_____ -,~ iii '-------J i i! i x:=
------" 1\ j j c=

\~ ___ ~ __ ~---~I I
i

----~~~ ______ +_-~----~! (r ______ ~ .. :!.:~--~--~~--~_c=----
-----------r----~--~I \~ ____ ~~----+_--_+---~r---

)

IXKxxxxxK'l.l '@ \X\

81750PB VItAM Transfer Cycle
(Transfer Read or Write
de~ndjng on state of

WE#signal)

I

IxxxXXl '@ @

81750PB VItAM Refresh Cycle
NOTE: the address is held

~t~~~~~~~: NO~
output by 827S0PB; It Ii assumed
that a CAS before BAS refresh
cycle i. generated to the
DRAMIVRAM chips.

Figure 3-5. VRAM Transfer and Refresh Cycles

1-98

\X\

240854-10

eLK

HREQ#

IIREG# \ '" \ \ \\:

HRAM#

HBUSEN#

HALEN#

A[J):21

BE#[J:OI

WE#

0[3):01

IIROY#

WE#

0[3):01

HROY#

NOTES:

82750PB

Th Th Tc~ TeN Td Ti

,I 1 1

1\ /:

/ / / / / / / / / /; /

\

\ ~ "
\ --\ \ ~~I'---

Shaded areas indicate
bidircctibnal·signalis
driven by host

240854-11

1. MREQ#, RFSH#, TRNFR#, and NXTFST# remain inactive during Host Register Read and Write cycles.
2. If HALEN # IHREQ # synchronizers are disabled then the second Ti and Tb states will be missing.

Figure 3·6. Host Register Read and Write Cycles

1-99

l'!
10
C ...
CD

tf
:"I
::z::
0
11/ -m
)C -CD ...

, :::J
..... DI
0-
°lll

CD
DI
a-
DI
:::J
a-

~I
0
'< n
ii'
11/

eLK

HREQ#

HREG#

HRAM#

HBUSEN#

A[31:2J

BE#[J:OJ

WE#

D[JI:O]

MRDY#

HRDY#

NOTES:

Note: HRDY# is only as.'iCrted by 827S0PB if
extemnllosic asserts MRDY#.IfMRDY#
is not asserted. HRDY !ltays inactive during
an Extcmal cycle.

1. MREQ#, RFSH# TRNFR#, and NXTFST# remain inactive during Host External Read and Write cycles.
2. If the Synchronizer on HREQ# is disabled, then the second Ti state will be missing.

240854-12

:i"
c(
~

GI
N

"'" en o
'V
OJ

:!!
cc
c: ...
ID

Cf
9'1
::E:
0
III ...
< ::u
>

.!. s:
o ::u
..... ID

II)
a.
II)

= a.
:e ...
=<=
ID
(')
'<
()

iD
III

TI TI

eLK

HREQ# \
I

HREG#

HRAM#

HBUSEN#

HALEN#

A[31:2]

BE#[3:0]

WEI

0[31:0]

MREQ#

MROY#
r......

HROY# ~\ ~(

Note: 827S0PB will stay in Tb for the maximum of:

1) one T-state. OR

2) two T-states after VALEN# goes low.

NOTES:
1. RFSH #. TRNFR #. and NXTFST # remain inactive during Host VRAM Read and Write cycles.
2. If the Synchronizers on HREQ# IHALEN# is disabled, then the second Ti state will be missing.

iii

240854-13

_.
l

8

CI
l\)
""-l
U1
Q

" OJ

82750PB

4.0 MICROCODE INSTRUCTION
FORMAT

Overview

The 82750PB executes two slightly different instruc­
tion formats: one that is backward compatible with
the 82750PA and another that allows full access to
the microcode resources of the 82750PB. The
82750PAl82750PB bit in the 82750PB processor
control register determines which instruction format
is in effect (see Chapter 3). On reset, the 82750PB is
placed in 82750PA instruction format mode. In this
mode the 82750PB will execute binary microcode
originally assembled for the 82750PA in a manner
that is functionally equivalent to the 82750PA.

The following description applies to the 82750PB in­
struction format. Exact definitions of 82750PB in­
struction formats and field codings are shown in Fig­
ure 4-2 and Table 4-5.

Instruction Sequencing

The instruction word for 82750PB's microcode proc­
essor is 48 bits wide. The Microcode RAM holds 512
instructions. Nine bits of each instruction specify the
address of the next instruction to be executed. Each
instruction fetch reads two instructions (of odd ad­
dress and even address pair) using the upper eight
bits of the 9-bit instruction address. Both the LSB of
the instruction address and a Condition Flag bit, se­
lected from eight possible branching conditions, are
used to determine whether the next instruction to be
executed is the even address instruction or odd ad­
dress instruction, according to the logic table shown
as Table 4-1.

Table 4-1. Microcode Next Instruction Selection

LSBof Condition Next
Address Flag State Instruction

0 o (FALSE) EVEN

0 1 (TRUE) EVEN

1 o (FALSE) ODD

1 1 (TRUE) EVEN

For an unconditional branch, the condition flag
FALSE (which is always zero) is selected; this caus­
es the LSB of the address to be passed through to
select the next instruction: LSB = 0 selects EVEN
and LSB = 1 selects ODD. This allows uncondition­
al branching to any of the 512 instructions in the
RAM. For a conditional branch, the LSB of the ad­
dress is set to a one; this causes the state of the
condition flag to select the next instruction: FALSE
selects the ODD instruction and TRUE selects the
EVEN instruction. Therefore, a conditional branch
jumps to either the odd or even instruction of an
odd/even pair depending on the state of the condi­
tion.

Instruction Word Field Descriptions

Each field of the microcode instruction format is de­
scribed in the following sections.

NADDR-NEXT INSTRUCTION ADDRESS FIELD

This field holds the address of the next instruction to
be .executed. Taking advantage of the fact that the
microcode RAM is physically organized as 256 deep
by 96 wide (two instructions are fetched per read
cycle), a zero delay two-way branch can be
achieved. The only case in which this field is not
used to determine the address of the next instruc­
tion to be executed is when an instruction writes to
the PC. (The term PC refers to the register that holds
the address of the next instruction to be executed.)
When an instruction loads the PC a one instruction
delay occurs before the load takes effect. Therefore,
the instruction pointed to by the next instruction field
of the instruction that loads the PC is executed be­
fore the jump to the new address occurs. This is
shown in Table 4-2.

There are no restrictions on the instruction following
a PC load; it will always be executed, even while
single stepping the processor or if the processor is
frozen on that instruction.

CFSEL-CONDITION FLAG SELECT FIELD

This field selects which condition flag will be used
with the LSB of NADDR to select the next instruction
from the odd/even pair. The condition flag assign­
ment is given in Table 4-3.

1-102

82750PB

Table 4-2. PC Load Example

Addr Instruction NADDR Comments

10 pc = 0 55 Load PC with zero.

55 rO = 1 X This instruction is executed but its next
address field is ignored.

0 r1 = rO 25 PC load takes effect after a one instructon delay,
the result is that r1 = rO = 1.

Table 4-3. Condition Flag Select Field Assignments

Value Flag Description

000 FALSE Select for Unconditional Branch

001 CARRY Carry Out from ALU Condition Flag Latch

010 OVF Overflow from ALU Condition Flag Latch

011 SIGN Sign from ALU Condition Flag Latch

100 ZERO Zero from ALU Condition Flag Latch

101 LCNTZ TRUE if Selected Loop Counter = 0

110 LSB LSB of Data Register rO

111 MSB MSB of Data Register rO

NOTE:
The ALU condition flags (CARRY, OVF, SIGN, and ZERO) are latched in the ALU Condition Flag register. This register is
updated for most-but not all-ALU operations. The remaining flags (LCNTZ, LSB, and MSB) are updated and latched each
cycle.

ASRC-A BUS SOURCE SELECT FIELD

This field selects the element that should drive its
data onto the A bus during the execution of this in­
struction. The mapping for this and the following
three fields is provided in Chapter 6.

ADST-A BUS DESTINATION SELECT FIELD

This field selects which element should latch data
from the A bus during the execution of this instruc­
tion. See ASRC above.

BSRC-B BUS SOURCE SELECT FIELD

Same as ASRC, but for B bus. See ASRC above.

BDST-B BUS DESTINATION SELECT FIELD

Same as ADST, but for B bus. See ADST above.

1-103

CNT -DECREMENT LOOP COUNTER BIT

A one in this bit position causes the selected Loop
Counter (selected by LC,.the loop counter select bit)
to be decremented. The new value of the loop coun­
ter and the updated LeNTZ condition flag are not
ready until the next instruction cycle. Therefore, in a
loop where the loop counter is decremented and
tested for zero in the same instruction (typically in a
one instruction loop), the start value for the loop
counter should be one less than the number of times
the loop should be executed.

LIT-LITERAL SELECT BIT

When this bit is a one, the ASRC and CFSEL fields
are replaced with a 9-bit literal value that is driven as
a source in the least significant 9 bits of the A bus. In
this case, the upper 7 bits of the A bus are forced to
zeros. The mapping of bits from the literal field to the
A bus is shown in Figure 4-1.

NOTE

A conditional branch and a literal on the A bus are
not allowed in the same instruction. A 3-bit literal
can be placed on the B bus in any instruction.

· +_1 an'el® 82750PB

A bus bits 15 14 13 12 ·11 10 9 8 7 6 5 4 3 2 o

Inst. Word Bits
ASRG Field
CFSEL Field

'*- - - - - - Forced to Zero - - - - ~ 17
'*-

16 15 14 13 12
~

11 10 9

'*- -- ~

Figure 4-1. Literal Field Mapping onto a Bus

SHFT -SHIFT CONTROL FIELD

This field controls the bit shifting and byte swapping
logic associated with register rO. The encoding of
this field is given in Table 4-4.

Table 4-4. SHIFT Control Field Coding

SHFT Operation

00 No Shift or Swap Operation

01 Shift rO Right One Bit
Position, Sign Extend

10 Shift rO Left One Bit
Position, Zero Fill

11 Byte Swap the Value
Being Loaded into rO°

*Byte swapping only works when ro is the destination on the
A bus or the B bus. It does not swap data held in ro, only data
being loaded. In order to byte swap data in register ro, ro
must be both a source and destination for either the A or B
bus.

ALUSS-ALUSOURCE SELECT BITS

These two bits are used as enables for the two ALU
input latches. Bit 39 enables the latch that connects
to the A bus; bit 38 enables the latch connected to
the B bus. A one in either bit position causes the
corresponding input latch to latch the value on the
bus to which it is connected (the A or B bus). A zero

on either bit causes the corresponding latch to hold
its current content. This allows the ALU operands
either to come from "eavesdropping" on the A or B
bus transfers occurring in the current instruction cy­
cle or to be held for multiple instruction cycles in
either the A or B input latch.

ALUOP-ALU OPERATION CODE FIELD

This field specifies the ALU instruction to be· per­
formed during the current instruction cycle. The en­
coding of this field is given in Figure 4-2. Normally, at
the end of the instruction execution, the result of the
ALU operation is latched in the ALU output latch that
can be a source on either the A or B buses. Howev­
er, if a Nap is selected for the ALU operation, the
ALU output latch is not latched. The data is held
from the previous instruction. In addition to Nap,
certain other ALU opcodes do not actually perform
ALU operations and therefore, do not latch the ALU
results. They are INT (microcode interrupt) and the
PROF instruction.

LC-LOOP COUNTER SELECT BIT

This bit selects which of the two loop counters is to
be used for decrementing or Loop-Gounter-Zero
conditional branching in the current instruction. A
zero selects loop counter zero and a one selects
loop counter one.

Refer to the Intel 82750PB Microcode Programming
Guide for more information on microcode programming.

1-104

82750PB

Table 4-5. 82750PB Source/Destination Coding

Address (Hex) BDST BSRC ADST ASRC

OxO Null Null \ Null Null

Ox1 alu hwid

Ox2 "dram3 "dram3 cc

Ox3 "dram4 *dram4 maddr

Ox4 *dram3+ + *dram3+ + alu

Ox5 *dram4+ + "dram4+ + cnt cnt

Ox6 *dram3- - *dram3- - cnt2 cnt2

Ox7 *dram4- - *dram4- - .Icnt Icnt

OxB rO rO rO rO

Ox9 -r1 r1 r1 r1

OxA r2 r2 r2 r2

OxB r3 r3 r3 r3

OxC r4· r4 r4 r4

OxD r5 r5 r5 r5

OxE r6 r6 r6 r6

OxF r7 r7 r7 r7

Ox10 rB *in1 mcode3 mcode3

Ox11 r9 *in2 mcode2 mcode2

Ox12 . r10 "stat mcode1 mcode1

Ox13 r11 'stat# pc pc

Ox14 r12 circbuf pixint-c

Ox15 r13 pixint pixint

Ox16 r14 "dram1 'dram1

Ox17 r15 'dram2 "dram2

Ox1B circbuf literal 0 'dram1 + + 'dram1 + +

Ox19 literal 1 'dram2+ + 'dram2+ +

Ox1A *dram1 literal 2 'dram1- - 'dram1- -

Ox1B *dram2 literal 3 'dram2- - 'dram2- -

Ox1C *dram1 + + literal 4 dram1 dram1

Ox1D 'dram2+ + literal 5 dram2 dram2

Ox1E *dram1- - literal 6 dram3 dram3

Ox1F *dram2- - literal 7 dram4 dram4

Ox20 'out1 prof 'out1 . 'in1

1-106

intel~ 82750PB

Table 4·5. 82750PB Source/Destination Coding (Continued)

Address (Hex) BDST BSRC ADST ASRC

Ox21 out1 + + out1 + + "in2

Ox22 out1-lo out1-lo shift-rl "stat

Ox23 out1-hi out1-hi out1-hi "stat#

Ox24 "out2 stat-Io "out2

Ox25 out2+ + stat-hi out2+ +

Ox26 out2-lo out2-lo shift-r

Ox27 out2-hi out2-hi out2-hi

Ox2B out1-c out1-c out1-c

Ox29 in1-c in1-c in1-c

Ox2A in1-lo in1-lo shift-I

Ox2B in1-hi in1-hi in1-hi

Ox2C out2-c out2-c out2-c

Ox2D in2-c in2-c in2-c

Ox2E in2-lo in2-lo

Ox2F in2-hi in2-hi in2-hi

Ox30 stat-ram ra ra ra

Ox31 stat-c r9 r9 r9

Ox32 stat-Io r10 r10 r10

Ox33 stat-hi r11 r11 r11

Ox34 yeven-Io r12 r12 r12

Ox35 yeven-hi r13 r13 r13

Ox36 yodd-Io r14 r14 r14

Ox37 yodd-hi r15 r15 r15

Ox3a ypitch shift cc shift

Ox39 stat-c fent fent

Ox3A vu-Io *dram1 *dram3 *dram3

Ox3B vU-hi *dram2 *dram4 *dram4

Ox3C vupitch *dram1 + + *dram3+ + *dram3+ +

Ox3D vpitch *dram2+ + *dram4+ + *dram4+ +

Ox3E vptr-Io *dram1- - *dram3- - *dram3- -

Ox3F vptr-hi *dram2- - *dram4- - *dram4- -

1-107

82750PB

47 46 45 44 43 42 41 40 39 38 37 38 35 34 33 32 31 30 29 28 27 26 25 24

meode 1 mcode2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

LC SHFT ALU ALU LIT CNT B Bus 8 Bus
bit SEL CNTL OPCODE SS Oesttnstion Source

coding
1 2 5 2 1 1 6 6

OxO cnt nop NOP hold nop nop null null
Oxl cnt2 shftr ZERO latb lit doc alu

~ shfll a tat a 'dram3 'dram3
Ox3 swap b both 'dram4 'dram4

0X4 -a 'dram3 + + ·dramS + +
--::-:-- -b 'dram4 + + 'dram4 + + ~ Ox6 & 'dram3 'dramS
OX? -& 'dram4 'dram4
0X'il &- ,0 rO

~ + + " " """"""OxA""" ,2 ,2
--;:-::- -I r3 ,3
~ axc - ,4 ,4

""""OXil - < ,5 ,5

'--axE r6 ,6

~ + < ,7 ,7 r--oxw + ,8. 'in1

: Oxl1 - r9 '1n2

~ + ,,0 'stat
Ox13 a '11 'stat#

I-oxi4 -b ,12 circbuf

: Ox15 a + + ,13

Ox16 b + + '14

i Ox17 a- ,15

~ b circbuf literatO
Ox19 int literal 1

~ prof 'dff;lml literal 2

: Ox18 a' 'dram2 literal 3
Ox1C b' 'dram1 + + literal 4 r--ox;-o + < 'dram2 + + literalS

: OxlE . + J 'dram1 literale
OxlF J 'dram2 literal 7

Iox2o 'outl prof

~ out1 + +
Ox22 out1 10 out1 10

~ 0011 hi outl hi

~ 'out2 stat·lo

Ox25 out2 + + stat·hi

0X2'6 ou12 10 oul2 10

~ oul2 hi ou12 hi

0x28 outl c outl c

~ in1 c in1 c

~ in1 10 in1 10
Ox28 in1 - hi in1 - hi

r--oFc- oul2 - c ou12 c

~ in2 c in2 c

Ox2E in2 10 in2 10

fox2F in2 hi 1n2 - hi

: Ox30 stat ,am ,8

Ox31 stat c ,9

f-ox32 stal 10 '10

: Ox33 stat hi ,11

Ox34 yeven 10 ,12

r-oxss yaven hi ,13

I~ yodd - 10 ,14

Ox37 yodd hi ,15

~ ypitch shiH

~
stat c

Ox3A vu 10 -dram1

0x3il vu - hi ·dram2

0X3C vupilch -dram1 + +
~ vpitch ·dram2 + +

~ vplr 10 ·dram1

~ vpt, hi ·dram2

Figure 4·2, 82750PB Instruction Word Format

1-108

int:eL

23 22

7 6

bit
coding

OxO

Oxl

Ox2

Ox3

Ox4

Ox5

Ox6

Ox7

Ox8

Ox9

OxA

Ox8

OxC

OxD

OxE

OxF

Oxl0

Ox11

Ox12
Ox13

Ox14

0)(15

Ox16

Ox17
Ox16

Ox19
OxlA

Ox18

OxiC

Ox10

OxlE
OxlF

0)(20

Ox21

Ox22

0)(23

0)(24

0)(25

Ox26

Ox27

Ox28

Ox29

Ox2A
Ox28

Ox2C
Ox2D

Ox2E

Ox2F

0)(30

0)(31

Ox32

Ox33

0)(34

0)(35

0)(36

Ox37

Ox38

0)(39

Ox3A

Ox38

Ox3e
Ox30

Ox3E

Ox3F

82750PB

21 20 19 18 17 16 I 15 14 13 12 11 10 9 8 7 6

meade 2 I meade 3

5 4 3 2 1 o I 15 14 13 12 11 10 9 8 7 6

ABus A Bus Cond Flag
Destination Source Select

6 6 3

null null FALSE

hwid CARRY

cc OVERFLOW

moddr SIGN

alu ZERO

cnl cnt CNTO

cnt2 cnt2 LS8rD

lcnt lent MS8rD

rO rD

rl rl

r2 r2
(.J (.J

r4 r4

r5 r5

r6 rS

r7 r7

mcode3 mcode3

mcode2 mcode2
meade1 meade1

pc pc

pixint - c

pixint pixin!

'~ram1 'dram1
'dram2 'dram2

'dram1 + + 'dram1 + +
'dram2 + + *dram2 + +
'dram1 'dram1 --
'dram2 - - *dram2 --

dram1 draml
dram2 dram2

dram3 dram3
dram4 dram4
'out1 'in1

oun + + 'i02
shift - rI 'stat
outl hi 'stat#

'out2
out2 + +
shift - r

out2 - hi

outl - c
in1 - c

shih -I
in1 hi
out2 - c

in2 - c

in2 - hi

r8 r8

r9 r9

riO riO

rl1 rll

r12 r12

r13 r13

r14 r14

r15 r15

cc shift
tent fent

'dram3 'drama
'dram4 'dram4

'dram3 + + 'dram3 + +
'dram4 + + 'dram4 + +
'dram3 'dram3
'dram4 - 'dram4 -

Figure 4-2. 82750PB Instruction Word Format (Continued)
1-109

5 4 3 2 1 0

5 4 3 2 1 0

Next
Address

9

"

82750PB

5.0 ELECTRICAL DATA

Maximum Ratings

Table 5·1 is a stress rating only, and functional operation
at the maximums is not guaranteed. Functional operat·
ing conditions are given in the DC and AC Characteris·
tics (Tables 5·2, 5·3, 5·4, and 5·5).

DC Characteristics

Exposure to Maximum Ratings may affect device re~
liability. Furthermore, although the 82750PB con·
tains protective circuitry to resist damage from static
electrical discharge, always take precautions to
avoid high static voltages or electric fields.

Table 5-1. Absolute Maximum Requirements

Condition Maximum Requirement

Case Temparature under Bias to 110°C

Storage Temperature to 150°C

Voltage on Any Pin with Respect to Ground to Vee + 0.5V

Supply Voltage with Respect to Vss V to + 6.5V

Table 5·2. DC Characteristics = O°C to 90°C

Symbol Parameter Unit Notes

Input lOW Voltage V (Note 1)

Input HIGH Voltage V (Note 1)

Output lOW Voltage V IOL = 4.0 mAP)

V IOH = -'1.0 mAP)

+10 IlA VSs<"iN<Vee

+10 IlA VSs<"iN<Vee

lee Power 8.HP 150 200 mA 25 MHz(2)

10.0 pF Fe =1 MHz(3)

COUT Output Capacitance 12.0 pF Fe = 1 MHz(3i

CCLKIN ClKIN Input Capacitance 20.0 pF Fe = 1 MHz(3)

NOTES:
1. Measured with elKIN = 8 MHz.
2. Typical current value measured under typical conditions. Maximum current value guaranteed with 50 pF maximum output
loading.
3. Not 100% tested.

HfO

82750PB

AC Characteristics

Table 5-3. AC Characteristics at 25 MHz" Vee = 5V ± 1 0%, TeAsE = O°C to + 90°C, CL = 50 pF

Symbol Parameter Min Max Unit Figure Notes

Frequency 8 25 MHz 1xCIock

t, ClKIN Period 40 125 ns 5-1

t2 ClKIN High Time ,. 14 26 ns 5-1 (Note 1)
..'

t3 ClKIN low Time 14 26 ns 5-1 (Note 1)

t4 ClKIN Fall Time 4 os 5-1

t5 ClKIN Rise Time 4 ns 5-1

t6a A[31 :2], BE # [3:0], WE #, 3 25 os ." 5-2
0[31 :0], HINT #, PMFRZ #
Valid Delay

t6b MREQ #, TRNFR #, RFSH #, 3 18 OS 5-2
NXTFST #, HBUSEN #,

I HRDY #, Valid Delay '.'

t7 A[31 :2], BE # {3:0], WE#,
.. , 30 ns 5-2 (Note 2)

0[31 :0] Float Delay .

t8 MRDY # Setup - I 10 •. ' .•• " ns 5-3

t9 MRDY # Hold ".
.'

.,~ .. "., os 5-3 '.

tlO HREQ #, VBUSL3:0},RESE"ffti
HAlEN #, H~LT#Setup

r, . 8 os 5-3

t" HREQ #, VBlJS[3:01, RESET #, 6 ns 5"3
HAlEN #, HALT # Hbld

t'2 A[8:2], BE # [3:0], WE #, 4 ns 5-3 (Note 3)
0[31 :0] Setup

t'3 A[8:2], BE # [3:0], WE #, 6 ns 5-3 (Note 3)
0[31 :0] Hold

t'4 HREG #, HRAM # Setup 10 ns 5-3

t'5 HREG #, HRAM # Hold 6 ns 5-3

t'6 ClKOUT Valid Delay 18 ns 5-4

t17 ClKOUT High Time 1/2t, - 6 1/2t, +6 ns 5-4

NOTES:
1. This assumes 40 ns period. For other speeds these values should fall between 40% to 60% duty cycle.
2. Not 100% tested. Guaranteed by design characterization.
3. Inputs must remain valid throughout all cycles of host accesses. See Figures 3·6 through 3-8.
4. All A.C. specifications are measured at the 1.5V crossing point with a 50 pF load.

1-111

intel., 82750PB

ClKIN

Figure 5·1. Clock Waveforms

CLKlN 1.SV

NOTES:
Iy = 18,110,112,114 (selup times)
tz = t9,t11,t13,t15(holdtimes)

I
I
I
I foo:.E---+' -- 17 ~: ~ 16a,\6b ~ I

I I _ ____ I .~ ____ "' I

~' ~ ~ ___ ...J~1.5V ~

Figure 5·2. Output Waveforms

Figure 5·3. Input Waveforms

ClKINfi
116

CLKOUT .

117
240854-14

Figure 5·4. CLKOUT Waveforms

1-112

240854-19

240854-20

240854-21

int'eL 82750PB

Output Delay and Rise Time Versus Load Capacitance

Typical
Output

nom+6

nom+4

Dalay nom+2

(no)

nom

nom~

/
/
/

/
V

V
50 15' 100 125 150

NOTE:
This graph will not be linear outside of the Ct range shown,
nom = nominal value given in A.C. Characteristics table.

Cl (picofarads)
240854-22

Figure 5-5. Typical Output Valid Delay Versus Load Capacitance under Worst Case Conditions

~oo 4~--~"F-~~~~~
Tlm. (ns)
O.,BV.2.0V 3 r--.,.;'r--\-'---c\-,--"-il'-:--l

d Cl (picofarads)

240854-23

NOTE:
This graph will not be linear outside of the CL range shown.

Figure 5-6. Typical Output Rise Time Versus Load Capacitance under Worst Case Conditions

1-113

infel .. 82750PB

6.0 MECHANICAL DATA

Packaging Outlines and Dimensions

Intel packages the 82750PB in a Plastic Quad Flat Pack (PQFP). Table 6-1 gives the symbol list for the PQFP.

Table 6-1 PQFP Symbol List

Letter or
Description of Dimensions

Symbol

A Package Height: Distance from Seating Plane to Highest Point of Body

A1 Standoff: Distance from Seating Plane to Base Plane

DIE Overall Package Dimension: Lead Tip to Lead Tip

D1/E1 Plastic Body Dimension

D2/E2 Bumper Distance

D3/E3 Footprint

L1 Foot Length

N Total Number of Leads

The PQFP has the following specifications:

1. All dimensions and tolerances conform to ANSI Y14.5M-1982.

2. Datum plane -H- is located at the mold parting line and coincident with the bottom of the lead where lead
.exits plastic body. .

3. Datums A-B and -D- are to be determined where center leads exit plastic body.at datum plane -H-.

4. Controlling dimension is the inch.

5. Dimensions D1. D2. E1. and E2 are measured at the mold parting line and do not include mold protrusion.
Allowable mold protrusion is 0.18 mm (0.007 in.) per side.

6. Pin 1 identifier is located within one of the two zones indicated.

7. Measured at datum plane -H-.

8. Measured at seating plane datum -C-.

1-114

intel· 82750PB

Table 6-2 provides outline characteristics for 0.025 in. pitch.

Table 6·2. Intel Case Outline Drawings for PQFP at 0.025 Inch Pitch

Symbol Description Min Max

N Leadcount 132 132

A Package Height 0.160 0.170

A1 Standoff 0.020 0.030

D,E Terminal Dimiension 1.075 1.085

D1, E1 Package Body 0.0947 0.953

D2,E2 Bumper Distance 1.097 1.103

D3,E3 Lead Dimension 0.800 REF 0.800 REF

L1 Foot Length 0.020 0.030

1---- 02 ----I
r=~~~~~"r-~~~~~

I~-----D----~~~~~~~~~~~~~~~

PLANE

E2 E E1

(• BB4)

240854-24

Figure 6·1. Principal Dimensions of the 82750PB in the 132·Lead PQFP Package

1-115

82750PB

240854-25

mm (inch)

Figure 6~2. Detailed Dimensions of the 827S0PB in the 132-Lead PQFP-Moldlng Details

mm (inch)

SEE DETAIL L

~--I+--SEE DETAILJ

"'1---- 03/E3 -----'1

..... ---- D4/E4 ----­

~-------D/E----~-
240854-26

Figure 6-3. Detailed Dimensions of the 82isOPB in the 132-Lead PQFP-Terminal Details

1-116

mm (inch)

mm (inch)

i

1. 32 <. "52)
1.22 (.£148)

82750PB

1.32 <.fZl52)
1.22 (.948)

121.99 (.9135) MIN. j
2 .IiJJ <'(118111) ~
1.93 <'(1176)

•.•• (.B35) MIN.I
~ E2

(.BSra)
(.fil76)

"", 02 ----c::04
240854-27

Figure 6-4. 132-Lead PQFP Mechanical Package Detail-Protective Bumper

1$1 B.13 <'B"S)@ICIA®-B® lo®lt9\
8.41 (.SlEo)
8.2S (.BBS)

B.20 (.SBS)
"--""'S .14 (."S5>

1.31 < .Bl2) -I t­
S.2/i1 <.SSS) =.. D4/E4--....:ot

I~.~I "=-.~211J:::--:"(~. S=-:::9~8':'"") ®:::::M~I~c I~A~®=:---=B~®~I O:-:O=®IInvm.

DETAIL J DETAIL L

8 CEQ.

" CEG.

Figure 6-S.132-Lead PQFP Mechanical Package.Detail-Typical Lead

1-117

240854-28

82750PB

NOTES.

AlL DII'£NSIONS AKl TOlERANCES CoPf"ORH TO ANSI Y14.Sf1-1982

oATI.I1 PLAAE gg LOCATED AT TI€ P10lD PARTING LItE AI'()
COIIoCIDENT 11TH THE BOTTOt1 ~ TI€ LEAD MRE LEAD EXITS PLASTIC BODY

DATI.I1S (!;II AI'() g:a TO BE DET~ltED MAE CENTER LEADS EXIT
PLASTIC BOOYAT OA~ PLAtE 6B3 .

CONTROLLING DII'£NSION,· lloCH

Oll'ENSlciNs 01, 02, El AI'() E2 AIlE I'EA8UI£0 AT TI€ P1Ol0 PARTING LItE.
01 AKl El 00 NOT 1r«:L1AlE AN ALLOIABLE P1Ol0 PROTRUSION ~ '.18 ""
<.!J!7 !N) PE.q eI~. 02 A."!) 0 CO t«)T tt«:L\AJE A TOTAL ALLOIiIA8LE
P1Olo PROTRUSION r7 '.18"" <..,7 IN) AT I'1AXI/'U'I PACKAGE SIZE.

& PIN 1 IDENTIFIER IS LOCATED 'ITHIN atE ~ TI€ TIO ZatES II'()ICATEO

1-118

240854-29

82750PB

Package Thermal Specifications T A (the ambient temperature) can be calculated
from eCA (thermal resistance from case to ambient)
with the following equation: The 82750PB is specified for operation when T G

(the case temperature) is within the range of O·G to
90·G. T G may be measl.lred in any environment to
determine whether the 82750PB is within specified
operation range. The case temperature should be
measured at the center of the top surface.

T A = T c - P • ()CA

Typical values for eGA at various airflows are given
in Table 6-3 for the 132-lead PQFP package. Table
6-4 shows the maximum T A allowable (wihout ex-,
ceeding T d at various airflows. The power dissipa­
tion (P) is calculated by using the typical supply cur­
rent at 5V as shown in Table 5-2.

Table 6·3. Thermal Resistance ("C/W)

eCA Versus Airflow-ft/mln (m/sec)

Package
0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

132-Lead
26.0 17.5

PQFP
14.0 11.5 9.5 8.5

Table 6·4 Ma'ximum T A at Various Airflows (·C)

T A Versus Airflow-ft/min (m/sec)

Package
Frequency 0 200 400 600 800 1000

(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07)

132-Lead
25 70

PQFP
76 80 81 83 84

1-119

i860™ Microprocessor Family 2

II

i860™ XP MICROPROCESSOR
• Parallel Architecture that Supports Up

to Three Operations per Clock
- One Integer or Control Instruction
- Up to Two Floating-Point Results

• High Performance Design
- 40/50 MHz Clock Rate
-100 Peak Single Precision MFLOPS
- 75 Peak Double Precision MFLOPS
- 64-Bit External Data Bus
- 64-Bit Internal Code Bus
-128-Bit Internal Data Bus

• High Integration on One Chip
- 32-Bit Integer and Control Unit
- 32/64-Bit Pipelined Floating-Point
- 64-Bit 3-D Graphics Unit
- Paging Unit with 64 Four-Kbyte and

16 Four-Mbyte Pages
- 16 Kbyte Code Cache
- 16 Kbyte Data Cache

113 Fast, Multiprocessor-Oriented Bus
- Burst Cycles Move 400 Mbyte/Sec
- Hardware Cache Snooping
- MESI Cache Consistency Protocol
- Supports Second-Level Cache
- Supports DRAM

• Compatible with Industry Standards
- ANSIIIEEE Standard 754-1985 for

Binary Floating-Point Arithmetic
-Intel 386™lintei 486™/i860TM Data

Formats and Page Table Entries
- Binary Compatible with i860™ XR

Applications Instruction Set
- Detached Concurrency Control Unit

(CCU) Supports Parallel Architecture
Extensions (PAX)

- JEDEC 262-pin Ceramic Pin Grid
Array Package

-IEEE Standard 1149.1/06 Boundary­
Scan Architecture

ill Easy to Use
- On-Chip Debug Register
-UNIX'/860
- APX Attached Processor Executive
- Assembler, Linker, Simulator,

Debugger, C and FORTRAN
Compilers, FORTRAN Vectorizer,
Scalar and Vector Math Libraries

- Graphics Libraries

The Intel i860 XP Microprocessor (order code A80860XP) delivers supercomputing performance in a single
VLSI component. The 32/64-bit architecture of the i860 XP microprocessor balances integer, floating point,
and graphics performance for applications such as engineering workstations, scientific computing, 3-D graph­
ics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RiSe design
techniques, multiprocessor. support, pipelined processing units, wide data paths, large on-chip caches, 2.5
million transistor design, and fast O.8-micron silicon technology.

A51- A3 D63 - DO CONTROL

Figure 0.1. Block Diagram

'UNIX is a registered trademark of UNIX System Laboratories, Inc.
Intel, i860, Intel386 and Intel486 are trademarks of Intel Corporation.

2-1

240874-1

November 1991
Order Number: 240874-002

i860™ XP MICROPROCESSOR

CONTENTS PAGE

1.0 FUNCTIONAL DESCRIPTION 2-9

2.0 PROGRAMMING INTERFACE 2-10

2.1 Data Types 2-10

2.1.1 Integer 2-10

2.1.2 Ordinal 2-10

2.1 .3 Single- and Double-Precision
Real i .•.•.•. 2-10

2.1.4 Pixel 2-11

2.2 Register Set 2-12

2.2.1 Integer Register File 2-12

2.2.2 Fioating-Point Register Fiie .. 2-12

2.2.3 Processor Status Register ... 2-12

2.2.4 Extended Processor Status
Register 2-14

2.2.5 Data Breakpoint Register 2-16

2.2.6 Directory Base Register 2-16

2.2.7 Fault Instruction Register 2-17

2.2.8 Floating-Point Status
Register 2-17

2.2.9 KR, KI, T, and MERGE
Registers 2-19

2.2.10 Bus Error Address
Register 2-20

2.2.11 Privileged Registers 2-20

2.2.12 Concurrency Control
Register 2-20

2.2.13 NEWCURR Register 2-21

2.2.14 STAT Register 2-21

2.3 Addressing 2-21

2.4 Virtual Addressing 2-22

2.4.1 Page Frame 2-22

2.4.2 Virtual Address 2-23

2.4.3 Page Tables 2-23

2.4.4 Page-Table Entries 2-24

2.4.4.1 Page Frame Address 2-24

2.4.4.2 Present Bit 2-25

2.4.4.3 Writable and User Bits .. 2-25

2.4.4.4 Write-Through Bit 2-25

2.4.4.5 Cache Disable Bit 2-25

2-2

CONTENTS PAGE

2.4.4.6 Accessed and Dirty
Bits 2-26

2.4.4.7 Page Tables for Trap
Handlers 2-26

2.4.4.8 Combining Protection of
Both Levels of Page Tables ... 2-26

2.4.5 Address Translation
Algorithm 2-26

2.4.6 Address Translation Faults ... 2-27

2.5 Detached CCU 2-27

2.5.1 DCCU Initialization 2-27

2.5.2 DCCU Addressing 2-27

2.5.3 DCCU Internals 2-28

2.6 Instruction Set 2-28

2.6.1 Pipe lined and Scalar
Operations 2-30

2.6.1.1 Scalar Mode 2-31

2.6.1.2 Pipelining Status
Information 2-31

2.6.1.3 Precision in the
Pipelines 2-31

2.6.1.4 Transition between
Scalar and Pipe lined
Operations 2-31

2.6.1.5 Pipelined Loads 2-32

2.6.2 Dual-Instruction Mode 2-32

2.6.3 Dual-Operation Instructions .. 2-33

2.7 Addressing Modes 2-34

2.8 Traps and Interrupts 2-34

2.8.1 Trap Handler Invocation 2-34

2.8.2 Instruction Fault 2-34

2.8.2.1 Lock Protocol 2-35

2.8.2.2 Using PT and P! Bits 2-35
2.8.3 Floating-Point Fault 2-36

2.8.3.1 Source Exception
Faults 2-36

2.8.3.2 Result Exception
Faults 2-36 .

2.8.4 Instruction Access Fault 2-37

2.8.5 Data Access Fault 2-37

2.8.6 Parity Error Trap 2-38

2.8.7 Bus Error Trap 2-38

CONTENTS PAGE CONTENTS PAGE

2.8.8 InterruptTrap 2-38 4.2.11 ClK (Clock) 2-51

2.8.9 Reset Trap 2-38 4.2.12 CTYP (Cycle Type) 2-52

2.9 Debugging 2-38 4.2.13 D/C# (Data/Code) 2-52

3.0 ON-CHIP CACHES 2-39
4.2.14 D63-DO (Data Pins) 2-52

3.1 Address Translation Caches 2-39
4.2.15 DP7 - DPO (Data Parity) 2-52

3.2 Internal Instruction and Data
Caches 2-41

4.2.16 EADS # (External Address
Status) 2-52

3.2.1 Data Cache 2-42
4.2.17 EWBE # (External Write

Buffer Empty) 2-52
3.2.1.1 Data Cache Update

Policies 2-42
4.2.18 FLiNE # (Flush Line) 2-52

3.2.2 Instruction Cache 2-43

3.2.3 Cache Replacement
Algorithm 2-43

3.2.4 Cache Consistency
Protocol 2-43

4.2.19 HIT # (Cache Inquiry Hit) 2-53

4tFn~)H.I:.~.~.~~~t.~~~~f.i~~ 2-53 II
4.2.21 HlDA (Bus Hold

Acknowledge) 2-53

3.2.4.1 Data Cache States 2-43
4.2.22 HOLD (Bus Hold) 2-53

3.2.4.2 Write-Once Policy 2-44

3.2.4.3 Locked Access 2-44

4.2.23 INV (Invalidate) 2-53

4.2.24 INT /CS8 (Interrupt/Code-
Size Eight Bits) 2-53

3.3 Internal Cache Consistency 2-45 4.2.25 KBO, KB1 (Cache Block) 2-54
3.3.1 Address Space

Consistency 2-45

3.3.2 Instruction Cache

4.2.26 KEN # (Cache Enable) ., 2-54

4.2.27 lEN (Data length) 2-54

Consistency 2-46 4.2.28 lOCK# (Address lock) 2-54

3.3.3 Page Table Consistency 2-46 4.2.29 M/IO# (Memory-I/O) 2-55

3.3.4 Consistency of
Cacheability 2-47

4.2.30 NA # (Next Address
Request) 2-55

3.3.5 load Pipe Consistency 2-47 4.2.31 NENE# (Next Near) 2-55

3.3.6 Summary 2-47 4.2.32 PCD (Page Cache
Disable) 2-55

4.0 HARDWARE INTERFACE 2-47 4.2.33 PCHK # (Parity Check) 2-55
4.1 Pins Overview 2·47 4.2.34 PCYC (Page Cycle) 2-56
4.2 Signal Description 2-50 4.2.35 PEN # (Parity Enable) 2-56

4.2.1 A31-A3 (Address Pins) 2-50 4.2.36 PWT (Page
4.2.2 ADS # (Address Status) 2-50 Write-Through) 2-56

4.2.3 AHOlD (Address Hold) 2-50 4.2.37 RESET (System Reset) 2-56

4.2.4 BE7#-BEO# 4.2.38 RSRVD, SPARE 2-56
(Byte Enables) 2-50 4.2.39 TCK (Test Clock) 2c56

4.2.5 BERR (Bus Error) 2-50 4:2.40 TDI (Test Data Input) 2-56
4.2.6 BOFF # (Back-Off) 2-50 4.2.41 TDO (Test Data Output) 2-56
4.2.7 BRDY # (Burst Ready) 2-51 4.2.42 TMS (Test Mode Select) 2-57
4.2.8 BREQ (Bus Request) 2-51 4.2.43 TRST# (Test Reset) 2-57
4.2.9 BYPASS# (Bypass) 2-51

4.2.10 CACHE# (Cacheability) 2-51
4.2.44 Vcc (System Power) and Vss

(Ground) 2-57

4.2.45 VccClK (Clock Power) 2-57

2-3

CONTENTS PAGE CONTENTS PAGE

4.2.46 WB/WT # (Write-Back/ 5.5 RESET Initialization 2-86
Write-Through) 2-57

4.2.47W/R# (Write/Read) 2-57 6.0 TESTABILITy 2-87

6.1 Test Architecture 2-87
5.0 BUS OPERATION 2-57

5.1 Bus Cycles 2-57
6.2 Test Data Registers 2-87

6.3 Instruction Register 2-88
5.1.1 Single-Transfer Cycle 2-58 6.4 TAP Controller 2-89
5.1.2 Burst Cycles 2-58 6.4.1 Test-Logic-Reset State 2-89
5.1.3 Pipelined Cycles 2-61 6.4.2 Run-Test/Idle State 2-90
5.1.4 Interrupt Acknowledge

Cycles 2-63

5.1.5 Special Bus Cycles 2-64

5.2 Bus Arbitration 2-65

6.4.3 Select-OR-Scan State 2-90

6.4.4 Select-IR-Scan State 2-91

6.4.5 Capture-DR State 2-91

5.2.1 HOLD and HLDA
6.4.6 Shift-DR State 2-91

Arbitration 2-65 6.4.7 Exit1-DR State 2-91

5.2.2 Bus Cycle Back-Off and 6.4.8 Pause-DR State 2-91
Restart 2-66 6.4.9 Exit2-DR State 2-91
5.2.2.1 Cycle Back-Off 2-66 6.4.1 o Update-DR State 2-91
5.2.2.2 Cycle Restart , 2-67 6.4.11 Capture-IR State 2-91
5.2.2.3 Late Back-Off Modes ... 2-67 6.4.12Shift-IR State 2-92
5.2.2.4 One-Clock Late Back-Off

Mode 2-67

5.2.2.5 Two-Clock Late Back-Off

6.4.13 Exit1-IR State 2-92

6.4.14 Pause-IR State 2-92

Mode 2-69 6.4.15 Exit2-IR State 2-92

5.3 Cache Inquiry Cycles 6.4.16 Update-IR State 2-92
(Snooping) , 2-71 6.5 Boundary Scan Register Cell
5.3.1 Inquiry Write-Back Cycles 2-73 Ordering 2-92

5.3.2 Snooping Responsibility 6.6 TAP Controller Initialization 2-94
Limits , 2-75

5.3.2.1 Inquiry for a Line Being
7.0 MECHANICAL DATA 2-94

Cached 2-75 8.0 PACKAGE THERMAL
5.3.2.2 Inquiry for a Line Being SPECiFiCATIONS 2-102

Replaced 2-77

5.3.3 Write Cycle Reordering Due to
Buffering 2-79

9.0 ELECTRICAL DATA 2-103

9.1 Absolute Maximum Ratings 2-104

5.3.4 Strong Ordering Mode 2-80 9.2 D.C. Characteristics 2-104

5.3.5 Scheduling Inquiry Write-Back 9.3 A.C. Characteristics 2-105
Cycles 2-81 9.4 Component Buffer Model 2-111
5.3.5.1 Choosing between

FLlNE# and BOFF# 2-81
9.4.1 First Order Electrical Buffer

Model 2-111
5.3.5.2 Reordering Write-Backs

with FLlNE# 2-82
9.4.2 First Order Electrical Model

Parameter Values 2-111
5.3.5.3 Reordering Write-Backs

with BOFF # 2-84
9.4.3 Package Parameters 2-111

5.4 The LOCK # Cycle Attribute 2-84
9.4.4 Board.1 nterconnects 2-112

2-4

CONTENTS PAGE

10.0 INSTRUCTION SET 2-120

10.1 Instruction Definitions in
Alphabetical Order 2-121

10.2 Instruction Format and
Encoding 2-130

10.2.1 REG-Format Instructions .. 2-130

10.2.2 CTRL-Format
Instructions 2-133

10.2.3 Floating-Point Instruction
Encoding 2-133

10.3 Instruction Timings 2-136

CONTENTS PAGE

10.4 Instruction Characteristics 2-142

10.5 Software Compatibility 2-145

10.5.1 Required Changes 2-145

10.5.2 Performance
Optimizations 2-145

10.5.3 New Features 2-146

10.5.4 Notes 2-146

11.0 REVISION HISTORY 2-146

INDEX 2-147

2-5

CONTENTS PAGE CONTENTS PAGE

FIGURES Figure 5.6 Different Lengths of Burst
Cycles 2-61

Figure 0.1' Block Diagram 2-1 Figure 5.7 Pipelined Cache Line Fills ... 2-63
Figure 2.1 Real Number Formats 2-11 Figure 5.8 Pipelined Back-to-Back Read
Figure 2.2 Pixel Format Example " ... 2-12 and Write Cycles 2-64

Figure 2.3 Registers and Data Paths ... 2-13 Figure 5.9 Example Interrupt

Figure 2.4 Processor Status Register ... 2-14

Figure 2.5 Extended Processor Status

Acknowledge Sequence 2-65

Figure 5.10 HOLD/HLDA Handshake ... 2-66

Register ; 2-15 Figure 5.11 Normal Back-Off 2-68

Figure 2.6 Directory Base Register 2-16 Figure 5.12 One-Clock Normal

Figure 2.7 Floating-Point Status Back-Off 2-68

Register 2-18

Figure 2.8 Concurrency Control
Register 2-20

Figure 5.13 Fastest Nonpipelined Cycles
in One-Clock Late Back-Off
Mode 2-69

Figure 2.9 . Concurrency Status
Register 2-21

Figure 5.14 One-Clock Late Back-Off
Mode (Case 1) 2-70

Figure 2.10 Little and Big Endian Memory
Transfers 2-22

Figure 5.15 One-Clock Late Back-Off
Mode (Case 2) 2-70

Figure 2.11 Formats of Virtual
Addresses 2-23

Figure 5.16 One-Clock Late Back-Off
Mode (Case 3) 2-71

Figure 2.12 Address Translation 2-23 Figure 5.17 Two-Clock Late Back-Off
Mode 2-71

Figure 2.13 Formats of Page Table
Entries 2-24 Figure 5.18 Inquiry Miss Cycle 2-72

Figure 2.14 Pipelined Instruction
Execution 2-30

Figure 5.19 Fastest Inquiry Cycles
(Miss and Hit) 2-73

Figure 2.15 Dual-Instruction Mode
Transitions (1 of 2) 2-32

Figu're 5.20 Inquiry Hit Cycle with
Write-Back 2-74

Figure 2.15 Dual-Instruction Mode
Transitions (2 of 2) 2-32

Figure 5.21 Snoop Responsibility Pickup
(Nonpipelined Cycle) 2-76

Figure 2.16 Dual-Operation Data
Paths 2-33

Figure 5.22 Snoop Responsibility Pickup
(Pipelined Cycle) 2-77

Figure 3.1 4K TLB Organization 2-40

Figure 3.2 4M TLB Organization 2-40

Figure 5.23 Latest Snooping of
Write-Back (Not Late
Back-Off Mode) 2-78

Figure 3.3 Cache Address Usage 2-41 Figure 5.24 Latest Snooping of Write-
Figure 3.4 Data Cache Organization 2-42

Figure 3.5 Instruction Cache
Organization 2-43

Figure 4.1 Signal Grouping 2-49

Back (One-Clock
Late Back-Off Mode) 2-78

Figure 5.25 Latest Snooping of Write-
Back (Two-Clock Late Back-
Off Mode) 2-79

Figure 5.1 Timing Diagram
Conventions 2-57

Figure 5.26 Write Reordering due to
Buffering 2-80

Figure 5.2 Fastest Single-Transfer
Cycles 2-58

Figure 5.3 Single-Transfer Cycles with
Wait States 2-59

Figure 5.4 Basic Burst Cycle 2-60

Figure 5.27 Timing of EWBE# 2-81

Figure 5.28 Cycle Reordering via FLlNE#
(No Ongoing Burst) 2-82

Figure 5.29 Cycle Reordering via FLlNE#
(Ongoing Burst) 2-83

Figure 5.5 Slow Burst Cycle 2-60

2-6

CONTENTS PAGE
Figure 5.30 Cycle Reordering via BOFF #

(Ongoing Burst) 2-84

Figure 5.31 lOCK# Timing 2-85

Figure 5.32 Reset Activities 2-86

Figure 6.1 Format of DID Register 2-88

Figure 6.2 logical Structure of BSR
Register 2-88

Figure 6.3 TAP Controller State
Diagram 2-90

Figure 6.4 Boundary Scan Register
Ordering 2-93

Figure 7.1 i860TM XP Microprocessor
Pin Configuration-View from
Pin Side 2-95

Figure7.2 i860TM XP Microprocessor
Pin Configuration-View from
Top Side 2-96

Figure 7.3 262-lead Ceramic PGA
Package Dimensions 2-101

Figure 8.1 Icc Derating with Case
Temperature 2-103

Figure 9.1 ClK, Input, and Output
Timings 2-107

Figure 9.2 TAP Signal Timings 2-107

Figure 9.3 Typical Output Delay vs load
Capacitance 2-108

CONTENTS PAGE
. Figure 9.4 Typical Output Delay vs.

2-7

load Capacitance under
Worst-Case Conditions 2-108

Figure 9.5a Typical Slew Time vs. load
Capacitance under Worst­
Case Conditions (Rising
Voltage) 2-109

Figure 9.5b Typical Slew Time vs. load
Capacitance under Worst­
Case Conditions (Falling
Voltage) 2-109

Figure 9.6 Typical Icc vs. Frequency .. 2-110

Figure 9.7a Output Model 2-111

Figure 9.7b Input Model 2-111

Figure 9.8 Package Model 2-112

Figure 9.9a Output Buffer and Package
Model 2-112

Figure 9.9b Input Buffer and Package
Mod.el 2-112

Figure 9.10 Transmission Line Model ... 2-112

Figure 10.1 REG-Format Variations 2-131

Figure 10.2 Core Escape Instructions .. 2-132

Figure 10.3 CTRl-Format Instructions .. 2-133

Figure 10.4 Floating-Point Instruction
Encoding 2-134

CONTENTS PAGE

TABLES

Table 2.1 Pixel Formats 2-11

Table 2.2 Values of PS 2-14

Table 2.3 Values of RB 2-17

Table 2.4 ValuE;ls of RC 2-17

Table 2.5 Values of RM 2-18

Table 2.6 Values of LRP1 and LRPO ... 2-19

Table 2.7 Values of CO and DO 2-20

Table 2.8 CCU Addresses 2-28

Table 2.9 Instruction Set (1 of 2) 2-29

Table 2.9 Instruction Set (2 of 2) 2-30

Table 2.10 Types of Traps 2-35

Table 2.11 Register and Cache Values
after Reset 2-39

Table 3.1 MESI Cache Line States 2-43

Table 3.2 Internally Initiated Cache
State Transitions 2-44

Table 3.3 Inquiry-Initiated Cache State
Transitions 2-44

Table 3.4 Summary of Cache Flushing
And Invalidation 2-47

Table 4.1 Pin Summary 2-48

Table 4.2 ADS# Initiated Bus Cycle
Definitions 2-49

Table 4.3 Memory Data Transfer Cycle
Types 2-49

Table 4.4 Cycle Length Definition 2-49

Table 4.5 EADS# Sample Time 2-52

Table 5.1 Burst Order for Cache Line
Transfers 2-61

Table 5.2 Pipeline Cycle
Compatibility 2-62

Table 5.3 Encoding of Special Bus
Cycles 2-65

2-8

CONTENTS PAGE
Table5.4 Inquiry for a Line being

Cached 2-75

Table 5.5 Output Pin Status during
Reset 2-86

Table 6.1 TAP I nstruction Encoding 2-88

Table 6.2 Registers Active by
Instruction 2-89

Table 6.3 Instruction Functions 2-94

Table 7.1 Pin Cross Reference by
Location , 2-97

Table 7.2 Pin Cross Reference by Pin
Name 2-98

Table 7.3 Ceramic PGA Package

Table 8.;
Table 8.2

Table 9.1
Table 9.2

Table 9.3

Table 9.4

Table 9.5

Dimension Symbols 2-100

Thermai Resistance 2-102

Maximum T A at Various
Airflows 2-102

D.C. Characteristics 2-104

50 MHzA.C.
Characteristics 2-105

Small Output Buffer First
Order Electrical Model
Parameter Values 2-113

Large Output Buffer First
Order Electrical Model
Parameter Values 2-114

Buffer Models , 2-115

Table 10.1 Precision Specification 2-120

Table 10.2 FADDP MERGE Update 2-129

Table 10.3 Register Encoding 2-130

Table 10.4 REG-Format Opcodes 2-132

Table 10.5 Core Escape Opcodes '2-133

Table ,1 0.6 CTRL-Format Opcodes 2-133

Table 10.7 Floating-Point Opcodes 2-134

Table 10.8 DPC Encoding 2-135

onte)® i860TM XP MICROPROCESSOR

1.0 FUNCTIONAL DESCRIPTION

As ~hown by the block diagram on the front page,
the IB60 XP Microprocessor consists of the following
units:

1. Integer Registers and Core Execution Unit

2. Floating-Point Registers and Control Unit

3. Floating-Point Adder Unit

4. Floating-Point Multiplier l,Jnit

5. Graphics Unit

6. Paging Unit

7. Instruction Cache

B. Data Cache

9. Bus and Cache Control Unit

10. Detached Concurrency Control Unit

The core execution unit controls overall operation of
the iB60 XP microprocessor. It executes load store
integer, bit, I/O, and control-transfer operatio~s, and
fetches instructions for the floating-point unit as well.
A set of 32 x 32-bit general-purpose registers are
provided for the manipulation of integer data. Load
and store instructions move B-, 16-, and 32-bit data
to ~nd from these registers. Its full set of integer,
logical, and control-transfer instructions give the
core unit the ability to execute complete systems
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference.

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be ac­
cessed as 16 x 64-bit rElgisters or as 32 x 32-bit
registers. Load and store instructions can also ac­
cess these same registers as B x 12B-bit registers.
All floating-point and graphics instructions use these
registers as their source and destination operands.

The floating-point control unit controls both the float­
!ng-~oint adder and the floating-point multiplier, issu­
Ing Instructions, handling all source and result ex­
ceptions, and updating status bits in the floating­
pOint status register. The adder and multiplier can
operate in parallel, producing up to two results per
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSIIIEEE Std 754-19B5).

The floating-point adder performs addition subtrac­
tion, comparison, and conversions on 64- ~nd 32-bit
floating-point values. An adder instruction executes
in thre.e clocks; however, in pipelined mode, a new
result IS generated every clock.

The . floating-poi~t multiplier performs floating-point
and Integer multiply as well as floating-point recipro-.
cal operations on 64- and 32-bit floating-point val­
ues. A multiplier instruction executes in three to four
clocks; however, in pipe lined mode, a new result can
be generated every clock for single-precision and
every other clock for double precision.

The graphics unit supports three-dimensional draw­
ing i~ a graphi~s frame buffer, with color intensity
shading and hidden surface elimination via the
Z-buffer algorithm. The graphics unit recognizes the
pixel as an B-, 16-, or 32-bit integer data type. It can
compute individual red, blue, and green color inten­
sity values within a pixel; but it does so with parallel
operations that take advantage of the 64-bit internal
word size and 64-bit external bus. The graphics fea-
tures of the iB60 XP microprocessor assume that the EI
surface of a solid object is drawn with polygon .
patches which, like the pieces of a puzzle, collec- '
tively approximate the shape of the original object.
The color intensities of the vertices of the polygon
and their distances from the viewer are known, but
the distances and intensities of the other points
must be calculated by interpolation. The graphics in-
structions of the iB60 XP microprocessor directly aid
such interpolation.

The paging unit implements protected, paged, virtual
memory. The paging unit uses two four-way set-as­
sociative cache memories called TLBs (Translation
Lookaside Buffers) to perform the translation of logi­
cal address to physical address, and to check for
access violations. The access protection scheme
employs two levels of privilege: user and supervisor.
One TLB supports 4 Kbyte pages, and has 64 en­
tries; the other supports 4 Mbyte pages, and has 16
entries.

The instruction cache is a four-way set-associative
memory of 16 Kbytes, with 32-byte lines. It transfers
up to 64 bits per clock (400 Mbyte/sec at 50 MHz).

. The data cache is a four-way set-associative memo­
ry of 16 Kbytes, with 32-byte lines. It transfers up to
12B bits per clock (BOO Mbyte/sec at 50 MHz). The
iB60 XP microprocessor normally uses write-back
c~ching, i.e: memory writes update the cache (if ap­
plicable) without necessarily updating memory im­
mediately; however, under both software and hard­
ware control, write-through and write-once policies
can be implemented, or caching can be inhibited.
The caches are transparent to applications soft­
ware.

2-9

The bus and cache control unit performs data and
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit,
performs the data-cache or instruction-cache miss
processing, controls TLB translation, and provides

Intei· i860TM XP MICROPROCESSOR

the interface to the external bus. Its pipe lined struc­
ture supports up to three outstanding bus cycles. Its
burst mode transfers data at up to 400 Mbyte/sec at
50 MHz. In multiprocessor systems, .it maintains
cache consistency by monitoring bus activity in par­
allel with other CPU functions.

The DCCU (detached concurrency control unit) is a
compatible subset of the external CCU that expe­
dites loop-level parallelism and synchronization in
multiprocessor systems. The DCCU consists of reg­
isters and a counter that allow a single i860 XP mi­
croprocessor to run binary code compiled for a mul­
tiprocessor system adhering to the PAX parallel ap­
plications binary interface (ASI).

The i860 XP microprocessor may to be used with or
without an external, secondary cache built from
82495XP and 82490XP cache components. An
82495XP and 82490XP cache provides up to 512
Kbytes of high-speed storage for data and instruc­
tion combined. In most cases, an 82495XP and
82490XP cache can provide data to the CPU with
zero wait states. The larger size of an external cache
can provide an increased hit rate when the size or
number of data structures and programs exceeds
the size of the internal caches. In multiprocessor
systems, the external cache serves as local memo­
ry, and can reduce bus traffic. An external cache
also hides the processor from rest of system, which
is a double advantage:

1. The processor can be upgraded without affecting
design of the memory and other subsystems.

2. Slower and less expensive memory and I/O sub­
system designs can be employed without unduly
lowering overall system performance.

Refer to the 82495XP Cache Control/erl82490XP
Cache RAM Data Sheet (Intel Order #240956) for
more information.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the i860 XP microprocessor include data types,
registers, instructions, and traps.

2.1 Data Types

The i860 XP microprocessor provides operations for
integer and floating-point data. Integer operations
are performed on 32-bit operands with some support
also for 64-bit operands. Load and store instructions
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit
operands. Floating-point operations are performed
on IEEE-standard 32- and 64-bit formats. Graphics
instructions operate on arrays of 8-, 16-, or 32-bit
pixels.

2.1.1 INTEGER

An integer is a 32-bit signed value in standard two's
complement form. A 32-bit integer can represent a
value in the range -2,147,483,648 (-231) to
2,147,483,647 (+ 231 - 1), Arithmetic operations on
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations.

There are also add and subtract instructions that op­
erate on 64-bit long integers.

Load and store instructions may also reference (in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, th? corresponding numb6i of low-order bits
of the register are used.

2.1.2 ORDINAL

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal .is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+232 - 1).

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals.

2-10

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is
a 32-bit binary floating-point number. Sit 31 is the
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0
are the fraction. In accordance with ANSI/IEEE
standard 754, the value of a single-precision real is
defined as follows:
1. If e = 0 and f =/0 0 or e = 255 then generate a

floating-point source-exception trap when en­
countered in a floating-point operation.

2. If 0 < e ~ 255, then the value is (-1)5 X 1.f x
2e - 127.

3. If e = 0 and f= 0, then the value is signed zero.

A double-precision real (also called "double real")
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62 .. 52 are the exponent; and
bits 51 .. 0 are the fraction. In accordance with ANSI/
IEEE standard 754, the value of a double-precision
real is defined as follows:

1. If e = 0 and f =/0 0 or e = 2047, then generate a
floating-point source-exception trap when en­
countered in a floating-point operation.

int:eL i860TM XP MICROPROCESSOR

2. If 0 < e <,2047, then the value is (-1)S x 1.1 x
2e-1023. .

3. If e = 0 and 1 = 0, then the value is signed zero.

The special values infinity, NaN ("Not a Number"),
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results.

A double real value occupies an even/odd pair of
floating-point registers. Bits 31 .. 0 are stored in the
even-numbered floating-point register; bits 63 .. 32
are stored in the next higher odd-numbered floating­
point register.

2.1.4 PIXEL

A pixel may be 8-, 16-, or 32-bits long, depending on
color and intensity resolution requirements. Regard-

Single-Precision Real
31 '30 23 :22 0

Is e f

SIGN 2-J 1 EXPONENT
FRACTION

240874-2

less of the pixel size, the i860 XP microprocessor
always operates on 64 bits of pixel data at a time.
The pixel data type is used by two kinds of instruc­
tions:

• The selective pixel-store instruction that helps im­
plement hidden surface elimination.

• The pixel add instruction that helps implement
3-0 color intensity shading.

To perform color intensity shading efficiently in a va­
riety of applications, the i860 XP microprocessor de­
fines three pixel formats according to Table 2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These aSSignments are for
illustration purposes only. The i860 XP microproces­
sor defines only the field sizes, not the specific use
of each field. Other ways of using the fields of pixels
are possible. '

Double-Precision Real
ffi. '62 52'51 0

Is e I f I;

I 1 L-FRACTION
EXPONENT
SIGN

240874-3

Figure 2.1. Real Number Formats

Table 2.1. Pixel Formats

Pixel Bits of Bits of Bits of
Bits of
Other

Size Color 1 Color 2 Color 3
Attribute (in bits) Intensity(1) Intensity(1) Intensity(1)

(Texture, Color)

8 N (:0;; 8) bits of intensity(2) 8-N
16M 6

J
6 J 4 0

32 8 8 8 8
I

NOTES:
1. The intenSity attribute fields may be assigned to colors in any order convenient to the application.
2. With a·bit pixels, up to a bits can be used for intensity; the remaining bits can be used for any other attribute, such as
color or texture. Bits that require interpolation (shading), such as those for intensity, must be the low-order bits of the pixel.

2-11

i860™ XP MICROPROCESSOR

a-BIT PIXEL (~ __ C_OL_O_R_--.J'I

15 14 15 12 If 10 9 8 7 6 5 4 .; 2 1 0

16-BIT PIXEL I RED I GREEN I BLUE

32-BIT PIXEL
Jf 30292827262524 '2322 21 20 19 18 17 16 1514131211109 B 765432 1 0

I RED GREEN BLUE TEXTURE

240874-4

NOTE:
These aSSignments of specific meanings to the fields of pixels are for illustration only. Only the field sizes are defined,
not the specific use of each field.

Figure 2.2. Pixel Format Example

2.2 Register Set

As Figure 2.3 shows, the i860 XP microprocessor
has the following registers:

• An integer register file

o A floating-point register file

• Control registers psr, epsr, db, dirbase, fir, fsr,
bear, eer, p3, p2, p1, pO

• Special-purpose registers KR, KI, T,MERGE,
STAT, and NEW~URR

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The
special-purpose registers KR, KI, and T are used by
floating-point instructions; MERGE is used by graph­
ics instructions. NEWCURR and STAT are used for
concurrency control; they are accessed by memory
load and store instructions.

2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32 bits wide,
referred to as rO through r31, which are used for
address computation and scalar integer computa­
tions. Register rO always returns zero when read.

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as fO through f31, which are used
for floating-point computations. Registers fO and f1
always return zero when read. The floating-point
registers are also used by a set of integer opera­
tions, primarily for graphics computations.

2-12

When accessing 64-bit floating-point or integer val­
ues, the i860 XP microprocessor uses an even/odd
pair of registers. When accessing 128-bit values, it
uses an aligned set of four registers (fO, f4, f8, f12,
f16, f20, f24, or f28). The instruction must designate
the lowest register number of the set of registers
containing 64- or 128-bit values. Misaligned register
numbers produce undefined results. The. register
with the lowest number contains the least significant
part of the value. For 128-bit values, the register pair
with the lower number contains the value from the
lower memory address; the register pair with the
higher number contains the value from the higher
address.

The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg­
isters and the data cache, help to sustain an extraor­
dinarily high rate of computation.

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscel­
laneous state information for the current process.
Figure 2.4 shows the format of the psr.

• BA (Break Read) and BW (Break Write) enable a
data access trap when the operand address
matches the address in the db register and a
read or write (respectively) occurs.

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla
instruction sets and tests LCC (Loop Condition
Code).

• 1M (Interrupt Mode), if set, enables external inter­
rupts on the INT pin; disables interrupts on INT if
clear. 1M does not affect parity error interrupts or
interrupts on the BEAR pin.

i860TM }(P MICROPROCESSOR

BEAR

CCR

PO

PI

P2

P3

FIR

PSR

DIRBASE

DB

FSR

EPSR

LATE BACK-OFF
I

INSTRUCTION
DECODE AND FETCH

I

84

16 KBYTE
INSTRUCTION CACHt
• • • DID

ADDRESS
32

32
32

32

BUFFERS L..ii ___1 '28

D •
16 KBYTE

DATA CACHE
• • • •

240874-5

Figure 2.3. Registers and Data Paths

• U (User Mode) is set when the i860 XP micro­
processor is executing in user mode; it is clear
when the i860 XP microprocessor is executing in
supervisor mode. In user mode, writes to some
control registers are inhibited. This bit also con­
trols the memory protection mechanism.

• PIM (Previous Interrupt Mode) and PU (Previous
User Mode) save the corresponding status bits
(1M and U) on a trap, because those status bits
are changed when a trap occurs. They are re­
stored into their corresponding status bits when
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr.

2-13

o FT (Floating-Point Trap), OAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags.
They are set when the corresponding trap condi­
tion occurs. IN is set on INT, bus error and parity
error. The trap handler examines these bits (and
other trap bits in the epsr) to determine which
condition or conditions have caused the trap.

o DS (Delayed Switch) is set if a trap occurs during
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Duallnstruc­
tion Mode) is clear, the i860 XP microprocessor
switches to dual-instruction mode one instruction

II

i860™ XP MICROPROCESSOR

BREAK READ---------------------,
BREAK WRITE---------------------,
CONDITION CODE ------------------,
LOOP CONDITION CODE ----------------,
INTERRUPT MODE'-----------------,
PREVIOUS INTERRUPT MODE .,--------------,
USER MODE----------------,
PREVIOUS USER MODE -------------,
INSTRUCTION TRAP ------------....,
INTERRUPT ---------------,
INSTRUCTION ACCESS TRAP ---~----....,
DATA ACCESS.TRAP-----------,
FLOATING-POINT TRAP ---------,
DELAYED SWITCH ----------, I
DUAL INSTRUCTION MODE ------,J J J

3130292827262524 '23222120 1918 17.16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

I I'.~I~ ? D F 2 A I I plul) I ~ C B B:
PM PS SC'i~1 F M S T T TNT U I 'I M M C C W R . -I ~ KILL NEXT FP INSTRUCTION

'------,- (RESERVED)
'-------SHIFT COUNT

'---------PIXEL SIZE
'-------------PIXEL MASK

ITI!I RESERVED BY INTEL CORPORATION
IllB CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL

Figure 2.4. Processor Status Register

240874-6

after returning from the trap handler. If OS and DIM
are both set, the i860 XP microprocessor switches
to single·instruction mode one instruction after re­
turning from the trap handler.

Table 2.2. Values of PS

• When a trap occurs, the i860 XP microprocessor
sets DIM if it is executing in dual-instruction
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set.after returning from a
trap handler, the. i860 XP microprocessor re­
sumes execution in dual-instruction mode.

• When KNF (Kill Next Floating-Point Instruction) is
set, the next floating-point inStriJction is sup­
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF 'if the
trapped floating-point instruction should not be
reexecuted.

• SC (Shift Count) stores the shift count used by
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion.

• PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store and other graphics· instructions.
The values of PS control pixel size as defined by
Table 2.2. The bits in PM correspond to pixels to
be updated by the pixel-store instruction pst.d.
The low-order bit of PM corresponds to the low­
order pixel of the 64-bit source operand of pst.d.
The number of low-order bits of PM that are actu­
ally used is the number of pixels that fit into
64-bits, which depends upon PS. If a bit of PM is
set, then pst.d stores the corresponding pixel.
Refer also to the pst.d instruction in section 10.

2-14

Pixel Size Pixel Size
Value in Bits in Bytes

00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

2.2.4 EXTENDED PROCESSOR STATUS
REGISTER

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows
the format of the epsr.

• The processor type is 2 for the i860 XP micro­
, processor.

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc-
essor.

• IL (Interlock) is set if a trap occurs after a lock
instruction but before the last BRDY # of the load
or store following the subsequent unlock
instruction. IL indicates to the trap handler that a
locked sequence has been interrupted. When the
trap handler finds IL set, it should scan back­
wards for the lock instruction and restart at that
point. The absence of a lock instruction within
30-33 instructions of the trap indicates a pro­
gramming error.

int:eL i860™ XP MICROPROCESSOR

INTERLOCK ------------,
WRITE-PROTECT MODE ---------,
PARITY ERROR FLAG • -------.l
" 0/29.'28/27. 5. 5 <I. 302 1201918765 '" 3121110 9 876.5 -I J 2 I 0

reI S P P I D BOB ~ DCS I B P wi I STEPPING PROCESSOR I
FH 0 I T I I S F E M ~ f f PI L NUMBER TYPE

L-__ BUS ERROR FLAG •
'----- INTERRUPT

L-_____ DATA CACHE SIZE
'--------- PAGE-TABLE BIT MODE

'----------BIG ENOIAN MODE
'-----------OVERFLOW fLAG

L-__________ BEf OR PEF AT SUPERVISOR LEVEL'
L------------TRAP ON DELAYED INSTRUCTION •
L-----------~TRAP ON AUTOINCREMENT

'--------------TRAP ON PIPELINE USE
'---------------PIPELINE INSTRUCTION

'---------------- STRONG ORDERING MODE

EJ RESERVED BY INTEL CORPORATION
Illll CAN BE WRITTEN ONLY FROM SUPERVISOR LEVEL

!Iill READ ONLY (NOT WRITABLE BY SOfTWARE)

[!] RESERVED IN THE BOB60XR CPU
240874-7

Figure 2.5. Extended Processor Status Register

• WP (write protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP is clear, writes
are trapped in user mode, but not in supervisor
mode. When WP is set, writes are trapped in both
user and supervisor modes.

• PEF (parity error flag) is set by the i860 XP micro­
processor when a parity error trap occurs. As
soon as PEF is set,. further parity error and bus
error traps are masked. Software must clear PEF
to reenable such traps. PEF is set at RESET.

• BEF (bus error flag) is set by the i860 XP micro­
processor when the BERR pin is asserted, indi­
cating a bus error. As soon as BEF is set, further
parity error and bus error traps are masked. Soft­
ware must clear BEF to reenable such traps. BEF
is set at RESET.

• INT (Interrupt) is the value of the INT input pin.

• DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + Des;
therefore, a value of zero indicates 4 Kbytes, one
indicates 8 Kbytes, etc. The value of DCS for the
i860 XP microprocessor is two, which indicates
16 Kbytes.

• PBM (Page-Table Bit Mode) has no effect in
the i860 XP microprocessor. PBM is used by the
i860 XR microprocessor.

• BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (Le. when
BE is clear) the i860 XP microprocessor operates
in little endian mode, in which the addressed byte
is the low-order byte. When BE is set (big endian

2-15

mode), the low-order three bits of all 32-bit data
load and store addresses are complemented,
then masked to the appropriate boundary for
alignment. This causes the addressed byte to be
the most significant byte. Big endian mode af­
fects not only the memory load and store instruc­
tions but also the Idio, stio, Idint, and scyc
instructions.

., OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF is set if the carry from bit 31
is different than the carry from bit 30. For addu,
OF is set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under all
other conditions, it is cleared by these instruc­
tions. OF may be changed by arithmetic instruc­
tions in either user or supervisor mode. It may be
changed by the st.C instruction in supervisor
mode only. OF controls the function of the intovr
instruction. Inside the trap handler, OF may not
be valid for traps other than one caused by
intovr.

• BS (bus or parity error trap in supervisor mode) is
set by the i860 XP microprocessor when a bus or
parity error occurs during a supervisor mode
memory access cycle. This is true even though
the processor may have switched to user mode
by the time these errors are reported. The BS bit
contains valid information only if BERR is assert­
ed in the same clock as BRDY # or one clock
after that. In all other conditions the contents of
the BS bit are undefined. The operating system
can use this bit to decide, for example, whether
to abort the process (user mode) or reboot the
system (supervisor mode).

intel® i860TM XP MICROPROCESSOR

• DI (trap on delayed instruction) is set by the
i860 XP microprocessor when a trap occurs on a
delayed instruction (the instruction located after a
delayed branch instruction). When DI is set, the
trap handler must restart the interrupted proce·
dure from the branch instruction rather than at
the address in fir.

• TAl (trap on autoincrement instruction) is set by
the i860 XP microprocessor when a trap occurs
on an instruction with autoincrement. When TAl is
set, the trap handler should undo the autoincre·
ment (that is, restore src2 to its original value).

• PT (trap on·pipeline use) indicates to the i860 XP
microprocessor that a: trap should be generated
and PI should be set when it executes an instruc·
tion that uses the floating·point or graphics unit.
Such instructions include all the instructions des·
ignated "Floating·Point Unit" in Table 2.9, plus
the pfld instruction. PT is set and cleared only by
software. It can be used by the trap handler to
avoid unnecessary saving and restoring of the
pipelines (refer to section 2.8). When a trap due
to PT occurs, the floating·point operation has not
started, and the pipelines have not been ad·
vanced. Such a trap also sets the IT bit of psr.

• The behavior of PI (pipeline instruction) depends
on the setting of PT. If PT = 0, the i860 XP mi·
croprocessor sets PI when any pipelined instruc·
tion or pfld is executed. If PT = 1, the processor
sets PI and traps when it decodes any instruction
that uses the pipes, whether scalar or pipelined.
PI may be set even if KNF is set and the next
floating point instruction is suppressed. Refer to
section 2.8.

• SO (strong ordering) indicates whether the proc·
essor is in strong ordering mode (SO = 1) or weak
ordering mode (SO = 0). SO is set if the EWBE #
pin is active (LOW) at RESET. (Refer to the para·
graphs on write cycle reordering in section 5.)

LATE BACK -OFF MODE •
CODE SIZE a-BITS
REPLACEMENT BLOCK
REPLACEMENT CONTROL

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener·
ate a trap when the i860 XP microprocessor access·
es an operand at the virtual address stored in this
register. The trap is enabled by BR and BW in psr.
When comparing, a number of low order bits of the
address are ignored, depending on the size of the
operand. For example, a 16·bit access ignores the
low·order bit of the address when comparing to db;
a 32·bit access ignores the low·order two bits. This
ensures that any access that overlaps· the address
contained in the register. will generate a trap. The
trap occurs before the register or memory update by
the load or store instruction.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.6) controls address translation, caching, and bus
options.

• ATE (Address Translation Enable), when set, en·
abies the virtual·address translation algorithm.

• DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus·cycle
address with the previous bus·cycle address to
generate the NENE # signal. This feature allows'
for higher speeds when using static column or
page·mode DRAMs and consecutive reads and
writes access the same column or page. The
comparison ignores the low·order 12 + DPS bits.

. A value of zero is appropriate for one bank of
256K x n RAMs, 1 for 1 M x n RAMS, etc. For
interleaved memory, increase DPS by one for
each power of interleaving-add one for 2·way,
two for 4·way, etc.

! !
130292827262524232221201918171615141312 '1110 98 7 6 5 4 32 , O.

I DIRECTORY TABLE BASE CDTB) I RC I RB I C L
~ B

I B
T L

DPS ! i
I-CACHE. TLB INVALIDATE tf J BUS LOCK
DRAM PAGE SIZE
ADDRESS TRANSLATION ENABLE

[!J RESERVED IN 80860XR CPU
240874-8

Figure 2.6. Directory Base Register

2·16

intel® i860™ XP MICROPROCESSOR

• When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK # signal is asserted
with the next bus cycle (excluding instruction
fetch and write-back cycles) whose internal bus
request is generated after BL is set. It remains set
on every subsequent bus cycle as long as BL re­
mains set. The LOCK # signal is deasserted on
the next load or store instruction after BL is
cleared. Traps immediately clear BL. The lock
and unlock instructions control the BL bit. The
result of modifying B L with the st.c instruction is
not defined.

• ITI (Cache and TLB Invalidate), when set in the
value that is loaded into dirbase, causes all en­
tries in the instruction cache and virtual tags in
the address-translation cache (TLB) to be invali­
dated. Also invalidates all virtual tags in the data
cache. The ITI bit does not remain set in dirbase.
ITI always appears as zero when reading
dirbase.

o When software sets the LB bit, the i860 XP micro­
processor enters two-clock late back-off mode.
This mode gives two additional clock periods of
decision time to the external logic that may need
to use the BOFF # signal to cancel a bus cycle or
data transfer. If the processor enters one-clock
late back-off mode during RESET via configura­
tion pin strapping, the LB bit has no effect, and it
is impossible to enter two-clock late back-off
mode. Furthermore, software cannot exit two­
clock late back-off mode once it is activated; the
LB bit cannot be cleared except by resetting the
processor.

o When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as 8-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initialization time. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order
to make the transition from 8-biUo 64-bit memory
occur at the correct time. The branch instruction
must be aligned on a 64-bit boundary.

• RB (Replacement Block) identifies the cache line
(block) to be replaced by cache replacement al­
gorithms. RB conditions the cache flush instruc­
tion flush, which is discussed in Section 10. Ta­
ble 2.3 explains the values of RB.

o RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC.

2-17

• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page
directory when address translation is enabled (i.e.
ATE = 1). The low-order 12 bits of the address
are zeros.

Table 2.3. Values of RB

Value
Replace Replace Instruction

TLB Block and Data Cache Block

00 0 0
01 1 1
1 0 2 2
1 1 3 3

Table 2.4. Values of RC

Value Meaning

00 Selects the normal (random)
replacement algorithm where any block
in the set may be replaced on cache
misses in all caches.

01 Instruction, data, and TLB cache misses
replace the block selected by RB. This
mode is used for cache and TLB testing.

10 Data cache misses replace the block
selected by RB. Instruction and TLB
caches use random replacement. This
mode is used when flushing the data
cache with the flush instruction.

11 Disables data and TLB caches
replacement. Instruction cache uses
random replacement.

2.2_7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the
instruction that created the conditions that required
the trap). The fir is a read-only register. In single-in­
struction mode, using a Id.c instruction to read the
fir anytime except the first time after a trap saves in
idest the address of the Id.c instiuction; in dual-in­
struction mode, the address of its floating-point com­
panion (address of the Id.c - 4) is saved.

2.2.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the
floating-point trap and rounding-mode status for the
current process. Figure 2.7 shows its format.

i860™ XP MICROPROCESSOR

• If FZ (Flush Zero) is clear and underflow occurs,
a result-exception trap is generated. When FZ is
set and underflow occurs, the result is set to zero,
and no trap due to, underflow occurs.

Table 2.5. Values of RM

• If TI (Trap Inexact) is clear, inexact results do not
cause a trap. If TI is set, inexact results cause a
trap. The sticky inexact flag (SI) is set whenever
an inexact result is produced, regardless of the
setting of TI.

• RM (Rounding Mode) specifies one of the four
rounding modes defined by the IEEE ,standard.
Given a true result b that cannot be represented
by the target data type, the i860 XP microproces­
sor determines the two representable numbers 8
and c that most closely bracket b in value (8 <
b < c). The i860 XP microprocessor then rounds
(changes) b to 8 or c according to the mode se­
lected by RM as defined in Table 2.5. Rounding
introduces an error in the result that is less than
one least-significant bit.

FLUSH ZERO
TRAP INEXACT
ROUNDING MODE
UPDATE
FLOATING-POINT TRAP ENABLE
STICKY INEXACT FLAG
SOURCE EXCEPTION
MULTIPLIER UNDERFLOW
MULTIPLIER OVERFLOW
MULTIPLIER INEXACT
MULTIPLIER ADD ONE
ADDER UNDERFLOW
ADDER OVERFLOW

Value

00

01

10

11

~ 1

Rounding Mode Rounding Action

Round to Closer to b of 8 or c;
nearest or even if equally close,

select even number
(the one whose
least significant bit
is zero).

Round down 8
(toward ~ 00)

Round up c
(toward + 00)

Chop Smaller in
(toward zero) magnitude of 8 or c.

130 /27. 6 /25/242322 '29.'28. 120191817 6 5 4'3 12 1 o 9 8 7 6 5 432 1 0

i[lli11
A M ILL

A A A A M M M M S S ~U T F R R R R R AE RR U RM P P P A I o U A I o U E I liZ P P

BOB60XR
ONLY

1 0

1 ~ADDER INEXACT

;

5

~',.,i,"', ',' LOAD PIPE RESULT PRECISION
p}'

ADDER ADD ONE
RESULT REGISTER
ADDER EXPONENT
LOAD PIPE RESULT

PRECISION (BOB60XP ONLY)
INTEGER (GRAPHICS) PIPE

RESULT PRECISION
MULTIPLIER PIPE RESULT PRECISIO
ADDER PIPE RESULT PRECISION

[] RESERVED BY INTEL CORPORATION

Figure 2.7. Floating-Point Status Register

2-18

N

240B74-9

int:et i860TM XP MICROPROCESSOR

• The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up­
dating of the result-status bits (AE, AA, AI, AO,
AU, MA, MI, MO, and MU) in the first-stage of the
floating-point adder and multiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond­
ing bits in the value that is being loaded. An st.c
always updates fsr bits 21 .. 17 and 8 .. 0 directly.
The U-bit does not remain set; it always appears
as zero when read.

• The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result).

• SI (Sticky Inexact) is set when the last-stage re­
sult of either the multiplier or adder is inexact (Le.
when either AI or MI is set). SI is "sticky" in the
sense that it remains set until reset by software.
AI and MI, on the other hand, can by changed by
the subsequent floating-point instruction.

o SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling).

• When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last-stage result of the multiplier.

When read from the fsr, the result-status bits AA,
AI, AO, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last-stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

The Adder Add-One and Multiplier Add-One bits
indicate that the absolute value of the result frac­
tion grew by one least-significant bit due to
rounding. AA and MA are not influenced by the
sign of the result. .

In a floating-point dual-operation instruction (e.g.
add- arid-multiply or subtract-and-multiply), both
the multiplier and the adder 'may set exception
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that
unit.

o RR (Result Register) specifies which floating­
point register (fO-f31) was the destination register
when a result-exception trap occurs due to a sca­
lar operation.

o IRP (Integer (Graphics) Pipe Result Precision),
MRP (Multiplier Pipe Result Precision), and ARP
(Adder Pipe Result Precision) aid.' in restoring
pipeline state after a trap or process switch. Each
defines the precision of the last-stage result in
the corresponding pipeline. One of these bits is
set when the result in the last stage of the corre­
sponding pipelinl? is double precision; it is cleared
if the result is single precision.

o LRP1 and LRPO (Load Pipe Result Precision) to­
gether define the size of the last-stage result of
the load pipeline. They are encoded as Table 2.6
shows.

,Table 2.6. Values of LRP1 and LRPO

" LRP1 LRPO pfld Length

0 0 (reserved)
0 1 4 Bytes
1 0 8 Bytes
1 1 16 Bytes

2.2.9 KR, KI, T, AI\ID MERGE REGISTERS

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point in­
structions pfam, pfsm, pfmam, a!1d pfmsm, which
initiate both an adder operation and a multiplier op­
eration. The KR, KI, and T registers can store values
from one dual-operation instruction and supply them
as inputs to subsequent dual-operation instructions.

After a floating-point operation in a given unit (ad- .
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex­
ceptions are reported.

, (Refer to Figure 2.16.)

When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re­
sult-status bits in the fsr and generate traps, if
enabled. When the U-bit is not set, result-status
bits in the word being· written to the fsr are ig­
nored.

2-19

The MERGE register is used only by the graphics
instructions. The purpose of the MERGE register is
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a
Z-buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

inlet i860TMXP MICROPROCESSOR

Refer to the instruction descriptions in section 10 for
more information about these registers.

2.2.10 BUS ERROR ADDRESS REGISTER

The bear helps the trap handler determine faulty
memory locations. The i860 XP microprocessor
loads a valid address into bear under these condi­
tions:

• For bus errors, the bear receives the address of
the cycle for which the BERR signal is asserted, if
external hardware asserts BERR in the same
clock as it asserts BRDY # or one clock later.

• For parity errors on a read, the bear receives the
address of the cycle during which the processor
detects the error, if external hardware asserts
PEN # with BRDY # for that cycle.

If external hardware does not meet these conditions,
the contents of the bear are undefined.

A valid address in bear is accurate to 29 bits; that is,
address signals A31-A3 are latched in the high-or­
der 29 bits of bear. At RESET and after every parity
and bus error trap, software must read the bear be­
fore further parity and bus error traps can occur. The
bear is a read-only register.

2.2.11 PRIVILEGED REGISTERS

The registers pO, p1 p2, and p3 are provided for the
operating system to use. They do not affect proces-

. sar operation. They can be accessed by the Id.c and
st.c instructions, but they can be written only in su­
pervisor mode. They may be used to store informa­
tion such as the interrupt stack pointer, current user
stack pointer at the beginning of the trap handler,
register values during trap handling, processor ID in
a multiprocessor system, or for any other purpose.

2.2.12 CONCURRENCY CONTROL REGISTER

The concurrency control register (ccr) controls the
operation of the internal Concurrency Control Unit
(CCU), which is described in section 2.5. The ccr
can be written in supervisor mode only, but can be
read in user or supervisor mode. Figure 2.8 shows
the format of the ccr.

DO (Detached Only) bit and CO (CCU On) bit togeth­
er specify the CCU configuration. DO, when set, indi­
cates that there is no external CCU. CO (CCU On)
bit, when set, indicates that the Concurrency Control
Architecture is enabled. Table 2.7 summarizes the
modes defined by CO and DO bits. The reserved
combinations should not be used by software.

If the DCCU is on (CO = DO = 1), the processor in­
tercepts and interprets all memory loads and stores
which are to the CCU address space, which is the
two pages defined by CCUBASE. Loads and stores
to that address range do not go to memory, but to
the DCCU.

Table 2.7. Values of CO and DO

CO DO Mode

0 0 External CCU, or no CCU
0 1 reserved
1 0 reserved
1 1 Internal CCU (DCCU) only

CCUBASE is the virtual address of the memory area
into which the CCU registers are mapped. Software
must set bit 12 to zero, because the CCUBASE must
be aligned on·a two page (8 Kbyte) boundary. This is
because an external CCU contains supervisor regis­
ters mapped to the second page.

DETACHED ONLY --------,
CCUON--~--~--~-,

CCUBASE

BI RESERVED BY INTEL CORPORATION
240874-10

Figure 2.8. Concurrency Control Register

2-20

i860™ XP MICROPROCESSOR

2.2.13 NEWCURR REGISTER

The NEWCURR register is part of the detached CCU
(concurrency control unit). It a 32-bit counter that
supplies an iteration count for loop execution. (Refer
to section 2.5.)

NEWCURR is architecturally a 64-bit register, but
only the low-order 32 bits are provided in this imple­
mentation. Compiler and operating-system data
structures should provide for a 64-bit size for future
implementation.

2.2.14 STAT REGISTER

The STAT register is part of the detached CCU (con­
currency control unit). As Figure 2.9 shows, it con­
tains the following bits:

InLoop Indicates that the processor is currently
executing a concurrent loop. This bit is
set when a processor starts a concur­
rent, non-nested loop, and it is cleared
when the processor enters serial code
when not nested or idle. It can also be
read or written directly.

Nested Indicates whether the processor is in the
nested state. InLoop is copied into this
bit when starting a nested loop. Other­
wise, it can be read or written directly.

Detached Always contains the value of ccr bit DO:

STAT is architecturally a 64-bit register. Compiler
and operating-system data structures should provide
for a 64-bit size for future implementation.

2.3 Addressing

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address
space. Address arithmetic uses 32-bit input values
and produces 32-bit results. The low-order 32 bits of
the result are used in case of overflow.

Normally, multibyte data values are stored in memo­
ry in little end ian format, i.e. with the least significant
byte at the lowest memory address. As an option,
the ordering can be dynamically selected by soft­
ware in supervisor mode. The iS60 XP microproces­
sor also offers big endian mode, in which the most
significant byte of a data item is at the lowest ad­
dress. Figure 2.10 defines by example how data is
transferred from memory over the bus into a register
in both modes. Big endian and little endian data ar­
eas should not be mixed within a 64-bit data word.
Illustrations. of data structures in this data sheet
show data stored in little end ian mode, i.e. the right­
most (low-order) byte is at the lowest memory ad­
dress.

Code accesses are always done with little endian
addressing. This implies that instructions appea~ dif­
ferently than documented here when accessed as
big endian data. Intel Corporation recommends that
disassemblers running in a big end ian system con­
vert instructions that have been read as data back to
little endian form and present them in the format
documented here.

Page directories and page tables are also accessed
in little endian mode, regardless of the value of the
BE bit.

Big end ian mode affects not only the' memory load
and store instructions but also the Idio, stio, Idint,
and scyc instructions.

Alignment requirements are as follows (any violation
results in a data-access trap):

o 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must be zero).

.. 64-bit values are aligned on 8-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

• 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the'two least
,significant address bits must be zero).

EiJ RESERVED BY INTEL CORPORATION

t11iI READ ONLY
240874-11

Figure 2.9. Concurrency Status Register

2-21

i860TMXP MICROPROCESSOR

Main Memory

d63 dO
IHGFEDCBAI

~. -----
INSTRUCTION LITTLE ENDIAN BIG ENDIAN

Byte Enables
Asserted Data 'Bus ill

Byte Enables
Asserted Data Bus ill

(BEn#) d63 dO d31 dO (BEn#) d63 dO d31 dO

Id.b O(rO), r16 0

0 []
7

Q [] Id.b 1 (rO), r16 1 6
Id.b 2(rO),rI6 2 5
Id.b 3(rO), r16 3 4
Id.b 4(rO),rI6 4 3
Id.b 5(rO),rI6 5 2
Id.b 6(rO),rI6 6 1
Id.b 7(rO), r16 7 0

d63 dO d31 dO d63 dO d31 dO

Id.s O(rO), r 16 1:0 lZJ []J 7:6 [SJ []] Id.s 2(rO), r16 3:2 DC DC 5:4 FE FE
Id.s 4(rO), r 16 5:4 FE FE 3:2 DC DC
Id.s 6(rO), r16 7:6 HG HG' 1:0 BA BA

d63 dO d31 dO d63 dO d31 dO

Id.1 O(rO), r 16 3:0 G2:] I DCBA I 7:4 E;J IHGFE I Id.14(rO),rI6 7:4 HGFE HGFE 3:0 DCBA DCBA
240874-12

NOTE:
64- and 128-bit big endian accesses are treated the same as little endian accesses

Figure 2.10. Little and Big Endian Memory Transfers

• 16-bit values are aligned en 2-byte beundaries
when referenced in memery (Le. the least signifi-
cant address bit must be zero). .

2.4 Virtual Addressing

when address translatien is enabled, the processer
maps instructien and data virtual addresses into.
physical addresses befere referencing memery. This
address transfermatien is cempatible with that of the
Intel386 and Intel486 microprecessers and imple­
ments the basic features needed fer page-eriented
virtual-memery systems and page-level pretectien.

The address translatien is eptienal. Address transla­
tien is disabled when the precesser is reset. It is
enabled when a stere (st.c) to. dirbase sets the ATE
bit. The eperating system typically dees this during
software initializatien. Addresstranslatien is dis­
abled again when st.c clears the ATE bit. The ATE

2-22

bit must be set if the eperating system is to. imple­
ment page-eriented pretectien er page-eriented vir­
tual memery.

2.4.1 PAGE FRAME

A page frame is a unit ef centigueus addresses ef
physical main memery. A page is the cellectien ef
data that eccupies a page frame when that data is
present in main memery er eccupies seme lecatien
in secendary sterage when there is net sufficient
space in main memery.

The i860 XP microprecesser architecture supperts
two. sizes ef pages and page frames: feur Mbytes
and feur Kbytes. Feur Kbyte page frames begin en
feur Kbyte beundaries and are fixed in size. Feur
Mbyte page frames begin en feur Mbyte beundaries
and are fixed in size. The feur Kbyte address trans­
fermatien is cempatible with that ef the Intel 486 mi­
creprecesser.

i860™ XP MICROPROCESSOR

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad­
dress by specifying a page and an offset within that
page. Figure 2.11 shows the formats of virtual ad­
dressess. The format for virtual addresses that refer
to four Mbyte pages is different from that of four
Kbyte pages.

Figure 2.12 shows how the i860 XP microprocessor
converts a virtual address into the physical address
by consulting page tables. The addressing mecha­
nism uses the DIR field as an index into a page di­
rectory. For 4K pages, it uses the PAGE field as an
index into the page table determined by the page
directory and uses the OFFSET field to address a
byte within the page determined by the page table.
For 4M pages, the page directory entry determines
the page address, and the OFFSET field addresses
a byte within that page (able.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi­
ers. A page table is itself a page, and contains
4 Kbytes of data or at most 1 K 32·bit entries.

At the highest level is a page directory. The page
directory holds up to 1 K entries that address either
page tables of the second level or 4-Mbyte pages.

A page table of the second level addresses up to 1 K
4-Kbyte pages. All the tables addressed by one
page directory, therefore, can address 1 M 4-Kbyte
pages.

Whether 4-Mbyte pages, 4-Kbyte pages, or some
combination of the two are used, one page directory
can cover the entire four gigabyte physical address
space of the i860 XP microprocessor (1 K page di­
rectory entries x 4M page or 1 K page directory en­
tries x 1 K page table entries x 4K page).

FORMAT
FOR

4 KBYlE
PAGE

/31302928272625242322 '2120 19 18 17 16 15 14 13 12 1110987654 32 1 0

FORMAT
FOR

4 MBYlE
PAGE

I DIR PAGE I OFFSET J
'-

31302928272625242322 '2120 19 18 17 16 15 14 13 12 If 10 9 8755432 1 0

I DIR OFFSET

\

Figure 2.11. Formats of Virtual Addresses

80860XR AND BOB60XP
4K PAGE FRAME

PHYS ADDRESS
PAGE DIRECTORY

PG TBl ENTRY

PHYS ADDRESS

BOB60XP ONLY
240874-14

Figure 2.12. Address Translation

2-23

240874-13

II

int'et i860™ XP MICROPROCESSOR

2.4.4.1 Page Frame Address The physical address of the current page directory is
stored in the OTB field of the dirbase register. Mem·
ory management' software has the option of using
one page directory for all processes, one page direc·
tory for each process, or some combination of the
two.

2.4.4 PAGE-TABLE ENTRIES

Page·table entries (PTEs) have one of the formats
shown by Figure 2.13.

The page frame address specifies the physical start·
ing address of a page. In a page directory, the page
frame address is either the address of a page table
or the address of the four Mbyte page frame that '
contains the desired memory operand. In a second·
level page table, the page frame address is the ad·
dress of the 4·Kbyte page frame that contains the
desired memory operand.

PRESENT ---,

USER----------------~------------------------_.

ACCESSED ------------------------~--------__,
PAGE SIZE (0 INDICATES 4 KBYTE) ------------------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE ----'I

PAGE +
4~~~~~~I[Z'~30'2m9'~PA~G~E~F~R~A~M:1;!·:gA2'D~':~R'::;:::£S2!'':1111!:8.Z:;~:~615G14~74!2A~::~IJL9~iI4 ••••• j~10~i~.i ••. ·.71IA~I~i~rl(~~wrf+p~

PAGE ~ ______________________________ ~ __ ~~~~~~~~

USER---,
WRITE-THROUGH -----------------------------------,
CACHE -DISABLE ----------------------------------,
ACCESSED ------------------------------------,
DIRTY ------------------------------------,
PAGE SIZE (1 INDICATES 4 MBYTE) -------------------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE -------,

PAGE

DIR ~~~~~~~~~~~~~rIt~7if'ij!17£.7l:#lJ.7J.f1:tr:f1tp:p,~
ENTRY PAGE FRAME ADDRESS

4 MBYTE 31 .. 22
PAGE

PRESENT ---,
I

USER----------~-------------------------------,

WRITE - T' IROUGH -----------------------------------,
CACHE -DISABLE ----------------------------------,
ACCESSED ----------------------~----------__,
DIRTY ----,--------------------------------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE ----'!

PAGE TABLE '313029282;'2625242221 20191817161514 12/11 10 9/8,

ENTRY I PAGE FRAME ADDRESS 31..12 AVAIL ~illl D I A ~ ~ U wi P ••
4KBYTE~------------------------------+_--_+~~~~~~r{1

ONLY

ITill RESERVED BY INTEL CORPORATION (SHOULD BE ZERO)

Figure 2.13. Formats of Page Table Entries

2·24

240874-15

240874-16

240874-17

intel® i860™ XP MICROPROCESSOR

2.4.4.2 Present Bit

The P (present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi­
cates that the entry can be used. When P = 0 in ei­
ther level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the
entry is tested by the hardware. If P = 0 in either lev­
el of page tables when an attempt is made to use a
page-table entry for address translation, the proces­
sor signals either a data-access fault or an instruc­
tion-access fault. In software systems that support
paged virtual memory, the trap handler can bring the
required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper­
ating system must ensure that the page directory

. indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page­
level protection, which the i860 XP microprocessor
performs at the same time as address translation.
The concept of privilege for pages is implemented
by assigning each page to one of two levels:

Supervisor level

(U=O)

User level (U = 1)

For the operating system
and other systems software
and related data.

For applications procedures
and data.

The U bit of the psr indicates whether the i860 XP
microprocessor is executing at user or supervisor
level. The i860 XP microprocessor maintains the
U bit of psr as follows:

• The i860 XP microprocessor clears the psr U bit
to indicate supervisor level when a trap occurs
(including when the trap instruction causes the
trap). The prior value of U is copied into PU.

G The i860 XP microprocessor copies the psr
PU bit into the U bit when an indirect branch is
executed and one of the trap bits is set. If PU was
one, the i860 XP microprocessor enters user lev­
el.

With the U bit of psr and the Wand U bits of the
page table entries, the i860 XP microprocessor im­
plements the following protection rules:

G When at user level, a read or write of a supervi­
sor-level page causes a trap.

2-25

• When at user level, a write to a page whose W bit
is not set causes a trap.

o When at user level, a store (st.c) to certain con­
trol registers is ignored.

.. When at user level, privileged instructions (ldio,
stio, scyc, Idint) have no effect.

When the i860 XP microprocessor is executing at
supervisor level, all pages are addressable, but,
when it is executing at user level, only pages that
belong to the user level are addressable.

When the i860 XP microprocessor is executing at
supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection
mode controlled by WP of epsr:

WP = 0 All pages are writable.

WP = 1 A write to page whose W bit is not set
causes a trap .

When the i860 XP microprocessor is executing at
user level, only pages that belong to user level and
are marked writable are actually writable; pages that
belong to supervisor level are neither readable nor
writable from user level.

2.4.4.4 Write-Through Bit

The i860 XP microprocessor implement both write­
back and write· through caching policies for the on­
chip instruction and data caches. If WT is set, the
write-through policy is applied to data from the cor­
responding page. If WT. is clear, the normal write­
back policy is applied to data from the page.

For four-Mbyte pages, the WT bit of the page direc­
tory entry is used. For four-Kbyte pages, only the WT
bit of the second-level page table entry is used; the
WT bit of the page directory entry is not referenced
by the processor, but is reserved.

The value of the WT bit is driven externally on the
PWT pin, so that external caches can employ the
same policy used internally.

2.4.4.5 Cache Disable Bit

If a page's CD (cache disable) bit is set, data from
the page is not placed in the internal instruction or
data caches (regardless of the value of the WT bit).
Clearing CD permits the processor to place data
from the associated page into internal caches.

For four-Mbyte pages, the CD bit of the page direc­
tory entry is used. For four-Kbyte pages, only the CD
bit of the second-level page table entry is used; the
CD bit of the page directory entry is not referenced
by the processor, but is reserved.

i860TM.XP MICROPROCESSOR

The'value of the CD bit is driven externally on the
PCD pin, so that cacheability can be the same in
both internal and external caches.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The iB60 XP microprocessor sets the A-bit before a
read or write operation to a page .. For four-Kbyte
pages, it sets the A-bit of both levels of page tables.

The processor tests the dirty .bit before a write, and,
under certain conditions, causes traps. The trap
handler then has the opportunity to maintain approc
priate values in the dirty bits. For four-Mbyte pages,
the D bit of the page directory entry is used. For four­
Kbyte pages, only the D bit of the second-level page
table entry is used; the D bit of the page directory
entry is not referenced by the processor, but is
reserved. The precise algorithm for using these bits
is specified in section 2.4.5.

An operating system that supports paged virtual
memory can use the D and A bits to determine what
pages to eliminate from physical memory when the
demand for memory exceeds the physical memory
available; The D and A bits are norrnally initialized to
zero by the operating system. The processor sets
the A bit when a page is accessed either by a read
or write operation. When a data-access fault occurs,
the trap handler sets the D bit if an allowable write is
being performed, then reexecutes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may
share the page tables. The i860 XP microprocessor
automatically asserts the LOCK# signal while test­
ing and setting the A bit. .

2.4.4.7 Page Tables for Trap Handlers

When paging is enabled (ATE = 1), software that
creates page tables and directories must assure that
A = 1 always in the PTEs and PDEs for the code
pages of the trap handler and the, first data page
accessed by the handler. Preallocation of these
pages is required in case a trap occurs during a lock
sequence. Otherwise, recursive traps would be gen­
erated, as the A-bit would need to be set by the
translation hardware, which is a trapping situation in
itself.

2.4.4.8 Combining Protection of Both Levels of
Page Tables '

For any four-Kbyte page, the protection attributes of
its page directory entry may differ from those of its
page table entry. The i860 XP microprocessor com­
putes the effective protection attributes for a page
by examining the protection attributes in both the
directory and the page table and choosing the more
restrictive of the two.

2.4.5 ADDRESS TRANSLATION ALGORITHM

The following algorithm defines the translation of
. each virtual address to a physical address. Let DIR,

PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables
respectively; DTB is the page directory table base
address stored in the dlrbase register.

2-26

1. Read the PDE (Page Directory Entry) at the
physical ad,dress formed by DTB:DIR:OO.

2. If P in the pDE is zero, generate a data- or in­
struction-access fault.

3. If W in the PDE is zero, the operation is write,
and either the U bit of the PSR is set or WP = 1,
generate a data-access fault.

4. If the U bit in the PDE is zero and U bit in the psr
is set, generate a data- or instruction-access
fault. '

5. If A In the PDEis zero and the TLB miss oc­
curred inside a locked sequence, generate, a
data or instruction access fault. (The trap allows
software to set A to one and restart the se­
quence. This helps external bus hardware deter­
mine unambiguously what address corresponds
to a locked semaphore.) .

6. If bit 7 of the PDE is one (four Mbyte page), and
the operation is write, and D = 0 in the PDE,
generate a data-access fault.

7. If A = 1 in the PDE, continue at step 11. Other­
wise, assert LOCK #,

8. Perform the PDE read as in step 1 and the P, W
and U bit checks as in steps 2 through 4.

9. Write the PDE with A bit set.

10. Deassert LOCK#.

11. If bit 7 of the PDE is one (four Mbyte page), form
the physical address as PFA1 :OFFSET, and exit
address translation. In this case, PFA1 is 10 bits
and OFFSET is 22 bits.

12. The remaining steps are for four Kbyte pages. If'
the A-bit in the PDE was zero before translation
began, assert LOCK#.

i860™ }{P MICROPROCESSOR

13. Fetch the PTE at the physical address formed
by PFA1:PAGE:OO.

14. Perform the P-, W-, U-, and A-bit checks as in
steps 2 through 5 with the second-level PTE. If
A = zero in the PTE, and the TLB miss oc­
curred inside a locked sequence, generate a
data or instruction access fault. LOCK # re­
mains active.

15. If the operation is write, and D in the PTE is
zero, generate a data access fault.

16. If the A-bit in the PDE was already active before
translation began, and the A-bit in the PTE is
already active, go to step 20.

17. If LOCK# is not already active, assert it and
refetch the PTE.

18. Perform the U-, W-, and P-bit checks and A-bit
setting in the PTE as in steps 8 through 9. Do
the locked write update of the PTE to unlock the
bus, even if the A-bit in the PTE is already one.

19. Deassert LOCK #.

20. Form the physical address as PFA2:0FFSET. In
this case, PFA2 is 20 bits and OFFSET is 12
bits.

During translation, the i860 XP microprocessor looks
only in external memory for page directories and
page tables. The data cache is not searched. There­
fore, any code that modifies page directories or
page tables must keep them out of the cache. The
tables should either be kept in noncacheable memo­
ry or in write-through pages or should be flushed
from the cache.

The i860 XP microprocessor expects page directo­
ries and page tables to be in little endian format. The
operating system must maintain these tables in little
endian format either by setting BE to zero when ma­
nipulating the tables or by complementing bit two of
the 32-bit address when loading or storing entries.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault can be signalled as ei­
ther an instruction access fault or a data-access
fault. The instruction causing the fault can be reexe­
cuted upon returning from the trap handler.

2.5 Detached CCU

The i860 XP microprocessor supports parallel pro­
cessing, where multiple processors work simulta­
neously on different parts of the same problem. The
Concurrency Control Unit (CCU) controls work shar-

2-27

ing among CPUs, in mUltiprocessor systems. The
CCU is a VLSI chip that allows multiple processors
to work together to execute portions of a single pro­
gram in parallel. The CCU performs the iteration as­
signment for loop parallelization. Accesses to the
CCU for synchronization are much faster than ac­
cesses to shared memory semaphores. The CCU is
memory mapped, and its internal registers are ac­
cessed via memory load and store operations.

To take advantage of the parallel architecture, soft­
ware must be compiled by parallelizing compilers
that generate instructions to access the CCU. How­
ever, such instructions cannot run on a system that
does not include a CCU. To . allow an application
compiled for parallel execution to run on any system
based on the i860 XP microprocessor, a "Detached
Only" CCU (DCCU, also referred to as "internal
CCU") is implemented in the i860 XP microproces­
sor. The DCCU is a compatible subset of the exter­
nal CCU, consisting of the minimal set of features
required for a single CPU. The DCCU alone neither
increases performance nor concurrency, but does
allow software designed for parallel processing to
run unmodified on a single CPU.

2.5.1 DCCU INITIALIZATION

After reset, the i860 XP microprocessor DCCUis dis­
abled (CO and DO bits in ccr are cleared). To en­
able the DCCU, the CO and DO bits in ccr must be
set by software. Before turning on the CCU, the op­
erating system must invalidate the TLB and flush the
data cache to make sure that they do not contain
data from the CCU pages. The TLB is invalidated by
setting ITI = 1 in the dirbase register. Also, the
flush instruction must be used once per each line of
the data cache to invalidate the physical address of
the cache entry, if the two pages at the CCUBASE
address may have been cached. The flush is un­
needed if page tables or external hardware have
prohibited caching of the CCUBASE pages.

Neither the external CCU nor the DCCU can be ac­
cessed within four instructions after ccr is modified.

2.5.2 DCCU ADDRESSING

The CCU facilities are memory-mapped, manipulat­
ed by normal load and store instructions. The DCCU
is memory-mapped to a single 4 Kbyte user page.
When the DCCU is active, all accesses to this page
are satisfied by the DCCU, and no external bus cycle
is generated. The address space of two adjacent
pages beginning on an 8 Kbyte boundary is reserved
for the CCU. The first (lower address) page contains

iniaL i860™ XP MICROPROCESSOR

locations accessible in user mode (which includes
the DCCU registers), and the second page contains
locations accessible in supervisor mode (used for
external CCU only). The base address of these
pages is specified by the CCUBASE field in eer. Ac­
cesses to the second page in DCCU-only mode
have no effect on the DCCU, and are treated as
normal memory accesses.

When the DCCU is active, accesses to its address
page use only the virtual address, and no translation
is done on the DCCU access. However, the access­
es to an external CCU go through normal address
translation. The operating system should make sure
that the page table entries for the CCU pages are
set so that rio fault occurs during address transla­
tion. If an external CCU is used, the two PTEs for the
CCU should have CD = 1 (caching disabled) and
page frame addresses that match the external hard­
wareaddresses of the CCU. Accesses to the DCCU
that cause a TLB miss do not cause the PTE to be
loaded into the TLB.

If the external CCU is used when address translation
is disabled (ATE = 0), external hardware. must deac­
tivate KEN # for such accesses, to avoid caching
external CCU accesses.

2.5.3 DCCU INTERNALS

The DCCU consists of an address decoder, a 32-bit
counter (NEWCURR), and three bits of state infor­
mation (In Loop, Nested, and Detached). InLoop,
Nested and Detached correspond to bits 0, 1, and 2
respectively of the external CCU STAT register. The
Detached bit always reflects the value of the DO bit
in eer.

Several addresses within the DCCUmemory page
are decoded to cause actions to NEWCURR, In­
Loop, and Nested state bits. The CCU register to be
accessed is specified by address bits 11-3. The val­
id CCU addresses are shown in Table 2.8 with their
mnemonics. Accesses to these address may also
have side effects within the DCCU. Refer to the
i860™ Microprocessor Family Programmer's Refer­
ence Manual for programming information. Loads
from any other addresses within the DCCU memory
page return zero; stores to any other addresses
have no effect. Access to the DCCU by any load or
store instructions other than Id.x and st.x produce
undefined results.

Assemblers should encode address bits 2-0 as.zero
for accesses in little-.endian mode. However, in big­
endian mode (epsr BE bit = 1), DCCU accesses
should have address bit 2 active. Thus, software for

big-endian access to the DCCU must differ from lit­
tie-end ian software. That allows an external CCU to
be accessed in both big and little end ian modes.

2-28

When reading from the DCCU, the access latency is
the same as reading data from the data cache-the
data is ready for use as a source by the second
instruction after the load. The first instruction after
the load may use the data, but that instruction will
experience a one-clock freeze before the data be­
comes available.

2.6 Instruction Set

Table 2.9 shows the complete set of instructions for
the i860 XP microprocessor, grouped by function
within processing unit. Refer to Section 10 for an
algorithmic definition of each instruction. The in­
struction set of the i860 XP microprocessor is fully
upward compatible with that of the i860 XR micro­
processor, extended in a few ways to better .serve
certain application domains. User-level software ap­
plications written for the i860 XR microprocessor will
run unmodified on the i860 XP microprocessor, but
some supervisor code (for example, trap handlers)
may need minor modifications. The i860 XR micro­
processor instruction set has been extended with
the following instructions:

• Idio, stio: 1/0 load and store instructions

• Idint: Load interrupt instruction to perform an in­
terrupt acknowledge cycle and read the interrupt
vector. Used to emulate the Intel 486 interrupt
acknowledge sequence.

• seye: A special-cycle instruction, used to gener­
ate bus cycles that signal invalidation and syn­
chronization of an external cache.

• pfld.q: A pipelined, floating-point load of 128 bits.

Table 2.8. CCU Addresses

Little Big
MnemoniC All-AS A7-A4 Endian Endian

A3-AO A3-AO

cbr.-i 0000 Oabe bOOO dl00
eget 1111 0110 0000 0100
eneweurr 1111 1100 0000 0100
estat 1111 1100 1000 1100
estatei 1111 1101 0000 0100
estatn 1111 1101 1000 1100
eclm 1111 1110 1000 1100
ever 1111 1111 1000 1100

NOTE:
Variable i is a4-bit index formed by A6-A3. Let its binary
form be represented by the symbols abed.

i860™ XP MICROPROCESSOR

Table 2.9. Instruction Set (1 of 2)

Core Unit floating-Point Unit

Mnemonic Description Mnemonic Description

Load and Store Instructions Register to Register Move

Id.x Load integer fxfr Transfer F·P to integer register
st.x Store integer
fld.y F·P load

FoP Multiplier Instructions

fst.y F·P store fmul.p F·P multiply

pfld.y Pipelined F·P load pfmul.p Pipelined F·P multiply

pst.d Pixel store pfmul3.dd 3·Stage pipe lined F·P multiply

Register to Register Move
fmlow.p F·P multiply low
frcp.p F·P reciprocal

ixfr Transfer integer to F·P register fsqr.p F·P reciprocal square root

Integer Arithmetic Instructions

addu Add unsigned
adds Add signed

FoP Adder Instructions

fadd.p F·P add
pfadd.p Pipelined F·P add EI

subu Subtract unsigned famov.r F·P adder move
subs Subtract signed pfamov.r Pipelined F·P adder move

Shift Instructions fsub.p F·P subtract
pfsub.p Pipelined F·P subtract

shl Shift left pfgt.p Pipelined greater·than compare
shr Shift right
shra Shift right arithmetic
shrd Shift right double

pfeq.p Pipelined equal compare
fix.v F~P to integer conversion
pfix.v Pipelined F·P to integer conversion

Logical Instructions ftrunc.v F·P to integer truncation

and Logical AND Dual-Operation Instructions

andh Logical AND high pfam.p Pipelined F·P add and multiply
andnot Logical AND NOT pfsm.p Pipelined F·P subtract and multiply
andnoth Logical AND NOT high pfmam.p Pipe lined F·P multiply with add
or Logical OR pfmsm.p Pipelined F·P multiply with subtract
orh Logical OR high
xor Logical exclusive OR Long Integer Instructions

xorh Logical exclusive OR high fisub.z Long·integer subtract

Control-Transfer Instructions

br Branch direct

pfisub.z Pipelined long·integer subtract
fiadd.z Long·integer add
pfiadd.z Pipe lined long·integer add

bri Branch indirect
bc Branch on ee Graphics Instructions

bc.t Branch on ee taken fzchks 16·bil 2·buffer check
bnc Branch on not ee pfzchds Pipelined 16·bit 2·buffer check
bnc.t Branch on not ee taken fzchkl 32·bit 2·buffer check
bte Branch if equal pfzchkl Pipelined 32·bil 2·buffer check
btne Branch if not equal faddp Add with pixel merge
bla Branch on Lee and add pfaddp Pipe lined add with pixel merge
call Subroutine call faddz Add with 2 merge
calli Indirect subroutine call pfaddz Pipe lined add with 2 merge
intovr Software trap on integer overflow form OR with MERGE register
trap Software trap pform Pipelined OR with MERGE register

2·29

ini'et i860™ 'XP MICROPROCESSOR

Table 2.9. Instruction Set (2 of 2)

Core Unit·

Mnemonic Description

1/0 Instructions

Idio.x Load 1/0
stio.x Store 1/0
Idint.x Load interrupt vector

System Control .Instructions

flush . Cache flush
Id.c Load from control register
st.c Store to control register
lock Begin interlocked sequence
unlock End interlocked sequence
scyc.x Special bus cycles

Assembler Pseudo-Operations

Register to Register Move

mov Ihteger move
fmov.r F-P reg-reg 'move
pfmov.r Pipelined F-P reg-reg move
nop Core no-operation
fnop F-P rl0-operation
pfle.p Pipelined F-P less-than or equal

The architecture of the i860 XP microprocessor uses
parallelism to increase the rate at which operations
may be introduced into the unit. Parallelism in the
i860 XP microprocessor is not transparent; rather,
programmers have compiete control, over parallel,
ism and therefore" can achieve maximum perform­
ance for a variety of computational problems.

Clock Instruction. Stage 1

1 A A

2 B B

3 C C

4 D D

5 E E

6 F F

2.6.1 PIPE LINED AND SCALAR OPERATIONS

One type of parallelism used within the floating-point
unit is "pipelining". The pipelined architecture treats
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder as an ex­
ample. Let A represent the operation of the adder.
Let the stages be represented by A1, A2, and Aa.
The stages are designed such that Ai+ 1 for one ad­
der instruction can execute in parallel with Ai for' the
next adder instructiOn. Furthermore, each Ai can be
executed in just one clock. The pipelining within the
multiplier and graphics units pan be described simi­
larly, except that the number of stages may be differ-
ent. .

Figure 2.14 illustrates three-stage pipelining. as
found in the floating-point adder (also in the floating­
point multiplier when single-precision input operands
are employed). The central columns of the table rep­
resent the three stages of the pipeline. Each stage
holds intermediate results and also (when intro­
duced into the first stage by software) holds status
information pertaining to those results. The table as­
sumes that the instruction stream consists of a se­
ries of consecutive floating-point instructions, aU of
one type (Le. all adder instructions or all single-preci­
sion multiplier instrLictions). The instructions are rep­
"resented as A, B,etc. The rows olthe table repre­
sent the states of the unit at successive clock cy­
cles. Each time a pipelined operation is performed,
the result of the last stage of the pipeline is stored in
the destination register {des/, . the pipeline is ad­
vanced one stage, and the input operands of. the
operation are transferred to the first stage of the
pipeline.

Pipeline

Stage 2 Stage 3 Result

A

B A

C B A ~ {des/ofD

D C B ~ {des/otE

E D C ~ {des/ofF

Figure 2.14. Pipelined Instruction Execution

2-30

int'et i860™ XP MICROPROCESSOR

In the i860 XP microprocessor, the number of pipe­
line stages ranges from one to three. A pipelined
operation with a three-stage pipeline stores the re­
sult of the third prior operation. A pipelined operation
with a two-stage pipeline stores the result of the sec­
ond prior operation. A pipelined operation with a
one-stage pipeline stores the result of the prior oper­
ation.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the graphics
unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline; it may have two
or three stages. The graphics unit has one stage for
all precisions. The load pipeline has three stages for
all precisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of Tsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipelined execution mode, the
i860 XP microprocessor also can execute floating­
point instructions in "scalar" mode. Most floating­
point instructions have both pipe lined and scalar
variants, distinguished by a bit in the instruction en­
coding. In scalar mode, the floating-point unit does
not start a new operation until the previous floating­
pOint operation is completed. The scalar operation
passes through all stages of its pipeline before a
new operation is introduced, and the result is stored
automatically. Scalar mode is used when the next
operation depends on results from the previous few
floating-point operations (or when the compiler or
programmer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, AI, AO, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the
state of the pipeline after a preemption. When a
store instruction updates the fsr and the the U bit
being written into the fsr is set, the store updates
the result status bits in the first stage of b9th the
adder and multiplier pipelines. When software

2-31

changes the result-status bits of the first stage of
a particular unit (multiplier or adder), the updated
reSUlt-status bits are propagated one stage for
each pipe lined floating-point operation for that
unit. In this case, each stage of the adder and
multiplier pipelines holds its own copy of the rele­
vant bits of the fsr. When they reach the last
stage, they override the normal result-status bits
computed from the last-stage result.

At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the i860 XP microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3' Precision in the Pipelines

In pipelined mode, when a floating-point operation is
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in (des! is
that which was specified by the instruction that initia­
ted that operation.

If (des! is the same as (src1 or (src2, the vallie being
stored in (des! is used as the input operand. In this
case, the precision of (des! must be the same as the
source precision.

The multiplier pipeline has two stages when the
source operands are double-precision and three
stages when they are single. This means that a pipe~
lined multiplier operation stores the result of the sec­
ond previous multiplier operation for double-preci­
sion inputs and third previous for single-precision in­
puts (except when changing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy
pipelined operations that unload unstored results
from the affected pipeline.

After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un­
defined. No spurious result-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source operands.

EI

ini:el® i860TM XP MICROPROCESSOR

For best performance a scalar operation should not
immediately precede a pipelined operation whose
fdest is nonzero.

2.6.1.5 Pipelined Loads

The pfld instruction is optimized for accesses that
miss the data cache and transfer directly from mem­
ory. Therefore, even when there is a data cache hit,
a pfld may generate a bus cycle. The data from the
internal cache is used only if it was modified. Other­
wise, data is taken from the external bus, even if it
resides in the on-board cache.

The pfld FIFO can be extended externally, due to
the facts that a pfld always generates a bus cycle
and that such a cycle can be identified externally by
the value on the CTYP pin. Software written for an
externally-extended pfld pipeline must ensure that it
does not pfld from a location that was modified in
the data cache. When a pfld cache hit to a modified
line occurs, the pfld pipeline length used by the
i~60 XP microprocessor is three stages. The modi­
fied data from the cache is put into the internal
three-stage data FIFO, and the third pfld instruction
after the data cache hit will update its fdest register
with the modified data.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from theJact that
the i860 XP microprocessor 'can execute both a

31
op

d.fp-op

floating-point and a core instruction simultaneously.
Such parallel execution is called dual-instruction
mode. When executing in dual-instruction mode the
instruction sequence consists of 64-bit aliened in­
struction pairs, with a floating-point instruction in the
lower 32 bits and a core instruction in the upper 32
bits. Table 2.9 identifies which instructions are exe­
cuted by the core unit and which by the floating­
point unit.

Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual enddual. Both of the specifications
cause the D-bit of floating-point instructions to be
set. If the i860 XP microprocessor is executing in
single-instruction mode and encounters a floating­
point instruction with the D-bit set, one more 32-bit
instruction is executed before dual-mode execution
begi~s. If th~ i860 XP microprocessor is executing in
dual-Instruction mode and a floating-point instruction
is encountered with a clear D-bit, then one more pair
of instructions is executed before resuming single-in­
struction mode. Figure 2.15 illustrates two variations
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair.

Note that d.fnop cannot be used to initiate dual in­
struction mode.

a

63 core-op or d.fp-op 1
core-op d.fp-op

core-op d.fp-op

core-op fp-op

core-op fp-op

op

op

Enter Dual Instruction Mode

Initiate Exit from
Dual Instruction Mode

'"
Leave Dual Instruction Mode

~
Figure 2.15. Dual-Instruction Mode Transitions (1 of 2)

31 a
ap

d.fp-op

63 fp-op

r core-op fp-op

op

op

1
Temporary
Dual Inrructlon Mode

Figure 2.15. Dual-Instruction Mode Transitions (2 of 2)

2-32

240874-18

240874-19

i860TM XP MICROPROCESSOR

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating­
pOint unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instruction classespfam fsrc1, fsrc2, fdest,
pfmam fsrc1, fsrc2, fdest (add and multiply), pfsm
fsrc1, fsrc2, fdest, and pfmsm fsrc1, fsrc2, fdest
(subtract and multiply) initiate both an adder opera­
tion and a multiplier operation. Six operands are re­
quired, but the instruction format specifies only three
operands; therefore, there are special provisions for
specifying the operands. These special provisions
consist of:

o Three special registers (KR, KI, and T) that can
store values· from one dual-operation instruction
and supply them as inputs to subsequent dual-op­
eration instructions.

- The constant ·registers KR and KI can store
the value of fsrc1 and subsequently supply
that value to the multiplier pipeline in place of
fsrc1.

Single Precision
3-Stage Multiplier and Adder

fsrel fsre2 fdest

240874-20

- The transfer register T can store the last-stage
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline
in place of fsrc1.

o A four-bit data-path control field in the opcode
(opC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, KI, or
fsrc1.

2. Operand-2 of the multiplier can be fsrc2, the
last-stage result of ·the multiplier pipeline, or
the last-stage result of the adder pipeline.

3. Operand-1 of the adder can be fsrc1, the
T-register, the last-stage result of the multiplier
pipeline, or the last-stage result of the adder
pipeline. . II

4. Operand-2 of the adder can be fsrc2, the last- ,
stage result of the multiplier pipeline, or the'·
last-stage result of the adder pipeline.

Figure 2.16 shows all the possible data paths sur­
rounding the adder and multiplier. The ope field in
these instructions selects different data paths. Sec­
tion 10 shows the various encodings of the ope
field.

Note that the mnemonics piam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of ope has a unique mnemonic associ­
ated with it.

Double Precision
2-Stage Multiplier, 3-Stage Adder

fsrel fsre2 fdest

- -MULTIPLIER--
result

240874-21

Figure 2.16. Dual-Operation Data Paths

2-33

i860™ XP MICROPROCESSOR

2.7 Addressing Modes

Data access is limited to load and store instructions.
Memory addresses are computed from two fields of
load and store instructions: isrc1 and isrc2.

1. isrc1either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset.

2. isrc2 always specifies a register.

Because either isrc1 or isrc2 may be null (zero), a
variety of useful addressing modes result:

offset + register Useful for accessing fields
within a record, where register
points to the beginning of the
record. Useful for accessing
items in a stack frame, where
register is r3, the register used
for pointing to the beginning of
the stack frame.

register + register Useful for two-dimensional ar­
rays or for array access within
the stack frame.

register Useful as the end result of any
arbitraryaddress calculation.

offset Absolute address into the' first
or last 32K of the logical ad­
dress space.

In addition, the floating-point load and store instruc­
tions may, select autoincrement addressing. In this
mode isrc2 is replaced by the s~m of isrc1 and isrc2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Traps and Interrupts

'Traps are caused by exceptional conditions detect­
ed in programs, or by, external interrupts. Traps
cause interruption of' normal program flow to exe­
cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.10.

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of t~e current instruction is
aborted. Except for bus error and parity error traps,
the instruction is restartable. The processor takes
the following' steps while transferring control to the
trap handler:

1. Copies U (user mode) of the par into PU(previ­
ous U).

2. Copies 1M (interrupt mode) into PIM (previous
1M).

2-34

3. Sets U to zero (supervisor mode).

4. Sets 1M to zero (interrupts disabled).

5. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual-in­
struction mode or if the processor is in dual-in­
struction mode and the next instruction Will be
executed in single-instruction mode, OS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in par and epsr are
set (IT, IN, IAT, OAT, FT, OF, IL, PI, PT,BEF,
PEF). Several bits may be set if the correspond­
ing trap conditions occur simultaneously.

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In
single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual­
instruction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of
the dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the
absence of other trap conditions, the floating­
point half of the dual instruction will already have
been executed (except in the case of the fxfr
instruction).

The processor begins executing the trap handler by
transferring execution to virtual address
OxFFFFFFOO. The trap handler begins execution in
single-instruction mode. The trap handler must ex­
amine the trap-type bits in par (IT, IN, IAT, OAT, FT)
and epar (OF, IL, PT, PI, BEF, PEF) to determine the
cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any cif the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler.

1. By the trap instruction. When trap is executed in
dual-instruction mode, the floating-point compan­
ion of the trap instruction is not executed before
the trap is taken.

2. By the Intovr instruction. The trap occurs only if
OF in epar is set when Intovr is executed. To
distinguish between cases l' and 2, the trap han­
dier must examine the instruction' addressed by
fir. The trap handler should clear OF before re­
turning. When Intovr causes a trap in dual"in­
struction mode, the floating-point companion of
the Intovr instruction is completely executed be­
fore the trap is taken.

intel~ i860TM XP MICROPROCESSOR

Table 2.10. Types of Traps

Indication Caused by
Type

fsr Condition Instruction psr epsr

Instruction IT OF Software traps trap
Fault Intovr

IL Missing unlock Any
PT&PI Pipeline usage Any scalar or pipe lined

instruction that uses a
pipeline

Floating FT SE Floating-point source Any M- or A-unit except
Point exception fmlow
Fault

Floating-point result Any M- or A-unit except
exception fmlow, pfgt, and pfeq.

AO,MO overflow Reported on any F-P
AU,MU underflow instruction, pst, fst, and
AI,MI inexact result sometimes fld, pfld, and

ixfr

Instruction IAT Address translation Any
Access Fault exception during instruction

fetch

Data DAT Load/store address Any load/store
Access translation exception
Fault Misaligned operand address Any load / store

Operand address matches Any load/ store
db register ,

Parity IN PEF Parity error on data pins during bus read operation
Error Fault when PEN # pin active

Bus Error Fault IN BEF External interrupt signal on BERR pin

Interrupt IN INT External interrupt signal on INT pin

Reset None PEF, BEF Hardware RESET signal

3. By violation of lock/unlock protocol, explained
below. (Note that trap and intovr should not be
used within a locked sequence; otherwise, it
would be difficult to distinguish between this and
the prior cases.)

There may be other instructions between any of
these steps. The bus is locked after step 2, and re­
mains locked until step 4. Step 4 must follow step 1
by 30 instructions or less; otherwise, an instruction
trap occurs. I n case of a trap, I L is also set. If the
load or store instruction of step 2 accesses a previ­
ously un accessed page (A = 0), the bus is locked
briefly while the A bit is set, unlocked, then locked
again to satisfy the lock instruction and start the
locked sequence.

4. By execution of an instruction that uses a pipeline
when the PT bit of epsr is set. (Refer to section
2.8.2.2.)

2.8.2.1 Lock Protocol

The lock protocol requires the following sequence of
activities:

1. lock

2. Any load or store instruction. For compatibility
with future processor generations, this should be
a load.

3. unlock

4. Any load or store instruction. For compatibility
with future processor generations, this should be
a store.

2-35

2.8.2.2 Using PT and PI Bits

The PI and PT bits are provided to help the trap
handler avoid unnecessarily saving and restoring the
pipelines (refer to the section "Pipeline Preemption"
in the i860 Microprocessor Family Programmer's
Reference Manual).

Trap handlers that use PI or PT must initially exam­
ine fsr. If a pending trap exists-that is, if the FTE
(floating-point trap enable) bit is set and any of the

intel· i860TM XP MICROPROCESSOR

floating-point exception bits (AI, AO, AU, MI, MO,
MU) is active-the trap handler must save the pipe­
lines. The i860 XP microprocessor, like the i860 XR
microprocessor, may set an fsr exception bit before
the floating-point trap is generated, and this pending
trap relies on information in the pipeline. For exam­
ple, an external interrupt might invoke the trap han­
dier between the scalar floating-point instruction that
produces an overflow and the next floating-point op­
eration-the one that would cause a branch to the
trap handler for the floating-point trap.

If no pending trap exists, the handler can follow ei­
ther of the following two methods:

• Using both PT and PI: Upon invocation, the trap
handler saves the state of PI and PT (in epsr),
but does not save the pipes. If PI is found set
(which means that the interrupted code needs
the state information currently in the floating­
point pipelines), the handler sets PT and clears PI
(with a single st.c to epsr instruction), then con­
tinues with trap processing. If the pipes are used
during trap handling (even by a scalar instruc­
tion), a trap will be generated with IT and PI set
by hardware. The trap handler may then check PI
and PT, and if both are set, clear PT, PI, and IT,
save the pipes, set an indication that they were
saved, and restart execution from the instruction
that caused the trap. At the end of trap handling,
the trap handler restores the pipes if they were
saved, and restores PI and PT to their values be­
fore the trap. This method avoids both saving and
restoring the pipes, assuming that most trap han­
dling sequences do not alter the pipes, and there­
fore a trap for PT = 1 will not happen very often.

• Using only PI: Another approach is to leave
PT = 0, using only the PI bit, which the processor
sets each time 'a pipelined instruction or pfld is
encountered (even if the floating point instruction
is suppressed due to KNF = 1). The trap handler
saves PI, saves the pipes if PI is set, sets an indi­
cation that they were saved, and clears PI. At the
end of trap handling, the trap handler restores the
pipes if they were saved, and restores PI to its
value before the trap. With ,this method, the pipes
are sometimes saved and restored unnecessarily
if the trap handler code does not use the pipes.
This method is advised when it is known that the
trap handler uses the pipes.

2.8.3 FLOATING"POINT FAULT

The floating-point fault is repo(ted on floating-point
instructions, pst, fst, and sometimes fld, pfld, and
ixfr. The floating-point faults of the i860 XP micro­
processor support the floating-point exceptions de­
fined by the IEEE standard as well as some other
useful classes of exceptions. The i860 xP micro-

processor divides these into two classes: source ex­
ceptions and result exceptions. The numerics library
supplied by Intel provides the IEEE standard default
handling for all these exceptions.

2.8.3.1 Source Exception Faults

All exceptional operands, including infinities, denor­
malized numbers and NaNs, cause a floating-point
fault and set SE in the fsr" Source exceptions are
reported on the instruction that initiates the opera­
tion. For pipelined operations, the pipeline is not ad­
vanced.

SE is undefined for faults on fld, pfld, fst, pst, and
ixfr instructions under these conditions:

• In single-instruction mode, always.

• In dual-instruction mode, when the companion in­
struction is not a multiplier or adder operation.

2.8.3.2 Result Exception Faults

The result exceptions include:

• Overflow. The absolute value of the rounded true
result would exceed the largest positive finite
number in the destination format.

2-36

• Underflow (when FZ is clear). The absolute value
of the rounded true result would be smaller than
the smallest positive finite number in the destina­
tion format.

• Inexact result (when TI,is set). The result is not
exactly representable in the destination format.
For example, the fraction % cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost.

The point at which a result exception is reported de­
pends upon whether pipelined operations, are being
used:

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floatirig'point,
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap
occurs, the last-stage of the affected unit con­
tains the result of the scalar operation.

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the
next floating-point (and sometimes fld, pfld, ixfr)
instruction is executed. When a trap occurs, the
pipeline is not advanced, and the last-stage re­
sults (that caused the trap) remain unchanged.

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad-

i860TM XP MICROPROCESSOR

vanced normally by the new floating-point operation.
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last-stage result-status bits (bits
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex­
ample, if the last-stage result in the multiplier has
overflowed and a pfadd is started, a trap occurs and
MO is set.

For scalar operations, the RR bits of fsr report in
which register the result was stored. RR is updated
when the scalar instruction is initiated. The result ex­
ception trap, however, occurs on a subsequent in­
struction. Programmers must prevent intervening
stores to fsr from modifying the RR bits. Prevention
may take one of the following forms:

" Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

" Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared; the result is
in the last stage of the pipeline of the appropriate
unit. The trap handler must flush the pipeline, saving
the results and the status bits.

In either pipelined or scalar mode, the trap handler
must compute the result to be returned. In either
case, the result delivered by the CPU has the same
significand as the true result and has an exponent
that is the low-order bits of the true result. The trap
handler can inspect the delivered result, compute
the result appropriate for that instruction (a NaN or
an infinity, for example), and store the computed re­
sult. If RR is nonzero, the trap handler must store
the computed result in the register specified by RR;
if RR is zero, it must load the last stage of the pipe­
line with the computed result instead of the saved
result.

Result exceptions may be reported for both the ad­
der and multiplier at the same time. In this case, the
trap handler should fix up the last stage of both pipe­
lines.

2.8.4 INSTRUCTION ACCESS FAULT

This trap occurs during address translation for in­
struction fetches in any of these cases:

.. The address fetched is in a page whose P (pres­
ent) bit in the page table is clear (not present).

2-37

• The address fetched is in a supervisor mode
page, but the processor is in user mode.

• The address fetched is in a page whose PTE has
A = 0, and the access occurs during a locked
sequence (i.e. between lock and unlock).

Note that several instructions are fetched at one
time, either due to instruction prefetching or to in­
struction caching. Therefore, a trap handler can
change from supervisor to user mode and continue
to execute instructions fetched from a supervisor
page. An instruction access trap occurs only when
the next group of instructions is fetched from a su­
pervisor page (up to eight instructions later). If, in the
meantime, the handler branches to a user page, no
instruction access trap occurs. No protection viola-
tion results, because the processor does not permit PI
data accesses to supervisor pages while running in
user mode.

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one ofthe following caus­
es:

.. An attempt is being made to write to a page
whose D (dirty) bit is clear.

• A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

• The address stored in the debug register is equal
to one of the addresses spanned by the operand.

" The operand is in a not-present page.

o An attempt is being made from user level to write
to a read-only page or to access a supervisor-lev­
el page.

" The operand is in a page whose PTE has A = 0,
and the access occurs during a locked sequence
(i.e. between lock and unlock).

.. Write protection (determined by epsr bit WP = 1)
is violated in supervisor mode.

When a data access trap is taken on a pipe lined
floating-point instruction that occurs immediately af­
ter the load or store instruction that causes the trap,
the destination register of the pipelined floating-point
instruction may be partially updated. Correct execu­
tion will occur when the trap handler resumes execu­
tion after handling the DAT, because the pipelined
floating-point instruction will then correctly update its
destination register.

i860TM XP MICROPROCESSOR

2.8.6 PARITY ERROR TRAP

If the PEN # pin is, active and the bus unit detects a
parity error during a bus read operation, the proces­
sor sets, PEF and IN, then generates a trap. Further
parity error traps are masked as soon as PEF is set.
To reenable such traps, software must clear PEF
and unfreeze BEAR by executing Id.c bear, rdest.

The interrupted program is not restartable. BS (bus
or parity error trap in supervisor mode) is set by the
i860 XP microprocessor when a parity error occurs
while the processoris in supervisor mode. The oper­
ating system can use this bit to decide, for eX,ample,
whether to abort the process (user mode) or reboot
the system (supervisor mode). '

2.8.7 BUS ERROR TRAP

When external hardware asserts the BERR pin, the
processor sets BEF(bus error flag) and IN (inter­
rupt), and then traps. Further BERR traps are
masked as soon as BEF is set by hardware. To
reenable ,such traps, software, must cle,ar BEF, and
unfreeze BEAR by executing Id.c bear, rdest.

BS (bus or parity error trap in supervisor mode) is set
by the i860 XP microprocessor when a bus error oc­
curs while the processor is in supervisor mode. The
operating system can use this bit to gecide, for ex­
ample, whether to abort the process (user mode) or
reboot the system (supervisor mode).

2.8.8 INTERRUPT TRAP

AI"! interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (1M set iri the psr), the processor
sets the interrupt bit IN in the psr and INT in the
epsr, then generates an interrupt trap.

Vectored interrupts are implemented by interrupt
controllers and software. Software can use the Idint
instruction to generate an interrupt acknowledge
(INTA) cycle. This instruction generates a bus cycle
with I NT A cycle specifications, and places the data
returned from the, bus to the destination register.
Tags, are not checked in the data cache for hit, and

, the cycle is not burstable.

The Intel 486 microprocessor generates two INTA
cycles as a response to an interrupt and inserts four
idle clocks in between. To generate an ,i"terrupt ac­
knowledge sequence that is compatible with the
Intel 486 microprocessor, the Idint instruction se­
quence documented in section 5.1.4 should be exe­
cuted.

2.8.9' RESET TRAP

When the i860 XP microprocessor is reset, execu­
tion begins in single-instruction mode at virtual' ad­
dress OxFFFFFFOO. This is the same address as for
other. traps. The reset trap can be distinguished from
other traps by the fact that no trap bits are set. The
instruction cache is flushed. The bits DPS, BL, and
ATE in dirbase are cleared. CS8 is initialized by the
value at the INT pin at the end of reset. The read­
only fields of the epsr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The
bits U, 1M, BR, and BW in psrare cleared, as are the
trap bits FT, OAT, IAT, IN, and IT. All other bits of
psr and all other register contents are undefined.
Refer to Table 2.11 for a summary of these initial
settings.

The software must ensure'that the control registers
are properly initialized before performing operations
that depend on the values of those registers.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated.

After a RESET the i860 XP microprocessor starts
execution at supervisor level (U = 0). Before branch­
ing to the first user-level instruction, the RESET trap
handler or subsequent initialization code has to set
PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user lev­
el. '

2.9 Debugging

The i860 XP microprocessor supports debugging
With both data and instruction breakpoints; The fea­
tures' of 'the ,i860, XP microprocessor architecture
that support debugging include:

2-38

• db (data breakpoint register), which permits
specification ,of a data address that the i860 XP
microprocessor will monitor.

• BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

• OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

• trap instruction that can be used to set break­
points in ,code. Any ,number of ' code breakpoints
can be, s,et. The values of the isrc1 and isrc2
fields' help identify which breakpoint has oc­
curred.

• IT (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap
instruction was the cause of the trap. '

intel® i860TM XP MICROPROCESSOR

Table 2.11. Register and Cache Values after Reset

Registers

Integer Registers
Floating-Point Registers
psr

epsr

db
dirbase
fir
fsr
bear
p3-pO
ccr
KR, KI, T, MERGE
NEWCURR
STATUS

Caches

Instruction Cache
Data Cache
TLB

3.0 ON-CHIP CACHES

By holding data, instructions, and address transla­
tion on-chip, the caches of the i860 XP microproces­
sor provide the following advantages:

1. Low chip count for the CPU subsystem.

2. Wide processor-to-cache path: 16 bytes for data,
8 bytes for instructions:

3. Fast access without requiring much additional
high-speed design in the system. The fast
(50 MHz) cache-access circuitry is hidden on
chip; the external bus can respond more slowly
without significantly degrading performance.

3.1 AddressTranslation Caches

The i860 XP microprocessor allows both four Kbyte
and four Mbyte page sizes, and a separate transla­
tion look-aside buffer (TLB) is used to cache ad­
dress translation information for each page size. The
TLB for four-Kbyte pages (Figure 3.1) has 64 entries,
and the TLB for four-Mbyte pages (Figure 3.2) has
16 entries. Both are four-way set associative. The
TLBs function when paging is enabled. When a page
is first accessed, its translation information is saved
in the appropriate TLB along with other page attri­
butes, such as access rights and cacheability. Every
address translation operation looks up the virtual ad­
dress simultaneously in both TLBs. Only if the nec-

Initial Vaule

Undefined
Undefined
U, 1M, BR, BW, FT, OAT, IAT, IN, IT = 0;
others are undefined
IL, WP, PBM, BE, PT = 0; BEF, PEF = 1;
Processor Type, Stepping Number, DCS,
SO are read only; others are undefined
Undefined
DPS, BL, LB, ATE = 0; others are undefined
Undefined
Undefined
Undefined
Undefined
CO, DO = 0; others are undefined
Undefined
Undefined
InLoop, Nested, Detached = 0

Initial Value

All entries invalid
All entries invalid
All entries invalid

2-39

essary paging information is not in either of the
caches must the paging tables in memory be refer­
enced. Both TLBs employ a random replacement al­
gorithm to choose which of the four ways to replace.

If an instruction's virtual address is found in the in­
struction cache, the virtual address is not translated,
and code access rights are not verified. However,
when an instruction's virtual address is not found in
the cache, address translation does occur, and all
access rights are verified. The virtual addresses of
data are always translated, and access rights are
always verified.

The i860 XP microprocessor requires simultaneous
access to data and instruction caches, but the TLBs
can service only one address translation at a time.
Data address translation has higher priority in the
TLBs than instruction address translation, if both are
required at the same time.

Any data or instruction access fault halts address
translation at once, and the TLB is not updated. If a
directory read causes an access fault, the page ta­
ble is not read at all.

If the paging unit generates a fault (insetting the 0
bit for the first write to a nondirty page, for example),
the corresponding entry is deleted from the TLB.
Therefore, software does not need to invalidate the
TLB entry in response to OAT or IAT faults.

NOTES:
D Dirty
CD Cache Disable
WT Write-Through
U User Mode
W Writable
V Validity

NOTES:
D Dirty
CD Cache Disable
WT Write-Through
U User Mode
W Writable
V Validity

i860™ XP MICROPROCESSOR

VIRTUAL ADDRESS
6.5 4- J 2

PAGE FRAME BYTE SELECT

PHYSICAL ADDRESS
240874-22

Figure 3.1. 4K TLB Organization

VIRTUAL ADDRESS
6543210.

BYTE SELECT

PHYSICAL ADDRESS

PHYSICAL ADDRESS

PHYSICAL ADDRESS

.5 2 10.

PAGE FRAME BYTE SELECT

PHYSICAL ADDRESS
240874-23

Figure 3.2. 4M TLB Organization

2-40

i860™ XP MICROPROCESSOR

If TLB replacement is initiated during a locked se­
quence generated by the lock instruction and if an­
other locked sequence has to be executed to serthe
A-bit, the paging unit generates an access fault. This
helps external hardware implement "locking by ad­
dress" by preventing generation of nested lock se­
quences.

3.2 Internal Instruction and Data
Caches

The i860 XP microprocessor has separate data and
instruction caches on-chip. Having separate caches
for instructions and data allows simultaneous cache
look-up. Up to two instructions and 128 bits of data
can be accessed simultaneously from these caches.
The data and instruction caches hold 16 Kbytes
each. A line can be filled from memory with a four­
transfer burst.

The caches are fully transparent to applications soft­
ware. Snooping (address monitoring) is designed
into both instruction and data caches, to maintain
cache consistency in multiprocessor systems.

Each cache has two sets of tags: virtual tags used
for internal access, and physical tags used for

snooping. Figure 3.3 shows how the bits of both vir­
tual and physical addresses are mapped for cach­
ing. The presence of both virtual and physical tags
supports aliasing, a situation in which the TLBs as­
sociate a single physical address with two or more
virtual addresses.

Any area of memory can be cached, although both
software and hardware can disallow certain areas
from being cached-software by setting the CD bit in
their page table entries; hardware by deasserting the
KEN # signal for bus cycles with addresses that fall
in those areas. (Data reads from the two four-Kbyte
pages pointed to by the CCUBASE field of ccr are
not cached (and the CACHE# signal is. inactive), if
the DCCU is activated by setting CO of the ccr
register. This is independent of the value of KEN #.)
When both software and. hardware agree that a re­
quested datum is cacheable, the i860 XP microproc­
essor fetches an entire 32-byte line and places it
into the appropriate cache. Cache line fills are gen­
erated only for read misses, not for write misses. A
store that misses the cache does not copy the
missed line into cache from memory, but rather
posts the datum in a write buffer, then sends it to the
external bus when the bus is available.

INTERNALLY GENERATED ADDRESSES
'3130292827262524232221201918'171615141312 1110 9 8 7 6 5 -I J 2 f 0

CACHE TAG SET SELECT

CACHE TAG

EXTERNALLY GENERATED INQUIRY (SNOOP) ADDRESSES

Figure 3.3. Cache Address Usage

2-41

BYTE
SELECT

240874-24

II .' ,

i860™ XP MICROPROCESSOR

3.2.1 DATA CACHE

Figure 3.4 shows the organization of the data cache.
The data cache has two status bits per physical tag
and one validity status bit for the virtual tag. A virtual
tag hit is possible only when the validity bit of the
virtual tag is set and the state of the physical tag is
M, E, or S.

Aliasing support is built into the cache look·up algo­
rithm. Even though a physical line may be aliased,
the processor never enters the line twice in the data
cache. If a virtual address is not found among the
virtual tags in the data cache, a bus cycle is initiated
(except a read is not issued at this time if the bus
pipeline is full) and, at the same time, the physical
tags are searched for the physical address (which by
this time has been retrieved from the paging unit).
For reads; if the physical address is found, the data
returned from the bus is ignored, on-chip data is
used, and the virtual tag is replaced with the new
one. For writes, if a virtual address is not found, the
write is issued on the bus and memory is updated. If
the physical address is found, the line in cache is
updated, and the virtual tag is replaced with the new
one. However, the cache state (M, E, or S) of the
physical-address tag does not change when the vir­
tual tag is overwritten.

Note that the BE (big endian) bit of epsr has no
influence on data cache behavior. Data items are
kept in cache in exactly the same ordering as in ex­
ternal memory. Byte-shifting operations invoked by
the BE bit upon loads and stores occur at the input
to the register files only.

3.2.1.1 Data Cache Update Policies

To minimize bus traffic, a write-back policy is normal­
ly used. The write-back policy (also called copy-back
and deferred-write) reduces bus traffic by eliminating

NOTES:
M Modified
E Exclusive
S Shared

many unnecessary writes. Writes to a line in the
cache are not immediately forwarded to main memo
ory; instead, they are accumulated in the cache. The
modified cache line is written to main memory only
when its cache space is needed for other data,
when the modified data is needed by another proc­
essor, or when a flush procedure is executed.

Under the write-back policy, a write that hits the
cache utilizes it for two cycles (one to check the
virtual tags for hit, another to update the cache line).
However, the cache pipeline allows successive
store hits to operate at one per cycle. The proces­
sor's internal write buffers can hold two successive
stores, preventing a freeze upon store miss.

Under a write-through policy, a write request to a line
in the cache triggers updates to both cache and
main memory. An address decoder, for example,
can select the write-through policy for writes to video
RAM, where it is necessary that writes be seen on
the video display. Software, by setting the WT page­
table bit, can select the write-through policy for spe­
cific areas of memory-those that are used for inter­
processor message queues, for example.

A write-once policy combines write-through with
write-back. Write-through is employed for the first
write to a cache line, while subsequent writes to the
same line follow the write-back policy. Write~once is
valuable in multiprocessor systems to maintain
cache consistency with the least possible bus traffic.
The first write broadcasts to other processor nodes
the fact that a line has been modified. Write-once is
also used if a second-level cache is attached to the
i860 XP microprocessor to maintain consistency be­
tween the first- and second-level caches.

The external system can dynamically change the up­
date policy (write-back, write-through, write-once) of
the i860 XP microprocessor with each cache line.

I Invalid
V Validity 32-BYTE l." .E5·--I

240874-25

Figure 3.4. Data Cache Organization

2-42

Intel., i860TM XP MICROPROCESSOR

3.2.2 INSTRUCTION CACHE

Figure 3.5 shows the organization of the instruction
cache. The instruction cache has one validity bit that
is common to both virtual and physical tags. Aliasing
support for instructions consists not simply of chang­
ing the virtual tag, but rather fetching a line whenev­
er a virtual tag miss occurs. If the physical address
already exists in the instruction cache, its line and its
tags are overwritten. So, even though a physical line
may be aliased, the processor never enters the line
twice in the instruction cache.

3.2.3 CACHE REPLACEMENT ALGORITHM

The data, instruction, and address·translation
caches all use similar algorithms to choose which of
the four cache blocks will be overwritten when a
miss causes a line fetch.

First, the first invalid line (if any) in a set of four is
replaced (in the order 0, 1, 2, 3). When there are no
more invalid lines in a set, a pseuaorandom replace­
ment algorithm chooses which valid lines to replace.
The algorithm is controlled by counters inside .the
chip. RESET initializes these counters to zero, so
that the "randomness" is deterministic and two
i860 XP CPUs executing the same code on identical
boards have exactly the same series of cache hits,
misses, and replaceme!1ts.

NOTE:
V Validity

Setting ITI to invalidate the caches and TLSs also
resets the counters used to select the set used for
cache line replacement. This brings the i860 XP mi­
croprocessor cache-replacement mechanism to a
known state without resetting the whole chip.

When the flush instruction is used to write back
modified lines in the data cache, the flush routine
must alter the RC (replacement control) field of
dlrbase. Therefore, replacement is not random. In­
stead, the block (or "way") replaced is the one se­
lected by the RS (replacement block) field of
dlrbase. .

3.2.4 CACHE CONSISTENCY PROTOCOL

The iB60TM XP Microprocessor implements cache
consistency via its. use of a MESI (Modified, Exclu­
sive, Shared, Invalid) protocol.

3.2.4.1 Data Cache States

Each line of the data cache of the iB60 XP micro­
processor can be in one of the states defined in Ta­
ble 3.1. Note that the instruction cache of the
i860 XP only implements the "51" part of the MESI
protocol, because the instruction cache is not writa­
ble.

240874-26

Figure 3.5. Instruction Cache Organization

Table 3.1. MESI Cache Line States

M E S I
Cache Line State: Modified Exclusive Shared Invalid

This cache line is valid? Yes Yes Yes No

. The memory copy is ... : .. out of date ... valid . .. valid -
Copies exist in other caches? No No Maybe Maybe

A write to this line ' does not go ... does not go .., goes to bus ... goes
to bus to bus and updates directly to bus

the cache

2-43

i860TM XP MICROPROCESSOR

Table 3.2. Internally Initiated Cache State Transitions

State Next State after Read , Next State after Write'

I IfWB/WT# = 1; E; else S Write-through
Line fill I

S S Writecthrough
If WB/WT# = 1 ,E; else S

E E M
M M M

NOTE:
* "Write" does not include write-backs due to replacement. Those can only cause an M to I

transition.

The state of a cache line can change as the result of
either internal or external activity related to that line.
Table 3.2 presents the line state transitions that re­
sult from internal activity of the i860 XP microproces­
sor in the data cache.

External cache-consistency support is provided
through inquiry cyctes. Inquiry cycles are initiated by
other processors in a multiprocessor system to
check whether an address is cached in the internal
cache of the i860 XP microprocessor. Table 3.3
shows the line state transitions. initiated by inquiry
cycles.

State

I
S
E
M

Table 3.3. Inquiry-Initiated
Cache State Transitions

INV=O INV=1

I I
S I
S I

S; write back the line I; write back the line

3.2.4.2 Write-Once Policy

A write-once cache policy can be implemented
'through use of the WB/WT # input pin. The signal
on this pin is sampled in both read and write cycles.
A read miss causes a line to enter either S or E after
the line fill. If WB/WT # is sampled LOW at the time­
of NA# or the first BRDY# activation, the line en­
ters S state, forcing the next write hit to this line to
show up on the bus. If WB/WT# is sampled HIGH,
the line enters E state. In write-through cycles, the
state of aline is changed from S to E when WBI'
WT# is sampled HIGH, so that subsequent writes
will not be written through to the bus. Thus, if this
signal is driven LOW on read cycles and HIGH on
write cycles, a write-once cache policy is implement­
ed. The easiest way to implement write-once (in sys­
tems not using the 82495XP cache controller) is to
tie this pin to.the W/R# output of the processor.

2-44

If the WT bit in the page table entry is set, the
i860 XP microprocessor ignores the WB/WT # sig­
nal for the cycles that hit that page and always per­
forms a write-through. In other words, hardware can­
not override software's selection of the write­
through policy.

3.2.4.3 Locked Access

Locked accesses are those data loads and stores
that occur after a lock instruction up to and including
the first load or store after the corresponding unlock
instruction. '

State transitions for locked accesses differ from
those in Table 3.2 in ways that guarantee that
locked accesses are seen by all processors in the
system. Any locked load or store generates both a
cache look-up and an external bus cycle, regardless
of cache hit or miss.

1. In a locked read:

a. If the required data is not found in the cache,
the data from the bus is used. The data is
placed in the cache if it is cache able and
KEN # is also asserted.

b. If the required data is found in an unmodified
(E or S) state, the data from the bus is used.,

c. If the data is found in the cache in a modified
(M) state, the cached data is used, and the
bus .data is ignored, as long as no inquiry
write-back occurs before the BRDY # of the
bus cycle. If, however, an intervening inquiry
write-back changes the line to S or I state, the
bus data is used.

2. A locked store is forced through the cache and
issued on the bus. No more data accesses occur
until the last BRDY # for the store. If the store
hits the internal cache, the cache'update is done
after the last BRDY # from the bus. Note that the
line written by a locked store remains in M state
in spite of the write-through to the bus, because
the lengthofthe write-through is less than the
line size of 32 bytes.

in~® i860™ XP MICROPROCESSOR

Locked accesses are totally serializing in the sense
that:

1. All loads and stores that precede the loclt
instruction are issued on the bus (if they miss the
cache) before the first locked access is issued.
The locked access can be issued before the last
BRDY # of the prior cycle if NA# is activated in
response to the prior cycle.

2. No load or store after the last locked access is
issued internally or on the bus until the final
BRDY # for all locked accesses.

To maximize performance, instruction fetches during
the locked sequence are not serializing. When NA iF
invokes pipelining, instruction fetches may be issued
while locked data fetches or stores remain on the
bus.

3.3 Internal Cache Consistency

Both the instruction and the data caches can be
snooped by externally generated inquiry cycles, and
the result of the look-up is presented on the HIT#
and HITM# output pins. These inquiry cycles help
maintain consistency with caches of other proces­
sors. However, software must take care not to cre­
ate inconsistencies such as the following among the
internal caches (including the TLBs):

1. Changing the address space while leaving virtual­
address tags from the prior space in the instruc­
tion or data cache.

2. Changing instructions in memory (or in the data
cache) without changing them in the instruction
cache.

3. Changing page table information in memory (or in
the data cache) without changing the same infor­
mation in the TLBs.

Under certain circumstances, such as I/O refer­
ences, self-modifying code, page-table updates, or
shared data in a multiprocessing system, it is neces­
sary to bypass, to invalidate, or to flush the caches.
The i860 XP microprocessor provides the following
methods for doing this:

.. Bypassing Instruction and Data Caches.

1. If deasserted during cache-miss processing,
the KEN # pin disables instruction and data
caching of the referenced data.

2. If the CD bit of the associated page table is
set, caching of a page is disabled. The value of
the CD bit is output on the PCD pin for use by
external caches.

2-45

3. If the WT bit of the associated page table is
set, caching is not disabled, but writes pass
through the cache. The value of the WT bit is
output on the PWT pin for use by external
caches. (Note that WT does not affect policy
for the instruction cache, because the instruc­
tion cache is not writable. However, when an
instruction from a page having the WT bit of
the PTE set is placed in the data cache, the
write-through policy applies just as for a data
page.)

o Invalidating Cache Entries. Storing to the
dirbase register with the ITI bit set invalidates
each line of the instruction and address-transla­
tion caches. In the data cache, it invalidates the
virtual tags, but not the physical tags.

o Flushing the Data Cache. The data cache is II
flushed by a software routine that uses the flush
instruction. The flush instruction speeds up write-
backs. The same effect (writing back modified
lines) can be achieved with the load instruction
IdJ, but this would be more than twice as slow-
the load must first do four bus transfers to get
new data, then write back the modified line. The
ilush instruction causes the write-backs without
requiring a read from external memory to replace
the modified line.

3.3.1 ADDRESS SPACE CONSISTENCY

In a multitasi<ing virtual-address system, the operat­
ing system may intentionally employ aliasing, where
several processes use the same physical memory
while accessing it with different virtual addresses.
When the operating system switches control from
one process to the next, it changes the DTB field of
the dirbase to point to a different page directory that
defines the new address space. When this happens,
all caches must be invalidated: the TLBs, so that the
new page directory is read into the TLBs; the data
and instruction caches, so that virtual addresses
from the new space don't accidently match cached
virtual addresses from the old space.

The caches are invalidated by setting the ITI bit
when writing to dirbase. Invalidating the instruction
cache invalidates both the physical and the virtual
tags, because the instruction cache has one status
(valid) bit, which is common to both physical and
virtual tags. In the data cache, setting ITI does not
invalidate physical tags. However, any modified lines
will eventually be written back when their space is
required for lines from the new address space or
when external agents on the bus express a need for
the modified data via inquiry cycles.

inlet i860TM XP MICROPROCESSOR

The caches are invalidated by setting the ITI bit
when writing to dirbase. Note, however, that the op­
erating system code that flushes the caches must
be present during the flushing. Typically this code
has the same virtual address for all processes.

NOTE:
The mapping of the page(s) containing the cur­
rently executing instruction, the next six in­
structions, and any data referenced by these
instructions should not be different in the ·new
page tables when the DTB is changed.

Enabling or disabling address translation (via the
ATE bit) is similar to changing the DTB, in that the
address mapping is changed. The virtual tags in the
data and instruction cache must be invalidated prior
to changing ATE.

3.3.2 INSTRUCTION CACHE CONSISTENCY

When software modifies a page containing instruc­
tions (as when a debugger replaces an instruction
with the trap instruction to set a breakpoint), the in·
struction cache can become inconsistent for any of
the f9110wing reasons:

• Because the data cache uses a write-back policy,
changes to cached instruction pages do not im­
mediately update memory.

o Changes to instructions do not automatically up­
date the instruction cache.

'a Instruction cache misses are not checked in the
data cache. .

Software must ensure that modified lines containing
instructions are written to main memory before the
instruction cache tries to read them. There are two
methods for this:· .

1. Flush the data ,cache using the flush instruction.
Note that to make the instruction cache consist­
ent with the data cache, the data cache must be
flushed before invalidating the instruction cache.

2. Mark all instruction pages as WT (write through)
so that modifications to instructions are immedi­
ately written to memory. This is the better alterna­
tive.

In either case, the instruction cache must be invali­
dated (by a store to dirbase with ITI set) after a
code page has been modified, so that the updated
instructions will be read from memory.

3.3.3 PAGE TABLE CONSISTENCY

When the operating system modifies page tables or
directories, the TLBs can become inconsistent with
the modifications for any of the following reasons:

o Because the data cache uses a write-back policy,
updates to cached page tables do not immediate­
ly update memory.,

a Changes to page tables do not automatically up­
date the TLB.

a The i860 XP microprocessor searches only exter­
nal memory for page directories and page tables
in the translation process. The data cache is not
searched. (Data is not transferred from the data
cache to the TLBs during TLB replacement cy­
cles.)

·Software must ensure that modified lines containing
page table entries are written to main memory be­
fore the paging unit tries to read them. There are two
methods for this:

1. Keep page tables and directo~ies in noncachea-
ble memory or write-through pages.

2-46

2. Flush the data cache using the flush' instruction.

The processor itself invalidates the affected TLB en­
try, when a trap is triggered by the need to set the A
or 0 bit. In other cases, after a page table or directo­
ry has been modified, software must invalidate the
TLBs (by a store to dirb~se with ITI set) so that the
updated entries will be read from memory ..

The data cache does not need flushing if the pro­
gram is modifying only the P, U, W, A, or D bits of a
PTE (as long as the page frame address is not
changed and the PTE itself is not in the data cache.)
The i860 XP CPU does not use the TLB for cache
line write-backs; it writes to the address in the physi­
cal tag.

Thus, a trap handler can service a data access trap
for D-bit zero merely by setting D = 1. When setting
the P or A bits, there is no need to invalidate or flush
any caches, because the processor does not load
entries into the TLB that have P = 0 or A = O.

Two potential TLB inconsistencies are avoided auto­
matically by thei860 XP microprocessor.

1. If the paging unit issues a write cycle (to set the A
bit, for example), this cycle is snooped by the
data cache for invalidation.

2. Any TLB entry that causes a OAT or IA T is auto­
matically invalidated.

int'eL i860TM XP MICROPROCESSOR

3.3.4 CONSISTENCY OF CACHEABILITY

Normally, an operating system ensures that the
page attributes (CD and WT) of a memory access
are consistent with the cache contents. However,
the operating system can fail to maintain consisten­
cy by the following actions:

o Changing the CD or WT bits while related lines
are in the cache.

o Aliasing a physical address with virtual addresses
that have differing CD or WT bits.

In these situations, the i860 XP microprocessor
gives priority to cache state. For example:

1. If a read or write request is to a noncacheable
page (CD= 1), but the data (or code) is found in
cache, the request is satisfied by the cache, and
no external cycle is issued.

2. If the physical address of a read or write request
hits in the cache but the virtual address misses,
the virtual tag is overwritten by the new virtual
address, but the CD bit of the new virtual address
is ignored.

3. If a store to a write-through page (WT = 1) hits a
cache line in E or M state, no write-through cycle
is issued; only the cache is updated.

3.3.5 LOAD PIPE CONSISTENCY

The pfld (pipelined floating-point load) instruction fa­
cilitates transfer of data from memory to registers,
and avoids placing data in the data cache. When
large amounts of data are used, pfld allows the pro-

. gram mer to keep rarely-used data out of the cache.
The i860 XP microprocessor ensures consistency
between cached data and pfld references. It checks
the data cache and, upon a data cache hit to a modi­
fied line, forwards data from cache into the three­
stage pfld pipeline.

3.3.6 SUMMARY

Table 3.4 summarizes flush and invalidation require­
ments, assuming that WT is set in the PTEs of in­
struction and page-table pages:

2-47

Table 3.4. Summary of
Cache Flushing And Invalidation

Flush Invalidate
Action Data Caches

Cache (ITI)

Setting A No No
Setting P No No
Clearing P No Yes
Setting D No No
Changing protection (U,W) No Yes
Setting CD or WT Yes Yes
Changing PFA in a used(1) PTE No Yes
Changing dirbase DTB No Yes
Changing dirbase ATE No Yes
Changing epsr WP No No
Setting ccr DO and CO Yes(2) Yes(2)
Modifying code No(;3) Yes

NOTES:
1. "Used" means a PTE that at some past time had P set.
2. If data from either of the CCU pages could have been
cached.
3. Assuming all instructions and their page directories and
page tables are in write-through or noncacheable pages.

4.0 HARDWARE INTERFACE

In the following description. ,of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

4.1 Pins Overview

Figure 4.1 identifies fUnctional groupings of the pins.
Table 4.1 lists every pin by its identifier, gives a brief
description of its function, arid lists some of its char­
acteristics. All output pins are tristate, except BREQ,
HIT#, HITM#, HLDA, LOCK#, and PCHK#.

II

intet i860TM XP MICROPROCESSOR

Table 4.1. Pin Summary

Pin Active When Floated Internal
10 Name Level Synch/Asynch Resistor

Output Pins

ADS# Address Status LOW HLDA, clock after BOFF#
BE7#-BEO# Byte Enable LOW HLDA, BOFF#
BREQ B,us Request HIGH
CACHE# Cache LOW HLDA, BOFF#
CTYP Cycle Type HIGH HLDA, BOFF#
D/C# Data/Code HLDA, BOFF#
HIT# Snoop Hit Cache LOW
HITM#' Snoop Hit Modified Line LOW
HLDA Hold Acknowledge HIGH
KBO,KB1 Cache Block HIGH HLDA, BOFF#
LEN Length HIGH HLDA, BOFF#
LOCK# Address Lock LOW
M/IO# 'Memory/IO HLDA, BOFF#
NENE# Next Near LOW HLDA, BOFF#
PCD Page Cache Disable HIGH, HLDA,BOFF#
PCHK# Parity Check LOW
PCYC Page Cycle HIGH HLDA, BOFF#
PWT Page Write-Through , HIGH HLDA, BOFF#
TOO Test Output Nonscan Mode
W/R# Write/Read HLDA,BOFF#

, Input/Output Pins

A31-A3 Address HIGH AHOLD, HLDA,BOFF#
D63-DO Data HIGH HLDA, BOFF#
DP7-DPO Data Parity HIGH HLDJI:, BOFF#

Input Pins

AHOLD Address Hold HIGH Synch
BERR Bus Error HIGH Synch
BOFF# Back-Off LOW Synch
RSRVD# Intel Reserved
BRDY# Burst Ready LOW Synch
BYPASS # Intel Reserved LOW
CLK Clock
RESET Reset HIGH Asynch
EADS# External Address Status LOW Synch
EWBE# External Write Buffer Empty LOW Synch
FLlNE# Flush Line LOW Synch
HOLD Bus Hold HIGH Synch
INT/CS8 Interrupt/Code-Size 8 HIGH Asynch
INV Invalidate HIGH Synch
KEN# Cache Enable LOW Synch
NA# Next Address LOW Synch
PEN# Parity Enable LOW Synch
TCK Test Clock
TDI Test Data Input Synch Pull-up
TMS Test Mode Select Synch Pull-up
TRST# Test Reset LOW Asynch Pull-up
WB/WT# Write-Back/Write-Through Synch
SPARE Intel Reserved

2-48

int:el.. i860TM XP MICROPROCESSOR

The pins D/C#, W/R#, and MIIO# define bus cy­
cle types. They are summarized in Table 4.2. For
data transfers to or from memory, two additional
pins, CTYP and PCYC, provide further information
regarding the type of transfer, as shown in Table 4.3.
Table 4.4 shows how the LEN and CACHE# pins
determine cycle length.

Table 4.2. ADS # Initiated Bus Cycle Definitions

M/IO# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Special Cycle
0 1 0 I/O Read
0 1 1 1/0 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Table 4.3. Memory Data Transfer Cycle Types

PCYC CTYP W/R# Data Transfer Type

0 0 0 Normal read
0 1 0 Pipelihed load (pfld instruction)
1 0 0 Page directory read
1 1 0 Page table read
0 0 1 Write,through (S-state hit) .
0 1 1 Store miss or write-back
1 O. 1 Page directory update
1 1 1 Page table update

NOTE:
PCYC and CTYP.are defined onlY'for memory data transfer
cycles (D/C# = 1, MIIO# = 1)

.A I\.

<.~ DATA ADDRESS
~ I'

IIJ\.
(DP7-DPO

PARITY
~N#

..-

BRDY# CYCLE
NA# CONTROL

KEN#
WB/WT#

CACHE
CONTROL

AHOLD
EADS#
INV

CACHE
CONSISTENCY

FLINE#

HOLD
BUS

BOFF# ARBITRATION

INT/CSB
BERR INTERRUPT CYCLE

DEFINITION

TCK
TOI
TMS

BOUNDARY
SCAN

TRST#

RESET
CLK
EWBE#
BYPASS#

III I\.
A31-A3

ttl I
BE7#-BEO#)

..-

'. PCHK#

i • • ADS#

'" LEN
" CACHE#

LOCK#
NENE#

• PWT
• PCD

HIT#
;: HITM#

'" KBO
KBl

BRED
· HLDA

1.4/10#
o D/C#

W/R#
PCYC

ii CTYP

14
~

~ TOO

240874-27

Figure 4.1. Signal Grouping

Table 4.4. Cycle Length Definition

W/R# LEN CACHE # KEN# Cycle Description

0 0 1 - Noncacheable*' 64-bit (or less) read
O. 0 - 1 Noncacheable 64-bit (or less) read
1 0 1 - 64-bit (or less) write
- 0 1 - 110 and Special Cycles
0 1 1 - Noncacheable 128-bit read (p)fld.q
0 1 - 1 Noncacheable 128-bit read (p)fld.q
1 1 1 - 128-bit write fst.q
0 - 0 0 Cache line fill
1 - 0 - Cache write-back

NOTE: .
•• Includes CSa-mode code fetches, which may be cached by the processor.

·-Indicates "don't care" values.

2-49

Burst Length

1
1
1
1
2
2
2
4
4

i860™ XP MICROPROCESSOR

4.2 Signal Description

In this section descriptions of all pins are presented
in alphabetical order:.

4.2.1 A31-A3 (ADDRESS PINS).

The 29-bit address bus (A31-A3) identifies address­
es to a 64-bit location. Separate byte-enable Signals
(BE7#-BEO#) identify which bytes should be ac­
cessed within the 64-bit location.

The address lines are bidirectional. The iB60 XP mi­
croprocessor drives the address lines unless it is in a
hold state. The system drives address lines A31-A5
to perform cache line inquiries (refer to the EADS #
signal description).

4.2.2 ADS# (ADDRESS STATUS)

The i860 XP micr,oprocessor asserts ADS # to iden­
tify the first clock period of each bus cycle, the clock
period during which new values become valid on the
address bus and cycle-definition pins. This signal is
held active for one clock.

If BOFF# is asserted, the processor floats ADS#
two clocks after sampling BOFF # (and not, like all
other pins, on the next clo~k). This is to enl/ure that
AOS# is deasserted before it floats, and therefore is
never left floating active.

AOS# can be asserted while AHOLD is active to
initiate a cache write-back cycle.

4.2.3 AHOLD (ADDRESS HOLD)

The external system asserts AHOLD to perform a
cache inquiry. In response to assertion of AHOLD,
the i860 XP microprocessor immediately (in the next
clock) stops driving the address, bus (A31 '-A3 lines).
The other buses remain active, and data can be
transferred for previously issued read or write bus
cycles during address hold. AHOLO is recognized
even during RESET and LOCK #. The earliest that .
AHOLO can be deasserted is the clock after EADS#
is asserted to start the inquiry. ,

If HITM# has activated due to an inquiry, th~
i860 XP microprocessor asserts ADS# while
AHOLO is active to start the write-back of the modi~
fied line that was the target of the inquiry.

"
4.2.4 BE7# -BEO# (BYTE ENABLES)

The byte-enable pins are driven with the address.
BE7# applies to D63-056, BEO# applies to 07-
~O.

In. write cycles (noncacheable writes as well as
cache line write-backs), the BEn# signals determine
which bytes must be written into external memory
for the current cycle.

In read cycles,the BEn# values indicate which byte
the load instruction has requested. In all. noncachea­
ble read cycles (CACHE# or KEN# deasserted),
the byte enables match the length .and address of
the requested data. Cacheable read cycles (KEN #
asserted), however; result in four 64-bit memory
transfers to fill an entire 32-byte cache line. The
BEn# pins activated are those that represent the
operand of the load instruction that caused the line
fill, and these same BEn# pins remain activated for
as long as A31-A5. All 64 bits must be returned for
each cacheable cycle without regard for the BEn#
signals.

While in CS8 mode, BE2#-BEO# serve as (active­
high) lower-order address bits for instruction fetches
(from the ROM). Data fetches and stores are not
affected by CS8 mode,. and BE2#-BEO# retain
their normal byte-enable function for data.

4.2.5 BERR (BUS ERROR)

This is a nonmaskable interrupt input, which sup­
ports bus error handling or other urgent circum­
stances. BERR is not masked by the 1M bit of the
psr nor by lock cycles. When BERRis activated, the
i860 XP microprocessor vectors to the trap handler
and sets the bus error flag (BEF) in the epsr. BERR
causes the physical address of the current bus cycle
to be latched into the BEAR control register; thus, if
asserted the clock' of BRDY # or the clock after
BROY #, it causes the bus address to be latched for

, software to examine. BERR is rising-edge sensitive.
Once the trap has occurred, further BEF traps can­
not occur until software has cleared BEF and read
BEAR. . .

BERR does not terminate outstanding bus cycles.
Therefore, the system must still activate BRDY # a
sufficient number of times or lactivate. BOFF # for
those cycles. Even though activating BOFF # tem­
porarily halts the erring cycles, the i860 XP micro­
processor will retry them when BOFF #. is deassert­
ed, in spite of BERR. .

Timing of BERR is not influenced by late back-off
mode. .

4.2.6 BOFF # (BACK-OFF)

The system can assert this .signal to abort· all out­
standing bus cycles that have not yet completed. In
response to BOFF #, the i860 XP microprocessor

2-50

i860™ XP MICROPROCESSOR

immediately (in the next clock) floats its bus, except
for ADS #, which is floated one clock later. The
processor floats all the same pins normally floated
during bus hold; however, unlike a bus hold, HLDA is
not asserted. (HLDA is asserted only in response to
HOLD; no acknowledgment is required for BOFF # .).
Any data and BRDY # returned to the processor
while BOFF # is asserted are ignored. The proces­
sor remains in bus hold until BOFF # is deasserted,
at which time it restarts the bus cycles by driving the
address and cycle definition pins and asserting
ADS#. When BOFF# deactivates, ADS# may be
asserted the following clock. Thus a BOFF # dura­
tion of one clock results in not floating ADS# at all.
BOFF # cannot be used to force the pins to float
during RESET; use HOLD for that purpose.

4.2.7 BRDY# (BURST READY)

The input BRDY # indicates either that the external
system has driven valid data on the data pins in re­
sponse to a read request or that the external system
has latched the data in response to a write request.
The CPU ignores this signal when no bus requests
are outstanding. During a bus cycle, BRDY # is sam­
pled at each clock, starting with the clock after as­
sertion of ADS# and continuing until all data for the
cycle has been transferred. When BRDY # is sam­
pled active in a read cycle, the data present on the
pins is sampled. .

4.2.8 BREQ (BUS REQUEST)

BREa allows the i860 XP microprocessor to share
the local bus with other bus masters. An external
bus arbiter can use BREa to implement an "on de­
mand only" policy for granting the bus to the i860 XP
microprocessor. The i860 XP microprocessor as­
serts BREa the clock after it realizes an internal re­
quest for the bus. The system should sample this pin
only when the i860 XP microprocessor is not in con­
trol of the bus (that is, when HLDA, BOFF #, or
AHOLD is active). BREa is undefined when the
i860 XP microprocessor is driving the bus. BREa
may be deasserted between assertions of ADS # ,
but this does not imply that the CPU does not need
the bus ..

2-51

4.2.9 BYPASS# (BYPASS)

This pin is reserved by Intel Corporation and should
be tied HIGH to Vee through a resistor. When LOW,
the phase-locked loop that generates the internal
clock is unused. In this case, the internal clock has
more skew relative to the external CLK, and the A.C.
timing parameters are not guaranteed.

4.2.10 CACHE # (CACHEABILlTY)

This output signal indicates internal cacheability of a
bus request. Its timing follows that of the address
bus.

The i860 XP microprocessor asserts CACHE# for
cacheable reads and code fetches to announce its
intention to cache the data. If CACHE # is asserted
on a read cycle and if the KEN# input is active, the
cycle is a burst line fill. If CACHE# is inactive in a
read cycle, the i860 XP microprocessor does not
cache the returned data, regardless of the KEN #
pin. CACHE # is also asserted for cache line write­
backs.

CACHE# is inactive for noncacheable reads (for ex­
ample, pfld, Idio, Idint), TLB replacements, and
store misses.

Table 4.4 shows how cacheability determines the
number of data transfers in a cycle.

Note that the CACHE # output is always inactive for
CS8 (Code-Size 8 bits) mode instruction fetches so
that the instructions are fetched with single-transfer
cycles. However, the code fetched may then be
placed in the instruction cache, unless KEN # was
inactive.

4.2.11 cuc. (CLOCK)

The CLK input determines execution rate and timing
of the i860 XP microprocessor. External timing pa­
rameters are specified relative to the rising edge of
this signal. The i860 XP microprocessor can utilize a
clock rate of 50 Mhz. The internal operating frequen­
cy is the same as the external clock. This signal re­
quires TTL levels.

ini'ei® i860™ XP MICROPROCESSOR

4.2.12 CTYP (CYCLE TYPE)

CTYP is one of the bus cycle definition signals. Ta­
bles 4.2 and 4.3 show the types of bus cycle gener­
ated. CTYP is defined only for data write and read
requests. The value of this pin changes only when
AOS# is asserted.

4.2.13 D/C# (DATA/CODE)

O/C# specifies whether the current request is for
data or instructions. The datal code line is one of the
bus cycle definition pins. Tables 4.2 and 4.3 show
the types of bus cycle generated. The value of this
pin changes only when AOS# is asserted~

4.2.14 D63-DO (DATA PINS)

The bus interface has 64 bidirectional data pins
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte;
pins 063-056 transfer the most significant byte. In
read cycles, all 64 bits of the data bus are latched,
even in CS8-mode instruction fetches when only the
low-order eight bits are used. In write cycles, the
i860 XP microprocessor does not drive 063-00 in
the clock of AOS#, but in the following clock.

4.2.15 DP7-DPO (DATA PARITY)

There is one parity signal for each byte of the data
bus. They are driven by the i860 XP microprocessor
with even parity information on writes with the same
timing as write data. Likewise, if parity checking is
enabled by PEN #, the system must drive even pari­
ty information on these pins with the same timing as
read information to ensure that the correct parity
check status is indicated by the i860 XP microproc­
essor. "Even parity" means that the total number of
set bits in a byte, including the parity bit, is even.
Refer also to the PCHK # Signal.

4.2.16 EADS# (EXTERNAL ADDRESS STATUS)

This signal indicates that a valid external address
has been driven onto address pins A31-A5 of the
i860 XP microprocessor to be used for a cache in­
quiry. This signal is recognized while the processor
is in hold (HLOA is driven active), while forced off the
bus with BOFF # input, or while AHOLO is asserted.
The i860 XP microprocessor ignores EAOS# at all
other times. EAOS# is not recognized if HITM# is
active, nor during the clock after ADS #, nor during
the clock after a valid assertion of EAOS#. Table
4.5 shows when EAOS is first sampled. It is then
sampled in every clock as long as the hold remains
active and HITM# remains inactive.

2-52

Table 4.5. EADS# Sample Time

Trigger EADS# First Sampled

AHOLO Second clock after AHOLO asserted
HOLD First clock after HLOA asserted

BOFF# Second clock after BOFF # asserted

INV and FLlNE# are sampled in the same clock pe­
riod that EAOS# is validly asserted. HIT# and
HITM # may be asserted as the results of a cache
inquiry.

4.2.17 EWBE# (EXTERNAL WRITE BUFFER
EMPTY) .

At RESET, the value on EWBE# determines the or­
dering mode. The processor enters strong ordering
mode if EWBE# is sampled active for at least the
last three clocks before RESET deactivates; other­
wise, it enters weak ordering mode.

In weak ordering mode, the value of EWBE # after
reset does not affect processor operation.

In strong ordering mode, the external system asserts
EWBE# as long as all external write buffers are
empty. If an external write buffer is not empty
(EWBE# deasserted) or the internal write buffer is
not empty, the processor delays data cache updates
so as to keep the external order of writes the same
as the programmed. order.

In systems that do not have external write buffers,
EWBE# can be tied to Vss, if strong ordering is de­
sired, or to Vee, if weak ordering is acceptable. Re­
fer to sections 5.3.3 and 5.3.4 for more explanation
and for other ways to control write ordering.

4.2.18 FLINE# (FLUSH LINE)

The system asserts FLlNE# to request that the
i860 XP microprocessor write back a modified cache
line before other outstanding bus cycles are com­
pleted, if the line is hit by an external inquiry. If this
pin is active in the same clock that EAOS# is assert­
ed, the write-back cycle is initiated, and the i860 XP
microprocessor expects BROY#s for the write-back
before outstanding cycles (if any) are returned. If
data transfer for another cycle is currently in prog­
ress when FLiNE # is asserted (Le. first BROY # re­
turned before HITM # asserted), the i860 XP micro­
processor waits until the data transfers for that burst
have completed, and only then does it assert the
AOS# for the write-back. If the first BROY # has not
yet occurred for an outstanding cycle, NA# must be
activated to trigger ADS # for the write-back.

int'eL i860TM XP MICROPROCESSOR

At RESET, the value on FLlNE# determines config­
uration. The processor enters one-clock late back­
off mode if FLlNE# is sampled active for at least the
last three clocks before RESET deactivates.

4.2.19 HIT# (CACHE INQUIRY HIT)

This pin is one output of inquiry cycles. If an inquiry
cycle hits a valid line in the caches of the i860 XP
microprocessor (either data or instruction), HIT# is
asserted two clocks after EADS # is activated. If the
inquiry cycle misses the caches, this pin is negated
two clocks after EADS # activation.

This pin changes its value only as a result of EADS#
activation during AHOLD, HOLD, or BOFF # and re­
tains its value until two clocks after the next valid
activation of EADS #.

HIT# can be used to control the WB/WT# pin of
other processors in a multiprocessor system. Activa­
tion of HIT# indicates that the inquiring processors
should cache the line as S-state, not E-state.

4.2.20 HITM # (HIT MODIFIED LINE)

This pin is an output of inquiry cycles. When an in­
quiry hitsa modified line in the internal data cache,
the i860 XP microprocessor asserts HITM# two
clocks after EADS# is activated. (Refer also to the
EADS# signaL) The HITM# signal stays active until
the last BRDY # for the corresponding write-back
cycle. At all other times, HITM# is inactive. HIT# is
also asserted when HITM# is asserted (except for
the special case of an inquiry after the ADS# of a
write-back).

4.2.21 HLDA (BUS HOLD ACKNOWLEDGE)

The i860 XP microprocessor activates HLDA in re­
sponse to a hold request presented on the HOLD
pin. Assertion of HLDA indicates that the i860 XP
microprocessor has given the. bus to another local
bus master. It is driven active in the same clock that
the i860 XP microprocessor floats its bus. All output
pins are floated except LOCK#, BREQ, HLDA,
PCHK#, HIT#, and HITM#.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles (maximum of four out­
standing cycles of four burst transfers each for total
of 16 transfers). If this hold latency is too long for a
given application, BOFF # can be used instead.

When leaving a bus hold, the i860 XP microproces­
sor deactivates HLDA and, in the same clock period,
initiates a pending bus cycle, if any.

2-53

4.2.22 HOLD (BUS HOLD)

This pin, along with the output signal HLDA, is used
for local bus arbitration. At some time after the
HOLD signal is asserted, the i860 XP microproces­
sor releases control of the local bus and puts most
bus interface outputs in floating state, then asserts
HLDA-all during the same clock period. It main­
tains this state until HOLD is deasserted. Instruction
execution stops only if required instructions or data
cannot be read from the on-chip instruction and data
caches. The i860 XP microprocessor ignores HOLD
until all· outstanding bus cycles are complete (until
the last BRDY #). The i860 XP microprocessor rec­
ognizes HOLD even during RESET and LOCK#.
HOLD cannot be used when the 82495XP cache
controller is attached.

4.2.23 INV (INVALIDATE)

The external system asserts this signal to invalidate
the cache-line state in the case of an inquiry cycle
hit. It is sampled together with A31-A5 in the clock
EADS # is active.

4.2.24 INT ICSS (INTERRUPT ICODE-SIZE
EIGHT BITS)

This input, like the BERR input, allows interruption of
the current instruction stream. The processor sam­
ples INT as instruction boundaries. If interrupts are
enabled (1M set in psr) when INT is sampled active,
the i860 XP microprocessor fetches the next instruc­
tion from virtual address OxFFFFFFOO. INT is level
triggered. To assure that an interrupt is recognized,
INT should remain asserted until the software ac­
knowledges the interrupt (by executing an interrupt­
acknowledge cycle, for example). The interrupt may
be ignored by the processor if the INT signal does
not remain active.

Interrupt latency (the maximum time between asser­
tion of INT and execution of the first instruction of
the trap handler) depends both on the internal con­
text and on the external system. After INT is assert­
ed, the i860 XP microprocessor finishes all instruc­
tions currently being executed, including any out­
standing bus cycles, before starting the trap handler.
The following instruction sequence is an example of
the worst case:

pfld.q
pfld.q
ld.l
br
ld.l
st.l

intei® i860TM XP MICROPROCESSOR

If INT is asserted during the execution stage of the
last Idol instruction, the execution of the trap handler
may have to wait for:

• Two 2-transfer bursts (the pfld instructions)

• Two data cache line fills (misses by the Idol
instructions)

• Two data cache line write-backs (eliminating
. modified lines to open space for the fills)

• Two instruction cache line fills (the target of the
br and the first instruction of the trap handler)

• Three TLB miss sequences of up to six non pipe­
lined accesses each (the br, the last Idol, and the
trap handler)

The time to finish the above bus activities can be
extended by inquiry cycles and associated write­
backs initiated by an external cache or bus control­
ler.

Besides the bus-related delays, the i860 XP micro­
processor has internal freeze conditions that can de­
lay interrupt response by up to 10 additional clocks.

During a locked sequence, the INT pin is ignored,
and the INT bit of epsr reflects the value on the INT
pin. To limit the time that INT is ignored, the lock
instruction can assert LOCK # for only 30-33 in­
structions before trapping.

This input is asynchronous, but appropriate setup
and hold times must be met to insure recognition on
any specific clock. .

If INT is asserted for at least the last three clock
periods before the falling edge of RESET, the
i860 XP microprocessor enters eight-bit code-size
(CS8) mode.

4.2.25 KBO, KB1 (CACHE BLOCK)

For reads, these output signals define which cache
block (line) is going to receive the data. For write­
backs, these lines specify which block is being
flushed. They are driven together with cycle defini­
tion for cacheable data reads, TLB replacement,
code fetch cycles, and write-backs. External hard­
ware can use these signals to observe changes to
cache blocks.

4.2.26 KEN # (CACHE ENABLE)

The i860 XP microprocessor samples KEN # to de­
termine whether the data being read for the current
cache-miss cycle is to be cached. When the i860 XP

microprocessor generates a read cycle that can be
cached (CACHE # output active) and KEN # is ac­
tive, the cycle is transformed into a burst line fill. By
activating KEN #, the memory system commits to a
four-transfer burst. The entire 64 bits of the data bus
are used for the read, regardless of the state of the
byte-enable pins. .

If KEN # is sampled inactive, code fetches are not
transferred in bursts, but 128-bit data items may still
be transferred with a burst length of two.

KEN# is sampled together with NA# or BRDY#,
whichever comes first. It is sampled only with the
first BRDY # of a burst; its value at any other time
has no effect. .

4.2.27 LEN (DATA LENGTH)

The LEN output pin specifies the number of burst
transfers for each cycle. This pin and theCACHE#
output pin are used by the system to determine the
burst length for each cycle (refer to Table 4.4). The
i860 XP microprocessor can generate 1, 2, or 4-
transfer bursts for reads and ,writes.

2-54

LEN is inactive if the internal request is for64 bits or
less. If LEN is active, the internal request is for 128
bits or more, and the cycle should be returned as a
two- or four-transfer burst. LEN is always active for
128-bit data accesses. LEN is alWays inactive for
code accesses. .

A cacheable read (CACHE# active) can be auto­
matically converted to a four-transfer burst regard­
less of LEN by assertion of KEN # .

Table 4.4 summarizes different cycle lengths as they
are calculated from the LEN and CACHE # signals.
LEN has the same timing as the address.

4.2.28 LOCK # (ADDRESS LOCK)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys~
tems. The address to be locked is the one being
driven on A31-A3 when LOCK# is aCtivated. A mUl­
tiprocessor bus arbiter must permit only one proces­
sor a locked read, locked write, or unlocked write to
that address and must maintain the lock of that loca­
tion across cycle boundaries until LOCK # deacti­
vates. The simplest arbitration hardware can just
lock the entire bus against all other accesses during
LOCK # assl3rtion; however, software must never
assume that this implementation is being used.

i860™)(P MICROPROCESSOR

The i860 XP microprocessor coordinates the exter­
nal LOCK # signal with the loclt and unlock
instructions. Programmers do not have to be con­
cerned about the fact that bus activity is not always
synchronous with instruction execution. LOCK # is
asserted with ADS # for the address operand of the
first load or store instruction executed after the loclt
instruction.

After an unloclt instruction, LOCK # is deasserted
with the next load or store. The i860 XP microproc­
essor deactivates LOCK # one clock after ADS # for
the last locked bus cycle. Unlike the i860 XR micro­
processor, the i860 XP microprocessor does not
deassert LOCK # immediately when a trap occurs.
Instead, the trap handler must execute a load or
store instruction to deassert LOCK #. (The handler
does not have to execute an unloc\t instruction,
however. The unlocking function is performed by the
processor's trap logic.)

The i860 XP microprocessor also asserts LOCK #
during TLB miss processing for updates of the ac­
cessed bit in page-directory and page-table entries.
The maximum time that LOCK # can be asserted in
this case is the time required to perform a nonpipe­
lined, four-byte, read-modify-write sequence.

Between locked sequences, at least one cycle of no
LOCK # is guaranteed by the behavior of the unloclt
instruction.

Between loclt and unloclt instructions, the INT pin is
ignored.

Instruction fetches do not alter the LOCK# signal.

4.2.29 M/IO# (MEMORY-liD)

M/IO# specifies whether the current cycle is for the
memory address space or for the 1/0 address
space. M/IO# is one of the bus cycle definition pins.
Tables 4.2 and 4.3 show the types of bus cycle gen­
erated. The value of this pin changes only when
ADS# is asserted.

4.2.30 NA # (NEXT ADDRESS REQUEST)

NA# makes address pipelining possible. The sys­
tem asserts NA# for at least one clock to indicate
that it is ready to accept the next address from the
i860 XP microprocessor. (If the system does not im­
plement pipelining, NA# must not be activated.) The
i860 XP microprocessor samples NA# every clock,
starting one clock after the activation of ADS #. If
the i860 XP microprocessor has a new cycle pend­
ing internally when NA # is activated, it initiates that
cycle in the clock after NA # is asserted. Up to three
bus cycles can be outstanding simultaneously.

2-55

NA# is latched internally; the i860 XP microproces­
sor remembers that NA # was asserted until it has
an internal request to send to the bus; so, assertion
of NA# for a single clock can trigger an ADS# sev­
eral clocks later. NA# is ignored in the clock of
ADS#.

KEN# and WB/WT# inputs for the current cycle
are sampled with NA #, if NA # is asserted before
the first BRDY # of the current cycle.

NA# is also used in conjunction with FLlNE# to
invoke write-back of a modified line during outstand­
ing bus cycles.

4.2.31 NENE# (NEXT NEAR)

The i860 XP microprocessor asserts NENE# when
the current address is in the same DRAM page as
the previous bus cycle. This signal allows higher­
speed reads and writes in the case of consecutive
accesses to static column or page-mode DRAMs.
The i860 XP microprocessor determines the DRAM
page size by inspecting the software-controlled DPS
field in the dirbase register. The page size can
range from 29 to 216 64-bit words, supporting DRAM
sizes from 256K x 1 to 4G x n. The value of this
pin changes only when ADS# is asserted. NENE#
is never asserted for the next bus cycle after the
address bus has been floating (after AHOLD,
BOFF#, or HLDA is deasserted).

4.2.32 PCD (PAGE CACHE DISABLE)

PCD provides a cacheability indication on a page by
page basis. This signal, together with PWT, is set to
an attribute bit in the page table entry for the current
cycle. When paging is enabled, peD corresponds to
the eo bit (bit 4) of the page table entry. The i860 XP
microprocessor does not perform a cache fill to any
page for which CD of the page table entry is set.
When paging is disabled, or for any cycle that is not
paged (Idio, stio, Idint, seye) , the i860 XP micro­
processor drives PCD inactive.

During TLB miss processing, PCD is inactive while
the address translation hardware is accessing the
first level page directory. During accesses to the
second-level page-table entry, peD reflects the CD
values taken from the first level page-table entry.

The value of this pin changes only when ADS # is
asserted.

4.2.33 PCHK# (PARITY CHECK)

This output shows the result of the parity check on
data pins in the previous clock of a read cycle. It is

i860™ XP MICROPROCESSOR

asserted for one clock when incorrect parity has
been detected. It reflects the parity status for the
entire data bus.

PCHK# does not terminate outstanding bus cycles,
so the system must still activate BRDY# a sufficient
number of times or activate BOFF # for those cy­
cles. PCHK # is always inactive after any code fetch
in CS8 mode.

4.2.34 PCYC (PAGE CYCLE)

The page cycle line is active during memory read or
write cycles to distinguish page-table accesses from
other accesses. The types of bus cycle generated
are indicated in Tables 4.2 and 4.3. The value of this
pin changes only when ADS# is asserted.

4.2.35 PEN# (PARITY ENABLE)

The i860 XP microprocessor samples this signal for
read cycles on the same clock edge at which
BRDY # is found asserted. If sampled active, the
i860 XP microprocessor feeds the parity check re­
sult into the interrupt logic. If a parity error is encoun-.
tered, the i860 XP microprocessor vectors to the
trap handler. The BEAR register latches the offend­
ing address, as described with the BERR signal.
This interrupt is not masked by the 1M bit of the PSR,
nor is it masked during lock cycles.

The system should deassert PEN # any time the
DP7 - DPO pins are known not to reflect the parity of
the full eight-byte bus (for example, reads from 1/0
devices or ROMs that are not parity protected).

The system should deassert PEN # during code
fetches in CS8 mode.

At RESET, the value of PEN # determines the out­
put buffers configuration for ADS#, A21-A3,
BE7#-BEO#, W/R#, HITM#. These pins are con­
figured as normal (small output buffers) mode if
PEN # is sampled active for at least the last three
clocks before RESET deactivates. Otherwise, these
pins are configured as high-current mode (large out­
put buffers).

4.2.36 PWT (PAGE WRITE-THROUGH)

PWT provides a write-back/write-through indication
on a page by page basis . .This signal, together with
PCD, is set to an attribute bit in the page table entry
for the current cycle. When paging is enabled, PWT
corresponds to the WT bit (bit 3), and write-back
caching is implemented for this page only if WT is
clear. When paging is disabled, or for any cycle that
is not paged (Idio, stio, Idint, seve), the i860 XP
microprocessor drives PWT inactive.

During TlB miss processing, PWT is inactive while
the address translation hardware is accessing the

2-56

first level page directory. During accesses to the
second-level page-table entry, PWT reflects the WT
value taken from the first level page-table entry.

The value of this pin changes only when ADS# is
asserted.

4.2.37 RESET (SYSTEM RESET)

Asserting RESET for at least ten ClK periods caus­
es initialization of the i860 XP microprocessor. On
power up, RESET should remain active at least one
millisecond after Vee and ClK have reached their
proper DC and AC specs. RESET is synchronous
with ClK.

After the RESET signal goes inactive the processor
remains in the· RESET state for three more clocks.
Applications that use the HOLD signal to float the
bus during RESET should keep HOLD active for
three more clocks after the RESET signal is deacti­
vated.

4.2.38 RSRVD, SPARE

The RSRVD input is reserved by Intel Corporation
and must be tied HIGH to Vee through a resistor
(5 K!l). The spare input should be left unconnected.

4.2.39 TCK (TEST CLOCK)

This is the clock input for the TAP (test access port).
If the TAP is to be used, this signal must be connect­
ed to a clock synchronous to ClK. If the TAP is not
used, TCK can be tieqlow. TCK does not need to be
kept running when boundary scan is not active.

The rising edge of TCK must be externally synchro­
nized to ClK. The boundary scan latches retain their
state when TCK is stopped at either logic zero or
one.

4.2.40 TDI (TEST DATA INPUT)

TDI is the input for test instructions and data to the
TAP. TDI is sampled on the rising edge of TCK. It is
provided with an internal pull-up resistor, so that an
open circuit at TDI produces a result equivalent to
driving continuous HIGH signals.

4.2.41 TOO (TEST DATA OUTPUT)

This is the serial output of the TAP. The contents of
TAP registers are shifted out through TDO on the
falling edge of TCK. The data is moved from TDI to
TDO without inversion, which allows easy serial cas­
cading of different components for scanning.

TDO is held in high-impedance· state,. except while
scanning is in progress. This allows parallel connec­
tion of these outputs for several components.

i860™ XP MICROPROCESSOR

4.2.42 TMS (TEST MODE SELECT)

This input is decoded by the TAP to select the oper­
ation of the TAP. It is sampled at the rising edge of
TCK. It is provided with an internal pull-up resistor to
assure deterministic behavior for open-circuit failure
at this pin. If boundary scan is not used, TMS can be
tied high or left unconnected.

4.2.43 TRST # (TEST RESET)

This input resets the TAP. If the TAP is not used,
TRST# should be tied lOW. To ensure determinist­
ic behavior of the test logic, TMS should be held
HIGH while TRST# changes from lOW to HIGH.

4.2.44 Vee (SYSTEM POWER) AND Vss
(GROUND)

The iS6a XP microprocessor has 54 pins for power
and 56 for ground. All pins must be connected to the
appropriate low-inductance power and ground sig­
nals in the system.

4.2.45 VeeClK (CLOCK POWER)

This is the power supply for the internal ClK buffer.
It should be connected to the same Vee plane as
the other Vee pins.

4.2.46 WB/WT# (WRITE-BACK/WRITE­
THROUGH)

This input signal defines cache policy for the line
being accessed in the current bus cycle. The proc­
essor samples WB/WT # for both reads and writes
on the same clock edge at which it finds NA# or the
first BRDY # asserted, whichever comes first. If this
signal is sampled low, the write-through policy is ap-

2 3 4

eLK

SIGNAL ID ,

NOTES:
1. HIGH (high voltage)
2. Don't care or undefined
3. LOW (low voltage)
4. High·impedance (floating)
5. Either HIGH or LOW

5

plied to the cache line-if an internal write hits this
line, it causes a write-through cycle. If this signal is
sampled high, the write-back policy is applied-fu­
ture write hits to this line do not show up on the bus.

4.2.47 W/R# (WRITE/READ)

This pin specifies whether a bus cycle is a read
(LOW) or write (HIGH) cycle. Tables 4.2 and 4.3
show the types of bus cycle generated. The value of
this pin changes only when ADS# is asserted.

5.0 BUS OPERATION

The interaction among signals is illustrated by timing
diagrams. Figure 5.1 shows the conventions used in
the timing diagrams.

5.1 Bus Cycles

A bus cycle begins when the iS60 XP microproces­
sor activates ADS# and ends when the system acti­
vates the last of a predetermined number of BRDY #
signals. Figure 4.4 shows how the iS6a XP micro­
processor and the external system cooperate to de­
termine the number of BRDY # activations in each
cycle. The processor starts sampling BRDY # one
clock after assertion of ADS# and continues sam­
pling in every clock until the last BRDY # becomes
active.

The iS6a XP microprocessor supports several differ­
ent types of bus cycle. These are introduced in order
of complexity:

1. Single-transfer cycles

2. Multiple-transfer (burst) cycles

3. Pipe lined cycles

4. Cache inquiry cycles

6 7 8 10

, , , 'm .---@-,-- ~ , , .

240874-28

Figure 5.1. Timing Diagram Conventions

2-57

i860TM XP MICROPROCESSOR

5.1.1 SINGLE-TRANSFER CYCLE

The simplest bus cycle is the single-transfer, non­
cacheable, 64-bit cycle either with or without wait
states. The shortest bus cycle is two clock periods
long. Read and write cycles of this type are shown in
Figure 5.2.

A wait state is any clock in which the i860 XP micro­
processor samples BRDY # but the system does not
assert it. The system can add wait states to any cy­
cle. Figure 5.3 shows cycles with two wait states
added. Any number of wait states can be added to
i8BO XP microprocessor bus cycles by maintaining
BRDY # inactive.

2 3 4

CLK

,
ADDRESS ;:J< : ,

LEN =' ,
CACHE# U

W/R# t"\ _ __ ...1'
,

BRDY#

5

5.1.2 BURST CYCLES

When a bus request requires more than a single
data transfer (refer to Table 4.4), the i860 XP micro­
processor requires that the memory system perform
a burst data transfer. Burst cycles allow the maxi­
mum bus transfer rate by eliminating unnecessary
driving of the address bus. The addresses of the
data items in burst cycles all fall within the same 32-
byte aligned area (corresponding to an internal
i860 XP microprocessor cache line). Given the ad­
dress of the first transfer, external hardware can cal­
culate the addresses of subsequent transfers. With
these addresses eliminated from the bus, a new
data item can be sampled into the i860 XP micro­
processor every clock period.

6 7 8 9 10

\'--_...11

DATA : :9' :8' :8"" :'8'::
'- - - - - ... 1m TO CPU -.-'." FROM CPU - -,- - ,TO CPU .' -1- - FROM cpu - ... - - - - .&
I I I I I I I , , ,

PCHK#

240874-29

Figure '5.2. Fastest Single-Transfer Cycles

,2-58

i860™ XP MICROPROCESSOR

2 3 4 5 6 7 8 9 10

ClK

ADS# ~ , ,
ADDRESS

Q{~~: ~ ____ ~X~ ____________ __
,

lEN ='
CACHEII CJ ,

W/RII t=\ ' ~ __ -*--II , ,
BRDYII :, .•. : ,.\f-~-\f:\f-~"'\f:\\ " J \ ">, \~, '0" , ",". ~ " J > ... ' .• , •.. , , : ..•. " }, , , .•.......... '., .. : .. ' ...•. ,', '•... ,: ' , .. : ' !. ; .,. '/'f ; V ; tJL: ... A"('·Y ; YJ ;~'" ,

I t I I I I I I I

DATA
I I I Ie>' , 1. ____ ,&,. ____ '- __ __ 1_ _ TO CPU - _I{ FROM CPU ~ ____ ~

: : :: : \.. ------------'. , ,
240874-30

Figure 5.3. Single-Transfer Cycles with Wait States

The fastest' possible burst cycle requires two clock
periods for the first data item: one clock for ADS#
and one clock for BRDY #; subsequent data items
are transferred every clock period. One such bus
cycle is shown in Figure 5.4. Note that, in this case,
the initial cycle generated by the i860 XP microproc­
essor could be satisfied by a single data transfer, but
the system transforms it into a multiple-transfer
cache line fill by activating KEN # in the clock period
of the first BRDY #. KEN # has this effect only if the
CACHE# pin is active, which means the cycle is in­
ternally cacheable in the i860 XP microprocessor.

2-59

Read data is sampled only in the clock period in
which BRDY # is returned, which means that data
need not be sent to the i860 XP microprocessor ev­
ery clock period in the burst cycle. Figure 5.5 shows
an example of a burst cycle in which two clock peri­
ods are required for every burst item.

The burst length attributes LEN and CACHE # are
driven with the address. Figure 5.6 illustrates two
consecutive burst cycles with differing length attri­
butes: the first one is a noncacheable 128-bit read,
and the second one is a cache line fill initiated by a
cacheable 64-bit read.

II

NOTE:

i860™ XP MICROPROCESSOR

CLK

ADS#

ADDRESS .. ______ .Jx~--~----~------~----~------~----~------~----____ ----~
LEN \

CACHE# \
W/R# : \

8RDY#

1 I 1

It",;;'''' ;if(~W8'f;;M iff¥i !)%)W;~ £\if;W;iltAf!tJ!:fi 1rJ,ti!Jfziitr0WN~tittgi*;!jh);i
I I I I

KEN#

I I I I I I I I I

II'~IIII
DATA ~---- .. ----,..- TO CPU TO CPU TO CPU TO CPU --1---- ... ---- .. ----,

I I I 1 I I I

240874-31

1. KEN# driven with first assertion of BRDY#

Figure 5.4. Basic Burst Cycle

CLK

ADS#
, I

ADDRESS

LEN \ 'I

CACHE# \

W/R# \

KEN#

I I

fit J;1&)I;;;1t}!1~iWJW1fii;;!ziJF~t,,&1t~tzil!~{;t;JrJzi;:j;i1illtfJ@JiJft~!j:X;J;0%,/At:liti1illlzi1fiJ; :zi;l) t$B#!'4Ifj~zit{%W)tiziJf!&~
I I I I I I I I I I I

DATA ~ - - - -:.. -~ - -:- -~ --:- -~ - -:- -~ - ~- - - - ~
I I~I~I~I~I t

240874-32

NOTE:
1. Wait states added by delaying assertion of BRDY #

Figure 5.5. Slow Burst Cycle

2-60

InteL i860™ XP MICROPROCESSOR

2 3 4

ClK

I

ADS# :\..l.J \..iJ
lEN \

G I

CACHE# \
' I

W/R#

BRDY#

KEN#

I 1 I I I I I I I 1

1 1 =1 I

DATA ~----~-~--:--88SS-~----~
• I • I I I I I I : :

240874-33

NOTE:
1. Length attributes driven with ADS#

Figure 5.6. Different Lengths of Burst Cycles

The timing of write bursts is similar to that of read
bursts. The i860 XP microprocessor does not put
data on D63-DO for writes until the clock period af­
ter ADS#.

When initiating any read, the i860 XP microproces­
sor presents the address for the data item request­
ed. When the cycle is converted into a cache fill the
first data item returned corresponds to the add~ess
sent out by the i860 XP microprocessor. The remain­
ing items must be returned in the order shown in
Table 5.1. This ordering is optimized for two-bank
memories, but works equally well with noninter-
leaved memories. .

In i860 XP microprocessor systems, memory must
support the burst order as defined in Table 5.1 for
reads. For writes, the burst addresses are always
increasing, so writes with four transfers match the
!irst lin~ of the table. In CS8 (code-size 8 bits) mode,
Instructions are not fetched in bursts. '

Note that the i860 XP microprocessor drives only
the first address of a burst cycle; the memory sys­
tem is responsible for calculating subsequent ad­
dresses as shown in the table. The addresses can
be derived by complementing A3 after every trans­
fer, and complementing A4 after two transfers.

2-61

Table 5.1. Burst Order for Cache Line Transfers

1st 2nd 3rd 4th
Address Address Address Address

0 8 Ox10 Ox18
8 0 Ox18 Ox10

Ox10 Ox18 0 8
Ox18 ,Ox10 8 0

5.1.3 PIPELINED CYCLES

A pipelined cycle is one that starts while one or two
other bus cycles are outstanding. A cycle is consid­
ered outstanding until the last BRDY # is asserted to
terminate that cycle. A nonpipelined cycle is one
that starts when' no other bus cycles are outstand­
ing. Both types of cycle can be either read or write,
cycles. To allow high transfer rates in large memory
systems, the i860 XP microprocessor supports two­
level pipelining. New cycles can start as often as
every other clock until three cycles are outstanding.

The system asserts NA # to indicate that the
i860 XP microprocessor can start another cycle be­
fore the current one is completed. (NA # can even

II

intei® i860™ XP MICROPROCESSOR

be asserted while BRDY # is active.) The i860 XP
microprocessor begins sampling NA# in the next
clock after ADS # is asserted. If the following condi­
tions are met, a new (pipelined) cycle begins:

1. NA # having been active

2. An internal request pending

3. Compatibility between the pending request and
the outstanding requests (refer to Table 5.2)

4. HOLD, BOFF #, and AHOLD not active
5. Fewer than three cycles outstanding

The following "compatibility" rules determine when
the processor does not issue a pipelined ADS#
(they are the source of Table 5.2):

• Data cache line fills are pipelined into each other
only in the case olan aliasing virtual tag miss with
a physical tag hit.

• Reads Can be pipelined into TLB miss writes. TLB
misses for instructions can be pipelined into data
accesses, and vice versa.

• No data cycle is ever pipelined while LOCK # is
active.

• 1/0 cycles, special cycles, and Idint cycles never
begin when any cycle is outstanding.

NA# may be asserted before, simultaneously with,
or after the first BRDY # of the current cycle. If NA #
is asserted before the first BRDY #, the cacheability
(KEN #) and cache policy (WB/WT #) indicators for
the current cycle are sampled during the same clock
period as NA# is sampled active; otherwise, they
are sampled with the first BRDY #. Figure 5.7 shows
an example of four-transfer, pipelined, back-to-back
reads. Note the timing of KEN #. Because NA # is
asserted before the first BRDY # of the cycle A,
KEN# is sampled with the NA# for cycle B.

Table 5.2. Pipeline Cycle Compatibility

B
If A is Outstanding, can B be Pipelined into It?

Data Data Cache Data Cache
Write· Instruction TLB Idio, stio, LOCK#

A Cache Store Miss, Read Miss
Back" Fetch

pfld
Miss Idint, scyc Active

Line Fill Write·Thru KEN# =1

Data
Cache YES' YES' YES' YES YES YES' YES NO YES

Line Fill

Data Cache
Store Miss, YES YES YES YES YES YES YES NO YES
Write·Thru

Data Cache
Read Miss YES' YES' YES' YES' YES YES' YES NO YES'

w
...J KEN#= 1
U
> u Write-Back YES YES YES NO YES YES YES NO YES
III
:::l Instruction 0 YES YES YES YES YES YES YES NO YES > Fetch w
a:
Q. pfld YES YES YES YES YES YES YES NO YES

TLB Miss YES YES YES YES YES YES YES NO YES

stio
YES YES YES YES YES YES YES NO YES

scyc

idio
NO NO NO NO YES NO YES NO NO

idint

LOCK#
NO NO NO NO YES NO YES NO NO

Active

NOTE:
, Pipelining can occur if the first ADS# is for an aliasing virtual tag miss with a physical tag hit.

"Inquiry write-backs are not pipe lined into prior cycle unless FLlNE# is asserted.

2-62

intel® i860™ XP MICROPROCESSOR

2 3 4 5 6 7 8 10

ClK

CACHE# ~~ __ ~~ ____ ~ ______ ~ ____ ~ __________ ~ ____ ~ ____ ~ ____ ~ ______ ___

NOTES:
A Four-transfer. cache line fill cycle
B Four-transfer. cache line fill cycle
1. KEN# for A simultaneous with NA#

Figure 5.7. Pipelhied Cache Line Fills

240874-34

Write cycles can be pipe lined into read cycles and
vice versa, but, in both cases, the processor will
leave one clock between bursts to allow bus turn­
over, and will ignore any BRDY # given to it at that
time. Pipelined back-to-back read and write cycles
are shown in Figure 5.8. On writes, assertion of NA #
does not cause the values on the data bus to
change; it just enables new address and cycle speci­
fication outputs.

5.1.4 INTERRUPT ACKNOWLEDGE CYCLES

lIThe following
lock
ldint.b src2,
or rdest,
unlock

Ilnop
Ilnop

ldint.b rO,

In response to a trap caused by assertion of the INT
pin, trap-handling software can generate· interrupt
acknowledge cycles by executing a procedure simi­
lar to the following.

lock instruction must be on a 32-byte boundary:
II Lock the bus

rdest II First INTA cycle. Src2 contains 8.
rO, rdest II Won't proceed until rdest loaded.

I I Unlock the bus 'after the next ldint
I I Insert 4 + <number of NOPs> idle
II clocks for 8259A recovery.

rdest II Second INTA cycle

2-63

II

i860TM XP MICROPROCESSOR

ClK
I

I

2 3

W/R# I ~I I

....-...a...,.---;.--'

lEN# :.:J
I

CACHE# U
ADS# :---\iJ

4 5 6 7 8 9 10

~i VtfA!iltt@~ti;ti ;;2ik;j;~ I I : I I I I I

I I

BRDY#

r----~----~--~--~--<~r~X~~~}--+--<rocPuXTO~PU}
I I I I I

DATA

I I I I I I

NOTES:
R Two-transfer, noncacheable read cycle
W Two-transfer, noncacheable write cycle
1. Idle clock for bus turnaround
2. Second assertion of NA # could be here

240874-35

Figure 5.8. Plpelined Back-to-Back Read and Write Cycles

Figure 5.9 shows the interrupt acknowledge cycles
generated by the code sequence. Interrupt acknowl­
edge cycles are generated in locked pairs. The inter­
rupt vector is returned during the second cycle. Each
of the interrupt acknowledge cycles is terminated
when the external system responds by asserting
BRDY #. Wait states can be added by withholding
BRDY #. There must be a number of idle clocks be­
tween the first and second cycles to allow for 8259A
recovery time. The software controls the number of
intervening clocks via the number of nop instruc­
tions in the interrupt acknowledge routine.

5.1.5 SPECIAL BUS CYCLES

The i860 XP microprocessor provides a special cy­
cle to indicate to the external system that certain

2-64

internal conditions have occurred. The special bus
cycle (indicated by M/IO# = 0, D/C# = 0, and
W fR # = 1) is generated by the i860 XP microproc­
essor as a response to scyc instruction execution.
This cycle (defined in Table 5.3) is used to flush or
invalidate a secondary cache. The defined value of
byte enables can be generated by using an appropri­
ate address operand in the sCYe? instruction. The
scyc instruction does not have any effect on the
internal caches. External hardware must acknowl­
edge a special bus cycle by asserting BRDY # once.
The data driven on the data bus with BRDY # is
undefined. The effect of scye is determined by de­
coders in external hardware.

i860TM XP MICROPROCESSOR

1 2 3 I , I I

CLK (\../,\J\..(
I

M/IO# 0
D/CII ~

I

W/R# C\
I

ADDRES.S t:x
NUMBER OF CLOCKS

BETWEEN CYCLES
CONTROLLED BY

SOFTWARE

ADS# ~:
;.~: ; :
I I I I I

BRDY# ~~"2q8;;; ;'i/T;;¥'_
I I I I I

DATA
I I <=> I I

• .:- - - - - ... - TO CPU - ... - - - - 'T
I I I I

LOCK# ;--\," __ ~_'_' __ _ _-__ I
240874-36

Figure 5.9. ElCample Interrupt Acknowledge Sequence

Table 5 3 Encoding of Special Bus Cycles ..
BE7#-BEO# Special Bus Cycle

11110111 Write Back External Cache and Invalidate
11111011 Halt
11111101 Invalidate External Cache
11111110 Shut Down

All other encodings are reserved.

5.2 Bus Arbitration

The i860 XP microprocessor responds to three dif­
ferent signals that tell it to stop driving the bus:

HOLD Finishes outstanding cycles before giving
up the bus.

BOFF # Aborts outstanding cycles and gives up bus
immediately.

AHOLD Stops driving address bus and permits a
cache inquiry,

AHOLD results in a partial hold state, which is cov- '
ered in Section 5.3. The present section concen-
trates on HOLD and BOFF # . .

When in a hold state (due either to HOLD or
BOFF#), the i860 XP microprocessor uses BREQ to
request control of the bus. If holding due to HOLD,
AHOLD, or BOFF #, the processor activates BREQ
in the clock after an internal bus request is generat-

2-65

ed. (In the case of HOLD, BREQ is asserted even
though HLDA is asserted.) If holding due to BOFF#
and cycles need to be restarted or there is a new
internal request, it asserts the BREQ signal within
four clock periods after the assertion of BOFF #. In
all cases, BREQ remains active at least until the
clock after ADS # is activated for the requested cy­
cle.

5.2.1 HOLD AND HLDA ARBITRATION

HOLD indicates to the i860 XP microprocessor that
another bus master needs control of the bus. When
HOLD is asserted, the i860 XP microprocessor
keeps control of the bus until all outstanding cycles
are completed. Then it floats the output signals (ex­
cept BREQ, HLDA, LOCK#, PCHK#, HIT#, and
HITM #) and asserts HLDA. These outputs remain at
the high-impedance state until HOLD is deasserted.

II

int:et i860TM XP MICROPROCESSOR

HLDA may be asserted as soon as the clock period
after the one in which HOLD is asserted. HLDA may
be deasserted as soon as the clock after the one in
which HOLD is de asserted.

An example HOLD/HLDA transaction is shown in
Figure 5.10. The i860 XP microprocessor recognizes
HOLD even while RESET is asserted, and it drives
HLDA in this case as well.

HOLD is recognized even when BOFF # is active,
and the i860 XP microprocessor responds with
HLDA the same as when the bus is idle.

5.2.2 BUS CYCLE BACK-OFF AND RESTART

The i860 XP microprocessor provides the ability to
abort bus cycles and restart them again. It is neces­
sary to abort cycles for reasons such as the follow­
ing:

1. Retry after an error is detected by ECC or parity
logic.

2. Escape from a deadlock; for example, when the
i860 XP microprocessor is using A31-A3 to load
a new cache line, but the 82495XP cache con­
troller needs A31-A5 to invalidate a line in the
CPU cache which the 82495XP cache controller
is replacing in its cache in order to satisfy the
CPU's line-fill request.

2 3 4

ClK

,
ADS# W

5

3. Maintain cache consistency; for example, the
i860 XP microprocessor is attempting to read or
write to a line that has been modified in the cache
of another CPU.

4. Prevent illegal access to an address already
locked by another CPU in a multiprocessor sys­
tem.

5.2.2.1 Cycle Back-Off

Bus cycles are aborted when the system asserts
BOFF #. The i860 XP microprocessor samples this
pin in every clock period that it is driving the bus.
When BOFF # is asserted, the i860 XP microproces­
sor immediately (in the next clock period) floats the
bus. It floats the ADS# pin one clock period later,
thereby giving time for ADS # to be de asserted so
that it is not left floating active. The i860 XP micro­
processor floats the same pins as for HOLD, but
HLDA is not asserted. If a bus cycle is in progress at
the time BOFF # is asserted, the cycle is aborted,
and, in a read cycle, any data returned to the proc­
essor while BOFF # is active is ignored. BOFF #
overrides BRDY #; so, if both are sampled active in
the same clock, BRDY# is ignored. BOFF# aborts

6 7 B 9 10

, ,
\-~----~----~---~~-< , , , ,~----~

I I I I

I I I I ~----~
lEN \ I-~----~----~----~-< P-----____ ~~------------J., , , ,~--~~

/. CACHE# ----------y-~----~----~~, , , 'r--------
~-.----~----~----~-< , , , ,~.----~~ , ,

BRDY#

HOLD '
~-----'

HlDA# !O' __________ ----_----_-1/

240874-37

Figure 5.10. HOLD/HLDA Handshake

2-66

intel® i860™ XP MICROPROCESSOR

a burst cycle even if it arrives with the last BRDY #
of the cycle. However, for read bursts, data transfers
completed before assertion of BOFF # are used by
the processor if they satisfy an internal request.
Cacheable data is cached in spite of BOFF #; how­
ever, the cached data is overwritten when the cycle
is restarted.

The bus remains in the high-impedance state until
BOFF # is deasserted. If cycles need to be restarted
or if a new internal request has been generated, the
BREQ signal is asserted within four clock periods
after the assertion of BOFF #.

5.2.2.2 Cycle Restart

When the system deasserts BOFF #, the iB60 XP
microprocessor restarts aborted bus cycles from the
beginning by driving the address and status (A31-
A3, W/R#, D/C#, etc.) and asserting ADS#. If
more than one cycle was outstanding when BOFF #
was asserted, the iB60 XP microprocessor restarts
all outstanding cycles in the same order. If HITM # is
active due to an inquiry, the write-back for it will be
the first cycle after deassertion of BOFF #. BOFF #
restarts all aborted cycles except:

o The stale cycles mentioned in section 5.3.5.

o The read that may have been generated by an
alias hit (virtual tag miss, but physical tag hit).

o The read that may have been generated by a
pfld that hit the data cache.

If the processor's KEN# pin was active (with NA#
or first BRDY #) before the cycle was aborted, exter­
nal hardware must activate it again after the cycle is
restarted. In other words; the system cannot use
BOFF # to change the cacheability of a cycle via
KEN#.

The LOCK# signal is not affected by restarted cy­
cles; it retains its state in spite of BOFF # assertion.

5.2.2.3 Late Back-Off Modes

In some cases the logic that needs to assert
BOFF# cannot make the necessary decision in time
to cancel the relevant cycle or data transfer. For ex­
ample:

1. The result of checking ECC or parity may not be
available until one or two cycles after the BRDY #
to which it corresponds.

2. When the iB60 XP microprocessor is attempting
to read or write to a line that might be modified in
the cache of another processor on the same bus,
it may be advantageous to let part of a burst run

2-67

in parallel with inquiries to the other processors,
rather than delay the entire burst until the inquir­
ies are finished.

For such situations, the iB60 XP microprocessor pro­
vides late back-off mode. For a read cycle in this
mode, the processor employs a buffer to internally
delay data and BRDY #, which allows BOFF # as­
sertion to be delayed relative to the external
BRDY #. Likewise, for a write cycle in this mode,
BOFF # assertion can be delayed relative to
BRDY #. However, data for a write cycle is not de­
layed.

Two flavors of late back-off mode are provided:

1. One allows BOFF # to be delayed by one clock
period relative to the data transfer. The proces- fI
sor enters one-clock late back-off mode when
the FLlNE# pin has been sampled active for at
least three clock periods when RESET deacti-
vates.

2. The other allows BOFF # to be delayed by up to
two clock periods relative to the data transfer.
The iB60 XP microprocessor enters this mode
when software sets the LB bit of the dirbase
register.

If the processor enters one-clock late back-off mode
during RESET, it is impossible to enter two-clock
late back-off mode. The LB bit has no effect. Fur­
thermore, software cannot exit two-clock late back­
off mode once it is activated, and the LB bit cannot
be cleared except by resetting the processor.

Figures 5.12-5.17 illustrate variations on late back­
off mode cycles. BOFF # can be (and usually is) as­
serted longer than one clock period, as Figure 5.11
shows; the remaining figures show an active time of
only one clock.

5.2.2.4 One-Clock Late Back-Off Mode

In one-clock late back-off mode the data is delayed
internally by one clock before it is used.

In this mode, data and BRDY # are seen by internal
logic one clock period later than they appear on the
bus, which is equivalent to adding an extra wait state
to reads on the external bus (Figure 5.13). All re­
sponses to BRDY # (assertion of the ADS # for the
next cycle, assertion of HLDA in response to a
HOLD request, and deassertion of HITM#) are de­
layed by one clock period compared to the normal
mode of operation. Not delayed, however, are write
data on D63-DO and sampling of KEN# and WBI
WT #. KEN # and WB/WT # must be valid with the
first BRDY # assertion. Also, the response to NA #
(assertion of ADS#) is not delayed if fewer than
three pipelined cycles are outstanding.

Intel. i860TM XP MICROPROCESSOR

ClK

,
I I I I

lEN D ,--i -- -- ., - - - - "T - - - - .,. - - '\." '---;-.---i----.;.--....;,...----i
, ,

CACHE# '0 \ __ ~---_~-_--~-- __ ~_-J
,

BOFF# I \\...-T,-.....;....-..;....-----;.-J!

A31:A3
--------------... I I I I ,.--~--...,.,.----~~----..; ______ ..;A~ _____ ..J} u:u u -:- uu:_ u u:u < A X'-____ ..;B;..... ___ ...;

A~S#
: : : e \ --.. -----,- ----,- -- \.!J , , , , ,

BRDY# !n;;-: ""f: ~;~-~i .. Atn \FPf;" ;<n I;;"" , ,

NOTES:
A Noncacheable. 64-bit cycle (one transfer)
B Next cycle (any type)
1. BOFF # cancels cycle and data transfer
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS # assertion for next cycle

Figure 5.11. Normal Back-Off

2 3 4 5 7

ClK

,

240874-38

1D 11

lEN ~ ,-:- '''--i---';'''---';'--''''; ,
CACHE# '0 \.:.1

,
BOFF# , \!U
A31:A3;.A...;._~------------------I> --:- -{ A , .
ADS#

BRDY#

NOTES:
A Noncacheable, 64-bit cycle (one transfer)
B Next cycle (any type)
1. BOFF # cancels cycle and data transfer
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS# assertion for next cycle

ill

Figure 5.12. One-Clock Normal Back-Off

2-68

X B :

e '
\.Ii:

240874-39

inteL i860TM XP MICROPROCESSOR

eLK

, , ,
ADS# ~ • 8

X ADDRESS ::x : I ~~ __ -. ____ ~J

LEN D
I

CACHE# U
I

W/R# ~\.. _____ .J!

I

:

I ..
10 11 12 13 14

I I I

8 ij 8 •
X X

\'-____ ..J! I

BRDY# ""';', h_i_A> 'U';::'\"';"'" ,:,,;;:'8,:' "'U-'-' ___
I I I I I I I I I I I I I I I FI

DATA ~- - - - ~- -< CT~OU }--~- - - -!--~--~-- --!. --T---~--- .!_-.(f~~U~}_- ~--- -~----~
11 I I~I I~I I I I I

240874-40

NOTE:
1, Idle clock due to internal delay of BRDY #

Figure 5.13. Fastest Nonpipelined Cycles in One-Clock Late Back-Off Mode

If BOFF # is asserted as late as the second BRDY #
(Figure 5.14), it cancels the entire cycle, ignores
data latched with the first BRDY #, and ignores the
data being driven with the second BRDY #. This is
true of a two-transfer burst (shown) as well as a four­
transfer burst (not shown).

In a two-transfer burst, if BOFF# is asserted in the
clock after the second BRDY # (Figure 5.15), it still
cancels the cycle.

In a four-transfer burst, if BOFF# is asserted within
one clock after the last BRDY # (Figure 5.16), it still
forces a retry of the cycle, but previously transferred
read data is used by the processor if it satisfies the
read request.

5.2.2.5 Two-Clock Late Back-Off Mode

Two-clock late back-off mode gives external logic
even rnore time to decide to use BOFF #. In this

2-69

mode, data delivery is delayed by either one or two
clock periods, depending on external activity. For
any BRDY #, the data is delayed by one clock peri­
od. If in the next clock period BRDY # is again as­
serted, the previous data is used. However, if in that
next clock period BRDY # remains inactive, the data
is delayed for one extra clock period before it is
used. The responses to BRDY # (assertion of the
ADS# for the next cycle, assertion of HLDA, and
deassertion of HITM#) are delayed by one or two
clock periods, depending on the value of BRDY # in
the next clock. The response to NA # (assertion of
ADS#) is not delayed if fewer than three pipelined
cycles are outstanding.

The st.c dirbase instruction that sets the LB bit
must be aligned on a 32-byte boundary and must be
followed by seven nap instructions. Software must
not enable late back-off mode when the processor is
used with the 82495XP external cache controller.

intet i860TM XP MICROPROCESSOR

10 11 12 13 14

ClK

,
lEN P \.:-1

~~--~--~--~--~~ , r-~--~--~~--~--~--~--~ CACHE# 'p \ -:_ J

BOff# '.

ADS# :\.lJ
BRDY#

NOTES:
A Noncacheable, 128-bit cycle (two transfers)
B Next cycle (any type)
1. BOFF# cancels both transfers (A1 in buffer, A2 on 063-00)
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest AOS# assertion for next cycle

Figure 5.14. One-Clock Late Back-Off Mode (Case 1)

ClK

,
lEN P

CACHE# P
BOff# ,

ADS#' :\.lJ
,

4 10

,
\.:-1

w ,

, , ,

11

BRDY# ~~~: \t~:i~{;~:::;pwj~· it.? ,: ~ !~~?!f/#): ::~;::~:j i::::W;~:' tW:;}" ~ .. ~:·,\~g:'i~':;:<'~' ~:tl~;~~1t~:¥it:t}k

NOTES:
A Noncacheable, 128-bit cycle (two transfers)
B Next cycle (noncacheable)
1. BOFF # .cancels both transfers (A2 in buffer is needed to satisfy request)
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS # assertion for next cycle

Figure 5.15. One-Clock Late Back-Off Mode (Case 2)

240874-41

12 13 14

240874-42

intel® i860™ XP MICROPROCESSOR

10 11 12 13 14

ClK

,
lEN n ~--~~--~----~----~----~-----r--Jr-:-'~ __ ~ ____ ~ ____ ~ ____ r-__ ~ ____ ~ ____ ~

,
CACHE# ~ I \ -:- '~ __ "",, ________ ,,--___ JI

,
KEN# :

_____________________ klA ______________ ~
U ,

80FF#

ADS# ~ , , ill
,

NA# U U U 8:
8RDY# -----..;.;.....~.----~~....,~ , !

NOTES:
A Cacheable 54-bit (or less) cycle (four transfers)
B Next cycle (any type)

240874-43

1. BOFF# cancels A2 and A3 transfers, but A1 transfer has already satisfied request
2. pycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS# assertion for next cycle

Figure 5_16. One-Clock Late Back-Off Mode (Case 3)

4 6 10 11 12 13

ClK

lEN :;J
CACHE# :;J

BOFF# ,

ADS# ~ \..i , , ,

240874-44

Figure 5.17. Two-Clock Late Back-Off Mode

5.3 Cache Inquiry Cycles (Snooping)

Another processor initiates an inquiry cycle to check
whether an address is cached in the internal data or
instruction cache of the i860 XP microprocessor. An
inquiry cycle differs from any other cycle in that it is
initiated externally to the i860 XP microprocessor,
and the signal for beginning the cycle is EADS# (Ex­
ternal Address Status) instead of ADS#. The ad­
dress bus of the i860 XP microprocessor is bidirec-

2-71

tional in order to allow the address of inquiry to be
driven by the system. An inquiry cycle can begin dur­
ing any hold state:

1. While HOLD and HLDA are asserted.

2. While BOFF # is asserted.

3. While AHOLD (address hold) is asserted.

fI

InteL i860™' XP MICROPROCESSOR

If neither a HOLD nor a BOFF # is in effect, the sys­
tem can assert AHOLD to interrupt the current bus
activity.

EADS# is first sampled two clocks after BOFF# or
AHOLD assertion, or one clock after HLDA. This al­
lows time for the processor to float A31-A5 and for
the system to stabilize the inquiry address there.

In the clock in which EADS# is asserted, the
i860 XP microprocessor samples these inputs,
which qualify the type of inquiry:

INV Specifies whether the line (if found) must
be invalidated (that is, changed to I-state).

FLiNE # Specifies whether the line (if found in M­
state) must be written back immediately or
after outstanding bus cycles are complet­
ed.

The i860 XP microprocessor compares the address
of the inquiry request with addresses of lines in
cache and of any line in the write-back buffer waiting

2 3 4

ClK

'.
AHOlD ~ :'$

I I I I

to be transferred on the bus. It does not, however,
compare with the address of write-miss data in the
write buffers. Two clock periods after sampling
EADS #, the i860 XP drives the results of the inquiry
look-up on these output pins:

HIT # Specifies whether the address was found
(active) or not found (inactive).

HITM# If active, the line found was in the M-state;
if inactive, the line was in E- or S-state, or
was not found.

Figure 5.18 shows an inquiry with AHOLD that miss~
es the cache. When the system asserts AHOLD, the
i860 XP microprocessor floats A31-A3 in the next
clock period. It does not, however, assert HLDA;no
acknowledge is required. Once the address pins are
floating, external logic drives the address for the in­
quiry on A31-A5 and starts the inquiry cycle byacti­
vating EADS#. The i860 XP microprocessor does
not begin sampling EADS# until the second clock
after AHOLD is activated. EADS# activation may be
delayed any number of clocks.

5 6 7 8 9 10

ADDRESS __ F_R_OM_C_PU..,.: -J} - -:- -s --:--{ F~OM CPU

EADS#

HITM#

HIT#

ADS#

BRDY#

I I I I I

,

________________________ ~I •
,

, ,
,

V!I
I I I I I I

;'i~~W;;f·,~t~~;;~l,;¥t~~~:il;Wt~{~,liI:r.t~~~~%~WHi~;,~;;it~i;:11W%~;*t~@;W~M¥:
" , , " " ,

DATA
, 'G:> I I I I I I

.--.----~- A ------.----.----~----~----~----~----. I I I I I I , I I I

240874-45

NOTES: .
A outstanding cycle (for example, a single-transfer read) finishes during the inquiry
1. Earliest assertion of EADS# is two clocks after assertion of AHOLD
2. Earliest deassertion of AHOLD is one clock after assertion of EADS #
3. HIT# is valid two clocks after assertion of EADS#
4. Earliest assertion of ADS# for next cycle is one clock after deassertion of AHOLD

Figure 5.18. Inquiry Miss Cycle

2-72

i860TM XP MICROPROCESSOR

The earliest that AHOLD can be deasserted is the
clock after EADS# assertion. However, by maintain­
ing AHOLD active, multiple inquiry cycles can be ex­
ecuted in one AHOLD session (Figure 5.19). The
i860 XP microprocessor can accept inquiry cycles at
a rate of one every other clock period, unless a
write-back is required. The earliest that ADS# can
be asserted for the next cycle is the clock after
AHOLD deassertion.

The second inquiry in Figure 5.19 hits an unmodified
line in the cache. When a cache line with matching
address is found and the INV input signal is asserted
(as in this case), that line is invalidated (changed to
I-state). If the INV signal is inactive, the line enters
S-state.

2 3 4

CLK

AHOLD -.,......,/

5.3.1 INQUIRY WRITE-BACK CYCLES

If an inquiry cycle hits a dirty (M-state) line in the
i860 XP microprocessor cache, the i860 XP micro­
processor asserts the HITM # signal to indicate that
the line will be written on the bus. The HITM # output
becomes valid in the same clock period as HIT # .. In
this case the modified line is written out, and the
cache entry is changed to either I or S state accord­
ing to INV. The HITM # signal. stays active through
the last BRDY # for the corresponding write-back
cycle.

An inquiry write-back cycle is similar to ordinary
write-back cycles. It is initiated by assertion of
ADS#. ADS# is asserted even when the AHOLD

5 6

I

I

, $

7 B 9 10

I I I I I

ADDRESS __ .. rR_O_t.t_C_P_U.,.: -I} - -;- - {TO CPU litlwf11X TO ?pu} - -:- - <\._,..... __ F .. :R_O_t.t_C_Pu : __ _

EADS#

INV

HITt.t#

HIT# __________________ J! •

ADS# ~

BRDY#

I

\ t
I

I

Vi)
I

I

I I CD I I I I I I
DATA -----_._-.... A '.-1--------- ... ---- ... ----_.'--- .. ---- .. ----.

I I I I I I I I I I

NOTES:
A Outstanding cycle (for example, a single-transfer read) finishes during the inquiry
B Earliest inquiry, no invalidation
C Earliest successive inquiry, with invalidation
1. EADS # is not sampled in the clock after its assertion
2. Inquiry B misses cache
3. Earliest deassertion of AHOLD is one clock after last assertion of EADS#
4. Inquiry C hits cache, invalidates line. . .
5. Earliest assertion of ADS#' for next cycle is one clock after deassertion of AHOLD

Figure 5.19. Fastest Inquiry Cycles (Miss and Hit)

2-73

240874-46

II

i860TM XP MICROPROCESSOR

signal is active. The cycle definition signals are driv­
en properly by the processor, however, the address
pins are not driven, because activation of AHOLD
forces the i860 XP microprocessor off the address
bus. If, however, AHOLD is deasserted before or
during the write-back cycle, the i860 XP microproc­
essor drives the correct address for the write-back.

For all types of inquiry, the write-backs are not pipe­
lined into an outstanding cycle,. except when the
FLlNE# pin is used (refer to section 5.3.5). ADS#
for the inquiry write-back is asserted from one to four

2 3 4 5

ClK

AHOlD J I

clock periods after the HITM # pin is driven active or
after the last BRDY # is returned for any outstanding
cycle, whichever occurs later.

Bursts for a HITM# write-back, as for any write­
back, are in the order 0, 8, Ox10, Ox18, because the
i860 XP microprocessor ignores A4-A3 of the in­
quiry address.

Figure 5.20 shows an inquiry cycle that hits an M­
state line.

7 8 10 11 12

I , I I I I

ADDRESS FRO~ cpu} - -:- - ~§~:~~~I~t1iM%~i:~~:~;~::;~{i:~Mf;:jtnJf~1~i i};:;:!trl\,<:;r; ~}~~~~m::iMm~:4~::t'::~lt*t:t - -:- - { __ ---FR-O-~-C-pu ___ ..

HITM# \~~~ ______ ~~ ______ ~II 6
HIT# \
lEN#

CACHE#
I

I

ADS# \Y

I I I I I I I I I I

III '<D'~" DATA --- .. ---- .. ----,.---- .. ---- .. -- A ---1--- W W W W -- .. ----.
I I I I I I 1 I

NOTES:
A Outstanding cycle (for example, a single-transfer read)
W Write-back cycle
1. EADS# is not sampled while HITM# is active
2. Earliest ADS # assertion if not delayed by outstanding cycle
3. ADS # for write-back delayed by outstanding cycle
4. HITM # deactivates after last BRDY # of write-back

Figure 5.20. Inquiry Hit Cycle with Write-Back

2-74

240874-47

int'eL i860™ XP MICROPROCESSOR

The fact that a write-back cycle is initiated while ad­
dress lines are floating supports multiple inquiries
(with write-backs) during a single AHOLD session.
This is especially useful during secondary cache re­
placement processing, when the secondary-cache
line is larger than that of the i860 XP microproces­
sor.

Note that EADS# is ignored as long as HITM# is
active. If the system is executing a series of inquir­
ies, it might happen that the HITM# assertion for
one inquiry masks the EADS# for a subsequent in­
quiry. In that case the system must reassert EADS#
to restart the masked inquiry.

Inquiries can occur during a hold due to HOLD/
HLDA or BOFF #. However, in these cases, the cy­
cle definition pins and ADS# are floating. If an in­
quiry requires a write-back, the HOLD or BOFF #
must be deasserted so that the cycle definition pins
and ADS # can be driven to start the write-back cy­
cle. If HITM# is active at the time of ADS#, the first
ADS# issued after HOLD is de asserted corre­
sponds to the write-back of the modified line which
was snooped.

5.3.2 SNOOPING RESPONSIBILITY LIMITS

The i860 XP microprocessor takes responsibility for
responding to inquiry cycles for a cache line only
during the time that the line is actually in the cache
or in a write-back buffer. There are times during the
cache line fill cycle and during the cache replace­
ment cycle when the line is "in transit", and inquiry
(snooping) responsibility must be taken by other sys­
tem components.

Systems designers should consider the possibility
that an inquiry cycle may arrive at the same time as
a cache line fill or replacement for the same ad­
dress. This situation can occur:
.. In multiprocessor systems that have external

(secondary) caches with separate CPU and
memory busses, thereby allowing concurrent ac-

tivity on the two busses. In such systems, it is
desirable to run invalidation cycles concurrently
with other i860 XP microprocessor bus activity. It
can happen that writes on the memory bus cause
invalidation requests to the i860 XP microproces­
sor at the same time that the i860 XP microproc­
essor fetches data from the secondary cache.
Such events can occur at any time relative to
each other.

o In multiprocessor systems with no secondary
cache, if memory is dual-ported. In such systems,
two processors can simultaneously read the
same line, each sending an inquiry to the other.

The simultaneous activities considered here may be
for different data items in the same cache line. Un­
less the inquiry request is timed carefully with re­
spect to the cache fill cycle, the cache-consistency
mechanism may be subverted, and data inconsist­
encies may result (for example, both CPUs may get
the line in E-state on a read). If the 82495XP and
82490XP cache is being used, the timing with re­
spect to the i860 XP microprocessor is handled cor­
rectly by the cache controller; however, the same
problem may arise between the memory system and
the secondary cache.

There are two cases to consider:

1. Inquiry for a line that is being cached.

2. Inquiry for a line that is being replaced.

5.3.2.1 Inquiry for a Line Being Cached

. The i860 XP microprocessor accepts an inquiry cy­
cle at any time, even if it hits the line being cached at
that time. Regardless of the timing of the cycle, the
i860 XP microprocessor delivers the read data to the
load instruction that initiated the read request. How­
ever, the timing of the invalidation cycle determines
whether the line is placed in the cache and what
value the iB60 XP microprocessor drives on HIT # .
Table 5.4 summarizes the different cases.

Table 5.4. Inquiry for a Line being Cached

EADS# before EADS# after
or with NA# NA# or

or 1st BRDY# 1stBRDY#

Line is cached? YES NO

HIT#= Inactive Active

Data/ Instruction
YES YES

used by CPU?

2-75

i860™. XP MICROPROCESSOR

If EADS# is asserted before or with the sampling of
KEN # ,the processor cannot match the address of
the line being cached with an invalidation request.
Thus, the processor does not assert HIT #. The ex­
ternal system must satisfy the inquiry with the cor­
rect data and WB/WT # status. If invalidation of that
line is required,the system must do one of the fol­
lowing:

• Delay assertion of EADS# until one clock after
assertion of KEN #.

• Reassert EADS# after KEN#.

3 4 5 6

ClK

AHOlD

• Make KEN # inactive at the first BADY # or NA #,
thereby preventing the line from being cached.

Figures 5.21 and 5.22 show when the i860 XP micro­
processor picks up responsibility for inquiries for a
line thatit is caching. Figure 5.21 shows the earliest
EADS# assertion that invalidates the line being
cached relative to the first BRDY # for nonpipelined
cycles. Figure 5.22 shows the earliest EADS# as­
sertion that invalidates the line being cached relative
to the first NA# for pipelined cycles. These timings
hold for normal and late back-off modes.

7 8 10 . 11 12 13

\~------~~~~--~
EADS# _--_",1

- :,,;

~~----------------­,
H~ \

,
ADS# :--\i.J

NA# h Y I
I

KEN# ~-----------------~~~~----~-----.---------------------------~ I I I I

8RDY# ;----..... , , , ,-------..... ----,-.---------;
. ,

ADDRESS R } .. :-----:-----,:~----:--_'RV }--:,--.(R ~ __ ~_~, , , ,~~ ______ J ~ ________ ___ --~

NOTES:
A Cache line fill cycle
S Snoop (inquirY) cycle
R Addresses of cache line fill and snoop are the same
1. Earliest EADS# assertion that can invalidate line being filled

Figure 5.21. Snoop Responsibility Pickup (Nonpipelined Cycle)

2-76

240874-48

i860™ XP MICROPROCESSOR

4

elK

,
:, I AHOlD ;,.......t ,

EADS#
® '

~ ~=""'.~
HIT# \

I

ADS# :\Y
,

NA# ~:' U , , , ,

7 10

\

'<

: .
,

ill

11 12 13

··············'···'·'··i

':;":',":-'1

KEH# ;..;"===-."A.l...A;,;' ________ .0;;.;. __ ;.;;.;; ______ ----;;;;;..----;0.,.;.----;;,.;.----;----;;,.;.----,;;;,;;:. '.0;:'"'.o;:""'.o;:i • ...:; ••• !

BRDY#

ADDRESS

NOTES:
A Cache line fill cycle
B Next cycle (any type)
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

240874-49

1. Earliest EADS# assertion that can invalidate line being filled

Figure 5.22. Snoop Responsibility Pickup (Pipelined Cycle)

5.3.2.2 Inquiry for a Line Being Replaced

When the i86a XP microprocessor is replacing a line,
there are two cases:

1. If the replacement does not require write-back,
the address being replaced can be matched by
an inquiry until assertion of NA # or first BRDY #
of the line-fill cycle. From that point on, the in­
quiry has no effect.

2. If the replacement requires a write-back, the ad­
dress being replaced can be matched by an in­
quiry until assertion of the last BRDY # for the
write-back. An EADS# as late as two clocks be­
fore the last BfiDY# can eause HITM# to be
asserted.

2-77

Figures 5.23 through 5.25 show when the i86a XP
microprocessor drops responsibility for recognizing
inquiries for a line that it is writing back. They show
the latest EADS# assertion that can cause HITM#
assertion. In late back-off mode, EADS# can be as­
serted later, because BRDY # is internally delayed
(Figures 5.24 and 5.25).

In all these cases, HITM # remains active for only
one clock period. HITM#, as always, remains active
through the last BRDY # of the corresponding write­
back; in these cases the write-back has already
completed.

If an inquiry cycle hits the write-back address after
its ADS# has been issued, the i86a XP microproc­
essor asserts HITM#; however, HIT# is deassert­
ed. This unique combination of values on HIT# and
HITM# indicates that the write-back cycle corre­
sponding to the HITM# has already been issued.

intei~ i860TM XP MICROPROCESSOR

3 4 5 7 8

ClK

,
AHOlD U , .,

'EADS#

HIT# ~------------------------~I
HITM# , ,
ADS# hl.I ' A ,

BRDY#

,
" ,

, " "
ADDRESS }

I I. I

... ___ R _J -'!'----;--- --;--- --.--

NOTES:
A Write-back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

\..iJ ,

10 11

Figure 5.23. Latest Snooping of Write-Back (Not Late Back-Off Mode)

ClK

,
:, I AHOlD P--I

,.EADS#

3 4 5 7 8

,.
HIT"' --------------------------~I

HITM#
, ., ," '-iJ

10 11

12 13

R

240874-50

12 13

'. ADS# .hl.I-~~---~----~~----~---~------+-----.. '------.. ----.. -------------~
,

BRDY# ,
I I I. I

}-~----~-ft~-F----~-... ___ _J." \""";';_,,"iiO
ADDRESS R

240874-51

NOTES:
Ii. Write-back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

Figure 5.24. Latest Snooping of Write-Back (One-Clock Late Back-Off Mode)

2-78

i860™ XP MICROPROCESSOR

elK

AHOlD :..J
EADSti

HIT# ~~--~~------------~I
HITM#

ADSti :--\l;
I J I I I I

BRDY# ~~"".- ~ : J:\ ~ : 1'\ '..... ~ : ~ '............. ~ : J ~~~~~~~~~~~~~~~~~~~
, : \.J~U~~~\IO.<·.;.,·.;.,' .;.,.;.,.;.,.;.,.;.,.;.,.;.,.;.,.;.,.;.,.;.,.;.,;;..;;;.;;..;;;...;,:;.;..;,:;.;..;,:;.;..;,:;.;..;,:;.;~~~;;;;:;;.~<!

ADDRESS .-_..;.;.._ ... } -~ ----~ ----~ ---+ -QJ(P' """,~ -, --,:,} __ ; __ {r-----R----......; R

240874-52

NOTES:
A Write-back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

Figure 5.25. Latest Snooping of Write-Back (Two-Clocl(Late Back-Off Mode)

5.3.3 WRITE CYCLE REORDERING DUE TO
BUFFERING

The MESI cache protocol and the ability to perform
and respond to inquiry cycles guarantee that writes
to the cache are logically equivalent to writes that go
to memory. In particular, the order of read and write
operations on cached data is the same as if the op­
erations were on data in memory. Even uncached
memory read and write requests usually occur on
the external bus in the same order that they are is­
sued in the program. For example, when a write miss

, is followed by a read miss, the write data goes onto
the bus before the read request is put on the bus.
However, the posting of writes in write buffers cou­
pled with inquiry cycles may cause the order of
writes seen on the external bus to differ from the
order they appear in the program. Consider the fol­
lowing example, which is illustrated in Figure 5.26:

1. Three bus cycles are outstanding.

2. Processor 1 executes a store to address A, which
misses the cache. This store is posted; that is,
the data is latched in the write buffer while the
processor continues execution without waiting for
the store to be completed on the bus. In this case
the store is not even put on the bus because
there are already three outstanding cycles.

2-79

3. Processor 1 executes a store to address B, which
hits the cache.

4. Processor 2 executes an inquiry for address B.
Processor 1 looks in its cache, finds the modified
line, asserts HIT # and HITM #, and executes a
write-bacl~ cycle to address B, while the data for
address Ais still in the write buffer.

5. Processor 1 issues the write to address A on the
bus.

In this example, the original order of the writes has
been changed. In most cases it is not necessary that
the ordering of writes be strictly maintained. But
there are cases (for example, semaphore updates in
a multiprocessor system) that require stores to be
observed externally in the same order as pro­
grammed. There are several ways to ensure seriali­
zation of stores:

1. Bracket one of the stores with the lock and
unlock instructions. That forces serialization of
the stores (refer to section 5.4). In the above ex­
ample of a store-miss followed by store-hit, lock­
ing either store would ensure that the. internal
store-hit does not update the cache until the miss
gets to the external bus.

2. Apply the write-through policy to the critical data,
by setting WT = 1 in the page table entries or by
driving the WB/WT # pin low.

inteL i860TM XP MICROPROCESSOR

CLK

DECODE I st.)(A st.)(B

WRITE
BUFFER

CACHED
DATA

AHOLD

EADS#

i.J
I

4 10 11 12 13 14

B (updated)

\~--------------~

HITM# \~-------+--~--------~I
ADS#

NOTES:
A Data written by st.x A instruction
B Data written by st.x B instruction
1. Snoop for address of B
2. Snoop look-up in tag array occurs here; finds B modified
3. Write-back of line containing B occurs before write of A

240874-53

Figure 5.26. Write Reordering due to Buffering

3. Configure the processor for Strong Ordering
Mode by asserting EWBE # during RESET.

Option 1 is implementable. by user-level programs,
while option 2 is an operating-system level solution,
not directly implementable by user-level code. Op­
tion 3, the hardware solution, is discussed in greater
detail in section 5.3.4.

5.3.4 STRONG ORDERING MODE

In strong ordering mode, the processor delays up­
dates to its internal data cache in either of these
conditions:

1. The internal write buffer is not empty.

2. An external write buffer is not empty (the external
system signals this condition by deactivating the
EWBE # signal).

By delaying the cache update until all write buffers
are empty, the i860 XP microprocessor avoids the
out-of-order sequence shown in section 5.3.3.

2-80

In strong ordering mode, EWBE# can be deassert­
ed only between the ADS# and the last BRDY# of
a store. The earliest deassertion is the clock after
ADS#; the latest deassertion is together with the
last BRDY#. EWBE# can be reasserted at any
time, except when the processor is performing an
inquiry write-back. In other words, EWBE # must not
activate while HITM# is active. When EWBE# goes
active, the processor completes any cache update
that may have been delayed by its deassertion.

Figure 5.27 shows how an external cache can use
EWBE # when a store miss in the i860 XP micro­
processor is also a miss in the external cache.

An external cache controller should also refrain from
updating the external cache while EWBE # is active.

\

intel$ i860™ XP MICROPROCESSOR

2 3 4 5 7 8 10

elK

I

ADS# \J--1
W/R# ~ ____ p-____ p--J7 :

BRDY#

EWBE#

240874-54

NOTE:
1. Assumes the external cache needs five cycles to write the data to memory.
2. Pending internal data cache updates are delayed until the clock in which EWBE # is sampled LOW.

Figure 5.27. Timing of EWBE#

5.3.5 SCHEDULING INQUIRY WRITE-BACK
CYCLES

In order to preserve system-wide ordering of memo­
ry transactions in multiprocessor systems that have
a pipelined or split-transaction memory bus, it may
be necessary to get the data corresponding to an
inquiry hit before outstanding bus cycles are com­
pleted. Another bus master can always request an
inquiry while the i860 XP microprocessor has cycles
outstanding on the bus. However, when AHOLD is
asserted, the i860 XP microprocessor normally com­
pletes outstanding cycles before it performs any
write-back that may be required. The i860 XP micro­
processor provides two methods for causing the in­
quiry write-back before outstanding cycles are com­
pleted:

FLlNE# When FLlNE# is asserted during the
EADS# of an inquiry that hits an M-state
line, the i860 XP microprocessor issues a
write-back cycle and writes the dirty line to
memory before the outstanding bus cycles
are completed.

BOFF # If there are outstanding cycles on the bus,
asserting BOFF # clears the bus pipeline.
If an inquiry causes HITM# to be asserted,
then the first cycle issued by the i860 XP
microprocessor after deassertion of
BOFF # is the inquiry write-back cycle. Af­
ter the inquiry write-back, it reissues the
aborted cycles.

5.3.5.1 Choosing between FLlNE# and BOFF#

FLlNE#, although the more efficient choice, cannot
handle all situations. Under certain circumstances, it
can happen that outstanding stores on the bus cor-

2-81

respond to data that is obsolete relative to the data
in the cache, because a subsequent store has up­
dated the cache after the ADS# for the outstanding
store has occurred. For example:

o An aliasing store hit, in which a cache virtual-tag
miss occurs and the ADS# is issued at the same
time as a physical-tag hit. Then the cached data
would be updated before external memory, and a
subsequent store to the new virtual address
could also update cache before the outstanding
bus store completed.

o Back-to-back writes to the same line can also up­
date the cache more recently than the bus when
the write-once update policy is employed. The'
first write updates the cache and generates a bus
write request, but the second write only updates
the cache.

In both of these examples the outstanding stores on
the bus are obsolete relative to the data in the cache
line. If an inquiry cycle hits a line and this .Iine is
written back out of order (that is, before outstanding
stores are completed), special care should be taken
to discard the outstanding stores.

The easiest way to avoid this situation is not to as­
sert FLlNE# when stores are outstanding, but use
BOFF # instead. If out-of-order write-back is imple­
mented with BOFF #, the i860 XP microprocessor
does not restart the outstanding store to that line if
such a store has been obsoleted by a later cache hit
store. That is, the i860 XP microprocessor detects
this condition and kills the obsolete data. However,
lock-bracketed stores (including the last store in the
lock sequence) are restarted by the i860 XP micro­
processor, because lock-bracketed stores update
the cache only after BRDY # is returned.

II

i860TM XP MICROPROCESSOR

If, on the other hand, out-of-order write-back is im­
plemented by using only the FLlNE# pin, the exter­
nal system must return BRDY #s for outstanding
stores, but the data must be ignored if it has already
been written out by an inquiry write-back ..

Note that if a replacement write-back is in progress
(ADS# has been issued, but last BRDY# has not
occurred) and an inquiry hits the same line that is
being written back, the FLiNE # pin is ignored. The
system can recognize this special case by the fact
that HITM# is asserted while HIT# is de asserted. If
other cycles are outstanding and it is necessary to
write the line back before the other cycles, BOFF #
can be used.

5.3.5.2 Reordering Write-Backs with FLINE #

FLlNE# must be active during the EADS# that initi­
ates an inquiry. BRDY # must not be asserted forthe
previously issued cycles while HITM# is active. If
HITM # is asserted while the data transfer of the
outstanding cycle is in progress (Le. first BRDY #
has been asserted, but the entire transfer has not

CLK

,
:, I AHOLD i--I

EADS#

2 4 6

yet been completed), the i860 XP microprocessor
waits for the current cycle to complete, and only
then issues the write-back. After the last BRDY# for
the ongoing burst (if any), BRDY # is ignored until
the clock period after ADS# is asserted for the
write-back.

From the viewpoint of the i860 XP microprocessor,
an inquiry write-back cycle is just another bus cycle;
so, if there is an outstanding cycle at the time of
FLlNE# and HITM# activation, the system must as­
sert NA # to initiate the write-back.

Figure 5.28 illustrates simple cycle reordering, when
FLiNE # is not asserted during the data transfer of
another cycle. The outstanding request could be ei­
ther a read or write.

Figure .5.29 shows the case in which FLlNE# is as­
serted after data transfer for the outstanding cycle
has already started. In this case, the i860 XP micro­
processor does not issue a write-back until the out­
standing transfer is completed.NA# is needed in
this example only if other outstanding cycles remain.

8 10 11 12 13

, .
HIT# .' __________________________ \~. ______ ~----~----~----~----~----~----~ __ ___

,
HITM# , \~ __ --____ '--~--~--~~---+J~
W/R# ~--------------------------------~I . ,

\~~----~----~----.~,----~----~ CACHE
,

FLINE# :;,v W*i;f;utiWJ1;li;;;i1lr;h&!;LftWt; ;i4R,:&t;~:; ttjF'J/~;i1JW;;;;;;;;t~;t;;;;;;~;; 1;0m;Jttlri$ii!f;8~!iAj(f;B\~JifjftltiiJW2iJiii;~nlt,!ri:i~:iiiifi;i;~itW;rjltl

ADS#

NA#

BRDY#

DATA

~~~-----+----~--------------------~~p--------------------------~ , , , , 

~ , .. 
"';k""'\tt""'J!!l'~%~""'~~~~~J;~'!'l'i~!!l'lfj!!l't~~Ei ;}"i.5?;,i2K"! !!:iJtj!y>:t;FjlAll)f~i1fj fH\@i}~ 
I I I I I I I I I I I I I 

IIIIIIII~' • ____ • ____ ... ____ .. ____ .. ____ ~ __ __ I- ___ • _ ___ __ 1_ _ fROM FROM FROM FRO _ ~ 

I I I I I' I 1 I I CPU OPU CPU CPU I 

240874-55 

Figure 5.28. Cycle Reordering via FLlNE# (No Ongoing Burst)· 

2-82 



i860™ XP MICROPROCIESSOR 

4 10 11 12 13 14 

CLK 

AHOLD '0 

H1T# ~, ________________________ ~\~ ______ ~ ____ ~ __ ~ ____ ~ ____ ~ __________ ~ ____ ~ __ ~ __ 

H1T~# \\..-+ ____ !--__ + __ --J ____ ..J.... __ .....J. ___ .J-_-+ __ !--_-+--I� 

W/R# ·~~ __________ ~ ________ ~----~--~~I 

\~--~--~--~--~~--~-CACHE 
, 

FUNE# ~~ __ ~~~~~'~~~ __ ~ __ ~~ .. ~~~~~--~~~~~~~~~~~,~-"~--~"~'~~.'~~"'~*'~,~:~~-., __ ~.~O'\~8 
ADS# ~----~--------~----------~\JlJ~------------

: ' 
NA# ~ ~ .....•. , ........ : .•. ,:i.i'< ... :.' .•. : .•. > "t.;.I ~>k::/;fi, 

BRDY# 

DATA 

240874-56 

NOTES: 
1. BRDY # is ignored by CPU from end of ongoing burst through ADS# of write-back, even if other cycles remain 
outstanding 
2. NA# required only if another cycle is outstanding 
3. If the first BRDY # is asserted here or sooner (relative to HITM #), the outstanding cycle completes before the 
FLlNE# write-back. 

Figure 5.29. Cycle Reordering via FLINE # (Ongoing Burst) 

2-83 



inteL i860TM XP MICROPROCESSOR 

5.4 The LOCK # Cycle Attribute 5.3.5.3 Reordering Write-Backs with BOFF # 

Back-off cycles are discussed in general in Section 
5.2.2. Figure 5.30 shows how BOFF # can be used 
to cancel outstanding cycles so that an inquiry write­
back can take place immediately. 

The processor asserts the LOCK# signal when sev­
eral accesses to a single memory location must be 
effectively uninterruptible. By causing LOCK # to be 
asserted, a programmer can, for example, increment 
the contents of a memory variable and be assured 
that the variable will not be accessed between the 
read and the update of that variable. 

eLK 

AHOLD 

BOF'F'# I , , 

, 
VU 

10 12 13 14 15 16 

,~;{t;. '4-At10:t;t,:.~ .;1% :;.j!:;;:\~LA;;0:ij';i '" :;\L~;li;~:;;:, i.,i::i::RT·":.t ;';;: ;L:~;'l:$~; .,}'; .. \;(0 \j 

HIT~# \ , I 
HIT# \ : 
!---~-~-~-~--+--~\--:--<".---------Y LEN# 

, 
\ --:--'\,,~,:------______ I 

• t) 

\.i.J \...U 

CACHE# 

ADS#~ 

NOTES: 
A Outstanding cycle (for example, noncacheable 128-bit read) W Write-back cycle 
1. AHOLD begins an inquiry while one cycle is outstanding. 
2. Earliest assertion of EADS# is two clocks after assertion of AHOLD 
3. Inquiry hits modified line. 
4. Assertion of BOFF # aborts th~ outstanding cycle. 
5. BRDY# asserted during BOFF# is ignored by CPU. 
6. Write-back begins after deassertion of BOFF # . 
7. Earliest assertion of ADS# for restart of cycle A (assuming no pipe lining). 

Figure 5.30. Cycle Reordering via BOFF # (Ongoing Burst) 

2-84 



in~® i860™ XP MICROPROCESSOR 

The memory location to be locked is the one whose 
address is driven during the cycle in which LOCK # 
is first activated. In multiprocessor systems, external 
hardware should guarantee that no other processor 
is granted a locked read, locked write, or unlocked 
write to the same location until LOCK # is deassert­
ed. The i860 XP microprocessor has no hardware 
provision to prevent another master from also lock­
ing the variable; this responsibility falls on the bus 
arbiter. In the simplest implementation, the arbiter 
can globally prevent other masters from accessing 
the bus. 

Not all cycles affect the value of LOCK #. Code 
fetches, write-backs due to replacement or inquiry, 
and cycles restarted due to BOFF # do not affect 
LOCK #. Any other type of cycle can be used to initi­
ate or terminate LOCK #, including cache line fills, 
interrupt acknowledge, 1/0, and special cycles. 

Data accesses with LOCK # asserted are not pipe­
lined, and other data cycles are not pipe lined while a 
LOCK# cycle remains outstanding. Instruction 
fetches, however, may be pipelined during lock. 

The i860 XP microprocessor can run very long lock 
sequences; therefore, to guarantee reasonable bus 
turnover latency in multi master systems, the i860 XP 

ClK 

LEN \ 

CACHE# I I 

microprocessor recognizes bus hold (HOLD), ad­
dress hold (AHOLD), and back-off (BOFF#) while 
the LOCK# signal is active. In spite of such inter­
vening conditions, the arbiter should prevent any 
other bus master from also locking or updating the 
variable the i860 XP microprocessor locked. In sim­
ple systems the HOLD input can be masked by the 
LOCK# output (that is, the external logic that gener­
ates HOLD can AND the LOCK# signal with other 
hold conditions). More sophisticated systems, how­
ever, may allow the bus to be turned over while 
LOCK# is asserted. 

Whatever the lock implementation, arbiter design 
must, in one case, allow another processor to write 
the locked variable. That case is when another 
i860 XP microprocessor or master asserts HITM # in 
response to the inquiry generated by the locking 
processor's initial read. That other master must write 
back the locked variable before the i860 XP micro­
processor can read it. This HITM# write-back must 
always be allowed. 

The timing of LOCK # is shown in Figure 5.31. Note 
that LOCK # is asserted in the same clock period as 
ADS# for the locked address, but is deasserted in 
the clock period after ADS# for tho unlocking load 
or store. 

4 5 

W/R# '--_---lI.\ __ -.--I' 
ADS# I 

ADDRESS ~, __ ~X~ __ O=-~X~ __________ ~ 
I , 

BRDY# p:: i'" '{H1::;1;;;j;f';"f;g:;:i}~1,j: ,;Hi;' t;;;;;U,A:Nl1EIi:;::::' .,,;': 

: : :ap:W: : ,. ____ ~ __ __ I. _ TO _ .1. _ FROM _ .... ____ , 

I I : CPU : CPU I I 

I I \. : I, 6 I I 

DATA 

lOCK# 
I I , , 

NOTES: 
L Locking access 
U Unlocking access 
1. This address is to be locked 
2. LOCK# is asserted with ADS# 
3. LOCK # is deasserted one clock after ADS # 

Figure 5.31. LOCK# Timing 

2-85 

240874-58 



i860™ XP MICROPROCESSOR 

5.5 RESET Initialization 

Initialization of the i860 XP microprocessor is caused 
when the system asserts the RESET signal for at 
least ten clocks. Table 5.5 shows the status of out­
put pins during the time that RESET is asserted. 
Note that the bidirectional data pins (D63-DO and 
DP7-DPO) are floated during RESET, though the bi­
directional A31-A3 pins are not. If the i860 XP mi­
croprocessor is used with 82495XP and 82496XP 
cache, however, the latter do float the bidirectional 
pins they share with i860 XP microprocessor during 
RESET. Note that HOLD requests are honored dur­
ing RESET and that the HLDA output, signal may 
also become active. The status of output pins de­
pends on whether a HOLD request is being acknowl­
edged. Note also that the test logic may be active 
during RESET and that the EXTEST instruction may 
drive other values on the output pins. 

After the RESET signal goes inactive the processor 
remains in the RESET state for three more clocks. 
Applications that use the HOLD signal to float the 

bus during RESET should keep HOLD active for 
three more clocks after the RESET signal is deacti­
vated. 

Some aspects of processor configuration are deter­
mined by asserting input signals during RESET. To 
select a given option, the corresponding input must 
be asserted for at least the last three clocks before 
the falling edge of RESET; to deselect, the corre­
sponding input must be de asserted for at least the 
last three clocks before the falling edge of RESET: 

EWBE# Enter strong ordering mode. 

FLlNE# Enter one clock late back-off mode. 

INT less Enter eight-bit code-size mode. 

PEN# Enter normal (small output buffers) cur­
rent mode. 

Figure 5.32 shows how configuration pins are sain- ) 
pled during the three clock periods just before the"\ 
falling edge of RESET. No inputs besides EWBE#, 
HOLD, FLlNE#, INT/CS8, and PEN# are sampled 
during RESET. 

Table 5.5. Output Pin Status during Reset 

Pin Value 
Pin Name 

BREQ 
HLDA 
W/R#, PWT, PCD 
ADS# 
D63-DO, DP7-DPO 
A31-A3, BE7#0-BEO#, NENE# CACHE#, CTYP, D/C#, 

KBO, KB1, LEN, M/IO#, PCYC 
* PCHK#, HIT# 

HITM#, LOCK# 

NOTE: 
This table does not apply if the test logiC is running the EXTEST instruction. 

elK 

RESET 

EWBE#, 
FUNE#. 

u , 

HOLD HOLD 
Not Acknowledged Acknowledged 

LOW LOW 
LOW HIGH 
LOW Tristate OFF 
HIGH Tristate OFF 

Tristate OFF Tristate OFF 
Undefined Tristate OFF 

Undefined Undefined 
HIGH HIGH 

10 11 12 13 

\ 
INT/eSB, 

PEN# • X 1< ;;tPC;i·""." >;;··;;·!!hrr¥;;;;'i ff;;!;;;i;r';;·1~;t;Q1"ii~!i'i. " ~!;;i;;§!X ;-oF ...... ·c ... · ";"q •• ;;"";'";;;:;;;;14"'; 1"'; ;ti; b.. __ ..;;;. __ -, '-____ _ 

NOTE: 

OTHER 
INPUTS 

HOLD 

HLDA 

r;;; [1ft''!',! ••.• ;tcti!!ii';#¥ii;t~;t~;Wc ii§t~":V!i!i\!;;;§t14! ;tP~t,pg§!¥t~~~~\t§t4j: i\((;~'¥;?; t\;M\.. ____ ---! 

240874-59 

1. The CPU samples these inputs in the clocks preceding the falling edge of reset. 

Figure 5.32. Reset Activities 
2-86 



i860™ }{P MICROPROCESSOR 

While in eight-bit code-size mode, instruction cache 
misses are one'byte reads (transferred on 07-00 of 
the data bus) instead of eight-byte reads. This allows 
the i860 XP microprocessor to be bootstrapped from 
an eight-bit ROM. For these code reads, byte en­
ables BE2#-BEO# are redefined to be the low or­
der three bits of the address, so that a complete 
byte address is available. The entire eight-byte data 
QUs continues to be parity-checked by the i860 XP 
microprocessor during GS8-mode instruction fetch­
es; therefore, external hardware must either gener­
ate good parity on all eight bytes or disable parity 
traps by deasserting PEN # during GS8 mode. 

While in this mode, instructions must reside in an 
eight-bit wide memory, while data must reside in a 
separate 64-bit wide memory. After the code has 
been loaded into 64-bit memory, initialization code 
can initiate 64-bit code fetches by clearing the GS8 
bit of the dirbase register (refer to section 2). Once 
eight-bit code-size mode is disabled by software, it 
cannot be reenabled except by resetting the i860 XP 
microprocessor. 

Instruction fetches in GS8 mode update. the instruc­
tion cache if KEN # is asserted during NA # or all of 
the first eight BROY #s (refer to section 4.2.26). 
They are pipelined if NA # is asserted. When used 
with the 82495XP and 82496XP cache, GS8 mode 
works only if the ROM locations are made non­
cacheable. 

6.0 TIESTABlliTY 

The i860 XP microprocessor provides testability fea­
tures compatible with the proposed Standard Test 
Access Port and Boundary-Scan Architecture (IEEE 
Std. P1149.1 106). The subset of the standard test 
logic implemented in the i860 XP microprocessor 
provides for testing the interconnections between 
the i860 XP microprocessor and other integrated cir­
cuits once they have been assembled onto a printed 
circuit board. 

The test logic consists of a boundary-scan register 
and other building blocks that are accessed through 
a test access port (TAP). The TAP provides a simple 
serial interface that makes it possible to test all sig­
nal traces with only a few probes. 

The TAP can be controlled by a bus master. The bus 
master can be either automatic test equipment or a 
component that interfaces to a four-pin test bus. 

6.1 Test Architecture 

The test logic contains the following elements: 

2-87 

o Test access port (TAP), which consists of input 
pins TMS, TGK, TOI, and TRST#; and output pin 
TOO. 

o TAP controller, which receives the dedicated test 
clock (TGK) and interprets the signals on the test 
mode select (TMS) line. The TAP controller gen­
erates clock and control signals for the instruc­
tion and test data registers and for other parts of 
the test logic. 

o Instruction register (IR), which allows instruction 
codes to be shifted into the test logic. The in­
struction codes are used to select the test to be 
performed or the test data register to be ac­
cessed. 

o Test data registers: Bypass Register (BPR), De­
vice Identification Register (DID), and Boundary­
Scan Register (BSR). 

The instruction and test data registers are separate 
shift-register paths connected in parallel and having 
a common serial data input and a common serial 
data output connected to the TAP TOI and TOO sig­
nals respectively. 

6.2 Test Data Registers 

The test logic contains the following data registers: 

o Bypass Register (BPR): BPR is a one-bit shift 
register that provides a minimum-length path be­
tween TOI and TOO when no test operation of 
the component is required. This allows more rap­
id movement of test data to and from other board 
components that are required to perform test op­
erations. While running through BPR, the data is 
transferred without inversion from TOI to TOO. 

o Device Identification Register (DID): This reg­
ister contains the manufacturer's identification 
code, part number code, and version code in the 
format shown by Figure 6.1. The values are: man­
ufacturer's identification code (9), part number 
code (61AO), version code (8), entire 32-bit value 
(Ox861 A0013). 

o Boundary Scan Register (BSR): The BSR is a 
single shift-register path containing 150 cells that 
are connected to all input and output pins of the 
i860 XP microprocessor. Figure 6;2 shows the 
logical structure of the BSR. Input cells only cap­
ture data; they do not affect operation of the 
i860 XP microprocessor. Data is transferred with­
out inversion from TOI to TOO through the BSR 
during scanning. The BSR can be operated by 
the EXTEST and SAMPLE instructions. 



intei® i860TM XP MICROPROCESSOR 

J1J0292 '27262524 2J22 2120 19 18 17 16 15 14 IJ 12 1110987654J2 1 0 

I VERSION PART NUMBER MANUFACTURER H IDENTITY 
\ \I \I \I \I \ \ \I \I \I \I \ \ \I \ \I \I \I \I \I \I \I \I \I \I \I \I \ \I \I \ \ 

8 61AO 9 
240874-60 

Figure 6.1. Format of DID Register 

BOUNDARY SCAN REGISTER 

System 
Logic 
Input 

TCK 

TOI 

SYSTEM 
LOGIC 

TOO 

System 
Bidirectional 
Pin 

System 
3-State 
Output 

240874-61 

Figure 6.2. Logical Structure of BSR Register 

6.3 Instruction Register 

The Instruction Register (IR) selects the test to be 
performed and the test data register to be accessed. 
It is four bits wide, with no parity bit. Table 6.1 shows 
the encoding of the instructions supported by the 
TAP controller of the i860 XP microprocessor. The 
rightmost bit is the least significant and is the first 
shifted out on TOO. 

Table 6.1. TAP Instruction Encoding 

Instruction Code Instruction 

0000 EXT EST Boundary Scan 
0001 SAMPLE Boundary Scan 
0010 10COOE 

0011 ... 1110 Intel reserved CAUTION' 
1111 BYPASS 

• CAUTION: Operation of these private instructions may 
cause damage to the component. 

2-88 

EXTEST The BSR cells associated with output pins 
drive the output pins of the i860 XP micro­
processor. Values scanned into the BSR 
cells become the output values. The BSR 
cells associated with input pins sample 
the inputs of the i860 XP microprocessor. 
Note that I/O pins can be input or output 
for this test, depending on their control 
setting. The values shifted to the input 
latches are not used by the internal logic 
of the i860 XP microprocessor. After use 
of the EXTEST command, the i860 XP mi­
croprocessor must be reset (with the RE­
SET signal) before normal use. 

SAMPLE The BSR cells associated with output pins 
sample the value driven by the i860 XP 
microprocessor. BSR cells associated 
with input pins sample on the rising edge 
of TCK the values driven to the i860 XP 



i860™ XP MICROPROCESSOR 

microprocessor. BSR cells associated 
with I/O pins sample the value on the re­
spective pin. The I/O pin can be driven by 
the iB60 XP microprocessor or by external 
hardware. The values shifted to the input 
latches are not used by the internal logic 
of the iB60 XP microprocessor. 

IDCODE The identification code of the iB60 XP mi­
croprocessor from the DID register is 
passed to TOO. The DID register is not 
altered by data shifted in on TOL 

BYPASS Test data is passed from TOI to TOO via 
the single-bit BPR, effectively bypassing 
the test logic of the iB60 XP microproces­
sor. Because of its special encoding, this 
instruction can be entered by holding TOI 
HIGH while completing an instruction­
scan cycle. This reduces the demands on 
the host test system in cases where ac­
cess is required, for example, only to chip 
57 on a 1 DO-chip board. 

Note that an open circuit fault in the 
board-level test data path causes the 
BPR register to be selected following an 
instruction-scan cycle, because the TOI 
input has a pull-up resistor. Therefore, no 
unwanted interference with the operation 
of the on-chip system logic can occur. 

Table 6.2 defines which registers are active during 
execution of each instruction. 

6.4 TAP Controller 

The TAP Controller is a synchronous, finite state 
machine. It controls the sequence of operations of 
the test logic. The TAP Controller changes state 
only in response to the following events: 

1. A rising edge of TCK. 

2. A transition to logic zero at the TRST # input. 

3. Power-up. 

The value of the TMS input signal at a rising edge of 
TCK controls the sequence of state changes. The 
state diagram for the TAP controller is shown in Fig­
ure 6.3. Test designers must consider the operation 
of the state machine in order to design the correct 
sequence of values to drive on TMS. 

6.4.1 TEST-LOGIC-RESET STATE 

In this state, the test logic is disabled so that normal 
operation of the iB60 XP microprocessor can contin­
ue unhindered. This is achieved by initializing the in­
struction register such that the IOCOOE instruction 
is loaded. No matter what the original state of the 
controller, the controller enters Test-Logie-Reset 
when the TMS input is held HIGH for at least five 
rising edges of TCK. The controller remains in this 
state while TMS is HIGH. 

If the controller leaves the Test-Logie-Reset state as 
a result of an erroneous LOW signal on the TMS line 
at the time of a rising edge of TCK (for example, a 
glitch due to external interference), it returns to the 
Test-Logie-Reset state following three rising edges 
of TCK while the TMS signal at the intended HIGH 
logic level. The operation of the test logic is slich 
that no disturbance is caused to on-ctlip systom log­
ic operation as the result of such an error. On leav­
ing the Test-Logie-Reset state, the controller moves 
into the Run-Test/Idle state, where no action occurs 
because the current instruction has been set to se­
lect operation of the DID register. The test logic is 
also inactive in the Seleet-DR-Sean and Se/ect-IR­
Scan states. 

The TAP controller is also forced to the Test-Logie­
Reset state by applying a LOW logic level to the 
TRST # input and at power-up. 

Table 6.2. Registers Active by Instruction 

Register 
Mode BSR DID BPR 

EXTEST TOI ~ BSR ~ TOO Inactive Inactive 
SAMPLE TOI ~ BSR ~ TOO Inactive Inactive 
IOCOOE Inactive OIO~TOO Inactive 
BYPASS Inactive Inactive TOI ~ BPR ~ TOO 

2-B9 



intel® i860TM XP MICROPROCESSOR 

o 

240874-62 

NOTE: 
0,1 The values present on TMS at the time of a rising edge on TCK. 

Figure 6.3. TAP Controller State Diagram 

6.4.2 RUN-TEST/IDLE STATE 

The controller enters this state between scan opera­
tions. Onc~ in this state, the controller remains in 
this state as long as TMS is held LOW. No activity 
occurs in the test logic~ The instruction register and 
all test data registers retain their previous state. 
When TMS is HIGH. and a rising edge is applied to 
TCK, the controller moves to the Select-OR-Scan 
state. 

2-90 

6.4.3 SELECT-DR-SCAN STATE 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS is held LOW and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-DR state, and a scan se­
quence for the selected test data register is initiated. 
If TMS is held HIGH and a rising edge is applied to 
TCK, the controller moves to the Select-IR-Scan 
state. 

The instruction does not change in this. state. 



i860™ XP MICROPROCESSOR 

6.4.4 SELECT-IR-SCAN STATE 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS [s held LOW and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-IR state, and a scan se­
quence for the instruction register is initiated. If TMS 
is held HIGH and a rising edge is applied to TCK, the 
controller moves to the Test-Logie-Reset state. 

The instruction does not change in this state. 

6.4.5 CAPTURE-DR STATE 

In this state, the BSR captures input pin data if the 
current instruction is EXTEST or SAMPLE. The other 
test data registers, which do not have parallel input, 
are not changed. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
,edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is HIGH or the Shift-DR state 
if TMS is LOW. 

6.4.6 SHIFT-DR STATE 

In this controller state, the test data register con­
nected between Toi and TOO as a result of the cur­
rent instruction shifts data one stage toward its serial 
output on each rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exitt-DR state if TMS is HIGH or remains in the 
Shift-DR state if TMS is LOW. 

6.4.7 EXIT1-DR STATE 

This is a temporary state. If TMS is held HIGH, a 
rising edge applied to TCK while in this state causes 
the controller to enter the Update-DR state, which 
terminates the scanning process. If TMS is held low 
and a rising edge is applied to TCK, the controller 
enters the Pause-DR state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state. 

2-91 

6.4.8 PAUSE-DR STATE 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the test data 
register in the serial path between TOI and TOO. 
This might be necessary, for example, to allow the 
tester to reload its pin memory from disk during ap­
plication of a long test sequence. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state. 

The controller remains in this state as long as TMS 
is LOW. When TMS goes HIGH and a rising edge is 
applied to TCK, the controller moves to the Exit2-DR 
state. 

6.4.9 EXIT2-DR STATE 

This is a temporary state. If TMS is held HIGH and a 
rising edge is applied to TCK, the scanning process 
terminates, and the TAP controller ,enters the 
Update-DR state. If TMS is held LOW and a rising 
edge is applied to TCK, the, controller enters the 
Shift-DR state. 

The test data register selected by the current in· 
struction retains its previous state unchanged. The 
instruction does not change in this state. 

6.4.10 UPDATE-DR STATE 

The BSR register is provided with a latched parallel 
output to prevent changes at the parallel output 
while data is shifted in response to the EXTEST and 
SAMPLE instructions. When the TAP controller is in 
this state and the BSR register is selected, data is 
latched onto the parallel output of this register from 
the shift-register path on the falling edge of TCK. 
The data held at the latched parallel output does not 
change other than in this state. 

All shift-register stages in test data registers select­
ed by the current instruction retain their previous 
state unchanged. The instruction does not change in 
this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Seleet-DR-Sean state if TMS is held HIGH or the 
Run- Test/Idle state if TMS is held LOW. 

6.4.11 CAPTURE-IR STATE 

In this controller state the shift register contained in 
the instruction register loads the fixed value 0001 on 
the rising edge of TCK. 



i860™ XP MICROPROCESSOR 

The test data register selected by the c;:urrent in­
struction retains its previous state. The instruction 
does not change in this state. . 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held HIGH or the Shift-IR state if TMS 
is held LOW. 

6.4,12 SHIFT-IR STATE 

In this state, the shift register contained in the in­
struction register is connected between TDI and 
TDO and shifts data one stage towards its serial out­
put on each rising edge of TCK. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-/R 
state ifTMS is held HIGH or remains in the Shift-IR 
state if TiviS fs heid LO'vV. 

6.4.13 EXIT1-IR STATE 

This is.a temporary state. If TMS is held HIGH, a 
rising edge applied to TCK while in this state. causes 
the controller to enter the Update-IR state, which 
terminates the scanning process. If TMS is held low 
and a rising edge is applied to TCK, the controller 
enters the Pause-IR state. 

The test data register selected by· the current in­
struction retains its previous state unchanged. The 
instruction· does not 'change in this state, and the 
instruction register retains its state. 

6.4.14 PAUSE-IR STATE 

This state allows the shifting of the instruction regis­
ter to be temporarily halted. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state, and the instruction 
register retains its state. 

The controller remains in this state as long as TMS 
is LOW. When TMS goes HIGH and a rising edge is 
applied to TCK, the controller moves to the Exit2-IR 
state. 

6.4.15 EXIT2-IR STATE 

This is a temporary state. If TMS is held HIGH and a 
rising edge is applied to TCK, the scanning process 

2-92 

terminates, and the TAP controller enters the 
Update-IR state. If TMS is held LOW and a rising 
edge is applied to TCK, the controller enters the 
Shift-IR state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state, and the 
instruction register retains its state. 

6.4.16 UPDATE-IR STATE 

The instruction shifted into the instruction register is 
latched onto the parallel output from the shift-regis­
ter path on the falling edge of TCK. Once the new 
instruction has been latched, it becomes the current 
instruction. 

Test data registers selected by the current instruc­
tion retain the previous state. 

6.5 Boundary Scan Register Cell 
Ordering 

Figure 6.4 shows the order of cells in the .BSR. 
There are 150 cells including TDO. TDI is not a BSR 
cell. 

The DCTL, ACTI.:, TCTL, and OCTL cells do not cor­
respond to pins of the i860 XP microprocessor; rath­
er, they control the bidirectional and tristate pins: 

DCTL D63-DO, DP7-DPO 

ACTL A31-A3 

TCTL Tristate outputs: ADS#, BE7#-BEO#, 
CACHE#, CTYP, D/C#, KBO, KB1, LEN, 
MIIO#,NENE#, PCD, PCYC, PWT, W/R# 

OCTL Outputs not floated in normal operation: 
BREQ, HIT#, HITM#, HLDA, LOCK#, 
PCHK# 

If a value of one is loaded into any of these control 
latches, the associated pins will not drive the exter­
nal bus while running EXTEST. 

The values of DCTL, ACTL, TCTL, and OCTL are 
undefined during the SAMPLE instruction. 

The values and direction of 1/0 and outputs do not 
change during the scanning process (that is, during 
Shift-DR states). They only change after scanning is 
completed (in the Update-DR state). 

The decision table, Table 6.3, defines how the 
boundary scan instructions EXTEST and SAMPLEI 
PRELOAD utilize BSA. 



i860™ XP MICROPROCESSOR 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

240874-63 

Figure 6.4. Boundary Scan Register Ordering 

2-93 



in1:el® i860TM XP MICROPROCESSOR 

6.6 TAP Controller Initialization 7.0 MECHANICAL DATA 

TAP can be initialized by applying a high signal level 
on the TMS input for five periods of TCK or by acti­
vating the TRST# input pin. TCK does not have to 
be running in order to initialize TAP with the TRST# 
pin. TRST # is provided with an internal pull-up resis­
tor; so, even if an open circuit fault occurs, the TAP 
logic can still be used. 

Figures 7.1 and 7.2 show the locations of pins; Ta­
bles 7.1 and 7.2 help to locate pin identifiers. 

Table 6.3. Instruction Functions 

Instruction: EXTEST SAMPLE/PRELOAD 

Control Cell: LOW I HIGH LOW I HIGH 

Input BSR cells ... . .. sample values driven to ... sample values driven to 
processor by system processor by system 

Values of input cells 
NO NO 

used by processor? 

Output BSR cells ... . .. drive output pins with .. , sample values driven 
cell values by processor 

Input/output BSR cells: Treat as 

I 
Treat as Treat as 

I 
Treat as 

output input output input 

2-94 



BROYII KEN II NAil WB/WTII Yee Vee Vee Yee 
U 0 0 0 0 0 0 0 0 

W/RII LEN PWT PCYC Yss Yss Yss Yss 
T 0 0 0 0 0 0 0 0 

!! 
u:t 

A3 RESET lOCKII 1.1/1011 EAOSII INT/CS8 BERR f'LlNEIl 

S 0 0 0 0 0 0 0 0 
C .. 
CD 
;"'I 

A4 Yss Vee BOFF# O/CII PCO INY PEN II 

R 0 0 0 0 0 0 0 0 
..... 
CD en 

TCK YSS Yee CACHEII AHOlO 

Q 0 0 0 0 0 
C) 
-I 
!iI: 

YeeClK Vee YSS RSRYO CTYP 

P ·0 0 0 0 0 
)( 
'tI 
iii: 

Vee Vee YSS AOS" HITIA" 
N 0 0 0 0 0 

0' .. 
0 
'C 

Vee Yss Yss ClK AS 

M 0 0 0 0 Cl .. 
0 
n 
CD 

Vee Vee Yss SPARE A6 

L 0 0 0 0 0 
III 
III 

I\) 0 .. Vee Yss Yss AID A8 

K 0 0 0 0 0 
cO :Po c.n :::I 

0 

Vee .Yee Yss A12 A14 

J ·0 ·0 .0 0 0 

0 
:::I 
:::!! 

. Vee Yss Yss AI6 A20 

H ·0 0 .0 0 0 
u:t 
c 
iil ::::. 

Vee Vee Yss A22 A26 

G 0 0 0 0 0 

0 
:::I 

t 
ii 
== 

A7 Vee Yss A28 A30 

F 0 .0 0 0 0 

A9 Yss Yee A27 aEOIl 

E . .0 0 0 0 0 

.... .. 
0 
3 
:Po 
:::I 

All Yss Vee A29 BElli BE211 BE611 EWBEII 

0 0 0 0 0 0 0 0 0 

AI3 A19 AlB A31 BE4# Yss Yss Yss 
C 0 0 0 0 0 0 0 0 

en c: 
CD 

AI5 A21 A24 BE3# Yss Vee Yee YSS 
B 0 0 0 0 0 0 0 0 

AI7 A23 A25 BE511 BE7# BYPASS# DO Vee 
A 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 

Vee Vee Vee Vee Vee Yee 
0 0 0 0 0 0 

Yss YSS Yss YSS YSS Yss 
0 0 0 0 0 0 

HlOA KBI NENE# Hiltl TRST# TOI 
0 0 0 0 0 0 

BREQ TOO KBO HOLD TI.1S 063 
0 0 0 0 0 0 

PINOUT 

PIN SIDE VIEW 

01 05 DID 014 OP2 017 
0 0 0 0 0 0 

VSS YSS Yss YSS YSS YSS 
0 0 0 0 0 0 

Vee VSS Vee Yss Vee Yee 
0 0 0 0 0 0 

Vee Vee Vee Yee 02 Yee 
0 0 0 0 .0 0 

9 10 1 1 12 13 14 

II 

Yee 055 051 
0 0 0 

Yss 056 049 
0 0 0 

062 058 046 
0 0 0 

060 057 Vee 
0 0 0 

061 054 Vee 
0 0 0 

059 OP6 Yss 
0 0 0 

OP7 050 Yss 
.0 0 0 

053 047 Vss 
0 0 0 

048 041 Yss 
0 0 0 

045 043 Yss 
0 0 0 

OP5 038 Yss 
0 0 0 

032 PCHK" Yss 
0 0 0 

028 030 Yss 
0 0 0 

024 026 Yss 
0 0 0 

021 023 025 
0 0 0 

019 020 Vee 
0 0 0 

012 08 07 
0 0 0 

' Vss D9 Dl1 
0 0 0 

OPO 03 04 
0 0 0 

15 16 17 

044 040 
0 0 

042 039 
0 0 

052 037 
0 0 

033 035 
0 0 

Yss OP4 
0 0 

Vee 034 
0 0 

Vee 036 
0 0 

Yss 031 
0 0 

Vee Vee 
0 0 

Yss Vee 
0 0 

Vee Vee 
0 0 

Yss Vee 
0 0 

Vee 029 
0 0 

Vee 027 
0 .0 

Yss Vee 
0 0 

OP3 022 
0 0 

016 018 
0 0 

D13 DIS 
0 0 

06 OPI 
0 0 

18 19 
240874-64 

=" 

l 
* 

CD 
al 
o ."" 3: 
)( 
"D 

s:: 
n 
::J:I 
o 
"D 
::J:I o 
(') 
m 
~ o 
::J:I 

"@J 
2& 
Iiiiil 
F 

~ 
~ 
~ 
2& 
~ 



040 044 051 055 Vee Vee Vee Vee Vee Vee Vcr; 
U 0 0 0 0 0 0 0 0 0 0 0 

039 042 049 056 Vss Vss Vss Vss Vss Vss Vss 
T 0 0 0 0 0 0 0 0 0 0 0 

"TI 037 052 046 058 062 TDI TRSTtI HITtI NENEtI KBI HlOA 
o· 
c S 0 0 0 0 0 0 0 0 0 0 0 .. 
CD 

""" 
'" iii 
QI 

035 033 Vee 057 060 063 TMS HOLD KBO TOO BREQ 

R 0 0 0 0 0 0 0 0 0 0 0 

OP4 Vss Vee 054 061 

Q 0 0 0 0 0 
0 
-I a: 

034 Vee Vss OP6 059 

P 0 0 0 0 0 
)C 
"V 
3: 

036 Vee Vss 050 OP7 

N 0 0 0 0 0 
n .. 
0 
"tI 

031 Vss Vss 047 053 

M 0 0 0 0 0 .. 
0 
n 
CD 
In 
IIJ 
0 

I}l .. 
CO "V 
m 3" 

0 

Vee Vee Vss. 041 048 

L 0 0 0 0 0 
PINOUT 

Vee Vss Vss 043 045 

K 0 0 0 0 0 TOP SIDE VIEW 
Vee Vee Vss 038 OP5 

J 0 0 0 0 0 
0 
:::J 

i 
Vee Vss Vss PCHK"" 032 

H 0 0 0 0 0 

c a 029 Vee Vss 030 028 

G 0 0 0 0 0 

0" 
:::J 

I 
027 Vee Vss 026 024 

F 0 0 0 0 0 

< 
ii" 
~ 

Vee Vss 025 023 021 

E 0 0 0 0 0 -.. 0 
3 

022 OP3 Vee 020 019 017 OP2 014 010 05 01 

D 0 0 0 0 0 0 0 0 0 0 0 

~ 
"tI 

018 016 07 08 012 Vss Vss Vss Vss Vss Vss 
C 0 0 0 0 0 0 0 0 0 0 0 

rn c: 
CD 

015 013 011 09 Vss Vee Vee Vss Vee Vss . Vee 

B 0 0 0 0 0 0 0 0 0 0 0 

OPI 06 04 03 OPO Vee 02 Vee Vee Vee Vee 
A 0 0 0 0 0 0 0 0 0 0 0 

19 18 17 16 15 14 13 12 11 10 9 

Vcr; Vee Vee Vee WB/WTtI 
0 0 0 0 0 

Vss Vss Vss Vss peye 
0 0 0 0 0 

FUNE"" BERR INT /eS8 EAOStI M/IOtl 
0 0 0 0 0 

PENtI INV PCO o/c"" BOFF"" 
0 0 0 0 0 

AHOlO CACHEtI 
0 0 

CTYP RSRVO 
0 0 

HITMtI ADS"" 
0 0 

A5 ClK 
0 0 

A6 SPARE 
0 0 

A8 AID 
0 0 

A14 A12 
0 0 

A20 A16 
0 0 

A26 A22 
0 0 

A30 A28 
0 0 

BEOtl A27 
0 0 

EWBEtI BE6# BE2"" BEl"" A29 
0 0 0 0 0 

Vss Vss Vss BE4# A31 
0 0 0 0 0 

Vss Vee Vee Vss BE3# 
0 0 0 0 0 

Vee 00 BYPASS# BE7# 8E5# 
0 0 0 0 0 

8 7 6 5 4 

NA"" KEN"" 
0 0 

PWT lEN 
0 0 

lOCKtI RESET 
0 0 

Vee vss 
0 0 

Vee Vss 
0 0 

Vss Vee 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vee 
0 0 

Vee Vss 
0 0 

Vee Vss 
0 0 

A18 A19 
0 0 

A24 A21 
o· 0 

A25 A23 
0 0 

3 2 

BROY"" 
0 

W/R"" 
0 

A3 
0 

A4 
0 

TCK 
0 

VeeClK 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

A7 
0 

A9 
0 

All 
0 

AU 
0 

AIS 
0 

A17 
0 

240874-65 

::s 
c( 

@ 

Cii 
g) 
o 
i! 
>< 
"V 
3:: 
n 
::r:I o 
"V 
::r:I o 
o 
m 
(/) 
(/) 
o 
::r:I 

"@ 
2.eJ 
1M! 
IF' 

~ 
~ 
~ 
2.& 
~ 



intet i860™ XP MICROPROCESSOR 

Table 7.1. Pin Cross Reference by Location 

Location Signal Location Signal Location Signal Location Signal 

A01 ............ A17 C15 ............ 012 G18 ........... Vee N01 ............ Vee 
A02 ............ A23 C16 ............. 08 G19 ........... 029 N02: ........... Vee 
A03 ............ A25 C17 ............. 07 H01 ............ Vee N03 ............ Vss 
A04 .......... BE5# C18 ............ 016 H02 ............ Vss N04 .......... AOS# 
A05 .......... BE7# C19 ............ 018 H03 ............ Vss N05 ......... HITM# 
A06 ...... BYPASS # 001 ............ A11 H04 ............ A16 N15 ............ OP7 
A07 ..... ; ....... 00 002 ............ vss H05 ............ A20 N16 ............ 050 
A08 ............ Vee 003 ............ Vee H15 ............ 032 N17 ............ Vss 
A09 ............ Vee 004 ............ A29 H16 ........ PCHK# N18 ............ Vee 
A10 ............ Vee 005; ......... BE1 # H17 ........... ,Vss N19 ............ 036 
A11 ............ Vee 006 .......... BE2# H18 ............ Vss P01 ........ VeeCLK 
A12 ............ Vee 
A13 ............. 02 
A14 ............ Vee 
A15 ............ OPO 

007 .......... BE6# 
008 ........ EWBE# 
009 ............. 01 
010 ............. 05 

H19 ............ Vee 
J01 ............ Vee 
J02 ............ Vee 
J03 ............ Vss 

P02 ............ Vee 
P03 ............ Vss fI 
P04 ......... RSRVO 
P05 .......... CTYP 

A16 ............. 03 011 .......... ; .010 , J04 ............ A12 P15 ............ 059 
A17 ............. D4 012 ....•....... 014 J05 ............ A14 P16 ............ DP6 
A18 ............. 06 013 ........... OP2 J15 ............ OP5 P17 ............ Vss 
A19 ............ OP1 014 ............ 017 J16 ............ 038 P18 ............ Vee 
B01 ............ A15 015 ............ 019 J17 ............ Vss P19 ............ 034 
B02 ............ A21 016 ............ 020 J18 ........... Nee 001 ........... TCK 
B03 ............ A24 017 ............ Vee J19 ............ Vee 002 ............ Vss 
B04 .......... BE3# 018 ............ OP3 K01 ............ Vee 003 ............ Vee 
B05 ............ Vss 019 ............ 022 K02 ............ Vss 004 ....... CACHE# 
B06 ............ Vee E01 .. : .......... A9 K03 ............ Vss 005 ........ AHOLO 
B07 ............ Vee E02 ............ Vss K04 ........... :A10 015 ............ 061 
B08 ............ Vss E03 ............ Vee K05 ............. A8 016 ............ 054 
B09 ............ Vee E04 ............ A27 K15 ............ 045 017 ............ Vee 
B10 ............ Vss E05 .......... BEO# K16 ............ 043 018 ............ Vss 
B11 ............ Vee E15 ............ 021 K17 ........... ;Vss 019 ........... OP4 
B12 ............ Vss E16 ............ 023 K18 ............ Vss R01 ............. A4 
B13 ............ Vee E17 ............ 025 K19 ............ Vee R02 ............ Vss 
B14 ............ Vee E18 ............ Vss L01 ............ Vee R03.: .......... Vee 
B15 ............ Vss E19 ............ Vee L02 ............ Vee R04 ........ BOFF# 
B16 ............. 09 F01 ............. A7 L03 ............ Vss R05 .......... 0/C# 
B17 ............ 011 F02 .... ' ........ Vee L04 ......... SPARE R06 ........... PCO 
B18 ............ 013 F03.: .......... Vss L05 ............. A6 R07 ............ INV 
B19 ............ 015 F04 ............ A28 L15 ............ 048 R08 .......... PEN# 
C01 ............ A13 F05 ............ A30 L16 ............ 041 R09 .......... BREO 
C02 ............ A19 F15 ............ 024 L17 : ........... Vss R10 ........... TOO 
C03 ............ A18 
C04 ............ A31 

F16 ............ 026 
F17 ............ Vss 

L18 ....... ; .... Vee 
L19 ............ Vee 

R11 ............ KBO 
R12 .......... HOLO 

C05 .......... BE4# F18 ............ Vee M01 ........... Vee R13 ........... TMS 
C06 ............ Vss F19 ............ 027 M02 .. , ........ Vss R14 ............ 063 
C07 ............ Vss G01 ........... Vee M03 ........... Vss R15 ............ 060 
C08 ............ Vss G02 ........... Vee M04 ........ ' ... CLK R16 ............ 057 
C09 ............ Vss G03 .. ; ......... Vss M05 ............. A5 R17 ............ Vee 
C10 ............ Vss G04 ............ A22 M15 ........... 053 R18 ........... ,033 
C11 ............ Vss G05 ............ A26 M16 ........... 047 R19 ............ 035 
C12 ............ Vss G15 ........... 028 M17 ........... Vss S01 ............. A3 
C13 ............ Vss G16 ........... 030 M18 ........... Vss S02 ......... RESET 
C14 ............ Vss G17 ............ Vss M19 ........... 031 S03 ........ LOCK# 

2-97 



i860TM XP MICROPROCESSOR 

Table 7.1. Pin Cross Reference by Location (Continued) 

Location Signal Location Signal Location Signal Location Signal 

804 ......... M/IO# 818 ............ 052 T13 ............ VSS U08 .......... ,.Vee 
805 ........ EA08# 819 ............ 037 T14 ............ Vss U09 ............ Vee 
806 ....... INT/C88 T01 ......... W/R# T15 ............ Vss U10 ............ Vee 
807 .......... BERR T02 ............ lEN T16 ............ 056 U11 ............ Vee 
808 ........ FLlNE# T03 ........... PWT T17 ............ 049 U12 ............ Vee 
809 .......... HlOA T04 .......... PCYC T18 ............ 042 U13 ......... , .. Vee 
810 ............ KB1 T05 ............ Vss T19 ............ 039 U14 ............ Vee 
811 ........ NENE# T06 ............ Vss U01 ........ BROY# U15 ............ Vee 
812 ........... HIT# TO? ........... Vss U02 ......... KEN# U16 ............ 055 
813 ......... TR8T# T08 ............ Vss U03 ........... NA# U17 ............ 051 
814 ..... ; ...... TOI T09 ............ Vss U04 ...... WB/WT# U18 ............ 044 
815 ............ 062 T10 ............ Vss U05 ............ Vee U19 ............ 040 
816 ............ 058 T11 ............ Vss U06 ............ Vee 
817 ............ 046 T12 ............ Vss U07 ............ Vee 

Table 7.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A3 801 AHOlO 005 013 B18 043 K16 
A4 R01 BEO# E05 014 012 044 U18 
A5 M05 BE1# 005 015 B19 045 K15 
A6 l05 BE2# 006 016 C18 046 817 
A7 F01 BE3# B04 017 014 047 M16 
A8 K05 BE4# C05 018 C19 048 l15 
A9 E01 BE5# A04. 019 015 049 T17 
A10 K04 BE6# 007 020 016 050 N16 
A11 001 BE7# A05 021 E15 051 U17 
A12 J04 BERR 807 022 019 052 818 
A13 C01 BOFF# R04 023 E16 053 M15 
A14 J05 RSRVO P04 024 F15 054 016 
A15 B01 BROY# U01 025 E17 055 U16 
A16 H04 BREO R09 026 F16 056 T16 
A17 A01 CACHE# 004 027 F19 057 R16 
A18 C03 ClK M04 028 G15 058 816 
A19 CO2 CTYP P05 029 G19 059 P15 
A20 H05 00 A07 030 G16 060 R15 
A21 B02 01 009 031 M19 061 015 
A22 G04 02 A13 032 H15 062 815 
A23 A02 03 A16 033 R18 063 R14 
A24 B03 04 A17 034 P19 O/C# R05 
A25 A03 05 010 035 R19 OPO A15 
A26 G05 06 A18 036 N19 OP1 A19 
A27 E04 07 C17 037 S19 OP2 013 
A28 F04 08 C16 038 ,J16 OP3 018 
A29 004 09 B16 039 T19 OP4 019 
A30 F05 010 011 040 U19 OP5 J15 
A31 C04 011 B17 041 l16 OP6 P16 
A08# N04 012 C15 042 T18 OP7 N15 

2-98 



infel· i860™ XP MICROPROCESSOR 

Table 7.2. Pin Cross Reference by Pin Name (Continued) 
Signal Location Signal Location Signal Location Signal Location 

EAD8# 805 Vee B06 Vee R17 Vss H17 
FLlNE# 808 Vee B07 Vee U05 Vss H18 
HIT# 812 Vee B09 Vee U06 Vss J03 
HITM# N05 Vee B11 Vee U07 Vss J17 
HLDA 809 Vee B13 Vee U08 Vss K02 
HOLD R12 Vee B14 Vee U09 Vss K03 
INT/C88 806 Vee D03 Vee U10 Vss K17 
INV R07 Vee D17 Vee U11 Vss K18 
KBO R11 Vee E03 Vee U12 Vss L03 
KB1 810 Vee E19 Vee U13 Vss L17 
KEN# U02 Vee F02 Vee U14 Vss M02 
LEN T02 Vee F18 Vee U15 Vss M03 
LOCK# S03 Vee G01 VeeCLK P01 Vss M17 
M/IO# 804 Vee G02 Vss B05 Vss M18 
NA# U03 Vee G18 Vss B08 Vss N03 
NENE# 811 Vee H01 Vss B10 Vss N17 
PCD R06 Vee H19 Vss B12 Vss P03 
PCHK# H16 Vee J01 Vss B15 Vss P17 
PCYC T04 Vee J02 Vss C06 Vss Q02 
PEN# R08 Vee J18 Vss C07 Vss Q18 
PWT T03 Vee J19 Vss C08 Vss R02 
RE8ET 802 Vee K01 Vss C09 Vss T05 
8PARE L04 - Vee K19 Vss C10 Vss T06 
EWBE# D08 Vee L01 Vss C11 Vss T07 
BYPA88# A06 Vee L02 Vss C12 Vss T08 
TCK Q01 Vee L18 Vss C13 Vss T09 
TDI 814 Vee L19 Vss C14 Vss T10 
TOO R10 Vee M01 Vss D02 Vss T11 
TM8 R13 Vee N01 Vss E02 Vss T12 
TR8T# 813 Vee N02 Vss E18 Vss T13 
Vee A08 Vee N18 Vss F03 Vss T14 
Vee A09 Vee P02 Vss F17 Vss T15 
Vee A10 Vee P18 Vss G03 W/R# T01 
Vee A11 Vee Q03 Vss G17 WB/WT# U04 
Vee A12 Vee Q17 Vss H02 
Vee A14 Vee R03 Vss H03 

2-99 



inteL i860TM XP MICROPROCESSOR 

Table 7.3. Ceramic PGA Package Dimension Symbols 

. Letter or 
Description of Dimensions Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) . 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

0 Largest overall package dimension of length 

01 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

81 Other body dimension, outer lead center to edge of body 

NOTES; 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is noncumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "8", "81", and "C" are nominal. 
5. Details of Pin 1 identifier are optional. 

2-100 



i860TM XP MICROPROCESSOR 

F ' l D I " 
S1-

SEATING­

PLANE n 
A3- HI 

Symbol 
Min 

A 3.56 

A1 0.64 

A2 2.79 

A3 1.14 

8 0.43 

D 49.28 

D1 45.59 

e1 2.29 

L 2.54 

N 240 

S1 1.52 

ISSUE 9/90 

SWAGGED \ 

-JLi+ 
LLI~ 
r= 
01 = 

:: 
= :: 
= :: 
= :: - ... 

Al- -PIN ----l 
(4 PL) ..... AZI­

eASE PLANE-

Family: Ceramic Pin Grid Array Package 

Millimeters 

Max Notes Min 

4.57 .140 

1.14 Solid Lid .025 

3.56 Solid Lid .110 

1.40 .045 

0.51 .017 

49.96 1.940 

45.85 1.795 

2.79 .090 

3.30 .100 

280 240 

2.54 .060 

SE:~~~ l 
se (ALL PINS) V 
=:= , .... " "'\ 

Inches 

Max 

.180 

.045 

.140 

.055 

.020 

1.967 

1.805 

.110 

.130 

280 

.100 

PIN 
DETAIL 

240874-66 

Notes 

Solid Lid 

Solid Lid 

Figure 7.3. 262-Lead Ceramic PGA Package Dimensions 

2-101 



int'eL i860™ XP MICROPROCESSOR 

8.0 PACKAGE THERMAL 
SPECIFICATIONS 

For this section, let: 

P = maximum power consumption 

T C = case temperature 

T A = ambient air temperature 

(}CA = thermal resistance from case to ambient air 

(}JC = thermal resistance from junction to case 

(}JA = thermal resistance from junction to ambient 
air 

The i860 XP microprocessor is specified for opera­
tion when T C is within the range of 0°C-85°C. T C may 
be measured in any environment to determine 
whether the i860 XPmicroprocessor is within speci­
fied operating range. The case temperature should 
be measured at the center of the top surface oppo­
site the pins. 

T A can be calculated from (}CA with the following 
equation: 

Typical values for (JCA at various airflows and for (}JC 
are given in Table 8.1 for the 1.95 sq. in., 262 pin, 
ceramic PGA. (JJC is shown so that (}JA can be cal­
culated by: 

Note that (JJC with a heatsink differs from (JJC with­
out a heatsink because case temperature is mea­
sured differently. Case temperature for (JJC with 
heatsink is measured at the center of the heat fin 
base. Case temperature for (JJC without heatsink is 
measured at the center of the package top surface. 

Table 8.2 shows the maximum T A allowabie (without 
exceeding T cl at various airflows. 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
. power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the D.C. Characteris­
tics of section 9. 

Figure 8.1 gives typical Icc derating with case tem­
perature. For more information on heat sinks, mea­
surement techniques, or package characteristics, re­
fer to Intel Packaging Handbook, order number 
240800. 

Table 8.1. Thermal Resistance-In °C/Watt 

I 
I 

(}CA as a Function of Airflow - ft/min (m/sec) 

(}JC 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

With Heat Sink' 1.6 10.1 6.3 4.3 3.2 2.5 2.2 

Without Heat Sink 1.0 13.5 11.0 8.0 6.5 ' 5.5 5.0 

NOTE: 
• Nine·fin, unidirectional heat sink (fin dimensions: 0.250" height, 0.040" fin width, 0.100" center·to-center spacing, 1.730;' 
length) . 

Table 8.2. Maximum T A at Various Airflows-In °C 

Airflow - ft/min (m/sec) 

fCLK 0 200 400 600 800 1000 
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

TAwith 50 24 47 59 66 70 72 
Heat Sink' 

TA without 50 4 19 37 46 52 55 
Heat Sink 

TA with 40 34.5 53.5 63.5 69 72.5 74 
Heat Sink" 

TA without 40 17.5 30 45 52.5 57.5 60 
Heat Sink 

NOTE: 
• Nine-fin, unidirectional heat sink (fin dimensions: 0.250" height, 0.040" fin width, 0.100" center·to·center spacing, 1.730" 
length) 

2-102 



int:et i860TM XP MICROPROCESSOR 

1.30 

1.20 ~ 
: 50 MHz 

'C: 
E 

.::. 1.10 
u _u 

1.00 :--
: 40 MHz: 

0.90 

0.80 
0 10 20 30 40 50 60 70 

TEMPERATURE (Degrees Centigrade) 

Figure 8.1. Icc Derating with Case Temperature 

9.0 ELECTRICAL DATA 

All input and output timings are specified n:ilative to 
the 1.5V level of the rising edge of elK and refer to 
the pOint that the signal reaches 1.5V. 

2-103 

--....; -

-:--.: 

80 85 II 
240874-67 



. . . 
InTel® i860™ XP MICROPROCESSOR 

9.1 Absolute Maximum Ratings 

Case Temperature T c under Bias ...... O°C to 85°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground .......... - 0.5 to V cc + 0.5V 

9.2 D.C. Characteristics 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. Verify with 
your local Intel Sales office that you have the latest 
data sheet before finalizing a design. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

Table 9.1. D.C. Characteristics Operating Conditions: Vcc = 5V ±5%; Tc = O°C to 85°C 

Symbol Parameter Min Max Units Notes 

Vil Input lOW voltage (TTL) -0.3 +0.8 V 

VIH Input HIGH voltage (TTL) 2.0 VCC+ 0.3 V 

VIHC ClK Input HIGH (TTL) 2.5 VCC + 0.3 V 

Val Output lOW voltage (TTL) 0.45 V 1 

VOH Output HIGH voltage (TTL) 2.4 V 2 

Icc Power supply current (@ 50 MHz) 1.2 Amp 3 

IcC Power supply current (@40 MHz) 1.0 Amp 3 

III Input leakage current ±15 /LA 4 

ILiP Input leakage current (pull-up) -400 /LA 5 

ILO Output leakage current ±15 /LA 6 

CIN Input capacitance 11.5 pF 7 

Co 1/0 or output capacitance 14 pF 7 

NOTES: 
1. This parameter is measured with current load of 5 mA. 
2. This parameter is measured with current load of 1 mA. Typical value is Vee - 0.45V. 
3. Measured at 50 MHz and Vee = 5V. 
4. This parameter is for inputs without pullups. Vee is on, and OV ,;; VIN ,;; Vee. 
5. This parameter is for inputs with pullups and VIL = 0.45V. Note that if the pull-ups are put in high-impedance state via the 
DCTl boundary scan cell that also tri-states the data outputs, then the leakage is ± 15 ",A. 
6. 0.45V ,;; VIN ,;; Vee - 0.45V. 
7. These parameters are not tested; they are guaranteed by design characterization. 

2-104 



i860™ XP MICROPROCESSOR 

9.3 A.C. Characteristics 

Table 9.2. A.C. Characteristics 
CL = 0 pF Unless Otherwise Specified; Vee = 5V ± 5%; T e = O°C to 85°C 

40MHz 50 MHz 

Symbol Parameter Fig Min Max Min Max Notes 

(ns) (ns) (ns) (ns) 

tc ClK Period 9.1 25 40 20 40 

tic TCK Period 9.2 40 1000 40 1000 

ClK Stability 9.1 0.1% 0.1% 

tch ClK High Time 9.1 7 7 

tcl ClK low Time 9.1 7 7 

tr ClK Rise Time 9.1 3 3 h 

If ClK Fall Time 9.1 3 3 h 

ts TCK to ClK Skew 9.3 ±1 ±1 i 

tlch TCK High Time 9.2 10 10 

tlcl TCKlowTime 9.2 10 10 

tlcr TCK Rise Time 9.2 4 4 

tlcf TCK Fall Time 9.2 4 4 

tsu.l RESET, HOLD, BERR, FLlNE#, 9.1 8 7 
PEN #, INT ICS8 Setup Time 

tsu.2 BOFF#,AHOlD,KEN#,NA#, 9.1 8 7 
INV, WB/WT# Setup Time 

tsu.3 EADS # Setup Time 9.1 9 8 

tsu.4 EWBE# Setup Time 9.1 8.5 7.5 

tsu.5 BRDY # Setup Time 9.1 8.5 7.5 

tsu.6 063-00, DP7-DPO Setup Time 9.1 8.5 7.5 

tsu.7 063-00, DP7-DPO Setup Time 9.1 5.5 4.5 
(late Backoff Mode) 

tsu.8 A31-A5 Setup Time 9.1 11 10 

tlsu TDI, TMS, TRST# Setup Time 9.2 8 8 

tth TDI, TMS,TRST# Hold Time 9.2 2 1 b 

th.l Hold Time, All Inputs 9.1 2 1 c 
except 063-00, DP7-DO 

th.2 063-00, DP7-DPO Hold Time 9.1 3 2 c 
(Normal and late Back-Off Mode) 

ttco TOO Valid Delay and All Outputs 9.2 1.5 17.5 1.5 16.5 a, f 
Valid Delay in EXTEST Mode 

tco.l A31-A22 Valid Delay 9.1 1.5 12 1.5 11 a 

tco.2a A21-A3 Valid Delay 9.1 1.5 11.5 1.5 10.5 a,9 
(High Current Mode) 

tco.2b A21-A3 Valid Delay 9.1 1.5 12 1.5 11 a 
(Normal Current Mode) 

2-105 



i860TM XP MICROPROCESSOR 

Table 9.2. A.C. Characteristics (Continued) 
Cl = 0 pF Unless Otherwise Specified; VCC = 5V ± 5%; T C = O°C to 85°C 

40 MHz 50 MHz 

Symbol Parameter Fig Min Max Min Max Notes 

(ns) (ns) (ns) (ns) 

tco.3 063-00, DP7-DPO Valid Delay 9.1 2.5 14 2.5 13 a,d 

tcoA BREQ,HLDA,PCHK#, 9.1 1.5 13 1.5 12 a 
NENE#, KBO, KB1 Valid Delay 

tco.5a ADS# Valid Delay 9.1 1.5 10 1.5 9 a,g 
(High Current Mode) 

tco.5b ADS# Valid Delay 9.1 1.5 11 1.5 10 a. 
(Normal Current. Mode) 

tco.6a W/R# Valid Delay 9.1 1.5 11 1.5 10 a,g 
(High Current Mode) 

tco.6b W/R# Valid Delay 9.1 1.5 12 1.5 11 a 
(Normal Current Mode) 

tco.7a HITM# Valid Delay 9.1 1.5 12 1.5 11 a,g 
(High Current Mode) 

tco.7b HITM # Valid Delay 9.1 1.5 13 1.5 12 a 
(Normal Current Mode) 

tco.8 PWT, PCD, HIT#, CTYP, D/C# M/IO#, 9.1 1:5 12 1.5 11 a 
PCYC, LOCK#, CACHE#, LEN Valid Delay 

tco.9a BEO#-BE7# Valid Delay 9.1 1.5 12 1.5 11 a,g 
(High Current Mode) 

tco.9b BEO#-BE7# Valid Delay 9.1 1.5 13 1.5 12 a 
(Normal Current Mode) 

tz.1 Float Time All Outputs 9.1 2 19 2 18 e 
except 063-00, DP7-DPO 

tz.2 Float TimeD63-DO, DP7~DPO 9.1 3 19 3 18 e 

tzt Float Time during Boundary Scan EXTEST . 9.1 20 20 f 

NOTES: 
a. Minimum and maximum delays are for OpF load. 
b. These hold times are referenced to the falling edge of TCK. 
c. These hold times are referenced to the rising edge of ClK. 
d. Output delay for 063-00, OP7-0PO is from the ClK after AOS# activation. 
e. Float time = delay until maximum output current is less than ± ILO. Float time is not tested .. 
f. Delay from falling edge of TCK. 
g. These pins can be configured as normal or high-current buffers. When they are configured as high-current buffers for 
interface with cache memory or other large loads, use the derating curves in Figure 9.3. Otherwise, all normal buffers use 
the derating curves in Figure 9.4. . 
h. tr and tf should be measured between O.BV and 2.5V. 
i. Assumes TCK and ClK both at 25 MHz. 

2-106 



int:eL i860™ XP MICROPROCESSOR 

~~-----------------\c--------------------~ 
~--------\chl---------+I'---------\c"---------' 

ClK 1.5V-

OUTPUTS 

OUTPUTS 

TCK 

TOI, 
TIotS, 

TRST# 

___ .1-____ r------ ~2.4V 

- - - - - -1.5V 

SO.45V 

\Z~ . 

_________________ Jr---~~c----
240874-68 

Figure 9.1. elK, Input, and Output Timings 

~-------------------\tOI----~------------~ 
1-----\tch---------I-_------- \\cl'-----+I 

\tcr 

TOO - - - - - - - - - - - 1.5V 

240874-69 

Figure 9.2. TAP Signal Timings 

2·107 



i860TM XP MICROPROCESSOR 

ADS#, A21-A3, BE7#-BEO#, W/R#, HITM# (In High-Current Mode) 
7.00 

6.00 / 
I MAXIMUM VALID DELAY / 

5.00 

< z 

~ 4.00 

~ ... 
..s 

~ 
3.00 

2.00 

"1.00 

0.00 

, / 
L 

\ 

/ 
V ~~ 

~~ 

~~ 
~~~ 

V '
"

.,
'~~

~~

/ ~~~

1-- L MltflNUIoI YALID DELAY

/-~~ ~~
~~~ 

50, 100 ISO, 250 

NOTES: 
Graphs are not linear outside the Cl range shown. 
NOMINAL = OpF value given in the A.C. Timings table. 
'Typical part under worst-case conditions. 

LOAO (pF) 

Figure 9.3. Typical Output Delay vs Load Capacitance 

All Outputs (In Normal Mode) 
9.00 

8.00 

7.00 / I MAXIMUM VALID DELAY I 

6.00 / 
il 
~ 5.00 / 

V 
~ .., 
..s 

,/ 
4.00 

~ 
3.00 

/ 
2.00 

1.00 

0.00 

/ 
/ 

/ ~~~ 

~~ 
~~ V~ ~~ 

0' 25 50 

NOTES: 
Graphs are not linear outside the Cl range shown. 
NOMINAL = 0 pF value given in the A.C. Timings table. 
'Typical part under worst-case conditions. 

~ 

~~ 

;. .. ... ".' 

I 

75 

LOAO (pF) 

~~ 

~ 

~~ 
~~ 

~~ 

WININUM VALID DELAY 

100 125 

Figure 9.4. Typical Output Delay vs Load Capacitance 

. 2-108 

150 

I-

l 

240874-70 

240874-71 



on~® i860TM }{P MICROPROCESSOR 

NOTES: 

>' o 
N 
1 
> 
<Xl 

e 

. 
--' 
<t 
U 
;;: 
>­
t-

o 25 50 75 

Graphs are not linear outside the CL range shown. 
'Typical part under worst-case con?itions. 

100 125 150 175 200 225 250 

LOAD CAPACITANCE, ~ (pr) 
240874-81 

Figure 9.5a. Typical Slew Time vs Load Capacitance under Worst-Case Conditions (Rising Voltage) 

3.5 

>' 
3.0 

<Xl 
.,; 
1 2.5 > 

0 

~ 
~ 2.0 

-5 
L.J 

'" i= 
;: 1.5 
L.J 
--' 

'" ':J 1.0 
<t 
U 
;;: 
>-
t- 0.5 

./. j. , , ' , , , . , , 
, , 

, : : : ' : : 
: : ..t : : : : : 

•. VrfoS#,A21-A3,8E7# BEO#,W/R#,HIT·t.l# ..::,./ L (In High Current Mode) 

~f""' ' 
V'"\: ' 

0 
0 25 50 75 100 125 150 175 200 225 250 

LOAD CAPACITANCE, ~ (pr) 

NOTES: 
Graphs are not linear outside the CL range shown. 
'Typical part under worst-case conditions. 

240874-82 

Figure 9.5b. Typical Slew Time vs Load Capacitance under Worst-Case Conditions (Falling Voltage) 

2-109 



intel® i860™ XP MICROPROCESSOR 

1.30 

1.20 

1.10 

1.00 

c: 
E 

oS 0.90 
<.> 

..Y 

0.80 

0.70 

0.60 
25 30 35 40 

FREQUENCY (MHz) 

NOTES: 
Graph is not linear outside the frequency range shown. 
'Worst-case supply current at 5V. 

Figure 9.6. Typical Icc vs. Frequency 

2-110 

'45 50 

240874-73 



intel® i860™ XP MICROPROCESSOR 

9.4 Component Buffer Model 

9.4.1 FIRST ORDER ELECTRICAL BUFFER 
MODEL 

The first order electrical buffer model provides an 
accurate and simple representation of the buffers 
used in the inputs and outputs of the CHMOS i860 
XP CPU. The model output consists of four compo­
nents: 

1. Linear voltage waveform (dV /dt) 

2. Intrinsic buffer delay due to CL (to) 

3. Buffer output impedance (Ro) 

4. Buffer output capacitance (Co) 

as shown in Figure 9.7a 

A fitting algorithm has been used to arrive at values 
for dV / dt, to, Co, and Ro such that Ro matches the 
actual buffer impedance and Co, the intrinsic buffer 
output capacitance whether the output is on or off, 
remains constant across the operating range while 
minimizing the difference between the full buffer cir­
cuit and its simplified electrical model for a set of 
different loads (lumped capacitance, and short and 
long transmission lines): dV / dT is the slope of the 
voltage ramp, while to is the intrinsic buffer delay 
associated with a given CL. to accounts for the intrin­
sic delay by offsetting the excitation of the model by 
the amount of the delay. 

NOTE: 
to is zero for CL = 0 and when the load is repre­
sented by a transmission line. 

240874-83 

Figure 9.7a. Output Model 

The input model consists of one component, buffer 
capacitance (CIN), as shown in Figure 9.7b. 

240874-84 

Figure 9.7b. Input Model 

9.4.2 FIRST ORDER ELECTRICAL MODEL 
PARAMETER VALUES 

The parameters that make up the first order electri­
cal model vary with the buffer design. In addition, 
these parameters also vary with the operating condi­
tion (Le., temperature and Vee) of the buffer pro­
cess. The typical process corner is being modeled. 
Two sizes of buffer are used on these components, 
labelled here as small and large. The parameter val­
ues found in Table 9.3 and 9.4 list dV /dt, to, Ro, and 
Co. These parameters are provided for both low-to­
high and high-to-Iow transitions at the typical pro­
cess corner for three operating conditions (Vee = 
5.5V and TJ = -10a C, Vee = 5.0V and TJ = 80a C, 
and Vee = 4.5V and TJ = 125a C. 

9.4.3 PACKAGE PARAMETERS 

In addition to the buffer characteristics, package 
characteristics are also included to complete- the 
model. Package inductance, capacitance and resist­
ance values vary with design geometry and material 
properties of the package. Figure 9.8 shows a model 
of the package including these parameters and 
should be placed between the first order electrical 
buffer model as shown in Figure 9.9 and the board 
interconnects. Notice the package model only in­
cludes the package inductance (Lp) and capaci­
tance (Cp). This is sufficient since the package re­
sistance is so small it is negligible. 

Table 9.5 lists the buffer model parameters for each 
pin of the i860 XP microprocessor. The table gives 
the package model parameters for each pin, fol­
lowed by the input capacitance (input and I/O pins) 
and/or output buffer size (outputs and I/O). In those 
cases where the buffer used by a pin is an option 
selected at reset by the PEN # input, the output buff­
er column lists the sizes available. Large buffers cor­
respond to high-current mode, while small buffers 
correspond to normal current mode. 

2-111 



i860TM XP MICROPROCESSOR 

240874-85 

Figure 9.8. Package Model 

9.4.4 BOARD INTERCONNECTS 

The board interconnect can be considered as a 
lumped parameter (capacitive loa.d) or as a transmis­
sion line. As a rule of thumb, an unterminated board 
interconnect may be considered as a capacitive load 
if the round trip time (time for signal to travel from 
one end of the interconnect to the other and back) is 
short compared to the transition time of the signal. 
At frequencies of 50 MHz and above most intercon­
nects behave as transmission lines (Figure 9.10). 
For accurate results at high frequencies, these 
transmission line effects must be taken into account 

. and modeled. . 

240874-86 

Figure 9.9a. Output Buffer and Package Model 

T 
240874-87 240874-88 

Figure 9.9b. Input Buffer and Package Model Figure 9.10. Transmission Line Model 

2-112 



inteL i860TM XP MICROPROCESSOR 

Table 9.3. Small Output Buffer First Order Electrical Model Parameter Values 

TJ Ro Co 
to (ns) at various CL 

Transition Vee (C) (ohms) (pF) dV/dT 0 5 25 50 100 150 
(pF) (pF) (pF) (pF) (pF) (pF) 

Low-to-High 5.5 -10 28.0 4.3 5.5/1.2 0 0.0 0:1 0.3 0.7 1.1 

Low-to·High 5.5 80 36.4 4.3 5.5/1.4 0 0.0 0.1 0.8 0.8 1.2 

Low-lo-High 5.5 125 40.4 4.3 5.5/1.5 0 0.0 0.1 0.4 0.8 1.2 

Low-to-High 5.0 -10 30.2 4.3 5.0/1.2 0 0.0 0.1 0.4 0.8 1.2 

Low-to-High 5.0 80 39.2 4.3 5.0/1.4 0 0.0 0.2 0.4 0.9 1.3 

Low-to-High 5.0 125 43.5 4.3 5.0/1.6 0 0.0 0.2 0.4 0.9 1.3 

Low-to-High 4.5 -10 33.0 4.3 4.5/1.2 0 0.0 0.2 0.5 1.0 1.4 

Low-to-High 4.5 80 42.8 4.3 4.5/1.6 0 0.0 0.2 0.5 1.0 1.5 

Low-to-High 4.5 125 47.4 4.3 4.5/1.6 0 0.0 0.3 0.6 1.1 1.6 fI 
High-to-Low 5.5 -10 23.2 4.3 5.5/1.0 0 0.0 0.4 0.7 1.2 1.6 

High-to-Low 5.5 80 31.4 4.3 5.5/1.4 0 0.0 0.4 0.9 1.3 1.8 

High-to-Low 5.5 125 36.1 4.3 5.5/1.6 0 0.0 0.5 0.8 1.3 1.8 

High-to-Low 5.0 -10 24.0 4.3 5.0/1.1 0 0.0 0.5 0.9 1.2 1.7 

High-to-Low 5.0 80 32.8 4.3 5.0/1.4 0 0.0 0.5 0.9 1.5 1.9 

High-to-LoVi 5.0 125 37.8 4.3 5.0/1.7 0 0.0 0.5 0.9 1.4 1.8 

High-to-Low 4.5 -10 25.1 4.3 4.5/1.2 0 0.0 0.4 0.7 1.2 1.7 

High-to-Low 4.5 80 34.5 4.3 4.5/1:6 0 0.0 0.4 0.8 1.3 1.8 

High-to-Low 4.5 ' 125 39.9 4.3 4.5/1.8 0 0.0 0.5 0.9 1.4 1.9 

2-113 I 



intel® i860TM XP MICROPROCESSOR 

Table 9.4. Large Output Buffer First Order Electrical Model Parameter Values 

TJ Ro Co 
to (ns) at various CL 

Transition Vee dV/dT 0 5 25 50 100 150 200 250 300 (C) (ohmS) (pF) 
(pF) (pF) (pF) (pF) (pF) (pF) (pF) (pF) (pF) 

Low-to-High 5.5 -10 12.1 4.3 5.5/0.7 0 0.0 0.1 0.3 0.6 0.8 1.0 1.3 1.5 

Low-to-High 5.5 80 15.5 4.3 5.5/0.9 0 0.0 0.2 0.3 0.6 0.9 1.1 1.4 1.7 

Low-to-High 5.5 125 17.2 4.3 5.5/1.1 0 0.0 0.2 0.4 0,7 1.0 1.2 1.4 1.7 

Low-to-High 5.0 -10 13.0 4.3 5.0/0.9 0 0.0 0.1 0.3 0.6 0.9 1.1 1.4 1..7 

Low-to-High 5.0 80 16.7 4.3 5.0/1.0 0 0.0 0.2 0.4 0.8 1.1 1.4 1.7 2.0 

Low-to-High 5.0 125 18.5 4.3 5.0/1.2 0 0.0 0.2 0.4 0.8 1.1 1.4 1.7 2.0 

Low-to-High 4.5 -10 14.1 4.3 4.5/0.9 0 0.0 0.2 0.4 0.7 1.1 1.4 1.7 2.0 

Low-to-High 4.5 80 18.0 4.3 4.5/1.2 0 0.0 0.2 0.4 0.9 1.2 1.5 1.9 2.2 

Low-to-High 4.5 125 19.9 4.3 4.5/1.3 0 0.0 0.2 0.5 0.8 1.2 1.5 1.9 2.2 

High-to-Low 5.5 -10 10.6 4.3 5.5/0.7 0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.0 

High-to-Low 5.5 80 13.9 4.3 5.5/1.0 0 0.0 0.4 0.7 1.2 1.5 1.9 2.2 2.5 

High-to-Low 5.5 125 15.8 4.3 5.5/1.1 0 0.0 0.4 0.8 1.3 1.7 2.0 2.4 2.8 

High-to-Low 5.0 -10 11.0 4.3 5.0/0.8 0 0.0 0.4 0.7 1.0 1.3 1.6 1.9 2.1 

High-to-Low 5.0 80 14.5 4.3 5.0/1.0 0 0.0 0.4 0.8 1.2 1.6 2.0 2.3 2.6 

High-to-Low 5.0 125 16.5 4.3 5.0/1.2 0 0.0 0.4 0.8 1.3 1.7 2.1 2.5 2.8 

High-to-Low 4.5 -10 11.3 4.3 4.5/0.9 0 0.0 0.4 0.7 1.1 1.4 1.7. 2.0 2.4 

High-to-Low 4.5 80 15.2 4.3 4.5/1.2 0 0.0 0.4 0.8 1.3 1.6 2.0 2.3 2.7 

Highcto-Low 4.5 125 17.4 4.3 4.5/1.3 0 0.0 0.4 0.8 1.3 1.7 2.1 2.5 2.8 

2-114 



i860™ XP MICROPROCESSOR 

Table 9.5 Buffer Models 

Input Output 

Pin Name Location 
Cp (pF) Lp (nH) Buffer Buffer 
Typical Typical CIN (pF) Size 

Typical (Large or Small) 

A3 S01 7.6 13.8 6.7 LIS 

A4 R01 6.2 14.5 6.7 LIS 

As M05 6.5 7.8 6.7 LIS 

A6 L05 5.3 8.0 6.7 LIS 

A7 F01 7.7 16.2 6.7 LIS 

As K05 5.1 7.7 6.7 LIS 

A9 E01 8.0 16.4 6.7 LIS 

A10 K04 5.1 8.8 6.7 LIS 

A11 001 8.3 16.8 6.7 LIS fI 
IA12 J04 5.2 9.0 6.7 LIS 

A13 C01 8.7 17.2 6.7 LIS 

A14 J05 5.2 7.8 6.7 LIS 

A1S 801 9.0 17.8 6.7 LIS 

A16 H04 5.2 9.0 6.7 LIS 

A17 A01 9.4 18.2 6.7 LIS 

A1S C03 7.8 14.5 6.7 LIS 

A19 CO2 9.0 15.3 6.7 LIS 

A20 H05 7.5 7.7 6.7 LIS 

A21 802 8.5 15.7 6.7 LIS 

A22 G04 7.5 9.1 4.4 S 

A23 A02 8.1 15.7 4.4 S 

A24 803 7.0 14.5 4.4 S 

A2S A03 7.7 14.6 4.4 S 

A26 G05 6.7 7.9 4.4 S 

A27 E04 7.6 9.6 4.4 S 

A2S F04 6.5 9.2 4.4 S 

A29 004 7.4 10.0 4.4 S 

A30 F05 5.9 8.2 4.4 S 

A31 C04 6.6 10.4 4,4 S 

AOS# N04 6.2 9.1 LIS 

AHOLO 005 6.0 8.8 2.0 

BEO# E05 5.7 8.8 LIS 

BE1# 005 6.7 8.8 LIS 

8E2# 006 5.7 9.0 LIS 

2-115 



i860TM XP MICROPROCESSOR 

Table 9.5. Buffer Models (Continued) 

Input Output 

Pin Name Location 
Cp (pF) Lp (nH) Buffer Buffer 
Typical Typical CIN (pF) Size 

Typical (Large or Small) 

BE3# B04 6.5 11.2 liS 

BE4# C05 5.9 10.6 liS 

BE5# A04 6.5 12.0 liS 

BE6# 007 4.9 8.6 LIS 

BE7# A05 6.1 11.5 liS 

BERR S07 5.8 8.7 2.0 

BOFF# R04 6.3 10.4 2.0 

RSRVO P04 6.4 9.4 2.0 

BROY# U01 8.0 14.7 2.0 

BREO R09 4.4 7.5 S 

BYPASS # A06 Strapping Option 

CACHE# 004 6.6 9.8 S 

ClK M04 6.2 8.9 2.0 

CTYP P05 6.5 8.6 S 

Do A07 5.5 10.6 4.4 S 

01 009 7.6 7.6 4.4 S 

02 A13 7.4 15.0 4.4 S 

03 A16 7.7 17.7 4.4 S 

04 A17 9.2 17.9 4.4 S 

05 010 7.5 7.6 4.4 S 

06 A18 9.4 18.3 4.4 S 

07 C17 8.6 15.9 4.4 S 

08 C16 8.6 14.5 4.4 S 

09 B16 9.3 14.7 4.4 S 

010 011 8.3 7.5 4.4 S 

011 B17 8.9 14.7 4.4 S 

012 C15 8.1 7.8 4.4 S 

013 B18 8.6 15.4 4.4 S 

014 012 7.2 7.8 4.4 S 

015 B19 8.2 15.6 4.4 S 

016 C18 7.9 10.7 4.4 S 

017 014 6;7 9.2 4.4 S 

018 C19 7.6 14.2 4.4 S 

019 015 6.4 10.0 4.4 S 

2-116 



i860™ XP MICROPROCESSOR 

Table 9.5 Buffer Models (Continued) 

Input Output 

Pin Name Location 
Cp (pF) Lp (nH) Buffer Buffer 
Typical Typical CIN (pF) Size 

Typical (Large or Small) 

020 016 7.4 10.7 4.4 8 

021 E15 5.6 8.8 4.4 8 

0 22 019 6.7 12.7 4.4 8 

023 E16 5.5 9.7 4.4 8 

024 F15 5.3 8.3 4.4 8 

025 E17 6.6 9.9 4.4 8 

0 26 F16 5.3 9.7 4.4 8 

027 F19 6.2 11.7 4.4 8 

028 G15 5.1 7.9 4.4 8 

029 G19 6.2 11.8 4.4 8 

030 G16 5.1 8.9 4.4 8 

031 M19 8.6 16.2 4.4 8 

032 H15 5.2 7.7 4.4 8 

033 R18 11.0 19.6 4.4 8 

034 P19 8.0 18.4 4.4 8 

035 R19 9.1 18.8 4.4 8 

036 N19 8.1 16.9 4.4 8 

037 819 9.2 20.7 4.4 8 

038 J16 8.4 8.9 4.4 8 

039 T19 10.5 19.6 4.4 8 

040 U19 10.8 19.1 4.4 8 

041 L16 8.3 10.9 4.4 8 

042 T18 10.5 17.8 4.4 8 

043 K16 8.4 8.8 4.4 8 

044 U18 10.1 17.7 4.4 8 

045 K15 9.3 7.5 4.4 8 

046 817 9.5 14.5 4.4 8 

047 M16 8.0 9.8 4.4 8 

048 L15 8.0 7.7 4.4 8 

049 T17 8.7 14.6 4.4 8 

050 N16 7.8 9.9 4.4 8 

051 U17 8.6 15.2 4.4 8 

052 818 7.6 14.3 4.4 8 

2-117 



i860™ XP MICROPROCESSOR 

Table 9.5 Buffer Models (Continued) 

Input Output 

Pin Name Location 
Cp (pF) Lp (nH). Buffer Buffer 
Typical Typical CIN (pF) Size 

Typical (Large or Small) 

053 M15 7.7 7.1 4.4 5 

054 016 7.0 11.1 4.4 5 

055 U16 8.0 14.3 4.4 5 

056 T16 7.S 12.8 4.4 5 

D57 R16 6.5 11.8 4.4 5 

058 516 7.5 11.3 4.4 5 

059 P15 6.2 8.7 4.4 5 

060 R15 7.1 9.6 4.4 5 

061 015 5.9 9.3 4.4 5 

062 515 6.9 10.7 4.4 5 

063 R14 5.6 9.7 4.4 5 

O/C# R05 5.8 9.7 5 

OPO A15 7.7 18.3 4.4 5 

OP1 A19 9.7 18.9 4.4 5 

OP2 013 7.1 8.5 4.4 5 

OP3 018 6.7 11.3 4.4 5 

DP4 019 10.4 19.0 4.4 5 

OP5 J15 9.9 7.7 4.4 5 

OP6 P16 9.3 10.7 4.4 5 

OP7 N15 6.8 8.9 4.4 5 

EA05# 505 5.5 10.5 ·2.0 

EWBE# 008 7.5 7.6 2.0 

FLlNE# 508 5.4 8.1 .2.0 . 

HIT# 512 5.9 11.1 5 

HITM# N05 6.2 8.2 L 

HLOA 509 5.3 7.9 
. 

5 

HOLD R12 6.1 11.1 2.0 

INT/C58 506 5.2 10.0 2.0 

INV R07 5.3 8.2 2.0 

KBO R11 6.1 9.2 5 

KB1 510 6.4 7.9 5 

KEN# U02 . 7.4 13.4 2.0 

LEN T02 7.9 12.8 5 

2-118 



intel· i860™ XP MICROPROCESSOR 

Table 9.5 Buffer Models (Continued) 

Input Output 

Pin Name Location 
Cp (pF) Lp (nH) Buffer Buffer 
Typical Typical CIN (pF) Size 

Typical (Large or Small) 

LOCK# S03 7.7 11.2 S 

M/IO# S04 7.3 10.3 S 

NA# U03 7.1 13.0 2.0 

NENE# S11 6.3 9.6 S 

PCD R06 5.6 8.9 S 

PCHK# H16 5.1 8.8 S 

PCYC T04 7.2 11.4 S 

PEN# R08 4.8 7.8 2.0 

PWT T03 7.4 12.1 S II 
RESET S02 7.9 12.5 2.0 

SPARE L04 NC 

TCK 001 5.8 14.1 2.0 

TOI 814 6.5 9.8 2.0 

TOO R10 6.3 7.6 S 

TMS R13 5.6 9.6 2.0 

TRST# S13 6.3 9.6 2.0 

W/R# T01 7.8 14.3 LIS 

WB/WT# U04 6.7 12.3 2.0 

2·119 



Intel· i860™ XP MICROPROCESSOR 

10.0 INSTRUCTION SET 

Key to abbreviations: 

For register operands, the abbreviations that de­
scribe the operands are composed of two parts. The 
first part describes the type of register: 

c One of the . control registers fir, psr, epsr, 
dirbase, db, fsr, bear, ccr, pO, p1, p2, or p3 

. , 

f One of the floating-point registers: fO through 
f31 

i One of the integer registers: rO through r31 

The second part identifies the field of the machine 
instruction into which the operand is to be placed: 

src1 The first of the two source-register desig­
nators, which may be either a register or a 
16-bit immediate constant or address off­
set. The immediate value is zero-extended 
for logical operations and is sign-extended 
for add and subtract operations (including 
addu and subu) and for all addressing cal­
culations. 

src1ni Same as src1 .except that no immediate 
constant or address offset value is permit­
ted. 

src1s Same as src1 except that the immediate 
constant isa 5-bit value that is zero-ex­
tended to 32 bits. 

src2 The second of the two source-register des­
ignators. 

dest The destination register designator. 

Thus, the operand specifier isrc2, for example, 
means that an integer register is used and that the 
encoding of that register must be placed in the src2 
field of the machine instruction. 

Other (nonregister) operands are specified by a one­
part abbreviation that represents both the type of 
operand required and the instruction field into which 
the value of the operand is placed: 

# const A 16-bit immediate constant or address off­
set that the i860 XP microprocessor sign­
extends to 32 bits when computing the ef­
fective address. 

Ibroff A signed, 26-bit, immediate, relative branch 
offset. 

sbroff A signed, 16-bit, immediate, relative branch 
offset. 

brx A function that computes the target ad­
dress by shifting the offset (either Ibrott or 
sbrotf) left by two bits, sign-extending it to 
32 bits, and adding the result to the current 
instruction pointer plus four. The resulting 
target address may lie anywhere within the 
address space. 

Table 10.1. Precision Specification 

Suffix Source Precision Result Precision 

.ss single single 

.sd single double 

.dd double double 

.ds double single 
Unless otherwise specificed, floating-point operations ac­
cept single- or double-precision source operands and pro­
duce a result of equal or greater precision. Both input oper­
ands must have the same precision. The source and result 
precision are specified by a two-letter suffix to the mne­
monic of the operation. 

Other abbreviations include: 
.p 

.r 

.V 

.W 

.x 

.y 

mem.x(address) 

port.x(address) 

Precision specification .5S, 
.sd, or .dd (.ds not permit­
ted). Refer to Table 10.1. 

Precision specification .ss, 
.sd, .ds, or .dd. Refer to 
Table 10.1. 

.sd or .dd Refer to Table 
10.1. 

.55 or .dd. Refer to Table 
10.1. 

.b (8 bits), .5 (16 bits), or .I 
(32 bits) 

.1 (32 bits), .d (64 bits), or 

.q (128 bits) 

The memory location indi­
cated by address with a 
size of x. 
The liD port indicated by 
address with a size of x. 

int_vector.x(address) The interrupt vector with a 
size of x returned from liD 
port address. 

PM The pixel mask, which is 
considered as an array of 
eight bits PM(7) .. PM(0), 
where PM(O) is the least­
significant bit. 

2-120 



infel .. i860TM XP MICROPROCESSOR 

10.1 Instruction Definitions in Alphabetical Order 

adds isrc1, isrc2, idest .................................................................. Add Signed 
idest - isrc1 + isrc2 
OF - (bit 31 carry =F- bit 30 carry) 
ee set if isrc2 + isrc1 < 0 (signed) 
ee clear if isrc2 + isrc1 :?: 0 (signed) 

addu isrc1, isrc2, idest ............................................................... Add Unsigned 
ides! - isrc1 + isrc2 
OF - bit 31 carry 
ee - bit 31 carry 

and isrc1, isrc2, ides! .................................................................. Logical AND 
idest - isrc 1 and isrc2 . 
ee set if result is zero, cleared otherwise 

andh #const, isrc2, ides! ............ ~ .............................. ' ............... Logical AND High 
ides! - (# cons! shifted left 16 bits) and isrc2 ' 
ee set if result is zero, cleared otherwise 

andnot isrc1, isrc2, idest .................... .' ..................................... Logical AND NOT 
ides! - (not isrc1) and isrc2 
ee set if result is zero, cleared otherwise 

andnoth # const, isrc2, idest .................................................. Logical AND NOT High 
idest - (not (# cons! shifted left 16 bits» and isrc2 
ee set if result is zero, cleared otherwise 

bc Ibroff ....................................................................... , ..... Branch on CC 
IF ee = 1 
THEN continue execution at brx(lbroff) 
FI 

bc. t Ibroff ..................................................................... Branch on CCo' Taken 
IF ee = 1 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bla isrc1ni, isrc2, sbroff ................................. : ................... . Branch on LCC and Add 
Lee-temp clear if isrc2 + isrc1ni < 0 (signed) 
Lee-temp set if isrc2 + isrc1ni:?: 0 (signed) 
isrc2 - isrc 1 ni + isrc2 
Execute'ohe more sequential instruction 
IF Lee 
THEN Lee - Lee-temp 

continue execution at brx(sbroff) 
ELSE Lee - Lee-temp 
FI 

bnc Ibroff ................................................ ; ...................... Branch on Not CC 
IF ee = 0 
THEN continue execution at brx(lbroff) 
FI ' 



1860TM XP MICROPROCESSOR 

bnc.t /broff ........................... , ................................... Branch on Not CC, Taken 
IF CC = 0 . 
THEN execute one more. sequential instruction 

continue execution at brx(/broff) 
ELSE skip next sequential instruction 
FI 

br /broff ............................................................. Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at brx(/broff). 

bri [isrc1m] ............. ~ .......................................... Branch Indirect Unconditionally 
Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 
IF DS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF DS is set and DIM is set 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 
THEN enter dual-instruction mode 

for next instruction pair 
ELSE enter single-instruction mode 

for next instruction pair 
FI 

FI 
. FI 

FI 
Continue execution at address in isrc1ni 

(The original contents of isrc1ni is used even if the next instruction 
modifies isrc1ni. Does not trap if isrc1ni is misaligned.) 

bte isrc 1 s, isrc2, sbroff ...... , ....................................................... Branch If Equal 
IF isrc1s = isrc2 
THEN continue execution at brx(sbroff) 
FI 

btne isrc 1 s, isrc2, sbroff ......................................................... Branch If Not Equal 
IF . isrc1s ¥= isrc2 
THEN continue execution at brx{sbroff) 
FI . 

call/broff . ......................................... ~ ........•.......................... Subroutine Call 
r1 +- address of next sequential instruction + 4 (or + 8 in dual mode) 
Execute one more sequential instruction 
Continue execution at brx(/broff) 

calli [isrc 1m] ...............•............................................... Indirect Subroutine Call 
r1 +- address of next sequential instruction + 4 (or + 8 in dual mode) 
Execute one more sequential instruction 
Continue execution at address in isrc1ni 

(The original contents of isrc1ni is used even if the next instruction 
modifies isrc1hi. Does not trap if isrc1ni is misaligned. The 
register isrc1ni must not be r1.) 

fadd.p fsrc1, fsrc2, fdest ................................................•........ Floating-Point Add 
fdest +- fsrc 1 + fsrc2 

2-122 



i860TM }(P MICROPROCESSOR 

faddp (sret, (sre2, (dest .... .................................................... Add with Pixel Merge 
{dest +- (sret + (sre2 (using integer arithmetic; 8-byte operands and destination) 
Shift and load MERGE register from {sret + {sre2 as defined in Table 10.2 

faddz (sret, {sre2, {dest ........................................................... Add with Z Merge 
(dest +- {sret + {sre2 (using integer arithmetic; 8-byte operands and destination) 
Shift MERGE right 16 and load fields 31..16 and 63 .. 48 from (sret + (sre2 

famov.r (sret, {dest . ..................................................... Floating-Point Adder Move 
{dest +- {sret 

fiadd.w {sret, (sre2, (dest ......................................................... Long-Integer Add 
{dest +- {sret + (sre2 (2's complement integer arithmetic) 

iisub.w (sret, {sre2, (dest ..................................................... Long-Integer Subtract 
(rdest +- (sret - {sre2 (2's complement integer arithmetic) 

iiJr.v (sret, (dest . ............................................... Floating-Point to Integer Conversion 
(dest +- 64-bit value with low-order 32 bits equal to integer part of (sret rounded 

Floating-Point Load 
fld.y isre t (isre2), (dest .................................................................... (Normal) 
fld.y isre t (isre2) + +, (dest ......................................................... (Autoincrement) 

(dest +- mem.y (isret + isre2) 
IF autoincrement 
THEN isre2 +- isret + isre2 
FI 

Cache Flush 
flush # eonst(isre2) ....................................................................... (Normal) 
flush # eonst(isre2) + + ............................................................ (Autolncrement) 

Write back (if modified) the line in data cache that has address (# eonst + isre2) 
80860XR: and set tag value to (#eonst + isre2). 
80860XP: and invalidate its virtual and physical tags. 

Contents of line undefined. 
IF autoincrement 
THEN isre2 +- #eonst + isre2 
FI 

fmlow.dd {sret, (sre2, (dest .......................................... '" . Floating-Point Multiply Low 
(dest +- low-order 53 bits of ({sret mantissa x (sre2 mantissa) 
(dest bit 53 +- most significant bit of «(sretmantissa x (sre2 mantissa) 

fmov.r {sret, {dest .................................................... Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss (sret, {dest 
fmov.dd {sret, {dest 
fmov.sd {sret, {dest 
fmov.ds (sret, {dest 

= fiadd.ss (sret, fO, (dest 
= fiadd.dd {sre t, fO, (dest 
= famov.sd (sret, {dest 
= famov.ds {sret, (dest 

fmul.p {sret, {sre2, (dest . ..................................................... Floating-Point Multiply 
{dest +- (sret x {sre2 

fnop ................................................................. Floating-Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, rO, rO 

2-123 



inteL i860™ XP MICROPROCESSOR 

form fsre1, fdes! ... : ...................................................... OR with MERGE Register 
fdes! ~ fsre10R MERGE 
MERGE ~ 0 

frcp.p fsre2, fdes! ......................................................... Floating-Point Reciprocal 
fdes! ~ 1 / fsre2 with maximum mantissa error < 2- 7 

frsqr.p fsre2, fdes! . ........................................... Floating-Point Reciprocal Square Root 
. fdes! ~ 1 / Hsre2 with maximum mantissa error < 2- 7 . 

Floating-Point Store 
fst.y fdes!,isre1(isre2j ..................................................................... (Normal) 
fst.y fdes!, isre1(isre2j+ + ....... , .............................................. " . (Autoincrement) 

mem.y (isre2 + isre1) ~ fdes! 
IF autoincrement . 
THEN isre2 ~ isre1 + isre2 
FI 

fsub.p fsre 1, fsre2, fdes! .................................. ~ ... ; ; .............. Floating-Point Subtract 
fdes! ~ fsre 1 - fsre2 

ftrunc. v fsre 1, fdes! ............................................ Floating-Pointto Integer Conversion 
fdes!~ 64-bit val.ue with low-order 32 bits equal to integer part of fsre1 

fxfr fsre1,ides! ..................................................... Transfer F-P to Integer Register 

ides! ~ fsre1 

fzchklfsre 1, fsre2, fdes! ......................... , ............................. 32-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of two 32-bit 

fields fsre1(1 ) . .fsre1(O), fsre2(1 )..fsre2(O), and fdest(1 ) . .fdest(O) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ fsre2(i) ,,; fsre1(i) (unsigned) 
fdest(i) ~ smaller of fsre2(i) and fsre1(i) 

OD 
MERGE ~. 0 

fzchks fsre1, fsre2, fdes! ...................................................... 16-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of four 16-bit . 

fields fsre1(3)..fsre1(O), fsre2(3) .. fsre2(O) , and fdest(3) . .fdest(O) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] ~ fsre2(i) ,,; fsre1(i) (unsigned) 
fdest(i) ~ smaller of fsre2(i) and fsre1(i) 

OD 
MERGE ~ 0 

intovr .......................................................... Software Trap on Integer Overflow 
IF OF = 1 
THEN generate trap with IT set in psr 
FI 

ixfr isre 1 ni, fdes! .................................................... Transfer Integer to F-P Register 
fdes! ~ isre 1 ni 

2-124 



i860™ XP MICROPROCESSOR 

Id.c csrc2, idest . ........................................................ Load from Control Register 
idest ~ csrc2 

Id.x isrc1(isrc2), idest .................................................................. Load Integer 
idest ~ mem.x (isrc1 + isrc2) 

Idint.x isrc2, idest ............................................................ Load Interrupt Vector 
idest ~ int_vector.x (isrc2) 
NOTE: Not available with the i860 XR CPU 

Idio.)( isrc2, idest ......................................................................... Load I/O 
idest ~ portx (isrc2) 
NOTE: Not available with the i860 XR CPU 

lock .................................................................. Begin Interlocked Sequence 
Set BL in dirbase. . 
The next load or store that appears on the bus locks that location. 
Disable interrupts until the bus is unlocked. 

mov isrc2, idest ............................................................ Register-Register Move 
Assembler pseudo-operation 

mov isrc2, idest = shl rO, isrc2, idest 

mov cons!32, ides! .. : ................................................... Constant-to-Register Move 
Assembler pseudo-operation 

when OxFFFF8000 ::;: cons!32 < Ox8000 ... 
adds l%cons!32, rO, ides! 

otherwise ... 
orh h%cons!32, rO, ides! 
or l%cons!32, idest, ides! 

nop ..................................................................... . Core-Unit No Operation 
Assembler pseudo-operation 

nop = shl rO, rO, rO 

or isrc 1, isrc2, ides! ..................................................... ; ............... Logical OR 
ides! ~ isrc1 OR isrc2 
CC set if result is zero, cleared otherwise 

orh #const, isrc2, ides! ............................................................ . Logical OR high 
ides! ~ (# cons! shifted left 16 bits) OR isrc2 
CC set if result is zero, cleared otherwise 

pfadd.p fsrc1, fsrc2, fdes! . .............................................. Pipelined Floating-Point Add 
fdes! ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ fsrc1 + fsrc2 

pfaddp fsrc1, fsrc2, fdes! ............................................ . Pipelined Add with Pixel Merge 
fdes! ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsrc1 + fsrc2 

(using integer arithmetic; 8-byte operands and destination) 
Shift, then load MERGE register from fsrc1 + fsrc2 as defined in Table 10.2 

pfaddz fsrc 1, fsrc2, fdes! . ................................................ Pipe lined Add with Z Merge 
!rdes! ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsrc1 + fsrc2 

(using integer arithmetic; 8-byte operands and destination) 
Shift MERGE right 16, then load fields 31..16 and 63 .. 48 fromfsrc1 + fsrc2 

2-125 



intel® i860TM XP MICROPROCESSOR 

pfam.p fsrc1, fsrc2, fdest ................................... Pipelined Floating-Point Add and Multiply 
fdest ~ last stage adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 + A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfamov.r fsrc1, fdest .......................................... . Pipelined Floating-Point Adder Move 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A 'pipeline first stage ~ fsrc1 

pfeq.p fsrc1, fsrc2, fdest .................................... . Pipelined Floating-Point Equal Compare 
fdest ~ last stage adder result 
CC set if fsrc1 = fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p fsrc1, fsrc2, fdest ............................. . Pipelined Floating-Point Greater-Than Compare 
(Assembler clears R-bit of instruction) 
fdest ~Iast stage adder result . 
CC set if fsrc1 > fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w fsrc1, fsrc2, fdest . .............................................. Pipelined Long-Integer Add 
fdest ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsrc1 + fsrc2 (2's complement integer arithmetic) 

pfisub.w fsrc1, fsrc2, fdest . .......................................... Pipelined Long-Integer Subtract 
fdest ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsrc1 - fsrc2 (2's complement integer arithmetic) 

pfix.v fsrc1, fdest ..................................... Pipelined Floating-Point to Integer Conversion 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of fsrc1 rounded 

Pipelined Floating-Point Load 

pfld.y isrc1(isrc2), fdest . .................................................................. . (Normal) 
pfld.y isrc1(isrc2) + +, fdest ........................................................ (Auto increment) 

fdest ~ mem.y (third previous pfld's (isrc1 + isrc2) 
(where .y is precision of third previous pfld.y) 

IF autoincrement 
THEN isrc2 ~ isrc1 + isrc2 
FI 
NOTE: pfld.q is not available with the i860 XR CPU 

pfle.p fsrc1, fsrc2, fdest ................................... Pipelined F-P Less-Than or Equal Compare 
Assembler sets R-bit of instruction 
fdest ~ last stage adder result 

CC clear if fsrc 1 ~ fsrc2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

2-126 



intel® i860™ XP MICROPROCESSOR 

pfmam.p fsrc 1, fsrc2, fdes! .................................. Pipe lined Floating-Point Add and Multiply 
fdes! +- last stage multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 + A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfmov.r fsrc1, fdes! ......................................... . Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss fsrc1, fdes! = pfiadd.ss fsrc1, fO, fdes! 
pfmov.dd fsrc1, fdes! = pfiadd.dd fsrc1, fO, fdest 
pfmov.sd fsrc1, fdes! = pfamov.sd fsrc1, fdest 
pfmov.ds fsrc1, fdes! = pfamov.ds fsrc1, fdes! 

pfmsm.p fsrc1, fsrc2, fdes! ............................. Pipelined Floating-Point Subtract and Multiply 
fdest +- last stage multiplier result 
Advance·A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfmul.p fsrc1, fsrc2, fdes! ........................................... Pipelined Floating-Point Multiply 
fdest +- last stage multiplier result 
Advance M pipeline one stage 
M pipeline first stage +- {src1 x fsrc2 

pfmul3.dd fsrc1, {src2, fdes! . .......................................... Three-Stage Pipelined Multiply 
{dest +- last stage multiplier result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage +- {src1 x {src2 

pform {src 1, fdest . ................................................. Pipelined ORlo MERGE Register 
{des! +- last-stage graphics-unit result 
last-stage graphics-unit result +- {src1 OR MERGE 
MERGE +- 0 

pfsm.p fsrc 1, fsrc2, {dest ............................... Pipelined Floating-Point Subtract and Multiply 
{des! +- last stage adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfsub.p {src1, fsrc2, {dest . .......................................... Pipelined Floating-Point Subtract 
{des! +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- {src1 - fsrc2 

pftrunc.v fsrc1, fdes! . ................................. Pipelined Floating-Point to Integer Conversion 
{dest +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of fsrc 1 

2-127 

FII 



i860TM XP MICROPROCESSOR 

pfzchkl fsrc1, fsrc2, fdest ............................................ Plpellned 32-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of two 32-bit 

fields fsrc1(1) .. fsrc1(0), fsrc2(1) .. fsrc2(0), and fdest(1)..fdest(0) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM Ii + 61 +- fsrc2(i) :::;; fsrc1(i) (unsigned) 
fdest(i) +- last-stage graphics-unit result 
last-stage graphics-unit result +- smaller of fsrc2(i) and fsrc1 

00 
MERGE +- 0 

pfzchks fsrc1, fsrc2, fdest ............... .............................. Plpelined 16-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of four 16-bit . 

fields fsrc1(3) .. fsrc1(0), fsrc2(3) .. fsrc2(0), and fdest(3) .. fdest(0) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM Ii + 41 +- fsrc2(i) :::;; fsrc1(i) (unsigned) 
fdest +- last-stage graphics-unit result . 
last-stage graphics-unit result(i) +- smaller of fsrc2(i) and fsrc1(i) 

00 
MERGE· +- 0 

pst.d fdest, # const(isrc2) ......................................•......................... Pixel Store 
pst.d fdest, # const(isrc2) + + ............................................. Pixel Store Autoincrement 

Pixels enabled by PM in mem.d (isrc2 + #consf) +- fdest 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement 
THEN isrc2 +- #const + isrc2 
FI 

scyc.x isrc2 .......................................................................... Special Cycles 
Generate a special bus cycle (D/C#=O, W/R#=1,M/10#=0) and 
set BE7#-BEO#·according to the value contained in the register isrc2 
NOTE: Not available with the i860 XR CPU 

shl isrc1, isrc2, idest .................................................•..................... Shift Left 
idest +- isrc2 shifted left by isrc1 bits 

shr isrc1, isrc2, idest . .................................................................... Shift Right 
SC (in psr) +- isrc1 
idest +- isrc2 shifted right by isrc1 bits 

shra isrc1, isrc2, idest ......................................................... Shift Right Arithmetic 
idest +- isrc2 arithmetically shifted right by isrc1 bits 

shrd isrc1ni, isrc2, idest . ..............................•........................... Shlft Right Double 
idest +- low-order 32 bits of isrc1ni:isrc2 shifted right by SC bits . 

st.c isrc 1 ni, csrc2 ......................................................... Store to Control Register 
csrc2 +- src1ni . 

st.x isrc 1 ni, # const(isrc2) ............................................................. Store Integer 
mem.x (isrc2 + #consf) +- isrc1ni 

2-128 



i860TM XP MICROPROCESSOR 

stio.x isrc1ni, isrc2 .... , ............................................ , .......................... Store 1/0 
port.x (isrc2) +- isrc 1 ni 
NOTE: Not available with the i860 XR CPU 

subs isrc1, isrc2, idest .............................................................. Subtract Signed 
idest +- isrc1 - isrc2 
OF +- (bit 31 carry '* bit 30 carry) 
CC set if isrc2 > isrc1 (signed) 
CC clear if isrc2 ~ isrc1 (signed) 

subu isrc1, isrc2, idest ....... ' ............. , ...................................... Subtract Unsigned 
idest +- isrc 1 - isrc2 
OF +- NOT (bit 31 carry) 
CC +- bit 31 carry 

(i.e. CC set if isrc2 ~ isrc1 (unsigned) 
CC clear if isrc2 > isrc1 (unsigned» 

trap ~~~~~~::rfr;:~:~ ·rr· ~~t i~ .p~~ ................................................... Software Trap • 

unlock ................................................................. End Interlocked Sequence 
Clear BL in dirbase. The next load or store 
unlocks the bus. Interrupts are enabled. 

xor isrc 1, isrc2, idest .......................................................... Logical Exclusive OR 
idest +- isrc1 XOR isrc2 
CC set if result is zero, cleared otherwise 

xorh # const, isrc2, idest .................................................. Logical Exclusive OR High 
idest +- (# const shifted left 16 bits) XOR isrc2 
CC set if result is zero, cleared otherwise 

Table 10.2. FADDP MERGE Update . 

Pixel Size Fields Loaded from Right Shift Amount 
(fromPS) Result into MERGE (Field Size) 

8 63 .. 56, 47 .. 40, 31 .. 24, 15 .. 8 8 
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6 
32 63 .. 56, 31 .. 24 8 

2-129 



i860TM XP MICROPROCESSOR 

10.2 Instruction Format and Encoding 

All instructions are 32 bits long and begin on a four­
byte boundary. When operands are registers, the 
encodings shown in Table 10.3 are used. 

There are two general core-instruction formats 
(REG-format and CTRL-format) and a separate for­
mat for floating-point instructions. 

Table 10.3. Register Encoding 

Register Encoding 

rO 0 

r31 31 

to 0 

t31 31 

Fault Instruction 0 
Processor Status 1 
Directory Base 2 
Data Breakpoint 3 
Floating-Point Status 4 
Extended Processor Status 5 

Bus Error Address' 6 
Concurrency Control' 7 

pO' 8 
p1' 9 
p2* 10 
p3' 11 

NOTE: 
'Available only with iB60 XP CPU. Using these encodings 
with the iB60 XR CPU produces undefined results. 

10.2.1 REG-FORMAT INSTRUCTIONS 

Within the REG-format are several. variations as 
shown in Figure 10.1. Table 10.4 gives the encod­
ings for these instructions. One encoding is an es­
cape code that defines yet another variation: the 
core escape instructions. Figure 10.2 shows the for­
mat of this group, and Table 10.5 shows the encod­
ings. 

In these instructions, the src2 field .selects one of 
the 32 integer registers (most instructions) or one of 
the control registers (st.c and Id.c): Dest selects 
one of the 32 integer registers (most instructions) or 
floating-paint registers (tld,tst, ptld, pst, ixtr). For 
instructions where src1 is optionally an immediate 
value, bit 26 of the opcode (I-bit) indicates whether 
src1 is an immediate. If bit 26 is clear, an integer 
register is used; if bit 26 is set, src1 is contained in 
the low-order 16 bits, except for bte and btne 
instructions. For bte and btne, the five-bit immediate 
value is contained in the src1 field. For st, bte, btne, 
and bla, the upper five bits of the offset or broffset 
are contained in the dest field instead of src1, and 
the lower 11 bits of offset are the lower .11 bits of 
the instruction. 

For Id and st, bits 28 and zero determine operand 
size as follows: 

Bit 28 BitO Operand Size 

0 0 8-bits 
0 1 8-bits 
1 0 16-bits 
1 1 32-bits 

When src1 is immediate and bit 28 is set, bit zero of 
the immediate value is forced to zero. 

2-130 



int:eL i860TM XP MICROPROCESSOR 

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. For fld, fst, pfld, and pst, 
bits one and two select the operand size as follows: 

Bit 1 Bit2 Operand Size 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

For flush, bits one and two must be zero. 

313029282726. r.252-12J222/ '2019181716 

I OPCODE/I SRC2 I DEST 

'03130292827. '26. 52-12322 21 '2019181716 

I OPCODE I SRC2 I DEST 

313029282726. '252-1232221 '2019181716 

I OPCODE/I SRC2 OFFSET 
HIGH 

31.50292827. '26.'252-12322 21 '2019181716 

I OPCODE II SRC2 
I 

OFFSET 
HIGH 

When sret is immediate, bits zero and one of the 
immediate value are forced to zero to maintain align­
ment. When bit one of the immediate value is clear, 
bit two is also forced to zero. 

For the instructions Idio, stio, Idint, and seye, the 
operand size is encoded by bits 9 and 10 as follows. 
For other instructions, these bits are reserved and 
should be set to zero. 

Operand Size Bit 10 Bit 9 

8 Bits (.b) 0 0 
16 Bits (.s) 0 1 
32 Bits (.I) 1 0 
reserved 1 1 

15141Jf211 1098765-132 1 0 

SRCI IMMEDIATE, OFFSET, 
OR NULL 

240874-74 

151-11312111098765 -I 32 1 0 

IMMEDIATE I 
240874-75 

151-1131211 1098765-132 1 0 

SRCI OFFSET LOW 
SRCIS 

240874-76 

151-1131211 1098765-132 1 0 

IMMEDIATE I OFFSET LOW t 
240874-77 

Figure 10.1. REG-Format Variations 

2-131 



int'eL 

Id.x 
st.x 
ixfr 

.. -
fld.x, fst.x 
flush 
pst.d 
Id.c, st.c 

bri 
trap 

-
-
bte, btne 
pfld.y 

-
addu, os, subu, ~s 
shl, shr 
shrd 
bla 
shra 

and(h) 
andnot(h) 
or(h) 
xor(h) 

-
L Integer Length 

o -8 bits 

i860TM XP MICROPROCESSOR 

Table 10.4. REG-Format Opcodes 
31 30 29 

Load Integer 0 0 0 
Store Integer 0 0 0 
Integer to F-P Reg Transfer 0 0 0 
(reserved) . 0 ·0 0 

Load/Store F-P 0 0 1 
Flush 0 0 1 
Pixel Store 0 0 1 
Load/Store Control Register 0 0 1 

Branch Indirect 0 ,1 0 
Trap 0 1 0 
(Escape for F-P Unit) 0 1 0 
(Escape for Core Unit) 0 1 0 
Branch Equal or Not Equal 0 1 0 
Pipelined F-P Load 0 1 1 
(CTRL-Format Instructions) 0 1 1 

Add/Subtract 1 0 0 
Logical Shift 1 0 1 
Double Shift 1 0 1 
Branch LCCSet and Add 1 0 1 
Arithmetic Shift 1 0 1 

AND 1 1 0 
ANDNOT 1 1 0 
OR 1 1 1 
XOR 1 1 1 
(reserved) 1 1 x 

AS Add/Subtract 
o -Add 

1 -16 or 32 bits (Selected by bit OJ 1 -Subtract· 
LS Load/Store LR Left/Right 

o -Load o -Left Shift 
1 -Store 1 -Right Shift . 

SO Signed/Ordinal E Equal 

28 

L 
L 
0 
1 

0 
1 
1 
1 

0 
0 
0 
0 
1 
0 
x 

SO 
0 
1 
1 
1 . 

0 
1 
0 
1 
x 

o -Ordinal o -Branch on Unequal 
1 -Signed 1 ~Branch on Equal 

H High Immediate 
o -and, or, andnot, xor o -src 1 is register 
1 -andh, orh, andnoth, xorh 1 -src1 is immediate 

OEST SRC1 

Ell RESERVED BY INTEL CORPORATION (SET TO ZERO) 

Figure 10.2. Core Escape Instructions 

2-132 

27 26 

0 I 
1 1 
1 0 
1 0 

LS I 
0 1 
1 1 

LS 0 

0 0 
0 1 
1 0 
1 1 
E I 
0 I 
x x 

AS I 
LR I 
0 0 
0 1 
1 I 

H I 
H I 
H I 
H I 
1 0 

240874-78 



int:eL i860TM XP MICROPROCESSOR 

Table 10.5. Core Escape Opcodes 
4 3 2 o 

- (reserved) 0 0 0 0 0 
lock Begin Interloacked Sequence 0 0 0 0 1 
calli Indirect Subroutine Call 0 0 0 1 0 
- (reserved) 0 0 0 1 1 
introvr Trap on Integer Overflow 0 0 1 0 0 
- (reserved) 0 0 1 0 1 
- (reserved) 0 0 1 1 0 
unlock End Interlocked Sequence 0 0 1 1 1 
Idio' Load 110 0 1 0 0 0 
stio' Store 110 0 1 0 0 1 
Idint' Load Interrupt Vector 0 1 0 1 0 
scyc' Special Cycles 0 1 0 1 1 
- (reserved) 0 1 1 x x 
- (reserved) 1 0 x x x 
- (reserved) 1 1 x x x 

NOTE: 
'Available only with i860 XP CPU, not with i860 XR CPU 

10.2.2 CTRL·FORMAT INSTRUCTIONS 

The CTRL-Format instructions do not refer to registers; so, instead of the register fields, they have a 26-bit 
relative branch offset. Figure 10.3 shows the format of these instructions and Table 10.6 defines the encod-
ings. . 

'J1$029, '282726, ~_.u.~mmqm~NOU"mg87654$2 1 0 

101 11 OPC BROFFSET 
} 

240874-79 

NOTE: 
BROFFSET is a signed 26-bit relative branch offset 

Figure 10.3. CTRL·Format Instructions 

Table 10.6. CTRL·Format Opcodes 
28 27 . 26 

- (reserved) 

- (reserved) 
br Branch Direct 
call Call 
bc(.t) Branch on CC Set 
bnc(.t) Branch on CC Clear 

T Taken 
o -bc or bnc 
1 -bc.t or bnc.t 

10.2.3 FLOATING·POINT INSTRUCTION 
ENCODING 

The floating-point instructions also constitute an es­
cape series. All these instructions begin with the bit 
sequence 010010. Figure 10.4 shows the format of 

0 O .. 0 
0 0 1 
0 1 0 
0 1 1 
1 0 T 
1 1 T 

the floating-point instructions, and Table 10.7 gives 
the encodings. Within the dual-operation instructions 
is a subcode DPC whose vaiues are given in Table 
10.9 along with the mnemonic that corresponds to 
each. . . 

2-133 

EI 



intei® i860TM XP MICROPROCESSOR 

313029282726- '52~2322 21 '2019'181716 15 14 13 12 II 10 9 87 6 5 4 J 2 1 0 

\0 1 o 0 1 0 1 SRC2 DEST SRCl P DiS R OPCODE 
[ 

240874-80 

SRC1, SRC2. Source; one of 32 floating-paint registers 
DEST Destination; one of 32 floating-point registers (except fxfr; one of 32 integer registers) 

P Pipelining 
1 Pipelined instruction mode 
a Scalar instruction mode 

o Dual-Instruction Mode 
1 Dual-instruction mode 
a Single-instruction mode 

5 Source Precision 
1 Double-precision source operands 
a Single-precision source operands 

R Result Precision 
1 Double-precision result 
a Single-precision result 

Figure 10.4. Floating-Point Instruction Encoding 

Table 10.7. Floating-Point Opcodes 
654 

pfam Add and Multiply' 
0 

pfmam Multiply with Add' 
pfsm Subtract and Multiply' 0 
pfmsm Multiply with Subtract' 

(p)fmul Multiply 0 
fmlow Multiply Low 0 
frcp Reciprocal 0 
frsqr Reciprocal Square Root 0 
pfmul3.dd 3-Stage Pipelined Multiply 0 

(p)fadd Add 0 
(p)fsub Subtract 0 
(p)fix Fix 0 
(p)famov Adder Move 0 
pfgt/pfle" Greater Than 0 
pfeq Equal 0 
(p)ftrunc Truncate 0 

fxfr Transfer to Integer Register 1 
(p)fiadd Long-Integer Add 1 
(p)fisub Long-Integer Subtract 1 

(p)fzchkl Z-Check Long 1 
(p)fzchks Z-Check Short 1 
(p)faddp Add with Pixel Merge 1 
(p)faddz Add with Z Merge 1 
(p)form OR with MERGE Register 1 

NOTE: 
All opcodes not shown are reserved . 
• pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear . 
•• pfgt has R bit cleared; pile has R bit set. 

2-134 

0 0 

0 1 

1 0 
1 0 
1 0 
1 0 
1 0 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 ,1 

0 0 
0 0 
0 0 

0 1 
0 1 
0 1 
0 1 
0 1 

3 2 

OPC 

OPC 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
1 0 1 

0 0 0 
1 0 0 
1 1 0 

0 1 1 
1 1 1 
0 0 0 
0 0 0 
1 0 1 

o 

0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
1 
0 

0 
1 
1 

1 
1 
0 
1 
0 



int:eL i860TM XP MICROPROCESSOR 

Table 10.8. ope Encoding 

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic 01 op2 op1 op2 Load Load' 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 

0100 i2p1 i2s1 KI src2 src1 M result No No 
0101 i2pt i2st KI src2 T M result No Yes 
0110 i2ap1 i2as1 KI src2 src1 A result Yes No 
0111 i2apt i2ast KI src2 T A result Yes Yes 

1000 rat1p2 rat1s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra2s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 
1100 iat1p2 iat1s2 KI A result src1 src2 Yes No II 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 KI A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic op1 op2 op1 op2 Load Load' 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 

0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 (mi2pt mi2st KI src2 T M result No Yes 
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No 
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mim1p2 mim1s2 KI M result src1 src2 No No 
1111 Intel Reserved 

NOTE: 
• If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the multiplier is KI. 

2-135 



i860™ XP MICROPROCESSOR 

10.3 Instruction Timings 

Generally, i860 XP microprocessor instructions take 
bne clock to execute unless a freeze condition is 
invoked. Detailed times, along with freeze conditions 
and their associated delays, are shown in the table 
on the following pages. The following symbols are 
used for brevity in the timing table: 

+ n n clocks must be added to the execution 
time if the stated conditions apply. 

- n The processor requires at least n clocks be­
tween the indicated instructions. The actual 
delay will be. n minus the number of clocks 
for executing intervening instructions (or 
dual-mode pairs). If the time for intervening 
instructions is ?: n, there is no delay. 

n._m Indicates a range of clocks. These cases 
are accompanied by a reference to a note 
where further explanation is available. 

XR: Applies to i860 XR microprocessors only. 

XP: Applies to i860 XP microprocessors only. 

OA The number of clocks to finish all outstand­
ing accesses. 

R1 

R2 

RL 

RL1 

RN 

RX 

The number of clocks from ADS# through 
the first READY# (80860XR) or BRDY# 
(80860XP) of the indicated bus activity. 

The number of clocks from ADS# through 
the second READY# or BRDY#. 

The number of clocks from ADS# through 
the last READY# or BRDY#. 

XP: The number of clocks through last 
BRDY# of first access. 

XR: The number of clocks until next nonre­
peated address can be issued (Le., an ad­
dress that is not the 2nd-4th cycle of a 
cache fill, the 2nd-8th cycle of a CS8 mode 
instruction fetch, nor the 2nd cycle of a 128-
bit write). 

The number of clocks through READY # or 
BRDY # for the next 64-bit-or-less write cy­
cle or second READY # or BRDY # for the 
next 128-bit write cycle. 

NOTES: 

a. "Address path full" means one address inter­
nally waiting for bus while external bus pipeline 
full. 

b. "Store path full" means two stores or one 256-
bit write-back internally waiting for bus plus ex-
ternalbus pipeline full. . 

c. If a floating-point instruction, graphics-unit in­
struction, fst, or pst is executed when a scalar 
floating-point operation (other than frcp or 
frsqr) is in progress, the scalar operation must 
complete first: two additional clocks for fadd, 
fix, fmlow, fmul.ss, fmul.sd, ftrunc, and 
fsub; three additional clocks for fmul.dd. Add 
one if either or both of these situations occur: 

1. There is an overlap between the result reg­
ister of the previous scalar operation and 
the source of the floating-point operation, 
and the destination precision of the scalar 
operation differs from the source precision 
of the floating-point operation. 

2. The floating-point operation is pipelined 
and its destination is not fO. 

TLB TLB miss. Five clocks plus the number of 
clocks to finish two reads plus the number of 
clocks to set A-bits (if necessary). 

In addition, any instruction may be delayed due to an 
instruction cache, miss or TLB miss during the in­
struction fetch. The time for a TLB miss is shown 
above in note TLB. An instruction cache miss adds 
the following delays: 

• The number of clocks to get the next instruction 
from the bus (ADS # clock to first READY # or 
BRDY# clock, inclusive). 

.. XR: When any of the instructions in the new in­
struction-cacheline is a branch or call or causes 
a freeze, the time through the last READY # for 
the new line. 

.. If the data cache is being accessed when the in­
struction-cache miss occurs, two clocks for data 
cache miss; one clock for hit. 

Not included in the table is the delay caused by a 
trap. This depends on the trap handler. 

In dual instruction mode, each pair of instructions 
requires the maximum of the times required by each 
individual instruction. 

2-136 



int'eL 

Instruction 

adds 

addu 

and 

andh 

and not 

andnoth 

bc 

bc.t 

bla 

bnc 

bnc.t 

br 

brl 

bte 

btne 

call 

calli 

fadd.p 

Execution 
Clocks 

1 
2 
+ 

1 
2 

i860™· XP MICROPROCESSOR 

If branch not taken. 
If branch taken. 

Condition 

If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt. 

If branch taken. 
If branch not taken. 

+ 1 If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt. . 

1 
2 

2 

1 
3 

+1 
+1 +R1 
+1+R2 

2 
+1 

+1 +R1 
+1 +R2 

-2 . .4 

If branch taken. 
If branch not taken. 

(same as bc) 

(same as be.t) 

If branch not taken. 
If branch taken. 

(same as bte) 

If r1 referenced in next instruction. 
If data cache load miss in progress for a read of less than 128 bits. 
If data cache load miss in progress for 128-bit read. 

If r1 referenced in next instruction. 
If data cache load miss in progress for a read of less than 128 bits. 
If data cache load miss in progress for 128-bit read. 

( ... and all other A-unit instructions except dual operations) 
If executed when a scalar floating-point operation (other than frcp 
or frsqr) is in progress.(e) 

2-137 

EI 



InteL i860TM XP MICROPROCESSOR 

Instruction E~~~~~:n Condition 

faddp ( ... and all other G-unit instructions except fladd.w, fxfr) 
+ 1 If {dest is used by next instruction and next instruction is G-, M· or A-unit instruction 

~ 2 . .4 If executed when a scalar floating·point operation (other than frep or frsqr) is in 
progress.(el 

faddz (same as faddp) 

famov.r (same as fadd.p) 

fladd.w 1 

flsub.w 

fix.v 

fld.y 

flush 

fmlow.dd 

fmov.r 

fmul.p 

+ 1 If {dest is used by next instruction and next instruction is M· or A·unit instruction 
(except when fiadd is used for fmov.dd or fmov.ss). 

+ 1 If (dest is used by next instruction and next instruction is G-unit instruction. 
~ 2 .. 4 If executed when a scalar floating-point operation (other than frep or frsqr) is in 

progress.(el 

+1 
~2 

+1 +R1 
+1 +R2 
+1 +Rl 
~2 

+2 
+R2 
+RN 

+RL1 
+TlB 

(same as faddp) 

(same as fadd.p) 

If this is the instruction after a st, fst or pst that hits the data cache. 
If (dest is referenced in the next two instructions. 
If 32·bit fld.l or 64·bit fld.d misses the data cache. 
If 128-bit fld.q misses the data cache. 
If data cache load miss in progress (except in the. following case). 
XP: If this instruction follows a data cache access that misses in the virtual tags but 
hits in the physical tags. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If data·cache line write-back due to snoop is in progress. 
XR: If address path full.(al 
XP: If address path full.(a) 
IfTlB miss. 

~ 3 XR: If preceded by another flush. 
~ 2 XP: If preceded by another flush. 

+ R2 XP: If data-cache line write-back due to snoop is in progress. 
+ 1 + RX If flush to modified line when store path full.(b) 

+ TlB If TlB miss. 

( ... and all other M-unit instruction except dual operations) 
+ 1 If (src1 refers to result of the prior operation (either scalar or pipelined). 
+ 1 If the prior operation is a double-precision multiply. 

~ 2 . .4 If executed when a scalar floating-point operation (other than frep or frsqr) is in 
progress.(e) 

fmov.ss and·fmov.dd same as fiadd.w 
fmov.sd and fmov.ds same as iadd.p . 

(same as fmlow.dd) 

2-138 



Instruction 

fnop 

form 

frcp.p 

frsqr.p 

fst.y 

fsub.p 

ftrunc.v 

fxfr 

fzchkl 

fzchks 

Intovr 

Ixfr 

Id.c 

Execution 
Clocks 

i860TM XP MICROPROCESSOR 

Condition 

(same as faddp) 

(same as fmlow.dd) 

(same as fmlow.dd) 

1 
+1 

+1+RL 
+2 

-2 

+R2 
-2 .. 4 

+RN 
+RL1 

+1+RX 
+TLB 

If followed by pipelinedfloating-point operation that overwrites the register 
being stored. 
If data cache load miss in progress. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 
XP: If data-cache line write-back due to snoop is in progress. 
If executed when a scalar floating-point operation (other than frcp or frsqr) is 
in progress,(el 
XR: If address path full.(al 
XP: If address path full.(al 
If cache miss when store path full,(bl 
IfTLB miss. 

(same as fadd.p) 

(same as fadd.p) 

1 
+1 

+1+R1 
+1+R2 
-2 .. 4 

1 
+1+R1 
+1+R2 
-2 

1 
+1 

+1+R1 
+1+R2 

If idest referenced in next instruction. 
If data cache load miss in progress for 64-bit read. 
If data cache load miss in progress for 12B-bit read. 
If executed when a scalar floating-point operation (other than frcp or frsqr) is 
in progress.(el 

(same as faddp) 

(same as faddp) 

If data cache load miss in progress for 64-bit read. 
If data cache load miss in progress for 12B-bit read. 
If fdest is referenced in the next two instructions. 

If idest referenced in next instruction. 
If data cache load miss in progress fOr 64-bit read .. 
If data cache load miss in progress for 12B~bit read. 

2-139 

II 



mov 

nop 

or 

orh 

pfadd.p 

pfaddp 

pfaddz 

pfam.p 

pfamov.r 

pfeq.p 

pfgt.p 

pfiadd.w 

pfisUD.W 

pfix.v 

i860TM XP MICROPROCESSOR 

Condition 

If idest referenced in next instruction. 
If this is the instruction after a st, fst or pst that hits the data cache. 
If data cache load miss in progress. 
If Id.x misses the data cache and a subsequent instruction references the 
idest of the Id.x (except for following case). 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path fuu.(al 
XP: If address path full.(al 
If cache miss when store path full.Cb) 
IfTLB miss. 

+ OA 

+ OA 

(same asfadci.p) 

(same as faddp) 

(same as faddp) 

1 ( ... and all other dual operations) 
+ 1 If fsrc1 refers to result of the prior operation (either scalar or pipelined). 
+ 1 If the prior operation is a double-precision multiply. 

~ 2 . .4 If executed when a scalar floating-point operation (other than frep or frsqr)is 
in progress.(el 

(same as fadd.p) 

(same as fadd.p) 

(same as fadd.p) 

(same as faddp) 

(same as faddp) 

(same as fadd.p) 

2·140 



Instruction 

pfld.y 

pfle.p 

pfmam.p 

pfmov.r 

pfmsm.p 

pfmul.p 

pfmul3.dd 

pform 

pfsm.p 

pfsub.p 

pftrunc.v 

pfzchkl 

pfzchks 

pst.d 

scyc.x 

shl 

shr 

shra 

shrd 

st.c 

Execution 
Clocks 

1 
+1+RL 
~2 

+ 1 +RL1 
+2+0A 

+2 

~2 

+R2 
+RN 

+RL1 
+TLB 

1 + OA 

3 
+1 +R1 
+1+R2 

i860TM XP MICROPROCESSOR 

Condition 

If data cache load miss in progress. 
If (dest is referenced in the next two instructions. 
If three pfld's are outstanding. 
XR: If pfld hits data cache. 
XP: If the prior instruction is a pfld.y that hits a modified line in the 
data cache. 
XP: If this instruction follows a.data cache access that misses in 
the virtual tags but hits in the physical tags. 
XP: If data-cache line write-back due to snoop is in progress. 
XR: If .address path full,(a) 
XP: If address path full.(a) 
IfTLB miss. 

(same as pfam.p) 

pfmov.ss and pfmov.dd same as faddp 
pfmov.sd and pfmov.ds same as fadd.p 

(same as pfam.dd) 

(same as fmlow.dd) 

(same as fmlow.dd) 

(same as faddp) 

(same as pfam.dd) 

(same as fadd.p) 

(same as fadd.p) 

(same as faddp) 

(same as faddp) 

(same as fst.d) 

If data cache load miss in progress for a ~ead of less than 128 bits. 
If data cache load miss in progress for 128~bit read. 

2-141 

fI 



i860TM XP MICROPROCESSOR 

Instruction 

st.x 

Execution 
Clocks 

Condition 

1 
+1 +RL 

+2 
+---+0 2 

If data cache load miss in progress. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 

+R2 
+RN 

+RL1 
+1+RX 

+TLB 

XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path full.(a) 
XP: If address path fulUa) 
If cache miss when store path full.(b) 
IfTLB miss. 

stlo.x 1 + OA 

subs 

subu 

trap 

unlock 

xor '1 

xorh 

10.4 Instruction Characteristics 

The following table lists some of the characterisics 
of each instruction. The characteristics are: 

• What processing unit executes the instruction. 
The codes for processing units are: 

A Floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P 
indicates that the instruction is pipelined. . 

• Whether the instruction is a delayed branch in­
struction. A 0 marks the delayed branches. 

• Whether execution is suppressed in user mode. 
An SU marks supervisor-only instructions. 

• Whether the instruction is available on both the 
i860 XR and i860 XP microprocessors. An XL 
marks instructions that are available only on the 
i860 XP microprocessor. 

.• Whether the instruction changes the condition 
code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. 
The codes used for exceptions are: 

IT Instruction Fault 

SE Floating-Point Source Exception 

RE Floating-Point Result Exception, including 
overflow,underflow, inexact result 

OAT Data Access Fault 

Note that this is not the same as specifying at which 
instructions faults may be reported. A result excep­
tion is reported on the subsequent floating-point in­
struction, pst, fst, or sometimes fld, pfld, and ixfr. 

The· instruction access fault IA T and the interrupt 
trap IN are not shown in the table because they can 
occur for any instruction. 

• Performance notes. These comments regarding 
optimum performance are recommendations only. 
If these recommendations are not followed, the 
i860 XP microprocessor automatically waits the 
necessary number of clocks to satisfy internal 
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table: 

1. The following instruction should not be a condi­
tional branch (bc, bnc, bc.t, or bnc.t). 

2. The destination should not be a source oper­
and of the next two instructions. 

3. A load should not directly follow a store that is 
expected to hit in the data cache. 

4. When the prior instruction is scalar, fsrc,1 
should not be the same as the fdest of the prior 
operation. 

2-142 



intel~ i860TM XP MICROPROCESSOR 

5. The fdes! should not reference the destination 
of the next instruction if that instruction is a 
pipelined floating-point operation. 

6. The destination should not be a source oper­
and of the next instruction. (For call and calli, 
the destination is r1.) 

. 7. When the prior operation is scalar and multipli­
er op1 is fsrc1, fsrc2 should not be the same as 
the fdest of the prior operation. 

8. When the prior operation is scalar, src1 and 
src2 of the current operation should not be the 
same as dest of the prior operation. 

9. A pfld should not immediately follow a pfld. 

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by pro­
grammers, assemblers, and compilers. The fol­
lowing notes define the alphabetic codes that 
appear in the instruction table: 

a. The sequential instruction following a delayed 
control-transfer instruction may not be another 
control-transfer instruction, nor a trap instruc­
tion, nor the target of a control-transfer instruc­
tion. 

Pipelined? 

Instruction 
Execution Delayed? 

Unit Supervisor? 
i860TM XP Only? 

adds E 
addu E 
and E 
andh E 
andnot E 

andnoth E 
bc E 
bc.t E D 
bla E D 
bnc E 

bnc.t E D 
br E D 
bri E D 
bte E 
btne E 

call E D 
calli ~ E D 
fadd.p A 
faddp G 
faddz G 

famov.r A 
fiadd.w G 
fisub.w G 
fix.p A , 
fld.y E 

NOTES: 

Sets 
CC? 

CC 
CC 
CC 
CC 
CC 
CC 

b. When using a bri to return from a trap handler, 
programmers should take care to prevent traps 
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts 
disabled) when the bri is executed. 

c. If fdest is not zero, fsrc1 must not be the same 
as fdest . 

d. When fsrc1 goes to multiplier op1 or to KR or 
KI, fsrc1 must not be the same as fdest. 

e. If dest is not zero, src1 and src2 must not be 
the same as dest. 

f. Isrc1 must not be the same register as isrc2 for 
the autoincrementing form of this instruction. 

g. Isrc1 must not be the same register as isrc2. 

h. flush must not be used in a locked sequence 
or in dual instruction mode. 

Faults 
Performance Programming 

Notes Restrictions 

1 
1 

a 
a,g 

a 
a 

a,b 

6 a 
6 a 

SE,RE 
8 
8 

SE,RE 
8 
8 

SE,RE 
DAT 2,3 f 

• On the iS60 XP microprocessor, the pipelined instructions can generate ITR with PI. 
•• On the iS60 XR micropocessor, the 12S-bit pfld.q is not available. If used it causes an instruction trap. 

·2-143 

fI 



i860TM XP MICROPROCESSOR 

Plpelined? 

Instruction 
Execution Delayed? Sets 

Faults 
Performance Programming 

Unit Supervisor? CC? Notes Restrictions 
1860TM XPOnly? 

flush E h 
fmlow.dd M 4 
fmul.p M SE,RE 4 
form G 8 
frcp.p M SE,RE 

frsqr.p M SE,RE 
fst.y E OAT 5 f 
fsub.p A SE,RE 
ftrunc.p A SE,RE 
fxfr G 6,8 

fzchkl G 8 
fzchks G 8 
Intovr E IT 
ixfr E 2 
Id.c E 

Id.x E OAT 6 
Idint.x E SU,XP OAT 
Idio.x E SU,XP OAT 
lock E 
or E CC 
orh E CC 

pfadd.p A P SE,RE* 
pfaddp G P * 8 e 
pfaddz G P * 8 e 
pfam.p A&M P SE,RE* 7 d 
pfamov.r A P SE,RP 

pfeq.p A P CC SE* 1 
pfgt.p A P CC SE* 1 
pfladd.w G P * 8 e 
pfisub.w G P * 8 e 
pflx.p A P SE,RE* " 

pfld.y E P,(XP)** OAT' 2,9 f 
pfmam.p A&M P SE,RE* 7 d 
pfmsm.p A&M P SE,RE* 7 d 
pfmul.p M P SE,RE* 4 c 
pfmul3.dd M P SE,RE* 4 c 
pform G P • 8 t./) e 
pfsm.p A&M P SE,RP 7 d 
pfsub.p A P SE,RE* 
pftrunc.p A P SE,RE* 
pfzchkl G P * 8 

NOTES: 
• On the i860 XP microprocessor, the pipelined instructions can generate ITR with PI . 
•• On the i860 XR micropocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap. 

2-144 



inteL i860™ XP MICROPROCESSOR 

Pipelined? 

Instruction 
Execution Delayed? Sets Performance Programming 

Unit Supervisor? CC? Faults Notes Restrictions 
i860TM XP Only? 

pfzchks .G P * 8 
pst.d E OAT 5 f 
scyc.x E SU,XP OAT 
shl E 
shr E 

shra E 
shrd E 
st.c E 
st.x E OAT 
stio.x E SU,XP OAT 

subs E CC 1 
subu E CC 1 
trap E IT 
unlock E 
xor E CC 
xorh E CC 

NOTES: 
• :on the i860 XP m~croprocessor, the pipelined instructions can generate ITR with PI. 

On the 1860 XR mlcropocessor, the 128·bit pfld.q is not available. If used it causes an instruction trap. 

10.5 Software Compatibility 

10.5.1 REQUIRED CHANGES 

To port existing systems software from the i860 XR 
micro~rocessor to the i860 XP microprocessor, the 
following changes may be required. Applications 
software does not require changes. 

1. Data cache flush. All four ways of the data cache 
must be flushed on the i860 XP microprocessor. 
The cache flush routine can be modified to check 
processor type in epsr or the DCS field of 
dirbase and flush the appropriate number of 
ways. 

2. Parity and bus error traps. If the i860 XP system 
signals these errors, the trap handler must be ex­
tended to handle them. Software must avoid test­
ing the BEF and PEF bits unless executing on the 
i860 XP microprocessor. 

3. LOCK# deactivation. On the i860 XP microproc­
essor, traps do not automatically deactivate the 
LOCK# signal, so the trap handler must do a 
data access to deactivate LOCK #. Trap handlers 
that already access data soon after invocation do 
not require this modification. 

4. Load pipe precision. The precision of the last 
stage of the load pipeline is specified by the LRP 
bit on the i860 XR microprocessor but by the 
LRPO and LRP1 bits on the i860 XP microproces-

sor. The procedure that restores· the load pipe 
must .check the processor type, use the appropri­
ate bits: and restore the correct precision. Pipe 
restoration code for the i860 XR microprocessor 
will work correctly on the i860 XP microprocessor 
if pfld.q is not used. 

5. Pre-accessed trap handler pages. Page-directory 
and page-table entries for the instruction pages 
of the trap handler and for the first data page 
accessed by the trap handler must always have 
A.= 1. Software modified to allocate page tables 
thiS way works on both i860 XR and i860 XP mi­
croprocessors. 

6. Page directory entry bit 7 must be zero. This is 
t~e bit that se~ects four Mbyte or four Kbyte page 
size. On the 1860 XR microprocessor, it is re­
served and should be set to zero. It must be set 
to zero for four Kbyte pages to work on the 
i860 XP microprocessor. 

10.5.2 PERFORMANCE OPTIMIZATIONS 

Software developers may wish to make the following 
performance enhancements in systems software for 
the i860 XP microprocessor. Systems software that 
must execute on both i860 XP and i860 XR systems 
can contain code both with and without the optimiza­
~ions. By testing the processor type, the appropriate 
Instruction path can be determined. 

2-145 

FI 



inlet i860™ XP MICROPROCESSOR 

1. Data cache flush. On the i860 XP microproces­
sor, a complete flushing of the data cache is not 
needed when changing context or marking a 
page not present. 

2. The epsr bits AI, 01, PI, and PT can be used on 
the i860 XP microprocessor to make trap han­
dlers more efficient. 

3. Four-Mbyte pages can be allocated to frame buff­
ers and the operating-system kernel, thereby re­
ducing the cost of TLB misses. 

10.5.3 NEW FEATURES 

Software that uses the new features available only 
on the i860 XP microprocessor will not be compati­
ble with thei860 XR microprocessor unless alter­
nate instruction paths are provided. 

Systems software features: 

1. New instructions Idio, stio, Idint, and scyc. 

2. Four-Mbyte pages. 

3. Privileged Registers pO, p1, p2, and p3. 

4. Concurrency control unit. 

5. 128-bit load instruction pfld.q. 

6. Support for virtual address aliases. 

Applications software features: 

1. Concurrency control unit. 

2. 128-bit load instruction pfld.q. The i860 XR mi­
croprocessor traps on pfld.q; therefore, software 
has the opportunity to emUlate a pfld.q with two 
pfld.d instructions. However, this strategy does 
not yield optimal performance on the i860 XR mi­
. croprocessor. 

10.5.4 NOTES 

On the i860 XP microprocessor, pages with WT = 1 
are cached with the write-through policy; whereas, 
on thei860 XR microprocessor, they are not cached 
at all. Because this change in the function of WT 
was anticipated in the i860 XR microprocessor docu­
mentation, no incompatibility should arise. 

11.0 REVISION HISTORY 

DATA SHEET REVISION REVIEW 

The following list represents the major differences 
between version 002 and version 001 of the 1860 XP 
Microprocessor Data Sheet. 

Section 2.2.4 AI bit has been changed to TAl in 
Figure 2.5. The explanation for PI 
bit has been expanded. 

Section 4.2.33 PCHK # signal description has 
been expanded. 

Section 4.2.35 Output buffer configuration has 
been added in PEN # signal de-
scription. . 

Section 4.2.37 RESET description has been ex­
panded. 

Section 5.1.3 Table 5.2 has been corrected. 
The explanation of write/read and 
read/write pipelining has been re­
vised. 

Section 5.2.2.4-5 The explanation of late back-off' 
mode has been expanded. 

Section 5.2.4 

Section 5.3.4 

Section 5.5 

Section 9.2 

Section 9.3 

Section 9.4 

Section 10.4 

Figure 5.27 has been corrected. 

The explanation of EWBE# tim­
ing has been corrected. 

RESET initialization description 
has been expanded. 

D.C. Characteristics are correct­
ed. 

A.C. Characteristics are replaced 
with nominal timings based on 
CL = 0 pF. 

Figure 9.3 and Figure 9.4 have 
been replaced with nominal A.C . 
timings based on CL = 0 pF. 

Figure 9.5 has been corrected for 
normal and high-current output 
buffers. 

Component buffer model has 
been added. 

Programming restriction on flush 
instruction has been added. 

2-146 



int'eL i860TM XP MICROPROCESSOR 

A 

8-bit pixel 

data type, 2.1.4 

16-bit pixel 

data type, 2.1.4 

16-bit values 

alignment requirements, 2.3 

32-bit binary floating-point 

single-precision real, 2.1.3 

32-bit integer 

data type, 2.1.1 

32-bit ordinal 

data type, 2.1.2 

32-bit pixel 

data type, 2.1.4 

32-bit values 

alignment requirements, 2.3 

64-bit binary floating-point 

double-precision real,· 2.1;3 

floating-point register file, 2.2.2 

64-bit integer 

data type, 2.1.1 

floating-point register file, 2.2.2 

64-bit values 

alignment requirements, 2.3 

128-bit load and store instructions 

floating-point register file, 2.2.2 

128-bit values 

alignment requirements, 2.3 

82495XP/82490XP cache 

BRDY # (burst ready), 4.2.7 

external secondary cache, 1.0 

write-once policy, 3.2.4.2 

A31-A3 (address pins) 

signal description, 4.2.1 

A (accessed) 

page-table entries (PTEs), 2.4.4.6 

AA 
fsr U-bit (update bit), 2.2.8 

access rights 

address translation caches, 3.1 

A.C. characteristics 

electrical data, 9.3 

addressing 

i860 XP microprocessor, 2.3 

modes, 2.7 

address space 

consistency, 3.3.1 

address translation 

algorithm, 2.4.5 

caches: 3.1 

faults, 2.4.6. 

P (present) bit, 2.4.4.2 

virtual addressing, 2.4 

adds (Add Signed) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

addu (Add Unsigned) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing,.1 0.3 

ADS# (address status) 

AE 

AHOLD (address hold), 4.2.3 

signal description, 4.2.2 

fsr U-bit (update bit), 2.2.8 

AHOLD (address hold) 

bus arbitration, 5.2 

signal description, 4.2.3 

algorithm 

address translation, 2.4.5 

cache replacement, 3.2.3 

aliasing 

instruction cache, 3.2.2 

internal instruction and data caches, 3.2 

2-147 

FI 



1860TMXP MICROPROCESSOR 

alignment 

requirements, 2.3 

andh (Logical AND High) 

instruction definition, 10.1 

instruction timing, 10.3 

and (Logical AND) 

instruction definition, 10.1 

instruction timing, 10.3 

andnoth (Logical AND NOT High) 

instruction definition, 10.1 

instruction timing, 10.3 

andnot (Logical AND NOT) 

instruction definition, 10.1 

instruction timing, 10.3 

ANSI/IEEE Standard, 754 to 1985,1.0 

AO 

fsr U-bit (update bit), 2.2.8 

arbitration 

bus operation, 5.2 

HOLD and HLDA, 5.2.1 

ATE (address translation enable) 

address translation, 2.4 

dirbase format description, 2.2.6 

AU 

fsr U-bit (update bit), 2.2.8 

B 

back-off 

bus cycle, 5.2.2 

late modes, 5.2.2.3 

one-clock late mode, 5.2.2.4 

two-clock late mode, 5.2.2.5 

bc (Branch on CC) 

instruction definition, 10.1 

instruction timing, 10.3 

bc.t (Branch on CC, Taken) 

instruction definition, 10.1 

instruction timing, 10.3 

BE7#-BEO# (byte enables) 

signal description, 4~2.4 

bear (bus error address register) 

format description, 2.2.10 

BE (big endian) 

data cache, 3.2.1 

epsr format description, 2.2.4 

BEF (bus error flag) 

epsr format description, 2.2.4 

BEh# 

BE7#-BEO# (byte enables),4.2.4 

BERR (bus error) 

bear (bus error address register), 2.2.10 

bus error trap, 2.8.7 

epsr BEF (bus error flag), 2.2.4 

psr 1M (interupt mode), 2.2.3 

signal description, 4.2.5 

big endian mode 

addressing, 2.3 

bla (Branch on LCC and Add) 

epsr AI (trap on autoincrement instruction),2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

BL (bus lock) 

dirbase format description, 2.2.6 

bnc (Branch on Not CC) 

instruction definition, 10.1 

instruction timing, 10.3 
\ 

bnc.t (Branch on Not CC, Taken) 

instruction definition, 10.1 

instruction timing, 10.3 

BOFF # (back-off) 

2-148 

ADS# (address status), 4.2.2 

BERR(bus error), 4.2.5 

bus arbitration, 5.2 

dirbase LB (late back-off mode), 2.2.6 

FLlNE# choice, 5.3.5.1 

signal description, 4.2.6 



i860™ XP MICROPROCESSOR 

boundary scan 

register cell ordering, 6.5 

BPR (bypass register) 

test, 6.2 

br (Branch Direct Unconditionally) 

instruction definition, 10.1 

instruction timing, 10.3 

BR (break read) 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 

BRDY# (burst ready) 

bear (bus error address register), 2.2.10 

BERR (bus error), 4.2.5 

epsr IL (interlock), 2.2.4 

locked access, 3.2.4.3 

signal description, 4.2.7 

write-once policy, 3.2.4.2 

BREQ (bus request) 

signal description, 4.2.8 

bri (Branch Indirect Unconditionally) 

instruction definition, 10.1 

brl (Branch Indirect Unconditionally) 

instruction timing, 10.3 

BS (bus or parity error trap in supervisory mode) 

epsr format description, 2.2.4 

BSR (boundary scan register) 

test, 6.2 

bte (Branch If Equal) 

instruction definition, 10.1 

instruction timing, 10.3 

btne (Branch If Not Equal) 

instruction timing, 10.3 

buffer 

models, 9.4 

size, selection with PEN #, 4.2.35, 5.5, 9.4.3 

burst cycles 

bus cycle, 5.1.2 

bus arbitration 

bus operation, 5.2 

bus and cache control unit 

function of, 1.0 

bus cycles 

back-off and restart, 5.2.2 

bus operation, 5.1 

type output pins, 4.1 

bus errors 

bear (bus error address register), 2.2.10 

trap, 2.8.7 

bus operation 

i860 XP microprocessor, 5.0 

BW (break write) 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 

BYPASS# (bypass) 

C 

signal description, 4.2.9 

TAP encoding, 6.3 

CACHE# (cacheability) 

BE7 # - BEO # (byte enables), 4.2.4 

signal description, 4.2.10 

cache 

address translation, 3.1 

consistency protocol, 3.2.4 

external secondary, 1.0 

inquiry cycles (snooping), 5.3 

internal instruction and data, 3.2 

invalidating entries, 3.3 

on-chip, 3.0 

replacement algorithm, 3.2.3 

cacheability 

address translation caches, 3.1 

consistency, 3.3.4 

calli (Indirect Subroutine Call) 

instruction definition, 10.1 

instruction timing, 10.3 

call (Subroutine Call) 

instruction definition, 10.1 

instruction timing, 10.3 

capture-DR 

test state, 6.4.5 

2-149 



intel® i860TM XP MICROPROCESSOR 

capture-IR 

test state, 6.4.11 

CC (condition code) 

psr format description, 2.2.3 

ccr (concurrency control register) 

OCCU initialization, 2.5.1 

format description, 2.2.12 

CCUBASE 

ccr (concurrency control register), 2.2.12 

OCCU addressing, 2.5.2 

OCCU initialization, 2.5.1 

CO (cache disable) 

bypassing instruction and data cache, 3.3 

page-table entries (PTEs), 2.4.4.5 

ClK (clock) 

signal description, 4.2.11 

co (CCU on) 

ccr (concurrency control register), 2.2.12 

color intensity shading 

pixel formats, 2.1.4 

compatibility 

pipelined cycles, 5.1.3 

software changes, 10.5.1 

concurrency control' unit (CCU) 

ccr (concurrency control register). 2.2.12 

detached CCU, 2.5 

NEWCURR register, 2.2.13 

consistency 

address space, 3.3.1 

cacheability, 3.3.4 

instruction cache, 3.3.2 

internal cache, 3.3 

load pipe, 3.3.5 

page table, 3.3.3 

protocol, 3.2.4 

write-once policy, 3.2.4.2 

control registers 

mgister set, 2.2 

copy-back policy 

data cache update, 3.2.1.1 

core execution unit 

function of, 1.0 

CS8 (code size 8-bit) 

BE7 # -BEO# (byte enables), 4.2.4 

dirbase format description, 2.2.6 

CTRl-format 

instructions, 10.2.2 

CTYP (cycle type) 

signal description, 4.2.12 

current mode 

high vs. normal, 4.2.35, 5.5, 9.3, 9.4.3 

cycles 

o 

back-off, 5.2.2.1 

burst cycles, 5.1.2 

interrupt acknowledge, 5.1.4 

pipelined, 5.1.3 

restart, 5.2.2.2 

special bus, 5.1.5 

063-00 (data pins) 

signal description, 4.2.14 

data access 

fault, 2.8.5 

data cache 

bypassing, 3.3 

flushing, 3.3 

function of, 1.0 

operation, 3.2 

organization, 3.2.1 

states, 3.2.4.1 

update policies, 3.2.1.1 

data types 

i860 XP microprocessor, 2.1 

OAT (data access trap) 

2-150 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 



intel® i860™ XP MICROPROCESSOR 

db (data breakpoint register) 

debugging i860 XP microprocessor, 2.9 

format description, 2.2.5 

psr BR (break read) and BW (break write), 2.2.3 

Obit 

dual-instruction mode, 2.6.2 

D/C# (data/code) 

signal description, 4.2.13 

D.C. characteristics 

electrical data, 9.2 

DCCU (detached concurrency control unit) 

addressing, 2.5.2 

ccr (concurrency control register), 2.2.12 

function of, 1.0 

initialization, 2.5.1 

internals, 2.5.3 

DCS (data cache size) 

epsr format description, 2.2.4 

o (dirty) 

page-table entries (PTEs), 2.4.4.6 

debugging 

i860 XP microprocessor, 2.9 

deferred-write policy 

data cache update, 3.2.1.1 

denormal 

special floating-point values, 2.1.3 

Detached 

STAT register description, 2.2.14 

detached CCU 

i860 XP microprocessor, 2.5 

d.fnop 

dual-instruction mode, 2.6.2 

. DID (device identification register) 

test, 6.2 

DIR 

virtual address, 2.4.2 

dirbase (directory base register) 

address space consistency, 3.3.1 

cache replacement algorithm, 3.2.3 

DCCU initialization, 2.5.1 

format description, 2.2.6 

instruction cache consistency, 3.3.2 

page directory, 2.4.3 

page table consistency, 3.3.3 

P (present) bit, 2.4.4.2 

disassemblers 

big endian mode, 2.3 

01 (trap on delayed instruction) 

epsr format description, 2.2.4 

OM (dual instruction mode) 

psr format description, 2.2.3 

DO (detached only) 

ccr (concurrency control register), 2.2.12 

double-precision real 

data type, 2.1.3 

double real value 

floating-point registers, 2.1.3 

double-shift instruction 

2-151 

psr SC (shift count), 2.2.3 

DP7-DPO (data parity) 

signal description, 4.2.15 

DPC (data-path control) 

dual-operation instructions, 2.6.3 

DPS (DRAM page size) 

dirbase format description, 2.2.6 

OS (delayed switch) 

psr format description, 2.2.3 

DTB (directory table base) 

dirbase format description, 2.2.6 

dual-instruction mode 

paralieliism, 2.6.2 

dual-operation instructions 

floating-point, 2.6.3 



i860™ XP MICROPROCESSOR 

E 

EAOS# 

AHOLO (address hold), 4.2.3 

EAOS# (external address status) 

signal description, 4.2.16 

epsr (extended processor status register) 

data cache, 3.2.1 

OCCU internals, 2.5.3 

format description, 2.2.4 

page-table entries (PTEs), 2.4.4.3 

EWBE # (external write buffer empty) 

epsr SO (strong ordering), 2.2.4 

signal description, 4.2.17 

exit1-0R 

test state, 6.4.7 

exit1-IR 

test state, 6.4.13 

exit2-0R 

test state, 6.4.9 

exit2-IR 

test state, 6.4.15 

EXTEST 

TAP encoding, 6.3 

F 

faddp (Add with Pixel Merge) 

instruction definition; 10.1 

instruction timing, 10.3 

fadd.p (Floating-Point Add) 

instruction definition, 10.1 

instruction timing, 10.3 

faddz (Add with Z Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

famov.r (Floating-Point Adder Move) 

instruction definition, 10.1 

instruction timing, 10.3 

fault 

address translation, 2.4.6 

data access, 2.8.5 

floating-point, 2.8.3 

instruction access, 2.8.4 

result exception fault, 2.8.3.1 

source exception fault, 2.8.3.1 

fiadd.w (Long-Integer Add) 

instruction definition, 10.1 

instruction timing, 10.3 

fir (fault instruction register) 

epsr 01 (trap on delayed instruction), 2.2.4 

format description, 2.2.7 

fisub.w (Long-Integer Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

fix.v (Floating-Point to Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

fld.y (Floating-Point Load) 

instruction definition, 10.1 

instruction timing, 10.3 

FLlNE# (flush line) 

BOFF # choice, 5.3.5.1 

signal description, 4.2.18 

floating-point 

adder, 1.0 

control unit, 1.0 

fault, 2.8.3 

instruction encoding, 10.2.3 

multiplier, 1.0 

register file, 2.2.2 

flush (Cache Flush) 

2-152 

cache replacement algorithm, 3.2.3 

dirbase RB (replacement block), 2.2.6 

flushing data cache, 3.3 

instruction definition, 10.1 

instruction timing, 10.3 

requirements summary, 3.3.6 



intel" i860™ XP MICROPROCESSOR 

fmlow.dd (Floating-Point Multiply Low) 

instruction definition, 10.1 

instruction timing, 10.3 

fmov.r (Floating-Point Reg-Reg Move) 

instruction definition, 10.1 

instruction timing, 10.3 

fmul.p (Floating-Point Multiply) 

instruction definition, 10.1 

instruction timing, 10.3 

fnop (Floating-Point No Operation) 

instruction definition, 10.1 

instruction timing, 10.3 

form (OR with MERGE Register) 

instruction definition, 10.1 

instruction timing, 10.3 

frcp.p (Floating-Point Reciprocal) 

instruction definition, 10.1 

instruction timing, 10.3 

frsqr.p (Floating-Point Reciprocal Square Root) 

instruction definition, 1,0.1 

instruction timing, 10.3 

fsr (floating-point status register) 

format description, 2.2.8 

pipelining status information, 2.6.1.2 

fst.y (Floating-Point Store) 

instruction definition, 10.1 

instruction timing, 10.3 

fsub.p (Floating-Point Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

FTE (floating-point trap enable) 

fsr format description, 2.2,8 

FT (floating-point trap) 

psr format description, 2.2.3 

ftrunc.v (Floating-Point to Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 ' 

fxfr (Transfer F-P to Integer Register) 

instruction definition, 10.1 

instruction timing, 10.3 

fzchkl (32-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

fzchks (16-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

FZ (flush zero) 

fsr format description, 2.2.8 

G 

graphics unit 

function of, 1.0 

H 

hardware interface 

i860 XP microprocessor, 4.0 

HIT# (cache inquiry hit) 

signal description, 4.2.19 

HITM# (hit modified line) 

internal cache consistency, 3.3 

signal description, 4.2.20 

HLDA (bus hold acknowledge) 

signal description, 4.2.21 

HOLD (bus hold) 

bus arbitration, 5.2 

signal description, 4.2.22 



1860TM XP MICROPROCESSOR 

i860 XP microprocessor 

bus operation, 5.0 

functional description, ·1.0 

hardware interface, 4.0 

instruction set, 8.0 

mechanical data, 7.0 

on-chip caches, 3.0 

programming interface, 2.0 

testability, 6.0 

IAT (instruction access trap) 

psr format description, 2.2.3 

IOCOOE 

TAP encoding, 6.3 

IEEE Standard 

for Binary Floating-Point Arithmetic, 1.0 

P1149.1/06 testability, 6.0 

IL (interlock) 

epsr format description, 2.2.4 

1M (interrupt mode) 

psr format description, 2.2.3 

indefinite 

special floating-point values, 2.1.3 . 

inexact result 

result exception fault, 2.8.3.2 

initialization 

at RESET, 5.5 

infinity 

special floating-point values,. 2.1.3 

IN (interrupt) 

psr format description, 2.2.3 

InLoop 

STAT register description, 2.2.14 

inquiry cycles 

data cache states, 3.2.4.1 

for line being cached, 5.3.2.1 

for line being replaced, 5.3.2.2 

snooping, 5.3 

write-back, 5.3.1 

instruction 

. access fault, 2.8.4 

characteristics, 10.4 

CTRL-format, 10.2.2 

definitions, 10.1 

dual-operation, 2.6.3 

encoding floating-point, 10.2.3 

fault, 2.8.2 

format and encoding, 10.2 

REG-format, 10.2.1 

timing, 10.3 

instruction cache 

bypassing, 3.3 

consistency, 3.3.2 

function of, 1.0 

operation, 3.2 

organization, 3.2.2 

instruction set 

abbreviations, 10.0 

extensions of i860 XR, 2.6 

i860 XP microprocessor, 8.0 

INT ICS8 (interrupt/code-size 8~bits) 

Signal description, 4.2.24 

integer 

data type, 2.1.1 

register file, 2.2.1 

internal cache 

consistency, 3.3 

interrupt 

acknowledge cycles, 5.1.4 

i860 XP microprocessor, 2.8 

trap, 2.8.8 

INT (interrupt) 

epsr format description, ~.2.4 

Intovr (Software Trap on Integer Overflow) 

instruction definition, 10.1 

instruction timing, 10.3 

INTpin 

2-154 

epsr INT (interrupt), 2.2.4 

psr 1M (interrupt mode), 2.2.3 



i860TM XPMICROPROCESSOR 

invalidation requirements 

summary, 3.3.6 

INV (invalidate) 

signal description, 4.2.23 

IR (instruction register) 

test, 6.3 

IRP (integer graphics) 

fsr format description, 2.2.8 

ITI (cache and TLB invalidate) 

dirbase format description, 2.2.6 

IT (instruction trap) 

psr format description, 2.2.3 

ilcfr (Transfer Integer to F-P Register) 

instruction definition, 10.1 

instruction timing, 10.3 

K 

KBO, KB1 (cache block) 

signal description, 4.2.25 

KEN# (cache enable) 

KI 

BE7#-BEO# (byte enables), 4.2.4 

bypassing instruction and data cache, 3.3 

DCCU addressing, 2.5.2 

internal instruction and data caches, 3.2 

locked access, 3.2.4.3 

signal description, 4.2.26 

special purpose register description, 2.2.9 

KNF (kill next floating-point instruction) 

psr format description, 2.2.3 

KR 

special purpose register description, 2.2.9 

L 

LB (late back-off mode) 

dirbase format description, 2.2.6 

LCC (loop condition code) 

psr CC (condition code), 2.2.3 

Id.c (Load from Control Register) 

fir (fault instruction register), 2.2.7 

instruction definition, 10.1 

instruction timing, 10.3 

Idint.x (Load Interrupt Vector) 

big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

Idio.x (Load liD) 

big end ian mode, 2.3 

extensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

Id.1 

flushing data cache, 3.3 

Id.x (Load Integer) 

DCCU .internals, 2.5.3 

instruction definition, 10.1 

instruction timing, 10.3 

LEN (data length) 

signal description, 4.2.27 

LFBSR (linear feedback shift register) 

cache replacement algorithm, 3.2.3 

little endian mode 

addressing, 2.3 

load pipe 

consistency, 3.3.5 

LOCK # (address lock) 

A (accessed) bit, 2.4.4.6 

cycle attribute, 5.4 

dlrbase BL (bus lock), 2.2.6 

signal description, 4.2.28 . 

lock (Begin Interlocked Sequence) 

dirbase BL (bus lock), 2.2.6 

instruction definition, 10.1 

instruction timing, 10.3 

locked access, 3.2.4.3 

2-155 



InteL i860TM XP MICROPROCESSOR 

locked access 

cache consistency,· 3.2.4.3 

lock instruction 

epsr IL (interlock), 2.2.4 

lock protocol 

instruction fault, 2.8.2.1 

LRPa (load pipe result precision) 

fsrformat description, 2.2.8 

LRP1 (load pipe result precision) 

fsr format description, 2.2.8 

M 

MA 

fsr U-bit (update bit), 2.2.8 

mechanical data 

i860 XP microprocessor, 7.0 

MERGE 

special purpose register description, 2.2.9 

MESI 

MI 

cache consistency protocol, 3.2.4 

write cycle reordering, 5.3.3 

fsr U-bit (update bit), 2.2.8 

M/IO# (memory-I/O) 

I signal description, 4.2.29 

MO 

fsr U-bit (update bit), 2.2.8 

mov (Constant-to-Register Move) 

instruction definition! 10.1 

mov (Register-Register Move) 

instruction definition, 10,1 

instruction timing, 10.3 

MU 

fsr U-bit (update bit), 2.2.8 

N 

NA# (next address request) 

locked access, 3.2.4.3 

signal description, 4.2.30 

write-once policy, 3.2.4.2 

NaN (Not a Number) 

special floating-point values, 2.1.3 

NENE# (next near) 

dirbase DPS (DRAM page size), 2.2.6 

signal description, 4.2.31 

Nested 

STAT register description, 2.2.14 

NEWCURR register 

DCCU internals, 2.5.3 

format description, 2.2.13 

nonpipelined cycle 

bus cycle, 5.1.3 

nop (Core-Unit No Operation) 

instruction definition, 10.1 

instruction timing, 10.3 

o 
offset 

addressing modes, 2.7 

virtual address, 2.4.2 

OF (overflow flag) 

epsr format description, 2.2.4 

on-chip caches 

i860 XP microprocessor, 3.0 

ordinal 

data type, 2.1.2 

orh (Logical OR High) 

instruction definition, 10.1 

instruction timing, 10.3 

or (Logical OR) 

2-156 

instruction definition, 10.1 

instiUction timing, 10.3 



i860™ XP MICROPROCESSOR 

output pins 

pins overview, 4.1 

overflow 

result exception fault, 2.8.3.2 

p 

package 

thermal specifications, 8.0 

PAGE 

virtual address, 2.4.2 

page directory 

little endian mode, 2.3 

page tables, 2.4.3 

paged virtual-address space 

addressing, 2.3 

page frame 

address, 2.4.4.1 

physical main memory, 2.4.1 

page table 

combining protection, 2.4.4.8 

consistency, 3.3.3 

entry format description, 2.4.4 

format description, 2.4.3 

little endian mode, 2.3 

for trap handlers, 2.4.4.7 

paging unit 

address translation caches, 3.1 

function of, 1.0 

parallelism 

dual-instruction mode, 2.6.2 

use of, 2.6 

parity error 

bear (bus error address register), 2.2.10 

psr 1M (interrupt mode), 2.2.3 

trap, 2.8.6 

pause-DR 

test state, 6.4.8 

pause-IR 

test state, 6.4.14 

PBM (page-table bit mode) 

epsr format description, 2.2.4 

PCD (page cache disable) 

bypassing instruction and data cache, 3.3 

CD (cache disable), 2.4.4.5 

signal description, 4.2.32 

PCHK# (parity check) 

signal description, 4.2.33 

PCYC (page cycle) 

signal description, 4.2.34 

PEF (parity error flag) 

epsr format description, 2.2.4 

PEN # (parity enable) 

bear (bus error address register), 2.2.10 

parity error trap, 2.8.6 

signal description, 4.2.35 

performance optimizations 

software compatibility, 10.5.2 

pfaddp (Pipelined Add with Pixel Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

pfadd.p (Pipelined Floating-Point Add) 

instruction definition, 10.1 

instruction timing, 10.3 

pfaddz (Pipelined Add with Z Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

pfamov.r (Pipelined Floating-Point Adder Move) 

instruction definition, 10.1 

instruction timing, 10.3 

pfam.p (Pipelined Floating-Point Add and Multiply) 

dual-operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

. special purpose registers, 2.2.9 

pfeq.p (Pipelined Floating-Point Equal Compare) 

instruction definition, 10.1 

instruction timing, 10.3 

2-157 

fI 



intel® i860TM XP MICROPROCESSOR 

pfgt.p (Pipelined Floating-Point Greater-Than 
Compare) 

instruction definition, 10.1 

instruction timing, 10.3 

pfiadd.w (Pipelined Long-Integer Add) 

instruction definition, 10.1 

instruction timing, 10.3 

pfisub.w (Pipelined Long-Integer Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

pfix.v (Pipelined Floating-Point to Integer 
Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

pfld (Pipelined Floating-Point Load) 

epsr PT (trap on pipeline use), 2.2.4 

load pipe consistency, 3.3.5 

pipeline loads, 2.6.1.5 

pfld.q 

extensions of i860 XR, 2.6 

pfld.y (Pipelined Floating-Point Load) 

instruction definition, 10.1 

instruction timing, 10.3 

pfle.p (Pipelined F-P Less-Than or Equal Compare) 

instruction definition, 10.1 

instruction timing, 10.3 

pfmam.p (Pipelined Floating-Point Add and Multiply) 

dual operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfmov.r (Pipelined Floating-Point Reg-Reg Move) 

instruction definition, 10.1 

instruction timing, 10.3 

pfmsm.p (Pipelined Floating-Point Subtract 
and Multiply) 

dual operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfmul3.dd (Three-Stage Pipelined Multiply 

instruction definition, 10.1 

instruction timing, 10.3 

pfmul.p (Pipelined Floating-Point Multiply) 

instruction definition, 10.1 

instruction timing, 10.3 

pform (Pipelined OR to MERGE Register) 

instruction definition, 10.1 

instruction timing, 10.3 

pfsm.p (Pipelined Floating-Point Subtract 
and Multiply) 

dual-operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfsub.p (Pipelined Floating-Point Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

pftrunc.v (Pipelined Floating-Point to 
Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

pfzchkl (Pipelined 32-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing" 1 0.3 

pfzchks (Pipelined 16-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

physical main memory 

page frame, 2.4.1 

physical tags 

internal instruction and data caches, 1.2 

PI bit 

using, 2.8.2.2 

PIM (previous interrupt mode) 

psr format description, 2.2.3 

pins overview 

hardware interface, 4.1 

2-158 



i860TM XP MICROPROCESSOR 

pipeline 

cycles, 5.1.3 

loads, 2.6.1.5 

operations, 2.6.1 

precision in, 2.6.1.3 

scalar transition, 2.6.1.4 

status information, 2.6.1.2 

PI (pipeline instruction) 

epsr format description, 2.2.4 

pixel 

data type, 2.1.4 

PM (pixel mask) 

psr format description, 2.2.3 

P (present) 

page-table entries (PTEs), 2.4.4.2 

privileged registers 

format description, 2.2.11 

processor 

revisions, 2.2.4 

type, 2.2.4 

programming interface 

i860 XP microprocessor, 2.0 

PS.(pixel size) 

psr format description, 2.2.3 

psr (processor status register) 

debugging i860 XP microprocessor, 2.9 

format description, 2.2.3 

page-table entries (PTEs), 2.4.4.3 

pst.d (Pixel Store) 

instruction definition, 10.1 

instruction timing, 10.3 , 

psr PS (pixel size) and PM (pixel mask), 2.2.3 

PT (trap on pipeline use) 

epsr format description, 2.2.4 

using, 2.8.2.2 

PU (previous user mode) 

psr format description, 2.2.3 

PWT (page write-through) 

signal description, 4.2.36 

WT (write-through), 2.4.4.4 

R 

ratings 

absolute maximum, 9.1 

RS (replacement block) 

dirbase format description, 2.2.6 

RC (replacement control) 

dirbase format description, -2.2.6 

REG-format 

instructions, 1 0.2.1 

register cell ordering 

boundary scan, 6.5 

replacement algorithm 

cache, 3.2.3 

RESET (system reset) 

AHOLD (address hold), 4.2.3 

bear (bus error address register), 2.2.10 

cache replacement algorithm, 3.2.3 

epsr SEF (bus error flag), 2.2.4 

epsr SO (strong ordering), 2.2.4 

initialization, 5.5 

signal description, 4.2.37 

trap, 2.8.9 

restart 

bus cycle, 5.2.2 

result exception fault 

floating-point, 2.8.3.1 

right-shift instruction 

psr SC (shift count), 2.2.3 

, RM (rounding mode) 

fsr format description, 2.2.8 

RR (result register) 

fsr format description, 2.2.8 

run-test/idle 

test state, 6.4.2 

2-159 



intel® 

S 

SAMPLE 

TAP encoding, 6.3 

scalar 

mode, 2.6.1.1 

operations, 2.6.1 

pipelined transition, 2.6.1.4 

SC (shift count) 

psr format description, 2.2.3 

scyc.x (Special Cycle,s) 

big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

select-OR-scan 

test state, 6.4.3 

select-IR-scan 

test state, 6.4.4 

serializing 

locked access, 3.2.4.3 

5E (source exception) 

fsr format description, 2.2.8 

shift-DR 

test state, 6.4.6 

shift-IR 

test state, 6.4.12 

shl (Shift Left) 

instruction definition, 10.1 

instruction timing, 10.3 

shra (Shift Right Arithmetic) 

instruction definition, 10.1 

instruction timing, 10.3 

shrd (Shift Right Double) 

instruction definition, 10.1 

instruction timing, 10.3 

i860TM XP MICROPROCESSOR 

shr (Shift Right) 

instruction definition, 10.1 

instruction timing, 10.3 

signal description 

hardware interface, 4.2 

single-precision real 

data type, 2.1.3 

single-transfer cycle 

bus cycle, 5.1.1 

SI (sticky inexact) 

fsr format description, 2.2.8 

snooping 

inquiry cycles, 5.3 

internal instruction and data caches, 3.2 

responsibility limits, 5.3.2 

software compatibility 

required changes, 10.5.1 

SO (strong ordering) 

epsr format description, 2.2.4 

source exception fault 

floating-point, 2.8.3.1 

spare 

signal description, 4.2.38 

special bus 

cycles, 5,1.5 

special-purpose registers 

register set, 2.2 

special values 

floating-point numbers, 2.1.3 

5T AT register 

2-160 

OCCU internals, 2.5.3 

format description, 2.2.14 



intel@ i860™ XP MICROPROCESSOR 

st.e (Store to Control Register) 

address translation, 2.4 

dirbase BL (bus lock), 2.2.6 

dirbase CSB (code size B-bit), 2.2.6 

fsr U-bit (update bit), 2.2.B 

instruction definition, 10.1 

instruction timing, 10.3 

privileged registers, 2.2.11 

stepping number 

epsr format description, 2.2.4 

stio.x (Store lID) 
big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of iB60 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

strong ordering mode 

inquiry cycle, 5.3.4 

st.x (Store Integer) 

OCCU internals, 2.5.3 

instruction definition, 10.1 

instruction timing, 10.3 

subs (Subtract Signed) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

subu (Subtract Unsigned) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing,·1 0.3 

supervisor/user mode 

addressing, 2.3 

T 

eer (concurrency control register), 2.2.12 

psr U (user mode), 2.2.3 

special purpose register description, 2.2.9 

tags 

internal instruction and data caches, 3.2 

2-161 

TAl (Trap On Autoincrement) 

epsr format description, 2.2.4 

fsr U-bit (update bit), 2.2.B 

TAP (test access port) 

controller, 6.4 

controller initialization, 6.6 

testability, 6.0 

TCK (test clock) 

signal description, 4.2.39 

TOI (test data input) 

signal description, 4.2.40 

TOO (test data output) 

signal description, 4.2.41 

test 

architecture, 6.1 

data registers, 6.2 

testability 

iB60 XP microprocessor, 6.0 

test-logic-reset 

test state, 6.4.1 

test state 

capture-DR, 6.4.5 

capture-IR, 6.4.11 

exit1-0R,6.4.7 

exit1-IR,6.4.13 

exit2-0R, 6.4.9 

exit2-IR, 6.4.15 

pause-DR, 6.4.B 

pause-IR,6.4.14 

run-test/idle, 6.4.2 

select-OR-scan, 6.4.3 

select-IR-scan, 6.4.4 

shift-DR, 604.6 

shift-IR, 6.4.12 

test-logic-reset, 6.4.1 

update-DR, 6.4.10 

update-IR, 6.4.16 

thermal specifications 

package, B.O 

.. 



i860TM XP MICROPROCESSOR 

TI (trap inexact) 

fsr format description, 2.2.8 

TLB 

address translation caches, 3.1 

DCCU addressing, 2.5.2 

internal cache consistency, 3.3 

TMS (test mode select) 

signal description, 4.2.42 

trap handler 

invocation, 2.8.1 

page tables, 2.4.4.7 

trap (Software Trap) 

bus error, 2.8.7 

i860 XP microprocessor, 2.8 

instruction cache consistency, 3.3.2 

instruction definition, 10.1 

instruction timing, 10.3 

interrupt, 2.8.8 

parity error, 2.8.6 

RESET, 2.8.9 

tri-state 

output pins, 4.1 

TRST # (test reset) 

signal description, 4.2.43 

U 

U-bit (update bit) 

fsr format description, 2.2.8 

underflow 

result exception fault, 2.8.3.2 

unlock (End Interlocked Sequence) 

dirbase BL (bus lock), 2.2.6 

epsr IL (interlock), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

update-DR 

test state, 6.4.10 

update-IR 

test state, 6.4.16 

user/supervisor mode 

ccr (concurrency control register), 2.2.12 

psr U (user mode), 2.2.3 

U (user) 

V 

page-table entries (PTEs), 2.4.4.3 

psr format description, 2.2.3 

VecCLK (clock power) 

signal description, 4.2.45 

Vee (system ground) 

signal description, 4.2.44 

virtual address 

address translation caches, 3.1 

CCUBASE, 2.2.12 

format description, 2.4.2 

i860 XP microprocessor, 2.4 

virtual tag 

instruction cache, 3.2.2 

internal instruction and data caches, 3.2 

Vss (ground) 

signal description, 4.2.44 

w 
wait state 

single-transfer cycle, 5.1.1 

WB/WT # (write-back/write-through) 

signal description, 4.2.46 

write-once policy, 3.2.4.2 

WP (write protect) 

epsr format description, 2.2.4 

page-table entries (PTEs), 2.4.4.3 

W /R # (write/read) 

2-162 

signal description, 4.2.47 

write-once policy, 3.2.4.2 



i860™ XP MICROPROCESSOR 

write-back 

data cache update policy, 3.2.1.1 

with FLiNE #, 5.3.5.2 

inquiry cycles, 5.3.1 

scheduling inquiry cycles, 5.3.5 

write cycle 

reordering due to buffering, 5.3.3 

write-once 

cache consistency, 3.2.4.2 

data cache update policy, 3.2.1.1 

write-through 

data cache update policy, 3.2.1.1 

WT (write-through) 

page-table entries (PTEs), 2.4.4.4 

write-through policy, 3.2.1.1 

W (writable) 

page-table entries (PTEs), 2.4.4.3 

x 
xorh (Logical Exclusive OR High) 

instruction definition, 10.1 

instruction timing, 10.3 

xor (Logical Exclusive OR) 

instruction definition, 10.1 

instruction timing, 10.3 

z 
Z-buffer 

special purpose registers, 2.2.9 

2-163 



i860™ XR 54-BIT MICROPROCESSOR 
• Parallel Architecture that Supports Up 

to Three Operations per Clock 
- One Integer or Control Instruction 

per Clock 
- Up to Two Floating-Point Results per 

Clock .. 

• High Performance Design 
....;.25/33.3/40 MHz Clock Rates 
- 80 Peak Single Precision MFLOPs 
- 60 Peak Double Precision MFLOPs 
- 64-Bit External Data Bus 
- 64-Bit Internal Instruction Cache Bus 
-128-Bit Internal Data'Cache Bus 

• High Level of Integration on One Chip 
- 32-Bit Integer and Control Unit 
- 32/64-Bit Pipelined Floating-Point 

Adder and Multiplier Units 
- 64-Bit 3-D Graphics Unit 
- Paging Unit with Translation 

Lookaside Buffer 
- 4 Kbyte Instruction Cache 
- 8 Kbyte Data Cache 

• Compatible with Industry Standards 
- ANSI/IEEE Standard 754-1985 for. 

Binary Floating-Point· Arithmetic 
-lnte1386™1486TM Microprocessor 

Data Formats and Page Table Entries 
-JEDEC 168-pin Ceramic Pin Grid 

Array Package (see Packaging 
Outlines and Dimensions, order 
#231369) 

• Easy to Use 
- On-Chip Debug Register 
- Assembler, Linker, Simulator, 

Debugger, C and FORTRAN 
Compilers, FORTRAN Vectorizer, . 
Scalar and Vector Math Libraries for 
both OS/2* and UNIX* Environments. 

The Intel i860™ XR Microprocessor (order codes A80B60XR·25, AB0860XR·33 and ABOB60XR·40) delivers 
supercomputing performance in a single VLSI component. The 64-bit design of the iB60 XR microprocessor 
balances integer, floating point, and graphics performance for applications such as engineering workstations, 
scientific computing, 3-0 graphics workstations, and multiuser systems. Its parallel architecture achieves high 
throughput with RISC design techniques, pipelined processing units, wide data paths, large on-chip caches, 
million-transistor design, and fast one-micron CHMOS IV silicon technology. 

A31-A3 063-00 CONTROL 

;. t of 

I BUS &: CACHE I 
CONTROL UNIT 

64 64 64 

$_$J 1 32 PHYSICAL FP FP FP 64 J ADD~ESS 
src1 result src2 

64 
DATA BUS T • 

1 
32 J FLOATING-POINT, I 64 I FP I 64 

FP INSTRUCTION BUS MULTIPLIER UNIT 
CONTROLLING UNIT I.e 

32 CORE INSTRUCTION BUS -I FP REGISTER FILE 

n!f! .. I INSTRUCTION I:::J RiSe CORE I r-
CACHE 64 64 • "T 132 CACHE lOW CACHE HIGH 

I FP I INSTRUCTION DATA DATA ADDER UNIT 

"I 
ADDRESS 30 ALIGNMENT 

f 64 
32 • • 

PAGE UNIT ~ 32 32 DATA ADDRESS I I DATA CACHE I GRAPHICS UNIT 

64 

240296-1 

Figure 0.1. Block Diagram 

Inte!. intel. Inte1386™. Inte1486™, i860 XR. Multibus II and Parallel System Bus are trademarks of Intel Corporation. 
'UNIX is a registered trademark of UNIX System Laboratories. Inc. OS/2 is a trademark of International Business Machines 
Corporation. 

2·164 
August 1991 

Order Number: 240296-005 



i860TM XR 64-Bit Microprocessor 

CONTENTS PAGE CONTENTS PAGE 

1.0 FUNCTIONAL DESCRiPTION ..... 2-168 

2.0 PROGRAMMING INTERFACE ..... 2-168 

2.1 Data Types ...................... 2-169 

2.1.1 Integer ..................... 2-169 

2.1.2 Ordinal ..................... 2-169 

2.1.3 Single- and Double-Precision 
Real ........................... 2-169 

2.1.4 Pixel ........................ 2-170 

2.2 Register Set ..................... 2-170 

2.2.1 Integer Register File ........ 2-171 

2.2.2 Floating-Point Register 
File ............................ 2-171 

2.2.3 Processor Status Register .. 2-171 

2.2.4 Extended Processor Status 
Register ....................... 2-174 

2.2.5 Data Breakpoint Register ... 2-175 

2.2.6 Directory Base Register ..... 2-175 

2.2.7 Fault Instruction Register ... 2-176 

2.2.8 Floating-Point Status 
Register ....................... 2-176 

2.2.9 KR, KI, T, and MERGE 
Registers ...................... 2-177 

2.3 Addressing ...................... 2-178 

2.4 Virtual Addressing ............... 2-178 

2.4.1 Page Forms ................ 2-180 

2.4.2 Virtual Address ............. 2-180 

2.4.3 Pages Tables ............... 2-180 

2.4.4 Page-Table Entries ......... 2-181 

2.4.7 Page Translation Cache .... 2-184 

2.5 Caching and Cache Flushing ..... 2-184 

2.6 Instruction Set ............. : ..... 2-185 

2.6.1 Pipelined and Scalar 
Operations ..................... 2-185 

2.6.1.1 Scalar Mode ........... 2-185 

2.6.1.2 Pipelining Status 
Information .................. 2-185 

2.6.1.3 Precision in the 
Pipelines .................... 2-187 fI 

2.6.1.4 Transition between 
Scalar and Pipelined 
Operations .................. 2-188 

2.6.2 Dual-Instruction Mode ...... 2-188 

2.6.3 Dual-Operation Instruction .. 2-189 

2.7 Addressing Modes ............... 2-189 

2.8 Traps and Interrupts ............. 2-190 

2.8.1 Trap Handler Invocation ... :2~190 

2.8.2 Instruction Fault ............ 2-191 

2.8.3 Floating-Point Fault ..... ~ ... 2-191 

2.8.3.1 Source Exception 
Faults ....................... 2-191 

2.8.3.2 Result Exception 
Faults ....................... 2-191 

2.8.4 Instruction Access Fault .... 2-192 

2.8.5 Data Access Fault .......... 2-192 

2.8.6 Interrupt Trap ............... 2-192 

2.8.7 ResetTrap ................. 2-192 

2.9 Debugging ...................... 2-193 

2.4.4.1 Page Frame Address .. 2-181 3.0 HARDWARE INTERFACE ......... 2-193 
2.4.4.2 Present Bit .. , .......... 2-181 

2.4.4.3 Writable and User 
Bits ......................... 2-181 

2.4.4.4 Write-Through Bit ...... 2-182 

2.4.4.5 Cache Disable Bit ...... 2-182 

2.4.4.6 Accessed and Dirty 
Bits ......................... 2-H12 

2.4.4.7 Combining Protection of 
Both levels of Page 
Tables ...................... 2-182 

2.4.5 Address Translation 
Algorithm ...................... 2-183 

2.4.6 Address Translation Faults .. 2-184 

2-165 

3.1 Signal Description ....... ; ....... 2-193 

3:1.1 Clock (ClK) ................ 2-193 

3.1.2 System Reset (RESET) ..... 2-193 

3.1.3 Bus Hold (HOLD) and Bus 
Hold Acknowledge (HlDA) ..... 2-193 

3.1.4 Bus Request (BREQ) ....... 2-194 

3.1.5 Interrupt/Code-Size (I NT I 
CS8) ........................... 2-1,94 

3.1.6 Address Pins (A31-A3) and 
Byte Enables (BE7#-BEO#) .. 2-195 

3.1.7 Data Pins (D63-DO) ........ 2-195 

3.1.8 Bus lock (lOCK #) ......... 2-195 



CONTENTS PAGE 

3.1.9 Write/Read Bus Cycle 
(W/R#) ....................... 2-196 

3.1.10 Next Near (NENE#) ....... 2-196 

3.1.11 Next Address Request 
(NA#) ......................... 2-196 

3.1.12 Transfer Acknowledge 
(READY#) ..................... 2-196 

3.1.13 Address Status (ADS #) ... 2-196 

3.1.14 Cache Enable (KEN #) .... 2-196 

3.1.15 Page Table Bit (PTB) ...... 2-197 

3.1.16 Boundary Scan Shift Input 
(SHI) ............. , ............. 2-197 

3.1.17 Boundary Scan Enable 
(BSCN) .............. , ......... 2-197 

3.1.18 Shift Scan Path (SCAN) .... 2-197 

3.1.19 Configuration 
(CC1-CCO) .................... 2-197 

3.1.20 System Power (V cd and 
Ground (Vss) ....... : ...... , ... 2-197 

3.2 Initialization ..................... 2:197 

3.3 Testability ....................... 2-198 

3.3.1 Normal Mode ............... 2-199 

3.3.2 Shift Mode .................. 2-199 

4.0 BUS OPERATION ................. 2-199 

4.1 Pipelining ........................ 2-199 

4.2 Bus State Machine .............. 2-200 

4.3 Bus Cycles ...................... 2-202 

4.3.1 Nonpipelined Read Cycles .. 2-202 

4.3.2 Nonpipelined Write Cycles .. 2-203 

4.3.3 Pipelined Read and Write 
Cycles ......................... 2-205 

4.3.4 Locked Cycles .. ; ........... 2-207 

4.3.5 HOLD and BREQ Arbitration 
Cycles ..................... , ... 2-207 

4.4 Bus States during RESET ........ 2-208' 

5.0 MECHANICAL DATA .............. 2-209 

6.0 PACKAGE THERMAL 
SPECIFICATIONS ................... 2-214 

7.0 ELECTRICAL DATA ............... 2-216 

7.1 Absolute Maximum' Ratings ...... 2-216 

7.2 D.C. Characteristics ............. 2-216 

7.3 A.C.Characteristics ............. 2-217 

CONTENTS PAGE 

8.0 INSTRUCTION SET . ............... 2-220 

8.1 Instruction Definitions in 
Alphabetical Order ....... , ........ 2-221 

8.2 Instruction Format and 
Encoding ......................... 2-228 

8.2.1 REG-Format Instructions ... 2-228 

8.2.2 CTRL-Format Instructions .. 2-231 

8.2.3 Floating-Point Instructions .. 2-232 

8.3 Instruction Timings .............. 2-234 

8.4 Instruction Characteristics ....... 2-236 

FIGURES 
Figure 0.1 Block Diagram ............. 2-164 

Figure 2.1 Real Number Formats' ..... 2-169 

Figure 2.2 Pixel Format Example ...... 2-170 

Figure 2.3 Registers and Data Paths .. 2-172 

Figure 2.4 Processor Status 
Register ................... 2-173 

Figure 2.5 Extended Processor Status 
. Register ................... 2-173 

Figure 2.6 Directory Base Register .... 2-174 

Figure 2.7 Floating-Point Status 
Register ................... 2-176 

Figure 2.8 Little and Big Endian Data 
Access .................... 2-179 

Figure 2.9 Format of a Virtual 
Address ................... 2-180 

Figure 2:10 Address Translation ....... 2-180 

Figure 2.11 Format of a Page Table 
Entry ...................... 2-181 

Figure 2.12 Pipelined Instruction 
Execution .................. 2-187 

2-166 



CONTENTS PAGE 

FIGURES (Continued) 

Figure 2.13 Dual-I nstruction Mode 
Transitions ................ 2-188 

Figure 2.14 Dual-Operation Data 
Paths ...................... 2-189 

Figure 3.1 Order of Boundary Scan 
Chain ...................... 2-199 

Figure 4.1 . Bus State Machine ......... 2-201 

Figure 4.2 Fastest Read Cycles ....... 2-202 

Figure 4.3 Fastest Write Cycles ....... 2-203 

Figure 4.4 Fastest Read/Write 
Cycles ..................... 2-204 

Figure 4.5 Pipelined Read Followed by 
Pipelined Write ............ 2-204 

Figure 4.6 P!pel!ned Write Followed by 
Plpelined Read ............ 2-205 

Figure 4.7 Pipelining Driven by NA# .. 2-206 

Figure 4.8 NA# Active with No Internal 
Bus Requ.est ............... 2-206 

Figure 4.9 Locked Cycles ............. 2-207 

Figure 4.10 HOLD, HLDA, and BREQ .. 2-208 

Figure 4.11 Reset Activities ............ 2-208 

Figure 5.1 Pin Configuration-View from 
Top Side ................... 2-209 

Figure 5.2 Pin Configuration-View from 
Pin Side ................... 2-210 

Figure 5.3 168-Lead Ceramic PGA 
Package Dimensions ...... 2-214 

Figure 6.1 Icc vs Case Temperature .. 2-215 

Figure 7.1 CLK, Input, and Output 
Timings .................... 2-218 

Figure 7.2 Typical Output Delay vs Load 
Capacitance under Worst-
Case Conditions ........... 2-219 

Figure 7.3 Typical Slew Time vs Load 
Capacitance under Worst-
Case Conditions ........... 2-219 

Figure 7.4 Typical Icc vs Frequency .. 2-219 

Figure 8.1 REG-Format Variations .... 2-229 

Figure 8.2 Core Escape Instruction 
Format .................... 2-230 

Figure 8.3 CTRL Instruction Forma~ ... 2-231 

Figure 8.4 Floating-Point Instruction 
Encoding .................. 2-232 

CONTENTS 

TABLES 

PAGE 

Table 2.1 Pixel Formats ................ 2-170 

Table 2.2 Values of PS ................. 2-174 

Table 2.3 Values of RB ................ 2-176 

Table 2.4 Values of RC ................ 2-176 

Table 2.5 Values of RM ................. 2-177 

Table 2.6 Combining Directory and Page 
Protection ................... 2-183 

Table 2.7 Instruction Set ............... 2-186 

Table 2.8 Types of Traps .............. 2-190 

Table 2.9 Register and Cache Values 
. . after Reset .................. 2-193 

Table 3.1 Pin Summary ................ 2-194 

Table 3.2 Indentifying Instruction 
Fetches ..................... 2-196 

Table 3.3 Cacheability based on KEN# 
and CD OR'ed WT ........... 2-197 

Table 3.4 Output Pin Status during 
RESET ...................... 2-198 

Table 3.5 Test Mode Selection .......... 2-198 

Table 3.6 Test Mode Latches .......... 2-198 

Table 5.1 Pin Cross Reference by 
Location ..................... 2-211 

Table 5.2 Pin Cross Reference by Pin 
. Name ....................... 2-212 

Table 5.3 Ceramic PGA Package 
Dimension Symbols .......... 2-213 

Table 6.1 Thermal Resistance eC/W) 
8JC and 8CA ................. 2-215 

Table 6.2 Maximum Allowable T A at 
Various Airflows ............. 2-216 

Table 7.1 D.C. Characteristics .......... 2-216 

Table 7.2 A.C. Characteristics .......... 2-217 

Table 8.1 Precision Specification ....... 2-220 

Table 8.2 FADDP MERGE Update ..... 2-228 

Table 8.3 Register Encoding ........... 2-228 

Table 8.4 REG-Format Opcodes .. , .... : 2-230 

Table 8.5 Core Escape Opcodes ....... 2-231 

Table 8.6 CTRL-FormatOpcodes ...... 2-231 

Table 8.7 Floating-Point Opcodes ...... 2-232 

Table 8.8 DPCEncoding ...... ~ ......... 2-233 

Table 8.9 Instruction Characteristics ... 2-239 

2-167 



intel® i860TM XR MICROPROCESSOR 

1.0 FUNCTIONAL DESCRIPTION 

As shown by the block diagram on the front page, 
the i860 XR microprocessor consists of 9 units: 

1. Core Execution Unit 
2. Floating-Point Control Unit 
3. Floating-Point Adder Unit 
4. Floating-Point Multiplier Unit 
5. Graphics Unit 
6. Paging Unit 
7. Instruction Cache 
8. Data Cache 
9. Bus and Cache Control Unit 

The core execution unit controls overall operation of 
the i860 XR microprocessor. The core unit executes 
load, store, integer, bit, and control-transfer opera­
tions, and fetches instructions for the floating-point 
unit as well. A set of 32 x 32-bit general-purpose 
registers are provided for the manipulation of integer 
data. Load and store instructions move 8-, 16-, and 
32-bit data to and from these registers. Its full set of 
integer, logical, and control-transfer instructions give 
the core unit the ability to execute complete systems 
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference. 

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can· be 
accessed as 16 x 64-bit registers, or 32 x 32-bit reg­
isters. Special load and store instructions can also 
access these same registers as 8 x 128-bit registers. 
All floating-point instructions use these registers as 
their source and destination operands. 

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and. result 
exceptions, and updating status bits in the floating­
point status register. The adder and multiplier can 
operate in parallel, producing up to two results per 
clock. The floating-point data types, floating-pointin­
structions, and exception. handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic 
(ANSI/IEEE Std 754-1985). 

The floating-point adder performs addition, subtrac­
tion, comparison, and conversions on 64- and 32-bit 
floating-point values. An adder instruction executes 
in three clocks; however, in pipelined mode, a new 
result is generated every clock. 

The floating-point multiplier performs floating-pOint 
and integer multiply and floating-point reciprocal op­
erations on 64- and 32-bit floating-point vaiues. A 
multiplier instruction executes in three to four clocks; 

however, in pipelined mode, a new· result can be 
generated every clock for single-precision and every 
other clock for double precision. 

The graphics unit has special integer logic that sup­
ports three-dimensional drawing in a graphics frame 
buffer, with color intensity shading and hidden sur­
face elimination via the Z-buffer algorithm. The 
graphics unit recognizes the pixel as an 8-, 16-, or 
32-bit data type. It can compute individual red, blue, 
and green color intensity values within a pixel; but it 
does so with parallel operations that take advantage 
of the 64-bit internal word size and 64-bit external 
bus. The graphics features of the i860 XR micro­
processor assume that the surface of a solid object 
is drawn with polygon patches whose shapes ap­
proximate the original object. The color intensities of 
the vertices of the polygon and their distances from 
the viewer are known, but the distances and intensi­
ties of the other points must be calculated by inter­
polation. The graphics instructions of the i860 XR 
microprocessor directly aid such interpolation. 

The paging unit implements protected, paged, virtual 
memory via a 64-entry, four-way set-associative 
memory called the TLB (Translation Lookaside Buff­
er). The paging unit uses the TLB to perform the 
translation of logical address to physical address, 
and to check for access violations; The access pro­
tection scheme employs two levels of privilege: user 
and supervisor. 

The instruction cache is a two-way set-associative 
memory of four Kbytes, with 32-byte blocks. It trans­
fers up to 64 bits per clock (320 Mbyte/sec at 
40 MHz). 

The data cache is a two-way set-associative memo­
ry of eight Kbytes, with 32-byte .blocks. It transfers 
up to 128 bits per clock (640 Mbyte/sec at 40 MHz). 
The i860 XR microprocessor normally uses write­
back caching, i.e. memory writes update the cache 
(if applicable) without necessarily updating memory 
immediately; however, caching can be inhibited by 
software where necessary. 

The bus and cache control unit performs data and 
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit, 
performs the data-cache or instuction-cache miss 
processing, controls TLB translation, and provides 
the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. 

2.0 PROGRAMMING INTERFACE 

The programmer-visible aspects of the architecture 
of the i860 XR microprocessor include data types, 
registers, instructions, and traps. 

2-168 



i860™ XR MICROPROCESSOR 

2.1 Data Types 

The i860 XR microprocessor provides operations for 
integer and floating-point data. Integer operations 
are performed on 32-bit operands with some support 
also for 64-bit operands. Load and store instructions 
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit 
operands. Floating-point operations are performed 
on IEEE-standard 32- and 64-bit formats. Graphics 
oriented instructions operate on arrays of 8-, 16-, or 
32-bit pixels. 

2.1.1 INTEGER 

An integer is a 32-bit signed value in standard two's 
complement form. A 32-bit integer can represent a 
value in the range -2,147,483,648 (-231 ) to 
2,147,483,647 (+ 231 - 1). Arithmetic operations on 
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using 
the 32-bit operations. 

There are also add and subtract instructions that op­
,erate on 64-bit long integers. 

Load and store instructions may also reference (in 
addition to the 32- and· 64-bit formats previously 
mentioned) 8- and 16-bit items in memory. When an 
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to 
32 bits. When an 8- or 16-bit item is stored from a 
register, the corresponding number of low-order bits 
of the register are used. 

2.1.2 ORDINAL 

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal 
can represent values in the range 0 to 
4,294,967,295 (+232 - 1). 

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals. 

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL 

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is 
a 32-bit binary floating-point number. Bit 31 is the 
sign bit; bits 30 .• 23 are the exponent; and bits 22 .. 0 
are the fraction. In accordance with ,ANSI/IEEE 
standard 754, the value of a single-precision real is 
defined as follows: ' 

1. If e = 0 and f* 0 or e = 255 then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 255,then the value is C-'1)S'X 1.1 x 
2e - 127. 

3. If e = 0 and f = 0, then'the value is signed zero. 

A double-precision real (also called "double real") 
data type is a 64-bit binary floating-point riumber. Bit 
63 is the sign bit; bits 62.~52 are the exponent; and 
bits 51 .. 0 are the fraction. In accordance with ANSI/ 
IEEE standard 754,the value of a doublecprecision 
real is defined as ,follows: 

. . ". 

1. If e = 0 and f,= 0 or e = 2047, then generate a 
floating-point source-exceptiori trap when Em­
countered in a floating-point operation. . ' 

2. If 0 < e < 2047, then the value is (-1)S x 1.1 x 
29-1023. ' 

Single-Precision Real 
31 23 

Is I 

t LfRACTION 

L. ___ ---=================EXPONENT SIGN 

Double-Precision Real' 
63 52 

Is I 

t LfRACTION l L.. _______________ EXPONENT 
L.. ______________ ...:.... __ ~ SIGN 

Figure 2.1. Real Number Formats 
2-169 

o 

240296-2 

o 

I 

240296-3 

• 



i860TM XR MICROPROCESSOR 

3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN ("Not a Number"), 
indefinite, and denormal generate a trap when en­
countered .. The trap handler implements IEEE-stan­
dard results. 

A doubl.e real value occupies an even/odd pair of 
floating-point registers. Bits 31 .. 0 are stored in the 
even-numbered floating-point register; bits 63 .. 32 
are stored in the next higher odd-numbered floating­
pOint register. 

2.1.4 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on 
color and intensity resolution requirements. Regard" 
less of the pixel size, the i860 XR microprocessor 
always operates on 64 bits worth of pixels at a time. 
The pixel data type is used by two kinds of instruc­
tions: 

• The selective pixel-store instruction that helps im­
plement hidden surface elimination. 

• The pixel add instruction that helps implement 
3-D color intensity shading. 

To perform color intensity shading efficiently in a va­
rietyof applications, the i860 XR microprocessor de­
fines three pixel formats according to Table 2.1 .. 

Figure 2.2 illustrates one way of assigning meaning 
to the fields of pixels. These assignments are for 
illustration purposes only. The i860 XR microproces­
sor defines only the field sizes, not the specific use 
of each field. Other ways of using the fields of pixels 
are possible. 

16-BIT PIXEL 

32-BIT PIXEL 

31 23 

R G 

Table 2.1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Bits of 

Size Color 1 Color 2 Color 3 
Other 

(in bits) Intensity Intensity Intensity 
Attribute 
(Texture) 

8 N (~ 8) bits of intensity' 8-N 
16 6 

I 
6 

I 
4 

32 8 8 8 8 
The intensity attribute fields may be assigned to· colors in 
any order convenient to the application. 

'With a·bit pixels, up to a bits can be used for intensity; the 
remaining bits can be used for any other attribute, such as 
color, The intensity bits must be the low-order bits of the 
pixel. 

2.2 Register Set 

As Figure 2.3 shows, the i860 XR microprocessor 
has the following registers: 

• An integer register file 
• A floating-point register file 

• Six control registers (psr, epsr, db, dirbase, fir, 
and fsr) 

• Four special-purpose registers (KR, KI, T, and 
MERGE) 

The control registers are accessible only by load 
and store control-register instructions; the integer 
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The 
special-purpose registers KR, KI, T, and MERGE are 
used by a few specific instructions. 

7 5 o 

. 8-BIT PIXEL ...... C--'"I ____ --' 

15 9 3 0 

R G B 

15 7 o 

B T 

240296-4 
I-Intensity, R-Red intensity, G-Green intensity, 8-81ue intensity, C-Color, T:-Texture 
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are 
defined, not the specific use of each field. 

Figure 2.2. Pixel Format Example 

2-170 



Intel· i860™ XR MICROPROCESSOR 

2.2.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32 bits wide, 
referred to as rO through r31, which are used for 
address computation and scalar integer computa­
tions. Register rO always returns zero when read, 
independently of what is stored in it. 

2.2.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits 
wide, referred to as fO through f31, which are used 
for floating-point computations. Registers to and f1 
always return zero when read, independently of 
what is stored in them. The floating-point registers 
are also used by a set of graphics operations, pri­
marily for 3D graphics computations. 

When accessing 64-bit floating-point or integer val­
ues, the i860 XR microprocessor uses an even/odd 
pair of registers. When accessing 128-bit values, it 
uses an aligned set of four registers (YO, f4, fS, ... , 
12S). The instruction must designate the lowest reg­
ister number of the set of registers containing 64- or 
128-bit values. Misaligned register numbers produce 
undefined results. The register with the lowest num­
ber contains the least significant part of the value. 
For 128-bit values, the register pair with the lower 
numbers contain the least significant 64 bits while 
the register pair with the higher numbers contain the 
most significant 64 bits. 

2-171 

The 128-bit load and store instructions, along with 
the 128-bit data path between the floating-point reg­
isters and the data cache help to sustain the extraor­
dinarily high rate of computation. 

2.2.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscel­
laneous state information for the current process. 
Figure 2.4 shows the format of the psr. 

• BR (Break Read) and BW (Break Write) enable a 
data access trap when the operand address 
matches the address in the db register and a 
read or write (respectively) occurs. 

o Various instructions set CC (Condition Code) ac-
cording to tests they perform. The branch-on- • 
condition-code instructions test its value. The bla 
instruction sets and tests LCC (Loop Condition 
Code). 

o 1M (Interrupt Mode) enables external interrupts if 
set; disables interrupts if clear. 

o U (User Mode) is set when the i860 XR micro-
, processor is executing in user mode; it is clear 
when the i860 XR microprocessor is executing in 
supervisor mode. In user mode, writes to some 
control registers are inhibited. This bit also con­
trols the memory protection mechanism. See 
section 2.4.4.3 for a description of memory pro­
tection in user and supervisor modes. 



Intel. 

32 

CONTROL 
REGISTERS 

128 

128 

32 

32 

i860TM XR MiCROPROCESSOR 

.... .....,,.:-.3:.;2:...- ADDRESS 

32 128 

32 

ADDRESS 

240296-5 

Figure 2.3. Registers and Data Paths 

2-172 



31 

31 

BREAK READ 
BREAK WRITE 

i860™ }{R MICROPROCESSOR 

CONDITION CODE ------------------------, 
lOOP CONDITION CODE ----------------------, 
INTERRUPT MODE ---------------------, 
PREVIOUS INTERRUPT MODE ------------------, 
USER MODE 
PREVIOUS USER MODE 
INSTRUCTION TRAP ------------------, I 
INTERRUPT -------------------, I 
INSTRUCTION ACCESS TRAP I ].1 DATA ACCESS TRAP -------------,. 
flOATING-POINT TRAP 
DELAYED SWITCH ----------------, 
DUAL INSTRUCTION MODE ----------, 

PM 

. . . . . 
tL Kill NEXT flOATING-POINT INSTRUCTION 

(RESERVED) 
SHIrT COUNT 
PIXEL SIZE 
PIXEL MASK 

'Can be changed only from supervisor level. 

Figure 2.4 Processor Status Register 

INTERLOCK -----'--------------, 

WRITE-PROTECT MODE 11 
DATA CACHE SIZE ------, 

(RESERVED) 

t t t ~ (RESERVED) I l '----------- :tGG~~6~:~EM~~EMODE 
'-------------- OVERFLOW flAG 

'Can be changed only from supervisor level. 

Figure 2.5 Elttended Processor Status Register 

PROCESSOR 
TYPE 

240296-6 

240296-31 

o PIM (Previous Interrupt Mode) and PU (Previous 
User Mode) save the corresponding status bits 
(1M and U) on a trap, because those status bits 
are changed when a trap occurs. They are re­
stored into their corresponding status bits when 
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr. 

o OS (Delayed Switch) is set if a trap occurs during 
the instruction before dual-instruction mode is en­
tered or exited. If OS is set and DIM (Duallnstruc­
tion Mode) is clear, the i860 XR microprocessor 
switches to dual-instruction mode one instruction 
after returning from the trap handler. If OS and 
DIM are both set, the i860 XR microprocessor 
switches to single-instruction mode one instruc­
tion after returning from the trap handler. 

o FT (Floating-Point Trap), OAT (Data Access 
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags. 
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits 
to determine which condition or conditions have 
caused the trap. 

2-173 

o When a trap occurs, the. i860 XR microprocessor 
sets DIM if it is executing in dual-instruction 
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set after returning from a 
trap handler, the i860 XR microprocessor re­
sumes execution in dual-instruction mode. 

fI 



. +_1 
In'el® i860iM XR MiCROPROCESSOR 

• When KNF (Kill Next Floating-Point Instruction) is 
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit 
is interpreted). A trap handler sets KNF if the 
trapped floating-point instruction should not be 
reexecuted. 

• SC (Shift Count) stores the shift count used by 
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion. 

• PS (Pixel Size) and PM (Pixel Mask) are used by 
the pixel-store instruction and by the graphics in­
structions. The values of PS control pixel size as 
defined by Table 2.2. The bits in PM correspond 
to pixels to be updated by the pixel-store instruc­
tion pst.d. The low-order bit of PM corresponds 
to the low-order pixel of the 54-bit source oper­
and of pst.d. The number of low-order bits of PM 
that are actually used is the number of pixels that 
fit into 54-bits, which depends upon PS. If a bit of 
PM is set, then pst.d stores the. corresponding 
pixel. Refer also to the pst.d instruction in section 
B. 

Table 2.2. Values of PS 

Value 
Pixel Size Pixel Size 

in bits in bytes 

00 B 1 
01 15 2 
10 32 4 
11 (undefined) (undefined) 

2.2.4 EXTENDED PROCESSOR STATUS 
REGISTER 

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows 
the format of the epsr. 

., The processor type is one for the i850 XR micro­
processor. 

., The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor. 

.. IL (Interlock) is set if a trap occurs after a lock 
instruction but before the load or store following 
the subsequent unlocl< instruction. IL indicates to 
the trap handler that a locked sequence has 
been interrupted. When the trap handler finds IL 
set, it should scan backwards for the lock in­
struction and restart at that point. The absence of 
a lock instruction within 30-33 instructions of the 
trap indicates a programming error. 

o WP (write protect) controls the semantics of the 
W bit of page table entries. A clear W bit in either 
the directory or the page table entry causes 
writes to be trapped. When WP is clear, writes 
are trapped in user mode, but not in supervisor 
mode. When WP is set, writes are trapped in both 
user and supervisor modes. After the value of the 
WP bit is changed, the TLB must be invalidated 
by setting the ITI bit of the dirbase register, be­
fore any stores are performed. 

" INT (Interrupt) is the value of the INT input pin. 

o DCS (Data Cache Size) is a read-only field that 
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + DCS; there­
fore, a value of zero indicates 4 Kbytes, one indi­
cates 8 Kbytes, etc. 

ADDRESS TRANSLATION ENABLE ------------------------, 

DRAM PAGE SIZE -------------------------[ BUS LOCK -------------------------, 

I-CACHE, TLB INVALIDATE - __ j.\ j . (RESERVED) -----------------------'--.-
CODE SIZE 8-BIT -----'------------------
REPLACEMENT BLOCK ----------------, 
REPLACEMENT CONTROL -------------:---

31 12 

DIRECTORY TABLE BASE (DTB) 

'" * * '" '" * * * '" 
240296-7 

'Can be changed only from supervisor level 

Figure 2.6. Directory Base Register 

2-174 



i860TM XR MICROPROCESSOR 

" PBM (Page-Table Bit Mode) determines which bit 
of page-table entries is output on the PTB pin. 
When PBM is clear, the PTB signal reflects bit CD 
of the page-table entry used for the current cycle. 
When PBM is set, the PTB signal reflects bit WT 
of the page-table entry used for the current cycle. 

.. BE (Big Endian) controls the ordering of bytes 
within a data item in memory. Normally (i.e. when 
BE is clear) the i860 XR microprocessor operates 
in little endian mode, in which the addressed byte 
is the low-order byte. When BE is set (big endian 
mode), the low-order three bits of all load and 
store addresses are complemented, then 
masked to the appropriate boundary for align­
ment. This causes the addressed byte to be the 
most significant byte. Section 2.3 discusses little 
and big endian addressing. 

o OF (Overflow Flag) is set by adds, addu, subs, 
and subu when integer overflow occurs. For 
adds and subs, OF is set if the carry from bit 31 
is different than the carry from bit 30. For addu, 
OF is set if there is a carry from bit 31. For subu, 
OF is set if there is no carry from bit 31. Under all 
other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr 
instruction. OF cannot be written in user mode 
using ST.C. 

2.2.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to gener­
ate a trap when the i860 XR microprocessor makes 
a data-operand access to the address stored in this 
register. The trap is enabled by BR and BW in psr. 
The db register can only be changed from supervi­
sor level. When comparing, a number of low order 
bits of the address are ignored, depending on the 
size of the operand. For example, a 16-bit access 
ignores the low-order bit of the address when com­
paring to db; a 32-bit access ignores the low-order 
two bits. This ensures that any access that overlaps 
the address contained in the register will generate a 
trap. The OAT occurs before the. data is accessed 
and prevents the load or store from completing. 

2.2.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 
2.6) controls address translation, caching, and bus 
options. The dirbase register can only be changed 
from supervisor level. The BL bit is changed from 
user level with the lock and unlock instructions. 

.. ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm. 
The data cache must be flushed before changing 
the ATE bit. 

oOPS (DRAM Page Size) controls how many bits 
to ignore when comparing the current bus-cycle 

2-175 

address with the previous bus-cycle address to 
generate the NENE# signal. This feature allows 
for higher speeds when using static column or 
page-mode DRAMs and consecutive reads and 
writes access the row. The comparison ignores 
the low-order 12 + DPS bits. A value of zero is 
appropriate for one bank of 256K x n RAMs, 1 
for 1 M x n RAMS, etc. For interleaved memory, 
increase DPS by one for each power of interleav­
ing-add one for 2-way, and two for 4-way, etc. 

o When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK # signal is asserted the 
next bus cycle whose internal bus request is gen­
erated after BL is set. It remains set on every 
subsequent bus cycle as long as BL remains set. 
The LOCK # signal is deasserted on the next 
load or store instruction after BL is cleared. Traps 
immediately clear BL. The lock and unlock 
instructions control the BL bit. The result of modi­
fying BL with the st.c instruction is not defined. 

o ITI (I-Cache, TLB Invalidate), when set in the val­
ue that is loaded into dirbase, causes all entries 
in the instruction cache and address-translation 
cache (TLB) to be invalidated. The ITI bit does 
not remain set in dirbase. ITI always' appears as 
zero when reading dirbase. Section 2.5 discuss­
es flushing the data cache before invalidating the 
TLB. 

" When CS8 (Code Size 8-Bit) is set, instruction 
cache misses are processed as 8-bit bus cycles. 
When this bit is clear, instruction cache misses 
are processed as 64-bit bus cycles. This bit can 
not be set by software; hardware sets this bit at 
initialization time. It can be cleared by software 
(one time only) to allow the system to execute out 
of 64-bit memory after bootstrapping from 8-bit 
EPROM. Anondelayed branch to code in 64-bit 
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order 
to make the transition from 8·bit to 64-bit memory 
occur at the correct time. The branch instruction 
must be aligned on a 64-bit boundary. 

o RB (Replacement Block) identifies the cache 
block to be replaced by cache replacement algo­
rithms. The high-order bit of RB is ignored by the 
instruction and data caches. RB conditions the 
cache flush instruction flush, which is discussed 
in Section 8. Table 2.3 explains the values of RB. 

o RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC. 

o DTB (Directory Table Base) contains the highcor­
der 20 bits of the physical address of the page 
directory when address translation is enabled (i.e. 
ATE = 1). The low-order 12 bits of the address 
are zeros. 



ini'ei® 

Value 

0 0 
0 1 
1 0 
1 1 

Value 

00 

01 

10 

11 

i860TM XR MICROPROCESSOR 

FLUSH ZERO 
TRAP INEXACT --~~----------------------, 
ROUNDING MODE ------------------------, 
UPDATE 
FLOATING-POINT TRAP ENABLE -----------------, 
(RESERVED) ----------------------, 
STICKY INEXACT FLAG ------------------, 

~~~~I~~I~~C~~6~R~L-OW ~-==-----,l-.llil j MULTIPLIER OVERFLOW ---------------,' 
MULTIPLIER INEXACT --------------,
MULTIPLIER ADD ONE -------------,
ADDER UNDERFLOW -------------,
ADDER OVERFLOW ------------,

1
·,1 Itt. ADDER INEXACT ADDER ADD ONE

RESULT REGISTER L________ ADDER EXPONENT
. (RESERVED)

. LOAD PIPE RESULT PRECISION
INTEGER(GRAPHICS) PIPE RESULT PRECISION

MULTIPLIER PIPE RESULT PRECISION
ADDER PIPE RESULT PRECISION

(RESERVED)

240296-8

Figure 2.7. Floating-Point Status Register

Table 2.3. Values of RB

Replace Replace Instruction
TLB Block and Data Cache Block

0 0
1 1
2 0
3 1

Table 2.4. Values of RC

Meaning

Selects the normal replacement
algorithm where any block in the set
may be replaced on cache misses in all
caches.

Instruction, data, and TLB cache
misses replace the block selected by
RB. The instruction and data caches
ignore the high-order bit of RB. This
mode is used for instruction cache and
TLB testing.

Data cache misses replace the block
selected by the low-order bit of RB.
Instruction and TLB caches use
random replacement.

Disables data cache replacement.
Instruction and TLB caches use
random replacement.

2.2.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the
instruction that created the conditions that required
the trap). The fir is a read-only register. In single-in­
struction mode, using a Id.c instruction to read the
fir anytime except the first time after a trap saves in
idest the address of the Id.c instruction; in dual-in­
struction mode, the address of its floating-point com­
panion(address of the Id.c - 4) is saved.

2.2.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the
floating-point trap and rounding-mode status for the
current process. Figure 2.7 shows its format. The fsr
is writable in user level.

• If FZ (Flush Zero) is clear and underflow occurs,
a result-exception trap is generated. When FZ is
set and underflow occurs, the result is set to zero,
and no trap due to underflow occurs.

o If TI (Trap Inexact) is clear, inexact results do not
cause a trap. If TI is set, inexact results cause a
trap. The sticky inexact flag (SI) is set whenever
an inexact result is produced, regardless of the
setting of TI.

• RM (Rounding Mode) specifies one of the four
rounding modes defined by the IEEE standard.
Given a true result b that cannot be represented

intel· i860™ XR MICROPROCESSOR

Table 2.5. Values of RM

Value Rounding Mode

00 Round to nearest or even

01 Round down (toward - 00)
10 Round up (toward + 00
11 Chop (toward.zero)

by the target data type, the i860 XR microproces­
sor determines the two representable numbers a
and c that most closely bracket b in value (a < b
< c). The i860 XR microprocessor then rounds
(changes) b to a or c according to the mode se­
lected by RM as defined .in Table 2.5. Rounding
introduces an error in the result that is less than
one least-significant bit.

o The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up­
dating of the result-status bits (AE, AA, AI, AD,
AU, MA, MI, MO, and MU) in the first-stage of the
floating-point adder and multiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond­
ing bits in the value that is being loaded. A st.e
always updates fsr bits 21 .. 17 and 8 .. 0 directly.
The U-bit does not remain set; it always appears
as zero when read.

o The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result).

• SI (Sticky Inexact) is set when the last stage re­
sult of either the multiplier or adder is inexact (I.e.
when either AI or MI is set). SI is "sticky" in the
sense that it remains set until reset by software.
AI arid MI, on the other hand, can by changed by
the subsequent floating-point instruction.

• SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor­
rnals, infinities, and all NaNs (both quiet and sig­
naling).

• When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last stage result of the multiplier.

When read from the fsr, the result-status bits AA,
AI, AD, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

The Adder Add One and Multiplier Add One bits
indicate that the absolute value of the result frac-

Rounding Action

Closer to b of a or c; if equally
close, select even number
(the one whose least
significant bit is zero).
a
c
Smaller in magnitude of a or c.

tion grew by one least-significant bit due to
rounding. AA and MA are not influenced by the
sign of the result.

After a floating-point operation in a given unit (ad-
der or multiplier), the result-status bits of that unit FI
are undefined until the point at which result ex-
ceptions are reported.

When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re­
sult-status bits in the fsr. When the U-bit is not
set, result-status bits in the word being written to
the fsr· are ignored.

In a floating-point dual-operation instruction (e.g.
add-and-multiply or subtract-and-multiply), both
the multiplier and the adder may set exception
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that
unit.

o RR (Result Register) specifies which floating­
point register (fO-f31) was the destination regis­
ter when a result-exception trap occurs due to a
scalar operation.

• LRP (Load Pipe Result Precision), .IRP (Integer
(Graphics) Pipe Result Precision), MRP (Multiplier
Pipe Result Precision), and ARP (Adder Pipe Re­
sult Precision) aid in restoring pipeline state after
a trap or process switch. Each defines the preci­
sion of the last stage result in the corresponding
pipeline. One of these bits is set when the result
in the last stage of the corresponding pipeline is
double precision; it is cleared if the result is single
precision. These bits cannot be changed by soft­
ware.

2.2.9 KR, KI, T, AND MERGE REGISTERS

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point
instructions pfam, pfmam, pfsm, and pfmsm,

2-177

inlei. i860TM XR MICROPROCESSOR

which initiate both an adder (A-unit) operation and a
multiplier (M-unit) operation. The KR, KI, and T regis­
ters can store values from one dual-operation in­
struction and supply them as inputs to subsequent
dual-operation instructions. (Refer to Figure 2.14.)

The MERGE register is used only by the graphics
instructions. The purpose of the MERGE register is
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a
Z-buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed ~o add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

Refer to the instruction descriptions in section 8 for
more information about these registers. .

2.3 Addressing

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address
space. Address arithmetic is performed using 32-bit
input values and produces 32-bit results. The low-or­
der 32 bits of the r~sult are used in case of overflow.

Normally, multibyte data values are stored in memo­
ry in little endian format, Le., with the least significant
byte at the lowest memory address. As an option,
the ordering can be dynamically selected by soft­
ware in supervisor mode. The i860 XR micropro.ces­
sor also offers big end ian mode, in which the most
significant byte of a data item is at the lowest ad­
dress. Figure 2.8 shows the difference between.the
two storage modes, Big endian and little endian data
areas should not be mixed within a 64-bit data word.
Illustrations of data structures in this data sheet
show data stored in little endian mode, Le., the low­
order byte is at the lowest memory address.

Code accesses are always done with little endian
addressing. This implies that code will appear differ­
ently than documented here when accessed as big
endian data. Intel recommends that disassemblers
running in a big endian system, convert instructions
which have been read as data back to little endian
form and present them in the format documented
here.

Page directories and page tables are also accessed
in little endian mode, regardless of the value of the
BE bit.

Alignment requirements are as follows (any violation
results in a data-access trap): . .

• 128-bit values are aligned on 16-byte boundaries
when referenced in memory (Le. the four least
significant address bits .must be zero).

o 64-bit values are aligned on 8-byte boundaries
when referenced in memory (Le. the three least
significant address bits must be zero).

• 32-bit values are aligned on 4-byte boundaries
when referenced In memory (Le. the two least
significant address bits must be zero).

• 16-bit values are aligned on 2~byte boundaries
when referenced in memory (Le. the least signifi­
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the i860 XR
microprocessor maps instruction and data virtual ad­
dresses into physical addresses before referencing
memory. This address transformation is compatible
with that of the Intel386™ microprocessor and im­
plements the basic features neede? for page-orient­
ed virtual-memory systems and page-level protec-
~~ .

The address translation is optional. Address transla­
tion is in effect only when the ATE bit of dirbase is
set. This bit is typically set by the operating system
during software initialization. The ATE bit must be
set if the operating system is to implement page-ori­
ented protection or page-oriented virtual memory.

2-178

MAIN MEMORY

WORD ,I I
WORDO H G FED C B A

d63 . dO

"1\
iFi
c: ...
CD LITTLE ENDIAN BIGENDIAN
I\)

CD
!; Byte Enables DATA BUS r16 Byte Enables DATA BUS .. (BE#) d63 dO d31 dO (BE#) d63 dO CD
DI Id.b O(rO), r16 0 A A 7 H :::I

~ Q, Id.b 1(rO), r16 1 B B 6 G
-..J m

Id.b 2(rO), r16 2 C C 5 F co iFi
I'll Id.b 3(rO), r16 3 D D 4 E
:::I 4 E E 3 D Q, Id.b 4(rO), r16
iii· 5. F F 2 C
:::I Id.b S(rO), r16

6 G G 1 B
~ Id.b 6(rO), r16 H H n 7 0 A
n Id.b 7(rO), r16 CD
1/1 d63 dO d31 dO d63 dO
1/1
CD .Id.s O(rO), r16 1:0 0 [J] 7:6 Q 1/1

Id.s 2(rO), r16 3:2 DC D C 5:4 FE
Id.s 4(rO), r16 5:4 FE F E 3:2 DC
Id.s 6(rO), r16 7:6 HG H G 1:0 . BA

d63 dO d31 dO d63 dO

Id.1 O(rO), r16 3:0 I DC B AI I~ C B ~I 7:4
IH G FE DC B AI

Id.l 4(rO), r16 7:4 HGFE G F 3:0

NOTE:
64· and 128-bit big endian accesses are treated the same as little endian accesses.

II

r16

d31 dO

H
G
F
E
D
C
B
A

d31 dO

[J] F E
. D C

B A

d31 dO

I~ G F ~I C B

_.
l

@

iii
0)
o
-I
~

>< ::u
s:: o
::u
o
" ::u
o o
m
tJ)
tJ)

o ::u

'W
~
Iiiiil
F

~
~
~
2:el
.~

inteJ· i860TM XR MICROPROCESSOR

31 21 11 o
DIR PAGE OFFSET I,

L-________ ~ ______ ~ __ ~--~~--------~----------------------~

Figure 2.9. Format of a Virtual Address

Address translation is disabled when the processor
is reset. It is enabled when a store to dirbase sets
the ATE bit. It is disabled again when a store clears
the ATE bit:

2.4.1 PAGE FRAME

A page frame is a 4-Kbyte unit of contiguous ad­
dresses of physical main memory. Page frames be­
gin on 4-Kbyte boundaries and are fixed in size. A
page is the collection of data that occupies a page
frame when that data is present in main memory.
The data may also occupy some location in second­
ary storage when there is not sufficient space in
main memory.'

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad­
dress by specifying a page table, a page within that

I DIR I PAGE I OFFSET I

I
PAGE DIRECTORY

table, and an offset within that page. Figure 2.9
shows the format of a virtual address.

Figure 2.10 shows how the i860 XR microprocessor
converts the DIR, PAGE, and OFFSET .fields of a
virtual address into the physical address by consult­
ing two levels of page tables. The addressing mech­
anism uses the DIR field as an index into a page
directory, uses the PAGE field as an index into the
page table determined by the page directory, and
uses the OFFSET field to address a byte within the
page determined by the page table.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi·
ers. A page table is itself a page, and therefore con­
tains 4 Kbytes of memory or at most 1 K 32-bit en­
tries.

PAGE FRAME

PHYSICAL
ADDRESS

PAGE TABLE

4 PG TBl ENTRY

:.....-...,. DIR ENTRY f---,

DTB
240296-32

, Figure 2.10. Address Translation

2-180

i860TM XR MICROPROCESSOR

Two levels of tables are used to address a page of
memory. At the higher level is a page directory. The
page directory addresses up to 1 K page tables of
the second level. A p~ge table of the second level
addresses up to 1 K pages. All the tables addressed
by one page directory, therefore, can address 1 M
pages (220). Because each page contains 4 Kbytes
(212 bytes), the tables of one page directory can
span the entire physical address space of the i860
XR microprocessor (220 x 212 = 232).

The physical address of the current page directory is
stored in DTB field of the dirbase register. Memory
management software has the option of using one
page directory for all processes, one page directory
for each process, or some combination of the two.

2.4.4 PAGE-TABLE ENTRIES

Page-table entries (PTEs) in either level of page ta­
bles have the same format. Figure 2.11 illustrates
. this format.

2.4.4.1 Page Frame Address

The page frame address specifies the physical start­
ing address of a page. Because pages are located
on 4K boundaries, the low-order 12 bits are always
zero. In a page directory, the page frame address is
the address of a page table. In a second-level page
table, the page frame address is the address of the
page frame that contains the desired memory oper-
and. .

2.4.4.2 Present Bit

The P(present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi-

cates that the entry can be used. When P = 0 in
either level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the
entry is tested by the hardware. If P = 0 in either
level of page tables when an attempt is made to use
a page-table entry for address translation, the proc­
essor signals either a data-access fault or an in­
struction-access fault. In software systems that sup­
port paged virtual memory, the trap handler can
bring the required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper­
ating system must ensure that the page directory
indicated by the dirbase image associated.with the II
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page­
level protection, which the i860 XR microprocessor
performs at the same time as address translation.
The concept of privilege for pages is implemented
by assigning each page to one of two .Ievels:

1. Supervisor level (U = O)-for the operating sys­
tem and other systems software and related data.

2. User level (U = 1)-for applications procedures
and data.

The U bit of the psr indicates whether the i860 XR
microprocessor is executing at user or supervisor
level. The i860 XR microprocessor maintains the U
bit of psr as follows:

PRESENT -----------------------,

NOTE:

WRITABLE -----------------------,
USER----------------------,
WRITE-THROUGH -------------------,
CACHE DISABLE -------------------,
ACCESSED -------------------,
DIRTY --------------------,
(RESERVED) .,-----------------,
AVAILABLE FOR SYSTEMS PROGRAM USE I '

PAGE FRAME ADDRESS 31. .12

X indicates Intel reserved. Do not use.

Figure 2.11. Format of a Page Table Entry

2-181

240296-34

intel® i860™ XR MICROPROCESSOR

.. The i860 XR microprocessor clears the psr U bit
to indicate supervisor level when a trap occurs
(including when the trap instruction causes the
trap). The prior value of U is copied into PU.

G The i860 XR microprocessor copies the psr PU
bit into the U bit when an indirect branch is exe­
cuted and one of the trap bits is set. If PU was
one, the i860 XR microprocessor enters user
level.

With the U bit of psr and the Wand U bits of the
page table entries, the i860 XR microprocessor im­
plements the following protection rules:

• When at user level, a read or write of a supervi­
sor-level page causes a trap.

e When at user level, a write to a page whose W bit
is clear causes a trap.

e When at user level, st.c to certain control regis­
ters is ignored.

. When the i860 XR microprocessor is executing at
supervisor level, all pages are addressable, but,
when it is executing at user level, only pages that
belong to the user-level are addressable.

When the i860 XR microprocessor is executing at
supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection
mode controlled by WP of epsr:

WP =0

WP = 1

All pages are writable.

A write to a page whose W bit is
clear causes a trap.

When the i860 XR microprocessor is executing at
user level, only pages that belong to user level and
are marked writable are actually writable; pages that
belong to supervisor level are neither readable nor
writable from user level.

2.4.4.4 Write-Through Bit

The i860 XR microprocessor does not implement a
write-through caching policy for the on-chip data
cache; however, the WT (write-through) bit in the
second-level page-table entry does determine inter­
nal caching policy. If WT is set in a PTE, on-chip
caching of data from the corresponding page is in­
hibited. The i860 XR CPU may place pages having
WT = 1 into the instruction cache. Future imple­
mentations of the i860 XR architecture may adhere
to a write-through data caching policy. Therefore,
they may cache pages having the WT bit of ~he PTE
set. If WT is clear, the normal write-back policy is
applied to data from the page in the on-chip caches.
The WT bit of page directory entries is not refer­
enced by the processor, but is reserved.

The WT bit is independent of the CD bit; therefore,
data may be placed in a second-level coherent
cache, but kept out of the on-chip caches.

2.4.4.5 Cache Disable Bit

If the CD (cache disable) bit in the second-level
page-table entry is set, data. from the associated
page is not placed in instruction or data caches.
Clearing CD permits the cache hardware to place
data from the associated page into caches. The CD
bit of page directory entries is not referenced by the
processor, but is reserved.

To control external caches, the i860 XR microproc­
essor outputs on its PTB pin either the CD or WT bit.
The PBM bit of epsr determines which bit is output.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The i860 XR microprocessor sets the corresponding
accessed bits in both levels of page tables before a
read or write operation to a page. The processor
tests the dirty bit in the second-level page table be­
fore a write to an address covered by that page table
entry, and, under certain conditions, causes traps.
The trap handler then has the opportunity to main­
tain appropriate values in the dirty bits. The dirty bit
in directory .entries is not tested by the i860 XR mi­
croprocessor.. The precise algorithm for using these
bits is specified in Section 2.4.5.

An operating system that supports paged virtual
memory can use these bits to determine what pages
to eliminate Irom physical memory when the de­
mand for memory exceeds the physical memory
available. The D and A bits in the PTE (page-table
entry) are normally initialized to zero by the operat­
ing system. The processor sets the A bit when a
page' is accessed either by a read or write operation.
When a data- or instruction-access fault occurs, the
trap handler sets the D bit il an allowable write is
being performed, then re-executes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may
share the page tables. The i860 XR microprocessor
automatically asserts the LOCK # signal while set­
ting the A bit. II an A-bit of a PTE is found not set
during a locked sequence (created by the lock in­
struction) , a trap will occur and the processor will not
update the A-bit.

2.4.4.7 Combining Protection of Both Levels of
Page Tables

For anyone page, the protection attributes of its
page directory entry may differ from those of its
page table entry. The i860 XR microprocessor com­
putes the effective protection attributes for a page

2-182

i860™ }{R MICROPROCESSOR

by examining the protection attributes in both the
directory and the page table. Table 2.6 shows the
effective protection provided by the possible combi­
nations of protection attributes.

2.4.5 ADDRESS TRANSLATION ALGORITHM

The algorithm below defines the translation of each
virtual address to a physical address. Let DIR,
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA 1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables
respectively; DTB is the page directory table base
address stored in the dirbase register.

1. Read the PTE (page table entry) at the physical
address formed by DTB:DIR:OO.

2. If P in the PTE is zero, generate a data- or instruc­
tion-access fault.

3. If W in the PTE is zero, the operation is a write,
and either the U-bit of the PSR is set or WP = 1,
generate a data or instruction access fault.

4. If the U-bit in the PTE is zero and the U-bit in the
psr is set, generate a data or instruction access
fault.

5. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was locked, generate a

data or instruction access fault. (The trap allows
software to set A to one and restart the se­
quence. This avoids ambiguity in determining
what address corresponds to a locked sema­
phore for external bus hardware use.)

6. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was not locked, assert
LOCK #. Re-fetch and check the PTE, set A, and
store the PTE. Deassert LOCK # during the store.

7. Locate the PTE at the physical address formed by
PFA 1 :PAGE:OO.

8. Perform the P, W, U, and A checks as in steps 2
through 6 with the second-level PTE.

9. If D in the PTE is clear and the operation is a
write, generate a data or instruction access fault.

10. Form the physical address as PFA2:0FFSET.

The i860 XR microprocessor looks only in external
memory for Page Directories and Page Tables, in
the translation process. The data cache is not
searched. Therefore, any code which modifies Page
Directories or Page Tables must keep them out of
the cache. The tables should be kept in non-cache­
able memory, or flushed from the cache.

Table 2.6. Combining Directory and Page Protections

Page Directory Page Table
Combined Protection

Entry Entry User Supervisor
Access Access

U-bit W-bit U-bit W-bit WP = X WP = 0 WP = 1

0 0 0 0 N R/W R
0 0 0 1 N R/W R
0 0 1 0 N R/W R
0 0 1 1 N R/W R

0 1 0 0 N R/W R
0 1 0 1 N R/W R/W
0 1 1 0 N R/W R
0 1 1 1 N R/W R/W

1 0 0 0 N R/W R
1 0 0 1 N R/W R
1 0 1 0 R R/W R
1 0 1 1 R R/W R

1 1 0 0 N R/W R
1 1 0 1 N R/W R/W
1 1 1 0 R R/W R
1 1 1 1 R/W R/W R/W

NOTES:
N = No access allowed R/W = Both reads and writes allowed
R = Read access only X = Don't care

2-183

intel" i860TM XR MICROPROCESSOR

The iS60 XR microprocessor expects Page Directo­
ries and Page Tables to be in little endian format.
The operating system must maintain these tables in
little endian format by either setting BE = 0 when
manipulating the tables or by complementing bit 2 of
the address when loading or storing entries.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault is one instance of the
data-access fault. The instruction causing the fault
can be re-executed upon returning from the trap
handler.

2.4.7 PAGE TRANSLATION CACHE

For greatest efficiency in address translation, the
iS60 XR microprocessor stores the most recently
used page-table data in an on-chip cache called the
TLB (translation lookaside buffer). Only if the neces­
sary paging information is not in the cache must
both levels of page tables be referenced.

2.5 Caching and Cache Flushing

The iS60 XR microprocessor has the ability to cache
instruction, data, and address-translation informa­
tion in on-chip caches. Caching uses virtual-address
tags. The effects of mapping two different virtual ad­
dresses in the same address space to the same
physical address are undefined.

Instruction, data, and address-translation caching on
the iS60 XR microprocessor are not transparent. Be­
cause the data cache uses a write-back protocol,
writes do not immediately update memory, and
writes to memory by other bus devices do not up­
date the cache. Changes to page tables do not auto­
matically update the TLB, and changes to instruc­
tions do not automatically update the instruction
cache. Under certain circumstances, such as liD

. references, self-modifying code, page-table up-
dates, or shared data in a multiprocessing system, it
is necessary to bypass or to flush the caches. The
i860 XR microprocessor provides the following
methods for doing this:

• Bypassing Instruction and Data Caches. If
deasserted during cache-miss processing, the
KEN# pin disables instruction and data caching
of the referenced data. If the CD bit of the associ­
ated second-level PTE is set, caching of data and
instructions is disabled. The iS60 XR CPU may
place pages having WT = 1 into the instruction

cache. Future implementations of the iS60 XR ar­
chitecture may adhere to a write-through data
cache policy. Thus, they may cache pages having
the WT bit of the PTE set. The value of the CD bit
or the WT bit is output on the PTB pin for use by
external caches.

o Invalidating Instruction and Address-Transla­
tion Caches. Storing to the dirbase register with
the ITI bit set invalidates the contents of the in­
struction and address-translation caches. This bit
should be set when modifying a page table, when
modifying a page containing instructions, or when
changing the DTB field of dirbase or the WP bit
of the epsr. Note that in order to make the in­
struction or address-translation caches consist­
ent with the data cache, the data cache must be
flushed before invalidating the other caches.

NOTE:
The mapping of the page containing the
currently executing instruction and the
next six instructions should not be differ­
ent in the new page tables when st.C dir­
base changes DTB or activates ITI. The
six instructions following the st.c should
be nops and should lie in the same page
as the st.c.

o Flushing the Data Cache. The data cache is
flushed by a software routine using the flush in­
struction. The data cache must be flushed prior to
invalidating the instruction or address-translation
caches (as controlled by the ITI bit of dirbase) or
enabling or disabling address translation (via the
ATE bit). The data cache does not need flushing
if the program is modifying only the P, U, W, A, or
o bits of a PTE (as long as the Page Frame Ad­
dress is not changed and the PTE itself was not
in the data cache.) The i860 XR CPU does not
check these protection bits on cache line write­
back. Thus, a trap handler can service a OAT for
D-bit-zero by setting 0 = 1 and then ITI = 1. In
the case of setting the P or A bits active, there is
no need to invalidate or flush any caches be­
cause the processor does not load entries into
the TLB that have P = 0 or A = O. The i860 XR
microprocessor searches only external memory
for Page Directories and Page Tables in the
translation process. The data cache is not
searched. Therefore, Page Tables and Directo­
ries should be kept in non-cacheable memory, or
flushed from the cache by any code which ac­
cesses them.

2-184

i860™ XR MICROPROCESSOR

2.6 Instruction Set

Table 2.7 shows the complete set of instructions
grouped by function within processing unit. Refer to
Section 8 for an algorithmic definition of each in­
struction.

The architecture of the i860 XR microprocessor
uses parallelism to increase the rate at which opera­
tions may be introduced into the unit. Parallelism in
the i860 XR microprocessor is not transparent; rath­
er, programmers have complete control over paral­
lelism and therefore can achieve maximum perform­
ance for a variety of computational problems.

2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallelism used within the floating-point
unit is "pipelining". The pipelined architecture treats
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder.
Let the stages be represented by A1. A2, and A3.
The stages are designed such that Ai + 1 for one ad­
der instruction can execute in parallel with Ai for the
next adder instruction. Furthermore, each Ai can be
executed in just one clock. The pipelining within the
multiplier and graphics units can be described simi-

. larly, except that the number of stages may be differ­
ent.

Figure 2.12 illustrates three-stage pipelining as
found in the floating-point adder (also in the floating­
point multiplier when single-precision input operands
are employed). The columns of the figure represent
the three stages of the pipeline. Each stage holds
intermediate results and also (when introduced into
first stage by software) holds status information per­
taining to those results. The figure assumes that the
instruction stream consists of a series of consecu­
tive floating-point instructions, all of one type (i.e~ all
adder instructions or all single-precision multiplier in­
structions). The instructions are represented as i,
i + 1, etc. The rows of the figure represent the states
of the unit at successive clock cycles. Each time a
pipelined operation is performed, the result of the
last stage of the pipeline is stored in the destination
register fdest, the pipeline is advanced one stage,
and the input operands fsrc1 and fsrc2 are trans­
ferred to the first stage of the pipeline.

In the i860 XR microprocessor, the number of pipe­
line stages ranges from one to three. A pipelined
operation with a three-stage pipeline stores the re­
sult of the third prior operation. A pipelined operation
with a two-stage pipeline stores the result of the sec­
ond prior operation. A pipelined operation with a
one-stage pipeline stores the result of the prior oper­
ation.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the graphics
unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline. Single precision
has three stages and double precision has two
stages. The graphics unit has one stage for all preci­
sions. The load pipeline has three stages for all pre­
cisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipelined execution mode, the i860
XR microprocessor also can execute floating-point
instructions in "scalar" mode. Most floating-point in­
structions have both pipelined and scalar variants,
distinguished by a bit in the instruction encoding. In
scalar mode, the floating-point unit does not start a
new operation until the previous floating-point oper­
ation is completed. The scalar operation passes
through all stages of its pipeline before a new opera­
tion is introduced, and the result is stored automati­
cally. Scalar mode is used when the next operation
depends on results from the previous few floating­
point operations (or when the compiler or program­
mer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:

2-185

int:et i860TM XR MICROPROCESSOR

Table 2.7. Instruction Set

Core Unit floating-Point Unit

Mnemonic Description Mnemonic Description

Load and Store Instructions Register to Register Moves

Id.x Load integer fxfr Transfer F-P to integer register
st.x Store integer
fld.y F-P load
pfld.z Pipelined F-P load
fst.y F-P store
pst.d Pixel store

Register to Register Moves

f-P Multiplier Instruction

fmul,p F-P multiply
pfmul,p Pipelined F-P multiply
pfmul3.dd 3-8tage pipelined F-P multiply
fmlow.p F-P multiply low
frcp.p F-P reciprocal

ixfr Transfer integer to F-P register frsqr.p F-P reciprocal square root

Integer Arithmetic Instructi.ons f-P Adder Instructions

addu Add unsigned
adds Add signed
subu Subtract unsigned
subs Subtract signed

Shift Instructions

fadd.p F-P add
pfadd.p Pipelined F-P add
famov.r F-P adder move
pfamov.r Pipelined F-P adder move
fsub.p F-P subtract
pfsub.p Pipelined F-P subtract

shl Shift left
shr Shift right
shra Shift right arithmetic
shrd Shift right double

Logical Instructions

pfgt.p Pipelined F-P greater-than compare
pfeq.p Pipelined F-P equal compare
fix.p F-P to integer conversion
pfix.p Pipelined F-P to integer conversion
ftrunc.p F-P to integer truncation
pftrunc.p Pipelined F-P to integer truncation

and Logical AND Dual-Operation Instructions
andh Logical AND high
and not Logical AND NOT
andnoth Logical AND NOT high
or Logical OR
orh Logical OR high

pfam.p Pipelined F-P add and multiply
pfsm.p Pipelined F-P subtract and multiply
pfmam.p Pipelined F-P multiply with add
pfmsm.p Pipelined F-P multiply with subtract

xor Logical exclusive OR Long Integer Instructions
xorh Logical exclusive OR high fisub.z Long-integer subtract
Control-Transfer Instructions pfisub.z Pipelined long-integer subtract

trap Software trap
intovr Software trap on integer overflow
br Branch direct

fiadd.z Long-integer add
pfiadd.z Pipelined long-integer add

Graphics Instructions
bri Branch indirect fzchks 16-bit Z -buffer check
bc Branch on CC
bC.t Branch on CC taken

pfzchks Pipelined 16-bit Z-buffer check
fzchkl 32-bit Z-buffer check

bnc Branch on not CC
bnc.t Branch on not CC taken

pfzchkl Pipelined 32-bit Z-buffer check
faddp Add with pixel merge

bte Branch if equal pfaddp Pipelined add with pixel merge
btne Branch if not equal faddz Add with Z merge
bla Branch on LCC and add pfaddz Pipelined add with Z merge
call Subroutine call form OR with MERGE register
calli Indirect subroutine call pform Pipelined OR with MERGE register

System Control Instructions

flush Cache flush
Assembler Pseudo-Operations

Id.c Load from control register Mnemonic Description

st.c Store to control register
lock Begin interlocked sequence

mov Integer register-register move
fmov.r F-P reg-reg move

unlock End interlocked sequence pfmov.r Pipelined F-P reg-reg move
nop Core no-operation
fnop F-P no-operation
pfle.p Pipelined F-P less-than or equal

2-186

i860TM XR MICROPROCESSOR

STAGE 1 STAGE 2 STAGE 3

results (status) results (status) results status

CLOCK n

INSTRUC
I

CLOCK n+1

INSTRUC
1+1

INSTRUC
1+2 r

1+1

1+2

(s) r

(s)

CLOCK n+~
1+1 I

(s) r-.:::, s

~ CLOCKn+~ ~
INSTRUC

1+3
r

1+3 1+2

(s) r

1+1

(s) r-.:::, •

fdest
1+3

~ CLOCK n+~ ~-
INSTRUC

1+4
r

1+4 1+3

(s) r

1+2

(s) r--" s

fdest
1+4

CLOCKn+~ ~-
INSTRUC

1+5

1+5 1+4 1+3 fdest
1+5

240296-9

Figure 2.12. Plpelined Instruction Execution

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the state
of the pipeline after a preemption. When a store
instruction updates the fsr and the value of the
U bit in the word being written into the fsr is set,
the store updates the result status bits in the first
stage of both the adder and multiplier pipelines.
When software changes the result-status bits of
the first stage of a particular unit (multiplier or ad­
der), the updated result-status bits are propagat­
ed one stage for each pipelined floating-point op­
eration for that unit. In this case, each stage of the
adder and multiplier pipelines holds its own copy
of the relevant bits of the fsr. When they reach
the last stage, they override the normal result­
status bits computed from the last stage result.

At the next floating-point instruction (or, at certain
core instructions), after the result reaches the last
stage, the i860 XR microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3 Precision in the Pipelines

in pipelined mode, when a floating-point operation is
initiated, the result of an earlierpipelined 1Ioating­
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in Ides! is
that which was specified by the instruction that initia­
ted that ·operation.

2-187

i860TM XR MICROPROCESSOR

31 o

OP

d.FP-OP

63 d.FP-OP or CORE-OP

CORE-OP

CORE-OP

CORE-OP

31

63

I CORE-OP

d.FP-OP

FP-OP

FP-OP

OP

OP

OP

d.FP-OP

FP-OP

FP-OP

OP

OP

o

ENTER OUAL­
INSTRUCTION MODE.
INITIATE EXIT FROM
DUAL-INSTRUCTION MODE.

LEAVE DUAL­
INSTRUCTION MODE.

TEMPORARY DUAL­
INSTRUCTION MODE

240296-10

. Figure 2.13. Dual-Instruction Mode Transitions

If fdest is the same as fsrc 1 or fsrc2, the value being
stored in fdest is used as the input operand. In this
case, the precision of fdest must be the same as the
source precision.

The multiplier pipeline has two· stages when the
source operand is double-precision and three stages
when the precision of the source operand is single.
This means that a· pipelined multiplier operation
stores the result of the second previous multiplier
operation for double-precision inputs and third previ­
ous for single-precision inputs (except when chang­
ing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy
pipelined operations that unload unstored results
from the affected pipeline.

After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un­
defined. No spurious result-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source operands.

For best performance a scalar operation should not
immediately precede a pipelined operation whose
fdest is nonzero.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the i860 XR microprocessor can execute both a
floating-point and a core instruction simultaneously.
Such parallel execution is called dual-instruction
mode. When executing in dual-instruction mode, the
instruction sequence consists of 64-bit aligned in­
structions with a floating-point instruction in the low­
er32 bits and a core instruction in the upper 32 bits.
Table 2.7 identifies which instructions are executed
by the core unit and which by the floating-point unit.

2-188

i860™ XR MICROPROCESSOR

Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual enddual. Both of the specifications
cause the O-bit of floating-point instructions to be
set. If the i860 XR microprocessor is executing in
single-instruction mode and encounters a floating­
point instruction with the O-bit set, one more 32-bit
instruction is executed before dual-mode execution
begins. If the i860 XR microprocessor is executing in
dual-instruction mode and a floating-point instruction
is encountered with a clear O-bit, then one more pair
of instructions is executed before resuming single-in­
struction mode. Figure 2.13 illustrates two variations
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair.

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations. .

The instructions pfam (sret, (sre2, (dest (add and
multiply), pfsm (sret, (sre2, (dest (subtract and mul­
tiply), pfmam (sert, (sre2, (dest (multiply and add),
and pfmsm (sret, (sre2, (dest (multiply and subtract)
initiate both an adder operation and a multiplier op­
eration. Six operands are required, but the instruc­
tion format specifies only three operands; therefore,
there are special provisions for specifying the oper­
ands. These special provisions consist of:

" Three special registers (KR, KI, and T), that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual­
operation instructions.

1. The constant registers KR and KI can store the
value of (sret and subsequently supply that
value to the multiplier pipeline in place of (sret.

2. The transfer register T can store the last stage
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline
in place of (sret.

e A four-bit data-path control field in the opcode
(OPC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, KI, or
(sret.

2. Operand-2 of the multiplier can be (sre2 or the
last stage result of the adder pipeline.

3.0perand-1 of the adder can be (sret, the
T -register, or the last stage result of the adder
pipeline.

4. Operand-2 of the adder can be (sre2, the last
stage result of the multiplier pipeline, or the
last stage result of the adder pipeline.

Figure 2.14 shows all the possible data paths sur­
rounding the adder and multiplier. A ope field in
these instructions select different data paths. Table
8.8 shows the various encodings of the ope field.
Refer to Dual Operation Instructions section in the
i860 Microprocessor Programmer's Reference Man­
ual for pictorial description.

SRCI SRC2 RDEST

MULTIPLIER UNIT

ADDER UNIT

RESULT

240296-11

Figure 2.14. Dual-Operation Data Paths

Note that the mnemonics pfam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of ope has a unique mnemonic associ­
ated with it.

2.7· Addressing Modes

Data access is limited to load and store instructions.
Memory addresses are computed from two fields of
load and store instructions: isret and isre2.

1. isre t either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset.

2. isre2 always specifies a register.

2-189

i860™ XR MICROPROCESSOR

Table 2.8. Types of Traps

Type Indication Caused by

PSR,EPSR FSR Condition Instruction

Instruction IT OF Software traps trap, intovr
Fault IL Missing unlock Any

Floating SE Floating-point source exception Any M- or A-unit except fmlow
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt,
Fault FT AO,MO overflow and pfeq. Reported on any F-P

AU,MU underflow instruction plus pst, fst, and
AI,MI inexact result sometimes fld, pfld, ixfr

Instruction IAT Address translation exception Any
Access Fault during instruction fetch

Data Access Load/store address translation Any load/store
Fault exception

OAT' Misaligned operand address Any load/store
Operand address matches Any load/store

db register

Interrupt IN External interrupt

Reset No trap bits set Hardware RESET signal

NOTES:
"These cases can be distinguished by examining the operand addresses.
The IL bit of the epsr must be checked by the trap handler to tell if the bus is currently in a locked sequence.

Because either isrc1 or isrc2 may be null (zero), a
variety of useful addressing modes result:

offset + register Useful for accessing fields within
a record, where register points
to the beginning of the record.
Useful for accessing items in a
stack frame, where register is
r3, the register used for pointing
to the beginning of the stack
frame.

register + register Useful for two-dimensional ar­
rays or for array access within
the stack frame.

register

offset

Useful as the end result of any
arbitrary address calculation.

Absolute address into the first or
last 32K of the logical address
space.

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this
mode isrc2 is replaced by the sum of isrc 1 and isrc2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Traps and Interrupts
Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps
cause interruption of normal program flow to exe-

cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.8.
Interrupts and traps start execution in single instruc­
tion mode at virtual address OxFFFFFFOO in supervi­
sor level (U = 0).

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. The instruction is restartable. The proces­
sor takes the following steps while transferring con­
trol to the trap handler:

1. Copies U (user mode) of the psr into PU (previous
U).

2. Copies 1M (interrupt mode) into PIM (previous 1M).

3. Sets U to zero (supervisor mode).

4. Sets 1M to zero (interrupts disabled).

5. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual­
instruction mode or if the processor is in dual-in­
struction mode and the next instruction will be
executed in single-instruction mode, OS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in psr are set (IT,
IN, IAT, OAT, FT). Several bits may be set if the
corresponding trap conditions occur simulta­
neously ..

2-190

int'et i860TM XR MICROPROCESSOR

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In
single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual-in­
struction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of the
dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the ab­
sence of other trap conditions, the floating-point
half of the dual instruction will already have been
executed.

The' processor begins executing the trap handler
by transferring execution to virtual address
OxFFFFFFOO. The trap handler begins execution in
single-instruction mode. The trap handler must ex­
amine the trap-type bits in psr (IT, IN, IAT, OAT, FT)
to determine the cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi­
tions. In all cases the processor sets the :IT bit be­
fore entering the trap handler.
1. By the trap instruction. When trap is executed in

dual-instruction mode, the floating-point compan­
ion of the trap instruction is not executed before
the trap is taken.

~. By the intovr instruction. The trap occurs only if
OF in epsr is set when intovr is executed. The
trap handler should clear OF before returning.
When intovr causes a trap in dual-instruction
mode, the floating-point companion of the intovr
instruction is completely executed before the trap
is taken.

3. By violation of lock/unlock protocol, explained be­
low. (Note that trap and intovr should not be
used within a locked sequence; otherwise, it
would be difficult to distinguish between this and
the prior cases.)

The lock protocol requires the following sequence
of activities:

1. lock
2. Any load or store instruction that ,misses the

cache
3. unlock
4. Any load or store instruction (regardless of-

whether it misses the cache)

There may be other instructions between any of
these steps. The bus is locked after step 2; and re­
mains locked until step 4. Step 4 must follow step 1
by 30 instructions or less, otherwise the instruction
trap occurs. In case of a trap, IL is also set. If the
load or store instruction in step 2 hits the cache, the
sequence is legal, but the bus is ncit locked.

2.8.3 FLOATING-POINT FAULT

The floating-point fault is reported on floating-point
instructions, pst, fst, and sometimes fld, pfld, ixfr.
The floating-point faults of the i860 XR microproces­
sor support the floating-point exceptions defined by
the IEEE standard as well as some other useful
classes of exceptions. The i860 XR microprocessor
divides these into two classes: source exceptions
and result exceptions. The numerics library supplied
by Intel provides the IEEE standard default handling
for all these exceptions.

2.8.3.1 Source Exception Faults

When used as inputs to the multiplier or adder, all
exceptional operands, including infinities, denormal-
ized numbers and NaNs, cause a floating-point fault '
and set SE in the fsr. Source exceptions are report- II
ed on the instruction that initiates,the operation. For
pipe lined operations, the pipeline is not advanced.

The SE value is undefined for faults on tid, pfld, fst,
pst, and ixfr instructions when in single-instruction
mode or when in dual-instruction mode and the com-
panion instruction is not a multiplier or adder opera-
tion.

2.8.3.2 Result Exception Faults

The class of result exceptions includes any of the
following conditions:
o Overflow. The absolute value of the rounded

true result would exceed the largest positive finite
number in the destination format.

e Underflow (when FZ is clear). The absolute val­
ue of the rounded true result would be smaller
than the smallest positive finite number in the
destination format.

o Inexact result (when Tl is set). The result is not
exactly representable in the destinatiori format.
For example, the fraction % cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost.

The point at which a result exception is reported de­
pends upon whether pipelined operations are being
used: -' ,

e Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point,
fst.x, or pstx (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap
occurs, the last stage of the affected unit con­
tains the result of the scalar operation.

• Pipelined operations. -Result exceptions are re­
ported when the result is in the last stage and the
next floating-point, fst.x or pst.x (and sometimes
fld, pfld, ixfr) instruction is executed. When a
trap occurs, the pipeline is not advanced, and the
last stage results (that caused the trap) remain

, unchanged. ,

2-191

inteL i860TM XR MICROPROCESSOR

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad­
vanced normally by the new floating-point operation.

The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last stage result-status bits (bits
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex­
ample, if the last stage result in the multiplier has
overflowed and a pipelined floating-point pfadd is
started, a trap occurs and MO is set.

For scalar operations, the RR bits of fsr specify the
register in which the result was stored. RR is updat­
ed when the scalar instruction is initiated. The trap,
however, occurs on a subsequent instruction. Pro­
grammers must prevent intervening stores to fsr
from modifying theRR bits. Prevention may take one
of the following forms: .

• Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared and the re­
sult is in the last stage of the pipeline of the appro­
priate unit. The trap handler must flush the pipeline,
saving the results and the status bits.

In either pipelined or scalar mode, the trap handler
must then compute the trapping result. In either
case, the result has the same fraction as the true
result and has an exponent which is the low-order
bits of the true result. The trap handler can inspect
the result, compute the result appropriate for that
instruction (a NaN or an infinity, for example), and
store the correct result. The result is either stored in
the register specified by RR (if nonzero) or (if RR =
0) the trap handler must reload the pipeline with the
saved results and status bits.

Result exceptions may be reported for both the ad­
der and multiplier units at the same time. In this
case, the trap handler should fix up the last stage of
both pipelines.

2.8.4 INSTRUCTION ACCESS FAULT

This trap occurs during address translation for in­
struction fetches in any of these cases:

• The address fetched is in a page whose P (pres­
ent) bit in the page table is clear (not present).

.. The address fetched is in a supervisor mode
page, but the processor is in user mode.

• The address fetched is in a page whose PTE has
A = 0, and the access occurs during a locked
sequence (Le., between lock and unlock).

Note that several instructions are fetched at one
time, either due to instruction prefetching or to in­
struction caching. Therefore, a trap handler can
change from supervisor to user mode and continue
to execute instructions fetched from a supervisor
page. An instruction access trap occurs only when
the next group of instructions is fetched from a su­
pervisor page (up to eight instructions later). If, in the
meantime, the handler branches to a user page, no
instruction access trap occurs. No protection viola­
tion results, because the processor does not permit
data accesses to supervisor pages while running in
user mode.

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es:

• An attempt is being made to write to a page
whose D (Dirty) bit is clear.

• A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

• The address stored in the db register is equal to
one of the addresses spanned by the operand.

• The operand is in a not-present page.

• An attempt is being made from user level to write
to a read-only page or to access a supervisor-lev­
el page.

• The operand was in a page whose PTE had A =
0, and the access occurred during a locked se­
quence. (i.e., between lock and unlock.)

• Write protection (determined by epsr bit WP = 1)
is violated in supervisor mode.

2.8.6 INTERRUPT TRAP

An interrupt is an event that is 'signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (1M set in the psr), the processor
sets the interrupt bit IN in the psr, and generates an
interrupt trap. Vectored interrupts are implemented
by interrupt controllers and software.

2.8.7 RESET TRAP

When the i860 XR microprocessor is reset, execu­
tion begins in single-instruction mode at physical ad­
dress OxFFFFFFOO. This is the same address as for
other traps. The reset trap can be distinguished from
other traps by the fact that no trap bits are set. The
instruction cache is flushed. The bits DPS, BL, and
ATE in diibase are cleared. csa is initialized by the
value at the INT pin at the end of reset. The read­
only fields of the espr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The

2-192

int:et i860™ XR MICROPROCESSOR

bits U, 1M, SR, and SW in psr are cleared, as are the
trap bits FT, OAT, IAT, IN, and IT. All other bits of
psr and all other register contents are undefined.

Refer to Table 2.9 for a summary of these initial set­
tings.

Table 2.9. Register and Cache Values after Reset

Registers Initial Value

Integer Registers Undefined
Floating-Point Undefined

Registers
psr U, 1M, SR, SW, FT, OAT, IAT, IN,

IT = 0; others are undefined
epsr Il, WP, PSM, BE = 0;

Processor Type, Stepping
Number, DCS are read
only; others are undefined

db Undefined
dirbase DPS, Bl, ATE = 0; others

are undefined
fir Undefined
fsr Undefined
KR, KI, T, Undefined

MERGE

Caches Initial Value

Instruction Cache Flushed
Data Cache Undefined
TlB Flushed

The software must ensure that the data cache is
flushed and control registers are properly initialized
before performing operations that depend on the
values of the cache or registers. The data cache has
no "validity" bits, so memory accesses before the
flush may result in false data cache hits.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated.

After a RESET the i860 XR microprocessor starts
execution at supervisor level (U = 0). Before branch­
ing to the first user-level instruction, the RESET trap
handler or subsequent initialization code has to set
PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user level.

2.9 Debugging

The i860 XR microprocessor supports debugging
with both data and instruction breakpoints. The fea­
tures of the i860 XR architecture that support debug­
ging include:

• db (data breakpoint register) which permits speci­
fication of a data addresses that the i860 XR mi­
croprocessor will monitor.

o BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

o OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

o trap instruction that can be used to set break­
points in code. Any number of code breakpoints
can be set. The values of the isrc1 and isrc2
fields help identify which breakpoint has oc­
curred.

o IT (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap
instruction was the cause of the trap.

3.0 HARDWARE INTIERfACIE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low Voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level. .

3.1 Signal Description

Table 3.1 identifies functional groupings of the pins,
lists every pin by its identifier, gives a brief descrip­
tion of its function, and lists some of its characteris­
tics. All output pins are tristate, except HlDA and
BREQ. All inputs are synchronous, except HOLD
and INT.

3.1.1 CLOCK (ClK)

The elK input determines execution rate and timing
of the i860 XR microprocessor. Timing of other sig­
nals is specified relative to the rising edge of this
signal. The i860 XR microprocessor can utilize a
clock rate of 25 MHz, 33.3 MHz or 40 MHz. The
internal operating frequency is the same as the ex­
ternal clock.

3.1.2 SYSTEM RESET (RESET)

Asserting RESET for at least 16 ClK periods causes
initialization of the i860 XR microprocessor. Refer to
section 3.2 "Initialization" for more details related to
RESET.

3.1.3 BUS HOLD (HOLD) AND BUS HOLD
ACKNOWLEDGE (HlDA)

These pins are used for i860 XR microprocessor bus
arbitration. At some clock after the HOLD signal is
asserted, the i860 XR microprocessor releases con-

2-193

int:et i860TM XR MICROPROCESSOR

Table 3.1. Pin Summary

Pin Function Active Input!
Name State Output

Execution Control Pins

CLK CLocK I
RESET System reset High I
HOLD Bus hold High I
HLDA Bus hold acknowledge High 0
BREQ Bus request High 0
INT/CS8 Interrupt, code·size High I

Bus Interface Pins

A31-A3 Address bus High 0
BE7#-BEO# Byte Enables Low 0
D63-DO Data bus High I/O
LOCK# Bus lock Low 0
W/R# Write/Read bus cycle High/Low 0
NENE# NExt NEar Low 0
NA# Next Address request Low I
READY# Transfer Acknowledge Low I
ADS# ADdress Status Low 0

Cache Interface Pins

KEN# Cache ENable Low I
PTB Page Table Bit High 0

TestablJlty Pins

SHI Boundary Scan Shift Input High I
BSCN Boundary Scan Enable High I
SCAN Shift Scan Path High I

Intel~Reserved Configuration Pins

CC1-CCO Configuration High I

Power and Ground Pins

Vee System power
Vss System ground

A # after a pin name indicates that the signal IS active when at the low voltage level.

trol of the local bus and puts all bus interface out­
puts (except BREQ and HLDA) into a floating state,
then asserts HLDA-all during the same clock peri­
od. It maintains this state until HOLD is deassetted.
Instruction execution stops only if required instruc­
tions or data cannot be read from the on-chip in­
struction and data caches.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles. HOLD is recognized
even while RESET or LOCK # is asserted.

When leaving a bus hold, the i860 XR microproces­
sor deactivates HLDA and, in the same clock period,
initiates a pending bus cycle, if any.

Hold is an asynchronous input.

3.1.4 BUS REQUEST (BREQ)

This signal is asserted when the i860 XR microproc­
essor has a pending memory request, even when
HLDA is asserted. This allows an external bus arbi­
ter to implement an "on demand only" policy for
granting the bus to the i860 XR microprocessor.
BREQ is asserted the clock after the i860 XR micro­
processor realizes an internal request for the bus. In
normal operation, BREQ goes low the clock after
ADS# goes low for the final pending bus cycle. (Re­
fer to Figure 4.10 for timing information.) During data
or instuction cache fills, however, BREQ may be
deasserted for one or more clocks, due to cache
and TLB logic.

3.1.5 INTERRUPT/CODE-SIZE (INT ICS8)

This input allows interruption of the current instruc­
tion stream. If interrupts are enabled (1M set in psr)
when INT is asserted, the i860 XR microprocessor
fetches the next instruction from address

2-194

i860TM XR MICROPROCESSOR

OxFFFFFFOO. To assure that an interrupt is recog­
nized, INT should remain asserted until the software
acknowledges the interrupt (by writing, for example,
to a memory-mapped port of an interrupt controller).
When the bus is not locked, the maximum time be­
tween the assertion of INT and the execution of the
first instruction of the trap handler is ten clocks, plus
the time for four sets of four pipelined read cycles
and two sets of four pipelined writes (instruction­
and data-cache misses and write-back cycles to up­
date memory), plus the time for twenty nonpipelined
read cycles (six TLB misses, with eight refetches
when the A-bit is zero), plus the time for eight non­
pipe lined writes (updates to the A-bit).

If the bus is locked from a lock instruction, the INT
pin is ignored and the INT bit of epsr is always zero.
The lock instruction can only assert LOCK# for 30-
33 instructions before trapping.

If INT is asserted during the clock before the falling
edge of RESET, the eight-bit code-size mode is se­
lected. For more about this mode, refer to section
3.2 "Initialization".

INT is an asynchronous input.

3.1.6 ADDRESS PINS (A31-A3) AND BYTE
ENABLES (BE7#-BEO#)

The 29-bit address bus (A31-A3) identifies address­
es to a 64-bit location. Separate byte-enable signals
(BE7#-BEO#) identify which bytes should be ac­
cessed within the 64-bit location. In all noncachea­
ble read cycles (KEN # deasserted), the byte
enables match the length and address of the re­
quested data. Cacheable read cycles (KEN # assert­
ed), however, result in four 64-bit memory cycles to
fill an entire 32-byte cache line. The BEn# pins acti­
vated are those that represent the operand of the
load instruction that caused the line fill, and these
same BEn# pins remain activated for all four cycles
of the line fill. All 64 bits must be returned for each
cycle without regard for the BEn# signals. In all
write cycles (noncacheable writes as well as cache
line write-backs) the BEn# signals indicate the
bytes that must be written.

Instruction fetches (W/R# is low) are distinguished
from data accesses by the unique combinations of
BE7#-BEO# defined in Table 3.2. For an eight-bit
code fetch in eight-bit code-size (CSS) mode,
BE2#-BEO# are redefined to be A2-AO of the ad­
dress. In this case BE7 # -BE3 # form the code
shown in Table 3.2 that identifies an instruction
fetch. The A2 in the table does not represent a phys­
ical pin, just a conceptual internal address line value.
The "x"under A2 for CSS mode means "not applica­
ble", or "don't care". All other combinations of byte
enables indicate data accesses.

The address and byte-enable pins are driven until
either NA# or READY# is asserted.

3.1.7 DATA PINS (063-00)

The bus interface has 64 bidirectional data pins
(D63-DO) to transfer data in eight- to 64-bit quanti­
ties. Pins D7-DO transfer the least significant byte;
pins D63-D56 transfer the most significant byte.

In read bus cycles, all 64 bits of the data bus are
latched, even in CSS-mode instruction fetches when
only the low-order eight bits are used.

In write bus cycles, the point at which data is driven
onto the bus depends on the type of the preceding
cycle. If there was no preceding cycle (Le. the bus II
was idle), data is driven with the address. If the pre-
ceding cycle was a write, data is driven as soon as
READY # is returned from the previous cycle. If the
preceding cycle was a read, data is driven one clock
after READY # is returned from the previous cycle,
thereby allowing time for the bus to be turned
around. Data continues to be driven until READY #
for the current cycle is returned.

3.1.8 BUS LOCK (LOCK#)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys­
tems. A multiprocessor bus arbiter must permit only
one processor a locked access to the address which
is on the bus when LOCK # first activates. The sys­
tem must maintain the lock of that location until
LOCK # deactivates ..

The iS60 XR microprocessor coordinates the exter­
nal LOCK# signal with the software-controlled BL
bit of the dirbase register. Programmers do not
have to be concerned about the fact that bus activity
is not always synchronous with instruction execu­
tion. LOCK# is asserted with ADS# for the address
operand of the first load or store instruction execut­
ed after the BL bit is set by the lock instruction.
Pending bus cycles are locked according to the val­
ue of the BL bit when the instruction was executed.
Even if the BL bit is changed between the time that
an instruction generates an internal bus request and
the time that the cycle appears on the bus, tne i860
XR microprocessor still asserts LOCK # for that bus
cycle.

If ADS # is active when LOCK # deactivates, then
that request should complete before the hardware
relinquishes the lock. If ADS # is not active, the lock­
ing of the location can immediately end when
LOCK # deactivates. Of course the simplest arbitra­
tion hardware can just lock the entire bus against all
other accesses during LOCK # assertion through
RDY# of the cycle in which LOCK# goes inactive.

2-195

i860™ XR MICROPROCESSOR

Table 3 2 Identifying Instruction Fetches ..
Code A2 BE7# BE6# BE5#
Fetch

Normal 0 1 1 1 (Non·CSS)

Normal 1 1 0 1 (Non·CSS)

CSS
Mode x 1 0 1

When the BL bit is deasserted with the unlock in­
struction, LOCK # is deasserted with the next load
or store but after any pending bus cycles. Between
locked sequences, at least one cycle of no LOCK #
is guaranteed by the behavior of the unlock instruc­
tion. LOCK # deassertion may occur independently
of ADS# for the case of a trap or a cache hit after
unlock.

The iS60 XR microprocessor also asserts LOCK #
during TLB miss processing for updates of the ac­
cessed bit in page-table entries. The maximum time
that LOCK # can be asserted in this case is five
clocks plus the time required to perform a read-mod­
ify-write sequence. Instruction fetches do not alter
the LOCK # pin.

Between lock and unlock instructions, the INT pin is
ignored and the INT bit of epsr is zero when read by
Id.c epsr. The time that interrupts are disabled is
limited by the lock protocol outlined in Section 2.S.2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This pin specifies whether a bus cycle is a read
(LOW) or write (HIGH) cycle. It is. driven until either
NA# or READY# is asserted.

3.1.10 NEXT NEAR (NENE#)

This signal allows higher-speed reads and writes in
the case of consecutive reads and writes that ac­
cess static column or page-mode DRAMs. The iS60
XR microprocessor asserts NENE# when the cur­
rent address is in the same DRAM page as the pre­
vious bus cycle. The iS60 XR microprocessor deter­
mines the DRAM page size by inspecting the DPS
field 'in the dirbase register. The page size can
range from 29 to 216 64-bit words, supporting DRAM
sizes from 256K x 1, 256K x 4, and up. NENE# is
never asserted on the next bus cycle after HLDA is
deasserted.

3.1.11 NEXT ADDRESS REQUEST (NA#)

NA# makes address pipelining possible. The sys­
tem asserts NA # for at least one clock to indicate
that it is ready to accept the next address from the
iS60 XR microprocessor. NA# may be asserted be-

BE4# BE3# BE2# BE1# BEO#

1 1 0 1 0

0 1 1 1 1

0 1 Low-order address bits

fore the current cycle ends. (If the system does not
implement pipelining, NA# does not have to be acti­
vated.) The iS60 XR microprocessor samples NA#
every clock, starting one clock after the prior activa­
tion of ADS #. When NA # is active, the iS60 XR
microprocessor is free to drive address and bus-cy­
cle definition for the next pending bus cycle. The
iS60 XR microprocessor remembers that NA# was
asserted when no internal request is pending; there­
fore, NA# can be deactivated after the next rising
edge of the CLK signal. Up to three bus cycles can
be outstanding simultaneously.

3.1.12 TRANSFER ACKNOWLEDGE (READY#)

The system must assert the READY #. signal during
read cycles when valid data is on the data pins and
during write cycles when the system has accepted
data from the data pins. READY # must be asserted
for at least one clock. Sampling of READY# begins
in the clock after an ADS# or in the second clock
after a prior READY#.

3.1.13 ADDRESS STATUS (ADS#)

The iS60 XR microprocessor asserts ADS# during
the first clock of each bus cycle to identify the clock
period during which it begins to assert outputs on
the address bus. This signal is held active for one
clock.

3.1.14 CACHE ENABLE (KEN#)

The iS60 XR microprocessor samples KEN # to de­
termine whether the data being read for the current
cache-miss cycle is to be cached. This pin is inter­
nally NORed with the CD and WT bits to control
cacheability on a page by page basis (refer to Table
3.3).

If the address is one that is permitted to be in the
cache, KEN # must be continuously asserted during
the sampling period starting from the second rising
clock edge after ADS# is asserted, through the
clock NA# or READY# is asserted. The. entire 64
bits of the data bus will be used for the read, regard­
less of the state of the byte-enable pins. Three addi­
tional 64-bit bus cycles will be generated to fill the
rest of the 32-byte cache block.

2-196

i860TM XR MICROPROCESSOR

If KEN # is found deasserted at any clock from the
clock after ADS# through the clock of the first NA#
or READY #, the data being read will not be cached
and two scenarios can occur: 1) if the cycle is due to
data·cache miss, no subsequent cache·fill cycles
will be generated; 2) if the cycle is due to an instruc·
tion·cache miss, additional cycle(s) will be gene rat·
eduntil the address reaches a 32·byte boundary. To
avoid caching a line, external hardware must deas·
sert KEN # during or before the first NA # or
READY#.

3.1.15 PAGE TABLE BIT (PTB)

Depending on the setting of the PBM (page· table bit
mode) bit of the epsr, the PTB reflects the value of
either the CD (cache disable) bit or the WT (write
through) bit of the page·table entry used for the cur·
rent cycle. When paging is disabled, PTB remains
inactive.

Table 3.3. Cacheability based on
KEN# and CD OR WT

CDORWT KEN# Meaning

0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI)

This pin is used with the testability features. Refer to
section 3.3.

3.1.17 BOUNDARY SCAN ENABLE (BSCN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.18 SHIFT SCAN PATH (SCAN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.19 CONFIGURATION (CC1-CCO)

These two pins are reserved by Intel. Strap both pins
LOW.

3.1.20 SYSTEM POWER (Vee> AND GROUND
(Vss)

The i860 XR microprocessor has 48 pins for power
and ground. All pins must be connected to the ap·
propriate low·inductance power and ground signals
in the system.

3.2 Initialization

Initialization of the i860 XR microprocessor is
caused by assertion of the RESET signal for at least
16 clocks. Table 3.4 shows the status of output pins
during the time that RESET is asserted. Note that
HOLD requests are honored during RESET and that
the status of output pins depends on whether a
HOLD request is being acknowledged.

2·197

PI

i860TM XR MICROPROCESSOR

Table 3.4. Output Pin Status during Reset

Pin Value

Pin Name HOLD
HOLD

Not
Acknowledged

Acknowledged

AOS#, LOCK# HIGH Tri-State OFF

W/R#, PTB LOW Tri-State OFF

BREQ LOW LOW

HLOA LOW HIGH

063-00 Tri-State OFF Tri-State OFF

A31-A3,
BE7#-BEO#, Undefined Tri-State OFF
NENE#

After a reset, the iB60 XR microprocessor begins ex­
ecuting at physical address OxFFFFFFOO. The pro­
gram-visible state of the iB60 XR microprocessor af­
ter reset is detailed in section 2.B.7.

Eight-bit code-size mode is selected when INT ICSB
is asserted during the clock before the falling edge
of RESET: While in eight-bit code-size mode, in­
struction cache misses are byte reads (transferred
on 07-00 of the data' bus) instead of eight-byte
reads. This allows the iB60 XR microprocessor to be
bootstrapped from an eight-bit EPROM. For these
code reads, byte enables BE2#-BEO# are rede­
fined to be the low order three bits of the address,
so that a complete byte address is available. These
reads update the instruction cache if KEN # is as­
serted (refer to section 3.1.14) and are not pipelined
even if NA # is asserted. While in this mode, instruc­
tions must reside in an eight-bit wide memory, while
data must reside in a separate 64-bit wide memory.
After the code has been loaded into 64-bit memory,
initialization code can initiate 64-bit code fetches by
clearing the CSB bit of the dirbase register (refer to
section 2). Once eight-bit code-size mode is dis­
abled by software, it cannot be reenabled except by
resetting the iB60 XR microprocessor.

3.3 Testability

The iB60 XR microprocessor has a boundary scan
mode that may be used in component- or board-lev­
el testing to test the signal traces leading to and
from the iB60 XR microprocessor. Boundary scan
mode provides a simple serial interface that makes it
possible to test all signal traces with only a few
probes. Probes need be connected only to CLK,
BSCN, SCAN, SHI, BREQ, RESET, and HOLD.

The pins BSCN and SCAN control the boundary
scan mode (refer to Table 3.5). When BSCN is as-

serted, the iB60 XR microprocessor enters boundary
scan mode on the next rising clock edge. Boundary
scan mode can be activated even while RESET is
active. When BSCN is deasserted while in boundary
scan mode, the iB60 XR microprocessor leaves
boundary scan mode on the next rising clock edge.
After leaving boundary scan mode, the internal state
is undefined; therefore, RESET should be asserted.

Table 3.5. Test Mode Selection

BSCN SCAN Testability Mode

LO LO No testability mode selected
LO HI (Reserved for Intel)
HI LO Boundary scan mode, normal
HI HI Boundary scan mode, shift

SHI as input; BREQ as
output

For testing purposes, each signal pin has associated
with it an internal latch. Table 3.6 indentifies these
latches by name and classifies them as input, out­
put, or control. The input and output latches carry
.the name of the corresponding pins.

Table 3.6. Test Mode Latches

Input Output
Associated

Control
Latch Latch

Latch

SHI
BSCN
SCAN
RESET
00-063 00-063 OATAt
eCl-CCO

A31-A3 AODRt
NENE# NENEt
PTB# PTBt
W/R# W/Rt
AOS# AOSt
HLOA
LOCK# LOCKt

REAOY#
KEN#
NA#
INT/CSB
HOLD

BE7#-BEO# BEt
BREQ

Within boundary scan mode the iB60 XR microproc­
essor operates in one of two sub modes: normal
mode or shift mode, depending on the value of the
SCAN input. A typical test sequence is ...

2-19B

int:eL i860™ XR MICROPROCESSOR

1. Enter shift mode to assign values to the latches
that correspond with the pins.

2. Enter normal mode. In normal mode the iB60 XR
microprocessor transfers the latched values to
the output pins and latches the values that are
being driven onto the input pins.

3. Reenter shift mode to read the new values of the
input pins.

3.3.1 NORMAL MODE

When SCAN is deasserted, the normal mode is se­
lected. For each input pin (RESET, HOLD,
INT/CSB, NA#, READY#, KEN#, SHI, BSCN,
SCAN, CC1, and CCO), the corresponding latch is
loaded with the value that is being driven onto the
pin.

The tristate output pins (A31-A3, BE7 # -BEO#,
W/R#, NENE#, ADS#, lOCK#, and PTB) are en­
abled by the control latches ADDRt (for A31-A3),
BEt, W/Rt, NENEt, ADSt, lOCKt, and PTBt. If a con­
trol latch is set, the corresponding output latches
drive their output pins; otherwise the pins are not
driven.

The 110 pins (063-00) are enabled by the control
latch OAT At, which is similar to the other control
latches. In addition, when DATAt is not set, the data
pins are treated as input pins and their values are
latched.

3.3.2 SHIFT MODE

When SCAN is asserted, the shift mode is selected.
In shift mode, the pins are organized into a boundary
scan chain. The scan chain is configured as a shift
register that is shifted on the rising edge of ClK. The
SHI pin is connected to the input of one end of the
boundary scan chain. The value of the most signifi­
cant bit of the scan chain is output on the BREQ pin.
To avoid glitches while the values are being shifted
along the chain, the tester should assert ·both the
RESET and HOLD pins. Then all tristate outputs are
disabled. The order of the pins within the chain is
shown in Figure 3.1.

1 2 3 4
-+ SHI -+ BSCN -+ SCAN -+ RESET -+

70 71 72 100
CCI -+ CCO -+ A31. -+ -+ A3

105 106 107 lOB 109
PTB# -+ W/RI -+ W/R# -+ ADSI -+ ADS#

114 115 116 117 liB
KEN# -+ NA# -+ INT/CSB -+ HOLD -+ BEl

A tester causes entry into this mode for one of two
purposes:

1. To assign values to output latches to be driven
onto output pins upon subsequent entry into nor­
mal mode.

2. To read the values of input pins previously latched
in normal mode.

4.0 BUS OPERATION

A bus cycle begins when ADS# is activated and
ends when READY # is sampled active. READY # is
sampled one clock after assertion of ADS# and
thereafter until it becomes active. New cycles can
start as often as every other clock until three cycles
are outstanding. A bus cycle is considered outstand­
ing as long as READY # has not been asserted to
terminate that cycle. After READY # becomes ac­
tive, it is not sampled again for the following (out­
standing) cycle until the second clock after the one
during which it became active. READY # is assumed
to be inactive when it is not sampled.

With regard to how a bus cycle is generated by the
iB60 XR microprocessor, there are two types of cy­
cles: pipelined and nonpipelined. Both types of cy­
cles can be either read or write cyqles. A pipelined
cycle is one that starts while one or two other bus
cycles are outstanding. A non pipe lined cycle is one
that starts when no other bus cycles are outstand­
ing.

4.1 Pipelining

A m-n read or write cycle is a cycle with a total cycle
time of m clocks and a cycle-to-cyCie time of n
clocks (m ;;:: n). Total cycle time extends from the
clock in which ADS# is activated to the clock in
which READY # becomes active, whereas cycle-to­
cycle time extends from the time that READY # is
sampled active for the previous cycle to the time
that it is sampled active again for the current cycle.
When m = n, a nonpipelined cycle is implied; m > n
implies a pipe lined cycle.

5 6 69
DATAl -+ DO -+ -+ 063 -+

101 102 103 104 '
-+ ADDRI -+ NENEI -+ NENE# -+ PTBI -+

110 111 112 113
-+ HLDA -+ LOCK! -+ LOCK# -+ READY#

119 126 127
-+ BE7# -+ -+ BEO# -+ BREQ -+

Figure 3.1. Order of Boundary Scan Chain

2-199

· +_! iii'el® i860TM XR MICROPROCESSOR

Pipelining may occur for the next bus cycle any time
the current bus cycle requires more than two clock
periods to finish (m > 2). If a bus request is pending,
the .next cycle will be initiated when NA # is sampled
active, even if the current cycle has not terminated.
In this case, pipelining occurs. NA# is not recog­
nized unit! after ADS# has become inactive.

To allow high transfer rates in large memory sys­
tems, two-level pipelining is supported (Le., there
may be up to three cycles in progress at one time).
Pipelining enables a new word of data to be trans­
ferred every two clocks, even though the total cycle
time may be up to six clocks.

4.2 Bus State Machine

The operation of the bus is described in terms of a
bus state machine using a state transition diagram.
Figure 4.1 illustrates the i860 XR microprocessor
bus state machine. A bus cycle is composed of two
or more states. Each bus state lasts for one elK
period.

The i860 XR microproc~ssor supports up to two lev­
els of address pipelining. Once it has started the first
bus cycle, it can generate up to two more cycles as
long as READY# remains inactive. To start a new
bus cycle while other cycles are still outstanding,
NA# must be active for at least one clock cycle
starting with the clock after the previous ADS # .
NA# is latched internally.

States Tj and Tjk' for j = {1 ,2,31 and k ,; {1 ,21 , are
used to describe the state of the i860 XR microproc­
essor Bus State Machine. Index j indicates the num­
ber of outstanding bus cycles while index k distin­
guishes the intermediate states for the j-th outstand­
ing cycle. Therefore there can be up to three out-

standing cycles, and there are two possible interme­
diate states for each level of pipelining. Tj1 is .the
next state after Tj, as long as j cycles are outstand­
ing. Tj2 is entered when NA# is active but the i860
XR microprocessor is not ready to start a new cycle.

Five conditions have to be met to start a new cycle
while one or more cycles are already pending:

1. READY # inactive

2. NA# having been active

3. An internal request pending (BREQ active)

4. HOLD not active

5. Fewer than three cycles outstanding

Note that BREQ is asserted on the clock after the
i860 XR microprocessor realizes an internal request
for the bus.

Upon hardware RESET, the bus control logic enters
the idle state TI and awaits an internal request for a
bus cycle. If abus cycle is reques~ed while there is
no hold request from the system, a bus cycle begins,
advancing to state T1. On the next cycle, the state
machine automatically advances to state T11. If
READY # is active in state T 11, the bus control logic
returns either to Tj, if no new cycle is started, or to
T 1, if a new cycle request is pending internally. In
fact, if an internal bus request is pending each time
READY # is active, the state machine continues to
cycle between T 11 and T 1.

However, if READY # is not active but the next ad­
dress request is pending (as indicated by an active
NA#), the state machine advances either to state
T 2 (if an internal bus request is pending, signifying
that two bus cycles are now outstanding), or to state
T12 (if no bus internal request is pending, signifying
NA# has been found active). Transitions from state
T 12 are similar to those from T 11.

2-200

int'eL i860TM XR MICROPROCESSOR

HOLD ASSERTED

REAOY~ DEASSERTEO

NOTES:
READY#

NA#
ADS#
HLDA
HOLD

REQUEST

Once READY # has been sampled active, it is
not sampled again until two clocks later
Not sampled during ADS # active clock
Active in T1, T2 and T3
Active in TH
HOLD in this figure is the internally synchro­
nized version of the external signal HOLD
Internal Bus Request Pending (BREQ assert­
ed)

240296-29

Figure 4.1. Bus State Machine

If two bus cycles are already outstanding {as indicat­
ed by T 2k for k = {1 ,2l) and NA # is latched active
but READY # is not active, one more bus request
causes entry into state T 3. Transitions from this
state are similar to those from T 2.

In general, if there is an internal bus request each
time both READY# and NA# are active, the state

2-201

machine continues to oscillate between Tj1 and Tj,
for j = [2,3l.

When NA# is sampled active while there is a pend­
ing bus request, ADS# is activated in the next clock
period (provided no more than two cycles are al­
ready outstanding).

i860TM XR MICROPROCESSOR

Internal pending bus requests start new bus cycles
only if no HOLD request has been recognized. THis
entered from the idle state T" T11. and T12. HLDA is
active in this state. There is a one clock delay to
synchronize the HOLD input when the signal meets
the respective minimum setup and hold time require­
ments. The state machine uses the synchronized
HOLD to move from state to state.

4.3 BusCycles

Figures 4.2 through 4.10 illustrate combinations of
bus cycles.

ClK

ADS#·

A31-A3. W/R#.
BEn#. NENE#.
. PTB

NA#

. READY#

063-00

CYCLE 1
NON-PIPELINED

READ
(2-2)

Tl T11

4.3.1 NONPIPELINED READ CYCLES

A read cycle begins with the clock in which ADS # is
asserted. The i860 XR microprocessor begins driv­
ing the address during this clock. It samples
READY # for active state every clock after the first
clock. A minimum of two clocks is required per cycle.
Data is latched when READY # is fouhd active when
sampled at the end of a clock period. Figure 4.2 il­
lustrates nonpipelined read cycles with zero wait
states. .

CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED

READ READ
(2-2) (2-2)

Tl T11 Tl T11

240296-13

Figure 4.2. Fastest Read Cycles

2-202

intel .. i860TM XR MICROPROCESSOR

CYCLE 1· CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED NON-PIPELINED

WRITE WRITE WRITE
(2-2) (2-2) (2-2)

Tl Til Tl TI1 Tl TI1

ClK

ADSII

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

READY#

240296-14

Figure 4.3. Fastest Write Cycles .

4.3.2 NONPIPELtNED WRITE CYCLES

The ADS# and READY# activity for write cYcles
follows the same logic as that· for read cycles. as
Figure 4.3 illustrates for back-to-back, nonpipelined
write cycles with zero wait-states.

The fastest write cycle takes only two clocks to com­
plete. However, when a read cycle immediately pre­
cedes a write cycle, the write cycle must contain a

wait state, as illustrated in Figure 4.4. Because the
device being read might still be driving the data bus
during the first clock of the write cycle, there is a
potential for bus contention. To help avoid such con­
tention, thei860 XR microprocessor does not drive
the data bus until the second clock of the write cy­
cle. The wait state is required to provide the addi­
tional time necessary to terminate the write cycle. In
other read-write combinations. the i860 XR micro­
processor does not require a wait state.

2-203

II

ClK

ADS#

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

READY#

063-00

i860Tivi XR lViiCROPRO.CESSOR

CYCLE 1 CYCLE 2
NON-PIPELINED NON-PIPELINED

READ WRITE
(2-2) (3-3)

Tl , T11 Tl Tll Tll

ClK

ADS#

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

READY#

063-00

Fig!Jre 4.4. Fastest ReadlWrite Cycles

CYCLE 1
NON-PIPElINED

READ
(5-5)

CYCLE 2
PIPEllNED

READ
, (5-2)

CYCLE 3
NON-PIPELINED

READ
(2-2)

Tl T11

CYCLE 3
PIPEllNED

WRITE
(6-3)

Figure 4.5. Pipelined Read Followed by Pipelined Write

2-204

240296-15

CYCLE 4
PIPELINED

WRITE
(6-2)

240296-16

i860™ XR MICROPROCESSOR

ClK

ADS#

A31-A3. WjR#.
BEn#. NENE#.

PTB

NA#

READY#

D63-DO

CYCLE 1
NON-PIPELINED

WRITE
(5-5)

CYCLE 2
PIPELINED

WRITE
(5-2)

CYCLE 3
PIPELINED

READ
(5-2)

CYCLE 4
PIPELINED

READ
(5-2)

240296-17

figure 4.6. Pipelined Write Followed by Pipelined Read

4.3.3 PIPELINED READ AND WRITE CYCLES

Figures 4.5 and 4.6 illustrate combinations of non­
pipelined and pipelined read and write cycles. The
following description applies to both diagrams. While
Cycle 1 is still in progress, two new cycles are initiat­
ed. By the time READY # first becomes active, the
state machine has moved through states T 1, T 11,
T 2, T 21, and T 3. Cycles 3 and 4 show how activating
READY # terminates the corresponding outstanding
cycle, and yet activating NA# while there is an inter­
nal request pending adds a new outstanding cycle.

In Figure 4.5, Cycle 3 is a write cycle following a read
cycle; therefore, one wait state must be inserted.
The i860 XR microprocessor does not drive the data
bus until one clock after the read data is returned
from the preceding read cycle. During Cycles 3 and
4, the state machine oscillates between states T 3

and T 31 maintaining full bus capacity (two levels of
pipe lining; three outstanding cycles). Cycles 2, 3,
and 4 in Figure 4.6 are 5-2 cycles; i.e. each requires
a total cycle time of five clocks while the throughput
rate is one cycle every two clocks.

Figure 4.7 illustrates in a more general manner how
the NA# signal controls pipelining. Cycle 1 is a 2-2
cycle, the fastest possible. The next cycle cannot be
started any earlier; therefore, there is no need to
activate NA# to start the next cycle early. Cycle 2, a
3-3 read, is different. Cycle 3 can be started during
the third state (a wait state) of Cycle 2, and NA# is
asserted to accomplish this.

NA# is not activated following the ADS# clock of
Cycle 3, thereby allowing Cycle 3 to terminate be­
fore the start of Cycle 4. As a result, Cycle 4 is a
nonpipelined cycle.

2-205

•

int:et

elK

ADS#

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

READY#

063-00

CYCLE 1
NON"'PIPELINED

READ
(2-2)

elK

ADS#

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

READY#

063-00

i860TM XR MICROPROCESSOR

CYCLE 2
NON-PIPELINED

READ
(3-3)

CYCLE 3
PIPELINED

READ
(3-2)

Figure 4.7. Pipelining Driven by NA#

CYCLE 4
NON-PIPELINED

READ
(2-2)

Figure 4.8. NA # Active with No Internal Bus Request

2-206

IDLE IDLE

240296-18

240296-19

i860™ XR MICROPROCESSOR

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED NON-PIPELINEO

READ WRITE WRITE
(2-2) (3-3) (2-2)

T, T
" T, T" T" T, T"

ClK

AOS#

A31-A3. W/R#.
BEn#. NENE#.

PTB

NA#

REAOY#

063-00

lOCK#

240296-20

Figure 4.9. Locked Cycles

When there is no internal bus request, activating
NA # does not start a new cycle; the i860 XR micro­
processor, however, remembers that NA# has been
activated. Figure 4.8 illustrates the situation where
NA# is active but no internal bus request is pending.
NA# is activated when two cycles are outstanding.
Because there is no internal request pending until
after one idle state, no new bus cycle is started dur­
ing that period.

4.3.4 LOCKED CYCLES

The LOCK # signal is asserted when the current bus
cycle is to be locked with the next bus cycle. Asser­
tion of LOCK # may be initiated by a program's set­
ting the BL bit of the dirbase register using the lock
instruction (refer to section 2) or by the i860 XR mi­
croprocessor itself during page table updates.

In Figure 4.9, the first read cycle is to be locked with
the following write cycle. If there were idle states
between the cycles, the LOCK# signal would re­
main asserted. This is the case for a read/modify/
write operation. Cycle 3 is not locked because
LOCK # is no longer asserted when Cycle 2 starts.

4.3.5 HOLD AND BREQ ARBITRATION CYCLES

The HOLD, HLDA, and BREQ signals permit bus ar­
bitration between the i860 XR microprocessor and
another bus master.

See Figure 4.10. When HOLD is asserted, the i860
XR microprocessor does not relinquish control of
the bus until all outstanding cycles are completed. If
HOLD were asserted one clock earlier, the last i860
XR microprocessor bus cycle before HLDA would
not be started.

HOLD is sampled at the end of the clock in which it
is activated. Recommended setup and hold times
must be met to guarantee sampling one clock after
external HOLD activation. When HOLD is sampled
active, a one clock delay for internal synchronization
follows. Likewise when HOLD is deasserted, there is
a one-clock delay for internal synchronization before
HLDA is deasserted. The outputs (except HLDA and
BREQ) float when HLDA is asserted.

2-207

i860TM XR MICROPROCESSOR

ClK

ADS#

A31-A3. W/R#.
aEn#. NENE#.

PTa

READY#

HOLD

HlDA

BREO

TI Til

240296-21

Figure 4.10. HOLD, HLDA, and BREQ

If. during a HOLD cycle, an internal bus request is
generated, BREQ is activated even though HLDA is
asserted. It remains active at least until the clock
after ADS# is activated for the requested cycle.

4.4 Bus States During RESET

Figure 4.11 shows how INT ICS8 is sampled during
the clock period just before the falling. edge of RE-

ClK

RESET

INT/CSB

SET. If INT ICS8 is sampled active, the i860 XR mi·
croprocessor enters CS8 mode. No inputs (except
for HOLD and INT/CS8) are sampled during RESET.

Note that, because HOLD is recognized even while
RESET is active, the HLDA output signal may also
become active during RESET. Refer to Table 3.4
"Output Pin Status during Reset".

'" 16 ClKs

OTHER bI:N~7'V~7dI~~7Vd:N~r--t
INPUTS

240296-22

Figure 4.11. Reset Activities

2-208

intet i860™ XR MICROPROCESSOR

5.0 MECHANICAL DATA

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers.

Q

~
() () () () () () () () () () () () () () () () ()
vee Vss vee Vss A12 A17 A19 A21 A23 A25 A29 1.31 Vee Vss Vee Vss Vee

() () () () () () () () () () () () () () () () ()

Vss Vee Vss AS AID A13 A15 A18 A20 .424 A27 A28 ceo Vee Vss Vee Vss

() () () () () () () () () () () () () () () () ()
Vee Vss A6 A7 A9 All A14 A16 eLK 1.22 A26 A30 eel 062 060 Vss Vee

() () () () () ()

Vss Vee A5 063 059 Vss

() () () () () ()
Vcc A4 1.3 061 058 056

() () () () () ()
W/R# NENE# PTB 057 054 052

() () () () () ()
ADS# HLOA BREa ass 053 050

() () () () () ()
LOCK# KEN, READY# 051 049 0.48

() () () () () ()
INT/CSB NAN HOLD 047 045 046

10 () () () () () () 10

BE5# BE71 BESI

". () () ()

BE3# BE2# BE41

12 () () ()
SHI BEl # BED#

13 () () ()
RESET SCAN 85CN

"
()

Vss

15 ()

1S ()

()
DO

()

()

Vss Vcc

17 () ()

()
Dl

()
02

()

()

()
03

()

()

()
05

()
D4

()

Vee Vss Vee Vss Vee

Q

()
D7

()

D9

()
OS

043 0042 044

() () () " 039 041 040

() () () 12

037 036 038

() () () .13

035 03. Vee

() () () 14

033 Vee Vss

() () () () () () () () () () () 15

011 013 017 021 023 027 029 031 032 Vss Vee

()
DB

()

() () () () () () () () () ()
015 014 019 022 025 028 030 Vss Vee Vss

() () () () () () () () () (.)

1S

17

010 012 016 018 020 024 026 VSS Vcc Vss Vee

A

240296-23

Figure 5.1. Pin Configuration-View from Top Side

2-209

inteL i860TM XR MICROPROCESSOR

Q

000 0 0 0 0 0 0 000 0 0 0 0 0
Vee Vss Vee Vss Vee A31 A29 A25 A23 A21 A19 A17 A12 Vss Vee , Vss Vee

000 0 000 0 0 000 0 0 0 0 0
Vss Vee Vss Vee ceo A28 A27 11.24 A20 AlB A15 A13 AID A8 Vss Vee ':Iss

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss 060 062 eel .430 A26 .1.22 elK A 16 A 14 All A9 A7 AS Vss Vee

o o o o o o
Vss 059 D~3

METAL LID
A5 Vee Vss

000 000
056 058 061 A3 .44 Vee

000 000
052 054 057 PTB NENE# W/R#

000 000
050 053 055 BREO HlDA AOS#

000 000
048 049 051 READY# KEN# LOCK#

o o o o o o
046 045 047 HOLD NA# INT/CSB

10 0 o o o o o 10
044 042 043 BE6# BE7 # BE5#

11 0 o o o o o 11
040 D41 039 BE4# BE2# BE3#

12 0 o 0 o o o 12
038 036 037 BEO# BEl # SHI

13 0 o o o o o 13
Vee 034 035 85CN SCAN RESET

14 0 o o o o
Vss Vee 033 '--______________________ --' 01 DO

o 14

Vss

15 0 o o o o 000 o o o o o o o o o 15
Vee Vss 032 031 029 027 023 021 017 013 011 07 05 03 02 Vss Vee

16 0 o .0 o o 000 o o o o o o o o o 16

Vss Vee Vss 030 028 025 022 019 014 015 DB D9 D4 Vee Vss Vee. Vss

17 0 o o o o 000 o o o o o o o o o 17

Vee Vss Vee Vss 026 024 020 DIS 016 012 010 OS Vee Vss Vee Vss Vee

Figure 5.2. Pin Configuration-View from Pin Side

2-210

S'

240296-24

intel® i860™ XR MICROPROCESSOR

Table 5.1. Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

Ai Vee C9 047 J15 017 010 8E6#
A2 Vss C10 043 J16 014 011 8E4#
A3 Vee C11 039 J17 016 012 BEO#
A4 Vss C12 037 K1 A21 013 8SCN
A5 056 C13 035 K2 A18 014 01
A6 052 C14 033 K3 A16 015 02
A7 050 C15 032 K15 013 016 Vss
A8 048 C16 Vss K16 015 017 Vee
A9 046 C17 Vee K17 012 R1 Vss
A10 044 01 Vss l1 A19 R2 Vee
A11 040 02 Vee l2 A15 R3 Vss
A12 038 03 062 l3 A14 R4 Vee
A13 Vee 015 031 l15 011 R5 A4
A14 Vss 016 030 l16 08 R6 NENE#
A15 Vee 017 Vss l17 010 R7 HlOA
A16 Vss E1 Vee Mi A17 R8 KEN#
A17 Vee E2 CCO M2 A13 R9 NA#
81 Vss E3 CC1 M3 A11 RiO 8E7#
82 Vee E15 029 M15 07 R11 8E2#
83 Vss E16 028 M16 09 R12 8E1#
84 059 E17 026 M17 06 R13 SCAN
85 058 F1 A31 N1 A12 R14 ~O
86 054 F2 A28 N2 A10 R15 Vss
87 053 F3 A30 N3 A9 R16 Vee
88 049 F15 027 N15 05 R17 Vss
89 045 F16 025 N16 04 S1 Vee
810 042 F17 024 N17 Vee S2 Vss
811 041 G1 A29 Pl Vss S3 Vee
812 036 G2 A27 P2 A8 S4 Vss
813 034 G3 A26 P3 A7 S5 Vee
814 Vee G15 023 P15 03 S6 W/R#
815 Vss G16 022 P16 Vee S7 AOS#
816 Vee G17 020 P17 Vss S8 lOCK#
817 Vss Hi A25 01. Vee S9 INT/CS8
C1 Vee H2 A24 02 Vss S10 8E5#
C2 Vss H3 A22 03 A6 S11 8E3#
.C3 060 H15 021 04 A5 S12 SHI
C4 063 H16 019 05 A3 S13 RESET
C5 061 H17 018 06 PT8 S14 Vss
C6 057 J1 A23 07 8REO S15 Vee
C7 055 J2 A20 08 REAOY# S16 Vss
C8 051 J3 ClK 09 HOlO S17 Vee

2-211

int'et i860TM XR MICROPROCESSOR

Table 5.2. Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A3 05 ClK J3 041 B11 Vee B16
A4 R5 00 R14 042 : B10 Vee C1
A5 ' 04 01 014 043 C10 Vee C17
A6 03 02 015 044 A10 Vee 02
A7 P3 03 P15 045 B9 Vee E1
AB P2 04 N16 046 A9 Vee N17
A9 N3 05 N15 047 C9 Vee P16
A10 N2 06 M17 04B AB Vee 01
A11 M3 07 M15 049 BB Vee 017
A12 N1 OB L16 050 A7 Vee R2
A13 M2 09 M16 051 CB Vee R4
A14 l3 010 l17 052 A6 Vee R16
A15 l2 011 L15 053 B7 Vee 81
A16 K3 012 K17 054 B6 Vee 83
A17 M1 013 ' .. K15 055 C7 Vee 85
A1B K2 014 J16 056 A5 Vee 815
A19 l1 015 K16 057 C6 Vee 817
A20 J2 016 J17 05B B5 Vss A2
A21 K1 017 J15 059 B4 Vss A4
A22 H3 01B H17 060 C3 Vss A14
A23 J1 019 H16 061 C5 Vss A16
A24 H2 020 G17 062 03 Vss B1
A25 H1 021 H15 063 C4 Vss B3
A26 G3 022 G16 HlOA R7 Vss B15
A27 G2 023 G15 HalO 09 Vss B17
A2B F2 024 F17 INT/C8B 89 Vss C2
A29 G1 025 F16 KEN# RB Vss C16
A30 F3 026 E17 lOCK# 8B Vss 01
A31 F1 027 F15 NA# R9 Vss 017
A08# 87 02B E16 NENE# R6 Vss P1
BEO# 012 029 E15 PTB 06 Vss P17
BE1# R12 030 016 REAOY# OB Vss 02
BE2# R11 031 015 RE8ET 813 Vss 016
BE3# 811 032 C15 8CAN R13 Vss R1
BE4# 011 033 C14 8HI 812 Vss R3
BE5# 810 034 B13 Vee A1 Vss R15
BE6# 010 035 C13 Vee A3 Vss R17
BE7# R10 036 B12 Vee A13 Vss 82
BREO 07 037 C12 Vee A15 Vss 84
B8CN 013 03B A12 Vee A17 Vss 814
CCO E2 039 C11 Vee B2 Vss 816

,CC1 E3 040 A11 Vee B14 W/R# 86

2-212

int'el.. i860TM XR MICROPROCESSOR

Table 5.3. Ceramic PGA Package Dimension Symbols

Letter or
Description of Dimensions

Symbol

A Distance from seating plane to highest point of body

A1 Distance between seating plane and base plane (lid)

A2 Distance from base plane to highest point of body

A3 Distance from seating plane to bottom of body

B Diameter of terminal lead pin

D Largest overall package dimension of length

D1 A body length dimension, outer lead center to outer lead center

e1 Linear spacing between true lead position centerlines

L Distance from seating plane to end of lead

51 Other body dimension, .outer lead center to edge of body

NOTES:
1. Controlling dimension: millimeter.
2. Dimension "e1" ("e") is non-cumulative.
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions "6", "61" and "c" are nominal.
5. Details of Pin 1 identifier are optional.

2-213

inte!® i860TM XR MICROPROCESSOR

SEATIN~_

[I
D

s'-1 ~
PLANE _ A

D,
A3- r---r

¢1.65 @@@@@@@@@@@@@@@@@
d~-

RL @@@@@@@@@@@@@@@@@ I-
f

@@a@@@@@@@@@@@D@@ ., -
@@@ @@@ -
@@@ @@@ -
@@@ @@@ - SEATING - PLANE~ @@@ @@@ - ¢B (ALL PINS)
@@@ (\ @@@ -

f=~ @@@ @@@ D -
@@@ @@@ -

PIN C3~ @@@ '- ,/ @@@ - SWAGGED - PIN @@@ @@@
DETAIL

I~ @@@
-

@ @ @@@ -
@@o@@@@@@@@@@@~: -

L
@@@@@@@@@@@@@@@o@ -
@@@@@@@@@@@@@@@o@ -r- SWAGGED~ --

~:~~ REF.
. A,-- L

PIN BASE- A2
45° CHAMfER (4 PL) PLAN°E-

(INDEX CORNER)
240296-30

Family: Ceramic Pin Grid Array Package

Symbol
Millimeters Inches

Min Max Notes Min Max Notes

A 3.56 4.57 0.140 0.180

A1 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID

A2 2.79 3.56 SOLID LID 0.110 0.140 SOLID LID

A3 1.14 1.40 0.045 0.055

B 0.43 0.51 0.017 0.020

D 44.07 44.83 1.735 1.765

D1 40.51 40.77 1.595 1.605

e1 2.29 2.79 0.090 0.110

L 2.54 3.30 0.100 0.130

N 168 # of Pins 168 # of Pins

S1 1.52 2.54 0.060 0.100

ISSUE IWS REVX 7/15/88

Figure 5.3.168 Lead Ceramic PGA Package Dimensions

6.0 PACKAGE THERMAL
SPECIFICATIONS

For this section, let:

P = maximum power consumption

T c = case temperature

The i860 XR microprocessor is specified for opera·
tion when T c is within the range of O°C-85°C. T c
may be measured in any environment to determine
whether the i860 XR microprocessor is within speci­
fied operating range. The case temperature should
be measured at the center of the top surface oppo'
site the pins.

T A = ambient air temperature

8CA = thermal resistance from case to ambient air

8JC = thermal resistance from junction to case

8JA = thermal resistance from junction to ambient
air

T A can be calculated from 8CA (thermal resistance
from case to ambient) with the following equation:

2-214

in~® i860™ XR MICROPROCESSOR

Typical values for ()CA and ()JC at various airflows
are given in Table 6.1 for the 1.75 sq. in., 168 pin,
ceramic PGA. ()JC is also shown so that ()JA can be
calculated by:

Note that () JC with a heatsink differs from () JC with­
out a heatsink because case temperature is mea­
sured differently. Case temperature for () JC with
heatsink is measured at the center of the heat fin
base. Case temperature for ()JC without heatsink is
measured at the center of package top surface.

Table 6.2 shows the maximum TA allowable (without
exceeding T cl at various airflows and operating fre­
quencies (fCLK)'

Note that T A is greatly improved by attaching "fins"
or a "heat sink" to the package. P (the maximum
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of section 7.

Figure 6.1 gives typical Icc derating with case tem­
perature. For more information on heat sinks, mea­
surement techniques, or package characteristics, re­
fer to Intel Packaging Handbook, order number
240800.

Typical part at 5V with maximum load

I---

r---

ICC (rnA)

580

570

560

550

540

530

520

510

500

490

480

470

460

450

440

430

420

410

400

-r--- r--

- r---

40.0 MHz - r--- r-- --r--

33.3 MHz

r-

25.0 MHz

o 10 20 30 40 50 60 70 80 85

Tc (Oe)

Figure 6.1. Icc vs Case Temperature

Table 6.1. Thermal Resistance eC/W) () JC and ()CA

()CA at Airflow-ft/min (m/sec)

()JC 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

With
2 11 6 4 3.2 2.5 2.2

HeatSink*

Without
1.5 17.5 13 11 9.5 8.5 8

Heat Sink
..

'Nlne·fln, unidirectional heat sink (fin dimensions: 0.350" height, 0.040
width, 0.115" center·to·center spacing, 1.530" length).

2-215

240296-33

II

int:eL i860™ XR MICROPROCESSOR

Table 6.2. Maximum Allowable T A at Various Airflows

InoC

fCLK
Airflow-ft/min (m/sec)

0 200 400 600 800 1000 (MHz)
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

TA with 25.0 57.5 70 75 77 78.8 79.5
Heat Sink' 33.3 52 67 73 75.5 77.4 78.5

40.0 49.3 65.5 72 74.6 76.9 77.9

TA without 25.0 41.3 52.5 57.5 61.3 63.8 65
Heat Sink 33.3 32.5 46 52 56.5 59.5 61

40.0 28.1 42.8 49.3 54.1 57.4 59

'Nine·fin unidirectional heat sink (fin dimensions: 0.350" height, 0.040 width,
0.115" center·to·center spacing, 1.530" length).

7.0 ELECTRICAL DATA

Inputs and outputs are TTL compatible, except for
ClK. All input and output timings are specified rela·
tive to the 1.5 volt level of the rising edge of ClK
and refer to the point that the signals reach 1.5V.

7.1 Absolute Maximum Ratings

Case Temperature T C under Bias O°C to 85°C

Storage Temperature - 65°C to + 150°C

Voltage on Any Pin
with Respect to Ground - 0:5 to 6.5V

7.2 D.C. Characteristics

NOTICE: This data sheet contains preliminary infor·
mation on new products in production. The specifica·
tions are subject to change without notice. Verify with
your local Intel Sales office that you have the latest
data sheet before finalizing a design.

• WARNING: Stressing the device beyond the "Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions"
may affect device reliability.

Table 7.1. DC Characteristics
Tc = O°C to 85°C Vcc = 5V +5% -

Symbol Parameter Min Max Units Notes

VIL Input lOW Voltage -0.3 +0.8 V

VIH Input HIGH Voltage 2.0 Vcc+ 0.3 V

VILC ClK Input lOW Voltage -0.3 +0.8 V

VIHC ClK Input HIGH Voltage 3.0 VCC + 0.3 V

VOL Output lOW Voltage 0.45 V (Note 1)

VOH Output HIGH Voltage 2.4 V (Note 2)

Icc Power Supply Current
ClK = 25.0 MHz 500 mA VCC@5V
ClK = 33.3 MHz 600 mA Vcc@5V
ClK = 40.0 MHz 650 mA VCC@5V

III Input leakage Current ±15 J1-A No pullup
or pulldown

ILO Output leakage Current ±15 J1-A
CIN Input Capacitance 15 pF (Note 3)
Co I/O or Output Capacitance 15 pF (Note 3)

CCLK Clock Capacitance 20 pF (Note 3)

NOTES:
1. This parameter is measured at 4.0 mA for A31-A3, 063-00, BE7#-BEO#; at 5.0 mA for all other outputs.
2. This parameter is measured at 1.0 mA for A31-A3, 063-00, BE7 # -BEO#; at 0.9 mA all other outputs.
3. These are not tested. They are guaranteed by design characterization.

2·216

int:el.

7.3 A.C. Characteristics

i860™ XR MICROPROCESSOR

Table 7.2. A.C. Characteristics
Tc = O°C to 85°C, Vee = 5V ±5%

All timings measured at ClK = 1.5V unless otherwise specified.

25 MHz 33 MHz 40 MHz

Symbol Parameter Min Max Min Max Min Max
(ns) (n5) (ns) (n5) (n5) (ns)

t1 ClK Period 40 125 30 125 25 125

t2 ClK High Time 6 5 3

t3 ClK low Time 8 7 5

t4 ClK Fall Time 7 7 7

t5 ClK Rise Time 7 7 7

t6a A31-A3, PTB, W/R#, NENE# 3.5 25 3.5 23 3.5 19
Valid Delay

t6b BEn#* Valid Delay 3.5 27 3.5 25 3.5 21

t7 Float Time, All 3.5 40 3.5 30 3.5 25

t8 ADS#,BREQ,lOCK#,HlDA 3.5 22 3.5 20 3.5 15
Valid Delay

t9 063-00 Valid Delay 3.5 38 3.5 35 3.5 31

t10 Setup Time, Allinput5 13 11 8

t11a Hold Time, All Inputs except 4 4 3
DATA

t11b DATA Hold Time 5 4 3

NOTES:

Notes

,at3V

at 0.8V

3V-0.8V

0.8V-3V

50 pF load

50 pF load

(Note 1)

50 pF load

50 pF load

(Note 2)

(Note 2)

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested.
2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure
recognition on a specific rising edge of elK.
• n = 0, 1, ... ,7

2-217

1860TM XR MICROPROCESSOR

3.0V

elK
1.5V t2 t3

O.BV

t1

INPUT INPUT
SETUP HOLD

t10min t11 m1n

INPUTS

OUTPUTS VALID

FLOAT

240296-25

Figure 7.1. elK, Input, and Output Timings

2-218

i860TM XR MIC.ROPROCESSOR

nom +15 ,----,------,---r---.----,

nom +10 i---+----t--+---\-:;r-"r

TYPICAL' OUTPUT
DELAY (ns) nom +5 f----+----+---,~+="""'+---l

@ 1.5V

nom -5 L-_--'-_--'-__ -'---_-L_----'
25 50 75 100 125 150

NOTES:
LOAD CAPACITANCE. CL (pi) .

Graphs are not linear outside the CL range shown.
nom = nominal value given in the AC timing table.
'Typical part under worst-case conditions.

240296-26

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions

TYPICAL' OUTPUT A S#. BREQ. LOCK#. HLDA
SLEW TIME (ns) 9 f---i--il"----+---oA-~"'"

(0.8-2.0V)

/R#. NENE#

oL-~_-L_-L_~~

25 50 75 100 125 150

NOTES:
LOAD CAPACITANCE. CL (pi)

Graphs are not linear outside the CL range shown.
'Typical part under worst-case conditions.

240296-27

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions

700

600 v
.

500 <-
-5-

0 400 .J,>

1/
,,-

V
,,-

V'
300

200
8 12 16 20 24 26 30 343840

NOTES:
FREQUENCY (MHz)

Graphs are not linear outside the frequency range shown.
'Worst-case supply current at 5V.

Figure 7.4. Typical Icc vs Frequency

2-219

240296-28

i860TM XR MICROPROCESSOR

8.0 INSTRUCTION SET

Key to abbreviations:

For register operands, the abbreviations that describe the operands are composed of two parts. The first part
describes the type of register:

c
t

One of the control registers fir, psr, epsr, dirbase, db, or fsr

One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is to be placed:

src1

src1ni

src1s

src2

dest

The first of the two source-register designators, which may be either a register or a 16-bit
immediate constant or address offset. The immediate value is zero-extended for logical
operations and is sign-extended for add and subtract operations (including addu and subu)
and for all addressing calculations.
Same as src1 except that no immediate constant or address offset value is permitted.

Same as src1 except that the immediate constant is a 5-bit value that is zero-extended to 32
bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and that the encoding of
that register must be placed in the src2 field of the machine instruction.

Other (non register) operands are specified by a one-part abbreviation that represents both the type of operand
required and the instruction field into which the value of the operand is placed:
canst A 16-bit immediate constant or address offset that the i860 XR microprocessor sign-extends

to 32 bits when computing the effective address.
Ibraff A signed, 26-bit, immediate, relative branch offset.
sbraff A signed, 16cbit, immediate, relative branch offset.
brx A function that computes the target address by shifting the offset (either Ibratt or sbraff) left

, by two bits, sign-extending it to 32 bits, and adding the result to the current instruction pointer
plus four. The resulting target address may lie anywhere within the address space.

Unless otherwise specified, floating-pOint operations accept single- or double-precision
source operands and produce a result of equal or greater precision. Both input operands
must have the same precision. The source and result precision are specified by a two-letter
suffix to the mnemonic of the operation.

Other abbreviations include:
.p Precision specification .5S, .sd, or.dd (.ds not permitted). Refer to Table 8.1 .
. r Precision specification.ss, .sd, .ds, or .dd. Refer to Table 8.1 .
. v .sd or .dd. Refer to Table 8.1 .
. W

.x

.y

.Z

. ss or .dd. Refer to Table 8.1 .

.b (8 bits), .s (16 bits), or .1 (32 bits)

.I (32 bits), .d (64 bits), or .q (128 bits)

.I (32 bits), or .. d (64 bits)

Table 8.1. Precision Specification

Suffix
Source Result

Precision Precision

.ss single single

.sd single double

.dd double double

.ds double single

2-220

int:eL i860TM XR MICROPROCESSOR

mem.x(address) The contents of the memory location indicated by address with a size of x.

PM The pixel mask, which is considered as an array of eight bits PM [7]..PM [01. where PM[O] is
the least significant bit. .

8.1 Instruction Definitions in Alphabetical Order
adds isrc1, isrc2, ides! .. Add Signed

ides! ~ isrc1 + isrc2
OF ~ (bit 31 carry ,p bit 30 carry)
CC set if isrc2 < -isrc1 (signed)
CC clear if isrc2 ~ -isrc1 (signed)

addu isrc1, isrc2, ides! Add Unsigned
ides! ~ isrc1 + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

and isrc1, isrc2, ides! ... Logical AND II
ides! ~ isrc 1 and isrc2
CC set if result is zero, cleared otherwise

andh #const isrc2, ides! : Logical AND High
ides! ~ (#cons! shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

and not isrc1, isrc2, ides! .. . Logical AND 'NOT
ides!. ~ not isrc 1 and isrc2
CC set if result is zero, cleared otherwise

andnoth. #const isrc2, ides! .. Logical AND NOT High
ides! ~ not (# cons! shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

bc Ibroff , ... Branch on ee
IF CC = 1
THEN continue execution· at brx(lbroff)
FI

bc.t Ibroff ... Branch on ee, Taken
IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bla . isrc1ni, isrc2, sbroff Branch on Lee-and Add

bnc

LCC-temp clear if isrc2 < -isrc1ni (signed)
LCC~temp set ifisrc2 ~ -isrc1ni (Signed)

isrc2 ~ isrc1ni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC-temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC-temp
FI

IF
THEN
FI

Ibroff ...•.................. Branch on Not ec
CC = 0
continue execution at brx(lbroff)

bnc.t Ibroff ... Branch on Not ee, Taken
IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

2-221

int"eL i860™ XR MICROPROCESSOR

br Ibroff , Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brx(lbroff).

bri [isre1nil .. Branch Indirect Unconditionally

bte

Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF OS is set and DIM is reset
THEN enter dual-instruction mode after executing one

instruction in single-instruction mode
ELSE IF DS is set and DIM is set

FI

THEN enter single-instruction mode after executing one
instruction in dual-instruction mode

ELSE IF DIM is set

FI

THEN enter dual-instruction mode
for next two instructions

ELSE enter single-instruction mode
for next two instructions

FI

Continue execution at address in isre1ni
(The original contents of isre1ni is used even if the next instruction
modifies isre1ni. Does not trap if isre1ni is misaligned.)

IF
THEN
FI

isre1s, isre2, sbroff .. . Branch If Equal
isre 1 s = isre2
continue execution at brx(sbro{f)

btne isre 1 s, isre2,' sbroff ... Branch If Not Equal
IF
THEN
FI

isre 1 s oF isre2
continue execution at brx(sbro{f)

call Ibroff . .. Subroutine Call
r1 +- address of next sequential instruction + 4 (+ 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [isre 1 nil ... , Indirect Subroutine Call
r1 +- address of next sequential instruction + 4 (+ 8 in dual mode)
Execute one more sequential instruction
Continue execution at address in isre1ni

(The original contents of isre1ni is used even if the next instruction
modifies isre1ni. Does not trap if isre1ni is misaligned.
The register isre1ni must not be r1.)

fadd.p fsre 1, fsre2, fdest ... Floating-Point Add
fdest +- fsre1 + fsre2

faddp {sre1, fsre2, fdest Add with Pixel Merge
{dest +- {sre 1 + {sre2
Shift and load MERGE register as defined in Table 8.2

faddz fsre 1, fsre2, fdest .. Addwith Z Merge
fdest +- {sre1 + fsre2
Shift MERGE right 16 and load fields 31..16 and 63 .. 48

famov.r {sre 1, {dest . .. Floating-Point Addei Move
{dest +- {sre1
Send {sre1 through the floating-point adder. (Preserves -0 (minus zero) when {sre1 is -0. (sre2
must be coded as fO by the assembler.)

2-222

intel® i860™ XR MICROPROCESSOR

fiadd.w fsrc1, fsrc2, fdest Long-Integer Add
fdest ~ fsrc1 + fsrc2

fisub.w fsrc1, fsrc2, fdest Long-Integer Subtract
fdest ~ fsrc1 - fsrc2

fix.v fsrc1, fdest ... Floating-Point to Integer Conversion
fdest ~ 64- bit value with low-order 32 bits equal to integer part of fsrc1 rounded

Floating-Point Load
fld.y isrc1(isrc2), fdest ... , (Normal)
f1d.y isrc1(isrc2)+ +, fdest (Autoincrement)

fdest ~ mem.y (isrc1 + isrc2)
IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

Cache Flush
flush # const(isrc2) ... ; .. (Normal)
flush # const(isrc2) + + .. (Autoincrement) •

Replace block in data cache with address (# const + isrc2).
Contents of block undefined.
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

fmlow.dd fsrc1, fsrc2, fdest . .. Floating-Point Multiply Low
fdest ~ low-order 53 bits of fsrc 1 mantissa x fsrc2 mantissa
fdest bit 53 ~. most significant bit of mantissa

fmov.r fsrc1, fdest .. Floating-Point Reg-Reg Move
Assembler pseudo-operation

fmov.ss fsrc1, fdest = fiadd.ss fsrc1, fO, fdest
fmov.dd fsrc1, fdest = fiadd.dd fsrc1, fO, fdest
fmov.sd fsrc1, fdest = famov.sd fsrc1, fdest
fmov.ds fsrc1, fdest = famov.ds fsrc1, fdest

fmul.p fsrc1, fsrc2, fdest ... Floating-Point Multiply
fdest ~ fsrc 1 x fsrc2

fnop .. Floating-Point No Operation
Assembler pseudo-operation

fnop = shrd rO, rO, rO

form fsrc1, fdest .. OR with MERGE Register
fdest ~ fsrc1 OR MERGE
MERGE ~ 0

frcp.p fsrc2, fdest .. Floating-Point Reciprocal
fdest ~ 1 Ifsrc2 with maximum mantissa error < 2-7

frsqr.p fsrc2, fdest Floating-Point Reciprocal Square Root
fdest ~ 1/SQRT (fsrc2) with maximum mantissa error < 2-7

Floating-Point Store
fst.y fdest, isrc1(isrc2) .. (Normal)
fst.y fdest, isrc1(isrc2) + + ... (Autoincrement)

mem.y (isrc2 + isrr;;1) ~ fdest
IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

fsub.p fsrc1, fsrc2, fdest . .. Floating-Point Subtract
fdest ~ fsrc 1 - fsrc2

ftrunc. v fsrc 1, fdest : Floating-Point to Integer Conversion
fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1

fxfr fsrc1, idest .. Transfer F-P to Integer Register
idest ~ fsrc1

2-223

int'el. i860TM XR MICROPROCESSOR

fzchkl fsrc 1, fsrc2, fdest .. 32-Bit Z-Buffer Check
Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit

fields fsrc1(O) .. fsrc1(1), fsrc2(O)..fsrc2(1), and fdest(O)..fdest(1)
where zero denotes the least~significant field .

. PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) ,,;: fsrc1(i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

fzchks fsrc1, fsrc2, fdest .. 16-Bit Z-Buffer Check
Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit .

fields fsrc1(O) .. fsrc1(3), fsrc2(O)..fsrc2(3) , and fdest(O) .. fdest(3)
where zero denotes the least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) ,,;: fsrc1(i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

intovr; ... ; ; ... Software Trap on Integer Overflow
If OF in epsr = 1, generate trap with IT set in psr.

ixfr isrc1ni, fdest .. Transfer Integer to F-P Register
fdest ~ isrc1ni

Id.c csrc2, idest Load from Control Register
idest ~ csrc2 .

Id.x isrc1(isrc2j,idest . .. Load Integer
idest ~ mem.x (isrc1 + isrc2j

lock .. Beginlnterlocked Sequence
Set BL in dirbase. The next load or store that misses the cache locks that location.
Disable interrupts until the bus is unlocked.

mov isrc2, idest .. Register-Register Move
Assembler pseudo-operation

mov isrc2, idest = shl rO, isrc2, idest

mov const32, idest Constant-to-Register Move
Assembler pseudo-operation

adds l%const32, rO, idest
... when const32 < Ox8000

orh h %const32, rO, ides!
or l%const32, ides!, idest

... when cons!32 :<: Ox8000

nop ; ...•......... Core-Unit No Operation
Assembler pseudo-operation

nop = shl rO, rO, rO

or isrc 1, isrc2, idest Logical OR
idest ~ isrc1 OR isrc2
CC set if result is zero, cleared otherwise

orh # const, isrc2, idest ... Logical OR High
idest ~ .. (# const shifted left 16 bits) OR isrc2
CC set if result is zero, cleared otherwise

2-224

intel~ i860TM XR MICROPROCESSOR

pfadd.p fsrc 1, fsrc2, fdest ... Pipelined Floating-Point Add
fdest ~ last stage Adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrc1 + fsrc2

pfaddp fsrc1, fsrc2, fdest ... Pipellned Add with Pixel Merge
fdest ~ last stage Graphics result
last stage Graphics result ~ fsrc1 + fsrc2
Shift and load MERGE register from last stage Graphics result as defined in Table 8.2

pfaddz fsrc1, fsrc2, fdest . .. Pipelined Add with Z Merge
fdest ~ last stage Graphics result
last stage Graphics result ~ fsrc1 + fsrc2
Shift MERGE right 16 and load fields 31..16 and 63 . .48 from last stage Graphics result

pfam.p fsrc1, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest ~ last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2 fI

pfamov.r fsrc1, fdest ... Pipelined Floating-Point Adder Move
fdest ~ last stage Adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrc1

pfeq.p fsrc1, fsrc2, {dest Pipelined Floating-Point Equal Compare
fdest ~ last stage Adder result
CC set if fsrc1 = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p fsrc1, fsrc2, fdest Pipelined Floating-Point Greather-Than Compare
(Assembler clears R-bit of instruction)
{dest ~ last stage Adder result
CC set if fsrc 1 > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfiadd.w fsrc1, fsrc2, fdest .. Pipelined Long-Integer Add
fdest ~ last stage Graphics result
last stage Graphics result ~ fsrc1 + fsrc2

pfisub.w fsrc1, fsrc2, fdest .. Pipelined Long-Integer Subtract
fdest ~ last stage Graphics result
last stage Graphics result ~ fsrc1 - fsrc2

pfix.v fsrc1, fdest Pipelined Floating-Point to Integer Conversion
fdest ~ last stage Adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrc1 rounded
Pipelined Floating-Point Load

pfld.z isrc1(isrc2).fdest .. (Normal)
pfld.z isrc 1 (isrc2) + +, fdest ; .. (Autoincrement)

fdest ~ mem.z (third previous pfld's (isrc1 + isrc2)
(where .z is precision of third previous pfld_z)

If autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

pfle.p . fsrc1, fsrc2, fdest Pipelined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that

assembler sets R-bit of instruction.
fdest ~ last stage Adder result
CC clear if fsrc1 ~ fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

2-225

i860TM XR MICROPROCESSOR

pfmam.p fsrc1, fsrc2, fdest Pipellned Floating-Point Add and Multiply
fdest +- last stage Multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A·op1 - A·op2
M pipeline first stage +- M-op1 x M-op2

pfmov.r fsrc1, fdest Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation .

pfmov.ss fsrc1, fdest = pfiadd.ss fsrc1, fO, fdest
pfmov.dd fsrc1, fdest = pfiadd.dd fsrc1, fO, fdest
pfmov.sd fsrc1, fdest = pfamov.sd fsrc1, fdest
pfmov.ds fsrc1, fdest = pfamov.ds fsrc1, fdest

pfmsm.p fsrc1, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply
fdest +- last stage Multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <E-' A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfmul.p fsrc1, fsrc2, fdest Pipelined Floating-Point Multiply
fdest +- last stage Multiplier result
Advance M pipeline one stage
M pipeline first stage +- fsrc1 x fsrc2

pfmul3.dd fsrc 1, fsrc2, fdest Three-Stage Pipelined Multiply
fdest ~ last stage Multiplier result
Advance 3-Stage M pipeline one stage
M pipeline first stage +- fsrc1 x fsrc2

pform fsrc1, fdest Pipelined OR to MERGE Register
fdest +- last stage Graphics result
last stage Graphics result +- fsrc1 OR MERGE
MERGE +- 0

pfsm.p fsrc 1, fsrc2, fdest Plpelined Floating-Point Subtract and Multiply
fdest +- last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- . M:op1 x M-op2

pfsub.p fsrc1, fsrc2, fdest Pipelined Floating-Point Subtract
fdest. +- last stage Adder result
Advance A pipeline one stage
A pipeline first stage +- fsrc1 + fsrc2

pftrunc.v fsrc1, fdest Pipelined Floating-Point to Integer Conversion
fdest +- last stage Adder result
Advance A pipeline one stage
A pipeline first stage +- 64-bit value with low-order 32 bits

equal to integer part of fsrc 1

pfzchkl fsrc1, fsrc2, fdest . .. Pipelined 32-Bit Z-Buffer Check
. Consider fsrc1, fsrc2, and fdest, as arrays of two 32-bit

fields fsrc 1(0)..fsrc 1(1), fsrc2(0) .. fsrc2(1), and fdest(0) .. fdest(1)
where zero denotes the least significant field.

PM +- PM shifted right by 2 bits
FOR i =0 to.1
DO

00

PM [i + 6] +- fsrc2(i) ::;; fsrc1(i) (unsigned)
fdest(i) +- last stage Graphics result
last stage Graphics result +- smaller of fsrc2(i) and fsrc1(i)

MERGE +- 0

2-226

inteL i860TM XR MICROPROCESSOR

pfzchks fsrc1, fsrc2, fdest, ,Plpelined 16-81t Z-Buffer Check
Consider fsrc1, fsrc2, and fdest, as arrays of four 16-bit

fields fsrc1(0) .. fsrc1(3), fsrc2(0) .. fsrc2(3), and fdest(0) .. fdest(3)
where zero denotes the least significant field,

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 41 ~ fsrc2(i) ~ fsrc1(i) (unsigned)
fdest(i) ~ last stage Graphics result
last stage Graphics result ~ smaller of fsrc2(i) and fsrc1(i)

00
MERGE ~ 0

pst.d fdest, # const(isrc2) , , , , , , .. , , , , , , , .. , .. , , , , , , , , , , , , , , , , , , , , , , , , , , .. , , , , , ,Pixel Store
pst,d fdest, # const(isrc2) + + """"""""""""""""""'" Pixel Store Autoincrement

Pixels enabled by PM in mem,d (isrc2 + #consf) ~ fdest
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

shl isrc1, isrc2, idest " " .. , ,",' ,', .. , ",',," .. ,' '" '" """""""" .. , "" ",Shift Left
idest ~ isrc2 shifted left by isrc1 bits

shr isrc1, isrc2, idest , .. ", ,' ,.,' ,' ,.,',.,.' " .. ,.,', .. ,', ... , , ... ,Shift Right
SC (in psr) ~ isrc1
idest ~ isrc2 shifted right by isrc1 bits

shra isrc1, isrc2, idest, , , , , , , , , , .. , , . , , , . , , , , . , , , , , , , , , , , , , , , , .. , , , , ,Shift Right Arithmetic
idest ~ isrc2 arithmetically shifted right by isrc1 bits

shrd isrc1, isrc2, idest ... "" "" , , .. ," '" """" , "',.,""""" , .. , " .. Shift Right Double
idest ~ low-order 32 bits of isrc1:isrc2 shifted right by SC bits

st.c isrc1ni, csrc2 """""""', ,,"' .. ,' .. ,',"' ,',', .. , .. Store to Control Register
csrc2 ~ isrc1ni

st.x isrc1ni, #const(isrc2) "",.,"',.,"""""",.,',"'.",.,',.,',.," .. ,' .Store Integer
mem,x (isrc2 + #consf) ~ isrc1ni

subs isrc1, isrc2, idest , " ... " .. ,""' .. " Subtract Signed
idest ~ isrc1 - isrc2
OF ~ (bit 31 carry "* bit 30 carry)
CC set if isrc2 > isrc1 (signed)
CC clear if isrc2 ~ isrc1 (signed)

subu isrc1, isrc2, idest ... ".,',.,.,.,',.,"""""""""""""""'" ,Subtract Unsigned
idest ~ isrc1 - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry
(I.e. CC set if isrc2 ~ isrc1 (unsigned)

CC clear if isrc2 > isrc1 (unsigned)

trap isrc1ni, isrc2, idest ... , , , , , " " , , . , , , , . , , , ... , , . , .. , , .. , , , , , , , , , , , . , , , , , , , ,Software Trap
Generate trap with IT set in psr

unlock ",.,",", .. " .. ", ... , .. , ... " .. "." .. ,',.,',.".,',.,"""" End Interlocked Sequence
Clear BL in dirbase, The next load or store unlocks the bus.
Enable interrupts after bus is unlocked,

xor isrc1, isrc2, ides! ., .,.,"',.,""',. """ "',.,"'" """"""" . Logical Exclusive OR
idest ~ isrc1 XOR isrc2
CC set if result is zero, cleared otherwise

xorh # const, isrc2, idest , . , , , . , , , . , , , , . , , , . , . , , , , , .. , , , , , . , , , , . , , , , ,Logical Exclusive OR High
idest ~ (# const shifted left 16 bit) XOR isrc2
CC set if result is zero, cleared otherwise

2-227

II

inteL i860TM XR MICROPROCESSOR

Table 8.2. FADDP MERGE Update

Pixel
Fields Loaded From

Right Shift
Size

Result into MERGE
Amount

(from PS) (Field Size)

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 8
16 63 .. 58,47 . .42,31 .. 26,15 .. 10 6
32 63 .. 56, 31 .. 24 8

8.2 Instruction Format and Encoding

All i"nstructions are 32 bits long and begin on a four­
byte boundary. When operands are registers, the
register encodings shown in Table 8.3 are used.
There are two general core-instruction formats,
REG-format and CTRL-format, as well as a separate
format for floating-point instructions.

8.2.1 REG-FORMAT INSTRUCTIONS

Within the REG-format are several variations as
shown in Figure 8.1. Table 8.4 gives the encodings
for these instructions. One encoding is an escape
code that defines yet another variation: the core es­
cape instructions. Figure 8.2 shows the format of
this group, and Table 8.5 shows the encodings.

In these instructions, the src2 field selects one of
the 32 integer registers (most instructions) or five
control registers (st.c and Id.c). Dest selects one of
the 32 integer registers (most instructions) or float­
ing-point registers (fld, fst, pfld, pst, ixfr). For in­
structions where src1 is optionally an immediate val­
ue, bit 26 of the opcode (I-bit) indicates whether src1
is an immediate. If bit 26 is clear, an integer register
is used; if bit 26 is set, src1 is contained in the low­
order 16 bits, except for bte and btne instructions.
For bte and btne, the five-bit immediate value is
contained in the src1 field. For st, bte, btne, and
bla, the upper five bits of the offset or broffset are
contained in the dest field instead of src1, and the
lower 11 bits of offset are the lower 11 bits of the
instruction.

Table 8.3. Register Encoding

Register Encoding

rO 0

r31 31

10 0

f31 31

Fault Instruction 0
Processor Status 1
Directory Base 2
Data Breakpoint 3
Floating-Point Status 4
Extended Process Status 5

For Id and st, bits 28 and zero determine operand
size as follows:

Bit 28 Bit 0 Operand Size

0 0 8-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When src1 is an immediate and bit 28 is set, bit zero
of the immediate value is forced to zero.

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. For fld, fst, pfld, and
pst, bits one and two select the operand size as
follows:

Bit 1 Bit 2 Operand Size

0 0 64-bits
0 1 128-bits
1 0 32-bits
1 1 32-bits .

When src1 is an immediate value, bits zero and one
of the immediate value are forced to zero to main­
tain alignment. When bit one of the immediate value
is clear, bit two is also forced to zero.

For flush, bits one and two must be zero.

2-228

intet

31 25

OPCODE/I

31 25

I OPCODE

31 25

OPCODE/I

31

i860TM XR MICROPRO.CESSOR

General Format
20 15 10

SRC2 SRC1 IMMEDIATE, OFFSET, OR NULL

16-Blt Immediate Variant (except bte and btne)
20 15 .

SRC2 I DEST I IMMEDIATE

SRC2

st, bla, bte, and btne
20 15 10

OFFSET SRC1
HIGH SRC1S

bte and btne with 5-Blt Immediate
20 15 10

OFFSET
HIGH

IMMEDIATE

Figure 8.1. REG-Format Variations

2-229

OFFSET LOW

OFFSET LOW

o

o

o

FI
o

L

LS

SO

H

Id.x
st.x
ixfr

tld.x, fst.x
flush
pst.d
Id.c, st.c
bri
trap

bte, btne
pfld.y

addu, os, subu, os,
shl, shr
shrd
bla
shra
and(h)
andnot(h)
or(h)
xor(h)

Integer Length
0 -8 bits

i860™ ·XR MICROPROCESSOR

Table 8.4. REG~Format Opcodes
31

Load Integer 0 0
Store Integer 0 0
Integer to F-P Reg Transfer 0 0
(reserved) 0 0
Load/Store F-P 0 0
Flush 0 0
Pixel Store 0 0
Load/Store Control Register 0 0
Branch Indirect 0 1
Trap 0 1
(Escape for F-P Unit) 0 1
(Escape for Core Unit) 0 1
Branch Equal or Not Equal 0 1
Pipelined F~P Load 0 1
(CTRL-Format Instructions) 0 1
Add/Subtract 1 0
Logical Shift 1 0
Double Shift 1 0
Branch LCC Set and Add 1 0
Arithmetic Shift 1 0
AND· 1 1
ANDNOT 1 1
OR 1 1
XOR 1 1
(reserved) 1 1

AS Add/Subtract
0 -Add

1 -16 or 32 bits (selected by bit 0) 1 -Subtract
Load/Store LR Left/Right
0 -Load 0 -Left Shift
1 -Store 1 -Right Shift
Signed/Ordinal E Equal

0 L
0 L
0 0
0 1
1 0
1 1
1 1
1 1
0 0
0 0
0 0
0 0
0 1
1 0
1 x
0 SO
1 0
1 1
1 1
1 1
0 0
0 1
1 0
1 1
x x

0 -Ordinal 0 -Branch on Not Equal
1 -Signed 1 -Branch on Equal
High Immediate
0 --and, or, andnot, xor 0 -src 1 is register
1 -andh, orh, andnoth, xorh 1 -src1 is immediate

31 26 15 10

1
0 1 0 0 1 1 I reserved' SRC1 reserved'

'reserved (must be set to zero by assemblers)

Figure 8.2. Core Escape Instruction Format

2-230

26

0 I
1 1
1 0
1 0

LS I
0 1
1 1

LS 0
0 0
0 1
1 0
1 1
E I
0 I
x x

AS I
LR I
0 0
0 1
1 I
H I
H I
H I
H I
1 0

5 0

OPCODE I

intel" i860TM XR MICROPROCESSOR

lock
calli

intovr

unlock

Table 8.5. Core Escape Opcodes
4

(reserved) 0 0
Begin Interlocked Sequence 0 0

Indirect Subroutine Call 0 0
(reserved) 0 0

Trap on Integer Overflow 0 0
(reserved) 0 0
(reserved) 0 0

End Interlocked Sequence 0 0
(reserved) 0 1
(reserved) 1 0
(reserved) 1 1

8.2.2 CTRL-FORMAT INSTRUCTIONS

o
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
x x x
x x x
x x x

The CTRL instructions do not refer to registers, so instead of the register fields, they have a 26-bit relative
branch offset. Figure 8.3 shows the format of these instructions and Table 8.6 defines the encodings.

31 26 25 o

BROFFSET

BROFFSET is a signed 26-bit relative branch offset.

Figure 8.3. CTRL Instruction Format

Table 8.6. CTRL-Format Opcodes
28 26

(reserved) 0 0 0
(reserved) 0 0 1

br Branch Direct 0 1 0
call . Call 0 1 1
bc(.t) Branch on CC Set 1 0 T
bnc(.t) Branch on CC Clear 1 1 T

T Taken
o -bc or bnc
1 -bc.t or bnc.t

2-231

InteL i860TMXR MICROPROCESSOR

8.2.3 FLOATING-POINT INSTRUCTIONS

The floating·point instructions also constitute an escape series. All these instructions begin with the bit se­
quence 010010. Figure 8.4 shows the format of the floating point instructions, and Table 8.7 gives the encod­
ings. Within the dual-operation instructions is a subcode OPC whose values are given in Table 8.8 along with
the mnemonic that corresponds to each. .

31 25 20 15

SRC2 DEST SRC1

SRC1, SRC2 -Source; one of 32 floating-point registers
DEST -Destination register

(instructions other than Ixlr) one of 32 floating-point registers
(Ixlr) one of 32 integer registers

P Pipelining S Source Precision

OPCODE

1 -Pipelined instruction mode
o -Scalar instruction mode

D Dual-Instruction Mode

1 -Double-precision source operands
o -Single-precision source operands

R Result Precision
1 -Dual-instruction mode
o -Single-instruction mode

1 -Double-precision result
o -:-Single-precision result

Figure 8.4. Floating-Point Instruction Encoding

Table 8.7. Floating-Point Opcodes
6

pfam Add and Multiply'
pfmam Multiply with Add' 0
pfsm Subtract and Multiply'

0
pfmsm Multiply with Subtract'

(p)fmul Multiply 0
fmlow Multiply Low 0
frcp Reciprocal 0
frsqr Reciprocal Square Root 0
pfmul3.dd 3-Stage Pipelined Multiply 0

(p)fadd Add 0
(p)fsub Subtract 0
(p)fix Fix 0
(p)famov Adder Move 0
pfgtlpfle" Greater Than 0
pfeq Equal 0
(p)ftrunc Truncate 0

fxfr Transfer to Integer Register 1
(p)fiadd Long-Integer Add 1
(p)fisub Long-Integer Subtract 1

(p)fzchkl Z-Check Long 1
(p)fzchks Z-Check Short 1
(p)faddp Add with Pixel Merge 1
(p)faddz Add with Z Merge 1
(p)form OR with MERGE Register 1

'pfam and pfsm have P-blt set; pfmam and pfmsm have P-blt clear.
"pfgt has R bit cleared; pIle has R bit set.

NOTE: /
All opcodes not shown are reserved.

2-232

0 0

0 1

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 1

0 0 0
0 0 1
0 0 1

0 1 0
0 1 1
0 1 0
0 1 0
0 1 1

OPC

OPC

0 0
0 0
0 1
0 .1
1 0

0 0
0 0
0 1
0 1
1 0
1 0
0 1

0 0
0 0
1 0

1 1
1 1
0 0
0 0
0 1

o

0
1
0
1
0

0
1
0
1
0
1
0

0
1
1

1
1
0
1
0

int'eL i860™ XR MICROPROCESSOR

The following table shows the opcode mnemonics that generate the various encodings of DPe and explains
each encoding.

Table 8 8. ope Encoding

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load'

0000 r2p1 r2s1 KR src2 src1 M result· No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes

0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes

1000 rat1p2 rat1s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra1s2 KR A result src1 src2 No No
1011 m12ttpa m12ttsa src1 src2 T A result Yes No

1100 iat1p2 iat1s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load'

0000 mr2p1 mr2s1 KR src2 src1 M result No No.
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes

0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12ttpm mm12ttsm src1 src2 T A result Yes No

1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No
1111 Intel-Reserved

. . ..
*If K-Ioad IS set, KR IS loaded when operand-1 of the multiplier IS KR; KIIS loaded when operand-1 of the multiplier IS KI.

2-233

intet i860TM XR MICROPROCESSOR

8.3 Instruction Timings

i860 XR microprocessor instructions take one clock
to execute unless a freeze condition is invoked.
Freeze conditions and their associated delays are

Freeze Condition

Instruction-cache miss

Reference to destination of Id instruction that
misses

tid miss

call, calli, Ixfr, fxfr, Id.c, or st.c and data cache
load miss processing in progress

Id/stlpfld/fld/fst and data cache load miss
processing in progress

Reference to dest of Id, call, calli, fxfr, or Id.c in
the next instruction. (Dest of call and calli is r1.)

shown in the table below. Freezes due to multiple
simultaneous cache misses result in a delay that is
the sum of the delays for processing each miss by
itself. Other multiple freeze conditions usually add
only the delay of the longest individual freeze.

Delay

Number of clocks to read instruction (from ADS
clock to first READY # clock) plus time to last
READY # of block when jump or freeze occurs
during miss processing plus two clocks if data-
cache being accessed when instruction-cache
miss occurs.

One plus number of clocks to read data (from
ADS# clock to first READY# clock) minus number
of instructions executed since load (not counting
instruction that references load destination)

One plus number of clocks until first READY #
returned (for 32- or 64-bit read cycles) or until
second READY # returned (for 128-bit fld.q read
cycles)

One plus number of clocks until first READY #
returned (for 64-bit read cycles) or until second
READY # returned (for 128-bit fld.q read cycles)

One plus number of clocks until last READY #
returned

One clock

2-234

i860TM XR MICROPROCESSOR

Freeze Condition Delay

Reference to dest of fld/pfldlixfr in the next two Two clocks in the first instruction; one in the
instructions second instruction

bc/bnc/bc.t/bnc.t following addu/adds/subu/ One clock
subs/pfeq/pfle/pfgt

Fsrc1 of multiplier operation refers to result of One clock
previous operation

Floating-point operation or graphics-unit If the scalar operation is fadd, fix, fmlow, fmul.ss,
instruction or fst, and scalar operation in progress fmul.sd, ftrunc, or fsub, two minus the number of
other than frcp or frsqr instructions (or dual-mode pairs) already executed

after the scalar operation. If the scalar operation is
fmul.dd, three minus' the number of instructions
(or dual-mode pairs) executed after it. Add one if
either or both of these two situations occur:
1. There is an overlap between· the result register II

of the previous scalar operation and the source
of the floating·point operation, and the
destination precision of the scalar operation is
different than the source precision of the
floating-point operation.

2. The floating-point operation is pipelined and its
destination is not fO.

There is no delay if the result is negative.

Multiplier operation preceded by a double One clock
precision multiply

TLB miss Five plus the number of clocks to finish two reads
plus the number of clocks to set A-bits (if
necessary)

pfld when three pfld's are outstanding One plus the numlJer of clocks to return data from
first pfld

pfld hits in the data cache Two plus the number of clocks to finish all
outstanding accesses

st, pst or fst miss, Id miss, or flush with modified One plus the number of clocks until READY #
block when store path full (two stores or one 256- active on next 64-bit write cycle or second
bit write-back internally waiting for bus plus READY # of next 128-bit write cycle.
external bus pipeline full)

Id, fld, pfld, st, pst, or fst when address path full Number of clocks until next nonrepeated address
(one address internally waiting for bus plus can be issued (I.e., an address that is not the 2nd-
external bus pipeline full) 4th cycle of a cache fill, the 2nd-8th cycle of a

CS8 mode instruction fetch, nor the 2nd cycle of a
128-bit write)

Id/fld following st/fst hit One clock

2-235

i860TM XR MICROPROCESSOR

Freeze Condition

Delayed branch not taken

Nondelayed branch taken:
bc,bnc
bte, btne

Indirect branch bri or call calli

st.c

Result of graphics-unit instruction (other than
fmov.dd) used in next instruction when the next
instruction is an adder- or multiplier-unit instruction

Result of graphics-unit instruction used in next
instruction when the next instruction is a graphics-
unit instruction

flush followed by flush

fst or pst followed by pipelined floating-point
operation that overwrites the register being stored

8.4 Instruction Characteristics

The following table lists some of the characteristics
of each instruction. The characteristics are:

• What processing unit executes the instruction.
The codes for processing units are:
A Floating-point adder unit
E Core execution unit
G Graphics unit
M Floating-point multiplier unit

• Whether the instruction is pfpelined or not. A P
indicates that the instruction is pipelined.

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches.

• Whether the instruction changes the condition
code CC. A CC marks those instructions that
change CC.

• Which faults can be caused by the instruction.
The codes used for exceptions are:

IT Instruction Fault
SE Floating-Point Source Exception
RE Floating-Point Result Exception, including

overflow, underflow, inexact result
OAT Data Access Fault

Note that this is not the same as specifying at
which instructions faults may be reported. A re­
sult exception is reported on the subsequent
floating-point instruction, pst, fst, or sometimes
fld, pfld, and ixfr.

Delay

One clock

One clock
Two clocks

One clock

Two clocks

One clock

One clock

Three clocks minus the number of instructions
between the two flush instructions. There is no
delay if the result is negative.

One clock

The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they
can occur for any instruction.

• Performance notes. These comments regarding
optimum performance are recommendations
only. If these recommendations are not followed,
the i860 XR microprocessor automatically waits
the necessary number of clocks to satisfy internal
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table:

1. The following instruction should not be a con­
ditional branch (bc, bnc, bc.t, or bnc.t).

2. The destination should not be a source oper­
and of the next two instructions.

3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, fsret
should not be the same as the fdest of the
prior operation.

5. The fdest should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

6. The destination should not be a source oper­
and of the next instruction. (For call and calli,
the destination is r1.)

2-236

i860TM leR MICROPROCESSOR

7. When the prior operation is scalar and multipli­
er opt is fsrct, fsrc2 should not be the same
as the fdest of the prior operation.

8. When the prior operation is scalar, fsrct and
fsrc2 of the current operation should not be the
same as fdest of the prior operation.

9. A pfld should not immediately follow a pfld.

o Programming restrictions. These indicate combi­
nations of conditions that must be avoided by
programmers, assemblers, and compilers. The
following notes define the alphabetic codes that
appear in the instruction table:

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction (except in the case
of external interrupts), nor a trap instruction,
nor the target of a control-transfer instruction.

b. When using a bri to return from a trap handler,
programmers should take care to prevent traps
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts
disabled) when the bri is executed.

c. If fdest is not zero, fsrct must not be the same
as fdest.

d. When fsrct goes to the multiplier opt, KR, or
KI, fsrct must not be the same as fdest.

e. If fdest is not zero, fsrct and fsrc2 must not be
the same as fdest

f. isrct must not be the same as isrc2 for the
autoincrementing form of this instruction.

g. isrct must not be the same as isrc2.

o Core and Floating-Point Instruction Interaction in
Dual-Instruction Mode

1. If one of the branch-on-condition instructions
be or bne is paired with a floating-point com­
pare, the branch tests the value of the condi­
tion code prior to the compare.

2-237

2. If an ixfr, fld, or pfld loads the same register
as a source operand in the floating point in­
struction, the floating-point instruction refer­
ences the register value before,the load up­
dates it.

3. An fst or pst that stores a register that is the
destination register of the companion pipe­
lined floating-point operation will store the re­
sult of the companion operation.

4. When the core instruction sets CC and the
floating-point instruction is pfgt, pfle, or pfeq,
CC is set according to the result of pfgt, pfle,
or pfeq.

5, When a trap instruction causes a trap in dual­
instruction mode, the floating-point instruction
has neither completed execution nor has up- •
dated the FT bit or any result status bits. This
is not a problem when the trap is inserted by a
debugger, because the trap is replaced by the
original instruction, and the dualcmode pair is
reexecuted. However, when the trap is pro­
grammed, the trap handler must avoid reexe-
cuting the trap by returning to user code at
the address in fir + 8. In this case, the trap
handler must emulate the floating-point in-
struction before returning to the user code.
Emulation of the instruction must include all
side-effects (for example, the effect of its
D-bit, effect on the pipelines, and effect on FT
and result-status bits), just as if the instruction
had been executed by the processor in the
original context.

6. In dual-instruction mode, when the intovr in­
struction causes a trap, the floating-point com­
panion instruction has completely finished ex­
ecution before the trap is taken.

intel" . i860™ XR MICROPROCESSOR

-. Programming Restrictions for Dual-Instruction
Mode .

1. The result of placing a core instruction in the
. low-order 32 bits or a floating-point instruction
in the high-order 32 bits is not defined (except
for shrd rO, rO, rO which is interpreted as
fnop).

2. A floating-point instruction that has the D-bit
set must be aligned on a 64-bit boundary (Le.,
the three least-significant bits of its address
must be zero). This applies as well to the initial
32-bit floating-point instruction that triggers
the transition into dual-instruction mode, but
does not apply to the following instruction.

3.· When the floating-point operation is scalar
and the core operation is fst or pst, the store
should not reference the result register of the
floating-point operation. When the core opera­
tion is pst, . the floating-point instruction can-

... not be (p)fzchks or (p)fczhkl.

4. When the core instruction of a dual-mode pair
is a control-transfer operation and the previ­
ous instruction had the D~bit set, the floating­
point instruction must also have the D-bit set.
In other words, an exit from dual-instruction
mode cannot be initiated (first instruction pair
without D-bit set) when the core instruction is
a control-transfer instruction.

5. When the core operation is a Id.c or st.c, the
floating-point operation must be d.fnop.

6. When the floating-point operation is fxfr, the
core instruction cannot be Id, Id.c, st, st.c,
call ixfr, or any instruction that updates an in­
teger register (including autoincrement index­
ing). Furthermore, the core instruction cannot
be a fld, fst, pst, or pfld that uses as isrc1 or
isrc2 the same register as the idest of the
fxfr. Additionally, in dual instruction mode,

2-238

txfr may not be used in a branch delay slot if
its destination register is referenced by the
preceding branch instruction.

7. A bri must not be executed in dual-instruction
mode if any trap bits are set.

8. When the core operation is bc.t or bnc.t, the
floating point operation cannot be pfeq or
ptgt. The floating-point operation in the se­
quentiallyfollowing instruction pair cannot be
pfeq or pfgt, either.

9. A transition to or from dual-instruction mode
cannot be initiated on the instruction .following
a brio

10. An ixfr, fld, or pfld cannot update the desti­
nation of the companion floating-point in­
struction (unless the destination is fO or f1)
or of the following pipe lined floating-point in­
struction (regardless of its destination regis­
ter). No overlap of register destinations is
permitted; for example, the following instruc­
tions must not be paired:

II Illegal case I
d.fmul.ss f9, flO, f5

fld.d address, f4
; Overlaps f5

II Illegal case 2
d.fmul.ss fO, fO, f3

fld.q address, fO
; Overlaps f3

II Illegal case 3
d.fmul.ss f9, flO, fll

fld.l address, f5
d.pfadd.ss fX,fx, f4

Overlaps f5, if last
stage result is double­
precision

11. During a locked sequence, a transition to or
from dual-instruction mode is not permitted.

intel· i860™XR MICROPROCESSOR

Table 8.9 Instruction Characteristics

Instruction
Execution Pipelined? Sets

Faults
Performance Programming

Unit Delayed? CC? Notes Restrictions

adds E CC 1
addu E CC 1
and E CC
andh E CC
andnot E CC

andnoth E CC
bc E
bc.t E 0 a
bla E 0 a,g
bnc E

bnc.t E 0 a
br E 0 a
bri E 0 a, b
bte E
btne E

call E 0 6 a
calli E 0 6 a
fadd.p A SE, RE
faddp G 8
faddz G 8

famov.r A SE, RE
fiadd.z G 8
fisub.z G 8
fix.p A SE, RE
fld.y E OAT 2,3 f

flush E
fmlow.p M 4
fmul.p M SE,RE 4
form G 8
frep.p M SE,RE

frsqr.p M SE, RE
fst.y E OAT 5 f
fsub.p A SE, RE
ftrunc.p A SE, RE
fxfr G 6,8

fzchkl G 8
fzchks G 8
intovr E IT
ixfr E 2
Id.c E

Id.x E OAT 6
or E CC
orh E CC
pfadd.p A P SE,RE
pfaddp G P 8 e

2·239

i860TM XR MICROPROCESSOR

Table 8.9 Instruction Characteristics (Continued)

Instruction
Execution Pipelined? Sets

Unit Delayed? CC?

pfaddz G P
pfam.p A&M P
pfamov.r A P
pfeq.p A P CC
pfgt.p A P CC
pfiadd.z G P

pfisub.z G P
pfix.p A P
pfld.z E P
pfmam.p A&M P

pfmsm.p A&M P
pfmul.p M P
pfmul3.dd M P
pform G P
pfsm.p A&M P
pfsub.p A P

pftrunc.p A P
pfzchkl G P
pfzchks G P
pst.d E
shl E

shr E
shra E
shrd E
st.c E
st.x E

subs E
subu E
trap E
xor E
xorh E

DATA SHEET REVISION REVIEW

The following list represents the key differences be·
tween version 002 and version 001 of the i860 XR

. Microprocessor Data Sheet.

1. Big·endian description in section 2.3 has been
expanded.

2. Bit 17 of the Extended Processor Status Regis­
ter (EPSR) is the INT bit which reflects the value
on the interrupt pin (INT), as described in sec­
tion 2.2.4 entitled "EXTENDED .PROCESSOR
STATUS REGISTER". This is a documentation
update only.

CC
CC

CC
CC

3. The cacheability of a page is controlled by
NOR'ing the value of the CD, WT bits and the

Faults
Performance Programming

Notes. Restrictions

8 e
SE, RE 7 d
SE,RE

SE 1
SE 1

8 e

8 e
SE, RE

OAT 2,9 f
SE, RE 7 d

SE, RE 7 d
SE, RE 4. c
SE, RE 4 c

8 e
SE,RE 7 d
SE, RE

SE,RE
8
8

OAT f

OAT

1
1

IT Ii

KEN # input pin, as described in section 2.5 en­
titled "Caching and Cache Flushing" and sec­
tion 3.1.14 entitled "Cache Enable (KEN#)".
This is a documentation update only.

4. The NOTE section in section 2.5 entitled "Cach­
ing and Cache Flushing" has been updated to
clarify the paging requirement on changing the
DTB field in the dirbase register.

5. Information on register encoding is added in
section 8.2 entitled "Instruction Format and En­
coding". This is a documentation update only.

The following list represents the key differences be­
tween version 003 and version 002 of the i860 XR
Microprocessor Data Sheet.

2-240

intel~ i860TM XR MICROPROCESSOR

Specification Changes:

1. Specification changes for improved AC perform­
ance are in section 7.3.

2. HOLD is acknowledged during locked bus cy­
cles. See section 3.1.8.

3. Additional paths have been added to the bus
state diagram to allow direct transitions from
states T12 and T11 to state TH. See Figures 4.1
and 4.10.

4. Two new instructions, (p)famov.r, have been
added. These replace (p)fadd.ds and
(p)fadd.sd in the assembler pseudo-ops
(p)fmov.r. These changes are in section 8.1
and tables 2.7, 8.7, and 8.9.

Documentation Changes:

1. Big and little end ian description has been ex­
panded in sections 2.2.2, 2.3, and Figure 2.8.

2. The actions and explanations of the lock, un­
lock, and st.c dirbase changing the Bl bit have
been updated in sections 2.2.4, 3.1.5, 3.1.8,
4.3.4, 4.3.5, and 8.1.

3. The explanation of the AA and MA bits of the
fpsr have been expanded in section 2.2.8.

4. The explanation of the WT bit of the Page Table
Entries has been expanded in sections 2.4.4.4
and 2.5.

5. A change concerning the locking of the bus dur­
ing address translation is explained in sections
2.4.5 and 2.8.5.

6. A further explanation on when to flush the data
cache is given in section 2.5.

7. The explanation of the floating point multiplier
pipeline has been expanded in section 2.6.1.

8. The explanation of BREQ has been expanded
in section 3.1.4 and Figure 4.1.

9. The explanation of result exceptions has been
expanded in sections 2.8 and 3.2.

10. Instruction fetch identification has been clarified
in section 3.1.6 and table 3.2.

11. Bus cycle diagrams in Figures 4.7,4.8, and 4.10
have been clarified/corrected.

12. Precision specification .r has been added to
section 8.0 and table 8.1.

13. In section 8.4, performance note 9 has been
added, programming restriction d has been
changed, and programming restriction f has
been added. Table 8.9 has been updated to re­
flect these changes.

14. The description of testability has changed in
sections 3.3. and 3.3.2. RESET and HOLD must
be asserted by the tester to force the chip out­
puts to float (tri-state).

2-241

The following list represents the major differences
between version 004 and version 003 of the i860 XR
Microprocessor Data Sheet:

Section 2.2.4 The explanation of the WP bit of the
espr has been expanded.

Section 2.8.2 More information on the instruction
trap has been added.

Section 2.8.4 The instruction access trap has been
clarified.

Section 2.8.7 The values of registers after a reset
trap have been specified.

Section 3.1.4 BREQ timing has been clarified.

Section 3.1.5 The calculation of interrupt latency
has bee corrected.

Section 3.1.6 The description of the byte-enable
signals has been expanded.

Section 3.1.8 The relation between the lock
instruction and the lOCK # signal has
been clarified. The Bl bit should no
longer be changed by writing to the
dirbase register.

Section 6.0 The thermal specifications have been
updated.

Section 7.3 The A.C. Characteristics for ClK have
changed.

Section 7.3 Advance timing information for the 50
MHz clock rate has been added.
These timings are subject to change
without notice.

Section 8.0 The operand naming conventions
have improved.

Section 8.2.1 The encoding of the flush instruction
has been corrected.

Section 8.3 The data-dependent multiplier freeze
has been eliminated. Other freeze
conditions have been corrected or
clarified.

The following list represents the major differences
between version 005 and version 004 of the i860 XR
Microprocessor Data Sheet.

Section 2.2.4 OF bit is writable only in supervisor
mode using ST.C.

Section 3.1.1 ClK rate has been updated.

Section 5.0 Figure 5.3 has been corrected.

Section 6.0 More information on measuring case
temperature has been added.

Section 6.0 Figure 6.1' has been updated to in­
clude 25 MHz.

Section 6.0 Table 6.1 has been corrected.

Section 6.0 Table 6.2 has been updated to in­
clude 25 MHz.

int'et i860™ XR MICROPROCESSOR

Section 7.2 The D.C. Characteristics have been
updated to include 25 MHz power sup­
ply current.

Section 7.3 The A.C. Characteristics for ClK have
been changed.

Section 7.3 50 MHz clock rate has been deleted.

Section 7.3 25 MHz A.C. Specifications have been
added.

Section 7.3 Figure 7.1 has been corrected.

Section 8.3 The data-dependent multiplier round­
ing freeze has been eliminated.

Section 8.4 Programming restrictions for dual-in­
struction mode are added.

2-242

..

.. ..

II

III

IB

82495XP CACHE CONTROllERI
82490XP CACHE RAM

Two-Way, Set Associative, Secondary I!ill MESI Cache Consistency Protocol
Cache for i860™ XP Microprocessor EI Hardware Cache Snooping
50 MHz "No Glue" Interface with CPU 0 Maintains Consistency with Primary
Configurable Cache via Inclusion Principle
- Cache Size 256 or 512 Kbytes

~ Flexible User-Implemented Memory
- Line Width 32, 64 or 128 Bytes Interface Enables Wide Range of
- Memory Bus Width 64 or 128 Bits Product Differentiation
Dual-Ported Structure Permits - Clocked or Strobed
Simultaneous Operations on CPU and - Synchronous or Asynchronous
Memory Buses -Pipelining

Efficient MRU Way Prediction - Memory Bus Protocol

- Zero Wait States on MRU Hit G 82495}{P Cache Controller Available in
- One Wait State on MRU Miss 208-lead Ceramic Pin Grid Array

Dynamically Selectable Update Policies Package

- Write-Through 0 8249Q}(P Cache RAM Available in 84-
- Write-Once Lead Plastic Quad Flatpack Package
- Write-Back (See Packaging Handbook, Order # 240800)

The Intel 82495XP cache controller and 82490XP cache RAM, when coupled with a user-implemented memo­
ry bus controller, provide a second-level cache subsystem that eliminates the memory latency and bandwidth
bottleneck for a wide range of multiprocessor systems based on the i860 XP microprocessor. The CPU
i,nterface is optimized to serve the i860 XP microprocessor with zero wait states at up to 50 MHz. A secondary
cache built from the 82495XP and 82490XP isolates the CPU from the memory subsystem; the memory can
run slower and follow a different protocol than the i860 XP microprocessor .

. ----- --~ ..
.,'. . TRANSCEIVER I

j' - I (OPTIONAL) I • 11. ____ ... ___ •

t ... _ _..a

CONTROL ADDRESS

MEMORY BUS

Figure 0-1. Secondary Cache Configuration

Intel, Intel, and iS60 are trademarks of Intel Corporation.

240956-60

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. June 1991
© INTEL CORPORATION, 1991 2-243 Order Number: 240956·001

82495XP Cache Controller/82490XP Cache RAM

1.0 82495XP/82490XP PINOUTS

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

A BCD E F G H J K L N P Q R s
o 000 o o o o o o o o 000 o

TAG9 RDYSRC Vee
Vee

Vee
DReTY"

Vee SWEND"
BRDY. WKEN"

Ne
TAG 1 0 rSIOUT"

Vee
SNPBSYfJ Vee

o o
Ne

2 o
TAG7

o o 0 o o
V55

o
V55

o
CRDY.

o
V55

o o 0
MeACHEIf

PALLe"

o
V55

V55
MALE

T.S efA!

o o
V55

V55

o
MWBWTIIt SNPSTBIII

o
SNPOLK 3 o o

CWAY
o
V55

o
BOT'

o
TAC!

o o 0 o
CADS"

o o
TDI

o o 0
KLOCK"

SNPADS·
SNPHCA

TeK TAGS

o 0 o o 0 0 0·0 0 0 0 0 0 0 0 0 0 4 TAGI TDO CWR" CAHOLD F'PFlDfP CNAII' FLUSH" SYNC_ M40[.
lAG .. KWENDfil WBALE McrA2

o
Vco

5 000
RESET

SNPINV Vss

o
Vee

000
TAGll

Vss NEHE"

o
Vco

6 000
MCrA!

MBAOE" Yss

000 o
Vee SWLN*

¥ss crA2

7 000
M14Gl0

000 o
Vee TAG6

Vss TAG8 MUG 11 Yss

82495XP 8 000
MTAG4

000 o
vee TAGO

Vss 1A02 WTAGe Vss

o 9 000
t.lTAG2

o 0 o
Vee SETtO

BOTTOM SIDE VIEW
10

MTAGI ¥ss

000
WTAGO

SET9 SET7

o 0 0 0
Vee vss

Vss SETS IASET8 Vss

o
Vee

11 000
.. SEll 0

IolSET2 Vss

o 0 0 0
Vee SETS

Vss elK

000
WSET9

WSETI Vss

o
Vo<

12 o 0 0 0
Vee SET'"

SET3 SET6

13 006
MSETS

o 0 0 0
Vee SETI

Vss SETO wcrA6 Vss

o 0 0 0 0 0
CF A5 CACHE'" peYc Ow.?.. 0 .£., 0 .£. 0 .£.. 14 o

Ne SET2
o o

erA1 crAB SROye2" DC' WBWHI

o o 0 0 0 0 0 0 0 0
Ne BlAS'HI" crAD DOFF. EAOS"

ADS" BROye,. LEN PCD INV

o 0 0 0 o o o o o o
erA'" BlE#" Vss v" Vss

LOCK" WIO" V,s V,,
o 0 000 o o o 0 o

AHOlO PWT Vee Vee NA'
WR" HIT ... " Vee Vee

A B C o E F G H J K

o
WAY

o
Vss

o
Vee

L

W.A WCfAS t.4TAG3

o w~P 0 .£0 0.£.715
WBWEIII

o
Vss

o
Vee

MerA" MUGS

o
V55 o .£.o 0 .£.. 1 6

BUS_ WSET4

o 0 0 0 0 17
Vee MAWEA" MSET7

wcye. MSET6

N P Q R S
240956-1

Figure 1-1. 82495XP Pinout (Bottom View)

2-244

inteL 82495XP Cache Controller/82490XP Cache RAM

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

S R Q P N M L K J H G F E D c B A

o o o o o o o o o o o o o o o o o
Ne SWEND" Vee Vee NRO" Vee Vee RDYSRC TAG9

MKEt-il" BRCY· DRCTt.4" Vee Vee SNPBSYI' TAGIO

o 000 o o o o o o o o o 000 o
He MALE Vss Vss Vss Vss Vss weACHE" lAG7

Vss TMS PAlLCIfli CFA3

o 0 0 0 o o o o 000 0 0 0 0 0 o
SNPCLK SNPNCA TOI Vss CWAY t.4THIT" CADS# KLOCK" TAG3

SNPSTB" TeK I.IWBW1" SNPCYCIf $NPADS"" TAGS

000 0 0 0 0 0 000 0 0 0 o o o
IoIADE" SYNC_ FLUSH" eNA# fPFLO# CAHOlO CWR# TOO lAOI

t.lCFA2 WBALE KWENOIII MHITt.4# cors.

o 000
Vee RESET

Vss SHPIHV

o o o 0
Vee t.iCFA3

Vss

o o o 0
Vee "'TACilO

Vss "'TAG! 1

82495XP
o
Vee

000
I.ITAG-4

IJTACB

o 000
Vee I.ITAG2

TOP SIDE VIEW Vss '.ITAG!

o 000
Vee IATAGO

Vss IoISETB

o 000
Vee I.ISElIO

Vss IoISET2

o 000
Vee "'SET9

Vss I.ISETI

000
t.iSET5

Vss McrA6

o 000 0 0 0 0 o 000
"'TAGe t.lSEr3 I.ICFA 1 WRARR" pcye CACHE"

IoITAG3 tr.ICfA5 WBA WBWTIJ OCO BRDYC2#

o 000 0 0 o o 0 000
IoITAG7 MSETO WBTYP WAY EADS_ BOrr_

UTAG5 MeFA-4- WBWE" INV peo LEN

o 000 o o o o o o o o
I.ITAG9 t.lCFAO Vss Vss Vss Vss

I.ISET-4 BUS'" Vss Vss Vss MIO"

o 0 000 o o o o o o o
MSET7 UAW[A# Vee Vee HA. Vee

I.ISET6 wcye. Vee Vee Vee

CI.IIO# TAG4

000
TAGI!

NENE# Vss

o o o o
Vss

Str.llN# VCIt
. CFA2

o o o
TAG6

TAG8

o o 0
TAGO

TAG2

o o o 0
Vee SEllO

SET7 SEr9

000 0
Vss Vc¢

SET6 Vss

o o 0
SETS

elK

000 0
SEU VC(C

SET6 5ET3

000 0
SEll VC(C

SETO

o o o 0 o
erAS SET2 He

eFA6 eFAI

o 000 o
CFAD BLAST" He

BRoye1 II ADS"

o o o 0 o
Vss BLE* CfU

KEN. LOCK"

000 o 0
Yee PWT

Hlnl" WRO
AHOlD

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

S R Q P N M L K J H G F E D c B A
240956-2

Figure 1-2. 82495XP Pinout (Top View)

2-245

infel~ 82495XP Cache Controller/82490XP Cache RAM

TNS

TOI

TCK

NDATA7

vee
NDATA3

Vss
NDATA6

vee
MDATA2

vss
NDATAS

Vee
MDATAl

Vss
NDATA4

Vee
.. OATAO

Vss
MOOEtt

MZST"

ADS#

Hlnt#

8ROye#

BRDY#

8LAST*

W/R#

CDATA7

vee
CDATA3

CDATA 1

Vss
CDATA6

CDATA5

Vee
CDATA2

CDATAO

Vss
CDATA4

WAY

WRARR#

CROY#

" l;
g;
"

" §
'"

82490XP

TOP SIDE VIEW

" ~ ~ ~
t;; "'" '" " >~; ~ ~ ..

~ i " ~ >0 d >VI : >- '" " g ~ In ffi '" g
'" '" '"

,. ,.

Figure 1·3. 82490XP Pinout (Top View)

82490XP

BOTTOM SIDE VIEW

" ~ ,.
'" "

Figure 1·4. 82490XP Pinout (Bottom View)

2-246

" " t
"

ADS"

Hln,"
BRDYCJ:#

BRDY"

BLAST"

W/R#

CDATA7

Vee
CDATA3

CDATA 1

Vss
CDATA6

CDATAS

Vee
CDATA2

CDATAO

Vss
CDATA4

WAY

WRARRtt

CRDY#

TNS

TDI

TCK

NDATA7

Vee
NDATA3

Vss
MDATA6

Vee
NDATA2

Vss
MDATA5

Vee
NDATA 1

Vss
NDATA4

Vee
NDATAD

Vss
MOOE"

MZBrS

240956-3

240956-4

82495XP Cache Controller/82490XP Cache RAM ~~[g[60~OOO~~W

1.1 Pin Cross Reference Tables

Table 1-1. 82495XP Pin Cross Reference by Name

Signal Location Signal Location Signal Location

AOS# B15 AHOLO A17 BGT# M03

B LAST # C15 BLE# C16 BOFF # [CLENO] G15

BROY# P01 BROYC1# 015 BROYC2# F14

BUS# P16 CACHE# G14 CAOS# E03

CAHOLO G04 COC# 003 COTS# F04

CFAO E15 CFA1 B14 CFA2# 006

CFA3 B02 CFA4 A16 CFA5 E14

CFA6 014 CLK 011 CMIO# 004

CNA#[CFGO] L04 CROY # [SLFTST #] M02 CWAY J03

CWR# E04 OC# H14 ORCTM# M01

EAOS# J15 FLUSH # [NCPFLO #] N04 FPFLD # [FPFLOEN] J04

FSIOUT# 001 HITM # [CPUTYP] 017 INV[CLEN1] K15

KEN# 016 KLOCK# C03 KWENO# [CFG2] M04

LEN F15 LOCK# B16 MALE[WWOR#] 002

MAOE# S04 MAWEA# 017 MBALE[HIGHZ#] P04

MBAOE# P06 MCACHE# CO2 MCFAO 016

MCFA1 N14 MCFA2 R04 MCFA3 006

MCFA4 P15 MCFA5 P14 MCFA6 P13

MCYC# P17 MHITM# H04 MIO# F16

MKEN# R01 MRO# J01 MSETO 015

MSET1 P12 MSET10 011 MSET2 P11

MSET3 014 MSET4 R16 MSET5 013

MSET6 R17 MSET7 S17 MSET8 P10

MSET9 012 MTAGO 010 MTAG1 P09

MTAG10 007 MTAG11 P07 MTAG2 009

MTAG3 R14 MTAG4 008 MTAG5 R15

MTAG6 S14 MTAG7 S15 MTAG7 S17

MTAG8 P08 MTAG9 S16 MTHIT# G03

MWBWT# K03 NA# J17 NENE# 005

PALLC# 002 PCO H15 PCYC J14

PWT C17 ROYSRC C01 RESET 005

SETO 013 SET1 C13 SET10 A09

SET2 C14 SET3 B12 SET4 C12

SET5 C11 SET6 012 SET7 009

SET8 010 SET9 B09 SMLN# . C06

SNPAOS# F03 SNPBSY# F01 SNPCLK[SNPMD] S03

SNPCYC# H03 SNPINV P05 SNPNCA 003

2-247

82495XP Cache Controller/82490XP Cache RAM ~~~ILO[MJO[f{]b~JRlW

Table 1·1. 82495XP Pin Cross Reference by Name (Continued)

Signal Location Signal Location Signal Location

SNPSTB# R03 SWEND#[CFG1] 001 SYNC# [MEMLDRV] 004

TAGO C08 TAG 1 A04 TAG10 B01

TAG11 C05 TAG2 008 TAG3 A03

TAG4 B04 TAG5 B03 TAG6 C07

TAG7 A02 TAG8 007 TAG9 A01

TCK P03 TDI N03 TOO C04

TMS P02 WAY L15 WBA M14

WBTYP N15 WBWE# M15 WBWT#[WRMRST] K14

WR# B17 WRARR# L14

NC A14,A15,S01,S02 Vee A05-A08,A10-A13,E01,E17, Vss B05-B08, 810-811,B13, E02,
H01,H17, K01,K17, L01, L17, E16,F02,H02,H16,J02,J16,
C09, N17, F17, G01, G17, K02, K04, K16,L02-L03,L16,
M17, N01, S05-S13 C10,N16,G02,G16,R02,R05-

R10, M16, N02, R11-R13

Table 1·2. 82490XP Pin Cross Reference by Name

Signal Location Signal Location Signal Location

AO 65 A1 66 A10 77

A11 78 A12 79 .A13 80

A14 81 A15 82 A2 67

A3 68 A4 69 A5 70

A6 71 A7 73 A8 75

A9 76 ADS# 63 BE# 64

BLAST # 59 BOFF# 36 BRDY# 60

BRDYC# 61 BUS# 40 CDATAO 48

CDATA1 54 CDATA2 49 CDATA3 55

CDATA5 51 CDATA6 52 CDATA7 57

CDATA4 46 CLK 30 CRDY# 43

HITM# 62 MAWEA# 41 MBRDY # [MISTB] 22

MCLK [MSTB # #] 26 MCYC# 42 MDATAO 18

MDATA1 14 MDATA2 10 MDATA3 6

MDATA4 16 MDATA5 12 MDATA6 8

MDATA7 4 MDOE# 20 MEOC# 23

MFRZ#[MEMLDRV] 24 MOCLK[MOSTB] 27 MSEL#[MTR4#/ ...] 25

MZBH [MX4 # / ...] 21 PAR# 32 RESET 28

TCK 3 TOI 2 TOO 84

TMS 1 WAY 45 WBA 38

WBTYP 37 WBWE# 39 WR# 58

WRARR# 44

NC 83 Vee 5,9,13,17,29,35,50, Vss 7,11,15,19,31,33,34,47,
56, 74 53, 72

2-248

82495XP Cache Controller/82490XP Cache RAM

1.2 Quick Pin Reference
BGT # [C490LDRV] I Bus Guaranteed Transfer, [82490XP low Drive]

This signal is generated by the MBC to the 82495XP. It indicates to the
82495XP a commitment by the MBC to complete the cycle on the memory
bus. Until BGT # activation the 82495XP owns the cycle and will abort it if
intervening snoops happen. After BGT # the cycle is owned by the MBC until
its completion. From BGT# until SWEND# snoops will be accepted, but none
will be processed until SWEND# activation.
During RESET's falling edge, this signal controls the driver's strength of the
82495XP to 82490XP interface signals. This strength is a function of the
cache size, and therefore the number of 82490XP's. Refer to the layout
specifications section for more details.

BLE# 0 BE latch Enable
The BlE# signal is used to control the enable line of an external '377-type
latch. The latch captures the i860 XP CPU's BE (Byte Enable) signals and
other CPU provided cycle attributes which do not go through the 82495XP.

BRDY# I 82495XP Burst Ready
This is the burst ready indication from the memory bus controller. The MBC
should connect its burst ready indication to the CPU BRDY #, the 82495XP
BRDY # and the 82490XP BRDY #. In the CPU, it provides the same function
as that described in the CPU data sheet. The 82495XP will only use this
indication for burst tracking purposes. In the 82490XP, it increments the CPU
latch burst counter.

CADS# 0 Cache Address Strobe
This signal is generated by the 82495XP and used by the memory bus
controller. Its assertion requests execution of a memory bus cycle by the
memory bus controller. This signal when active indicates that the cache cycle
control and attribute signals are valid ..

CAHOLD 0 82495XP AHOlD
This signal is generated by the 82495XP to track the CPU AHOlD signal
when used for warm-reset and lOCKed sequences. It also provides
information about CPU and cache BIST.

CD/C# 0 Cache Data/Control
This is a cycle definition signal driven by the 82495XP. It indicates the type of
memory bus cycle requested. This signal is valid with CADS# and can be
pipelined by the memory bus controller.

CDTS# 0 Cache Data Strobe
This signal is driven by the 82495XP to the memory bus controller. COTS # for
read cycles indicates that in the next ClK the memory bus controller can
generate the first BRDY # for the read cycle. For write cycles it indicates
when data is available on the memory bus. Usage of this signal allows
complElte independency between address strobes (CADS#, SNPADS#) and
data strobe.

CFGO-2 I Cache Configuration bits 0-2
These signals are inputs to the 82495XP. CFGO-2 allow the 82495XP to be
configured to 5 different modes. Different modes indicate 82495XP/CPU line
ratio, tag size (4K/8K), lines per sector.

2-249

82495XP CacheController/82490XP Cache RAM

1.2 Quick Pin Reference (Continued)

CLK I Clock
This signal provides the fundamental timing for the 82495XP, 82490XP and
CPU. It must be provided to the 82495XP, 82490XPs, CPU and memory bus
controller components with minimal skew~

CMIIO# 0 Cache Memory/IO
This signal is driven by the 82495XP and is a cycle definition signal. It
indicates the type of memory bus cycle requested. This signal is valid with
CADS# and can be pipelined by the memory bus controller.

CNA#[CFGO] I 82495XP Next Address Enable, [Configuration Pin 0]
This signal is driven by the memory bus controller and supplied to the
82495XP. It is used by the memory bus controller to dynamically pipeline
CADS# cycles.
During RESET falling edge it functions as the 82495XP CFGO input.

CRDY # [SLFTST #] I Cache Memory Bus Ready, [82495XP Self Test]
This signal is generated by the memory bus controller and informs the
82495XP and 82490XP that a memory bus cycle has been completed .

. CRDY # activation ends the memory bus cycle.
During RESET's falling edge, if this signal is sampled low(active) and
MBALE is sampled high(active), 82495XP self test will be invoked .

CWAY 0 . Cache Way
CWA Y is driven by the 82495XP and isa cyCle definition signal that
indicates to the memory bus controller the WAY to be used by the
requested cycle. On line-fills it indicates the way the line will be loaded. For
write-backs it indicates the WAY that was written-back. This signal is valid
with CADS".

CW/R# 0 Cache Write/Read ,
This signal is driven by the 82495XP and is a 82495XP cycle definition
signal. It indicates the type of memory bus cycle requested. This signal is
valid. with CADS# and can be pipelined by the memory bus controller.

DRCTM# I Memory Bus Direct to [M] State
This signal is an input to the 82495XP. It is the mechanism by which the
memory bus can dynamically inform the 82495XP of a request to skip the.
[E] state and move the line directly to the [M] state. This signal is sampled
by the 82495XP when SWEND# is asserted.

FLUSH # [NCPFLD#] I Flush the 82495XP cache, [Enable Non-Cacheable PFLD]
This signal is an input to the 82495XP.Flush when active will cause the
82495XP to write-back all of its modified lines into main memory then
invalidate all tag locations. At the end of a flush operation the 82495XP tag
array will be completely invalidated.
During RESET activation, this pin functions as the NCPFLD# configuration
signal which, with FPFLDEN, selects one of three modes for handling
i860 XP CPU floating point load cycles.

2-250

82495}{P Cache Controller/82490){P Cache RAM

1.2 Quic!{ !Pin Pueferel1ce (COntinued)

FPFLD# [FPFLDEN] I/O FIFO PFLD Enable [PFLD Mode Select]
During RESET, FPFLDEN and NCPFLDEN # inputs select one of three
modes to handle i860 XP CPU pipelined floating point load cycles. In the
mode which supports an external FIFO, the FPFLD# output indicates a
PFLD cycle to be loaded into the FIFO.

FSIOUTff 0 Flush/Sync/Initialization Output
This signal is an output of the 82495XP and indicates the start and end of
three operations: Flush, Sync, and Initialization. The output is activated
when the operation internally begins and is de-activated when the
operation ends.

t(LOCt{# 0 82495XP LOCK #
This signal is driven by the 82495XP and indicates to the memory bus
controller a request to execute atomic read-modify-write sequences.
KLOCK # is active with the CADS # of the first LOCKed operation and
remains active until at least the clock following CADS# of the last cycle of
LOCKed operation.

~(WEND # [CFG2] I Cacheability Window End, [Configuration Pin 2]
This signal is generated by the MBC and indicates to the 82495XP that the
Cacheability Window has expired. At this point the 82495XP will latch the
memory cacheability signal (MKEN#) and make decisions based on the
cacheability attribute. MRO# which indicates the Read-Only cycle attribute
is also sampled at this point.
During RESET's falling edge this line functions as the CFG2 configuration
signal which is used to configure the 82495XP/82490XP with cache
parameters.

MALE [WII'JOR # 1 I Memory Bus, Address Latch Enable[Weak Write Ordering]
This signal is generated by the memory bus controller, and controls a
82495XP internal transparent address latch (373 like). CADS# will
generate a new address at the input of the internal address latch. MALE

'activation(high) will allow the flowing of this address to the memory bus
provided MAOE# is active. When MALE inactive(low), the address at the
latch input is latched.
WWOR # configures the 82495XP into strong or weak write-ordering
mode.

MAO\:# I Memory Bus Address Output Enable
This signal is generated by the memory bus controller and controls the
82495XP's output buffer of the memory bus address latches. The 82495XP
drives the memory bus address lines if MAOE # is active (low). Otherwise,
it is tristated. MAOE# also serves as a qualifier for snooping cycles: when
inactive snoops will be enabled.

~lIBALE[HIGI-IZ#] I Memory Bus, '82495XP sub-line-address Latch Enable[High Impedance
Output]
This signal has an exact function as MALE but controls only the 82495XP
sub-line addresses. This signal is generated by the memory bus controller,

, and controls a 82495XP internal transparent address latch (373 like).
CADS# will generate a new address at the input of the internal address
latch. MBALE activation(high) will allow the flowing of the sub-line address
to the memory bus provided MBAOE# is active. When MALE inactive(low),
the sub-line address at the latch input is latched.
HIGHZ#, if active along with SLFTST#, causes the 82495XP to float all of
its outputs.

2-251

intet 82495XP Cache Controller/82490XP Cache RAM ~!ru~Il..DIMIDOO~OOW

1.2 Quick Pin Reference (Continued)

MBAOE# I Memory Bus,· 82495XP sub-line Address Output Enable ,
This signal has a similar function than MADE #, but controls only the
82495XP sub-line addresses.
If MBAOE # is active(low), the 82495XP will drive the sub-line portion of the
address onto the memory bus. Otherwise, it is tristated. MBAOE# is also
sampled during snoop cycles. If MBAOE# is sampled inactive with
SNPSTB # , the snoop write back cycle(if any) will begin at the sub-line
address provided. If MBAOE# is active with SNPSTB#, the snoop write
back will begin at sub-line address O.

MBRDY # (MISTB) I Memory Bus Ready, (Memory Input Strobe)
This pin is an input to the 82490XP. It is used in clocked bus mode to
indicate the end of a transfer. When active(low) it indicates that the
82490XP should increment the burst counter and either output the next
data or get ready to accept the next data.
In strobed memory bus mode this pin is the input data strobe to the
82490XP. On each MISTB edge, the 82490XP latches the data and
increments the burst counter.

MCACHE# 0 82495XP Inte~nal Cacheability
This signal is driven by the 82495XP. On read cycles, this signal indicates
the cycle's internal cacheability attribute. In write cycles MCACHE# is only
active for write-back cycles. MCACHE# is not activated for 110, special
cycles and Locked Cycles.

MCFA6-MCFAO 110 Memory Bus Configurable address lines
MSET10-MSETO 110 Memory bus SET number
MTAG11·MTAGO 110 Memory bus TAG bits

These are the memory bus address lines of the 82495XP ~nd should be .
connected to the A31-A2 (A31-A3 for 64 bit bus) signals of the Memory

- Bus. These signals, along with the byte enables, define the physical area of
memory or 110 accessed.
The 82495XP drive these signals in normal memory bus cycles and have
them as inputs during snooping.

MCLK[MSTBM# I I Memory Bus Clock, [Memory Input Strobel
In clocked memory bus mode this pin provides the memory bus clock to the
82490XP. In clocked mode, memory bus signals and memory bus data are
sampled on the rising edge of the MCLK. In a clocked memory bus write,
data is driven off of MCLKor MOCLK depending upon the configuration.
This pin is an input to the 82490XP. It is sampled during reset and
determines the memory bus type. If active(low), the memory bus will be
strobed. If inactive (high), the rnemory bus will be clocked.
If a clock is detected at this input, this pin becomes the memory bus clock,
and clocked memory bus mode is selected.

MDATAO-MDATA7 110 Memory Bus Data
The.se pins are the 8 memory .data pins of the 82490XP. All or part of these
pins will be used depending on the cache configuration. In clocked memory
bus mode, these pins are sampled with the rising edge of MCLK. New data

. is driven out on these pins with MEOC# or the rising edge of MCLK or
MOCLK together with MBRDY# active. In strobed memory bus mode,
these pins are sampled on each MISTB edge. New data is driven out on
. these pins with each MOSTB edge.

2-252

82495XP Cache Controller/82490}{P Cache RAM

1.2 Quick Pin Reference (Continued)

MDOE# I Memory Data Output Enable
This signal is an input to the 82490XP. The memory bus output enable is
used to control the 82490XP's driving of data onto the memory bus. When
this pin is inactive(high), the MDATA[O:7] pins are tristated. When this pin is
active(low), the MDATA[O:7] pins are actively driving data. The function of
this pin is the same for strobed or clocked memory bus operation as
MDOE# has no relation to ClK or MClK.

MEOC# I Memory End of Cycle
This signal is an input to the 82490XP. Since it is synchronous to the
memory bus, it may be used to end a cycle on the memory bus and begin a
pending cycle without waiting for synchronization to the CPU ClK. MEOC#
also causes the latching or driving of data and resetting of the memory burst
counter.

MFRZ# [MEMLDRV] I Memory Freeze, [Memory Bus low Drive]
This signal is an input to the 82490XP. It is used for write cycles that could
cause allocation cycles. When this pin is active (low), write data is latched in
the 82490XP. The subsequent allocation will not overwrite data latched by
the write. This prevents the actual write to memory from having to be
performed on the memory bus. The allocated line will be placed in the [M]
state in the cache since memory has not been updated.
During RESET's falling edge, this signal is sampled to indicate the
82490XP's memory bus driving strength. The 82490XP provides normal and
high drive capability buffers.

MHITM# 0 Memory Bus Hit to Modified Line
This signal is driven by the 82495XP during snoop cycles and indicates
whether the snooping address hit a Modified line in the 82495XP cache. The
82495XP automatically schedules the writing-back of modified lines when
snoop hits occur. MHITM# is activated the ClK after SNPCYC# and will
remain active until the next SNPSTB #.

MKEN# I Memory Bus Cacheability.
This signal is an input to the 82495XP. It is the memory bus cache enable
pin. It is used to indicate to the 82495XP if the current memory bus cycle is
cacheable or not. This pin is sampled by the 82495XP with KWEND#
assertion.

MOCU«MOSTB) I Memory Output Clock, (Memory Output Strobe)
MOClK controls a transparent latch at the 82490XP data outputs. By
providing a clock input, skewed from MClK, MDATA hold time may be
increased.
In strobed bus mode this pin is the data output strobe. On each MOSTB
edge, new data will be output onto the memory bus.

MRO# I Memory Bus Read-Only
This pin is an input to the 82495XP. It is the READ-ONLY attribute pin. It is
used to indicate to the 82495XP that the accessed line should get a READ-
ONLY attribute. READ-ONLY lines will be non-cacheable in the first level
cache. READ-ONLY lines will be cached in the 82495XP if M KEN # is
sampled active during KWEND# and will be cached in the [S] state. This pin
is sampled by the 82495XP with KWEND# assertion.

2-253

82495XP Cache Controller/82490XP Cache RAM ~OO~IbOIMlOOO~OOW

1 2 Quick Pin Reference (Continued) .
MSEL# [MTR4/TR8 #] I Memory Select, [Memory Transfer]

This signal is a chip select input to the 82490XP. MSEl# activation
qualifies the MBRDY # input of the 82490XP. MSEl# going active causes
the sampling of MZBT# for the next cycle. MSEl# going inactive resets
the 82490XP's internal memory burst counter. \

This pin is used to determine the number of transfers necessary on the
memory bus for each cache line. If high, there are 4 transfers on the .
memory bus for each cache line. If low, there are 8 transfers on the
memory bus for each cache line. .,

MTHIT# 0 Memory Bus Tag Hit
This Signal is driven by the 82495XP during snoop cycles. It indicates
whether the snooping address hit any line (exclusive, shared, or modified) .
in the 82495XP cache. MTHIT# is activated t~e ClK after SNPCYC# and
will remain active until the next SNPSTB #.

MWB/WT# I Memory Bus Write Policy
This Signal is an input to the 82495XP. It is the mechanism by which the
memory bus can dynamically inform the 82495XP of the cycle write policy
(Write-Through/Write-Back): This signal is sampled by the 82495XP with
SWEND# activation.

MZBT# [MX4/MX8#] I Memory Zero Based Transfer, [Memory 1/0 Bits]
This signal is an input to the 82490XP. When this pin is sampled active
(with MSEl# or MEOC#) it indicates that the memory bus cycle should
start with burst location zero independent of the sUb-line address
requested by the CPU.
This pin is used to determine the number of 10 pins used for the memory
bus. When HIGH it indicates that 4 10 pins are used per 82490XP. When
lOW it indicates that 8 10 pins are used.

NENE# 0 Next Near
This signal is generated by the 82495XP and indicates to the memory bus
controller if the address of the requested memory cycle is "near" the
address of the previously generated one (in the same 2K DRAM page).
This information can be used by the memory bus controller to optimize
access to paged or static column DRAMs. This signal is valid together with
CADS#.

PALLC# 0 Potential Allocate
This signal is generated by the 82495XP and indicates to the memory bus
controller that the current write cycle can potentially allocate a cache line ..
Potential allocate cycles are cycles which are 82495XP misses with PCD;
PWT inactive.

RDYSRC 0 Relidy Source
This signal is an output of the 82495XP. It indicates the source of the
BRDY generation for the CPU. When high it indicates that the memory bus
.controller should generate BRDYs to the CPU, when low it indicates that
the 82495XP will be the one providing BRDYs.

2-254

82495XP Cache Controller/82490XP Cache RAM

1.2 Quick Pin Reference (Continued)

RESET I Reset
This signal forces the 82495XP and 82490XP to begin execution at a known state. It's
falling edge will sample the state of the configuration pins. RESET is an asynchronous
input to the 82495XP and 82490XP.
The following 8249SXP pins are sampled during reset falling edge:
CNA# [CFGO]: CFGO line of 82495XP configuration inputs.
SWEND# [CFG1]: CFG1 line of 82495XP configuration inputs.
KWEND# [CFG2]: CFG2 line of 82495XP configuration inputs.
FLUSH # [NCPFLD #]: Enables decoding of the non-cacheable PFLD mode. Active if low.
FPFLD# [FPFLDEN]: Enables the external FIFO pfld mode. Active high.
BGT # [C490LDRV]: Indicates the driving strength of the 82495XP /82490XP interface. If
high, the 82495XP can drive up to 10 82490XP's without derating. If low, the 82495XP
can drive up to 18 82490XP's without derating.
SYNC# [MEMLDRV]: Indicates the 82495XP's memory bus driving strength .
SNPCLK[SNPMD]: Indicates the snoop mode, synchronous or asynchronous.
CFGO-CFG2 signals are used to configure the 82495XP/82490XP with cache
parameters. They define the lines/sector, line ratio, and number of tags. • MALE[WWOR #]: Enforces strong or weak write-ordering consistency.
MBALE[HIGHZ#]: If active along with SLFTST# will tristate all 82495XP outputs.
The following 82490XP pins are sampled during reset falling edge:
PAR#: If active(low), this pin configures the 82490XP as a parity storage device. The
parity configuration stores the paritybits belonging to data stored in other 82490XP's.
MZBT # [MX4/MX8 #]: Determines the number of 10 pins used for the memory bus
interface. If high, four 10 pins are chosen. If low, eight 10 pins are chosen.
MSEL # [MT 4/MT8 #]: Determines the number of transfers necessary on the memory bus
for each cache line. If high, four memory bus transfers are needed to fill a cache line. If
low, eight memory bus tranfers are needed to fill a cache line.
MCLK[MSTBM #]: If active(low), this pin indicates a strobed memory bus configuration. If
inactive(high), a clocked memory bus is chosen. .
MFRZ# [MEMLDRV]: Indicates the 82490XP's memory bus driving strength.

SMLN# 0 Same Cache Line
This signal is an output of the 82495XP. It is used to indicate to the memory bus controller
that the current cycle is to the same 82495XP line as the previous one. This indication
can be used by the memory bus controller to selectively activate its SNPSTB # signal to
other caches. For example, back to back snoop hits to the same line may be snooped
only once. This signal is valid together with CADS #.

2-255

82495XP Cache Controller/82490XP Cache RAM

1.2 Quick Pin Reference (Continued)

SNPADS# 0 Cache Snoop Address Strobe
This signal is an output of the 82495XP. It has an identical functionality as
CADS#, but is generated only on snooping-write-back cycles. Considering that
snoop write-back cycles are the only ones which are generated independent of
CPU bus activity, this separate address strobe should ease implementation of
the memory bus controller. Whenever active, the memory bus controller should
abort all pending cycles (cycles for which BGT # was not issued yet. After
BGT # the memory bus controller is responsible for the cycle completion). The
82495XP assumes that non-committed cycles are aborted upon SNPADS#
and may re-issue them again after the completion of the snoop.

SNPBSY# . 0 Snoop Busy
This.signal is driven by the 82495XP. When inactive(high), it indicates that the
82495XP is ready to accept another snoop .cycle. SNPBSY # will be activated
for one of two reasons: A snoop hit to a modified line, a back-invalida~ion is
needed when there is one already in progress. In either of these cases, the
82495XP will not perform the look-up for a pending snoop until SNPBSY # is
de-activated.

SNPCLK[SNPMD] I Snoop Clock [Snoop Mode]
This pin provides the 82495XP with the snoop clock to be used in clocked
memory interfaces. During clocked mode SNPSTB#, SNPINV, SNPNCA,
MBAOE #, MAOE #. and the Address lines will be sampled by SNPClK.
During RESET activation, this pin functions as the SNPMD(snoop mode)
signal. If high it indicates strobed snooping mode. If low it indicates
synchronous snooping mode. For clocked snooping mode, SNPClK is
connected to the snoop clock source.

SNPCYC# 0 Snoop Cycle
This signal is an output of the 82495)(P. It indicates when the snooping look-up
is actually taking place in the 82495XP tag RAM.

SNPINV I Snoop Invalidation ,
This signal is an input to the 82495XP and indicates the resulting line state in
case of a snoop hit cycle. If active, it forces the line to go to an invalid state.
This signal is sampled with SNPSTB #.

SNPNCA I Snoop Non Caching Device Access
This signal is an input to the 82495XP and provides the 82495XP information
on whether the current memory bus master is a non caching device (DMA,
etc). This indication allows the 82495XP to avoid changing line states from
exclusive to shared unnecessarily.

SNPSTB# I Snoop Strobe
This signal is an input to the 82495XP which is used to initiate a snoop.
SNPSTB# causes the latching of the snoop address and parameters. The
82495XP supports three latching modes: Clocked, Strobed, Synchronous. In
the clocked mode, address and attribute signals will be latched with the
activation of SNPSTB # .SNPClK. In the strobed mode, address and attributes
will be latched by the SNPSTB # falling edge. In synchronous mode, address
and attribute signals will be latched with the activation of SNPSTB # .ClK.

2-256

intet 82495XP Cache Controller/82490XP Cache RAM

1.2 Quick Pin Reference (Continued)

SWENO#[CFG1] I Snoop Window End, [Configuration Pin 1]
This signal is generated by the MBC and indicates to the 82495XP that the
Snoop Window has expired. At this point the 82495XP will latch the memory
bus attributes: write policy (MWB/WT #), and direct to [M] Iransfer
(DRCTM#). At the end of the snooping window, all other devices have
snooped the bus master's address and have generated address caching
attributes on the bus. Once a cycle begins, the 82495XP prevents snooping
until it has received SWEND # . The 82495XP will act based on those
attributes and will update its tag RAM.
During RESET's falling edge this line functions as the CFG1 configuration
Signal which is used to configure the 82495XP 182490XP with cache
parameters.

SYNC# [MEMLORV] I Synchronize 82495XP cache, [Memory Bus low Drive]
This signal is an input to the 82495XP. Activation of this line will cause the
synchronization of the 82495XP tag array with main memory. All 82495XP
modified lines will be written back to main memory. The difference between
FLUSH and SYNC is that on SYNC the 82495XP and CPU tag array will NOT
be invalidated. All the valid entries will be kept, with all modified lines
(M state) becoming non-modified (E state).
During RESET's falling edge, this signal is sampled to indicate the memory
bus driving strength. If it is sampled low, the maximum capacitive load
without derating is 100pf. If it is sampled high, the maximum capacitive load
without derating is 50pf.

TCK I Testability Clock
This signal is an input to both the 82495XP and 82490XP. This is the
boundary scan clock. This Signal has to be connected to a clock
synchronous to ClK to insure initialization of the test logic.

TOI I Testability serial input
This signal is an input to both the 82495XP and 82490XP.

TOO 0 Testability serial output
This signal is an output of both the 82495XP and 82490XP.

TMS I Testability Control
This signal is an input to both the 82495XP and 82490XP.

The following pins have internal pull-ups: During tri-state output testing sequence, all pull-ups
will be disabled.

ADS#, NA#, FPFlD#, TDI, TMS, BGT#,
KWEND#, SWEND#, CNA#, BRDY#, SYNC#,
FlUSH#, SNPSTB#, MRO#, DRCTM#, TCK,
SNPClK, MFRZ#, MZBT#, MClK, MOCLK.

The following Signals are glitch free. These signals
are always at a valid logic level following RESET:

CADS#,CDTS#,SNPADS#,SNPCYC#.

2-257

•

82495XP Cache Controller/82490XP Cache RAM ~OO~ILO~OOO~OOW

1.3 Output Pins

Table 1-3 lists all output pins, from which 'part(s) they are driven, and their active levels.

Table 1-3. Output Pins

Name Part Active Level Name Part Active Level

BLE# 82495XP lOW MTHIT# 82495XP lOW

CADS # 82495XP lOW NENE# 82495XP LOW

CAHOLD 82495XP HIGH PAllC# 82495XP lOW

CDTS# 82495XP lOW RDYSRC 82495XP HIGH

CWAY 82495XP - SMlN# 82495XP lOW

CW IR # ,CD/C# ,CM/IO# 82495XP - SNPADS# 82495XP LOW

FSIOUT# 82495XP lOW SNPBSY# 82495XP LOW

KLOCK# 82495XP lOW SNPCYC# 82495XP lOW

MCACHE# 82495XP lOW TOO 82495XP 182490XP -
MHITM# 82495XP lOW

.1.4 Input Pins

Table 1-4 lists all input pins, which part(s) they are input to, their active level, and whether they are synchro­
nous or asynchronous inputs.

Table 1·4 Input Pins

Name Part Active Level Synchronous/Asynchronous

BGT # [C490lDRV] 82495XP lOW Synchronous toClK

BRDY# 82495XP 182490XP lOW Synchronous to ClK

ClK 82495XP 182490XP - -
CFG3 82495XP - Synchronous to ClK

CNA# (CFGO) 82495XP lOW Synchronous to ClK

CRDY # [SlFTST #] 82495XP 182490XP lOW Synchronous to ClK

DRCTM# 82495XP lOW Note 2

FLUSH# [NCPFlD#]. 82495XP lOW Asynchronous

CPUTYP 82495XP lOW Synchronous to ClK

KWEND# (CFG2) 82495XP LOW Synchronous to ClK

MALE, MBAlE 82495XP HIGH Asynchronous

MAOE#,MBAOE# 82495XP lOW Asynchronous

MClK[MSTBM#] 82490XP lOW· Synchronouos to MClK

MBRDY # (MISTB) 82490XP -
MDOE# 82490XP lOW Asynchronous

MEOC# 82490XP lOW Synchronousl Asynchronous, Note 1

82495XP Cache Controller/82490XP Cache RAM ~OO~[bO[M]OOO~OO't7

Table 1·4. Input Pins (Continued)

Name Part Active Level Synchronous/Asynchronous

MFRZ# 82490XP low Synchronousl Asynchronous, Note 1

MOClK(MOSTB) 82490XP

MSEl[MTR4/TR8#] 82490XP low Synchronousl Asynchronous, Note 1

MZBT # [MX4/MX8 #] 82490XP low Synchronousl Asynchronous, Note 1

MKEN# 82495XP lOW Note 2

MRO# 82495XP lOW Note 2

MWB/WT# 82495XP - Note 2

PAR# 82490XP low Synchronous to ClK

RESET 82495XP 182490XP HIGH Asynchronous

SNPClK[SNPMD] 82495XP - -
SNPINV 82495XP HIGH Note 3

SNPNCA 82495XP HIGH Note 3

SNPSTB# 82495XP lOW Note 3

SWEND# (CFG1) 82495XP lOW Synchronous to ClK

SYNC# [MEMlDRV] 82495XP lOW Asynchronous

TCK 82495XP 182490XP -
TDI 82495XP 182490XP - Synchronous to TCK

TMS 82495XP 182490XP - Synchronous to TCK

NOTES:
(1) In Clocked memory bus mode these pins are synchronous with MCll<. In Strobed memory bus mode these pins are
asynchronous.
(2) MWB/WT·#, DRCTM# must be synchronous to ClK during SWEND#. MKEN#,MRO# must be synchronous to ClK
during KWEND#.
(3) In clocked memory bus mode these pins are synchronous with SNPClK. In strobed memory mode these pins are
asynchronous.

1.5 Input/Output Pins

Table 1-5 lists all input/output pins, which part they interface with, and when they are floated.

Table 1·5. Input/Output Pins

Name Part Synch/Asynch When Floated

FPFlD# [FPFlDEN] 82495XP Synchronous to ClK -
MCFAO-MCFA6 82495XP Note 1 MAOE# = High

MDATAO-MDATA7 82490XP Note 2 MDOE# = Hight and during Reset

MSETO-MSET10 82495XP Note 1 MAOE# = High

MTAGO-MTAG11 82495XP Note 1 MAOE# = High

NOTES:
(1) With MALE high and MAOE# low, these pins are synchronous to ClK.
(2) In Clocl<ed memory bus mode these pins are synchronous with MClK. In Strobed memory bus mode these pins are
asynchronous.

2-259

82495XP Cache Controller/82490XP Cache RAM

1.6 Pin State During Reset

table 1·6. Pin State During Reset

Pin Name Pin State during Reset

CADS#,CDTS#,SNPADS# High

CW/R#, CD/C#, CM/IO#, MCACHE# Undefined

RDYSRC, PALLC#, CWAY Undefined

NENE#,SMLN# Undefined

KLOCK# High

FPFLD# High

MSETO-MSET10, MTAGO-MTAG11, MCFAO-MCFA6 Note 1.

CAHOLD Note 2

MHITM#, MTHIT# High

SNPCYC#, SNPBSY# High

TOO Note 3

NOTES:
(1)MSET, MTAG, and MCFA signals are high impedance during reset if MAOE# and MBAOE# are deasserted.
(2) The state of CAHOLD depends on whether self-test is selected (see testability chapter for detailS).
(3) The State of TDO is controlled by the boundary scan which is independent of other signals including RESET (see
testability chapter for details).

2.0 CHIPSET INTRODUCTION

The 82495XP/82490XPis' a second-level cache
controller chipset for the i860 XP CPU. The chipset
provides a unified code and data cache· which is
software transparent. The 82495XP/82490XP has
been designed to support a high-speed CPU/cache
core interface, and a same or lower speed memory
bus interface.

The 82495XP is the cache controller. It contains 8K
tags and control logic to control up to a 512K size
cache. The 82490XP is a custom cache data RAM
designed to be used with the 82495XP. Between 8
and 18 82490XPs are required to create a 256K to
512K cache, respectively. The memory bus control~
ler (MBC) is the set of logic required to interface the
82495XP and 82490XP to the memory bus. The
MBC provides product differentiation, and its imple­
mentation ultimately determines system perform­
ance.

2.1 Main Features

The 82495XP/82490XP have the following main
features:

- Tracks the speed of the i860 XP CPU

- Large Cache Size support:

4K or 8K Tags

1 or 2 lines per sector

4 or 8 transactions per line

64 or 128-bit wide memory bus

256K or 512K cache
- Write-Back cache With full multiprocessing con­

sistency support:

supports the MESI protocol

watches memory bus to guarantee 1 st level, 2nd
level cache consistency

maintains inclusion

- Two-way set-associative with MRU hit prediction
algorithm ..

2-260

82495XP Cache Controller/82490XP Cache RAM

- Zero wait state hit cycles on MRU hit. One wait
state on MRU misses

Concurrent CPU and Memory Bus transactions

Supports synchronous, asynchronous, and
strobed memory bus architectures

2.2 CPU/Cache Core Description

Figure 2-1 depicts a block diagram of the basic
cache subsystem. The cache subsystem provides a
gateway between the CPU and the memory bus. All
CPU accesses which can be serviced locally by the
cache subsystem will be filtered out from the memo­
ry bus traffic. Therefore local cycles (CPU cycles
which hit the cache and do not require a memory
bus cycle) will be completely invisible to the memory
bus providing the reduction in memory bus band­
width necessary for multiprocessing systems. Anoth­
er very important function of the 82495XP cache
subsystem is to provide speed decoupling between
the CPU and memory busses. Processors are quick­
ly achieving operating frequencies which can be
very difficult for the memory subsystem to meet. The
82495XP cache subsystem is optimized to serve the
CPU with zero wait-states up to very high frequen­
cies (50 Mhz), at the same time providing the decou­
piing necessary to run slower memory bus cycles.

The Basic Functions of the cache subsystem ele­
ments are:

82495XP: Main control element, includes the tags
and line states and provides hit or miss decisions. It

To/From
Momory r----,

Bus
Controller Memory

Bus
Controller
Interface

To/From CPU

Processor
Bus

Memory
Bus

Queue

i860™ XP
cpu

At
CPU BUS

~

'"1 1 ~

Memory 82495 82490
Bus Cache Cache

Controller Controller SRAMs

..d
+ Control l Address l Data

...
MEMORY BUS "

240956-5

Figure 2·1. 82495XP Cache Subsystem

handles the CPU bus requests completely and coor­
dinates with the memory bus controller when an ac­
cess needs the memory bus. It controls the
82490XP data paths for both hits/misses to provide
the CPU with the correct data. It dynamically adds
wait states based on the MRU prediction mecha­
nism. The 82495XP is also responsible for perform­
ing memory bus snoop operations while other devic­
es are using the memory bus. The 82495XP drives
the cycle address and other attributes during a
memory bus access. A block diagram of the
82495XP is shown in Figure 2-2.

Cache
Directory

Array

(Tag RAM)

240956-6

Figure 2·2. 82495XP Block Diagram

2-261

82495XP Cache Controller/82490XP Cache RAM

82490XP: Implements the cache SRAM storage and
data path. It includes latches, muxes, logic which
allow it to work in lock-step with the 82495XP to
efficiently serve both hit and miss accesses. It takes
full advantage of internal silicon flexibility to provide
a degree of performance otherwise unachievable
with discrete implementations. It supports zero wait
state hit accesses, concurrent CPU and memory bus
accesses, and includes a replication of the MRU bits
for autonomous way prediction. During memory bus
cycles it acts as a gateway between CPU and mem­
ory buses. A block diagram of the 82490XPis shown
in Figure 2-3.

Control

Memory Bus Controller: Server for memory bus cy­
cles. It adapts the CPU/Cache core to a specific
memory bus protocol. It coordinates with the
82495XP line fills, flushes, write-backs, etc. The
memory bus controller's flexibility allows customers
to easily adapt the 82495XP cache subsystem to
their specific architectures, and to provide their own
differentiation. Figure 2-4 shows an example memo­
ry bus controller. TheMBC handles all cycle control,
data. transferring, snooping, and any synchroniza­
tion.

From CPU
t DATA

To/From CPU
Control
From 82495

Control
From MBC

CPU Bus I J CPU Bus Mux/Buffer Control I ·1

Add ress Latch

] SRAM

" Array
0

256K bit u

!
Write

Memory Bus
Back

Snoop Memory Memory
Control

Buffer
Buffer Buffer 0 Buffer 1

Memory Bus Mux/Buffer

t DATA
To/From Memory Bus

Figure 2·3. 82490XP Block Diagram

82495XP!82490XP

SNOOP

To/From Snoop Bus TO/From Address
&: Control Bus

DATA
CONTROL

I,."., _
&: Control Bus

Figure 2·4~ MBC Example Block Diagram

2-262

240956-8

240956-7

int'et 82495XP Cache Controller/82490XP Cache RAM

3.0 CACHE OVERVIEW

This chapter gives a brief description of 82495XP/
82490XP configurations, interface, snooping mecha­
nism, cycle control mechanism, and memory bus
control mechanism. Each section of this overview is
described ill more detail in later chapters.

3.1 Configuration

The 82495XP/82490XP cache chipset offers a num­
ber of configuration options. The system designer
can choose from a number of different operating
characteristics, including memory bus modes,
snooping modes, and internal physical attributes
(line size, lines per sector, etc.). The flexibility of
these configuration options allow the 82495XP/
82490XP cache to be used in a wide range of appli­
cations.

Configurations are selected by altering the
82495XP/82490XP inputs during RESET. They are
not dynamically changeable, and to conserve pins
some configuration inputs become 82495XP or
82490XP inputs/outputs after RESET.

3.1.1 PHYSICAL CACHE

Physically, the 82495XP/82490XP can be config­
ured to support many different cache configurations.
By selecting one cache configuration, other configu­
rations may be excluded. The 82495XP/82490XP
can be configured to support:

- 256K or 512K cache

- 64 or 128 bit wide memory bus

- One or two lines per sector

- 1: 1, 1 :2, or 1:4 CPU to 82495XP line size ratio

- 4 or 8 memory bus transactions per line

- 4K or 8K tag size

- Strong or weak write ordering

Figure 3-1 summarizes the basic configurations
available when using the 82495XP/82490XP.

3.1.2 SNOOP MODES

When another master snoops the 82495XP, the
MBC must initiate the snoop request and pass on
the response. The 82495XP allows the MBC to initi­
ate this snoop request in one of three modes: syn­
chronous, clocked, and strobed. The snoop re­
sponse of the 82495XP is always synchronous.

When initiating the snoop in synchronous snoop
mode, all snoop information is latched by the
82495XP synchronous to the CPU ClK. The snoop
is then performed on the next ClK edge and the
response given on the ClK edge after that. This is
the fastest possible method of snooping.

In clocked snooping mode, information is latched by
the 82495XP with respect to an external snoop
clock (slower than ClK) source. The 82495XP must
internally synchronize this information to ClK and
provide a response.

In strobed snooping mode, information is latched
into the 82495XP with respect to the falling edge of
another signal. Thus, the snoop initiation is clock in­
dependent. The 82495XP again synchronizes this in­
formation with ClK.

MEM BUS = 64 Bits MEM BUS = 128 Bits Number of

4 Trans. 8 Trans. 82490XP Devices

2

¥: LR = 1 LR = 2
CD Tags = 8k Tags = 4k 8 '" N

LIS = 1 LIS = 1

3 4 4 5

¥: LR = 1 LR = 2 LR = 2 LR = 4
N Tags = 8k Tags = 8k Tags = 8k Tags = 4k 16 u;

LIS = 2 LIS = 1 LIS = 1 LIS = 1

Cache Device

Not Supported LR = 82495XP/CPU Line Ratio 2, 4, 8 Bits Wide

LIS = 82495XP LineslSector

Figure 3·1. 82495XP/82490XP Configurations

2-263

..

82495XP Cache Controller/82490XP Cache RAM

3.1;3 MEMORY BUS MODES

The 82490XP may be configured to be in one of two
memory bus modes. This mode determines how
data will be passed on to and, off of the data bus.
The two modes are clocked mode and strobed
mode. These modes need not have any relation to
the snoop mode chosen~

In clocked mode, data is driven from an external
memory clock source called MClK, or read with re­
spect to MClK. MClK is completely independen~ of
the CPU ClK source. There are inherent perform­
ance advantages, however, in, making, this clock
source synchronous or half-clock (divided) synchro­
nous to the CPU elK.

In strobed mode, data is driven from the rising edge
of one signal, and read with the rising edge of anoth­
er. Like'the strobed snooping mode, this carries no
clock skew problems, or memory bus speed limita­
tions.

3.2 CPU Bus Interface

The CPU bus interface is the . connection of the
82495XP 'and 824.90XP to the i860 XP CPU. Be­
cause this interface is optimized to achieve the high
speed performance, it is not a flexible interface, The
majority of the signals in the CPU bus interface must

,be connected strictly between the 82495XP I
82490XP cache and the i860 XP CPU. Chapter 10
addresses the use'of such signals.

Some CPU signals are, however, accessible by the
MBC. These are the following pins: RESET, ClK,
BRDY2#, INT, BERR, PCHK#, PEN#, TCK, TOI,
TMS, TRST#, and TDO. CPU pins KBO, KB1, HIT#,
and BREQ are also available to the MBC, but are of
limited use in an 82495XP/82490XP system.

,Other CPU pins flow through a '377 type latch to the
MEiC. The latch enable is controlled by the 82495XP
through the BlE# pin. The following CPU signals
flow through this latch: PCD, PWT, BEO#-BE7#,
CACHE#, lEN, PCYC, and CTYP.

3.3 82495XP/82490XP Interface

The 82495XP/82490XP interface is the connection
between 82495XP and 82490XP. Like the CPU bus

j interface, this isolated interface is not flexible and
'may not be altered beyond what Intel has provided.

3.4 Memory Bus and Memory Bus
Controller Interface

The, memory bus controller (MBC) is the interface
logic required to control the 82495XP/82490XP and
connect it to the memory bus and rest of the system.
The MBC may be simple enough to support a single­
CPU write-through cache, or complex enough to
support a multiprocessing cache with external tags.
The 82495XP/82490XP is a very flexible chipset,
and the MBC determines exactly 'how the
82495XP 182490XP will work in a system.

An MBC consists of a few basic blocks: a snoop
logic block, a cycle control block (with synchronizers
if necessary), and data path control block. The
snoop block must be able to communicate with the
other caches when snooping is necessary. At the
same time, the cycle control block must interface to
some arbitration logiC for bus arbitration.

3.4.1 SNOOPING LOGIC

The MBC snoo'ping logic is responsible for initiating
a snoop in the 82495XP and providing the response
to the rest of the system. Snoop logiC must recog­
nize what other caches are doing, and snoop if nec­
essary. Snoop logic must also recognize when its
82495XP is not capable of snooping and delay its
snoop initiation.

When a cycle begins on the bus, all other caches
'snoop. Once all the snoop results are returned to
the master 82495XP, its snoop logic must recognize
the result and alter the cycle appropriately. This
could mean aborting the current cycle, in memory,
delaying the cycle until a write-back is performed, or
changing the master's tag state according to the
snoop information.

3.4.2 CYCLE CONTROL LOGIC

Cycle control logic is responsible for initiating a
memory bus cycle, providing proper 82495XP cycle
attributes during the cycle, and terminating the cy­
cle~ Cycle control logic determines the cacheability

, of the cycle, whether cycles are allocatable, pipelin­
ing, and all aspects of the progress of the, current
cycle.

Since cycle control logic interfaces memory bus sig­
nals to the 82495XP, and since the memory bus is
not necessarily synchronous to the 82495XP ClK, it
may also provide proper synchronization. Careful
design of this synchronization logic can minimize or
eliminate synchronization penalties.

, 2-264

82495XP Cache Controller/82490XP Cache RAM

3.4.3 DATA PATH CONTROL

Data path control logic controls how data is written
from the 82490XP or read into the 82490XP and
CPU. It handles the actual transferring of data tol
from the memory data bus. Data path control logic
also handles the CPU burst order, and the holding of
data during allocation cycles. In systems with memo­
ry busses that are wider than the CPU bus, the data
path control logic appropriately steers data to the
correct 82490XP's.

3.5 Test

The 82495XP/82490XP provide two means of
cache testing. These are a built-in self-test, and
boundary scan test. The built-in self-test (BIST) is
initiated during RESET. The boundary scan test
uses separate and dedicated pins on the 82495XP.
These are described in a later chapter.

4.0 CACHIE CONSISTIENCY
PROTOCOL

One of the 82495XP objectives is to implement a
high performance second level cache for multipro­
cessor systems. To fulfill this objective the 82495XP
implements a "write-back" cache with full support
for multiprocessing data consistency. Being a write­
back cache means that the 82495XP may contain
data which is not updated in the main memory.
Therefore a mechanism is implemented to insure
that data read by any system bus master, at any
time, is correct.

A key feature for multiprocessing systems is reduc­
tion of the memory bus utilization. The memory bus
quickly becomes a resource bottleneck with the ad­
dition of multiple processors. The 82495XP cache
consistency mechanism insures minimal usage of
memory bus bandwidth.

The 82495XP allows portions of memory to be de­
fined as non-cacheable. For the cacheable areas,
the 82495XP allows selected portions to be defined
as write-through locations.

The 82495XP protocol is implemented by assigning
state bits for each cached line. Those states are de­
pendent on both 82495XP data transfer activities
performed as the bus. master, and snooping activi­
ties performed in response to snoop requests gener­
ated by other memory bus masters.

2-265

4.1 Cache Consistency Protocol
Model

The 82495XP consistency protocol is the set of rules
which allows the 82495XP to contain data that is not
updated in main memory while ensuring that memo­
ry accesses by other devices do not receive stale
data. This consistency is accomplished by assigning
a special consistency state to every cached entry
(line) in the 82495XP.

NOTE:
The following rules apply to memory read and write
cycles. All 1/0 and special cycles bypass the
cache.

The 82495XP protocol consists of 4 states. They de­
fine whether a line is valid (hit or miss), if it is avail­
able in other caches (shared or exclusive), and if it is
modified (has been modified).

The 4 States are:

[I] - INVALID

[S]- SHARED

Indicates that the line is not avail­
able in the cache. A read to this
line will be a miss and cause the
82495XP to execute a lino fill
(fetch the wholo lino and doposit
it into the cacho SRi\M). i\ write
to this line will cause the
82495XP to execute a write­
through cycle to the memory bus
and in some circumstances initi­
ate an ALLOCATION.

This state indicates that this line
is potentially shared with other
caches (The same line may exist
in more than one cache). A
Shared line can be read out of the
cache SRAM without a main
memory access. Writing to a
Shared line updates the
82495XP/82490XP cache, but
also requires the 82495XP to
generate a write-through cycle to
the memory bus. In addition to
updating main memory, the write­
through cycle will invalidate this
line in other caches. Since writing
to a Shared line causes a write­
through cycle, the system can en­
force a "write-through policy" to
selected addresses by forcing
those addresses into the [S]
state. This can be done by setting
the PWT attribute in the CPU
page table or asserting the
MWB/WT # pin each time the ad­
dress is referenced.

int:et 82495XP Cache Controller/82490}{P Cache RAM

[E] - EXCLUSIVE This state indicates a line which is
exclusively available in ONLY this
cache, and that this line is NOT
MODIFIED (main memory also
has a valid copy). Writing to an
Exlusive line causes it to change
to the Modified state and can be
done without informing other
caches, so no memory bus activi­
ty is generated.

[M] - MODIFIED This state indicates a line which is
exclusively available in ONLY this
cache, and is MODIFIED (main
memory's copy is stale). A
Modified line can be updated lo­
cally in the cache without acquir­
ing the memory bus. Because a
Modified line is the only up-to­
date copy of data, it is the
82495XP's responsibility to flush
this data to memory on accesses
to it. Flushing of this data to mem­
ory will be executed immediately
after completion of the current
CPU bus cycle.

4.2 Basic State Transitions

This section covers the most common, basic memo­
ry accesses. The special functions which force a cy­
cle to be noncacheable, locked, read only, or direct­
to-Modified are not in use. These might be used, for
example, in read for ownership and cache to cache
transfers, and are covered in section 4.3. This basic
transitions section is divided into two parts: the first
covers MESI state changes which occur in a CPU/
cache core due to its own actions; the second de­
scribes MESI state transitions in a CPU/cache core
caused by the actions of other, external devices.
Figure 4-1 shows a partial state diagram of the MESI
coherency protocol which includes these basic tran­
sitions.

The 82495XP accepts line attributes from the CPU
and memory buses. The 82495XP assumes that all
caches on the memory bus have the SAME number
of bytes per line.

4.2.1 TRANSITIONS IN CACHE STATES
CAUSED BY OWN CPU TRANSACTIONS

The MESI state of each 82495XP/82490XP cache
line changes as the 82495XP/82490XP services the
read and write requests generated by its CPU.

4.2.1.1 Read Hit

A read hit occurs when the CPU generates a read
cycle on its bus, and the data is present in and re­
turned by the 82495XP/82490XP. The state of the
cache line (M, E, or S) remains unchanged by a read
operation which hits the cache.

4_2.1.2 Read Miss

A read miss arises when the CPU generates a read,
and the data is not present in the
82495XP/82490XP cache-either the tag lookup
does not produce a match or a match occurs but the
data is Invalid. The 82495XP generates a memory
access to fetch the data (which is assumed cache­
able for this discussion) and the surrounding data
needed to fill the cache line. This data is placed in
the 82495XP/82490XP cache in an invalid line or (if
both valid) replaces the least recently used line,
which is written back to memory if Modified.

The new line is placed in the Exclusive state, unless
either the CPU or memory indicates that it should be
a write-through on its next write access using PWT
or MWB/WT #, respectively. If either of these is as­
serted, the new line is placed in Shared state. A new
line could also be read in and placed directly into
Modified state: see section 4.3.4 for details and use.

4.2.1.3 Write Hit

When the CPU generates a write cycle, if the data is
present in the 82495XP/82490XP cache, it is updat­
ed and may undergo a MESI state change.

If the hit line is originally in the Exclusive state, it
changes to Modified state upon a write. If the hit line
is originally in the Modified state, it remains in that
state. Neither of these cases generates any bus ac­
tivity.

A write to a line which is in the Shared state causes
the 82495XP to write the data out to memory as well
as update the 82495XP/82490XP cache. The write
to main memory also serves to invalidate any copy
of the data which resides in another cache. The
cache line state changes according to activity on the
PWT and MWB/WT # pins. If neither of these pins is
asserted, the write hit line becomes Exclusive. If ei­
ther of these pins is asserted, the line is forced to
remain write-through, so the state remains Shared.

2-266

82495}(P Cache Controller/82490XP Cache RAM

An existing line can also be written and forced di­
rectly into Modified state: see section 4.3.4 for de­
tails and use.

4.2.1.4 Write Miss

The CPU generates a write cycle, and the data is not
present in the 82495XP 182490XP cache. In a simple
write miss, the 82495XP/82490XP assists CPU in
delivering data to memory, but the data is not placed
in the cache. No cache lines are affected, so no
state changes take place.

4.2.1.5 Write Miss with Allocate

This is a special case of a write miss where the
memory location written by the CPU is not currently
in the 82495XP/82490XP cache, but is brought into
the cache and updated. Like a regular write miss,
the 82495XP/82490XP assists the CPU in writing
the data out to main memory. After the data is writ­
ten to memory, the 82495XP/82490XP reads back
the same data following the rules of a read miss,
above.

The ability to perform an allocation depends on all of
the following conditions:

the write is cacheable

PWT is not asserted, forcing write-through

the write is not LOCKed

the write is to memory (not to 1/0)

4.2.2 TRANSITIONS CAUSED BY OTHER
DEVICES ON BUS

MESI state transitions in the 82495XP/82490XP
cache of one core (CPU/82495XP/82490XP) can
be induced by actions initiated by other cores or de­
vices on the shared memory bus. In the following,
the 82495XP which is responding to actions of other
devices does not currently own the bus, and may be
referred to as a "slave" or, in the case of snooping,
a "snooper". The device which currently owns the
bus is the "master".

2-267

4.2.2.1 Snooping

The master which is accessing data from memory
on the bus sends a request to all caching devices on
the bus (snoopers) that they check or snoop their
caches for a more recently updated version of the
data being accessed. If one of the snoopers has a
copy of the requested data, it is termed a "snoop
hit".

If a snooper has a modified version of the data
("snoop hit to a Modified line"), it proceeds to gener­
ate an "inquire cycle" to the i860 XP CPU, asking
the i860 XP CPU if it also has a Modified copy of the
line (which would be more recently modified than the
82495XP/82490XP's version). The most up-to-date
line is written out by the snooping
82495XP/82490XP to the bus (to main memory or
directly to the requesting master) so that the re­
questing master can utilize it.

The changes in MESI protocol state in a snooping
cache which has a snoop hit depend on attribute
inputs SNPINV and SNPNCA, which are driven by
the master.

The SNPINV input tells a snooping
82495XP/82490XP to invalidate tho lino baing
snooped if hit: the master requesting tho snoop is
about to write to its copy of this line and will there­
fore have the most up-to-date copy. When SNPINV
is asserted on the snoop request, any snoop hit is
placed in Invalid state, and a "back invalidation" is
generated which instructs the CPU to check its
cache and likewise invalidate a copy of the line ..
When the snooping 82495XP has a snoop hit to a
Modified line and SNPINV was asserted by the bus
master, the back invalidate is combined with the in­
quire cycle.

The SNPNCA input tells a snooping
82495XP/82490XP whether the requesting master
is performing a Non-Caching Access. If the request­
ing master is not caching the data, a snoop hit to a
Modified or Exclusive line can be placed in the
Exclusive state: since the requester isn't caching the

• +~I In-e-" 82495XP Cache Controller/8249DXP Cache RAM

line; if the snooper has a future write hit to the line,
an invalidation does not have to be broadcast. If the
requesting master is caching the data, then a snoop
hit to a Modified or Exclusive line must be placed in
the Shared state, which insures that a future write hit
causes an invalidation to other caches. Note that a
snoop hit to a Shared line must remain in the Shared
state regardless of SNPNCA. Also note that an as­
serted SNPINV always overrides SNPNCA.

4.2.2.2 Cache Synchronization

Cache synchronization is performed to bring. the
main memory up-to-date with respect to the
82495XP/82490XP. Two devices exist in the
82495XP/82490XP to accomplish this: FLUSH and
SYNC.

A cache flush is initiated by asserting the 82495XP
FLUSH # pin. Once initiated, the 82495XP writes all
Modified lines out to main memory, performing back
invalidations and inquire cycles on the CPU. When
completed, all 82495XP/82490XP and CPU cache
entries will be in the Invalid state.

Activation of the SYNC# pfn also causes all of the
82495XP's Modified lines to be written to memory.
Unlike the FLUSH# pin, the cache lines remain valid
after the SYNCH # process has· completed, with
Modified lines chimging to the Exclusive state.

4.3 The Effects of Special Cycles on
MESI States

4.3.1 NON·CACHEABLE ACCESS

The 82495XP allows cacheability to be determined
on both a per page and per line basis. The page
cacheability function is determined by software,
while cacheability on a line-by-line basis is driven by
hardware. .

The "PCD (Page Caching Disabled) pin is a 82495XP
input driven by the CPU's PCD output, which corre­
sponds to a cacheability bit in the page table entry of
a memory location's virtual address. If the PCD bit is
asserted when the CPU presents a memory ad­
dress, that location will not be cached in either the
82495XP or the CPU.

MKEN iF is a 82495XP input which connects to the
memory bus controller or the rnemory bus. MKEN#
inactive prevents the caching of the memory loca­
tion in both the 82495XP and the CPU, affecting only
the current access.

If a read miss is indicated non-cacheable by either of
these, the line is not placed in the
82495XP/82490XP or CPU cache, and no cache
states are modified. On a write miss, a noncachea­
ble indication from either input forces a write miss

SNOOP.INV + FLUSH
... ------ ..

~ (;EAD MISS + WRI~ ,
ALLOCATE) • WT

WRITE HIT

' .. '........-' --------
SNOOP.INV.NCA + SYNC

READ HIT

READ
HIT

Figure 4·1. Major State Transitions

2-268

240956-9

82495XP Cache Controller/82490XP Cache RAM ~OO~I!..OIMlOOO~OOW

without allocation. Note that if the 82495XP /
82490XP already has a valid copy of the line, the
PCD attribute from the CPU is ignored.

4.3.2 READ ONLY ACCESSES: MRO#

The MRO# (Memory Read Only) input is driven by
the memory bus to indicate that a memory location
is read only.

When asserted during a read miss line fill, MRO#
causes the line to be placed in the
82495XP/82490XP cache in the Shared state and
also sets a read-only bit in the cache tag. MRO#
accesses are not cached in the CPU. On subse­
quent write hits to a read-only line, the write is actu­
ally written through to memory without updating the
82495XP/82490XP line, which remains in the
Shared state with the read-only bit set.

4.3_3 LOC'(ED ACCESSES: LOCt{#

The LOCK # signal driven by the CPU indicates that
the requested cycle should lock the memory loca­
tion for an atomic memory access. Because locked
cycles are used for interprocessor and intertask syn­
chronization, all locked cycles will appear on the
memory bus.

On a locked write, the 82495XP treats the access as
a write-through cycle, sending the data to the memo­
ry bus-updating memory and invalidating other
cached copies. If the data is also present in the'
82495XP/82490XP cache, it is updated but'its M, E,
or S state remains unchanged.

For locked reads, the 82495XP assumes a cache
miss and starts a memory read cycle. If the data
resides in the 82495XP/82490XP, the M-E-S state
of the data remains unchanged. If the requested
data is in the 82495XP/82490XP and is in the
Modified state when the memory bus returns data,
the 82495XP will use the 82490XP data and ignore
the memory bus data.

LOCKed read and write cycles which miss the
82495XP/82490XP cache are noncacheable in both
the 82495XP/82490XP and CPU.

4.3.4 FORCING LINES DIRECT·TO·MODIFIED:
DRCTM#

The DRCTM# (Direct To Modified) pin is an input
which informs the 82495XP to skip the Exclusive
state and place a line directly in the Modified state.
The signal can be asserted during
82495XP/82490XP reads of the memory for speCial
82495XP/82490XP data accesses like read-for­
ownership and cache-to-cache~transfer. The signal
can also be asserted during writes, for purposes of
cache tracking.

4.4 State Tables

Lines cached by the 82495XP can change states as •
a result of either the CPU bus activity (that some-
times require the 82495XP to become a memory bus
master) or as a result of memory bus activity gener-
ated by other system masters (snooping).

State transitions are affected by the type of CPU/
memory bus transactions (reads, writes) and by a
set of external input signals and internally generated
variables. In addition, the 82495XP will drive certain
CPU/memory bus signals as a result of the consist­
ency protocol.

4.4.1 CPU BUS

- PWT (Page Write Through, PWT Input pin) Indi­
cates a CPU bus write~through request. Activat­
ed by the i860 XP CPU PWT pin. This signal af­
fects line fills and will cause a line to be put in the
[S1 state if active. The 82495XP will NOT exe­
cute ALLOCATIONS (line fills triggered by a
write) for write-through lines. If PWT is asserted,
it overrides a write-back indication on the
MWB/WT# pin.

- PCD (Page Cacheability Disable, PCD input pin):
indicates that the accessed line is noncachea­
ble. If PCD is asserted, it overrides a cacheable
indication from an asserted MKEN # .

- NWT (i860 XP CPU Write-Through Indication,
82495XP's WB/WT# Output Pin): When low
forces the i860 XP CPU to keep the accessed
line into the SHARED state.

2-269

InteL 82495XP Cache Controller/82490XP Cache RAM

Write back mode, (WB = 1) will be indicated by
the !NWT notation. In those cases the i860 XP
CPU is allowed to go into exclusive states [E],
[M]. NWTis normally active unless explicitly stat­
ed.

-KEN (CPU caching enable, KEN # output pin):
When, active indicates that the requested line
can be cached by the CPU 1 st level cache. KEN
is normally activ,e unless explicitly stated.

4.4.2 MEMORY BUS

- MWT (Memory Bus Write-Through Indication,
MWB/WT# Input Pin): When active forces the
82495XP to keep the accessed line into the
SHARED state. Write back mode (MWB= 1) will
be indicated by the !MWTnotation. In those cas­
es the 82495XP is allowed to go into exclusive
states [E], [M].

- DRCTM (Memory Bus Direct To [M] indication,
DRCTM # Input Pin): When active forces skip­

'ping of the [E] state and direct transfer to [M].

- MKEN (Memory Bus Cacheability Enable,
MKEN# Input pin): When Active Indicates that
the memory bus cycle is cacheable.

- MRO (Memory Bus. Read-Only Indication,
MRO# Input Pin): When Active forces line to be
READ-ONLY.

- MTHIT (Tag Hit, MTHIT # Output pin): Activated
by the, 82495XP during snoop cycles and indi­
cates that ,the current snooped address hits the
82495XP cache.

--' MHITM (Hit to a line in the [M] State, MHITM #
Output pin): Activated by the 82495XP during
snoop cycles and indicates that the current
snooped address hits a modified line in the
82495XP cache.

---' SNPNCA (Non Caching device access): When
active indicates to the 82495XP that the current
bus master is a non-caching device.

- SNPINV (Invalidation): When active, indicates to
the 82495XP that the current snoop cycle will
invalidate that address.

4.4.3 TAG STATE

- TRO (Tag Read Only, 82495XP Tag bit): This bit
when set indicates that the 1 or 2 lines associat­
ed with this tag are Read-Only lines.

As a function of State Changes the a2495XP
may execute the following cycles:

- BINV: Execution of a CPU Back Invalidation Cy­
cle (Snoop with INV active)

- INQR: Execution of a i860 XP CPU Inquire
Cycle(1).

- WBCK: 82495XP Write-Back Cycle. This is a
Memory Bus write cycle generated by the
82495XP when MODIFIED data cached in the
82495XP needs to be copied back into main
memory. A write-back cycle affects a complete
82495XP line.

- WTHR: 82495XP Write Through Cycle. This is a
system write cycle in response to a processor
write. It mayor may not affect the cache SRAM
(update). In a write-through cycle, the 82495XP
drives the Memory Bus with the same Address,
Data and Control signals as the CPU does on the
CPU Bus. Main Memory is updated, and other
Caches invalic;late their copies.

- RTHR: 82495XP Read Through cycle. This is a
special cycle to support locked reads to lines
that hit the 82495XP cache. The 82495XP will
request a Memory Bus cycle for lock synchroni­
zation reasons, data will be supplied from the
BUS except for [M] state which will have data
supplied from the CACHE.

- LFIL: 82495XP Cache line fill. 82495XP will gen­
erate Memory Bus cycles to fetch a new line and
deposit into the cache.

- RNRM 82495XP Read Normal Cycle: This is a
normal read cycle which will be executed by the
82495XP for non-cacheable accesses.

- SRUP: 82495XP SRAM UPDATE. Occurs any
time new information is placed in the 82495XP
cache. An SRAM update is implied in the LFIL
cycle.

- ALLOC: 82495XP ALLOCATION. Write Miss cy­
cle that has determined to be cacheable so the
82495XP issues a line read.

NOTE:
1. An inquire cycle may be executed with INV ac­
tive, performing a back-invalidation simultaneously.

2-270

Intel, 82495XP Cache Controller/82490XP Cache RAM

STATE TABLES

Table 4-1. Master 82495XP Read Cycle

Pres.
Mem CPU

State
Condition: Next State Bus Bus Comments

Activity Activity

M !LOCK: M - !NWT Normal Read Hit [M]

LOCK:M RTHR !KEN Read Through Cycle, Data From
Array

E !LOCK: E - NWT Normal Read Hit [E]

LOCK:E RTHR !KEN Read Through Cycle, Data From
Memory

S !LOCK.!TRO: S - NWT Normal Read Hit [S]

!LOCK.TRO: S - !KEN Normal Read to Read-Only
sector. Stays in [S] state and
deactivate KEN to prevent CPU fI
from caching line

LOCK:S RTHR !KEN Read Through Cycle, Data from
Memory

I PCD + !MKEN + LOCK: I RNRM !KEN Non-Cacheable Read, Locked
cycles

!PCD.MKEN.!LOCK.MRO: S LFIL !KEN Cacheable read, Read-Only. Fill
line to 82495XP. Do not allow
CPU to cache line by deactivating
KEN #. Set the 82495XP's TRO
bit to indicate the sector read only
attribute

!PCD.MKEN.!LOCK.!MRO.(PWT + MWT):S LFIL NWT Cacheable Reads, forced Write-
Through

!PCD.MKEN.!LOCK.!MRO.!PWT.!MWT.!DRCTM: E LFIL NWT Line not shared, thus enabling the
82495XP to move into tan
exclusive state

!PCD.MKEN.!LOCK.!MRO.!PWT.!MWT.DRCTM: M LFIL NWT As before with direct [M] state
transfer. Keep i860 XP CPU in
Write Through mode

2-271

inteL 82495XP Cache Controller/82490XP Cache RAM

Table 4-2. Master 82495XP Write Cycle

Pres.
Mem CPU

State
Condition: Next State Bus Bus Comments

Activity Activity

M !LOCK: M - SRUP, Write hit. Write to cache. Allow i860 XP
!NWT CPU to perform internal write cycles

(Enter intor [E], [M) states).

LOCK: M WTHR SRUP, Locked Cycle. Write-Through updating
!NWT cache SRAM. Most updated copy of the

line is still owned by 82495XP .. AII
Locked write cycles are posted.

E !LOCK:M - SRUP, Write hit. Update SRAM. Let i860 XP
!NWT CPU execute internal write cycles.

LOCK: E WTHR SRUP, Lock forces cycle to memory bus. Main
NWT memory remains updated.

S TRO:S WTHR - Read-Only. Write cycle with write
through attribute from CPU or Memory
Bus. Locked Cycles.

!TRO.(PWT + MWT + LOCK): S WTHR SRUP, Not Read-Only. Write cycle with write
NWT through attribute from CPU or Memory

Bus. Locked Cycles.

!TRO.!PWT.!LOCK.!MWT.!DRCTM: E WTHR SRUP, Not Read-Orily. No write-through cycle,
NWT no lock request allow going into

exclusive state.

!TRO.!PWT.!LOCK.!MWT.DRCTM: M WTHR SRUP, Not Read-Only. No write-through cycle,
NWT no lock request allow going into

exclusive state. DRCTM forces final
state to M.

I PCD + !MKEN + PWT + LOCK + MRO: I WTHR - Write Miss Non-Cacheable, Write-
Through, locked cycle or Read-Only.

!PCD.MKEN.!PWT.!LOCK.!MRO: I WTHR, - Write Mis with allocation. After the write
LFIL cycle, a line fill (allocation) is scheduled.

!PCD.MKEN.!PWT.!LOCK.MRO:S If MKEN and MRO are asserted, an
allocation to the [S) state will occur

Allocation Final State ALLOC Allocation final state as a function of
MWT:S line fill attributes.
!MWT.!DRCTM:E
!MWT.DRCTM:M

NOTE:
The WB/WT # pin will only be activated for 82495XP lines that are in the [M] state. In this state, the 82495XP always
assumes that the line owner MAY be the i860 XP CPU. On all other states the i860 XP CPU will be forced to perform Write­
Through cycles. This mechanism will make sure that any i860 XP CPU write cycle is seen at least once on the CPU Bus.
Allocations, which are consequences of write-misses, will disregard the MKEN# and MRO# attributes during the line fill. In
other words, once an allocation is scheduled, it cannot be cancelled.

2-272

82495XP Cache Controller/82490XP Cache RAM

Table 4-3. Snooping 82495XP without Invalidation Request

Pres. Condition:
Mem CPU

State Next State
Bus Bus Comments

Activity Activity

M !SNPNCA: S MTHIT INOR Snoop hit to modified line. 82495XP indicates tag hit and
SNPNCA: E MHITM modified hit. 82495XP schedules flushing of the modified

WBCK line to memory. If non-cacheable device, stay in [E] state.

E !SNPNCA: S MTHIT - If snooping by cacheable device, indicate MTHIT and go
SNPNCA: E to shared state. If no caching device only indicate MTHIT,

stay·exclusive.

S S MTHIT -
I I - -

NOTE: II Usage of DRCTM# to avoid [EI states may be in conflict with the SNPCNA cycle attribute. Note in the table that snoops
with SNPNCA may cause an [EI state transition.

Table 4-4. Snooping 82495XP with Invalidation Request

Pres.
Mem CPU

State
Next State Bus Bus Comments

Activity Activity

M I MTHIT INOR, Snoop hit to modified line. 82495XP indicates tag hit and
MHITM BINV modified hit. 82495XP schedules flushing of the modified
WBCK line to memory. Invalidate CPU.

E I MTHIT BINV Inidicate tag hit, infalidate 82495XP, CPU lines.

S I MTHIT BINV Same as before

I I - -

Table 4-5. SYNC Cycles

Pres.
Mem CPU

State
Next State Bus Bus Comments

Activity Activity

M E WBCK INOR Get modified data from i860 XP CPU, flush to memory
E WBCK -

E E - - Memory already synchronized

S S - - Memory already synchronized

I I - -

2-273

82495XP Cache Controller/82490XP Cache RAM

Table 4-6. FLUSH Cycles

Pres.
Mem CPU

State
Next State Bus Bus Comments

Activity Activity

M I WBCK 'INQR, Flush and invalidate i860™ XP CPU
BINV

E I - BINV Invalidate i860 XP CPU

S I - BINV Invalidate i860 XP CPU

I I - -
NOTE:
Usage of DRCTM# to avoid IE) states may be in conflict with the SYNC cycle. Note in the table that SYNC cycles move an
1M) state line to IE).

5.0 CONFIGURATIONS

The 82495XP/82490XP cache system was de·
signed to fit a Variety of applications. For the great­
est performance, each application requires the
82495XP/82490XP to be configured differently. The
82495XP/82490XP therefore has many possible
configurations that are set on RESET and affect the
82495XP/82490XP architecture, operation, and
electrical characteristics. .

5.1 Physical Cache

The physical configurations of the 82495XP /
82490XP consist of parameters that alter the
82495XP/82490XP basic architecture. These are

MEM BUS = 64 Bits

4 Trans. 8 Trans.

2

:.: LR = 1 LR = 2
CD Tags = 8k Tags = 4k '" ..

LIS = 1 LIS = 1

3 4

:.: LR = 1 LR = 2 LR = 2

line ratio, tag size, lines per sector, bus width, and
cache size. These parameters are sampled at 'the
falling edge of RESET and are not dynamically
changeable.

Because of physical cache constraints, choosing
one parameter limits the flexibility of other parame­
ters. The fqllowing table summarizes the possible
i860 XP CPU basic cache configurations. CFGO­
CFG2 are multiplexed to select one of 5 possible
line ratio/tag size/lines per sector configurations.
This. information is automatically passed from the
82495XP to 82490XP during RESET. CFGO-CFG3
must be valid at least 10 clocks before RESET's fail­
ing edge.

4 5
LR = 4

Number of
82490XP Devices

8

~ Tags = 8k Tags = 8k Tags = 8k Tags = 4k

'"
16

LIS = 2 LIS = 1 LIS = 1 LIS = 1

r <, " :':'1 Not Supported LR = 82495XP/CPU Line Ratio
LIS = 82495XP LineslSector

Cache Device
2,4,8 Bits Wide

Figure 5-1. 82495XP/82490XP Configurations

2-274

82495XP Cache Controller/82490}{P Cache RAM

Table 5-1. CFG Configuration Inputs

Cfig Line Linesl No. of
CFG2 CFG1 CFGO

No. Ratio sec Tags

1 1 1

2 2 1

3 1 2

4 2 1

5 4 1

5.1.1 LINE RATIO (LR)

Line Ratio (LR) is the ratio of the 82495XP/82490XP
cache line size to the CPU cache line size. For ex­
ample, if LR = 2 then the 82495XP 182490XP line
size is 64 bytes. This information is also used to de­
termine the number of back invalidations or inquire
cycles to the i860 XP CPU.

5.1.2 TAG SIZE (TAGS)

The 82495XP/82490XP cache tag.size may be 4K
or 8K tag entries. By reducing tag size, the line ratio
(LR) can be doubled without a change in cache size.

5.1.3 LINES PER SECTOR (LIS)

The 82495XP/82490XP may be non-sectored (LIS
= 1) or contain two lines per sector (LIS = 2). If
LIS = 2, then the 82495XP contains one tag for two
consecutive cache lines and each cache line has its
own set of MESI state bits. This allows just one line
to be filled on replacements or written back on
snoop hits. Both lines are written back during re­
placements, if both are modified.

8K

4K

8K

8K

4K

0 0 1

1 1 1

0 0 0

0 1 1

1 1 0

5.1.4 BUS SIZE

The 82495XP/82490XP supports 64 and 128 bit
memory bus widths for the i860 XP CPU.

5.1.5 CACHE SIZE

The 82495XP/82490XP may be configured to be
256K or 512K. Cache size is a direct result of the
number of 82490XP devices used. It takes 8
82490XP's to make a 256K byte cache and 16
82490XP's for a 512K cache.

5.1.6 FUNCTION AND ADDRESS
CONNECTIONS (CFAO-CFA6)

The following table lists which address lines should
be connected to each of the CFAO-CFA6 lines for
each cache configuration. CFAO-CFA6 provide the
82495XP with proper multiplexed. addresses for
each of the possible cache configurations. Depend­
ing on the mode selected, either CFA5 or CFA4 will
operate as the 82495XP's CTYP input. This input is
connected to the i860 XP CPU's CTYP output.

2-275

fI

82495XP Cache Controller/82490XP Cache RAM !p!ru[g[LO[MJOOO~IR1W

Table 5-2. CFA Address Connections

Cflg Line Llnesl No. of
CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFAO No. Ratio sec Tags

1 1 1 8K A5 CTYP A31 A30 A29 A4 A3

2 2 1 4K AS CTYP A31 A30 A29 A4 A3

3 1 2 8K A6

4 2 1 8K A6

5 4 1 4K A6

5.2 Cache Modes

Cache modes are ways of configuring the
8249SXP/82490XP to operate differently. These op­
tions are all sampled at RESET and are not dynami­
cally changeable. If some of these configuration op­
tions share a pin, such as the 82495XP's SYNC#
and MEMLDRV, the configuration option must meet
a specific setup and hold time to RESET's falling
edge. For the 8249SXP, setup time is usually 4
clocks, and for the 82490XP, setup time is usually 1
clock. For both parts, the configuration option must
be held until RESET is detected low.

elK

RESET

~onfig --_. ---
Setup Hold

240956-10

Figure 5-2. Configuration Input Sampling

A5

A45

AS

CTYP A31 A30 A4 A3

CTYP A31 A30 A4 A3

CTYP A31 A30 A4 A3

5.2.1 MEMORY BUS MODES

The 8249SXP/82490XP may be configured to have
a clocked or strobed memory bus. Memory bus
mode is selected by the .82490XP MSTBM pin (same
as MCLK pin). If MSTBM is strapped high, the
82490XP's operate in strobed mode. If MSTBM is
toggling, ie it is connected to the memory bus clock,
the 82490XP operates in clocked mode. MClK need
not be synchronous to ClK.

5.2.2 SNOOPING MODES

The 8249SXP/82490XP supports three snooping
modes: synchronous, clocked, and strobed. Snoop­
ing mode is selected by the SNPMD (same as
SNPClK) pin. If SNPMD is low the 8249SXP snoops
synchronously. If SNPMD is high the 82495XP
snoops in strobed mode. If SNPMD is toggling,
clocked mode is selected and SNPMD becomes a
snoop Clock source, SNPCLK, which clocks in the
snoop requests.

2-276

82495XP Cache Controller/82490XP Cache RAM

These three snooping modes only alter the way the
memory bus controller may initiate a snoop request
to the 82495XP. The 82495XP response is always
synchronous to the CPU CLK.

5.2.3 BUS DRIVERS

The 82495XP/82490XP provide 2 types of memory
bus drivers: High capacitance drivers and low capac­
itance drivers. The high capacitance drivers are se­
lected by driving both the 82495XP and 82490XP
MEMLDRV pins low at RESET. Similarly, the low ca­
pacitance drivers are selected with MEMLDRV high.

With C490LDRV the 82495XP also provides two
types of drivers when driving the 82490XP's. Refer
to the interface document to determine C490LDRV.

5.2.4 STRONG/WEAI(WRITE ORDERING

If the 82495XP pin WWOR # is sampled low at
RESET, the 82495XP enforces weal< write-ordering.
If sampled high; the 82495XP enforces strong write­
ordering. Strong write-ordering prevents the
82495XP from completing a write cycle that would
go to 'M' state if a posted write is pending (has not
been granted theb.us with BGT#). By doing this,
strong ordering ensures that write cycles from the
CPU are written to memory in the same order that
they appear in the i860 XP CPU program.

5.2.5 i860TM XP CPU PFLD SUPPORT

The i860 XP microprocessor executes PFLD (Pipe­
lined Floating-Point Load) instructions to implement
special data handling, typically for vector operations.
This instruction allows loading of data through a
FIFO pipeline, to hide memory latency. The i860 XP
CPU does not cache data returned by a PFLD cycle.

The 82495XP can be configured to decode the
i860 XP microprocessor's PFLD cycles. The
82495XP supports 3 operational modes fpr PFLD
cycle decoding:

Mode #.1. PFLD cycles are cached in the 82495XP.

This mode is used in applications that
can fit entirely in the 82495XP/82490XP
cache. The 82495XP treats PFLD cycles
as normal read cycles.

Mode #2. PFLD cycles are not cached in the
82495XP, without an external PFLD ex­
tension FIFO.

This mode is used when applications are
too large to fit in the 82495XP/82490XP
cache. The 82495XP treats PFLD cycles
as noncacheable, using the same proto­
col as cycles with PCD = 1 (if data is al­
ready cached, it will be supplied from the
cache).

Mode #3. PFLD cycles not cached in the 82495XP,
with an external PFLD extension FIFO.

This mode allows the PFLD FIFO to be
extended beyond the three stages built
into the i860 XP CPU by adding external
FIFO hardware. The 82495XP, treats
PFLD cycles in the same manner as its
treatment of LOCKed cycles (all cycles
go to the bus, even if data already pres­
ent in cache). To support the external
FIFO, the 82495XP identifies PFLD cy­
cles by asserting its FPFLD output. For
proper operation, data which can be ac­
cessed by PFLD must never be in the
cache in the Modified state, and software
must be aware of the length of the com­
bined PFLD pipeline. Because this mode
is not software transparent, it must be
used with extreme care.

The choice of PFLD mode is largely application de­
pendent. The PFLD mode of the 82495XP is select­
ed by configuration pins FPFLDEN and NCPFLD #,
which are sampled at RESET. FPFLDEN shares a
pin with FPFLD, and NCPFLD # shares a pin with
FLUSH #. Depending on the PFLD mode, data for
reads will either be supplied to the CPU from the
82495XP, or from the memory bus. Table 5-3 sum­
marizes, the 82495XP's support for i860 XP CPU
PFLD cycles.

2-277

int'et 82495XP Cache Controller/82490XP Cache RAM ~OO[gI!..O[M]OOO~OOW

Table 5-3. 82495XP PFLD Modes

Mode# FPFLDEN NCPFLD#
[I]

1 0 1 MEMBUS

2 O. 0 MEMBUS

3 1 1 MEMBUS

X 1 0

5.3 82490XP Bus Configuration

The 82490XP needs to be configured so it knows to
drive 4 or 8 MDATA lines and whether it should do 4
or 8 memory transfers per line fill. This is done
through the MX4/MX8# and the MTR4/MTR8#
configuration inputs. For a given line ratio (memory
bus line size I CPU line size), they should be sam­
pled as follows:

Table 5-4. MX/MTR Configurations

Line MX41 MTR41 Membus CPU bus
Ratio MX8# MTR8# 1/0 1/0

1 1 1 4 4

2 1 0 4 4

2 0 1 8 4

4 0 0 8 4

1 0 1 8 8

2 0 0 8 8

Data Supplied From Line Fill

[S] [E] [M] on [I]

CACHE CACHE CACHE Yes

CACHE CACHE CACHE No

MEMBUS MEMBUS . MEMBUS No

Illegal Mode

5.3.1 82490XP PARITY CONFIGURATION

A 82490XP may be designated as a parity device.
This is done by strapping the PAR# pin low. In this
configuration CDATA[0:3] are used to store 4 parity
bits, and CDATA[4:7] are used as 4 bit enables. The
four bit enables allow the writing of individual parity
bits.

Every mode and configuration of a non-parity
82490XP may be used and selected on the parity
82490XP device. The 82490XP parity configurations
are as follows:

Table 5-5. Parity Configurations

Cache
Memory Number

Size
Bus of Parity

Width Devices

256K 64 2

512K 128 2

5.3.2 CPU 82490XP ADDRESS
CONFIGURATIONS

82490XP
1/0 bits

(CPU/Mem)

4/4

4/8

The 82490XP Address inputs (A) are multiplexed to
the CPU address lines {CAl according to the cache
size:

Table 5-S. 82490XP Address Connections

82490XP Address Pins
Size

A15 A14 A13 A12 A11 A10 A9 A8 A7 AS A5 A4 A3 A2 A1 AO

256K CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA Vss
16 15 14 13 12 11 10 9 8 7 6 5 4 3

512K CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

NC = No Connect.

2-278

8249S}(P Cache Controller/82490XP Cache RAM

6.0 CACHE OPERATION

i860 XP
J CPU

Cyclo Lon
BE.
BRDYx

CPU IIF Address _l Data
(elK Synchronous) Cycto

Roquost

CADS# •••••

82495 82490
MBC

Cycle
Progress
BGT#
SWEND# Snoop Dcte

Roq/Ack In/Out

82495 IIF
Latch Cyclo
Control Control

(elK Synchronous)

~ Address Data

MEMBUS I/F
IjIIllllla=o"""

.. _-_ .. -- ..
D B

(CLK/SNPCLK Synchronous -'----i>lI XVRs/LATCHES a
or Strobod) D Optional a

1!:.""""","lII2Ic:I -"""' """ -_ ..
MEMORY BUS I >

240956-11

Figure 6-1. Memory Bus Controller Interface Model

Figure 6-1 shows the memory bus controller (MBC)
interface model. The memory bus controller interfac­
es to the i860 XP CPU, 82495XP, 82490XP, and
memory bus. The MBC interface was defined with a
minimal set of assumptions as to the memory bus
implementation. The chipset was designed to enable
flexibility in the design of a memory bus and control­
ler.

The 82495XP requests control of the memcirybus
by signalling the memory bus controller. The memo­
ry bus controller is responsible for arbitrating and
granting the bus to the 82495XP. Once granted, the
memory bus controller is responsible for executing
the requested cycle, snooping the other caches, and
ending the cycle. The 82495XP supports different
modes of snooping, different modes of memory bus
operation, and various special cycles. Memory Bus
Controller design dictates which of these features
are used, and exactly how they are used.

2-279

Intel., 82495XP Cache Controller/82490XP Cache RAM

6.1 Cycle Attribute and Progress

CADS', SNPAoS'
COTS"

Cycle Request BGT"
KWENo#(ATTRIB, MKEN#, MRO#)
SWENo#(ATTRIB, MWB/WT#, DRCTM#)
CNA#
CROY#

Cycle Progress

240956-12

Figure 6-2. Cycle Attribute and Progress Signals

CADS# indicates the start of the cycle address
phase, CDTS# tracks CADS# and indicates the
start of the cycle data phase. For READ cycles it
indicates that starting in the next ClK the CPU data
bus is in read mode under the control of the MBC
until the last BRDY #. In Read cycles, if the MBC
already owns the CPU data bus, CDTS # will be acti­
vated with CADS #. For AllOCATE cycles the M BC
does not need the CPU data bus, therefore COTS #
is activated together with CADS#.

For Write cycles CDTS# indicates that the 1 st piece
of data is available on the memory bus. For write­
back cycles CDTS # indicates that all data is av~iI­
able (write-back buffer or snoop buffer loaded with
correct write-back data).

As a response to the cycle request, the memory bus
controller responds with cycle progress signals. All
cycle progress signals are sampled ONCE in specif­
ic windows and then ignored until CRDY # of the
corresponding cycle. BGT # indicates a commitment
by the memory bus controller to complete the cycle
execution on the memory bus. Up until this point the
82495XP owns the cycle. This means that interven­
ing snoop-write-backs will abort it and the 82495XP
re-issues the cycle to the MBC. There is only one
case where the 82495XP will issue a new, not a re­
issued, cycle; if the original CADS# operation is a
write-back cycle, and the interrupting snoop cycle
hits that write-back buffer, then the subsequent
CADS# will be for a completely new cycle (not a re­
issuing of the interrupted CADS# operation).

After BGT # the memory bus controller owns the cy­
cle. The 82495XP assumes the cycle will terminate
and will not re-issue it on snoop-write-backs. Follow­
ing BGT# comes KWEND# which indicates that the
cacheability window is closed and that the 82495XP
can sample MKEN#, MRO# attributes. Those indi­
cate to the 82495XP cacheability and read-only re­
spectively. These attributes can be determined by
decoding the 82495XP address. Based on those at­
tributes the 82495XP executes AllOCATIONS,
Line-fills, Replacements, etc.

Following KWEND#, SWENO# is activated. It indi­
cates that the Snoop Window is closed. The
82495XP samples MWB/WT # and DRCTM # attri­
butes. These attributes are determined by snooping
the other caches in the system. At this point the
82495XP updates its TAGRAM state related to the
line access in progress.

lastly the MBC issues CRDY#, which indicates to
the 82495XP the end of the transaction data phase.

The 82495XP allows memory bus pipelining by pro­
viding CNA# which allows the MBC to request a
new address phase before the conclusion of the cur­
rent data phase. The 82495XP supports a 1 level

. deep address pipeline on the Memory Bus.

6.2 Snoop Operations

The 82495XP provides the capability of snooping
operations on the memory bus to ensure cache con­
sistency. A snoop operation consists of two phases:
1) initiation phase and 2) response phase.

< Initiation>

< Response>
240956-13

Figure 6-3. 82495XP Snooping Operations

During the initiation phase the MBC provides the
82495XP with the snoop address information. During
the response phase the 82495XP provides the
snoop status information.

2-280

82495XP Cache Controller/82490XP Cache RAM

6.2.1 SNOOP INITIATION PHASE

The 82495XP provides three modes for initiating
snoops:
1. Strobed: the falling edge of SNPSTB if is used.

2. Clocked: SNPSTB # is sampled with SNPClK.

3. Synchronous: SNPSTB# is sampled with ClK.

These three snooping modes are configured as fol­
lows:
1. Strobed: The SNPClK[SNPMD] signal must be

strapped high.
2. Clocked: The SNPClK[SNPMD] signal must be

connected to the snoop clock source.
3. Synchronous: The SNPClK [SNPMD] signal

must be strapped low.

SNPSTB#

SNPINV

SNPNCA

t.4SETO-l0

t.4TAGO-ll

t.4CFAO-6

t.4BAOE#

t.4AOE#

CLK.

SNPCYC#

t.4THIT#

t.4HITt.4#

SNPBSY#

NOTE:
The 82495XP samples the SNPClK[SNPMD] sig­
nal at the falling edge of RESET to determine the
snoop mode. If a rising edge occurs on the
SNPClK[SNPMD] after. RESET has gone inactive,
clocked mode will be selected. Systems using
stobed or synchronous mode must ensure that no
rising edge occur on SNPClK[SNPMD] after RE­
SET has gone inactive.

Figure 6-4 shows the strobed method of snoop ini­
tiation. The memory address, SNPNCA, SNPINV,
and MBAOE# are latched with the falling edge of
the SNPSTB#. If MAOE# is sampled active (low),
the SNPSTB# will not cause a snoop. The snoop
initiation is recognized by the 82495XP, is synchro­
nized in the next clock, and causes a snoop in the
following clock.

<SNOOP>

\ /
\\\\

240956-14

Figure 6-4. Strobed Snoop Mode

2-281

Intel ... 82495XP Cache Controller 182490XP Cache RAM

Figure 6-5 shows the clocked method of snoop ini­
tiation. The memory address, SNPNCA, SNPINV,
and MBAOE # are latched with the rising edge of
SNPCLK when SNPSTB# is first sampled low.
SNPSTB # must be sampled high for at least one

SNPCLK in order to rearm for another snoop. If
MAOE# is sampled active (low), the SNPSTB# will
not cause a snoop. The snoop initiation is recog­
nized by the 82495XP, is synchronized in the next
clock, and causes a snoop in the following clock.

SNPClK ~\"'_..AI ',,---.1/ , I ,'"----I,
,

·SNPSTB# \ _+1_...../1 ... ____ 1 ___ ...,,/
SNPINV

SNPNCA

MSETO-l0

IHAGO-ll

MCFAO-6

MBAOE#

MAOE#

ClK

SNPCYC#

.. '

MTHIT# \\\\
MHITM# \\\\

SNPBSY#

240956-15

Figure 6-5. Clocked Snoop Mode

2-282

82495XP Cache Controller/82490XP Cache RAM

Figure 6-6 shows the synchronous snoop mode. The
memory address, SNPNCA, SNPINV, and MBAOI;#
are latched with the rising edge of ClK when
SNPSTB# is first sampled low. SNPSTB# must be
sampled high for at least one ClK in order to rearm

ClK

SNPSTB#

SNPINV)000000000000 · . .
SNPNCA)O¢OOOOOOOOOOO¢OO(~

· , .
MSETO-10)O¢OOOOO¢OOOOO¢OO{~

· . .
MTAGO-11)O¢OOOOO¢OOOOO¢OO<>---~ · . .
MCFAO-6)OOOOOOOQOOOOO¢

· . .

for another snoop. If MAOE # is sampled active
(low), the SNPSTB# will not cause a snoop. The
snoop initiation is recognized by the 82495XP, and
causes a snoop in the next clock. .

MBAOE#)O¢OOOOO¢OOOOo¢OO\...-....i-IVVVV"VVVVV'YYYYYYVYVY'VYYVY, · . .
MAOE#)O¢OOOOO¢OOOOO¢

· . · . · . · . · . · . · . · . <SNOOP>

\ I =====:
SNPCYC#

: \\\\ MTHIT#

MHITM# \Sss
SNPBSY# \\\\

240956-16

Figure 6-6. Synchronous Snoop Mode

2-283

inlet 82495XP Cache Controller/82490XP Cache RAM

6.2.2 RESPONSE PHASE

The snoop respbnse phase consists of two parts:
1) 82495XP state indication 2) 82495XP snoop pro­
cessing completion. The response phase is' Al­
WAYS synchronous with the CPU ClK. The
82495XP state indication is presented on MHITM#
and MTHiT# and remains stable until the next
snoop. These signals indicate the state of the
82495XP line just prior to the. snoop operation. The
memory bus controller can predict the final state of
the 82495XP line knowing the initiql state and the
SNPINV and SNPNCA inputs. The snoop comple­
tion information is determined by the SNPBSY # out­
put. The SNPBSY # output inactive indicates that
the 82495XP is ready to accept another snoop cy­
cle.

Figure 6-7 shows the 82495XP response to snoops
without invalidation. The first snoop is to a line which
is not currently stored in the cache. .

Figure 6-8 shows the 82495XP response to snoops
with invalidation.

The SNPBSY # signal will be activated for one of
two reasons: 1) a snoop hit to a modified line,
SNPBSY# will remain active until the modified line·

SNPSTB# ~\" __ --I

SNPINV

MTHIT#

.MHITM#

SNPBSY#

has been written back. 2) a Back invalidation is
ne,eded and there is a back invalidation in process.
The SNPBSY # minimum active time is two ClK pe­
riods. This allows an external logic to trap-hold ac­
tive SNPBSY # using ClK. The external logic must
first look for active SNPCYC# and then trap-hold
SNPBSY#,

6.2.3 PIPELINED SNOOPS

The 82495XP allows the memory bus controller to
pipeline snoop operations. The 82495XP allows the
next snoop address to be supplied and the next
snoop requested before the last snoop has complet­
ed,

There are a set of. rules which govern the operation
of pipelined snoops, These rules are as follows:

(1) For strobed mode snoops, the memory bus con­
troller cannot cause a second falling edge of
SNPSTB# until after the falling edge of
SNPCYC#,

(2) For clocked mode snoops, the memory bus con­
troller cannot cause a second falling edge of
SNPSTB# to be sampled by SNPCLK, until after
the falling edge of SNPCYC# ,

M Stat.

~,--JI

240956-17

Figure 6-7. Snoops without Invalidation

I stot. r----\ E. S S. tat. /
SNPSTB# ~\" __ --I! \ ,

M Stot.
\ I

SNPINV

MTHIT#

MHITM#

SNPBSY#
240956-18

Figure 6-8. Snoops with Invalidation

2-284

82495XP Cache Controller/82490XP Cache RAM

ClK

SNPST8# -:---u; \J.J \ : I7ZlJZI17 \J.J '-L-
< SN?OP> < SN?OP>

SNPCYC#

, , ,
MTHIT#)0< : :X)O(: : XXX : :)ooct= , , , , , ,
MHITM#)0< : :>00< : :)00\7: K>OOC ,

SNP8SY# W :\)(\ r:wv :~ , ,
240956-19

Figure 6-9. Fastest Possible Synchronous Snooping

ClK , , ,
I I I I I

SNPST8# ~ ~ ;mmlOl/: \\
__ --_-""'<SN?OP> ' < SN?OP>,-____ - ... '

SNPCYC# , ,

MTHIT#)0(: :)00(: :X)O(: :)OO(J:: , , , ,
MHITt.4#)0< : :X)O(: :)OW K>OOC , ,

:'W :\)(\ r:w.; :~ , , SNP8SY#

240956-20

Figure 6-10. Fastest Possible Asynchronous Snooping

(3) For synchronous mode snoops, the memory bus
controller cannot cause a second falling edge of
SNPSTB# to be sampled by ClK, until the ClK
after SNPCYC# is active.

6.2.4 OVERLAPPING SNOOPS WITH MEMORY
BUS CYCLES

The 82495XP allows snoops to be overlapped with
data transfers. The 82495XP divides the memory
bus cycle into 4 main regions as shown below:

CRDY,# CADS# BGT# SWEND# CRDY# CADS#

2 3 4 I I

Region 1 is after a previous memory bus cycle (Le.
after CRDY #) and before the new memory bus cy­
cle starts (before CADS#). A snoop in this region is
looked up immediately and serviced immediately.

Region 2 is after a memory bus cycle has started
(CADS#) but before the 82495XP has been granted
the bus (BGT #). A snoop in this region is looked up
immediately and serviced immediately. CADS# is
re-issued for the aborted cycle once the snoop com­
pletes.

Region 3 is after the 82495XP has been granted the
bus and before the SWEND# is completed. A snoop
in this region has its lookup blocked until after the
SWEND#. After SWEND#, the snoop response is
given, but no write-back will be initiated until after
CRDY#.

Region 4 is after SWEND # and before CRDY #. A
snoop in this region is looked up immediately but
serviced after CRDY #. This snoop is logically treat­
ed as if it occurred after CRDY # (snoop hits to mod­
ified data will schedule a write-back which will be
executed after the conclusion of the current memory
bus cycle). Note that the result of the snoop
MHITM#, MTHIT# will be available immediately
with the look-up.

2-285

iniaL 82495XP Cache Controller/82490XP Cache RAM

6.2.5 SNOOP INTERLOCK

The 82495XP uses two interlock mechanisms to en­
sure that Snoops are identified within the proper re­
gion. The first interlock ensures that once a BGT #
has been given snoops are blocked until after
SWEND#. The second interlock ensures that once
a snoop has been started BGT # cannot be given
until after the snoop has been serviced.

Figure 6-11 shows how once the 82495XP sees a
BGT# it blocks all snoops until after SWEND#. If a
snoop has been initiated, and no SNPCYC# has
been issued before BGT # assertion, the snoop has
been blocked.

Figure 6-12 shows a snoop occurring before BGT #.
Once the 82495XP has honored a snoop, the
82495XP, depending on the result of the snoop, may
ignore BGT # until the snoop is serviced. The
82495XP will always ignore BGT# when SNPCYC#

ClK

BGT#

SWEND#
or

CRDY#

I
I

UJ

x

is active. If the snoop result is a hit to a modified line
(MHITM # active), the 82495XP will ingore BGT # as
long as both SNPBSY# and MHITM# remain ac­
tive. In this case, it is the memory bus controller's
responsibility to hold BGT # until SNPBSY # goes
inactive or reassert it after SNPBSY # becomes in­
active. If the snoop result is not a hit a modified line
(MHITM # inactive), the 82495XP is capable of ac­
cepting BGT# even when SNPBSY# is active. This
allows the memory bus controller to preceed with a
memory bus cycle by asserting BGT# while the
82495XP is performing back-invalidations.

These two interlock mechanisms provide a flexible
method of ensuring predictable handling of over­
lapped snoops.

NOTE:
Even when snoops are delayed, address latching is
performed with SNPSTB# activation.

I

I
I I

UJ
<SNOOP>

: X
240956-21

Figure 6-11. BGT # Blocking a Snoop

ClK

SNPCYC#

MH 1Tt.1 #

SNPBSY#

< SNoop>

--------------~UJ~------------------------
K\\\
K~~~\~ ____ , --__ --~I
I I

X __ -+: ______ +-__ B_G_T_#_!-GN-O-R-E-D~--____ ~----X :
240956-22

Figure 6-12. Snoop Occurring before BGT#

2-286

8249S){P Cache Controller/82490){P Cache RAM ~OO[g[bO[MJOIfil&OOW

6.2.6 SNOOPS CONCURRENT WITH LINE FILL
CYCLES

During snoops concurrent with line-fills/allocates,
the following responsibility boundaries must be full­
filled in order to insure data consistency:

o If a snoop happens before BGT #, more precisely
if SNPCYC# is active before BGT#, it is the sys­
tem's responsibility not to return stale data within
the line-filii allocation.

o If a snoop happens after BGT # , more precisely if
SNPCYC# is active after BGT#, then the
B2495XP insures data consistency by providing
interlocks with the CPU which avoid caching of
stale data.

6.3 Memory Bus Controller Interface
Rules

To begin a cache cycle, the B2495XP outputs the
CADS# signal. The cache address and other cycle
parameters are guaranteed to be stable with
CADS # assertion. These parameters are guaran­
teed to be stable until CNA# or CRDY # of that cy­
cle. After CNA # or CRDY # these parameters are
undefined.

Either during, or after CADS# the CDTS# signal is
asserted. Data is guaranteed to stable with CDTS #
assertion, or the data path is available.

182495 Output Signals 1

CADS# COTS#

BGT # and CRDY # are required for all (non-snoop)
cycles. KWEND# and SWEND# are only required
for those cycles which sample them.

Once a signal has been sampled, it is a "don't care"
until CRDY # of that cycle. Additionally, these sig­
nals plus the attributes MRO#, MKEN#, MWBI
WT #, and DRCTM # need only follow setup and
hold times when they are being sampled.

For pipelined cycles, the cycle attributes (BGT #,
KWEND#, ...) will only be sampled after CRDY#
of the previous cycle.

Note that there are many other rules that govern
when signals may be asserted in relation to one an­
other. These may be found in the specific pin de­
scriptions of each signal in chapter 7.

Snoop-Write-Back cycles are a subset of the normal
cycles. Snoop-Write-Back cycles are requested as a
consequence of snoop hits to Modified lines. Those
are intervening cycles and are requested by activat­
ing SNPADS# instead of CADS#. For those cycles,
the B2495XP only samples the CRDY # response.
The B2495XP assumes that the memory bus con­
troller owns the bus to perform the intervening write­
back (restricted back-off protocol) and that no other
agents will snoop this cycle. Also the B2495XP will
ignore CNA# during Snoop-Write-Backs.

~ ,----------------'--.
~~.1~f--~f~-rf--~1~T~im.~

BGT# KWEND# SWEND# CRDY#

t ------CNA# - - - - -- t
1 82495 Input Signals 1

240956-23

Figure 6-13. Cycle Progress

2-2B7

fI

int:el.. 82495XP Cache Controller/82490XP Cache RAM

182495 Output Signal. I
SNPADS# CDTS#

'\. ').----------------' f Time

CRDY#

I 82495 Input Signals I
240956-24

Figure 6·14. Cycle Progress for Snoop Cycles

6.4 LOCK # Protocol

The 82495XP provides a LOCK signal for the memo­
ry bus called KLOCK #. KLOCK# is. generated by
the 82495XP whenever the CPU generates the
LOCK # signal. KLOCK #, like the other cycle attri­
butes, is valid with CADS # assertion.

When the CPU generates a LOCK cycle, the
82495XP always. generates a bus cycle. LOCK cy­
cles are non-cacheable to both the. 82495XP and
CPU, so the information is passed through the
82490XPs to the CPU with BRDYs generated by the
MBC. If the. LOCKed read cycle is a hit in the
82495XP, the 82495XP ignores the data that it is
receiving and supplies data from the 82490XP array
(in accordance with the BRDYs supplied by the
MBG). Locked writes are posted like any other write.
LOCKed cycles, both reads and writes, never
change the 82495XP tag state.

During a LOCKed cycle, the MBC must prevent oth­
er masters from snooping the 82495XP. Specifically,
the MBC must prevent SNPSTB# between BGT#
of the first LOCKed transfer, and SWEND# of the
last LOCKed transfer.

Locked

CADS CADS CADS
LOCK LOCK LOCK
Read Read Writ.

\ \ \
t

BGT

6.5 Cycle Length

When CADS# is generated, the 82495XP outputs
CW/R# and MCACHE#. These signals provide the
MBC with enough information to determine the type
of 82495XP cycle. Table 6-1 summarizes the cycle
types for the 82495XP/82490XP. All line-fills and
write-backs to the 82495XP/82490XP cache oper­
ate on the entire length of a cache line.

In addition to the length of the cycle from .. the
82495XP/82490XP, the memory bus c;:ontroller may
need to determine the length of the cycle to the
CPU. Specifically, for those 82495XP cycles where
RDYSRC= 1, the MBC must decode the i860 XP
CPU's W/R#, LEN, and CACHE# outputs to deter­
mine the number of BRDY#s which the MBC will
provide to the CPU. These signals are captured for
the current cycle by a user-provided BE latch (see
Section 7.2 for details). Table 6-2 presents the CPU
cycle length definitions; see the i860 XP microproc­
essor Data Sheet (Order #240874) for further de­
tails.

Locked
I

CADS
LOCK
Read

f
\ Time

f ~
SWEND BGT

I ~.

C MBC Must Not Allow Snoops
240956-25

Figure 6-15. Snooping During LOCKed Cycles

. 2-288

82495XP Cache Controller/82490XP Cache RAM

Table 6-1. 82495XP/82490XP Cycle Determination

Cycle Type CW/R# RDYSRC MCACHE# MKEN#

Posted Write 1 0 1 X

Write Backs 1 0 0 X

Non-Cacheable Read 0 1 1 X

Non-Cacheable Read 0 1 0 1

Cacheable Read 0 1 0 0

Allocation 0 0 0 X

Table 6·2 i860 XP CPU Cycle Determination

W/R# LEN CACHE# MKEN# Cycle Description Burst Length

0 0 1 - Non-Cacheable 64-Bit Read 1

0 0 - 1 Non-Cacheable 64-Bit Read 1

1 0 1 - 64-Bit Write 1

- 0 1 - I/O and Special Cycles 1

0 1 1 - Non-Cacheable 128-Bit Read 2

0 1 - 1 Non-Cacheable 128-Bit Read 2

1 1 1 - 128-Bit Write 2

0 - 0 0 Cache Line Fill 4

1 - 0 - Cache Write-Back 4

NOTE: .
If MRO# is asserted to the 82495XP, the effect on i860 XP CPU cycle determination is the same as when MKEN# = 1.

6.6 Consecutive Cycles

Because a 82495XP line can be longer than a CPU
line, there are circumstances where a read miss will
be to a line that is currently being filled. If this is the
case, the 82495XP treats this like a read hit, but
supplies data after CRDY # for the line fill. Data is
supplied from the 82490XP array.

6.7 CPU/Memory Bus Concurrency

The 82495XP allows concurrency between the CPU
and memory buses. CPU bus cycles will either be
serviced locally by the 82495XP (hits) or require
memory bus service. Whenever a CPU cycle re­
quires memory bus service, it will be scheduled to
run on the memory bus, and CPU bus activity will be
allowed to continue.

Examples of concurrency are:

- Snoops and CPU bus operations

- Posted writes with CPU and memory bus opera-
tions

- CPU bus operation on the back of long line fills
(82495XP line longer than the CPU line)

- Allocations and replacements with CPU and
memory bus operations.

In certain cases, consistency of data and prevention
of deadlocks preclude concurrency. Problems may
occur when the current memory bus cycle changes
the tag state and therefore affects the operation of
the next CPU cycle request. In those cases the
82495XP will hold concurrency to ensure data con­
sistency. Handling of those cases is completely
transparent to the MBC.

The 82490XP supports two modes of memory bus
operation: clocked mode and strobed mode. In
clocked mode, memory bus signals are sampled by
the 82490XP on rising edges of MClK. Similarly,
memory bus data and signals are output by the
82490XP with respect to MClK (or MOClK) rising
edge transitions.

In strobed mode, memory bus signals are sampled
or output with respect to rising and falling edges of
other signals. Strobed mode has ~he advantage of
not requiring setup and hold times to a ClK or MCLK
edge.

2-289

82495XP Cache Controller/82490XP Cache RAM [¥)[R1[gILO[M]OIRl~[R1W

6.8 Memory Bus Modes

6.8.1

Clocked Memory Bus Mode
CLK~

MCLK
I I

-:-c:: -cb-
1- ~
I Valid setup I hold

240956-27

Strobed Memory Bus Mode
CYC1.~
Start " I ,

MSEL# :: I I '

~~
Active Inactive 240956-28

Figure 6-16. Clocked and Strobed
Mode Sampling

CLOCKED MODE

In clocked mode operation MClK is used to refer­
ence the signals MDATAO-MDATA7, MSEl#,
MFRZ#, MZBT#, MBRDY#, and MEOC#. Clocked
mode will be selected if the 82490XP detects a
clock at its MClK input after RESET. MClK need
not have any relation to ClK. If this is the case, the
memory bus is said to be operating in "clocked
asynchronous" mode. If MClK = ClK, the memory
bus is operating in "clocked synchronous" mode. If
MClK x N = ClK (where N = 2, 3, 4 ...), the
memory bus is operating in "clocked divided syn­
chronous" mode. These three clocked modes, asyn­
chronous, synchronous, and divided synchronous,
are not differentiated by the 82490XP.

MOClK controls a transparent latch at,the 82490XP
data output pins. If a clock is provided at this input,
data is latched with MOClK going low. This clock is
available in clocked mode only. MOClK allows the
system to provide a greater MDATA hold time by
skewing MOClK from MClK. If MOClK is tied high,
MDATA is driven from MClK.

6.8.1.1 Synchronous Clocked Mode

In synchronous clocked mode MClK = ClK. This
means the CPU clock is used for 82495XP,
82490XP, and the memory bus. A synchronous
memory bus allows memory to com'municate with
the 82495XP without synchronizers since the
82495XP runs with ClK. With a synchronous design,
however, high clock frequencies must be routed to
all parts of a system with minimal skew. This may
not be possible with future projected frequencies. A
synchronous memory system and memory bus con­
troller must be redesigned when future speed up­
grades are required.

6.8.1.2 Asynchronous Clocked Mode

In asynchronous clocked mode, MClK is not the
same frequency as ClK. Some memory signals,
since they reference MClK, must be synchronized
to ClK to communicate with the 82495XP. For ex­
ample, when a cycle completes, the memory system
asserts a signal, driven from MClK, to the memory
bus controller which will be synchronized to ClK to
become CRDY #. This is because CRDY # is syn-
chronous to ClK and not MClK. '

Asynchronous mode allows the rest of the system to
run at a lower frequency than the CPU ClK. Not only
does this simplify system design, but allows the de­
signer to place hooks to allow the same design to
scale easily to a higher frequency. If all the features
of the 82495XP are used properly, an asynchronous
memory design does not have to incur much syn­
chronization penalty. For example, MEOC# is syn­
chronous to the memory environment (MClK). This
allows the memory system to end the current cycle
and start the next before CRDY# is synchronized in
the CPU environment.

6.8.1.3 Divided Synchronous Clocked Mode

Divided synchronous clocked mode is a subset of
synchronous clocke.d mode. It allows two things to
happen: One, the memory system is capable of
communicating with the 82495XP without synchroni­
zation. Two, a slower frequency clock may be routed
around the system.

Divided synchronous mode still requires clock skew
restrictions. It also carries the same scalability draw­
backs that full synchronous mode does.

6.8.2 STROBED MODE

Strobed mode is configured on the 82490XP by
strapping MClK high. In strobed mode:

- MDATAO-MDATA7 are sampled with respect to
edges of MEOC#, MISTB, and MOSTB.

- For write cycles, MFRZ# is sampled when
MEOC# goes active.

- MZBT# is sampled when MSEl# is inactive,
and is latched when MSEl# goes active.
MZBT # is also sampled for the next operation
when MSEl# is active and MEOC# goes active.

By not using MClK, strobed mode has no setup and
hold time restrictions, and is scalable to higher fre­
quencies. Strobed mode does, however, require
synchronization to 82495XP ClK synchronous sig­
nals.

2-290

82495){P Cache Controller/8249DXP Cache RAM ~OO[g[bOIMlOOO~OOW

6.9 Memory Bus Operation

All data is handled by the B2490XP cache RAMs.
The B2495XP instructs the B2490XP whether to use
the data array or buffers, and specifically which buff­
er to use. The MBC is responsible for bursting 'data
in and out of the B2490XP's, in and out of the CPU
during miss cycles, and indicating when the opera­
tion is finished. Communication between the
B2490XPs and memory bus may be done in a
clocked mode or strobed mode. See the Memory
Bus Modes section for more details. '

A B2490XP has 4 memory buffers. It has 2 memory
cycle buffers, one write-back buffer, and one snoop
buffer. Each buffer is capable of holding an entire
B2495XP line of the longest configurable length.

The memory cycle buffers of the B2490XP are used
for posting writes and holding data during
B2495XP/B2490XP line-fills. The write-bacl< buffer is
used for holding data from a cache replacement.
This data is ready to be written out, and the write­
back buffer is snoopable. The snoop buffer is used
to hold modified data that has been hit by a snoop.
Since snoop hits are the highest priority cycle, this
buffer will be emptied before any other cycle or
snoop request begins.

,6.9.1 82490)(P BUFFERS AND MUXES

The 4 B2490XP memory buffers are all multiplexed
(muxed) to the memory bus. The mux is used to se­
lect which buffer is on the bus, and specifically which
slice of that buffer is on the bus. MBRDY # assertion
increments a counter for this mux which selects the
next slice of that buffer.

The counter used to increment through the buffer
slices is called the memory burst counter. The mem­
ory burst counter follows the CPU burst order de­
pending on the subline address of the initial slice.
Once the MBC is finished with a buffer, MEOC# is
asserted to switch the mux to the next buffer to be
used. MEOC# will also reset the counter and latch
'the last slice of data.

On the CPU side, the 82490XP contains a CPU buff­
er and mux. The CPU buffer captures data from the
appropriate memory buffer or 82490XP array to feed
it to the CPU. The mux selects which slice is muxed
to the CPU bus. The counter for this mux is incre­
mented with BRDY#.

The 82490XP array contains a mux that selects
which way, based on the MRU algorithm, will be
read during hit cycles. This mux is used during write
cycles to write to the correct way.

6.9.2 MEMORY CYCLE BUFFERS

There are 2 memory cycle buffers in the 82490XP.
They are used for line-fills, allocates, and memory
writes. The buffers are 64-bits wide (per B2490XP) to
support B transfers with B memory bus 1/0 pins
(maximum configuration). The B2490XP alternates
use of these buffers. When one buffer has a posted
write or is being used for a memory read, the other
one is available for the next cycle.

During allocation cycles, read for ownership may be
implemented by using the MFRZ# signal. If MFRZ#
is sampled active during the write cycle, the memory
cycle buffer will freeze the write data in the buffer so
the subsequent line-fill fills around it. This way the
write cycle need not be written to memory. The line
must be tagged as modified.

6.9.3 WRITE BACI(BUFFER AND SNOOP
BUFFER

The write back buffer and snoop buffer are both 64-
bits to handle the maximum B2495XP line length.
The write back buffer is used when replaced data
must be written back to main memory (including
FLUSH and SYNC cycles) and the snoop buffer is
used when data must be written out from a snoop
hit.

Before a line fill begins, the B2495XP checks to see
if it must remove a modified line to make room for
the line-filled line. If so, the modified line is placed in
the write back buffer and the line-fill is filled through
a memory cycle buffer. Should the line-fill be select,
ed as non-cacheable, both buffer contents are dis­
carded and the B2490XP array value remains as it
was before the line-fill.

There is no need to run the line-fill, replacement
(write back), FLUSH, or SYNC cycles contiguously:
If a snoop is requested between the two cycles, the
write back buffer is snoopable, and data can be writ­
ten directly out of it if need be.

6.9.4 MEMORY BUS CONTROL SIGNALS

The main memory bus control signals are MSEL#,
MEOC#,MBRDY#, and CRDY#. These signals
control the B2490XP data path, buffers, and muxes.

MSEL# selects which 82490XPs are being used in
the current cycle by qualifying the MBRDY # Signal.
If MSEL# is inactive, MBRDY# is not recognized for,
that 82490XP. MSEL# is also used to reset the
memory burst counter. If MSEL# goes inactive, the
counter is initialized to its starting value. This is use-

2-291

inteL 82495XP Cache Controller/82490XP Cache RAM

ful for aborted/restarted cycles. MSEL# may remain
active for many or all cycles. MSEL# must, howev­
er, be inactive sometime after RESET to initialize the
memory burst counter for the first time.

MEOC# is asserted by the MBC to end finish with
the current buffer, and switch the memory bus to the
next buffer to be used. MEOC# latches in the last
piece of data and resets the memory burst counter
before switching to the new buffer.

MBRDY #is used to increment the memory burst
counter to select the next slice of data. This will
strobe data out of the 82490XP (write cycles) or load
data into the 82490XP (read cycles). MBRDY# is
ignored by the 82490XP if MSEL# is inactive.

CRDY # finishes the current cycle. Once CRDY # is
asserted, the 82490XP disposes of the information
in the buffers used in that cycle, and loads informa­
tion into the 82490XP array. CRDY # must be as­
serted on the clock or after MEOC# is asserted for
a particular cycle.

To CPU t

6.9.5 82490XP DATA PATH

An example 82490XP read data path is shown in
Figure 6-6. The path between the CPU and memory
bus is a flow-thru' path, not a clocked path. Each
entire 82495XP cache line of data in the CPU buffer
is available at the memory buffer with some propa­
gation delay. Likewise, each entire 82495XP cache
line of data in the memory buffer is available in the
CPU buffer with some propagation delay. Data is
burst into and out of the memory buffer using
MBRDY # or MISTB/MOSTB. Data is burst into and
out of the CPU buffer using BRDY #. This means
there is no synchronization required between memo­
ry and CPU data paths.

To give an example how the path works, during a
CPU line fill, data may be returned to the CPU in two
different fashions. One, each time the memory buff­
er fills a dword, BRDY# may be asserted a clock
later to burst it back to the CPU. Two, the memory
buffer can be filled and then BRDY # asserted on
four consecutive clocks to burst data back to the
CPU.

Data To CPU MUX

r----------------- -~

J-
Burst
Count

BRDY# t
MBRDY#

~
Burst
Count

T

I
I OE
I
I
I
I
Lo ___

32/

r---
I
I
I
I

Latch .

I CPU Latch
I

OE OE OE I

--- --- ----

32/ 32/ 32/

--- --- ---

I
I
I
I

-- -~

Flo w-Thru
ths Pa

-- ~

Mem Buffer # 1
~------------------~ t Data From Memory MUX

Figure 6-17. 82490XP Read Data Path

2-292

240956-29

82495XP Cache Controller/82490XP Cache RAM

6.9.6 WRITE CYCLES

There are 3 basic types of write cycles: CPU gener­
ated write cycles, write back cycles caused by a
cache replacement, and snoop write back cycles
caused by a snoop hit. All write cycles, except the
snoop write back, begin with CADS# assertion. The
snoop write back cycle begins with SNPADS#.

6.9.6.1 CPU Generated Write Cycles

When the CPU begins a write cycle, four things can
happen to it. One, the CPU write is a hit to a modi­
fied or exclusive line. In this case the write is termi­
nated by the cache immediately and invisibly to the
MBC.

Two, the write is to a shared location. This type of
write is posted to the 82490XP memory cycle buffers
and the cycle is terminated by the cache. If a memo­
ry cycle buffer is occupied with a write cycle, the
CPU waits until the previous write completes. The
write cycle must be written to the memory bus so
that other copies of the write in other caches be
invalidated.

Three, the write is a cache miss. This type of write is
posted to a memory cycle buffer if the 82490XP is
not waiting for another posted write to complete. If
PALLC# is asserted, the write may be turned into an
allocation.

Four, the write is a LOCKed write. LOCKed writes
are posted regardless of the tag state. The write is
then treated as if it were a miss except that there is
no change in the tag state and no allocation allowed.

6.9.6.2 Cache Generated Write Cycles

The 82495XP/82490XP will generate a write cycle in
three situations: a line fill or allocation causing a
cache replacement, a snoop hit to a modified loca­
tion, and write backs caused by FLUSH or SYNC.
Write back caused by FLUSH or SYNC are indestin­
guishable from write-back cycles caused by replace­
ment. Cache generated write cycles are the length
of a cache line.

Cache replacements and FLUSH/SYNC cycles
cause a line {or two lines if sectored} of cache data
to be placed in the write-back buffer of the 82490XP.
If no cycle is pending, CADS# is asserted and the
data is written out. If a snoop hits the write-back
buffer, the data is written out via SNPADS# like a
normal snoop hit. The write back is then cancelled
since the data was written through the snoop hit.

A snoop hit to a modified location causes a line of
cache data to be written out to memory. Snoop hits
are the highest priority cycle and must be serviced
immediately. A snoop hit to a modified location caus­
es the snooped line to be written to the snoop buffer
of the 82490XP. SNPADS# is then asserted and the
snoop is written out.

6.9.6.3 Memory Bus Controller Responsibility

The MBC recognizes a write cycle with CADS# and
CW/R# {or SNPADS#for snoop cycles}. If
MCACHE# is active, the MBC knows the cycle is a
write back cycle, otherwise it is a CPU-generated
cycle.

CPU-generated write cycles are written to the main •
memory bus so that other caches can invalidate
their copies of this information. The other caches do ;, ..
this by snooping with SNPINV active during snoop
initiation if they detect a write cycle on the bus.

Once the MBC detects CDTS# active, the data will
be available for writing in the next clock in the appro­
priate 82490XP. buffer. The MBC should assert
MSEL# so bursting is enabled, and burst through
the write using MBRDY#(or MOSTB}. MSEL# acti­
vation also caused MZBT # to be sampled. MZBT i,l
must be inactive at this time if the data will be written
according to CPU burst order.

Once the write cycle is complete, MEOC# must be
asserted to end the write cycle and switch to the
next pending cycle. If this write cycle is turned into
an allocation, MFRZ# is sampled with MEOC# to
freeze the write data in the 82490XP.

MEOC# simply switches buffers from the current
one in use to the buffer of the next pending cycle.
CRDY # needs to be asserted to actually end the
cycle and allow the 82495XP and 82490XP to dis­
pose of the information.

6.9.6.4 Write Allocation and Read for
Ownership

The 82495XP/82490XP supports write allocation.
An allocation cycle is a read of a cache line caused
by a write miss to the same location. In its simplest
form, a write miss is written to memory, then the
82495XP requests a line from that same location.
Meanwhile, the CPU only sees the write cycle.

Write allocation may only be done if PALLC# is ac­
tive during CADS # of the write cycle. For the alloca­
tion to occur, MKEN# must be returned active dur­
ing KWEND# of the write cycle. The write cycle may

2-293

82495XP Cache Controller/82490XP Cache RAM

be an actual write or a "dummy" write. Dummy
writes are write cycles· that· are terminated in the
82495XP and 82490XP as if they were normal
writes, butthe data is not actually written to memory.
This saves a data write to memory.

During write allocation, the write cycle will progress
like a normal write cycle except MKEN # must be
active during KWEN D # activation. If the write cycle
is a dummy write, MFRZ # must be used with
MEOC# so that the line filled data is read around
the write data into the 82490XP buffer. The line fill
cycle is like any other line fill cycle except the CPU
doesn't. get any. data. If a. dummy write.wasper­
formed, DRCTM # must be asserted during
SWEND# activation to fill the line to the M state,
and any cache supplying the data must invalidate its
copy.

Using dummy write cycles and filling data to the M
state from another cache or memory is called Read
For Ownership. This is because ownership is being
transferred. In read for ownership cycles, memory is
avoided as much as possible. First, the dummy write
cycle avoids memory. Second, a line fill is performed
as a cache to cache transfer with DRCTM # assert­
ed. All caches were snooped with invalidate to elimi­
nate their copies.

For allocation cycles, SWEND# is not sampled for
the write portion of the allocation.

6.9.7 READ CYCLES

The CPU initiates all read cycles. These are usually
line fills to the CPU and line fills· to the
82495XP/82490XP. The signal MCACHE# is output
with CADS # to indicate whether this cycle mayor
may not be cacheable. If cacheable, MKEN# is re­
turned by the MBC to ultimately determine cachea­
bility. '

Read hit cycles are serviced by the. cache without
MBC intervention. The only read cycles seen by the
MBC (except I/O or special) are read misses and
locked read cycles.

Read misses cause CADS# to be asserted at most
two clocks afterADS# of the CPU read cycle. If
cache able, as determined from MCACHE #, the
MBC will return 4 BRDYs back to the CPU and 4 or 8
MBRDYs to the 82495XP/82490XP. If the transfer is
non-cacheable, the i860 XP CPU lEN and CACHE #
outputs indicate the number of transfers to be given
to the CPU. MBRDY# need not be used in the
transfer if only a single piece of data is required by
the CPU. .

If the read cycle is cacheable, it may cause another
cached line to be bumped out of the cache. This is
called a replacement and, if modified, causes a write
back cycle. While one of the 82490XP memory buff­
ers is being filled for the line fill, the write back buffer
is loaded. If the line fill turns out to be non-cache­
able at the end of the transfer, the write-back buffer
is discarded, and the line in the cache remains valid.
Otherwise, CADS# will be generated after the read
cycle so the write back can be performed. The write
back need not happen immediately after the line fill
since the write-back buffer is snoopable.

All locked reads go to the memory bus. If the read is
a cache Mto M', the 82495XP/82490XP will ignore
the data that the MBC returns, and provide it from its
array. locked reads are not cacheable by the CPU
or the 82495XP/82490XP. Snoop write-backs that
are a result of a lOCKed read/write request must
update memory.

6.9.7.1 Memory Bus Controller Responsibility

Once the MBC sees a read cycle on the memory
bus, it must determine whether the read is cache­
able or non-cacheable using MCACHE # and its own
address decoding. If non-cacheable, the CPU ex­
pects a number of transfers as determined by its
lEN and CACHE# outputs. If cacheable, the .CPU
expects 4 transfers, and the cache expects 4 or 8
(configuration dependent).

MKEN# is sampled during KWEND# to determine
cacheability. Before MKEN # is sampled, KEN # is
active assuming cacheability for the CPU. MKEN #
must be sampled 1 clock before the first BRDY # to
make the cycle non-cacheable.

Once the read cycle is given to the memory system,
all 82495XP/82490XP caches snoop to see if they
contain the data in modified form. If so, the MBC
must abort the cycle in memory and receive the· data
directly from the 82495XP/82490XP that has it, or
wait until that cache writes it to memory. If the data
transfer avoids memory, ie goes cache to cache,
DRCTM#must be asserted with SWEND# to place
the line in the M' state and the cache giving the data
must invalidate its copy.

MSEl# is activated and MBRDY# (or MISTB) used
to sample input data from the read cycle. Once
CDTS# has been seen active, the CPU read data
path is clear. BRDY # may be returned to the CPU
sometime after each MBRDY # for each piece of in­
put data (see MDATA setup to ClK). Once the
transfer completes, MEOC# and CRDY# are as­
serted to complete the cycle in the 82495XP/
82490XP.

2-294

82495XP Cache Controller/82490XP Cache RAM [¥>oo[gl1.nlMlnOO~OOw

6.9.8 I/O AND SPECIAL CYCLES

110 and special cycles (flush, etc) are decoded by
the 82495XP and not posted. These cycles wait until
all buffers have been written, and all cycles have
been completed, before they cause CADS# asser­
tion. The CPU waits until the special cycle ends with
the MBC's BRDY # assertion before it continues.

When the 82495XP/82490XP is performing a
FLUSH or SYNC, many write back cycles are re­
quired. These cycles look like ordinary write back
cycles, and should be handled as such. FSIOUT # is
active during these write back cycles, so when FSI­
OUT # goes inactive the cycle is complete and the
memory bus controller can supply BRDY # to the
CPU.

6.10 Different Bus Widths

The 82490XP is capable of supporting either 64- or
128-bit memory bus widths. Depending on the con­
figuration, the 82490XP's CPU and 110 busses may
be multiplexed. The following diagram shows how
an i860 XP CPU may be connected to a 128-bit
memory bus:

060-063

--~ 8241940XP F
--~ 8241930XP F
__ 18241920XP F
__ ,824;OXP F
--, 824~OXP F

04-07

0124-0127
060-063

068-071
04-07

064-067
00-03

240956-30

Figure 6-18. 82490XP On Wide Bus

In this example, the CPU port of the 82490XPs is in
x4 mode and the memory bus port is in x8 mode.
This allows all 128 bits of the memory bus to be
multiplexed to the 64-bit CPU bus.

For read cycles, each MBRDY # loads 8 bits into
each 82490XP. This is 128-bits of data. It will take 2
BRDY # assertions to load this into the CPU. The
first BRDY # assertion loads the first 4 bits onto the
CPU bus, and the next BRDY # assertion loads the
remaining 4 bits.

For a 64-bit write cycle, the data is available at the
on the appropriate data bits. On the i860 XP CPU
with a 128-bit bus, this is determined by CPU ad­
dress bit AS. The other data bits are undefined. For
write-back cycles, all 128 bits are available at once.
MBRDY # assertion will strobe the next 128 bits on
the memory bus.

7.0 DIETAILIED PiN DIESCRIPTIONS

The following chapter provides a detailed descrip­
tion of each pin of the 82495XP and 82490XP. The
pins have been categorized by function. Each pin
description has a heading which summarizes the
most important aspects of the pin. The heading is
organized as:

Pin Name

Name Meaning

Pin Function

110, 82495XP/82490XP/iB60 XP CPU, (location)
Signal Type

Synchronousl Asynchronous

for example,

CADS #

Cache Address Strobe

Indicates beginning of cache cycle

Output from 8249.5XP (pin ES) Cycle Control Signal

Synchronous to ClK

Following the heading are three sections. The first
section, Signal Description, provides information of
what the signal does, how to use it, and in what
modes it operates. The second section, When Sam­
pled or When Driven, indicates all the exact places
where the part samples the signal, generates the
signal, or neither. The third section, Relation to Oth­
er Signals, mentions the other signals that are af­
fected by this signal, synchronization requirements,
and shared pins.

2-295

II

82495XP Cache Controller/82490XP Cache. RAM

All specific information about each pin is provided in
this chapter.

7.0.1 CONFIGURATION SIGNALS

These signals are inputs to the 82495XP· and
82490XP that are sampled at RESET and alter the
configuration and operation of the cache.

elK

RESET

Config

Setup Hold

240956-31

Figure 7-1. Configuration input Setup and Hold

Each set of configuration inputs may have different
setup times, but all signals have the same hold time:
The signals may be released on the CPU clock edge
that RESET is detected inactive. There are some
configuration signals that are strapping options and
cannot change their value during 82495XP opera­
tion.

7.0.2 CPU BUS INTERFACE SIGNALS

These pins comprise the interface between CPU
and 82495XP/82490XP. The signals in this interface
are not flexible; Chapter 10 addresses the use of
these signals. The following are the CPU bus inter­
face signals:

SETO-SET10
ADS#
M/IO#
PWT
BRDYC1#
EADS#
BOFF#

TAGO-TAG11
W/R#
HITM#
PCD
KEN#
BEO-BE7#

CFAO-CFA6
D/C#
LOCK#
LEN
AHOLD
INV

The majority of these signals must be connected
strictly between the i860 XP CPU and the 82495XP.
However, a subset of these signals is needed by the
MBC to decode the i860 XP CPU cycle in cases
where the MBC provides BRDYs to the CPU. For
these purposes the following signals must also be
inputs to a.latch controlled by the 82495XP's BLE#
output:

BEO#-BE7#
LEN
PWT

CACHE#
PCD

CTYP
PCYC

7.0.3 82495XP/82490XP INTERFACE SIGNALS

These pins comprise the interface between the
82495XP and 82490XP. The 82495XP uses these
pins to control the 82490XP and its buffers. The sig­
nals in this interface are not flexible; Chapter 10 ad­
dresses the use of these signals. The following are
the 82495XP/82490XP interface signals:

WRARR#
BUS#
WBA[SEC2]
BLAST #

WAY
MCYC#
WBTYP[LRO]
BOFF#

SIGNAL DESCRIPTIONS

7.1 BGT#

Bus Guaranteed Transfer

MAWEA#
WBWE#[LR1]
BRDYCU

Signals 82495XP of memory 'bus controller's com­
mitment to complete the bus cycle.

Input to 82495XP (pin M4)Cycle Progress Signal

Synchronous

7.1.1 SIGNAL DESCRIPTION

The 82495XP owns all bus cycles (initiated by
CADS#) until the memory bus controller accepts
ownership. During this time cycles may be aborted
due to a snoop. The memory bus controller signals
its acceptance of ownership by driving BGT # active
into the 82495XP. Once BGT# is driven active, the
memory bus controller is responsible for completing
the cycle on the memory bus. CRDY # signals com­
pletion of the cycle.

Once BGT# is asserted, other devices may not per­
form snoops into the 82495XP until the end of the
snooping window, SWEND# activation. The snoop
address is latched if SWEND is asserted between
BGT# and SWEND#, but the snoop does not begin
until after SWEND# is asserted. SNPCYC# will not
be asserted until the snoop window ends with
SWEND# asserted. The advantage of asserting
BGT # early is that it allows the 82495XP to start
inquiries to the CPU, load the write-back buffer, and
progress forward in. the CPU bus pipeline. The disad­
vantage is that snooping of this 82495XP is now
blocked until SWEND# is asserted.

7.1.2 WHEN SAMPLED

After the 82495XP asserts CADS#, it begins sam­
pling BGT # until it is sampled active.

BGT# is a "Don't Care" after it has been recog­
nized for cycle N and prior to the assertion of

2-296

82495XP Cache Controller/82490XP Cache RAM [¥)OO~!bO~O[t{]~OO)7

CADS# for cycle N + 1. In addition, BGT # is a
"Don't Care" once a cycle started by CADS # is
aborted by a snoop, until the cycle is restored by the
re-issueing of CADS #.

7.1.3 RELATION TO OTHER SIGNALS

When implementing BGT# in the MBC the following
rules should be used:

1. BGT# must follow every assertion of CADS#,
unless the cycle is aborted due to a snoop.

2. It must preceed CRDY # (for line fills and alloca­
tions BGT # must preceed CRDY # by at least 3
ClKS).

3. In addition BGT# must be asserted with or be­
fore the assertion of KWEND# and SWEND#.

4. BGT# must be asserted with or before the asser­
tion of BRDY # by the MBC.

5. BGT # is not required following the assertion of
SNPADS#.

6. BGT# must be asserted with or before MEOC#
is asserted.

7.2 BlIE#

BE latch Enable

Controls latching of i860 XP CPU's byte enable and
cycle attribute signals

Output of 82495XP (pin C16) Cycle Control Signal.

Synchronous to ClK

7.2.1 SIGNAL DESCRIPTION

BlE# is used to control the enable line of an exter­
nal latch (clock edge triggered '377 type). This latch
is used to capture the i860 XP CPU's byte enables
(BEO # - BE7 #) and CPU cycle attribute signals
which do not go through the 82495XP. The 82495XP
manages the opening and closing of this latch: when
BlE# is active, new values from the CPU enter the
latch at each rising edge of ClK.

The 82495XP latches the byte enables after ADS#
of a memory bus bound cycle. It relatches this infor­
mation with CRDY # or CNA # of that cycle if anoth­
er cycle is pending.

7.2.2 WHEN DRIVEN

The 82495XP latches the BE latch signals 1 clock
after ADS# of a memory-bound cycle. Thus latched
BEO#-BE7# are valid with CADS#. The 82495XP
opens, then closes this latch if a cycle is pending
and CNA# or CRDY# is asserted. Thus latched
BEO#-BE7# are valid two clocks after CNA# or

CRDY#, which is one clock AFTER CADS# for
back-to-back cycles. The signals latched in the BE
latch are only valid for CPU generated memory bus
cycles (ie, not a 82495XP generated writeback or
allocation).

7.2.3 RELATION TO OTHER SIGNALS

The following CPU signals must be latched in the BE
latch:

BEO#-BE7#
lEN
PWT

CACHE#
PCD

CTYP
PCYC

All other signals in the 82495XP to CPU interface II
(listed in sec. 7.0.2) must be connected only be-
tween the i860 XP CPU and the 82495XP.

7.3 I8RDV#

Burst Ready

Memory Bus Controller Burst Ready input to
82495XP, 82490XP, and i860 XP CPU

Input to 82495XP and 82490XP (82495XP pin P1,
82490XP pin 60) Cycle Progress Signal

Input to i860 XP CPU (BRDY2#, pin U1)

Synchronous to ClK

7.3.1 SIGNAL DESCRIPTION

The BRDY # input to both the 82495XP and
82490XP must be connected to the BRDY# signal
which the MBC is providing to the i860 XP CPU's
BRDY2# pin. The Signal is used by the 82495XP for
burst tracking purposes. In the 82490XP, it incre­
ments the CPU latch burst counter.

During CPU read cycles, BRDY # allows the next 32
or 64-bit slice of read data to be available at the
82490XP's CDATA outputs (CPU bus) by advancing
the CPU latch burst counter. At the same time,
BRDY # is latching the previous slice of data into the
i860 XP CPU. Refer to chapter 6 for more details.

During CPU write cycles, BRDY # is used to latch
each slice of write data into the CPU latches and
advance the latch counter.

During CPU special and I/O cycles (which are not
posted) BRDY # is used to end the cycle.

BRDY # must not be asserted until the bus is grant­
ed (BGT # asserted) and until the data path is ready
for transferring (CDTS# is asserted).

2-297

82495XP Cache Controller/82490XP Cache RAM

7.3.2 WHEN SAMPLED

BRDY# is sampled by the CPU, the 82495XP, and
the 82490XP at every ClK edge. It must always
meet proper setup and hold times to ClK.· Even
though the CPU latch may not be in use, BRDY #
assertion will still advance the latch counter.

7.3.3 RELATION TO OTHER SIGNALS

BRDY # controls the CPU and 82490XP CPU latch­
es. BRDY # has the following implication rules:

1. The last BRDY # for cycle N must be asserted 2
clocks before MEOC# for cycle N + 1.

2. BRDY# ~ BGT#

3. BRDY# > CDTS#

7.4 C490LDRV

82490XP low Drive Buffer

Selects the 82495XP low capacitance driving buffers

Input to 82495XP (pin M3) Configuration Signal

Synchronous to ClK

7.4.1 SIGNAL DESCRIPTION

C490lDRV selects the driving strength of the
82495XP buffers that interface to the 82490XP. Re­
fer to the layout specifications for information how
C490LDRV should be connected.

7.4.2 WHEN SAMPLED

C490lDRV is a configuration input sampled like Fig­
ure 7-1. C490lDRV requires a setup time of 4 CPU
clocks. After sampling, C490lDRV is a "don't care"
until it is sampled as the BGT # pin after the first
CADS# assertion.

7.4.3 RELATION OT OTHER SIGNALS

C490LDRV shares a pin with BGT # .

7.5 CADS#

Cache Address Strobe

Indicates beginning of cache cycle

Output from 82495XP (pin E3) Cycle Control Signal

Synchronous toClK

7.5.1 SIGNAL DESCRIPTION

CADS # requests the execution of a memory bus
cycle to the MBC, and indicates that the cycleattri­
butes (ie. CD/C#, CM/IO#, CW/R#, PALLC#,
etc.) are valid. .

If the 82495XP receives a snoop hit ban [M] state
line before BGT # is asserted by the MBC, the cur­
rent CADS# is aborted and reissued after the snoop
has completed. If the current line (issued by the
stalled CADS#) is invalidated by the snoop, then
that CADS# is cancelled (ie. will not be reissued
after the snoop is completed).

CADS# is a glitch-free signal.

7.5.2 WHEN DRIVEN

CADS# is asserted by the 82495XP for exactly one
ClK, and is always a valid logic level.

7.5.3 RELATION TO OTHER SIGNALS

CADS#, when asserted, indicates that the cache
cycle control and attribute signals (ex. CD/C#,
NENE#, CW/R#, etc.) are valid.

Since allocations do not require BRDY #5 to the
CPU, the CDTS# of an allocation cycle will always

2-298

82495XP Cache Controller/82490XP Cache RAM

occur with CADS# of the allocation. In normal cy­
cles the 82495XP will generate CADS# followed by
CDTS#.

CADS# = = CDTS# for all write-through cycles.

Once CADS# is active, PAllC#, CWAY, CDTS#,
and BUS# are valid. Address and cycle specifica­
tion signals (MSETO-MSET10, MTAGO-MTAG11,
MCFAO-MCFA6, CW/R#, CM/IO#, CD/C#,
RDYSRC, MCACHE#,NENE#,SMlN#,KlOCK#,
and CPlOCK#) will be valid with CADS# active as
well.

Every CADS # initiated cycle requires a BGT # and
CRDY # input from the MBC.

CADS# and SNPADS# will never be asserted on
the same ClK.

7.S CAHOlD

82495XP AHOlD Output

Self-test result and AHOlD output status

Output of 82495XP (pin G4) Test Signal

Synchronous to ClK

7.6.1 SIGNAL DESCRIPTION

CAHOlD has two functions. One, it indicates the re­
sult of the built-in self-tests of the 82495XP. Two, it
represents the 82495XP AHOlD into the i860 XP
CPU.

The 82495XP drives CAHOlD after the 82495XP
self-tests have completed. CAHOlD should be
latched when FSIOUT # goes inactive after reset. If
CAHOlD is high, the self-tests have passed, other­
wise they have failed.

When the 82495XP drives AHOlD to the i860 XP
CPU, it also drives CAHOlD, thus providing a means
of tracking inquire cycles and back invalidations for
performance monitoring.

7.6.2 WHEN DRIVEN

CAHOlD is always at a valid logic level. During self­
~est, CAHOlD is held until the clock edge that FSI­
OUT# is sampled inactive. After self-test, or reset,
CAHOlD is asserted whenever the 82495XP as­
serts AHOlD.

7.6.3 RELATION TO OTHER SIGNALS

CAHOlD reflects the value ofAHOlD except during
self-test. During self-test, the value of CAHOlD
should be latched with the falling edge of FSIOUT #
to determine pass/tail.

7.7 C'DIC#

Cache Data/Code

Indicates whether current cycle is Code or Data

Output from 82495XP (pin 03) Cycle Control Signal

Synchronous to ClK

7.7.1 SIGNAL DESCRIPTION

CD/C#, along with CW/R# and CM/IO#, is a
82495XP cycle definition signal. It indicates the type
of bus cycle being requested of the MBC. CD/C#
can be pipelined by the memory bus controller (by
using the CNA# input to the 82495XP).

7.7~2 WHEN DRIVEN

CD/C# is valid in the same ClK as CADS# and
remains valid until CRDY# or CNAt!. C/DC# is al­
ways a valid logic level.

7.7.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6,
CW/R#, CM/IO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be
valid with CADS # .

7.3 CDATAO-CDATA7

CPU Data Bus Connection

Data Bus Connection from 82490XP to CPU

Input/Output to 82490XP (pins 48, 54, 49, 55, 46,
51, 52, 57)

Isolated Interface

2-299

intel" 82495XP Cache Controller/82490XP Cache RAM 1F>[ffi~[bO[M]OOO&[ffiW

7.8.1 SIGNAL DESCRIPTION

CDATAO .. 7 is the 82490XP data bus connection to
the CPU. All or part of these 8 pins will be used in
connecting the 82490XP to the CPU depending on
the cache configuration. See layout information for
details.

7.9 CDTS#

Cache Data Strobe

Indicates availability of CPU data/data bus

Output from 82495XP (pin F4) Cycle Control Signal

Synchronous to ClK

7.9.1 SIGNAL DESCRIPTION

For read cycles, CDTS #, when asserted, indicates
that in the next CPU clock the data bus path is avail­
able. This is the earliest time in which BRDY# may
be supplied to the CPU. For CPU initiated write cy­
cles, it indicates that the data is available on the
memory bus. For i860 XP CPU inquire cycles,
CDTS# informs the MBC that the last piece of in­
quire data is valid on the CPU bus.

Usage of this signal allows complete independence
between address strobes (CADS# and SNPADS#)
and data strobe. CDTS # allows the 82495XP to sig­
nal the MBC that a new cycle has begun as soon as
addresses are available. This allows memory bus cy­
cles to start before data is ready to be given/taken.

CDTS# is a glitch-free signal.

Config Line Lines/
No. Ratio Sector

1 1 1

.2 2 1

3 1 2·

4 2 1

5 4 1

7.9.2 WHEN DRIVEN

CDTS # is asserted for one ClK, at the same time or
later than CADS # for any given cycle.

7.9.3 RELATION TO OTHER SIGNALS

When the MBC samples CDTS# asserted, it can
begin providing BRDY#s for the read cycle to the
CPU in the next ClK. CDTS # must always be as­
serted before CRDY # and must be asserted prior to
the first BRDY #.

The CDTS# of an allocation will always occur with
CADS# of the allocation. In normal cycles the
82495XP will generate CDTS# following CADS#.

CDTS# will be asserted at least one ClK after
SNPADS#.

7.10 CFGO-CFG2

Configuration Pins

Determine Cache Characteristics

Input to 82495XP (pins l4, Q1, M4,) Configuration
Signals

Synchronous to ClK

7.10.1 SIGNAL DESCRIPTION

CFGO-CFG2 are the 3 cache configuration inputs
that determine cache characteristics such as line ra­
tio, tag size, and lines per sector. During RESET, this
information is passed on to the 82490XPs. The fol­
lowing table maps CFGO-CFG2 to their respective
configurations for the i860 XP CPU;

No. of
CFG2 CFG1 CFGO Tags

8K 0 0 1

4K 1 1 1

8K 0 0 0

8K 0 1 1

4K 1 1 0

2-300

82495XP Cache Controller/82490XP Cache RAM ~OO~!!"D~DOO~OOW

7.10.2 WHEN SAMPLED

CFGO-CFG2 are sampled like Figure 7-1 with a set­
up time of at least 10 CPU clocks. After sampling,
CFGO, CFG1, and CFG2 become cycle progress in­
put signals to the 82495XP and are sampled after
CADS # of the first cycle.

7.10.3 RELATION TO OTHER SIGNALS

CFGO shares a pin with CNA#, CFG1 shares a pin
with SWEND#, and CFG2 shares a pin with
KWEND#.

7.11 ClK

i860 XP CPU, 82495XP, 82490XP Clock

Input to the 82495XP (D11)

7.11.1 SIGNAL DESCRIPTION

The CLK input determines the execution rate and
timing of the 82495XP, 82490XP, and CPU. Pin tim­
ings are specified relative to the rising edge of this
signal. The i860 XP CPU, 82495XP, and 82490XP
requires TTL levels on ClK for proper operation.

7.12 CM/IO#

Cache MemoryliO

Indicates whether current cycle is Memory or 10

Output from 82495XP (D4) Cycle Control Signal

Synchronous to ClK

7.12.1 SIGNAL DESCRIPTION

CM/IO#, along with CW/R# and CD/C#, is a
82495XP cycle definition signal. It indicates the type
of bus cycle being requested of the MBC. CM/IO#
can be pipelined by the memory bus controller
(CNA# input to the 82495XP).

7.12.2 WHEN DRIVEN

CM/IO#is valid in the same ClK as CADS#, and
remains active until CRDY # or CNA #.

7.12.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6, CWI
R#, CMIIO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be
valid with CADS# assertion.

2-301

7.13 CNA#[CFGO]

82495XP Next Address Enable

Dynamically pipelines CADS# cycles

Input to 82495XP (pin l4) Cycle Progress Signal

Synchronous to ClK

7.13.1 SIGNAL DESCRIPTION

CNA# is used by the MBC to dynamically pipeline
CADS # cycles. When active it indicates to the
82495XP that the next MBC request can be started.
Only one level of pipelining is allowed in the
82495XP.

CNA# is an optional input for all cycles initiated with II
CADS#.

7.13.2 WHEN SAMPLED

CNA# is sampled starting in the first ClK in which
BGT # is sampled active until CRDY # is sampled
active. CNA # is then ignored until the BGT # of the
next cycle.

CNA# is ignored during snoop write-back cycles.

7.13.3 RELATION TO OTHER SIGNALS

Once the 82495XP samples this signal active, it is­
sues the CADS# for the next memory bus cycle as
soon as one begins.

CNA# is recognized between BGT# and CRDY#
or CDTS# and CRDY# of a given cycle.

7.14 CRDV#

Cache Ready
Ends a cycle in the 82495XP/82490XP

Input to 82495XP and 82490XP (pins M2, 43) Cycle
Progress Signal

Synchronous to ClK

7.14.1 SIGNAL DESCRIPTION

CRDY # is used by the 82495XP and 82490XP to
end a memory bus cycle. CRDY # indicates full com­
pletion of the cycle and allows the
82495XP/82490XP to free internal resources for the
next cycle. In the 82490XP, this means that the cur­
rent memory buffer in use is emptied (put in array,
discarded, etc). In the 82495XP, CRDY# assertion
allows 82495XP cycle progress signals (BGT # ,
KWEND#, SWEND#) to be sampled for the next
cycle if pipelining is used.

. "~J =n~® 82495XP Cache Controller/82490}{P Cache RAM [prm~[]JIMlO~~!ruW

CRDY # is required for all 82495XP 182490XP mem­
ory bus cycles, including snoop cycles. CRDY #
must be asserted to the 82495XP and 82490XP at
the same time.

7.14.2 WHEN SAMPLED

CRDY# for a given cycle is ignored until KWEND#
is returned for that cycle; If KWEND# is not required
for the cycle, CRDY # is ignored until BGT #. When
CRDY# is ignored, it may violate setup and hold
times.

7.14.3 RELATION TO OTHER SIGNALS

CRDY # must be sampled by the 82495XP and
82490XP at the same time. For the 82495XP,
CRDY # has many cycle implication rules:

1. CRDY# > CDTS#

2. CRDY# > BGT#

3. CRDY# > BGT# + 2 clocks if cycle is a line-fill
or allocation

4. CRDY # > KWEND # if cycle is a line-fill or write­
through with potential allocation (PAllC# = 0)

For the 82490XP, CRDY # has three basic rules:

1. MEOC# for cycle N must be sampled with or be­
fore CRDY# for cycle N.

2. MEOC# for cycle N + 1 must be sampled at least
2 CPU clocks after CRDY # for cycle N.

3. CRDY # for cycle N + 1 must be after the last
BRDY# for cycle N.

MBRDY# fills the current 82490XP memory buffer.
CRDY # emties this buffer and makes it available for
new cycles. CRDY # may be asserted on the same
clock as MEOC# which may be asserted on the

. same clock as MBRDY #.

CRDY# shares a pin with SlFTST#.

7.15 CWAY

Cache Way

Indicates WAY used by the current cycle

Output from 82495XP (pin J3) Cycle Control Signal

Synchronous to ClK

7.15.1 SIGNAL DESCRIPTION

CWAY is a cycle definition signal which indicates to
the MBC the WAY used by the requested cycle. On
line-fills it indicates the way the line will be loaded.
For write-hits (to IS] state or lOCKed) it indicates
the way which was a hit. For write-backs it indicates
the way that was written-bacl<.

CWAY is utilized by external tracking machines in
order for the 82495XP tags to be accurately dupli­
cated.

7.15.2 WHEN DRIVEN

CWAY is valid together with CADS# and remains
valid until CRDY# or CNA#.

7.15.3 RELATION TO OTHER SIGNALS

CWAY is valid with CADS#.

7.16 CW/R#

Cache Write/Read

Indicates whether current cycle is write or read

Output from 82495XP (pin E4) Cycle Control Signal

Synchronous to ClK

7.16.1 SIGNAL DESCRIPTION

CW/R#, along with CD/C# and CM/IO#, is a
82495XP cycle definition signal. It indicates the type
of bus cycle being requested of the MBC. CW/R#
can be pipelined by the memory bus controller
(CNA# input to the 82495XP).

7.16.2 WHEN DRIVEN

CW/R# is valid in the same ClK as CADS# and is
valid until CRDY# or CNA#.

7.16.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6,
CW/R#, CM/IO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be
valid with CADS#.

2-302

82495XP Cache Controller/82490XP Cache RAM ~ffi{~IbD~DOO~ffi{\'7

7.17 DRCTM#

Memory Bus Direct to [M] State

Signals 82495XP to tag data direct to the [M] state,
skipping the [E] and [S] states.

Input to the 82495XP (pin M1) Cycle Attribute Signai

Synchronous to ClK

7.17.1 SIGNAL DESCRIPTION

DRCTM # is an input to the 82495XP from the mem­
ory bus. When sampled active at the end of the
snooping window (SWEND# activation), the
82495XP moves the line fill in progress directly to
the [M] state.

There are three cases in which this is useful.

1. Simplifies External State Tracker

External, trackers can only track the [M], [S], and
[J] states. The [E] state can not be tracked exter­
nally since cache write hits internally change [E]
state lines to [M] state. DRCTM# can be used to
eliminate therE] state from the MESI protocol.

2. Read For Ownership

During a write miss with allocation the write may
go to the memory buffer and not be written to
memory. A read from memory, in conjunction with
the MFRZ# signal asserted, reads the data to fill
around the bytes written by the CPU. The con­
tents of the memory buffer are then entered into
the cache. The cache would normally tag this
data in the [E] state (The cache assumes the
write went to main memory). The system has the
option of never completing the write to memroy
(increases performance by completing the alloca­
tion quicker). If the, write is not performed to
memory, the cache is the only owner of the new
data and therefore the cache entry must be
tagged to the [M] state.

3. Cache to Cache Transfer

A cache to cache transfer may occur as a result
of a snoop. For example, if CPU/Cache 1 per­
forms a read from main memory and CPu/Cache
2 flags it as a snoop hit to an [M] state line. To
expedite the transfer, the system may perform
the writeback from CPU/Cache 2 directly to
CPU/Cache 1, bypassing memory. CPU/Cache 1
assumes the write-back went to memory and
would normally tag the line to the [S] state. Since
the system did not perform the write to memory,
the system should drive DRCTM# to force the
line to, the [M] state. In addition, the line should
be invalidated in CPU/Cache 2 by driving
SNPINV.

7.17.2 WHEN SAMPLED

DRCTM # is synchronous to ClK. It is only sampled
when SWEND# is active (the end of the snooping
window). When SWEND# is inactive DRCTM# is
ignored and does not have to meet setup and hold
times.

7.17.3 RELATION TO OTHER SIGNALS

DRCTM # (direct to [M]) and MWB/WT # (write poli­
cy) combine to define the memory bus attributes and
are sampled on ClK at the end of the snooping win­
dow (SWEND# activation).

If MRO# is sampled active during KWEND#,
DRCTM# is ignored.

7.18 FLUSH#

Flush

Causes a 82495XP Cache Flush

Input to 82495XP (N4) Cache Synchronization Sig­
nal

Asynchronous input

7.18.1 SIGNAL DESCRIPTION

This signal causes the 82495XP to flush all its modi­
fied lines to main memory. The flushing of modified
lines require the 82495XP to perform back-invalida­
tion and inquire cycles to the CPU. At the end of
flush, the 82495XP tag array will be completely inval­
idated.

FLUSH # will invalidate the entire 82495XP tag ar­
ray. It takes two clocks to look-up and invalidate a
tag entry. The 82495XP will also invalidate tags in
the CPU cache by running back-invalidation cycles.
If the 82495XP tag state is modified, the 82495XP
will run inquire cycles to the i860 XP CPU to see is
the line is modified in its cache. If so, the i860 XP
CPU will write back the line into the 82495XP write
buffer. All modified 82495XP cache lines must be
written to memory.

7.18.2 WHEN SAMPLED

FlUSH# can be asserted at any time. The,82495XP
will complete all outstanding transactions on the
CPU , and memory bus before beginning the
FLUSH # process. The memory bus controller does
not have to prevent FlUSH# during locked cycles
because the 82495XP will complete its locked trans­
action before the FLUSH # process will begin.

2-303

•

82495XP Cache Controller/82490XP Cache RAM

Once a FLUSH # operation has begun, the FLUSH #
signal is ignored until the operation completes. If
RESET is activated while the FLUSH # operation is
in progress, the FLUSH # operation will be aborted
and the RESET immediately executed.

FlUSH# is an asynchronous input. FlUSH# must
have a pulse width of 2 ClK's in order to guarantee
82495XP recognition.

7.18.3 RELATION TO OTHER SIGNALS

To initiate a FLUSH #, the 82495XP will complete all
pending cycles and prohibit the processor from issu­
ing any further ADS#'s while the FlUSH# is in
progress. The FSIOUT # output signal is used to in­
dicate the start and end of the FLUSH # operation. It
will become active when the FLUSH # signal is inter­
nally recognized (all outstanding cycles have com­
pleted) and will de-activate with the CRDY # of the
last FLUSH # write-back.

The memory bus controller supplies BRDY # to the
CPU once FSIOUT # has gone inactive and the
FLUSH is complete. Once FLUSH # has begun, and
FSIOUT# active, all CADS#'s and CRDY#'scorre­
spond to write-backs caused by the FlUSH# opera­
tion.

The 82495XP can be snooped during FLUSH # cy­
cles and the snooping protocols will be the same as
that for any memory bus cycle.

7.19 FPFLD# [FPFLDEN]

External FIFO PFlD

Indicates PFlD cycle during external PFLD FIFO
mode

Output of the 82495XP (J4) Cycle Control Signal

Sync to ClK

7.19.1 SIGNAL DESCRIPTION

During RESET, this pin functions as the FPFLDEN
configuration signal. The 82495XP can be config­
ured to decode the i860 XP microprocessor's PFlD
cycles. The 82495XP supports 3 operational modes
for PFLD cycle decoding, as defined by FPFlDEN
and NCPFlD#:

Mode # 1. PFlD cycles are cached in the 82495XP.

Mode #2. PFlD cycles are not cached in the
82495XP, without an external PFlD ex­
tension FIFO.

Mode #3. PFLD cycles not cached in the 82495XP,
with an external PFlD extension FIFO.

Mode FPFLDEN NCPFLD#

1 0 1

2 0 0

3 1 1

Illegal Mode 1 0

If mode 3 has been selected, the 82495XP allows
the PFLD pipeline to be extended with an external
FIFO. After RESET, when this mode has been se­
lected, the FPFlD output will indicate that the re­
quested cycle is a PFlD cycle. See Section 5.2.5 for
more details.

7.19.2 WHEN DRIVEN

FPFlDEN is sampled on RESET as in figure 7-1,
\vith a setup time of 4 CPU clocks. In PFLD mode
#3, the FPFlD# output is valid in the same ClK as
CADS# and remains valid until CRDY# or CNA#.

7.19.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6,
CW/R#, CM/IO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be
valid with CADS#.

7.20 FSIOUT#

Flush, Sync, Initialization Output

Indicates the start and end of the Flush,

Sync, and Initialization operations.

Output of the 82495XP (01) Cache Synchronization
Signal

Sync to ClK

7.20.1 SIGNAL DESCRIPTION

This signal indicates the start and the end of either a
Flush, Sync, or Initialization (including self-test if re­
quested) operation. These operations are mutually
exclusive. This signal is activated when the 82495XP
begins the operation and goes inactive upon com­
pletion of the operation.

7.20.2 WHEN DRIVEN

This signal will be asserted whenever a Flush, Sync,
or Initialization operation is internally recognized by
the 82495XP and is in progress.

2-304

inteL 82495XP Cache Controller/82490XP Cache RAM [F>!ru~[1,O[M]OOO~!ruW

7.20.3 RELATION TO OTHER SIGNALS

FSIOUT # active indicates that either Flush, Sync, or
Initialization operation is in progress. Only one of
these operations can be run within the 82495XP at a
time.

The table below shows the priorities of these three
operations:

Operation Trigger Priority

Initialization RESET Highest

Flush FLUSH#

Sync SYNC# lowest

If a trigger of higher priority occurs while a lower
priority operation is running, the lower priority opera­
tion is aborted and the higher priority one executed.
If a trigger of lower priority occurs when a higher
priority one is running, the lower priority trigger is
ignored. Once a FlUSH# or SYNC# operation has
begun, its trigger is ignored until the operation com­
pletes.

When a higher priority operation aborts a lower prior­
ity one, FSIOUT # remains active.

Since RESET, FlUSH# and SYNC# are all asyn­
chronous, FSIOUT # will be activated when the
82495XP is actually internally executing the opera­
tion.

7.21 HIGHZ#

High Impedance Outputs

Causes 82495XP outputs to be tristated

Input to 82495XP (pin P4) Test Signal

Synchronous to ClK

7.21.1 SIGNAL DESCRIPTION

The 82495XP will enter self-test if both SlFTST# is
active and HIGHZ# is inactive during reset. If
SlFTST# is sampled active and HIGHZ# is sam­
pled active during reset, the 82495XP floats all its
outputs until the 82495XP is reset again. Activation
of HIGHZ# without SlFTST# does nothing.

7.21.2 WHEN SAMPLED

HIGHZ# is sampled like figure 7-1 with a setup time
of 10 CPU clocks. HIGHZ# is then a don't care until
the 82495XP reset sequence is complete (with FSI­
OUT # going inactive) where it becomes the MBAlE
pin.

7.21.3 RELATION TO OTHER SIGNALS

HIGHZ# shares a pin with MBAlE. 82495XP out­
puts are tristated if both HIGHZ# and SlFTST# are
sampled active during reset.

7.22 KLOCK#

82495XP lOCK #

Request to MBC of lOCKed cycle

Output from 82495XP (pin C3) Cycle Control Signal

Synchronous to ClK

7.22.1 SIGNAL DESCRIPTION

KlOCK# indicates to the MBC that there is a re­
quest to execute a locked cycle. This signal follows
the CPU lock request.

KLOCK # is simply a one-clock flow-through version
of the CPU lOCK # signal. The 82495XP will acti­
vate KLOCK # with CADS # of the first cycle of a
lOCKed operation and it will remain active until the
CADS# of the last cycle of the lOCKed operation.

Note that if the memory bus is pipelined, there may
be a situation in which KLOCK # deactivation is in
the same ClK as its new activation (together with
CADS#). In this case KlOCK# won't go inactive
between back-to-back locked sequences. KLOCK #
will never go inactive if the CPU lOCK# does not go
inactive. The 82495XP will not open arbitration win­
dows between back-to-back locked sequences; it is
the memory bus controller's responsibility to imple­
ment this functionality by detecting a lOCKed write
followed by a lOCKed read.

KLOCK # activation is not qualified by the tag array
look-up (hit/miss indications); therefore, KlOCK#
can be active before CADS # is asserted.

7.22.2 WHEN DRIVEN

KlOCK# assertion is a flow-through of 1 ClK from
the CPU lOCK# after the 82495XP completes all
pending cycles. KLOCK # deassertion is a flow­
through of 1 ClK from the CPU lOCK# signal, and
must be at least 1 ClK after the last CADS# of a
lOCKed sequence. KlOCK# is always driven to a
valid logic level.

7.22.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6, CWI
R#, CM/IO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be
valid with CADS#. 'i

2-305

82495XP Cache Controller/82490XP Cache RAM

7.23 KWEND#

Cacheability Window End

Closes 82495XP Cacheability Window

Input to 82495XP (pin M4) Cycle Progress Signal

Synchronous to CLK

7.23.1 SIGNAL DESCRIPTION

KWEND# is a cycle progress input to the 82495XP
that, when active, closes the cacheability window
and causes the cacheability attributes MKEN# and
MRO# to be sampled.

KWEND# is sampled by the 82495XP after BGT#
has been sampled active. KWEND# should be as­
serted by the MBC once .the memory address has
been decoded and cacheability (MKEN#) and read­
only (MRO#) attributes have been determined.

The sampling of KWEND# active allows SWEND#
to be sampled. Resolving KWEND# quickly allows
the non-cacheable window between BGT # and
SWEND# to be closed more quickly. KWEND# ac­
tivation also allows the 82495XP to start allocations
and begin replacements.

7.23.2 WHEN SAMPLED

KWEND# is sampled by the 82495XP on the clock,
or after, BGT# has been sampled active. Once
KWEND#is sampled active it is not sampled again
until BGT# of the next cycle. KWEND# need not
follow setup and hold times if it is not being sampled.

BGT#, KWEND# and SWEND# may be asserted
on the same clock edge.

KWEND# need only be activated for those cycles
which require the sampling of MKEN # and MRO#.
These are line-fills and write cycles with potential
allocation.

7.23.3 RELATION TO OTHER SIGNALS

KWEND# is sampled on or. after BGT#and allows
the sampling of SWEND#. KWEND# activation
causes the sampling of MKEN# and MRO#.

According to cycle progress implication rules,
CRDY# must be at least one clock after KWEND#
for line fills and write-through cycles with potential
allocate.

KWEND# shares a pin with CFG2.

7.24 MALE

Memory Address Latch Enable

Tristates/Enables Memory Address Outputs

Input to 82495XP (pin 02) Cycle Control Signal

Asynchronous

7.24.1 SIGNAL DESCRIPTION

The 82495XP contains an address latch which con­
trols the last stage of the. 82495XP address output. It
is controlled by four signals: MAOE #, MBAOE #,
MALE, and MBALE. The signals MALE a:nd MBALE
control the latching of the entire 82495XP address
where MBALE controls the subline portion and
MALE controls the rest.

MALE is provided so that the memory bus controller
can control \vhen the next pipelined address is driv-
en. With MALE high, the 82495XP address latch is in
'flow-through' mode and the· 82495XP address is
available at the memory bus. Changes in the
82495XP address are seen immediately at the mem"
ory bus. When MALE is driven low the address at
the latch input is latched. Any subsequent address
driven by the 82495XP will not be seen at the memo­
ry bus outputs until MALE is driven high again.

MALE will latch 82495XP addresses regardless of
the state of MAOE#. If MAOE# is inactive, MALE
will still operate the latch properly, but the memory
bus will be tristated.

7.24.2 WHEN SAMPLED

MALE is asynchronous and. can be asserted and
deasserted at any time. MALE should always be
driven to a valid state since it directly controls thei
operation of the address latch.

7.24.3 RELATION TO OTHER SIGNALS

MALE together with MBALE control the latching of
the entire 82495XP output address. The other latch
control signals, MAOE# and MBAOE#, provide the
memory bus controller complete command over the
address outputs. MAOE# and MBAOE# do not af­
fect the operation of MALE or MBALE.

MALE shares a pin with the WWOR # configuration
pin.

2-306

82495}{P Cache Controller/8249Q}{P Cache RA~li

7.25 MAOE#

Memory Address Output Enable

Tristates/Enables Memory Address Outputs

Input to 82495XP (pin S4) Cycle Control Signal

Asynchronous except during snoop cycles

7.25.1 SIGNAL DESCRIPTION

The 82495XP has an address latch which is con­
trolled by a latch input, MALE, and an output enable
input, MAOE#. MAOE# has two main functions.
One, driving MAOE # active will enable the 82495XP
to drive it's address lines MTAGO-11, MSETO-10,
and MCFAO-6. Two, MAOE# is a qualifier for snoop
cycles and must be inactive for the 82495XP to
snoop.

In general, MAOE# should be active if its 82495XP
is the current bus master. When that 82495XP gives
up the bus, MAOE # should be inactive to float the
address lines and allow another master to snoop.

MAOE # controls the output of the 82495XP ad­
dress except the subline (burst) portion. This portion
has a separate output control: MBAOE#.

7.25.2 WHEN SAMPLED

MAOE# is an asynchronous input (except during
snoop cycles) and always has full control over the
address output. For this reason, MAOE # must al­
ways be driven to a valid state.

The 82495XP does, however, sample MAOE # dur­
ing snoop cycles. When sampled, MAOE it must
meet proper setup and hold times. In synchronous
snoop mode MAOE# is sampled on a CLK edge. In
clocked mode MAOE# is sampled on a SNPCLK
edge. In strobed mode MAOE# is sampled with the
falling edge of SNPSTB #. If MAOE # is sampled ac­
tive, the snoop will be ignored. This allows
SNPSTB# to share a common line for multiple
82495XPs.

MAOE# need not meet any setup or hold time if it is
not being sampled during a snoop cycle.

7.25.3 RELATION TO OTHER SIGNALS

MAoE# together with MBAOE# control the entire
82495XP address. Both signals are asynchronous
and thus need never be synchronized to any clock.
Both signals are, however, sampled during snoop
cycles and require proper setup and hold times in
these situations.

MALE and MAOE # together provide full control
over the 82495XP address output latch.

7.26 MElAllE

Memory Burst Address Latch Enable

Tristates/Enables Memory Burst Address Outputs

Input to 82495XP (pin P4) Cycle Control Signal

Asynchronous

7.26.1 SIGNAL DESCRIPTION

The 82495XP address latch is controlled by four sig­
nals: MAOE#, MBAOE#, MALE, and MBALE. The
signals MALE and MBALE control the latching of the
entire 82495XP address where MBALE controls the
subline portion and MALE controls the rest.

MALE and MBALE are provided so that the memory
bus controller has complete flexibility when the next
address is driven. With MBALE high, the subline por­
tion of the 82495XP address latch is in "flow­
through" mode and the 82495XP subline address is
available at the memory bus. Changes in the
82495XP sub line address are seen immediately at
the memory bus. When MBALE is driven low the
subline address at the latch input is latched. Any
subsequent subline address driven by the 82495XP
will not be seen at the memory bus outputs until
MBALE is driven high again.

MBALE will latch 82495XP addresses regardless of
the state of MAOE# or MBAOE#. If MBAOE# is
inactive, MBALE will still operate the latch properly,
but the subline portion of the memory bus will be
tristated.

Separate line and sub line address latch controls are
provided so that the latch outputs may be driven at
different times. The table below indicates the subline
address bits for each line size.

Line Size (Bytes) Subline Address

32 A3,A4

64 M,A5

128 A5,A6

7.26.2 WHEN SAMPLED

MBALE is asynchronous and can be asserted and
de asserted at any time. MBALE should always be
driven to a valid state since it directly controls the
operation of the address latch.

2-307

82495XP Cache Controller/82490XP Cache RAM ~OO[g[!"O~OOO~OOW

7.26.3 RELATION TO OTHER SIGNALS

MALE together with MBALE control the latching of
the entire 82495XP output address. The other latch
control signals, MAOE# and MBAOE#, provide the
memory bus controller complete command over the
address outputs. MAOE# and MBAOE# do not af·
fect the operation of MALE or MBALE.

MBALE shares a pin with the HIGHZ# configuration
pin.

7.27 MBAOE#

Memory Burst Address Output Enable

Tristates/Enables Memory Subline Address Outputs

Input to 82495XP (pin P6) Cycle Control Signal

Asynchronous except during snoop cycles

7.27.1 SIGNAL DESCRIPTION

The 82495XP address latch is controlled by four sig·
nals: MAOE#, MBAOE#, MALE, and MBALE.
MAOE# and MBAOE# are the output enables of
this latch for the entire 82495XP address. Specifical­
ly, MBAOE# controls the subline address portion
and MAOE # controls the rest.

MBAOE # has two functions. One, it can tristate the
subline portion of the address separately from the
rest of the address. Since the 82495XP does not
sequence through burst addresses, the memory sys­
tem may wish to .provide the burst count. This re­
quires that the 82495XP address burst portion be
tristated after the first transfer. The Subline Address
table appears in Section 7.26, MBALE.

Two, MBAOE# is sampled during snoop cycles. If
MBAOE# is sampled inactive, the snoop write back
cycle, if any, will begin at the subline address provid­
ed. If MBAOE# is sampled active, the snoop write
back will begin at subline address o. This allows
snoop write backs to begin at the snooped subline
address and progress through the normal burst or­
der.

7.27.2 WHEN SAMPLED

Like MAOE #, MBAOE # is asynchronous except
during snoop cycles and can be asserted or deas­
serted at any time. Since MBAOE # has direct con­
trol over the address latch, it must always be driven
to a valid state.

MBAOE# is ,however, sampled during snoop cy­
cles. In synchronous snooping mode, MBAOE#

must meet proper setup and hold times to ClK's
rising edge. In clocked mode, MBAOE# must meet
setup and hold times to SNPCLK's riSing edge. In
strobed mode, MBAOE# must meet setup and hold
times to SNPSTB#'s falling edge.

If MBAOE# is not being sampled for a snoop, ie.
SNPSTB# is not asserted, MBAOE# need not meet
any setup or hold time.

7.27.3 RELATION TO OTHER SIGNALS

MAOE# and MBAOE# control the entire 82495XP
address output asynchronously. This address latch
is completely controlled by MALE, MBAlE, MAOE#,
and MBAOE#.

MBAOE# is only sampled by the 82495XP during
snoop cycles with SNPSTB #.

7.28 MBRDY#

Memory Burst Ready

Burst Ready input to 82490XP memory buffers

Input to 82490XP (pin 22) Cycle Progress Signal

Synchronous to MCLK

7.28.1 SIGNAL DESCRIPTION

When in clocked memory bus mode, MBRDY # (with
MSEL# active) is used to advance the memory
burst counter for the 82490XP buffer in use. This
causes either new data to be latched from the mem­
ory bus (read cycle), or new data to be driven from
the 82490XP buffer (write cycle). MBRDY # is sam­
pled on all MCLK edges in which MSEL# is sampled
active and has no relation to CLK. In strobed mode,
MBRDY# must be tied high as MISTB/MOSTB
strobes data in/out of the 82490XP.

For write cycles, the first piece of write data is avail­
able at the MDATA pins. MBRDY# assertion with
MSEL# active causes the next 32, 64, or 128-bit
slice of write data to be available. If only one slice is
required, MSEL # and MBRDY # need never go ac­
tive.

For read cycles, the first piece of read data flows
through to the CPU. MBRDY# assertion with
MSEL # active causes the next slice of memory data
to be latched in the 82490XP buffer. BRDY# asser­
tion will allow this data to be available on the CPU
bus and latch it into the Cpu. For cacheable cycles,
MBRDY # needs to be asserted 4 or 8 times de­
pending on the cache configuration.

2-308

int:el., 82495XP Cache Controller/82490XP Cache RAM ~OO~[bD~DOO~OOW

7.28.2 WHEN SAMPLED

MBRDY # is sampled on all MClK edges where
MSEl# is sampled active. In this way MSEl# quali­
fies the MBRDY# input. If MSEl# is sampled inac­
tive, MBRDY # need not follow setup and hold times
to MClK.

7.28.3 RELATION TO OTHER SIGNALS

MBRDY# is qualified by the MSEl# input.
MBRDY # advances the memory burst counter for
the 82490XP in use which either inputs or outputs
data through MDATA.

MEOC# switches the 82490XP buffers to the next
pending cycle, so the last MBRDY # must come be­
fore or on the clock of MEOC# assertion.

7.29 MCACHE #

82495XP Internal Cacheability

Indicates cycle cacheability attribute

Output from 82495XP (pin C2) Cycle Control Signal

Synchronous to ClK

7.29.1 SIGNAL DESCRIPTION

MCACHE# is driven by the 82495XP and indicates
that the current cycle may be cached. Data cachea­
bility is determined later in the cycle by MKEN # as­
sertion. MCACHE# is asserted for allocation, re­
placement write-back cycles, and during cacheable
read-miss cycles. (ie. read-miss cycles in which PCD
is not asserted). It is not asserted for 10, special, or
locked cycles.

Cycle Type MCACH~#

Posted Writes 1

Write Backs 0

Read, PCD = 0 0

Read, PCD = 1 1

Allocation 0

I/O Cycles 1

locked Cycles 1

7.29.2 WHEN DRIVEN

MCACHE# is valid in the same ClK as CADS# and
remains valid until CRDY# or CNA#.

7.29.3 RELATION TO OTHER SIGNALS

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6,
CW/R#, CMIIO#, CD/C#, RDYSRC, MCACHE#,
NENE#, SMlN#, KLOCK#, and CPlOCK#) will be
valid with CADS # .

7.30 MCFAO-MCFA6
MSETO-MSET10
MTAGO-MT AG11

MCFAO-MCFA6 Memory Configuration Address I/O

MSETO-MSET10 Memory Set Address I/O

MTAGO-MTAG11 Memory Tag Address I/O

82495XP Memory Address Inputs/Outputs

Input/Output of 82495XP (pins N14, P7-P15, 06-
016, R4, R14-R17, S14-S17) Cycle Control Sig­
nals

Input Synchronous to ClK, SNPCLK, or SNPSTB#.

Output from ClK, MAOE# active or MALE higt).

7.30.1 SIGNAL DESCRIPTION

MSETO-10, MTAGO-11, and MCFAO-6 provide the
complete 30 bit address input/output interface of
the 82495XP to the memory bus. Together they
span the entire CPU address range A2-A31. De­
pending on the cache configuration, each pin repre­
sents a different CPU address line (see configura­
tion section for details).

MSETO-10, MTAGO-11, and MCFAO-6 pass
through a 82495XP output latch. The latching of this
latch is controlled by MAlE/MBALE, and the output
of this latch is controlled by MAOE#/MBAOE#.

With MAOE#/MBAOE# active, MSET/MTAG/
MCFA are 82495XP outputs. They are valid at the
start of a memory bus cycle at the input of the
82495XP address latch. If MALE/MBAlE is high
(flow-through) and MAOE#/MBAOE# is active
(outputs enabled), they are driven to the memory
bus with CADS #.

If a new cycle starts and MAlE/MBAlEis low, the
previous address remains valid at the 82495XP
MSET/MTAG/MCFA outputs. Once MAlE/MBAlE
goes high, the new address flows through with the
appropriate propagation delay (MSET/MTAG/
MCFA address valid delay from MAlE/MBAlE go­
ing high). The new address will be driven to the
82495XP MSET/MTAG/MCFA outputs if MAOE#!
MBAOE# is active.

2-309

ini:ei® 82495XP Cache Controller/82490XP Cache RAM ~OO[§[!"OlMlOOO~OOW

If a new cycle starts, MAlE/MBAlE is high, and
MAOE#/MBAOE# is inactive, the 82495XP MSETI
MTAG/MCFA outputs will remain tristated. Once
MAOE#/MBAOE# is asserted, the new address
flows through with the appropriate propagation delay
(MSET/MTAG/MCFA address valid from MAOE#!
MBAOE # going active).

MSETO-10, MTAGO-11, and MCFAO-6 are used
as inputs to the 82495XP during snoop cycles. Here,
MAOE#/MBAOE# is inactive. MSET/MTAGI
MCFA are sampled by the 82495XP during snoop
initiation just like the other snoop attributes.

7.30.2 WHEN SAMPLED

If MAlE/MBAlE is high and MAOE#/MBAOE# is
low, MSETO-10, MTAGO-11, and MCFAO-6 are
valid with CADS # with a timing reference to ClK.
Otherwise, thev are asserted with a delav from
. MAlE/MBAlE high or MAOE # IMBAOE # activ~.

MSETO-10, MTAGO-11, and MCFAO-6 change
once CNA# or CRDY# is sampled active. MSETO-
10, MTAGO-11, and MCFAO-6 have a float delay
from MAOE#/MBAOE# going inactive. These out­
puts are undefined after CRDY # ICNA # assertion
and before the next CADS # assertion.

As inputs during snoop cycles (SNPSTB# asserted),
they must be sampled like other snoop attributes
with proper setup and hold times. In synchronous
snoop mode this is with respect toClK; in clocked
mode, this is with respect to SNPClK; and in
strobed mode this is with respect to SNPSTB# fail­
ing edge.

If MAOE# is inactive and SNPSTB# is not asserted
(no snoop), MSETO-10, MTAGO-11, and MCFAO-
6 need not meet any setup or hold time.

7.30.3 RELATION TO OTHER SIGNALS

MSETO-10, MTAGO-11, and MCFAO-6 are assert­
ed with CADS# so they are valid when CADS# is
sampled active. This is true as long as MAlE/MBA­
lE is high and MAOE # IMBAOE # is active. If
MSETO-10, MTAGO-11, and MCFAO-6 have been
asserted but are blocked by MAlE/MBAlE or
MAOE # IMBAOE #, they are asserted from MAlEI
MBAlE going high or MAOE#/MBAOE# going ac·
tive ..

MSETO-10, MTAGO-11, and MCFAO-6 are deas­
serted or changed with CADS# or CNA# active.
They may also be floated with MAOE# going inac­
tive.

MSETO-10, MTAGO-11, and MCFAO-6 are used
as inputs during snoop. cycles. They are sampled
with SNPSTB# like any other snoop attribute signal.

7.31 MCLK

Memory Bus Clock

Input to the 82490XP (Pin 26)

7.3.1.1 SIGNAL DESCRIPTION

In a clocked memory bus mode, this pin provides the
memory bus clock. Memory bus signals and memory
bus data are sampled on the rising edge of MClK.
Memory bus write data is driven off MCLK or
MOClK depending upon the configuration. MClK
has no relation to ClK.

7.31.3 RELATION TO OTHER SIGNALS

MClK shares a pin with MISTB.

In clocked memory bus mode, the MDATA7-
MDATAO, MSEL#, MFRZ#, MBRDY#, MZBT#,
and MEOC# pins are sampled synchronously with
the rising edge of MClK. In a clocked memory bus
write, MDATA7-MDATAO are driven synchronous
with MClK or MOClK.

MOClK is a delayed version of MClK. If a clocked
memory bus configuration is chosen, and the
MOClK rising edge is detected by the 82490XP af­
ter RESET, data will be driven off of MOCLK rather
then MClK. Only data is effected by MOClK.
MOCLK is used to allow the system designer to in­
crease the minimum output time of MDATA relative
to MClK.

7.32 MDATAO-MDATA7

Memory Bus Data Pins

82490XP Connection to the Memory Bus

Input/Output of 82490XP (pins 18,14, 10,6, 16, 12,
8,4)

Synchronous to ClK or MClK or MOClK or MISTB
or MOSTB.

7.32.1 SIGNAL DESCRIPTION

MDATAO-7 is the 82490XP data bus connection to
the memory bus. All or part of these pins will be used
depending on the cache configuration. These pins

2-310

82495XP Cache Controller/82490XP Cache RAM

are directly controlled by the MDOE# input. With
MDOE# inactive, these pins are tristated and may
be used as inputs.

For write cycles, the 82495XP asserts CDTS# to
indicate that data will be available at the MDATA
pins or in its buffer. Data is output with respect to
CLK, MCLK, MOCLI<, or MEOC1I and is strobed
with MBRDY1I. In strobed memory bus mode, data
is output using MOSTB.

For read cycles, COTS # indicates that the CPU data
path will be available for read data in the next clocle
BRDY 11 reads data into the CPU from the 82490XP.
Data is read into the 82490XPs through MDATA us­
ing MBRDY 11 or MISTB.

7.32.2 WHEN DRIVEN

When the CPU or 82495XP initiates a write cycle,
the write data is written to the appropriate 82490XP
buffer and CDTS1I is asserted. If MDOE# is active,
that first piece of write data will be available at the
MDATA pins with some delay from the CPU CLI<
edge that COTS 11 is asserted. Subsequent pieces of
write data are output with some delay from MCLK or
MOCLK (mode dependent) from the edge that
MBRDY # is sampled active. In strobed mode, sub­
sequent data is output with MOSTB assertion.

MDATA has no value before CDTS# assertion, after
MEOC# with no pending cycle, or with MDOE# in­
active.

For read cycles, the 82495XP asserts CDTSi! the
clock before the MOAT A path is available for read
data. MDOE1I must be inactive for the 82490XP to
read data. Read data is strobed into the 82490XP by
asserting MBRDY1I on MCLK edges. MEOC1I will
latch the last piece data as it switches buffers. In
strobed mode, data is read by MISTB. Data that is
read into MDATA must meet proper setup and hold
times.

Data at the MDATA inputs need not follow setup and
hold times to MCLK edges that sample MBRDY #
inactive.

7.32.3 RELATION TO OTHER SIGNALS

CDTS# indicates that write data is in the 82490XP
buffers. If MDOE# is active, write data is available at
MDATA some time after CDTS# or MEOC# is sam­
pled active. Subsequent write data is available at
MDATA after MBRDY# assertion or MOSTB chang­
ing.

MDOE# must be inactive for MDATA to read data.
CDTSI! assertion by the 82495XP indicates that the
read path is available in the next clock. Data must be
read into MDATA with respect to MCLK or MISTB
and must follow proper setup and hold times if
MBRDY 11 is active or MISTB is changing.

The memory bus controller must account for the
large setup time required to read data into the CPU.
If properly done, data can be read into MDATA by
asserting MBRDY 11 and in the next full CPU clock
read into the CPU using BRDY #.

7.33 MDOlE#

Memory Data Output Enable

Tristates/Enables Memory Data Outputs

Input to 82490XP (pin 20) Cycle Control Signal

Asynchronous

7.33.1 SIGNAL DESCRIPTION

MDOE # is an input to the 82490XP that, when as­
serted, causes the 82490XP to drive its MOAT AO­
MDATA7 outputs. When MDOE# is inactive, these
lines are floated and may be used as inputs to the
82490XP. MDOE# is not sampled by any clock and
is a direct connection to the 82490XP memory ouput
driver.

7.33.2 WHEN SAMPLED

Since MDOE# is a direct connection to the
82490XP memory output drivers, MDOE# must al­
ways be driven to a valid level. With MDOE# inac­
tive, data in the 82490XP's may be driven to MDATA
outputs with some propagation delay from MDOE#
going active. Similarly, there is some float delay from
MDOE# going inactive.

MDOE# must be inactive for the 82490XP to read
memory data.

7.33.3 RELATION TO OTHER SIGNALS

MDOE# has no relation to MCLK, MOCLK, or
MOSTB. Since MDOE# controls the final stage of
the MDATA output buffers, it has no effect on any
other signal of the 82490XP.

7.34 MEMLDRV

Memory Low Capacitance Drivers

Selects the Low Capacitance Drivers for the
82495XP and the 82490XP

2-311

82495XP Cache Controller/8249DXP Cache RAM

Inputs to 82495XP and 82490XP (pins Q4, 24) Con­
figuration Signal

Synchronous to CLK

7.34.1 SIGNAL DESCRIPTION

MEMLDRV is a pin on both the 82495XP and
82490XP that, when high during reset, select normal
driving memory output buffers. If this pin is driven
low at reset, the high capacitance drivers are select­
ed. Specifically, these are the 82495XP address out­
puts to the memory bus, and the 82490XP MDATA
outputs. The normal output drivers are designed to
drive up to 50 pF loads. The high capacitance driv­
·ers can drive up to 100 pF without derating.

7.34.2 WHEN SAMPLED

MEMLDRV is sampled like figure 7-1 with a setup
time of 4 CPU clocks for the 82495XP and 1 CPU
clock for the 82490XP. On the 82495XP, MEMLDRV
becomes the SYNC# input once FSIOUT# goes
inactive. On the 82490XP, MEMLDRV becomes the
MFRZ# signal which is sampled after the 'first mem­
ory cycle begins.

7.34.3 RELATION TO OTHER SIGNALS

MEMLDRV sha.res a pin with SYNC# on the
82495XP and MFRZ# on the 82490XP.

7.35 MEOC#

Memory End of Cycle

Ends a cycle in 82490XP by switching buffers

Input to 82490XP (pin 23) Cycle Control Signal

Synchronous to MCLK or Asynchronous (strobed
mode)

7.35.1 SIGNAL DESCRIPTIONS

MEOC# is an input to the 82490XP that ends the
current cycle and switches memory buffers for new
cycle. Switching to the next cycle does not cause
information to be lost in the memory or CPU buffers
in the 82490XP, but rather switches new buffers to
the memory I/O bus of the_ 82490XP.

MEOC# is provided so that the memory system,
which is synchronous to MCLK, can switch to a new
cycle without synchronization .. In clocked memory
bus mode MEOC# is sampled with the rising edge
of MCLK. In strobed memory bus mode the MEOC#
function is performed with rising or falling edges of
MEOC#.

For read or write cycles, MEOC# may be activated
on or after the clock edge of the last MBRDY # of
the current cycle. If a cycle is pending (pipelining is
used), the next cycle will flow-through with a propa­
gation delay from MEOC# assertion. MEOC# is re­
quired for all memory bus cycles.

In addition to switching memory buffers, MEOC#
does three other things. One, MEOC# activation
causes the memory burst counter to be reset to its
start value and if MSEL # is active, MZBT # is sam­
pled. This allows MSEL# to stay active between cy­
cles. Two, MEOC# activation during a write cycle
causes MFRZ# to be sampled for the a subsequent
allocation (line-fill). Three, MEOC# latches in the
last slice of data (like MBRDY#) before switching
buffers.

7.35.2 WHEN SAMPLED

In clocked memory bus mode, MEOC# is sampled
on every MCLK edge. It must always observe setup·
and hold times to MCLK. In strobed memory bus
mode, MEOC# is always sampled and must meet
proper active/inactive times.

7.35.3 RELATION TO OTHER SIGNALS

MEOC# is provided so that a cycle may end on the
memory bus before CRDY'fI can be asserted. The
implication rules surrounding MEOC# are:

1. MEOC# :5: CRDY#

2. MEOC# for cycle N + 1 ~ 2 clocks after CRDY #
of cycle N

3. MEOC # for cycle N + 1 ~ 2 clocks after last
BRDY # of cycle N

4. MEOC# ~ BGT#

MEOC# active with MSEL# active causes the sam­
pling of MZBT# and MFRZ#.

7.36 MFRZ#

Memory Data Freeze

Freezes Memory Write Data in 82490XP Buffer

Input to 82490XP (pin 24) Cycle Control Signal

Synchronous to MCLK or Strobed

7.36.1 SIGNAL DESCRIPTION

MFRZ# is an input to the 82490XP that when active
causes the 82490XP to "freeze" write data in· the·
82490XP memory buffer and allow a subsequent al­
location to fill a cache line around it. MFRZ# is pro-

2-312

Intel., 82495XP Cache Controller/82490XP Cache RAM

vided so that an actual write to memory need not be
done to perform an allocation. Using MFRZ # to per­
form this dummy write cycle requires that the memo­
ry bus controller put the allocated line into the "M"
state.

PAllC# must be active and MKEN# must be re­
turned active for the write cycle to be turned into an
allocation. MFRZ# is sampled when MEOC# goes
active at the end of the write cycle. The subsequent
line fill is then filled around the write data to com­
plete the allocation.

7.36.2 WHEN SAMPLED

In clocked memory bus mode, MFRZ # is sampled
with the MClK rising edge that MEOC# is sampled
active for all CPU write cycles. MFRZ# need only
follow a proper setup and hold time in this situation.

In strobed mode, MFRZ# is sampled with the falling
edge of MEOC# for write cycles. MFRZ# need only
follow a proper setup and hold time inthis situation.

7.36.3 RELATION TO OTHER SIGNALS

MFRZ# is sampled with the MEOC# going active or
being active for write cycles. M FRZ # is used so that
a dummy write cycle can be performed. If an alloca­
tion is done, DRCTM# must be asserted during the
SWEND# window of the line fill to put the allocated
line in the "M" state.

MFRZ# shares a pin with the MEMlDRV configura­
tion input.

7.37 MHITM#

Memory Sus Hit [M]

Indicates snoop hit to modified line
Output from 82495XP (pin H4) Snooping Signal

Sync to ClK

7.37.1 SIGNAL DESCRIPTION

The MHITM # output is driven by the 82495XP dur­
ing a snoop cycle to indicate that the snooping ad­
dress has hit a Modified line. If the signal is logic
high, the snoop has not hit a modified line;. if the
signal is logic low, the snoop has hit a modified line.
When a snoop hits a modified line, the 82495XP au­
tomatically schedules a write-back of the hit modi­
fied line to the memory bus.

When the device which controls the memory bus
(the master) performs a memory access, a snoop is
requested of all other caching devices on the bus
(snoopers). An asserted MHITM# pin from any of
the snooper 82495XPs alerts the master that main
memory's data is stale, and that the bus must be
temporarily given to the snooper which has its
MHITM# asserted so that the modified line can be
written out to the memory. bus.

7.37.2 WHEN DRIVEN

The snoop lookup is performed in the clock in which
SNPCYC# is asserted. The MHITM# result for the
snoop is driven on the ClK following SNPCYC#,
and remains valid until the next assertion of
SNPSTS#. The MHITM# signal is not valid from
SNPSTS# until the ClK after SNPCYC#.

7.37.3 RELATION TO OTHER SIGNALS

MHITM# and MTHIT# outputs together indicate the
results of a snoop lookup in the 82495XP.

A 82495XP can accept a snoop request while per­
forming memory bus transfers of its own. If a snoop
is requested of a 82495XP while it is performing a
data transfer of its own, the results of the snoop may
be delayed. If SNPSTB# is sampled at a 82495XP
after it has received SGT # for its own cycle, the
snoop lookup is performed (SNPCYC# active) after
the SWEND# of its own cycle, and MHITM# is driv­
en with valid results one ClK after SNPCYC# (see
Sections 6.2.4 and 6.2.5).

7.38 MISTB

Memory Sus Input Strobe

Strobes data into the 82490XP

Input to 82490XP (pin 22) Cycle Control Signal

Asynchronous

7.38.1 SIGNAL DESCRIPTION

MISTS is an input to the 82490XP that, on rising or
falling edges, causes the 82490XP to latch its MDA­
TA inputs. MISTS is used in strobed memory bus
mode. In clocked memory bus mode, MISTS is the
MSRDY # input. .

2-313

82495XP Cache Controller/82490XP Cache RAM !¥'OO~11.0IMlOOO~OOW

7.38.2 WHEN SAMPLED

MISTS is always sampled by the 82490XP. MISTS
must meet proper strobed mode active and inactive
times.

7.38.3 RELATION TO OTHER SIGNALS

MISTS causes the latching of the 82490XP MDATA
inputs in strobed mode. MISTS shares a pin with
MBRDY#.

7.39 MKEN#

Memory Cache Enable

Determines 82495XP and CPU cacheability ,

Input to 82495XP (pin R1) Cycle Attribute Signal

Synchronous to CLK

7.39.1 SIGNAL DESCRIPTION

MKEN # is an input to the 82495XP that is sampled
at the closing of the cacheability window (KWENO#
is sampled active). The 82495XP drives KEN # back
to. the CPU one clock after sampling the value of
MKEN#. MKEN# thus determines whether the cur·
rent cycle is .cacheable in the 82495XP and in, the
CPU.

For read cycles, if MCACHE# is active (cacheable),
KEN# is driven out of the 82495XP to. the CPU to
indicate cacheability. If MKEN# is sampled inactive
during KWEND# activation, KEN# is brought inac­
tive by the 82495XP, and the line will not be cache­
able by the CPU or' 82495XP. If MCACHE# is inac­
tive, the line will be non-cacheableregardless of
MKEN#. PCD active will cause MCACHE# to be
inactive.

MKEN # is sampled during write-through cycles that
are potentially allocatable (PALLC# is active during
the write cycle). If MKEN# is sampled active during
KWEND# activation of the write cycle, an allocation
will occur, and a line-fill will follow the write cycle.
MKEN # during the line-fill is ignored. The MSC indi­
cates to the 82495XP that it intends to perform an
allocation by asserting MKEN #.

MKEN# must be sampled 1 clock before the first
BRDY # assertion to make a line-fill non~cacheable
to the CPU.

7.39.2 WHEN SAMPLED

MKEN # is sampled on the clock edge that
KWEND# is first sampled active. In all other places
MKEN # may violate setup and hold times.

7.39.3 RELATION TO OTHER SIGNALS

MKEN# and MRO# are sampled with KWEND#
active. MKEN# must be sampled at least 2 clocks
before SRDY # assertion to make a line-fill non­
cacheable.

7.40 MOClK

Memory Data Output Clock

Separate Clock Reference for Memory Data Output

Input to 82490XP (pin 27)

Asynchronous

7.40;1 SIGNAL DESCRIPTION

MOCLK is the latch enable for the 82490XP memory
data outputs (MDATA). MOCLKcontrols the latching
of. a transparent latch which, when high, causes
MDATAto be driven from MCLK.When low, MDATA
is latched. MOCLK may only .beused in clocked
memory bus mode and only affects output data. It is
provided so that a greater MDAT A output hold time
can be generated.

To be used effectively, MOCLK must be a clock in­
put that is skewed from MCLK: The 'following picture
shows how MOCLK has increased the hold time of
the output burst data: . . ,

MCLK

MOCLK

MDATA

MBRDY#

~ I I .

\: /\:/\
. '-+-' '-+-' \

i .: ~(.... ---":;;;...i JC
~~~i----~~------, 

240956-32 

7.40.2 WHEN SAMPLED 

MOCLK is sampled during and after RESET to de­
termine whether output data should ,be driven from 
MCLK or MOCLK: If toggling, MOCLK controls the 
MDATA outputs with MCLK. If high,data is driven 
from MCLK alone. Regardless, input data is never 
referenced to MOCLK. .' 

In strobed memory bus mode the MOCLK signal be­
comes MOSTS.· MOCLK is only used in clocked. 
memory bus mode. ' 

2-314 



82495)(P Cache Controller 182490){P Cache RAM 

7.40.3 RELATION TO OTHER SIGNALS 

To be used effectively, MOCLK must be the same 
frequency as MCLK but be skewed. This effectively 
increases MOATA hold time to main memory. Main 
memory must sample the data on MCLK edges. 

MOCLK shares a pin with the MOSTS signal. 

7.41 MOSTB 

Memory Sus Output Strobe 

Strobes data out of 82490XP 

Input to 82490XP (pin 27) Cycle Control Signal 

Asynchronous 

7.41.1 SIGNAL DESCRIPTION 

MOSTS is an input to the 82490XP that, on rising 
and falling edges, causes the 82490XP to output 
data through its MOATA outputs. MOSTS is only 
used in strobed memory bus mode. In clocked mem­
ory bus mode, MOSTS is the MOCLK input. 

7.41.2 WHEN SAMPLED 

MOSTS is always sampled by the 82490XP. MOSTS 
must meet strobed mode active and inactive times. 

7.41.3 REALTION TO OTHER SIGNALS 

MOSTS strobes data out of the 82490XP through 
MOATA. MOSTS shares a pin with MOCLK. 

7.42 MFlO# 

Memory Read-Only 

Designates current line as read-only 

Input to 82495XP (pin J1) Cycle Attribute Signal 

Synchronous to ClK 

7.42.1 SIGNAL DESCRIPTION 

MRO# is an input to the 82495XP that is sampled at 
the closing of the cacheability window (KWENO# 
activation). If sampled active, it causes the current 
line fill to the 82495XP to be put in the read-only 

2-315 

state, and causes the line to be non-cacheable to 
the CPU. Writes to read-only lines in the 82495XP 
are treated as write-misses that are non-allocatable 
(PALLC# is inactive). MRO# is a bit in each 
82495XP tag entry. 

Once MRO# is sampled active during KWEND# ac­
tivation, KEN # to the CPU is driven inactive regard­
less of the state of MKEN#. MKEN# does, howev­
er, determine whether the 82495XP will cache the 
read-only line. Once MRO# is returned active, the 
CPU will only require the number of transfers as indi­
cated by LEN and CACHE#. If MKEN# is returned 
active, the 82495XP will require an entire cache line. 
82495XP read-only cache lines are filled to the [S1 
state. 

The line-fill portion of an allocation may be filled to 
the read-only state by returning MRO# active during 
KWEND# of the line-fill. MRO# is ignored during 
the write portion. 

If MRO# is returned active during KWENO#, 
DRCTM # and MWS/WT # are ignored during 
SWEND#. 

MRO# must be returned to the 82495XP at least 2 
clocks before SROY # is returned to the CPU so 
KEN # can be sampled properly. 

There is one Read-Only bit per tag in the 82495XP. 

7.42.2 WHEN SAMPLED 

MRO# is sampled on the first clock that KWENO# 
is sampled active. In all other clocks, MRO# need 
not follow setup and hold times. 

7.42.3 RELATION TO OTHER SIGNALS 

MRO# and MKEN# are sampled with KWENO# 
activation. MRO# must be returned at least 2 clocks 
prior to the first SROY #. 

7.43 MSEL# 

Memory Suffer Chip Select 

Selects 82490XP, Causes Sampling of MZST# 

Input to 82490XP (pin 25) Cycle Control Signal 

Synchronous to MCLK or Strobed 



82495XP Cache Controller/82490XP Cache RAM ~OO~IbDINlDOO~OOW 

7.43.1 SIGNAL DESCRIPTION 

MSEl# is an input to the 82490XP that has 3 main 
functions. One, MSEl# active qualifies the 
MBRDY# input to the 82490XP. If MSEl# is inac­
tive for a particular 82490XP, MSRDY# will not be 
recognized by that 82490XP. 

Two, MSEl# going active causes the sampling of 
MZST # for the next transfer. 

Three, MSEl# going inactive resets the 82490XP 
internal memory burst counter. The 82490XP con­
tainsa memory burst counter that counts through 
the CPU burst order with each MSRDY# assertion 
and increments a pointer to the 82490XP memory 
buffer being accessed. 

MSEl# going inactive will reset this burst counter to 
its original burst value. Sy resetting this counter be­
fore iviEOC# asseriion, ali information currentiy be­
ing read into the 82490XP is lost, but information 
that is being written out is maintained and may be 
rewritten. 

In general, MSEl# may stay inactive for single 
transfer cycles such as posted 64-bit write cycles. 
Once active, MSEl # need not go inactive as the 
burst counter is reset withMEOC# activation. Since 
MZBT# may also be sampled with MEOC#, it is 
possible to leave MSEl# asserted throughout most 
basic transfers. 

MSEl# or MEOC# must be used to reset the burst 
counter before any transfer begins. If transfers are 
interrupted (by a snoop hit before BGT # assertion 
for example), MSEl# must be brought inactive so 
the burst counter may be reset for the snoop write 
back. 

MSEl# must be sampled inactive for at least 1 
MClK after reset. This resets the memory burst 
counter for the first transfer. 

7.43.2 WHEN SAMPLED 

In clocked memory bus mode, MSEl # is sampled 
with all rising edges of MClK. In this mode, if 
MSEl# is sampled inactive, the memory burst 
counter is reset and MZST# is sampled. If MSEl# 
is sampled active and MBRDY # is sampled active, 
the memory burst counter is incremented. Since it is 
constantly sampled with MClK, MSEl# must al­
ways be driven to a known state and must always 
meet setup and hold times to every MClK edge. 

2-316 

In strobed mode, MSEl# falling edge causes the 
sampling of MZST#. While MSEl# is active, MISTS 
and MaSTS cause the memory burst counter to be 
incremented. The rising edge of MSEl# causes the 
memory burst counter to be reset. 

MSEl# must be inactive sometime after RESET be­
fore the first transfer to initialize the burst counter. 

7.43.3 RELATION TO OTHER SIGNALS 

MSEl# causes the sampling of MZST#, and quali­
fies the use of MSRDY#, MaSTS, and MISTS. 
Since MSEl# acts as a qualifier for these signals, 
MSEl# may be asserted at the same time as 
MBRDY #, MaSTS, or MISTS. 

7.44 MTHIT# 

Memory Sus Tag Hit 

Indicates snoop hit 

Output from 82495XP (pin G3) Snooping Signal 

Sync to ClK 

7.44.1 SIGNAL DESCRIPTION 

The MTHIT # output is asserted by the 82495XP 
during snoop cycles to indicate that the snoop ad­
dress has hit a line in the 82495XP cache. An as­
serted MTHIT # signal from any of the snooping 
82495XP's alerts a bus master that the data being 
accessed resides in another cache. If SNPINV was 
not asserted on the snoop request, the copy of the 
data in a 82495XP asserting MTHIT# will remain 
valid and in the Shared state-so a caching master 
must also place his copy of the data in the Shared 
state. 

7.44.2 WHEN DRIVEN 

The snoop lookup is performed in the ClK in which 
SNPCYC# is asserted. The MTHIT# result for the 
snoop is driven on the next ClK and remains valid 
until the next assertion of SNPSTB#. The MTHIT# 
signal is not valid from SNPSTS# until the ClK after 
SNPCYC#. 

7.44.3 RELATION TO OTHER SIGNALS 

MTHIT# and MHITM# together indicate the results 
of a snoop lookup in the 82495XP. 



82495XP Cache Controller/82490)(P Cache RAM ~[RH~lbmK1mrttJ~~w 

An 82495XP can accept a snoop request while per­
forming memory bus transfers of its own. If a snoop 
is requested while it is performing a transfer of its 
own, the results of the snoop may be delayed. If 
SNPSTB# is sampled at a 82495XP after it has re­
ceived BGT # for its own cycle, the snoop lookup is 
performed (SNPCYC# active) after the SWEND# of 
its own cycle, and MTHIT# is driven with the valid 
result one ClK after SNPCYC# (see Sections 6.2.4 
and 6.2.5). 

Because an asserted MTHIT# from any snooping 
82495XP requires the master to place th~ fetched 
line in the Shared state (unless it is an invalidating 
snoop), the memory bus controller should include 
the MTHIT# signals ofdther processors when gen­
erating the MWB/WT# signal to its own 82495XP. 

7.45 MWB/WT# 

Memory Write-back/Write-through . 
Forces lines to be filled to the [S] state 

Input to 82495XP (pin K3) Cycle Attribute Signal 

Synchronous to ClK 

7.45.1 SIGNAL DESCRIPTION 

MWB/WT # is an input to the 82495XP that is sam­
pled at the closing of the snoop window (SWEND# 
activation). If sampled active, the current line-fill is 
filled to the [S] state in the 82495XP. The [S] state 
is a write-through state in the 82495XP. 

MWB/WT # is used in many cases. If a cache· to 
cache transfer updates memory and leaves the data 
valid in the other cache, the line must be filled to the 
[S] state instead of the [E] state default. A portion of 
memory may be designated as write-through by as­
serting MWB/WT # for appropriate addresses. 

MWB/WT# has no effect on the 82495XP if 
DRCTM# is sampled active or MRO# has been 
sampled active during KWEND #. If PWT is active, 
MWB/WT # has no effect and the line is filled to the 
[S] state. 

7.45.2 WHEN SAMPLED 

MWB/WT # is sampled on the first clock edge that 
SWEND# is sampled active. If MWB/WT# is not 
being sampled, it need not follow setup and hold 
times. 

7.45.3 RELATION TO OTHER SIGNALS 

Both MWB/WT # and DRCTM # are sampled with 
SWEND#. 

2-317 

7.46 MX4/MX8# 
MTR4/MTR8# 

Memory 4/8 1/0 bits 

Memory 4/8 Transfers 

Selects MDATA Input/Output width and number of 
memory bus transfers 

Inputs to 82490XP (pins 21, 25) Configuration Sig­
nals 
Synchronous to ClK 

7.46.1 SIGNAL DESCRIPTION 

MX4/MX8# configures the 82490XP to use 
MDATA[O:3] or MDATA[O:7] memory bus 1/0 pins. 
MTR4/MTR8# selects whether the a cache line will 
take 4 or 8 transfers. These selections depend on 
the line ratio (82495XP line size I CPU line size) and 
must be configured according to the following table: 

Line MX41 MTR41 Membus CPUbus 
Ratio MXS# MTRS # 1/0 Pins 1/0 Pins 

1 1 1 4 4 

2 1 0 4 4 

2 0 1 8 4 

4 0 0 8 4 

1 0 1 8 8 

2 0 0 8 8 

7.46.2 WHEN SAMPLED 

These signals are sampled like Figure 7-1 with a set­
up time of 1 clock. Once the first CADS# is issued 
by the 82495XP these signals are sampled for the 
MZBT# and MSEl# functions. 

7.46.3 RELATION TO OTHER SIGNALS 

MX4/MX8# shares a pin with MZBT# and MTR41 
MTR8# shares a pin with MSEl#. 

7.47 MZBT# 

Memory Zero Base Transfer 

Forces cycles to begin at subline address 0 

Input to 82490XP (pin 21) Cycle Control Signal 

Synchronous to MClK or Strobed 



intei" 82495XP Cache Controller/82490XP Cache RAM ~[fJ~IbD!MlD~~I:Rr,? 

7.47.1 SIGNAL DESCRIPTION 

'MZBT# is an input to the 82490XP that forces a 
read or write cycle to begin with burst address 0 
regardless of the CPU generated address. 

MZBT # is sampled before the transfer begins. 
MZBT# is sampled with MSEL# and MEOC#. 
MZBT # is sampled with MSEL # going active for the 
current cycle. If MSEL # stays active between cy­
cles, MZBT# is sampled with MEOC# going active 
for the previous cycle. 

Once sampled, data input to the 82490XP's will start 
at burst address 0 and continue through 4, 8, C, etc. 
If the CPU is requesting a burst location other than 
0, the memory bus controller must hold off any 
BRDY # until that bursted item is read from the 
memory bus. 

7.47.2 WHEN SAMPLED 

In clocked mode, MZBT # is sampled in two loca­
tions. First, MZBT # is sampled on all MCLK rising 
edges where MSEL # is sampled inactive. Once 
MSEL# is sampled active, the value of MZBT# that 
was sampled one MCLK before is used for the next 
transfer. 

Second, MZBT# is sampled on MCLK rising edges 
where MEOC# is sampled active with MSEL# ac­
tive. The MZBT # value sampled will be used for the 
next transfer. This allows MSEL# to stay asserted 
between transfers if so desired. 

In strobed mode, MZBT # is sampled with the same 
two signals. First, it is sampled with the falling edge 
of MSEL#. Second, it is sampled with the falling 
edge of MEOC# if MSEL# is active. 

In clocked memory bus mode MZBT # must follow 
setup and hold times to all MCLK edges where 
MSEL# is sampled inactive or MEOC# is sampled 
active with MSEL# active. 

In strobed memory bus mode MZBT # must meet 
setup and hold times to MSEL # falling edge and 
MEOC# falling edge if MSEL# is active. 

7.47.3 RELATION TO OTHER SIGNALS 

MZBT# is sampled with MSEL# and MEOC# and 
has no effect otherwise. In systems that will never 
force a zero-based transfer, MZBT # may be driven 
high after RESET. 

MZBT# shares a pin with the MX4/MX8# configu­
ration input. 

7.48 NCPFLD # 

Non-Cacheable PFLD 

Enables Non-Cacheable Floating Point Loads 

Input to 82495XP (N4) Configuration Signal 

Asychronous 

7.48.1 S!GNAL DESCR!PT!ON 

During RESET, this pin functions as the NCPLFD# 
configuration signal. The 82495XP can be config­
ured to decode i860 XP CPU PFLD (Pipelined Float­
ing Point Load) cycles. The 82495XP supports 3 op­
erational modes for PFLD cycle decoding as defined 
by FPFLDEN and NCPFLD#: 

Mode # 1. PFLD cycles that are cached in the 
82495XP. 

Mode #2. PFLD cycles not cached in the 82495XP, 
without an external PFLD extension 
FIFO. 

Mode #3. PFLD cycles not cached in the 82495XP, 
with an external PFLD extension FIFO. 

Mode # FPFLDEN NCPFLD# 

1 0 1 

2 0 0 

3 1 1 

Illegal Mode 1 0 

See Section 5.2.5 for details. 

2-318 



82495XP Cache Controller/82490XP Cache RAM 

7.48.2 CASES IT IS ASSERTED AND 
DEASSERTED 

NCPFlD# is sampled on the falling edge of RESET 
and is a don't care at any other time. NCPFlD# 
must be valid for at least 10 ClK's before RESET's 
falling edge. 

7.48.3 RELATION TO OTHER SIGNALS 

NCPFlD# shares a pin with FlUSH#. Both 
NCPFlD# and FPFlDEN describe the PFlD mode 
used. 

7.49 NIENIE# 

Next Near 

Indicates current cycle address is near previous one. 

Output from 82495XP (pin D5) Cycle Control Signal 

Synchronous to ClK 

7.49.1 SIGNAL DESCRIPTION 

NENE# indicates to the MBC that the address of 
the requested memory cycle is "near" the address 
of the previously generated one (in the same 2K 
DRAM page). This information may be used by the 
MBC to optimize access to paged or static column 
DRAMs. 

7.49.2 WHEN DRIVEN 

NENE# is valid together with CADS# and will stay 
valid until CNA#or CRDY#. 

7.49.3 RELATION TO OTHER SIGNALS 

Address and cycle specification signals (MSETO­
MSET10, MTAGO'-MTAG11, MCFAO-MCFA6, 
CW/R#, CM/IO#, CD/C#, RDYSRC, MCACHE#, 
NENE#, SMlN#, KlOCK#, and CPlOCK#) will be 
valid with CADS # . 

NENE# may change state after CNA# or CRDY# 
are asserted tethe 82495XP. 

7.50 PALLC# 

Potential Allocate 

Indicates 82495XP intent to allocate current cycle 

Output from 82495XP (pin D2) Cycle Control Signal 

Synchronous to ClK 

7.50.1 SIGNAL DESCRIPTION 

PAllC# indicates to the MBC that the current write 
cycle may allocate (perform a line-fill on) a cache 
line. The MBC chooses to perform an allocation by 
asserting MKEN# during KWEND# of the write cy­
cle. Potential allocate cycles are cycles which are 
82495XP misses with PCD and PWT inactive. 

The exact condition for assertion of PAllC# is: 

Miss * !PCD * !PWT * LOCK# * W/R# * D/C# * M/IO# 

PAllC# is inactive (HIGH) for any write-hit to a 
Read-Only line. 

7.50.2 WHEN DRIVEN 

PAllC# is valid.in the same ClK as CADS# and is 
valid until CRDY# or CNA#. 

7.50.3 RELATION TO OTHER SIGNALS 

PAllC# is valid with CADS#. 

7.51 PAR# 

Parity Selection 

Selects 82490XP as a Parity Device 

Input to 82490XP (pin 32) Configuration Signal 

Synchronous to ClK 

7.51.1 SIGNAL DESCRIPTION 

PAR# is a strapping option on the 82490XP that, 
when strapped low, configures that 82490XP device 
to be a dedicated parity device. A 82490XP parity 
device must be configured the same as all the other 
devices, however, the data lines are defined differ­
ently. CDATA[0:3j are 4' parity bit 1/0 lines and 
CDATA[4:7j are 4 bit select lines so each parity line 
may be written individually. Parity devices must be 
used as follows: 

Cache 
Memory Number 82490XP 

Size 
Bus of Parity 1/0 Bits 

Width Devices (CPU:Mem) 

256K 64 2 4:4 

512K 128 2 4:8 

2-319 

• 



82495XP Cache Controller/82490XP Cache RAM 

7.51.2 WHEN SAMPLED 

PAR# is a strapping option and must be tied either 
high or low. 

7.51.3 RELATION TO OTHER SIGNALS 

PAR# affects the definition of the CDATA and MDA­
TA lines of the 82490XP. 

7.52 RDYSRC 

Ready Source 

Cycle control signal to the MBC 

Output from 82495XP (pin C1) Cycle Control Signal 

Synchronous to ClK 

7.5~.1 SiGNAL DESCRiPTiON 

RDYSRC serves as a cycle control signal to the 
MBC. It indicates the source of the BRDY # genera~ 
tion (either 82495XP or MBC) for the CPU. When 
high it indicates that the MBC should generate the 
BRDY#s to the CPU, when low it indicates thaUhe 
82495XP will provide the BRDY#s. 

RDYSRC is asserted for line-fill and not asserted for 
the write portion of allocation cycles. 

7.52.2 WHEN DRIVEN 

RDYSRC is valid in the same ClK as CADS# and is 
valid until CRDY# or CNA#. 

7.52.3 RELATION TO OTHER SIGNALS 

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6, 
CW/R#, CMIIO#, CD/C#, RDYSRC, MCACHE#, 
NENE#, SMlN#, KLOCK#, and CPlOCK#) will be 
valid with CADS #. 

7.53 RESET 

Reset 

Forces the 82495XP to begin execution in a known 
state 

Input to 82495XP (05) 

Asynchronous 

7.53.1 SIGNAL DESCRIPTION 

The falling edge of this signal tells the 82495XP to 
sample all configuration inputs and initializes the 
82495XP to a known state. See the specific configu­
ration signals for setup and hold times relative to 
RESET's falling edge. RESET can be asserted at 
any time. 

During initiialization, the 82495XP lRU bits are set 
to 1 indicating that the 82495XP lRU way is way 1. 
The 82490XP MRU bits are'initlialized td 0 as are all 
tag array bits. 

RESET takes about 4100 clocks in the 82495XP. 
RESET with self-test takes about 80,000 clocks. 

7.53.2 WHEN SAMPLED 

RESET is an asvnchronous inout. RESET must have 
a pulse width of at least 8 ClK's in order to guaran­
tee 82495XP recognition. 

7.53.3 RELATION TO OTHER SIGNALS 

The following signals are sampled at RESET: 

CNA# [CFGO]: CFGO line of 82495XP 
configuration inputs 

SWEND# [CFG1]: CFGl line of 82495XP 
configuration inputs 

KWEND# [CFG2]: CFG2 line of 82495XP 
configuration inputs 

FLUSH# [NCPFLD#]: If low, enables decoding of 
i860XL non- cacheable PFLD 
mode. 

FPFLD # [FPFLDEN]: If high, enables the external 
FIFO for i860XL PFLD mode. 

BGT# [C490LDRV]: Indicates the driving strength of 
the 82495XP/82490XP 
interface. 

SYNC# [MEMLDRV]: Indicates the memory bus 
driving strength. 

SNPCLK# [SNPMD]: Indicates the snooping mode; 
synchronous or strobed. 

CFG2-CFGO Configure cache parameters 
such as lines/ sector, line ratio, 
and number of tags. 

2-320 



82495XP Cache Controller/82490XP Cache RAM 

7.54 SLFTST # 

Self Test 

Executes B2495XP self-test 

Input to B2495XP (pin M2) Test Signal 

Synchronous to ClK 

7.54.1 SIGNAL DESCRIPTION 

If SlFTST# is sampled low and HIGHZ# is sam­
pled high, the B2495XP will perform a self-test after 
reset. The results of the self-tests are given by CA­
HOLD when FSIOUT # goes inactive. 

7.54.2 WHEN SAMPLED 

SlFTST# is sampled with reset like figure 7-1 with a 
setup time of 10 CPU clocks. SlFTST # . is then a 
"don't care" until after the first CADS # activation 
when it becomes the CRDY # pin. 

7.54.3 RELATION TO OTHER SIGNALS 

SlFTST # shares a pin with CRDY #. The 82495XP 
enters self-test if both SlFTST# is sampled active 
and HIGHZ# is sampled inactive. 

7.55 SMLN# 

Same Line 

Current cycle is same 82495XP line as previous one. 

Output from 82495XP (pin C6) Cycle Control Signal 

Synchronous to ClK 

7.55.1 SIGNAL DESCRIPTION 

SMlN# is used to indicate to the MBC that the cur­
rent cycle is accessing the same 82495XP cache 
line as the previous cycle. This indication can be 
used by the MBC to selectively activate its 
SNPSTB# signal to other caches in the system. For 
example, back-to-back snoop hits to the same line 
may be snooped only once. 

7.55.2 WHEN DRIVEN 

SMlN# is asserted with CADS# and will stay valid 
until CNA# or CRDY#. 

. 2-321 

7.55.3 RELATION TO OTHER SIGNALS 

Address and cycle specification signals (MSETO­
MSET10, MTAGO-MTAG11, MCFAO-MCFA6, 
CW/R#, CM/IO#, CD/C#, RDYSRC, MCACHE#, 
NENE#, SMLN#, KlOCK#, and CPlOCK#) will be 
valid with CADS #. 

7.56 SNPADS# 

Cache Snoop Address Strobe 

Initiates a snoop write back cycle 

Output from B2495XP (pin F3) Snooping Signal 

Sync to ClK 

7.56.1 SIGNAL DESCRIPTION 

The SNPADS# signal indicates valid cache control 
and attribute signals, functioning identically to 
CADS #, but is generated only on snoop write­
backs. The separation of address status signals for 
normal and snoop write-back cycles eases memory 
bus controller implementation. When SNPADS# is 
activated, the memory bus controller should abort all 
pending cycles for which BGT # has not been is­
sued. The 82495XP reissues these non-committed 
cycles after the snoop write-back has completed. 

7.56.2 WHEN DRIVEN 

SNPADS# is produced when a snoop hits a modi­
fied line. A modified line condition exists when a line 
in the cache has been updated, and copies of that 
memory location in other devices are no longer val­
id. A snoop is initiated by the master of a shared bus 
when accessing a memory location on the shared 
bus. 

The response of the 82495XP to a snoop appears 
on the MTHIT# and MHITM# pins in the clock after 
SNPCYC# is active. If these pins are both driven 
low, the snoop resulted in a hit to a modified line, 
and a snoop write-back is initiated with the assertion 
of SNPADS#. SNPADS# is driven, at earliest, two 
clocks after SNPCYC#. Like CADS#, SNPADS# is 
active for one ClK, and is always valid. 

7.56.3 RELATION TO OTHER SIGNALS 

Cycles initiated by SNPADS# require only CRDY#; 
they do not require the other cycle progress signals 
(BGT#, KWEND#, SWEND#) . 

II 



82495XP Cache Controller/82490XP Cache RAM 

The SNPADS# signal is driven by the 82495XP to 
indicate the start of the write-back cycle; the 
82495XP drives the following address and cycle 
specification signals valid with SNPADS#: CW/R#, 
CD/C#, CM/IO#, MCACHE#, RDYSRC, NENE#, 
SMlN#, and the address on MSET[O:10], 
MTAG[O:11], and MCFA[O:6]. Upon assertion of 
SNPADS#, the memory bus controller should can­
cel all pending cycles for which BGT # has not yet 
been asserted, because they will be reissued after 
the snoop write-back. The 82495XP will ignore 
BGT # while SNPBSY # and MHITM # are active (ie, 
during the write-back). 

The 82495XP can accept a snoop request while per­
forming memory bus transfers of its own. If a snoop 
is requested while it is performing a transfer of its 
own, the results of the snoop and any necessary 
snoop write-backs may be delayed. If SNPSTB # is 
sampled at a 82495XP after it has received BGT # 
fOi its Owvii cycle, and the snoop hits a modified line, 
the snoop write-back will occur after CRDY # for the 
82495XP's own cycle. See Sections 6.2.4 and 6.2.5 
for details. 

7.57 SNPBSY# 

Snoop Busy 

Indicates additional snoop processing in progress 

Output from 82495XP (pin F1) Snooping Signal 

Sync to ClK 

7.57.1 SIGNAL DESCRIPTION 

SNPBSY# and SNPCYC# indicate a snoop in prog­
ress. The SNPCYC# signal is asserted on the actual 
snoop look-up to the 82495XP tags. If the snoop 
look-up indicates a valid line is hit and the snoop is 
invalidating, the 82495XP must perform a back inval­
idation on the CPU. If a snoop hit occurs to amodi­
fied line, a snoop write-back must occur. SNPBSY # 
is asserted and remains active while either a back 
invalidation or a snoop write-back is in progress. 

7.57.2 WHEN DRIVEN 

SNPBSY # is activated for two conditions. First, 
SNPBSY # is activated whenever a back invalidation 
is necessary: the snoop returns MTHIT # active and 
SNPINV was asserted on the snoop initiation. Sec­
ond, SNPBSY# is activated when a modified cache 
line is hit on a snoop, as indicated by MHITM#, until 
the modified line has been written back (CRDY # re­
turned for the write-back). 

SNPBSY# is valid in the ClK following SNPCYC#, 
and if active, remains active for a minimum of two 
ClKS. 

7.57.3 RELATION TO OTHER SIGNALS 

After SNPCYC# occurs for a snoop, a new snoop 
. may be initiated. If SNPBSY # is asserted for the 

initial snoop, the SNPCYC# of the second snoop is 
delayed until the SNPBSY# signal is de asserted for 
the initial snoop, indicating that its snoop processing 
has completed. 

7.58 SNPClK [SNPMD] 

Snoop Clock [Snooping Mode] 

Selects 82495XP snooping mode 

Input to 82495XP (pin S3) Snooping Signal 

Synchronous to ClK 

7.58.1 SIGNAL DESCRIPTION 

SNPMD selects whether the 82495XP snoop initia­
tion be in synchronous, clocked, or strobed mode. 
82495XP snoop response is always synchronous to 
ClK. 

Synchronous mode (to ClK) is selected by SNPMD 
sampled low during reset. Strobed mode is selcted 
by SNPMD sampled high during reset. Clocked 
mode is selected by connecting the snoop clock 
source to SNPMD, and thus SNPMD becomes the 
actual snoop clock (SNPClK). 

7.58.2 WHEN SAMPLED 

SNPMD is sampled like figure 7-1 with a setup time 
of 4 CPU clocks. SNPMD is then not used unless 
clocked mode is being selected. If clocked mode is 
selected, SNPMD becomes SNPClK to clock in 
snoop requests. 

7.58.3 RELATION TO OTHER SIGNALS 

SNPMD becomes SNPClK if a clock signal is de­
tected at reset. In this clocked mode, SNPClK is 
then used to clock-in SNPSTB #, the snoop ad­
dress, and all snoop attributes. 

7.59 SNPCYC# 

Snoop Cycle 

Indicates snoop look-up occurring in 82495XP tags 

Output from 82495XP (pin H3) Snooping Signal 

Sync to ClK 

2-322 



untel· 82495XP Cache Controller/82490XP Cache RAM ~rnl~lLO[M]OOO~OOW 

7.59.1 SIGNAL DESCRIPTION 

SNPCYC# is asserted by the 82495XP during the 
clock when the actual tag look-up for the snoop is 
performed. SNPCYC# may appear as early as the 
ClK following SNPSTB # assertion, or may be de­
layed several clocks while a snoop write-back or 
82495XP memory bus cycle take place. 

7.59.2 WHEN DRIVEN 

SNPCYC# is always a valid 82495XP output. It is 
asserted once, for a single clock, for every snoop 
which is initiated in the 82495XP. 

7.59.3 RELATION TO OTHER SIGNALS 

A snoop is initiated by assertion of the SNPSTB# 
input if MAOE# is not asserted. The actual snoop, 
signalled by the assertion of SNPCYC#, can be de­
layed by a prior snoop's write-back in progress 
(SNPBSY # asserted) or by a 82495XP memory cy­
cle in progress (SNPSTB# occurs after BGT#)­
see SNPSTB# for details. If neither of these is oc­
curring, strobed and clocked snooping modes can 
also delay snoop look-up for a clock while the snoop 
address and attributes are synchronized. 

In the clock following SNPCYC#, MHITM # and 
MTHIT# report valid snoop results. 

7.60 SNPINV 

Snoop Invalidation 

Forces invalidation of snoop hits 

Input to 82495XP (pin P5) Snooping Signal 

Sampled with SNPSTB# (see SNPSTB#) 

7.60.1 SIGNAL DESCRIPTION 

Assertion of the SNPINV signal during the initiation 
of a snoop request forces a snoop hit for that re­
quest into the Invalid state. 

The SNPINV pin is sampled upon initiation of a 
snoop request with SNPSTB# activation, depending 
on snooping mode: rising edge of first ClK when 
SNPSTB is asserted (synchronous snooping mode), 
or rising edge of first SNPClK when SNPSTB# is 
asserted (clocked mode), or falling edge of strobed 
SNPSTB # (strobed mode). 

2-323 

7.60.2 WHEN SAMPLED 

When a bus master performs a bus access, the 
SNPSTB# of all other 82495XPs is asserted to initi­
ate a snoop for that address. If the master's access 
is one which is modifying the data (a write to memo­
ry, etc.), the SNPINV pin of all snooping 82495XPs 
must be asserted during SNPSTB # so that the line 
is properly marked Invalid. 

SNPINV is not asserted during SNPSTB# assertion 
if snoop hits are to remain valid: the master issuing 
the snoop does not require their invalidation (a 
read). 

SNPINV assertion forces all snoop hits to be invali­
dated, overriding other inputs or attributes (ie 
SNPNCA). When SNPINV is not asserted, cache 
states change according to normal protocol. 

SNPINV is only sampled with SNPSTB#, which may 
be qualified by ClK or SNPClK depending on the 
snooping mode, and must meet setup and hold 
times for the edge of its sampling. When SNPSTB# 
is not being asserted, SNPINV is a don't care and 
need not follow setup and hold times. 

7.60.3 RELATION TO OTHER SIGNALS 

SNPINV is sampled according to SNPSTB#, which 
may be qualified by SNPClK or ClK, depending on 
the snooping mode. SNPINV overrides the SNPNCA 
input, which may also be asserted with SNPSTB#. If 
MAOE# is active with SNPSTB# sampling, the 
snoop request is ignored. 

7.61 SNPNCA 

Snoop Non Caching device Access 

Indicates to snooping 82495XP that the initiating 
master is a non- caching device 

Input to 82495XP (pin 03) Snooping Signal 

Sampled with SNPSTB# (see SNPSTB#) 

7.61.1 SIGNAL DESCRIPTION 

SNPNCA indicates that the master which is initiating 
the snoop request will not cache the data. If the 
SNPNCA pin is not asserted and the snoop is nonin­
validating (where noninvalidating = SNPINV not as­
serted), a .snoop hit line must be placed in the 
Shared state, since the data will exist in another 



82495XP Cache Controller/82490XP Cache ~AM 

cache. If SNPNCA is asserted and the snoop is non­
invalidating, a snoop hit line will not be entered into a 
new cache, so a hit Exclusive or Modified line will be 
placed in the Exclusive state by the 82495XP. A 
noninvalidating snoop hit to a Shared line must keep 
the hit line in the Shared state, regardless of 
SNPNCA. 

SNPNCA is sampled upon initiation of a snoop re­
quest with SNPSTB# activation, depending on the 
snooping mode: rising edge of first ClK when 
SNPSTB# asserted (synchronous snooping mode), 
or the rising edge of SNPClK when SNPSTB# is 
asserted (clocked snooping mode), or the falling 
edge of SNPSTB# (strobed snooping mode). 

7.61.2 WHEN SAMPLED 

To achieve maximum processor performance and 
minimum bus traffic, SNPNCA shouid be asserted 
when the noninvalidating snoop is caused by an ac­
cess from a non-caching device like a DMA. 

If the snoop is being caused by a device which will 
also be caching the data, SNPNCA must not be as­
serted, so that the 82495XP does not leave the hit 
line in an Exclusive state-subsequent writes to 
lines in this state do not appear on the bus, and stale 
data would result in the cache which incorrectly as­
serted SNPNCA. 

If SNPNCA is asserted on a noninvalidating snoop 
request, the following outlines the behavior of the 
cache for a snoop hit in each of the MESI states: 

Modified The data is written to the bus, and the 
line is placed in the Exclusive state 

Exclusive The line remains in the Exclusive state 

Shared The line remains in the Shared state 

Invalid This is a cache miss. The line remains 
Invalid. 

If SNPNCA is NOT asserted on a noninvalidating 
snoop request, an M, E, or S state hit line will be 
placed in the Shared state. Again, M state causes a 
write to the bus, Invalid lines remain Invalid. 

SNPNCA is only sampled with SNPSTB#, which 
may be qualified by ClK or SNPClK depending on 
the snooping mode, and must meet setup and hold 
times for the edge of this sampling. When 
SNPSTB# is not being sampled, SNPNCA is a don't 
care and need not follOW set-up and hold times. 

7.61.3 RELATION TO OTHER SIGNALS 

SNPNCA is sampled with SNPSTB#, which may be 
qualified by SNPClK or ClK, depending on snoop­
ing mode. The assertion of SNPINV overrides 

SNPNCA, and places all snoop hit lines into the In­
valid state. If MAOE # is active on SNPSTB # sam­
pling, the snoop request is ignored. 

7.62 SNPSTB# 

Snoop Strobe 

Initiates 82495XP snoop and latches snoop address 
& attributes 

Input to 82495XP (pin R3) Snooping Signal 

Sync to ClK or SNPClK. or strobed 

7.62.1 SIGNAL DESCRIPTION 

Snoop strobe initiates a 82495XP snoop request. It 
controls the latching of the snoop address and 
snoop attribute signals, in the manner specified by 
one of three snooping modes: 

Snooping Modes 

Mode 
Snoop Address! 

Attributes Sampled on: 

Strobed falling edge of SNPSTB# 

Clocked rising edge of SNPClK when , 
SNPSTB# sampled active 

Synchronous rising edge of ClK when 
SNPSTB# sampled 

SNPSTB# must be asserted to initiate asn60p re­
quest. Snoops are initiated by a bus master for all 
memory accesses, to ensure that data residing in 
other caches is flushed if modified and invalidated if 
necessary. 

SNPSTB # must be deasserted for at least one 
SNPClK or ClK when clocked or synchronous 
snooping mode (respectively) is used, in order to 
rearm for the next snoop. 

SNPSTB # can be asserted while a snoop is in prog­
ress, allowing one level of pipelining. However, the 
reassertion of SNPSTB # while snooping is in prog­
ress must not occur until after SNPCYC#-precise­
Iy, after the falling edge ofSNPCYC# for strobed 
and clocked modes, or in the clock after SNPCYC# 
is active for synchronous mode. SNPSTB# must not 
be asserted between the first and last BGT # of a 
locked sequence. Similarly, SNPSTB # must not oc­
cur after the BGT # of the write through and before 
the BGT # of the allocation when a Read-far-Owner­
ship transaction is occurring. 

SNPSTB # itself does not affect the cache contents 
or states, but the snoop signals SNPINV and 
SNPNCA, latched upon SNPSTB#, force various 
changes in the cache on a snoop hit. 

2-324 



82495XP Cache Controller/82490XP Cache RAM 

7.62.2 WHEN SAMPLED 

SNPSTB# is sampled on every SNPCLK or ClK in 
clocked or synchronous modes, and is sampled con­
stantly in strobed mode. While a snoop is in prog­
ress, a new SNPSTB# is recognized as a new, pos­
sibly pipe lined, snoop request. After the assertion of 
a pipe lined SNPSTB #, the SNPSTB # signal must 
not be reasserted until after the next SNPCYC#. 

SNPSTB# should always meet proper set-up and 
hold times when operating in clocked or synchro­
nous modes. When operating in strobed mode, it 
must meet minimum active/inactive times to be 
properly recognized in the next clock. 

7.62.3 RELATION TO OTHER SIGNALS 

SNPSTB# latches the following signals: SNPINV, 
SNPNCA, MBAOE #, and MAOE #, and the address 
on the MSET, MTAG, and MCFA pins. The address 
which appears on the MSET, MTAG, and MCFA ad­
dress pins is to be snooped in the 82495XP. 
MAOE # acts as a qualifier for a snoop; if MAOE # is 
active when sampled on a SNPSTB# assertion, the 
snoop request is ignored. ·SNPINV and SNPNCA 
provide the 82495XP with snoop attributes which af­
fect the state of a snoop hit cache entry. 

If MBAOE# is active during SNPSTB# assertion, 
the 82495XP forces all bits in the subline address 
(those address bits which MBAOE# controls) to 0 
on a snoop write back for that snoop. 

Snoops and memory accesses are interlocked, such 
that after BGT # for a memory access has been is­
sued, a SNPSTB# which is asserted will be latched, 
with its address and attributes, but will not cause a 
snoop until after SWEND# for that memory cycle. 
After BGT # has been issued for a cycle, snoop 
write-backs are delayed until after the CRDY # for 
that cycle. Likewise, once a snoop is underway 
(SNPCYC# active) BGT# is ignored until snoop 
completion. 

SNPSTB # must not be deasserted and reasserted 
(specifically, cause a second falling edge) between 
its initial recognition and SNPCYC#-ie, SNPSTB# 
must not be asserted before the SNPCYC# of the 
previous SNPSTB#. In strobed and clocked modes, 
SNPSTB # can be reasserted after the falling edge 
of SNPCYC#; in synchronous mode, SNPSTB# can 
be reasserted in the ClK after SNPCYC# is active. 
This second assertion of SNPSTB #, after 
SNPCYC#, can occur while the first snoop is still 
progressing (SNPBSY # is active), allowing one level 
of snoop pipelining. In this case, a third assertion of 
SNPSTB# must not occur until after the SNPCYC# 
for the second, piped snoop request. 

SNPSTB # must not be asserted while the 82495XP 
is executing a locked sequence (lOCK# active). 
Specifically, SNPSTB# must not be asserted after 
the BGT # for the first locked access and before the 
BGT # of the last locked access. 

Systems which support Read-for-Ownership must 
not assert SNPSTB # between the BGT # of the 
write through and the BGT # of the allocation during 
a Read-for-Ownership operation. 

7.63 SWEND# 

Snoop Window End 

Closes Snooping Window 

Input to 82495XP (pin Q1) Cycle Progress Signal 

Synchronous to ClK 

7.63.1 SIGNAL DESCRIPTION 

SWEND# is an input to the 82495XP that, when 
asserted, closes the snooping window and causes 
sampling of MWB/WT # and DRCTM #. Once 
snooping of all other 82495XP's is complete, 
DRCTM # and MWB/WT # can be determined. 

Snoop response is blocked by the 82495XP be­
tween BGT# and SWEND# activation. Therefore, 
the faster SWEND# is closed, faster snoops can be 
determined. 

All CPU-generated write cycles and cache read miss 
cycles must cause a snoop on the memory bus. 
SWEND# may be activated once snooping has 
completed for these cycles. SWEND# activation 
causes the 82495.XP's internal tags to change state 
for the current cycle (if necessary). DRCTM # and 
MWB/WT # influence the state change decision. 

SWEND# need only be activated for those cycles 
which require the sampling of DRCTM # and 
MWB/WT#. 

If a cycle does not specifically require SWEND#, 
and SWEND# is not returned, snooping is blocked 
from BGT # to CRDY #. For this reason, it may be 
more efficient to always return SWEND#. 

7.63.2 WHEN SAMPLED 

SWEND# is sampled by the 82495XP on the clock 
or after KWEND# is sampled active for those cycles 
that sample KWEND#. For cycles that do not sam-

2-325 



inteL 82495XP Cache Controller/82490XP Cache RAM IPfRl[g[]"D[MJDOO~fRlW 

pie KWEND#, SWEND# is sampled with or after 
BGT#. Once SWEND# is sampled active, it isig­
nored until KWEND # of the next cycle. If SWEND # 
is not being sampled, it may violate setup and hold 
times. 

Snoop response is blocked between BGT # and 
SWEND#. If a snoop is initiated between BGT# 
and SWEND#, the MTHIT# and MHITM# re­
sponse is given after SWEND# activation. Any sub­
sequent snoop write back would begin after 
CRDY#. 

7.63.3 RELATION TO OTHER SIGNALS 

SWEND# causes the sampling of MWB/WT# and 
DRCTM#. SWEND# is sampled once KWEND# is 
sampled active. BGT#, KWEND#, and SWEND# 
may be asserted in the same clock. 

SWEND# shares a pin with CFG1. 

7.64 SYNC# 

Sync 

Synchronizes 82495XPTAG array with Main Memo­
ry 

Input to .82495XP (04) Cache Synchronization Sig­
nal 

Asynchronous 

7.64.1 SIGNAL DESCRIPTION 

SYNC# activation will cause the synchronization of 
the 82495XP and i860 XP CPU tag arrays with main 
memory. The 82495XP will flush all modified entries 
to memory. All valid tag entries will be kept, with 
modified [M] state lines becoming non-modified [E] 
state lines. 

7.64.2 WHEN SAMPLED 

SYNC# can be asserted at any time. The 82495XP 
will complete all outstanding cycles on the CPU and 
memory bus before beginning the SYNC process. 
The memory bus controller does not have to prevent 
SYNC# during locked cycles because the 82495XP 
will complete its locked cycle before the SYNC pro­
cess will begin. 

Once a SYNC operation has begun,the SYNC# sig­
nal is ignored until the operation completes. If 
RESET or FLUSH # is asserted while the SYNC op­
eration is in progress, the SYNC operation will be. 
aborted and the RESET or FLUSH immediately exe-
cuted. . 

SYNC# is an asynchronous input. SYNC# must 
have a pulse width of 2 ClK's in order to guarantee 
82495XP recognition. 

7.64.3 RELATION TO OTHER SIGNALS 

To initiate a SYNC, the 82495XP will complete all 
pending cycles and prohibit further ADS#'s to occur 
while a SYNC is in progress. The FSIOUT # output 
signal is used to indicate the start and end of the 
SYNC operation. It will become active when the 
SYNC# signal is internally recognized (all outstand­
ing cycles have completed) and will de-activate 
when the SYNC operation has completed. 

The memory bus controller supplies BRDY # to the 
CP.U once the SYNC .has completed. Once SYNC 
has begun, and FSIOUT# active, all CADS#'s and 
CRDY # 's correspond to the write-backs caused by 
the SYNC operation. 

The 82495XP can be snooped during SYNC cycles 
and the snooping protocols will be the same as that 
for any memory bus cycle. 

7.65 TCK 

Test Clock 

Clock for the JT AG boundary scan tests 

Input to the i860 XP CPU (pin 01) Test Signal 

Input to the 82495XP (pin P3) 

Input to the 82490XP (pin 3) 

Synchronous 

7.65.1 SIGNAL DESCRIPTION 

TCK is an input to the i860 XP CPU, 82495XP and 
82490XPand provides the clocking function re­
quired by the JTAG boundary scan feature. TCK is 
used to clock state information and data into and out 
of the component. State select information and data 
are clocked into the component pn the rising edge 
of TCK on TMS and TDI, respectively. Data is 
clocked out of the part on the falling edge of TCK on 
TDO. 

In addition to using TCK as a free running clock, it 
may be stopped in a low, logic 0, state, indefinitely 
as described in IEEE 1149.1. While TCK is stopped 
in the low state, the boundary scan latches retain 
their state. 

When boundary scan is not used, TCK should be 
tied low. 

2-326 



int:eL 82495XP Cache Controller/82490XP Cache RAM 

7.65.2 WHEN SAMPLED 

TCK is a clock signal and is used as a reference for 
sampling other JTAG signals. 

7.65.3 RELATION TO OTHER SIGNALS 

On the rising edge of TCK, TMS and TOI are sam­
pled. On the falling edge of TCK, ROO is driven. 

7.66 TOI 

Test Oata Input 

Receives serial test instructions and data 

Input to the i860 XP CPU (pin S14) Test Signal 

Input to the 82495XP (pin N3) 

Input to the 82490XP (pin 2) 

Synchronous to TCK 

7.66.1 SIGNAL DESCRIPTION 

TOI is the serial input used to shift JTAG instructions 
and data into the component. The shifting of instruc­
tions and data occurs during the SHIFT-IR and 
SHIFT- OR TAP controller states, respectively. 
These states are selected using the TMS signal as 
described in chapter 9. 

An internal pull up resistor is provided on TOI to en­
sure a known logic state if an open circuit occurs on 
the TOI path. Note than when "1" is continuously 
shifted into the instruction register, the. BYPASS in­
struction is selected. 

7.66.2 WHEN SAMPLED 

TOI is sampled on the rising edge of TCK, during the 
SHIFT-IR and the SHIFT-OR states. Ouring all other 
TAP controller states, TOI is a "don't care". 

7.66.3 RELATION TO OTHER SIGNALS 

TOI is only sampled when TMS and TCK have been 
used to select the SHIFT-IR or SHIFT-OR states in 
the TAP controller. 

For proper initialization of JT AG logic, TOI should be 
driven high, "1", for at least four TCK cycles follow­
ing the rising edge of RESET. 

7.67 TOO 

Test Oata Output 

Outputs serial test instructions and data 

,Output from the i860 XP CPU (pin R10) Test Signal 

Output from the 82495XP (pin C4) 

Output from the 82490XP (pin 84) 

Synchronous to TCK 

7.67.1 SIGNAL DESCRIPTION 

TOO is the serial output used to shift JT AG instruc­
tions and data out of the component. The shifting of 
instructions and data occurs during the SHIFT-IR 
and SHIFT- OR TAP controller states, respectively. II 
These states are selected using the TMS signal as 
described in chapter 9. 

When not in SHIFT-IR or SHIFT-OR state, TOO is 
driven to a high impedance state to allow connecting 
TOO of different devices in parallel. 

7.67.2 

TOO is driven on the falling edge of TCK during the 
SHIFT-IR and SHIFT- OR TAP controller states. At 
all other times TOO is driven to the high impedance 
state. 

7.67.3 

TOO is only driven when TMS and TCK have been 
used to select the SHIFT- IR or SHIFT-OR states in 
the TAP controller. 

7.68 TMS 

Test Mode Select 

Controls testing by selecting mode of operation 

Input to the i860 XP CPU Test Signal 

Input to the 82495XP (pin P2) 

Input to the 82490XP (pin 1) 

Synchronous to TCK 

7.68.1 SIGNAL DESCRIPTION 

TMS is decoded by the JTAG TAP (Tap Access 
Port) to select the operation of the test logic, as de­
scribed in chapter 9. 

2-327 



intei· 82495XP Cache Controller/82490XP Cache·RAM 

To guarantee deterministic behavior of the TAP con­
troller TMS is provided with an internal pull-up resis­
tor. If boundary scan is not used, TMS may be tied 
high or left unconnected. 

7.68.2 WHEN SAMPLED 

TMS is sampled on every rising edge of TCK. 

7.68.3 RELATION TO OTHER SIGNALS 

TMS is used to select the internal TAP states re­
quired to load boundary scan instructions to data on 
TDI. 

For proper initialization of the JTAG logic, TMS 
should be driven high, "1", for at least four TCK cy­
cles following the rising edge of RESET. 

7.69 Vee and.Vss 

Power and Ground Pins 

See Tables 1.1 and 1.2 for locations. 

7.70 WWOR# 

Weak Write Ordering Mode 

Enforces strong/weak write-ordering policy 

Input to 82495XP (pin Q2) Configuration Signal 

Synchronous to ClK 

7.70.1 SIGNAL DESCRIPTION 

When asserted during reset, the 82495XP enforces 
a weak write ordering policy. If WWOR # is deassert­
ed during reset, the 82495XP enforces a strong 
write-ordering policy. 

In a strong write-ordering mode, writes to the memo­
ry bus are forced to occur in the order in which they 
were posted by the CPU. In a weak write-ordering 
mode it is possible for: 

1. A CPU posted write (A) to be waiting in a 
82495XP/82490XP memory buffer. 

2. A subsequent CPU write (8) to complete in the 
82495XP /82490XP because it was a hit to M or E 
state. 

3. A snoop hit to 8 to cause a write back of 8 before 
A is written. 

In this scenario, 8 is written to memory before A is, 
and thus CPU writes have been reordered. 

7.70.2 WHEN SAMPLED 

WWOR# is sampled during reset like figure 7-1 with 
a setup time of 4 CPU clocks. WWOR # becomes 
MALE once FSIOUT # indicates that the 82495XP 
reset sequence has completed. 

7.70.3 RELATION TO OTHER SIGNALS 

WWOR # shares a pin with MALE. 

8.0 BUS FUNCTIONAL DESCRIPTION 
AND.TiiiiiiNG 

The 82495XP/82490XP cache core supports a wide 
variety of bus transfers to meet the needs of high 
performance systems. 8us transfers can be single 
cycle or multiple cycle, cacheable or non-cacheable, 
64- or 128-bit (memory bus), and locked. To support 
multiprocessing systems there are cache back-inval­
idation, inquire, snooping, read for ownership, cache 
to cache transfers, and locked cycles. 

This section begins with read cycles, both cacheable 
and non-cacheable. It moves on to write cycles, 
cacheable and non-cacheable. Snooping cycles are 

. discussed next with an example of each snooping 
mode. The remaining sections describe special cy­
cles: read for ownership, I/O, and locked cycles. 

The cycles shown in this chapter are examples of 
various types of 82495XP/82490XP cycles. The pur­
pose of these examples is to show signal relation­
ships, and are not necessarily best case scenarios. 

8.1 Read Cycles 

8.1.1 READ HITS 

Read Hit cycles are executed completely within the 
CPU/Cache core, and will not be seen by the M8C: 

2-328 



int:eL 82495XP Cache Controller/82490XP Cache RAM 

: 1 : 2 I 3 : 4 I 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 I 14 : 15 I 16 : 17 : 18 : 19 : 20 : 21 : 

CLK 

CADSII 

ADDRESS ~~I ~~~'fittxxxxxxxxx~Xxxxx-+! ---''-----+-'XX;xxxxxxxxxxdxxxxxXX>i 
CW(R!/ ZXX!&X\ i I'IXtt/Xf,x'IXxx'IX'IX~ i ~ . , , . , , . , , , , 

RDYSRC "tlltiJJ ' \xxXX'lxJyxfJyxlXlYJ..XXXXXXYXXJYJY.7 ' ~ 
, , I , I , , , , , , , , I , I , , , , , , 

MCACHE# ~ , , '/XXXXX;XXXXXXXXXxxxxxxxxxxxxxxxXX\ ' , '/XXXXXXxxx;<xxxxxxx;<xxx' 
, , I , I , , , , , , , ,I I 

BGlI XX'li:'IXl:Iift\ ' /'IJ$!XI;'IX'li:x'IX'l:x'!tlXxx'IX'!XI,'l:/Xli,'l:t&~ , /m'!xix'IX~ 
CNAfI XxxxXxxmx/: \ I IXxxxxixxxxXxxxXxxx:xxxxXxxxxxxxXxxmxxxXX\ I mixxxXxxxXxxxxXxxxXxxX 
KWEND# XX_XI, i \: rtlxxxxXx_'llixxxixxxim.:iv.xxim i \:~ 
MKEN# Xxxi<xx~: 1Xi<xx0xxxXxxxXxxxxxxxXxxxXxx*'lX0xx$X\ : lXi<xx~xxxXxxx 
SWENDN XxxxXxxxpxxXxx>p: : \: IX0xx~xxxx:xxxxXxxxXxx'fxxxXxxxp: : \: !Xx0x~xxxX 
BRDYI 

CRDY' I " V, , I , I 

--------r-~-r-~-~-~-~-~-~-~-~-r-~-r---------­

CLOCKED MEMORY BUS MODE: 

MCLK 

MSEL# 

~ , V V 
MBRDY' X~ \ /XxxXXXXXxxxXXXl<X 
MZBT' ~x~xxxXxxXxxxxXxxi<xxxX'IX*xxixxx~xxxXxxxX:~ 
MDATA 0xxgxXXi<XXX~xx~XxXXxxf<xxx~XXgxxx: : : , ' , ' . , ,. , ,. r\..:...lr~\...:..../,:\...:..J~., 

• , I • , , , , • , 

----~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ 

STROBED MEMORY BUS MODE: I I 

MSEL# 

MEOel 

MISTB 

MZBT# 

MDATA 

~, I,I,,~ 
!<XXX;<XXXXXX0 -, -x;:r:--x:- --:- --:- --:- --:- --: --~ --: -~-:- --> --:- --:- - -: 
xxxxxxxXxxxaxxxxxxxxxxxx:::xxxx'IXxxxxxxxxxx)O(xxXxxxxXxxxXxxixxxxlxxxxxxx'IXx 
, : I : I ' , , , , , , , I ' I ' , , , , , 
'~X'li:XX~XXXXxxx:xxx% 

240956-33 

Figure 8·1. Cacheable Read Miss with Clean Replacement 

2·329 



82495XP Cache Controller/82490XP Cache RAM ~[fJ[g[bO[M]OOO~[fJW 

8.1.2 CACHEABLE READ MISSES 

8.1.2.1 Read Miss with Clean Replacement 

Figure 8.1 illustrates CPU initiated Read cycles that 
miss ~he 82495XP/82490XP cache and replace a 
non-dirty (eg. clean or empty) line in the cache. In 
such cycles, the 82495XP will instruct the MBC to 
perform a cache line-fill cycle on the memory bus. A 
cache line-fill is a read of a complete 
82495XP/82490XP line from main memory. The line 
is then written into the 82490XP's array, and data 
transferred to the CPU as requested. If the line 
fetched from main memory replaces. a 
82495XP/82490XP cache line which is in valid un­
modified state ([E] or [5]), then a back-invalidation 
cycle is performed on the CPU bus to guarantee that 
the replaced data is also removed from the CPU's 
first level cache, thus maintaining the inclusion prop­
erty. 

CACHE CONTROL SIGNALS: 

The CPU initiates the read cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS # 
(clock 2) and the associated cycle control signals to 
the MBC (eg .. CW/R#, CM/IO#, CD/C#, RDYSRC, 
MCACHE#) In order to schedule the cache line-fill 
operation. MCACHE# is active, indicating that the 
read miss is potentially cacheable by the 82495XP; 
RDYSRC is active, indicating that the MBC must 
supply BRDY#s to the CPU cache core. 

The memory bus address (MSET[10:01. 
MTAG[11:0], MCFA[6:0]) is valid with CADS# 
(clocks 2 and 13 for the two cycles in this example) 
and remain valid until after CNA# is sampled active 
by the 82495XP (clocks 5 and 16). MALE and MBA­
LE may be used to hold the address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 3), indicating that the cycle is 
guaranteed to complete on the memory bus. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit in the cache. 

CNA# is asserted by the MBC (clock 4) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined thecacheability at­
tribu~e of the cycle, it drives the MKEN# signal ac­
cordmgly. The MBC also drives the KWEND# signal 

at this time, indicating the end of the cacheability 
window. The 82495XP samples MKEN# during 
KWEND# (clock 5) to determine that the cycle is 
indeed cacheable. 

The MBC asserts SWEND# when the snoop win­
dow ends on the memory bus. The 82495XP sam­
ples MWB/WT# and DRCTM# during SWEND# 
(clock 7) and updates the cache tag state according 
to the consistency protocol. The closure of the 
~noop window ~Iso enables the MBC to start provid­
Ing the CPU With data that has been stored in the 
82490XP's memory cycle buffer. The MBC supplies 
BRDY#s to the CPU (clocks 7-10). 

The first cycle ends when CRDY# is driven active 
by the MBC (clock 10). It is at this time that the data 
in the 82490XP's memory cycle buffers is loaded 
into the cache SRAM. 

The 82495XP issues a new CADS# in clock 13 
which also misses the 82495XP/82490XP cache: 
Note that once the cycle progress signals (BGT #, 
CNA#, KWEND#, SWEND#) of a cycle are sam­
pled asserted, the 82495XP ignores them until the 
~RDY # of that cycle. The 82495XP does not pipe­
line the cycle progress signals (ie. it will not sample 
them again until after CRDY # of the current memory 
bus cycle). 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. MDOE# must be 
inactive to allow the data pins to be used as inputs. 

Some time after the address has been driven onto 
. the memory bus, data will. be supplied from the 
DRAM (main memory) to the 82490XP cache 
SRAM. 

For Clocked Memory Bus Mode, MSEL# is driven 
active. by the MBC (clock 4) to allow sampling of 
MBRDY# and to latch MZBT# for the transfer. 
MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. 
MBRDY # is driven active by the MBC in clocks 4 to 
6 to cause the memory burst counter to be incre­
mented and data to be placed into the 82490XP 

2-330 



82495XP Cache Controller/82490XP Cache RAM [¥)ffil~ll"mK{A1UOO~ffil\1 

cache memory cycle buffers. The MBC drives 
MEOC# asserted (clock 7) to end the current cycle 
on the memory bus and switch memory cycle buffers 
for the new cycle. MZBT # is latched at this time 
(when MEOC# is sampled asserted and MSEL# re­
mains low) for the next transfer. 

MBRDY # is driven active by the MBC in clocks 15 
to 17 to read data into the 82490XP cache memory 
cycle buffers. The MBC asserts MEOC # (clock 18) 
to end the second read miss cycle on the memory 
bus and switch the memory cycle buffers for a new 
cycle. 

For Strobed Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 4) to allow MISTB opera­
tion and to latch MZBT # (on the falling edge of 
MSEL#) for the transfer. MISTB is toggled in clocl<s 
5 to 7 to cause the memory burst counter to be in­
cremented, and data to be placed into the 82490XP 
cache memory cycle buffers. Note: MISTB latches 
the memory bus data on both the rising and falling 
edges. The MBC drives MEOC# asserted (clock 8) 
to end the current cycle on the memory bus and 
switch memory cycle buffers 'for the new cycle. 
MZBT # for the next cycle, is sampled at this time on 
the falling edge of MEOC#. 

MISTB is toggled by the MBC (clocks 15 to 17) to 
read data into the 82490XP memory cycle buffers. 
The MBC asserts MEOC# (clock 18) to end the sec­
ond read miss cycle on the memory bus and switch 
the memory cycle buffers for a new cycle. 

8.1.2.2 Read Miss with Replacement of Dirty 
Line 

Figure 8.2 illustrates a CPU read cycle which misses 
the 82495XP cache, and requires the replacement 
of a modified line (eg. tag replacement, linesl 
sector = 1 line ratio = 1). In such cycles, the 
82495XP will instruct the MBC to perform a cache 
line-fill on the memory bus, instruct the 82490XP to 
fill its write-back buffer with the contents of the array 
location corresponding to the line which must be re­
placed, and perform a back invalidation to the CPU 
to maintain the first and second level cache consist­
ency. Once the cache line-fill has completed, the 
82495XP/82490XP will write back the contents of 
the replaced line to main memory from the 82490XP 
write-back buffer. 

CACHE CONTROL SIGNALS: 

The CPU initiates the read cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS# 
(clock 1) and the associated cycle control signals to 

2-331 

the MBC (eg. CW/R#, CM/IO#, CD/C#, RDYSRC, 
MCACHE#) in order to schedule the cache line-fill 
operation. MCACHE# is active, indicating that the 
read miss is potentially cacheable by the 82495XP; 
RDYSRC is active, indicating that the MBC must 
supply BRDY # s to the CPU cache core. 

The memory bus address (MSET[10:0]' 
MTAG[11:0], MCFA[6:0l) is valid with CADS# 
(clocks 1 and 5 for the two cycles in this example) 
and remain valid until after CNA# is sampled active 
by the 82495XP (clocks 4 and 10). MALE and MBA-. 
LE may be used to hold the address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the cycle is 
guaranteed to complete on the memory bus. At this • 
point, the 82490XP's write-back buffer is prefilled 
with the line to be replaced. Once the 82495XP sam-
ples BGT # asserted, it must finish that cycle on the 
memory bus. Prior to this point, the cycle can be 
aborted by a snoop hit from another cache. 

CNA# is asserted by the MBC (clock 3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined the cacheability at­
tribute of the cycle, it drives the MKEN# signal ac­
cordingly. The MBC also drives the KWEND# signal 
at this time, indicating the end of the cacheability 
window. The 82495XP samples MKEN# during 
KWEND# (clock 4) to determine that the cycle is 
indeed cacheable. 

The MBC asserts SWEND# (clock 6) when the 
snoop window ends on the memory bus. The clo­
sure of the snoop window enables the MBC to start 
providing the CPU with data .that has been stored in 
the 82490XP's memory cycle buffer. The MBC sup­
plies BRDY #s to the CPU (clocks 6-9) to serve the 
read cycle. Note that data may be supplied to the 
82490XP's immediately after MSEL# activation, and 
need not wait for SWEND#. 

On the memory bus, the 82495XP issues a write­
back (WB) cycle. CNA#is sampled active in clock 3 
causing the 82495XP to issue the CADS# (also 
CDTS#) of the write-back (clock 5). The MBC 
knows this is a write back cycle and not a CPU initia­
ted write cycle by sampling MCACHE# asserted. 
This tells the MBC how many data transfers are nec­
essary. 

BGT#, CNA#, and KWEND# of the write-back are 
sampled asserted by the MBC (clock 9) after the 
CRDY # of the read miss cycle (clock 8). At this 



82495XP Cache Controller/82490XP Cache RAM 

, 1 2 3 4 5 6 7 , 8 , 9 11 ,12, 13,14, 

ClK 

CADS# 

ADDRESS ~ , WD, 

CDTS# i , ~ , 
CW/R# -, ~ , , , , ,. 

RDYSRC \XXX\ I , , IXXXXXXXXXXXXXX 
MCACHE# 

, 
WD 

BGT# , WD 

CNA# 
WB 

KWEND# " , 
I I Rlol 

MKEN# ~~IUIld!aod,_:Jd7ai :~ 

SWEND# ~:. ~ : mtf!.X'tt.XI : : \: IXl@<m 
I I I LINE FILL I 
~ lwei 

CRDY# '", --7,--<,--7-1-+,-;--": -+:"""\!.I , , I ,\..!..r': 
I I I I I I I I I 1 I 

-- - - -,- - -'- -, - '--, -,-- - J - L -r-- - -- -- --
I I I I I ::: ::::: 

CLOCKED MEMORY BUS MODE:,' ,,', I , , , 

ii' 

BRDY# 

MClK , , , 
MSEl# ~ 
MEOC# , , , 

MBRDY# ~ 
MZBT# X 

MDOE# 

MDATA 

----~---~---~-~~-~-~-~~-~-~-~-~ • I , I I I I I I I I I I I I 

STROBED MEMORY BUS MODE: 1 ' , , 1 : : : : : 
i , 

, I 

MSEl# \: r: 
MEOC# \lJ , \.lr. 

I I I I I I I I I I I I I 

MxSTB ~: VT 'V'T-vr -., - - [ "\/"T-v'r"\} I I \y 
~. ,\.J....J"' ... J' I I _ , .... 1- .i'---l\. _ _ ... _ JQ 

MZBT#~ 

! , , , " I I I I I I I 

MDOE# , \"'1-1 _!--!-_!--!---I , 
MDATA 2 2 3 

240956-34 

Figure 8·2, Cacheable Read Miss with Replacement of Dirty Line 

2·332 



82495){P Cache Controller/82490){P Cache RAM 

point, the 82495XP may issue another CADS# for a 
new (unrelated) memory bus cycle. It is at this time 
that the data in the 82490XP's memory cycle buffers 
is loaded into the cache SRAM. The data to be writ­
ten back to main memory is in the 82490XP's write 
back buffers. 

The snoop window for the write back cycle is closed 
by the MBC in clock 11, and the cycle is ended by 
CRDY # sampled asserted in clock 13. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

Some time after the address has been driven onto 
the memory bus, data will be supplied from the 
DRAM (main memory) to the 82490XP cache 
SRAM. 

For Clocked Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 3) to allow sampling of 
MBRDY # and to latch MZBT # for the transfer. 
MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. 
MBRDY # is driven active by the MBC in clocks 3 to 
5 to cause the memory burst counter to be incre­
mented and data to be placed into the 82490XP 
cache memory cycle buffers. The MBC drives 
MEOC# asserted (clock 6) to end the current cycle 
on the memory bus and switch memory cycle buffers 
for the new cycle. MZBT # is latched at this time 
(when MEOC# is sampled asserted) for the next 
transfer. 

The MBC asserts the memory data output enable 
signal (MDOE #, clock 8) to drive the memory data 
outputs. 

MBRDY# is driven active by the MBC in clocks 10 
to 12 to write data from the 82490XP cache memory 
cycle buffers onto the memory bus. The MBC as­
serts MEOC# (clock13) to end the write back cycle 
on the memory bus and switch the memory cycle 
buffers for a new cycle. 

For Strobed Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 4) to allow MISTB opera­
tion and to latch MZBT# for .the transfer (on 
MSEL# falling edge). MISTB is toggled in clocks 5 
to 7 to cause the memory burst counter to be incre-

mented, and data to be placed into the 82490XP 
cachememory cycle buffers. Note: MISTB latches 
the memory bus data on both the rising and falling 
edges. The MBC drives MEOC# asserted (clock 8) 
to end the current cycle on the memory bus and 
switch memory cycle buffers for the new cycle. 
MZBT # for the next cycle, is latched at this time on 
the falling edge of MEOC#. 

The MBC asserts MDOE# (clock 9) to drive the 
memory data outputs. 

MOSTB is toggled by the MBC (clocks 10 to 12) to 
write data from the 82490XP memory cycle buffers 
onto the memory bus. The MBC asserts MEOC# 
(clock 13) to end the write back cycle on the memo-
ry bus and switch the memory cycle buffers for a II 
new cycle. 

8.1.3 NON·CACHEABLE READ MISSES 

8.1.3.1 Read Misses not Cacheable by CPUI 
Cache Core and Cacheable by Core, but 
not by Memory Bus 

Figure 8.3 illustrates two CPU read cycles which 
miss the 82495XP cache, and are non-cacheable. In 
the first cycle, the CPU/Cache core forces the read 
to be non-cacheable (as indicated by the 
MCACHE# output from the 82495XP). In the sec­
ond cycle, non-cacheability of the data is forced by 
the memory bus (as indicated by the MKEN # input 
from the MBC). Since both cycles are not cache­
able, there is no line-fill operation performed, the cy­
cles are merely echoed to the memory bus. 

CACHE CONTROL SIGNALS: 

The CPU initiates the first read cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues a cycle re­
quest (CADS# in clock 1) and the associated cycle 
control signals to the MBC (eg. CW/R#, CM/IO#, 
CD/C#, RDYSRC, MCACHE#) in order to schedule 
the read operation. RDYSRC is active, indicating 
that the MBC must provide BRDY # to the CPU; 
MCACHE# is not active, indicating that the read 
miss in not cacheable by the CPU/Cache core. 

The memory bus address (MSET[10:0], 
MTAG[11 :0], MCFA[6:0l) is valid with CADS# 
(clocks 1 and 5 for the two cycles in this example) 
and remain valid until after CNA # is sampled active 
by the 82495XP (clocks 4 and 10). MALE and MBA­
LE may be used to hold the address as necessary. 

2-333 



82495XP Cache Controller/82490XP Cache RAM ~[fJ[glLnlMlnOO~[fJW 

ClK 

CADS. 

ADDRESS 

CW/R# 

RDYSRC 

5 I 6 9 I 10 : 11 12: 13 : 14': 

;zXz\ I IXXXXXXXXXxXXXxXX~ 
~-I----''£'l¥fJ I \XXXXXXXXXXXXXXXXX 

MCACHE# UW'VT~, --~'~\"'M=X\ ' IXxxxixxxixxxxXxxX 
, I~, I , , , I , , , 

BGT# 

CNAI/' 

KWEND# 

MKEN' 

SWEND# 

BRDYI 

ZXXJO<Z\ IXXXXXXXXXXXXXXXXXXxxxXXX\' IXXXXXXXXXXXXxXxxxx! 
~' I ' .+, , , , I ' , " , , 
~: \ IXXXXXXXxxxxxxXXXXXXX\ IXXXXXXXxxxxxxxxxxX 
~ : i \: axD<xXxXXXxXXXXxX\ f IXxXXXxXxxxXxxxXxxX 
~XXXjXXXXXXXXjXxx~xxxXjXxxixxxx:xxxixXI ; \x~xxixxxixxxixxxi 
,xxxX«XXXXXXXfI \ : IXgxxxgxXXXXXI ' : \: IXgxxxxxxxg 
" I", I , , 

:~ 
~~~--+-~~~~-+:~~r+!--~~~:~~ CRDY' _ .. _. -:- - .:- - -:- .. :- - -:- - ~ -­ :--: - -: - -,--'- - -,- -,-- -,---, 

CLOCKED MEMORY BUS MODE:
, , ,

MCLK

MSELI

MBRDY#

MiEBT'

MSELI

MEOC#

MISTB

MZBn

MDATA

, \: ~
~~~_~I_~,~ I , , , i , , , , , 
:::::'LLY:::::::~ 
xxxxXxxXXXXxXxxxXxxxXXXxXXXxXXI ~_\f-/xXXXXXXXXxxxXZzxZ 
~xxP<XXxXXX%Xxv \D<XXxXxxV \XXX%XXxXXXxXXx~ 
!?!!.xxixxxxXxxicixxixxxixxxcixxixxxixxxx:xxxxxxxi 

Figure 8-3. Non-Cacheable Read Misses 

2-334 

240956-35 



82495XP Cache Controller/82490XP Cache RAM 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the cycle is 
guaranteed to complete on the memory bus. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit from another 
cache. 

CNA# is asserted by the MBC (clock3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. 

This cycle has already been determined to be non­
cacheable; therefore, The MBC does not need to 
assert SWEND#, KWEND#, or MKEN# to the 
82495XP/82490XP cache. The MBC supplies 
BRDY # to the CPU to complete the cycle to the 
CPU. The MBC asserts CRDY (clock 8) to the 
82495XP/82490XP to complete the read miss cycle 
on the memory bus. 

The 82495XP issues a new (unrelated) cycle request 
(CADS # in clock 5) which also misses the 
82495XP/82490XP cache. Since the 82495XP has 
already sampled CNA# asserted, it issues a new 
CADS# prior to receiving CRDY # of the current cy­
cle (ie. this cycle is pipelined within the MBC). Note 
that once the cycle progress signals of a cycle are 
sampled asserted, the 82495XP ignores them until 
the CRDY # of that cycle. The 82495XP will not 
sample the cycle progress signals again until after 
the CRDY # of the current memory bus cycle. The 
current read cycle is completed on the bus in clock 8 
with CRDY # assertion. 

The cycle progress signals for the second read miss 
are also valid at this time (clock 5). RDYSRC is ac­
tive, indicating that the MBC must provide BRDY # s 
to the CPU/Cache core; and MCACHE# is active, 
indicating that the read miss is potentially cacheable 
by the 82495XP/82490XP. 

The MBC issues BGT# and CNA# to the 82495XP 
in clock 9 to indicate that the cycle is guaranteed to 
complete on the memory bus, and that it is ready to 
schedule a new memory bus cycle. KWEND # is as­
serted at this time to close the cacheability window. 
MKEN # is not active, indicating to the 82495XP that 
the read miss cycle is not cacheable by the memory 
bus. KWEND# and MKEN# must be returned to the 
82495XP at least two clocks prior to BRDY # to in­
form the CPU that a line fill will not follow. 

The MBC asserts SWEND# (clock 11) to close the 
snoop window, and CRDY# (clock 13) to complete 

the cycle to the 82495XP/82490XP. Note: 
SWEND# is not needed since the cycle was not 
cacheable. 

NOTE: 
Both examples show single cycle read requests. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. The memory data 
output enable (MDOE#) must be inactive to allow 
the data pins to be used as inputs. 

Some time after the address has been driven onto 
the memory bus, data will be supplied from the 
DRAM (main memory) to the 82490XP memory cy­
cle buffers. 

For Clocked Memory Bus Mode, MEOC# is assert­
ed by the MBC (clock 6) to latch MZBT# for the 
next transfer, and end the current cycle on the mem­
ory bus (MBRDY# and MSEL# are not necessary 
since this example shows a single transfer cycle). 
MZBT # is driven high by the MBC in order to force 
the read cycle to begin with a non-zero burst ad­
dress. 

For the second non-cacheable read cycle, MSEl-# 
is driven active by the MBC (clock 8) to allow sam­
pling of MBRDY # and to latch MZBT # for the trans­
fer. MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. Again, 
MZBT # is driven high by the M BC to force the trans­
fer to begin with the correct burst address. 
MBRDY# is driven active by the MBC in clock 10 to 
cause the memory burst counter to be incremented 
and data to be placed into the 82490XP cache mem­
ory cycle buffers. The MBC drives MEOC# asserted 
(clock 12) to end the current cycle on the memory 
bus and switch memory cycle buffers for the new 
cycle. 

For Strobed Memory Bus Mode, MEOC# is driven 
active by the MBC (clock 5) to latch MZBT# for the 
transfer (on MEOC# falling edge), and end the cur­
rent cycle on the memory bus (MISTB is not neces­
sary since this example shows a single transfer cy­
cle). MZBT# is driven high by the MBC in order to 
force the read cycle to begin with the correct burst 
address. 

2-335 



CLK 

CADS. 

ADDRESS 

CWfRIf 

RDYSRC 

MCACHEI.f 

PALLCIf 

BGTIf 

CNA# 

KWENOlf 

SWENO# 

CROYlI 

82495XP Cache Controller/82490XP Cache RAM 

: 1 1 2 314 5 6 I 7 8 9 10 11 12 

. , , , 

~'-----~_--'-~ """"'~C£Y ,---,--_~~,----,x0xxxxxxxxxxxxx 

m I I \XXxxXXx/ 1 I \xxxxXXxxXXxxxxx 
?X\ I IXXxXXXX\ -, IxxXXxxXXxxxxxxx 

, ,I "" w ' \X;XXXX;XX/ ' \X;XXXX;XXXX;XXXXxx 
~I "I ,',' W : \x'xxxxXx/ : , ,\X-XXXx-Xxxx-xxxx-xx 
:xxx$X\ : IX$XXxXXXxXXXX!xXXXXX\ I Ix>6<xxxXXXX:XXXxXX 
XxxxD<x/: \ i IX>&xxXixxxixxx><xx\ i IXixxxXixxixxxixx 
, • , " "'" I , 

xxxx?<x/: \ I IX0xxxxxxxy<xxXXX\ I lX~xxxxxxxxxxxxxx 
xxxxp<xX?U : \: IXq<XXX;XX/ i ' ~ 

: "--:-/ : :"-
- .. - .. ~ .. -I·· - .-. -. t - .. '- .. -'- .. -t .. -' .. - I 
CLOCKED MEMORY BUS MODE: : ' : 

MCLK 

MSEL# 

MEOCH 1 ~: 1 

MBRDY# :xxxx~xXX:xxxx;Xxxxxxxx:xxxx( :..... Ixxxx:xxxx:xx, 
, , " ,I" ,,-

MZBTH ~ -\Xxxx'xxxxxxxx'xxxxxxxxx:::oc= 
, 5: ' d~~ , x5: ' x5: ' " ' 

MFRZII xxx>cxxxxxx~xxxxxx~xxxxxx xxxxxxxxxx><:>e:X:=: 
MDOEH ~ , , I r. 
MDATA rxxip<xxx:x :xxx*xxip<xxx:xxxxjx, :xxxx:xxxx:xx, 
- . - - - - --' - - - '- - - -' - - - . - - _.- - - ....-. - - ---'- - - _. - - - . - -.:.... - ,- - - _. - - - '-- - - -- - ' 

STROBED MEMORY BUS MODE: 
, , , , , 

I 
\: MSEL# 

MEOCH 

MOSTB 

MZBTH 

MFRZH 

MDOEH 

MDATA 

: I; 
I 

~:, -,:~-
:xxx$xxx:xxxzxxx*xxx/ .. -' __ .. : ... _ .1 .. ~<: - !>0<xxx:xxxxXX' 
XXXxP<xxxxxxw \Z2QQ9 \b<xxixxxxb<xxi<xx~ 
xxx~xx0xx~xxx~xx~xxxxxx~xx~xxxXXJtxXxxxxx: 
~'" ~ 
, I, "i, I 

xxxx-xxxx'x xxxxxxxx'xxxxx :xxxxXxxx:xxxx:xx, 

Figure 8-4. Write Hit to [S] State Line (Write-Through) 

2·336 

240956-36 



82495XP Cache Controller/82490XP Cache RAM 

For the second non-cacheable read cycle, MSEL# 
is driven active by the MBC (clock 8) to allow MISTB 
operation and to latch MZBT# for the transfer (on 
MSEL# falling edge). Again, MZBT# is driven high 
by the MBC to force the transfer to begin with the 
correct burst address. MISTB is toggled in clock 9 to 
cause the memory burst counter to be incremented, 
and data to be placed into the 82490XP cache mem­
ory cycle buffers. Note: MISTB latches the memory 
bus data on both the rising and falling edges. The 
MBC drives MEOC# asserted (clock 13) to end the 
current cycle on the memory bus and switch memo­
ry cycle buffers for the new cycle. MZBT # for the 
next cycle (not shown), is sampled at this time on 
the falling edge of MEOC#. 

8.2 Write Cycles 

8.2.1 WRITE HITS 

8.2.1.1 Write Hit to [E] or [M] States 

CPU initiated write cycles which hit 82495XP entries 
tagged in the [E] or [M] states are executed com­
pletely within the CPU/Cache core, and will not be 
seen by the MBC. 

8.2.1.2 Write Hit to [S] State 

Figure 8.4 illustrates CPU initiated write cycles which 
hit lines in the 82495XP/82490XP cache array that 
are in the shared state. If the 82495XP/82490XP is 
used as a write through cache (not write back), the 
[S] state is the only state a cached line could be in. 
These cycles are posted as are all normal write cy­
cles (as long as no other write miss is pending). 

CACHE CONTROL SIGNALS: 

The CPU initiates the write cycle to the 
82495XP /82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a hit to shared state, it posts the write 
and returns BRDY # to the CPU. 

The 82495XP next issues a cycle request (CADS# 
in clock 1), and the associated cycle control signals 
to the MBC (eg. CW/R#, CM/IO#, CD/C#, 
RDYSRC, MCACHE#, PALLC#) in order to sched­
ule the write through operation. MCACHE# is not 
active since the write will be posted; RDYSRC is not 
active, indicating that the 82495XP will supply 
BRDY# to the CPU; PALLC# is not active, indicat­
ing that an allocation cycle will not be performed 

(regardless of MKEN# state) since the line is al­
ready available in the cache. The MBC must also 
latch PWT and PCD on BLE # falling edge in order 
to track hits and misses to the [S] state. This is how 
an external state tracker can track the [S] state. 

The memory bus address (MSET[10:0], 
MTAG[11 :0], MCFA[6:0j) is valid with CADS# 
(clocks 1 and 6 for the two cycles in this example) 
and remains valid until after CNA# is sampled active 
by the 82495XP (clocks 4 and 9). MALE and MBALE 
may be used to hold the address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the cycle is 
guaranteed to complete on the memory bus. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit from another 
cache. 

CNA# is asserted by the MBC (clock 3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. KWEND# is 
also driven at this time since the cacheability of this 
cycle is already known and MKEN # is a don't care. 
It is not necessary that KWEND# be asserted at this 
time. 

The 82495XP provides BRDY # to the CPU since 
the cycles are posted writes. The MBC completes 
the first write hit to [S] state in clock 5 when it as­
serts CRDY # to the 82495XP /82490XP cache. The 
data is latched in to the 82490XP array from the 
memory cycle buffer at this time. 

In this example, the 82495XP issues a second write 
to [S] state in clock 6. For this cycle, the 82495XP 
issues the memory bus request (CADS#) as soon 
as it can after sampling CNA # asserted. The 
82495XP will not wait for KWEND# (if it does not 
get asserted immediately as in this example) to is­
sue CADS# since this is not a potential allocate cy­
cle (ie. PALLC# active). 

The MBC asserts BGT#, CNA#, and KWEND# to: 
gether in clock 8 to indicate that the current cycle is 
guaranteed to complete and the 82495XP is free to 
schedule a new memory bus cycle. 

Again, the 82495XP provides BRDY # to the CPU 
since the cycles are posted writes. The MBC com­
pletes the second write hit to [S] state in clock 12 
when it asserts CRDY# to the 82495XP/82490XP 
cache. The data is latched in to the 82490XP array 
from the memory cycle buffer at this time. 

2-337 



82495}(P Cache Controller/82490){P Cache RAM 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, the memory data 
output enable signal (MDOE #) is asserted by the 
MBC in clock 2 to drive the memory data outputs. 

MEOC# is asserted by the MBC (clock 4) to latch 
MZBT # for the transfer, and end the current cycle 
on the memory bus (MBRDY # is not necessary 
since this example shows a single transfer cycle). 
MZBT# is driven high by the MBC in order to force 
the write cycle to begin with the correct burst ad­
dress. MFRZ # is sampled here (it need not be ac­
tive since the cycle is not potentially allocatable). 

For the second write through cycle, MSEL# is driv­
en active by the MBC (clock 7) to allow sampling of 
MBRDY # and to latch MZBT # for the transfer. 
MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. Again, 
MZBT # is driven high by the MBC to force the trans­
fer to begin with the correct burst address. 
MBRDY # is driven active by the MBC in clock 10 to 
cause the memory burst counter to be incremented 
and data to be placed into the 82490XP cache mem­
ory cycle buffers. The MBC drives MEOC# asserted 
(clock 12) to end the current cycle on the memory 
bus and switch memory cycle buffers for the new 
cycle. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) is asserted by the MBC in 
clock 2 to drive the memory data outputs. 

MEOC# is driven active by the MBC (clock 4) to 
latch MZBT# for the transfer (on MEOC# falling 
edge), and end the current cycle on the memory bus 
(MOSTB is not necessary since this example shows 
a single transfer cycle). MZBT # is driven high by the 
MBC in order to force the read cycle to begin with 
the correct burst address. 

For the second write through cycle, MSEL# is driv­
en active by the MBC (clock 6) to allow MOSTB op­
eration and to latch MZBT # for the transfer (on 
MSEL# falling edge). Again, MZBT# is driven high 
by the MBC to force the transfer to begin with the 

correct burst address. MOSTB is toggled in clock 9 
to cause the memory burst counter to be increment­
ed, and data to be placed into the 82490XP cache 
memory cycle buffers. Note: MOSTB latches the 
memory bus data on both the rising and falling edg­
es. The MBC drives MEOC# asserted (clock 11) to 
end the current cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MZBT # for 
the next cycle (not shown), is sampled at this time 
on the falling edge of MEOC#. 

8.2.2 WRITE MISSES 

8.2.2.1 Write Miss with no Allocation 

Figure 8.5 illustrates two CPU initiated write cycles 
which miss the 82495XP/82490XP cache and are 
not allocatable. The first write cycle begins as a po­
tentially allocatable cycle, but MKEN# sampled in­
active indicates that the cycle is not cacheable,by 
the memory bus. The second write miss cycle is not 
cacheable by the CPU/82495XP/82490XP as indi­
cated by the PALLC# output from the 82495XP. 

CACHE CONTROL SIGNALS: 

The CPU initiates the first write cycle to the 
82495XP/82490XP cache where the cache tag 

. state is looked up. Once the 82495XP determines 
the cycle to be a cache miss. It issues a cycle re­
quest (CADS# in clock 1) and the associated cycle 
control signals to the MBC (eg. CW/R#, CM/IO#, 
CD/C#, RDYSRC, MCACHE#, PALLC#) inorder 
to schedule the write miss operation. RDYSRC is not 
active, indicating that the 82495XP will supply 
BRDY# to the CPU; MCACHE# is not active; 
PALLC# is active, indicating that the cycle is poten­
tially allocatable. 

The write miss data is posted in the 82490XP's 
memory cycle buffer, and the cycle completes with 
no wait states to the CPU. The CPU is then free to 
issue another (non-related) cycle while the 82495XP 
completes the current write miss cycle and possible 
allocation. If this new cycle is a cache hit, it will be 
serviced by the 82495XP immediately; but if it is a 
cache miss, its service will wait until the CRDY # of 
the write cycle (and allocation cycle, if executed). 

The memory bus address (MSET[10:0]' 
MTAG[11:0], MCFA[6:0l) is valid with CADS# 
(clocks 1 and 7 for the two cycles in this example) 
and remain valid until.after CNA# is sampled active 
by the 82495XP (clocks 4 and 10). MALE and MBA­
LE may be used to hold the address as necessary. 

2-338 



82495}(P Cache Controller/8249Q}CP Cache RAM 

ClK 

CADS# 

ADDRESS 

CW/R# 

RDYSRC 

MCACHE# 

PAllC# 

BGT# 

CNA# 

KWEND# 

MKEN# 

SWEND# 
1 1 

'~N( {Ij I jJff:·moffiL;O I 

1 1 1 1 '- , , ! 1 1--: , '\'''''' 
CRDY# 1 I 1 I 1 1 1 1 ~, 1 1 I\.J..I 1 ....; -- --+ --I- _.:- - J-_ ~ _1 __ 1- i _ ~_~ _I_~ _ ~ _ --.!... _ ~ 

I I I I I : I 1 : I 

CLOCI(ED MEMORY BUS MODE: 
I I 

MClK 

MSEl# 

MEOCtl 

MSEl# 

MEOC# 

240956-37 

Figure 8·5. Write Miss with No Allocation 

2-339 



inlet 82495XP Cache Controller/82490XP Cache RAM 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the write 
through cycle is guaranteed to complete on the 
memory bus. Once the 82495XP samples BGT # as­
serted, it must finish that cycle on the memory bus. 
Prior to this point, the cycle can be aborted by a 
snoop hit from another cache. . 

CNA# is asserted by the MBC (clock 3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Notice that the cycle control signals are not guaran­
teed to be valid after CNA# activation. NOTE that 
CNA# has no effect before KWEND#. 

When the MBC has determined the cacheability at­
tribute of the write through cycle, it drives the 
MKEN # signal accordingly. The MBC also drives 
the KWEND# signal at this time (clock 4), indicating 
the end of the cacheability window. The 82495XP 
samples MKEN# inactive during KWEND#, indicat­
ing that the missed cycle is not cacheabie and 
should not be allocated. 

The MBC asserts SWEND# (clock 6) when the 
snoop window of the write through cycle ends on the 
memory bus. The MBC may return CRDY # to the 
82495XP/82490XP cache any time after the closure 
of the snoop window. In this example, CRDY# is 
issued by the MBC in clock 8. 

. The 82495XP issues a cycle request for the. second 
write miss cycle in clock 7. The cycle control signals 
are valid at this time. Note that PALLC# is inactive, 
indicating that the 82495XP/82490XP has deter­
mined the cycle to not be allocatable. 

The MBC# asserts BGT#, CNA#, and KWEND# in 
clock 9. MKEN# is a don't care during the cachea­
bility window since the cycle is not allocatable. The 
snoop window is closed in clock 11, and the cycle is 
completed on the memory bus in clock 13 with the 
assertion of CRDY # by the MBC. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, the memory data 
output enable (MDOE#) is asserted by the MBC in 
clock 4 to drive the memory data outputs. 

MEOC# is asserted by the MBC (clock 5) to latch 
MZBT # for the transfer, and end the current cycle 
on the memory bus (MBRDY# is not necessary 
since this example shows a single transfer cycle). 
MZBT # is driven high by the MBC in order to force 
the read cycle to begin with the correct burst ad­
dress. MFRZ# is sampled here (it need not be ac­
tive since the cycle is not potentially allocatable). 

For the second non allocatable write cycle, MSEL# 
is driven active by the MBC (clock 8) to allow sam­
pling of MBRDY # and to latch MZBT # for the trans­
fer. MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP,the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. Again, 
MZBT # is driven high by the MBC to force the trans­
fer to begin with the correct burst address. 
MBRDY # is driven active by the MBC in clock 10 to 
cause the memory burst counter to be incremented 
and data to be pi aced into the 82490XP cache mem­
ory cycle buffers. 

The MBC drives MEOC# asserted (clock 13) to end 
the current cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MFRZ# is 
sampled here (it need not be active since the cycle 
is not potentially allocatable). MZBT # is also sam­
pled at this time. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) is asserted by the MBC in 
clock 2 to drive the memory data outputs. 

MEOC# is driven active by the MBC (clock 5) to 
latch MZBT # for the transfer, and end the current 
cycle on the memory bus (MOSTB is not necessary 
since this example shows a single transfer cycle). 
MZBT # is driven high by the MBC in order to force 
the read cycle to begin with the correct burst ad­
dress. 

For the second write through cycle, MSEL# is driv­
en active by the MBC (clock 8) to allow MOSTB op­
eration and to latch MZBT # for the transfer. Again, 
MZBT # is driven high by the MBC to force the trans­
fer to begin with the correct burst address. MOSTB 
is toggled in clock 12 to cause the memory burst 
counter to be incremented, and data to be read from 
the 82490XP cache memory cycle buffers. Note: 
MOSTB latches the memory bus data on both the 
rising and falling edges. 

The MBC drives MEOC# asserted (clock 13) to end 
the current cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MZBT # 
and MFRZ# for the next cycle (not shown), is sam­
pled at this time on the falling edge of MEOC #. 

2-340 



int'eL. 82495XP Cache Controller/82490XP Cache RAM 

, 1 2 , 3 4 , 5 6 , 7 8910:11'12,13:14:15'16'17'18'19' , " 
ClK 

At 

CADS# I \.U , , 
ADDRESS I l@ I 

I 
, At, 

CDTS# I 
i \.iJ , 

CW/R# 
, $i 

RDYSRC 
, @' 
I , I 

MCACHE# , 
*'i I 

PAllC# , rI3JJ I , I 

~ 
I I I I I 

IXXXXXXXXXXXXXX 

~ 
we I I I I I 

BGT# 

CNA# W"I At WB 

W", At WD 

MClK 

MSEl# , ~"--+--;.--;.---r--l'-"QU{ 
MEOC# 

MBRDY# 

MZBT# 

MFRZ# 

, I ' U I ' , , Wi ' , , I U , , , 
~11111~11111111 

~I~::~:I~ 
~~ 

MDOE# .. ' -+---,r---+-.,--( 

MDATA 

----~---+---~-~-~-~~- -J-~-~-~--~-~-~-+-~ I I , , , , 
STROBED MEMORY BUS MODE: 

MSEl# 

MEOC# 

MxSTB 

MZBT# 

MFRZ# 

MDOE# 

MDATA 

i i 
, " o--i-I - ....... \M. ... ;... : 

, , 
, lilT', 

, " I I I " I '" : I :\.J.LXt. I I I I .\.!..LY, I I I :~ 
Iootsdsoodooo ' , J ' ~I"" '\rt-\I" t - ..0 - - .0. - - .. '\rt-\I"" '\J ' 'cdoood ~ l- __ I_- __ l ___ .I\J...J\.L.I' _ I I I '\.L.I\...!.....J~I __ .!_\&VaM .,­
~ 
~ III~ II ~III f, 
I I I I I I I I I I I I I I • 240956-38 

Figure 8·6. Write Miss with Allocation to [M] Line 

2·341 

II 



82495XP Cache Controller/82490XP Cache RAM 

8.2.2.2 Write Miss with Allocation 

Figure 8.6 illustrates a CPU initiated write cycle 
which misses the 82495XP/82490XP cache and fol­
lows the write to main memory with an allocation 
cycle. An allocation is when the cache follows a 
write miss cycle with a line fill. This example as­
sumes that allocating the new line requires the re­
placement of a modified line (ie. a write-back to main 
memory). 

CACHE CONTROL SIGNALS: 

The CPU initiates the write cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS # 
(clock 1) and the associated cycJe control signals to 
the MBC (eg. CW/R#, CM/IO#, CD/C#, RDYSRC, 
MCACHE#, PALLC#) in order to schedule the write 
operation. iviCACHE# is not active; RDYSRC is not 
active, indicating that the 82495XP will supply 
BRDY #s to the CPU; PALLC# is asserted, indicat­
ing a potential allocate cycle after the write-through 
cycle. 

The write miss data is posted in the 82490XP's 
memory cycle buffer, and the cycle completes with 
no wait states to the CPU. The CPU is free to issue 
another (non-related) cycle while waiting for the 
82495XP to complete the allocation. If this new cy­
cle is a cache hit, it will be serviced by the 82495XP 
immediately; but if it is a cache miss, its service will 
wait until the CRDY # of the allocation. 

The memory bus address (MSET[10:0], 
MTAG[11 :0], MCFA[6:0l) is valid with CADS# 
(clocks 1, 5 and 10 for the three cycles in this exam­
ple) and remain valid until after CNA# is sampled 
active by the 82495XP (clocks 4, 10 and 15). MALE 
and MBALE may be used to hold the address as 
necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the write 
through cycle is guaranteed to complete on the 
memory bus. Once the 82495XP samples BGT # as­
serted, it must finish that cycle on the memory bus. 
Prior to this point, the cycle can be aborted by a 
snoop hit from another cache. 

CNA# is asserted by the MBC (clock 3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA#, activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined the cacheability at­
tribute of the write through cycle, it drives the 

MKEN# signal accordingly. The MBC also drives 
the KWEND# signal at this time, indicating the end 
of the cacheability window. The 82495XP samples 
MKEN# active during KWEND# (clock 4), indicat­
ing that the missed line should be allocated in the 
cache. 

At the first available time (clock 5), the 82495XP as­
serts CADS# to request an allocation cycle. The cy­
cle control signals are valid at this point: MCACHE # 
is active, indicating the cacheability of the line-fill cy­
cle; RDYSRC is not active, indicating that the MBC 
need not supply BRDY#s to the CPU (no BRDY#s 
are necessary for an allocation cycle). 

The MBC asserts SWEND# (clock 6) when the 
snoop window of the write through cycle ends on the 
memory bus. 

The MBC may return CRDY# to the 82495XPI 
82490XP cache any. time after the ciosure of the 
snoop window. In this example, CRDY # is issued by 
the MBC in clock 8. At this time, the cycle progress 
signals for the allocation cycle may be issued by the 
MBC to complete the line fill. 

Once again, the MBC arbitrates for the memory bus 
and returns BGT# asserted (clock 9) for the alloca­
tion cycle. The MBC also asserts CNA# and 
KWEND# at this time. The 82495XP back-invali­
dates the CPU to maintain first and second level 
cache consistency. 

In clock 10, the 82495XP asserts CADS# for the 
write back cycle (since the miss was to a dirty line). 
COTS # is asserted by the 82495XP two clocks later 
(clock 12). Note that CDTS# of the write back cycle 
is not asserted with CADS# since the data is not yet 
available in the 82490XP's. write-back buffer. 

The MBC asserts SWEND# (clock 11) when the 
snoop window of the allocation cycle end on the 
memory bus. 

At this time, the MBC may assert CRDY # to the 
82495XP/82490XP cache for the allocation cycle. 
CRDY # assertion will cause the data stored in the 
82490XP's memory cycle buffers to be latched into 
the cache array. 

On the memory bus, BGT#, CNA#, and KWEND# 
are sampled active in clock 14 for the write back­
cycle. The snoop window is closed two clocks later 
(clock 16) by the MBC with SWEND#, and the write 
back cycle is completed with CRDY# asserted in 
clock 18. 

2-342 



82495){P Cache Controller/82490){P Cache RAM ~rnl~IbO[MJOIf!l~rnlW 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBAlE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, the memory data 
output enable (MDOE#) has been asserted by the 
MBC to drive the memory data outputs. 

MEOC# is asserted by the MBC (clock 4) to latch 
MZBT # for the transfer, and end the current cycle 
on the memory bus (MBRDY# is not necessary 
since this example shows a single transfer write 
miss cycle). MZBT# is driven high by the MBC in 
order to force the read cycle to begin with the cor­
rect burst address. MFRZ# is driven inactive by the 
MBC here, allowing the line to be placed into the 
exclusive ([E]) state and requiring the data to be 
written to main memory. 

For the allocation (line fill) cycle, MSEl# is driven 
active by the MBC (clock 6) to allow sampling of 
MBRDY # and to latch MZBT # for the transfer. 
MZBT# is sampled on all MClK edges where 
MSEl # is inactive. Once MSEl # is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MClK is used for the next transfer. 
MDOE# is also deasserted in clock 6 to allow the 
data pins to be used as inputs for the allocation cy­
cle. 

MBRDY # is driven active by the MBC in clocks 7 to 
9 to cause the memory burst counter to be incre­
mented and data to be placed into the 82490XP 
cache memory cycle buffers. The MBC drives 
MEOC# asserted (clock 10) to end the allocation 
cycle on the memory bus and switch memory cycle 
buffers for the new cycle. MZBT # is sampled and 
latched at this time for the next data transfer. 

MDOE # is asserted by the MBC (clock 12) to drive 
the memory data outputs for the write back cycle. 

The MBC again asserts MBRDY# (clocks 13 to 15) 
for the write back cycle to increment the memory 
burst counter and cause data to be read from the 
82490XP memory cycle buffers. The write back cy­
cle ends on the memory bus and switches memory 
cycle buffers with MEOC# assertion (clock 16). 
MZBT# and MFRZ# for the next transfer are sam­
pled at this time. MFRZ# need not be active since 
the cycle is not potentially allocatable. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) has been asserted by the 
MBC to drive the memory data outputs for the write 
miss cycle. 

MEOC# is driven active by the MBC (clock 4) to 
latch MZBT # for the transfer, and end the current 
cycle on the memory bus (MOSTB is not necessary 
since this example shows a single transfer cycle). 
MZBT# is driven high by the MBC in order to force 
the read cycle to begin with the correct burst ad­
dress. MFRZ# is driven deasserted by the MBC 
here, allowing the line to be placed into the exclu­
sive ([E]) state. 

For the allocation (line fill) cycle, MSEl# is driven 
active by the MBC (clock 6) to allow MISTB opera­
tion and to latch MZBT# for the transfer. MISTB is 
toggled in clocks 8 to 10 to cause the memory burst 
counter to be incremented, and data to be placed 
into the 82490XP cache memory cycle buffers. 
Note: MISTB latches the memory bus data on both fI 
the rising and falling edges. MDOE# is also deas-
serted in clock 6 to allow the data pins to be used as 
inputs for the allocation cycle. 

The MBC drives MEOC# asserted (clock 11) to end 
the allocation cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MZBT # for 
the next cycle, is latched at this time on the falling 
edge of MEOC#. 

MDOE# is asserted by the MBC (clock 14) to drive 
the memory data outputs for the write back cycle. 

The MBC toggles MOSTB (clocks 15 to 17) for the 
write back cycle to increment the memory burst 
counter and cause data to be read from the 
82490XP memory cycle buffers. 

The write back cycle ends on the memory bus and 
switches memory cycle buffers with MEOC# asser­
tion (clock 18). MZBT# and MFRZ# for the next 
transfer are sampled at this time. MFRZ # need not 
be active since the cycle is not potentially allocata­
ble. 

8.3 Snooping Cycles 

8.3.1 SYNCHRONOUS SNOOPING MODE 
(HIT TO [M] LINE) 

Figure 8.7 illustrates a snoop hit to a dirty line se­
quence occurring simultaneously with a CPU initiat­
ed read miss cycle. This example assumes synchro­
nous snooping mode (ie. requests for snoops are 
done via SNPSTB# from the MBC, sampled on the 
82495XP's ClK). 

2-343 



intel .. 

CLK 

CADSII 

ADDRESS· 

CDTS. 

. CW/R. 

RDYSRC 

MCACHE. 

BGT. 

CRDY. 

SNPADS. 

SNPCYC' 

82495XP Cache Controller/82490XP Cache RAM ~OO~!1.0IMlOOO~OOW 

2 31 4 5 6 7 B 9 10 11 12 13 1 14 : 

LhJ 
I' , 

~--~--~~--~~--~~--~~ 

~XX><?<Xx>$><=t=XX~XXX~XXX:XX : ~ 
i. i ;~I" Y i: :\:..:../"1 ; 
t;X.6X.6XX;Xt:>t><X!l.<X:I.IX~XI.<:X~\,--~1 ' , l>CACS"~DORTE~ : CAOS"~EHS$UI!~ .,,~ 
"'~""'X=XXrlo~"'X"'X'7<><*X=X~I.-'-i ~\ : : ~~ 

~~~~~~ixkxx~xxJxxxJxxxJxxxJxxxJxxxJxxxJxxxJxxxxkX\ : 
'" '" ~

V
, , ,

~~~~. ~XX~XXX;XX\ 
SNPBSY.. , \ ~ 

SNPSTB. ~ I 
,. ., i , I , , , • " 

SNPINV :xx;: \xX;XXXXD<XXXXXXX;XXXXXXXX;XXxx;xxxX;XXxx;xxxX;XXXX;XXXXD<XXX 
MAOEN ~' 'I" , , , , , , '~ 
cLocKEDMEMoRVjB~s~OD~'- -:- - -:- - -:- - ~ --; --:- --:- --:- --j - ----; 

. ., I I I I I • I I .', 

MCLK ' " "'" 

MSELII 

MEOC# 

MBRDY. 

MZBT. 

MFRZII 

MDOEN 

MDATA 

, 1 , 

:"----/:; 
xxxxxxxxxxxll :,\xx xXXXXI ,\ 'I 1 , 
~xxX:Xxx>6GD6c:::>6<xxX:XxxX:Xxxx>cxXxxX:X x xlxxxx: 
:XXXXgxxx:Xxxx:xxxx:xxxx:Xxxx:>cx:Xxxx:xxxx:Xxxx~ 
, , , 1 ' , , : : : : : : 1 ' 

~xxx~xx~xxixxx~xxxXxx~xxx'xxxXxxx~ 
_. ____ 1 __ .1 __ .. __ .. __ .. __ , __ ••• _ ••• _ 4 __ .. __ I. __ ',. __ • __ -J __ --0 

STROBED MEMORY BUS MODE: 

MSELII I~: 
MEOC# 

MxSTB 

MZBT. 

MFRZII 

MDOE. 

MDATA 

"--.: 

rxxxrxx$xx$><_;_ -~-;- - -i ---~ ---;- ---;-~~ 
~XXX~XXXgxx~gXXX,xXXX'XXXXgXXX'XXXXgXXX'XXxx~ 

xxxxxxxxxxx¥xxxXxxxX=XxxxxXxxxXxxxXxxxXxxxxxxxXxx~ 
; ; ;., \: : : : :.: : : : ,.: , :x~ 1 • • • • x: . , , , 1 
xxxxxX)Q(XXXgxxx:xxxx:XxxXXxx&Xxxxxx&XXX&~ 

240956-39 

Figure 8·7. Synchronous Snooping Mode 

2-344 



intel· 82495XP Caclle Controller/82490XP Cache RAM 

CACHE CONTROL SIGNALS: 

In clock 1 SNPSTB# is asserted by the MBC, indi­
cating to the 82495XP a request for snooping. The 
82495XP samples MAOE# (it must be inactive) in 
order to recognize the snoop request. It is latched 
together with the snoop address (MSET[0:10]' 
MTAG[O:11], MCFA[O:6l), SNPINV, MBAOE#, and 
SNPNCA on the 82495XP's CLK during SNPSTB# 
assertion. The tag look-up is done immediately after 
SNPSTB# is sampled active since snoop opera­
tions have the highest priority in the cache tag state 
arbiter. The 82495XP issues SNPCYC# (clock 2), 
indicating that the snoop look-up is in progress. The 
results of the look-up are driven to the memory bus 
via MTHIT# and MHITM# in the next clock after 
SNPCYC#. Since the snoop hit a modified line, both 
signals are asserted (clock 3). SNPBSY # is also is­
sued to indicate that the 82495XP is busy with CPU 
back-invalidations, the 82490XP's snoop buffer is 
full, or a write back is to follow. The 82495XP will 
accept snoops only when SNPBSY# is inactive. 

Simultaneously with the memory bus activity due to 
the snoop request, the CPU initiates a read miss cy­
cle. The 82495XP issues a memory bus request 
(CADS#), CDTS#, and cycle control signals to the 
MBC in clock 3. The MBC must wait for the pending 
snoop cycle to complete on the memory bus prior to 
servicing this read miss cycle. 

The memory bus address (MSET[10:0], 
MTAG[11:0], MCFA[6:0l) is not valid until MAOE# 
goes active after CRDY # of the snoop write back 
cycle is sampled active by the 82495XP and the 
CADS# is reissued (clock 13). 

In clock 4 the 82495XP issues SNPADS# and cycle 
control signals to the MBC, indicating a request to 
flush a modified line out of the cache. SNPADS# 
activation causes the MBC to abort the pending read 
miss cycle. It is the 82495XP responsibility to re-is­
sue the aborted cycle after the completion of the 
write back, since BGT # was not asserted by the 
MBC. 

Data is loaded into the 82490XP's snoop buffer. 
Since SNPINV· was sampled asserted by the 
82495XP (clock 1) during SNPSTB# assertion, it 
back-invalidated the CPUs first level cache. 

The 82495XP asserts CDTS# (clock 8) indicating to 
the MBC that data is available in the snoop buffer. 
When the MBC complete the write back cycle on the 
memory bus, it activates CRDY# ·to the 
82495XP/82490XP cache. At this time, the 
82495XP deasserts SNPBSY # (clock 13) and re-is­
sues the aborted read miss cycle (clock 13) by as­
serting CADS# and CDTS#. 

MEMORY BUS SIGNALS: 

For Clocked Memory Bus Mode, the memory data 
output enable (MDOE#) is not activated by the MBC 
to allow the memory data pins to be used as inputs. 

MSEL# is driven active by the MBC (clock 4) to al­
low sampling of MBRDY# and to latch MZBT# for 
the read miss transfer. MZBT # is sampled on all 
MCLK rising edges where MSEL# is inactive. Once 
MSEL# is sampled active by the 82495XP, the val­
ue of MZBT # sampled on the prior MCLK is used 
for the next transfer. 

Since the read miss cycle is aborted due to the 
snoop hit to a modified line (requires a write back 
cycle), no MEOC# is given. MSEL# is deasserted 
by the MBC (clock 6) and reasserted (clock 8) to 
allow latching of MZBT # for the snoop write back 
cycle and sampling of MBRDY# for that cycle. 
MFRZ# is also sampled at this time. 

The memory data output enable (MDOE#) signal is 
driven active by the MBC (clock 7) to drive the mem­
ory data outputs. 

MBRDY # is driven active by the MBC in clocks 10 
to 12 to cause the memory burst counter to be incre­
mented and data to be written from the 82490XP 
cache snoop buffers. The MBC drives MEOC# as­
serted (clock 13) to end the write back cycle on the 
memory bus and switch memory cycle buffers for 
the new cycle. MZBT# and MFRZ# are sampled 
and latche.d at this time for the next data transfer. 

MDOE# is deasserted by the MBC (clock 14) to al­
low the memory data pins to be used as inputs for 
the reissued read cycle. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) has not been asserted by 
the MBC to allow the memory data pins to be used 
as inputs for the read miss cycle. 

MSEL# is asserted by the MBC (clock 4) to allow 
sampling of MISTB and latch MZBT# (on the falling 
edge of MSEL#) for the read miss transfer. 

Since the read miss cycle is aborted. due to the 
snoop hit to a modified line (requires a write back 
cycle), no MEOC# is given. MSEL# is deasserted 
by the MBC (clock 5) and reasserted (clock 6) to 
allow latching of MZBT # for the snoop write back 
cycle and sampling of MOSTB for that cycle. 
MFRZ# is also sampled at this time. 

MOSTB is toggled in clocks 11 to 13 to cause the 
memory burst counter to be incremented, and data 

2-345 



iniel.. 82495XP CacheController/82490XP Cache RAM I¥'OOI§I1.DIMIDOO~OOW 

to be read from the 82490XP cache memory cycle 
buffers. Note: MOSTB latches the memory bus data 
on both the rising and falling edges. The MBC drives 
MEOC# asserted (clock 14) to end the snoop write 
back cycle on the memory bus and switch memory 
cycle buffers for the new cycle. MZBT # and 
MFRZ# for the next cycle, are latched at this time 
on the falling edge of MEOC#. 

MDOE# is deasserted by the MBC (clock 14) to al­
low the memory data pins to be used .as inputs for 
the reissued read miss cycle. 

8.3.2 CLOCKED SNOOPING MODE 

Figure 8.8 illustrates a CPU initiated Read cycle 
which misses the 82495XP/82490XP cache and the 

-subsequent line fill replaces non dirty data (eg. clean 
or empty) .. Simultaneous with the read request to the 
MBC, that device initiates a snoop to the 82495XP 
which misses that line in the cache. The snoop is the 
result of a write cycle on the memory bus by some 
other cache core; therefore, asserting the snoop in­
validation signal (SNPINV) to this 82495XP. This ex­
ample assumes Clocked Snooping Mode (Le. the re­
quests for snoops are done via SNPSTB# from the 
MBC, sampled on the MBC's SNPClK). 

CACHE CONTROL SIGNALS: 

The CPU initiates the read' cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS # 
(clock 1) and the associated cycle control signals to 
the MBC (eg. CW/R#, CM/IO#, CD/(:#, RDYSRC 
MCACHE#) in order to schedule the cache line-fiJi 
operation. MCACHE# is active, indicating that the 
read miss in potentially cacheable by the 82495XP; 
RDYSRC is active; indicating that the MBC must 
supply BRDY#s to the CPU cache core. 

In clock 3, SNPSTB# is asserted by the MBC at this 
~ime, indicatin.g to the 82495XP a request for snoop­
ing. MAOE# IS deas~erted to allow the forthcoming 
snoop (the 82495XP will not recognize the snoop if 
MAOE# is active). It is latched together with the 
snoop address (MSET[0:10], MTAG[0:11], 
MCFA[0:6]), SNPINV, MBAOE#, and SNPNCA on 
the MBC's SNPClK rising edge during SNPSTB# 
assertion. SNPINV is asserted from the MBC since 
th~ cache core which initiated the snoop issued a 
write cycle on the memory bus. If the response of 
the snoop to this 82495XP was a cache hit, the con­
tents would no longer be valid due that write. 

~ollowing synchronization to the 82495XP ClK, it 
Issues SNPCYC# (clock 5), indicating that the 
snoop look-up is in progress. The results of the look­
up are driven to the memory bus via MTHIT # and 
MHITM# in the next clock after SNPCYC#. Since 
the snoop was a miss in the cache, both signals are 
inactive (clock 6). Note that SNPBSY # will not be 
asserted since the snoop was a miss to this cache. 
The snoop from another cache is complete at this 
point, and the read miss cycle will continue. 

The MBC asserts MAOE# to allow this 82495XP to 
drive its address on the memory bus in order to com­
plete the read miss cycle. The memory bus address 
(MSET[10:01. MTAG[11 :0], MCFA[6:0l) is valid after 
M~OE# assertion # (clock 6 for the read cycle in 
this example) and remains valid until after CNA# is 
sampled active by the 82495XP (clock 8). MALE and 
MBAlE may be used to hold the address as neces­
sary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 6), indicating that the cycle is 
guaranteed to complete on the memory bus. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit from another 
cache. 

CNA# is asserted by the MBC(cJock 7) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA # activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined the cacheabilityat­
tribute 'of the cycle, it drives the MKEN# signal ac­
cordingly. The MBC also drives the KWEND# signal 
at this time, indicating the end of the cacheability 
window. The 82495XP samples MKEN# during 
KWEND#. (clock 7) to determine that the cycle is 
indeed cacheable. 

The MBCasserts SWEND# when the snoop win­
dow ends on the memory bus. The 82495XP sam­
ples MWB/WT# during SWEND# (clock 9) and up­
dates the cache tag state according to the consist­
ency protocol. The closure of the snoop window also 
enables the MBC to start providing the CPU with 
data that has been stored in the 82490XP's memory 
cycle buffer. The MBC supplies BRDY # s to the CPU 
(clocks 9-12). 

The read miss cycle ends when CRDY # is driven 
active by the MBC (clock 12). It is at this time that 
the data in the 82490XP's memory cycle buffers is 
loaded into the cache SRAM.. -'. 

2-346 



82495XP Cache Controller/82490XP Cache RAM ~rnl~!bOrMIOOO~OO't7 

, 1 

ClK 

CADS# ~'" 
ADDRESS : I sno~p Ad~ ,DOS : 

" , I I I I I I 

CW/R# ~I '~ 
RDYSRC W' 

I I I I I I 
5fi\ I I I I I 

-I' , " , IACACHE# 

~ 
I I I I I I 

, IXXXXXXXXXXXlOOOOOCO 
I I I I I I I 

BGT# ~ 
MXXXg88ID1l!Xg.)(xx~g:RI' \:~ 

r:=:iS 
CNA# 

KWEND# 

MKEN# 

SWEND# 

BRDY# : I : : : : : : : : : : : I 
I I 1 I 1 I I I I \ I I I I r. 

CRDY# I, I " " I, " " \ ~ r! 
. I '-f-J : 

SNPCYC# ~-r--+--+~\lJr~~~~--~-+--+-~--~~ 

MTHIT# ' '," 
"HITI"I mtIDl'lcRRm!Rl/1I'RID{frl(f , 
M .1' I I I I I I I I I I 

----+-T-~-~-~~-~-~-~-~~-~-~-~ 
CLOCKED MEMORY BUS MODE:, " , , , 

SNPClK , , 
SNPSTB# -~I '; """'" 

I I I I I I I I I I I I I 

SNPINV ~ : lffllCJOOllO(ij!xxxpx»J<~ 
I " I 

IAAOE# H ': \'~i _+_+_-!-_~-!_-!-_-!-_J 
I I I 1 I I I I I I I 

- - _ - .....L _ T _ ..l.- _ L- _ L- _1_ -I _ 010 _ I- _1_ --I _ --a. _ -+ _ -I 

CLOCKED MEMORY BUS MODE: "" 
I 

MClK 

MSEl# 

MEOC# , W. , 
MBRDY# :-.. /. 

, 
-, 

IAZBT# X X X X X X X 

, ~~'~dmmn~dmn IADATA~_ 
----~-~-~-~-~~-~-T-~-~~-~-~-~ 

1 I 1 I I I I I I I I I I I 

STROBED MEMORY BUS MODE: '" , 

MSEl# 

MEOC# 

IAxSTB 

MZBT# 

MDATA 

, ' , , 
\: r.--: 

I I I I 

I I I I I I I I I IV-:-; 

I .'."\ I '. --~ ~' '>¢xPL. '-~ 
l""""I"""""I'-IIlfl-I'P"""JPlt..., - - i" '",.. '" "i, ..... -Y,..J.-IIliIl-"i 

~ 

Figure 8-8., Clocked Snooping Mode 

2-347 

240956-40 



82495XP Cache Controller/82490XP Cache RAM 1¥>[ru[gIl"OIMlOOO~[ruW 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE # and MBAOE #) 
should be asserted by the MBC. (Note the use of 
MAOE# for snooping at the beginning.of the cache 
control signals section.) MDOE# must be inactive to 
allow the data pins to be used as inputs. 

Some time after the address has been driven onto 
the memory bus, data will be supplied from the 
DRAM (main memory) to the 82490XP cache 
SRAM. 

For Clocked Memory Bus Mode, MSEL# is driven 
active by the MBC (clock6) to allow sampling of 
MBRDY# and to latch MZBT# for the transfer. 
MZ8T # is sampled on aii MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. 
MBRDY# is driven active by the MBC in clocks 7 to 
9 to cause the memory burst counter to be incre­
mented and data to be placed into the 82490XP 
cache memory cycle buffers. The MBC drives 
MEOC# asserted (clock 10) to end the current cycle 
on the memory bus and switch memory cycle buffers 
for the new cycle. MZBT # is sampled at this time 
(when MEOC# is sampled asserted and MSEL# re­
mains low) for the next transfer. 

For Strobed Memory Bus Mode, MSEL # is driven 
active by the MBC (clock 6) to allow MISTB opera­
tion and to latch MZBT# (on the falling edge of 
MSEL#) for the transfer. MISTB is toggled in clocks 
8 to 10 to cause the memory burst counter to be 
incremented, and data. to be placed into the 
82490XP cache memory cycle buffers. Note: MISTB 
latches the memory bus data on both the rising and 
falling edges. The MBC drives MEOC# asserted 
(clock 11) to end the current cycle on the memory 
bus and switch memory cycle buffers for the new 
cycle. MZBT # for the next cycle, is sampled at this 
time on the falling edge of MEOC#. 

8.3.3 STROBED SNOOPING MODE 
(HIT TO [M] LINE) 

Figure 8.9 illustrates a snoop hit to a dirty line se­
quence occurring simultaneously with a CPU initiat­
ed read miss cycle. This example assumes strobed 
snooping mode (ie. requests for snoops are done 
from the falling edge of SNPSTB #). 

CACHE CONTROL SIGNALS: 

In clock 1 (totally asynchronous to any clock) 
SNPSTB # is asserted by the MBC, indicating to the 
82495XP a request for snooping. The 82495XP 
samples MAOE# (it must be inactive) in order to 
recognize the snoop request. It is latched together 
with the snoop address (MSET[0:10], MTAG[0:11], 
MCFA[0:6]), SNPINV, MBAOE#, and SNPNCA on 
falling edge of SNPSTB#. The 82495XP issues 
SNPCYC# (clock 3), indicating that the snoop look­
up is in progress. The results of the look-up are driv­
en to the memory bus via MTHIT# and MHITM# in 
the next clock after SNPCYC#. Since the snoop hit 
a modified line, both signals are asserted (clock 4). 
SNPBSY # is also issued to indicate that the 
82495XP is busy with CPU back-invalidations, the 
82490XP's snoop buffer is full, or a write back is to 
follow. The 82495XP will accept snoops only when 
SNPBSY # is inactive. 

Simultaneously with the memory bus activity due to 
the snoop request, the CPU initiates a read miss cy­
cle. The 82495XP issues a memory bus request 
(CADS #), CDTS #, and cycle control signals to the 
MBC in clock 1. The MBC must wait for the pending 
snoop cycle to complete on the memory bus prior to 
servicing this read miss cycle. 

The memory bus address (MSET[10:0], 
MTAG[11:0], MCFA[6:0]) is not valid until MAOE# 
goes active after CRDY # of the snoop write back 
cycle is sampled active by the 82495XP and the 
CADS# is reissued (clock 15). 

In clock 5 the 82495XP issues SNPADS# and cycle 
control signals to the MBC, indicating a request to 
flush a modified line out of the cache. SNPADS# 
activation causes the MBC to abort the pending read 
miss cycle. It is the 82495XP responsibility to re-is­
sue the aborted cycle after the completion of the 
write back, since BGT # was not asserted by the 
MBC. 

Data is loaded into the 82490XP's snoop buffer. 
Since SNPINV was sampled asserted by the 
82495XP (clock 1) during SNPSTB# assertion, it 
back-invalidated the CPUs first level cache. 

The 82495XP asserts CDTS# (clock 9) indicating to 
the MBC that data is available in the snoop buffer. 
When the MBC complete the write back cycle on the 
memory bus, it activates CRDY # to the 
82495XP/82490XP cache. At this time, the 
82495XP deasserts SNPBSY # (clock 15) and re-is­
sues the aborted read miss cycle by asserting 
CADS # and CDTS # . 

2-348 



CLK 

CADSII 

ADDRESS 

CDTSII 

CW/RII 

RDYSRC 

MCACHEII 

BGTII 

CRDYII 

SNPADSII 

SNPCYCII 

MTHITII 
MHITMII 

SNPBSYII 

82495XP Cache Controller/8249Q)(P Cache RAM 

1 I 2 345 6 7 8 9 10: 11 12: 13 : 14: 

, I 
~ 

ZX I 

I ' 
, , , , , , ~ 

r.--.---.--~--.---~~ , , xxxxxxxxxxxxxxxxxxxxx ' , x::::r= 
:~ ~ 

5(\, lD..-,-_~~_~/~ 
, I 
'1I~ 

P 
I CADS# Abortod 

\~ 
CADS# Roissued I • 

; ; :~~: 

~ 

, ' "--: 

~ 
,"-/.'------------~-.--: 

:'-J.r:~~~~-~~-T-~~~-~~~-­

bXXX<=<X*~"'X'<7XXrl<X~X=X"'XO""X\ 
I ' , , 

:\ ~--~~--~~~--~~--~~~',~~I " 
SNPSTBII ;-\ ii, , , , , , , , , , , 
SNPINV ~ ~xxxxXXxxxxxxxxxxxxxxXXxxXXxxXXxxxxxxxxxxxxxxXXxxxxxxi 
MAOE/I ~: : \'-';-: _...;-.....-; 

I I , I , 

cLoc~O:rui~MP~.;~~~o~~:- ',' -,. -," ~ .. -:-":-" .:-., - ',' -,. -, .. ~ 

MCLK 

MSEUI 

MEOCII 
bvooh ' , , , , , , 

MBRDYII 'MM/. ' , , , , , ,\XXX,XXXX'\ ' , ,ojr---','---+I---': 

MZBTII 

MFRZII 

~xXXxxxXxxXXxxxxxxxXxXXXxxx~xXXxxxXxxx~xxx~xxx 
~xxxxxxXxxxx~xxXxxxx~xxxXxxxXxxXxxx~xxXxxxxXxx~xxxxxxx. 

MDOEII , ! ' . , , , , , ,\ : : : : : : ~ 
I vb I I I I I I I I I I I I I I I 

MDATA ~xx;y;xxx'xxxx~xxx'xxxx~xx~xxxx'xxxx'xxx~XX~~xxxbxxx' 
I """ I I ~,----~---, 

S~RoBEO:M'EMPR';;U~ ~o';~: - .:. -:. -: .. ~ .. -:- .. :- .. :- .. - .,. - .. -, .. ~ 
MSELII :;--\' 'I: : \' 
MEOCII I ~ 

XXXXfK .: ... ; ... : ... ; ... : ... : ... : .. xXxxXxxx~ .~.: ... 'i" .: MxSTB 

'~gxxxgxXXgxxx&xxxkxx~xxkxxxgx~xxxgxxxgxx~ 
: i : : ' " , I I • , , , , ~~~ 
, , , , , , , , ,\' r: 

MZBTII 

MDOEII 

MDATA 
'xxxb< J' , , , , , , , , , , , 

~xx~xxxx§(XXXgXXXgXX)0(xxxgXXXgXXX'xxxx§(X~ 

240956-41 

Figure 8-9. Strobed Snooping Mode 

2-349 

• 



82495XP Cache Controller/82490XP Cache RAM 

MEMORY BUS SIGNALS: 

For Clocked Memory Bus Mode, the memory data 
output enable (MDOE#) is not activated by the MBC 
to allow the memory data pins to be used as inputs. 

MSEL# is driven active by the MBC (clock 2) to al­
low sampling of MBRDY# and to latch MZBT# for 
the read miss transfer. MZBT # is sampled on all 
MCLK rising edges where MSEL# is inactive. Once 
MSEL# is sampled active by the 82495XP, the val­
ue of MZBT # sampled on the prior MCLK is used 
for the next transfer. 

" Since the read miss cycle is aborted due to the 
snoop hit to a modified line (requires a write back 
cycle), no MEOC# is given. MSEL# is deasserted 
by the M BC (clock 9) and reasserted (clock 11) to 
allow latching of MZBT # forthe snoop write back 
cycle and sampling of MBRDY# for that cycle. 
~v1FRZ # is also sampled at this tirne. 

The memory data output enable (MDOE #) signal is 
driven active by the MBC (clock 9) to drive the mem­
ory data outputs. 

MBRDY # is driven active by the MBC in clocks 11 
to 13 to cause the memory burst counter to be incre­
mented and data to be written from the 82490XP 
cache memory cycle buffers. The MBC drives 
MEOC# asserted (clock 14) to end the write back 
cycle on the memory bus and switch memory cycle 
buffers for the new cycle. MZBT# and MFRZ# are 
sampled and sampled at this time for the next data 
transfer. 

MDOE# is deasserted by the MBC (clock 16) to al­
low the memory data pins to be used as inputs for 
the reissued read cycle. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) has not been asserted by 
the MBC toallow the memory data pins to be used 
as inputs for the read miss cycle. 

MSEL# is asserted by the MBC (clock 2) to allow 
sampling of MISTB and latch MZBT# (on the falling 
edge of MSEL #) for the read miss transfer. 

Since the read miss cycle is aborted due to the 
snoop hit to a modified line (requires a write back 
cycle), no MEOC# is given. MSEL# is deasserted 
by the MBC (clock 9) and reasserted (clock 11) to 
allow latching of MZBT # for the snoop write back 
cycle and sampling of MOSTB for that cycle. 
MFRZ # is also sampled at this time. 

MOSTS is toggled in clocks 12 to 14 to cause the 
memory burst counter to be incremented, and data 

to be read from the 82490XP cache memory cycle 
buffers. Note: MOSTB latches the memory bus data 
on both the rising and falling edges. 

The MBC drives MEOC# asserted (clock 15) to end 
the snoop write back cycle on the memory bus and 
switch memory cycle buffers for the new cycle. 
MZBT# and MFRZ# for the next cycle, are sam­
pled at this time on the falling edge of MEOC#. 

MDOE # is deasserted by the MBC (clock 16) to al­
low the memory data pins to be used as inputs for 
the reissued read miss cycle. 

8.3.4 CACHE TO CACHE TRANSFER 

8.3.4.1 Read Cycles Causing a Snoop Hit 
to [M] Line . 

Figure 8.10 iiiustrates CPU initiated Read cycles that 
miss the 82495XP/82490XP cache and replace a 
non-dirty (eg. clean) line in the cache. During the 
snoop window, the memory bus attribute which indi­
cates a direct to [M] state transfer is sampled active. 
In such cycles, the 82495XP will instruct the MBC to 
perform a cache line-fill cycle on the memory bus. 
The request for data will not go to main memory, but 
instead will go to the controller of the cache which 
contained the modified data. The line is then written 
into the 82490XP's array, and data transferred to the 
CPU as requested. If the line fetched from the sec­
ond cache replaces a line which is in valid unmodi­
fied state ([E] or [S]), then a back-invalidation cycle 
is performed on the CPU bus to guarantee that the 
replaced data is also removed from the CPU's first 
level cache, thus maintaining the inclusion property. 

CACHE CONTROL SIGNALS: 

The CPU initiates the read cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS# 
(clock 2) and the associated cycle control signals to 
the MBC (eg. CW/R#, CM/IO#, CD/C#, RDYSRC, 
MCACHE#) in order to schedule the cache line-fill 
operation. MCACHE# is active, indicating that the 
read miss is potentially cacheable by the 82495XP; 
RDYSRC is active, indicating that the MBC must 
supply BRDY#s to the CPU cache core. 

The memory bus address (MSET[10:0]' 
MTAG[11:0], MCFA[6:0j) is valid with CADS# 
(clocks 2 and 13 for the two read miss cycles in this 
example) and remain valid until after CNA# is sam­
pled active by the 82495XP (clocks 5 and 16). MALE 
and MBALE may be used to hold the address as 
necessary. 

2-350 



8249SXP Cache Controller/82490XP Cache RAM 

, 1 2 3 4 5 , 6 7 , 8" 9 I 10 , 11 , 12 ; 13 : 14 I 15 : 16 I 17 , 18 , 19 , 20 I 21 , 
I , 

ClK 

ADDRESS 

CADS# 
~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ L-~, __ ~~ I 

I I I I I I I I I I I I I I I I I 

~(r-i-I -t-----iI-,!t&ic)e)\@lil®(lOl)(j()(IDmgglftlXlOOOOQOO(\....l..I--'_.LJXXXXXJOO<XXXXXX 
I I I I I I I I I I I I I I I I I I I 

~I I 19;001g:g1(g~~,@~ I ~ CW/R# 

RDYSRC 

MCACHE# 

KWEND# 

bmm'mrJ' ," 'n m,~~' ~ ~ I I \J{~(ID@gg~iI&gjj/,i\gXliiMii&W,ijJUiJW I ~ 
I I I I I I I I I I I I I I I I I I I 

5<m&K\ I : I @lClilOiXJ®{){X)§()()()XJ!XX)(Xl(XXXXX I : I /}¢()()@XXXXJOO 
I I I I i I I I I I I I I I I I I I I I I 

=X~l~::::~:,:== 
"-L'I'" "'~ """ mxgxxl§<X1: I ~iOlXllXlOOlX8Xij~xxpxg;xx7 i \:~ 

BGT# 

CNA# 

MKEN# (" ~X 

SWEND# 

BRDY# 

" I !!,!,'!!, I ' I ! ! , , ! , 

CRDY# I I I I I I I I I I I I I I \.U I I I I I I I 
I I I I I I I I I I I I I I I I I 

DRCTM# =~gg~OO{~j(j(Xl(.&XlOOmm§lX\: IXlOO!l(){XgXg1OO<XXX)OO(: IXXXXXlOOOOC 
- -- --} --+ -0: -+ -~ -+- -r--'-:- -:- -:- l- -i - + -l- -:- ~I- -:- ---i - -+ --+ '- +-

I I I I I I I I I I 1 I I I I I I I I I I 

CLOCKED MEMORY BUS MODE: I I , I , I '" "" 

MClK 

MSEl# 

MEOC# 

MBRDY# 

MZBT# 

MDATA 

1 

I 

~~.:---+--~--~--~--~--+---~~--~~r;--~--;---~--T---~:--~--+---+---~~ 
I 

~~I$'!O ~~~q~~ 
mml~m<~'iCDO@~mQ0_ 
: : I : I : : : : : : : : I : I : : : : : : 

- - - - -;- -; - -:- --: -~-~ -:- -~ -:- -:- ~-~- ~- ~-~ -1----:- ---:- ~ - --:- -~ --: 
STROBED MEMORY BUS MODE: ' , I , I , , , I I I , , , , I , 

1 

240956-42 

Figure 8-10. Cache to Cache Transfer: Cacheable Read Miss 

2-351 

PI 



82495XP Cache Controllert82490XP Cache RAM 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 3), indicating that the cycle is 
guaranteed to complete on the memory bqs. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit from another 
cache. 

CNA# is asserted by the MBC (clock 4) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined the cacheability at­
tribute of the cycle, it drives the MKEN# signal ac­
cordingly; The MBC also drives the KWEND# signal 
at this time, indicating the end of the cacheability 
window. The 82495XP samples MKEN# and 
MRO# during KWEND# (clock 5) to determine that 
the cycle is indeed cacheable. 

The MBC asserts SWEND# when the snoop win­
dow ends on the memory bus. The 82495XP sam­
ples MWB/WT# and DRCTM# during SWEND# 
(clock 7) and updates the cache tag state according 
to the consistency protocol. Since the result of the 
snoop was a hit to a modified line in another cache, 
the MBC asserts DRCTM# at this time (this is an 
option to save time by skipping the main memory 
access, not a requirement of the memory bus) so 
that the tag state will go immediately to the [M] 
state, skipping the [E] state. MWB/WT# must be in 
write back mode (high) to assure this transition. The 
closure of the snoop window also enables the MBC 
to start providing the CPU with data that has been 
stored in the 82490XP's memory cycle buffer. The 
MBC supplies BRDY#s to the CPU (clocks 7-10). 

The 82495XP issues a new CADS#in clock 13, 
which also misses the 82495XP/82490XP cache. 
Since the 82495XP has already sampled CNA# as­
serted (clock 4), It issues a new CADS# prior to 
receiving CRDY # of the current cycle (ie. this cycle 
is pipelined within the MBC). Note that once the cy­
cle progress signals (BGT#, CNA#, KWEND#, 
SWEND#) of a cycle are sampled asserted,. the 
82495XP ignores them until the CRDY # of that cy­
cle. The 82495XP does not pipeline the cycle prog­
ress signals (ie. it will not sample them again until 
after CRDY # of the current memory bus cycle). 

MEMORY BUS CYCLES: . 

At the start of this cycle, the master 82495XP does 
not know that the data will be coming from a slave 
82495XP/82490XP and begins a read request to 
main memory to obtain the required data. Since the 

snoop resulted in a hit to a modified line in the sec­
ond cache, the memory request must be backed off 
so that the snooped 82495XP may supply the data. 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. The memory data 
output enable signal (MDOE#) must remain inactive 
to allow the data pins to be used as inputs. 

For Clocked Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 4) to allow sampling of 
MBRDY # and to latch MZBT # for the transfer. 
MZBT #. is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT # sampled on 
the prior MCLK is used for the next transfer. 

MBRDY# is driven active in clocks 4 to 10 to read 
data into the 82490XP cache memory cycle buffers. 
The MBC asserts MEOC# (clock 11) to end the 
read miss cycle on the memory bus and switch the 
memory cycle buffers for a new cycle. MZBT # is 
latched at this time for the next transfer. Note that 
there are 8 transfers needed to fill the 
82495XP/82490XP cache line and only 4 needed 
forthe CPU line fill. 

MBRDY# is again driven active by the MBC in 
clocks 11 to 21 to cause the memory burst counter 
to be incremented. and data to be placed into the 
82490XP cache memory cycle buffers for the sec­
ond read miss cycle. 

For Strobed Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 4) to allow MISTB opera­
tion and to latch MZBT# for the transfer (on the 
falling edge of MSEL#). MISTB is toggled in clocks 
5 to 11 to cause the memory burst counter to be 
incremented, and data to be placed into the 
82490XP cache memory cycle buffers. Note: MISTB 
latches the memory bus data on both the rising and 
falling edges. The MBC drives MEOC# asserted 
(clock 12) to end the current cycle on the memory 
bus and switch memory cycle buffers for the new 
cycle. MZBT # for the next cycle is latched at this 
time on the falling edge of MEOC#. 

The MBC toggles MISTB (clocks 16 to 21) for the 
second read miss cycle to increment the memory 
burst counter and cause data to be written into the 
82490XP memory cycle buffers. 

2-352 



82495XP Cache Controller /82490XP Cache RAM [pOO~Il.OINlOOO~rRl't7 

CLK 

CADS# 

ADDRESS 

CW/RU 

RDYSRC 

MCACHE# 

PALLC# 

BGT# 

CNA# 

1 1 2 

1 

~ 

314 516 

1 

~ 

7 9 1 10 11 12 

P< ! ~_~_~~XZXX~!_----.-_-c-_-,--_-,,---'X*XXX*XXXX: 
:v I \XX,\ IxxXXXXXXX 

X\ IX:X\ IXXXX><XXXX 
m~'----~'-----'----~\~X:~X\ ;X:XXXX:XXXX: V 
~ P-"~ __ ~_~LI""X:p.X! \X:XXXX:XXXX: 

:zxxxtx\ IX~XXXXXXX:X\ IXXXXX:XXXX!XXXX:XXXX:XXXX. 
ZXZZ!V ""V'V"""-'---r-~~,\ 1 Ixxxxx0u '\ 1 IXXXXXXXXX . . 

KWEND# ZXXZ;V '\ IXXXXXx/ \. IXXXXXXXXX 
• • ......, ••• 1 ••• 

MKEN# 'XXX)0(XXX'XX\ IX'XXXXXXXX-XXXX-XXXX'XXX)0(XXXXXXX-XXXx-
· T. . l ... T ... 

SWEND# :XXXX:XXXX:XX!: : \: IX?<XXX?<XXX2<X\ IX:XXXX:XXXX: 
DRCTM# .XXxx:xxxxxxxxrxxXXX! 1 \X.XXXXXXXX.X\ IXXXXX.XXXX 

, ' , " , 

CRDY# ~ ~ 
• ____ __ , __ _ • ___ ~ __ --0- __ ---< _ • _. __ _ .. __ _ ,. __ .. _ • _._ • _ .....- __ 

CLOCKED MEMORY BUS MODE: 

MCLK 

MSELfI 

MEOCII 

MBROY# ~ r /XXXx.XXxxp ,\ : : (XXXXXXXXXXX 

~'XXXX:XXXXxXXX:XXX~ MZBTI/ . ~ , ---f'\........::...y~~ 

~~XXXXXXX.XXXXXXXX~XXX.XXXX.XXXX. 
· . . . . ~ . . . . . . . 

1 . I.. 

MFRZ# 

MOOEII 

MOATA ZX~-. --. -'XXXXXXXXX.XXXX~XXXXXXX. 
- - - - - - -: - - -1- - - -I- - - ...;. - - -: - - - 1- - - -: - - -:- - - ; - - -1- - - ;... - - ..;. - - ....; 
STROBED MEMORY BUS MODE: 

MSELfI 

MEOCII 

MxSTB 

MZBTII 

MFRZ# 

MOOEII 

MOATA 

~ 1 1 I~'-: --'---+--':'--,\~ __ ~_~~----,~,-,,¥: ~A: 

i ~r-':~-'--I -~~.--'--. -~I-~.~~ 
~X.XXXXXXXXXXXXXZ _, _.~: . - ·XXXZZ 
~xxx:xxxxXxxx6:xxxx:xxx*X'Z'X~ 
~ ~XXXxXX~XXXxXXXXXXXXXX~XXXXXXXxXXX 

, . . , ' , ~-~. -~. --'---'--~ 

· 1 1 . . 1 . I: : 1 : : : 
ZX::::=::::::::XXXX·XXXXXXXXXXXX'XXXx·~ 

Figure 8-11. Read For Ownership 

2-353 

240956-43 

• 



82495XP Cache Controller/82490XP Cache RAM 

8.4 Read for Ownership 

8.4.1 WRITE MISS WITH MFRZ# ASSERTED, 
FOLLOWED BY READ TO SAME LINE 

Figure 8-11 . illustrates a Read For Ownership cycle. 
First a CPU initiates a write cycle which misses the 
82495XP/82490XP cache. The MBC issues a "dum­
my" write to main memory (the write does not actu­
ally go out to main memory - to save valuable bus 
time). The 82490XP MFRZ# input is used by the 
MBC to indicate that the following line-fill (allocation) 
data (from either main memory or another cache) 
should be merged with the data of the write miss. 
The entire line is then placed into the internal ta­
gram. 

CACHE CONTROL SIGNALS: 

The CPU initiates a write cycle to the 
82495XP/82490XP cache where the cache tag 
state is looked up. Once the 82495XP determines 
the cycle to be a cache miss, it issues CADS# 
(clock 1) and the associated cycle control signals to 
the MBC (eg. CW/R#, CM/IO#, CD/C#, RDYSR.C, 
MCACHE #, PALLC#) in order to schedule the wnte 
operation. MCACHE# is not active; RDYS.RC is not 
active, indicating that the 82495XP will supply 
BRDY#s to the CPU; PALLC# is active, indicating a 
potential allocate cycle after the write through cycle. 

The write miss data is posted in the· 82490XP's 
memory cycle buffer, and the cycle completes with 
no wait states to the CPU. The CPU is free to issue 
another (non-related) cycle while the 82495XP is 
processing the allocation. If this new cy~le is ~ 
cache hit, it will be serviced by the 82495XP Immedi­
ately; but if it is a cache miss, its service will wait 
until the CRDY # of the allocation. 

The memory bus address (MSET[10:01, 
MTAG[11 :0], MCFA[6:0l) is valid with CADS# 
(clocks 1 and 5 for the write miss and allocation cy­
cle in this example) and remain valid until after 
CNA# is sampled active by the 82495XP (clocks 4 
and 10). MALE and MBALE may be used to hold the 
address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2), indicating that the write 
through cycle is guaranteed to complete on the 
memory bus. Once the 82495XP samples BGT # as­
serted, it must finish that cycle on the memory bus. 
Prior to this point, the cycle can be aborted by a 
snoop hit from another cache. 

CNA# is asserted by the MBC (clock 3) to indicate 
that it is ready to schedule a new memory bus cycle. 
Note that after CNA# activation, cycle control sig­
nals are not guaranteed to be valid. 

When the MBC has determined the cacheability at­
tribute . of the write through cycle, it drives the 
MKEN# signal accordingly. The MBC also drives 
the KWEND# signal at this time, indicating the end 
of the cacheability window. The 82495XP samples 
MKEN# active during KWEND# (clock 3), indicat­
ing that the missed line should be allocated in the 
cache. 

The MBC asserts SWEND# (clock 5) when the 
snoop window of the write through cycle ends on the 
memory bus. Note that the direct to [M] state qualifi­
er signal (DRCTM#) is sampled during SW~ND# 
and is inactive for the write . The MBC also Issued 
CRDY# to the 82495XP at this time so that the 
82495XP thinks the write cycle completed on the 
memory bus when, in fact, it did not. 

In this example, the 82495XP requests the allocation 
cycle by issuing CADS# in clock 5; The cycle con­
iroi signais are vaiid at this point: MCACHE # is ac­
tive, indicating the cacheability of the line-fill cycle; 
RDYSRC is not active, indicating that the MBC need 
not supply BRDY#s to the CPU (no BRDY#s are 
necessary for an allocation cycle). 

Once again, the MBC arbitrates for the memory bus 
and returns BGT # asserted (clock 6) for the alloca­
tion cycle. The MBC asserts CNA#, KWEND#, and 
SWEND# (clock 9) to pipeline the memory bus and 
close the cacheability and snoop windows. Note that 
(for this example) DRCTM# is asserted during 
SWEND# to place the line in the modified state. 
Since this is done, all other caches must invalidate 
their copies. 

CRDY # for the allocation (line-fill) cycle is issued by 
the MBC in clock 11 to complete the read cycle on 
the memory bus and place the data into the 
82490XP cache array. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in the flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, the memory data 
output enable (MDOE#) has been asserted by the 
MBC to drive the memory data outputs. 

The MBC asserts MSEL# (clock 2) to allow sam­
pling of MBRDY# and to latch MZBT# and MFRZ# 
for the write. MBRDY# and MEOC# are asserted 

2-354 



82495}{P Cache Controller/82490XP Cache RAM [¥>ffiH~IbO[KvA]OOO~ffirt7 

by the MBC (clock 3) to place the write data into the 
memory cycle buffers, sample MZBT# and MFRZ# 
for the next transfer, and end the current cycle on 
the memory bus. MFRZ# is driven active by the 
MBC here, indicating to the 82495XP that the data 
of the write through will be merged with the following 
allocation data. 

For the allocation (line fill) cycle, MSEL # is driven 
active again by the MBC (clock 6) to allow sampling 
of MBRDY # and to latch MZBT # for the transfer. 
MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT# sampled on 
the prior MCLK is used for the next transfer. 
MDOE# is also deasserted in clock 6 to allow the 
data pins to be used as inputs for the allocation cy­
cle. 

MBRDY # is driven active by the MBC in clocks 7 to 
9 to cause the memory burst counter to be incre­
mented and data to be placed into the 82490XP 
cache memory cycle buffers. During the line fill, the 
82490XP will merge the data from the ,write through 
buffer with the incoming data from either main mem­
ory or another cache (if that line was a write hit to 
[M] in another cache). 

The MBC drives MEOC# asserted (clock 10) to end 
the allocation cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MZBT # is 
sampled at this time for the next data transfer. 

For Strobed Memory Bus Mode, the memory data 
output enable (MDOE#) has been asserted by the 
MBC to drive the memory data outputs. 

The MBC asserts MSEL# (clock 2) to allow toggling 
of MISTB and to latch MZBT# and MFRZ# for the 
write (on MSEL# falling edge). MISTB is toggled 
and MEOC# asserted by the MBC (clock 2) to place 
the write data into the memory cycle buffers, sample 
MZBT # and MFRZ # for the next transfer (on the 
falling edge of MEOC# while MSEL# is active), and 
end the current cycle on the memory bus. MFRZ# is 
driven active by the MBC here, indicating to the 
82495XP that the data of the write through will be 
merged with the following allocation data. 

For the allocation (line fill) cycle, MSEL# is driven 
active again by the MBC (clock7) to allow sampling 
of MOSTB and to latch MZBT # for the transfer. 
MDOE# is also deasserted in clock 7 to allow the 
data pins to be used as inputs for the allocation cy­
cle. 

MOSTB is toggled by the MBC in clocks 8 to 10 to 
cause the memory burst counter to be incremented 

and data to be placed into the 82490XP cache mem­
ory cycle buffers. During the line fill, the 82490XP 
will merge the data from the write through buffer with 
the incoming data from either main memory or an­
other cache (if that line was a write hit to [M] in 
another cache). 

The MBC drives MEOC# asserted (clock 11) to end 
the allocation cycle on the memory bus and switch 
memory cycle buffers for the new cycle. MZBT # is 
sampled at this time for the next data transfer. 

8.5 1/0 Cycles 

Figure 8-12 illustrates CPU initiated 1/0 cycles, both 
read and write. 1/0 writes are the only write cycles 
not posted by the 82495XP/82490XP cache (ie. the 
cycle is not fully acknowledged to the CPU until it 
has completed on the memory bus). 

CACHE CONTROL SIGNALS: 

The CPU initiates an 1/0 write cycle to the 
82495XP/82490XP. The 82495XP then issues 
CADS# and CDTS# (clock 1) and the associated 
cycle control signals to the MBC (eg. CW/R#, CMI 
10#, CD/C#, RDYSRC, MCACHE#). MCACHE# in 
not active, indicating that the cycle is not cacheable; 
RDYSRC is active, indicating that the MBC must 
supply BRDY#s to the CPU/Cache core. 

The memory bus address (MSET[10:0]' 
MTAG[11:0], MCFA[6:0l) is valid with CADS# 
(clocks 1 and 10 for the two read s in this example) 
and remain valid until after CNA# is sampled active 
by the 82495XP (clocks 6 and 17). MALE and MBA­
LE may be used to hold the address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT# asserted (clock 2) for the 1/0 write cycle, in­
dicating that the cycle is guaranteed to complete on 
the memory bus. Once the 82495XP samples BGT # 
asserted, it must finish that cycle on the memory 
bus. Prior to this point, the cycle can be aborted by a 
snoop hit from another cache. 

CNA# for the write cycle is asserted by the MBC 
(clock 5) to indicate that it is ready to schedule a 
new memory bus cycle. Note that SWEND# and 
KWEND# are not needed for 1/0 cycles since they 
are not cacheable. 

The MBC asserts BRDY # in clock 7 to complete the 
1/0 write cycle from the CPU, and CRDY # in clock 8 
to complete the cycle on the memory bus from the 
82495XP/82490XP cache. 

2-355 

II 



82495XP Cache Controller/82490XP Cache RAM ~!ru~!l.D~DOO~!ruW 

: 1 1 2 : 3 : 4 : 5 1 6 : 7 ' 8 : 9 : 10 1 11 : 12 : 13 : 14 : 15 : 16 1 17 : 18 : 

ROYSRC 'fJJ 1 1 V0'IXmYXfYXlXlJ 1 , , 1 ~ 
MCACHE# W ' : ' : ,\XXXXY:j.,XXXX'lXXXXI ' , , , , , ,= 
BGTN , 1 , : , 1 , , , , 1 ' , , , , 1 

KWENO# ~'/'lXIX'tI;'lXXXXXXXX'!X'&'IX'@Y$.'IX'I'XtI: ttix'IXX:xxxXx'tlit!x'lXlXi;.,xxX 
SWENO# ~' 'I"" , 
CNA# 'MMMi .: \ IXXXXXXxxxxxxxxxXmx/: \ 1 flit;:l:i; 
BROY# : \.J : " i ~ 
C~Y# _ .:_ .I_.:_.:"".:"" . .L.':" V..:. . ...:. . .J."":. _:. _:. _:. _ ~ _l_~: 
CLOCKED MEMORY BUS MODE: : : : : : : : , : , , ' 

MCLK Lrlri.Jt_rislri_J-U-G-lr-L~I-J~ 
, I' 1 1 1 MSEUI :\ ,r---'----1L--'--------' 

MEOel 

MBROY# 

MZBTN x x x x' 

MFRZ# ~0;xx~xxqxmxx~xx~xmxx*x'li;,xx0;YXi;,xx0;YXitttiJ,xx0;xxX 
MODE# ~ : : : : : : : : / : : : : : : : 

'----l. ' ":~L ' , , , ..L " "'" 
MOATA xxmxxxxxx~xxxxxxxxxxxxxXxxxXxxxxxxxr-~, -~)O()()()(i()()(xxxxxxXXX: 
- - _ - -r- - _ - --.- _....,.. - -T - ----0 - ----. _ " ,_ 

STROBED MEMORY BUS MODE: 

MSEUI 

MEDel 

MxSTB 

MZBT# 

MFRZ# 

MODE# 

MOATA 

1 

\LJ: I ~ 

0<xxpxx>0xxixxxxi<xxxixxip;xxXxxxXxxixx .; ... : ... : ... : ... ~ .xi.xxXxxxXxxx 
:xxxxXXXJ;iXXxxxx'/J \xxxxxxxxxxxxXxm \xxxXxxxx:xxxxX~ 1 : ' , 1 ' , , 'I ' , , , , , , , 
tttXXxxX;XXXX$XXX;>CXXXX*XX\XXXX:XXX*XXX;XXX$XXX:XXXXXXXXXXXXxxxxxxxxxxxx, 
, 1 ' , , 1 ' , , , 1 ' : : : ' : : : 

, I, 
~---;_-:-~~. , , , , I XX >:lXXXXXXxxxxxxxxxxxXXXlXr--,---,----.-.;.......,XXXXXXXxxxxxx 

Figure 8-12.1/0 Write and Read Cycles 

2-356 

240956-44 



82495XP Cache Controller/82490XP Cache RAM 

A new CADS# is issued from the 82495XP in clock 
10 for an I/O read cycle, along with the associated 
cycle control signals. MCACHE # is again not active, 
and RDYSRC is again active. 

The MBC returns BGT# asserted right away (clock 
11). The 82495XP can pipeline I/O cycles, but does 
not for the I/O read in this example. 

Upon completing the access on the memory bus, 
the MBC activates BRDY # (clock 17) and CRDY # 
(clock 16). Note that BRDY # of a cycle may come 
before (as in the I/O write cycle of this example), 
with or after the CRDY # of the same cycle. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, The memory data 
output enable signal (MDOE#) is asserted by the 
MBC in clock 3 to drive the memory data outputs. 

MEOC# is asserted by the MBC (clock 5) to latch 
MZBT # for the I/O write transfer, and end that cycle 
on the memory bus (MBRDY # is not necessary 
since this example shows a single transfer cycle). 
MZBT # is driven high by the MBC in order to force 
the write cycle to begin with the correct· burst ad­
dress. MFRZ# is also sampled here (it need not be 
active since the cycle is not potentially allocatable). 

For the I/O read cycle, MDOE# is deasserted (clock 
12) by the MBC to allow the data pins to be used as 
inputs. 

MSEL# is driven active by the MBC (clock 12) to 
allow sampling of MBRDY # and to latch MZBT # for 
the transfer. MZBT # is sampled on all MCLK edges 
where MSEL# is inactive. Once MSEL# is sampled 
active by the 82495XP, the value of MZBT# sam­
pled on the prior MCLK is used for the next transfer. 
Again, MZBT# is driven high by the MBC to force 
the transfer to begin with the correct burst address. 

The MBC asserts MBRDY # (clock 14) to cause the 
memory burst counter to be incremented and data to 
be placed into the 82490XP cache memory cycle 
buffers. The MBC drives MEOC# asserted (clock 
15) to end the read cycle on the memory bus and 
switch memory cycle buffers for a new cycle. 
MZBT # for the next transfer is latched at this time. 

For Strobed Memory Bus Mode, The memory data 
output enable signal (MDOE#) has been asserted 
by the MBC to drive the memory data outputs. 

MEOC# is asserted by the MBC (clock 5) to latch 
MZBT# for the I/O write transfer (on MEOC# falling 
edge), and end that cycle on the memory bus 
(MOSTB is not necessary since this example shows 
a single transfer cycle). MZBT # is driven high by the 
MBC in order to force the write cycle to begin with 
the correct burst address. MFRZ# is also sampled 
here (it need not be active since the cycle is not 
potentially allocatable). 

For the I/O read cycle, MDOE# is deasserted (clock 
10) by the MBC to allow the data pins to be used as 
inputs. 

MSEL# is driven active by the MBC (clock 10) to 
allow operation of MISTB and to latch MZBT# for 
the transfer (on MSEL# falling edge). Again, 
MZBT # is driven high by the MBC to force the trans­
fer to begin with the correct burst address. 

The MBC toggles MISTB (clock 15) to cause the 
memory burst counter to be incremented and data to 
be placed into the 82490XP cache memory cycle 
buffers for the I/O read cycle. Note: MISTB latches 
the memory bus data on both the rising and falling 
edges. The MBC drives MEOC# asserted (clock 16). 
to end the read cycle on the memory bus and switch 
memory cycle buffers for a new cycle. MZBT # for 
the next transfer is latched at this time (on the falling 
edge of MEOC#). 

8.6 LOCKed Cycles 

8.6.1 CPU READ MODIFY WRITE CYCLES 

The 82495XP provides a facility to allow atomic ac­
cesses requested by the CPU (via CPU LOCK # acti­
vation) through the 82495XP KLOCK # signal. Fig­
ure 8-13 illustrates two back-to-back CPU initiated 
Locked read-modify-write cycles. KLOCK# activa­
tion indicates to the MBC that the memory bus 
should not be released between the KLOCKed cy­
cles. KLOCK# will. remain asserted from the begin­
ning of the first cycle (with CADS#) until one clock 
after the CADS of the last cycle. The 82495XP does 
not distinguish between back-to-back locked opera­
tions and will not open an arbitration window (deas­
sert KLOCK#) between them. It is the responsibility 
of the MBC to distinguish between the multiple RMW 
sequences, if it is so desired. 

2-357 



infel" 82495XP Cache Controller/82490XP Cache RAM ~[fJ~lLn~nOO~[fJW 

2 3, 4 5 6 78 9; 10 ; 11: 12 : 13 ; 14 ; 
I I I I 

ClK 

CADS# , 

ADDRESS 

CW/R# 

RDYSRC 

BGT# 

CNA# 

KlOCK# 

BRDY# 

~!!"i 
, 

'I 
, , , 

fItIlJ!IP I 
, , , 
I wow: 

~I I ~i I II' WcMcx\i i-
I I I I. I I I I I 

mDl~ '. ~'JXX!!!lXg .ilX$X$ijX\!. ~!~ 
II, I~I 

. I I I I I I I 

, , 
I I' , 

CRDY# '. I I " , ,"" ,. , , 
--~-~-~-~-~-~~-~-~-~-~~-~-~-~-~ 

• I I I I I I I I 

CLOCKED MEMORY BUS MODE: : , , , 
MClK .~ 

MSEl# 

MEOC# , 

MBRDY# 

MZBT# 

MFRZ# 

MDOE# 

MDATA 
, " ----.- ....... --I---r--r---
I I I • I I 

STROBED MEMORY BUS .MODE: I 
, I I , , 

, , 
-.-""j , , , 

MSEL# ~~~I_.~ __ ~ __ ~~ __ ~~~~ __ ~ __ ·~' __ ~~~ 
MEOC# 

.MxSTB 

MZBT# 

MFRZ# 

MDOE# 

MDATA 

Figure 8-13. LOCKed Read-Modify-Write Cycles 

2-358 

240956-45 



82495XP Cache Controller/82490XP Cache RAM [¥)OO~[LO~O~~OOW 

The 82495XP issues a request for a memory bus 
access (CADS#) for every locked cycle (read or 
write) regardless if it hits the cache tag state or not. 
Locked read cycles are treated by the 82495XP as 
cache misses, and, if the line is in the [M] state, the 
82495XP ignores the data on the memory bus and 
uses the data in the 82490XP array. Locked write 
cycles are treated as write through, and the tag state 
does not change even if the line is in the 82490XP 
array. 

CACHE CONTROL SIGNALS: 

The CPU initiates a Locked read cycle to the 
82495XP/82490XP cache where, due to the asser­
tion of CPU LOCK #, it assumes a cache miss and 
issues CADS# to the MBC (clock 1) along with the 
associated cycle control signals (eg. CW IR #, CM/ 
10#, CD/C#, RDYSRC, MCACHE#). MCACHE# is 
never asserted for LOCKed cycles; RDYSRC is ac­
tive, indicating that the MBC must supply BRDY # to 
the CPU/Cache core. 

The memory bus address (MSET[10:0], 
MTAG[11:01, MCFA[6:0]) is valid with CADS# 
(clocks 1 and 5, then 7 and 11 for the two locked 
RMW sequences in this example) and remain valid 
until after CNA# is sampled active by the 82495XP 
(clocks 3 and 7, then 9 and 13). MALE and MBALE 
may be used to hold the address as necessary. 

The MBC arbitrates for the memory bus and returns 
BGT # asserted (clock 2), indicating that the cycle is 
guaranteed to complete on the memory bus. Once 
the 82495XP samples BGT # asserted, it must finish 
that cycle on the memory bus. Prior to this point, the 
cycle can be aborted by a snoop hit from another 
cache. 

CNA # for the read cycle is also asserted by the 
MBC (clock 2) to indicate that it may schedule a new 
memory bus cycle. Note that the cycle control sig­
nals are not guaranteed to be valid after CNA# acti­
vation. 

The MBC' asserts BRDY # to the CPU/Cache core 
in clock 4. CRDY # for the locked read cycle is as­
serted to the 82495XP /82490XP from the MBC 
(clock 5) to load the data stored in the 82490XP's 
memory cycle buffers into the cache array. If the 
read was to a dirty line, the 82495XP is intelligent 
enough to ignore the data in the memory cycle buff­
ers and use the data in the cache array. 

Locked sequences always end in a write cycle, no 
new CPU initiated cycles may be inserted between 
the Locked read and Locked write cycles. Therefore, 

the 82495XP issues a new memory cycle request 
(CADS# in clock 5) for the Locked write as soon as 
it completes the Locked read cycle. The cycle con­
trol signals are also valid at this time. RDYSRC is not 
active, indicating that the 82495XP will supply 
BRDY # to the CPU. 

The locked write cycle is posted like any other mem­
ory write cycle. 

In this example, the CPU initiates a second read­
modify-write cycle immediately. KLOCK # is not 
deasserted between the back-to-back locked se­
quences since the CPU LOCK # remains asserted. If 
snooping is required between these cycles, it is the 
MBC responsibility to predict this boundary and al-
low snooping. The 82495XP issues a memory bus • 
request (CADS#) in clock 7 for the second locked 
read cycle, along with the new cycle control signals. 

The second locked RMW sequence repeats the ac­
tions of the first. It's purpose in this example is to 
demonstrate that an arbitration window may not 
open between locked sequences if they follow one 
another with no idle or non-locked cycles between 
them. 

MEMORY BUS SIGNALS: 

The memory address latch enables (MALE and 
MBALE) may remain asserted by the MBC to place 
the address latches in flow through mode. If the 
82495XP is the current bus master, the memory ad­
dress output enables (MAOE# and MBAOE#) 
should be asserted by the MBC. 

For Clocked Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 3) to allow sampling of 
MBRDY# and to latch MZBT# for the transfer. 
MZBT # is sampled on all MCLK edges where 
MSEL# is inactive. Once MSEL# is sampled active 
by the 82495XP, the value of MZBT # sampled on 
the prior MCLK is used for the next transfer. 

The memory data output enable signal (MDOE#) 
must be inactive to allow the data pins to be used as 
inputs for the first locked read cycle. The MBC as­
serts MEOC# (clock 4) to latch MZBT# for the next 
transfer, and end the current locked read cycle on 
the memory bus (MBRDY # is not necessary since 
this example shows a single transfer cycle). MZBT# 
is driven high by the MBC in order to force the read 
cycle to begin with the correct burst address. 

For the locked write cycle, MDOE# is asserted by 
the MBC (clock 5) to drive the memory data outputs. 

2-359 



82495XP Cache Controller/82490XP Cache RAM 

MEOC# is again asserted (clock 6) to latch MZBT# 
for the next transfer, and end the current locked 
write cycle on the memory bus (MBRDY # is not 
necessary since this is a single transfer cycle). 
MZBT# is again driven high. MFRZ# is also sam­
pled during write cycles when MEOC# is sampled 
active by the 82495XP. 

MDOE# is deasserted by the MBC (clock 7) to allow 
the data pins to be used as inputs for the second 
locked read cycle. MEOC# is again asserted (clock 
8) to latch MZBT# for the next transfer, and end the 
locked read cycle on the memory bus. MZBT # is 
again driven high. 

MDOE# is asserted by the MBC (clock 9) to drive 
the memory data outputs for the second locked write 
cycle. MBRDY # is asserted (clock 13) to cause the 
memory burst counter to be incremented and data to 
be placed into the 82490XP cache memory cycle 
buffers. The MBC drives MEOC# active and 
MSEL# inactive (clock 14) to end the locked write 
cycle on the memory bus and switch memory cycle 
buffers for a new cycle. MZBT# and MFRZ# for the 
next transfer are sampled at this time. 

For Strobed Memory Bus Mode, MSEL# is driven 
active by the MBC (clock 1) to allow sampling of 
MxSTB and to latch MZBT # for the first locked read 
transfer (on the falling edge of MSEL#). 

The memory data output enable signal (MDOE #) 
must be inactive to allow the data pins to be used as 
inputs for the first locked read cycle. The MBC as­
serts MEOC# (clock 3) to latch MZBT # for the next 
transfer (on MEOC# falling edge while MSEL# is 
active), and end the current locked read cycle on the 
memory bus (MISTB is not necessary since this ex­
ample shows a single transfer cycle). MZBT # is 
driven high by the MBC in order to force the read 
cycle to begin with the correct burst address. 

For the locked write cycle, MDOE# is asserted by 
the MBC (clock 4) to drive the memory data outputs. 
MEOC# is again asserted (clock 6) to latch MZBT# 
for the next transfer, and end the current locked 
write cycle on the memory bus (MOSTB is not nec­
essary since this is a single transfer cycle). MZBT # 
is again driven high. MFRZ # is. also sampled on the 
falling edge of MEOC#. 

MDOE # is deasserted by the MBC (clock 7) to allow 
the data pins to be used as inputs for the second 
locked read cycle. MEOC# is again asserted (clock 
8) to latch MZBT # for the next transfer, and end the 
locked read cycle on the memory bus. MZBT # is 
again driven high. 

MDOE# is asserted by the MBC (clock 9) to drive 
the memory data outputs for the second locked write 
cycle. MOSTB is toggled (clock 12) to cause the 
memory burst counter to be incremented and data to 
be placed into the 82490XP cache. memory cycle 
buffers. The MBC drives MEOC# active and 
MSEL# inactive (clock 13) to end the locked write 
cycle on the memory bus and switch memory cycle 
buffers for a new cycle. MZBT # and MFRZ # for the 
next transfer are sampled at this time. 

9.0 TESTABILITY 

Testing the 82495XP/82490XP chipset can be divid­
ed into three categories: Built-In Self Test (BIST), 
Boundary Scan, and external testing. BIST performs 
basic device testing on the 82495XP. Boundary 
Scan provides additional test hooks that conform to 
the IEEE Standard Test Access Port and Boundary 
Scan Architecture (IEEE Std.1149.1). Additional 
testing can be performed by using software written 
to test the 82490XP cache SRAM. 

9.1 Built-In Self Test (BIST) 

BIST tests the internal funcitonality of the 82495XP. 
The 82495XP's BIST tests approximately 90% of 
the cache controller. It tests the tag RAM and com­
parators. 

The 82495XP BIST is initiated by driving 
SLFTST#(CRDY#) low and HIGHZ#(MBALE) high 
at least 10 clocks before RESET goes inactive. The 
82495XP Cache Controller reports the result of BIST 
on the CAHOLD signal. When the self test com­
pletes, the 82495XP drives FSIOUT# inactive and 
the BIST result on CAHOLD. If CAHOLD is driven 
active the BIST successfully passed. If CAHOLD is 
driven inactil1e, BIST detected a flaw in the cache 
controller. CAHOLD is valid for one clock after 
FSIOUT # deactivation and should be sampled on 
the rising edge of FSIOUT # . 

On the 82495XP, BIST only informs the system that 
a failure did or did not occur. BIST is not able to 
indicate where a failure occurred. After completing 
BIST the cache controller perform reset and begin 
normal operation. 

9.2 Boundary Scan 

The 82495XP/82490XP chipset provides additional 
test ability features compatible with the IEEE Stan­
dard Test Access Port and Boundary Scan Architec­
ture (IEEE Std.; ;49.;). The test logic provided al-

2-360 



82495XP Cache Controller/82490XP CachE! RAM 

lows for testing to insure that components function 
correctly, that interconnections between various 
components are correct, and that various compo­
nents interact correctly on the printed circuit board. 

The boundary scan test logic consists of a boundary 
scan register and support logic that are accessed 
through a test access port (TAP). The TAP provides 
a simple serial interface that makes it possible to 
test all signal traces with only a few probes. 

The TAP can be controlled via a bus master. The 
bus master can be either automatic test equipment 
or a component (PLO) that interfaces to the four-pin 
test bus. 

9.2.1 BOUNDARY SCAN ARCHITECTURE 

The boundary scan test logic contains the following 
elements: 

- Test access port (TAP), consisting of input pins 
TMS, TCK, and TOI; and ouput pin TOO. 

- TAP controller, which interprets the inputs on the 
test mode select (TMS) line and performs the 
corresponding operation. The operations per­
formed by the TAP include controlling the in­
struction and data registers within the compo­
nent. 

- Instruction register (IR), which accepts instruc­
tion codes shifted into the test logic on the test 
data input (TOI) pin. The instruction codes are 
used to select the specific test operation to be 
performed or the test data register to be ac­
cessed. 

- Test data registers: The 82495XP/82490XP 
chipset components each contain three test data 
registers: Bypass register (BPR), Oevice Identifi­
cation register (OIO), and Boundary Scan regis­
ter (BSR). 

The instruction and test data registers are separate 
shift-register paths connected in parallel and have a 
common serial data input and a common serial data 
output connected to the TAP signals, TOI and TOO, 
respectively. . 

9.2.2 DATA REGISTERS 

The 82495XP and 82490XP both contain the two 
required . test data registers; bypass register and 
boundary scan register. In addition, they also have a 
device identification register. 

Each test data register is serially connected to TOI 
and TOO, with TOI connected to the most significant 
bit and TOO connected to the least significant bit of 
the test data register. Oata is shifted one stage (bit 
pOSition within the register) on each rising edge of 
the test clock (TCK). 

9.2.2.1 Bypass Register 

The Bypass Register is a one-bit shift register that 
provides the minimal length path between TOI and 
TOO. This path can be selected when no test opera­
tion is being performed by the component to allow 
rapid movement of test data to and from other com­
ponents on the board. While the bypass register is 
selected data is transferred from TOI to TOO without 
inversion. 

9.2.2.2 Boundary Scan Register 

The Boundary Scan Register is a single shift register 
path containing the boundary scan cells that are 
connected to all input and output pins of the 
82495XP/82490XP chipset. Figure 9.1 shows the 
logical structure of the boundary scan register. While 
output cells determine the value of the signal driven 
on the corresponding pin, input cells only capture 
data; they do not affect the normal operation of the 
device. Oata is transferred without inversion from 
TOI to TOO through the boundary scan register dur­
ing scanning. The boundary scan register can be op­
erated by the EXTEST and SAMPLE instructions. 
The boundary scan register order is described in 
section 9.2.5 .. 

9.2.2.3 Device Identification Register 

The Oevice Identification Register contains the man­
ufacturer's identification code, part number code, 
and version code in the format shown in Figure 9.2. 
Table 9.1 lists the codes corresponding to the 
82495XP and 82490XP. 

Table 9-1. Device ID Register Values 

Component Version 
Part 

Manufacturer 
Number 

Code Code 
Code 

Identity 

82495XP 0495h 0495h 09h 
(AO or A1) OAh 

82495XP (SO) OBh 0495h 09h 

82490XP OOh 49AOh 09h 
(AO or A1) 

2-361 



82495XP Cache Controller/82490XP Cache RAM 

----------------------------------, 
BOUNDARY SCAN REGISTER 

r-------------., 

SYSTEM 
lOGIC ._---1 
INPUT 

TCK 

TDI 

SYSTEM 
LOGIC 

TOO 

SYSTEM 
BiDIRECTIONAL 
PIN 

SYSTEM 
3-STATE 
OUTPUT 

240956-46 

Figure 9-1. Boundary Scan Register Structure 

/3130292072625242322212019 18 17 16 15 14 13 10'1 10 9 8 7 6 5 4 3 2 1 0/ 

VERSION PART NUMBER 
MANUFACTURER 1 

IDENTITY 

240956-47 

Figure 9-2. Device ID Register 

9.2.2.4 Runbist Register 

The Runbist Register is a one bit register used to 
report the results of the 82495XP BIST when it is 
initiated by the RUNBIST instruction. This register is 
loaded with a "1" prior to invoking the BIST and is 
loaded with "1" upon successfull completion. "0" 
indicates a failure occurred during BIST. 

NOTE: 
82495XP RUNBIST is not available in the A-step­
ping. 

9.2.3 INSTRUCTION REGISTER 

The Instruction Register (IR) allows instructions to 
be serially shifted into the device. The instruction 
selects the particular test to be performed, the test 
data register to be accessed, or both. The instruc­
tion register is four (4) bits wide. The most significant 
bit is connected to TDI and the least significant bit is 
connected to TOO. There are no parity bits associat­
ed with the Instruction register. Upon entering the 
Capture-IR TAP controller state, the Instruction reg­
ister is loaded with the default instruction "0001", 
SAMPLE/PRELOAD. Instructions are shifted into 
the instruction register on the rising edge of TCK 
while the TAP controller is in the Shift-IR state. 

2-362 



82495XP Cache Controller/82490XP Cache RAM 

9.2.3.1 82495XP Boundary Scan Instruction Set 

The 82495XP cache controller supports all three 
mandatory boundary scan instructions (BYPASS, 
SAMPLE/PRELOAD, and EXTEST) along with one 
optional instruction (IDCODE). On the B-Stepping of 
the 82495XP two additional optional instructions will 
be implemented (RUNBIST and TRISTATE). Table 
9.3 lists the 82495XP boundary scan instruction 
codes. The instructions listed as PRIVATE cause 
TOO to become enabled in the Shift-DR state and 
cause "0" to be shifted out of TOO on the rising 
edge of TCK. Execution of the PRIVATE instructions 
will not cause hazardous operation of the 82495XP. 
Note that system tests should not execute instruc­
tion codes labeled "RESERVED". These instruc­
tions can put the component in an undeterminant 
state which can only be cleared by power on reset. 

Table 9·2. 82495)(P Boundary Scan 
Instruction Codes 

Instruction Code Instruction Name 

0000 EXTEST 

0001 SAMPLE 

0010 IDCODE 

0011 RESERVED 

0100 RESERVED 

0101 RESERVED 

0110 RESERVED 

0111 *RUNBIST 

1000 'TRISTATE 

1001 RESERVED 

1010 PRIVATE 

1011 PRIVATE 

1100 PRIVATE 

1101 PRIVATE 

1110 PRIVATE 

1111 BYPASS 
• RUNBIST and TRISTATE are boundary scan instructions 
that will be implemented in the B-stepping of the 82495XP. 
They are not available on the A·stepping. 

EXT EST The instruction code is "0000". The EX­
TEST instruction allows testing of cir­
cuitry external to the component pack­
age, typically board interconnects. It 
does so by driving the values loaded 
into the 82495XP boundary scan regis­
ter out on the output pins corresponding 
to each boundary scan cell and cap-

2-363 

turing the values on 82495XP input pins 
to be loaded into their corresponding 
boundary scan register locations. I/O 
pins are selected as input or output, de­
pending on the value loaded into their 
control setting locations in the boundary 
scan register. Values shifted into input 
latches in the boundary scan register 
are never used by the internal logic of 
the 82495XP. Note: after using the EX­
TEST instruction, the 82495XP must be 
reset before normal (non-boundary 
scan) use. 

SAMPLE/ The instruction code is "0001 ". The 
PRELOAD SAMPLE/PRELOAD has two functions 

that it performs. When the TAP 'control­
ler is in the Capture-DR state, the SAM­
PLE/PRELOAD instruction allows a 
"snap-shot" of the normal operation of 
the component without interfering with 
that normal operation. The instruction 
causes boundary scan register cells as­
sociated with outputs to sample the val­
ue being driven by the 82495XP. It caus­
es the cells associated with inputs to 
sample the value being driven into the 
82495XP. On both outputs and inputs 
the sampling occurs on the rising edge 
of TCK. When the TAP controller is in 
the Update-DR state, the SAMPLE/ 
PRELOAD instruction preloads data to 
the device pins to be driven to the board 
by executing the EXTEST instruction. 
Data is preloaded to the pins from the 
boundary scan register on the falling 
edge of TCK. 

IDCODE The instruction code is "0010". The 10-
CODE instruction selects the device 
identification register to be connected to 
TDI and TOO, allowing the devices iden­
tification code to be shifted out of the 
device on TOO. Note that the device 
identification register is not altered by 
data being shifted in on TDI. 

BYPASS The instruction code is "1111 ". The BY­
PASS instruction selects the bypass 
register to be connected to TDI and 
TOO, effectively bypassing the test logic 
on the 82495XP by reducing the shift 
length of the device to one bit. Note that 
an open circuit fault in the board level 
test data path will cause the bypass reg­
ister to be selected following an instruc­
tion scan cycle due to the pull-up resis­
tor on the TDI input. This has been done 
to prevent any unwanted interference 
with the proper operation of the system 
logic. 



82495XP Cache Controller/82490XP Cache RAM 

RUNSIST The instruction code is "0111 ". The 
RUNSIST instruction selects the one (1) 
bit runbist register, loads a value of "0" 
into the runbist register, and connects it 
to TOO. It also initiates the built-in self 
test (SIST) feature of the 82495XP, 
which is able to detect approximately 
90% of the stuck-at faults on the 
82495XP. The 82495XP ac/dc specifi­
cations for VCC and ClK must be met 
and reset must have been asserted at 
least once prior to executing the 
RUNSIST boundary scan instruction. Af­
ter loading the RUNSIST instruction 
code in the instruction register, the TAP 
controller must be placed in the Run­
Test/Idle state. SIST begins on the first 
rising edge of TCK after entering the 
Run-Test/Idle state. The TAP controller 
must remain in the Run-Test/Idle state 
until B!ST is completed. It rGquires 100K 
clock (ClK) cycles to complete SIST 
and report the result to the runbist regis­
ter. After completing the 100K clock 
(ClK) cycles, the value in the runbist 
register should be shifted out on TOO 
during the Shift-DR state. A value of "1" 
being shifted out on TOO indicates SIST 
successfully completed. A value of "0" 
indicates. a failure occurred. After exe­
cuting the RUNSIST instruction, the 
82495XP must be reset prior to normal 
operation. NOTE: This instruction is not 
available on the A-stepping of the 
82495XP. It will be implemented in the 
S-stepping. 

TRISTATE The instruction code is "1000". The 
TRISTATE instruction initiates the tri­
state output test mode. After loading the 
TRISTATE boundary scan instruction 
into the instruction register, the TAP 
controller must be placed in the Run­
Test/Idle state. To terminate the tristate 
output test mode, the 82495XP must be 
reset. NOTE: This instruction is not 
available on the A-stepping of the 
82495XP. It will be implemented in the 
S-stepping. 

9.2.3.2 82490XP Boundary Scan Instruction Set 

The 82490XP cache controller supports all three 
mandatory boundary scan instructions (SYPASS, 
SAMPLE/PRELOAD, and EXTEST) along with one 
optional instruction (IDCODE). Table 9.4 lists the 
82490XP boundary scan instruction codes. The in­
structions listed as PRIVATE cause TOO to become 
enabled in the Shift-DR state and cause"O" to be 

shifted out of TOO on the rising edge of TCK. Execu­
tion of the PRIVATE instructions will not cause haz­
ardous operation of the 82490XP. Note that system 
tests should not execute instruction codes labeled 
"INTEL RESERVED". These instructions can put 
the component in an undeterminant state which can 
only be cleared by power on reset. 

Table 9-3. 82490XP Boundary Scan 
Instruction Codes 

Instruction Code Instruction Name 

0000 EXTEST 

0001 SAMPLE 

0010 IDCODE 

0011 INTEL RESERVED 

0100 INTEL RESERVED 

0101 INTEL RESERVED 

0110 INTEL RESERVED 

0111 INTEL RESERVED 

1000 INTEL RESERVED 

1001 INTERl RESERVED 

1010 PRIVATE 

1011 PRIVATE 

1100 PRIVATE 

1101 PRIVATE 

1110 PRIVATE 

1111 BYPASS 

EXTEST The instruction code is "0000". The EX­
TEST instruction allows testing of cir­
cuitry external to the component pack­
age, typically board interconnects. It 
does so by driving the values loaded 
into the 82490XP boundary scan regis­
ter out on the output pins corresponding 
to each boundary scan cell and captur­
ing the values on 82490XP input pins to 
be loaded into their corresponding 
boundary scan register locations. 1/0 
pins are selected as input or output, de­
pending on the value loaded into their 

, control setting locations in the boundary 
scan register. Values shifted into input 
latches in the boundary scan register 
are never used by the internal logic of 
the 82490XP. Note: after using the EX­
TEST instruction, the 82490XP must be 
reset before normal (non-boundary 
scan) use. 

2-364 



82495XP Cache Controller/82490XP Cache RAM 

SAMPLE/ The instruction code is "0001". The 
PRELOAD SAMPLE/PRELOAD has two functions 

that it performs. When the TAP control­
ler is in the Capture-DR state, the SAM­
PLE/PRELOAD instruction allows a 
"snap-shot" of the normal operation of 
the component without interfering with 
that normal operation. The instruction 
causes boundary scan register cells as­
sociated with outputs to sample the val-

. ue being driven by the 82490XP. It caus­
es the cells associated with inputs to 
sample the value being driven into the 
82490XP. On both outputs and inputs 
the sampling occurs on the rising edge 
of TCK. When the TAP controller is in 
the· Update-DR state, the SAMPLE/ 
PRELOAD instruction preloads data to 
the device pins to be driven to the board 
by executing the EXTEST instruction. 
Data is preloaded to the pins from the 
boundary scan register on the falling 
edge of TCK. 

IDCODE The instruction code is "0010". The 10-
CODE instruction selects the device 
identification register to be connected to 
TDI and TOO, allowing the devices iden­
tification code to be shifted out of. the 
device on TOO. Note that the device 
identification register is not altered by 
data being shifted iri on TDI. 

BYPASS The instruction code is "1111 ". The BY­
PASS instruction selects the bypass 
register to be connected to TDI and 
TOO, effectively bypassing the test logic 
on the 82490XP by reducing the shift 
length of the device to one bit. Note that 
an open circuit fault in the board level 
test data path will cause the bypass reg­
ister to be selected following an instruc­
tion scan cycle due to the pull-up resis­
tor on the TDI input. This has been done 
to prevent any unwanted interference 
with the proper operation of the system 
logic. 

9.2.4 TEST ACCESS PORT (TAP)· 
CONTROLLER 

The TAP controller is a synchronous, finite state ma­
chine. It controls the sequence of operations of the 
test logic. The TAP controller changes state only in 
response to the following events: 

1. A rising edge of TCK 

2. Power-up. 

The value of the test mode state (TMS) input signal 
at a rising edge of TCK controls the sequence of the 
state changes. The state diagram for the TAP con­
toller is shown in figure 9.3. Test designers must 
consider the operation of the state machine in order 
to design the correct sequence of values to drive on 
TMS. 

9.2.4.1 Test-Logie-Reset State 

In this state, the test logic is disabled so that normal 
operation of the device can continue unhindered. 
This is achieved by initializing the instruction register 
such taht the IDCODE instruction is loaded. No mat­
ter what the original state of the controller, the con­
troller enters Test-Logic-Reset state when the TMS 
input is held high (1) for at least five rising edges of • 
TCK. The controller remains in this state while TMS 
is high. The TAP controller is also forced to enter 
this state at power-up. 

9.2.4.2 Run-Test/Idle State 

A controller state between scan operations. Once in 
this state, the controller remains in this state as 
long as TMS is held low. In devices supporting the 
RUNBIST instruction, the BIST is performed during 
this state and the result is reported in the runbist 
register. For instructions not causing functions to ex­
ecute during this state, no activity occurs in the test 
logic. The instruction register and all test data regis­
ters retain their previous state. When TMS is high 
and a rising edge is applied to TCK, the controller 
moves to the Select-DR state. 

9.2.4.3 Select-OR-Scan State 

This is a temporary controller state. The test data 
register selected py the current instruction retains its 
previous state. If TMS is held low and a rising edge 
is applied to TCK when in t.his state, the controller 
moves into the Capture-DR state, and a scan se­
quence for the selected test data register is initiated. 
If TMSis held high and a rising edge. is applied to 
TCK, the controller moves to the Select-IR-Scan 
state. 

The instruction does not change in this state. 

2-365 



inteL 82495XP Cache Controller/82490XP Cache RAM 

240956-48 

Figure 9-3. Tap Controller State Diagram 

9.2.4.4 Capture-DR State 

In this state, the boundary scan register captures 
input pin data if the current instruction is EXTEST or 
SAMPLE/PRELOAD. The other test data registers, 
which do not have parallel input, are not changed. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is high or the Shift-DR state if 
TMS is low. 

9.2.4.5 Shift-DR State 

In this controller state, the test data register con­
nected between TDI and TOO as a result of the cur­
rent instruction, shifts data one stage toward its seri­
al output on each rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state arid a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is high or remains in the Shift­
DR state if TMS is low. 

2-366 



82495XP Cache Controller/82490XP Cache RAM 

9.2.4.6 Exit1-DR State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-DR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Pause-DR state. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

9.2.4.7 Pause-DR State 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the test data 
register in the serial path between TDI and TOO. An 
example of using this state could be to allow a tester 
to reload its pin memory from disk during application 
of a long test sequence. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

The controller remains in. this state as long as TMS 
is low. Whne TMS goes high and a rising edge is 
applied to TCK, the controller moves to the Exit2-DR 
state. 

9.2.4.8 Exit2-DR State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-DR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Shift-DR state. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

9.2.4.9 Update-DR State 

The boundary scan register is provided with a 
latched parallel output to prevent changes at the 
parallel output while data is shifted in response to 
the EXTEST and SAMPLE/PRELOAD instructions. 
When the TAP controller is in this state and the 
boundary scan register is selected, data is latched 
onto the parallel output of this register from the shift­
register path on the falling edge of TCK. The data 
held at the latched parallel output does not change 
other than in this state. 

All Shift-register stages in test data register selected 
by the current instruciton retains its previous value 
during this state. The instruction does not change in 
this state. 

9.2.4.10 Select-IR-Scan State 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS is held low and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-IR state, and a scan se­
quence for the instruction register is initiated. If TMS 
is held high and a riSing edge is applied to TCK, the 
controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state. 

9.2.4.11 Capture-IR State 

In this controller state the shift register contained in 
the instruction register loads the fixed value "0001" 
on the rising edge of TCK. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held high, or the Shift-IR state if TMS 
is held low. 

9.2.4.12 Shift-IR State 

In this state the shift register contained in the in­
struction register is connected between TDI and 
TOO and shifts data one stage towards its serial out­
put on each rising edge of TCK. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held high, or remains in the Shift-IR 
state if TMS is held low. 

9.2.4.13 Exit1-IR State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-IR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Pause-IR state. 

2-367 



intel® 82495XP Cache Controller/82490XP Cache RAM ~OO[g[bOIMlOOO~OOW 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

9_2.4.14 Pause-IR State 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the instruction 
register. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does not change in this state. 

The controller remains in this state as long as TMS 
is low. When TMS goes high and a rising edge is 
applied to TCK, the controller moves to the Exit2-IR 
state. 

9.2.4.15 Exit2-1 R State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-IR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Shift-IR state. 

The test data register selected by the current instru­
citon retains its previous value during this state. The 
instruction does nbt change in this state. 

9.2.4.16 Update-IR State 

The instruction shifted into the instruction register is 
latched onto the parallel output from the shift-regis­
ter path on the falling edge of TCK. Once the new 
instruction has b,een latched, it becomes the current 
instruction. 

Test data registers selected by the current instruc­
tion retain the previous value. 

9.2.5 BOUNDARY SCAN REGISTER CELL 

The boundary scan register for each component 
contains a cell for each pin, as well as cells for con­
trol of 1/0 and tristate pins. 

9.2.5.1 82495XP Boundary Scan Register Cell 

The following is the bit order of the 82495XP bound­
ary scan register: (from left to right and top to bot­
tom) 

TDI ~ MKEN# KWEND# SWEND# BGT# 
CNA# BRDY# RESERVED CRDY# MWBWT# 
DRCTM# MRO# CWAY# FPFLD# SNPCYC# 
SNPBSY# MHITM# MTHIT#CAHOLD FSIOUT# 
PALLC# SNPADS# CADS# CDTS# CWR# 
CDC# CMIO# RDYSRC MCACHE# KLOCK# 
SMLN# NENE# CFA3 CFA2 TAG11 TAG10 TAG9 
TAG8 TAG7 TAG6 TAG5 TAG4 TAG3 TAG2 TAG1 
TAGO SET10 SET9 SET8 SET7 CLK SET6 SET5 
SET4 SET3 SET2 SET1 SETO CFA6 CFA5 CFA4 
CFA1 CFAO ADS# LEN BLAST# BRDYC1 # 
BRDYC2# CACHE# LOCK# BLE# BOFF# KEN# 
AHOLD WR# MIO# DC# PWTPCD HITM# PCYC 
EADS# 'NA# INV WBWT# WAY WRARR# 
MCYC# BUS# MAWEA# WBWE# WBA WBTYP 
MCFAO MCFA1 MCFA4 MCFA5 MCFA6 MSETO 
MSET1 MSET2 MSET3 MSET4 MSET5 MSET6 
MSET7 MSET8 MSET9 MSET10 MTAGO MTAG1 
MTAG2 MTAG3 MTAG4 MTAG5 MTAG6 MTAG7 
MTAG8 MTAG9 MTAG10 MTAG11 MCFA2 MCFA3 
RESET MAOE# MBAOE# SNPCLK SNPSTB# 
EWBE# MPIC# SNPINV FLUSH# SNYC# 
SNPNCA MBALE MALE MACTL OCTL CFA4CTL 
CFA5CTL CACTL FPFLDCTL WBWTCTL 
NACTL~TDO 

"RESERVED" signals correspond to no connect 
"NC" signals on the 82495XP. 

EWBE# and MPIC# will be implemented in the 
82495XP B-stepping, omit from boundary scan reg­
ister for A-stepping 82495XPs. 

All the 'CTL cells are control cells that are used to 
select the direction of bidirectional pins or tristate 
output pins. If "1" is loaded into the control 
cell(*CTL), the associated pin(s) are tristated or se­
lected as input. The following lists the control cells 
and their corresponding pins. 

1. MACTL controls the MSETO-10, MTAGO-11, 
and MCFAO-6 pins. 

2. OCTL controls the WAY, WRARR#, MCYC#, 
MAWEA#, BUS#, WBWE#, WBA, WBTYP, INV, 
EADS#, AHOLD, KEN#, BOFF#, BLE#, 
BRDYC2#, BRDYC1#, BLAST#, NENE#, 
SMLN#, KLOCK#, MCACHE#, RDYSRC, 
CMIO#, CDC#, CWR#, CDTS#, CADS#, 
SNPADS#, PALLC#, FSIOUT#, CAHOLD, 
MTHIT#, MHITM#, SNPBSY#, SNPCYC#, 
CWAY, EWBE#, and MPIC# output pins. 
, ' 

3. CFA4CTL controls the CFA4 pin. 

4. CFA5CTL controls the CFA5 pin. 

5. CACTL controls the SETO-10, TAGO-11, 
CFAO-3, and CFA6 pins. 

6. FPFLDCTL controls the FPFLD# pin. 

7. WBWTCTL controls the WB/WT# pin. 

8. NACTL controls the NA# pin. 

2-368 



82495XP Cache Controller/82490XP Cache RAM [¥>OO~!!..D~DOO~!ruW 

9.2.5.2 82490XP Boundary Scan Register Cell 

The following is the bit order of the 82490XP bound­
ary scan register: (from left to right and top to bot­
tom) 

TDI -+ CDCTL WR# BLAST # BRDYC# 
BRDY# HITM# ADS# BE# AO A1 A2 A3 M A5 A6 
A7 A8 A9 A10 A11 A12 A13 A14 A15 MDATA7 
MDATA3 MDATA6 MDATA2 MDATA5 MDATA1 
MDATM MDATAO MDCTL MDOE# MZBT# 
MBRDY# MOEC# MFRZ# MSEL# MCLK MOCLK 
RESET PAR# RESERVED BOFF# WBTYP WBA 
WBWE# BUS# MAWEA# MCYC# CRDY# 
WRARR# WAY CDATA4 CDATAO CDATA2 
CDATA5 CDATA6 CDATA1 CDATA3 
CDATA7-+TDO 

"RESERVED" signals correspond to no connect 
"NC" signals on the 82490XP. 

All the 'CTL cells are control cells that are used to 
select the direction of bidirectional pins or tristate 
output pins. If "1" is loaded into the control 
cell(*CTL), the associated pin(s) are tristated or se­
lected as input. The following lists the control cells 
and their corresponding pins. 

1. CDCTL controls the CDATAO-7 pins. 
2. MDCTL controls the MDATAO-7 pins. 

9.2.6 TAP CONTROLLER INITIALIZATION 

The TAP controller is automatically intialized when a 
device is powered up. In addition, the TAP controller 
can be initialized by applying a high Signal level on 
the TMS input for five TCK periods. 

9.2.7 BOUNDARY SCAN SIGNAL DESCRIPTION 
AND TIMINGS 

The functionality of TDI, TMS, TDO, and TCK are 
described in Chapter 7. The A.C. timing specifica­
tions for the boundary scan signals are located in 
Chapter 10. 

9.3 Tri-State Output Test Mode 

The 82495XP has the ability to tri-state all of its out­
puts and bidirectional pins and to disable all pull-ups 
and pull-downs. During tri-state output test mode all 
pins floated during bus hold as well as those which 
are never floated during normal operation are 

tri-stated. When the 82495XP is in tri-state output 
test mode, external testing can be used to test 
board interconnections. 

On the 82495XP, tri-state output test mode is in­
voked by driving HIGHZ#(MBALE) and SLFTST#­
(CRDY #) active to the 82495XP at least 10 clocks 
prior to the deassertion of RESET. Note that 
.HIGHZ# has priority over SLFTST#. When both 
HIGHZ# and SLFTST# are driven active the 
82495XP will invoke the tri-state output mode and 
not invoke BIST. 

Once tri-state output test mode is invoked, the 
82495XP remains in it until the next RESET. 

9.4 82490XP Cache SRAM Testing 

The 82490XP cache SRAM can be tested using 
standard cache memory testing techniques. Code 
must be written to: 
1. Flush and reset the 82495XP 182490XP ICPU 

cache 
2. Write 1 's to every bit of a block of memory equal 

to the cache size 
3. Read the block of memory to fill the cache, tag­

ging the data as read-only using the MRO# sig­
nal 

4. Write O's to every bit in the block of memory 

5. Read the block, the cache hits should be all 1 's 

6. Repeat the process, exchanging 0 for 1 and 1 for 
o 

In this example, the code to test the cache must be 
non-cacheable to the 82495XP. Also, the CPU 
cache must be on so that the 82495XP will perform 
line-fiils. 

10.0 AC/DC SPECIFICATIONS 

10.1 Background 

The 82495XP has four main interfaces: CPU Bus, 
memory bus controller, memory bus, and 82490XP. 
The memory bus controller is typically implemented 
with PLD devices. The MBC interface signal timings 
are, therefore, generated based on available, off­
the-shelf PLD specs. The memory bus interface was 
specified to suit a generic memory interface which 
works up to CPU frequency. 

2-369 



inlet 82495XP Cache Controller/82490XP Cache RAM 

10.2 D.C. Specifications 

Table 10-1. D.C. Specifications 

Vcc = 5V ± 5%, Tcase = 0 to + 85°C 

Symbol Parameter Min Max Unit Notes 

VIL Input Low Voltage -0.3 +0.8 V TTL Level 

VIH Input High Voltage 2.0 2.0 Vee + 0.3 V TTL Level 

VOL Output Low Voltage 0.45 V TTL Level (1) 

VOH Output High Voltage 2.4 V TTL Level (2) 

Icc Power Supply Current 550 rnA 82495XP @ 50 MHz, (3) 
300 82490XP @ 50 MHz 

Power Power Dissipation 2.75 W 82495XP @ 50 MHz, (4) 
1.50 82490XP @ 50 MHz 

III Input Leakage Current ±15 uA 0< VIN > Vcc 

ILO Output Leakage Current ±15 uA o ~ VOUT ~ Vcc Tristate 

IlL Input Leakage Current 200 uA VIN = 0.45V, (5) 

CIN Input Capacitance 14 pF for 82495XP 
5 for 82490XP 

Co Output Capacitance 18 pF for 82495XP 
15 for 82490XP 

ClIO 1/0 Capacitance 18 pF for 82495XP 
15 for 82490XP 

CCLK CLK Input Capacitance 14 pF for 82495XP 
5 for 82490XP 

CrlN Test Input Capacitance 15 pF for 82495XP 
10 for 82490XP 

CrouT Test Output Capacitance 15 pF for 82495XP 
10 for 82490XP 

CrcK Test Clock Capacitance 15 pF for 82495XP 
10 for 82490XP 

NOTES: 
(1) Parameter measured at 4mA lIoad. 

For MCFA6-FCFAO, MSET10-MSETO, and MTAG11-MTAGO, this parameter is measured at 16 mA lIoad. 
(2) Parameter measured at 1 mA lIoad. 

For MCFA6-MCFAO, MSET10-MSETO, and MTAG11-MTAGO, this parameter is measured at 2 mA lIoad. 
(3) Typical Supply current 400mA. 
(4) Typical Power dissipation is 2W. 
(5) This parameter is for input with pullup. 

2-370 



inteL 82495XP Cache Controller/82490}{P Cache RAM ~~[g[bm~OOO~~w 

10.3 A.C. Specifications 
All TTL timing specs are measured at 1.5V for both "0" and "1" logic level. 

Table 10-2. Clock, Reset, and Configuration 

Vcc = 5V ± 5%, Tcase = 0 to + 85°C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Mal{ Unit Figure Notes 

to ClK, MClK, MOClK Frequency 16.6 50 MHz 1x clock 

t1 ClK, MClK, MOClK Stability 0.1 % 

t2 ClK, MClK, MOClK Period 20 60 ns 10-1 

t3 ClK, MClK, MOClK High Time· 7 ns 10-1 (1 ) 

t4 ClK, MClK, MOClK low Time 7 ns 10-1 (1 ) 

t5 ClK, MClK, MOClK Rise Time 2 ns (1 ) 

t6 ClK, MClK, MOClK Fall Time 2 ns (1 ) 

t7 RESET Setup Time 7 ns 10-4 

t8 RESET Hold Time 2 ns 10-4 

t9 RESET Duration 8xt2 ns 10-4 for 82495XP, (2) 
15xt2 for 82490XP 

t10 All Configurations CFG3-CFGO, 10x12 ns 10-4 (3), (4) 
CPUTYP, SNPMD, PlOCKEN, 
MEMlDRV, 82490XPlDRV, HIGHZ#, 
SlFTST # Setup Time 

t11 All Configurations CFG3-CFGO, 0 ns 10-4 (3), (5) 
CPUTYP, SNPMD, PlOCKEN, 
MEMlDRV, 82490XPlDRV, HIGHZ#, 
SlFTST # Hold Time 

t12 FLUSH #, SYNC# Setup Time 8 ns 10-3 for 82495XP, (6) 

t13 FLUSH #, SYNC# Hold Time 1 ns 10-3 for 82495XP, (7) 

t14 FlUSH#, SYNC# Duration 2xt2 ns (8) 

t15 MOClK falling edge to MClK rising edge 2 ns 

t16 FERR#, HlDAValid Delay 2 15 ns 10-2 

t17 FERR#, HlDA Float Delay 18 ns 

t18 HOLD, BOFF # Setup Time 7 ns 10-3 

t19 HOLD, BOFF # Hold Time 2 ns 10-3 

NOTE: 
(1) Rise/Fall, High/low times measured between O.BV and 2.0V. 
(2) Power up reset duration should be 1 ms after Vee and elK are stable. If configuration inputs with pullups are left floated, 
10 us RESET duration is required. 
(3) Timing is referenced to reset falling edge. 
(4) Bns setup time is required to guarantee recognition on next clock. 
(5) 1 ns hold time is required to guarantee recognition on next clock. 
(6) To guarantee recognition on next clock. 
(7) Synchronous mode only. 
(B) Asynchronous mode only. To guarantee recognition. 

2-371 



intet 82495XP Cache Controller/82490XP Cache RAM ~OO[g[bOIMlOOO~OOW 

Table 10-3. Memory Bus Controller 82495XP/82490XP Interface 

Vcc = 5V ± 5%, Tcase = 0 to +85 °C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max Unit Figure Notes 

t30 BRDY#, CRDY#, KWEND#, SWEND#, 8 ns 10-3 82495XP Only 
BGT # , CNA #, [WRMRST] Setup Time 

t30a BRDY #, CRDY # Setup Time 7 ns 10-3 82490XP Only 

t31 BRDY#, CRDY#, KWEND#, SWEND#, 1 ns 10-3 82495XP Only 
BGT#, CNA#, [WRMRST] Hold Time 

t32 CW/R#, CD/C#, CMI/O#, RDYSRC, 2 12 ns 10-2 
MCACHE#, KlOCK#, BlE#, PAllC#, 
CAHOlD, CWAY, FSIOUT#, CADS#, 
CDTS#, SNPADS# Valid Delay 

t33 NENE#, SMlN# Valid Delay 2 15 ns 10-2 

t34 MDATA Setup to ClK (clock before 6 ns 10-3 
BRDY# active) 

t35 MDATAValid Delay from ClK (ClK from 3 15 ns 10-2 
CDTS# valid, MDOE# active) 

t36 MDAT A Valid Delay from MDOE # active 10 ns 10-2 

t37 MDATA Fload Delay from MDOE# inactive 0 14 ns 

Table 10-4. 82495XP Memory Interface 

Vcc = 5V ± 5%, Tcase = 0 to + 85°C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max Unit Figure Notes 

t50 SNPClK Frequency 50 MHz 1x clock (10) 

t51 SNPClK Period 20 ·ns 10-1 (11 ) 

t52 SNPClK High Time 8 ns 10-1 

t53 SNPClK low Time 8 ns 10-1 

t54 SNPClK Rise Time 2 ns (1) 

t55 SNPClK Fall Time 2 ns (1 ) 

t56 MCFA6-MCFAO, MSET10-MSETO, 2 13 ns 10-5 (2), (3) 
MTAG11-MTAGO Valid Delay 

t56 MCFA6-MCFAO, MSET10-MSETO, 2 15 ns 10-5 (4) 
MTAG11-MTAGO Float Delay 

t58 MCFA6-MCFAO, MSET1 O-MSETO, 2 15 ns 10-5 (5) 
MTAG11-MTAGO Valid Delay 

2-372 



82495)(P Cache Controller/82490)(P Cache RAM ~1m[g[bOIMlO[t{]~OOW 

Table 10-4. 82495XP Memory Interface (Continued) 

Vcc = 5V ± 5%, Tcase = 0 to +85 °C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max 

t60 MCFA6-MCFAO, MSET10-MSETO, MTAG11-
MTAGO Valid Delay 

t62a MCFA6-MCFAO, MSET1 O-MSETO, MTAG11-
MTAGO, SNPINVV, SNPNCA, MAOE#, 
MBAOE #, SNPSTB # Setup Time 

t62b MCFA6-MCFAO, MSET10-MSETO, MTAG11-
MTAGO, SNPINV, SNPNCA, MAOE#, MBAOE# 
Setup Time 

t62c MCFA6-MCFAO, MSET1 O-MSETO, MTAG11-
MTAGO, SNPINV, SNPNCA, MAOE#, MBAOE#, 
SNPSTB# Setup Time 

t63a MCFA6-MCFAO, MSET1 O-MSETO, MTAG11-
MTAGO, SNPINV, SNPNCA, MAOE#, MBAOE#, 
SNPSTB# Hold Time 

t63b MCFA6-MCFAO, MSET10-MSETO, MTAG11-
MTAGO, SNPINV, SNPNCA, MAOE#, MBAOE# 
Hold Time 

t63c MCFA6-MCFAO, MSET10-MSETO, MTAG11-
MTAGO, SNPINV, SNPNCA, MAOE#, MBAOE#, 
SNPSTB# Hold Time 

t64 SNPSTB # Setup Time 

t65 SNPSTB# Hold Time 

t66 SNPSTB# Activeilnactive Time 

t67 MRO#, MKEN#, DRCTM#, MWB/WT# Setup 
Time 

t68 MRO#, MKEN#, DRCTM#, MWB/WT# Hold 
Time 

t69 MTHIT#, MHITM#, SNPBSY#, SNPCYC# 
Valid Delay 

t69a SNPCYC# Valid Delay 

NOTES: 
(1) Rise/fall times measured between 0.45V and 2.4V 
(2) See capacitive derating curves for loads above the 50pF specification 
(3) Valid delay from MAOE#, MBAOE# going active (low) 
(4) Float delay from MAOE #, MBAOE # going inactive (high) 
(5) Valid delay from MALE or MBAlE if both MAOE#, MBAOE# are active 

2 

8 

1 

8 

1 

8 

1 

8 

1 

8 

8 

1 

2 

2 

(6) Valid delay from ClK only if MALE or MBAlE, MAOE# and MBAOE# are active 
(7) a. In clocked mode referenced to SNPClK rising edge 

b. In strobed mode referenced to SNPSTB # falling edge 
c. In synchronous mode, refer to ClK 

(8) Asynchronous clocked mode only. Timings referenced to SNPClK 
(9) Asynchronous signal. Time to guarantee recognition on next clock 
(10) SNPClK is only used for the clocked memory bus mode 
(11) t51 > t2 
(12) This parameter is valid either from SNPClK or ClK 

2-373 

15 

13 

12 

Unit Figure Notes 

ns 10-2 (6), (12) 

ns 10-3 (7a) 

ns 10-3 (7b) 

ns 10-3 (7c) 

ns 10-3 (7a) 

ns 10-3 (7b) 

ns 10-3 (7c) 

ns 10-3 (8) 

ns 10-3 (8) 

ns 10-3 (9) 

ns 10-3 

ns 10-3 

ns 10-2 

ns 10-2 



intet 82495XP Cache Controller/82490XP Cache RAM - ~[ffi~!bOIMlOOO~[ffiW 

Table 10-5 82490XP Clocked Mode 

Vcc = 5V ± 5%, Tcase = 0 to +85·C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max Unit Figure Notes 

t38 MBRDY#, MSEL#, MEOC# Setup to MCLK 5 ns 10-3 

t39 MBRDY#, MSEL#, MEOC# Hold from MCLK 2 ns 10-3 

t40 MZST#, MFRZ# Setup to MCLK 5 ns 10-3 

t41 MZST #, MFRZ # Hold from MCLK 2 ns 10-3 

t42 MDATA Setup to MCLK 5 ns 10-3 

t43 MDATA Hold from MCLK 3 ns 10-3 

t44 MDATA Valid Delay from MCLKoMBRDY# 2 16 ns 10-2 

t45 MDATA Valid Delay from MCLK*MEOC#,MCLKoMSEL# 2 20 ns 10-2 

t46 MDATA Valid Delay from MOCLK 2 12 ns 10-2 

Table 10-6. 82490XP Strobed Mode 

Vce = 5V ± 5%, Tcase = Oto +85·C 
Maximum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max Unit Figure Notes 

t85 MISTS, MOSTB High Time 12 ns 10-6 

t86 MISTS, MOSTB Low time 12 ns 10-6 

t87 MEOC# High time 8 ns 10-6 

t88 MEOC# Low time 8 ns 10-6 

t89 MxSTB, MEOC# Rise time 2 ns (1) 

t90 MxSTS, MEOC# Fall time 2 ns (1 ) 

t91 MSEL# High time for restart 8 ns 10-6 

t92 MSEL# Setup before transition on MxSTB 5 ns 10-8 

t93 MSEL # Hold after transition on MxSTB 10 ns 10-8 

t92 MSEL# Hold after transition on MEOC# 2 ns 10-8 

t95 MxSTB transition to/from MEOC# falling transition 10 ns 

t96 MZST# Setup to MSEL# or MEOC# falling edge 5 ns 10-7 

t97 MZST# Hold from MSEL# or MEOC# falling edge 2 ns 10-7 

t98 MFRZ# Setup to MEOC# falling edge 5 ns 10-7 

t99 MFRZ# Hold from MEOC# falling edge 2 ns 10-7 

t100 MDATA Setup to MxSTB or MEOC# falling transition 5 ns 10-7 

t101 MDATA Hold from MxSTB or MEOC# falling transition 2 ns 10-7 

t102 MDATA Valid Delay from MxSTB transition 2 16 ns 10-9 

t103 MDATA Valid Delay from MEOC# falling transition or 
MSEL# deactivation . 

2 20 ns 10-9 

. NOTE: 
(1) Rise/Fall times are measured between O.8V and 2.0V 

2-374 



82495}{P Cache Controller/82490XP Cache RAM 

Table 10-7. Test Mode 

Vcc = 5V ± 5%, Tcase = 0 to +85 °C 
Ma)(imum CL = 50 pF unless otherwise specified. 
Minimum CL = 20 pF unless otherwise specified. 

All Inputs and Outputs are TTL Level. 

Symbol Parameter Min Max Unit Figure Notes 

t120 TCK Frequency 25 MHz 1x clock 

t121 TCK Period 40 ns (2) 

t122 TCK High Time 10 ns @2.0V 

t123 TCK Low Time 10 ns @0.8V 

t124 TCK Rise Time 4 ns (1 ) 

t125 TCK Fall Time 4 ns (1 ) 

t126 TDI, TMS Setup Time 8 ns 10-10 

t127 TDI, TMS Hold Time 7 ns 10-10 

t128 TOO Valid Delay 3 25 ns 10-10 

t129 TOO Float Delay 

t130 All Outputs Valid Delay 3 25 ns 10-10 (3) 

t131 All Outputs Float Delay 36 ns 10-10 (3) 

NOTES: 
(1) Rise/Fall times are measured between O.BV and 2.0V Rise/Fall limes can be relaxed by 1ns per 10ns increase in TCK 
period 
(2) TCK period ~ ClK period 
(3) Parameter measured from TCK 

240956-49 

figure 10-1. Cloc!(Waveform 

Signal 

240956-50 
Ix = t16, 32, 33, 35, 36, 44, 45, 60, 69 

Figure 10-2. Valid Delay Timings 

2-375 



82495XP Cache Controller/8249DXP Cache RAM 

ClK 

Signal 

·240956-51 
Signal 

240956-52 Ix = 130, 62a, 62c, 64, 67, 76, 85 
~= 131,63a, 63c, 65,68, 77,86 

Figure 10-3. Setup and Hold Timings 
Figure 10-3a. Setup and Hold TIIillngs in 

Strobed Snooping Mode 

/ 

ClK 

\ RESET ·t9 

Canfig 

Figure 10-4. Reset and ConfigurationTimings 

MAOE#, 
MBAOE# 

t56 
t57 

MCFAO - Hi-Z VALID 

MALE, 
MBAlE 

CFAO 

Figure 10-5. Memory Interface Signals 

~ n~""rc 2.0V - - - -- - : 

- - - - - - 08V Signal p • 
. t8S, 87, 91. 

Figure 10-6. Active/Inactive Timing 

2-376 

240956-53 

240956-54 

240956-55 



int:el. 

STB 

Signal 

82495XP Cache Controller/82490XP Cache RAM ~OO[g[bO~OOO~OOW 

.1 
STB \ 

I 
\96,98, \97,99,101 

100 

Signal 

240956-56 

Figure 10-7, Setup and Hold Timing 

Signal 

\92 
240956-57 

\93,94 

Figure 10-8. Setup and Hold Timing 

TCK 

TOI ~~~~,lr~~~I,~ 
TMS 

240956-58 TOO 

Figure 10-9, Valid Delay Timing 

2-377 

Output 
Signals 

Figure 10-10. Test Timings 

240956-59 



intel· APPLICATION 
NOTE 

AP-434 

November 1989 

Using i860™ Microprocessor 
Graphics Instructions 

for 3-~ Rendering 

Order Number: 240856-001 
2-378 



USING i860™ 
MICROPROCESSOR 

GRAPHICS INSTRUCTIONS 
FOR 3-D RENDERING 

CONTENTS PAGE 

INTRODUCTION . ...................... 2-381 

1.0 3·D RENDERING .................. 2-381 

2.0 DISTANCE INTERPOLATION ...... 2-383 

3.0 COLOR INTERPOLATION ......... 2-385 

4.0 BOUNDARY CONDITIONS ........ 2-386 

4.1 Z-Buffer Masking ............... 2-386 

4.2 Accumulator Initialization ........ 2-388 

5.0 THE INNER LOOP ................. 2-388 

6.0 ALTERNATIVE 
IMPLEMENTATIONS ............ 2-392 

2-379 



FIGURES PAGE EXAMPLES PAGE 

Figure 1 Z-8UFFER Interpolation ....... 2-383 Example 1: Setting Pixel Size ........... 2-381 

Figure 2 faddz Operands ............... 2-384 Example 2: Register Assignments ...... 2-382 

Figure 3 Pixel Interpolation for Gouraud 
Shading ................... : ......... 2-385 

Example 3: Gonstruction of Z 
Interpolants .......................... 2-385 

Figure 4 faddp Operands .............. 2-386 Example 4: Construction of Color 
Interpolants .......................... 2-386 

TABLES PAGE Example 5: Z Mask Procedure .......... 2-387 

Table 1 faddz Visualization ............. 2-384 
Example 6: Accumulator Initialization ... 2-389 

Table 2 Accumulator Initial Values ...... 2-388 
Example 7: 3-0 Rendering (1 of 2) ...... 2-390 

Table 3 Accumulator Initialization 
Example 7: 3-0 Rendering (2 of 2) ...... 2-391 

Table ................................ 2-388 Example 8: Inner Loop of Renderers for 
Two Pixel Sizes ...................... 2-392 

2-380 



nn~® AP-434 

Introduction 

The i860™ 64-bit microprocessor is a general-purpose 
CPU with on-chip integer unit, floating point, memory 
management, caches, and graphics. The i860 micro­
processor supports 3-D graphics software with the fol­
lowing functions: 

1. Hidden surface elimination 

2. Distance interpolation 

3. Intensity interpolation for 3-D shading 

The fzchks (Z-buffer Check) and pst (Pixel Store) in­
structions expedite hidden surface elimination. Dis­
tance interpolation is accomplished with faddz (Add 
with Z merge), and intensity interpolation occurs with 
faddp (Add with Pixel Merge). The purpose of this ap­
plication note is to illustrate the intended use of these 
instructions in a manner independent of any graphics 
environment in which the instructions might be used. It 
is not the purpose of this application note to present the 
most efficient instruction sequences. While the inner 
loop of Example 7 has as few instructions as logically 
possible, the other examples are intended to present 
general concepts, not optimum implementations. Tun­
ing for maximum performance depends on the specific 
environment. 

This application note assumes familiarity with the 
i860™ 64-bit Microprocessor Programmer's Reference 
Manual (Intel order number 240329); the i860 micro­
processor instructions for graphics are detailed in sec­
tion 6.6. 

1.0 3-0 RENDERING 

This series of examples are routines that might be used 
at the lowest level of a graphics software system to con­
vert a machine-independent description of a 3-D image 
into values for the frame buffer of a color video display. 
Typically, higher-level graphics routines represent an 
object as a set of polygons that together roughly de­
scribe the surfaces of the objects to be displayed. The 
graphics system maintains a database that describes 

1/ SET PIXEL SIZE TO 16 

these polygons in terms of their colors, properties of 
reflectance or translucence, and the locations in 3-D 
space of their vertices. Due to the roughness of the 
representation, the amount of information in the data­
base is considerably less than that which must be deliv­
ered to the video display. A rendering procedure, such 
as Example 7, uses interpolation to derive the detailed 
information needed for each pixel in the graphics frame 
buffer. The rendering procedure also performs pixel-by­
pixel hidden-surface elimination. 

The focus of this series of examples is Example 7, 
which operates on a segment of a scan line. The seg­
ment is bounded by two points of given location and 
color: from point (Xl, YO, Zl) with color intensities 
Redl, Grnl, Blul to point (X2, YO, Z2) with color in­
tensities Red2, Grn2, Blu2. The points and color inten­
sities are determined by higher-level graphics software. 
The points represent the intersection of the scan line 
with two edges of the projected image of a polygon. For 
a given scan line, the rendering procedure is executed 
onc\! for each polygon that projects onto that scan line. 
The higher-level graphics software is responsible for 
orienting the objects with respect to the viewer, for 
making perspective calculations, for scaling, and for de­
termining the amount of light that falls on each poly­
gon vertex. 

The 16-bit pixel format is used, giving ample resolution 
for color shading: 26 intensity values for red, 26 intensi­
ty values for green, and 24 intensity values for blue. 
Example 1 shows how to set the pixel size. For hidden­
surface elimination, theZ-buffer (or depth buffer) tech­
nique is employed, each Z value having a resolution of 
l6-bits. 

Because the examples presented here use almost all of 
the registers of the i860 microprocessor, the registers 
are given symbolic names, as defined by Example 2. In 
a real application, it is likely that some of the inputs to 
the rendering procedure would be passed in floating­
point registers instead of the integer registers employed 
here. The register allocation shown in Example 2 sim­
plifies the examples by avoiding the need to use any 
register for multiple purposes. 

ld.c psr, Ra 1/ Work on psr 
andnoth OxOOCO, Ra, Rail Clear PS 
orh OxOO40, Ra, Rail PS = 16-bit pixels 
st.c Ra, psr 1/ 

Example 1. Setting Pixel Size 

2-381 



AP-434 

II REGISTER DEFINITIONS FOR RENDERING PROCEDURE 
II INTEGER LOCALS 

/I 

/I 

Ra = r4 II Temporary 
Rb = r5 II Temporary 
Rc = r6 II Temporary 
Rd = r7 II Temporary 

INTEGER INPUTS 
Xl 
dX 
ZBP 
Zl 

= r16 II X coordinate of starting point of line segment in pixels 
= r17 II Width of scan line segment in number of pixels 
= r18 II Z-buffer pointer to the current line segment 
= r19 II Initial Z value, fixed-point 16.16 format 

mZ = r20 II Z slope, fixed-point 16.16 format 
FBP = r2l II Graphics frame buffer pointer to the current line segment 
Redl = r22 II Initial red intensity, fixed-point 6.10 format, plus ;5 
Grnl = r23 /I Initial green intensity, fixed-point 6.10 format, plus .5 
Blul = r24 /I Initial blue intenSity, fixed-point 6.10 format, plus .5 
mR = r25 II Red slope, fixed-point 6.10 format 
mG = r26 II Green slope, fixed-point 6.10 format 
mB = r27 II Blue slope, fixed-point 6.10 format 

REAL LOCALS 
aZ = f2 II Accumulated Z values 
aZh = f3 /I 
iZl = f4 II Z interpolant, coefficient 1.0 
iZlh = f5 /I 
iZ3 = f6 II Z interpolant, coefficient 3.0 
iZ3h = f7 /I 
oldz = f8 II Original values from the Z-buffer 
newz = flO II New Z-buffer values 
newzh = fll II 
newi = f12 II New pixel values 
iR = f14 II Red interpolant, coefficient 4.0 
iRh = fl5 /I 
aR = f16 II Accumulated red intensities 
aRh = fl7 /I 
iG = fl8 II Green interpolant, coefficient 4.0 
iGh = fl9 /I 
aG = f20 II Accumulated green intensities 
aGh = f2l /I 
iB = f22 II Blue interpolant, coefficient 4.0 
iBh = f23 /I 
aB = f24 II Accumulated blue intensities 
aBh = f25 /I 
lZmask = f26 
lZmaskh = f27 
rZmask = f28 
rZmaskh = f29 

II left-end Z mask 
/I 
/I 
/I 

right-end Z mask 

Example 2. Register Assignments 

2-382 



in~® AP-434 

2.0 DISTANCE INTERPOLATION 

To perform hidden surface elimination at each pixel, 
the rendering routine first interpolates the value of Z at 
each pixel. Distance interpolation consists of calculat­
ing the slope of Z over the given line segment, then 
increasing the Z value of each successive pixel by that 
amount, starting from Xl. The width of the line seg­
ment in pixels is ... 

dX = X2 - Xl 

Calculate the reciprocal of dX: 

RdX = I/dX 

The value of dX is used several times as a divisor. It is 
most efficient to calculate its reciprocal once, then, in­
stead of dividing by dX, multiply by RdX. The slope of 
Z is ... 

mZ = (Z2 - Zl)* RdX 

Because each polygon is a plane, the value of mZ is 
constant for all scan lines that intersect the polygon; 
therefore mZ needs to be calculated only once for each 

polygon. Example 7 assumes that dX and mZ have al­
ready been calculated, and all that remains is to apply 
mZ to successive pixels. Let Z(Xn) be the Z value at 
pixel Xn. Then ... 

Z(Xl) = Zl 
Z(XI + 1) = Zl + mZ 
Z(XI + 2) = Zl + 2*mZ 

Z(XI + N) = Zl + N'mZ 

Z(XI + dX) =Zl + dX*mZ = Z(X2) 

Figure 1 illustrates this Z-value interpolation. 

The faddz instruction helps to perform the above calcu­
lations 64 bits at a time. Because a Z value is 16 bits 
wide, Example 7 operates on the Z buffer in groups of 
four. The faddz instruction, however, treats the interpo­
lation values (N'mZ) as 32-bit fixed-point numbers; 
therefore, two faddz instructions are executed for each 
group offour pixels. Because of the way the faddz shifts 

(r, g, b, x, y, z = 4000) 

(r', g', b', x', y', z' = BOO) 

mZ = 3000-2400 
12 pixels 

(r", g", b", x", y", z" = 1000) 

Figure 1. Z-Buffer Interpolation 

2-383 

o 
o 
o 

'" 

240856-1 

FI 



intel~ AP-434 

the MERGE register, the first faddz corresponds to 
even-numbered pixels, while the second corresponds to 
odd-numbered pixels. Instead of starting with the value 
for the first pixel (Z(XI» and adding mZ to each pixel 
to produce the value for the next pixel, the example 
procedure starts with the values for the first two even­
numbered pixels and adds 1 • mZ to each ofthese values 
to produce the values for the adjacent odd-numbered 
pair. Adding 3·mZ to each of the Z values of an odd­
numbered pair produces the values for the next even-

numbered pair. Figure 2 shows one way of constructing 
the operands before starting the distance interpolations . 
. (The initial value given to srCI depends on the align­
ment of the first pixel.) Table 1 helps to visualize the 
process. 

After two faddz instructions, the MERGE register 
holds the Z values for four adjacent pixels (in the cor­
reet order). The form instruction copies MERGE into 
one of the 64-bit floating-point registers. 

Accumulator 
63 47 31 15 0 

Z1-1.0'mZ fraction I Z1:-3.0'mZ fraction Iinitial 
src1 

Interpolants 
63 47 31 15 0 

3.0'mZ fraction I 3.0'mZ fraction IFirst 
src2 

63 47 31 15 0 

1.0'mZ fraction 1.0'mZ fraction Isecond 
src2 

Figure 2. faddz Operands 

Table 1. faddz Visualization 

MERGE Register 
Operands 63-32 31-0 63-48 I 47-32 I 31-16 I 15-0 

src1 -1.0 -3.0 

src2 3.0 3.0 

rdestlsrc1 2.0 0.0 2 I I 0 I 
src2 1.0 1.0 

rdestlsrc1 3.0 1.0 3 I 2 I 1 I 0 

src2 3.0 3.0 

rdestlsrc1 6.0 4.0 6 I I 4 I 
src2 1.0 1.0 

rdestlsrc1 7.0 5.0 7 I 6 I 5 I 4 

src2 3.0 3.0 

rdest/src1 10.0 8.0 10 I I 8 I 
src2 1.0 1.0 

rdestlsrc1 11.0 9.0 11 I 10 I 9 I 8 

src2 3.0 3.0 

rdestlsrc1 14.0 12.0 14 J J 12 I 
src2 1.0 1.0 

rdest 15.0 11.0 15 I 14 I 13 I 12 

Because the values of ZI and mZ are constant for each loop through the rendenng routine, the numbers shown here are 
the values of the coefficient N, where the actual operands have the values ZI + N'mz. For each execution of faddz, srel 
is the same as rdest of the prior faddz. After every two faddz instructions, a form instruction empties the MERGE register. 

2-384 



AP-434 

II CONSTRUCT INTERPOLANTS iZl AND iZ3 GIVEN mZ 
ixfr mZ, iZl II Join each half in 64-bit register 
shl 1, mZ, Ra II Ra = 2*mZ 
adds Ra, mZ, Ra II Ra = 3*mZ 
ixfr Ra, iZ3 II Join each half in 64-bit register 
fmov.ss iZl, iZlh II Join each half in 64-bit register 
fmov.ss iZ3, iZ3h II Join each half in 64-bit register 

Eltample 3. Construction of Z Interpolants 

(r = 20,g,b,x,y,z) 

Red Color 
(0-63) 

(r' = 40, g', b', x', y', z') 

mR = 27-:30 
12 pixels 

(r" = 40, g", b", x", y", z") 
240856-2 

Figure 3. Piltellnterpolation for Gouraud Shading 

The same register is used as both srcl and rdest in all 
faddz instructions. This register serves to accumulate Z 
values for successive pixels; therefore, it is called an 
accumulator. The registers used as src2 are called inter­
polants. The code in Example 3 constructs the interpo­
lants; it needs to be executed only once for each poly­
gon. 

3.0 COLOR INTIERPOLATION 

To determine the RGB color intensities at each pixel, 
the rendering routine interpolates between the color in­
tensities at the end points. (This rendering technique is 
called "Gouraud shading" after H. Gouraud, "Contin­
uous Shading of Curved Sufaces," IEEE Transactions 
on Computers, C-20(6), June 1971, pp. 623-628.) Let 
the symbol C (color) represent either R (red), G 
(green), or B (blue). Color interpolation consists of cal­
culating the slope of C over the given line segment, then 
increasing the C values of each successive pixel by that 
amount, starting from the values for Xl. This must be 
done for C=R, C=G, and C=B. The slope ofC is ... 

mC = (C2 - Cl)*RdX 

... where RdX = lIdX 

The value of mC is constant for all scan lines that inter­
sect a given pair of polygon edges; therefore mC needs 
to be calculated only once for each such pair. Example 
7 assumes that mC has already been calculated for all 
colors, and all that remains is to apply mC to successive 
pixels. Let C(Xn) be a C value at pixel Xn. Then ... 

C(Xl) = Cl 
C(XI + I) 
C(XI + 2) 

C(XI + N) 

Cl + mC 
Cl + 2*mC 

Cl + N'mC 

C(XI + dX) == Cl + dX*mC = C(X2) 

Figure 3 illustrates Gouraud shading of a triangle. 

The faddp instruction performs the above calculations 
64 bits at a time. Because a pixel is 16 bits wide, Exam­
ple 7 operates on pixels in groups of four. Instead of 
starting with the value for the first pixel (C(Xl)) and 
adding inC to each pixel to produce the value for the 
next pixel, the example procedure starts with the values 
for the first four pixels and adds 4' mC to each group of 

2-385 

II 



intel .. AP-434 

four to produce the values for the next four. Three 
faddp instructions are executed for each group of four 
pixels. The first increments the blue values; the second, 
green; the third,red. Figure 4 shows one way of con­
structing the operands for each color before starting the 
color interpolations. (The initial value given to srcl de­
pends on the alignment of the first pixel.) 

Setup of the accumulator and interpolants is similar to 
that of the Z~buffer. The code in Example 4 constructs 
the interpolants; it needs to be executed only once for 
each pair of edges in each polygon. 

\ 

4.0 BOUNQARY CONDITIONS 

The i860 microprocessor operates on 64-bit quantities 
that are aligned on 8-byte boundaries. The code in this 
example takes full advantage of this design, handling 
four 16-bit pixels in each loop. However, if the first or 

Accumulator 
63 47 31 

I I 

last pixel of a line segment is not on an 8-byte bounda­
ry, two kinds of special considerations are required: 

1. Masking of Z values near the end points. 

2. Initialization of the accumulators. 

4.1 Z-Buffer Masking 

When either the first or last pixel of the line segment is 
not at an 8-byte boundary, the rendering procedure 
must mask the first or last set of new Z-buffer values 
(newz) so that the Z-buffer and the frame buffer are not 
erroneously updated. Sometimes both the first and last 
pixels are in the same 4-pixel set, in which case either 
one may not be on an 8-byte boundary. A function that 
looks up and calculates masks is shown in Example 5. 

Because the value OxFFFF is used for masking, the Z­
buffer is initialized with OxFFFE, so that the fzchks 
instruction always finds the mask to be greater than 
any Z-buffer contents. 

15 0 

Initial C1 +3*mCI frac C1 +2*mCI frac C1+mC frac C1 frac src1 I I 

Interpolant 
63 47 31 15 0 

4*mC frac 4*mC frac 4*mC frac 4*mC frac src2 

Figure 4. faddp Operands 

/I CONSTRUCT INTERPOLANTS iR, iG, iB GtVEN mR, mG, mB 
shl 18, mR, Ra II Multiply each color slope by four, then 
shl 18,' mG, Rb /I shift by lS to put the Significant 
shl 18, mB, Rc /I bits into the high-order half 
shr lS, Ra, mR II Return significant lS bits 
shr lS, Rb, mG /I to low-order half. Any Sign bits 
shr lS, Rc, mB /I in high-order half are gone. 
or mR, Ra, Ra II Join lS-bit quarters 
or rG, Rb, Rb II in 32-bit register 
or mB, Rc, Rc II 
ixfr Ra, iR II Join 32-bit halves 
ixfr Rb, iG II in S4-bit register 
ixfr Rc, iB II 
fmov.ss iR, iRh II 
fmov.ss iG, iGh II 
fmov.ss iB, iBh II 

Example 4. Construction of Color Interpolants 

2-386 



AP-434 

.macro zmask I_align, r_align, Rx, Ry 
II I_align, r_align 
II Rx, Ry -

left- and right-end alignment [0 •• 3] in 2-byte units 
scratch registers 

.data 

.align 8 
left_mask:: Illow 

.long OxOOOOOOOO, 

.long OxOOOOFFFF, 

.long OxFFFFFFFF, 

.long OxFFFFFFFF, 
right_mask::lllow 

.long OxFFFFOOOO, 

.long OxOOOOOOOO, 

.long OxOOOOOOOO, 

.long OxOOOOOOOO, 

.text 

high 
OxOOOOOOOO 
OxOOOOOOOO 
OxOOOOOOOO 
OxOOOOFFFF 

high 
OxFFFFFFFF 
OxFFFFFFFF 
OxFFFFOOOO 
OxOOOOOOOO 

II 0 mod 4 
II 1 mod 4 
II 2 mod 4 
II 3 mod 4 

II 0 mod 4 
II 1 mod 4 
II 2 mod 4 
II 3 mod 4 

shl 3, I_align, I_align II Multiply by 8 
mov left_mask, Rx II 
fld.d I_align (Rx) , lZmask II Load 8-byte mask 

shl 3, r_align, r_align II Multiply by 8 
mov right_mask, Rx II 
fld.d r_align (Rx) , rZmask II Load 8-byte mask 

II If the first and last pixels are contained in the same 
II aligned set, then lZmask = lZmask OR rZmask. 

andh Ox8000, dX, rO II Is dX negative 
bc L2 II If not, right end 
fxfr lZmask, Rx II 
fxfr rZmask, Ry II 
or Rx, . Ry, Rx II OR low-order half 
ixfr Rx, lZmask II 
fxfr lZmaskh, Rx II 
fxfr rZmaskh, Ry II 
or Rx, Ry, Rx II OR high-order half 
ixfr Rx, lZmaskh II 

L2: nop II 
.endm 

Example 5. Z Mask Procedure 

2-387 

64-bit 

is in other set 

II 



inteL AP-434 

Table 2. Accumulator Initial Values 

Alignment Initial Z Accumulator Values 

0 Z1 - 1*mZ Z1 - 3*mZ 
2 Z1 - 2*mZ Z1 - 4*mZ 
4 Z1 - 3*mZ Z1 - 5*mZ 
6 Z1 - 4*mZ Z1 - 6*mZ 

Alignment 
Initial Color Accumulator Values 

C = R,G,B 

0 C1 - 1*mC C1 - 2*mC C1 - 3*mC C1 - 4*mC 
2 C1 - 2*mC C1 - 3*mC C1 - 4*mC C1 - 5*mC 
4 C1 - 3*mC C1 - 4*mC C1 - 5*mC C1 - 6'mC 
6 C1 - 4*mC C1 - 5*mC C1 - 6*mC C1 - 7*mC 

Table 3. Accumulator Initialization Table 

Alignment 
*mZ *mR 

0 -1, -3 -1, -2, -3, -4 
2 -2,-4 -2, -3, -4, -5 
4 -3, -5 -3, -4, -5, -6 
6 -4, -6 -4, -5, -6, -7 

4.2 Accumulator Initialization 

When the first pixel of the line segment is not at an 8· 
byte boundary, initial values placed in the accumulators 
(aZ, aB, aG, and aR) must be selected so that Zl, 
Redl, Grnl, and Blul correspond to the correct pixel. 
The desired result is that shown by Table 2. However, 
each value is a composite of two terms:- one -that is 
constant for each edge pair (n *mZ, n *mR, n *mG, 
n *mB) and one that can vary with each scan line (Zl, 
Redl, Grnl, Blul). The example assumes that the con· 
stant values have all been calculated and stored in a 
memory table of the format shown by Table 3. At the 
beginning of each line segment the values appropriate 
to the alignment of the line segment are retrieved from 
the table and added to the initial Z and color values, as 
shown in Example 6. 

5.0 THE INNER LOOP 

Once the proper preparations have been made, only a 
minimal amount of code is needed to render each scan· 

Table Values 

*mG *mB 

-1, -2, -3, -4 -1, -2, ~3, -4 
-2, -3, -4, -5 -2, -3, -4, -5. 
-3, -4, -5, -6 -3, -4, -5, -6 
-4, -5, -6, -7 -4, -5, -6, -7 

line segment of a polygon. The code shown in Example 
7 operates on four pixels in each loop. The left and 
.right ends of the line segment go through different logic 
paths so that the Z-buffer masks can be applied by the 
form instruction. All the interior points are handled by 
the tight inner loop. 

The controlling variable dX is zero-relative and is ex­
pressed as a number of pixels. The value of dX also 
indicates alignment of the end-points with respect to 
the 4-pixel groups. Unaligned left-end pixels are sub­
tracted from dX before entering the inner loop; there­
fore, subsequent values of dX indicate the alignment of 
the right end. A value that is 3 mod 4 indicates that the 
right end is aligned, which explains the test for a value 
of - 5 near the end of the loop ( - 5 mod 4 = 3). The 
fact that the value - 5 is loaded into register Rb on 
every execution of the loop does not represent a pro­
gramming inefficiency, because there is nothing else for 
the core unit to do at that point anyway. 

2-388 



int'eL AP-434 

II ACCUMULATOR INITIALIZATION TABLE 
.data; .align .double 

acc_init_tab:: .double [16] 0 
.dsect 

aBi: • double 
aGi: • double 
aRi: • double 
aZi : • double 

.end 

.text 

II Four initial 16-bit blue values 
II Four initial l6-bit green values 
II Four initial l6-bit red values 
II Two initial 32-bit Z values 

II INITIALIZE ACCUMULATORS 
.macro acc_init Lalign, Rtab, Rx, Ry, Fx, Fxh 
II Lalign - left-end alignment (0 •• 3) in two-byte units 
II Rtab - register to use for addressing the table 
II Rx, Ry, Fx, Fxh - scratch registers 

mov acc_init_tab, Rtab II 
shl, 5, Lalign, Lalign II Multiply by row width 
adds Lalign, Rtab, Rtab II Index row corresponding 
fld.d aZi(Rtab), aZ liZ 
ixfr Zl, Fx II Z 
fld.d aRi(Rtab), aR II R-Load constant values 

to alignment fI 
shl 16, Redl, Rx II R-Shift starting value to hi-order 
fmov.ss Fx, Fxh II Z 
shr 16, Rx, Ry II R-Redlstripped of sign bits 
fiadd.dd Fx, aZ, aZ II Z 
or Rx, Ry, Ry II R-Form (Redl,Redl) 
ixfr Ry, Fx II R-Put in 64-bit register 
fld.d aGi(Rtab), aG II G 
shl 16, Grnl, Rx II G 
fmov.ss Fx, Fxh II R-Form (Redl,Redl,Redl,Redl) 
shr 16, Rx, Ry I I G 
fiadd.dd Fx, aR, aR II R-Add variables to constants 
or Rx, Ry, Ry II G 
ixfr Ry, Fx II G 
fld.d aBi(Rtab), aB II B 
shl 16, Blul, Rx II B 
fmov.ss Fx, Fxh II G 
shr 16, Rx, Ry II B 
fiadd.dd Fx, aG, aG II G 
or Rx, Ry, Ry II B 
ixfr Ry, Fx II B 
fmov.ss Fx, Fxh II B 
fiadd.dd Fx, aB, aB II B 

.endm 

Example 6. Accumulator Initialization 

2-389 



int:eL AP-434 

II RENDERING PROCEDURE 
II 16-bit pixels, 16-bit Z-buffer 

and 3, Xl, Ra II Determine alignment of starting-point 
acc_init Ra, Rb, Rc, Rd, Fa, Fah II Initialize accumulators 
subs 4, Ra, Rbl14 - alignment 
subs dX, Rb, dX II Adjust dX by Xl alignment 
II If dX <= 0, then right end is in same set as left end 
and 3, dX, Rb II Determine alignment of right end 
zmask Ra, Rb, Rc, Rd II Prepare both left- and right-end masks 

left_end:: II Handle boundary conditions 
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 

adds -8, FBP,FBP II Anticipate autoincrement 
d.faddz aZ, iZl, aZ II Interpolate 2 odd Z values 

adds -8, ZBP, ZBP II Anticipate aut 0 increment 
d.form lZmask, newz II Mask 4 new Z values 

fld.d8(ZBP),01dz II Fetch 4 old Z values 
d.faddp aB, iB, aB II Interpolate 4 blue intensities 

mov -4, Ra II Loop increment: 4 pixels 
d.faddp aG, iG, aG II Interpolate 4 green intensities 

adds -4, dX, dX II Prepare dX for bla at end of loop 
d.faddp aR, iR, aR II Interpolate 4 red intensities 

bla Ra, dX, Ll II InitializeLCC 
d.form fO, newi II Move 4 new pixels to 64-bit reg 

adds 5, dX, rO II Are there any whole sets (dX < -5)? 
Ll: d.fzchks oldz, newz, newzll Mark closer points in PM[7 •• 4] 

bc short_segment II Get out now if no whole set 
d.fnop II 

fld.d 16(ZBP) , oldz II Fetch 4 old Z values 
inner_loop:: II Handle all interior points 

d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 
nop II 

d.faddz aZ, iZI, aZ II Interpolate 2 odd Z values 
fst.d newz, 8(ZBP)++ II Update Z buf from prior loop 

d.form fO, newz II Move 4 new Z values to 64-bit reg 
nop II 

d.fzchks fO, fO, fO II Shift PM[7 •• 4] to PM[3 •• 0] 
mov -5, Rb II -5 mod 4 = 3, aligned right end 

d.faddp aB, iB, aB II Interpolate 4 blue intensities 
pst.d newi, 8(FBP)++ II Store pixels indicated by PM[3 •• 0] 

d.faddp aG, iG, aG II Interpolate 4 green intensities 
xor Rb. dX, rO II Are we at an aligned right end? 

d.faddp aR, iR, aR II Interpolate 4 red intensities 
bc aligned_end II Taken if at an aligned right end 

d.form fO, newi II Move 4 new pixels to 64-bit reg 
bla Ra, dX, inner_loop II Loop if not at end of line segment 

d.fzchks oldz, newz, newzll Mark closer points in PM[7 •• 4] 
fld.d 16(ZBP), oldz II Fetch 4 old Z values for next loop 

II End of inner_loop. Right end not aligned 

Example 7. 3·0 Rendering (1 of 2) 

2-390 



intel~ AP-434 

right_end:: II Handle boundary conditions 
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 

nop 
d.faddz 

fst.d 
d.form 

nop 
d.fzchks 

nop 
d.faddp 

pst.d 
d.faddp 

nop 
d.faddp 

nop 

aligned_end: : 
d.form 

br 
d.fzchks 

nop 

short_segment:: 
d.fnop 

adds 
d.fnop 

bnc.t 
d.fnop 

fld.d 

aZ, iZl, aZ 
newz, 8 (ZBP) ++ 
rZmask, newz 

II 
II 
II 
II 
1/ 

Interpolate 2 odd Z values 
Update Z buf from prior loop 
Mask 4 new Z values 

fa, fa, fa II Shift PM[7 •• 4] to PM[3 •• 0] 

aB, 
newi, 
aG, 

iB, aB 
8(FBP)++ 
iG, aG 

II 
II 
II 
II 
II 

Interpolate 4 blue intensities 
Store pixels indicated by PM[3 •• 0] 
Interpolate 4 green intensities 

aR, iR, aR II Interpolate 4 red intensities 
II 

II No special boundary conditions 
fa, newi 
wrap_up 
oldz, newz, 

8, dX, 

right_end 

16(ZBP) , oldz 

II Move 4 new pixels to 64-bit reg 
II 

newzll Mark closer points in PM[7 •• 4] 
II 

II 
rO II Is right end in same set as left? 

II 
II Branch 'taken if no. 
II 
II Fetch 4 old Z values 

wrap_up:: II Store the unstored and leave dual mode. 
fzchks fa, fa, fa II Shift PM[7 •• 4] to PM[3 •• 0] 

fst.d newz, 8(ZBP)++ II Update Z buf from prior loop 
fnop 

pst.d newi, 8(FBP)++ II Store pixels indicated by PM[3 •• 0] 

Example 7. 3-D Rendering (2 of 2) 

2-391 



AP-434 

6.0 ALTERNATIVE IMPLEMENTATIONS 

Example 8 contrasts the inner loop of the 16-bit pixel rendering procedure with that of an 8-bit procedure. For 8-bit 
pixels, two faddp instructions accomplish 64-bits of pixel intensity interpolation; there is no need to maintain three 
separate color accumulators. Four faddz instructions (rather than two) are required, because eight Z values are 
created for the eight pixels per loop. 

II 8-bit Pixels, IS-Bit Zbuffer = 8 Pixels in 15 Clocks 
II G-Unit I Core Unit 

inner_loop: : 
d.faddz aZ,deltaZl,aZ fld.q lS(ZBP),oldZ_A 
d.faddz aZ,deltaZ2,aZ nop 
d.form fO,newZ_A nop 
d.faddz aZ,deltaZl,aZ andh 
d.faddzz aZ,deltaZ2,aZ bnc 
d.form fO,newZ_B nop 
d.fzchks oldZ_A,newZ_A,newZ_A nop 
d.fzchks oldZ_B,newZ_B,newZ_B nop 

Ox8000,dX, rO 
right end 

d.faddp intens,dI,intens fst.q newZ_A ,lS(ZBP)++ 
d.faddp intens,dI2,intens bte O,dX,end 
d.form fO,newi bla neg8,dX,inner_loop 
d.fnop pst.d newi,8(FBP)++ 

11------------------------------------------------------------
II IS-Bit Pixels, IS-Bit Zbuffer = 4 Pixels in 10 Clocks 
II G-Unit . I Core Unit 

inner_loop: : 
d.faddz aZ,iz3,aZ nop 
d.faddz aZ,izl,aZ fst.d newz,8(ZBP)++ 
d.form fO,newz nop 
d.fzchks fO,fO,fO mov -5,Rb 
d.faddp aB,iB,aB pst.d newi,8(FBP)++ 
d.faddp aG,iG,aG xor Rb,dX,rD 
d.faddp aR,iR,aR bc aligned_end 
d.form fO,newi bla neg4,dX,inner_loop 
d.fzchks oldz,newz,newz fld.d lS(ZBP),oldz 

11------------------------------------------------------------
Example 8. Inner Loop of Renderers for Two Pixel Sizes 

2-392 



intel· APPLICATION 
NOTE 

March 1990 

FAST Fourier Transforms on the 
i860™ Microprocessor 

MARK ATKINS 
APPLICATIONS ENGINEER 

2-393 
Order Number: 240658-001 



FAST FOURIER TRANSFORMS ON THE 
i860™ MICROPROCESSOR 

CONTENTS PAGE CONTENTS PAGE 

1.0 INTRODUCTION TO FFTs ......... 2-395 6.0 PIPELINE SCHEDULING . .......... 2-398 

2.0 BUTTERFLY DEFINED ............ 2-395 7.0 PERFORMANCE 
MEASUREMENTS ............... 2-400 

3.0 BIT REVERSAL .................... 2-397 7.1 Cache Fill and Write back Time .. 2-400 

4.0 FFT IMPLEMENTATION ON THE 
i860™ CPU ...................... 2-397 8.0 CODE HIERARCHy ................ 2-401 

5.0 CODE DESIGN ..................... 2-398 9.0 CONCLUSION ..................... 2-401 

5.1 Cache Utilization ................ 2-398 APPENDIX A: 
5.2 Pfld ............................. 2-398 PROGRAM LISTINGS ................. 2-402 

5.3 Fst.q ........................... 2-398 

5.4 Bit Reversal Code .............. 2-398 

2-394 



AP-435 

ABSTRACT 

The i860 Processor computes floating-point results rap­
idly, lending itself to DSP (digital signal processing) as 
well as general-purpose computing. With this high per­
formance, DSP functions can be added to any system 
containing an i860 CPU. A Fast Fourier Transform 
(FFT) illustrates this DSP power. Complete code for 
the FFT is presented in this application note, as well as 
performance measurements. Both complex and real in­
put data FFTs are included, as well as both Decimation 
in Time and Decimation in Frequency. 

1.0 INTRODUCTION TO FAST 
FOURIER TRANSFORMS 

Discrete Fourier Transforms (DFTs) change time-do­
main data samples into a frequency-domain profile 'of 
the sampled signal. The frequency-domain representa­
tion consists of the magnitudes of sine waves at various 
frequencies, which would recreate the original data if 
superimposed. To accomplish the transform, a DFT 
adds combinations of the input data samples, after mul­
tiplying some of those inputs with weighting factors. 
The number of samples, "N", is usually a power of two. 

Each result in the frequency domain comes from a 
weighted sum of all data samples. The weighting ("W") 
factors are called "twiddles", and are complex cosine/ 
sine values for each particular frequency. 

The FFT (Fast Fourier Transform) is an efficient im-. 
plementation of the DFT, defined by: 

x(n) = time domain samples of the signal, 
n = 0, 1, ... N-l 

X(k) = the Discrete Fourier Transform of x(n), k 
0,1, ... N- 1 ' 

a "frequency domain" equivalent of x(n) 

~ x(n) • wnk, n = 0 to N-l, and 
wnk = e-j2'1Tnk/N , where j = F1 

= ~ x(n) • (cos(27Tnk/N) - j • sin(27Tnk/N)) 

The (N-l) complex adds and (N-l) complex multiplica­
tions required for each X(k) make the DFT an Order 
(N2) computation. Fortunately, the FFT decomposes 
this to an Order (N • log2 N) algorithm by splitting the 
N-sum into units of 2-sums. These units are called 
"butterflies" because they produce 2 output values 
from 2 inputs, with the butterfly-shaped dataflow 
shown below. (Some FFT algorithms, called Radix-4, 
use 4-input, 4-output butterflies.) The butterfly calcula­
tions are executed in stages, with log2 N stages and NI2 
butterflies per stage. 

The subdivision, or decimation, of the N-sum into but­
terflies can be done via two different methods: "Deci­
mation in Time" (DIT) or "Decimation in Frequency" 
(DIF). The methods differ in the ordering of twiddles 
and the form of the butterfly arithmetic, but they yield 
the same answer. They are based on different mathe­
matical derivations of the FFT: DIT results from recur­
sively splitting the input time-domain samples into an 
even-indexed group and an odd-indexed, while DIF 
comes from splitting the DFT output frequency-do­
main points into odd/even groups. 

2.0 BUTTERFLY DEFINED 

Let A = the first input to the butterfly (complex 
number, composed of Real part AR and 
Imaginary part AI) 

B = the second input to the butterfly (com­
plex, BR and BI) 

W = twiddle factor (also complex, WR and 
WI) 

Anew = complex result # I, which overwrites A 

Bnew = result #2, which overwrites B 

For a "Decimation-in-Frequency" butterfly, 

Anew = A+B 

Bnew = (A - B) • W 

The complex add, subtract, and multiply of a butterfly 
decompose into 4 real mUltiplies, 3 real adds, and 3 real 
subtracts: 

AnewR = AR + BR tempR = AR-BR 

AnewI = AI + BI tempI '= AI-BI 

BnewR = (tempR' WR)- (tempI • WI) 

BnewI = (tempR • WI) + (tempI • WR) 

For a "Decimation-in-Time" butterfly, 

Anew A + (B • W) 

Bnew = A - (B • W) 

The number of real operations remains 4 multiplies and 
6 add/subtracts, but the equations differ and the multi­
plies must be done first: 

tempR = (WR' BR) - (WI • BI) 

tempI (WR • BI) + (WI • BR) 

AnewR = AR + tempR BnewR = AR-tempR 

AnewI = AI + tempI BnewI = AI-tempI 

2-395 



infel .. AP-435 

Butterfly Dataflow:' 

(Decimation In Frequency) 

The stages, twiddles, and butterflies for 8-point FFrs 
are shown in Figures 1 and 2. For larger values of N, 
the dataflow patterns are very similar, with N/2 butter­
flies executed at each stage, and a greater number of 

X(O) 

Xl') 

X(2) 

X(3) 

X(') 

XIS) 

XIs) 

X(7) 

(Decimation In TIme) 

'240658-1 

stages. Refer to a text on Digital Signal Processing for a 
complete discussion of FFr design, suchas chapter 6 of 
Theory and Application of Digital Signal Processing (see 
the Bibliography at the end' of this note). 

X(O) 

X(') 

X(2) 

XIS) 

Xl') 

XIS) 

X(3) 

X(7) 
240658-2 

Figure 1_ Declmation-In-Frequency FFT for 8 pOints 

X(O) 

Xl') 

X(2) 

X(3) 

X(') 

XIS) 

xIS) 

X(7) 
240658-3 

Figure 2. Declmatlon-In-Time FFT for 8 points 

2-396 



Ap·435 

3.0 BIT REVERSAL 

Due to their structure, FFT algorithms have the side­
effect of scrambling the ordering of output data. For 
radix-2 FFTs, the output is in "bit-reversed" order­
for example, the value for frequency one is NOT at 
location one in the output array, but at location N/2. 
Time to unscramble the output is often NOT included 

. in FFT benchmarking, because scrambled output is fine 
for some signal-processing uses such as convolution. In 
any event, unscrambling consists of swapping the loca­
tions of pairs of output values. Alternatively, input val­
ues can be shuffied, as Decimation in Time usually does 
before the first stage (as shown in Figure 2). Otherwise, 
to avoid the shutTiing of input in DIT, the twiddles 
must be accessed in bit-reversed order. As an example 
of bit-reversal, for 256 points the reordering involves: 

SWAP X(i) and X(j), where i· = 'klmnopqr'b and j = 
'rqponmlk'b. The second index (j) contains the same 
bits as (i), but in opposite order. 

//--------------------

4.0 FFT IMPLEMENTATION ON THE 
i860 CPU 

Several features of the i860 CPU contribute to FFT 
performance. The floating-point multipiier and adder 
can simultaneously produce I product and I sum per 
cycle, using Dual-Operation FP instructions. To fetch 
the butterfly inputs and store outputs, Dual·lnstruc· 
tion-Mode allows a memory fetch or store simultaneous 
with the multiply and add. Four floating-point numbers 
can be stored by one instruction, using the 16-byte-op­
erand "fst.q" instruction. Likewise,16 bytes can be 
fetched from the data cache in one fld.q op. 

The floating-point arithmetic of the i860 CPU con­
forms to IEEE 754 format, which some DSPs fail to do. 
Shown below is code for the crucial inner loop of the 
FFT: 

flinner_loop: do 2 Decimation-In-Frequency FFT butterflies. 
// Twelve clocks for 2 butterflies - 12 FP add/sub, a multiplies, 
// 6 a-byte loads, 4 a-byte stores. 
// FP-op 
inner_loop:: 
d.r2pt.ss WR,DI,BnewR 
d.pfsub.ss AR,BR,AnewRo 
d.ratls2.ss AI,BI,Anewlo 
d.i2st.ss WI,DR,BnewI 
d.ratlp2.ss AR,BR,DR 
d.ialp2.ss AI,BI,DI 

//--------------------
d.r2pt.ss WRo,DI,BnewRo 
d.pfsub.ss ARo,BRo,AnewR 
d.ratls2.ss Alo,Blo,AnewI 
d.i2st.ss Wlo,DR,Bnewlo 
d.ratlp2.ss ARo,BRo,DR 
d.ialp2.ss Alo,Blo,DI 

//--------------------

Core-op 

pfld.d 
fld.d 
fld.d 
fst.q 
adds 
pfld.d 

adds 
fld.d 
fld.d 
fst.q 
bla 
and 

2-397 

wind (wstart),WRo 
a (fetch)++,ARo 
offset (fetch),BRo 
AnewR,16(store)++ 
wincr,wind,wind 
wind (wstart),WR 

wincr,wind,wind 
a (fetch)++,AR 
offset (fetch),BR 
BnewR, offset (store) 
decrem, count ,inner_loop 
wlimit,wind,wind //modulo. 

fI 



intel@ AP-435 

5.0 CODE DESIGN 

Refer to the inner_loop above and code listings at the 
end of this application note for the discussions that fol­
low. Refer to the ''i860™ 64-bit Microprocessor Pro­
grammer's Reference ManuiJf' (Intel order number 
240329) for details on instructions and formats. 

The programs include both assembly and Fortran com­
ponents. Input data can number any power of 2 from 
16 to 1024 points. The algorithms are radix-2, floating­
point, in-place. Included in the listing are both Decima­
tion-in-Time and Frequency, and both complex-input 
and real-input FFTs. 

5.1 Cache Utilization 

Because the instruction cache contains 4-Kbytes, all re­
quired code easily fits in cache. However, a 1024-point 
complex FFT fills the 8-Kbyte data cache with the in­
put XO array. Thus the more rarely-used twiddle WO 
array is intentionally kept out of cache, as described in 
the "pfld" section. 

A subroutine ("fetch.ss") is used to move the input data 
array efficiently into cache for the 1024-point FFT. 
"Fetch" allows all data to be brought into cache using 
the next-near (NENE#) accesses to DRAM. Without 
that routine, getting A and B from locations separated 
by 4 Kbytes (NOT the same DRAM page) makes 
fetches and writebacks from DRAM for the first stage 
slower, and adds 30% to overall execution time. 

For larger FFTs (2048 points = 16 kB), straightfor­
ward expansion of the present algorithm would cause 
increased cache misses. Thus a larger FFT should be 
broken into multiple FFTs of 1024 points so that all 10 
stages of each can achieve high cache hits. The algo­
rithm becomes (assuming 2048 points, Decimation-In­
Time): 

1) Bit-reverse the entire input array 

2) Do a lO-stage FFT on the second set of 1024 points. 
Cache hits should be high on those, since they were 
most recently accessed by the bit-reversal. 

3) Do a lO-stage FFT on the first 1024 points. Prefetch 
before the first stage to ensure cache hits. 

4) Combine the 2 separate 1024-point results with a fi­
nal stage of butterflies, where A is offset from B by 
8 Kbytes. 

5.2 Pfld 

Twiddle factors (W) are fetched with pfld (Pipelined 
Floating-Point Load), to avoid caching them. Only in 
the first stage are all the WO elements used; successive 
stages use fewer and fewer elements, which are separat­
ed by larger and larger strides. Thus placing WO in 
cache would be inefficient. The streaming of WO from 
main memory actually yields better performance than 
caching WO, for 512 and 1024 points. With the i860 
CPU's 8-byte external data bus, a complex WO value 
can be transferred in a single bus cycle. Some FFT rou­
tines calculate WO on the fly, rather than fetching pre­
calculated values; however, performance decreases due 
to the added run-time calculations. 

5.3 Fst.q 

Quad-word (16-byte) stores allow 4 floating-point regis­
ter values to update the cache in one cycle. Likewise, 
fld.q (Quad Floating Point Load) transfers 4 values to 
the registers in a cycle. However, in some FFT stages, 
double-word fetches (fld.d) are used instead of fld.q; 
that allows the "background" fetch of a set of operands 
concurrent with arithmetic on the other set. For the 
same reason, the inner loop does 2 butterflies, rather 
than one. 

5.4 Bit Reversal Code 

The code for bit-reversal fetches the indices of 2 ele­
ments to be swapped from a pre-allocated array of indi­
ces, and swaps the data elements. Again, pfld.d keeps 
the indices out of cache, for the 1024 point case. That 
assembly version of bit-reversal is approximately 7 
times faster than the standard Fortran routine. The ar­
ray of indices was generated by printing out the values 
generated during operation of the standard Fortran ver­
sion; similarly, the twiddle WO values can be pre-allo­
cated and generated using a high-Ievel- language pro­
gram. 

6.0 PIPELINE SCHEDULING 

The adder pipeline is 3 stages, as is the multiplier; for 
the calculation of 

BnewR = (AR - BR) * WR - (AI - BI) • WI 

the adder result is fed back into the mUltiplier, and the 
product again feeds into the adder. The adder and mul­
tiplier pipes each advance one stage for each floating­
point instruction issued. 

2-398 



AP-435 

The butterfly decomposes into 6 real add/subtracts and 
4 real multiplies. Thus the best possible performance 
would be 6 clocks per butterfly, with the multiplies to­
tally overlapping the adds. The overlap is accomplished 
with the Dual-Operation instructions: 

r2pt (KR"sre2, Treg+Mout, load KR +- srel) 

r3:t152 (KR· Aout, srct-sre2, load T +- Mout) 

i2st (KI"sre2, Treg·Mout, load KI +- srel) 

ratlp2 (KR· Aout, sTet + sre2, load T +- Mout) 

ialp2 (KI" Aout, srel + sre2, load KI +- srel) 

KR, KI, and T are operand registers feeding the multi­
plier and adder, separate from the floating-point regis­
ter file. They permit the 4 inputs for multiply and add, 
even thought the instruction format holds only 2 regis­
ters. "Aout" and "Mout" are adder and multiplier out­
puts .. 

The data path arrangements of some of these ops are 
illustrated in Figures 3 and 4. Fetching and storing of 
butterfly operands is overlapped with the calculations, 
using Dual Instruction Mode - the integer core op 
(such as a load or branch) and FP op are fetched simul­
taneously from the instruction cache and executed 
simultaneously. 

Scheduling of instructions was done with a pipeline dia­
gram, as illustrated in the comments of the code listing 

src2 rdest 

op2 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

r2pt at r2st 
240658-4 

Figure 3. Datapath for r2pt op 

of difstep.ss in the Appendix. (The comments show the 
machine state after the. instruction is processed.) Begin 
by placing the desired results in the rightmost column, 
then tracing progress backwards through the adder. 
When adder inputs are products (of the multiplier), one 
product is kept in the Treg for a cycle while the other 
propogates through the multiplier final stage. Those 
products can be traced back on the multiplier pipeline, 
to determine at what instruction the multiplier inputs 
must be provided. 

For example, place the BnewR label in the "Write" 
stage of the pipe (the output of the Adder). Now 

BnewR = WR • DR - WI • DI 

Three instructions earlier, the adder inputs for BnewR fII 
must be fed to adder; those inputs are products, one of 
which comes directly from the multiplier output, and 
the other from the Treg. The multiplier output and 
Treg value must then be traced back through multiplier 

. stages, requiring the following instructions: 

i2st.ss Wla,DR,Bnewla as the 10th ap of 12, ta start (T - Maut) 

ratls2.55 Ala,Bla,AnewI as the 9th instruction, to update the Treg 

ialp2.ss AI,BI,Dr as the 6th ap, ta multiply DI • WI 

ratlp2.ss AR,BR,DR as the 5th ap, ta multiply DR • WR 

ratls2.ss AI,BI,Anewla as the 3rd, to start DI into the adder 

pfsub.ss AR,BR,AnewRo ., as the 2nd, to start DR into the adder 

srcl src2 rdest 

MULTIPLIER UNIT 

ADDER UNIT 

RESULT 

rot1p2 Be rat1s2 

240658-5 

Figure 4. Datapath for rat1p2 op 

2-399 



int:et AP-435 

Some trial-and-error ordering of the desired outputs is 
needed to devise a sequence which keeps the adder 
pipeline full. An op is chosen for each slot for its ability 
to load the KR or KI register, or to initiate an adder 
operation simultaneous with the multiplies required to 
calculate BnewR and BnewI. 

Handy hints to assist dual-operation scheduling in­
clude: 

I) Feedback the adder result to the multiplier, or visa 
versa, whenever possible. For example, the ratlp2 
op feeds adder-out to multiplier. Thus both src1 and 
src2 fields of the instruction are available to feed the 
adder-in, and a simultaneous useful add and multi­
ply are initiated. 

2) Freeze one of the pipes, by using a pfadd or pfmul, 
when appropriate. In the butterfly, where 6 adds are 
done for every 4 multiplies, freezing of the multipli­
er does not degrade performance. The freeze allows 
multiplier results to be held until needed in the ad­
der. 

3) The Treg can hold a multiplier result for several 
cycles until needed in the adder. 

4) Unroll a loop to do 2 iterations per loop. That pro­
vides time to fetch inputs for iteration 2 while calcu­
lating iteration 1, and store results of iteration 1 
(and fetch more inputs) while calculting iteration 2. 

7.0 PERFORMANCE MEASUREMENTS 

The code was run on an evaluation card with DRAM 
memory only, no external cache, 33.33 MHz clock, and 
5 wait-states or more for some accesses. Next-near ac­
cesses (address falls into the same DRAM page as the 
previous access) are zero wait-state, but far accesses 
take 5 or more wait-states. The code was run under a 
virtual-memory multitasking executive. Shown below 
are measured results: 

System: 33.3 MHz 80860 with a single bank of 
static-column DRAM 

Algorithm: Radix-2 FFT, in-place. Data is IEEE 754 
single-precision floating point. Implemented in assem­
bly-language and Fortran code. 

Time 
Type of FFT Time (including 

bit-reversal) 

1024-point-complex, DIF 1.17 ms 1.33 ms 
1024-point-real 0.67 ms 
512-point-complex, DIF 0.48 ms 0.56 ms 
512-point-real 0.33 ms 
256-point-complex, DIF 0.22 ms 0.26 ms 
1024-point-complex, DIT 1.37 ms 
512-point-complex, DIT 0.59 ms 

7.1 Cache Fill and Write back Time 

Measured times do not include cache-fill and write­
back. That is, the timings measured 200,000 executions 
of the FFT using the same input array. (Performance 
figures offered by other manufacturers for DSP chips 
likewise assume that the data is already in on-chip 
RAM. Of course, the i860 CPU will do that fetching 
automatically into its data cache.) The additional time 
for cache fill and writeback were measured as: 

1024-point-complex 0.25 ms (8 Kbytes fetched, 
8 Kbytes writeback) 

512-point-complex 0.12 ms (4 Kbytes) 

To quantify the calculations in MFiops (Millions of 
FLoating-point OPerations per Second), consider that 
the 1024-point complex FFT is implemented with 
about 16,400 multiplies and 28,700 adds/subtracts. 
Thus the 1.17 ms translates to a sustained 38.5 MFlops 
rate. For 512 points, the required 20,000 Flops means 
41.6 MFlops. 

The overall FFT is about 10 times faster than the equiv­
alent Fortran. Inner loop performance was measured at 
13 cycles for the 24 instructions, which is 6.5 cycles per 
butterfly. 

2-400 



InteL AP-435 

8.0 CODE HIERARCHY 
Pictured below are the programs developed for the i860 CPU FFT: 

I I 
ror 

dltf.f fft.! dJrr.f 

I 
I I 

I 
bltrov.ss dlfstep.ss reolfix.ss 

I 
felch 

The Fortran program ffttest.f is the highest-level pro­
gram of those listed on the following pages. It calls two 
FFT subroutines, diff.f and fft.f, then compares their 
outputs. Fft.f is a Fortran decimation-in-time algo­
rithm, while difU is the high-speed DIF routine. Diff.f 
is callable by C or Fortran applications. It in turn calls 
difstep, which is implemented in assembly code 
(difstep.ss). Difstep is called once per stage of the FFT. 
A Fortran version (difstepf.f) is shown, for comparison. 
Other assembly routines are the bit-reversal-data-move­
ment (bitrev.ss) and prefetch ("fetch" inside bitrev.ss). 

Difstep.ss contains approximately 225 assembly in­
structions, and bitrev.ss contains about 24. The Fortran 
diff.f compiles to about 80 instructions. 

A Decimation-in-Time version of diff.f and difstep.ss 
can be found in ditU and ditstep.ss. The DIT version 
performs 5-10% slower than the Decimation-in-Fre­
quency because the D IT loop takes 7 cycles per butter­
fly, while DIF takes 6. 

A real-input algorithm is dirr.f, which can be called 
and tested using program real.f. Dirr.f calls difstep to 
do a complex DIF FFT on N real data points, but 
treats them as N12 complex points. Then realfix.ss is 
called by dirrJ to fix the DIF output, compensating for 
the treatment of the N real points as N/2 complex. The 
derivation of the real-fix can be found in reference 3, 
Numerical Recipes in C. 

The mixture of Fortran, C, and assembly code is ac­
complished by passing function inputs and outputs in 
registers. Only pointers and integer values were used in 
the above code, but floating point parameters can also 
be exchanged. A calling program feeds arguments to a 
function in rl6, r17, and higher-numbered integer reg­
isters. The callee is permitted to destroy the contents of 
those registers, but rl:rl5 must be preserved. For more 
details on parameter-passing conventions see the i860 
64-bit Microprocessor Programmer's Reference Manual, 
Chapter 8. 

2-401 

240658-6 

9.0 CONCLUSION 

The i860 CPU computes very Fast Fourier Transforms, 
quicker than most high-end dedicated DSP chips. Con­
tributing to the FFT performance are the 8-kByte on­
chip data cache and 4-kByte instruction cache. Also the 
8-byte external data bus, pfld instruction, and 16-byte 
data cache width provide sufficient bandwidth to keep 
the arithmetic units busy. Dual-Operation instructions 
and Dual-Instruction-Mode allow parallel data move­
ment and calculations. The 33.3 MHz clock rate allows 
both an add and a multiply every 30 ns, giving a time of 
1.17 ms for a 1024-point complex FFT. A 40 MHz i860 
Microprocessor will yield a time of less than 1 mSec. 

ACKNOWLEDGEMENTS 

The author wishes to thank Tricord Systems, Inc. for 
providing the key inner loop kernel design of the FFT. 

BIBLIOGRAPHY 

1. Gold, Bernard and Rabiner, Lawrence, Theory and 
Application of Digital Signal Processing, 1975, Pren­
tice-Hall Inc., Englewood Cliffs, NJ. Pages 356-
381,573ff 

[This text explains DFT and FFT basics well, with 
ample picturesl 

2. Horden, Ira, "An FFT Algorithm For MCS(c)-96 
Products Including Supporting Routines and Exam­
ples", Intel Application Note AP-275, order number 
270189. (That Application Note can also be found 
in the Intel Embedded Controller Handbook, Vol­
ume II, order number 210918) 

[The note, dated 9/87, reviews FFT theory, real vs. 
complex, AID issues, and waveformsl 

3. Press, William, Flannery, Brian, et. ai., Numerical 
Recipes in C, 1988, Cambridge University Press. 
Pages 398-424. 

[Numerical Recipes contains the C-code source for 
"realfix"l 



Pg. 

AP-435 

APPENDIX A 
PROGRAM LISTINGS 

A-2 I) diff.f: 

Fortran module to do fast Decimation-In-Frequency (DIF) Radix-2 FFT. 

A-3 2) difstep.ss: 

Assembly code which does all DIF FFT butterflies; called by diff.f. 

A-ll 3) difstepf.f: 

Fortran equivalent of difstep.ss. Included here for clarity. 

A-13 4) bitrev.ss: 

Assembly code to do bit-reversal. 

A-17 5) ffttest.f: 

Highest-level Fortran code. Tests diff.f or ditt.f. 

A-21 6) ditt.f: 

Fortran module to do fast Decimation-In-Time (DIT) Radix-2 FFT. 

A-22 7) ditstep.ss: 

Assembly code which does all DI'r FFT butterflies; called by ditt.f. 

A-30 8) dirr.f: 

Fortran module for Real-Input Decimation-In-Frequency (DIF) Radix-2 FFT. 

A -31 9) realfix.ss: 

Assembly code required by dirr.f to compensate for Real-Input. 

A-36 10) real.f: 

Highest-level Fortran code, for Real-value input. Tests dirr.f. 

A-40 II) fft.f: 

Fortran FFT algorithm. Generates "correct" answers for comparison against the other code. 

A-43 12) makefile: 

Unix V /386 version of a makefile to maintain the FFT code, using the Unix "make" program-mainte­
nance utility. Note that this makefile uses the Unix macro preprocessor "m4" to convert symbolic names 
to register numbers. 

A-45 13) start.ss: 

Assembly code preamble for Fortran runtime. 

A-45 14) time.c: 

Dummy routine, used to install breakpoints. 

2-402 



AP-435 

C-------------------
C File: diff. f 
C FFT - Decimation in Freq. radix-2. inplace. l-dimen 

C Intel assumes no responsibility for use or misuse of this code. 

C 5/19/89: call fetch8() added for 1024-point caching. 
C 6/01/89: fetch() CRUCIAL-30% performance loss if removed 

C Inputs: 
C A= complex array of input. up to 1024 pts. single-prec float 
C M= log of number of pts 
C = (number of stages of FFT) 
C N = number of points. ie. N= 2*~'M = number of pts 
C W= complex array of twiddle factors. length N/2. 
C REV= 0 if bitreversed output ok. l=must re-order output 
C 
C Outputs: 
C A= complex fft of input A 
C 

subroutine diff(a.m.N.W.REV) 
integer m.N. i. j.k. REV.wlimit 
integer offset. stage. groups. wincr.powers2(0:10) 
complex a(n) .w(N/2) .temp 

data powers2 /1.2.4.8.16.32.64.128.256.512.1024/ 
C Powers2 to avoid calls to POW. DIV 

C Twiddle factor array w(k) has (cos.-sin) of 2pi*k/N 
CC Assume the caller provides w(k) constants ALREADY initialized 
C------------
C Pre-touch data. lock into cache. for 8kByte fft: 

IF (N .gt. 513) THEN 
call fetch(a.%VAL(n)) 

ENDIF 
C------------

wlimit = 8*((N/2) - 1) 

C "DO 20" stage-loop 
DO 20 stage = l.m 

groups = powers2(stage-l) 
C groups=number of times the twiddle factors are used. ie. the number of 
C smaller DFTs the stage is split into. 

C offset gets N/2.N/4.N/8.N/16 •••• 
offset = powers2(m-stage) 
wincr = groups 
call difstep(a.w.groups.offset.wincr.wlimit) 

20 CONTINUE 

IF (REV .ne. 0) THEN 
cc REV .ne. 0 means must do bit-reversal reordering of output 

call bitrev(a.%VAL(M) .n) 
ENDIF 

RETURN 
END 

C------------

2-403 



int:eL AP-435 

11--------------
II difstep.ss: do one stage of fft butterflies 
II DIF = Decimation in Frequency, radix-2, inplace, I-dimension 
II (C) Copyright 1989 INTEL Corporation. 
II Inner loop developed with assistance from Tricord Systems, Inc. 
11--------------
II 5/18/89: 1 pm - offset_2 added, as next-to-last stage was slow 
II 5/19/89: 4 pm - fetch8() routine added, for cache miss avoidance. 
II 5/31/89: am - use fst.q (13% perf improvement of inner_loop!) 
II last_bfly added, for performance. 
II 6/02/89: am - bptr deleted. Modulo-address W (5% perf improved) 
11------------
II Intel is not responsible for use nor for misuse of this program. 
11------------
II Do one entire stage (n/2 butterflies). Sample invocation: 
II call difstep(a,w,groups,offset,wincr,wlimit) 
11==================================================== 
II Inputs: . 
II A= complex array of input, single-prec float 
II (complex stored as 4byte real, 4byte imag contiguously). 
II W= pointer to array of twiddle factors. Assuming W(k) is 
II CMPLX(coS(2pi*k/N» ,-sin(2pi*k/N» for k=O to (N/2)-1. 
II offset = distance (except for scale-by-8byte sizeof(complex» between 
II the 2 input values for each butterfly. 
II Offset also is the number of butterflies done per "group". 
II groups = N/(2*offset). The number of sub-DFTs this stage is split into. 
II wincr = distance (except for scale-by-8byte sizeof(complex» between 
II successive w values for successive butterflies 
II wlimit =max index, in bytes, of W table. 
II 
II Outputs: 
II A= complex radix-2 butterflied version of input. 
11-------------------
define (astart, r16) Ilinput data base address 
define (wstart.r17) Iltwiddle array ptr. Because w-contents depend on N. 
II we will assume the caller has initialized w() array. 
define (groups.r18) Ilgroups=number of sub-DFTs this stage is split into. 
define(offset.r19) Iloffset (initially elements. mult by 8 to get bytes) 
II between node and its dual (the 2 numbers to butterfly. ie. A and B) 
define (wincr.r20) II increment between successive W values. Remains constant 
II within a given stage. For Decimation in Freq. wincr addressing is: 

II +8 for offset=N/2 (WO.Wl.W2.W3 •••• W(n-l» 
II +16 offset=N/4 (WO. W2. W4.... ) etc ••• 

define (wlimit.r2l) Ilmax index. in bytes. of W table. 
define (wind.r22) II current index. in bytes. of W table. 
define(offset2.r23) Iloffset*2 

define(decrem.r24) Ilbla decrement 
define (somecount.r25) II bla counter 

define (FEtch. r26) 
define(STore.r27) 

Ilpointer to 1st component of butterfly (load) 
II • " 1st component of but tertly (store) 

2-404 



InteL 

/I f4: f7 spare 
define (AR, fl2) 
define(AI, fl3) 
define (ARo, fl4) 
define(AIo,fl5) 
define (BR, fl6) 
def~ne(BI, fl7) 
define (BRo,fl8) 
define (BIo,fl9) 

define (ER, f20) 
define(EI, f21) 
define (ERo ,f22) 
define(EIo,f23) 

AP·435 

Ilelement A, real component 
II " ", imag 
II extra A value, for prefetch (o="odd") 

Ilelement B, real component 

II extra B value, for prefetch 

/lA+B, 
/I" 
/lA+B, 
II " 

real (ER = AR + BR) 
imag " 
real, previous loop's value 
imag " 

define (FR, f24) IIW*(A-B) , real 
define(FI, f25) II " imag " 
define (FRo,f26) 
define (Flo,f27) 

define (DR, f28) IIDifference of A-B, real part 
define(DI, f29) /I " ", imag " 
define (WR, f30) /lW (twiddle factor), real part 
define (WI, f31) II " • , imag 
define (WRo,flO) IIW (twiddle factor), real part (EXTRA copy) 
define(WIo,fll) II " " ,imag 

.text 

.align .quad 
_difstep_ : : 
Id.l o (groups) ,groups Ilfix Fortran call-by-ref 
Id.l O(offset) ,offset II 
shl 3,offset,offset II change from elements to bytes 
shl l,offset,offset2 

fst.q 
fst.q 

f8 ,-16(Sp)++ Ilsave "local" regs 
f12,-16(sp)++ lIn" 

adds 
adds 

-l,groups,groups II pre-decrement for bnc usage, or bla usage 
-16,rO,decrem Ilbla decrement 

II We code the last 2 stages as special cases: 
11--------
xor 8,offset,rO Iloffset=l, special case, no complex multi funny addressing 
bcoffset_lll (ASSUMING offset=l means wincr=O, and no twiddle'used) 
xor 16, offset, rO Iloffset=2, special case, no complex mul t, funny addressing 
bcoffset_211(ASSUMING offset=2 means wincr=N/4) 

11--------
Id.l O(wincr),wincr 
Id.l O(wlimit) ,wlimit 

2-405 



int'et 

pfadd.ss fO,fO,fO 
pfadd.ss fO,fO,fO 

AP-435 

pfadd.ss fO,fO,fO II init Al,A2,A3=O 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 

/1--------
II init pointers: 
shl 3,wincr,wincr 
shl l,wincr,wind 

pfld.d a ( wstart) ,fa 
pfld.d wincr ( wstart) ,fa 
adds -8,astart,FEtch 
pfld.d wind (wstart) ,fa 

Ilscale for bytes. 
Ilinit wind =2*wincr 

adds wincr,wind,wind Ilwind now 3*wincr 
/1 here fetch first set of A,B,W before bla-loop 
pfld.d wind (wstart) ,WR 
'adds wincr, wind, wind 
and wlimit,wind,wind Ilmodulo-wlimit the w index 

/1 We do modulo-addressing on W(), to keep the pfld pipeline full. We 
/1 never do a W-fetch beyond the end of the table. 
/1 And the modulo-check needs to be done only every 4th pfld, as always 
/1 we use a multiple of 4 W() factors. 

fld.d 8 (FEtch)++,AR 
fld.d offset (FEtch) ,BR 

d.r2apl.ss fO,fO,fO Ilclear Treg'. 
adds -32,offset,somecount II bla counter (predecrement by 4 elements) 

/1 -----------
/1 Definitions for pipe diagram: 
/1 (the complex multiply product, F, broken into 4 real mult and 2 adds) : 
/1 WR = cos(), WI=-sin(). 
/1 DR = AR - BR; (diffence of Real components of A,B) 
II DI = AI - BI; ('diffence of Imag components) 
II ER = AR + BR; EI = AI + BI; 
II FR = K - L; where K= WR*DR, L=WI*DI 
II FI = N + M; where M= WI*DR, N=WR*DI 

II For 1st time thru inner_loop, don't have correct values to store. 
II Must do 1 loop before the loop, sans the stores. 

first_bfly:: Ilfill pipe 
II KR ••• KI ••• Ml •••• M2 •••• M3 

d.r2pt.ss WR,fO,fO II WRO -, 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss AR,BR,fO II 
fld.d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,fO II 
fld.d offset (FEtch) ,BRo 

d.i2st.ss WI,fO,fO II WIO 
adds wincr,wind,wind 

2-406 

T Al •••• A2 •••• A3 •••• Write 

DRO 

DIO DRO 

DIO DRO 



AP-435 

d.ratlp2.ss AR,BR,DR II KO ERO DIO DRO 
nop 

d.ialp2.ss AI,BI,DI II LO KO EIO ERO DIO 
pfld.d wind (wstart) ,WR 

d.r2pt.ss WRo,DI,fO II WRI NO LO KO EIO ERO 
fld.d 8 (FEtch)++,AR 

d.pfsub.ss ARo,BRo,ER II NO LO KO DRI EIO ERO 
fld.d offset (FEtch) ,BR 

d.ratls2.ss Alo,Blo,EI II NO LO KO Dll DRI EIO 
adds wincr,wind,wind 

d.i2st.ss Wlo,DR,fO II WI! MO NO KO K-L Dll DRI 
and wlimit ,wind,lvind 

quickstart: : 
d.ratlp2.ss ARo,BRo,DR II KI MO NO ERI FRO Dll DRI 
bla decrem,somecount,inner_loop Ilinit LCC 

d.ialp2.ss Alo,Blo,DI II LI KI MO NO Ell ERI FRO DII 
adds -16,astart,STore II ptrs init 16 low, for fst.q instructions 

11-------------------
II Each butterfly = 1 complx multiply, I complx add, 1 complx subtract 
II = 4 multiply, 
II 3 add 
II 3 subtract 
II 3 8-byte fetches (A, B, W) 
II 2 8-byte stores (A, B) 
II 
II 6 cycles per butterfly 
II 
II inner_loop: iterates "offset/2" times (eg, N/4 for stage 1, N/8 for stage2), 
II for each group. It does 2 butterflies per iteration 

inner_loop: : 
II KR ••• KI ••• Ml ••• M2 •• M3 T AI. .A2 ••• A3 •• Write 
II I I I I I I I I I I 

d.r2pt.ss WR,DI,FR II WR2 NI LI KI NO N+M Ell ERl FRO 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss AR,BR,ERo II Nl LI KI NO DR2 FlO Ell ERI 
fld.d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,Elo II NI LI Kl DI2 DR2 FlO Ell 
fld.d offset (FEtch) ,BRo 

d.i2st.ss WI,DR,FI II WI2 MI Nl Kl K-L DI2 DR2 FlO 
fst.q ER,16(STore)++ Ilupdate ER/EI/ERo/Elo 

d.ratlp2.ss AR,BR,DR II K2 MI NI ER2 FRI DI2 DR2 
adds wincr,wind,wind 

d.ialp2.ss AI,BI,DI II L2 K2 Ml Nl EI2 ER2 FRl DI2 
Iino need for modulo-check ("and") here, as odd num of W's have been fetched. 
pfld.d wind (wstart) ,WR 

I I· ..••..•.•.........•...•...•.•..•....••...•..........•...••.....•• 

2-407 



intel~ AP-435 

II KR ••• KI ••• Ml •••• M2 •••• M3 
d.r2pt.ss WRo,DI,FRo II WR3 N2 
adds wincr,wind,wind 

d.pfsub.ss ARo,BRo,ERII N2 
fld.d 8 (FEtch)++,AR 

d.ratls2.ss Alo,Blo,EIII 
fld.d offset (FEtch) ,BR 

d.i2st.ss Wlo,DR,Floll WI3 M2 
fst.q FR, offset (STore) 
Ilupdate FR/FI/FRo/Flo 

d.ratlp2.ss ARo,BRo,DRII K3 
bla decrem,somecount, inner_loop 

d.ialp2.ss Alo,Blo,DIII L3 
and wlimit,wind,wind Ilmodulo. 

end_~nner_loop:: IIKEEP Pipelines full 
/1 RE-init pointers for fetches 
d.fiadd.ss fO,fO,fO 

L2 K2 

L2 K2 

N2 L2 

N2 

M2 

K3 M2 

T 
Nl 

Nl 

K2 

K2 

N2 

N2 

adds offset2,astart,astart Ilbump to next group 
Ilredo A,B fetches, with proper ptr. 

d.fiadd.ss fO,fO,fO 
fld •. d O(astart) ,AR Ilget first AR/AI in next group 

d.fiadd.ss fO,fO,fO 
fld.d offset (astart) ,BR 

d.fiadd.ss fO,fO,fO 
adds O,astart,FEtch 

last_bfly:: lIdo final 2 butterflies, start next group 

Al •••• A2 •••• A3 •••• Write 
N+M EI2 ER2 FRl 

DR3 FIl EI2 ER2 

DI3 DR3 FIl EI2 

K-L DI3 DR3 FIl 

ER3 FR2 DI3 DR3 

EI3 ER3 FR2 DI3 

II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
d.r2pt.ss WR,DI,FR II WR4 N3 L3 K3 N2 N+M EI3 ER3 FR2 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss AR,BR,ERo II N3 L3 K3 N2 DR4 FI2 EI3 ER3 
fld.d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,Eloll N3 L3 K3 DI4 DR4 FI2 EI3 
fld.d offset (FEtch) ,BRo 

d.12st.ss WI,DR,FI II WI4 M3 N3 K3 K-L DI4 DR4 FI2 
fst.q ER,l6(STore)++ 

d.ratlp2.ss AR,BR,DR II K4 M3 N3 ER4 FR3 DI4 DR4 
adds wincr,wind,wind 

d.ialp2.ss AI,BI,DI II L4 K4 M3 N3 EI4 ER4 FR3 DI4 
pfld.d wind (wstart) ,WR 

/1 ............................ •• ......... ••••••••••••••• •••••••••••• 
II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 

d.r2pt.ss WRo,DI,FRo II WR5 N4 L4 K4 N3 N+M EI4 ER4 FR3 
fld.d 8 (FEtch)++,AR 

d.pfsub.ss ARo,BRo,ERII N4 L4 K4 N3 DR5 FI3 EI4 ER4 
adds -32,offset,somecount II reset bla counter 

d.ratls2.ss Alo,Blo,EIII N4 L4 K4 DI5 DR5 FI3 EI4 
adds wincr,wind,wind 

d.12st.ss Wlo,DR,Floll WI5 M4 N4 K4 K-L DI5 DR5 FI3 
adds -l,groups,groups 

d.fnop 
fld.d offset (FEtch) ,BR 

d.fnop 
bnc.t quickstart Ilbranch on value of groups 

d.fnop 
fst.q FR, offset (STore) 

2-408 



infel" 

end_last_bf'ly: : 
d.fnop 
br endit 

fiadd.ss fO.fO.fO 

AP-435 

fst.q FR. offset (STore) Ilrepeated for bno.t untaken case 
.align • quad 
11============================================================= 
offset_l: : 
II want FEtch=0.2.4.6.B •••• elements. ASSUMING winor=O. 
II and that w=(1.0). so that no complex mult needed. and NO W will be fetched. 
II E=A+B. F=A-B. (Per double-butterfly loop: B pfadd.4 dword fld. 4 fst. 
II 1 bla) (fld.q required. to reduce # flds to avoid pipe stalls) 
II Performance = 4 cyo/bfly best case. 

IIRedefine regs 
define (AR3. f'l2) 
define (AI3. f'l3) 
define (BR3. f'l4) 
define (BI3.f'l5) 
define (AR4. f'l6) 
define (AI4.f'l7) 
define (BR4.f'lB) 
define (BI4.f'l9) 

for fld.q.fst.q usage. when A and B adjacent: 
Ilelement A. real component 

II n n. imag 
Ilelement B. real component 

II extra A value. for prefetch 

II extra A value. for prefetch 

define (ER3. f20) IIA+B. real (ER = AR + BR) 
define(EI3. f21) II n imag n 

define (FR3. f22) II(A-B). real 
define(FI3. f23) II n imag n 

define (ER4.f24) IIA+B. real. extra copy 
define (EI4.f25) II n imag 

define (FR4.f26) 
define (FI4.f27) . / 
11===========================--=====--======= 
adds -16.astart.FEtch 
fld.q 16 (FEtoh)++.AR4 
adds -l.groups.somecount II.bla counter (predeoremented·already by 1) 

Ilusing groups=blacount on the offset_l loop. intentionally. 
adds -16.FEtch.STore 

Ilstartup the loop: 
II --------------..:.-----11 Al •••••• A2 •••••• A3 •••••• Write: 
d.pfadd.ss AR4.BR4.fO II ARn+BRn -
fld.q 16 (FEtch)++.AR3 

d.pfadd.ss AI4.BI4.fO II AIn+BIn ERn 
adds -2.rO.decrem 112 bflies per loop 

d.pfsub.ss AR4.BR4.fO II ARn-BRn EIn ERn 
bla decrem.somecQunt. offsetl_loop Ilinit LCC 

d.pfsub. ss AI4.BI4.ER4 /I AIn-BIn FRn EIn ERnext 
nop 

II --------------------11 Al •••••• A2 •••••• A3 •••••• Write: 
offsetl_loop: : 

2-409 



int'et AP-435 

d.pfadd.ss AR3.BR3.EI4 1/ AR+BR FI-
nop 

d.pfadd.ss AI3.BI3.FR4 1/ AI+BI ER 
fld.q 16 (FEtch)++.AR4 

d.pfsub.ss AR3.BR3.FI4 1/ AR-BR EI 
fst.q ER4.16(STore)++ 

d.pfsub.ss AI3.BI3.ER3 II AI-BI FR 
nop 

d.pfadd.ss AR4.BR4.EI3 II AR2+BR2 FI 
fld.q 16 (FEtch)++.AR3 

d.pfadd.ss AI4.BI4.FR3 II AI2+BI2 ER2 
nop 

d.pfsub.ss AR4.BR4.FI3 II AR2-BR2 EI2 
bla decrem.somecount. offsetl_loop 

d.pfsub.ss AI4.BI4.ER4 II AI2-BI2 FR2 
fst.q ER3.16(STore)++ 

11--------------------------
end_offsetl_loop:: 
d.fiadd.ss fO.fO.fO 
br endit 

fiadd.ss fO.fO.fO 
nop 

11--------------------------
.align .quad 
offset_2: : 

FR-

FI-

ER 

EI 

FR 

FI 

ER2. 

EI2 

II want FEtch=O.1;4.5;8.9;12;13; ••• elements. 

EI-

FR-

FI-

ER 

EI 

FR 

FI 

ERnext 

II ASSUMING wincr=N/4 (W_addr=O.N/4.0.N/4.0 •••• ). Trivial W() factors. 
II USE bla loop. incrementing FEtch by 16 (2*offset). 
II . Even-indexed elements identical to offset_l.W=WO. no complex multo 
II SO FReven=(AR-BR). Fleven=(AI-BI). 
II Odd components have W=(O.-l). So FRodd=(AI-BI). Flodd=(BR-AR). 
II Each fld.q fetches AReven.Aleven.ARodd.Alodd. 

IIAssume ER.EI.ERo.EIo are 4 contiguous regs. 
IIAssume FR.FI.FRo.Flo are 4 contiguous regs. 

adds -16.astart.FEtch 
fld.q 16 (FEtch)++.AR 
fld.q 16 (FEtch)++.BR 
adds O.groups.somecount Ilbla counter 

Ilstartup the loop: 
II ---------------------11 Al •••••• A2 •••••• A3 •••••• Write: 

pfadd.ss AR .BR .fO II AR+BRe 
pfadd.ss AI .BI .fO II AI+Ble ER 

d.pfadd.ss ARo.BRo.fO II ARo+BRo EI ER 
nop 

d.pfadd.ss Alo.Blo.ER II Alo+Blo ERo EI ER 
nop 

d.pfsub.ss AR .BR .EI II AR-BRe Elo ERo EI, 
adds -l.rO.decrem 112 bflies per loop. but groups is half desired value. 

d.pfsub.ss AI .BI .ERo II AI-Ble FR Elo ERo 
adds -16.astart.STore 

d.pfsub.ss Alo.Blo.Elo II Alo-Blo FI FR Elo 
bla decrem.somecount. offset2_100p Ilinit LCC 

d.pfsub.ss BRo.ARo.FR II BRo-ARo FRo FI FR 
nop' 

2-410 



offset2_loep: : 
d.fnop 

AP-435 

fld.q 16 (FEtch)++,AR Ilfetch AR,AI,ARo,Alo 
d.fnop 
fld.q 16 (FEtch)++,BR Ilfetch BR,BI,BRo,Ble 

II ---------------------11 A1 •••••• A2 •••••• A3 •••••• Write: 
d.pfadd.ss AR ,BR ,FI II AR+BRe FIe FRe FI 
nep 

d.pfadd.ss AI ,BI ,FRe 1/ AHBle 
nep 

d.pfadd.ss ARe,BRo,Fle 1/ ARe+BRe 
fst.q ER ,16(STore)++ 
Ilupdate ER ,EI ,ERe,Ele 

d.pfadd.ss Ale,Ble,ER II Ale+Ble 
nep 

d.pfsub.ss AR ,BR ,EI II AR-BRe 
nep 

d.pfsub.ss AI ,BI ,ERo II AI-Ble 
fst.q FR ,16(STere)++ 

d.pfsub.ss Ale,Ble,Ele II Ale-Ble 
bla decrem,semeceunt,effset2_leop 

d.pfsub.ss BRo,ARo,FR II BRo-ARo 
nop 

endit: : 
II restore regs 
fiadd.ss fO,fO,fO Ilexit DIM 
fld.q O(sp) ,f12 

fiadd.ss fO,fO,fO Illast DIM pair 
fld.q l6(sp),f8 

adds 32,sp,sp 
bri rl 

nop 

ER 

EI 

ERe 

Ele 

FR 

FI 

FRo 

11----------------------------------

FIe FRo 

ER Flo 

EI ER 

ERo EI 

Elo ERo 

FR Elo 

FI FR 

2-411 



intel" AP-435 

a----------------------------------~-------------------------
a difstepf.f: do one stage of fft (DIF) butterflies 
a (C) Copyright 1989 INTEL Corporation. ALL RIGHTS RESERVED. 
a------------------------------------------------------------
a Decimation in Freq, radix-2, inplace; l-dimen 
a 6/20/89 

c Do one entire stage (n/2 butterflies). Sample invocation: 
c call difstep(a,w,groups,offset,wincr) 

c Inputs: 
a A= complex array of input, single-prec float 
c (complex stored as 4byte real, 4byte imag contiguously) 
c W= pointer to array of twiddle factors. Assuming W(k) is 
a CMPLX(coS(2pi*k/N)) ,-sin(2pi*k/N)) for k=O to (N/2)-1. 
c offset = distance (in "elements") between 

the 2 input values for each butterfly 
c groups = number of sub-DFTs this stage is split into. 
c (groups*offset*2 = N) 
c wincr = distance between successive w values for successive butterflies 
c 
c Outputs: 
c A= complex butterflied version of input. 

SUBROUTINE difstep(a,w,groups,offset,wincr) 
integer groups,offset,wincr 
integer i,j,indexl,iplus 
complex a(groups*offset*2),w(groups*0~fset) ,wtemp,temp 

c--------------------------------------------------------
c We implement a ••• 
a Special case for offset=l(last stage): no complex multiplies, simple add 
c (Performance enhancement) 

IF (offset .eq. 1) THEN 
CVD$ NODEPCHK 

DO 8 i = 1,(2*groups),2 
iplus = i + 1 
temp = a(iplus) 
a(iplus) = a(i) - temp 

8 a(i) = a(i) + temp 
ELSE 

C------------
C Special case for offset=2 (next-to-last stage): no complex multiplies, 
cc simple add. (Performance enhancement) 
cc For half the butterflies, W=(l,O). For the other half, W=(O,-l) 

IF (offset .eq. 2) THEN 
CVD$ NODEPCHK 

90 

DO 90 i = 1,(4*groups) ,4 
iplus = i + 2 
temp = a(iplus) 
a(iplus) = a(i) - temp 
a(i) = a(i) + temp 

C 2nd 
CVD$ 
CVD$ 

call to i-loop: w=cmplx(O,-l.) 
NODEPCHK 
NOVECTOR 

DO 92 i = 2,(4*groups) ,4 
iplus = i + 2 
temp = a(i) - a(iplus) 
a(i) = a(i) + a(iplus) 

92 a(iplus) = CMPLX(AI~{AG(temp) ,-REAL(temp)) 

2-412 



ELSE 

C------------
c "DO 
CVD$ 
CVD$ 

20' indexl-loop is 'outer loop" 
VECTOR 
NODEPCHK 

AP-435 

DO 20 indexl = l,(2*offset*groups) ,(2*offset) 
j = 1 

CVD$ 
CVD$ 

NODEPCHK 
ALTCODE 
DO 10 i = indexl,(indexl+offset-l) 

iplus = i + offset 

10 
20 CONTINUE 

ENDIF 
ENDIF 
RETURN 
END 

temp = a(i) - a(iplus) 
a(i) = a(i) + a(iplus) 
a(iplus) = w(j) • temp 
j = j + wincr 

cccccccccccccccccccccccccccccccccc 
subroutine fetch(a,n) 
integer n 
complex a(n) ,temp 

cc Kludge do-nothing pre fetch. 
temp = a(l) 
RETURN 
END 

cccccccccccccccccccccccccccccccccc 
subroutine bitrev(a,dummy,n) 

C Bit-Reverse 
C Inputs: 
C A= complex array of input, single-prec float 
C dummy = %val(m). Probably unusable from Fortran. 
C N = number of input points (and output points) 

C Ouput: 
C A = original A data, but in bit-reversed order from A 

integer n,i,j,k,ndiv2 
complex a(n) ,temp 

C------------
C "DO 7" loop to in-place-bit-reverse-shuffle output 

j=l 
ndiv2 = n I 2 
DO 7 i= 1, n-l 

IF (i .It. j) THEN 
temp = a(j) 
a(j) = a(i) 
a(i) temp 

ENDIF 
k = ndiv2 

C "While (j .gt. k)" I'decrease j by 2**something *1 
6 IF (j .gt. k) THEN 

ENDIF 

j = j-k 
k = k I 2 
GOTO 6 

C Add next lower power of 2 to j 
7 j = j+k 

RETURN 
END 

C------------

2-413 



int:et AP-435 

11--------------
/I bitrev.ss 
II (C) Copyright 1989 INTEL Corporation. ALL RIGHTS RESERVED. 
/I 
II BIT-reversal of 8byte array elements. 
/I IN PLACE. 
II (Allows arrays of 8,16,32,64,128,256,512, or 1024 elements) 

11--------------
II INTEL is not responsible for use nor misuse of this code. 

11--------------
II 8/13/89 
11==================================================== 
II Invocation: (from Fortran) 
II call bitrev(a,%VAL(m)) 

/I 
/I 
/I 
/I 
/I 
/I 
/I 

Inputs: 
a = r16 = pointer to array of 8byte elements 
m = r17 (call by value)= base-2 log of total number of elements 

(2**m = N) 
Outputs: 

a= Bit-reversed ordered version of A 

II Expected best-can-do performance, and measured performance= 
II approx 4*N clocks (0.06 mSec for 512 points) 

11-------------------
define (astart, r16) Ilinitial input data base address 
define(m, r17) 
define(logN,r17) 
define(destl,r19) 
define(dest2,r20) 
define(dest3,r21) 
define (dest4,r22) 
define(iptr, r23) Ilindex-array pointer 

define (decrem,r24) Ilbla decrement 
define(count,r25) II bla counter 

.text 

.align .quad 
11========================================= 
_bitrev_: : 
_bitr_:: 
Ilfetch base address for index table (rbasetab) 
II base-addr-table elements = (baseaddr, number_of_swaps-2) 
II base-addr-table indexed by logN. 
shl 3,logN,r30 Ilscale to 8-byte-entry length 
mov rbasetab,r29 
ld.l r29(r30), iptr 
addu 
ld.l 

pfld.d 
pfld.d 
adds 
pfld.d 

4,r29,r29 
r29(r30), count I/number of swaps required for this value N 

O(iptr) ,fO Ilinitiate fetch of first 2 bit-rev indices 
8(iptr)++,fO 

-2,rO,decreml12 swaps per loop 
8(iptr)++,fO 

bla decrem,count. revloop Ilinit LCC 
pfld.d 8(iptr)++,f16 Ilget 2 indices, but don't cache the indices 

2-414 



untel® AP-435 

revloop:: 112 swaps per loop 
117.5 cycles consumed for each swap, best case. 
pfld.d 8(iptr)++,f18 112 more indices 
fxfr f16,destl Iltransfer to integer index regs 
fxfr f17,dest2 
fld.d destl (astart) ,f24 Ilfetch 2 elements to swap 
fld.d dest2 (astart) ,f26 
fxfr fl8,dest3 
fst.d f24, dest2 (astart) 
fst.d f26, destl (astart) 
fxfr fl9,dest4 
fld.d dest3 (astart) ,f28 
fld.d dest4 (astart) ,f30 
pfld.d 8(iptr)++,f16 112 more indices 
fst.d f28, dest4 (astart) 
bla decrem,count, revloop II 
fst.d f30, dest3 (astart) 

bri rl 
nap 

11---------------
II _fetch8_: Touch all 32-byte lines in the 8k data bytes, to get them 
II into dcache. (ASSUMING .lte. 8Kbytes and .gte. 4Kbytes) 
II 
II Invocation= fetch(astart,num8) 
II Inputs= 
II astart=r16=pointer to data which is to be touched. 
II num8=r17 (passed by VALUE, %VAL(), not by reference) 
11------------
II Using RC and RB to improve dcache hit rates, for FFTs bigger than 
II 1024 complex (8kB). 
II RC=lO causes replacement only of block denoted by.RB lsbit. RC=ll disables 
II replacement. 
11--------
define (num8,r17) 
define (FEtch, r26) 

_fetch8_: : 
_fetch_: : 
ld.c dirbase,r30 
or Ox800,r30,r30 II Replace Dcache slot 0 only (RC=lO,RB=OO) 
st.c r30,dirbase 

II Put 4Kbytes into Dcache slot O. (The rest after 4kB goes to slotl). 
adds -4,rO,decrem 114 8-byte-groups per cache line 
adds 508,rO,count 11512, but pre-decremented for bla usage 
bla decrem,count,floop 

adds -32,astart,FEtch 
floop: : 
bla 
fld.d 

decrem,count,floop 
32(FEtch)++,f30 Ildummy load. 

adds -512,num8,count 
bc fdone Ilif data exhausted, quit 

II ld.c dirbase,r30 
or Ox900,r30,r30 II Replace Dcache slot 1 only (RC=lO,RB=Ol) 
st.c r30,dirbase 

2-415 

II 



AP-435 

adds 
bla 
fld.d 

floop2: : 
bla 
fld.d 

-8.count.count Ilpredecr for bla 
decrem.count.floop2 Ilset LCC 
32(FEtch)++.f30 

decrem.count.floop2 
32(FEtch)++.f30 I/dummy load. 

fdone: : 
II unlock dcache 
andnot OxFOO.r30.r30 Ilclear RC.RB (dirbase(11:8)) 
st.c r30.dirbase 
bri rl 

nop 

.data 
11---------------
II rbasetab:: (Table of bit-reversed indices for bitrev subroutine) 
II base-addr-table elements = (baseaddr. number_of_swaps-2) 
II base-addr-table indexed by 10gN • 
• align • quad 
rbasetab: : 
.long [6]0 Ildon't bother with 10g(n)=0.1.2 
.long rev8. 0 
.long rev16. 4 
.long rev32. 10 
.long rev64. 26 
.long rev128. 54 
.long rev256. 118 
.long rev512. 238 
.long revl024. 494 
11===================== 
Ilnumber of swaps=240 for N=512 (ie. 32 symmetrical patterns 
II exist between 0 and 511.) 
/I rev512: array of bit-reversed indices. for N=512. 
II Each entry is ("i". and "bit-reversed-i"). shifted left by 3 
II to account for 8-byte-elements. 
1/ NOTE: This listing DOES NOT SHOW all the table elements. to save paper . 

• align .quad 
rev512: : 
.long 8. 2048. 
.long 24. 3072. 
.long 40. 2560. 
II ETC •••• 'ETC ••••• 
1/=============== 
.align .quad 
revl024: : 
.long 8. 4096. 
.long 24. 6144. 
.long 40. 5120. 
.long 56. 7168. 
1/ ETC •••• ETC ••••• 

16. 1024 
32. 512 
48. 1536 

ETC ••• 

16. 2048 
32. 1024 
48. 3072 
64. 512 

ETC ••• 

2-416 



intel" 

IINumber of swaps = 496 
lIN (Number of elements) = 1024 

11================= 
.align .quad 

\ 

rev16: : 
.1ong 1*8.8*8.2*8.4*8 
.1ong 3*8.12*8.5*8.10*8 
.1ong 7*8.14*8.11*8.13*8 

rev8: : 
.1ong 1*8.4*8.3*8.6*8 

11================= 
• align • quad 
rev32: : 

AP-435 

.long 8. 128.16. 64. 24. 192. 40. 160. 48. 96. 56. 224 

.1ong 72. 144. 88. 208. 104. 176. 120. 240. 152. 200. 184. 232 

11================= 
.align .quad 
rev64: : 
.1ong 8. 256. 
.1ong 24. 384. 
.1ong 40. 320 • 
• 1ong 56. 448. 
II ETC •••• ETC ••••• 
11================= 
.align .quad 
rev128: : 
.1ong 8. 512. 
.1ong 24. 768. 
.1ong 40. 640 • 
• 1ong 56. 896. 
II ETC •••• ETC ••••• 
IINumber of swaps = 

11================= 
• align • quad 
rev256: : 
.1ong 8. 1024. 
• long 24. 1536. 
• 1ong 40. 1280. 
.1ong 56. 1792. 
II ETC .... ETC ..... 
IINumber of swaps = 

16. 128 
32. 64 
48. 192 
72. 288 

ETC ••• 

16. 256 
32. 128 
48. 384 
72. 576 

ETC ••• 
56 (Number of elements) =128 

16. 512 
32 • 256 
48 • 768 
64. 128 

ETC ••• 
120. N (Number of elements) 

2-417 

= 256 

,. 



intel~ AP-435 

PROGRAM FFTTEST 
C 
C l-D FFT TEST PROGRAM 
C 
C Intel assumes no responsibility for use or misuse of this code. 
C 
C 7/20/89 
C------------------
C 

character*8 REALLY 
PARAMETER (IREV=O) 
PARAMETER (REALLY='complex') 
PARAMETER (TIMEIT=l, CACHETIME=O) 
DATA IT/200000/ 

c PARAMETER (N=1024,M=10) 
PARAMETER (N=5l2,M= 9) 

c PARAMETER (N=256,M= 8) 
c PARAMETER (N=128,M= 7) 
c PARAMETER (N=64,M= 6) 
c PARAMETER (N=32,M= 5) 
c PARAMETER (N=16, M=4) 

PARAMETER (PI=3.l4l5926536) 
COMPLEX X(N) ,Xl(N) ,X2(N) ,X3(N), W(N/2) 

c Fortran complex values stored R,I, R,I for arrays. 

C 

Real ASQR(N) ,ASQR2(N),XR(N) 
complex wtemp 
real rtemp 

PRINT *,' FFT test program (ffttest.f) 
print *, '===============================' 
IF (IREV .eq. 0) THEN 
print *, 'NOT counting time for bit-reversal.' 
print *,'DO NOT expect matching answers,without bit-rev' 

ELSE 
print *, 'Time for bit-reversal included.' 

ENDIF 

print *, 'Time for cache writeback and fills ••• ' 
IF (CACHETIME .eq. 0) THEN 
print *,' NOT included, if iterating.' 

ELSE 
print * , 

ENDIF 

print * , 
print * , 
print * , 
print * , 
print * , 
print * , 

, included. ' 

'==============================' 
'If iterating ••• Number of Iterations =',IT 
'===============================' 
'Number of Points 
'(',REALLY,' data)' 

= " N 

'================================' 

2-418 



AP-435 

C------------------
C Init twiddle factor array w(k) with (cos,-sin) of 2pi*k/N 
C (Should just declare this as constant, if N is non-variable) 
C (OR could have one constant 512-entry W (for N=1024), adjust wincr accordingly 
C in diff.f for smaller N) 

rtemp = 2.0*pi/N 
wtemp= CMPLX(cos(rtemp), -sin(rtemp)) 
w(l) = (1.0, 0.0) 
DO 200 k = 2,N/2 

200 w(k) = wtemp * w(k-l) 
cc print *,' W (twiddle) initialization completed •••••• ' 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C INITIALIZE input data 
C 

PIN = (4*PI)/ N 
DO 100 I = 1, N 

c For testing with sinewave input data: 
c Treal = COS ( I *PIN) 
c Timag = SIN( I*PIN) 

c For testing with squarewave input: 
cc IF (I .It. N/2) THEN 

cc Treal = 1.0 
cc Timag = 0.5 
cc ELSE 
cc Treal = 0.0 
cc Timag = 0.0 
cc ENDIF 
C For testing with ramp function input data: 

Treal = I - 1.0 
Timag = Treal + 0.5 
X(I) = CMPLX (Treal, Timag) 
Xl(I) = CMPLX (Treal, Timag) 
X2(I) = CMPLX (Treal, Timag) 
X3(I) = CMPLX (Treal, Timag) 

100 CONTINUE 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

IF (TIMEIT .ne. 0) THEN 

CALL fft (X2, M, N) 
cc Subroutine fft is Decimation-In-Time, Fortran version. 

c CALL ditt(X, M, N,W,IREV) 
CALL diff(X, M, N,W,IREV) 

ENDIF 

ccccccccccccccccccccccccccccccccccccccc 
IF (IREV .ne. 0) THEN 
IF (TIMEIT .eq. 0) THEN 

call vcompare(X,X2,2*N) 
call cmags(X,N,ASQR) 

c cmags to take squared magnitude of complex values 
call cmags(X2,N,ASQR2) 

2-419 



intel~ AP-435 

c----------------------c 
C print non-zero results: 

J=O 
DO 700 I = 1,N 
IF ((ASQR(I) .GT. 1.0) .OR. (ASQR2(1) .GT. 1.0)) THEN 

WRITE (6,22) (1-1), ASQR(I), ASQR2(I) 
22 FORMAT (' 1-1=' ,14,' ASQR(I)= ',F14.2, ' ASQR2(I)= ',F14.2//l 

J = J+l 
IF (J .GT. 32) GO TO 725 
ENDIF 

700 CONTINUE 

725 CALL TIME 
ENDIF 
ENDIF 

IF (TIMEIT .ne. 0) THEN 
ccccccccccccccccccccccccccccccccccccccc 
cc- Timing loop follows: 

print *,' Start Ass.FFT' 
IF (CACHETIME .eq. 0) THEN 

DO 500 I = 1, IT,4 
C Reuse same array, so cache' fill and 

CALL diff(X, M, N,W,IREV) 
CALL diff(X, M, N,W,IREV) 

writeback time NOT included. 

500 
ELSE 

CALL diff(X, M, N,W,IREV)' 
CALL diff(X, M, N,W,IREV) 

DO 504 I = 1, IT,4 
C Alternating between X,Xl,X2,X3 should 

CALL diff(X, M, N,W,IREV) 
CALL diff(Xl, M, N,W,IREV) 

504 
ENDIF 

CALL diff(X2, M, N,W,IREV) 
CALL diff(X3, M, N,W,IREV) 

print *,' END Ass. FFT' 
ccccccccccccccccccccccccccccccccccccccc 

ENDIF 
STOP 
END 

provide cache misses. 

2-420 



intel" AP-435 

0----------------------0 
subroutine veompare(res,exp,n) 

o VCOMPARE compares 2 REAL vectors, prints out 1st few miseompares 
o 

integer n, errent 
real res(n), exp(n) 

write(6,12) 
12 format('*** VCOMPARE: veotor comparison beginning ***') 

data errent/O/ 
do 30 i = l,n 

if(AINT(res(i)) .ne. AINT(exp(i))) then 
o (print out error, exit if alot already) 
120 print *,'*** Error in oompares ***' 

write(6,121) i 
121 format (' Item number = ',16) 

write (6,124) res (i), exp(i) 
124 format (' Res_=' ,F14.2,' Expeoted_=' ,F14.2) 

errent = errent + 1 
if (erront .gt. 19) then 

return 
end if 

end if 
30 continue 

if (errent .eq. 0) then 
190 print *,' *** vector compares SUCCESSFUL ***' 

end if 

99 return 
end 

e-----~----------------e 

2-421 

• 



intel. AP-435 

c---------------
C File: ditt.f 
C 6/15/89 

C Intel assumes no responsibility for use or misuse of this code. 

C FFT - Decimation in TIME, radix-2, inplace, I-dimen 
C Inputs: 
C A= complex array of input,up to· 1024 pts, single-prec float 

M= log of number of pts C 
C = (Number of stages of FFT) 
C 
C 
C 
C 

N = number of points. ie, N= 2**M = number of pts 
W= complex array of twiddle factors, length=N/2. 
REV= ignored parameter. 

C Outputs: 
C A= complex fft of input A. Correct order (bit-reversal done). 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

subroutine ditt(a,m,N,W,REV) 
integer m,N, i, REV,wlimit 
integer offset, stage, groups, wincr,powers2(0:10) 
complex a(n) ,w(N/2) ,temp 

data powers2 /1,2,4,8,16,32,64,128,256,512,1024/ 
C Powers2 to avoid calls to POW, DIV 

C Twiddle factor array wei) has (cos,-sin) of 2pi*i/N 
CC Assume the caller provides wei), constants ALREADY initialized 

C------------
C Pre-touch data, lock into cache, for 8kByte fft: 

IF (N .gt. 513) THEN 
call fetch(a,%VAL(n)) 

ENDIF 

C------------
call bitrev(a,%VAL(M) ,n) 

C Bitreversal of input needed for in-place decim in time FFT, to avoid 
C fetching twiddle-factors in bitrev order. 

wlimit = 8*((N/2) - 1) 

DO 20 stage = I,m 
groups = powers2(m-stage) 

C groups=number of times the twiddle factors are used, ie, the number of 
C smaller DFTs the stage is split into. 

C offset gets 1,2,4,8, ••• N/2 
offset = powers2(stage-l) 
wincr = groups 
call ditstep(a,w,groups,offset,wincr,wlimit) 

20 CONTINUE 

RETURN 
END 

C------------

2-422 



int:et AP-435 

11--------------
II ditstep.ss: do one stage of fft butterflies 
II DIT = Decimation in Time, radix-2, inplace, I-dimension 
II (C) Copyright 1989 INTEL Corporation. ALL RIGHTS RESERVED. 
II 7/15/89 

11------------
II Intel is not responsible for use nor for misuse of this program. 
11------------
II Do one entire stage (n/2 butterflies). Sample invocation: 
II call ditstep(a,w,groups,offset,wincr,wlimit) 
11==================================================== 
II Inputs: 
II A= complex array of input, single-prec float 
// (complex stored as 4byte real, 4byte imag contiguously) 
II W= pointer to array of twiddle factors. Assuming W(k) is 
II CMPLX(cos(2pi*k/N»,-sin(2pi*k/N» for k=O to (N/2)-1. 
II offset = distance (except for scale-by-8byte sizeof(complex» between 
II the 2 input values for each butterfly. 
II Offset also is the number of butterflies done per "group". 
// groups = N/(2*offset). The number of sub-DFTs this stage is split· into. 
II wincr = distance (except for scale-by-8byte sizeof(complex» between 
II successive w values for successive butterflies 
II wlimit =max index, in bytes, of W table. 
// 
II Outputs: 
II A= complex radix-2 butterflied version of input. 
// 
11-------------------
define (astart, rlS) II input data base address 
define (wstart,r17) Iltwiddle array ptr. Because w-contents depend on N, 
II we will assume the caller has initialized w() array. 
define (groups,r18) Ilgroups=number of sub-DFTs this stage is split into. 
define(offset,r19) .//offset (initially elements, mult by 8 to get bytes) 
II between node and its dual (the 2 numbers to butterfly, ie. A and B) 
define (wincr,r20) Ilincrement between successive W values. Remains constant 
II within a given stage. 
define (wlimit ,r21) Ilmax index, in bytes, of W table. 
define (wind,r22) Ilcurrent index, in bytes, of W table. 
define (offset2,r23) Iloffset*2 

define (decrem,r24) Ilbia decrement 
define (somecount ,r25) II bla counter 

define (FEtch, r2S) 
define (STore,r27) 

Ilpointer to 1st component of butterfly (load) 
II " " 1st component of butterfly (store) 

define (offsetp8,r28) Iloffset+8 

2-423 



II f4:f7 spare 
define (ARe,fl2) 
define (AIe,fl3) 
define (ARo,fl4) 
define (AIo.fl5) 
define (BRe,fl6) 
define(BIe,fl7) 
define (BRo,flS) 
define(BIo,fl9) 

define(ERe,f20) 
define(EIe,f21) 
define(ERo,f22) 
define(EIo,f23) 

AP-435 

Ilelement A, real component 
II " ", imag 
II extra A value, for prefetch (o="odd") 

Ilelement B, real component 

II extra B value, for pre fetch 

IIA+(B*W) , real (ER = AR + BR) 
II" imag" 
II previous loop's value 
II· imag" 

define (FRe,f24) IIA-(B*W) .. real 
define(FIe,f25) II " imag " 
define (FRo,f26) II previous loop's value 
define(FIo,f27) II" imag" 

define (PR, f2S) II(B*W) , real 
define(PI, f29) II(B*W) , imag 

define (WRe, f30) 
define(WIe,f31) 

IIW (twiddle factor), real part 
II " " , imag 

define (WRo,flO) 
define (WIo, fll) 

IIW (twiddle factor), real part (EXTRA copy) 
II " " , imag 

.text 

.align • quad 
_ditstep_: : 
ld.l O(groups) ,groups 
ld.l O(offset) ,offset 
shl 3,offset,offset 
shl 1,offset,offset2 
adds S,offset,offsetpS 

Ilfix Fortran call-by-ref 
II 

II change from elements to bytes 

fst.q 
fst.q 

fS ,-16(sp)++ Iisave "local" regs 
f12,-16(sp)++ II " " 

adds 
adds 

-l,groups,groups II pre-decrement for bnc usage, or bla usage 
-16,rO,decrem Ilbla decrement 

II We code the last 2 stages as special cases: 
11--------
xor 
be 
xor 
be 

I r-:-------

S,offset,rO Iloffset=l,special case, no complex mult, funny addressing 
offset_lll (ASSUMING offset=l means wincr=O, and no twiddle used) 
16,offset,rO Iloffset=2, special case, no complex mult 
offset_2 . 

id.l O(wincr) ,winer 
id.l O(wlimit) ,wlimit 

2-424 



int:et AP-435 

pfadd.ss fO,fO,fO 
pfadd.ss fO,fO,fO 
pfadd.ss fO,fO,fO II init Al,A2,A3=O 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 

11--------
II init pointers: 
shl 3,wincr,wincr Iiscale for bytes. 
shl l,wincr,wind Ilinit wind =2*wincr 

o ( wstart) ,fO 
wincr ( wstart) ,fO 

-8,astart,FEtch 
wind (wstart) ,fO 

pfld.d 
pfld.d 
adds 
pfld.d 
adds 

/I here 
pfld.d 
adds 

/lfirst 
fld.d 

wincr,wind,wind Ilwind now 3*wincr 
fetch first set of B,W before bla-loop 
wind (wstart) ,WRe 

wincr,wind,wind 
Bfetch from offset, then 1st afetch from O. 
offsetp8 (FEtch) ,BRe Ilfirst B value 

and wlimit,wind,wind Ilmodulo-wlimit the w index 
II We do modulo-addressing on W(), to keep the pfld pipeline full. We 
II never do a W-fetch beyond the end of the table. 
II And the modulo-check needs to be done only every 4th pfld, as always 
II we use a multiple of 4 W() factors. 

d.r2apl.ss fO,fO,fO Ilclear Treg. 
adds -32,offset,somecount II bla counter (predecrement by 4 elements) 

II -----------
II Definitions for pipe diagram: 
II Anew = E = A+(B*W) 
II Bnew = F = A-(B*W) 
II Let P=(B*W). 
11--------------
II (the complex multiply product, P, broken into 4 real mult and 2 adds) : 
II WR = cos(), WI=-sin(). 
II PR = K - L; where K= WR*BR, L=WI*BI 
II PI = N + M; where N= WI*BR, M=WR*BI 
II ER = AR + PR (Overwrites AR) 
/I EI = AI + PI ( AI) 
/I FR = AR - PR ( BR) 
II FI = AI - PI ( BI) 

II For 1st time thru inner--loop, don't have correct values to store. 
II Must do 1 loop before the loop, sans the stores. 
11-----------------
first_bfly:: II fill pipe 

2-425 



intel~ Ap·435 

II KR ••• KI ••• Ml •••• M2~ ••• M3 
d.r2pt.ss WRe,fO,fO II WRe 

T Al •••• A2 •••• A3 •••• Write 

pfld.d wind (wstart),WRo 
d.i2st.ss Wle,fO,fO II Wle 
adds wincr,wind,wind 

d.r2apl.ss fO ,BRe,fO II KO 
fld.d 8 (FEtch)++,ARe Ilfirst A value 

d.pfmul.ss Wle,Ble,fO I! LO KO 
pfld.d wind (wstart),WRe 

d.r2pt.ss WRo,Ble,fO II WRo MO LO ·KO 
fld.d offsetp8 (FEtch),BRo 

d.ratls2.ss fO ,PR ,fOI! MO LO KO 
adds wincr,wind,wind 

d.i2st.ss Wlo,BRe,fO /1 Wlo NO MO KO K-LO 
nop 

/ I· ••••••••••••••••••••••••••••••••••••••••••••.••.•••••••••••.••• 
d.r2apl.ss fO ,BRo,fO I! Kl NO MO PRO 
and wlimit,wind,wind 

d.pfsub.ss fO ,PI ,fO I! Kl NO MO PRO 
fld.d 8 (FEtch)++,ARo 

d.pfadd.ss ARe,PR ,PR II Kl NO MO ERO 
fld.d offsetp8 (FEtch) ,BRe 

d.pfmul.ss Wlo,Blo,fO II Ll Kl NO MO ERO 
nop 

d.r2pt.ss WRe,Blo,fO II WRe Ml Ll Kl MO M+NO ERO 
bla decrem,somecount,restart IlinitLCC 

d.ratls2.ss ARe,PR ,fOI! Ml Ll Kl FRO PIO . ERO 
nop 

restart: : 

PRO. 

d.i2st.ss Wle,BRo,ERel! Wle Nl Ml Kl K-Ll FRO PIO ERO 
adds -16,astart,STore II ptrs init 16 low, for fst.q instructions 
/1-------------------
II Each butterfly = 1 complx multiply, 1 complx add, 1 complx subtract 
II = 4 multiply, 3 add, 3 subtract 
I! 3 a-byte fetches (A, B, W) 
II 2 a-byte stores (A, B) 
II 
II 7 cycles per butterfly 
II 
II inner_loop: iterates "offset/2" times 
II for each group. It does 2 butterflies per iteration 

1/ AR/AI fetches need to be a cycle behind BRIBI fetches here. So we 
II must index with offset+8 into B. 
I! AR is used 1/2 loop before AI. 
1/ Pattern= AIO,ARl,BR2,BI2;AIl,AR2,BR3,BI3. 

inner _loop: : II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A 3 •••• Write 
d.r2apl.ss Ale,BRe,PI II K2 Nl Ml EIO PRI FRO PlO 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss Ale,PI ,FRel! K2 Nl Ml FlO EIO PRI FRO 
fld.d 8(FEtch)++,ARe 

d.pfadd.ss ARo,PR ,PR II K2 Nl Ml ERI FlO EIO PRI 
fld.d offsetp8 (FEtch) ,BRo 

d.pfmul.ss Wle,Ble,fO II L2 K2 Nl Ml ERI FlO EIO 
adds wincr,wind,wind 

2-426 



Ap·435 

d.r2pt.ss WRo,Ble,Ele II WRo M2 L2 K2 M+Nl ERl FlO EIO 
pfld.d wind (wstart) ,WRe 

d.ratls2.ss ARo,PR ,Flell M2 L2 K2 FRl Pll ERl FlO 
adds winer,wind,wind 

d.i2st.ss Wlo,BRe,ERol1 Wlo N2 M2 K2 K-L2 FRl Pll ERl 
and wlimit,wind,wind Ilmodulo. 

/! KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
d. r2apl. 55 Alo,BRo,PI /! K3 N2 
nop 

d.pfsub.ss Alo,PI ,FRolI K3 N2 
fld.d 8 (FEtch)++,ARo 

d.pfadd.ss ARe,PR ,PR II K3 N2 

fld.d offsetp8 (FEtch) ,BRe 
d.pfmul.ss Wlo,Blo,fO II L3 K3 

nop 
d.r2pt.ss WRe,Blo,Elo II WRe M3 L3 
fst.q ERe,16(STore)++ Ilupdate ERe/Ele/ERo/Elo 

d.ratls2.ss ARe,PR ,Flol1 
bla decrem,someeount, inner_loop 

d.i2st.ss Wle,BRo,ERell Wle N3 
fst.q FRe, offset (STore) 
Ilupdate FRe/Fle/FRo/Flo 

end_inner_loop:: IIKEEP Pipelines full 
II RE-init pointers for fetches 
d.fiadd.ss fO,fO,fO 

M3 

N2 

K3 

L3 

M3 

adds offset2,astart,astart Ilbump to next group 
lIre do A,B fetches, with proper ptr. 

d.fiadd.ss fO,fO,fO 

M2 Ell 

M2 Fll 

M2 ER2 

M2 ER2 

M+N2 

K3 FR2 

K3 K-L3 

fld.d offset (astart) ,BRe Ilget first BR/BI in next group 
d.fiadd.ss fO,fO,fO 

adds -8,astart,FEtch 

last_bflY:: lIdo final 2 butterflies, start next group 

PR2 FRl Pll 

Ell PR2 FRl 

Fll Ell PR2 

Fll Ell 

ER2 Fll Ell 

PI2 ER2 Fll 

FR2 PI2 ER2 

II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
d.r2apl.ss Ale,BRe,PI II KO N3 M3 EI2 PR3 FR2 PI2 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss Ale,PI ,FRell KO N3 M3 FI2 EI2 PR3 FR2 
fld.d 8(FEtch)++,ARe 

d. pfadd .• ss ARo, PR ,PR II KO N3 M3 ER3 FI2 EI2 PR3 
fld.d offsetp8 (FEtch) ,BRo 

d.pfmul.ss Wle,Ble,fO II LO KO N3 M3 ER3 FI2 EI2 
adds wincr,wind,wind 

d.r2pt.ss WRo,Ble,Ele II WRo MO LO KO M+N3 ER3 FI2 EI2 
pfld.d wind (wstart) ,WRe 

d.ratls2.ss ARo,PR ,Flell MO LO KO FR3 PI3 ER3 FI2 
adds winer,wind,wind 

d.i2st.ss Wlo,BRe,ERo/! Wlo NO MO KO K-LO FR3 PI3 ER3 
and wlimit,wind,wind Ilmodulo 

I I • .............................................................. 
d.r2apl.ss Alo,BRo,PI II Kl NO MO EI3 PRO FR3 PI3 

adds -32, offset, somecount I I reset ·bla counter 
d.pfsub.ss Alo,PI ,FRol1 Kl NO MO FI3 EI3 PRO FR3 
fld.d 8 (FEtch)++,ARo 

2·427 

II 



AP-435 

d.pfadd.ss ARe,PR ,PR II Kl NO 
fld.d offsetp8 (FEtch) ,BRe 

d.pfmul.ss Wlo,Blo,fO II Ll Kl 
bla decrem,somecount,nowhere Ilre-init 

d.r2pt.ss WRe,Blo,EIo II WRe 
adds -l,groups,groups 

nowhere: : 
d.ratls2.ss ARe,PH. ,Floll 
fst.q ERe,16(STore)++ 

d.fnop 
bnc.t restart Ilbranch on value 

d.fnop 
fst.q FRe, offset (STore) 

end_lasLbfly: : 
d.fnop 
br endit 

fiadd.ss fO,fO,fO 

Ml Ll 

Ml 

of groups 

MO ERO 

NO MO ERO 
LCC=l 
Kl M+NO 

Ll Kl FRO 

fst.q FRe, offset (STore) Ilrepeated for bnc.t untaken case 
.align .quad 
11==============::============================================== 
offset_l: : 
II want FEtch=O,2,4,6,8, ••• elements. ASSUMING wincr=O, 
II and that w=(l,O), so that no complex mult needed. 

FI3 EI3 

FI3 EI3 

ERO FI3 

PIO ERO 

II E=A+B, F=A-B. (Per double-butterfly loop: 8 pfadd,4 dword fld, 4 fst, 
/I 1 bla) (fld.q used to reduce # flds) 
II Performance = 4 cyc/bfly best case. 

IIRedefine regs for fld.q,fst.q usage, when A and B adjacent: 
define (AR3,f12) Ilelement A, real component 
define (AI3,fl3) II " ., imag 

define (BR3,fl4) /Ielement B, real component 
define (BI3,fl5) 
define (AR4,f16) II extra A value, for prefetch 
define (AI4,fl7.) 
define (BR4,fl8) 
define(BI4,f19) 

define (ER3, f20) IIA+B, real (ER = AR + BR) 
define(EI3, f21) /I" imag· 
define (FR3, f22) II(A-B) , real 
define(FI3, f23) II • imag 

define (ER4,f24) IIA+B, real 
define (EI4,f25) II· imag 
define (FR4,f26) II(A-B) , real 

,define(FI4,f27.) II· imag 
11========================================= 

adds -16,astart,FEtch 
fld.q 16 (FEtch)++,AR4 

PRO 

EI3 

FI3 

adds -l,groups,somecount II blacounter (predecremented .already by 1) 
/Iusing groups=blacount on the offset_l loop, intentionally. 

adds -16,FEtch,STore 
Ilstartup the loop: 

2-428 



AP-435 

I I ---------------------11 Al. ••••• A2 •••••• A3 •••••• Write: 
d.pfadd.ss AR4.BR4.fO II ARn+BRn -
fld.q 16 (FEtch)++.AR3' 

d.pfadd.ss AI4.BI4.fO II Aln+Bln ERn 
adds -2.rO.decrem 112 bflies per loop 

d.pfsub.ss AR4.BR4.fO II ARn-BRn Eln ERn 
bla decrem.somecount. offsetl_loop Ilinit LCC 

d.pfsub.ss AI4.BI4.ER4 II Aln-Bln FRn Eln ERnext 
nop 

II ---------------------11 Al •••••• A2 •.••.• A3 .•••.• Write: 
offsetl_loop: : 
d.pfadd.ss AR3.BR3.EI4 II AR+BR FI-

nop 
d.pfadd.ss 
fld.q 16 

d.pfsub.ss 
fst.q 

d.pfsub.ss 
nop 

AI3.BI3.FR4 II AI+BI 
(FEtch)++.AR4 
AR3.BR3.FI4 II AR-BR 

ER4.16(STore)++ 
AI3.BI3.ER3 II AI-BI 

ER 

EI 

FR 

d.pfadd.ss AR4.BR4.EI3 II AR2+BR2 FI 
fld.q 16 (FEtch)++.AR3 

d.pfadd.ss AI4.BI4.FR3 II AI2+BI2 ER2 
nop 

d.pfsub.ss AR4.BR4.FI3 
bla decrem.somecount. 

d.pfsub.ss AI4.BI4.ER4 
fst.q ER3.16(STore)++ 

11-------- -
end_offsetl_loop:: 
d.fiadd.ss fO.fO.fO 
br endit 

fiadd.ss fO.fO.fO 
nop 

11---------
• align • quad 
offset_2: : 

II AR2-BR2 EI2 
offsetLloop 
II AI2-BI2 FR2 

FR-

FI-

ER 

EI 

FR 

FI 

ER2 

EI2 

II want FEtch=O.1;4.5;8.9;12.13; ••• elements. 

EI-

FR-

Fl-

ER 

EI 

FR 

FI 

ERnext 

II ASSUMING wincr=N/4 (W_addr=O.N/4.0.N/4.0 •••• ). Trivial W() factors. 
II Even-indexed elements identical to offset_l.W=WO. no complex multo 
I I So EReven= (AR+BR). Eleven= (AI+BI) • 
II SO FReven=(AR-BR). Fleven=(AI-BI). 

II Odd components have W=(O.-l). So B*W = (BI.-BR). 
II SO ERodd=Re(A+(B*W» = (AR+BI) Elodd=(AI-BR). 
III SO FRodd=Re(A-(B*W» = (AR-BI) Flodd=(AI+BR). 
II Each fld.q fetches AReven.Aleven.ARodd.Alodd. 

IIAssume ERe.Ele.ERo.Elo are 4 contiguous regs. 
IIAssume FRe.Fle.FRo.Flo are 4 contiguous regs. 
IIAssume ARe.Ale.ARo.Alo are 4 contiguous regs. 

2-429 

• 



adds -16,astart,FEtch 
fld.q 16 (FEtch)++,ARe 
fld.q 16 (FEtch)++,BRe 

AP-435 

adds O,groups,somecount Ilbla counter 
Ilstartup the loop: 
II ---------------------11 Al •••••• A2 •••••• A3 •••••• Write: 

pfadd.ss ARe,BRe,fO II AR+BRe 
pfadd.ss Ale,Ble,fO II AI+Ble ER 

d.pfadd.ss ARo,Blo,fO II ARo+Blo EI ER 
nop 

d.pfsub.ss Ala,BRo,ERe /I Alo-BRo ERa EI 
nop 

d.pfsub.ss ARe,BRe,Ele II AR-BRe Elo ERa 
ads -l,rO,decrem 112 bflies per loop,but 

d.pfsub.ss Ale,Ble,ERo II AI-Ble FR Ela 
adds -16,astart,STore 

d.pfsub.ss ARo,Blo,Ela /I ARo-Blo FI FR 
bla decrem,somecount, offset2_1oop Ilinit LCC 

d.pfadd.ss Alo,BRo,FRe II Alo+BRo FRo FI 
nop 

offset2_1oop: : 
d.fnop 
fld.q 16 (FEtch)++,ARellfetch AR,AI,ARo,Alo 

d.fnop 
fld.q 16 (FEtch)++,BRe 

ER 

EI 
groups is half desired value. 

ERo 

Elo 

FR 

II ------- II Al •••••• A2 •••••• A3 •••••• Write: 
d.pfadd.ss ARe,BRe,Fle II AR+BRe Flo FRo FI 

nop 
d.pfadd.ss Ale,Ble,FRo II AI+Ble ER Flo FRo 

ER Flo 
nop 

d.pfadd.ss 
fst.q 

d.pfsub.ss 

ARo,Blo,Flo II ARo+Bla EI 
ERe,16(STare)++ Ilupdate ER 

Alo,BRa,ERe II Ala-BRa ERa 
,EI ,ERo,Elo 

nop 
d.pfsub.ss ARe,BRe,Ele II AR-BRe Ela 
®nap 
d.pfsub.ss Ale,BIe,ERa /I AI-Ble FR 
fst.q FRe,16(STare)++ 

d.pfsub.ss ARa,Bla,Ela II ARo-Bla FI 
bla decrem,samecaunt,affset2_laop 

d.pfadd.ss Ala,BRa,FRe II Ala+BRa FRo 
nap 

endi t:: 
II restore regs 
fiadd.ss fO,fO,fO /lexit DIM 
fld.q O(sp) ,f12 

fiadd.ss fO,fO,fO Illast DIM pair 
fld.q 16(Sp) ,fS 

adds 32,sp,sp 
bri rl 

EI 

ERo 

Elo 

FR 

FI , 

nap 
II===================~=========================== 

2-430 

ER 

EI 

ERa 

Elo 

FR 



AP-435 

C---------------
C File: dirr.f 
C FFT - Decimation in Freq, radix-2, inplace, l-dimen, 
C REAL input 
C Intel is not responsible for use nor misuse of this code. 

C 8/14/89 

C Inputs: 
C A= REAL array of input, up to 1024 pts, single-prec float 
C M= log of number of pts 
C = (Number of stages of FFT) 
C N = number of points. ie, N= 2**M = number of pts 
C W= complex array of twiddle factors, length N/2. 
C REV= 0 if bitreversed output ok. l=must re-order output 
C (REV will be ignored, and output will be properly ordered. Bit 
C reversal WILL be done.) 
C 
C Outputs: 
C A= complex fft of input A, but only the positive "frequency half. 
C Length = N/2+1 complex numbers. A(0:n/2) 
C 

subroutine dirr(a,m,N,W,REV) 
integer m,N, i, j,k, REV,wlimit 
integer offset, stage, groups, wincr,powers2(0:10) 
real a(N) 
complex w(N/2) ,temp 

data powers2 /1,2,4,8,16,32,64,128,256,512,1024/ 
C Powers2 to avoid calls to POW, DIV 

C Twiddle factor array w(k) has (cos,-sin) of 2pi*k/N 
CC Assume the caller provides w(k) constants ALREADY initialized 
C------------
C Pre-touch data, for 8kByte fft: (2048 points real) 

IF (N .gt. 1025) THEN 
callfetch(a,%VAL(n/2» 

ENDIF 
C------------

wlimit = 8*((N/2) - 1) 

C "DO 20" stage-loop: doing Complex FFT on length N/2 array. Twiddles are 
C for a length N array, so wincr gets scaled by 2. 

DO 20 stage = l,m-l 
groups = powers2(stage-l) 

C groups=number of times the twiddle factors are used, ie, the number of 
C smaller DFTs the stage is split into. 

C offset gets N/4,N/8,N/16,~ •• 
offset = powers2(m-l-stage) 
wincr = groups * 2 
call difstep(a,w,groups,offset,wincr,wllmit) 

20 CONTINUE 

call bitrev(a,%VAL(M-l) ,n/2) 
call realfix(a,w,%VAL(n» 

RETURN 
END 

C------------

2-431 



intet AP·435 

1/ 
1/ 
1/ 
II 
1/ 
1/ 

realfix.ss: This is i860(tm) CPU assembly code to revise data from an 
N/2 length Complex FFT. 
(assumes the input data fed to Complex FFT was N real values) 

INTEL is not responsible for use nor misuse of this code. 

II 8/14/89 
II This l8-cycle-butterfly loop may be sub-optimal. 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 

output = overwrite the data array used for input. Results are 
complex. ReO.ImO.Rel.Iml ••••• Re(N/2) .Im(N/2). 

NOTE that output array is 1 element longer than input. 

Input is H(k). output is F(k) ••• 
F(k)=.5*( H(k)+ Hconj(N/2-k) -j*(H(k) -Hconj (N/2-k))*Wconj (k)) 

II Algorithm from "Numerical Recipes in CR. by Flannery. Press. Teukolsky. and 
II Vetterlirig. Cambridge Univ. Press 1988. p.4l7. 
11*************************1 

11* The C-version of realfix: *1 void realfix_(a.w.n) 
111*Input = 
1/ a(O:n+l): length n/2+l complex array. Entries O:n/2-l are the complex FFT 
II * result. in correct (NON BIT. REVERSED) order. Entry n/2 is undefined. 
II * w: length n/2 complex array of twiddles. (cos.-sin(2pi*k/n)) 
II * n: call-by-value. number of REAL input samples 

II *Output = 
II * a(O:n+l): length n/2+l. complex array. 
II * Format is ReO.ImO.Rel.Iml ••••• Re(N/2).Im(N/2). 
II * NOTE: To generate entire N-lepgth complex output spectrum. you can copy 
II * conjugate of element(i) to element(N-i). 
1/ *1 
II float 
1/ 

a[]. w[]; int n; {int aptr. bptr. wptr; float half=O.5. 
AR.AI.BR.BI. 1* input values for A.B*I 

1/ 
1/ 

PR.PI.SR.SI.DR.DI. I*temporary differences.sums.products*1 
K.L.M.N .. I*temporary products *1 

/I ER.EI.ERD.EID. 
1/ FR.FI.FRD.FID. 
/I WR.WI; 

111*We do first and last elements as special case {Imag=O. W=(l.O))*1 
1/ AR = a[O]; AI = a[l]; 
/I a[O] = AR + AI; a[l] = 0; 
1/ a[nl = AR - AI; a[n+l] = 0; 

2-432 



inteL AP-435 

Ilfor(aptr=2. bptr=(n-2). wptr=2; aptr < n/2; aptr +=2. bptr -=2. wptr +=2) 
IIlwR = w[wptr]; WI = w[wptr+l]; 
I I AR = a[aptr]; AI = a[aptr+l]; 
I I BR = a[bptr]; BI = a[bptr+l]; 
II 1* aptr =2.4.6 •••• 14; bptr=30.2S.26 ••••• 1S (if n=32) *1 
II 1* Note that there is no need to revise the value at the middle of the 
II list. as it is already correct. (.5*(H(n/4)+Hconj(n/4)) *1 
I I SI = (AI + BI) ; 
II DR = (BR - AR) ; 
II K = WR*SI; L= WI*DR; 
II M = WR*DR; N= WI*SI; 
II SR = (AR + BR) ; 
II DI = (AI - BI) ; 

PR = K-L; 
PI = M+N; 

II ERD = SR+PR; ER = half*ERD; 
I I a[aptr] = ER; 
II EID = DI+PI; EI = half*EID; 
I I a[aptr+l]= EI; 
II FRD = SR-PR; FR = half*FRD; 
II a[bptr] == FR; 
II FID = PI-DI; FI = half*FID; 
I I a[bptr+l]= FI; I I*end of for-loop * I I 
11************* End of C-code for realfix.*********************** 
.text 
• align • quad 
11--------------
define (astart. r16) II input data base address 

define (wptr.r17) II pointer to W table. Because w-contents depend on N. 
II we will assume the caller has initialized w() array. 
define(N.rlS) II 
define (aptr. r20) 
define (bptr. r21) 

Ilpointer to 1st component of butterfly (load) 
//pointer to 2nd component of bfly (load); DOWN COUNTER 

define (decrem.r24) Ilbla decrement 
define (count.r25) II bla counter 

define (WR. flS) 
define (WI. fl9) 

define(AR, fl2) 
define(AI, fl3) 
define (ARo, fl4) 
define(AIo,fl5) 
define(BR, fl6) 
define (BI, fl7) 

IIW (twiddle factor). real part 
II " " • imag 

Ilelement A, real component 
II " ", imag 
II extra A value. for prefetch (o="odd n ) 

Ilelement B, real component 

define(ER. f20) IIResult of butterfly which overwrites AR 
define(EI, f21) II " AI 

define (half,f22) Ilconstant 0.5 

define (FR, f24) IIResult of butterfly which overwrites BR 
define(FI, f25) 
define (PR.f26) 
define (PI,f27) 

define (DR, f28) 
define(DI. f29) 

2-433 



int:eL AP-435 

define(SR, f30) II Sum of A+B, real part 
define(SI, f31) II n ", imag " 

.data 

.align .double 
halfloc:: .float 0.5 
11--------
.text 
.align .qua'd 
_real fix_ : : 
fst.q f12,-16(sp)++ Ilsave "local" regs 
adds -4,rO,decrem Ilbla decrement 

11--------
II We do not bother to initialize FP pipes to zero here, as we assume 
II this routine is called after another, "safe" , pipelined FP routine. 

pfld.l halfloc,fO 
pfld.d 8( wptr)++,fO /Iskip W(O) intentionally. Is a trivial (1,0) value 
II init pointers: 
adds O,astart,aptr 

pfld.d 8( wptr)++,fO 
shl 2,N,bptr Ilbptr=total # bytes of input data 

pfld.d 8( wptr)++,half 110.5 into an fpr 
adds bptr,astart,bptr II bptr points to a(N) 

II here fetch first set of A,B,W before bla-loop 
pfld.d 8( wptr)++,WR 
fld.d 0 (aptr),AR Ilfor 1st and last elements 
adds ':'8,N,count II bla counter (predecrement by 2 butterflies worth) 

II -----------
II Do n/4 butterflies: (computing only N/2 elements of complex output, because 
II the second N/2 are just complex conjugates of the 1st N/2) 

II Definitions for pipe diagram: 
II WR = cos(), WI=-sin(). 
/I DR = BR - AR; (diffence of Real components of A,B) 
II DI = AI - BI; (diffence of Imag components) 
II SR,SI = sum of A,B 
II PR = K - L; where K= WR*SI, L=WI*DR 
II PI = M + N; where M= WR*DR, N=WI*SI 
II (ER,EI)=complex result to overwrite A. 
/I (FR,FI)="""" B. 

first_fly:: Ilfill pipe. 
II For Oth butterfly: 
/I AR = a[O]; AI = a[l]; 
I I a[O] = AR + AI; a[l] = 0; 
/I a[n] = AR - AI; a[n+l]= 0; 

/I KR •• KI •• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
r2pt.ss fO,fO,fO /I 0 0 

Q 

mrmlp2.ss AR,AI,fO /I 0 0 ERO 
mrmls2.ss AR",AI,fO /I 0 0 0 FR ER 

fld.d 8 (aptr)++,AR 
fld.d -8(bptr)++,BR 

d.pfadd.ss fO,fO,fO /I 0 0 0 0 FR ER 
d.pfadd.ss fO,fO,ER /I 0 0 0 0 0 FR ERO 

2-434 



AP-435 

d.ralp2.ss AI ,BI ,FR II 0 0 Sll FRO 
nop 

d.mrmls2.ss BR ,AR ,EI II 0 DRl Sll EIO 
fst.d ER,-8(aptr) 

d.mr2pt.ss WR ,fO, FI II WR DRl Sll FlO 
fst.d FR, 8(bptr) 

d.ralp2.ss BR ,AR ,SI II Kl SRl DRl Sll 
andh Ox8000,count,rO Ilcheck for negative 

d.m12tpm.ss WI ,DR ,DR II Ll Kl SRl DRl 
bnc endfix 

d.r2pt.ss half,DR, fO IIhalf Ml Ll Kl SRl 
nop 

d.m12ttpa.ss WI ,SI ,SRII Nl Ml Ll Kl SRl 
nop 

d.i2st.ss fO ,fO ,fOil fO Nl Ml Kl PRl 
nop 

II KR •• KI •• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
d.ratls2.ss AI ,BI ,fO II Nl 111 Dll PRl 

nop 
d.i2pt.ss fO ,fO, fOil fO Ml Pll Dll PRl 
fld.d 8 (aptr)++,AR 

d.r2apl.ss SR ,fO, PRII ERD Pll Dll PRl 
fld.d -8(bptr)++,BR 

d.rals2.ss SR ,PR, DI II FRD ERD Pll Dll 
pfld.d 8( Vlptr)++,WR 

d.r2apl.ss DI ,fO, PIli EID FRD ERD Pll 
nop 

d.rals2.ss PI ,DI ,fO II ERl FlO EID FRD 
nop 

d.ralp2.ss fO ,fO ,fO II FRl ERl FID EID 
nop 

d.rals2.ss fO ,fO ,fO II Ell FRl ERl FID 
bla decrem,count,fix_loop 

d.pfadd.ss fO ,fO ,FI II Ell FRl ERl -FID 
nop 

11-------------------
II Each butterfly = 1 complx multiply, 3 complx add, 1 real multiply 
II = 8 multiply, 10 add/subtract 
II 3 8-byte fetches (A, B, W) 
II 2 8-byte stores (E, F) 
II 
II approx. 18 cycles per butterfly 
II 

2-435 



inteL AP-435 

fix_loop: : II KR •• KI •• Ml •••• M2 •••• M3 
d.mr2pt.ss fa ,FI ,ER /I a FIl Ell FRl 
nap 

d.mrmlp2.ss AI ,BI ,FR II Fll Ell 
nap 

d.mrmls2.ss BR ,AR ,EI II Fll 
fst.d ER,-8(aptr) 

d.mr2pt.ss WR ,fa, FI II WR 
fst.d FR, 8(bptr) 

d.ralp2.ss BR ,AR ,SI II K2 
andh Ox8000,count,rO Ilcheck for negative 

d.ml2tpm.ss WI ,DR ,DR II L2 K2 
bnc end fix 

d.r2pt.ss half,DR, fa Ilhalf M2 L2 K2 
nap 

d.ml2ttpa.ss WI ,SI ,SRII N2 M2 L2 
nap 

d.i2st.ss fa ,fa ,fall fa - N2 M2 
nap 

II KR •• KI •• Ml •••• M2 •••• M3 
d.ratls2.ss AI ,BI , fall 
nap 

d.i2pt.ss fa ,fa, fall 
fld.d 8 (aptr)++,AR 

d.r2apl.ss SR ,fa, PRII 
fld.d -8(bptr)++,BR 

d.rals2.ss SR ,PR, DII/ 
pfld.d 8( wptr)++,WR 

d.r2apl.ss DI ,fa, PIlI 
nap 

d.rals2.ss PI ,DI ,fa II 
nap 

d.ralp2.ss fa ,fa ,fa II 
nap 

d.rals2.ss fa ,fa ,fa II 
bla decrem,count,fix_loop 

d.pfadd.ss fa ,fa ,FI II 
nap 

11---------
endfix: : 
1/ restore regs 
fiadd.ss fO,fO,fO Ilexit DIM 
fld.q O(sp),fl2 

fa 

fiadd.ss tO,fO,fO Illast DIM pair 
adds l6,sp,sp 
bri rl 
nap 

11------------

N2 

-

ER2 

FR2 ER2 

EI2 FR2 ER2 

EI2 FR2 ER2 

2-436 

T Al •••• A2 •••• A3 •••• Write 
- ERl 

- SI2 FRl 

- DR2 SI2 Ell 

DR2 SI2 FIl 

SR2 DR2 SI2 

SR2 DR2 

SR2 

K2 - SR2 

K2 PR2 

T Al •••• A2 •••• A3 •••• Write 
M2 DI2 PR2 

M2 PI2 DI2 PR2 

ERD PI2 DI2 PR2 

FRD ERD PI2 DI2 

EID FRD ERD PI2 

FID EID FRD 

FID EID 

- FID 

- FID 



int:el. AP-435 

PROGRAM FFTTEST 
c file = real.f 
C 
C l-D FFT TEST PROGRAM 
C 
C 8/14/89 

C Intel assumes no responsibility for use or misuse of this code. 

C------------------
PARAMETER (IREV=l) 
character*8 really 
PARAMETER (REALLY='real') 

c PARAMETER (REALLY='complex') 
PARAMETER (TIMEIT=O, CACHETIME=O) 

c REALLY=' real , means real-only input, otherwise assume complex input 
DATA IT/200000/ 

c PARAMETER (N=2048,M=11) 
PARAMETER (N=1024,M=10) 

c PARAMETER (N=512,M= 9) 
c PARAMETER (N=256,M= 8) 
c PARAMETER (N=128,M= 7) 
c PARAMETER (N=64,M= 6) 
c PARAMETER (N=32,M= 5) 
c PARAMETER (N=16, M=4) 

C 

PARAMETER (PI=3.1415926536) 
COMPLEX X2(N) ,X(N) ,X3(N), W(N/2) 

Real ASQR(N) ,ASQR2(N) ,XR(N+2) ,XR1(N+2) ,XR2(N+2) ,XR3(N +2) 
complex wtemp 
real rtemp 

PRINT *,' FFT test program 
print *,'===============================' 
IF (IREV .eq. 0) THEN 
print *,' NOT counting "time for bit-reversal.' 
print *,'DO NOT expect matching answers,without bit-rev' 

ELSE 
print *, 'Time for bit-reversal included.' 

ENDIF 

print * 'Time for cache writeback and fills ••• ' 
IF (CACHETIME .eq. 0) THEN 
print *,' NOT included, if iterating.' 

ELSE 
print *,' 

ENDIF 

print *, 
print * 
print *, 
print * 
print *, 
print *, 

included. ' 

'===============================' 
'If iterating ••• Number of Iterations =',IT 
'===============================' 
'Number of Points = 'f N 
'(',REALLY,' data)' 
'===============================' 

2-437 



intel$ AP-435 

C------------------
C Init twiddle factor array w(k) with (cos,-sin) of 2pi*k/N 

rtemp = 2.0*pi/N 
wtemp= CMPLX(cos(rtemp), -sin(rtemp)) 
w(l) = (1.0, 0.0) 
DO 200 k = 2,N/2 

200 w(k) = wtemp * w(k-l) 
cc print *,' W (twiddle) initialization completed •••••• ' 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C INITIALIZE input data 
C 

DO 100 I = 1, N 
c :constant: 
c Treal = 1.0 
c Timag = 0.0 

c:squarewave: 
cc IF (I .It. N/2) THEN 
cc Treal = 1.0 
cc Timag = 0.5 

cc 
cc 
cc 
cc 
C: 

ELSE 
Treal 0.0 
Timag = 0.0 

ENDIF 
ramp function: 

Treal = I - 1.0 
Timag = Treal + 0.5 

IF (REALLY .ne. 'real') THEN 

ELSE 

X(I) = CMPLX (Treal, Timag) 
X2(1) = CMPLX (Treal, Timag) 
X3(1) = CMPLX (Treal, Timag) 

X(I) = CMPLX (Treal,O.O) 
X2(1) = CMPLX (Treal,O.O) 
XR(I) = Treal 
XR1(1) = Treal 
XR2(1) = Treal 
XR3(1) = Treal 

ENDIF 
100 CONTINUE 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CALL fft (X2, M, N) 
cc Subroutine fft is Decimation-In-Time, Fortran version. 

CALL dirr(XR,M,N,W,l) 
c (Assuming dirr produces inplace result, items 0:N/2 complex results) 

2-438 



AP-435 

ccccccccccccccccccccccccccccccccccccccc 
IF (IREV .ne. 0) THEN 
IF (TIMEIT .eq. 0) THEN 
call vcompare(XR,X2,N/2+2) 
call cmags(XR,N/2+1,ASQR) 

c cmags to take squared magnitude of complex values in X 
call cmags(X2,N,ASQR2) 

c----------------------c 
C print non-zero results: 

J=O 

DO 700 I = 1,N/2+1 
IF ((ASQR(I) .GT. 1.0) .OR. (ASQR2(I) .GT. 1.0)) THEN 

WRITE (6,22) (1-1), ASQR(I), ASQR2(I) 
22 FORMAT (' 1-1=',14,' ASQR(I)= ',F14.2, ' ASQR2(I)= ',F14.2//) 

J = J+l 
IF (J .GT. 32) GOTO 725 
ENDIF 

700 CONTINUE 

725 CALL TIME 
ENDIF 
ENDIF 

IF (TIMEIT .ne. 0) THEN 
ccccccccccccccccccccccccccccccccccccccc 
cc- Timing loop follows: 

print *,' Start Ass.FFT' 
IF (CACHETIME .eq. 0) THEN 

DO 500 I = 1, IT,4 
C Reuse same array, so cache fill and writeback time NOT included. 

CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XR, M, N,W,IREV) 

500 CALL dirr(XR, M, N,W,IREV) 
ELSE 

DO 504 I = 1, IT,4 
C Alternating between XR,XR1,XR2,XR3 should provide cache misses. 

CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XR1, M, N,W,IREV) 
CALL dirr(XR2, M, N,W,IREV) 

504 CALL dirr(XR3, M, N,W,IREV) 
ENDIF 

print *,' END Ass. FFT' 
ccccccccccccccccccccccccccccccccccccccc 

2-439 



int:et 

ENDIF 

STOP 
END 

0----------------------0 
subroutine vcompare(res,exp,n) 

AP-435 

o VCOMPARE compares 2 vectors, prints out 1st few miscompares 
o 

integer n, errcnt 
real res(n), exp(n) 

write(6,12) 
12 . format('*** VCOMPARE: vector comparison beginning ***') 

data errcnt/O/ 
do 30 i = l,n 

if(AINT(res(i)) .ne. AINT(exp(i))) then 
c (print out error, exit if alot already) 
120 print *,'*** Error in compares ***' 

write(6,121) i 
121 format ( , Item number = ',16) 

write(6,124) res (i) , exp(i) 
124 format (' Res_=' ,F14.2,' Expected_=' ,F14.2) 

errcnt = errcnt + 1 
if (erront .gt. 19) then 

return 
end if 

end if 
30 continue 

if (errcnt .eq~ 0) then 
190 print *,' *** veotor compares SUCCESSFUL ***' 

end if 

99 return 
end 

c----------------------c 

2-440 



int'eL AP-435 

C---------------
C file: fft. f 

C FFT routine from Rabiner & Gold. 1975. who copied it 
C from Cooley. Lewis. Welch 
C 6/02/89 
C 
C Decimation in Time. radix-2. inplace. l-dimen 
C Inputs: 
C A= complex array of input. up to 1024 pts. single-prec float 
C (maybe more than 1024. uncertain what limit is) 
C M= log of number of pts 
C = (Number of stages of FFT) 
C N = number of points. ie. N= 2**M = number of pts 
C 
C Outputs: 
C A= complex fft of input A. in NON-bit-reversed order. 
C 
C w (twiddle factor) calculated by recursion. Supposedly takes 15% more 
C operations than keeping entire twiddle array as constants pre-allocated. 
C 

subroutine fft(a.m.n) 
integer m.n. i. j.k. ndiv2.powers2(0:10) 
integer iplus.offset. stage. indexl. groups 
complex a(n) .wtemp(2) .w(ll) .temp 

C Init twiddle factor array w() with (cos.-sin) of pi.pi/2.pi/4 •••• 
data w(l) 1(-1.0,0.0) I 
data w(2) 1(0.0.-1.0) I 
data w(3) 1(0.7071068,-0.7071068)1 
data w(4) 1(0.9238795,-0.3826834)1 
data w(5) 1(0.9807853,-0.1950903)1 
data w(6) 1(0.9951847,-0.0980171)1 
data w(7) 1(0.9987955,-0.0490677)1 
data w(8) 1(0.9996988,-0.0245412)1 
data w(9) 1(0.9999247,-0.0122715)1 
data w(lO) 1(0.9999812,-0.0061359) I 
data w(ll) 1(0.9999953,-0.003068) I 

data powers2 11,2,4,8.16.32,64,128,256,512,10241 
C Powers2 to avoid calls to POW, DIV 

C Setup for bit-reversal loop: 
ndiv2 = n I 2 
j =1 

C-----------
C "DO 7" loop to in-place-bit-reverse-shuffle input 

DO 7 i= 1, n-l 
IF (i .It. j) THEN 

temp = a(j) 
a(j) = a(i) 
a(i) = temp 

ENDIF 
k = ndiv2 

2-441 



AP-435 

C "While (j .gt. k)" /*decrease j by 2**something */ 
6 IF (j .gt. k) THEN 

ENDIF 

j = j-k 
k = k / 2 
GOTO 6 

C Add next lower power of 2 to j 
7 j = j+k 

C------------
C Special case for stage l:no complex multiplies, simple add 
C (Performance enhancement) 

groups = 2 
offset = 1 
indexl = 1 

C i-loop iterates N/2 times for 1st stage (and would do twice N/4 x for 2nd) 
CVD$ NODEPCHK 

DO 8 i = l,n,2 
iplus = i + 1 

temp = a(iplus) 
a(iplus) = a(i) - temp 

8 a(i) = a(i) + temp 
C------------
C Special case for stage 2: no complex multiplies, simple add 
C (Performance enhancement) 

groups = 4 
offset = 2 
indexl = 1 

C i-loop iterates N/4 times for 2nd stage 
C 1st call to i-loop,in stage2: indexl=l, wtemp(l)=(l,O) 
CVD$ NODEPCHK 

DO 90 i = l,n,4 
iplus = i + 2 
temp = a(iplus) 
a(i~lus) = a(i) - temp 

90 a(i) = a(i) + temp 

indexl = 2 
CVD$ NODEPCHK 
CVD$ NOVECTOR 

DO 92 i = 2,n,4 
iplus = i + 2 

temp = CMPLX(AIMAG(a(iplus)) ,-REAL(a(iplus))) 
a(iplus) = a(i) - temp 

92 a(i) = a(i) + temp 
CVD$ VECTOR 
C------------
C "DO 20" stage-loop executed once for each of the (m) stages of FFT 
C (Except 1st and 2nd stage) 
C offset gets 4,8,16,32,64,128,256 ••• 

DO 20 stage = 3,m 
groups = powers2(stage) 
offset = groups/2 
wtemp(l) =(1.0, 0.0) 

C One twiddle seed (W) calc per'stage. 
C We pre-allocated w(12)-array with those values, avoid cos/sin calls 

2-442 



InteL AP-435 

C-------------------
DO 20 indexl = l.offset 

C "DO 10" i-loop does each butterfly of each stage. with varying twiddles 
C i-loop iterates N/2 times for 1st stage. N/4 x for 2nd. N/8 x for 3rd 
C stage. N/16 x for 4th stage •••• 1 time for last stage. 

CVD$ 
CVD$ 

NODEPCHK 
ALTCODE 
DO 10 i = indexl.n.groups 

iplus = i + offset 

10 

temp = a(iplus) * wtemp(l) 
a(iplus) = a(i) - temp 
a(i) = a(i) + temp 

20 wtemp(l) 
RETURN 
END 

= wtemp(l) * w(stage) 

C------------
subroutine cmags(a.n.asqr) 

C Complex magnitude squared. 
C Inputs: 
C A= complex array of input. single-prec float 
C N = number of input points (and output points) 
C Ouput: 
C asqr = real squared magnitude (R*R + 1*1). N elements. single-prec float 

integer n.i 
real asqr(n) 
complex a(n) 

DO 100 i = 1. n 
asqr(i) = (REAL(a(i))*REAL(a(i))) + (AIMAG(a(i))*AIMAG(a(i))) 

100 CONTINUE 
RETURN 
END 

2-443 



inteL AP-435 

## makefile for i860(tm) CPU FFTs (for Unix V/386 programming environment) 
## 8/7/89 
## 
GH=/usr/i860/bin 
GHL=/usr/i860/lib 
CC=$(GH)/c860 
FC=$(GH)/f860 

CFLAGS= -OLM -X393 -X405 -X188 -X370 

FFLAGS= -OLM -X370 -X393 -X71 -X422 
## -X71 uses single-precision math routines 

FLFLAGS= -Mx map -e start 

LFLAGS= -Mx map -e _main 
CLIB=$(GHL)/libc.a 
MLIBPSR=$(GHL)/860mtlib.a 

MLIB=$(GHL)/libm.a 
FLIB=$(GHL)/libf.a 

ASM=$(GH)/as860 

FLINK=$(GH)/ld860 $(FLFLAGS) 

RT=$(GHL)/s5Iib.a 

LIBS= $(FLIB) $ (MLIBPSR) $ (MLIB) $(CLIB) $(RT) 

LIBCC= $(MLIB) $(CLIB) $(RT) 
## NOTE: Order of linked files is CRUCIAL, other orders may give errors 

.SUFFIXES: 

.SUFFIXES: .f .c .s .5S .0 .8 

.IGNORE: 
## .ignore causes make to ignore error codes from compilers 

## To test Fortran plus assembler-fft-stage version: 
FILE= ffttest.o fft.o diff.o bitrev.o difstep.o start.o time.o 

## To test all-Fortran version of fft: 
##FILE= ffttest.o fft.o diff.o difstepf.o.start.o time.o 

## To test REAL-input version of fft: 
RFILE= real.o fft.o dirr.o realfix.o difstep.o bitrev.o start.o time.o 

.f.o: 
$(FC) $ (FFLAGS) $*.f 
$(ASM) -x -0 $*.0 $*.s 

.c.o: 
$(CC) $ (CFLAGS) $*.c 
$(ASM) -x -0 $*.0 $*.s 

2-444 



• s. 0: 
m4 $*.5 temp2.s 
$(ASM) -x -0 $*.0 temp2.s 

ffttest.S: $(FILE) 

AP-435 

$ (FLINK) -0 ffttest.S $(FILE) $(LIBS) 
real.S: $(RFILE) 

$(FLINK) -0 real.S $(RFILE) $(LIBS) 

clean: 
rm -f *.0 *.8 

.55.0: 
m4 $*.55 temp.s 
$(ASM) -x -0 $*.0 temp.s 

2·445 

fI 



AP-435 

I/start.ss 
II 8/18/89 
II Fortran runtime startoff routine 
/I 

.text 

.globl 

.globl 
start 
finish 

start: : 
orh 
or 
adds 
st.l 
call 
nop 

h%_stack+262128+262144,rO,sp 

finish: : 
call 
nop 
.file 

.data 

1%_stack+262128+262144,sp,sp 
-16,sp,sp 
rl,12(sp) 
_main 

·start.c· 

.align • quad 

.lcomm _stack,262144+262144 

.end 
11=============================================================== 

1* file: time.c. Purpose: establish a label to use for breakpoints *1 
long time_(x) 
long *x; 
{ x = x+4; 

return ( (long) x); 

long timestop_(x) 
long *x; 
{ x = x+4; 

return((long) x); 

2-446 



inial· APPLICATION 
NOTE 

December 1991 

Designing a Memory Bus 
. Controller for the 

82495/82490 Cache 

MARK ATKINS 

ISIC SILAS 

CHRIS KARLE 

2-447 
Order Number: 240957-001 



Designing a Memory Bus Controller 
for the 82495/82490 Cache 

CONTENTS PAGE 

1.0 BACKGROUND .................... 2-450 

2.0 WHY A CUSTOM BUS 
INTERFACE? ........................ 2-451 

3.0 GUIDELINES ...................... 2-451 

Shared Bus Interconnect ............ 2-452 

4.0 MBC BLOCK DIAGRAM ........... 2-452 

5.0 DESIGN EXAMPLE: A 
UNIPROCESSOR MBC .............. 2-454 

6.0 DESIGN EXAMPLE: A 
MULTIPROCESSOR MBC ........... 2-454 

7.0 MBC FUNCTIONS ................. 2-456 

MBC Functions for Uni and 
Multiprocessors ................... 2-456 

Reset and Configuration Control .. 2-456 

Intel486 OX CPU Resets ......... 2-457 

FLUSH# (and SYNC#) .......... 2-457 

Bus Error or Timeout Detection ... 2-458 

Scenarios Requiring MBC 
Action ......................... 2-458 

Transfer Tracking ................... 2-458 

Clock Boundaries and 
Synchronization ................... 2-459 

Synchronizer Delays ................ 2-461 

BRDY # Generation ................. 2-462 

Pipelining ........................... 2-464 

Pipelining the MBC-to-82495 ..... 2-464 

Pipelining the M-bus .............. 2-464 

M-bus Arbitration .................... 2-464 

Sequencing ......................... 2-465 

Flowchart of MBC Algorithm ...... 2-467 

Cacheability ...................... 2-468 

Snooping ........................... 2-468 

Snoop Handshaking .............. 2-468 . 

CONTENTS PAGE 

Bus Size Adaptation .............. 2-468 

Bus Signal Levels ................... 2-468 

8.0 MBC FUNCTIONS FOR 
MULTIPROCESSORS ............... 2-469 

Snooping Results ................ 2-469 

Snoop Window Time ............. 2-470 

Read for Ownership .............. 2-470 

Cache-to-Cache Transfers ....... 2-471 

Snoop Filtering ................... 2-471 

SplitTransaction ................. 2-472 

Memory Cycle Abort .............. 2-472 

Locking ............................. 2-472 

Bus Lock vs. Address Lock .......... 2-473 

KLOCK# De-Assertion ........... 2-473 

CPLOCK # .......................... 2-473 

9.0 MORE ALTERNATiVES ........... 2-474 

M-bus Clocking .................. 2-474 

Strobed or Clocked M-bus ........ 2-474 

Line Size and M-bus Width ....... 2-474 

Write back ........................ 2-474 

10.0 MBC DIFFERENCES FOR 
i860TM XP CPU VERSUS 
Intel486™ DX CPU ................. 2-475 

11.0 SUMMARY ....................... 2-475 

12.0 BIBLIOGRAPHy .................. 2-476 

APPENDIX A: Questions and Answers 
on MBC Design ..................... 2-477 

APPENDIX B: Intel486 DX CPU 
Uniprocessor MBC Design ......... 2-480 

APPENDIX C: i860TM XP CPU Dual-
Processor MBC ..................... 2-481 

2-448 



Designing a Memory Bus Controller 
for the 82495/82490 Cache 

CONTENTS PAGE 

FIGURES 

Figure 1 CPU + 82495 + 82490 
Systems ..................... 2-450 

Figure 2 CPU + 82495 + 82490 Core .. 2-451 

Figure 3 System Type and Bus 
Requirements ............... 2-452 

Figure 4 Generic Block Diagram of 
MBC ........................ 2-453 

Figure 5 Block Diagram of Uniprocessor 
MBC ........................ 2-454 

Figure 6 Block Diagram of 
Multiprocessor MBC ......... 2-455 

Figure? Synchronizer Hardware ...... 2-461 

Figure 8 Data Transfers, M-bus Width = 
CPU bus, MCK = ClK ....... 2-463 

Figure 9 Data Transfers, M-bus Width = 
CPU bus, MClK < ClK ...... 2-463 

Figure 10 Data Transfers, M-bus Width = 
2*CPUbus ................... 2-463 

Figure 11 Data transfers, M-bus Width = 
4 *CPUbus ................... 2-463 

Figure 12 Data Transfers for Non-
Pipelined M-bus ............. 2-464 

Figure 13 Data Transfers for Pipelined 
M-bus ....................... 2-464 

Figure 14 MBC Signals and Protocol 
layers ....................... 2-466 

CONTENTS PAGE 

FIGURES 

Figure 15 Creating Snoop Results ..... 2-469 

Figure 16 Snoop Waveforms .......... 2-471 

Figure C-1 Pinout Environment of 
MBC ....................... 2-481 

Figure C-2 Non-Aborted Read Cycles .. 2-488 

Figure C-3 Aborted Non-Pipelined 
Cycles ...................... 2-490 

Figure C-4 Aborted Pipelined Cycles ... 2-491 

Figure C-5 Potentially Allocatable 
Write ....................... 2-492 

Figure C-6 Non-Allocatable Write ...... 2-492 

Figure C-? Interprocessor 
Communications in Two 
Processor System .......... 2-494 

Figure C-8 Extension Glue ............. 2-496 

State Diagrams ........................ 2-497 

PlD Codes ............................. 2-513 

Appendix C Schematic ................. 2-544 

TABLES 

Table 1 Functions of the Memory Bus 
Controller ..................... 2-456 

Table 2 Clocked vs. Strobed M-bus 
Tradeoffs ...................... 2-474 

2-449 



inteL AP-452 

1.0 BACKGROUND 

The Intel 82495 Cache Controller and 82490 Cache 
RAM form a high-speed cache subsystem for the 
Intel486 DX CPU (82495DX/490DX) or the i860 XP 
CPU (82495XP /490XP). The reader should be familiar 
with these chips, as described in: 

1) i860 XP CPU Microprocessor Data Sheet (Intel or­
der #240874) 

2) Intel486 DX Microprocessor Data Sheet (Intel order 
#240440) I 

3) 82495XP Cache Controller/82490XP Cache RAM 
Data Sheet. (Intel order #240956, June 1991) 

or Intel486 DX CPU Microprocessor Cache-Chip 
Set Data Sheet (Intel order # 241084, June 1991) 

Diagrams of systems containing the 82495 and 82490 
appear in Figure 1, and a more detailed diagram of the 
CPU/82495/82490 core appears in Figure 2. (Note: for 
simplicity, the 82495XP /82490XP and 82495DX/ 
82490DX will be referred to generally as 
82495/82490--the XP or DX' should be inferred de­
pending upon the CPU being utilized.) In such systems, 
the 82495 controls a cache external to the CPU, and 
includes the cache tags. It can interface gluelessly to an 
Intel486 DX CPU or i860 XP CPU microprocessor, 

allowing the processor bus to run at 50 MHz with zero 
wait-states, while the memory bus can remain at a low­
er frequency. Both writeback and writethrough proto­
cols are supported. Concurrent operations can occur 
simultaneously on the local CPUbus and the shared 
memory bus. All requisites for multiprocessors are in­
cluded in the 82495, Intel486 DX CPU, and i860 XP 
CPUs, but the 82495 also is useful for a uniprocessor 
system performance enhancement. 

The 82490 cache RAM contains 32 kBytes per chip, 
and is used in groups of 4, 8, or 16 to implement caches 
from 128 to 512 kBytes. It supports two-way associativ­
ity, delayed writebacks, burst transfers, and boundary 
scan test. The 82490 contains much more than RAM 
cells-it includes various buffers, queues, and support 
for several bus protocols. It is two-ported, with simulta­
neous access on both the CPU side and Memory-Bus 
side. The cache optionally supports parity using addi­
tional 82490 chips. 

Configuration options allow a variety of memory bus 
widths (32 to 144 bits), cache line widths (16 to 128 
bytes), and asynchronous or synchronous transfers. 
The configuration is selected by the polarity of various 
pins at reset time. 

1. Uniprocessor 

240957-1 

2. Homogeneous Multiprocessor 
...--...",.,.--. 

32.64, or 128 

3. Heterogeneous Multiprocessor 
r-----, 

Figure 1. CPU + 82495 + 82490 Systems 

2-450 

240957-2 

240957-3 



AP-452 

240957-4 

Figure 2. CPU + 82495 + 82490 Core 

The Memory Bus Controller (MBC) portion of the sys­
tem interfaces the 82495 and CPU to the system bus. 
The MBC converts bus status and command lines into 
requests to the 82495, for example, to monitor the prog­
ress of an ongoing bus transaction from another CPU 
subsystem to ensure consistency with 82495 + 82490 
cache contents. Likewise the MBC adapts 82495 re­
quests to the bus protocol and arbitrates for ownership 
of the bus. Most CPU requests will not require MBC 
action; only I/O cycles, cache bypass requests, and 
82495 cache misses are forwarded by 82495 to the 
MBC, while external cache hits are handled totally by 
82495 + 82490. 

2.0 WHY A CUSTOM BUS 
INTERFACE? 

Clearly the entire interface to a memory bus (abbreviat­
ed M-bus) could have been incorporated in the 82495 
and 8.2490 chips. This approach has been followed by 
some other cache chipsets. 

However, such integration suffers from inflexibility and 
bandwidth limitations. As shown in Figure 3, the per­
formance and cost targets of the system determine the 
size and complexity of the bus, so if the bus is "hard­
wired" into the cache controller chip, it will be too 
costly for small systems and too slow for larger sys­
tems. With the bus interface implemented separately, it 
can be a complex ASIC for a high-bandwidth complex 
system, or a few EPLDs for a PC. The same cache 
controller can improve performance of a variety of bus­
based CPUs. 

For a desktop PC, a 32-bit simple memory bus is ade­
quate. For a workstation or small multiprocessor of 
two CPUs, a faster 64-bit bus may be required to give 
adequate bandwidth for graphics frame buffers and in­
tensive numeric calculations. Bus bandwidth require­
ments grow as the MIPS rating of each CPU in a sys­
tem grows; for example, a bus adequate for 12 386 
CPUs may be too slow for 6 Intel486 OX CPUs, as 
they process far more data per second. 

2-451 

A large multiprocessor of 6 or more CPUs needs a wide 
and fast bus such as Futurebus +, with split-transac­
tion capability to prevent bus bottlenecks from slowing 
the performance of every processor. Hierarchies of bus­
es and caches can further allow more CPUs with rea­
sonable performance increases as CPUs are added. A 
Futurebus + hierarchy maintains concurrent transac­
tions on each bus, and "bridge" caches at the junctions 
of buses echo them from bus to bus when the bridge 
detects that one transaction may affect cached copies 
on the other bus. 

Compatibility with existing buses is often crucial in 
product design, so that new faster components can plug 
into existing machines and I/O devices. The flexible 
82495/82490 bus interface allows compatibility as well 
as extension. 

Thus the 82495 and 82490 will be used in a wide variety 
of systems, including standard buses like Futurebus + . 
For proprietary buses, the "proprietor" can design an 
ASIC or PAL MBC incoTporating the required fea~ 
tures. 

3.0 GUIDELINES 

This document exists to clarify the necessary compo­
nents and tradeoffs of a Memory Bus Controller. The 
example designs here have not been tested, and signal 
definitions of the i860 XP CPU, Intel486 DX CPU, 
82495, and 82490 chips are subject to change. 

The memory bus controller is not allowed to use (and 
thus add capacitance to) any of the CPU pins used by 
the 82495/82490, except those listed in the 82495 Data 
Sheet [82495/490DS] description of the BLE# pin. 
Only the CPU pins BE7-0#, PWT, PCD, LEN, 
CACHE#, BRDY#, PCYC, and CTYP have suffi­
cient timing margin to tolerate the MBC load. 



intel~ AP-452 

Small Large 
2-3 CPUs 

I Medium I 
4-8 CPU. 8+ CPU. 

reature Unlproc Multiprocessor 

CPU<->Memory Simple PiPelin'ed Bus Crossbar or 
Interconnect Bus ~ " .. "'''0'''' 
Bu. Width, 32 bit 32 or 64 64 or 128 64 or 128 bit 
Frequency 20-40 MHz 33 MHz or more • 

WriteBack I Cache : WriteThru 82~95 + 82490 

-- 3rd Level Cache ----

Arbitration Central Central Distri~uted Arbitration 
(HOLO/HLDA) Bus Parking 

I I 
LOCKing - Bus Lock Address Lock • 

I I 
Error Detect . Parity ECC on Memory, Retry -I I 
Bus Protocol ...- Simple ~ Pipelined -- Split Transaction ----+-

I 
Extra Read-for-Ownership 

Features Cache-to-Cache Transfers 
External rlro. 

I 
240957-5 

Figure 3. System Type and Bus Requirements 

Shared Bus Interconnect 

When used in a multiprocessor, the 82495 assumes a 
shared-memory, shared-bus environment so that it can 
observe and "snoop" accesses by others which might 
conflict with the memory locations it has cached. In a 
crossbar or other multipath interconnect, shared-bus 
coherency can be emulated for the 82495 or it can be 
used non-coherently. Either a centralized directory or a 
hierarchy of buses and caches can do the emulation. A 
directory would keep a record, for each line of main 
memory, of caches which have the line. When a cache 
first writes to a line of memory, the central directory 
broadcasts an invalidation message to all other caches 
containing that line. [AgarwaI88] 

4.0 MBC BLOCK DIAGRAM 

Shown in Figure 4 is a high-level block diagram of the 
functions and interfaces involved in the Memory Bus 
Controller. Part of the MBC operates on the high-speed 
clock (CLK) which the CPU and 82495 use. While the 
M-bus could use the 50 MHz CPU CLK, such a fast 
M-bus is hard to design. The part of the MBC which 
interacts with the memory bus protocol runs on an M­
bus clock (MCLK), if that protocol is clocked. Also 
possible is an unclocked M -bus protocol using the 
82495/82490 in "strobed" mode. The MBC contains 
synchronizers and a few signals which cross between 
the two clock domains. Synchronizers, consisting of 
specially-designed flip-flops, allow a clocked state ma­
chine to use data which may be transitidning near the 
edge of the clock. Unsynchronized data can cause 
metastability in latches, where their output changes 
slowly and unpredictably. 

2-452 



BEllS 3 

LEN 

B 
CACHEII 
PCO 

BE 
LATCH 

74f377 

CLK 

MeLK 

RESET AND 

<J-~R~E::"SET~~I>I C0':r~~~:~~ION 
PCHKII 

R 
E 
S 
E 
T 

SNPSTB 
SNPINV 

M 

SNPCLK A 
0 
E 

" 

SNOOP 
LOGIC 

ARB 

~ = MULTIPROCESSOR ONLY 

M 
H 
I 
T 
M 
II 

Ap·452 

COTSII CW/R, 
CAOSII CO/C, CM/IO 

B C S 
G N W 
T A E 

" " N 
D 
II 

CYCLE 
TRACKING 

STATUS 

WEWORY BUS 

K K 
W L 
E 0 
N C 
D K 
II " 

SPECIAL 
CYCLE 

TRACKING 

M 
H 
I 
T 
M 
II 

P 
A 
L 
L 
C 
II 

C 
R 
0 
Y 
II 

READY 
LOGIC 

B 
R 
D 
Y 

Figure 4, Generic Block Diagram of MBC 

2-453 

B 
R 
0 
Y 
II @J 82495 

MBROY" 

CI'ITRL 7 

240957-6 



intel® AP-452 

5.0 DESIGN EXAMPLE: A 
UNIPROCESSOR MBC 

A simple MBC design example is an adapter to allow 
plugging a daughtercard module with an Intel486 DX 
CPU, 82495, and 4 82490s into an Intel486 DX CPU 
microprocessor PGA socket. The memory bus is an 
Intel486 DXCPU-bus, allowing the external cache to 
be a performance enhancing option. It assumes a "di­
vided synchronous" M-bus clock, where the M-bus 
runs at 1/2 the CPU CLK speed. Thus no synchronizers 
are needed. The MBC uses both the CPU CLK and the 
M-bus MCLK. 

This design requires 

• 1 74F377 latch 

• 6 PLDs containing 10 state machines 

• 2 chips for clock generation, not part of the MBC 

Approximately 70 signal pins connect the MBC block 
to the CPU, cache, and memory. Only a uniprocessor is 
supported, although the bus protocol and MBC could 
be enhanced for multiprocessing coherency. Figure 5 
shows a block diagram. Details of the design· can be 
found in Appendix B. 

Inlel486TM ox CPu 

6.0 DESIGN. EXAMPLE: A 
MULTIPROCESSOR MBC 

An i860 XP CPU multiprocessor-capable MBC (Figure 
6) using an M-bus similar to the i860 XP CPU bus is 
proposed. For. clocking, it uses an MCLK of 33 MHz, 
totally asynchronous to the 50 MHz CPU CLK. It 
could therefore be upgraded to faster CPU CLK rates 
in the future without changing the design or M-bus. 

The design requires: 

• 2 74F377 octal latches (for BE7-0#, etc ... ) 

• 2 74AS4374 dual-rank-synchronizer octal registers 

• 16 PLDs 
• 2 GA1110 clock drivers for clock distribution 

These components could be integrated into a single 
ASIC chip, as about 120 signals cpnnect to the MBC. 
The MBC can be used for a uniprocessor ormuItipro" 

I cessor i860 XP CPU design. Details can be found in 
Appendix C. 

"'~'.'O"'."" f.Jc 
1E--'===----------+--------"'="----lI8 2 4 9 0 DX 

- ::::: ..... 

_ "Oco 

82495DX .. " ...... 1" ... 1,.," ...... 1%0.0 

L"' .. ,L<>c~ .. , .. "O ..... T 

J 
I T l 1 "c •• o •• 

..."" ... c= ......... AD" .. 
CT<O._",.. .......... ., ... c .. DY .. 

... ' ..... CD/" .... CM/ID .. 
.0.0" ................ , ..... " .. 1< 

ALl.C .... c ...... .,. <=LI!:N1 

-r---
CONTROL MACHINES 

I 
I 

I T MBC I 
".O ••. I" •• ~ •. ""<" •. ""OCO 

240957-26 

Figure 5. Block Diagram of Uniprocessor MBC 

2~454 



intel.. AP-452 

CACHE. 8£1'0' 

eLK 

~g~c CTVpl ·1 
er 

BLU 
F377 EN 

X • UNIT •• CPU ClK PlDS BE·LATCHES 

CRDY PIPE LINING CNA. 

CYCLE TRACKING CPU· LEN 
RDVSRe 

:SWEND,_ 'WEND BROVI 
BRDY 

SNPCYC._ 
SNPCYC 

BOT BGTtI 

DATA TRACKING KWEND KWEND. 

COTS' 
CADS, 
- ADDR STAOBE KEN liKEN. 
SNPADS, 

~r 1 1 
"'SWENDO, 

eLK I ~rl 
74"94374 

I .1 74AS4I374 
DUAL· RANK SYCHRONIZER 
SYCHRONIZER I 

I Y • UNIT •• MClK • PlDS III~ I~ II11 
MSWEND. FI 

'------- USWEND 
CPU EDC MFRZ 

DRC' .. ..- MEMEOC I--"Eoe. 

::gi:- u.s TRACKING 9NPSTS I--~NPSTB' 
SNPINV 

UHLDA CYCLE RESTART CPU_LEN 
USEL-

MALE 
NALE MBADY !----MBRDV' 

p~ 
NODE I---

~ 
UE'CLEN 

~ i·., I F ... 

LE MALE ALLoe 

DE MADE, KLOCK, LOCK UNA 
erR 

U8~7'O' 
MOREQ MEM ABORT 

~l ~l if I 11" 
c 

VBECLA' 
~ ~ > ~ ~ c z 
o 0 ~ ~ m m ~ ~ ~~~ai m 
~ 2 " " :i :i::'i:i:i::i " 

240957-27 

Figure 6. Block Diagram of Multiprocessor MBC 

2·455 



infel" . AP-452 

7.0 MBC FUNCTIONS 

Table I shows the responsibilities of the Memory Bus 
Controller for uiIiprocessors and multiprocessors (MP). 
The multiprocessor features exist mainly to prevent bus 
over-utilization. However, some of the jobs common to 
both are more complex in MP for example, arbitration 
and snooping. The pin lists in the table are not exhaus­
tive. 

MBC Functions for Uni and 
Multiprocessors 

Reset and configuration control includes strapping of 
the following pins to resistors at Vee or Ground, or 
"temporary strapping" of multifunction pins whose 
state during the last 16 clocks before falling edge of 
RESET determines 82495, 82490, or CPU configura-

Table 1. Functions of the Memory Bus Controller 

MBC Functions for Uni and Multiprocessors 
1. RESET and Configuration 
2. FLUSH # and SYNC # 

•• 3. Bus Error Detection, Retry 
4. CPU transfer tracking (burst count) 
5. Mbus transfer tracking (burst count) 

(including write back, allpcation) 
6. Synchronization between clock domains 

,. 7. Memory-bus pipelining 
,. 8. MBC-to-82495 pipelining 

9. Memory Bus Arbitration 
10. Cacheability decode 

Pins 
RESET,HOLD,CAHOLD 

CAHOLD,FSIOUT # ,FLUSH # ,SYNC# 
PCHK#,BERR 

CLEN1 :O,RDYSRC,BRDY # 
CRDY#,MBRDY# 

BGT # ,CADS# ,MBRDY # 
BGT# ,CNA# ,MEOC# ,CRDY # 

CNA#,MALE 
BGT# 

KWEND#,MKEN# 
"11. Redrive bus signals for BTL or ECL levels or heavy capacitive loads 
• '12. Packing (convert 32-bit M-bus for 64-bit 82490 size, or 8-bit ROM) MBRDY# 

INT(R),FLUSH # 
TCK,TMS,SLFTSH 

CW/R#,CADS# 
SNPSTB# ,SNPCLK,SNPCYC# 

MHITM#,SNPADS# 

"13. Bus messages (interrupts, flushes) . 
"14. Boundary scan and self test 
• '15. Performance monitoring (M-bus utilization, read vs. write) 

16. Snoop handshake (snooping DMA or other CPU) 
17. Snoop writebacks 

Additional MBC Functions for Multiprocessors 
M 1. Snoop window (as master) 
M2. Backoff 82495 when request was to M-line in another 82495 

··M3. Snoop filtering (via SMLN#) 
·'M4. Cache-to-cache transfers (CTCT) 
• "M5. Read-For-Ownership (RFO) 
·'M6. Split transactions (requires duplicate tag array) 
., M7. Memory cycle abort (after MHITM #) 

M8. LOCK # protection 
"M9. LOCK# de-assertion (for back-to-back Intel486 DX CPU locks) 
·'M10. CPLOCK# (Inte1486 DX CPU only) 
•• M 11. Snoop during LOCK # 
"M12. Multiprocessor Interrupts 

(for Message-Based Interrupts or TLB shootdown) 

'" = optional and implementation dependent 

2-456 

Pins 
SWEND#, MWB/WT# 

MAOE# 
SMLN# 

DRCTM # ,MBAOE # 
PALLC# ,DRCTM # ,MFRZ # 

CWAY 
MHITM# . 

KLOCK # ,CAHOLD,SNPCYC# 
KLOCK# 

CPLOCK# 
KLOCK# 

INT,NMI(BERR) 



int:eL AP-452 

tion. The circuit feeding RESET to these chips should 
keep it active .at least 16 CLK periods. "Temporary 
strapping" means including RESET or 1\ RESET in 
the logic equation for the pin. The multifunction pins 
are indicated with brackets [ ] below: 

i860 XP CPU pins: 

PEN#, FLlNE#, HOLD 

Intel486 DX CPU pins: 

RDY#, BOFF#, BS8#, BSI6#, HOLD, FLUSH 

82495 pins: 

CFG3, CFG2[KWEND#1, CFGl [SWEND#], 
CFGO [CNA#l, CPUTYP[HITM#], 
FPFLDEN[FPFLD#], NCPFLD#[FLUSH#l, 
SNPMD[SNPCLK], C490LDRV [BGT#], 
MEMLDRV[SYNC# 1. SLFTST # [CRDY#], TEST, 
HIGHZ# [MBALE], CACHE# (NOTE: the 
FPFLDEN pin is defined for Intel486 DX CPU as 
PLOCKEN[CPLOCK#]. The 82495XP does not use 
CFO) for configuration in i860 XP CPU systems.) 

82490 pins: 

MTR4/TR8#[MSEL#], MX4/MX8#[MZBT#], 
MSTBM[MCLK], MEMLDRV[MFRZ#] PAR#, 
MOCLK, (BOFF #, HITM #) 

Intel486 DX CPU: The "unused" Intel486 DX CPU 
inputs (RDY#, BS8#, BSI6#, BOFF#) with 82495 
should be connected as described in the Intel486DX 
CPU Chipset EDS. 

The Intel486 DX CPU FLUSH # input should be tied 
up, unless the system requires FLUSH messages from 
the M-bus to be interpreted. Then the MBC must assert 
the FLUSH# inputs to both Intel486 PX CPU and 
82495, because 82495 does not do back-invalidates to 
the Intel486 DX CPU for FLUSH #. During RESET, 
the Intel486 DX CPU FLUSH# input must be kept 
high to avoid putting the CPU in tristate-output-test­
mode (Inte1486 DX CPU Data Sheet Section 8.4). 

i860 XP CPU: The i860 XP CPU input PEN# (Parity 
trap ENable) must be strapped high unless the memory 
data bus feeding the 82490s always contains good pari­
ty and the i860 XP CPU system uses 2 82490s In parity 
mode; in the latter case, strap PEN# low. HOLD 
should be strapped low and FLlNE# strapped high, as 
those features cannot be used with 82495. 

82495: The multiplexed 82495 pin FPFLDEN 
[FPFLD#] becomes an output after RESET, sO the 
PAL or ASIC which creates FPFLDEN must float it 
as soon as RESET = O. The same mUltiplexing applies 
to Intel486 DX CPU mode, where the pin is named 
PLOCKEN[CPLOCK#]. Likewise, the multiplexed 

input FLUSH # [NCPFLD #] should be driven high 
the same clock that RESET falls, to prevent an unnec­
essary 82495 .cache flush. In Inte1486 DX CPU sys­
tems, the 82495 input CACHE# must be tied low and 
HITM # [CPUTYP] must be tied LOW, as it signals 
CPUTYPE to 82495. 

82490: The 82490DX inputs HITM# and BOFF# 
must be tied high in an· Inte1486 DX CPU system, as 
they exist to support the i860 XP CPU writeback 
cache. With an i860 XP CPU, the 82490XP input 
BOFF # comes from 82495XP but HITM # from i860 
XP CPU feeds 82495XP and 82490XP. 

The 82490 input MOCLK must also be tied low or to a 
delayed version of MCLK, if clocked-M-bus mode is 
used. This is because the 82490 senses the state of 
MOCLK after RESET ends-if MOCLK stays low, 
the 82490 uses MCLK to drive MDATA. If MOCLK 
toggles after RESET, the 82490 will use MOCLK to 
switch output data. Using a delay-line externally to the 
82490 to generate MOCLK from MCLK allows the 
design a longer hold-time at other receivers of MDA­
TA in the system. For a clocked-M-bus (non- synchro­
nous to CLK), the undelayed MCLK should be con­
nected to the 82495's SNPCLK input and should be 
toggling during RESET to tell the 82495 to snoop in 
clocked mode. 

During RESET, the 82495 and 82490 will float the bi­
directional lines they share with the CPU, such as 
CDATA and A31:A3. Thus driver contention is avoid­
ed. The RESET input should be synchronous to CLK 
and deasserted to the 82495, 82490s, and CPU at the 
same time, to assure that the configuration controls get 
properly passed between them. . 

. For Intel486 DX CPU resets, refer to [82495/490DS] 
for the sequencing of HOLD, HLDA, CAHOLD, and 
RESET required to reset only the processor without 
destroying 82495 cache contents. For that purpose, a 
separate RESET line is advised for the CPU and 
82495/82490. The CPU RESET line must be wired to 
the WRMRST input of 82495, to force 82495 to assert 
the BRDYI # input to the CPU during a reset of CPU­
only (the CPU uses the BRPYI # input during RESET 
to know of the 82495's existance). The HOLD input of 
the Intel486 DX CPU and i860 XP CPU processors 
should be kept low during normal operation with the 
82495, because floating the processor outputs may yield 
undefined 82495 behavior. 

FLUSH# (and SYNC#) of caches requested by soft­
ware must be decoded from the 82495 outputs CM/ 
10#, CD/C#, and CW/R# (=001) and latched 
BE3-0# from the CPU. BE3-0# values of 0111 or 
1101 should activate the 82495 FLUSH # input, as the 
Intel486 DX CPU outputs them in response to the 
INVD and WBINVD instructions, respectively. Synch 
and flush commands may also come froin the bus as·a 

2-457 



AP·452 

message in a multiprocessor system. The 82495 is smart 
enough to allow assertion of FLUSH# or SYNC# at 
any time, and will delay the beginning of the flushing 
action until all current CPU and M-bus cycles have 
completed. The inputs are edge-sensitive. If the bus de­
fines cache flush· messages, the MBC may activate the 
Intel486 DX CPU FLUSH # input as well as the 
82495's in response to bus message decodes. 

Bus Error or Timeout Detection logic in the MBC can 
use the CPU's PCHK # output or other M-bus-specific 
signals to detect errors. Note that the assertion of 
PCHK # will occur near the time of the error on the 
M-bus ONLY for non-cacheable reads or 82495-cache­
miss reads. For 82495-hits and CPU-idle cycles, 
PCHK # may arise due to a floating or erroneous CPU 
data bus value transferred on the M-bus much earlier. 
PCHK # must be ignored by the MBC except during 
the CLK after data transfer to the CPU was signalled 
by the MBC's CPU BRDY #, because PCHK # indi­
cates i860 XP CPU bus parity status at all times, not 
just during clocks of BRDY # activation. The proces­
sor inputs INT, BERR, or NMI can be asserted by the 
MBC to signal errors. To detect errors originating in 
the CPU or 82490 upon a write(back), the MBC can 
check parity on the 82490 MDATA pins or on the M­
bus. 

If the memory bus includes a retry protocol, the MBC 
bears the responsibility to implement it, because the 
82495 will not retry accesses. For a pipelined MBC in~ 
terface when the retry occurs after CNA # to the 
82495, the MBC must latch the address and other con­
trols (CW /R #, CM/IO#, etc ... ) from the 82495 to use 
in retries. Retry should be triggered by signals other 
than the CPU PCHK # output, because the CPU data 
transfer cannot be retried although the M-bus transfer 
can. 

The 82490 can restart a burst data trarisfer (for the case 
of an error detected after the first MBRDY # but be­
fore MEOC# and before CRDY#). To restart the 
82490, the MBC must deassert MSEL# for at least 1 
MCLK. 

While parity is supported by the 82495 and 82490, 
ECC (Error Correcting Codes) cannot conveniently be 
used within the cache. ECC can be implemented on the 
memory system, but no loads are permitted on the 
CPU-to-82495/82490 interface wires for error checking 
logic. 

Scenarios requiring MBC action are 

1) CPU based requests ("Master" mode): 

• 82495 cache read miss (and line fill) 

• 82495 cache write miss 

• Non-cacheable CPU read (including i860 XP CPU 
pfld) 

• Writethrough (to S-state line) or Non-cacheable 
CPU write 

• I/O reads and writes 
• LOCKed reads and writes (will be readthrough or 
. writethrough) . 

2) 82495 based requests ("Master" mode): 

• Allocation due to write-miss (line fill) 

• Replacement writebacks 

• SNP ADS # writebacks 
3) Requests from other masters ("Slave" mode): 

• Snooping of DMA accesses 

• Snooping. of accesses of other CPU s (in a multipro-
cessor) . 

• Bus-specific requests, like interrupt messages, reset 
requests, cache flushes, configuration registers, ID 
registers, timeout detection, acknowledgements, 
TLB shootdown 

Transfer Tracking 

Tracking of transfers on the M'bus and CPUbus is re­
quired of the. MBCduring all of the above scenarios. 
This' tracking (counting) of transfers involves activating 
BRDY# the correct number of times for the CPU and 
MBRDY # (a possibly different ilUmber) for the 82495 
and 82490. Transactions on the CPUbus which must be 
MBC-controlled can be I, 2, or 4 data transfers, decod­
ed from the BLE# -latched CPU pins: 

Intel486 DX CPU: BE3-0#, PWT, PCD 
i860 XP CPU: BE7-0#, PWT, PCD, LEN, 
CACHE # . 

and from the 82495 pins CW/R#, MCACHE#, 
RDYSRC (and CLEN1:CLENO for Intel486 DX CPU 
mode). 

See [82495/490DS1 for a complete definition of the en­
codings. The BRDY # activations must be done only if 
RDYSRC= 1, and always correspond to the first 1,2, 
or 4 MBRDY#s for the 82490-M-bus interface: The 
number of MBRDY#s always exceeds or is equal to 
the number ofBRDY#s, even for a 128-bit M-bus. 

Bursts for line fills and writebacks on the CPUbus al­
ways are 4 transfers, but with some 82495 configura­
tions the M -bus is 8 transfers. The addresses are nonse­
quential when the first access is not at the zeroth word 
of the line. The' addresses corresponding to each 
BRDY # and MBRDY # follow these rules: 

1) CPU burst addresses wrap at CPU line length. 

2) When the line address is odd (A2 = 1 for 4-byte bus; 
A3 = 1 for 8-byte bus; A4= 1 for 16-byte M-bus), the 
next address transferred on CDATA and MDATA 
is the LOWER address (eg., 3 followed by 2). The 
odd-first-then-even pattern continues for all transfers 
of the burst. This order optimizes interleaved 
DRAM systems, and applies to both the M-bus and 
CPUbus. 

2-458 



int:eL AP-452 

3) 82490 bursts on CDATA wrap at CPU line length. 
82490 MDAT A burst addresses wrap at 82490 line 
length. For example, a linefill with LR = 4 and a first 
Intel486 DX CPU address (A5:A2) = E, 

• 82490 CDATA ordering is E F C D 

• 82490 MDATA ordering is CDEF 89AB 4567 0123 
(128-bit M-bus) OR EF CD AD 89 67 45 23 01 (64-
bit M-bus) 

For LR = 2 (Line Ratio of 82495 to CPU) and CPUbus width = M-bus, below are the burst orders. Each address 
corresponds to one 4-byte transfer (for Intel486 DX CPUs) or 8-bytes (for i860 XP CPU). Time is increasing left-to­
right: 

First Address: 0 
CPU transfers: 0 1 2 3 
M-bus transfers: 0 1 2 3 4 5 6 7 

First Address: 2 
CPU transfers: 2 3 0 1 
M-bus transfers: 2 3 0 1 6 7 4 5 

First Address: 4 
CPU transfers: 4 5 6 7 
M-bus transfers: 4 5 6 7 0 1 2 3 

First Address: 6 
CPU transfers: 6 7 4 5 
M-bus transfers: 6 7 4 5 2 3 0 1 

First Address: 1 
1 032 

10325476 

First Address: 3 
321 0 

32107654 

First Address: 5 
5 4 7 6 
54761032 

First Address: 7 
7 654 
76543210 

For LR=2 and M-bus = 2*CPUbus width (both buses using 4 transfers), 
First Address: 0 First Address: 1 

1 032 CPU transfers: 0 1 2 3 
M-bus transfers: 01 23 45 67 

First Address: 2 
CPU transfers: 2 3 0 1 
M-bus transfers: 23 01 67 45 

First Address: 4 
CPU transfers: 4 5 6 7 
M-bus transfers: 45 67 01 23 

First Address: 6 
CPU transfers: 6 7 4 5 
M-bus Transfers: 67 45 23 01 

The remaining transfer orderings for other LR values 
can be generated similarly, as an exercise for the reader. 

For requests originated by the 82495, the MBC must 
ignore the CPU pins (CACHE#, LEN, PWT, PCD, 
PCYC, CTYP, and BE7#-BEO#). These requests are 
writebacks, allocations, or linefills. Also the MBC must 
prevent the transfer of those signals to the M-bus for 
82495 requests-for example, it must force all BE7 # -
BEO# active during writebacks. The 82495 based re­
quests can be recognized by: 

RDYSRC=O .AND. MCACHE# =0 (for write­
backs, linefills, allocations) 

RDYSRC=O .AND. MCACHE# =0 .AND. 
MKEN# =0 (for linefills, allocations) 

01 23 45 67 

First Address: 3 
321 0 
23 01 67 45 

First Address: 5 
5 4 7 6 
45 67 01 23 

First Address: 7 
7654 
67 45 23 01 

For posted write requests (RDYSRC = 0 and 
MCACHE# = I), the length is I, 2, or 4 transfers and 
the MBC must heed the BLE#-latched BE7-0#, 
LEN, and CACHE # . 

Clock Boundaries and Synchronization 
To optimize performance, the 82495/82490 allow to­
tal/decoupling of the CPU clock at 50 MHz from the 
M-bus clock. While both the CPU and M-bus could 
run at 50 MHz, the physical size of the M-bus would be 
severely constrained. Future faster versions of CPU and 
82495/82490 would make a synchronous M-bus even 
less feasible. However, with a 100% synchronous inter-

2-459 



inteL AP-452 

face, little time is lost in relaying requests from the 
82495 CADS# to the M-bu~, and in transfering data 
from the M~bus to the CPUbus. ' 

Yet with careful design, a slower M-bus such as 
33 MHz can handshake with a 50 MHz 82495 with 
only a couple of clocks spent on synchronizing. Fur­
thermore, the transfers requiring synchronizing are 
fairly rare uncached cycles, cache misses, and snooping. 
CPU performance is improved further because 
82495/82490 always post writes destined for the 
M-bus, allowing the CPU to continue processing upon 
write cache-misses and non-cacheable writes. 

Most of the 82495 operates on the CPU CLK. Only the 
snooping control inputs operate on another clock, 
called SNPCLK (SNPSTB#, SNPINV, SNPNCA). 
SNPCLK can be the same as, the MCLK controlling 
82490 MDATA. A SNPCLK can be used with 82495, 
even if the 82490 is strobed without an MCLK. All 
82495 outputs, including snooping results (MHITM #, 
MTHIT#, SNPCYC#, and SNPBSY#) remain on 
the CPU CLK. 

The 82490 operates half in the CPU CLK domain and 
half in the M -bus domain. While no control signals flow 
through 82490 between memory and the CPU, 82490 
implements a flow-through data connection of CDA­
TA to MDATA. Synchronization of the 2 DATA 
paths is unneeded, as the control signal MBRDY # gets 
synched by the MBC to the CPU clocked BRDY #. 
The MBRDY # and BRDY #, inputs control multiplex­
ers inside 82490 to choose which part of a line-fill or 
write is transferred to/from the bus. The MDATA in­
put latches are closed on MCLK (or MISTB for non­
clocked operation), and CDATA input latches are 
closed with CLK. 

If MCLK = CLK at 50 MHz, approximately 1.5 CLK 
periods are required to transfer data through the 82490, 
including 82490 propogation delay (15 ns) and setup 
time to both the 82490 (5 ns) and CPU (7 ns for i860 
XP CPU "CMOS" levels). The MBC must assure data 
setup time at the CPU DO-D31 (D63) pins to the ris­
ing edge of CLK for the cycle of BRDY # assertion 
during reads, based on the propogation delay from 
MDATA to CDATA listed in the 82490 AC timing 
specs. Writes are not flow-through, as 82490 always 
buffers the write-data and later 82495 gives CDTS# for 
the 'write. 

Most of the MBC-to-82490 signals are sampled by 
82490 with MCLK, except for BRDY # and CRDY #: 

MBC-
MClK 

MBRDY# 
MFRl# 
MZBT# 
MDATA 
MSEL# 
MEOC# 

82490 Signals 
ClK 

BRDY# 
CRDY# 

CDATA 

MDOE# (asynchronous to both clocks) 

The MBC must be partitioned into an MCLK side and 
a CLK side. Fortunately, the CPU-side of MBC passes 
only a few signals to the MCLK side, and visa versa. 
The signals listed below from the dual-i860 XP CPU 
MBC design in Appendix C must go through a syn­
chronizer. Refer to the Appendix for signal definitions. 
In the following diagram, a right-arrow ( ~ ) identi­
fies synchronizing to CLK, while a left-arrow (~) 
means synchronizers on MCLK: 

Clock Domain of the Signal: 
MCLK or SNPClK 
MRESET 
YBGT# 
YMEOC# 
YCEOC# 
MBFiDY# 
MSWEND# 
MADS# 

Neither ClK 
~ RESET 
~ BGT# 
~ CRDY# 
~ 

~ 

~MSWENDA~ 

~ 

BRDY # _maybe 
BRDY # _maybe 
SWEND# 
CADS# .or. SNPADS# .or. CDTS# 

The signals MKWEND# and MNA# might also need synchronizing to CLK, if they are derived from M-bus 
responses. 

2-460 



AP-452 

Two TI 74AS4374 "Dual-Rank Synchronizer" chips 
(Figure 7) are used to transfer critical signals between 
clock domains, while avoiding metastability. This 20-
pin DIP has one clock input and 8 pairs of flip-flops. 
Thus each of the 8 "Q" outputs reflects the value of its 
"D" input after 2 clock periods. One chip is clocked by 
CLK and the other by MCLK. If fewer than 8 signals 
need synchronizing, chips such as the Signetics 
74F50728 or Intel's 85C220 EPLD can combine syn­
chronization with other functions [Ham90]. 

For an asynchronous or strobed memory bus, M-bus 
signals (such as MBRDY #) get delayed by the syn­
chronizer for 2 CLK periods before the 82495 can see 
them. For a clocked (but not by CLK) M-bus, 82495 
outputs (such as CADS#) get delayed by 2 MCLKs by 
the other synchronizer before the M-bus sees them. 

The following 82495 signals are defined as "asynchro­
nous", meaning that no external synchronizer is re­
quired: 

o FLUSH#, SYNC# 

" MALE, MBALE 

o MAOE#, MBAOE# 

Many signals can cross clock boundaries without syn­
chronizing, because they· will be ignored until corre-

x 

1D 

2D 

CLK -0------' 

CLK 

D 

x 

Q 

sponding status signals such as SWEND # and 
CADS # have been synchronized by the MBC. Thus 
they will be stable when sampled: 

• MWB/WT#, DRCTM#, MTHIT#, MHITM# 
(sampled when SWEND#) 

o RDYSRC, KLOCK #, CPLOCK #, CW /R #, 
CD/C#, CM/IO#, MCACHE#, BE7:# (sampled 
when CADS#) 

Other signals do not cross clock boundaries, but remain 
within the MBC CLK logic: 

o CNA#, PALLC#, CACHE#, LEN, PCD, PWT, 
CTYP, PCYC, MFRZ# ... 

Synchronizer Delays 

To avoid lost time due to synchronizer delays, the fol­
lowing options exist: 

1. Pipeline the 8249S/MBC interface. This hides the 
delay in synchronizing CADS# to its MCLK coun­
terpart MADS # . 

2. Define the M-bus protocol so that MBRDY # pre­
cedes MDATA by 1 MCLK for reads. Thus the 2 
CLK delay in creating BRDY # from MBRDY # is 
hidden. Likewise define MSWEND # to precede 

10 

- (1/401 a 74AS4374) 

20 

240957-7. 

Figure 7. Synchronizer Hardware and Waveforms 

2-461 



int:eL AP-452 

MHITM #. and MTHIT # by a CLK, by generating 
MSWEND# from SNPCYC#. 

3. Keep the snooping signals (SWEND#, MHITM#, 
MTHIT#, SNPINV, SNPCYC#) which flow be­
tween 82495s on the same CLK, so that no synchro­
nizers enter the snoop path. This is feasible only for a 
small number of physically proximate CPUs. 

4. Synchronize the snooping feedback signals from the 
M-bus (MSWEND#, etc ... ) only at the destination. 
They will be asynchronous to MCLK; transitioning 
with the individual CLK of their source. 

5. Avoid MCLK, using a strobed-only M-bus. Strobed 
buses appear in single-CPU systems with an un­
clocked DRAM interface. 

6. Activate MEOC# to 82490 as soon as possible after 
the last MBRDY#. MEOC# allows 82490 to begin 
the next data transfer without waiting for CRDY# 
synchronization. 

BRDY # Generation 

Below are .recommended sequences of the 82490 and 
CPU burst-transfer "Readys" for CPU reads, assuming 
the bus widths are equal. Sequences with more clocks of 
delay are acceptable but .suboptimal. 

1) Synchronous M-bus (MCLK = CLK): MBRDY# 
precedes BRDY # by 1 or 2 CLKs, to allow propo­
gation time for data through the 82490 and setup 
time at the CPU pins. 

2) "Divided Synchronous" M-bus (e.g., CLK = 50 
MHz, MCLK = 25 MHz, skew controlled): 
MBRDY # precedes BRDY # by 1 or 2 CLKs. The 
BRDY # state machine must ignore MBRDY # in 
the CLK period after it was sampled active. 

3) Other Clocked M-bus (MCLK < CLK): 
MBRDY # must go through a dual-rank synchroni­
zer latch (such as the TI 74AS4374) clocked by 
CLK to produce BRDY #. That means 2 CLK de­
lays between MBRDY# and BRDY#. MBRDY# 
MUST remain active for at least 1 eLK period to 
assure that the synchronizer latched it active. To 
avoid one MBRDY # getting wrongly sampled ac­
tive twice, the BRDY # state machine should ignore 
any second MBRDY # in the CLK period after it 
was sampled active. 

4} StrC)bed M-bus: here MISTB# must go through the 
synchronizer with 2 CLK delays to create BRDY #. 
An edge-sensitive strobed M-bus avoids the problem 
of wrongly converting one M-bus transfer to 2 
BRDY#s, as a level-change marks each M-bus 
transfer. 

When M-bus width is greater than CPUbus width, the 
above rule holds only for the first BRDY # . Successive 
BRDY # activations follow the rules below: 

oM-bus = 2*CPUbus: 2 BRDY #s occur for each of 
the first 2 MBRDY#s. The second BRDY# should 
occur I CLK after the first. The third BRDY # can­
not begin until after the second MBRDY #. 

oM-bus = 4*CPUbus: 4 BRDY#s occur for the 
MBRDY #. The last 3 BRDY #s can occur immedi­
ately in the 3 CLKs after the first BRDY #. 

For asynchronous systems (MCLK < CLK), high per­
formance design choices are: 

M-bus width = 2 * CPUbus width OR 
M-bus width = 4 * CPUbus width 

The wider M-bus allows each M-bus transfer to satisfy 
2 or 4 CPU transfers, so that the CPU is not starved for 
data during a line fill. The 82490 switches its CDATA 
outputs to the next value the CLK after BRDY # asser­
tion by the MBC for the current value, so the MBC 
controls the provision of data to the CPU on Iinefills. 

A low-cost MBC can use M-bus width = CPUbus with 
a slower MCLK, by converting the first MBRDY # to 
BRDY# through a synchronizer. The last 3 BRDY#s 
can be asserted by MBC after completion of all the M­
bus transfers. That will allow the CPU to proceed exe­
cuting after receiving the first datum, which is the one 
it was waiting for in most cases. Alternatively, the M­
bus protocol can be defined so that no idle clocks occur 
on M-bus after the first MBRDY# and the MBC 
knows by counting CLKs when to assert successive 
BRDY#s. 

Shown in the following timing diagrams are data trans­
fers on both buses for CPU reads. Although they as­
sume no dead clocks (wait states) during the M-bus 
burst, dead clocks are allowable. 

Writes are not shown in the diagrams because the MBC 
never supplies the CPU BRDY#s for burst writes. 
RDYSRC = 0 for most writes, and the 82495 controls 
the CPUbus transfers. The exception to this rule is 1/0 
writes, which 82495 does not post; for I/O writes, the 
MBC supplies BRDY # to the CPU, but 1/0 accesses 
are always I non-bursting transfer. 

2-462 



AP-452 

ClK 

CDATA 

BRDY# 

MDATA 

MBRDY# 

240957-8 

Figure 8. Data Transfers, M-bus Width = CPUbus Width. MClK = ClK 

CLK 

CDATA 

8RDY# II 
MDATA 

M8ROY# 

MCLK 
240957-9 

Figure 9. Data Transfers, M-bus Width = CPU bus Width. ClK/2 < MClK < ClK. 
Note the starvation on the CPUbus (extra wait state) 

eLK 

COATA 

8ROY# 

MOATA 

M8RDY# 

MCLK 
240957-10 

Figure 10. Data Transfers, M-bus Width = 2*CPUbus. ClK/2 < MClK < ClK 

ClK 

COATA 

8ROY# 

MOATA 

M8ROY# 

MCLK 
240957-11 

Figure 11. Data Transfers, M-bus Width = 4 '~PUbus 

2-463 



in1'el .. AP-452 

Pipelining 

Pipelining the MBC-to-S2495 interface reduces latency 
by allowing the MBC to arbitrate for the next M-bus 
transaction while the first is proceeding. If the M-bus is 
also pipelined, it allows the snoop for the next to begin 
during the data transfer for the first. 

Signals used in pipelining the 82495 are CNA #, 
BGT#, MALE, KWEND#, SWEND#, and 
CDTS#. The 82495 will not listen to CNA# until the 
clock ofBGT# activation. Also, KWEND# activation 
sometimes allows the 82495 to create a next cycle, such 
as an allocation after a write miss. MALE deassertion 
allows the memory address to remain at the value for a 
previous request, even though the next request CADS # 
and other control signals have already occurred in re­
sponse to CNA #. The MBC must latch the 82495 out-

, put signals which change in response to CNA #, until 
their status no longer matters to ongoing cycles. 

Note that 82495 and 82490 automatically pipeline the 
CPUbus interface to i860 XP CPU by activating NA # 
and latching address and data. 

Pipelining the M-bus itself involves sending a next ad­
dress for snooping and DRAM access while data trans­
fer from the current address still remains incomplete. 
This increases bandwidth by overlapping slow DRAM 

MCLK 

MDATA 

MBRDY# 

MADDRESS 

MADS# 

access with bus data and address transfers, as in the' 
i860 XP CPU pipelined bus. 

While each 82495 allows only a one-stage deep pipeline, 
the M-bus can have a deeper pipe as requests from sev­
eral different 82495s can be in progress. The number of 
'stages in the M-bus pipe should match memory access 
latency. For example, use 3 stages for a 240 ns mem­
ory with a 120 ns bus MADS#-to-MNA# (and 
SWEND#) time, so that a second and third request get 
issued during the memory latency of the first. Pipelin­
ing does not imply that multiple snoops are ongoirig 
waiting for SWEND#; that is a split-transaction bus, 
defined in a later section. Thus a quick SWEND# 
turnaround time speeds a new request onto the M-bus. 

The advantage of a pipelined bus using a 4-transfer 
burst is illustrated in Figures 12 and 13. Assumed is a 
fast memory access time of 4 MCLKs. With a slower 
a"cess time, pipelining becomes more important for 
maintaining data bus bandwidth; even with the 
4-MCLK access, the unpipelined data bus is idle 50% 
of the time. 

M-bus Arbitration 

If the M-bus possesses more than one master, each 
MBC must arbitrate to gain control of the M-bus when-

240957-12 

Figure 12. Data Transfers for Non-Plpelined M-bus. Note low MDATA Bandwidth. 

240957-13 

Figure 13. Data Transfers for Pipelined M-bus 

2-464 



Intel. AP-452 

ever its 82495 activates CADS #. No arbitration logic is 
included in 82495 nor 82490, except for the ability to 
float. (Hi-Impedance) the 82495 and 82490 M-bus out­
puts via the MAOE# and MDOE# signals. The 
BGT# and MAOE# inputs to 82495 are from MBC 
arbitration logic. The simplest systems can use a 
HOLD/HLDA/BREQ protocol like the i860 XP CPU 
and Intel486 DX CPUs themselves, which is central­
ized arbitration. 

Expandible buses like Futurebus+ and Multibus-II use 
distributed arbitration to allow a variable number of 
masters. Bus parking (retaining ownership of the M-bus 
until another master requests it) is advised to avoid un­
necessary delay. 

The "restricted backoff protocol" of 82495 requires 
that it be granted the bus for a modified-line writeback 
after it activates MHITM #, before it will snoop or ini­
tiate any other transactions. The snooping MBC must 
relinquish the M-bus immediately after the CRDY # of 
the M-line writeback so that the original owner can 
complete its work. 

Sequencing 

A typical sequence of request and response signals be­
tween the 82495 and MBC is shown in Figure 14. The 
"SL" entities (CPUSL, 82495SL, 82490SL, MBCSL) are 
for another CPU/Cache core, the SLave(s) who snoop 
when the master CPU owns the bus. No DMA (such as 
EISA or MCA) interaction is shown, but it will be simi­
lar to the CPU responses, except that no writeback will 
be done by DMA. Time increases downward. A minus­
sign prefix means deassertion. 

The arbitration for the M-bus shown in the diagram 
assumes a HOLD/HLDA protocol like the CPUs use. 
That is a primitive centralized scheme, suitable only for 
a small number of processors. 

The sequencing may vary from that shown; for exam­
ple, MSEL# may precede CDTS#. MADS#, 
MW/R#, MA31:3, MM/IO#, MD/C#, and 
MBE7-0# would all be valid simultaneously. The sig­
nals in parentheses would be asserted only in the case of 
a M-line hit in the snooper, and some signals for that 
writeback and possible cache-to-cache transfer are not 
shown. 

2-465 



int'eL AP·452 

CPU 82490 82495 MBC M-BUS 82495SL 82490SL CPUSL 

- - -CLK- -CLKsL- - -- • • MCLK . • -
ADS# > 

CADS# > 
MBREQ > 

MHOLD > -MAOE# > 

< MHLDA 
< -MHOLD 

CPU 82490 82495 MBC M-BUS 82495SL 82490SL CPUSL 

< MAOE# 

< MALE MADS# > > 

MA31:3 > > > 

MW/R#,etc> > SNPSTB# > 

SNPINV# > 
<MKEN# MRO# 

< KWEND# 

< BGT# CNA#' 

<SNPBSY#' 
CDTS#" > 

< MSEL#', MDOE# 
<SNPCYC# 

< < MHITM# 

< MWB/WT# < < MTHIT# 

DRCTM#' 

CPU 82490 82495 MBC M-BUS 82495SL 82490SL CPUSL 

•• < (-MAOE#) < < (MADS#) < (SNPADS#) .. 
•• < (-MDOE#) (MSEL#) .. 
•• (MBRDY#) > > .. 

< < MBRDY# 

< SWEND# < MSWEND#' 

< < < BRDY# 

< MEOC# 

< < CRDY# 

< -MAOE# 

CPU 82490 82495 MBC M-BUS 82495SL 82490SL CPUSL 

• = Signal might occur sooner or not at all. depending on the type of request and bus protocol . 
•• = These lines of the sequence occur only on a Hit-fa-Modified (MHITM#) 

Figure 14_ MBC Signals and Protocol Layers 

2-466 

T 
I 
M 
E 

t 

240957-14 



AP-452 

Flowchart of MBC Algorithm (not applicable to all cases) 

CADS# 

! 
M-bus alroady owned by Ihis MBC ? 

Arbitrale for bus. 
YON 

~nable 824-95 to drive address to bus (MAOE#, MALE). 
Echo olhor roquesl paramelers (MW/R#, MCACHE#, elc •.• ) to Ihe bus. 

t 
Asserl BGT#. 

! 
Dolermine cacheabilily, assorl pins KIYEND#, MKEN#, MRO#. 
Lalch conlrol signals (MIY/R#, elc •.• ). 
Assorl CNA# 10 invoke noxl 824-95 request. 

! 
MHITM# from olher maslers ? 

Aborl Memory cycle. Do Cache-la-cache Iransfer. NOY 
!ail for ·CDTS# (before beginning dolo Iransfer). 

! 
Forward snoop rospon.e. 10 mosier 82495 ! using SWEND#, MWB/WT#, DRCTM#. 

Signal burst Iransfers of M-bus via MBRDY#. 
If RDYSRC = I, echo bursl Iransfer acknowledgmenls on BRDY#. 
Componsale for LR<> 1 by stopping BRDY# asserlion when CPU line fillod. 

t 
Notify 82495 and 82490 of completion of Iransfer via· MEOC# and CRDY#. 

! 
New CADS# ? 

N 

Relinquish bus ownership. 
Dea .. erl MAOE# 10 re-enable snooping by this 82495. 

2-467 

240957-25 



int:et AP-452 

Cacheability of each request must be determined by the 
MBC to prevent the 82495 and CPU from caching 
things like memory-mapped I/O device registers. The 
i860 XP CPU CPU samples its KEN# (Cache ENable) 
pin at the time of the first BRDY # for a" transfer or at 
NA #, whichever comes first. The 82495 offers more 
flexibility than the CPU cacheability indicators, by us­
ing the KWEND# (cacheability Windown END) in­
put to indicate validity of the MKEN# and MRO# 
pins. The values ofMKEN# and MRO# are based on 
address decode, either locally in the MBC or from a 
centralized decoder on the memory bus. For best per­
formance, KWEND # should come as soon as possible, 
as it allows 82495 to decide what the next CADS# 
should be-for example, to begin an allocation for a 
write miss, or to start another writethrough. 

A typical implementation would activate KWEND# 2 
clocks after CADS #, using a PLD or fast SRAM to 
decode the upper bits of the address to generate 
MKEN# and MRO#. 

Note that KWEND#, SWEND#, and BGT# need 
not be asserted by the MBC for SNP ADS # cycles 
(snoop writebacks), but it may be simpler to assert 
them always. 

Snooping 

Snoop handshaking (bus watching) is useful in a multi­
processor system, and may be needed in a uniprocessor 
system where the 82495 and CPU caches must be kept 
consistent with DMA accesses. The 82495 must snoop 
all DMA accesses to memory. The MBC sees requests 
from DMA (or other processors) on M-bus and con­
verts them to SNPSTB# activations to the 82495. The 
following scenarios. are possible: 

• DMA (or other processor) read causes 82495 
MHITM #: 82495/82490 must writeback the modi­
fied line to memory before the first DMA data 
transfer occurs (unless the DMA controller is capa­
ble of re-trying the read. If the DMA can retry, then 
the 82495 writeback must cause the initial DMA 
access to be aborted.) The MBC can assert 
SNPNCA (SNooP Non-CAcheable Access) to the 
82495 for a DMA read, so that the 82495 knows it 
can keep the block Exclusive upon a hit. 

• DMA (or other) read causes 82495 MTHIT# but 
not MHITM #: MBC must assert the "shared" 
status line of the M-bus, if the bus includes such a 
line. 

• DMA (or other) write causes 82495 MHITM#: 
82495/82490 must writeback the modified line to 
memory before the first DMA data transfer occurs. 
SNPINV should be activated to 82495 to invalidate 
the line. 

• DMA (or other) write causes 82495 MTHIT# but 
not MHITM #: SNPINV should be activated to 

82495 to invalidate the line. Note that 82495/82490 
cannot "write snarf'-they do not absorb write-data 
from the memory bus and merge it with current cached 
contents of the line. However, they can absorb a full­
line writeback from the M-bus when doing a linefill of 
the same address (see the section on Cache-to-Cache­
Transfers). 

Bus size adaptation can be done by the MBC, although 
it is not necessary in most systems. In an Intel486 DX 
CPU or i860 XP CPU system without an 82495/82490, 
an 8-bit device like a ROM can be used to contain code, 
and the CPU will automatically fetch at byte-width 
when the BS8 # (Inte1486 DX CPU) or CS8 (i860 XP 
CPU) pin is asserted. However, if a byte-wide ROM is 
used with an 82495/82490, adaptation of this byte in­
terface is required from the MBC. 

If the ROM code is to be cacheable, the MBC must 
convert the 82495 line fetches at the ROM location to 
the appropriate number of byte-wide ROM reads. 
Latching transceivers must be employed at the 82490 
MDATA inputs or at the ROM output, to assemble the 
single-byte ROM reads into 4 (or 8) bus-width-wide 
transfers to the 82490s. 

If the particular M -bus protocol requires transfer 
widths shorter than the 82490 data width used, the ad­
dress range requiring such transfers can be made non­
cacheable to force 82495 and 82490 to use the width 
given in the request from the CPU. 

Bus size adaptation would also be needed to support a 
512kB cache on a 32-bit memory bus. In that case, the 
MBC must control transceivers and MBRDY#s to in­
terface between the 64-bit 82490 MDA T A path and the 
32-bit M-bus. 

Bus Signal Levels 

Redriving 82495/82490 signals to the M-bus (such as 
MDATA, addresses, and 82495 control outputs) can 
optionally be done by the MBC. If, the M-bus signal 
levels are not TTL, like ECL or Futurebus + BTL 
(Backplane Transceiver Level), then appropriate trans­
ceivers must lie between the M-bus and 82495/82490. 
Also M-buses with heavy capacitive loads should be 
redriven by transceivers, although 82495 and 82490 can 
tolerate loads of up to 100 pF. 

An additional advantage of buffering the 82495/82490 
signals with transceivers in" a multiprocessor is that a 
"local M-bus" will exist between the chips and the 
main system M-bus. That allows some local traffic from 
the CPU module to attached peripherals to avoid tra­
versing the M-bus. Such peripherals might include an 
MPIC/CCU (MultiProcessor Interrupt Controller/ 
Concurrency Control Unit), a JTAG boundary-scan 
controller, or a time-of-day clock, as in the Sequent 
Symmetry multiprocessor. 

2-468 



AP-452 

8.0 MBC FUNCTIONS fOR 
MUL TilPROCIESSORS 

Multiprocessor cache designs have additional motiva­
tions beyond the uniprocessor goal of reducing memory 
access latency. Reducing memory bus usage is especial­
ly important because the sharing of the bus creates a 
bottleneck. Thus multi-82495 systems need to minimize 
the number of transactions and make each one as short 
as possible. Large caches (256k or 512k) are recom­
mended for multis, to keep the miss rate as low as pos­
sible. 

In addition to the uniprocessor functions, an MBC in a 
multiprocessor must handle consistency with caching 
agents other than its own 82495. The multiprocessor 
MBC may also for performance reasons implement 
snoop filtering, cache-to-cache transfers, read-for-own­
ership,. and split transactions. 

Snooping results from listeners (slaves) on the bus must 
be fed back to the master 82495 by the time SWEND# 
is activated, if the system uses writeback policy (write-

~ i 82495 ~ ~ ~ ~ > . . 
f5 t ~ ~ % 

~ ~ s: 
~ ~ ~ B1i ~ " " 

~ S Q 

R Q 

~ 
DUAL - RANK Q I 

CLK SYNCHRONIZER 
74AS-4374 0 

through requires no feedback). These results 
(DRCTM#, MWB/WT#) are translations of the 
slaves' MHITM# and MTHIT# outputs. As shown in 
Figure IS, typically all MHITM# outputs would be 
wired-or via open-collector transceivers. Because slaves 
on the bus may be busy with CPU operations and back­
invalidations, the snoop delay can vary. Thus a latched 
derivative of the SNPCYC# output of all 82495s 
would be wired-or to derive SWEND#. Alternatively, 
the MBC can count CLKs to generate SWEND#, us­
ing the worst-case upper-bound of CLKs required for 
all 82495s to snoop, but that makes all snoop windows 
long. 

Because 82495 will tolerate SWEND# arrival up until 
CRDY #, the M-bus data transfer for reads can overlap 
the snooping delay. The transfers (MBRDY#s) can oc­
cur during snoop latency, and an MHITM# activation 
would cause the MBC to restart the transfer using 
82490's MSEL# pin. 

If a 82495 linefill or writethrough hits a dirty line in 
another cache, the MBC cannot BACKOFF the 82495. 

. 
gl I 82495 

~ 
~ 

0 0 0 

CACHE TO 
CACHE 

TRANsrER 
AND 

READ FOR 
OWNERSHIP 

LOGIC 

I OPEN COLLECTOR I 
BUFFER I DUAL - RANK 7<4r07 

III SYNCHRONIZER MClK 

~r-
IAADS# 

MSWEHDA 

t.I!NHIBITN (t.lHITI.4#) 

MSHAREO# (MTHITNc) 

I.4SNPINV 

-

HAS43U 

++ -}---- ------ - ---- ------ ---- - --------- "BC 

I I 
I 1 

240957-15 

Figure 15. Creating Snoop Results from MHITM #, MTHIT #, and SNPCYC # 

2-469 



inteL AP-452 

Labeling that other cache "the dirty 82495," and the 
initiating 82495 "the master 82495". The master MBC 
must force a retry of the access after the dirty 82495 
dumps the line, but the master 82495 has no "Backoff 
and Retry" input pin.· Rather, on a linefill the master 
82495 must see the data transfer as if it had come from 
memory. On a write, the master 82495/82490 data 
write must wait until the modified line from the dirty 
82495 has been dumped to memory. To do so, the mas­
ter MBC can either: 

I) Delay the corresponding MBRDY#s to the master 
82490 until the modified line is completely written 
into memory and read out of memory. That implies 
the master MBC will remake the initial request to 
the memory controller after the writeback. 

OR 

2) Create a cache-to-cache transfer, so that the write-
. back data movements go directly into the master 
82490 over the M-bus. A later section describes 
cache-to-cache transfers. Such transfers are quicker 
than waiting for the entire modified line to be writ­
ten back to memory. 

Note that the 82490 can restart the data transfer for 
reads or writes, in the case of MHITM # activation 
after the first MBRDY# but before MEOC# and be­
fore CRDY #. To restart the 82490, the MBC must 
deassert MSEL# for at least 1 MCLK. 

Snoop Window Time (the delay from MADS# to 
SWEND#) limits address-bus bandwidth. In the inter­
val from the address on M-bus until the acknowledge­
ment (SNPCYC#) by all listeners, no more requests 
(addresses) can be on the bus. This restriction is im­
plied by: 

1) A typical M-bus has only one MSWEND# wire, 
which cannot be identified with the proper request if 
several requsts are outstanding. 

2) 82495 does not snoop between BGT# and 
SWEND#. 

3) 82495's "restricted backoff protocol". That protocol 
requires the M-line writeback to be the first transac­
tion by any 82495 which generates MHITM #, and 
82495 cannot snoop anymore until it finishes the 
MHITM # writeback. 

Data for read-misses cannot be transferred on the 
CPUbus until SWEND #, because the MBC cannot 
abort a CPU transfer after giving the first BRDY #. 
Thus the snoop window length influences CPU per­
formance. Depending on the number of processors, bus 
speed, and memory speed, two scenarios arise from 
snoop window length versus memory access latency: 

I) SWindow < Memory Latency: SWEND # precedes 
the MBRDY#s. If MHITM# occurs, the original 
memory access can be aborted and its MBRDY#s 
must be ignored. 

2) SWindow > Memory Latency: data transfer on 
M-bus can proceed, with MBRDY#s causing 82490 
linefill buffers to advance. After SWEND #, the 
MBC can begin BRDY#s to the CPU and 82490 if 
MHITM # is inactive. If MHITM # is active, the 
MBC must restart the M-bus data transfers after (or 
during) the writeback from the modified snooper, 
and can begin BRDY#s immediately after the first 
MBRDY#. 

The typical snoop window in a multiprocessor using 
the hardware of Figure 15 is about 7 CLKs total snoop 
turnaround delay, shown in Figure 16: 

CLK for propagation delay of master's 
MADS# (to slave 82495s' SNPSTB# in­
puts) 

+ 0.5 to I CLK for 82495 to internally latch 
SNPSTB # and synchronize it to CLK . 

+ I CLK for 82495 tag lookup and SNPCYC# 
(or more, if 82495 is busy with SNPBSY #) 

+ 1 CLK to latch SNPCYC# into the MBC 
Set/Reset flip-flop generating MSWEN­
DA. 

+ I CLK for MSWENDA open-collector buff­
er and settling time from all slaves. 

+ 2 CLKs for MSWENDA to get through syn­
chronizer (on the master MBC's CLK) and 
inverter to generate SWEND# to the mas­
ter 82495. 

The window total assumes that the slave 82495s' one 
CLK delay from SNPCYC# until MHITM# is con­
current with the synchronizer delay for creating 
SWEND# from MSWENDA at the master. Those 2 
CLKs can overlap with the next MADS # if it is asyn­
chronously generated from MSWENDA. Shorter 
snoop window times can be obtained using duplicate 
external tags as explained later, but this is not trivial. 

Read for Ownership (RFO) protocols decrease bus traf­
fic by avoiding the M-bus write which would occur 
upon a write-miss. That is, a write-miss would go to the 
bus, followed by a 82495 line allocation request for the 
missed area. With RFO, the MBC does not echo the 
82495 write request to the M-bus. Instead, it asserts 
MFRZ # to freeze the written data in the 82490 memo­
ry buffer, and allows the subsequent 82495 allocate line 
request to go to the bus. When the line data returns on 
the M-bus, MBC asserts DRCTM# to cause the 82495 
to mark the line as Modified (the memory system and 
other caching agents do not know of the original write 
miss, so they have invalid copies of the line). 

Signals which the MBC must use to do RFO are: 

1) PALLC# (Potential ALLoCate): from the 82495 
must be active on the write miss.lf not, RFO cannot 
be performed. 

2) MKEN # and CRDY #: must be activated by the 
MDC for the write, to trigger the 82495's subsequent 
allocation request 

2-470 



AP-452 

SNPClK 

ClK 

MADS# 
(SNPSTB#) 

SNPCYC# 

lSNPCYC# 

MSWENDA# 

SWEND# 

Slave 82495s see SNPSTB# ~ , 

10 

Master 82495 sees SWEND# 

Slave 82495s begin snoop (ClK) after internally 
synching SNPSTB 

240957-16 

Figure 16. Snoop Waveforms 

3) MFRZ#: must be activated by the MBC to the 
82490 at the time of the MEOC# and CRDY # for 
the write. 

4) INV AL (memory bus Invalidate indication): must 
be asserted by the MBC during the allocate-read to 
force all other 82495s to invalidate their now-obso­
lete copies of the line. Slave MBCs will assert 
SNPINV to 82495s. 

5) DRCTM # (DiReCt To Modified): must be asserted 
by the MBC during the SWEND# of the allocate, to 
make the 82495 put the line in M-state. 

6) MWB/WT # : must be asserted during the 
SWEND # of the allocate. 

7) CPLOCK # (82495 Psuedo Lock in Intel486 DX 
CPU systems): if active, the MBC must NOT do 
RFO, because 82495 will activate PALLC# only on 
the second of the 2 writes. If the MBC tried to RFO, 
it would merge only half of the data into the modi­
fied line. 

See [82495/490Dsl for RFO information. 

Cache·to-cache transfers (CTCT) optimize the speed of 
consistency actions in a multiprocessor. For a read line­
fill by a master causing an MHITM # from a slave, the 
writeback data movements go directly into the master 
82490 over the M-bus from the dirty 82490. For a 
write, Read-for-Ownership (RFO) is required for the 
CTCT. If RFO is not implemented, then the cache-to­
cache option can be used only on Iinefill (read) misses. 
In fact, RFO makes every write-miss into a linefill. The 
82495/82490 do CTCT only on entire lines, not bytes 
or words. 

2-471 

For CTCT on a Iinefill causing MHITM #, the MBC 
doing the writeback must initiate the writeback at the 
subline address of the initial read. Starting the write­
back from the first word of the line is NOT acceptable. 

While CTCT is faster than re-reading the line after 
waiting for the dirty writeback, the latency will be long­
er in most systems than for fetching lines from main 
memory. CTCT would actually waste time for such 
items as shared instruction pages. For non~written data, 
transferring from memory to a CPU is probably faster 
than tranferring from another cache. So 82495 supports 
only M-line CTCT (no writeback occurs unless 
MHITM#). 

Signals involved in CTCT are DRCTM#, MZBT#, 
MHITM#, MBAOE#, and MSEL#. See 
[82495/490DSl for CTCT information. 

Snoop filtering can be implemented by the MBC using 
the 82495 SMLN# (SaMe LiNe) output to reduce the 
latency for snooping. That is, SWEND# can be assert­
ed immediately ,to the requesting 82495, if the 82495 
asserts SMLN # to indicate the current request is to the 
same line as the previous request. In that 'case, other 
caches already have checked this line. SMLN # must 
be ignored if the M-bus has been used by other agents 
between the 2 82495 requests. The M-bus protocol need 
not include a "non-snooped, transfer type" for the use 
of this feature, as the MBC can simply ignore the snoop 
responses from other MBC/82495 modules. 



int'el., AP-452 

Split transaction (ST) memory-buses such as Future­
bus+ prove valuable in high performance systems. An 
ST (also called "connect/disconnect" or "packet 
switching") bus divides a single read request into a sep­
arate address-transfer phase and a data-transfer phase. 
Thus the bus iuiot monopolized during the long laten­
cy involved in· accessing data across bus hierarchies. 
Writes typically are not split, as the data and address 
are available simultaneously from the writer. In a hier­
archical bus, requests must be forwarded across bridges 
for the purposes of snooping and memory access at re­
mote nodes, and the snoop latency may be long. Thus 
the bus should be freed between initial request and 
snoop-response for use in other transactions. 

The 82495 does not support ST directly. That would 
require snooping current cache contents and queue-up 
possible writebacks, for the accesses from other bus 
agents between the time of the BGT# (the address 
phase) and SWEND# (end of the address phase or 
later). Also 82495 cannot writeback dirty data between 
SWEND# and CRDY# (end of the data phase) of an 
ongoing cycle; it cannot suspend a transfer for later 
resumption after a snoop writeback. 

CADS# BOT# SWEND# CRDY# 

�r---------~INNNNNNNNNNNIDDDDDDDDDDDI 

NN = No snooping by 82495 will occur in this area 

DO = Delayed response by 82495 to snoop requests 
here. MTHIT# and MHITM# asserted immedi­
ately, but writeback of dirty data delayed until af­
ter CRDY # for ongoing cycle. 

82495's inability to snoop during the NN period comes 
from the need to keep 2 addresses into the tags active­
one for the outstanding 82495 request, whose tag must 
be updated at SWEND# based on MWB/WT# and 
DRCTM #, and one for the snoop inquiry. Further­
more, any MHITM# on the M-bus could not be easily 
linked to the request causing the snoop if 2 snoops are 
outstanding. 

To support split transactions by snooping between 
BGT # and SWEND #, a set of tags external to the 
82495 can be implemented in the MBC. Those tags 
would replicate the contents· of the 82495 internal tags, -
listening to all memory bus requests and responding 
with snoop results. Only when a 82495 state change (to 
I or S) is needed will the 82495 be informed of snooping 
action-only then will the external tags relay the snoop 
request to it. 

Duplicate tags provide quicker snoop turnaround be­
cause no SNPCLK-to-CLK synchronization is re-

quired; the duplicate tags are in the SNPCLK/MCLK 
logic. While they are a high-performance option, they 
are costly and complex. 

Memory cycle abort is required in multiprocessors 
when a snooping 82495 activates MHITM # to signal 
that the memory's copy of the data requested by anoth­
er 82495 is obsolete. As explained above, the memory 
read or write must be INHIBITED until the writeback 
is done. Depending on implementation, the original ac­
cess may need to be retried or abandoned. If CTCT and 
RFO are implemented, then abandonment is probably 
adequate. Alt.hough the complexity of aborting could 
be avoided by delaying all memory action until 
SWEND # , that would decrease performance. An 
M-bus signal such as "SIV" (System InterVene) or 
"MBOFF#" (M-bus Back OFF) allows the MBC of 
the snooper to tell memory to abort. 

If the M-bus is pipelined, there may be constraints on 
when the MBC can assert the "abort" signal to avoid 
cancelling the access in progress for the transfer preced­
ing the one causing MHITM # . 

Locking 

Locking of the M-bus' using the 82495's KLOCK# 
output is required to ensure atomic accesses for CPU 
locks. For example, memory variables called sema­
phores in a multitasking airline-reservation system pre­
vent two processes from trying to update the same list 
of flight reservations simultaneously. A task would read 
the value of the semaphore in an uninterrupted read­
modify-write (RMW) sequence, asserting the CPU's 
LOCK # signal during the RMW to block interruptsl 
(and block locked accesses by other processors to the 
same semaphore in a multiprocessor). If interrupts or 
other accesses were allowed during the sequence, two 
processes (or processors) might both read the sema­
phore as "available" (zero) and both assume ownership, 
setting it to "unavailable" (nonzero). Then both might 
find the same empty seat and write their individual pas­
senger's name in the same seat location. In the end, 101 
passengers would have tickets for a 100-seat plane 
flight. 

The 82495 and i860 XP CPU implement locks in a 
sequentially consistent, or serializing, manner. That is, 
all data loads and stores within the locked sequence 
occur on the external bus in. the same. order as they 
appear in the program. Also, all accesses in the pro­
gram before the LOCK instruction are completed be­
fore the first locked read or write, and all the locked 
reads/writes complete before other accesses after the 
locked sequence. This sequentiality is required by the 
semaphore example above, to prevent the CPU from 
updating the reservation list before it has obtained own­
ership using the semaphore. 

'The CPU automatically blocks interrupts during the LOCKed sequence. The bus arbiter is responsible for blocking other accesses. 

2-472 



AP-452 

The MBC must serialize by ensuring all back-invali­
dates from 82495 to the CPU have completed before 
activating BRDY # for any locked read or write. So the 
MBC must postpone locked BRDY#s until CAHOLD 
is' inactive and SNPCYC# has been inactive at least 2 
CLKs (refer to [82495/490DS] section 5.1.1). 

Bus Lock vs. Address Lock 

The 82495 echoes the CPU's LOCK # signal onto its 
KLOCK# output, and forces all CPU accesses to go to 
the M-bus, even if they are 82495 cache hits. That guar­
antees that other processors know of the LOCK and 
the accesses. The 82495 assumes a BUS LOCK, where 
all other processors are kept off the bus during 
KLOCK # activation. Most existing "standard" buses, 
such as Multibus-lI, have lock protocols which do such 
an exclusive lock. 82495 snoop behavior during asser­
tion of its own KLOCK # is undefined, since it expects 
no other requests will be permitted then. The 82495's 
KLOCK # can remain asserted for multiple cycles 
when used with the i860 XP CPU, because the proces­
sor allows up to 32 instructions inside a LOCKed se­
quence. 

The 32-instruction i860 XP CPU LOCKed intervals 
may exceed 32 CLKs, as each instruction could take 
several clocks and cause a TLB miss (the intervals 
would be even longer if the i860 XP CPU did data 
cache line fills and line writebacks during LOCK #, but 
the 82495 prevents that by making KEN# = 1). Unfor­
tunately, this limits bus concurrency. When several 
82495s share a bus or interconnection network, per­
formance would improve if a LOCK # from one proc­
essor did not block all others from accessing memory 
and I/O. Multiprocessors based on the Intel486 DX 
CPU are not affected as severely by LOCK #, because 
its lock endures only a few clocks-two memory ac­
cesses at most. 

To improve performance of locks in a multiprocessor, a 
scheme of ADDRESS LOCKING may be implement­
ed. This non-blocking protocol allows other accesses to 
the bus and memory in spite of LOCK # activation, 
and requires only that no other CPU tries to access the 
same LOCKed address. If another CPU does try to 
access the same location, that second CPU must be 
stalled until the first LOCK is de-asserted. To ensure 
that the secorid CPU continues to snoop accesses while 
stalled, BGT # to it for its request must be delayed 
until the lock is obtained, as signalled by the bus arbi­
ter. Semaphore integrity is preserved if all CPUs follow 
the software convention of locking their RMW (Read­
Modify-Write) semaphore accesses. Also by conven­
tion, the address corresponding to the first access with 

LOCK # asserted is the only locked location permitted 
to that processor, until LOCK # deasserts (refer to the 
i860 Microprocessor Family Programmer's Reference 
Manual Intel order #240875, Section 5-14). 

Would software want to be able to cache lockable loca­
tions? Since they are used for interprocessor or inter­
process communication, it might seem dangerous to 
keep them "hidden" in a cache. However, caching al­
lows a CPU to read a semaphore repeatedly without 
generating bus traffic, waiting until the semaphore is 
free as indicated by a zero value. These reads can be 
done in non-locked fashion. If a copy of the semaphore 
is cached, no bus traffic is used for the reads, and the 
semaphore value still gets updated via the normal 
MESI consistency hardware when the semaphore's 
owner writes it with a new value. 

KLOCK# de-assertion for back-to-back Intel486 DX 
CPU locked accesses is required of the MBC if it uses 
address-based locking, so that the lock-manager knows 
the correct address. The i860 XP CPU always deacti­
vates LOCK # for at least one clock between separate 
locked regions, by virtue of its deactivation in the clock 
after the last locked ADS#. However, the Intel486 DX 
CPU deactivates LOCK # only in the clock after the 
last BRDY # of the last locked access. Thus LOCK # 
and KLOCK# may not deactivate when two XCHG 
instructions occur in succession. The MBC can insert a 
deactivation of the M-bus MLOCK # signal by know­
ing all Intel486 DX CPU locked accesses are Read­
Modify-Write sequences. The MBC should deassert 
MLOCK # regardless of KLOCK # 's value, after the 
write. 

Deassertion of KLOCK # by the MBC hardware may 
be required in any Intel486 DX CPU system, to avoid 
bus timeout and starvation of other bus masters when a 
continuous stream of locked accesses occurs in one 
processor's program. Without it, one processor could 
monopolize the bus and prevent re-arbitration. 

CPLOCK# 

CPLOCK # has a purpose similar to KLOCK # in 
Intel486 DX CPU systems, but is unused in i860 XP 
CPU systems. PLOCK# (Psuedo-LOCK) indicates an 
atomic 8-byte 2-transfer write fot' floating-point data 
which should not be interrupted. TheA-byte bus of the 
Intel486 DX CPU requires 2 transfers for an 8-byte 
datum, and if only half the transfer gets done before 
another bus master reads memory, half-wrong data 
could be read. 

2-473 



AP-452 

Thus the MBC should not relinquish the bus nor; re­
quire snoops of its 82495 from the time of the BGT# 
for the first write (when CPLOCK# was asserted by 
82495) through the BGT # of the second write. This 
increases the worst-case delay of writeback for a 82495-
snoop-hit to a modified line; to avoid the delay, the 
MBC can tie the CPLOCK # [PLOCKENj pin low to 
disable PLOCK functionality. 

9.0 MORE ALTERNATIVES 

In addition to the options discussed above, several oth­
er choices affect Memory Bus Controller design. 

M-bus· clocking should be chosen to allow future ver­
sions of 82495 and 82490 at higher clock speeds. Up­
grading the CPU module performance by replacing the 
processor and 82495/82490 wiU be possible. While 
some redesign of the CPU-side MBC state machines 
may be needed for faster clocks, the memory bus. can 
remain the same. Thus an asynchronous interface with 
either a strobed unclocked M-bus or a clocked M-bus at 
less than 50 MHz is advised. A fully synchronous 
M-bus/CPU MBC would be difficult to move to higher 
clock speed. 

One convenient way to design the MBC is with the 
M-bus MCLK = 0.5·CLK. Probably it will be possi­
ble to keep the M-bus at half the CPU CLK rate, even 
with faster CPUs. The big advantage of this half-speed 
link is that no synchronizers are needed within the 
MBC if the MCLK and CLK edges are skew-con­
trolled. The MBC can be totally on CLK, as in the 
design example of Appendix B. 

The choice between a Strobed or Clocked M-bus is of­
ten determined by existing bus protocols in which 
82495/82490 will be used. Most existing buses are 
clocked; however, Futurebus + requires all bus entities 
to use strobed tranfers, but allows an optional' clocked 
mode for high-speed packet transfers [Fbus90j. The 
tradeoffs are shown in Table 2. 

Line size and M-bus width also determine upgradabil­
ity to possible future versions of 82490 on the same 
M-bus, with more than 32kB per chip. If a higher-den­
sity. 82490 becomes available, the fact that 82495 has 8k 
tags requires: 

128 data bytes per tag (128 byte line, or sectored 
64-byte lines) 

AND 
8-byte or 16-byte memory bus width 

to allow a 1 MByte or 2 MByte 82490 configuration. If 
a smaller bus is used, a larger 82490 is possible, but 
the bus-size multiplexing described earlier would be 
needed. 

Writeback (WB) cache.policy is advised for high-per­
formance (multi)processors to limit bus traffic. Howev­
er, a writethru (WT) design is simpler for the MBC 
because there never is a need to backoff the 82495 due 
to MHITM #. In fact, the snoop window in a WT sys­
tem becomes unnecessary and SWEND# can be acti­
vated simultaneous with KWEND#. In such a system, 
the only states of cache lines are S or I. Snooping has 
no effect during reads and only causes invalidations (in 
the slaves) for writes in a WT design. Cache-to-cache 
transfers and RFO are irrelevant. 

Table 2. Clocked vs. Strobed MBUS Tradeoffs 

CLOCKED MBUS Advantages 

Design techniques for clocked systems are well 
known. 
Fast arbitration using MCLK state machines. 

Burst transfers proceed at one datum per M,CLK 

CLOCKED MBUS Disadvantages 

Must round-up delays toMCLK period quanta EG., 
, 33 ns delay means two 30 ns MCLKs needed. 
Some 82495-to-82495 Signals must be twice 
synchronized: once at sender, once at receiver. 
Backplane length limited. 

MCLK skew must be controlled. 
Requires assumptions on CLK vS.MCLK speed 
ratio: for example, CLK > MCLK > CLK/2. 

STROBED MBUS Disadvantages 

MBC design may require delay lines and non­
conventional design techniques. 
Arbitration slow because signal must be 
synchronized at arbiter and at modules. 
Burst throughput slowed if each transfer requires 
acknowledgement from receiver. 

STROBED MBUS Advantages 

Delays determined by device speed and physics, 
not by MCLK quanta. 
Each signal goes through sychronizer once, only at 
receiver, so less time is lost at synchronizers. 
Fewer limits on backplane length or capacitance 
or number of boards. 
No clock skew worries. 
Any CLK frequency will work. 

2-474 



AP-452 

10.0 llilli3C DifFERENCES fOR i860 
}(P CPU VERSUS Intel486 me 
CPU 

The same MBC design can be used for either i860 XP 
CPU or Intel486 DX CPU if the MBC supersets the 
requirements of the two. A "CPU_TYPE" configura­
tion pin can be included in the MBC to modify its be­
havior. First, make the features as common as possible: 

o Choose a configuration acceptable for both CPUs: 

a) 256 kBytes, 4 transfers/line, 64-bit M-bus, 32-byte 
line. 

b) 512 kBytes, 4 transfers/line, 128-bit M-bus, 
64-byte line. 

c) 256 kBytes, 8 transfers/line, 64-bit M-bus, 64-byte 
line. 

d) 512 kBytes, 8 transfers/line, 128-bit M'bus, 
128-byte line. 

o i860 XP CPU-pfld data is cached in 82490--no opti­
mizations are included for pfld. 

o Assume that LOCK # duration does not matter (IE, 
that back-to-back LOCK#ed requests from 
Intel486 DX CPUs and long LOCK# cycles in i860 
XP CPU do not cause bus ownership timeout). 

Features Strictly for the Intel4!16 DX CPU: 

o BE7-4# for M-bus must be synthesized by the 
MBC from A2 and BE3-0#. 

o CPLOCK # protection. 

o WRMRST (warm reset) can be included for both 
CPUs, but is optional. . 

Features Strictly for the i!I60 XP CPU: 

o Burst writes from the CPU (Length = 2 and 
Length=4). 

o A second 74F377 BE#-latch is needed, for i860 XP 
CPU pins BE7#-BE44f, LEN, and CACHE#. 
PCYC and CTYP can also be latched for debug pur­
poses. 

o PCHK # output from i860 XP CPU must be ig­
nored except during the CLK after BRDY # comes 
from the MBC. PCHK # from Intel486 DX CPU is 
always valid. 

Differences between the MBCs: 

o Configuration pin strapping of 82495 inputs. 

o Decoding CPU request burst length from 
CLEN1:0(82495 pins in Intel486 DX CPU systems) 
or LEN and CACHE#(i860 XP CPU). 

o CPU Line length-16 bytes vs. 32 bytes (i860 XP 
CPU) means that the Intel486 DX CPU MBC will 
give 2 BRDY # s for every 1 BRDY # of the i860 
XP CPU MBC. 

Differences between Intel486 DX CPU and i860 XP 
CPUs which have no impact on MBC: 

o Intel486 DX CPU FLUSH # input pin. 

o i860 XP CPU writeback caching, HITM #, and 
BOFF#. 

o i860 XP CPU CS8 vs. Intel486 DX CPU BS8#, 
BS 16 # (none are really useable). 

o Intel486 DX CPU RDY # pin and interruptable 
bursts (not useable with 82495). 

o i860 XP CPU acknowledges HOLD during 
LOCK#. 

o EADS# duty cycle (50% maximum for i860 XP 
CPU and 100% for Intel486 DX CPU, but handled 
by 82495). 

o KENt,; pin sampling interval by the CPU. 

o Behavior of CPU in response to BOFF # assertion. 

o i860 XP CPU BERR (Bus ERRor) pin versus 
Intel486 DX CPU NMI (Non Maskable Interrupt). 

11.0 SUIVHVlAIPlV 

The interface between a CPU/82495/82490 chip set 
and a system memory bus allows much flexibility and a 
wide range of performance options. The simplest MBC 
can be a few PALs, while a top-performance multipro­
cessing version may take thousands of gates on an 
ASIC. Signal pin counts for the MBC can range from 
70 to 120, varying with the memory bus definition im­
plemented by the MBC. 

While beyond the scope of this document, topics for 
consideration include detailed timing diagrams, critical 
path analysis, simulation of bus traffic, and hit rates. 
Useful also are simulations of performance impact of 
the number of CPUs, WB versus WT policy, memory 
latency, CTCT, RFO, and duplicate tags. Also at issue 
are interrupt controller hardware, PAX concurrency 
control, boundary scan and selftest, PC-compatibility­
implications, i860 XP CPU pfld options, and high­
speed design issues of impedance, termination, and 
noise. 

2-475 



int:eL AP-452 

12.0 BIBLIOGRAPHY 

[AgarwaI88] "An Evaluation of Directory Schemes for 
Cache Coherence", by A. Agarwal, R. Simoni, J. Hen­
nessy, and M. Horowitz (CH2524-2/88/000/0280 
IEEE 1988) 

[Fbus90] "Futurebus +: Its features, and how to use 
them," John Black, in VMEbus Systems Magazine, 
Feb. 1990, p. 23:40. 

[Ham90]Tucker Hammerstrom, "Metastability," Intel 
Techbit # PLD-0390, March 1990. 

[82495/490DS] 82495XP Cache Controller/82490XP 
Cache RAM Data Sheet, Intel order #240956. 

[i401] Intel486 DX CPU Microcomputer Model 401 
Board Technical Reference Manual, order # 504366. 

[InteI486] Intel486 DX CPU Microprocessor Data 
Sheet, Intel order # 240440. 

[i860XPDS] i860 XP CPU Microprocessor Data Sheet, 
Intel order #240874. 

[Thakkar90] "Performance of an OLTP Application 
on Symmetry Multiprocessor System;" by S. Thakkar 
and M. Sweiger (CH2887-8/90/0000/0228), 1990 
IEEE Inti Conference on Computer Architecture. 

2-476 



AP-452 

AP[?[Eu\Hf}~X IA: 
QIl.lI®sUOIl1lS al\1'il<dl All1lsweli"s OIrU MrBC Design 

Q: Why activate BGT # early, since 82495 won't 
snoop between BGT# and SWEND#? 

ANS: CNA# for MBC pipelining ignored until 
BGT #. Also BGT #. must precede CRDY # by 
at least 3 CLKs. And BGT# must precede 
BRDY#. 

Q: How does PAX multiprocessing work with 
82495 and an MBC? 

ANS: A CCU chip must be included on the M-bus side 
of 82495 and 82490 for each i860 XP CPU in a 
PAX multiprocessor. Refer to [MPIC90]. 

Q: Can the i860 XR CPU use a 82495/82490 
cache? 

ANS: No, the bus protocol of 82495 and 82490 
matches Intel486 DX CPU and i860 XP CPUs, 
but not i860 XR CPU. 

Q: Can 2 CPUs plug into one 82495, getting effi­
ciency from shared cache? 

ANS: No, the protocol and physical capacitance of the 
interface do not allow it. 

Q: Should the same MBC be used for Uni & Multi? 
(i.e., how much extra logic is added to make a 
multiprocessor MBC?) 

ANS: It is possible, and the extra logic is reasonable 
for a Uni which could be upgraded to multi by 
adding another CPU + cache module. 

Q: Are software models of 82495/82490 available 
for simulation of MBCs? What simulators are 
supported? 

ANS: As of September 1990, beta versions of models 
will be available Q4 1990 from Silicon West, Inc. 
Phone = (213)597-5995, FAX = (213)494-
4588. Contact Silicon West for information on 
simulators supported(currently Workview, Ver­
ilog, Zycad VHDL, Mentor Graphics). 

Q: What is the fastest possible transfer of data from 
Mdata to Cdata? (i.e., how many CPU clks are 
spent?) 

ANS: The initial timings are listed in [82495/490DS]. 
They are about 1.5 CLK periods including set­
up-time at the CPU data pins. The connection 
from CDATA to MDATA is essentially a flow­
through path. 

Q: Can the CPU-bus and Memory-Bus be on the 
same 50 MHz clock? 

ANS: Yes, but multiprocessor memory buses probably 
have too much capacitance and trace length to 
tolerate a 50 MHz clock. 

Q: What are pin-counts for an MBC (i.e., will it fit 
in my ASIC)? 

ANS: 70 to 120 signal pins, depending on the bus pro­
tocol and MBC features. 

Q: How long is a reasonable cacheability window, 
in MCLKs? 

ANS: KWEND# is activated when MKEN# and 
MRO # are stable. MKEN # and MRO # can 
come from address decoders in the MBC or on 
the MBUS. Thus KWEND# could be 2 CLKs 
after CADS # if the MBC itself determines 
cacheability, or as much as 5 MCLKs if the M­
bus must see the request and determine 
MKEN#. 

Q: How long is a reasonable snooping window, in 
CLKs? 

ANS: MWB/WT # and DRCTM # are generated 
from the snoopers' MTHIT # and MHITM # 
signals. Thus SWEND# is activated when those 
signals (MWB/WT#, DRCTM#) are stable. 
That would be at least 7 CLKs, not counting the 
possible delay between CADS# and its M-bus 
counterpart MADS #. (see the discussion of 
snoop window above). 

Q: Is the SWEND# window length deterministic, 
or must SNPBSY # determine it? 

ANS: It is deterministic, but may be long when the 
82495 is busy. Yes, the SNPCYC# signal is re­
quired to determine SWEND#. If SNPCYC# 
is not used, then the worst-case 82495 delay 
must be imbedded into the MBC logic, making 
the window longer than necessary most of the 
time. 

2-477 



intet Ap·452 

Q: How long can 82495 be "busy", activating 
SNPBSY# and ignoring subsequent SNPSTB# 
activations? 

ANS: 82495 busy-ness is not due to CPU requests, be­
cause 82495 gives higher priority to the snoops. 
But for snoops to M-state 82495 lines, 82495 
must do inquiries to the i860 XP CPU and get 
the more-recently modified data from i860 XP 
CPU before 82495 can writeback. A 82495 con­
nected'to an Intel486 DX CPU does not need to 
get modified data, as the Intel486 DX CPU has 
only S-state lines in the CPU cache. However, if 
SNPINV was active, 82495 must back-invali­
date either CPU for S, E, or M state lines. The 
82495 must do multiple inquires or invalidates 
when the line ratio is 2 or 4. 

Q: ,What is the synchronization penalty in snooping 
(ie, how long from M-bus request to MHITM # 
validity)? 

ANS: About 3 CLKs. See the discussion of, "snoop 
window" above. 

Q: What is optimal 82495 cache-line length 
(32,64,128)? 

ANS: This is TBD from simulations or measurements. 
, It depends on the behavior of SW applications 

the HW is iritended for. 

Q: Can Futurebus + be used as the M-bus for a 
82495/82490 system? 

ANS: Yes. The I Futurebus + spec is compatible with 
the 82495/82490. It supports MESI, strobed 
data transfer, address pipelining, cache to cache 
transfers, Read For Ownership, arid many other 
features. 82490 would be used in strobed mode 
for Futurebus + : 

Q: Can 82495 do a split-transaction bus (if not, why 
not?)? 

ANS: Maybe. 82495 implements, a restricted-backoff 
prot9col to eliminate potential deadlock condi­
tions in a shared, bus multiprocessor environ­
ment. Because of that protocol, and the fact that 
82495 will not snoop between BGT# and 
SWEND#,it is difficult to implement split 
transactions. It may be possible, using an addi­
tional set of tags which replicate 82495's and 
allow snoops to continue between BGT# and 

, SWEND#. 

Q: Can, another 82495 be used for the "duplicate 
tags" for split transaction snooping? 

ANS: No, thj: 82495 signal definitions and protocols 
make that very difficult. 

Q: Why do the KWEND# and SWEND# signals 
exist? 

ANS: SWEND#, by gating 82490-to-CPU-data-trans­
fer, allows the M-bus data transfer simultaneous 
with snooping. In the usual case, no modified 

copy will be found by the snoopers, so that 
transfer was not wasted. The alternative (that 
data cannot be transfered from memory until 
snoops complete) costs performance or r.equires 
a central tag directory. SWEND# triggers the 
82495 to update its tags. 

KWEND # allows a variety of cacheability de­
termination schemes-a long delay to determine 
MKEN # and MRO# might be needed if a pro­
grammable RAM or EEPROM decodes cachea­
bility based on address. If not, KWEND # can 
be activated quickly if there is a local MBC de­
code of A31 :A28 to determine MKEN #, for ex-
ample. ' 

Q: Why not just one WEND signal? 

ANS: Performance. KWEND# can be determined 
quicker than line-status in most implementa­
tions. The early knowledge of cacheability to the 
82495 allows' it to begin line replacements and 
allocations, and activate the next CADS# to 
MBC. 

Q: How to connect 8-bit (or 16-bit) devices such as 
ROM and serial ports to 82490? ' 

ANS: If the devices are made non-cacheable, they can 
be tied to the MDATA pins of the least-signifi­
cant 82490s. However, if fetches from them 
must be cacheable,' then, byte assembly logic 
(latching transceivers) must exist to allow 82490 
to transfer 'from them 4 or 8 bytes at a time 
(I M-bus width per transfer). 82495 and 82490 
require all cacheable locations to do burst trans­
fers an M-bus-width of data per transfer, 

Q: Does the 82495 have a CS8 mode? Does 82495 
support i860 XP CPU in CS8 mode? 

ANS: To support i860 XP CPU CS8 mode with 82495, 
the 8-bit ROM must be marked non~cacheable. 
This means that code being fetched in CS8 mode 
won't be cacheable in the, 82495 or the i860 XP 
CPU. For an Ii-byte M~bus, the ROM data pins 
must be wired to the M-bus (MDATA of 82490) 
bits 7:0. For a 16-byte M-bus, the ROM must 
attach to M-bus bits 7:0 AND bits 71:64, which 
would require an 8- bit transceiver at the ROM. 

Q: Should the DRAM controller be part of the 
MBC? ' 

ANS: For a simple uniprocessor, perhaps. Multipro­
cessors would have a DRAM controller for 
(each bank of) main memory, separate from the 
MBCs. 

Q: How can the system implement retry upon an 
M-bus parity error? 

ANS: The MBC must re-issue the initial request, and 
reset the 82490 transfer logic using the MSEL# 
signal. 

2-478 



inteB® AP-452 

Q: Can 82490 use an ECC corrected-bus? 

ANS: ECC (Error Correcting Code) can be used on 
the main memory bus, but the ECC check bits 
must be converted to parity or discarded before 
feeding the 82490. ECC would have to be gener­
ated at the 82490 MDA T A pins for writes to 
memory. 

Q: Can the MBC implement cache-to-cache trans­
fer on a write? 

ANS: No, the 82490 cannot "snarf' write data. That 
is, it does not merge a write (partial line) from 
the M-bus with existing cached lines. It can do 
Read-For-Ownership, merging write-miss data 
with an incoming line writeback from another 
cache. 

Q: Can semaphores be cached in 82495/82490? 

ANS: Yes, but all read/writes which are locked are 
forced onto M-bus. So the semaphore would be 
read repeatedly without locking, until it is 
"free". Then SW would re-read it in locked fash­
ion to obtain ownership. 

Q: Is there any advantage to making semaphores 
cacheable, if all locked accesses go to M-bus? 

ANS: Yes, SW can repeatedly read the semaphore 
without LOCKing it, and no bus traffic thus is 
generated, waiting for the release of the sema­
phore by any other master. 

Q: Can a single multiplexed address + data bus (like 
Multibus-II) be used for M-bus? 

ANS: Yes, but transceivers external to the 82495 and 
82490 are required. 

Q: How does the MBC implement a "BACKOFF" 
when another 82495 activates MHITM #? 

ANS: If the data requested from a master 82495 is 
Modified in a snooper 82495, the master BC 
must postpone CRDY # until the modified line 
is deposited in the master 82490, after the 
snooper flushes the modified line to M-bus. 

Q: Can MBC duplicate the CPU cache tags, to 
avoid unnecessary inquire cycles? 

ANS: Yes, but the performance benefit may not war­
rant the extra hardware. 

Q: Can i860 XP CPU Late-Backoff mode be used 
with 82495? 

ANS: No. 

Q: What are the advantages and disadvantages of 
doing an asynchronous system (where MCLK is 
not the same as CLK)? 

ANS: Designers can easily upgrade the CPU side to 
higher frequencies (above 50 MHz) by faster 
PLDs in the CPU side of the MBC. The M-bus 
interface and all modules on the M-bus will not 
need to be changed. It easier to design a board 
when most parts run at a lower frequency. 

Q: If the 82490 is reading information from· the 
memory bus and the MBC is generating 
BRDY#'s (RDYSRC= I), can the MBC abort 
the cycle by giving a premature CRDY #, and 
restart it? 

ANS: The MBC can abort a memory bus cycle but 
cannot abort a CPUbus cycle. Once the first 
BRDY # is generated the cycle must complete. 
On the memory bus, a cycle is not aborted by 
giving an early CRDY #. In fact the 82495 does 
not understand that a cycle has been aborted. 
Only the MBC and 82490 are involved. The 
82490 allows its buffer to be reset using the 
MSEL# signal. 

Q: What is the purpose of 82490 having a separate 
MOCLK for output data, in addition to the 
MCLK for input signals? 

ANS: MOCLK allows greater hold time for writes 
from 82495, if it is skewed slightly from the 
MCLK which M-bus receivers use. MOCLK 
and MCLK must be exactly the same frequency. 
If the skew is not needed, MOCLK can be tied 
low. 

Q: How many levels of pipelining can the 82495 use 
on the external memory bus? 

ANS: Each 82495 can use one level of pipeline on the 
memory bus, so the bus pipe depth can be great­
er in a multiprocessor. A uniprocessor allows 
just one level of M-bus pipeline. 

2-479 



inteL AP-452 

APPENDIX B: 
Intel486 OX CPU Uniprocessor MBC Design 

Please refer to Application Note AP-458, Designing a 
Memory Bus Controller for a 50 MHz Intel486 DX Mi­
croprocessor Based System. (Intel order #241166). 

2-480 



intel· AP-452 

APPENDIX C: 
u860™ XP CPU [)lJAlapROCESSOR MISe 

OVERVIEW 

This section presents a design for a memory bus con­
troller for a system containing two i860 XP processors, 
each with an 82495XP 182490XP secondary cache. This 
MBC, together with an i860 XP CPU, 82495XP, and 
82490XP, comprises a core which interacts with a 
memory bus utilizing a bus protocol similar to that of 
the i860 XP CPU. 

The design presented here features an i860 XP CPU 
and 256 KB of 82495/82490 cache running at 50 MHz 
in each core. The clocked 64 bit (+ 8 parity) memory 
bus is asynchronous to the CPU and cache clock, al­
lowing memory to run at lower speeds for more eco­
nomical and convenient memory design. The MBC fea­
tures snooping and pipelining to the memory, as well as 
advanced 82495 processes like write allocation, read for 
ownership and cache-to-cache transfers. 

ASSUMPTIONS 

The implementation presented here is a two processor 
design which can be extended to more than two CPUs. 
The definitions and examples given in this appendix are 
specific to the two processor version. The section 
Extension to 3 or More Processors gives specifics for 
larger systems based on this design. 

The memory bus is 64 bits data plus 8 bits parity. 

The MBC design allows the processor to run at a high­
er clock frequency than the memory bus. The frequen­
cies are constrained such that the ratio of the frequency 
of the processor CLK and the frequency of the memory 
bus MCLK is between I and 2: 

ClK " MClK < elK 
2 

I 
iB60TM XP CPU elK 

(~') "''' \- I 
TOO - RESET 82490XP 

(BERR) PCHK. !PEN.) 'MS BE7. O' CACHEt LEN BADY2. - litE. - CADS, 

I I I I I 

MEM BUS 
ERR '-IERR -MINT -

UNUI -
.RB MBREa -

L1HOLD -
IIHLDA -

REO M..,OS. -
U8E7:0' -

NUIIO,UOIC. -
IIWIR., ULEN -UCACHU -

MaRDYI -
UHA. -

STATE NWBIWT. -
NKEN. -
URO. -

UBOFU ~ 

UA80RTt! -
USWNOO. -USWNOIJ! -

SN' UTHlT. -
WHITM. -

MSNPSTB. -
MSNP!NV -

(MSNPNCA) -
MCLK -

MRESET -
"'flUSH' -

NSYNC. -
(MA31:3, MOfi3:0, MD?7:01 __ 

I I I 

MBC PINOUT 

PIN COUNTS: 

1 elK 
19 1860 XP CPU 
42 82495XP 
11 82490XP 

+ 38 M-Bus 

111 TOTAL 

I I I I I I I 
MaRon CRDY' BRDU MSELI IoIlBT. MFRZI MoDe, 
IMST8N'1 

- NCLK IM19T81 RESET -- {UOCLK (MOST81) 82495XP - MEOC, 

Figure C-1. Pinout Environment of MBC 

2-481 

- COTS, - StiPADS. - CWIRI 

- CDIC, - CMIIOI - MCACHE. 

- RDYSRC - (CWAY) - PALLe. - liENE. - ISM LN.) - (FPFLD' (FPFLOEN']j 

- KLOCKt - CAHOlD - FSIOUTI - MADE. - "'BADE' - MALE - MBALE (HIGH") - SYNC. (UEMLDRVI 

- flUSH, [NCPFLD') - BOH [C81aRVj - KWEND. [CfG2j - SWENO'lcF01] - BROU - CNA'ICFOOI - CROU ISLFTSTj 

- SNPCLK ISNPMOj - SNPSTS, 

- SNPINV - SNPNCA - MKEN. -. NRO, - MW8rWTt! -. PRC'U. - NTH IT, 

- MHITM. 

- SNP8SY' - SNPCYC, 

08101190 

240957-28 



inlet A~-452 

This constraint ensures proper synchronization of sig­
nals which cross between the MCLK portion of the 
MBC and the CLK portion. The prototype was de­
signed and simulated with a CPU speed of 50 MHz and 
a memory bus speed of 33 MHz. 

Snooping mode can be independently set to strobed, or 
clocked in each core. 

The main memory is responsible for, returning the 
MKEN # attribute to the memory bus controller in the 
MCLK following MADS# assertion. 

To save synchro~ization clocks, the MBRDY# signal 
of the protocol is defined to be asserted one MCLK 
before data is actually available. 

The 82495 operates with 32 bytes/line, 1 line/sector, 
and requires 4 memory bus transfers per line fill. 

OPTIONS 

With modifications the '82495 can operate in a mode 
with 64 bytes/line, 1 line/sector, requiring 8 memory 
bus transfers per line fill. 

The design here utilizes the 82490's clocked memory 
bus mode. The strobed mode can also be utilized by 
making modification to the design. 

Support for various 82495, PFLD modes can be added 
to the design. 

Operation with either write-through or write-once pro­
tocol can be performed. 

MEMORY BUS PROTOCOL 

M-bus Signals 

The system M-bus resembles the i860 XP CPU bus. It 
allows CPU modules with or without external cache on 
the same M-bus, so that balance between high perform­
ance and low cost can be achieved. The sign!ll specifica­
tions below indicate Input (I), Output (0), or bidirec­
tional (I/O) from the MBC's point of view. Output 
signals to the memory bus such as MADS#, MLEN, 
and MA31 :MA3 are floated by all MBCs except the 
one currently owning the M-bus. 

Signals whose names begin with Y (as in YBGT#) are 
in the MCLK side of the MBC, while an X prefixed 
name is in the CPU CLK side of the MBC. The X and 
Y signals are internal to the MBC. 

MRESET (I) - Memory bus RESET 

This signal forces the CPU to begin execution in a 
known state. It resets all MBC machines which are 
driven by MCLK. It is also synchronized (via a 2-stage 
synchronizer) to CLK and, fed to the RESET inputs of 
the CPU, 82495, 82490s and all MBC machines which 
are driven by CLK. 

MADS# (I/O) - Memory bus ADdress Strobe 

This signal'indicates that a new valid bus cycle is cur­
rently being driven. The cycle'address (A31:A3) and 
cycle specifications are valid in the MCLK that 
MADS# is asserted. A pipelined MADS # will be is­
sued only after the MBC knows that the current cycle 
is guaranteed not to'be aborted. For most memory ac­
cesses, the master will assert MSNPSTB# to snoop 
other caches on the bus. When MSNPSTB # ,has been 
asserted, MNA# will cause a new MADS# to be is­
sued after MSWENDI # signifies' snooping has com­
pleted. Furthermore, if MHITMI # was asserted with 
MSWENDI# in this case, the new MADS # cannot be 
issued until after the current cycle (now a snoop write­
back) has been completed. When MHITMI # is not 
asserted with MSWENDI#, MADS# can be asserted 
immediately follciwing MSWENDI #. If MSNPSTB # 
was not asserted for the current cycle, then MADS # 
could be issued immediately after MNA#, without 
waiting for MSWENDI #. 

For read cycles MADS# is issued after CADS#, re­
gardless of CDTS# state. Requesting the memory bus, 
via MBREQ, is also done immediately after CADS#. 
This is due to the fact that CDTS # in a read cycle does 
not affect the memory bus, but indicates when the first 
BRDY # can be issued to the CPU. 

For memory writes MADS # is issued only after 
CDTS #. Requesting the memory bus, via MBREQ, is 
also done after,CDTS#. This guarantees that for write 
cycles the memory bus data is valid 1 MCLK after 
MADS # (similar to the CPU). 

MNA# (I) - Memory bus Next Address 
Acknowledgement 

This is the memory bus next address signal, driven by 
the memory controller. It indicates to the MBC that 
the memory bus is ready to accept a new bus cycle, 
although the previous one has not been completed yet. 
If the MBC has a new cycle pending and the current 
cycle is guaranteed not to be aborted (see MADS# 
above), then a new MADS# will be issued. Note that 
the maximum level of pipelining on the memory bus is 
1. ' 

2-482 



AP-452 

MBRDY # (I/O) - Memory bus Burst ReaDY # 

This is the burst ready signal. For read cycles, 
MBRDY # indicates that in the following MCLK the 
memory bus will present valid data on the 82490 
MDATA pins. For writes, MBRDY# indicates that in 
the following MCLK the memory bus will accept the 
data from the 82490 MDA T A pins. Note that this sig­
nal is active I MCLK before the data is available on the 
memory data bus. This reduces the synchronization 
penalty between the M-bus and CPUbus by I MCLK 
period. 

For a clocked-asynchronous MBC, MBRDY # is de-' 
layed by the MBC I MCLK and passed to the 82490 
MBRDY # pin. For a strobed-asynchronous MBC, the 
82490 MISTB and MOSTB will change value in re­
sponse to MBRDY#. 

For Cache to Cache Transfers, the MBC with the Mod­
ified line drives MBRDY # active once per MCLK 
without wait states for the duration of the line burst. 

MS~\IPSTB# (1/0) - Memory bus SNPSTB# 

This is the memory bus snoop strobe signal. It is assert­
ed I MCLK after MADS# by the MBC which asserted 
MADS #, for all cycles that could be M -state in the 
other MBC. In writebacks and I/O cycles, 
MSNPSTB# is not asserted. The MSNPSTB# output 
of each MBC is connected to the 82495 SNPSTB# in­
put of the other MBC, in this two processor design. 

MSWENDO# (0) - Memory bus SWEND# 
Outpu~ 

This is the memory bus snoop window end indication 
which is driven by the snooping MBC. It is connected 
to the master MBC's SWENDI # input, indicating that 
snooping is finished and the snoop attributes are valid. 

MSWENDO# is an asynchronous signal which is 
triggered by the 82495 SNPCYC# falling edge, and 
is negated after sampling an active SNPSTB#. 
MSWENDO # of one MBC is connected directly to the 
MSWENDI # input of the other MBC. 

MSWENDI # (I) - Memory bus SWEND # Input 

MSWENDI # is connected directly to the other core's 
MSWENDO# output. It is internally sent to two syn­
chronizers: synchronized to CLK to generate 82495 
SWEND #, and synchronized to MCLK for MBC state 
machines which determine whether the current bus cy­
cle should be aborted. 

MSWENDI # indicates the end of the snoop window 
and that the snoop results MHITMO# and MTHIT# 
are valid. An active MHITMI # indicates a snoop hit 
to a modified line, and causes the master MBC to dis­
card any data which has arrived from main memory, so 
that new data, which is being written out as the snoop­
ing core performs a snoop write back, can be accepted. 
MTHIT it of each core is connected to the 
MWB/WT # input of the other core, to generate the 
WB/WT # signal to the 82495. 

MHITMO# (0) - Memory bus HITM# Output 

This indicates a snoop hit to a modified line. In the two 
processor implementation of this MBC, it is connected 
directly to the other MBC's MHITMI # input. 

MHITPJlI # (I) - Memory bus HITM # Input 

MHITMI # is connected to the MHITMO # output of 
the other MBC, and determines if MBOFF# and 
MABORT# will be -asserted. It is sampled on 
MSWENDI # activation. 

MTHIT# (0) - Memory bus Snoop Hit Indication 

This snoop hit indication is based on the 82495 
MTHIT # output. The MTHIT # ouput of the snoop­
ing core is used by the master core to determine the 
WB/WT # state for the accessed line. The 82495 
MTHIT # signal is passed directly onto the memory 
bus when the SNPINV signal is inactive for the snoop. 
On snoops with SNPINV active, the memory bus 
MTHIT# line is driven low, regardless of the value at 
the 82495 MTHIT# pin. 

The MTHIT# signals from the memory bus control­
lers on the bus are wire-anded together. Because the 
82495 MTHIT # output only changes state with each 
new snoop, the master memory bus controller must 
float its MTHIT#. 

MBOFF # (0) - Memory bus BOFF # 

This is the memory bus back-off signal which is driven 
by the master MBC. The master MBC floats its bus 
concurrent with MBOFF # activation. When the 
snooper MBC samples an active MBOFF # and it has a 
pending snoop write-back cycle, it issues the cycle to 
the memory bus. Note that the snooper issues the cycle 
even though it is still in a bus hold state (MHLDA 
asserted). If, MHITMI # is sampled active during 
MSWENDI# and the previous cycle has completed, 
then MBOFF # will be asserted immediately after 

2-483 



intel® AP-452 

MSWENDI #. If the previous cycle has not completed 
and the pipelined cycle hits a modified line, then 
MBOFF# will be asserted only after the previous cycle 
completes. The snooping MBC floats its bus only after 
the snoop write-back cycle has completed. Note that 
from the arbiter's viewpoint the bus is still granted to 
the master MBC. 

MABORT # (0) - Memory bus Abort 

This is the memory bus abortion signal which is driven 
by the master MBC. When the main memory samples 
an active MABORT# it aborts any cycle that is cur­
rently being serviced. The memory aborts the cycle re­
gardless of the number of MBRDYs that have been 
issued. Thus MBRDY # of the aborted cycle will not 
be issued after MABORT#. A new cycle could be serv­
iced immediately after MABORT#. 

If MHITMI # is sampled active during MSWENDI # 
and the previous cycle has been completed, then MA­
BORT# is asserted immediately after MSWENDI#. 
If the previous cycle has not been completed and the 
pipelined cycle hits a modified line, then MABORT# 
is asserted only after the current cycle has completed. 

MABORT# can also be asserted during read for own­
ership with a hidden write (allocation after a non-com­
pleted write in the main memory). In this case if the 
master MBC samples an active MKEN# (1 MCLK 
after MADS #) during a potentially allocatable write 
cycle, it asserts MABORT# immediately, i.e. 2 
MCLKs after MADS#. 

Note that MABORT# is always guaranteed to be a 1 
MCLK width pulse. 

MLOCK# (I/O) - Memory bus LOCK 

This signal does not exist in the current implementa­
tion. Instead, the MBC simply refuses to give up the 
M-bus to the arbiter when it is running locked accesses. 

MHOLD (I) - Memory bus Hold Request 

When this input to the MBC is asserted, the MBC as­
serts MHLDA and floats all inputs and outputs except 
MBREQ, MHLDA, MSWENDO#, and MBOFF#. If 
the MBC has outstanding bus cycles in progress 
(MADS# has been asserted), they are completed be­
fore the MBC relinquishes the bus. MHOLD is recog­
nized during MRESET assertion. 

MHLDA (0) - Memory bus Hold Acknowledge 

The memory bus hold acknowledge signal goes active 
when an MBC relinquishes the bus in response to an 
MHOLD request. The memory bus controller floats its 
bus in the same MCLK that it issues the MHLDA. 
When the MBC leaves bus hold, MHLDA is negated 
and the core resumes driving the bus. If a cycle is pend­
ing when leaving bus hold, the MADS# will be issued 
in the same MCLK that MHLDA is negated. 

MINT (I) - Memory bus Interrupt 

This interrupt signal is connected directly to the i860 
XP CPU in the core. 

MKEN# (I) - Memory bus KEN# 

This is the memory bus cache enable signal. It is used 
by the MBC to determine the length of the current bus 
cycle, and is also connected directly to the 82495 
MKEN# input. 

In potentially cacheable read cycles, it determines cycle 
length. In potentially allocatable write cycles, it deter­
mines whether read for ownership with hidden write 
will be performed. 

In the current implementation, MKEN # must be driv­
en by the memory controller in the MCLK after 
MADS # was issued. 

MRO# (I) - Memory bus Read Only 

Assertion of this signal causes an access to be treated as 
read only by the core. This signal is connected directly 
to the 82495 MRO# input, as well as to the MBC. 

MWB/WT# (I) - Memory bus WB/WT# 

This is the write-back/write-through input connected 
to the memory bus. It is connected through MBC logic 
to the 82495 MWB/WT # input. 

MDRCTM (I) - Memory bus Direct-to-M 

This is the memory bus DRCTM # signal which forces 
a line entering the cache to be placed directly in the 
[M] (modified) state. In addition to this signal which is 
connected from the memory bus to the 82495, the MBC 
can internally drive the 82495's DRCTM # pin during 
read-for-ownership cycles. 

2-484 



AP-452 

MFLUSH#, MSYNC# (I) - Memory bus 
FLUSH#, SYNC# 

These signals cause the core to flush or sync its cache, 
by asserting FLUSH # or SYNC # to the 82495, re­
spectively. The signals are driven by the main memory 
controller upon detecting a Core flush or sync com­
mand, which consists of a special cycle with either 
MBEI # or MBE3 # active, respectively. 

MBREQ (0) - Memory bus Request 

The MBREQ# signal is asserted by an MBC to indi­
cate to the memory bus arbiter that the MBC needs the 
memory bus. An MBC will generate this signal regard­
less of whether or not the MBC is currently driving the 
bus. 

MW/R# MLEN MCACHE# 

x 0 1 
x 1 1 
0 0 0 
0 1 0 
0 x 0 
1 x 0 

NOTES: 

MBREQ # is not issued for snoop write-back cycles. If 
the snooping core already had its MBREQ# pin assert­
ed, the pending cycle which caused the MBREQ# is 
aborted by the snoop write-back, according to 82495 
protocol. The MBC state machines of the snooper, 
however, continue to assert MBREQ# until an internal 
time-out period has elapsed, allowing the snooping 
82495 to reissue the aborted cycle after the snoop write­
back has completed. Therefore a core which is waiting 
for the bus can service a snoop write-back without los-
ing its request for the bus. . 

MLEN (0) - Memory bus LEN 

This signal together with MCACHE#, MW/R# and 
MKEN # determine the memory bus cycle length ac­
cording to the following table: 

MKEN# length Notes 

x 1 1 
x 2 1 
1 1 2 
1 2 2 
0 4 
x 4 

1. Locked i860 XP CPU write-back cycles (length = 4), caused by the i860 XP CPU executing a FLUSH instructi.on during a 
LOCKed sequence, are treated as normal write cycles (length = 1 or 2 according to LEN). This is allowed since i860 XPCPU 
write-back cycles always access a 82495 modified line (in [M) state) and are only written into the 82490, without updating 
memory. 
2. MKEN# must be driven valid the clock following MADS# by the memory controller. 

MMI/O#, MD/C# (0) - Memory bus 1/0# and 
D/C# 

These signals, together with MW /R #, define the mem­
ory bus cycle, according to the i860 XP CPU Data 
Sheet. They are driven in the same MCLK as 
MADS#. 

MBE[7:0] # (0) • Memory bus BE[7:0] # 

The byte enable signals to the memory bus identify 
which bytes are being accessed. They are identical to 
the CPU byte enables on CPU generated cycles. For 
82495 generated cycles (write-backs and allocations) all 
MBE#s are asserted. 

MCACHE# (I/O) - Memory bus CACHE# 

In a master core MCACHE# is an output; in a snoop­
ing core it is an input. As an output, it indicates poten­
tially cacheable reads or a 82495 write-back. 
MCACHE# is used by the system memory together 
with MLEN, MW/R# and MKEN# to determine cy­
cle length. As an input, MCACHE# is connected to 
the 82495 SNPNCA pin. 

MW/R# (I/O) - Memory bus W/R# 

This signal is an output for a master core, an input for a 
snooping core. As an output, it indicates whether the 
memory access is a read ar a write, and is used by the 
system memory along with MMI/O# and MD/C# to 
determine the cycle type, according to the i860 XP 
CPU Data Sheet. As an input, the signal is connected 
directly to the 82495 SNPINV pin. 

MA[31:3] (I/O) - Memory bus Address 

These are the memory bus address lines of the MBC. 
Along with the byte enable signals, they define the 
physical area of memory or I/O accesses. In a master 
MBC they are driven by the 82495 onto the memory 
bus together with MADS# (same MCLK). In a snoop­
ing MBC, these lines are inputs to the 82495 which are 
latched by the MSNPSTB # signal. 

2-485 



AP-452 

MD[63:0], MDP{7:0] (1/0)- Memory bus Data 
and Data Parity " '" 

64 bits' of data, 8 bits ,of parity, connected through 
transceivers to the i860 XP CPU and 824908. When an 
MBC doeS not own the bus, these pins are'tristated. 

XAS#/XSAS#- X Uni,t Addres~Strobe 
XAS# is generated in the X-~nit(sync to CLK), and is 
synchronized and sent to the' Y ~unit as XSAS # . 

XAS# indicates the start of a memory bus cycle from 
the X-unit (CLK side). XAS# is generated as a result 
of, a CADS# from the 82495 on. a read cycle or 
CDTS# from the 82495 on a write cycle. XAS#is 
held active until the X-unit receives YSBGT #. 

YBGT # /YSBGT # - Memory bus Guaranteed 
Transfer, " " 

YBGT# is generated in the Y-unit, and is synchroniz­
ed and sent as YSBGT# to the X-unit. 

This signal is generated -in the Y-unit after MADS# 
(the cycle has been issued on the memory bus). When 
YSBGT# arrives at the X-unit,the signal causes asser­
tion of the 82495's BGT # input, and one clock later 
(non-pipelined cycle) the assertion ,of KWEND # . 
YSBGT#ofa pipelinedcycle (which is sampled during 
the initial cycle, i.e. before its CRDY#) causes the 
BGT# and KWEND# of the pipdined cycle to be 
issued immediately after CRDY # of the initial cycle. ' 

YBGT# of a pipeli!ledcycle caimot bdssued before 
the MSWEND# of the previous cycle. This i~ guaran­
t~ed by the M-bus protocol, which ensures that Ii pipe­
hned MADS # is not issued until 'after" the 
MSWEND # , of the pr~vious cycle. 

BGT#, KWEND# (0) - Bus Guaranteed .' 
Transfer, Cache Window End to 82495 

~GT# and KWEND# are generated for every cycle 
(mcluding snoop write-backs). In' a non-pipelined cycle 
BGT# is issued immediately after samplingYSBGT# 
~ctive, and KWEND# is issued 1 dock hiter. In pipe­
hned cycles, these signals' are asserted" after the 
CRDY# of the initial ~ycle. ' 

YMEOC#/YSMEOC# - (0) MBC Memory End 
Of Cycle ",' 

YMEOC # ,is generated in the Y unit; and is synchro­
nous to MCLK, and sent to the X:unit as YSMEOC# . 
It'indicates the M-bus transfer has finished, based on 
the MBC's' tranfer length count. YMEOC # directly 
drives the 82490s' MEOC# inputs. YSMEOC# causes 
generation of the CRDY # signal to the 82495 and 
82490s. For non-pipelined cycles CRDY # is issued im­
mediately after an active YSMEOC# (if CDTS# was 
issued). For pipelined cycles CRD¥# is issued after 
the,CRDY# of the previous cycle (if YMEOC#, 
CDTS# of the pipelined cycle were, issued).' 

YMEOC'Ii:.is issued at least 2 MCLKs after YBGT# 
(for every cycle). ' ' 

YCEOC#/YSCEOC# - MBC CPU End Of Cycle 
. . . '. . 
This signal is internal to the MBC:' YCEOC is generat­
ed synchronous to MCLK, and is synchronized to 
CLK to produce YSCEOC#. It indicates that the 
CPUbus transfer has finished, based on the MBC's 
tranfer length count. It generates the BRDY#s to the 
82495,82490, CPU, and to other MBC machines. For 

, ,non-pipelined cycles all BRDY#s except the first are 
issued immediately after an active YCEOC# (if 
CDTS# was issued). For pipelined cycles all BRDY #s 
except the first are issued after, the CRDY # or the last 
BRDY# (BRDY# • CLENl) of the previous cycle. 

'YCEOC# can be issued before, with, or 1 clock after 
YMEOC#. When the line ratio is 2 or 4, YCEOC# 
precedes "YMEOC# by a significant time, allowing 
CPU linefills to complete long before the M-bus tranfer 
completes. 

YCEOC# is asserted only if RDYSRC is active 
(High). 

2-486 



int:et AP-452 

BUS CYCLES 

Non-aborted Read Cycles 

Figure C-2 is a timing diagram far the memary bus 
cantroller executing a line fill after the i860 XP CPU 
issues a read which misses the 82495/82490. The dia­
gram reveals a number af the signals which are internal 
to. the MBC, to. provide a better perspective an the tim­
ing af events. No.te that signals which begin with an M 
are MBC signals to. the memary bus. Signals that begin 
with Y ariginate in the Y side af the MBC which is 
synchranaus to. MCLK, and an X denates arigin in the 
X state machines, which are synchronaus to. CLK. 

The i860 XP CPU micropracessar issues a read cycle in 
CLK 0, as indicated by the assertian af ADS #. The 
82495 perfarms the tag laakup, and finds the request a 
cache miss. In CLK 2, the 82495 issues CADS# and 
the cycle cantral signals, alerting the memary bus can­
troller that a 4 transfer 82495 read is requested. 

The X side state machines, which run an the processar 
CLK, issue an XAS # an the CLK after CADS # far a 
82495 read cycle (CW/R# = 0). The XAS# signal 
passes thraugh the synchronizer running an MCLK to. 
became synchranized in twa MCLKs. The synchraniz­
ed XAS# signal, called XSAS#, is sent to. the Y side af 
the MBC in MCLK 4. 

In MCLK 5, XSAS# has initiated the assertian af 
MBREQ to. request the memary bus from the memary 
bus arbiter. If the bus is already awned (ar ance it is 
awned) by this MBC, XSAS # causes the assertian af 
MADS# to. the memary bus, MAOE# to. the 82495, 
and the internal YBGT# signal. The assertian af the 
82495's MAOE signal allaws the 82495 to. drive its ad­
dress lines to. the memary bus. YBGT# indicates that 
the memary bus is awned by this MBC, and is sent to. 
the synchranizer far the X side af the MBC as well as 
many Y side state machines. 

On the Y side, YBGT# is used to. deassert MBREQ#, 
to. sample Y ALLOC # an writes, and to. initiate 
MSNPSTB#. MSNPSTB# is asserted in MCLK 6 to. 
request a snaap in the ather MBC. YBGT # is also. 
synchranized to. CLK, appearing as YSBGT#, by 
CLK 9. YSBGT # causes the assertian af BGT # to. the 

82495 in CLK 10, and, I CLK later, KWNED#. The 
MKEN # input, which must be valid to. the 82495 
when KWEND# is asserted, must be driven by the 
main memary an the MCLK after MADS# far this 
implementatian. These signal activities define the initia­
tian af narmal bus cycles (as apposed to. snaap write­
backs). 

In this particular example, the memary bus respands 
quickly to. the read request. Here, the memary subsys­
tem drives MNA # to. the MBC in MCLK 6, and pres­
ents data an the memary bus in MCLK 7. Since 
MBRDY # must be driven by the memary bus 1 
MCLK befare data is available, MBRDY # is asserted 
in MCLK 6, with successive MBRDY # s an the fallaw­
ing MCLKs. The YMBRDY # autput af the MBC is 
the MBRDY # signal delayed ane clack, and drives the 
MBRDY # input an the 82490s to. read in the incaming 
data. 

While the data transfer is accurring, the secand mema­
ry bus cantraller respands to. the snaap request far this 
memary access in MCLK 8. Because the data is nat 
present in the cache af the ather care, that MBC will 
assert its MSWENDO# autput with MHITMO# 
driven high. These outputs af the snoaping care are tied 
directly to. the MSWENDI # and MHITMI # inputs, 
respectively, af the master care in this twa core imple­
mentation. Bath af these signals are passed to. the 82495 
(MSWENDI # is synchronized first) as well as to. the 
state machines of bath sides af the MBC. The arrival af 
these signals allaw the care to. accept the data as 'valid, 
and conclude with the read operatian when all af the 
data has been transferred. 

The arrival af the fourth MBRDY # generates the 
YMEOC# and YCEOC# signals in MCLK 10. 
YMEOC# drives the MEOC# input on the 82490s. In 
addition, bath signals are synchronized and sent to. the 
X side of the MBC. Upan the arrival af YSCEOC#, 
the X state machines begin generating BRDY #s to the 
i860 XP CPU. Upan arrival af YSMEOC#, CRDY# 
is driven to. the 82495, indicating the end af the cycle. 
YMEOC# and YCEOC# are used to reset many of 
the Y side state machines, including cycle type and 
length indicators, and the drivers of 82490 signals such 
as YMALE# and YMSEL#. On the X side, the reset 
functions are triggered by CRDY # and the last 
BRDY#. 

2-487 



intel@ 

ClK 

ADS# 

CADS# 

XAS# 

YSBGT# 

BGT# 

KWEND# 

CRDY# 

YSMEOC# 

YSCEOC# 

. BRDY# 

MClK 

XSAS# 

YBGT# 

YMSEL# 

MBREQ 

MADS# 

MA[31:3] 

MW/R# 

MNA# 

MKEN# 

MD[63:0] 

MBRDY# 

MSNPSTB# 

MSWENDI# 

MHITMI# 

YMBRDY# 

YMEOC# 

YCEOC# 

\... 

AP-452 

4 6. 9 10 11 12 13 14 15 16 

n... !i-n... rL rL rL !i-n,... !i-rL rL rL rL rL rL "'L 
',J 
~ I\-'J 

'\ I 

'"" I--r-" 

'\ 

~ ~ ~ 
4 

~ (\:... ~ ~ ~ 
10 11 

~ n:... ~ 
'\. 

L -f 

r \. 

A 

)¢¢¢¢( >0000< )¢¢¢¢( >0000( I xxx A Xl >0000( >0000< )¢¢¢¢( )¢¢¢¢( 

)0000( >0000< )¢¢¢¢( )¢¢¢¢( 1)6l\ I'M >0000< )¢¢¢¢( )OO¢O( )0000( 

)¢¢¢¢( )¢¢¢¢( )¢¢¢¢( >OOOOC >0000< )6l\ hi.. )O¢OO( )O¢¢O( >0000< >0000< 
>0000< >0000< >0000< >OOO¢( >0000< IX] XlIl )()O¢¢( )¢OO¢( )¢OOO( >0000< . 

IXXX Al X A2 X A3 X A4 XX 

~1~4 
A,±:. 

>0000< >0000< )0000( >0000< >0000< >0000< >0000< Nt .1. 'W\ >0000< )0000( 
Al A2 A3 ALI 

L -' 
L -' 240957-19 

Figure C-2. Non-Aborted Read Cycles 

2-488 



intel~ 

ClK 

AOS# 

CADS# 

XAS# 

YSBGT# 

BGT# 

KWEND# 

CROY# 

YSIotEOC# 

YSCEOC# 

BRDY# 

MClK 

XSAS# 

YBGT# 

Yt.ASEl# 

MBREQ 

IotADS# 

MA[31 :3] 

IotW/R# 

MNA# 

IotKEN# 

1.10[63:0] 

MBROY# 

IotSNPSTB# 

MSWENOI# 

MHITMI# 

YMBROY# 

YIotEOC# 

YCEOC# 

AP-452 

15 16 17 18 19 20 21 22 25 24 

rL rt-rL rt-rt-rt-rt-rt-rL rt-

, 
, 

\. f..I 
\. ~ 
\. f..I 

'\ )( )( )( 
10 

~ 
11 

~ 
12 13 14 15 16 

(\:(\.:.('""\: rG ~ 

>OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >OCOO< 

>OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >0000< 
>OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >OCOO< 

>OCOO< >OCOO< >OCOO< >OC¢¢( >OCOO< >OCOO< >OCOO< 
A3 .~ A4 

Iu 

>OCOO< >OCOO< >OCOO< >OCOO< >OCOO< >0000< >0000< 
A3 A~ 

"'-~ 
~ L/ 

Figure C-2. Non-Aborted Read Cycles (Continued) 

2-489 

240957-20 



AP-452 

Aborted Non-Pipelined Cycles 

Figure C-3 illustrates an aborted non-pipelined cycle. 
MHITMI # is sampled active during MSWENDI # 
(clock 4) indicating a snoop hit to a modified line. Since 
the cycle is non-pipelined, MABORT# is issued imme­
diately and the core floats its bus (clock 5). Although 
the bus is floated by the master core, the master still 
owns the bus (MHLDA remains inactive). 

MABORT# in clock 5 causes the main memory to 
abort its cycle regardless the number of MBRDYs that 
have been issued. MBOFF # is also asserted in clock 5 
to indicate to the snooping core that the master is float­
ing its signals and the write-back may begin. The main 
memory floats its data bus in clock 6 in response to 
MABORT#. In the following clocks a snoop write­
back cycle is performed by the snooper. The snooper 
will release the bus at the end of the write-back. 

Note that MSNPSTB# is not asserted during the 
write-back cycle since it obviously Will not hit any 
cache. 

Aborted Pipe lined Cycles 

Figure C-4 illustrates an aborted pipelined cycle. Al­
though MHITMI # is sampled active during 
MSWENDI# (clock 7) MABO~T# will not be issued, 
immediately since the previous cycle has not been com­
pleted yet. MABORT# isissued in clock 9 after 

CLOCK 2 3 4 

MCLK 

MAOS# 

MA[31:3j 

MW/R# 

MNA# 

MKEN# 

MO[63:0j 

MBROY# 

MSNPSTB# 

MSWENO# 

MHITMI# 

MABORT# 

MBOff# 

5 

the last data slice was read into the core. The core floats' 
its bus and asserts MBOFF # concurrently with 
MABORT#. Upon sampling MBOFF#, the snooping 
MBC begins the snoop write-back in clock 10. 

Write Allocate 

Figure C-5 illustrates a write cycle which is potentially 
allocatable. This write is performed on the bus only in 
order to sample the MKEN #, since the allocation cy­
cle will only be guaranteed if MKEN # is active. 

MKEN # is sampled active in clock 2 causing the 
MABORT# to be issued immediately. The reason to 
abort the write cycle,even before MSWEND#, is due 
to the fact that a read for ownership cycle is guaranteed 
to be performed after the aborted write. 

In clock 4 the MADS # of the allocation cycle, which 
becomes the MADS # of the read for ownership cycle, 
is issued. This MADS # is issued only if MSWEND # 
has not been issued yet, or if MSWEND # was issued 
and MHITMI # was negated. If MHITMI # is asserted 
during the MSWEND # that was issued, MADS # will 
not be issued (since the snooper issues its MADS#). 

A second MABORT# is issued in clock 8 indicating 
the memory to abort the allocation, and the snooper to 
start flushing the modified line. Note that a second 
MABORT# will be issued regardless if MADS# of 

7 to 

240957-21 

Figure C-3. Aborted Non-Pipelined Cycle 

2-490 



AP-452 

CLOCK 

MCLK 

MADS# 

1.1.\[31 :3] 

MW/R# 

MNA# 

MKEN# 

MD[63:0] 

MBRDY# 

MSNPSTB# 

MSWEND/' 

MHITMI# 

IAABORT# 

MBOFF# 
240957-22 

Figure C-4. Aborted Plpellned Cycles 

the allocation was issued or not. The first MABOR T # 
(clock 3) aborts the write cycle in the memory module 
and does not affect the snooper. The second 
MABORT# (clock 8) indicates to the snooper to start 
its write-back cycle (and if MADS# of an allocation 
was issued to also abort it in the memory module). 

MSNPSTB # is not issued for the allocation cycle since 
write and allocation cycles access the same line. 

If MKEN # had been negated in clock 2 then an alloca­
tion would not have been performed and the write cycle 
would have continued as a non-allocatable write cycle 
(see figure C-6). 

Non-Allocatable Write 

Figure C-6 illustrates a write cycle without an alloca­
tion. It can be either a non-potentially allocatable write 
cycle or a potentially allocatable write with inactive 
MKEN # (clock 1). 

The write cycle is aborted (MABORT# in clock 3) 
after sampling active MRITM# during MSWEND# 
(clock 2). In clock 11 the master core re-issues the 
MADS# of the aborted write cycle (after the snoop 
write-back has been completed). MSNPSTB# will not 
be issued again since the updated data had been written 
into the main memory and the snooper has gone to the 
invalid state. 

LIMITATIONS OF DESIGN 

The primary limitation of the implementation as it has 
been presented so far is that it includes only two proces­
sors. The protocol set up in the design is not limited to 
two processors. The next section outlines the imple­
mentation details which must be modified to extend the 
design to more than two processors. 

The design has no support for CS8 mode, so the proces­
sors cannot be booted from 8 bit EPROMS. Instead, 
both processors boot in 64 bit mode, which may com­
plicate the use of the design in stand-alone systems. 

The i860 XP CPU's BERR, or Bus ERRor, input is not 
utilized in this design. The pin could be used simply as 
a non-maskable interrupt pin, but the memory bus con­
troller as designed makes no provision to use BERR to 
correct a faulty bus access. Likewise, the parity check 
results from the i860 XP CPU's PCRK # pin are of 
little value in this design outside of testing the i860 XP 
CPU's parity functions. The MBC itself does not check 
the PCRK # output, and has no means of reissuing an 
access in case of parity error. 

The memory bus controller design here does not decode 
and utilize the i860 XP CPU INT A cycles. The INT 
pin itself is connected directly to the i860 XP CPU, 
without affecting MBC operation. 

2-491 

• 



CLOCK 

NCLK, 

NAOS#' 

NA[31:3] 

NW/R# 

NNA# 

, MKEN# 

1.10[63:0] 

, NBROY#, ' 

NSNPSTB# ' 

NSWENO# 

MHITMI#," ' 

NABORT# 

MBOFf# , 

CLOCK 

,MClK 

;MAOS# 

MA[31:3] 

MW/R# 

NNA# 

NKEN# 

1.10[63:0] 

:NBROY# 

MSNPSTB# 

MSWENO# 

MHITMI#, 

NABORT# 

NBOFF# 

AP-452 

2 

240957-23 

Figure, CoS. Potentially Allocatable Write 

240957-24 

Figure C-6. Non-Allocatable Write 

2-492 



Ap·452 

The MultiProcessor Interrupt Controller (MPIC) cur­
rently being designed by Intel is not utilized in or sup­
ported by this memory bus controller. 

The memory bus controller's treatment of LOCKed cy­
cles is simple but straightfoward: when the 82495 issues 
a memory access which is LOCKed (KLOCK# ac­
tive), the MBC will not relinquish the bus until a cycle 
which is not LOCKed is issued. While this is adequate 
for simple systems, it will not suffice for dual ported 
memories, where a given block of memory can be ac­
cessed through more than one bus. In such systems, a 
LOCK signal must be introduced. to alert all possible 
simultaneous users of memory that a LOCKed access is 
in progress. 

!EXTENSION' OF DESIGN TO THREE 
OR MORIE CPUs 

Two Processor Implementation 
Overview 

Figure C-7 presents a simplified view of the multipro­
cessing signals for the two processor implementation. 
The basic aiidress, data, and memory cycle control lines 
are attached to a common bus. Only the core which 
controls the bus will drive these signals, with all other 
cores floating these lines and asserting MHLDA #. 

When the bus master MBC issues a cycle, the 
MCACHE# and MW/R# cycle attributes also serve 
to drive the 82495s' SNPINV and SNPNCA inputs of 
both cores. SNPSTB# is issued by the master in the 
clock following MADS#. In reality, both cores have a 
SNPSTB# output at their V-side state machines driv­
ing a common line which connects to the SNPSTB# 
input of both 82495s. The core which does not own the 
bus floats its state machine driver on MHLDA, so the 
signal acts only as an input in that core. The master 
drives the SNPSTB # line, but the action of SNPSTB # 
is blocked in its own 82495 because its MAOE# signal 
is asserted. 

The results of the snoop are driven out on the snooping 
core's MTHIT# and MHITMO# outputs, and 
MSWENDO # is asserted. These signals are connected 
directly to the MHITMI # , MWB/WT # , and 
MSWENDI # inputs in the master core, respectively. 

The MBOFF # signals of the two MBCs are also con­
nected together. During MHLDA (in a snooping 
MBC) MBOFF# is an input, and in the master it is an 
output. If the master asserts MBOFF, control of the 
data and control busses is given to the snooping MBC 
so that a snoop write-back can be performed. 

Three or More Processors 

This section gives one method of extending the design 
given here to three or more processors. The solution 

presented here assumes that no changes are made to the 
state machines as they.are written for the two processor 
system. Instead, some minor glue logic is added to three 
of the signals to make the core an element in a scalable 
multiprocessing system.' However, modifying the state 
machines is also a plausible solution.' 

In an implementation with three or more processors, 
the primary address, data, and cycle control lines are 
still connected to a common bus, as in the two proces' 
sor version. MCACHE# and MW/R# are also uti­
lized in the same way as the two processor version: the 
outputs of the cores drive a common line which in turn 
also drives the 82495 SNPNCA and SNPINV inputs of 
all cores .. 

The SNPSTB # signal connects directly from core to 
core in a two processor version. In an implementation 
with three or more processors, .the SNPSTB # ,line is 
simply extended to all the processors in the system. 
Only the bus master will actually drive the line, and 
snoopers will be floating theSNPSTBi;I output from 
their state machines. Again, the snoop request is ig­
nored in the master because its MAOE# is asserted. 
Similarly, the MBOFF# signal becomes a common line 
which only the master will drive and which all other 
cores will sample. 

The six signals in the upper portion of diagram C-7, 
which communicate MSWEND and the snoop results 
MHITMO# and MTHIT#, will require more glue 
logic to extend the design to three or more processors. 
The snoop results MHITMO # and MTHIT # must 
now be, considered for multiple cores when a snoop has 
been issued, and the master MBC must not sample 
these results until all snooping cores have issued their 
MSWENDO#. 

To resolve these issues, common bus lines carrying 
these signals are introduced, where all cores have out­
puts driving these lines, and inputs to sample them. The 
characteristics of such MTHIT # and MHITM # lines 
are straightforward: the line should default to 1, and if 
any core drives one of these outputs low, the line. 
should be pulled low. The MTHIT# line has the sim­
plest solution. As shown in figure C-8, by passing the 
signal which is produced by the core through an open 
collector buffer, the buffered MTHIT#s can be tied to 
a single line which is sampled directly by all cores' 
MWB/WT# pins. The open collector buffer sinks cur­
rent like a normal gate output to drive a logic 0, but 
instead of driving current for a logic 1, the open collec- . 
tor device assumes a high impedance state for logic 1. 
Thus, if all of the cores outputs MTHIT# as 1, the 
MTHIT # line remains at a logic 1 level because of the 
pull-up resistor. If one or more cores outputs a logic 0, 
the MTHIT # line will be pulled to the logic 0 level. 
This precisely matches the desired behavior of 
MTHIT # for the system: if any 1 or more core(s) has 
the snooped data cached, the master MWB/WT # in­
put must ,be asserted low. It is important to note that 

2-493 

II 



intel~ . AP-452 

CORE A 

MSWENDO#· (0) 
MSWENDI# (I) 

MHITMO# (0) 
MHITMI# (I) 

MTHIT# (0) 
MWB/WT# (I) 

MBOFF# (1/0) L 

MSNPSTB# (1/0) 
SNPINV (I) t- ~ ...J SNPNCA(I) 

(f) 
(f) o· 
w .a: . , .. ~ 
a:<f-
Of-Z I'll: 
0<0 Ua: 
<OU <~ 
~~~ ~.::E 

1

CORE B

(0) MSWENDO#
(I) MSWENDI#

(0) MHITMO#
(I) MHITMI#

(0) MTHIT#
(I) MWB/WT#

(1/0) MBOFF#

(1/0) MSNPSTB#
(I)
(I)

SNPINV
SNPNCA

...J

~
'II: I
a:U
~<3
::E::E

1

(f)
0 (f)
a: w
f-<a:
Zf-O
0<0
Y9-::
::E::E::E

TO. MEMORY
240957-29

Figure C-7. Interprocessor Communications in Two Processor System

2·494

AP-452

the MTHIT # output of the master is floated: because
the 82495 MTHIT# output only changes on each new
snoop, the value of the master MTHIT # output for the
previous snoop would erroneously be included in decid­
ing the level of the MTHIT # line.

The MHITM # line follows the same principle as the
MTHIT # line. The MHITM # signal is not floated in
the master core, and poses the problem which floating
MTHIT # avoids: the value of the master's last MHIT­
MO# output is still present when the new access is
being made. To resolve this, the inverted value of
MHLDA is ORed with MHITMO# before going to
the open collector buffer. The master's MHLDA is al­
ways a 0, so the OR gate will always guarantee a I
being passed from the master to the MHITM # line.
Again, if one or more of the snooping MBCs outputs a
logic 0, the MHITM # line will properly assume a 0
level.

The open collector buffer presents an easy way to add
new MBCs to the shared lines. The desired behavior of
a shared MSWENDA (MSWEND All) line is different
from the attribute lines, MTHIT # and MHITM # .
Where the master core should sample a 0 if anyone or
more snooping core(s) drives a 0 on these attribute
lines, the master core must not receive its MSWEN­
DI # indication until all cores in the system have as­
serted their MSWENDO# output. The answer is to

invert the MSWENDO output of each snooper, so that
a. zero is driven onto the MSWENDA . line when the
snoop is being performed, and a one is output if the
snoop has completed. From the MSWENDI # perspec­
tive, MSWENDI # should not be asserted at the master
core if any snooping core is still driving a zero on the
MSWENDA line (is not done snooping). Therefore, the
MSWENDA line is the opposite logic polarity of the
actual MSWENDO# signal. The master samples
MSWENDA after the signal passes through an invert­
er, to recorrect the logic level. The output of each core
is passed through inverter before going to the open col~
lector huffer. The inverting device is a NAND gate be­
cause the SWENDO# signal shares the problem of
MHITM #, and must be "faked" by the master. In this
case, instead of the last snoop's results causing the
problem, the master's SWENDO# signal is reset to 1
(still snooping) when the SNPSTB# line is asserted.

Again, these simple adaptations can be implemented in
a similar manner in the logic of the state machines. The
MHITMO# line can be forced to a logic one or floated
when the core is a master (after YBGT, for example).
The MSWEND signal might be implemented as an as­
serted-high system signal, if open collector buffers are
used to attach new cores to the shared system bus.

2-495

I\)

1.
co
en

."
C
c
jj;
o
f4
I'TI

r;
:::J
1/1
0"
:::J
C)
i:
CD

I

"

1

~ I'~ I ~ (fJ

'" Z """-I j"O
I :(/)

Co) ! -f I"
o I,?: I~

i

e- G
I I

+ ~ kJ=<J= ~ . '

~.~ ~ if
1\ .

r--
:-i

I "-----l--
I ~ <1=<J= ~(
!

1
I

!
'----,

I 1 I
I

j I ,

I
! e- (;

~ <1=<J=
i ~ I;: ~

(fJ '----,

::;

I~ i~ I~

MBOFFM
MSNPSTB~

MSWENDIN

MHITMI#
MWB/WH
MSWENDO#

MHITMO#

MTHIT#

MHLDA

MBOFF#
MSNPSTB#

MSWENDII

MHITMI#
MWB/WT#

MSWENDO#

MHITMO#

MTHIT#

MHLDA

MBOFF#
MSNPSTB#

MSWENDI# "

MHITMI#
MWB/WTN

MSWENDO#

MHITMO,

MTHIT#

MHLDA

n
0
::II
m
J>

C')
0
:0
m
m

C')
0
:0
m
C')

_.
€:

@

»
-U .
~
en
N

"@
2SJ
!iiiiI
IF'

~
~
~
2SJ
~

intel., AP-452

STATE MACHINES AND SCHEMATICS

STATE DIAGRAMS

CADS. CWR# + CDTS# • CWR

YSBGT# • SNPADS#

240957-31

)cASTB

RESET. CLDRV • TR4
ySBGT + ENBGT

RESET. CLORV • TR4

RESET. CLDRV TR'

RESET. CLORVR • TR4

CROY# • (YSBGT + ENBGT)
/CKENLC

t.lKEN ~ TRANSPARENT ~
CKENLC.... L LATCH •

CKEN
CROY

XBGTKWND

2-497

•

240957-32

AP-452

RESET

CLEN 1 WSDTS.(YSCEOC.ENBRDY.PNDCEOC)

CLEN1#
240957-33

XBRDY

CPUEN#
RESET

BRDY#

BRDY#

CPUEN • LKCACHE. CKEN • CACHE

BRDY#

BRDY#

240957-34

XCLEN

2-498

AP-452

ELSE

+ CRDY • WCPLB
CRDY • WCPLB# . P8GT# • YS8GT#

+ CRDY#
(PBGT + YS8GT) • WCPLB#

240957-35

}(CNA

RESET. SLFTST#

RESET. SLFTST

YSMEOC. WSDTS#

YSMEOC#

caSTC

240957-36

XCRDY

2-499

int'eL AP-452

LBROY = CLEN 1.BRDY
YSCEOC#

LBROY. YSCEOC

LBROY#
240957-37

XCTRCK

COTS# • SNPAOS#

CROY#
240957-38

XDTSTRCK

2-500

Ap·452

YSBGT

240957-39 240957-40

XENBGT XENSWND

t.4SNPSTB# + SNPCYC
240957-41

XMSWNDO

240957-42

XSTFAIL

2-501

· intet

RESET. TR4#

RESET. TR4

CROY# • PBGT • (SNPOIS + YSNSWNO. ENSWNO)

CROY#
240957-43

XSWIND

LBROY = CLEN 1.BROY

BGT#

LBROY. BGT. ROYSRC
CROY# • LBROY

CROY. LBRDY#

LBRDY# CRDY# • LBROY# CRDY#
240957-44

XWCPLB

2-502

AP-452

MRESET

YALLOC. (WMSWND. MHITMI)#

VABORT

VALLe

2-503

YSWEHITM. (YPIPE# + YMEOC) . MAOE /--'-"'"""-""'--\
: YALLOC • MKEN • YNOPIPE. YMEOC#

YALLOC. YMEOC. YPIPE

240957-45

240957-46

FI

intaL

t.tRESET

AP-452

MBRO.MLEN I.MBRDY.WMSWNO.MABORT#.(CLEN 12+CLEN4)
+MBR I.MLEN I.WMSWNO.MABORT#.(CLEN 12+CLEN4)
+MBR I.MLEN2.MBROY.WMSWNO.MABORT#.(CLEN 12+CLEN4)
+MBR2.MLEN2. WMSWNO.MABORT# .(CLEN 12+CLEN4)
+MBR I.MLEN4.l.tBROY .WMSWNO.MABORT#.CLEN 12
+(MBR2+MBR3).MLEN4.WMSWND.MABORT# .CLEN 12
+MBR3.MLEN4.MBRDY .WMSWND. MABORT#:CLEN4
+ (MBR4+M BR5 + M BR6 + hi BR7 + M BRB). MLEN4. WMSWN 0

.MABORT#.(CLEN 12+CLEN4)

YCPUEOC

YMEOC# + YPIPE. XLRDYSRC#

YCPULEN

2-504

240957-47

240957-48

intet

MRESET

MRESET

XSAS#

AP-452

YMSWEND

YENMSWND
240957-49

XSAS

YBGT

PXSAS = XSAS.ENXSAS.XSNPWB#
PSWBAS = XSAS.ENXSAS.XSNPWB

YENXSAS

2-505

240957-50

inlel..

MRESET

AP-452

YIMSWEND = MSWENDI.YALLDC#.DISWND#

YIMSWND

MBRDY

YMBRDY

2·506

MBRDY

240957-52

240957-51

InteL AP-452

PXSAS# • MHLDA

YMBREQ

YSWEHITM

PCTCXFR" • RSTRT
+ PCTCXFRII • RSTRT# • PXSAS • (MHOLD" + YMLOCK)

{/YMADS, YBGT IF RSTRT"}

{/SIGNAL} = SIGNAL ASSERTED
YMEOCII

YMBTRCK

2-507

YBGT" 240957-53

YMEOCII

240957-54

intel.,

MRESET

(YNOPIPE +IIHLDA). YWEOC
+YPIPE. YMEOC.IIWR'
+YNOPIPE •• YPIPE •• IIHLDA.

AP-452

YMADS.MWR.(YNOPIPE+IIHLDA)
+YPIPE.MWR.YMEOC

YMEOC#.(YNOPIPE+YPIPE+IIHLDA)
+YIIEOC.YPIPE.MWR

YNOPIPE.(MNA
• YMADS"WIINA)
.WMSWND+YPIPE"
.YMEOC

YMDOE

YPIPE+YIIEOC •• YNOPIPE'
+YIIEOC#.YNOPIPE.[(t.lNA
, YIlADS"+WIINA).WIISWNDj"

YMEMALE

2-508

YBGT

240957-56

240957-55

InteL

MRESET

AP-452

MBRO.t.lLEN I.MBRDY. WMSWND.t.lABORT#
+MBR 1.t.lLEN I.WMSWND.t.tABORT#
+MBR 1.I.tLEN2.MBRDY .Wt.lSWND.I4ABDRT#
+t.lBR2.t.lLEN2.WMSVlND.MABORT#
+t.lBR3.IoILEN4.t.lBRDY.WI4SWND.I4ABORT#.TR4
+MBR4.t.lLEN4.Wt.lSVlND.MABORT#.TR4
+ t.lBR7 .t.4LEN4. MBRDY. VlI4SWN D.MABORT #
+ t.lBR8.MLEN 4. VlMSWN D.MABORT/;
+YALLOC.I.tABORT

(/YtAFRZ IF YALLOC.tAABORT)

YMEMEOC

L I = LEN#.(XLKCACHE#+MKEN#.XLRDYSRC)
L2 = LEN.(XLKCACHE#+MKEN#.XLRDYSRC)
L4 = XLKCACHE.(MKEN+XLRDYSRC#)

YMEMLEN

2-509

Yt.lEOC# + YPIPE. L I

240957-57

240957-58

WRESET

YBGT.KLOCK.
.YALLOCO
+HBASW8111

WRESET

AP-452

ELSE'

YBGT.KLOCK
+YALLOe
+HBASWB

YMEMLOCK

YBGT.(SHPDIS+WMIO+
WWR.WCACHE.MWR_
.XLROYSRC •• RFO).

YMSNPSTB

2-510

240957-59

240957~60

MSRDY.

t.4R£SET

PCTCXFR#

AP-452

(YIroj[OC411 + MBOFfl). MBRDY"
+ YJ"CEOC, YPIPE. MBRDY

MBRDY#

YRDYSTR

PCTCXFR

YSWEHITM.t.lWR.YAlLOCII
+CTCOIS#
+CTCDlS.(YSWEHITt.I+PCTCXF"R)

YRSTRT

2-511

240957-61

240957-62

inteL

MR[SET

YMAOS
+ YM[OC
+ YNOPIP[#

AP-452

YNOPIPE. YMADS# • !.INA
+ PIPE. YMEOC. WNA. YMADS#

YMADS# . YMEOC# • YNOPIPE
240957-63

MRESET

YMEOC. YPIPE#.(PCTCXFR#
+YALLOC#)+YMEOC. YPIPE
.SNPDlS#.MMIO.(MWR
.MCACHE)#.(YMSWENO#
+ENMSWND)#

YWMNA

YMEOC#

YBGT.(SNPDIS+MMIO#+MWR
.MCACHE)+YNOPIPE.SNPDIS#
.MMIO.(MWR.MCACHE)#. YMSWEND
+YALLOC.YMSWEND.ENMSWND

YPIPE.(SNPDIS+MMIO#+MWR
.MCACHE).YMEOC#+YPIPE
.SNPDIS#.MMIO.(MWR
.MCACHE)#.YMSWEND
.ENMSWND

YSWEHITMI ~ YMSWENO.MHITMI.ENMSWNO.(YALLOC#+YNOPIPE#. YPIPE#)

YWMSWND

2-512

240957-64

inteL AP-452

PLD CODES

---------------------------------- Declaration Segment -----------­
TITLE AYMBTRCK
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91
CHIP xOl 85C22vlO

This PLD contains the YMBTRCK state machine.

;---------------------------------- PIN Declarations ---------------
PIN 1 MCLK COMBINATORIAL ;
PIN 2 MRESET COMBINATORIAL ;
PIN 3 /WMSWND COMBINATORIAL ;
PIN 4 /MBOFFI COMBINATORIAL ;
PIN 5 /PXSAS COMBINATORIAL ;
PIN 6 /PSWBAS COMBINATORIAL
PIN 7 MHOLD COMBINATORIAL ;
PIN 8 /MNA COMBINATORIAL ;
PIN 9 /WMNA COMBINATORIAL ;
PIN 10 /YMLOCK COMBINATORIAL
PIN 11 /YSWEHITM COMBINATORIAL
PIN 12 GND
PIN 13 /PCTCXFR COMBINATORIAL
PIN 14 /RSTRT COMBINATORIAL
PIN 15 /YMEOC COMBINATORIAL
PIN 16 UNUSED registered ;
PIN 17 /YBGT registered ;
PIN 18 /YMADS registered ;
PIN 19 /MAOE registered ;
PIN 20 /YNOPIPE registered
PIN 21 /YMSTR registered ;
PIN 22 /YPIPE registered ;
PIN 23 /YMSEL registered ;
PIN 24 VCC
;----------------------------------- Boolean Equation Segment
EQUATIONS

YNOPI PE : ~ /MRESET * PXSAS " /MHOLD * YMEOC * YNOPIPE
+ /MRESET * PXSAS " YMLOCK * YMEOC * YNOPIPE

YPIPE

YMSTR

+ /MRESET * /PXSAS * /YMEOC * /YSWEHITM * YNOPIPE
+ /MRESET * /YMEOC * /WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * YMEOC * /YSWEHITM * /PCTCXFR * YPIPE
+ /MRESET * /PCTCXFR * RSTRT * YMSTR * /MAOE
+ /MRESET * /MNA * /WMNA * /YMEOC * /YSWEHITM * YNOPIPE
+ /MRESET * MHOLD * /YMLOCK * /YMEOC * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * /MHOLD * /PCTCXFR * YMSTR * /MAOE
+ /MRESET * PXSAS * YMLOCK * /PCTCXFR * YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /MBOFFI * /YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /YSWEHITM * /PCTCXFR * /YNOPIPE * /YPIPE

* YMSTR
+ /MRESET * PXSAS * YMLOCK * /YSWEHITM * /PCTCXFR * /YNOPIPE * /YPIPE

* YMSTR

:~ /MRESET * /YMEOC * YPIPE
+ /MRESET * PXSAS * /MHOLD " MNA * /YMEOC * WMSWND * /YSWEHITM

* YNOPIPE
+ /MRESET * PXSAS * /MHOLD * WMNA * /YMEOC * WMSWND * /YSWEHITM

* YNOPIPE
+ /MRESET * PXSAS * MNA * YMLOCK * /YMEOC * WMSWND * /YSWEHITM

* YNOPIPE
+ /MRESET * PXSAS * WMNA * YMLOCK * /YMEOC * WMSWND * /YSWEHITM

* YNOPIPE

:~ /MRESET * YPIPE

2-513

II

240957-65

intet AP-452

+ /MRESET * /YMEOC * YNOPIPE
+ /MRESET * YSWEHITM * YNOPIPE
+ /MRESET * /MHOLD * YMSTR
+ /MRESET * YMLOCK * YMSTR
+ /MRESET * /MHOLD * /MBOFFI * /MAOE
+ /MRESET * PCTCXFR * YMSTR ,~ /MAOE
+ /MRESET * RSTRT * YMSTR * /MAOE

MAOE := /MRESET * /PCTCXFR * RSTRT * YMSTR * /MAOE
+ /MRESET * /YMEOC * YPIPE

YMADS

+ /MRESET * YMLOCK * YMEOC * YNOPIPE
+ /MRESET * /YMEOC * /ySWEHITM * YNOPIPE
+ /MRESET * /YSWEHITM * /PCTCXFR * YPIPE
+ /MRESET * /YMEOC * /YMSTR * MAOE
+ /MRESET * YMLOCK * /YSWEHITM * /PCTCXFR * YMSTR
+ /MRESET * /MHOLD * /PCTCXFR * YMSTR * /MAOE
+ /MRESET * YMLOCK * /PCTCXFR ," YMSTR * /MAOE
+ /MRESET * /MHOLD * /MBOFFI * /YMSTR * /MAOE
+ /MRESET * PSWBAS * MBOFFI ," /YMSTR * /MAOE
+ /MRESET * /MHOLD * /YMLOCK * /YMEOC.* /YNOPIPE * MAOE
+ /MRESET * /MHOLD * /YMLOCK * YMEOC * /YPIPE * YMSTR * MAOE
+ /MRESET * /PXSAS * YMLOCK * /YNOPIPE * /YPIPE * YMSTR * MAOE

:= /MRESET * PXSAS * /MHOLD * YMEOC * YNOPIPE
+ /MRESET * PXSAS * YMLOCK * YMEOC * YNOPIPE
+ /MRESET * /PCTCXFR * RSTRT * YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /PCTCXFR * YMSTR * /MAOE
+ /MRESET * PXSAS * YMLOCK ,~ /PCTCXFR * YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /MBOFFI * /YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /YSWEHITM * /PCTCXFR * /YNOPIPE * /YPIPE

," YMSTR
+ /MRESET * PXSAS ~, YMLOCK ," /YSWEHITM * /PCTCXFR ,~ /YNOPIPE * /YPIPE

* YMSTR
+ /MRESET * PSWBAS * MBOFFI * /YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * MNA * WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * /MHOLD * WMNA * WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * MNA * YMLOCK * WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * WMNA * YMLOCK * WMSWND * /YSWEHITM * YNOPIPE

I
YBGT := /MRESET * PXSAS * /MHOLD * YMEOC * YNOPIPE

YMSEL

UNUSED

+ /MRESET * PXSAS * YMLOCK * YMEOC * YNOPIPE
+ /MRESET * PXSAS ,~ /MHOLD * /MBOFFI * /YMSTR ," /MAOE
+ /MRESET * PSWBAS * MBOFFI * /YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD "I, MNA ~, WMSWND * /YSWEHITM "I, YNOPIPE
+ /MRESET ," PXSAS * jMHOLD * WMNA ," WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * MNA * YMLOCK ," WMSWND * /YSWEHITM ,~ YNOPIPE
+ /MRESET * PXSAS * WMNA * YMLOCK * WMSWND * /YSWEHITM * YNOPIPE
+ /MRESET * PXSAS * YMLOCK * /YNOPIPE * /YPIPE * YMSTR * MAOE
+ /MRESET * PXSAS * /MHOLD * /PCTCXFR * /RSTRT * YMSTR * /MAOE
+ /MRESET * PXSAS * YMLOCK * /PCTCXFR * /RSTRT * YMSTR * /MAOE
+ /MRESET * PXSAS * /MHOLD * /YSWEHITM * /PCTCXFR * /YNOPIPE * /YPIPE

," YMSTR * MAOE

:= /MRESET * /YMEOC * YPIPE
+ /MRESET * /YMEOC * /YSWEHITM * YNOPIPE
+ /MRESET * /YSWEHITM * /PCTCXFR * YPIPE
+ /MRESET * /YMEOC * WMSWND ," PCTCXFR * /RSTRT ," YMSTR * /MAOE

:= VCC
240957-66

2-514

Ap·452

---------------------------------- Declaration Segment -----------­
TITLE AYMEMLEN
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91
CHIP xOl 85C22V10

This PLD contains the YMEMLEN and YCPUEOC state machines

;---------------------------------- PIN. Declarations ---------------
PIN 1 MCLK COMBINATORIAL ;
PIN 2 MRESET COMBINATORIAL ;
PIN 3 /YMSEL COMBINATORIAL ;
PIN 4 /yPIPE COMBINATORIAL ;
PIN 5 /MABORT COMBINATORIAL ;
PIN 6 /MBRDY COMBINATORIAL ;
PIN 7 !WMSWND COMBINATORIAL ;
PIN 8 XLRDYSRC COMBINATORIAL ;
PIN 9 /XLKCACHE COMBINATORIAL
PIN 10 /MKEN COMBINATORIAL ;
PIN 11 LEN COMBINATORIAL ;
PIN 12 GND
PIN 13 /CACHE COMBINATORIAL INPUT
PIN 14 /YMEOC COMBINATORIAL ; INPUT
PIN 15 /SVRO COMBINATORIAL INPUT
PIN 16 /SVR1 COMBINATORIAL INPUT
PIN 17 /SVR2 COMBINATORIAL INPUT
PIN 18 /SVR3 COMBINATORIAL INPUT
PIN 19 /yCEOC registered ;
PIN 20 /SVLO registered ;
PIN 21 /SVLl registered ;
PIN 22 /SVCO registered ;
PIN 23 /SVCl registered ;
PIN 24 VCC
;---------------------------------Boolean Equation Segment -----­
EQUATIONS

SVLl := /YMEOC * /MRESET * SVLl
+ YPIPE * LEN * /XLKCACHE * /MRESET * SVL1
+ YMSEL * LEN * /MRESET * /SVL1 * /SVLO
+ YPIPE * LEN * XLRDYSRC * /MKEN * /MRESET * SVL1
+ YPIPE * YMEOC * LEN * /XLKCACHE * /MRESET * SVLO
+ YMSEL * /XLRDYSRC * XLKCACHE * /MRESET * /SVL1 * /SVLO
+ YMSEL * XLKCACHE * MKEN * /MRESET * /SVLl * /SVLO
+ YPIPE * YMEOC * LEN * XLRDYSRC * /MKEN * /MRESET * SVLO

SVLO := YMSEL * /XLRDYSRC * XLKCACHE * /MRESET * /SVLl * /SVLO
+ YMSEL * XLKCACHE * MKEN * /MRESET * /SVL1 * /SVLO
+ /YMEOC * /MRESET * SVLO
+ YPIPE * /LEN * /XLKCACHE * /MRESET * SVLO
+ YMSEL * /LEN * /MRESET * /SVLl * /SVLO
+ YPIPE * YMEOC * /LEN * /XLKCACHE * /MRESET * SVLl
+ YPIPE * /LEN * XLRDYSRC * /MKEN * /MRESET * SVLO
+ YPIPE * YMEOC * /LEN * XLRDYSRC * /MKEN * /MRESET * SVLl

SVC1 : = /YMEOC * /YCEOC * /MRESET ,~ SVC1
+ YMSEL * XLRDYSRC * /MRESET * /SVC1 * /SVCO
+ YPIPE * YMEOC * /CACHE * XLRDYSRC * /MRESET * SVC1
+ YPIPE * YMEOC * /CACHE * XLRDYSRC * /MRESET * SVCO

SVCO := /YMEOC * /MRESET * SVCO
+ /YMEOC * YCEOC * /MRESET * SVC1
+ YPIPE * /XLRDYSRC * /MRESET * SVCO

2-515

240957-67

intel~ AP-452

+ YPIPE * YMEOC * /XLRDYSRC * /MRESET *SVCl
+ YMSEL * CACHE * /MRESET * /SVCl * /SVCO
+ YMSEL * /XLRDYSRC * /MRESET * /SVCl * /SVCO

YCEOC := SVR3 * /SVR2 * /SVRl * SVLl * SVLO * SVCl * WMSWND
* /MABORT * /MRESET * /YCEOC

+ SVR3 * /SVRl * /SVRO * SVLl * SVLO * SVCl * WMSWND
,~ /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * SVRl * /SVRO * SVLl * /SVLO * SVCl

,~ WMSWND * /MABORT * /MRESET * jYCEOC
+ /SVR3 * /SVR2 * /SVRl * SVRO * /SVLl * SVLO * SVCl

,~ WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * SVR2 * SVRl * /SVRO * SVLl * SVLO * SVCl

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * SVRl * SVRO * SVLl * SVLO * SVCl

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * SVRl * /SVRO * SVLl * SVCl * /SVCO

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * SVR2 * /SVRO * SVLl * SVLO * SVCl * /SVCO

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * /SVRl * /SVLl * svto * SVCl * MBRDY

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * SVR2 * /SVRO * SVLl * SVLO * SVCl * MBRDY

* WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * /SVRI * SVRO * SVLl* /SVLO * SVCl

* MBRDY * WMSWND * /MABORT * /MRESET * /YCEOC
+ /SVR3 * /SVR2 * /SVRI * SVRO * SVLl * SVCl * /SVCO

* MBRDY * WMSWND * /MABORT * /MRESET * /YCEOC

2-516

240957-68

AP-452

---------------------------------- Declaration Segment -----------­
TITLE BYRDYSTR
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91
CHIP xOl 85C22V10

This PLD contains the YRDYSTR, YRDYSTR, and YMEMEOC state machines.
,
;-------------~-------------------- PIN Declarations --------------­
PIN 1 MCL!{ COMBINATORIAL ;
PIN 2 MRESET COMBINATORIAL ;
PIN 3 TR4 COMBINATORIAL ;
PIN 4 /YALLOC COMBINATORIAL ;
;PIN 5 ####
PIN 6
PIN 7
PIN 8
PIN 9
PIN 10
PIN 11
PIN 12
PIN 13
PIN 14
PIN 15
PIN 16
PIN 17
PIN 18
PIN 19
PIN 20
PIN 21
PIN 22
PIN 23
PIN 24

/MABORT
/MBRDY
/WMSWND
/MBOFFI
/YMSEL
/YPIPE
GND
/SVLl
/SVLO
/SVR3
/SVR2
/SVRl
/SVRO
/YMEOCl
jYMEOC
/YMFRZ
/CTCEND
/SV
VCC

COMBINATORIAL ;
COMBINATORIAL ;

COMBINATORIAL ;
COMBINATORIAL ;

COMBINATORIAL ;
COMBINATORIAL

COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT

registered
registered
registered
registered

registered
registered ;

registered ;
registered

registered ;

- - - - - - - - - - - - --- - -- - - - - - - ----- -- - - -- Boolean Equation Segment ------
EQUATIONS

SVR3 = /MRESET * /YMEOC * /MBRDY * /MABORT * SVR3
+ /MRESET * MBRDY * /MABORT * /MBOFFI * SVR2
+ /MRESET * /MBRDY * /MABORT * SVR3 * SVR2
+ /MRESET ,~ MBRDY * /MABORT * SVR2 * SVRl
+ /MRESET * /YMEOC * /MABORT * SVR3 * SVRO
+ /MRESET * MBRDY * /MABORT * /TR4 * /SVR3 * SVR2

SVR2 = /MRESET * /MBRDY * /MABORT * SVR2
+ /MRESET * /MABORT * SVR2 * SVRI
+ /MRESET * /YMEOC * MBRDY * /MABORT * SVRl
+ /MRESET * MBRDY * /MABORT * MBOFFI * SVRl
+ /MRESET * MBRDY ,~ /MABORT * SVRl * SVRO

SVRI /MRESET * /MABORT * SVRl * SVRO
+ /MRESET * /YMEOC * /MBRDY * /MABORT * SVRl
+ /MRESET * /MBRDY * /MABORT * MBOFFI * SVRl
+ /MRESET * /MBRDY * /MABORT * SVR2 * SVRl
+ /MRESET * /YMEOC * MBRDY * /MABORT * /SVR3 * SVRO
+ /MRESET * MBRDY * /MABORT * MBOFFI * /SVR3 * SVRO
+ /MRESET * /YMEOC * MBRDY * /MABORT * SVR3 * /SVR2 * /SVRO

SVRO /MRESET * MBRDY * /MABORT * /MBOFFI * SVR3
+ /MRESET * MBRDY * /MABORT * SVR3 * /SVR2
+ /MRESET * /YMEOC * /MBRDY * /MABORT * SVRO

2-517

FI

240957-69

AP-452

+ jMRESET * jMBRDY * jMABORT ,~ SVRI * SVRO
+ jMRESET * jMBRDY * jMABORT * MBOFFI * jSVR3 * SVRO
+ jMRESET * YPIPE * YMEOC * MBRDY * jMABORT * jSVRl * SVRO
+ jMRESET * YMSEL * MBRDY * jMABORT * jSVR2 * jSVRl * jSVRO
+ jMRESET * MBRDY * jMABORT * MBOFFI * jSVR2 * jSVRl * jSVRO
+ jMRESET * YPIPE * YMEOC * MBRDY * jMABORT * jSVR2 * SVRI

* jSVRO

GTCEND - jMRESET * MBRDY * jMABORT * MBOFFI * SVR3 * SVR2
+ jMRESET * MBRDY * jMABORT * MBOFFI * TR4 * SVR2 * jSVRl

YMEOC - jMRESET * MABORT * YALLOC * jYMEOC * jSV
+ jMRESET * jSVR3 * jSVR2 * SVRI * jSVRO *SVLl * jSVLO

* WMSWND * jMABORT * jYMEOC * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * SVRO * jSVLl * SVLO

,~ WMSWND * jMABORT * jYMEOC * jSV
+ jMRESET * SVR3 * jSVR2 * jSVRl * SVRO * SVLl *. SVLO

* WMSWND * jMABORT * jYMEOC * jSV
+ jMRESET * SVR3 * jSVR2 * jSVRl * SVLl * SVLO * TR4 * WMSWND

* jMABORT * jYMEOC * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * jSVLl * SVLO * MBRDY

* WMSWND * jMABORT * jYMEOC * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * SVRO * SVLl * jSVLO

* MBRDY * WMSWND ,~ jMABORT * jYMEOC * jSV
+ jMRESET * SVR3 * SVR2 * jSVRl * jSVRO * SVLl * SVLO

,~ MBRDY * WMSWND ,~ jMABORT * jYMEOC ,~ jSV
+ jMRESET * SVR2 * jSVRl * jSVRO * SVLl * SVLO * TR4 * MBRDY

,~ WMSWND * jMABORT * jYMEOC * jSV

SV - jMRESET * YMEOC

jYMFRZ - MRESET
+ jMABORT
+ jYALLOC
+ YMEOC
+ SV

YMEOCI - jMRESET * MABORT * YALLOC * jYMEOGl * jSV
+ jMRESET * jSVR3 * jSVR2 * SVRI * jSVRO * SVLl * jSVLO

," WMSWND * jMABORT * jYMEOCl * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * SVRO * jSVLl * SVLO

," WMSWND * jMABORT ,~ jYMEOCl * jSV
+ jMRESET * SVR3 * jSVR2 * jSVRl * SVRO * SVLl * SVLO

* WMSWND * jMABORT * jYMEOCl * jSV
+ jMRESET * SVR3 * jSVR2 * jSVRl * SVLl * SVLO * TR4 * WMSWND

* jMABORT * jYMEOCl * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * jSVLl * SVLO * MBRDY

* WMSWND * jMABORT * jYMEOCl * jSV
+ jMRESET * jSVR3 * jSVR2 * jSVRl * SVRO * sVLl * jSVLO

," .MBRDY * WMSWND * jMABORT * jYMEOCl * jSV
+ jMRESET * SVR3 * SVR2 * jSVRl * jSVRO * SVLl * SVLO

," MBRDY * WMSWND * jMABORT * jYMEOCl * jSV
+ jMRESET * SVR2 * jSVRl * jSVRO * SVLl * SVLO * TR4 * MBRDY

," WMSWND * jMABORT * jYMEOCl * jSV

2-518

240957-70

infel"

TITLE EABORT
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/5/91

CHIP xOl 85C224

AP-452

Declaration Segment

This PLD contains the YABORT, YRSTRT, and YMEMDOE state machines.

Pin Definitions ----------------------
PIN 1 MCLK
PIN 2 MRESET
PIN 3 WMSWND
PIN 4 YSWEHITM
PIN 5 YALLOC
PIN 6 YPIPE
PIN 7 YNOPIPE
PIN 8 YMEOC
PIN 9 MHITMI
PIN 10 MAOE
PIN 11 CTCEND
PIN 13 MKEN
PIN 14 MHLDA
PIN 15 YWR
PIN 16 YMADS
PIN 23 CTCDIS

PIN 18 RSTRT
PIN 19 YMDOE
PIN 20 PCTCXFR
PIN 21 TRIABORT
PIN 22 MABORT
PIN 17 SV ;Swapped pins 23 and 17 to fit 85C224

EQUATIONS

/RSTRT.D :- /MRESET * /PCTCXFR * /CTCDIS
+ /MRESET * /PCTCXFR * /RSTRT
+ /MRESET * /YSWEHITM * /CTCDIS * RSTRT
+ /MRESET * /YSWEHITM * YWR * YALLOC * RSTRT

RSTRT.CLKF - MCLK
RSTRT.RSTF - GND
RSTRT.SETF - GND
RSTRT.TRST - VCC

/YMDOE. D . - /MRESET ,~ YWR * /YPIPE * /YMEOC
+ /MRESET ,~ /YNOPIPE * YMEOC * /YMDOE
+ /MRESET * MHLDA * YMEOC * /YMDOE
+ /MRESET * /YPIPE * YMEOC * /YMDOE
+ /MRESET * /YMADS * YWR * /YNOPIPE * YMDOE
+ /MRESET * /YMADS * YWR * MHLDA * YMDOE

YMDOE.CLKF - MCLK
YMDOE.RSTF - GND
YMDOE.SETF - GND
YMDOE.TRST - VCC

/PCTCXFR.D :- /MRESET * YALLOC * /MABORT
+ /MRESET * /YSWEHITM * /MAOE * PCTCXFR
+ /MRESET * /MHITMI * /WMSWND * /MABORT
+ /MRESET * CTCEND * /PCTCXFR * MABORT
+ /MRESET * /PCTCXFR * MABORT * /SV

2-519

II

240957-71

intel$ AP-452

+ /MRESET * /YSWEHITM * /YPIPE * YMEOC * PCTCXFR
+ /MRESET * /YPIPE * /XMEOC * /YALLOC * PCTCXFR
+ /MRESET * /YNOPIPE * YMEOC ~, /YALLOC * /MKEN * PCTCXFR

PCTCXFR.CLKF = MCLK
PCTCXFR.RSTF = GND
PCTCXFR.SETF = GND
PCTCXFR.TRST = VCC

/TRIABORT.D := /MRESET * /YPIPE * /YMEOC * /YALLOC * PCTCXFR * /MHLDA
+ /MRESET * /YNOPIPE * YMEOC * /YALLOC * /MKEN * PCTCXFR

* /MHLDA
+ /MRESET * /YSWEHITM * /MAOE * YPIPE * PCTCXFR * /MHLDA
+ /MRESET * /YSWEHITM * /MAOE * /YMEOC * PCTCXFR * /MHLDA
+ /MRESET * /YMEOC * /PCTCXFR * MABORT * /SV * /MHLDA

TRIABORT.CLKF = MCLK
TRIABORT.RSTF = GND
TRIABORT.SETF = GND
TRIABORT.TRST = /MHLDA

/MABORT.D '= /MRESET * /YPIPE * /YMEOC * /YALLOC * PCTCXFR
+ /MRESET * /YNOPIPE * YMEOC * /YALLOC * /MKEN * PCTCXFR
+ /MRESET * /YSWEHITM * /MAOE * YPIPE * PCTCXFR
+ /MRESET * /YSWEHITM * /MAOE * /YMEOC * PCTCXFR
+ /MRESET * /YMEOC * /PCTCXFR * MABORT * /SV

MABORT. CLKF = MCLK
MABORT.RSTF = GND
MABORT.SETF = GND
.MABORT . TRST = VCC

/SV.D := MABORT * /SV
+ PCTCXFR

SV . CLKF = MCLK
SV.RSTF = GND
SV. SETF = GND
SV.TRST = VCC

2-520

240957-72

"+ _I IPOO~Il.D~DOO~OOW In-e-" AP-452

---------------------------------- Declaration Segment ------------
TITLE EASTII
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP xOl 85C224

This PLD contains the XASTII, XSTFAIL, and XDTSTRCK state machines

Pin Declarations -----------------

PIN 1 CLK
PIN 2 RESET
PIN 3 CADS
PIN 4 CDTS
PIN 5 SNPADS
PIN 6 CWR
PIN 7 YSIIGT
PIN 8 CRDY
PIN 9 CAHOLD
PIN 10 FSIOUT
PIN 11 SLFTST
PIN 13 OEX'
PIN 14. RDYSRC

PIN 16 LRDYSRC
PIN 17 SV2
PIN 18 STFAIL
PIN 19 SV1
PIN 20 XSNPWII
PIN 21 WSDTS.
PIN 22 XAS

OE control inverted during design conversion.
EQUATIONS

LRDYSRC.D :- RDYSRC
LRDYSRC.CLKF - CLK
LRDYSRC.RSTF - GND
LRDYSRC.SETF = GND
/LRDYSRC.TRST - OEx

/SV2.D :- /RESET * FSIOUT * /SLFTST * STFAIL * SV2
SV2 . CLKF - CLK
SV2.RSTF - GND
SV2. SETF - GND
/SV2.TRST - OEx

/STFAIL.D :- /RESET * FSIOUT * /CAHOLD * /SLFTST * STFAIL * ·SV2
STFAIL.CLKF - CLK
STFAIL.RSTF = GND
STFAIL.SETF = GND
/STFAIL.TRST - OEx

/SV1.D :- /RESET * CDTS * CRDY * /SV1
+ /RESET * CDTS * WSDTS * /SVI
+ /RESET * /SNPADS * XSNPWII * SV1
+ /RESET * /CDTS * CRDY * /WSDTS * XSNPWII

SVl.CLKF - CLK
SVl. RSTF - GND

2-521

240957-73

AP-452

SVl. SETF = GND
/SV1.TRST - OEx

/XSNPWB.D :- jRESET * GRDY * jXSNPWB
+ /RESET * jGDTS * WSDTS * /SVl

XSNPWB.GLKF = GLK
XSNPWB.RSTF = GND
XSNPWB.SETF - GND
/XSNPWB.TRST = OEx

/WSDTS.D :- jRESET * GRDY * jXSNPWB
+ jRESET * jGDTS * XSNPWB
+ jRESET * jWSDTS * jSVl
+ jRESET * SNPADS * GRDY * jWSDTS

WSDTS.GLKF - GLK
WSDTS.RSTF = GND
WSDTS.SETF = GND
/WSDTS.TRST = OEx

/XAS.D :- jRESET * SNPADS * YSBGT * jXAS
+ jRESET * jGDTS * GWR * XAS
+ jRESET * JGADS * jGWR * XAS

XAS . GLKF = GLK
XAS.RSTF = GND
XAS.SETF = GND
/XAS.TRST - OEx

2-522

240957-74

int'eL AP-452

;-----------------------------------Declaration Segment -------------
TITLE EBGTKWN
PATTERN
REVISION 1.0
AUTHOR
COMPANY INTEL
DATE

CHIP INTEL 8SC224

This PLD contains the XBGTKWND, XCNA and XENBGT state machines

;---------------------------------Pin Declarations--------------------
PIN 1 CLK
PIN 2 RESET
PIN 3 YSBGT
PIN 4 CRDY
PIN 5 C8LDRV
PIN 6 TR4
PIN 7 NC5
PIN 8 NC6
PIN 9 WCPLB
PIN 10 CNADIS
PIN 11 NCl
PIN 13 OE
PIN 14 NC2
PIN 15 NC3
PIN 23 NC4

PIN
PIN
PIN
PIN
PIN
PIN
PIN

16
17
18
19
20
21
22

EQUATIONS

CKENLC
ENBGT
CNA
PBGT
KWEND
CSBGT
BGT

/CKENLC.D := IRESET * YSBGT * CRDY * IBGT * IKWEND
+ /RESET * CRDY * ENBGT * IBGT * IKWEND

CKENLC.CLKF = CLK
CKENLC.RSTF = GND
CKENLC.SETF = GND
/CKENLC.TRST = OE

ENBGT.D := /RESET * IYSBGT
ENBGT.CLKF = CLK
ENBGT.RSTF = GND
ENBGT.SETF = GND
IENBGT.TRST = OE

/CNA.D '= IRESET * CRDY * ICNA
+ IRESET * IYSBGT * WCPLB * CNADIS
+ IRESET * /YSBGT * WCPLB * ICNA
+ IRESET * IPBGT * WCPLB * ICNA
+ IRESET * IBGT * WCPLB * CNADIS * CNA

CNA.CLKF = CLK
CNA.RSTF = GND
CNA.SETF = GND
/CNA.TRST = OE

/PBGT.D := IRESET * CRDY * IPBGT

2-523

240957-75

AP-452

+ IRESET * IYSBGT * CRDY * IENBGT* IBGT * IKWEND
PBGT.CLKF - CLK
PBGT.RSTF - GND
PBGT. SETF - GND
IPBGT.TRST = DE

IKWEND.D := IRESET * JBGT * KWEND
+ IRESET * JCRDY * IPBGT
+ IRESET * YSBGT * CRDY * IBGT
+ IRESET * CRDY * ENBGT * JBGT
+ RESET * TR4

KWEND.CLKF - CLK
KWEND.RSTF = GND
KWEND.SETF = GND

'/KWEND.TRST = DE

ICSBGT.D := IRESET * IBGT * KWEND
+ jRESET * ICRDY * IPBGT
+ jRESET * YSBGT * CRDY * IBGT
+ jRESET * CRDY * ENBGT * IBGT
+ IRESET * jYSBGT * ICRDY * IENBGT * IBGT
+ jRESET * jYSBGT * IENBGT * CSBGT * KWEND * PBGT
+ RESET * jC8LDRV

GSBGT.CLKF - CLK
CSBGT.RSTF = GND
CSBGT.SETF = GND
ICSBGT.TRST = DE

IBGT.D := IRESET * IBGT * KWEND
+ IRESET * ICRDY * IPBGT
+ IRESET * YSBGT ,~ CRDY * IBGT
+ IRESET * CRDY * ENBGT * IBGT
+ IRESET * jYSBGT * JCRDY * jENBGT * IBGT
+ IRESET * jYSBGT * IENBGT * CSBGT * KWEND * PBGT

BGT.CLKF = CLK
BGT.RSTF = GND
BGT. SETF = GND
IBGT.TRST = DE

2-524

240957-76

inteL AP·452

- - - - -- - - --- -- - ----- --- -- - - - - - - -- -- Declaration Segment ------------
TITLE EBRDY
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP xOl 85C224

This PLD contains the XBRDY, XMSWNDO, and XCTRCK state machines.

- - - - - -- - - - - - - ---- - - - - - - - - - - - - - - - -- -
PIN 1 CLK
PIN 2 RESET
PIN 3 CLEN1
PIN 4 WSDTS
PIN 5 YSCEOC
PIN 6 SNPCYC
PIN 7 MSNPSTB
PIN 8 CKENLC
PIN 9 MKEN
PIN 13 OEx

PIN 15 CKEN
PIN 17 SV
PIN 18 PNDCEOC
PIN 19 ENBRDY
PIN 20 BRDY
PIN 21 BRDYl
PIN 22 MSWNDO

EQUATIONS

/CKEN = CKENLC * /MKEN
+ /CKENLC * /CKEN
+ /MKEN ,,< /CKEN

CKEN.TRST - VCC

/SV.D :- /RESET * BRDY * /SV
+ /RESET * CLEN1 * /SV

Pin Declarations ----------------

+ /RESET * /YSCEOC * BRDY * ENBRDY * /PNDCEOC
+ /RESET * /YSCEOC * CLENI * ENBRDY * /PNDCEOC

SV. CLKF - CLK
SV.RSTF - GND
SV. SETF - GND
/SV.TRST - OEx

/PNDCEOC.D :- /RESET * /SV
+ /RESET * BRDY * /PNDCEOC
+ /RESET * CLEN1 * /PNDCEOC
+ /RESET * /YSCEOC * ENBRDY * /PNDCEOC
+ /RESET * /YSCEOC * /ENBRDY * PNDCEOC

PNDCEOC.CLKF - CLK
PNDCEOC.RSTF - GND
PNDCEOC.SETF = GND
/PNDCEOC.TRST - OEx

/ENBRDY.D := YSCEOC * PNDCEOC
+ /ENBRDY * PNDCEOC
+ YSCEOC * /BRDY * /CLENI
+ /YSCEOC * BRDY * /ENBRDY

2-525

•

240957-77

AP-452

+ /YSGEOG * GLEN! * jENBRDY
+ /BRDY * /GLENI * ENBRDY * /PNDGEOG
+ RESET

ENBRDY.GLKF - GLK
ENBRDY.RSTF = GND
ENBRDY.SETF - GND
/ENBRDY.TRST = OEx

/BRDY.D :- /RESET * GLENI * /BRDY
+ /RESET * /PNDGEOG * /WSDTS * BRDY
+ /RESET * /YSGEOC * /ENBRDY * /WSDTS * BRDY

BRDY . GLKF = GLK
BRDY.RSTF = GND
BRDY. SETF - GND
/BRDY.TRST - OEx

/BRDYl.D :- /RESET * GLEN 1 * /BRDYI
+ /RESET * /PNDGEOC * /WSDTS * BRDYI
+ /RESET * /YSGEOG * /ENBRDY * /WSDTS * BRDYI

BRDYI . CLKF - GLK
BRDYl.RSTF = GND
BRDYl.SETF = GND
/BRDYl.TRST - OEx

/MSWNDO = /RESET * /SNPGYG
+ /RESET * MSNPSTB * /MSWNDO

MSWNDO.TRST = VCG

2-526

240957-78

intel$

- - - - - - - - - - - - - -- -- - - - - - ---- - - - - ----
TITLE ECYCDEF
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/5/91

CHIP x01 85C224

AP-452

Declaration Segment ------------

This PLD contains the YMEMLEN state machine

- - - - - -------- - - - -- - ------ --- - - - - -
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

1
2
3
4
5
6
7
8
9
10
11
13
14
23

15
16
17
18
19
20
2l
22

EQUATIONS

YMALE
YMAOE
MHLDA
KCACHE
CWR
CMIO
CDC
LLEN
C5MTHIT

YSNPDIS
NC1
NC2
YNOSWNDI
YWRI

YWR
MTHIT
MLEN
MDC
MMIO
MWR
MCACHE
YNOSWND

/YWR = YMALE * /CWR
+ /YMALE * /YWRI
+ /CWR * /YWRI

YWR.TRST = VCC

/MTHIT = /C5MTHIT * /MWR * MHLDA
MTHIT.TRST = MHLDA

/MLEN = YMALE * /LLEN * /YMAOE
+ /YMALE * /MLEN * /YMAOE
+ ·/LLEN * /MLEN * /YMAOE

MLEN.TRST = /yMAOE

/MDC = YMALE * /CDC * /YMAOE
+ /YMALE * /MDC * /YMAOE
+ /CDC * /MDC * /YMAOE

MDC.TRST = /YMAOE

/MMIO = YMALE * /CMIO * /YMAOE
+ /YMALE * /MMIO * /YMAOE
+ /CMIO * /MMIO * /YMAOE

MMIO.TRST = /YMAOE

/MWR = YMALE * /CWR * /YMAOE
+ /YMALE * /MWR * /YMAOE

Pin Declarations

2-527

II

240957-79

+ /CWR * /MWR * /YMAOE
MWR.TRST - /YMAOE

/MCACHE = YMALE * /KCI\CHE ,~ /YMAOE
+ jYMALE * /MCACHE * /YMAOE
+ /KCACHE * /MCACHE * /YMAOE

MCACHE.TRST = /YMAOE

/YNOSWND - YMALE * /YSNPDIS
+ YMALE * /CMIO
+ YMALE * CWR * /KCACHE
+ /YMALE * /YNOSWNDI
+ /YSNPDIS * /YNOSWNDI
+ /CMIO * /YNOSWNDI
+ CWR * /KCACHE ,~ /YNOSWNDI

YNOSWND.TRST = VCC

AP-452

240957-80

2-528

intel ..

-- -- -- - -.--. ------ -.---- -------- --
TITLE EMBE
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/5/91

CHIP xOl 85C224

AP-452

Declaration Segment ------------

This PLD generates the memory bus byte enables (MBEs)
,
;-------------------------------Pin Declarations--------------------

PIN 1 LBEO
PIN 2 LBEI
PIN 3 LBE2
PIN 4 LBE3
PIN 5 LBE4
PIN 6 LBE5
PIN 7 LBE6
PIN 8 LBE7
PIN 9 RDYSRC
PIN 10 KCACHE
PIN 11 YMALE
PIN 13 YMAOE
PIN 14 MBE6I
PIN 23 MBE71

PIN 15 MBE7
PIN 16 MBE5
PIN 17 MBE4
PIN 18 MBE3
PIN 19 MBE2
PIN 20 MBEI
PIN 21 MBEO
PIN 22 MBE6

EQUATIONS

/MBE7 = /YMALE * /LBE7 * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /YMAOE
+ YMALE * /MBE71 * /YMAOE
+ /LBE7 * /MBE71 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE71 * /YMAOE

MBE7.TRST = /YMAOE

/MBE5 = /YMALE * /LBE5 * /YMAOE
+ /YMALE * /KCACHE ,~ /RDYSRC * /YMAOE
+ YMALE * /MBE5 * /YMAOE
+ /LBE5 * /MBE5 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE5 * /YMAOE

MBE5.TRST = /YMAOE .

/MBE4 = /YMALE * /LBE4 * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /yMAOE
+ YMALE * /MBE4 * /YMAOE
+ /LBE4 * /MBE4 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE4 * /YMAOE

MBE4.TRST = /YMAOE

/MBE3 = /YMALE * /LBE3 * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /yMAOE
+ YMALE * /MBE3 * /YMAOE

2-529

240957-81

AP-452

+ /LBE3 * /MBE3 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE3 * /YMAOE

MBE3.TRST = /YMAOE

/MBE2 = /YMALE * /LBE2 * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /YMAOE
+ YMALE * /MBE2 * /YMAOE
+ /LBE2 * /MBE2 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE2 * /YMAOE

MBE2.TRST = /YMAOE

/MBEI = /YMALE * /LBEI * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /YMAOE
+ YMALE * /MBEI * /YMAOE
+ /LBEI * /MBEI * /YMAOE
+ /KCACHE * /RDYSRC * /MBEI * /YMAOE

MBE1.TRST = /YMAOE

/MBEO = /YMALE * /LBEO * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /YMAOE
+ YMALE * /MBEO * /YMAOE
+ /LBEO * /MBEO * /YMAOE
+ /KCACHE * /RDYSRC * /MBEO ,~ /YMAOE

MBEO.TRST = /YMAOE.

/MBE6 = /YMALE * /LBE6 * /YMAOE
+ /YMALE * /KCACHE * /RDYSRC * /YMAOE
+ YMALE * /MBE61 * /YMAOE
+ /LBE6 * /MBE61 * /YMAOE
+ /KCACHE * /RDYSRC * /MBE61 * /YMAOE

MBE6.TRST = /YMAOE

2·530

240957-82

intet AP-452

~~ --- - - ------ - -- - - -- -- --- --- - - ---- Declaration Segment ------------
TITLE EMEMALE
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP x01 65C224

This PLD contains the YMALE. YMBRDY. YWMNA.
and YIMSWND state machines.

Pin Declarations -----------------

PIN 1 MCLI{
PIN 2 MRESET
PIN 3 YBGT
PIN 4 YNOPIPE
PIN 5 YPIPE
PIN 6 MNA
PIN 7 WMSWND
PIN 6 YMEOC
PIN 9 PXSAS
PIN 10 YALLOC
PIN 11 MSWNDI
PIN 13 OE
PIN 14 MBRDY
PIN 23 YMADS

PIN 15 YIMSWND
PIN 16 YDRCTM
PIN 17 NC1
PIN 18 YMALE
PIN 19 DISWND
PIN 20 WMNA
PIN 21 YMBRDY
PIN 22 NC2

EQUATIONS

/YIMSWND - /MSWNDI * YALLOC * DISWND
YIMSWND.TRST = VCC

/YDRCTM.D :- /MRESET * /DISWND
+ /MRESET * YMEOC * YPIPE * /YDRCTM

YDRCTM.CLI{F = MCLI{
YDRCTM.RSTF = GND
·YDRCTM. SETF = GND
/YDRCTM.TRST = OE

NCl. D := VCC
NC1 '. CLKF = MCLI{
NC1.RSTF = GND
NC1.SETF = GND
/NCl. TRST = OE

/YMALE.D := /MRESET * /yPIPE * /YMALE
+ /MRESET * /YBGT * YMALE
+ /MRESET * YNOPIPE * YMEOC * /YMALE
+ /MRESET * WMSWND * YMEOC * /YMALE
+ /MRESET * /YMADS * WMNA * YMEOC * /YMALE
+ /MRESET * MNA * WMNA * YMEOC * /YMALE

2-531

•

240957-83

YMALE . CLKF - MCLK
YMALE.RSTF = GND
YMALE.SETF - GNb
/YMALE.TRST - OE

AP-452

/DISWND.D :- /~ESET * /DISWND * YDRCTM
+ /MRESET * /PXSAS * /YALLOC * YDRCTM

DISWND.CLKF - MCLK
DISWND.RSTF - GND
DISWND.SETF - GND
/DISWND:TRST = OE

" .,

/WMNA.D :- /MR~SET * /YNOPIPE * YMADS * YMEOC * /WMNA
+ /MRESET * /YNOPIPE * YMADS * /MNA * WMNA
+ /MRESET * /yPIPE * YMADS * /MNA * /YMEOC * WMNA

WMNA.CLKF - MCLK
WMNA.RSTF - GND
WMNA. S ETF - GNb

.; /WMNA . TRST - OE

/YMBRDY.D :- /MRESET * /MBRDY
YMBRDY.CLKF - MCLK
YMBRDY.RSTF - GND
YMBRDY.SETF -"GND
/YMBRDY.TRST - OE

NC2 - VCC
NC2.TRST - VCC

2-532

240957-84

intel~ AP-452

,---------------------------------- Declaration Segment ------------
TITLE EMSNPST
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP x01 85C224

This PLD contains the YALLC, YMEMLOCK, YSNPSTB,
and YMBREQ state machines.

;--------------------------------Pin Dec1arations-------------------

PIN 1 MCLK
PIN 2 MRESET
PIN 3 MKEN
PIN 4 MHLDA
PIN 5 YWR
PIN 6 YNOSWND
PIN 7 YBGT
PIN 8 XLRDYSRC
PIN 9 RFO
PIN 10 SNPDIS
PIN 11 PALLC
PIN 13 KLOCK
PIN 23 PXSAS

PIN 16 YMLOCK
PIN 17 SV2
PIN 18 HBASWB
PIN 19 MBREQ
pIN 20 MSNPSTB
PIN 21 SV1
PIN 22 YALLOC

EQUATIONS

/YMLOCK.D :- /MRESET * /yALLOC * YMLOCK
+ /MRESET * /HBASWB * YMLOCK
+ /MRESET * YBGT * /yALLOC * /HBASWB
+ /MRESET * /KLOCK * /YALLOC * /HBASWB
+ /MRESET * /YBGT * /KLOCK * YMLOCK

YMLOCK.CLKF = MCLK
YMLOCK.RSTF - GND
YMLOCK.SETF = GND
YMLOCK.TRST = VCC

/SV2.D :- PXSAS * /SV2
+ PXSAS * /MHLDA * /HBASWB

SV2.CLKF = MCLK
SV2.RSTF = GND
SV2. SETF - GND
SV2.TRST - VCC

/HBASWB.D := /MRESET * PXSAS * /HBASWB * SV2
+ /MRESET * PXSAS * /YBGT * MBREQ* SV2

HBASWB.CLKF - MCLK
HBASWB.RSTF - GND
HBASWB.SETF = GND
HBASWB.TRST - VCC

/MBREQ.D :- PXSAS * /MBREQ
+ PXSAS * HBASWB * /SV2

2-533

240957-85

intel~ AP-452

+ IPXSAS * IYBGT * MBREQ * HBASWB * SV2
+ MRESET

MBREQ.CLKF .= MCLK
MBREQ.RSTF = GND
MBREQ.SETF = GND
MBREQ.TRST = VCC

/MSNPSTB.D := IMRESET * IYBGT * YNOSWND * YWR * MSNPSTB
+ IMRESET * IYBGT * YNOSWND * XLRDYSRC * MSNPSTB
+ IMRESET * IYBGT * ,YNOSWND * RFO * MSNPSTB

MSNPSTB.CLKF = MGLK
MSNPSTB.RSTF - GND
MSNPSTB.SETF = GND
MSNPSTB.TRST = VGG

/SV1. D : = IYALLOG
SV1. CLKF = MCLK
SVl . RSTF = GND
SVl . SETF = GND
SV1.TRST = VCC

/YALLOG.D := IMRESET * PXSAS * IYALLOG * ISVl
+ IMRESET * IMKEN * IYALLOC * SVl
+ IMRESET * IYBGT * IPALLC * SNPDIS * IRFO * YALLOC

YALLOC.GLKF = MGLK
YALLOC.RSTF - GND
YALLOC.SETF = GND
YALLOC.TRST = VCG

2-534

240957-86

int:el. AP-452

---------------------------------- Declaration Segment -----------­
TITLE EMZBT
PATTERN A
REVISION 3.1
AUTHOR ISIC SILAS + Andy Bloom
COMPANY INTEL
DATE 2/7/91

CHIP x01 85C224

This PLD contains the YMBRDY state machine.

PIN 1 MCLK
PIN 2 MRESET
PIN 3 MAOE
PIN 4 MHLDA
PIN 5 YNOPIPE
PIN 6 YPIPE
PIN 7 MCACHE
PIN 8 YMEOC
PIN 9 MEMZBTEN
PIN 10 SYNC
PIN 11 MALDRV
PIN 13 FLUSH
PIN 14 NCPFLD
PIN 15 FPFLDEN
PIN 23 NC4

PIN 16 NC1
PIN 17 NC2
PIN 18 NC3
PIN 19 YMZBT
PIN 20 FPFLD
PIN 21 YFLUSH
PIN 22 YSYNC

EQUATIONS

NC1 = VCC
NC1.TRST = VCC

NC2 = VCC
NC2.TRST = VCC

NC3 = VCC
NC3.TRST = VCC

Pin Declarations ----------------

/YMZBT.D .= /MRESET * YPIPE * YMEOC * /YMZBT
+ /MRESET * /MCACHE * YMEOC * jYMZBT
+ /MRESET * YNOPIPE * /YPIPE * /MCACHE * /MEMZBTEN
+ /MRESET * YNOPIPE * jYPIPE * /MCACHE * /YMZBT
+ /MRESET * MHLDA * /MAOE * /MEMZBTEN * YMZBT
+ /MRESET * /YNOPIPE * /MCACHE * /MEMZBTEN * YMZBT
+ MRESET

YMZBT.CLKF = MCLK
YMZBT.RSTF = GND
YMZBT.SETF = GND
YMZBT.TRST = vce

2-535

240957-87

intel~

/FPFLD = FPFLDEN * MRESET
FPFLD.TRST = MRESEt

/YFLUSH = MRESET * /NCPFLD
+ /MRESET * /FLUSH

YFLUSH.TRST - VCC

/YSYNe - MRESET * /MALDRV
+ /MRESEt * /SYNC

YSYNC.TRST = vce

AP-452

240957-88

2-536

int:eL AP-452

;-----------------------------Dec1aration Segment---------------------
TITLE ESIGGEN
PATTERN
REVISION 1.0
AUTHOR
COMPANY INTEL
DATE
CHIP INTEL 85C224

This PLD drives memory bus and core signals based on the states
of other state machines .

;-----------------------------Pin Dec1arations-------------------------
PIN 1 YDRCTM
PIN 2 YMADS
PIN 3 YMAOE
PIN 4 MHLDA
PIN 5 NCI
PIN 6 MWBWT
PIN 7 MDRCTM
PIN 8 SNPDIS
PIN 9 UNI
PIN 10 YMSEL
PIN 11 TR4
PIN 13 YMFRZ
PIN 14 MDLDRV
PIN 23 LMRST

PIN 15 C8MSEL
PIN 16 NC2
PIN 17 CDRCTM
PIN 18 CWBWT
PIN 19 MBOFF
PIN 20 MADS
PIN 21 YSNPDIS
PIN 22 C8MFRZ

EQUATIONS

/C8MSEL ~ LMRST * /TR4
+ /LMRST * /YMSEL

C8MSEL.TRST - VCC

NC2 - VCC
NC2.TRST - VCC

CDRCTM - MDRCTM * YDRCTM
CDRCTM.TRST - vec

/CWBWT - /MWBWT * YDRCTM
CWBWT.TRST - VCC

/MBOFF - YMAOE * /MHLDA
MBOFF.TRST - /MHLDA

/MADS - /YMADS * /YMAOE
MADS.TRST - /YMAOE

YSNPDIS - SNPDIS * UNI
YSNPDIS.TRST = VCC

/C8MFRZ - LMRST * /MDLDRV
+ /LMRST * /YMFRZ

C8MFRZ.TRST = vec

2-537

240957-89

int'eL Ap·452

;--------------------------Declaration Segment-------------------------­
TITLE ESWND
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP xOl 85C224

This PLD contains the XCRDY, XSWND, and XENSWND state machines.

;---------------------------Pin Declarations-----------------------------
PIN 1 CLK
PIN 2 RESET
PIN 3 WSDTS
PIN 4 BGT
PIN 5 PBGT
PIN 6 TR4
PIN 7 YSMSWND
PIN 8 SNPDIS
PIN 9 YSMEOC
PIN 10 SLFTST
PIN 13 OEx

PIN 16 ENSWND
PIN 17 SV3
PIN 18 SWEND
PIN 19 SV2
PIN 20 SVI
PIN 21 CRDY
PIN 22 CRDY1

EQUATIONS

ENSWND.D :- /RESET * /YSMSWND
ENSWND.CLKF - CLK
ENSWND.RSTF - GND
ENSWND.SETF = GND
/ENSWND.TRST = OEx

/SV3.D :- RESET * TR4
+ /RESET * CRDY * SWEND * /SV3
+ /RESET * /PBGT * /ENSWND * /YSMSWND * CRDY * SV3
+ /RESET * /PBGT * CRDY * /SNPDIS * /SWEND * SV3
+ /RESET * /PBGT * /ENSWND * /YSMSWND * SWEND * SV3

SV3.CLKF - CLK
SV3.RSTF - GND
SV3.SETF = GND
/SV3.TRST = OEx

/SWEND.D :- RESET * TR4
+ /RESET * /CRDY * SWEND * /SV3
+ /RESET * PBGT * CRDY * /SWEND * SV3
+ /RESET * /BGT * /SNPDIS * SWEND * SV3
+ /RESET * ENSWND * CRDY * SNPDIS * /SWEND * SV3
+ /RESET ,~ YSMSWND * CRDY * SNPDIS * /SWEND * SV3
+ /RESET * /BGT * /ENSWND * /YSMSWND * SWEND * SV3
+ /RESET * /PBGT * /ENSWND * /YSMSWND * /CRDY * /SWEND * SV3

SWEND.CLKF = CLK
SWEND.RSTF = GND
SWEND.SETF = GND

2-538

240957-90

int:eL AP-452

/SWEND.TRST = OEx

/SV2.D := RESET * /SLFTST
+ /RESET * /YSMEOC * CRDY * /SV2
+ /RESET * /YSMEOC * /CRDY * SV2

SV2.CLKF = CLK
SV2.RSTF = GND
SV2.SETF = GND
/SV2.TRST - OEx

/SVl. D : = /RESET * /YSMEOC ,~ CRDY
+ /RESET * CRDY * /SVl * SV2

SV1. CLKF - CLK
SV1.RSTF = GND
SVl. SETF = GND
/SV1.TRST = OEx

/CRDY.D := RESET * /SLFTST
+ /RESET ,~ /YSMEOC * /WSDTS * CRDY * SV2
+ /RESET * /WSDTS * CRDY * /SVl * SV2

CRDY . CLKF - CLK
CRDY.RSTF = GND
CRDY. SETF = GND
/CRDY.TRST = OEx

/CRDYl. D : - RESET ,~ /SLFTST
+ /RESET * /YSMEOC * /WSDTS * CRDYl * SV2
+ /RESET * /WSDTS * CRDYl ,~ /SVl * SV2

CRDY1.CLKF = CLK
CRDYl. RSTF = GND
CRDYl. SETF = GND
/CRDY1.TRST = OEx

2-539

240957-91

int'eL AP-452

;-------------------------------Declaration Segment---------------­
TITLE EWCPLB
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/9l

CHIP xOI 85C224

This PLD contains the XWCPLB and YCPULEN state machines.

;-----------------------------Pin Declaration-----------------------
PIN 1 CLK
PIN 2 RESET
PIN 3 CRDY
PIN 4 RDYSRC
PIN 5 BGT
PIN 6 PBGT
PIN 7 KCACHE
PIN 8 LEN
PIN 9 CACHE
PIN 10 CKEN
PIN 11 BRDY
PIN 13 OEx

PIN
PIN
PIN
PIN
PIN
PIN
PIN

16
17
18
19
20
21
22

EQUATIONS

CLEN4
CLEN2
CLENI
LKCACHE
SV
CPUEN
WCPLB,

/CLEN4,D '- CPUEN * /CLEN2 * /CLEN4
+ /BRDY * /CLEN1
+ BRDY * CLEN2 * /CLEN4
+ /CACHE * /CKEN * /LKCACHE * /CLEN2 * /CLEN4
+ RESET

CLEN4.CLKF - CLK
CLEN4.RSTF - GND
CLEN4.SETF - GND
/CLEN4.TRST - OEx

/CLEN2 . D . - CPUEN ,,< /CLEN2 * /CLEN4
+ BRDY * /CLEN2 * CLEN4
+ /BRDY * CLEN2 * CLEN4
+ LEN * CACHE * /CLEN2 * /CLEN4
+ LEN * CKEN * /CLEN2 * /CLEN4
+ LEN * LKCACHE * /CLEN2 * /CLEN4
+ RESET

CLEN2.CLKF - CLK
CLEN2.RSTF - GND
CLEN2.SETF - GND
/CLEN2.TRST - OEx

/CLENl.D :- /RESET * BRDY * /CLEN1
+ /RESET * /BRDY * /CLEN2 * CLEN4
+ /RESET * /CPUEN * /LEN * CACHE * /CLEN2 * /CLEN4
+ /RESET * /CPUEN * /LEN * CKEN * /CLEN2 * /CLEN4
+ /RESET * /CPUEN * /LEN * LKCACHE * /CLEN2 * /CLEN4

CLENl,CLKF - CLK

2-540

240957-92

CLEN1.RSTF = GND
CLEN1.SETF = GND
/CLEN1.TRST = OEx

/LKCACHE.D := /KCACHE
LKCACHE.CLKF = CLK
LKCACHE.RSTF = GND
LKCACHE.SETF = GND
/LKCACHE.TRST = OEx

/SV.D := /RESET * CRDY * /SV

AP-452

+ /RESET * /RDYSRC * /BGT * CPUEN * SV
+ /RESET * CRDY * /BRDY * /CLENl ,~ WCPLB * /CPUEN

SV. CLKF = CLK
SV.RSTF = GND
SV. SETF = GND
/SV.TRST = OEx

/CPUEN.D := /RESET * BRDY * /CPUEN
+ /RESET * CLENl * /CPUEN
+ /RESET * RDYSRC * /BGT ,~ /WCPLB
+ /RESET * RDYSRC * /BGT * CPUEN * SV

CPUEN.CLKF = CLK
CPUEN.RSTF = GND
CPUEN. SETF = GND
/CPUEN.TRST = OEx

/WCPLB.D := /RESET * BRDY * /WCPLB
+ /RESET * CLENl * /WCPLB
+ /RESET * /CRDY * BRDY ,,< /CPUEN
+ /RESET * /CRDY * CLENl * /CPUEN

WCPLB.CLKF = CLK
WCPLB.RSTF = GND
WCPLB.SETF = GND
/WCPLB.TRST = OEx

2-541

240957-93

AP·452

;-----------------------------Declaration Segment-----------------------­
TITLE EWMSWND
PATTERN A
REVISION 2.0
AUTHOR ISIC SILAS
COMPANY INTEL
DATE 2/4/91

CHIP xOl 85e224

This PLD contains the YENMSWND, YWMSWND, and YENXSAS state machines.

;----------------------------Pin Declarations------------------------------
PIN 1 MeLK
PIN 2 MRESET
PIN 3 XSAS
PIN 4 XSNPWB
PIN 5 YPIPE
PIN 6 YNOPIPE
PIN 7 YMEOe
PIN 8 MHITMI
PIN 9 YMSWEND
PIN 10 YNOSWND
PIN 11 YBGT
PIN 13 OEx
PIN 14 YALLOC
PIN 23 peTeXFR

PIN 15 UNUSED
PIN 16 PSWBAS
PIN 17 SV
PIN 18 WMSWND
PIN 19 ENMSWND
PIN 20 ENXSAS
PIN 21 PXSAS
PIN 22 YSWEHITM

EQUATIONS

UNUSED - vee
UNUSED.TRST - vee

/PSWBAS - /XSAS * /XSNPWB * /ENXSAS
PSWBAS.TRST - vee

/SV.D :- YMEOe * /WMSWND * /SV
+ /YNOSWND * /YPIPE * YMEOC * /WMSWND
+ /YPIPE * /YMSWEND * /ENMSWND * YMEOe * /WMSWND

SV . CLKF - MCLK
SV.RSTF - GND
SV. SETF - GND
/SV.TRST - OEx

/WMSWND.D :- /MRESET * YMEOe * /WMSWND
+ /MRESET * /WMSWND * /SV
+ /MRESET * /YNOSWND * /YPIPE * /WMSWND
+ /MRESET * /YNOSWND * /YBGT * WMSWND
+ /MRESET * /yPIPE * /YMSWEND * /ENMSWND * /WMSWND
+ /MRESET * YPIPE * /PCTeXFR * /YALLOe * /WMSWND
+ /MRESET * /YMSWEND * /ENMSWND ,. /YALLOC * WMSWND
+ /MRESET * YNOSWND * /YNOPIPE * /YMSWEND * /ENMSWND * WMSWND

WMSWND.CLKF - MCLK
WMSWND.RSTF - GND

2-542

240957-94

infel ..

WMSWND.SETF = GND
/WMSWND.TRST = OEx

/ENMSWND.D := YMSWEND
ENMSWND.CLKF = MCLK
ENMSWND.RSTF = GND
ENMSWND.SETF = GND
/ENMSWND.TRST = OEx

/ENXSAS.D := YBGT * /ENXSAS
+ XSAS * ENXSAS
+ MRESET

ENXSAS.CLKF = MCLK
ENXSAS.RSTF = GND
ENXSAS.SETF = GND
/ENXSAS.TRST = OEx

/PXSAS = /XSAS * XSNPWB * /ENXSAS
PXSAS.TRST = VCC .

AP-452

/YSWEHITM = /YMSWEND * /ENMSWND * /MHITMI * YALLOC
+ /YMSWEND * /ENMSWND * /MHITMI * YNOPIPE * yp·IPE

YSWEHITM.TRST = VCC

2-543

fI
240957-95

Q"l'In",,"Cl
"'.""elt-1II0.
«((((((((((

IICILIIDlltl:II.II1:I:'C

o ~ •

Q"",,,,,,,"O
.... ""0 ... 11"'

ffffffffffffff
DlIlIlIIICllllliIllIlIlI1I

0 .. ,.. ., • " " ... II '" 0 .. ~ ., " " 'II I' ill :0 0 ..
"'.II"CI'C O f'I f'I ""f'lf'I"''''''

" """"' " Q .. ,..",,, " 'lit-
IrIIrIIrIL'1rI1rl1rl1rl
111111111111111

IIDIIIIIIIIIII

f f f f f f ~ f .
1IJ1J1CCtlIlIlDIIII=III=III1II1I1I1IlCIIICIC

""'II."""" o ~ 0 0 c:: 0 0 e o 11.. ~

AP-452

~ .

'11'I.OI'II'l'lll"IICIOO .. I'I"'.I'II'I.I'\/' ... "I'I .. r- ... ",. " tI ... ""If'I'II1 .. ncl'.oo .. N,1/1
! oo oooo oo .. o .. o .. oo o .. co o .. oo o .. o .. o .. oooooo

•• III •• UI/II\,IIIUIJI/IIIlIolIolJ,'"UeJ:;t1;I:'l'lIlIlIllIl.l.lZZZZ ... ""ao' " ..

: ~
" ,

~ "
• 0

N N
N C

" "' "

LH
~-E-. . . .

" ,
~ "
• N

N N

N ~

•

............. 111

~~ ::~aS~:;

~-E-.
" ,

~ " . .
N N

N ~

•

.
N
C
N

" «

'1./110 .. 1'1"0,."' .. ., • .,".,0 11 .. 0. .. 1'1110. .. 01 .. ".110 ,. • .,."',..,,.1111 ... 00,.1'1'11
II oo ooo o .. o .. o .. oO .. O .. l)o o .. oo oOO .. O .. O .. Q .. o.oooo 0
> C(C«c OIlWW OOO:r:rIl'l'l'lIlX.l.l.::l.lZZZZ"' .. O:OII:l:l:lj:l:l:l:l:l:lOc r-i

r;~.~~:~~~~:~~~~-::~~~::~:~=~:~~=~::~,~=~::~~~~~=:~=~::~:7:~==~:~::~:~:~:!~:7:~~~~:~:~~:~~:~:~:~=:~:~:~~:~:~:!~."~"~.7 •• ~.~.~""~.-•. ~.~.~ •• ~O
,a"C"'IlIl.II.U.II.I.IIII.IIIIIUIlIll .. U OIlOllll.I." .. :l.l .. I;)IIII.l .. I:I.1O,I<':II.IOIlI i:ig~ili~gggfgi~~g 0

, 0 "."."'''.'''0,.1110''.00 .. "'''."..1'.(110 ''.11.,. ... 0 '''.11''',..1100,
I) .. ", 1'1 <0" .. (II 1'1 1'1" "' .. " .. I'll" 1'\" .. 1'\, .. .,, or .. ., 1'1 III II'i n 1'1 1\ 1'1 n n n '" '" II 1:1
IlCOOtltltlOOOOOQQOOOCOQoaaoooooaaOOOCIIOOQQQQQOQOOOIIOOQQOaaaaaaQCCCOC

I' :0 .. oC I' :l Z I' 1> "/l .. I' I' • " ~ • " go 0/1 "C " '" "/l " I' "C 0 ... 0. oC (10 " II '" '" 0 0 'II '" 0 1> II "0 41 " I' OIl " I' " I' 1\ It! "Q II> II> II> (I t\ III " ". "", f'I " " I' " " .. II I' 'II ~ 00 .. 00"000000 oooooc
(Q«(Q(UUIlCl.Ul.Il'UC\,lQQIIQU~IrI~~I!JI!JO:E:I:(IIoa::I:\l'lfo:l~!oIli:l.;\l:E~foZ:l1ol1():lfo.lli~"IOIol.lli J;~a:O~a:I~:J :J,I,;:a:IoII1Q

o .. ~ '" " " <>1' •• ~ ~ : : : ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ;: ~ ~ : ~ ~ ~ = ~ ~ ; ~ ~ : ~ : ~ : : ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ; ; ~ :
~ .:l Il II II Cl 0 C 0 .:I Cl Il Il Il Il Il Il Il Il Il II II II tee Cl Il Cl Il Il Il Il Q C. Il tell Il Q Il Il Q II Q Il Co Il II Q Q Il Il Q Q Il C Q Il Il " Il Il

II II III II II II II I. I. II II II II II II II II ~ II II II II II II. II II II II II II II II I. II II II I. II: II II II II II II II II II " II II II II II II II II II 1 II II II II II II

N
C

• ~
N •
~ ~ · " ·
~~

Appendix C Schematic: i860TM XP CPU

2-544

n

" "'

.:;'

!,
iL-jIo

, . .
~ ~ ~ : ! ~ H

" ~ : ~ n " ,

N
:J

-

~

YI'

InteL

c .. " .., " III " i" Zo.o '" ,~ .., .. 01 ill ,. GI

nm mlliiiiiiiiiilllmlll

I, " . , " " " ... '". , .. " " .. " .. , " " 'Or"lIIl11o.o.00 " O' .. "'O'OOOOO
o " ,."

~ II' oj) I' co I' I' .. " .. I' .. I' .. " I' .. ,. II' '0 i" <I 0. 0 .. " "
0000 0 0 .. 0 .. 0 .. 0 0. .. 00000
((« " (« " " 12 t.1 .. \l Il :t Z I: Ii: .. J % Z ':I: 11 ~ \I \I \l ~ 11 \I \I

"'.""'''' ''' O''' Ol''.,.,,. .. '' 1'\ 00 0 .. 000000.0<::000000 .. 0
t.1 .: ell" II Il II U!J II U U Il Il Q II (U « Q (II II U " C (II IJ co

" .. ~ .. '" 1"1 " -. ., .. " 0. ;> 0. 0. = .. ~ ~ ~ .. "
.... 0 0 ~ .. 0 0 0 :;, I) ::: 0 0 0 0 I) 0 0 0
II II .::1.11 < 1.1 Q ::J U 'J 1\ U II c: Il Il ~ (U (:I ('.ll U (:I (:1:1 ~ Q C)

o ,; I' = II' 0 .. '" <I .. i\ ,g ... ~
",g", I: 0.""" ""''''''' ,, ...
ft~fffff ~ff~fff~ff~ff

:. I"" II :II , oil ~ oil oil , oil oil

AP-452

."' 0""'''' •
~ ~ ~

.. " ,
"" .,'
"

I:: ~: ;:: ~ ~::;:: z; : ~:: ~: : ~ g; :;: ::: I:
o

~ " " " III 0 .. 0'\ .. I) III .. "(I .. " .. III " " '0 .. " III I) I" III 0. \'I " .. 1'1
0.000 0 .. 00 .. 0 .. 0 .. 0 .. 0 0 .. 00000 00
II I II II I III II t.1 II .. 0 Il :;: :: ~ .., I(" J ol % % Z II: 11\ \I: .: II " 11 " If IC J

"' " 1'11 ,.
11I:,:UIlI3"O

"I''' "''' (I I',g."I'
~ , .I: L 'l J: U oil 0 L C

000000
",:z:xo .. :z:

, . . " i . , ,
~ ~ i §

0000
II: '1 ~ X

"' '" 0000 o I!o 101 I!o

Appendix C Schematic: 82495XP Cache Controller

2-545

r-i
o

.. <1 00 M
~~~~~C N 

" o 

." o 

" 

:J 

---( " 
" 0 

o 
o 
" 3 " . . , . " 
g~ 

" o 
N " 

" " 

, " "N, 

.... 
'" I 
to 
'" o 
(ij 

II 



» 
"0 
"0 
(II 
::J 
a. 
;C' 
0 
en n 
:::T 
(II 

3 
I\) DI .. u, (;' 
.j>. .. 
en (XI 

I\) .... 
CO 
0 
>< 
"0 
0 
DI n 
:::T 
(II 

:II » 
s: 

D_A( 1.6.:J) 

= ;- :;~EA'" 

: : ::~yp 
• B DOFF'" 
_ D BLAST'" 

MeLKS 

MOCLK4 

AU 

:~ A12 

" ., 
H .2 
" ., 

30 eLK 

:8 RESET 

ADS" 
5 

W/R'" 

~R::~EA" 

_. ~BTYP 

~e BA 

.MooE-

HZOT 

Sr;L* 

HeRDY" 

_FRZ 

26 MeLK 

2"1 OCLK 

~, 

CPATAO 48 

CDATA1 
54 

COATA2 
.. 

COATA3 
.. 

COAT"" 
.. 

CDATAS S1 

CDATA6 52 

COATA7 57 

MDATAO 
,. 

HOATAl. " '0 
MOATA3 

HOATA .. 3.6 

MDATA5 12 

HDATAI5 e 
MOATA7 .. 

TOO 64 

U2201 

MOO 

0_0(7.0) 

HD[7.01 

]0 

B 11.[ 16.3 J 

-, 

A3 
159 A4 

70 AS 

71 1015 
73 107 
75 AS 

76 109 
77101.0 

78 A1.1 
79 1012 

80 A1.3 

81 AJ.4 

:~ :~s 
B '-':L..K2 30 eLK 

B RST2 28 RESET 

6 ADS" 
a WR. 5 W/R* 

BE-
B H:ITH"," H:ITM* 

B WAY 

B MAWEA ... 

B Meye ... 

B WBWE",. 

n wnTYP WBTYP 

B wnA ~8 WBA 

B YMZDT 

8 C8MSELIf' ' 

26 

27 

TDI 

~2 

COATAO 4a 

CDATAl. OS4 

CoATA2 49 

CoATA3 5~ 
COATA .. 46 

CDATAS 51 

CDA'rA6 52 

COATA? ~7 

MOATAO 18 

HOATAl. 1"­

MDATA2 10 

HOATA3 15 

MOATA" 1.6 

MOATAS 12 

MOATA6 a 
MOATA? .. 

D 013 

D 014 

0_1>(15.8} 

MOl 15 I e-) 

ToolS" D TOYCS;) • 

~D 

U2202 
240957-98 

_. 
c[ 

@ 

» 
"'0 . 
"" c.n 
I\) 

"@ 
2EJ 
Iiiiil 
F 

~ 
~ 
~ 
2EJ 
~ 



D_A(:l.t'"3] 

o WRARR'" 

B MAWEA ... 

D DUS'" 

B WBWE'" 

B WBTYP 

B OOF ...... 

LAST'" 

o BRDYC:> ... 

VDD 

ao 
;-;-r 

~ 

~3 

COATAO 48 

COATA:1 54 

COATA2 4 \.1 

COATA3 ~5 
COATA4 46 

CDATA5 51 

COATA6 52 

CDATA"1 S7 

MDATAO :18 

MDATA1 14 

MPATA2 10 

M.DATA3 6 

MDATA4 1G 

HDA'l'A5 12 

M.DATA6 a 
MDA'l'A74 

~AR-
»'T'C~::TD 
B TOTC""':J 2 

U2301 

n 0(:>311.6] 

MD[ 2:1 1:1\5 J 

A~D 

0_A[1GI::I] 

D2490XP 

65 AO 

6611.:1 

67 A2 

6811..::1 

69 A" 

"1011.5 

7111.6 

7311.7 

7511.8 

7611.9 

7711.10 

7811.11 

7911.12 

DO A1:J 

~ ___ 0111.14 

B 11.16 :~ 11.15 

1!!~!!~~~~~~~3IOCLK ~a =~'T 

W/R'"' 

.. WRARR-

4,-, WAY 

" MAW!!:A 
D nu!>'" DUS-

.. MCYC'"' 
D 'WDWE... 3 wnwz;;-
D 'WDTYP .::I WDTYP 

38 WDA 
11 DOFF... 3 

B BLAST ... 

D BROYC2 ... 

D YM.OOl> ... 

o YHZOT MZDT 

B CDMSEL'" 2" MGE:L'"' 

n YHOROY'" 2 MDRDY. 

o YMEOC2... 2 MEOC" 

2 MFRZ 

~~ MCLK 

=K 
TD% 

~. 

CDATAO 40 

CDATA1. 54 

COATA2 49 

CDATA3 55 

COATA" 46 

CDATA5 51 

COATA6 S2 

COATA7 57 

MDATAOI,a 
MOATA1 14 

MDATA2 10 

MDATA:J 6 

MDATA" 16 

HDAThS :2 
HDATA6 

"_0[31.24J 

MD{ .:11 :2 .. ] 

ToolS" n TDICBS Cl 

JO 

U2302 
240957-99 

=. 
d 

tit 

l> 
"tI 
I 

.&::> 
U1 
I\) 

"@ 
:w 
1M] 
F 

~ 
~ 
~ 
~ 
~ 



» 
"g 
"g 
ID 
::l 
Q. 

X' 
0 
(fj 
C'I 
'::T 
ID 
3 1 

I\) ~I 0, !'! 
~ 
co CIO 

I\) 

"'" CQ 
0 
>< 
"D 
0 
DI 
C'I 
'::T 
ID 

::D » 
3: 

n wn* 
n 

- . , = B 
D MAW1":A'" 

D BUS'" 
n Meye ... 
D WOWE'" 

h "'OA 

h DOFF" 

B BLAST'" 

D BRDYC'2# 

B YMDOE'" 

B YHZBT 

TESTD 

TCK 

*s 
CDATAD 411 

CDATA.l S4 

CDATA2 49 

COATA3 SS 

CDATA .... 6 

CDATA5 ~l. 

CDATA6 52 

CDATA7 57 

D_OC 39.32] 

MOATAOI'. MOP" 32 1 
MOATAl. 14 HD;):J I 

t 10 M0:14 

MDATA:Jr."~~~~ __ m 
MDATA4~'~· __ ~~~ __ 

MDATA~~'~2 __ ~~~-D 
MDATA6r.B __ ~~~ __ B 
MDATA7r4 __ ~~~ __ a 

TOOFIB~4 ______________ , 

_:.fD 

U2401 

D_Ar161.3J 

~:J:~" "IS A8 

~~ A9 

AU 
79 A12 

eo A13 

:~ A14 

.3 

~~ eLK 

11i1l1l;:~~~~~:!IWBTYP ~B WSA 

ii:~;:i~!S!~!*~~~~~~I::~:" 

COATAO ole n 040 0_0(47<40] 

COATA]' 54 n 041 

CDATA:;;! 49 B 042 

CDATA3r.S~S __ ~~~~. 
CQATA4 46 B 044 

CDATA5 S1 B 045 

CDATA6 S2 B 046 

CDATA7 S7 B 047 

MOATAO 1 II 

MOATAl. 14 

MDATA2 10 

MOATA3 
MDATA4 16 

HDATAS 12 

MDATA6 8 

MDATA? .. 

MO(471401 

ToolS" h Torce 7 • 

JD 

U2402 
240957-AO 

_. 
€: 

:t> 
"tJ 
I 

"" en 
I\) 

"@J 
a2J 
Iiiiil 
F 

~ 
~ 
~ 
a2J 
~ 



l:> 
"g 
"g 
III 
::I 
Il. 
>< 
o 
en 
(') 
:::J' 
III 
3 

I\) a­
u, n" 
.$>. •• 
(0 CII) 

I» 
.$>. 
CD 
C 
X 
"g 

o 
DI 
(') 
:::J' 
III 
::rJ 
l:> 
3: 

B_A[1.6.3J 

4 
70 AS 

71 A6 

73 7 

75 AS 

7(; A9 

77 A10 

78 A1 l. 

79110.1.2 

80 A1.3 

811'1.14 

:~ Al.S 

lJ CLoK3 30 LX 

D RST2 2 B RE!OET 

(; ADS" 

U WR-'" W/R-* 
B BE...... BE" 
B "TTM'" 

B YMDor;; ... 

*7 

CDAT~ 

CDATA2 
CDATA3 SS 

CDATA4 46 

CDATAS S1 

COATA6 52 

COATA? 57 

MDATAO 10 

MDATAl. 1.4 

MDATA2 10 

MOATA3 6 

MDATA4 16 

MOATAS 1.2 

MDATAIS B 

MDATA? 4 

B 

B 

0_0[55;41;1) 

HO[55.48] 

TDOlr·~4 ____________ ~ 

VCCCLK~""">-______ --, 

VS.SCLK 

U2501 

fl __ A{ J.61 3} -"-= __ -"~ A2 
68 A3 

69 A4 

70 AS 

71. 110.6 

731\.7 

7S AS 

76 A9 

77 A10 

78 A11 

IEfnE§7~'~A12 00110.13 

81 A1"'-:; A15 

1!~II~~~~~~~13IoCLX ! ~n =~ET 

•

WBTYP 

~B WBA 

2. 27 

-. 
CDA'I'~ 

CDATA2 
CDATA3 50S 

CDATA4 46 

COATA5 51 

COATA6 52 

CDATA7 57 

D_D[63'S6) 

MDATAnI,n MD,.3 ... , 
MDATA~ ;~ I 
MDATA3~V~~~~~~ MDATA4 16 

MOATA~ 12 

MDATAG B 
MoATA? 4 H06.3 

TDO~ 

U2502 
2409S7-A1 

.. 

cC 

» 
" I 

"'"' en 
N 

"@ 
2& 
IMI 
IF" 

~ 
~ 
~ 
2& 
~ 



" . 
~ 

, 
" . " " • 

" " " . . . . ~ . 

r-rl--:l--H'-!--,h M 
o 
II) 

N 
'-"1-'1--+-'1--' :J 

AP·452 

. ~ , , . " . 
" N 

" " 
" . 

~ 

Appendix C Schematic: Clock Generator 

2-550 

'" « 
I ,... 
'" 0) 
o 
c;5 



~ 
U1 
U1 
-" 

: 
'U 
CD 
::J a. 
5C 
o 
en n :::r 
CD 

~ 
n 

• P IlL!-;". .1.~ 

B_LPE( 7, 0)'" 

::1 . I 

B BE['JIOJ'" II 'D BE'. 1B t;..,;) :: D LBB'" I 

R t.F.N 

B 'YMEOC't# 

U2902 
~~~ 

L-______________________________________ ~:~1~

74A64374

'0

20r-;---~~~ __
00

U2903

101 ~ a TSOGT. •

70

17
301 ~ D YMSWNO'" •

40

70

80

U2901

MCLK_SYN 240957-A3

_.
l

8

»
'P
olio
U1

'"

"@
aID
IiiiiI
If'"

~
~
~
~
~

I\)

0,
en
I\)

l>
'tJ
'tJ
CD
::l
C.
;C"
o
en
n
::T
CD
3 a
0"

EASTB
08SC224

"

::IO;) B XSNPwaff

B FSI.OUT.

EBGTKWN
D85C224 ,

"+-""-==~-j2 INP'?

a CRDY1* II r------

:I04 ~9SVl.

J:0!5 18

J:O"l.7 SV2

::1:0 .. 16

1:08 15

l:NPl.3 14

3

~

B YSBa±.,3 INP3

R CP.DYl It 4 INP,",

B CI:I LC)HV ~ IMPS

:-1TR4' TRO# I I I fi YNP6 ::::: T II :

1.1'LNP:l.l.

::06 l.7 I1_ E :-JOGT. ,.
,o.~.,

INP1.31. 4 .

J:NPl.2 13

III ESWND
• 1. 08SC224

L-________ ~ _______________________________ ~ __________ ~~4_2B~R~S~T2'~--~2J:NP2

a WSDTS,," 3
J:NP3

B BCT. 4
::tNP"

L-____ ""B_P!:.B~G;::T!:;.!...__2I5 INP"
MTR4 TRait 115

B 'fSMSWNOIt IMP"

n YfiNPO-: SIf .., INP7 .
B YSMEOCIJ .tNPD .

:tNP,"
__ B SLF":"S':'1t

1.1p:NP l.l.

o
1:03 SVl. ,.
X04 SV2

ro·F'~·----------------~~~~-B
:t06 'l7SV3

1:07 1 f'iS_ENSWND*

:1:08 15

:INP1.3 14

INPl.2 13

2409S7-A4

_.
l

@

»
"U
I

""" en
I\)

"@J
2EJ
IMJ
IF"

~
~
~
2EJ
~

I}'
(11
(11
c.l

~
! a.
j(
(')
en
n

.':J"
111
3
!.
n

EWCPLB

::I. P8!5C224

a RST1.

B CRDY1.

~ JlOYSitC

%Of ::~::v CPUENO B WCPLS. :

B LJ<CACHE

"9 CLEN~ B paCT.

aLLEN

B LCACHE*.

B SlROY::!.. 1.

.!:.7S_CLENZ*

%O'fJ!.6S_CLEN ...

l:O-·1~

:rNP1.~·
>3

INP12

EBRDY
l.P8SC224

l B CLENl4t :<::: .
B YSCEOC4t :tNI'''

B SNPCYC.. 5 :INP5

:::~: u ut<u:c~" •
B_ENBROV*

B_PNOCEOCfI
MSNPSTIH" I'> .IN!' f5. 7

B Cl<ENLC4t :tHP"

r'.KEN1* B INP.
9 :::NPIJ

" :tNP 1. 1

%O'f:" 1:0,,1.6

X081.S

J:NPl.:J 14

:tHP1.2 13

U6'702

240957-A5

_.
l
•

»
'lJ • .;.
U1
I\)

"@J
2EJ
!iiiiI
IF'

~
~
~ :w
«<

I\)

&.
OJ
.j>.

»
'0
'0
CD
::I
CL
;c:
o
rn
()
:::r
CD
3
III -n

MRESE:.T2

BYRDYSTR

08SC22V10
1

• B YALLOC. I I 41n~P3

• B YABORT# • I I I5ln",~ 8 B SVRO.

%03 "7 B SVRl..

%02115 B SVR2*

1:01 5 B SVR3#

B YMSEL# ~:NP. %OO~
I B YPJ:PE*' 11r"p10 ::t.Pl1~

AYMEMLEN

~~~~~3 SVCl.* 

B YMS£L. .F= __ ~B~S~V~L~1~.L-________________ ~ 

B YABORTlf S, 

B WMSWNO# 71 

:Z:Ol~ 5 B SVRO. 

14 B YMEOC1.# 

~ --=-~LE=- 1 1 1 1 __ .1 1 ''l-~'0 'Nm~ 

B-PSWBASlf 

AYMBTRCK 

085C22Vl.O 
1 

B WMSWNO* :1 
:2 

MBOFF. 

:r.c:n.'1.9 

:1:0.1.0 

I03 17 

l:O;Z 1. 15 

1:011.5 D YMEOCl. .. 

• B YMLOCK# ==2 1.4 NP9 :too 

B YSWEHl:TM* l. 13 ------ _10 :IN.11 

D PCTCXFR* 

l 

D CTCENO* 

B YCE0.9----. 

B YPl:PE# 

~ 
B YMADS* 

240957-A6 

_. 
l 

@ 

» 
l' 
""' (J1 
N 

"@J 
a2J 
!iiiiI 
IF' 

~ 
~ 
~ 
~ 
~ 



~ 
'tI 
(II 
::I 
Il. 

N ;C 
en 0 
g: W 

::r 
(II 

3 
!a­
n 

B XSNPWS. 

EWMSWND 
DOSC224 

1 

r03 0 B_ENXSAS* 

B YSW£Hl:TM* ___ 

1. 9 B ENMSWNO* 

::: 1. (I - n WMSWNOfo 

%0' " 
J:O..,1.fi 

%0. 
15 

S YNOSWNO. :::::1':.:::-----, 

EABORT 

DOSC224 
1 

til 1 1 I B WM5WNO. :1:::: ~:~I:: II B YABORT. : 

R YSW'E:H'ITM* 4 

~ B YAL~OC. :1:INP!!i 
:103 B PCTCXF'R* ,. 
'f.,~.~~~~~~~:jt:~~~=!~~~~: %O'f 

J:061 "1 ,. 

"\WPU %NPU~ 
B CTC£SD. II y II "I U7002 J 
B YWA., 

B eTC DiS. 

EMSNPST 
08!>C224 

10 

MRESET2 2 :tNP2 

MKENl.. 3 :tN1"3 

Ell MHLDA 4 :tNP 4 

L __ -"'--'=.!-_~S :INP5 

B VNOSWNO.6 LNP6 

B YBCTO 71=N.7 
: B LROYSRC : INP8 

B RFO. INPSI 

::;f: 0 n YALLOC. : 

M~ ,. 
,. 

:I05r 

J:06J:,? ,. 
:loaFS 

14 

B_HDAswaff 

B YMLOCK. 

240957-A7 

II 

_. 
l 

@ 

» 
'tJ • 
"" U1 
N 

"@ 
:w 
JiiiiJ u= 
~ 
~ 
~ 
~ 
~ 



EMEMALE 

MCLk10 
]. Dase!:!24 

MRESET2 2 

=t I '--": r04 D_O:ISWND* 

ZO~ 1. , YM'ALE 

];05,17 

B YBGTft 

WMSWN~ 

B YMEOCl." %0'7116 B YDRCTM. 

B PXSAS., Np, xoe ,. 
" 14 

:~a~Y;A;L;L;OC~'~::::::::~::::::::::::::::~~~~%~N;.;'J3 " A MSWN'OO. J:NP1Z 
____ ~...B;:;>Y1..~ 

l ECYCDEF 

DBSC224 

....: r:NP]' ~t;;--, a YNOSWND" __ ·~~~~--~-------1i---~--------__ ====:::::::::::::::::j::::::::::::::~2~ %01 '- ,,",,OEO 

B MHLDA "%NP4 = B XI CHE., " NP!l 

CW~ '":INPS 

- B CM:IO 71:NP'1' 

- CDC., -:tNP. 

- B LLEN 9%N •• 
- B MTH:I'l"" 

>' ~ ~-
"1:1 
"1:1 
!I 

___ lL 

a. 
'l-' ~I - -Q; 

en 0 
en tn en n 

~in I -.. ;~ 
::J' 
ID 
3 
DI U71.02 g. 

l a YDRC~. ESIGGEN 

1~_·_~C2::p1.4123 

B YMADS., 2fNP2 :I01'F.2~2~::~::::::::t:::::::::::::::::::::::::::::::::::::::::::::::::::::~~~~~~~ :t02~21. B YSNPOl:SIJ 

1:03 20 

19 %04 MBOP'Fft 

MWBWT_" 
,. 

:IO!! B CWBWTft 

MDRCTM4t 1:06]."1' B CDRCTM. 

B SNP DIS. %0'7 16 

roa loS B C8MSELft 

%NP13 14 

. 13 
"Pl.], l:NP:l2 

MTR4' Tit • ., 

07103 

B LMRST 
240957-AB 

_. 
£ 

8 

» 
." 
~ 
CII 
N 

'\§J 
:w 
/iiiiI 
F = 
~ 
~ 
~ 
a§) 
~ 



l\) 

0, 
0'1 
-..J 

~ 
"0 
"0 
CD 
:::I 
Q. 
;CO 

o 
UI 
n 
:::I" 
CD 
3 
!. 
n 

B LBE[7:0)* 

EMBE 
D05C224 

I ~t::2 XN:::~ MBE6. I 
X03'~~H-="",""---II 

to xo. 
18 

XO. 

:I061.7 

:to? 1.6 

:IOO 1.5 

MBEC?;Ol4f 

II B KCACHE. l,..NP:l.O :INPl.::J~: 

:INP:l.2 

B LMRST 

B YPl:PE/J - MCACHE4f 

B YMEOCl.* 

EMZBT 

D8SC224 
l.~ 

• :ro:zF ~ B F"l.USH., • 

:::r,: R FPFLO. : 

a X07 
:lOO 15 

• B MSYNC/J .&- f NP10 XNPl.:J 1- 4 

:Z:NP1.2 1. 3 

B FPFL::>EN. 

240957-A9 

II 

...... 

l 

l> 
"tJ 
I 
~ 
U1 
II) 

~ 
:w 
ffiiiI 
F 

~ = 
~ 
~ 
2.el 
~ 



I}l 
U1 

8l 

f 
:J a. 
iii" 
o 
W 
::r 
ID 
3 
~ n 

MA[:U.12l 

vee 

2"~ _MADS' 2Ac!. 

R~f50"''IT 1'8. 

vee 

2~ .21 
'. -1\3150"'2 1,aw 

,0 
• 2'... 1-ft31l103 11'IIIIW 

~e 
• 2'... 1- . 

"'~IID" 1.1 •• 

vee 

ir"~HZT'" .2~ 
RlI6DYS 1/8W 

vee 

• 2~ 
• .. C .... r."E... 2 1-

R3150115 11'8'" 

vee 

2~ • MSNPS'I"S_ :Ii.. 1 

R31507 1,BW 

. vee 

2~ • "DOFF. 2' W: 1. 
R3608 1'8" 

. vee 

2~ II MABORT# :I.. 1. 

RlIeo, 1.18W 

·d aHL!!:N 2.1 . 

R:JCl10 11'8W 

1 . 

r 

kP:iIS03 

MA1.ts 

240957-80 

5" 
C£-.. : . 

l> 

l c.n 
N 

"\§J 
22J 
IiiiiI 
IF' = 
~ 
~ 
~ 
as! 
~ 



I\J 
0, 
tn 
<0 

> 
"'C 
"'C 
CD 
::l 
r::L 
x' 
o 
(fJ 
o 
::r 
CD 
3 
!. o· 

MBIl;[ -, ,0 JoI< 

"'OP[ 710) 

MDf63.01 

RP3~ 

---~-~ 

RP3701. 

RP37~ 

RIO.")';;;: 

240957-B1 

...... 

£ 

l> 
'tI 

I 

""' U1 
I\) 

"@ 
2EJ 
!iiiil 
IF" = 
~ 
~ 
~ 
2EJ 
~ 





i960™ Microp~ocessor Family 3 

II 





0 

t:iI 

B 

0 

80960SA/80960SB 
\EMBEDDED 32-Brr [PROCESSORS 

WITH 16a BIT BURST DATA BUS 

High-Performance Embedded 0 Built-In Interrupt Controller 
Architecture - 4 Direct Interrupt Pins 
-16 MIPS Burst Execution at 16 MHz - 32 Priority Levels 256.Vectors 
- 5 MIPS' Sustained Execution at 121 Built-In Floating Point Unit 

16 MHz (80960SB only) 
512-Byte On-Chip Instruction Cache - Fully IEEE 754 Compatible 
- Direct Mapped Ell Easy to Use, High Bandwidth 16-Bit Bus 
- Parallel Load/Decode for Uncached - 25.6 Mbyte/sec Burst 

Instructions - Up to 16 Bytes Transferred per Burst 
Multiple Register Sets 

OJ 32-Bit Address Space, 4 Gigabytes 
- Sil(teen Global 32-Bit Registers . 
- Sil(teen local 32-Bit Registers 0 80-Lead Quad Flat Pack (EIAJ QFP) 
- Four local Register Sets Stored B 84-Lead Plastic leaded Chip Carrier 

On-Chip (PLCC) 
- Register Scoreboarding 

Software Compatible with 
809601(A/I(IB/CA Processors 

The B09608A and B096088 are members of Intel's i960 32-bit processor family, which are designed especially 
for low cost embedded applications. They are based on the family's high performance, common core architec­
ture, and include a 512-byte instruction cache and a built-in interrupt controller. The B09608A and B096088 
have a large register set, multiple parallel execution units and a high bandwidth, 16-bit, burst bus. Using 
advanced RI8C technology, these high performance processors are capable of execution rates in excess of 
5 million instructions per second. * The B09608A and B096088 are well-suited for a wide range of cost 
sensitive embedded applications such as laser printers, EI8A and MCA adapters, disk controllers and X 
Terminals. 

* Relative to Digital Equipment Corporation's VAX-11I7BO" at MIP8 

B0960S8 

Floating Point I 
Reglstors 

1632-blt 64 by 32-blt 32-blt 

Global Local Integer 
BO-blt Register Execution 
Floating Reglstors 

Cache Unit 
Point 
Unit 

T T T --- -----

'" 

'l l t f I Instruction I 512-8y\. Micro-Instruction I 
Fetch Unit Instruction Instruction I Sequencer 

Cacho Decoder and ROM 

T ~ 14 n 

~ 'VAX-111M is a trademark of Digital Equipment Corporation. 

3-1 

8us 
Control .. Logic 

Interrupt 
Controller 

" 

.... .. 
32-blt Address 

16-bit Data 
Burst Bus 

270917-1 

October 1991 
Order Number: 270917-003 



int:eL S0960SAlS0960SB 

THE i960™ PROCESSOR SERIES 

The 80960SA and 80960S8 are members of a new 
family of 32-bit microprocessors from Intel known as 
the i960 Series. This series was especially designed 
to serve the needs of embedded applications. The 
embedded market includes applications as diverse 
as industrial automation, avionics, image processing, 
graphics, robotics, telecommunications and automo­
biles. These types of applications require highinte­
gration, low power consumption, quick interrupt re­
sponse times and high performance. Since time to 
market is critical, embedded microprocessors need 
to be easy to use in both .hardware and software 
designs. 

NOTES: 
1. Register g15 is reserved for stack management functions. 

All members of the 80960 series share a common 
core architecture which utilizes RiSe technology so 
that, except for special functions, the family mem­
bers are object code compatible. Each new proces­
sor in the series will add its own special set of func­
tions to the core to satisfy the needs of a specific 
application or range of applications for the embed­
ded market. For example, future processors may in- . 
clude a DMA controller, a timer or an AID converter. 

Software written for the 80960SA and 80960S8 will 
run without modification on any other member of the 
80960 family. The 80960SA is pin compatible with 
the 80960S8, which includes an integrated floating­
point unit. 

ADDRESS 
SPACE 

270917-2 

2. Floating-Point registers and operations are available only in the 9608B and 960KB processors. 
3. Registers rO, r1 and r2 are reserved for stack management functions. 
4. Register g14 is used by BAL and BALX instructions. 

Figure 2. 80960 Register Set 

3-2 



intel® S0960SAlS0960SB 

Key Performance features 

The 80960SA and 80960S8's architecture is based 
on the most recent advances in RISC technology 
and is grounded in Intel's long experience in design­
ing embedded controllers. Many features contribute 
to the 80960SA and 80960S8 exceptional perform­
ance. 

1. Large Register Set. Modern compilers can take 
advantage of a large number of registers to optimize 
execution speed. For maximum flexibility, the 
80960SA and 80960S8 provide 32 32-bit registers 
and four 80-bit floating-point registers. (See 
Figure 2.) 

2. Fast Instruction Execution. Simple functions 
make up the bulk of instructions in most programs, 
so that execution speed can be greatly improved by 
ensuring that these core instructions execute in as 
short a time as possible. The most-frequently exe­
cuted instructions such as register-register moves, 
add/subtract, logical operations, and shifts execute 
in one to two cycles (Table 1 contains a list of in­
structions). 

3. Load/Store Architecture. Like other processors 
based on RISC technology, the 80960SA and 

Control Opcode 

Compare 
Opcode Reg/Lit 

and Branch 

Register 
to Register 

Reg 

Memory 
Opcode Reg Base 

Access-Short 

Memory 
Opcode Reg Base Access-Long 

80960S8 has a Load/Store architecture. Only the 
LOAD and STORE instructions reference memory; 
all other instructions operate on registers. This type 
of architecture simplifies instruction decoding and is 
used in combination with other techniques to. in­
crease parallelism. 

4. Simple Instruction Formats. All instructions in 
the 80960SA and 80960S8 are 32 bits long and 
must be aligned on word boundaries. This alignment 
makes it possible to eliminate the instruction-align­
ment stage in the pipeline. To simplify the instruction 
decoder further, there are only five instruction for­
mats and each instruction type uses only one for­
mat. (See Figure 3.) 

5. Overlapped Instruction Execution. A load oper­
ation allows execution of subsequent instructions to 
continue before the data has been returned from 
memory, so that these instructions can overlap the 
load. The 80960SA and 80960S8 manage this pro­
cess transparently to software through the use of a 
register scoreboard. Conditional instructions also 
make use of a scoreboard so that subsequent unre­
lated instructions can be executed while the condi­
tional instruction is pending. 

Displacement 

I M· Displacement 

I M x I Offset 

Mode Scale xx Index 

Displacement 

270917-3 

Figure 3. Instruction Formats 

3-3 



80960SA/80960SB 

Table 1. 80960SA and 80960SB Instruction Set 

Data Movement Arithmetic Logical Bit and Bit Field 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Not Not Bit 
Load Address Divide Or Check Bit 

Remainder Exclusive Or Alter Bit 
Modulo Not Or Scan for Bit 
Shift Or Not Scan over Bit 
Extended Multiply Nor Extract 
Extended Divide Exclusive Nor Modify 

Not 
Nand 
Rotate 

Comparison Branch • Call/Return Fault 

Compare Unconditional Branch Call Conditional Fault 
Conditional Compare Conditional Branch Call Extended Synchronize Faults 
Compare and Compare and Branch Call System 

Increment Return 
Compare and Branch and Link 

Decrement 

Debug Miscellaneous Decimal 

Modify Trace Controls Atomic Add Move 
Mark Atomic Modify Add with Carry 
Force Mark Flush Local Registers Subtract with Carry 

Modify Arithmetic 
Controls 

Scan Byte for Equal 
Test Condition Code 

Conversion Floating-Point 
Synchronous 

(80960SB only) (80960SB only) 

Convert Real to Integer Move Real Synchronous Load 
Convert Integer to Real Add Synchronous Move 

Subtract 
Multiply 
Divide 
Remainder 
Scale 
Round 
Square Root 
Sine 
Cosine 
'Tangent 
Arctangent 
Log 
Log Binary 
Log Natural 
Exponent 
Classify 
Copy Real Extended 
Compare 

3·4 



int:et S0960SAlS0960SB 

6. Integer Execution Optimization. When the re­
sult of an operation is used as an operand in a sub­
sequent calculation, the value is sent immediately to 
its destination register. Yet at the same time, the 
value is put back on a bypass path to the ALU, 
thereby saving the time that otherwise would be re­
quired to retrieve the value for the next operation. 

7. Bandwidth Optimizations. The 809608A and 
8096088 get optimal use of their memory bus band­
width because the bus is tuned for use with the 
cache; the line size of the instruction cache matches 
the maximum burst size for instruction fetches. The 
809608A and 8096088 automatically fetch four 
words in a burst and store them directly in the 
cache. Due to the size of the cache and the fact that 
it is continually filled in anticipation of needed in­
structions in the program flow, the 809608A and 
8096088 are exceptionally insensitive to memory 
wait states. In fact, each wait state causes only a 
10% degradation in system performance. The bene­
fit is that the 809608A and 8096088 will deliver out­
standing performance even with a low cost memory 
system. ' 

8. Cache Bypass. If there is a cache miss, the proc­
essor fetches the needed instruction, then sends it 
on to the instruction decoder at the same time it 
updates the cache. Thus, no extra time is taken to 
load and read the cache. 

Memory Space and Addressing Modes 

The 809608A and 8096088 offer a linear program­
ming environment so that all programs running on 
the processors are contained in a single address 
space. The maximum size of the address space is 
4 Gigabytes. 

For ease of use, the 80960tlA and 8096088 have a 
small number of addressing modes, but include all 
those necessary to ensure efficient compiler imple­
mentations of high-level languages such as C, For­
tran and Ada. Table 2 lists the memory addressing 
modes. 

Data Types 

The 809608A and 8096088 recognize the following' 
data types: 

Numeric: 
o 8-, 16-, 32- and 64~bit ordinals 

• 8-, 16-, 32- and 64'bit integers 

• 8-, 16-, 32-, 64- and.80-bit reals 

Non-Numeric: 
• bit 

o bit Field 

• Triple-Word (96 bits) 

• Quad-Word (128 bits) 

Large Register Set 

The following environment of the 809608A and II 
8096088 include a large number of registers. In fact, 
32 registers are availableatany time. The availability 
of this many registers greatly reduces the number of 
memory accesses required to execute most pro-
grams, which leads to greater instruction processing 
speed .. 

There are two types of general-purpose registers: 
local and global. The global registers consist of six­
teen 32-bit registers (GO through G15). These regis­
ters perform the same function as the general-pur­
pose registers provided in other popular microproc­
essors. The term global refers to the fact that these 
registers retain their contents across procedure 
calls. 

The local registers, on the other hand, are proce­
. dure specific. For each procedure call, the 809608A 

and 8096088 allocate 16 local registers (RO through 
R15). Each local register is 32 bits. wide. 

3-5 

Multiple Register Sets 

To further increase the efficiency of the register set; 
multiple sets of local registers are stored on-chip. 
This cache holds up to four local register frames, 
which means that up to three procedure calls can be 
made without having to access the procedure stack 
resident in memory. 



infel~ S0960SA/S0960SB 

Table 2. Memory Addressing Modes 

• 12-Bit Offset 
• 32-Bit Offset 
• Register-Indirect 
• Register + 12-Bit Offset 
• Register + 32-Bit Offset 
• Register + (Index-Register x Scale-Factor) 
• Register x Scale Factor + 32-Bit Displacement 
• Register + (Index-Register x Scale-Factor) + 32-Bit Displacement 

Scale-Factor is 1, 2, 4, 8 or 16 

Although programs may have procedure calls nest­
ed many calls deep, a program typically oscillates 
back and forth between only two or three levels. As 
a result, with four stack frames in the cache, the 
probability of there being a free frame on the cache 
when a call is made is very high. In fact, runs of 
representative C-Ianguage programs show that 80% 
of the calls are handled without needing to access 
memory~ 

If there are four or more active procedures and a 
new procedure is called, the processor moves the 

Register 
Cache 

oldest set of local registers in the register cache to a 
procedure stack in memory to make room for a new 
set of registers. Global register G15 is used by the 
processor as the frame pointer (FP) for the proce­
dure stack. 

Note that the global registers are not exchanged on 
a procedure call, but retain their contents, making 
them available to all procedures for fast parameter 
passing. An illustration of the register cache is 
shown in Figure 4. 

Local Register Set 

Four 
01 

One of 
Loc 

Reglste r Sets / 
----- r--. 

\ 
31 o 

270917-4 

Figure 4. Multiple Register Sets are Stored On-Chip 

3-6 



S0960SAlS0960SB 

Instruction Cache 

To further reduce memory accesses, the 80960SA 
and 80960S8 include a 512-byte on-chip instruction 
cache. The instruction cache is based on the con­
cept of locality of reference; that is, most programs 
are not usually executed in a steady stream but con­
sist of many branches and loops that lead to jumping 
back and forth within the same small section of 
code. Thus, by maintaining a block of instructions in 
a cache, the number of memory references required 
to read instructions into the processor can be greatly 
reduced. 

To load the instruction cache, instructions are 
fetched in 16-byte blocks, so that up to four instruc­
tions can be fetched at one time. 

Code for small loops will often fit entirely within the 
cache, leading to a great increase in processing 
speed since further memory references might not be 
necessary until the program exits the loop. Similarly, 
when calling short procedures, the code for the call­
ing procedure is likely to remain in the cache, so it 
will be there on the procedure's return. 

Register Score boarding 

The instruction decoder has been optimized in sev­
eral ways. One of these optimizations is the ability to 
do instruction overlapping by means of register 
scoreboarding. 

Register scoreboarding occurs when a LOAD in­
struction is executed to move a variable from memo­
ry into a register. When the instruction is initiated, a 
scoreboard bit on the target register is set. When the 
register is actually loaded, the bit is reset. In be­
tween, any reference to the register contents is ac­
companied by a test of the scoreboard bit to insure 
that the load has completed before processing con­
tinues. Since the processor does not have to wait for 
the LOAD to be completed, it can go on to execute 
additional instructions placed in between the LOAD 

3-7 

instruction and the instruction that uses the register 
contents, as shown in the following example: 

LOAD address 1, R4 
LOAD address 2, R5 
Unrelated instruction 
Unrelated instruction 
ADD R4, R5, R6 

In essence, the two unrelated instructions between 
the LOAD and ADD instructions are executed for 
free (Le., take no apparent time to execute) because 
they are executed while the register is being loaded, 
Up to three instructions can be pending at one time 
with three corresponding scoreboard bits set. 8y ex­
ploiting this feature, system programmers and com­
pilers have a useful tool for optimizing execution 
speed. 

floating-Point Arithmetic 

In the 80960S8, floating-point arithmetic has been • 
made an integral part of the architecture. Having the 
floating-point unit integrated on-chip provides two 
advantages. First, it improves the performance of 
the chip for floating-point applications, since no ad-
ditional bus' overhead is associated with floating-
pOint calculations, thereby leaving more time for oth-
er bus operations such as 1/0. Second, the cost of 
using floating-point operations is reduced because a 
separate coprocessor chip is not required. 

The 80960S8 floating-point (real number) data types 
include single-precision (32-bit), double-precision 
(64-bit) and extended precision (80-bit) floating-point 
numbers. Any register may be used to execute float­
ing-point operations. 

The processor provides hardware support for both 
mandatory and recommended portions of IEEE 
Standard 754 for floating-point arithmetic, exponen­
tial, logarithmic and other transcendental functions. 
Table 3 shows execution times for some representa­
tive instructions. 



80960SA/80960SB 

Table 3. Sample Floating-Point 
Execution Times (,...s) at 16 MHz 

32-Blt 64-Blt 

Add 0.6 0.8 

Subtract 0.6 0.8 

Multiply 1.1 2.0 

Divide 2.0 4.5 

Square Root 5.8 6.1 

Arctangent 15.8 20.5 

Exponent 17.7 19.5 

Sine 23.8 25.9 

Cosine 23.8 25.9 

High Bandwidth Bus 

The 809605A and 809605B CPUs reside on a high· 
bandwidth address/data bus. The bus provides a di· 
rect communication path between the processor 
and the memory and I/O subsystem interfaces. The 
processor uses the bus to fetch instructions, manip­
ulate memory and respond to interrupts. Its features 
include: 

960SA/SB Bus 

\ 

• 16·bit data path multiplexed onto the lower bits of 
the 32·bit address path 

• Eight 16-bit half-word burst capacity, which al­
lows transfers from 1 to 16 bytes at a time 

o High bandwidth reads and writes at 25.6 Mbytes 
per second 

Figure 5 identifies the groups of signals which con­
stitute the Bus. Table 4 lists the function of the Bus 
and other processor-support signals, such as the in­
terrupt lines. 

Interrupt Handling 

The 809605A and 809605B can be interrupted in 
one of two ways: by the activation of one of four 
interrupt pins or by sending a message on the proc­
essor's data bus. 

The 809605A and 809605B are unusual in that they 
automatically handle interrupts on a priority basis 
and track pending interrupts through their on·chip 
interrupt controller. Two of the interrupt pins can be 
configured to provide 8259A handshaking for expan­
sion beyond four interrupt lines. 

960SA/SB Bus Signal Groups 

\ 
Addre.s 32-Lines Data 16-Lines 

<~ ______ ~co~n~tr~o~I(~O~pe~ra~t~io~n~S~ig~na~ls~=_1~5~-~Li~ne~s~) ________ ~:> 

< Arbitration (2-LinesJ :> 
270917-5 

Figure 5. 80960SA and 80960SB Bus Signal Groups 

3·8 



80960SA/80960SB 

Debug Features 

The 80960SA and 80960S8 have built-in debug ca­
pabilities. There are two types of breakpoints and six 
different trace modes. The debug features are con­
trolled by two internal 32-bit registers, the Process­
Controls Word and the Trace-Controls Word. 8y set­
ting bits in these control words, a software debug 
monitor can closely control how the processor re­
sponds during program execution. 

The 80960SA and 80960S8 have both hardware 
and software breakpoints. They provide two hard­
ware breakpoint registers on-chip which can be set 
by a special command to any value. When the in­
struction pointer matches the value in one of the 
breakpoint registers, the breakpoint will fire, and a 
breakpoint handling routine is called automatically. 

Tracing is available for all instructions (single-step 
execution), calls and returns and branching. Each 
different type of trace may be enabled separately by 
a special debug instruction. In each case, the 
80960SA and 80960S8 execute the instruction first 
and then call a trace handling routine (usually part of 
a software debug monitor). Further program execu­
tion is halted until the trace routine is completed. 
When the trace event handling routine is completed, 
instruction execution resumes at the next instruc­
tion. The 80960SA and 80960S8's tracing mecha­
nisms, which are implemented completely in hard­
ware, greatly simplify the task of testing and debug­
ging software. 

FAULT DETECTION 

The 80960SA and 80960S8 have an automatic 
mechanism to handle faults. There are ten fault 
types including trace, arithmetic, and· floating-point 
faults. When the processor detects a fault, it auto­
matically calls the appropriate fault handling routine 
and saves the current instruction pointer and neces­
sary state information to make efficient recovery 
possible. The processor posts diagnostic informa­
tion on the type of fault to a Fault Record. Like inter­
rupt handling routines, fault handing routines are 
usually written to meet the needs of a specific 

3-9 

application and are often included as part of the op­
erating system or kernel. 

For each of the ten fault types, there are numerous 
subtypes that provide specific information about a 
fault. For example, a floating-point fault may have its 
subtype set to an Overflow or Zero-Divide fault. The 
fault handler can use this specific information to re­
spond correctly to the fault. 

BUilT-IN TESTABILITY 

Upon reset, the 80960SA and 80960S8 automatical­
ly conducts an extensive internal test (self-test) of its 
major blocks of logic. Then, before executing its first 
instruction, it does a zero check sum on the first 
eight words in memory to ensure that the system 
has been loaded correctly. If a problem is discov­
ered at any point during the self-test, the 80960SA 
and 80960S8 will indicate a failure and will not begin 
program execution. The self-test takes approximate­
ly 47,000 cycles to complete, and can be disabled. 

System manufacturers can use the a0960SA and 
80960S8's self-test feature during incoming parts in­
spection. No special diagnostic programs need to be 
written, and the test is both thorough and fast. The 
self-test capability helps ensure that defective parts 
will be discovered before systems are shipped, and 
once in the field, the self-test makes it easier to dis­
tinguish between problems caused by processor fail­
ure and problems resulting from other causes. 

CHMOS 

The 80960SA and 80960S8 are fabricated using In­
tel's CHMOS IV (Complementary High Speed Metal 
Oxide Semiconductor) process. This advanced tech­
nology eliminates the frequency and reliability limita­
tions of older CMOS processes and opens a new 
era in microprocessor performance. It combines the 
high performance capabilities of Intel's industry­
leading HMOS technology with the high density and 
low power characteristics of CMOS. The 80960SA 
and 80960S8 are available at 10 MHz in both PLCC 
and QFP packages, and at 16 MHz in the PLCC 
package. 

• 



inteL S0960SAlS0960SB 

Table 4. 80960SA and 80960SB Pin Description: Bus Signals 

Symbol Type Name and Function 

CLK2 I SYSTEM CLOCK provides the fundamental timing for 80960SA and 80960SB 
systems. CLK2 is divided by two inside the 80960SA and 80960SB to generate the 
internal processor clock. 

A31-A16 0 ADDRESS BUS carries the upper 16 bits of the 32-bit address to memory. It is valid 
T.S. throughout the burst cycle, no latchis required. 

AD15-AD1, DO 1/0 ADDRESS/DATA BUS carries the low order 32-bit addresses and 16-bit data to and 
T.S. from memory. AD15-AD4 must be latched since the cycle following the address 

cycle carries data on the bus .. 

A3-A1 0 ADDRESS BUS carries the word addresses of the 32-bit address to memory. These 
T.S. three bits are incremented during a burst access indicating the next word address of 

the burst access. Note that A3-A1 are duplicated with AD3-AD1 during the address 
cycle. 

ALE 0 ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is 
T.S. asserted during a Ta cycle and deasserted before the beginning of the following Td 

state. It is active high and floats to a high impedance state during a hold cycle (Th or 
Thr). 

AS 0 ADDRESS STATUS indicates an address state. AS is asserted every Ta state and 
T.S. deasserted during the following Td state. AS is driven HIGH during reset. 

WIR 0 WRITE/READ specifies, during a Ta cycle, whether the operation is write or read. It 
T.S. is latched on-chip and remains valid during Td cycles. 

DEN 0 DATA ENABLE is asserted during Td cycles and indicates transfer of data on the AD 
T.S. lines. The AD lines should not be driven by an external source unless DEN is 

asserted. When DEN is asserted, the outputs from the previous cycle are guaranteed 
to be 3-stated. In addition, DEN deasserted indicates inputs have been captured and 
therefore input hold times can be disregarded. DEN is driven to a HIGH during reset. 

READY I READY indicates that data on AD lines can be sampled or removed. If READY is not 
asserted during a Td cycle the Td cycle is extended to the next cycle by inserting a 
wait state (Tw). 

DT/A 0 DATA TRANSMIT/RECEIVE indicates the direction of the data transfer to and from 
T.S. the bus. It is low during Ta and Td cycles for a read or interrupt acknowledgement; it 

is high during Ta and Td cycles for a write. DT /A never changes state when DEN is 
asserted. DT IA is driven HIGH during reset. 

BLAST/FAIL 0 BURST LAST indicates the last data cycle (Td) of a burst access. It is asserted low 
T.S. during the last Td and associated Tw cycles in a burst access. 

INITIALIZATION FAILURE indicates that the processor has failed to initialize 
correctly. The failure state is indicated by a combination of BLAST asserted and both 
BE signals not asserted. This condition occurs after RESET is deasserted and before 
the first bus transaction begins. FAIL is asserted while the processor performs a self-
test. If the self-test completes successfully, then FAIL is deasserted. Next, the 
processor performs a zero checksum on the first eight words of memory. If it fails, 
FAIL is asserted for a second time and remains asserted; if it passes, system 
initialization continues and FAIL remains deasserted. 

110 = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain, T.S. = 3-State. 

3-10 



intel® 80960SA/80960SB 

Table 4. 80960SA and 80960S8 Pin Description: Bus Signals (Continued) 

Symbol Type Name and Function 

RESET I RESET clears the internal logic of the processor and causes it to reinitialize. 

During RESET assertion, the input pins are ignored (except for INTO, INT1, INT3, 
LOCK), the tri-state output pins are placed in a HIGH impedance state (except for 
DT IR, DEN, and AS), and other output pins are placed in their non-asserted state. 

RESET must be asserted for at least 41 CLK2 cycles for a predictable reset. 
Optionally, for a synchronous reset, the LOW to HIGH transition of RESET should 
occur after the rising edge of both CLK2 and the external bus clock, and before the 
next rising edge of CLK2. 

The interrupt pins indicate the initializtion sequence executed. Typical initialization 
requires driving only INTO and INT3 to a HIGH state. The reset conditions follow: 

INTO INn INT3 LOCK Action Taken 

1 x 1 1 Run self-test (core initialization) 
0 0 1 1 Disable self-test 
0 1 x x Reserved 
x x 0 x Reserved 
x x x 0 ONCE mode (see LOCK pin) 

BE1-BEO 0 BYTE ENABLE LINES specify which data bytes (up to two) on the bus take part in 
T.S. the current bus cycle. BE1 corresponds to AD15.:.:AD8 and BEO corresponds to 

AD? -AD1, DO. The byte enable lines are asserted appropriately during each data 
cycle. 

INITIALIZATION FAILURE indicates that the processor has failed to initialize 
. correctly. The failure state is indicated by a combination of BLAST asserted and 
both BE signals not asserted. This condition occurs after RESET is deasserted and 
before the first bus transaction begins. FAIL is asserted while the processor 
performs a self-test. If the self-test completes successfully, then FAIL is 
deasserted. Next, the processor performs a zero checksum on the first eight words 
of memory. If it fails, FAIL is asserted for a second time and remains asserted; if it 
passes, system initialization continues and FAIL remains deasserted. 

INTO I INTERRUPT 0 indicates a pending interrupt. The bus interrupt control register 
determines in which way the signal should be interpreted. To signal an interrupt 
request in a synchronous system, this pin (as well as the other interrupt pins) must 
be enabled by being deasserted for at least one bus cycle and then asserted for at 
least one additional bus cycle; in an asynchronous system, the pin must remain 
deasserted for at least two bus cycles and then be asserted for at least two more 
bus cycles. INTO is sampled during RESET to determine if the self-test sequence is 
to be executed. 

INT1 I INTERRUPT 1 indicates a direct interrupt, like INTO. INT1 is sampled during 
RESET to determine if the self-test sequence is to be executed. 

INT2/1NTR I INTERRUPT 21INTERRUPT REQUEST: The interrupt control register determines 
how this pin is interpreted. If INT2, it has the same interpretation as the INTO and 
INT1 pins. If INTR, it is used to receive an interrupt request from an external 8259A 
compatible interrupt controller. 

INT3/1NTA 1/0 INTERRUPT 3/INTERRUPT ACKNOWLEDGE: The interrupt control register 
T.S. determines how this pin is interpreted. If INT3, it has the same interpretation as the 

INTO and INT1 pins. If INTA, it is used as an output to control interrupt-
acknowledge bus transactions. The INT A output is latched on-chip and remains 
valid during Td cycles. INT3 must be pulled to a HIGH state during RESET. 

I/O = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain. T.8. = 3-8tate. 

3-11 



infel® S0960SAlS0960SB 

Table 4. 80960SA and 80960SB Pin Description: Bus Signals (Continued) 

Symbol Type Name and Function 

LOCK I/O BUS LOCK prevents other bus masters from gaining control of the bus following the 
0.0. currentcycle (if they would assert LOCK to do so). LOCK is used by the processor or 

any bus agent when it performs indivisible Read/Modify/Write (RMW) operations. Do 
not leave LOCK unconnected. It must be pulled HIGH for the processor to function 
properly. 

For a read that is designated as an RMW-read, LOCK is examined. If asserted, the 
processor waits until it is not asserted; if not asserted, the processor asserts LOCK 
during the Ta cycle and leaves it asserted. I 

A write that is designated as an RMW-write de asserts LOCK in the Ta cycle. During 
the time LOCK is asserted, a bus agent can perform a normal r~ad or write but no 
RMW operations. LOCK is also held asserted during an interrupt-acknowledge 
transaction. 

ONCE MODE: The LOCK pin is sampled during reset. If it is asserted LOW at the end 
of RESET, all outputs will be 3-stated until the part is reset. ONCE MODE is used in 
conjunctipn with an ICE. 

HOLD I HOLD: HOLD indicates a request from a secondary bus master to acquire the bus. 
When the processor receives HOLD and grants another master control of the bus, it 
floats its tri-state bus lines and then asserts HLDA and enters the Th state. When 
HOLD is deasserted, the processor will deassert HLDA and go to either the Ti or Ta 
state. 

HLDA 0 HOLD ACKNOWLEDGE: HLDA indicates that bus control has been relinquished to 
T.S. another bus master. This signal is always driven. At RESET it is driven LOW. 

N.C. N/A NOT CONNECTED indicates pins should not be connected. Never connect any pin 
marked N.C. " 

I/O = Input/Output, 0= Output, I = Input, 0.0. = Open-Drain, T.S. = 3-State. 

ELECTRICAL SPECIFICATIONS plane. Likewise, all Vss pins should be strapped to­
gether, preferably on, a ground plane. These pins 
may not be connected together within the chip. 

Power and Grounding 

The 80960SA and 80960S8 are implemented in 
CHMOS IV technology ,and have modest power re­
quirements. Their high clock frequency and numer­
ous output buffers (address/data, control, error, and 
arbitration signals) can cause power surges as multi­
ple output buffers drive new signal levels simulta­
neously. For clean on-chip power distribution at high 
frequency, 12 Vee and 13 Vss pins separately feed 
functional units of the 80960SA and 80960S8 in the 
package. 

Power and ground connections must be made to all 
power and ground pins of the 80960SA ,and 
80960S8. On the circuit board, all Vee pins must be 
strapped closely together, preferably on a power 

3-12 

Power Decoupling Recommendations 

Liberal decoupling capacitance should be placed 
near the 80960SA and 80960S8. The processor can 
cause transient power surges when driving the bus, 
particularly when it is connected to a large capaci­
tive load. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. 'Inductance can be reduced by shortening 
the board traces between the processor and decou­
piing capacitors as much as possible. 



InteL S0960SAlS0960SB 

Connection Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if 
one or more interrupt lines are not used, they should 
be deasserted. No inputs should ever be left float­
ing. 

All open-drain outputs require a pullup device. While 
in some cases a simple pullup resistor will be ade­
quate, we recommend a network of pullup and pull­
down resistors biased to a valid VIH (~2.0V) and 
terminated in the characteristic impedance of the cir­
cuit board. Figure 6 shows our recommendations for 
the resistor values for both a low and high current 
drive network, which assumes that the circuit board 
has a characteristic impedance of 100n. The advan­
tage of terminating the output signals in this fashion 
is that it limits signal swing and reduces AC power 
consumption. 

Characteristic Curves 

The 80960SA and 80960S8 characteristic curves 
shown in Figures 7 through 10 supply information 
regarding typical supply currents, typical current ver­
sus frequency, worst case voltage versus output cur­
rent on open drain pins and capacitive derating 
curves. 

Figure 7 shows the typical supply current require­
ments over the operating temperture range of the 

OPEN-DRAIN 
OUTPUT 

Low Drive Network: 
• VOH = 2.45V to 3.0V 
o IOl = 9.5 mA to 12 mA 

vee 

390n 

470n 

270917-6 

processor at supply voltage (Ved of 5V. Figure 8 
shows the typical power supply current (led re­
quired by the 80960SA and 80960S8 at various op­
erating frequencies when measured at three input 
voltage (Vedlevels. 

For a given output current (loll, the curve in Figure 9 
shows the worst case output low voltage (VoLl. Fig­
ure 10 shows the typical capacitive derating curve 
for the 80960SA and 80960S8 measured from 1.5V 
on the system clock (ClK) to 0.8V on the falling 
edge and 2.0V on the rising edge of the bus ad­
dress/ data (AD) signals. 

Test Load Circuit 

Figure 11 illustrates load circuit used to test the 
80960SA and 80960S8's 3-state pins, and Figure 12 
shows the load circuit used to test the open drain 
output. The open drain test uses an active load cir­
cuit in the form of a matched diode bridge. Since the 
open-drain output sinks current, only the IOL legs of 
the bridge are necessary and the IOH legs are not 
used. When the 80960SA and 80960S8 driver under 
test is turned off, the output pin is pulled up to VREF 
(Le., VOH). Diode 01 is turned off and the IOL current 
source flows through diode 02. 

When the 80960SA and 80960S8 open-drain driver 
under test is on, diode 01 is also on, and the voltage 
on the pin being tested drops to VOL. Diode 02 turns 
off and IOL flows through diode 01. 

OPEN-DRAIN 
OUTPUT 

High Drive Network: 
• VOH = 2.48V to 3.0V 
• IOl = 16 mA to 20 mA 

Vee 

220n 

270n 

270917-7 

Figure 6. Open Drain Connection Recommendations for 
Low and High Current Drive Networks for the LOCK Pin 

3-13 



intel$ S0960SAlS0960SB 

<-
5 
.... z 
UJ 

'" '" :::> 
u 
>-
...J 
<l. 
<l. 
:::> 
til 
...J ... 
u 
1i: 
>-.... 

350 

300 

250 

200 

150 

100 

4.5V 5.0V 5.5V 

SUPPLY VOLTAGE (V) 

270917-8 

Figure 7. Typical Supply Current 
vs Supply Voltage 

(Temp = +B5°C. Vee = 4.5V) 

~ 
<D 

'" 0 

'" 0 
> ,. 
0 

...J 
~ 
::J .e-
::J 
0 

0.8 

0.6 

0.4 

0.2 

0.0 
o 

/ 

/ 
V 

/ 
/" 

5 10 15 20 25 

Output Low Current (mA) 

270917-10 

Figure 9. Worst Case Voltage vs 
Output Current on Open-Drain Pin 

3-STATE OUTPUT 

270917-12 

Figure 11. Test Load Circuit for 
3-State Output Pins 

3·14 

(Temp = + 22°C) 
500 

<-
5 
I-z 
UJ 

'" '" :::> 
u 
>-...J 
c-
c-
:::> 
til 
...J ... 
u 
1i: 
>-.... 

450 

400 

350 

300 

250 

200 

150 

100 

50 

o 
o 

--- .0 

..........-: -::--::.-I-
~...-I t----

~ :::--

5 10 15 

OPERATING FREQUENCY (MHz) 

'_@4.5V D@5.0V .@5.5V 

270917-9 

Figure 8. Typical Current vs Frequency 

(Temp = +B5°C. Vee = 4.5V) 

~ 30 .. 
,5.. 
>. 25 
o 

~ 20 
:!! 

~ 15 
::J .e-
::J 10 
o 

5 

~ 

I 
FALLING 

~ -::: ------~ -.. RISING 

o 
o 20 40 60 80 100 

Capacitive Load (prJ 

270917-11 

Figure 10. Capacitive Derating Curve 

O---~~--+"--4_-~I---O VREf 

IOL Tested at 12 and 20 mA 

VREF = Vee 

D1 and D2 are matched 

270917-13 

Figure 12. Test Load Circuit for 
Open-Drain Output Pins 



80960SA/80960SB 

ABSOLUTE MAXIMUM RATINGS 

Operating Temperature 
(PLCC) ................... O·C to + 100·C Case 

Operating Temperature 
(QFP) .................... O·C to + 1 OO·C Case 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on Any Pin (PLCC) ... -0.5V to Vcc + 0.5V 

Voltage on Any Pin (QFP) .. -0.25V to Vcc + 0.25V 

Power Dissipation ................. 1.9W (16 MHz) 

DC CHARACTIERISTICS 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. Verify with 
your local Intel Sales office that you have the latest 
data sheet before finalizing a design. 

* WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

960SA/SB (10 MHz and 16 MHz): T CASE = O·C to + 100·C, VCC = 5V ± 10% unless otherwise noted. 

Symbol Parameter Min Mal( Units Conditions 

Vil Input Low Voltage -,-0.3 +0.8 V 

VIH Input High Voltage 2.0 Vcc + 0.3 V 

VCl CLK2 Input Low Voltage -0.3 +0.8 V 

VCH CLK2 Input High Voltage 0.7 Vcc Vcc + 0.3 V 

VOL Output Low Voltage 0.45 V IOl = 2.5mA 
0.45 V IOL = 12 mA, LOCK Pin 
0.60 V· IOL = 20 mA, LOCK Pin 

VOH Output High Voltage 2.4 V All TS, - 2:5 mA(4) 

Icc Power Supply Current 
10 MHz-QFP 280 mA T CASE = O·C(l) 
10 MHz-PLCC 280 mA TCASE = O·C 
16MHz-PLCC 350 mA TCASE = O·C 

ILO Output Leakage Current ±15 /LA (Note 5) 

III Input Leakage Current ±15 /LA o :S; Vo :S; VCC<2) 

CIN Input Capacitance 10 pF Ic = 1 MHz(3) 

Co 1/0 or Output Capacitance 12 pF fc = 1MHz(3) 

CCLK Clock Capacitance 10 pF Ic = 1 MHz(3) 

NOTES: 
1. TeASE is specified at O'C to + 100'C for the QFP at 10 MHz and Vee = 5V ± 5%, 
2. INTO has an internal pullup that sources 100 pA 
3. Input, output and clock capacitance are not tested. 
4. Not measured on open-drain outputs. 
5. Lock has an internal pullup that sources 100 pA 

3-15 



intel~ S0960SAlS0960SB 

AC SPECIFICATIONS 

This section describes the AC specifications for the 
80960SA and 80960S8 pins. All input and output 
timings are specified relative to the 1.5V level of the 
rising edge of CLK2, and refer to the time at which 

CLK2 

OUTPUTS: 
AD(l: 15), A( 1 :3), DO 

A(16:31), i!E(0:1) 
DEN, BLAST 

W!R 
HLDA, LOCK,INTA 

ALE 

DT!R 

INPUTS: 
AD( 1 :15), DO 

INTO,INT1 
INT2/INTR,INT3 

HOLD 
LOCK 

READY 

A B c 

the signal crosses (for output delay and input setup) 
1.5V. All AC testing should be done with input volt­
ages of O.4V and 2.4V, except for the clock (CLK2), 
which should be tested with input voltages of 0.45V 
and 0.7 • Vee. See Figure 13 for timing relationships 
for the 80960SA and 80960S8 signals. 

D A B c D 

270917-14 

Figure 13. Drive Levels and Timing Relationships of 80960SA and 8096058 Signals 

3-16 



S0960SAlS0960SB 

AC Specification Tables 
80960SA and 8096058 AC Characteristics (10 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 50 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock Low 8 ns VT = 10% Point 
Time (CLK2) = VCL + (VCH - VcLl x 0.1 

T3 Processor Clock High 8 ns VT = 90% Point 
Time (CLK2) = VCL + (VCH - VcLl x 0.9 

T4 Processor Clock Fall 10 ns VT = 90% Point to 10% Point(3) 
Time (CLK2) 

T5 Processor Clock Rise 10 ns VT = 10% Point to 90% Point(3) 
Time (CLK2) 

T6 Output Valid Delay 2 31 ns CL = 100 pF (AD and Control) 

T6AS AS Output Valid Delay 2 25 ns CL = 50 pF 

T7 ALE Width 24 ns CL -= 100 pF 

T8 ALE Output Valid Delay 4 33 ns CL = 100 pF(1) 

T9 Output Float Delay 2 20 os CL = 100 pF (AD) 
CL = 100 pF (Controls)(1) 

T10 Input Setup 1 10 ns 

T11 Input Hold 2 ns (Note 4) 

T12 Input Setup 2 13 ns 

T13 Setup to ALE Inactive 10 ns CL = 100 pF 

T14 Hold after ALE Inactive 8 ns CL = 100 pF 

T15 RESET Hold 3 ns (Note 2) 

T16 RESET Setup 5 ns (Note 2) 

T17 RESET Width 2050 ns 41 CLK2 Periods Minimum 

NOTES: 
1. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested, but should 
be no longer than the valid delay. 
2. Meeting RESET setup and hold times is an optional method of synchronizing your clocks. If you decide to use an asyn· 
chronous reset, then synchronizing the clock can be accomplished by using AS. 
3. Processor clock (CLK2) rise time and fall time are not tested. 
4. ICE requires a minimum of 4 ns input hold time. 

3-17 

• 



intel~ S0960SAlS0960SB 

80960SA and 8096058 AC Characteristics (16 MHz PLCC) 

Symbol Parameter Min Max Units Test Conditions 

Tl Processor Clock 31.25 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock Low 8 ns VT = 10% Point 
Time (CLK2) = VCL + (VCH - VcL> x 0.1 

T3 Processor Clock High 8 ns . VT = 90% Point 
Time (CLK2) = VCL + (VCH - VcL> x 0.9 

T4 Processor Clock Fall 10 ns VT = 90% Point to 10% Point(3) 
Time (CLK2) 

T5 Processor Clock Rise 10 ns VT = 10% Point to 90% Point(3) 
Time (CLK2) 

T6 Output Valid Delay 2 25 ns CL = 100 pF (AD and Control) 

T6AS AS Output Valid Delay 2 21 ns CL = 50 pF 

T7 ALE Width 15 ns CL = 100 pF . 

T8 ALE Output Valid Delay 2 22 ns CL = 100 pF(l) 

T9 Output Float Delay 2 20 ns CL = 100 pF (AD) 
CL = 100 pF (Controls)(l) 

Tl0 Input Setup 1 10 ns 

Tll Input Hold 2 ns (Note 4) 

T12 Input Setup 2 13 ns 

T13 Setup to ALE Inactive 10 ns CL = 100 pF 

T14 Hold after ALE Inactive 8 ns CL = 100 pF 

T15 RESET Hold 3 ns (Note 2) 

T16 RESET Setup 5 ns (Note 2) 

T17 RESET Width 1281 ns 41 CLK2 Periods Minimum 

NOTES: 
1. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested, but should 
be no longer than the valid delay. 
2. Meeting RESET setup and hold times is an optional method of synchronizing your clocks. If you decide to use an asyn­
chronous reset, then synchronizing the clock can be accomplished by using AS. 
3. Processor clock (CLK2) rise time and fall time are not tested. 
4. ICE requires a minimum of 4 ns input hold time. 

3-18 



int'eL 80960SA/80960SB 

To Td Tr To Tw Td Tr To 

ClK 

ClK2 

A(4:15)/O(O:15) 

A(I:3) 

iiE(O: 1) 

A(16:31) 

ALE 

w!R 

OT!R 

270917-15 

NOTES: 
1. The AD and control signals are driven at all times except during a HOLD acknowledge (HLDA asserted) RESET, and 
ONCE mode. 
2. The AD and control signals may toggle during idle (Ti) or recovery (Tr) cycles. 

Figure 14. Timing Relationships of the 80960SA and 80960SB Bus 

3·19 



80960SA/80960SB 

First 
A 8 C 0 

ClK2 ••• 
Tl7 Tl5 Tl6 

••• 
RESET ••• 

OUTPUTS ••• 
INTO,INTl ••• INT3,LOCK 

, , 270917-16 
1. The A edge is defined as the first rising CLK2 edge after RESET is deasserted meeting the RESET hold and setup 
times. 
2. Initialization Parameters must be setup at least four CLK2s prior to the first A edge. 

Figure 15. RESET Signal Timing 

Th Th Th Th 

ClK 

,ClK2 

HOLD 

HlOA +-_-1-'1 
270917-17 

Figure 16. HOLD Timing Relationships 

Design Considerations 

Input hold times can be disregarded by the designer 
whenever the input is removed because a subse­
quent output from the processor is deasserted (e.g., 
DEN becomes deasserted). 

Whenever the processor generates an output that 
indicates a transition into a subsequent state, any 
outputs that are specified to be 3-stated in this new 
state are guaranteed to be 3-stated. For example, in 
the Td cycle following a Ta cycle for a read, the 
minimum output delay of DEN is 2 ns, but the max-

3-20 

imum float time of AD is 20 ns. When DEN is assert· 
ed, however, the AD outputs are guaranteed to have 
been 3-stated. ' 

Designing for the ICE-960SB 

The 809608A and 809608B In-Circuit Emulator as­
sists in debugging 809608A and 809608B hardware 
and software designs. The product consists of a 
probe module, cable, control unit and power supply. 
Because of the high operating frequency of the 
809608A and 809608B systems, the probe module 



80960SAlS0960SB 

connects directly to the B0960SA and B0960S6 
component (EIAJ OFP or PLCC) or a socket for the 
PLCC. 

When designing an B0960SA and B0960S6 hard­
ware system that uses the ICE-960S6 to debug the 
system, several electrical and mechanical character­
istics should be considered. These considerations 
include capacitive loading, drive requirement, power 
requirement, and physical layout. 

The ICE-960S6 probe module increases the load 
capacitance of each line by up to 25 pF. This load 
originates from the probe module and are driven by 
the B0960SA and B0960S6 processor. 

To achieve hig[1 noise immunity, the ICE-960S6 
probe is powered by the user's system. The high­
speed probe circuitry draws up to 1.1 A plus the max­
imum current (Icc) of the B0960SA and B0960S6 
processor. 

The AP bus should not be driven by an external 
source unless DEN is asserted. In addition, the ICE 
requires a minimum data hold time of 4 ns. 

The ICE960S6 probe will drive LOCK to a LOW 
state during RESET to force the target B0960SA and 
B0960S6 to enter ONCE mode. To guarantee tim­
ings, the ICE requires ± 5% supply voltage supplied 
to the B0960SA and B0960S6. The ICE probe re­
quires a minimum of 0.25 inches clearance on all 
sides of both the EIAJ OFP and PLCC. 

Lock Line Termination 

You must terminate the LOCK line as described in 
Figure 6 in order for the ICE to properly function. 

MECHANICAL DATA 

Package Dimensions and Mounting 

The B0960SA and B0960S6 is available in two differ­
ent packages: an 80-lead quad flat pack (EIAJ OFP), 
shown in Figure 17, and an B4-lead plastic leaded 
chip carrier (PLCC) , shown in Figure 18. 

Pin Assignment 

The OFP and PLCC have different pin assignments. 
The OPF pins are numbered in order from 1 to 80 
around the package's perimeter. The PLCC pins are 

3-21 

numbered in order from 1 to B4 around the pack­
age's perimeter. Tables 9 and 10 list the function of 
each pin in the OFP. Tables 11 and 12 list the func­
tion of each pin in the PLCC. 

Vee and GND connection must be made to multiple 
Vee and GND pins. Each Vee and GND pin must be 
connected to the appropriate voltage or ground and 
externally strapped close to the package. We rec­
ommend that you include separate power and 
ground planes in your circuit board for power distri­
bution. 

NOTE: 
Pins identified as N.C., "No Connect," should never 
be connected. The B0960SA and 80960S6 OFP 
package contains two N.C. pins and PLCC package 
contains six N.C. pins. 

Pacltage Thermal Specification 

The 80960SA and 80960S6 is specified for opera- • 
tion when case temperature is within the range O°C 
to + 85°C. The case temperature should be mea-
sured at the top center of the package. 

The ambient temperture can be calculated from 8Je 
and 8JA by using the following equations: 

TJ = Tc + P * IlJC 

TA=TJ-P*IlJA 

Tc = TA + P * [OJA-IlJcl 

Values for 8JA and 8Je are given in Table 7 for the 
OFP package and in Table 8 for the PLCC package 
for various airflows. 

Example: 

TA = Te - P' (8JA - 8Jc) 
Te = Maximum Case Temperature 

P = Maximum Supply Voltage times Icc 
at 1000 and 10 MHz 

8JA and 8Je = OFP Package Thermal Resistance 
at 0 ftlm airflow 

TA = 51 = 100 - (5.5' 0.213)' (45.7 - 4) 

WAVEFORMS 

Figure 19 through 22 shows the waveforms for vari­
ous signals on the 80960SA and 80960S6's bus. 



intel~ 80960SA/80960SB 

Table 7. QFP Package, Thermal Resistance-°C/Watt 
-, 

Airflow-ft/min 

Parameter 0 50 100 200 400 

8JA Junction to Ambient 
(CasE:! mE:!asurE:!d in thE:! middlE:! 

45.7 -na na 40 31 
of thE:! top of thE:! pa~kagE:!) 
(No HE:!atsink) 

- 8JC Junction to CasE:! 4.0 na na 4.5 5.5 

NOTES: 
1. This table applies to an B09608A and 8096088 QFP soldered directly onto a: board. 
2. BJA, = BJC + BCA· 
.3. Thermal data are based on copper lead frames. 

Table S. PLCC Package, Thermal Resistance-°C/Watt 

Airflow-ft/min 

Parameter 0 50 100 200 400 

8JA Junction to Ambient 33 na na 27 23.8 
(No Heatsink) 

8JC Junction to Case 13 na na na na 

NOTES: 
1. This table applies to an 809608A and 8096088 PLCC soldered directly onto a board. 
2. BJA = BJC + BCA· 

8. 65 

11 

•• 

41 

25 

600 

22 

na 

" 

Intel 

i960SA 

600 

na 

na 

SOO 

20 

na 

SOO 

na 

na 

1000 

19.5 

na 

53 

270917.-19 

•• 
270917-18 Figure 1S. S4-Lead Plastic Leaded Chip Carrier 

Figure 17. SO-Lead EIAJ Quad Flat Pack Package 

3-22 



80960SA/80960SB 

Table 9. 80960SA and 80960SB QFP Pinout-In Pin Order 
Pin Signal Pin Signal Pin Signal Pin Signal 
1 A22 21 Vee 41 BEO 61 Vee 
2 A21 22 Vss 42 Vee 62 Vss 
3 A20 23 Vee 43 Vss 63 N.C. 
4 A19 24 Vss 44 CLK2 64 AS 
5 A18 25 AD6 45 RESET 65 Vss 
6 A17 26 AD5 46 INTO 66 ALE 
7 A16 27' AD4 47 INT1 67 READY 
8 Vee 28 AD3 48 INT2/1NTR 68 A31 
9 Vss 29 AD2 49 INT3/1NTA 69 A30 
10 AD15 30 AD1 50 HLDA 70 A29 
11 AD14 31 DO 51 Vee 71 A28 
12 Vee 32 Vss 52 Vss 72 Vss 
13 Vss 33 Vee 53 HOLD 73 Vee 
14 AD13 
15 AD12 
16 AD11 

34 A3 
35 A2 
36 Vee 

54 W/R 
55 DEN 
56 DT/R 

74 A27 
75 A26 
76 A25 • 17 AD10 37 Vss 57 BLAST 77 Vee 

18 AD9 28 A1 58 LOCK 78 Vss 
19 AD8 39 N.C. 59 Vee 79 A24 
20 AD7 40 BE1 60 Vss 80 A23 

Table 10. 80960SA and 80960SB QFP Pinout-In Signal Order 
Signal Pin Signal Pin Signal Pin Signal Pin 
A1 38 A18 5 DO 31 Vee 51 
A2 35 A19 4 DEN 55 Vee 59 
A3 34 A20 3 DT/R 56 Vee 61 
AD1 30 A21 2 HLDA 50 Vee 73 
AD2 29 A22 1 HOLD 53 Vee 77 

AD3 28 A23 80 INTO. 46 Vee 8 
AD4 27 A24 79 INT1 47 Vss 13 
AD5 26 A25 76 INT2/1NTR 48 Vss 22 
AD6 25 A26 75 INT3/1NTA 49 Vss 24 
AD7 20 A27 74 LOCK 58 Vss 32 
AD8 19 A28 71 N.C. 39 Vss 37 
AD9 18 A29 70 N.C. 63 Vss 43 
AD10 17 A30 69 READY 67 Vss 52 
AD11 16 A31 68 RESET 45 Vss 60 
AD12 15 ALE 66 Vee 12 Vss 62 
AD13 14 AS 64 Vee 21 Vss 72 
AD14 11 BEO 41 Vee 23 Vss 78 
AD15 10 BE1 40 Vee 33 Vss 9 
A16 7 BLAST 57 Vee 36 Vss 65 
A17 6 CLK2 44 Vee 42 W/R 54 

3·23 



intel® S0960SAlS0960SB 

Table 11. 80960SA and 80960S8 PLCC Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal 

1 Vee 22 Vss 43 Vss 64 HOLD 

2 N.C. 23 N.C. 44 Vee 65 N.C. 

3 A27 24 AD13 45 A3 66 W/R 

4 A26 25 AD12 46 A2 67 DEN 

5 A25 26 AD11 47 Vee 68 DT/R 

6 Vee 27 AD10 48 Vss 69 BLAST 

7 Vss 28 AD9 49 A1 70 LOCK 

8 A24 29 AD8 50 N.C. 71 Vee 
9 A23 30 AD7 51 BE1 72 Vss 
10 A22 31 Vee 52 BEO 73 Vee 
11 A21 32 Vss 53 Vee 74 Vss 
12 A20 33 Vee 54 Vss 75 N.C. 

13 A19 34 Vss 55 CLK2 76 AS 

14 A18 35 AD6 56 RESET 77 Vss 
15 A17 36 AD5 57 INTO 78 ALE 

16 A16 37 AD4 58 INT1 79 READY 

17 Vee 38 AD3 59 INT2/1NTR 80 A31 

18 Vss 39 AD2 60 INT3/1NTA 81 A30 

19 AD15 40 AD1 61 HLDA 84 A29 

20 AD14 41 DO 62 Vee 83 A28 

21 Vee 42 N.C. 63 Vss 84 Vss 

3-24 



80960SA/80960SB 

Table 12. 80960SA and 80960S8 PLCC Pinout-In Signal Order 

Signal Pin Signal Pin Signal Pin Signal Pin 

A1 49 A18 14 DT/R 68 Vee 44 

A2 46 A19 13 HLDA 61 Vee 47 

A3 45 A20 12 HOLD 64 Vee 53 

DO 41 A21 11 INTO 57 Vee 6 

AD1 40 A22 10 INT1 58 Vee 62 

AD2 39 A23 9 INT2/1NTR 59 Vee 71 

AD3 38 A24 8 INT3/1NTA 60 Vee 73 

AD4 37 A25 5 LOCK 70 Vss 18 

AD5 36 A26 4 N.C. 2 Vss 22 

AD6 35 A27 3 N.C. 23 Vss 32 

AD7 30 A28 83 N.C. 42 Vss 34 

ADS 29 

AD9 28 

AD10 27 

A29 82 

A30 81 

A31 80 

N.C.' 50 

N.C. 65 

N.C. 75 

Vss 43 

Vss 48 

Vss 54 .. 
AD11 26 ALE 78 READY 79 Vss 63 

AD12 25 AS 76 RESET 56 Vss 7 

AD13 24 BEO 52 Vee 1 Vss 72 

AD14 20 BE1 51 Vee 17 Vss 74 

AD15 19 BLAST 69 Vee 21 Vss 77 

AD16 16 CLK2 55 Vee 31 Vss 84 

A17 15 DEN 67 Vee 33 W/R 66 

3-25 



CLKI 

CLK2 

A(4: 15)/0(0:15) 

A(I:3) 

A(16:31) 

ALE 

w/R 

OT/R 

S0960SAlS0960SB 

CLK 

CLK2 

A(4: 15)/0(0:15) 

A(I:3) 

BE(O:I) -I--4--l 

A(16:31) 

ALE 

t..-t---t:::::j 

270917-20 

Figure 19. Basic 80960SA and 80960SB Timing 

-rLrLf"\-'""---- '""---- '""---- '""---- '""----rLrL '""----V 
L~h-n-n..n... n..n.. n..n.. n..n.. n..n.. n..n.. n..n..ifLn.. n..n.. 
-i\-r' 
-ICW'.dI Add 

~ 0 

IWA 

I"W'A 

~ 

_....1\ 

-~ 

~ 

VA 

1W.dI 2 IWA 4 T0"a 6 T0"a 8 T0".41 A 1m".41 C 

I~ I~ I~ I~ I~ I~ 

Figure 20. 80960SA and 80960SB Timing 
Showing a Four Word Aligned Read Burst 

3-26 

'---
Add 

1m"h1 E 

1M:! 

1M:! ~ 

IVA ~A 

./\. 
VA Wd 

.WJ. I~ 

WJ. WA 

1M 

I~ 

270917-21 



ClKl 

ClK2 

A(4: 15)/0(0: 15) 

A(I:3) 

A(16:31) 

ALE 

W/R 

DT/R 

ClKl 

ClK2 

A(4: 15)/0(0: 15) 

A(I:3) 

A(16:31) 

ALE 

w/R 

OT/R 

80960SA/80960SB 

-n-n-n-n-V\.-V\.-V\.-V\.-n-n- If""\-II 
Lru-L ru-L ru-L h.n-h-n-h-n-h-n-h-n-h-n-h.n hn 
-I\-~ '--
-IW'A Add Add 

W'Al 4 Im'hI 6 Ilt'JYhI 8 Ilm'hI A ='A! f00'A! 

WA '1M 

'W'A '1M ~ 

~ irA! f00'A! 

-~ J\. 
IW~ w/A , 

~ rxI WA 

~ ex ~ 

'w.:\ va , 
~A. = ~A ~A ~A ~ ~A 

I I 
270917-22 

Figure 21. B0960SA and 80960S8 Double Word Read Timing with Wait States 

-~ ~ ~ ~ V\.-If""\-If""\-rL-n-r--L ,",-'I 
LfUl... fUl... fUl... fUl... n..n.. hn hn hn ru-t ru-t flSl.. 
-'-- -1_ '--
-WA Add I:WhI Data Im"hI Data IfW'hI Data IIWA Data -" Add 

W'A! -2 It'JYhI 4 W'hI -6 W'hI 8 II@'A! ='A!. 

'w.:\ rM 

WA WA 

r09'A! ~ irA! 

_.J\ J\. 
W~ WA 

-~ ~ 

~ ~ -m 

WA w/A 

I~A. ~~A~ ~A ~ ~A 

I . I I I I 
270917-23 

Figure 22. 80960SA and 80960S8 Aligned Double Word Write Timing with Walt States 

3-27 



80960SAl80960SB 

eLK -"'-rL "'-"'-rLrLrL "'-rLrLrL "'-rL~ 
CLK2 Ln.n.. h-IL n.n.. ~ ru-t h-IL h-IL n.n.. h-IL n.n rlSl.. n.n.. h-n-

...,~ 
~ '-- J 

Add r--\. r-----t r-----t Add ~ r---
W& 1 W'fiI 2 W'fiI • W'fiI 6 I'o/fil • I'o/fil A W'fiI e I'o/fil E wY4 • m----

rwA '1M 

WA '1M '" :m-

ALE _J\ /'\ 

~ '1M rwA 'f?g-

wiR -~ mi· I'o/A 

.TiR ml. IW 12 
rwA W/J WA rm--
~ ~ ~ ~ ~. ~. ~ ~ 

270917-24 

Figure 23. 80960SA 80960SB Timing with a Four Word Read Burst Misaligned by One Byte 

ClK 

ClK2 

ALE 

W!R 

OT!R 

-n-n-n-n-"-"-"-n-n-,,-,,-r 
Lh-n-h-n-h-n-h-n-n..n. n..n. n..n. h-n-rm-n..n. 
-I\.-~ 
-lW'hoI Add 1'0/& Data I W'hoI0-2 W'hoI0-4 EV&'fiI 0-6 IW'filO-B IW'filO-A ~filO-C 

~ 1 ~2 ~4~6~B~A~C~ 

WA W/J 

rl0'A '1m 

~ ~ 

-~ 
·WA MI 

-~ ~"I 

~~ 

WA '1m 

I='A ~ ~ ~ ~ ~ ~ 

Figure 24. 80960SA and 80960SB Timing witha Three Word Write Burst 
Misaligned by One Byte and One Walt State 

3-28 

~ 

n..n.. ... 
'---

~ ~ 

~~ 

~ 

./\..1-
~ 
I<? 

1iS1 

~ 

270917-25 



intel. 
i960™ KA/KB PROCESSOR 

PRODUCT OVERVIEW 

INTRODUCTION 

This chapter provides an overview of the Intel i960 KB 
processor (which is part of the i960 K series of embed­
ded-processor products). 

All of the processors in the i960 K series of products 
are based on the Intel i960™ architecture. Most of the 
information in this overview also applies to the i960 
KA processor. The only difference between the i960 
KB and i960 KA processors is that thei960 KA proc­
essor does not provide on-chip support for floating­
point operations or operations on decimal numbers. 

OVERVIEW OF THE i960™ KB 
ARCHITIECTURE 

The i960 KB processor introduced the i960 .architec­
ture-a new 32-bit architecture from Intel. This archi­
tecture has. been designed to meet the needs of embed­
ded applications such as machine control, robotics, 
process control, avionics and instrumentation. 

The i960 architecture can best be characterized as a 
high-performance computing engine. It features high­
speed instruction execution and ease of programming. 
It is also easily extensible, allowing processors and con­
trollers based on this architecture to be conveniently 
customized to meet the needs of specific processing and 
control. applications. 

The following are some of the important attributes of 
the i960 architecture: 

o full 32-bit registers 

o high-speed, pipelined instruction execution 

o a convenient program execution environment with 
32 general-purpose registers and a versatile set of 
special-function registers 

• a highly optimized procedure call mechanism that 
features on-chip caching of local variables and pa­
rameters 

o extensive facilities for handling interrupts and faults 

• extensive tracing facilities to support efficient pro­
gram debugging and monitoring 

• register scoreboarding and write buffering to permit 
efficient operation when used with lower perform­
ance memory subsystems 

OVERVIEW OF THE SINGLE 
PROCESSOR SYSTEM 
ARCHITECTURE 

The central processing module, memory module and 
I/O module form the natural boundaries for the hard­
ware system architecture. The modules are connected 
together by the high bandwidth 32-bit multiplexed 
L-bus, which can transfer data at a maximum sustained 
rate of 53 Mbytes per second for an i960 processor op­
erating at 20 MHz. 

Figure 1 shows. a simplified block diagram of one possi­
ble system configuration. The heart of this system is the 
i960 KB processor, which fetches instructions, executes 
code, manipulates stored information and interacts 
with I/O devices. The high bandwidth L-bus connects 
the i960 KB processor to memory and I/O modules. 
The i960 KB processor stores system data, instructions 
and programs in the memory module. By accessing var­
ious peripheral devices in the I/O module, the i960 KB 
processor supports communication to terminals, mo­

. dems, printers, disks and other I/O devices. 

3-29 

i960™ KB Processor and the L-Bus 

The i960 KB processor performs bus operations using 
multiplexed address and data signals, and provides all 
the necessary control. signals. For example standard 
control signals, such as Address Latch Enable (ALE), 
Address/Data Status (ADS), Write/Read Command 
(W/R), Data Transmit/Receive (DT/R) and Data En­
able (DEN), are provided by the i960 KB processor. 
The i960 processor also generates byte enable signals 
that specify which bytes on the 32-bit data lines are 
valid for the transfer. 

The L-bus supports burst transactions, which access up 
to four data words at a maximum rate of one word per 
clock cycle. The i960 KB processor uses the two low­
order address lines to indicate how many words are to 
be transferred. The i960 KB processor performs burst 
transactions to load the on-chip 512-byte instruction 
cache to minimize memory accesses for instruction 
fetches. Burst transactions can also be used for data 
access. 

To transfer control of the bus to an external bus master, 
the i960 KB provides two arbitration signals: hold re­
quest (HOLD) and hold acknowledge (HLDA). After 
receiving HOLD, the processor grants control of the 
bus to an external master by asserting HLDA. 

Order Number: 272030-001 



intel .. i960TM KA/KB PROCESSOR PRODUCT OVERVIEW 

272030-1 

Figure 1. Basic i960TM KB System Configuration 

The i960 KB processor provides a· flexible interrupt 
structure by using an on-chip interrupt controller, an 
external interrupt controller or both. The type of inter­
rupt structure is specified by an internal interrupt vec­
tor register. For a system with multiple processors, 
another method is available, called inter-agent commu­
nication (lAC) where a processor can interrupt another 
processor by sending an lAC message. 

Memory Module 

A memory module can consist of a memory controller, 
Erasable Programmable Read Only Memory 
(EPROM), and static or dynamic Random Access 
Memory (RMA). The memory controller first condi­
tions the L-bus signals for memory operation. It demul­
tiplexes the address and data lines, generates the chip 
select signals from the address, detects the stilrt of the 
cycle for burst mode operation and latches the byte 
enable signals. 

The memory controller generates the control signals for 
EPROM, SRAM and DRAM. Specifically, it provides 
the control signals, multiplexed row!column address 
and refresh control for dynamic RAMs. The controller 

can be designed to accommodate the burst transaction 
of the i960 KB processor· by using the static column 
mode or nibble mode features of the dynamic RAM. In 
addition to supplying the operational signals, the con­
troller generates the REA.DY signal to indicate that 
data can be transferred to or from the i960 KB proces­
sor. 

The i960 KB processor directly addresses up to 
. 4 Gbytes of physical memory. The processor does not 

allow burst accesses to cross a 16-byte boundary, to 
ease the design of the controller. Each address specifies 
a four-byte data word within the block. Individual data 
bytes can be accessed by using the four byte-enable sig­
nals from the i960 KB processor. Chapter 5 provides 
design guidelines for the memory controller. 

3-30 

110 Module 

The I/O module consists of the I/O components and 
the interface circuit. I/O components can be used to 
allow the i960 KB processor. to use most of its clock· 
cycles for computational and system management ac­
tivities. Time consuming tasks can be off-loaded to spe­
cialized slave-type components, such as the 8259A Pro-



i960™ 1{~!I{B PROCIES~OR PRODUCT OVIERVIEW 

grammable Interrupt Controller or the 82530 Serial 
Communication Controller. Some tasks may require a 
master-type component, such as the 82586 Local Area 
Network Control. 

The interface circuit performs several functions. It de­
multiplexes the address and data lines, generates the 
chip select signals from the address, produces the I/O 
read or I/O write command from the processor's W /R 
signal, latches the byte enable signals and generates the 
READY signals. Since some of these functions are 
identical to those of the memory controller, the same 
logic can be used for both interfaces. For master-type 
peripherals that operate on a 16-bit data bus, the inter­
face circuit translates the 32-bit data bus to a 16-bit 
data bus. 

The i960 KB processor uses memory-mapped addresses 
to access I/O devices. This allows the CPU to use many 
of the same instuctions to exchange information for 
both memory and peripheral devices. Thus, the power­
ful memory-type instructions can be used to perform 8-, 
16- and 32-bit data transfers. 

HIGH PIERfOFUIJlANCIE PIPlOGRAM 
IEXIECUTION 

Much of the design of the i960 architecture has been 
aimed at maximizing the processor's computational 
and data processing speed through the use of increased 
parallelism. The following paragraphs describe several 
of the mechanisms and techniques used to accomplish 
this goal. 

load and Store Model 

One of the more important features of the i960 archi­
tecture is its performance of most operations on oper­
ands in registers, rather than in memory. For example, 
all arithmetic, logic, comparison, branching and bit op­
erations are performed with registers and literals. 

This feature provides two benefits. First, it increases 
program execution speed by minimizing the number of 
memory accesses necessary to execute a program. Sec­
ond, it reduces the memory latency encountered when 
using slower, lower-cost memory parts. 

To support this concept, the architecture provides a 
generous supply of general-purpose registers. For each 
procedure, 32 registers are available, 28 of which are 
available for general use. These registers are divided 
into two types: global and local. Both types of registers 
can be used for general storage of operands. The only 
difference is that global registers retain their contents 
across procedure boundaries, whereas the processor al­
locates a new set of local registers each time a new 
procedure is called. . 

3-31 

The architecture also provides a set of fast, versatile 
load and store instructions. These instructions allow 
burst transfers of I, 2, 4, 8, 12 or 16 bytes of informa­
tion between memory and the registers. 

On-Chip Caching of Code and Data 

To further reduce memory accesses, the architecture 
offers two mechanisms for caching code and data on 
chip: an instruction cache and multiple sets of local 
registers. The instruction cache allows prefetching of 
blocks of instruction from memory. This helps ensure 
that the instruction execution pipeline is supplied with 
a steady stream of instructions. It also reduces the 
number of memory accesses required when performing 
iterative operations such as loops. The architecture al­
lows the size of the instruction cache to vary. For the 
i960 KB processor, it is 512 bytes. 

To optimize the architecture's procedure call mehan­
ism, the processor provides multiple sets of local regis­
ters. This allows the processor to perform procedure 
calls without having to write the local registers out to 
the stack in memory. The number of register sets de­
pends on the processor implementation. The i960 KB 
processor provides four sets of local registers. 

Overlapped Instruction E:u:ecution 

The i960 architecture also enchances program execu­
tion speed by overlapping the execution of some in­
structions. In the i960 K series of processors, this is 
accomplished through register scoreboarding. 

Register scoreboarding permits instruction' execution to 
continue while data is being fetched from memory. 
When a load instruction is executed, the processor sets 
one or more scoreboard bits to indicate the target regis­
ters to be loaded. After the target registers are loaded, 
the scoreboard bits are cleared. While the target regis­
ters are being loaded, the processor is allowed to exe­
cute other instructions that do not use these registers. 

The processor uses the scoreboard bits to ensure that 
the target registers are not used until the load is com­
.plete. (Scoreboard bits are checked transparently from 
software.) This technique allows code to be executed 
such that some instructions can be executed in zero 
clock cycles (that is, executed for free). 

Single-Cloc!{ Instructions 

The i960 architecture is designed to let a processor exe­
cute commonly used instructions, such as moves, adds, 
subtracts, logical operations and branches, in a mini­
mum number of clock cycles (preferably one cycle). 
The architecture supports this concept in several 



i960TM KA/KB PROCESSOR PRODUCT OVERVIEW 

ways. For example, the load and store model described 
earlier eliminates the clock cycles required to perform 
memory-to-memory operations, by concentrating on 
register-to-register operations. 

In addition, all of the instructions in the i960 architec­
ture are 32 bits long and aligned on 32-bit boundaries. 
This lets instructions be decoded in one clock cycle, 
and eliminates the need for an 'instruction-alignment 
stage in the pipeline. 

The i960 KB processor takes full advantage of these 
features of the architecture, resulting in more than 50 
instructions that can be executed in a single clock cycle. 

Efficient Interrupt Model 

The i960 architecture provides an efficient mechanism 
for servicing interrupts from external sources. To han­
dle interrupts, the processor maintains an interrupt ta­
ble of 248 interrupt vectors, 240 of which are available 
for general use. When an interrupt is signaled, the proc­
essor uses a pointer to the interrupt table to perform an 
implicit call to an interrupt handler procedure. In per­
forming this call, the processor automatically saves the 
state of the processor prior to receiving the interrupt, 
performs the interrupt routine, then restores the state of 
the processor. A separate interrupt stack is also provid­
ed to segregate interrupt handling from application 
programs. 

The interrupt handling facilities also allow interrupts to 
be evaluated by priority. The processor is then able to 
store interrupt vectors that are lower in priority than 
the current processor task in a pending interrupt sec­
tion of the interrupt table. The processor checks and ' 
services the pending interrupts at defined times. 

SIMPLIFIED PROGRAMMING 
ENVIRONMENT 

Because of its streamlined execution environment, 
processors based on the i960 architecture are particu­
larly easy to program. The following paragraphs de­
scribe some of the architecture features that simplify 
programming. 

,Highly Efficient Procedure Call 
Mechanism 

The ,procedure call mechanism makes procedure calls 
and parameter passing between procedures simple and 
compact. Each time a call instruction is issued, the 
processor auto'matically saves the current set of local 
registers and allocates a new set for the called proce­
dure. Likewise, on a return from a procedure, the cur­
rent set of local registers is deallocated and the local 

registers for the procedure being returned to are re­
stored. This means a program never has to explicitly 
save and restore those local variables that are stored in 
local registers. 

, Versatile Instruction Set and 
Addressing 

The selection of instructions and addressing modes also 
simplifies programming. A full set of load, store, move, 
arithmetic, comparison and branch instructions are 
provided, with operations on both integer and ordinal 
data types. Operations on bits and bit strings are simpli­
fied by a complete set of Boolean and bit-field instruc­
tions. 

The addressing modes are efficient and straightforward, 
while at the same time providing the necessary indexing 
and scaling modes required to address complex arrays 
and record structures. The large 4-gigabyte address 
space provides ample room to store programs and data. 
The availability of 32 addressing lines allows some ad­
'dress lines to be memory-mapped to control hardware 
functions. 

Extensive Fault Handling Capability 

To aid in program development, the i960 architecture 
, defines a wide range of faults that the processor detects, 
including, arithmetic, faults, invalid operations, invalid 
operands and machine faults. When a fault is detected, 
the processor makes an implicit call to a fault handler 
routine, in a way similar to the' interrupt mechanism 
described previously. The information collected for 
each fault allows program developers to quickly correct 
faulting code, and allows automatic recovery from 
some faults. 

Debugging and Monitoring 

To support debugging systems, the i960 architecture 
provides a mechanism for monitoring processor activity 
by means of trace events. When the processor detects a 
trace event, it signals a trace fault and calls a fault han­
dler. Intel provides several tools that use this feature, 
including an in-circuit emulator (ICE) device. 

SUPPORT FOR ARCHITECTURAL 
EXENSIONS 

The i960 architecture provides several features that en­
able processors based on this architecture to be easily 
customized to meet the needs of specific embedded ap­
plications, such as signal processing, array processing 
or graphics processing. 

3-32 



i960™ KAlKB PROCESSOR PRODUCT OVERVIEW 

The most important of these features is the set of 32 
special function registers. These regisers provide a con­
venient interface to circuitry in the processor or pins 
that can be connected to external hardware. They can 
be used to control timers, to perform operations on spe­
cial data types or to perform I/O functions. The special 
function registers are similar to the global registers. 
They can be addressed by all of the register access in­
structions. 

EXTENSIONS INCLUDED IN THE 
i960™ K SERIES PROCESSORS 

The i960 K series of processors provides a complete 
implementation of the i960 architecture, plus several 
extensions to that architecture. These extensions fall 
into two categories: floating-point processing and inter­
agent communication. 

On-Chip Floating Point 

The i960 KB processor provides a complete implemen­
tation of the IEEE standard for binary floating-point 
arithmetic (IEEE 754-185). This implementation in­
cludes a full set of floating-point operations, includ-

3-33 

ing add, subtract, multiply, divide, trigonometric func­
tions and logarithmic functions. These operations are 
performed on single precision (32-bit), double precision 
(64-bit) and extended precision (80-bit) real numbers. 

One of the benefits of this implementation is that the 
floating-point handling facilities are integrated into the 
normal instruction execution environment. Single and 
double precision floating-point values are stored in the 
same registers as non-floating point values. Four 80-bit 
floating-point registers are provided to hold extended­
precision values. 

Interagent Communication 

All of the processors in the i960 K series provide an 
inter-agent communication (lAC) mechanism, allowing 
agents connected to the processor's bus to communi­
cate with one another. This mechanism operates simi­
larly to the interrupt mechanism, except that lAC mes­
sages are passed through dedicated sections of memory. 
The sort of tasks handled with lAC messages are proc­
essor reinitialization, stopping the processor, purging 
the instruction cache and forcing the processor to check 
pending interrupts. 



• 

• 

• 
• 

80960KA 
EMBEDDED 32-BIT PROCESSOR 

High-Performance Embedded iii Built-In Interrupt Controller 
Architecture - 32 Priority Levels 256 Vectors 
- 25 MIPS Burst Execution at 25 MHz - 3.4 J-I-s Latency @ 25 MHz. 
- 9.4 MIPS' Sustained Execution at Ea Easy to Use, High Bandwidth 32-Bit Bus 

25 MHz - 66.7 Mbytes/s Burst 
512-Byte On-Chip Instruction Cache - Up to 16-Bytes Transferred per Burst 
- Direct Mapped fi:l 4 Gigabyte, Linear Address Space 
- Parallel Load/Decode for Uncached 

Instructions I!.il 132-Lead Pin Grid Array (PGA) Package 

Pin Compatible with 80960KB (;3 132-Lead Plastic Quad Flat Pack (PQFP) 

Multiple Register Sets Ii Uses 85C960 Bus Controller 
- Sixteen Global 32-BII Registers Cil Supported by 27960KX Burst EPROMs 
- Sixteen Local 32-Bit Registers 
- Four Local Register Sets Stored 

On-Chip 
- Register Scoreboarding 

The 80960KA is a member of Intel's new 32-bit processor family, the i960 series, which is designed especially 
for embedded applications. It is based on the family's high performance, common core architecture, and 
includes a 512-byte instruction cache and a built-in interrupt controller. The 80960KA has a large register set, 
multiple parallel execution units and a high-bandwidth, burst bus. Using advanced Rise technology, this high 
performance processor is capable of execution rates in excess of 9.4 million instructions per second.' The 
80960KA is well-suited for.a wide range of embedded applications, including laser printers, image processing, 
industrial control, robotics and telecommunications. 

*Relative to Digital Equipment Corporation's VAX-11 1780** at 1 MIPS 

BUS 
CONTROL 

LOGIC 
AND 

INTERRUPT 32-BIT 
CONTROLLER BURST 

BUS 

270775-1 

Figure 1. The 80960KA's Highly Parallel Microarchitecture 

"VAX-11TM is a trademark of Digital Equipment Corporation. 

3-34 
September 1991 

Order Number: 270775·004 



intel® 80960KA 

THE 960 SERIES 

The 80960KA is a member of a new family of 32-bit 
microprocessors from Intel known as the i960 Se­
ries. This series was especially designed to serve 
the needs of embedded applications. The embed­
ded market includes applications as diverse as in­
dustrial automation, avionics, image processing, 
graphics, robotics, telecommunications and automo­
biles. These types of applications require high 
integration, low power consumption, quick interrupt 
response times and high performance. Since time to 
market is critical, embedded microprocessors need 
to be easy to use in both hardware and software 
designs. 

gO 

SIXTEEN GLOBAL 
32-BIT REGISTERS(1) 

REGISTERS 

g15 

rO 

SIXTEEN LOCAL 
32·BIT REGISTERS(2) 

REGISTERS 

r15 

32·BITS ARITHMETIC CONTROLS 

32·BITS INSTRUCTION POINTER 

32·BITS PROCESS CONTROLS 

32·BITS TRACE CONTROLS 

NOTES: 
1. Register g15 is reserved for stack management functions. 

All members of the 80960 series share a common 
core architecture which utilizes RISC technology so 
that, except for special functions, the family mem­
bers are object code compatible. Each new proces­
sor in the series will add its own special set of func­
tions to the core to satisfy the needs of a specific 
application or range of applications in the embedded 
market. For example, future processors may include 
a DMA controller, a timer or an AID converter. 

Software written for the 80960KA will run without 
modification on any other member of the 80960 fam­
ily. It is also pin-compatible with the 80960KB, which 
includes an integrated floating-point unit, and the 
80960MC, a military-grade version with support for 
multitasking, memory management, multiprocessing 
and fault tolerance. 

o 

ADDRESS 
SPACE 

2. Registers rO, r1, and r2 are reserved for stack management functions. 

Figure 2. Register Set 

3-35 



intel® 80960KA 

KEY PERFORMANCE FEATURES 

The a0960KA's architecture is based on the most 
recent advances in RISC technology and is ground­
ed in Intel's long experience in designing embedded 
controllers. Many features, contribute to the 
a0960KA's exceptional performance: 

1. Large Register Set. Modern compilers can take 
advantage of a large number of registers to optimize 
execution speed. For maximum' flexibility, the 
a0960KA provides 32 32-bit registers and four a~-bit 
floating-point registers. (See Figure 2.) 

2. Fast Instruction Execution. Simple functions 
make up the bulk of instructions in most programs, 

Control Opcode 

Compare Opcode Reg/Lit 
and Branch 

Register Opcode Reg 
to Register 

Memory Opcode Reg 
Access-Short 

Memory Opcode Reg 
Access-Long 

so that execution speed can be greatly improved by 
ensuring that these core instructions execute in as 
short a time as possible. The most-frequently exe­
cuted instructions such as register-register moves, 
add/subtract, logical operations, and shifts execute 
in one to two cycles (Table 1 contains a list of in­
structions.) 

3. Load/Store Architecture. One way to improve 
execution speed is to reduce the number of times 
that the processor must access memory to perform 
an operation. Like other processors based on RISC 
technology, the a0960KA has a Load/Store archi­
tecture, only the LOAD and STORE instructions ref­
erence memory; all other instructions operate on 
registers. 

Displacement 

Reg M Displacement 

Reg/Lit Modes Ext'd Op Reg/Lit 

Base M x Offset 

Base Mode Scale xx Index 

Displacement 

Figure 3. Instruction Formats 

3-36 



80960KA 

Table 1. B0960KA Instruction Set 

Data Movement Arithmetic Logical Bit and Bit 
Field 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Not Not Bit 
Load Address Divide Or Check Bit 

Remainder Exclusive Or Alter Bit 
Modulo Not Or . Scan for Bit 
Shift Or Not Scan over Bit 

Nor Extract 
Exclusive Nor Modify 
Not 
Nand 
Rotate 

Comparison Branch Call/Return Fault 

Compare Unconditional Call Conditional Fault 
Conditional Branch Call Extended Synchronize Faults 

Compare Conditional Branch Call System 
Compare and Compare and Return 

Increment Branch Branch and Link 
Compare and 

Decrement 

Debug Miscellaneous Decimal 

Modify Trace Atomic Add Move 
Controls Atomic Modify Add with Carry 

Mark Flush Local Registers Subtract with Carry 
Force Mark Modify Arithmetic 

Controls ' , 

Scan Byte for Equal 
Test Condition Code 
Modify Process Controls 

Synchronous 

Synchronous Load 
Synchronous Move 

3·37 



intel~ 80960KA 

4. Simple Instruction Formats. All instructions in 
the 80960KA are 32-bits long and must be aligned 
on word boundaries. This alignment makes it possi­
ble to eliminate the instruction-alignment stage in 
the pipeline. To simplify the instruction decoder fur­
ther, there are only five instruction formats and each 
instruction uses only one format. (See Figure 3.) 

5. Overlapped Instruction Execution. A load oper­
ation allows execution of subsequent instructions to 
continue before the data has been returned from 
memory, so that these instructions can overlap the 
load. The 80960KA manages this process transpar­
ently to software through the use of a register score­
board. Conditional instructions also make use of a 
scoreboard so that subsequent unrelated instruc­
tions can be executed while the conditional instruc­
tion is pending. 

6. Integer Execution Optimization. When the re­
sult of an operation is used as an operand in a .sub­
sequent calculation, the value is sent immediately to 
its destination register. Yet at the same time,the 
value is put back on a bypass path to the ALU, 
thereby saving the time that otherwise would be re­
quired to retrieve the value for the next operation. 

7. Bandwidth Optimizations. The 80960KAgets 
optimal use of its memory bus bandwidth because 
the bus is tuned for use with the cache: the line size 
of the instruction cache matches the maximum burst 
size for instruction fetches. The 80960KA automati­
cally fetches four words in a burst and stores them 
directly in the cache. Due to the size of the cache 
and the fact that it is continually filled· in anticipation 
of needed instructions in the program flpw, the 
80960KA is exceptionally insensitive to memory wait 
states. In fact, each wait state causes only a 7% 
degradatiori in system perfomance. The benefit is 
that the 80960KA will deliver outstanding perform­
ance even with a low cost memory system. 

8. Cache Bypass. If there is a cache miss, the proc­
essor fetches the needed instruction, then sends it 
on to the instruction decoder at the same time it 
updates the cache. Thus, no extra time is taken to 
load and read the cache. 

Memory Space and Addressing Modes 

The 80960KA offers a linear programming environ­
ment so that all programs running on the processor 
are contained in a single address space. The maxi­
mum size of the address space is 4 Gigabytes (232 
bytes). 

For ease of use, the 80960KA has a small number of 
addressing modes, but includes all those necessary 

to ensure efficient compiler implementations of high­
level languages such as C, Fortran and Ada. Table 2 
lists the memory addressing modes. 

Data Types 

The 80960KA recognizes the following data types: 

Numeric: 
• 8-, 16-, 32- and 64-bit ordinals 
• 8-, 16, 32- and 64-bit integers 

Non-Numeric: 
• Bit 
• Bit Field 
• Triple-Word (96 bits) 
• Quad-Word (128 bits) 

. Large Register Set 

3-38 

The programming environment of the 80960KA inc 
cludes a·large number of registers. In fact, 32 regis­
ters are available at any time. The availability of this 
many registers greatly reduces the number of mem­
ory accesses required to execute most programs, 
which leads to greater instruction processing speed. 

There are two types of general-purpose registers: 
local and global. The global registers consist of six­
teen 32-bit registers (GO through G15) These regis­
ters perform the: same function as the general-pur­
pose registers provided in other popular microproc­
essors. The term global refers to the fact that these 
registers retain their contents across procedure 
calls. 

The local registers, on the other hand, are proce­
dure specific. For each procedure call, the 80960KA 
allocates 16 local registers (RO through R15). Each 
local register is 32 bits wide. 

Multiple Register Sets 

To further increase the efficiency of the register set, 
multiple sets of local registers are stored on-chip. 
This cache holds up to four local register frames, 
which means that up to three procedure calls can be 
made without having to access the procedure stack 
resident in memory. 

Although programs may have procedure calls nest­
ed many calls deep, a program typically oscillates 
back and forth between only two or three levels. As 



80960KA 

Table 2. Memory Addressing Modes 

• 12-Bit Offset 
o 32-Bit Offset 

o Register-Indirect 

o Register + 12-Bit Offset 

• Register + 32-Bit Offset 
• Register + (Index-Register x Scale-Factor) 

o Register x Scale Factor + 32-Bit Displacement 

• Register + (Index-Register x Scale-Factor) + 32-Bit Displacement 

Scale-Factor is 1, 2, 4, 8 or 16 

a result, with four stack frames in the cache, the 
probability of there being a free frame on the cache 
when a call is made is very high. In fact, runs of 
representative C-Ianguage programs show that 80% 
of the calls are handled without needing to access 
memory. 

If there are four or more active procedures and a 
new procedure is called, the processor moves the 
oldest set of local registers in the register cache to a 

FOUR ONE OF 
LOC 

REGISTER 
AL 

SETS 

REGISTER 
CACHE 

procedure stack in memory to make room for a new 
set of registers. Global register G15 is used by the 
processor as the frame pointer (FP) for the proce­
dure stack. ' 

Note that the global registers are not exchanged on 
a procedure call, but retain their contents, making 
them available to all procedures for fast parameter 
passing. An illustration of the register cache. is 
shown in Figure 4. 

----- ~ LOCAL REGISTER SET 

~ --

31 o 
270775-2 

Figure 4. Multiple Register Sets Are Stored On-Chip 

3-39 



intet 80960KA 

Instruction Cache 

To further reduce memory accesses, the 80960KA 
includes a 512-byte on-chip instruction cache. The 
instruction cache is based on the concept of locality 
of reference; that is, most programs are not usually 
executed in a steady stream but consist of many 
branches and loops that lead to jumping back and 
forth within the same small section of code. Thus, by 
maintaining a block of instructions in a cache, the 
number of memory references required to read in­
structions into the processor can be greatly reduced. 

To load the instruction cache, instructions are 
fetched in 16-byte blocks, so that up to four instruc­
tions can be fetched at one time. An efficient 
prefetch algorithm increases the probability that an 
instruction will already be in the cache when it is 
needed. 

Code for small loops will often fit entirely within the 
cache, leading to a great increase in processing 
speed since further memory references might not be 
necessary until the program exits the loop. Similarly, 
when calling short procedures, the code for the call­
ing 'procedure is likely to remain in the cache, so it 
will be there on the procedure's return. 

Register Scoreboarding 

The instruction decoder has been optimized in sev­
eral ways. One of these optimizations is the ability to 

do instruction overlapping by means of register 
scoreboarding. 

Register scoreboarding occurs when a LOAD in­
struction is executed to move a variable from memo­
ry into a register. When the instruction is initiated, a 
scoreboard bit on the target register is set. When the 
register is actually loaded, the bit is reset. In be­
tvyeen, any reference to the register contents is ac­
companied by a test of the scoreboard bit to insure 
that the load has completed before processing con­
tinues. Since the processor does not have to wait for 
the LOAD to be completed, it can go on to execute 
additional instructions placed in between the LOAD 
instruction and the iristruction that uses the register 
contents, as shown in the following example: 

LOAD R4, address 1 
LOAD R5, address 2 
Unrelated instruction 
Unrelated instruction 
ADD R4, R5, R6 

In essence, the two unrelated instructions between 
the LOAD and ADD instructions are executed for 
free (Le., take no apparent time to execute) because 
they are executed while the register is being loaded. 
Up to three instructions can be pending at one time 
with three corresponding scoreboard bits set. By ex­
ploiting this feature, system programmers and com­
pilers have a useful tool for optimizing execution 
speed. 

3-40 



80960KA 

High Bandwidth Local Bus 

An 80960KA CPU resides on a high-bandwidth ad­
dress/data bus known as the local bus (L-Bus). The 
L-Bus provides a direct communication path be­
tween the processor and the memory and I/O sub­
system interfaces. The processor uses the local bus 
to fetch instructions, manipulate memory, and re­
spond to interrupts. Its features include: 

• 32-bit multiplexed address/data path 

.. Four-word burst capability, which allows transfers 
from 1 to 16 bytes at a time 

• High bandwidth reads and writes at 66.7 Mbytes 
per second 

• Special signal to indicate whether a memory 
transaction can be cached 

Figure 5 identifies the groups of signals which con­
stitute the L-Bus. Table 4 lists the function of the L­
Bus and other processor-support signals, such as 
the interrupt lines. 

Interrupt Handling 

The 80960KA can be interrupted in one of two ways: 
by the activation of one of four interrupt pins or by 
sending a message on the processor's data bus. 

The 80960KA is unusual in that it automatically han­
dles interrupts on a priority basis and tracks pending 
interrupts through its on-chip interrupt controller. 
Two of the interrupt pins can be configured to pro­
vide 8259A handshaking for expansion beyond four 
interrupt lines. 

LOCAL BUS 

\ 

Debug Features 

The 80960KA has built-in debug capabilities. There 
are two types of breakpoints and six different trace 
modes. The debug features are controlled by two 
internal 32-bit registers, the Process-Controls Word 
and the Trace-Controls Word. By setting bits in 
these control words, a software debug monitor can 
closely control how the processor responds during 
program execution . 

The 80960KA has both hardware and software 
breakpoints. It provides two hardware· breakpoint 
registers on-chip which can be set by a special com­
mand to any value. When the instruction pointer 
matches the value in one of the breakpoint registers, 
the breakpoint will fire, and a breakpoint handling 
routine is called automatically. 

The 80960KA also provides software breakpoints 
through the use of two instructions, MARK and 
FMARK. These instructions can be placed at any 
point in a program and will cause the· processor to 
halt execution at that point and call the breakpoint 
handling routine. The breakpoint mechanism is easy 
to use and provides a powerful debugging tool. 

Tracing is available for instructions (single-step exe­
cution), calls and returns, and branching. Each dif­
ferent type of trace may be enabled separately by a 
special debug instruction. In each case, the 
80960KA executes the instruction first and then 
calls a trace handling routine (usually part of a soft­
ware debug monitor). Further program execution is 
halted until the trace routine is completed. When the 
trace event handling routine is completed, instruc­
tion execution resumes at the next instruction. The 

LOCAL BUS .SIGNAL GROUPS 

\ 
ADDRESS/DATA (32 LINES) 

<------1 
CONTROL (ADDRESS,DATA, and OPERATION SIGNALS - 15 LINES) 

< I 
ARBITRATION (2 LINES) 

270775-3 

Figure 5. Local Bus Signal Groups 

3-41 



intaL 80960KA 

80960KA's tracing mechanisms, which are imple­
mented completely in hardware, greatly simplify the 
task of testing and debugging software. 

FAULT DETECTION 

The 80960KA has an automatic mechanism to 
handle faults .. There are ten fault types including 
trace, arithmetic, and floating-point faults. When the 
processor detects a fault, it automatically calls the 
appropriate fault handling routine and saves the cur­
rent instruction pointer and necessary state informa­
tion to make efficient recovery possible. The proces­
sor posts diagnostic information on the type of fault 
to a Fault Record. Like interrupt handling routines, 
fault handling routines are usually written to meet 
the needs of a specific application and are often in­
cluded as part of the operating system or kernel. 

For each of the ten fault types, there are numerous 
subtypes that provide specific information about a 
fault. For exam pie, a floating-point fault may have its 
subtype set to an Overflow or Zero-Divide fault. The 
fault handler can use this specific information to re­
spond correctly to the fault. 

BUILT-IN TESTABILITY 

Upon reset, the 80960KAautomaticaily conduc.ts an 
extensive internal test (self-test) of its major blocks 

of logic. Then, before executing its first instruction, it 
does a zero check sum on the first eight words in 
memory to ensure that the system has been loaded 
correctly. If a problem is discovered at any point dur­
ing the self-test, the 80960KA will assert its FAIL­
URE pin .and will not begin program execution. The 
self-test takes approximately 47,000 cycles to com­
plete. 

System manufacturers can use the 80960KA's self­
test feature during incoming parts inspection. No 
special diagnostic programs need to be written, and 
the test is both thorough and fast. The self-test ca­
pability helps ensure that defective parts will be dis­
covered before systems are shipped, and once in 
the field, the self-test makes it easier to distinguish 
between problems caused by processor failure and 
problems resulting from other causes. 

CHMOS 

The 80960KA is fabricated using Intel's CHMOS IV 
(Complementary High Speed Metal Oxide Semicon­
ductor) process. This advanced technology elimi­
nates the frequency and reliability limitations of older 
CMOS processes and opens a new era in micro­
processor performance. It combines the high per­
formance capabilities of Intel's industry-leading 
HMOS technology with the high density and low 
power characteristics of CMOS. The 80960KA is 
available at 10, 16, 20 and 25 MHz. 

Table 4a. 80960KA Pin Description: L-Bus Signals 

Symbol Type Name and Function 

CLK2 I SYSTEM CLOCK provides the fundamental timing for 80960KA systems. It is 
divided by two inside the 80960KA to generate the internal processor clock. 

LAD31 I/O LOCAL ADDRESS/DATA BUS carries 32-bit physical addresses and data to and 
-LADo T.S. from memory. During an address (T a) cycle, bits 2-31 contain a physical word 

address (bits 0-1 indicate SIZE; see below). During a data (T d) cycle, bits 0-31 
contain read or write data. The LAD lines are active HIGH and float to a high 
impedance state when not active. 

SIZE, which is comprised of bits 0-1 of the LAD lines during a T a cycle, specifies 
the size of a burst transfer in words. 

LAD 1 LAD 0 

0 0 1 Word 
0 1 2 Words 
1 0 3 Words 
1 1 4 Words 

ALE 0 ADDRESS-LATCH ENABLE indicates the transfer of a physical address. ALE is 
T.S. asserted during aT a cycle and deasserted before the beginning of the T d state. It 

is active LOW and floats to a high impedance state during a hold cycle (Thor T hr). 
1/0 ~ Input/Output. 0 ~ Output, I ~ Input. 0.0. ~ Open·Drain, T.S. ~ tri-state 

3-42 



inteL 80960KA 

Table 4a. 80960KA Pin Description: L-Bus Signals (Continued) 

,Symbol Type Name and Function 

ADS 0 ADDRESS/DATA STATUS indicates an address state. ADS is asserted every Ta 
0.0. state and deasserted during the following T d state. For a burst transaction, ADS is 

asserted again every T d state where READY was asserted in the previous cycle. 

W/R 0 WRITE/READ specifies, during aT a cycle, whether the operation is a write or 
0.0. read. It is latched on-chip and remains valid during T d cycles. 

DT/R 0 DATA TRANSMIT/RECEIVE indicates the direction of data transfer to and from 
0.0. the L-Bus. It is low during T a and T d cycles for a read or interrupt 

acknowledgement; it is high during T a and T d cycles for a write. DT IR never 
changes state when DEN is asserted (see Timing Diagrams). 

DEN 0 DATA ENABLE is asserted during T d cycles and indicates transfer of data on the 
0.0. LAD bus lines. 

READY I READY indicates that data on LAD lines can be sampled or removed. If READY is 
not asserted during a T d cycle, the T d cycle .is extended to the next cycle by 
inserting a wait state (T w), and ADS is not asserted in the next cycle. 

LOCK 1/0 BUS LOCK prevents other bus masters from gaining control of the L-Bus 
0.0. following the current cycle (if they would assert LOCK to do so). LOCK is used by 

the processor or any bus agent when it performs indivisible Read/Modify/Write 
(RMW) operations. Do not leave LOCK unconnected. It must be pulled high for the 
processor to function properly. 

For a read that is designated as a RMW-read, LOCK is examined. if asserted, the 
processor waits until it is not asserted; if not asserted, the processor asserts 
LOCK during the T a cycle and leaves it asserted. 

A write that is designated as an RMW-write deasserts LOCK in the T a cycle. 
During the time LOCK is asserted, a bus agent can perform a normal read or write 
but no RMW operations. LOCK is also held asserted during an interrupt-
acknowledge transaction. 

BE3-BEo 0 BYTE ENABLE LINES specify which data bytes (up to four) on the bus take part. 
0.0. in the current bus cycle. BEa corresponds to LADal-LAD24 and BEa corresponds 

toLADrLADo· 

The byte enables are provided in advance of data. The byte enables asserted 
during T a specify the bytes of the first data word. The byte enables asserted 
during T d specify the bytes of the next data word (if any), that is, the word to be 
transmitted following the next assertion of READY. The byte enables during the 
T d cycles preceding the last assertion of READY are undefined. The byte enables 
are latched on-chip and remain constant from one T d cycle to the next when 
READY is not asserted. 

For reads, the byte enables specify the byte(s) that the processor will actually use. 
L-Bus agents are required to assert only adjacent byte enables (e.g., asserting just 
BEo and BE2 is not permitted), and are required to assert at least one byte enable. 
To produce address bits Ao and Al externally, they can be decoded from the byte 
enables. 

1/0 = Input/Output, 0 = Output, I = Input, 0.0. = Open· Drain, T.S. = tn·state 

3-43 



80960KA 

Table 4a. 80960KA Pin Description: L-Bus Signals (Continued) 

Symbol Type Name and Function 

HOLD/ I HOLD: If the processor is the primary bus master (PBM), the input is interpreted 
HLDAR as HOLD, a request from a secondary bus master to acquire the bus. When the 

processor receives HOLD and grants another master control of the bus, it floats 
its tri-state bus lines and then asserts HLDA and enters the T h state. When HOLD 
is deasserted, the processor will deassert HLDA and go to either the Tj or T a 
state. 

HOLD ACKNOWLEDGE RECEIVED: IUhe processor is a secondary bus master 
(SBM), the input is HLDAR, which indicates, when HOLDR output is high, that the 
processor has acquired the bus. Processors and other agents can be told at reset 
if they are the primary bus master (PBM). 

HLDAI 0 HOLD ACKNOWLEDGE: If the processor is a primary bus master, the output is 
HOLDR T.S. HLDA, which relinquishes control of the bus to another bus master. 

HOLD REQUEST: For secondary bus masters (SBM), the output is HOLDR, which 
is a request to acquire the bus. The bus is said to be acquired if the agent is a 
primary bus master and does not have its HLDA output asserted, or if the agent is 
a secondary bus master and has its HOLD input and HLDA output asserted. 

CACHE 0 CACHE indicates if an access is cacheable during aT a cycle. It is not asserted 
T.S. during any synchronous access, such as a synchronous load or move instruction 

used for sending an lAC message. The CACHE signal floats to a high impedance 
state when the processor is idle. 

Table 4b. 80960KA Pin Description: Module Support Signals 

Symbol Type Name and Function 

BADAC I BAD ACCESS, if asserted in the cycle following the one in which the last READY 
of a transaction is asserted, indicates that an unrecoverable error has occurred on 
the current bus transaction, or that a synchronous load/store instruction has not 
been acknowledged. 

STARTUP: During system reset, the BADAC signal is interpreted differently. If the 
signal is high, it indicates that this processor will perform system initialization. If it 
is low, another processor in the system will perform system initialization instead. 

RESET I RESET clears the internal logic of the processor and causes it to re-initialize. 

During RESET assertion, the input pins are ignored (except for BADAC and 
IACIINT 0), the tri-state output pins are placed in a high impedance state, and 
other output pins are placed in their non-asserted state. 

RESET must be asserted for at least 41 CLK2 cycles for a predictable RESET. 
The HIGH to LOW transition of RESET should occur after the rising edge of both 
CLK2 and the external bus CLK, and before the next rising edge of CLK2. 

FAILURE 0 INITIALIZATION FAILURE indicates that the processor has failed to initialize 
O.D. correctly. After RESET is deasserte.d and before the first bus transaction begins, 

FAILURE is asserted while the processor performs a self-test. If the self-test 
completes successfully, then FAILURE is deasserted. Next, the processor 
performs a zero checksum on the first eight words of memory. If it fails, FAILURE 
is asserted for a second time and remains asserted; if it passes, system 
initialization continues and FAILURE remains deasserted. 

N.C. N/A NOT CONNECTED indicates pins should not be connected. Never connect any 
pin marked N.C. 

110 ~ Input/Output, 0 ~ Output, I ~ Input, 0.0. ~ Open·Orain, 1.S. ~ tn·state 

3-44 



80960KA 

Table 4b. 80960KA Pin Description: Module Support Signals (Continued) 

Symbol Type Name and Function 

lAC I INTERAGENT COMMUNICATION REQUEST IINTERRUPT 0 indicates either 
INTO that there is a pending lAC message for the processor or an interrupt. The bus 

interrupt control register determines in which way the signal should be interpreted. 
To signal an interrupt or lAC request in a synchronous system, this pin (as well as 
the other interrupt pins) must be enabled by being deasserted for at least one bus 
cycle and then asserted for at least one additional bus cycle; in an asynchronous 
system, the pin must remain deasserted for at least two bus cycles and then be 
asserted for at least two more bus cycles. 

LOCAL PROCESSOR NUMBER: This signal is interpreted differently during 
system reset. If the signal is at a high voltage level, it indicates that this processor 
is a primary bus master (Local Processor Number = 0); if it is at a low voltage 
level, it indicates that this processor is a secondary bus master (Local Processor 
Number = 1). 

INT1 I INTERRUPT 1, like INTO, provides direct interrupt signaling. 

INT2/ I INTERRUPT 211NTERRUPT REQUEST: The bus control registers determines 
INTR how this pin is interpreted. If INT2, it has the same interpretation as the INTO and 

INT1 pins. If INTR, it is used to receive an interrupt request from an external 
interrupt controller. 

INT3/ I/O INTERRUPT 311NTERRUPT ACKNOWLEDGE: The bus interrupt control register 
INTA 0.0. determines how this pin is interpreted. If INT3, it has the same interpretation as 

the INTO, INT1, and INT2 pins. If INTA, it is used as an output to control interrupt-
acknowledge bus transactions. The INTA output is latched on-chip and remains 
valid during T d cycles; as an output, it is open-drain. 

110 = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain, T.S. = tn-state 

ELECTRICAL SPECIFICATIONS Power Decoupling Recommendations 

Liberal decoupling capacitance should be placed 
near the 80960KA. The processor can cause tran­
sient power surges when driving the L-Bus, particu­
larly when it is connected to a large capacitive load. 

Power and Grounding 

The 80960KA is implemented in CHMOS IV technol­
ogy and has modest power requirements. Its high 
clock frequency and numerous output buffers (ad­
dress/ data, control, error, and arbitration signals) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 12 Vee 
and 13 V ss pins separately feed functional units of 
the 80960KA in the PGA. 

Power and ground connections must be made to all 
power and ground pins of the 80960KA. On the cir­
cuit board, all Vee pins must be strapped closely 
together, preferably on a power plane. Likewise, all 
Vss pins should be strapped together, preferably on 
a ground plane. These pins may not be connected 
together within the chip. 

3-45 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
the board traces between the processor and de­
coupling capacitors as much as possible. Capacitors 
specifically designed for PGA packages are also 
commercially available and offer the lowest possible 
inductance. 

Connection Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if 
one or more interrupt lines are not used, they should 
be pulled up. No inputs should ever be left floating. 

• 



int:et 80960KA 

All open-drain outputs require a pullup device .. While 
in some cases a simple pullup resistor will be ade­
quate, we recommend a network of pullup and pull­
down resistors biased to a valid V,H (~3.4V) and 
terminated in the characteristic impedahce of the cir­
cuit board. Figure 6 shows our recommendations for 
the resistor values for both a low and high current 
drive network, which assumes that the circuit board 
has a characteristic impedance of 100n. The advan­
tage of terminating the output signals in this fashion 
is that it limits signal swing and reduces AC power 
consumption. . 

Characteristic Curves 

Figure 7 shows the typical supply current require­
ments over the operating temperature range of the 
processor at supply voltage (Veel of SV. Figure B 
shows· the typical power supply current (Ieel re­
quired by the B0960KA at various operating frequen­
cies when measured at three input voltage (Vecl 
levels. 

For a given output current (loll, the curve in Figure 9 
shows the worst case output low voltage (VOL). 

B0960KA 
OPEN-DRAIN 

OUTPUT 

Low Drive Network: 
• VOH = 3.42V 
• 10l = 25.3 mA 

Vee 

lBO.ll 

390.ll 

270775-4 

Figure 10 shows the typical capacitive derating 
curve for the B0960KA measured from 1.SV on the 
system clock (ClK) to 1.SV on the falling edge and 
1.SV on the rising edge of the LoBus address/data 
(lAD) signals. 

Test Load Circuit 

Figure .13 illustrates the load circuit used to test the 
B0960KA's tristate pins, and Figure 14 shows the 
load circuit used to test the open drain outputs. The 
open drain test uses an active load circuit in the form 
of a matched diode bridge. Since the open-drain out­
puts sink current, only the 10L legs of the bridge are 
necessary and the 10H legs are not used. When the 
B0960KA driver under test is turned off, the output 
pin is pulled up to VREF (i.e., VOH). Diode 01 is 
turned off and the 10L current source flows through 
diode 02. 

When the B0960KA open-drain driver under test is 
on, diode 01 is also on, and the voltage on the pin 
being tested drops to VOL. Diode 02 turns off and 
10L flows through diode 01. 

B0960KA 
. OPEN-DRAIN 

OUTPUT 

High Drive Network: 
• VOH = 3.41V 
• IOl = 33.8 mA 

Vee 
( 

130.ll 

2BO.ll 

270775-5 

Figure 6. Connection Recommendations for low and High Current Drive Networks 

3-46 



80960KA 

Vee = S.OV 

380 

360 

~-- r--
"0 

320 

'< 300 
!-

'---r--
- I--

280 
u >---r-----260 

~ -r---
~ 240 

220 

200 

IBO 
-60 -40 -20 20 60 80 100 120 "0 

CASE TEt.4PERATURE (OC) 

Ie 25 t.lHz 020 t..CHz .16 MHz 010 MHz I 
270775-6 

Figure 7. Typical Supply Current (Icc) 

500 ! 450 
t- 400 

~ 350 
~ 300 
u 
~ 250 

g; 200 
VI 150 
-' 
~ 100 

~ 50 

a 
a 

R::: 

........... -- :.,:,....-
.....--; ::..--- ~ 
~ ;..--
;:.....--

10 15 

OPERATING FREQUENCY (MHz) 

I ,,@4.5V O@5.0V +@5.5V I 

........... 
......... -' 
r ....... --

20 25 

270775-'7 

Figure 8. Typical Current vs Frequency 

(Temp ~ +85'C, Vee ~ 4.5V) (Temp ~ + 85'C, Vee ~ 4.5V) 

0.8 

~ & 0.6 

~ 
)';; 0.4 

.3 
, 
-S 0.2 

,/ 

./" 
V 

1/ /'" 

o 

0.0 
a 10 20 30 40 50 

Output Low Current (mA) 
270775-8 

30 

]: 
1;' 25 

! 20 

~ 15 , 
0-

"'5 10 o 

~ a 

fALL NG 

~ f-:::: ---:::::: --~ r- RISI G 

a 20 40 60 80 100 

Capacitive Load (pF') 
270775-9 

Figure 9. Worst Case Voltage vs 
Output Current on Open-Drain Pins 

Figure 10. Capacitive Derating Curve 

3-47 



intel® 80960KA 

ABSOLUTE MAXIMUM RATINGS* 

Operating Temperature ........ O·C to + 85·C Case 

Storage Temperature .......... -65·C to + 150·C 

Voltage on Any Pin .......... - 0.5V to V cc + 0.5V 

Power Dissipation ................. 2.5W (25 MHz) 

DC CHARACTERISTICS 

PGA: 

NOTICE: This is a production data sheet. The specifi­
cations are subject to change without notice. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

80960KA (16 MHz): T CASE = O·C to + 85·C, VCC = 5V ± 10% 
80960KA (20 and 25 MHz): T CASE = O·C to + 85·C, VCC = 5V ± 5% 

PQFP: 
80960KA (10 and 16 MHz): T CASE = O·C to + 100·C, VCC = 5V ± 10% 
80960KA (20 MHz): TCASE = O·C to + 100·C, VCC = 5V ±5% 

Symbol Parameter Min Max 

VIL Input Low Voltage -0.3 +0.8 

VIH Input High Voltage 2.0 VCC + 0.3 

VCl CLK2 Input Low Voltage -0.3 +0.8 

VCH CLK2 Input High Voltage 0.55 VCC VCC + 0.3 

VOL Output Low Voltage 0.45 

VOH Output High Voltage 2.4 

Icc Power Supply Current: 
10 MHz 300 
16 MHz 375 
20 MHz 420 
25 MHz 480 

III Input Leakage Current ±15 

IlO Output Leakage Current ±15 

CIN Input Capacitance 10 

Co 1/0 or Output Capacitance 12 

CClK Clock Capacitance 10 

NOTES: 
1. For tri-state outputs, this parameter is measured at: 

Units Test Conditions 

V 

V 

V 

V 

V (1,5) 

V (2,4) 

mA 
mA 
mA 
mA 

p.A 0::;; VIN ::;; VCC 

p.A 0.45 ::;; Va ::;; VCC 

pF fC = 1 MHz(3) 

pF fC = 1 MHz(3) 

pF fC = 1 MHz(3) 

Address/Data ......................................................................................... .4.0 mA 
Controls ............................................................................................... 5.0 mA 

2. This parameter is measured at: 
Address/Data ......................................................................................... -1.0 mA 
Controls ............................................................................................. -0.9 mA 
ALE ................................................................................................. -5.0 mA 

3. Input, output, and clock capacitance are not tested. 
4. Not measured on open-drain outputs. 
5. For open-drain outputs .................................................................................. 25 mA 

3-48 



80960KA 

AC SPECIFICATIONS 

This section describes the AC specifications for the 
B0960KA pins. All input and output timings are spec­
ified relative to the 1.5V level of the rising edge. Four 
output timings, the specifications refer to the time it 
takes the signal to reach 1.5V. For input timings, 

EDGE 

CLK2 

OUTPUTS: 
LAD 31-LADo, 

ADS, 
W/R,DEN, 
8E3-8Eo 
HLDA/HOLDR, 
CACHE 
LOCK,INTA " 

DT/R 

INPUTS: 
LAD 31 -LADo, 

BADAC, 

IAC/INTo,INT" 

INT 2/INTR,iNT 3 

HOLD,HLDAR, 
LOCK. 
READY 

the specifications refer to the time at which the sig­
nal reaches (for input setup) or leaves (for hold time) 
the TTL levels of LOW (O.BV) or HIGH (2.0V). All AC 
testing should be done with input clock voltages of 
O.4V and 2.4V, except for the clock (CLK2), which 
should be tested with input voltages of 0.45 Vee and 
0.55 Vee. 

A 

270775-10 

Figure 11. Drive Levels and Timing Relationships for 80960KA Signals 

3-49 

II 



infel· 80960KA 

T. Td T, T. Td Td T, 

CLK2 

elK 

AID 

ALE 

ADS 

8E(0:3) 

w/P. 

DT/P. 

DEN 

READY 

270775-11 

Figure 12. Timing Relationship of L-Bus Signals 

3-50 



Intel· 80960KA 

AC Specification Tables 
80960KA AC Characteristics (10 MHz, PQFP Only) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 50 125 ns VIN = 1.SV 
Period (CLK2) 

T2 Processor Clock 12 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 12 ns VIH = 90% Point 
High Time (CLK2) = 0.1V + 0.5 VCC 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 2 25 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls){2) 

T6H HOLDA Output 4 31 ns CL = 75 pF 
Valid Delay 

T7 ALE Width 25 ns CL = 75pF 

Ts ALE Output Valid Delay 0 20 ns CL = 75pF(2) 

Tg Output Float 2 20 ns CL = 100 pF (LAD) 
DelaY CL = 75 pF (Controls) 

TgH HOLDA Output 4 20 ns CL = 75pF 
Float Delay 

T10 Input Setup 1 3 ns 

T11 Input Hold 5 ns 

T11H HOLD Input 4 ns 
Hold 

T12 Input Setup 2 8 ns 

T13 Setup to ALE 10 ns CL == 100 pF (LAD) 
Inactive CL = 75 pF (Controls) 

T14 Hold after ALE 8 ns CL = 100 pF (LAD) 
Inactive CL = 75 pF (Controls) 

T15 Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 1640 ns 41 CLK2 Periods Minimum 

NOTES: 
1. lAC/INTo, INT1, INT2/INTR, INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be 
no longer than the valid delay. 
3. Clock rise and fall time is not tested. 

3-51 

II 



infel~ 80960KA 

80960KA Ac Characteristics (16 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 \ Processor Clock 31.25 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 8 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 8 ns VIH = 90% Point 
High Time (CLK2) = 0.1V + 0.5 Vee 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

Ts Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

Te Output Valid 2 25 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls) 

TeH HOLDA Output 4 3t ns CL = 75 pF 
Valid Delay 

T7 ALE Width 15 ns CL = 75pF 

Ta ALE Output Valid Delay 0 20 ns CL = 75pF(2) 

Tg Output Float 2 20 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls)(2) 

TgH HOLDA Output 4 20 ns CL = 75 pF 
Float Delay 

T10 Input Setup 1 3 ns 

T11 Input Hold 5 ns 

T11H HOLD Input 4 ns 
Hold 

T12 Input Setup 2 8 ns 

T13 Setup to ALE 10 ns CL = 100pF (LAD) 
Inactive CL = 75 pF (Controls) 

T14 Hold after ALE 8 ns CL = 100 pF (LAD) 
Inactive CL = 75 pF (Controls) 

T1S Reset Hold 3 ns 

T1e Reset Setup 5 ns 

T17 Reset Width 1281 ns 41 CLK2 Periods Minimum 

NOTES: 
1. lAC/INTo. INT1. INT2I1NTR. INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested. but should be 
no longer than the valid delay. 
3. Clock rise and fall time is not tested. 

3-52 



80960KA 

80960KA AC Characteristics (20 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 25 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 6 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 6 ns VIH = 90% Point 
High Time (CLK2) = 0.1V + 0.5 VCC 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 2 20 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls) 

T6H HOLDA Output 4 26 ns CL = 50pF 
I Valid Delay 

T7 ALE Width 12 ns CL = 50pF 

Ts ALE Output Valid Delay 0 20 ns CL = 50 pF(2) 

Tg Output Float 2 20 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls)(2) 

T9H HOLDA Output 4 20 ns CL = 50 pF 
Float Delay 

TlO Input Setup 1 3 ns 

Tl1 Input Hold 5 ns 

Tl1H HOLD Input 4 ns 
Hold 

T12 Input Setup 2 7 ns 

T13 Setup to ALE 10 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T14 Hold after ALE 8 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T15 Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 1025 ns 41 CLK2 Periods Minimum 

NOTES: 
1. IACIiNTo, INT 1, INT 2/INTR, INT 3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be 
no longer than the valid delay. 
3. Clock rise and fall time is not tested. 

80960KA 
TRISTATE OUTPUT 0-----,1 

CL ~ 
270775-12 

Figure 13. Test Load Circuit for 
Tri-State Output Pins 

o----r---+.-....l...-.. 4--<> VREF 

IOL Tested at 25 mA 
VREF ~ Vec 
D1 and D2 are matched 270775-13 

Figure 14. Test Load Circuit for Open-Drain Output Pins 

3-53 

.. 



infel" 80960KA 

80960KA AC Characteristics (25 MHz, PGA Only) 

Symbol Parameter Min Max Units Test Conditions 

Tl Processor Clock 20 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 5 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

Ts Processor Clock 5 ns VIH = 90% Point 
High Time "" o.w + 0.5 Vcc 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

Ts Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 2 18 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls) 

T6H HOLDA Output 4 24 ns CL = 50 pF 
Valid Delay 

T7 ALE Width 12 ns CL = 50 pF 

Ta ALE Output Valid Delay 0 20 ns CL = 50 pF(2) 

Tg Output Float 2 18 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls) 

TgH HOLDA Output 4 20 ns CL = 50 pF . 
Float Delay 

T10 Input S!'!tup 1 3 ns 

TIl Input Hold 5 ns 

TllH HOLD Input 4 ns 
Hold 

T12 Input Setup 2 7 ns 

T13 Setup to ALE 8 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

. T14 Hold after ALE 8 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

TIS Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 820 ns 41 CLK2 Periods Minimum 

NOTES: 
1. IAC/ffii'fO, INTI, INT2/INTR, INTS can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be 
no longer than the valid delay. 
S. Clock rise and faU time is not tested. 

3-54 



80960KA 

'~ 

I~ T3 

:r------, 
HIGH LEVEL (MIN) 0.55VCC 90% 

LOW LEVEL (MAX) O.BV 10% 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ~r----------

T4 1<I--l>1 
I 

Figure 15. Processor Clock Pulse (CLK2) 

FIRST 

ABC 0 A 

000 
CLK2 

ClK 
000 

11100 
RESET 

T17 

OUTPUTS 000 

INIT PARAMETERS (BADAC, 
IACo) MUST BE SETUP 8 CLOCKS 
PRIOR TO THIS ClK2 EDGE 

INIT PARAMETERS MUST BE HELD 
BEYOND THIS ClK2 EDGE 

Figure 16. RESET Signal Timing 

3-55 

T 15 = RESET HOLD 
T 16 = RESET SETUP 
T 17 = RESET WIDTH 

270775-14 

270771)-15 



infel" 80960KA 

Th Th Th Th 

CLK2 

ClK 

HOLOR 

HOlO 

HLOA 

HLOAR 

270775-16 

PRIMARY SECONDARY 

HHOLDALD I- 1 HOLDR 

L __ ~~:I----:-.~~ HOLDAR 
270775-17 

Figure 17. Hold Timing 

Design Considerations 

Input hold times can be disregarded by the designer . 
whenever the input is removed oecause a subse­
quent output from the processor is deasserted (e.g., 
DEN becomes deasserted). 

Whenever the processor generates an output that 
indicates a transition into a subsequent state, any 
outputs that are specified to be tri-stated in this new 
. state are guaranteed to be tri-stated. For example, in 
the T d cycle following a T a cycle for a read, the mini­
mum output delay of DEN is 2 ns, but the maximum 
float time of LAD is 20 ns. When DEN is asserted, 
however, the LAD outputs are guaranteed to have 
been tri-stated. 

Designing for the ICE·960KB 

The 80960KS In-Circuit Emulator assists in debug­
ging both 80960KA and 80960KS hardware and 
software designs. The product consists of a probe 
module, cable, and control unit. Secause of the high 

. operating frequency of 80960KA systems, the probe 
module connects directly to the 80960KA socket. 

When designing an 80960KA hardware system that 
uses the ICE-960KS to debug the system, several 
electrical and mechanical characteristics should be 
considered. These considerations include capacitive 
loading, drive requirement, power requirement and 
physical layout. 

The .ICE-960KS probe module increases the load 
capacitance of each line by up to 25 pF. It also adds 
one standard Schottky TIL load on the CLK2 line, 
up to one advanced low-power Schottky TIL load 
for each control signal line, and one advanced low­
power Schottky TIL load for each address/data and 
byte enable line. These loads originate from the 
probe module and are driven by the 80960KA proc­
essor. 

To achieve high noise immunity, the ICE-960KS 
probe is powered by the user's system. The high­
speed probe circuitry draws up to 1.1 A plus the max­
imum current (Ieel of the 80960KA processor. 

The mechanical considerations are shown in Figure 
18, which illustrates the lateral clearance require­
ments for the ICE-960KS probe as viewed from 
above the socket of the 80960KA processor. 

3-56 



80960KA 

1<I~f------ 3.B"------1-.1 

~1.22"-1 ~1.13"~ ~ 
--"'--~-~ 

0.15" 
r------ ., 
I USER CPU I 
: SOCKET : 

o I EU~~~~ON I 0 
: PROCE~SOR : 

VERTICAL 
CLEARANCE 1.2" 

!----::~ 

PIN1. o \ 
EUULATION 
PROCESSOR 

4.75" 

VIEW FROU 
ADOVE USER CPU 

SOCKET ICE PROCESSOR UOOULE 5.5" 

n 
RIB DON CADLE CONNECTOR 

v CABLE TO ICE CONTROL UNIT 
N ___ ----'l~ 

UINIUUU CADLE 
DEND RADIUS: 
LESS THAN 3.0" 

270775-18 

Figure 1S.ICE-960KB Lateral Clearance Requirements 

MECHANICAL DATA 

Package Dimensions and Mounting 

The 80960KA is available in two different packages: 
a 132-lead ceramic pin-grid array (PGA) and a 132-
lead plastic quad flat pack (PQFP). Pins in the ce­
ramic package are arranged 0.100 inch (2.54 mm) 
center-to~center,. ina 14 by 14 matrix, three rows 
around. (See Figure 19.) The plastic package uses 
fine-pitch gull wing leads arranged in a single row 
along the perimeter of the package with 0.025 inch 
(0.64 mm) spacing. (See Figure 20.) Dimensions are 
given in Figure 21 and Table 7. 

There are a wide variety of sockets available for the 
ceramic PGA package including low-insertion or 
zero-insertion force mountings, and a choice of ter­
minals such as soldertail; surface mount, or wire 
wrap. Several applicable sockets ar€! shown in Fig­
ure 22. 

The PQFP is normally surface mounted to take best 
advantage of the plastic package's small footprint 
and low cost. In some applications, however, de­
signers may prefer to use a socket, either to improve 

3-57 

heat dissipation or reduce repair costs. Figures 23a 
and 23b show two of the many sockets available. 

Pin Assignment 

The PGA and PQFP have different pin assignments. 
Figure 24 shows the view from the bottom of the 
PGA (pins facing up) and Figure 25 shows a view 
from the top of the PGA (pins facing down). Figures 
20 and 32 show the top view of the PQFP; notice 
that the pins are numbered in order from 1 to 132 
around the package's perimeter. Tables 5 and 6 list 
the function of each pin in the PGA, and Tables 8 
and 9 list the function of each pin in the PQFP. 

Vee and GND connections must be made to multi­
ple Vee and GND pins. Each Vee and GND pin must 
be connected to the appropriate voltage or ground 
and externally strapped close to the package. We 
recommend that you include separate power and 
ground planes in your circuit board for power distri­
bution. 

NOTE: 
Pins identified as N.C., "No Connect," should never 
be connected. 



80960KA 

Package Thermal Specification 

The 80960KA is specified for operation when case 
temperature is within the range O°C to + 85°C (PGA) 
or + 100°C (PQFP). The case temperature should 
be measured at the top center of the package as 
shown in Figure 26. 

The ambient temperature can be calculated from 0jc 
and 0ja by using the following equations: 

TJ = Tc + P*Ojc 

TA = TJ - P*Oja 

Tc = TA + P*[Oja - Ojd 

Values for 0ja and 0jc are given in Table 10 for the 
PGA package and in Table 11 for the PQFP for vari­
ous airflows. Note that the 0ja for the PGA package 
can be reduced by adding a heatsink, while a heat­
sink is not generally used with the plastic package 
since it is intended to be surface mounted. The max­
imum allowable ambient temperature (T A) permitted 
without exceeding T C is shown by the charts in Fig­
ures 27 through 30 for 10 MHz, 16 MHz, 20 MHz, 
and 25 MHz respectively. 

The curves assume the maximum permitted supply 
current (Icd at each speed, Vcc of 5.0V, and a 
T CASE of + 85°C (PGA) or + 100°C (PQFP). 

If you will be using the 80960KA in a harsh environ­
ment where the ambient temperature may exceed 
the limits for the normal commercial part, you should 
consider using an extended temperature part. These 
parts are designed by the prefix "T A" and are avail­
able at 16 MHz, 20 MHz and 25 MHz in the ceramic 
PGA package. The extended operating temperature 
range is - 40°C to + 125°C case. Figure 30 shows 
the maximum allowable ambient temperature for the 
20 MHz extended temperature TA80960KA at vari­
ous airflows. The curve assumes an Icc of 420 mA, 
Vcc of 5.0V, and a T CASE of :+-125°C. 

WAVEFORMS 

Figures 33 through 38 show the waveforms for vari­
ous transactions on the 80960KA's local bus. 

3-58 

SUPPORT COMPONENTS 

85C960 Burst Bus Controller 

The Intel 85C960 performs burst logic, ready gener­
ation, and address decode for the 80960KA and 
80960KB. The burst logic supports both standard 
and burst mode memories and peripherals. The 
ready generation and timing control supports 0 to 15 
wait states across eight address ranges for read/ 
write and burst accesses. The address decoder de­
codes eight address inputs into four external and 
four internal chip selects. The wait state and chip 
select values may be programmed by the user; the 
timing control and burst logic are fixed. 

The 85C960 operates with the 80960KA and 
80960KB at all frequencies and consumes only 
50 mA at 2R MHz. The 85C960 is housed in a 28-pin, 
300-mil ceramic DIP and plastic DIP packages or 28-
pin PLCC package for surface mount. In the ceramic 
DIP package the part is UV-erasable, which makes it 
easy to revise designs. Order the 85C960 data sheet 
(No. 290192) for full details. 

27960KX Burst Mode EPROM 

Intel 27960KX one-megabit EPROM is designed 
specifically to support the 80960KA and 80960KB. It 
uses a burst interface to offer near zero wait-state 
performance without the high cost of alternative 
memory technologies. The 27960KX removes the 
need for "dumping" code arid. data stored in slow 
EPROMs or ROMs into expensive high-speed 
"shadow" RAM. ' 

Internally, the 27960KX is organized in blocks of four 
bytes that are accessed sequentially. The address 
of the four-byte block is latched and incremented 
internally. After a set number of wait-states (1·or 2), 
data is output one word at a time each subsequent 
clock cycle. High-performance outputs provide zero 
wait-state data-to-data burst accesses. Extra power 
and ground pins dedicated to the output reduce the 
effect of fast output switching on the device. The 
27960KX offers 1-0-0-0 performance at 20 MHz and 
2-0-0-0 performance at 25 MHz. Full details can be 
found in the 27960KX data sheet (No. 290237) 



intei· 80960KA 

~ r:::-~ ~ ';/) 0;;- N '" '" " III '" <D 0 ... <Xl ": '" ... 
~ <Xl '" <Xl ,,; u:i 

d- e e ~ ~ ~ 
CIN #1 POSITION 

1 0 ® ® ® ® ® ®'I® ®@®®®® 
2 ®®®@@@@®®@®®@® 
3 ® ® 8 ® ® ® ®'® @®®8@® 
4 ®®® @®@ 
5 ®®® ®®@ 
6 ®®® I @@® 
7 _®®~ __ +__ ~®~ 
8 ®@® @@@ 
9 ®®® ®®® 

10 ®®® @®® 
11 ®®® @®® 
12 ® ® ~ ® ® ® ®,® ® ® ® ® ® 
13 ® ® ® ® ® ® ®I® ® ® ® ® ®@ 
14 ®®®@®®@,®®®®®®@ 

0 ... 
<Xi 
~ 
III 
N 
": 

ABC D E F G H J K L M N P Ii 
.020 (0.508) .020 -
MIN TYP (0.508) 

-- .070(1.777)DIA 
TYP BRAZE PAD 

1-----1.450(36.802) ------

:725 (18.401) 

.650 (16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.1 50 (3.807) 

.050 (1.269) 
o 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

MAX TYP 
.057(1.269) -1'- . 

.001 (0.025) R 
MIN TYP 

.018(0.47) 1 
DIA TYP - =~:t1 

.165(4.189~1 ~ 
.110(2=U 

270775-19 

Figure 19. A 132-Lead Pin·Grid Array (PGA) Used to Package the 80960KA 

o 

270775-20 

Figure 20. The 132-Lead Plastic Quad Flat Pack (PQFP) used to Package the 80960KA 

3-59 



80960KA 

BASE PLANE 

mm (Inch) 

270775-21 

Figure 21a. Principal Dimensions of the 132-Lead PQFP 

~-----------------D2------------~--~ 

270775-22 

Figure 21b. Details of the Molding of the 132-Lead PQFP 

3-60 



int:eL 80960KA 

I· SEE DETAIL L 

I.~' ________ ;,:--------==:,tl,il-SEE DETAIL J 

0.31 (0.012) _I I-
0.20 (0.008) 

mm (inch) DETAIL J DETAIL L 

0.20 (0.008) 
0.14 (0.005) 

8DEG. 
o DEG. 

~ 
Figure 21c. Terminal Details for the 132-Lead PQFP 

3-61 

270775-23 



Symbol 

N 

A 

A1 

D,E 

D1,E1 

D2,E2 

D3,E3 

D4,E4 

L1 

80960KA. 

1---------1.100"----------1'1 

L= ,5 
0.025"5 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = 

I = = = = = = = = = = = = = = = = =1.100" = = = = = = = = = = = = = = = = 

\ Figure 21d. Board Footprint Area for the 132-Lead PQFP 

Table 7. Package Dimension: 80960KA PQFP 

Description 
Inches 

Min Max Min 

270775-24 

MM 

Max 

Leadcount 132 Leads 132 Leads 

Package Height 0.160 0.170 4.060 4.320 

Standoff 0.020 0.030 0.510 0.760 

Terminal Dimension 1.075 1.085 27.310 27.560 

Package Body 0.947 0.953 24.050 24.210 

Bumper Distance 
Without Flash 1.097 1.103 27.860 28.010 
With Flash 1.097 1.110 27.860 28.190 

Lead Dimension 0.800 REF 20.32 REF 

Foot Radius Location 1.023 1.037 25.890 26.330 

Foot Length 0.020 0.030 0.510 0.760 

3-62 



Intel· 

• Low insertion force (LlF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in 
insertion force compared to 
machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 

55583-1 
• Zero insertion force (ZIF) Burn-in 

version 55573-2 
Amp Incorporated 

(Harrisburg, PA 17105 U.S.A. 
Phone 717-564-0100) 

80960KA 

270775-25 

Cam handle locks in low profile position when 80960KA is installed 
(handle UP for open and DOWN for closed positions). 

Peel-A-Way' Mylar and Kapton 
Socket Terminal Carriers 

o Low insertion force surface 
mount CS132-37TG 

• Low insertion force soldertail 
CS132-0tTG 

o Low insertion force wire-wrap 
CS132-02TG (two-level) 
CS132-03TG (thee-level) 

o Low insertion force press-fit 
CS132-05TG 

Advanced Interconnections 
(5 Division Street) 
Warwick, RI 02818 U.S.A. 
Phone 401-885-0485) 

Peel-A-Way Carrier No. 132: 
Kapton Carrier is KS132 
Mylar Carrier is MS132 

Molded Plastic Body KS132 
is shown below: 

FOOT PRINT NO. 132 

270775-26 

'Peel-A-Way is a trademark of Advanced Interconnections. 

Courtesy Amp Incorporated 

SOLDEn TAIL.-o1 LOW PROFILE-OC PRESSFIT-OS 

r r r I ~ 

---i :iii .u, 

l-i ,-i, :iii .... 
~DIA. 

-:iii 
_----'-. bttMA ~ ~1low.. ..... 

"":"" =i::' 
WIRE WRAP .(12/-03 SOLDER TAll-ll SURFACE MOUNTING -31 

ti 
PEEL·,,·WAY 

!~ (~ 

~ 
U 

.• u 

.. ,. -02 

~ :xi 2 LEVEL ... 
.!.!!!.03 "1ii 

---1 .C= 3LEVEL £--11--~ 0'" 
270775-27 

Courtesy Advanced Interconnections 
(Peel-A-Way Terminal Carriers 

U.S. Patent No. 4442938) 

Figure 22_ Several Socket Options for Mounting the 80960KA 

3-63 



80960KA 

o 

Part Number: 1·821932·5 

Figure 23a. AMP Micropitch Socket for the 132-Lead Plastic 
Quad Flat Pack, 0.025" Lead Spacing, Gull Wing Leads 

3·64 

270775-28 



int:eL 80960KA 

Part Number: 
2·0132·07244·000·01807 

270775-45 

Figure 23b.3M Company PQFP Socket and Lid 

3-65 



InteL 80960KA 

2 3 4 5 6 7 8 9 10 11 12 13 14 

00000000000000 P 
Vee N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss Vee 

N o 0 0 000 0 000 0 0 0 0 N 
Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 
N.C. Vee Vss Vss Vee N.C. N.C. N.C. N.C. Vss Vee N.C. N.C. N.C. 

000 000 
DEN N.C. Vee Vss N.C. N.C. 

000 000 K 

BE3 FAIL Vss Vee N.C. N.C. 

000 000 
DTR BE2 Vss N.C. N.C. N.C. 

000 000 H 

WR BEa LOCK 80960KA 
N.C. ·N.C. N.C. 

000 000 G 

LAD30 READY BE, N.C. N.C. N.C. 

000 000 F 

LAD29 LAD31 CACHE N.C. N.C. N.C. 

000 000 E 

LAD28 LAD26 LAD27 N.C. Vss N.C., 

000 000 D 

ALE ADS HLDA Vee N.C. N.C. 

00000000000000 C 
HOLD LAD25 BADAC Vee Vss LAD20 LAD13 'LADs LAD3 Vee Vss INT3 INTI INTo 

00000000000000 B 
LAD23 LAD24 LAD22 LAD21 LAD1S LAo,s LAD12 LAo,o LAD6 LAD2 CLK LADo RESET Vss 

A o 0 0 0 0 0 0 0 0 0 0 000 A 

~ ~ ~9~7~6~4~1~ ~ ~ ~ ~ I~ ~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 
270775-29 

Figure 24. 80960KA PGA Pinout-View from Bottom (Pins Facing Up) 

3-66 



Intel· 80960KA 

14 13 12 11 10 9 8 7 6 5 4 3 2 

p o 0 0 0 000 0 0 0 0 0 0 0 p 

Vee Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vee 

N o 0 0 0 000 0 0 0 0 0 0 0 N 
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 
N.C. N.C. N.C. Vee Vss N.C. N.C. N.C. N.C. Vee Vss Vss Vee N.C. 

L 000 000 L 
N.C. N.C. Vss Vee N.C. DEN 

K 000 000 K 
N.C. N.C. Vee Vss FAIL BE3 

000 000 
N.C. N.C. N.C. Vss BE2 DTR 

H 000 000 H 
. N.C. N.C. N.C. 

80960KA LOCK BEo WR 

G 000 000 G 
N.C. N.C. N.C. BEl READY LAD30 

F 000 000 F 
N.C. N.C. N.C. CACHE LAD3, LAD2S 

E 000 000 E 

N.C. Vss N.C. LAD27 LAD26 LAD28 

° 000 000 ° N.C. N.C. Vee HLDA ADS ALE 

C o 0 000 0 0 0 0 0 0 0 0 0 C 

INTo INT, INT3 Vss Vee LAD3 LADs LAD'3 LAD20 Vss Vee BADAC LAD2S HOLD 

B o 0 0 0 0 0 0 000 0 000 B 
Vss RESET LADo CLK LAD2 LADs LAD,o LAD,2 LAD,s LAD,8 LAD2, LAD22 LAD24 LAD23 

A o 0 0 0 0 0 0 0 0 0 0 000 A 

Vee INT2 LAD, LAD4 LADs LAD7 LADs LAD" LAD,4 LAD,6 LAD17 LAD,s Vss Vee 

14 '3 12 11 10 s 8 7 6 5 4 3 2 
270775-30 

Figure 25. 80960KA PGA Pinout-View from Top (Pins Facing Down) 

3-67 



intei® 80960KA 

Table 5. 80960KA PGA Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal 

A1 Vee C6 LAD20 H1 W/R M10 Vss 
A2 Vss C7 LAD13 H2 8Eo M11 Vee 
A3 LAD19 C8 LAD8 H3 LOCK M12 N.C. 

A4 LAD17 C9 LAD3 H12 N.C. M13 N.C. 

A5 LAD16 C10 Vee H13 N.C. M14 N.C. 

A6 LAD14 C11 Vss H14 N.C. N1 Vss 
A7 LAD11 C12 INT3/INTA J1 DT/R N2 N.C. 

A8 LAD9 C13 INT1 J2 8E2 N3 N.C. 

A9 LAD7 C14 lAC/INTo J3 Vss N4 N.C. 

A10 LADs 01 ALE J12 N.C. N5 N.C. 

A11 LAD4 02 ADS J13 N.C. N6 N.C. 

A12 LAD1 03 HLDA/HLDR J14 N.C. N7 N.C. 

A13 INT2/INTR 012 Vee K1 8E3 N8 N.C. 

A14 Vee 013 N.C. K2 FAILURE N9 N.C. 

81 LAD23 014 N.C. K3 Vss N10 N.C. 

82 LAD24 E1 LAD28 K12 Vee N11 N.C. 

83 LAD22 E2 LAD26 K13 N.C. N12 N.C. 

84 LAD21 E3 LAD27 K14 ' N.C. N13 N.C. 

85 LAD18 E12 N.C. L1 DEN N14 N.C. 

86 LAD1S E13 Vss L2 N.C. P1 Vee 
87 LAD12 E14 N.C. L3 Vee P2 N.C. 

88 LAD10 F1 LAD29 L12 Vss P3 N.C. 

89 LAD6 F2 LAD31 L13 N.C. P4 N.C. 

810 LAD2 F3 CACHE L14 N.C. P5 N.C. 

811 CLK2 F12 N.C. M1 N.C. P6 N.C. 

812 LADo F13 "N.C. M2 Vee P7 N.C. 

813 RESET F14 N.C. M3 Vss P8 N.C. 

814 Vss G1 LAD30 M4 Vss P9 N.C. 

C1 HOLD/HLDAR G2 READY M5 Vee P10 N.C. 

C2 LAD2S G3 8E1 M6 N.C. P11 N.C. 

C3 8ADAC G12 N.C. M7 N.C. P12 N.C. 

C4 Vee G13 N.C. M8 N.C. P13 Vss 
C5 Vss G14 N.C. M9 N.C. P14 Vee 

3·68 



int:eL 80960KA 

Table 6. 80960KA PGA Pinout-In Signal Order 

Signal Pin Signal Pin Signal Pin Signal Pin 

ADS D2 LAD15 B6 N.C. J14 N.C. P9 
ALE D1 LAD16 A5 N.C. K13 N.C. P10 

BADAC C3 LAD17 A4 N.C. K14 N.C. P11 

BEo H2 LAD1B B5 N.C. L13 N.C. P12 

BEl G3 LAD19 A3 N.C. L14 N.C. L2 

BE2 J2 LAD20 C6 N.C. M1 READY G2 

BE3 Ki LAD2l B4 N.C. M6 RESET B13 
CACHE F3 LAD22 B3 N.C. M7 Vee A1 
CLK2 B11 LAD23 B1 N.C. M8 Vee A14 
DEN L1 LAD24 B2 N.C. M9 Vee C4 
DT/R J1 LAD25 C2 N.C. M12 Vee C10 
FAILURE K2 LAD26 E2 N.C. M13 Vee D12 
HLDAlHOLDR D3 LAD27 E3 N.C. M14 Vee K12 
HOLD/HLDAR C1 LAD2B E1 N.C. N2 Vee L3 

IACIiNTo C14 LAD29 F1 N.C. N3 Vee M2 

INTl C13 LAD30 G1 N.C. N4 Vee M5 

INT211NTR A13 LAD3l F2 N.C. N5 Vee M11 

INT311NTA C12 LOCK H3 N.C. N6 Vee P1 

LADo B12 N.C. D13 N.C. N7 Vee P14 

LADl A12 N.C. D14 N.C. N8 Vss A2 

LAD2 B10 N.C. E12 N.C. N9 Vss B14 

LAD3 C9 N.C. E14 N.C. N10 Vss C5 

LAD4 A11 N.C. F12 N.C. N11 Vss C11 

LAD5 A10 N.C. F13 N.C. N12 Vss E13 

LAD6 B9 N.C. F14 N.C. N13 Vss J3 

LAD7 A9 N.C. G12 N.C. N14 Vss K3 

LADB C8 N.C. G13 N.C. P2 Vss L12 

LAD9 A8 N.C. G14 N~C. P3 Vss M3 

LADlO B8 N.C. H12 N.C. P4 Vss M4 

LADll A7 N.C. H13 N.C. P5 Vss M10 

LAD12 B7 N.C. H14 N.C. P6 Vss N1 

LAD13 C7 N.C. J12 N.C. P7 Vss P13 

LAD14 A6 N.C. J13 N.C. P8 W/R H1 

3-69 



=_ ... I 1l1'e. 80960KA 

MEASURE PGA CASE TEMPERATURE 
AT CENTER or TOP SURrACE 

MEASURE porp TEMPERATURE AT 
CENTER or TOP SURrACE 

o 

270775-31 

Figure 26. Measuring 80960KA PGA and PQFP Case Temperature 

u-
~ .., 
'" => ... « 
eJ .. 
~ 

85 

80 

75 

70 

65 

60 

55 

50 

...........-::' 
~ 

./ V~ 
~p-

po' 

~ 
]"""'"'"" 

200 

---" r----

400 

AIRrLOW (II/min) 

600 800 

• porp 0 PGA with no • PGA with omni- ¢ PGA with un i-
heatsink directional heatslnk directional heatsink 

270775-46 

Figure 27. 10 MHz 80960 K-Series Maximum Allowable Ambient Temperature 

80 

75 

~ 
70 .., 

'" => 

~ 65 

~ 60 

55 

50 
200 

• porp DPGA with no 
heatsink 

400 

AIRrLOW (It/min) 

600 

• PGA with omni- ¢ PGA with uni-

800 

directional heatslnk directional heatsink 
270775-33 

Figure 28. 16 MHz 80960 K-Series Maximum Allowable Ambient Temperature 

3-70 

270775-32 



~ 
w 

'" ;: 

~ 
~ 

80 

75 

70 

65 

60 

55 

50 

45 

40 

80960KA 

~. 

,..--------- ,....- -
~ ~ 
~ 

~ -----~ ----~ 

200 400 

AIRFLOW (It/min) 

600 800 

m PQFP 0 PGA with no • PGA with omnl- <> PGA with un 1-
hoatsink directional heatsink directional heatslnk 

270775-34 

Figure 29. 20 MHz 80960 K-Series Maximum Allowable Ambient Temperature 

'U 
~ 
w 

'" :::J 
I-« 
'" w 
"-

'" W 
l-
I-z w 
iii 

'" « 

75 -70 

65 

60 

55 

SO 

45 

40 

~ t:::--' J-

.-~ l"'" .-! 

~ ~ V-f-"'" 

~ V .-V 
y-r ./" 
/ 

35 
a 100 200 300 400 500 600 700 800 

III PGA with no 
heatsink 

AIRFLOW (it/min) 

o PGA with omnl- • PGA with uni-
directional heatslnk directional heatslnk 

Figure 30. Maximum Allowable Ambient Temperature for 
the 80960KA at 25 MHz (available in PGA only) 

'U 
~ 
w 

'" :::J 
I-« 
'" w 
"-

'" W 
I-
I-z 
w 
iii 

'" « 

115 

110 

105 

100 

----: ~ --::; 

~ V ..-
.--l 

~ V ~ .... 
/ ..-

~ ~ .....-V 
95 

90 
V /1"" 

85 / 
a 100 200 300 400 500 600 700 800 

III PGA with no 
heatslnk 

AIRFLOW (It/min) 

o PGA with omni­
directional heatslnk 

• PGA with uni­
directional heatslnk 

270775-35 

270775-36 

Figure 31. Maximum Allowable Ambient Temperature for the Extended 
Temperature TA-80960KA at 20 MHz (available in PGA only) 

3-71 



iniei® 

LADO 

LADl 

LAD2 

VSS 

LAD3 

LAD4 

LADS 

LAD6 

LAD7 

LAD8 

LAD9 

LAD10 

LADll 

LAD12 

VSS 

LAD13 

LAD14 

LAD15 

LAD16 

LAD17 

LAD18 

LAD19 

LAD20 

LAD21 

LAD22 

VSS 

LAD23 

LAD24 

LAD25 

8ADAe 

HOLD/HLDAR 

Ne 

ADS 

'" '" u > z 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

uzuuo~ z Z Z Il: 
'" g~ 

> u 

80960KA 

H 8 (.) 
> > z 

B0960KA 

66 

65 

64 

63 

62 

61 

60 

59 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

37 

36 

35 

34 

"'I'" 1% (I) til U 0 en VI (.) 0 U (.) (I) (I) >1/) 9 ~ >(1) >VI Z Z >11) >VI Z -:? >0 Z >VI >VI 

Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

Vss 
Vee 

Vee 
Ne 

vss 

vss 
Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

Ne 

He 

Ne 

Vss 
Vee 
He 

Ne 

Ne 

Ne 

Vee 

Vee 
Ne 

270775-47 

Figure 32. 80960KA PQFP Pinout-View from Top 

3·72 



80960KA 

Table 8. 80960KA Plastic Package Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal 

1 HLDA/HOLDR 34 N.C. 67 Vss 100 LADO 

2 ALE 35 Vee 68 Vss 101 LAD1 

3 LAD26 36 Vee 69 N.C. 102 LAD2 

4 LAD27 37 N.C. 70 Vee 103 Vss 
5 LAD28 38 N.C. 71 Vee 104 LAD3 

6 LAD29 39 N.C. 72 N.C. 105 LAD4 

7 LAD30 40 N.C. 73 Vss 106 LAD5 

8 LAD31 41 Vee 74 Vee 107 LAD6 

9 Vss 42 Vss 75 N.C. 108 LAD7 

10 CACHE 43 N.C. 76 N.C. 109 LAD8 

11 W/R 44 N.C. 77 N.C. 110 LAD9 

12 READY 45 N.C. 78 N.C. 111 LAD10 

13 DT/R 46 N.C. 79 Vss 112 LAD11 

14 BEO 47 N.C. 80 Vss 113 LAD12 

15 BE1 48 N.C. 81 N.C. 114 Vss 
16 BE2 49 N.C. 82 Vee 115 LAD13 

17 BE3 50 N.C. 83 Vee 116 LAD14 

18 FAILURE 51 N.C. 84 Vss 117 LAD15 

19 Vss 52 Vss 85 IACIINTO 118 LAD16 

20 LOCK 53 Vss 86 INT1 119 LAD17 

21 DEN 54 N.C. 87 INT2/1NTR 120 LAD18 

22 Vss 55 Vee 88 INT311NTA 121 LAD19 

23 Vss 56 Vee 89 N.C. 122 LAD20 

24 N.C. 57 Vss 90 Vss 123 LAD21 

25 N.C. 58 N.C. 91 CLK2 124 LAD22 

26 Vss 59 N.C. 92 Vee 125 Vss 
27 Vss 60 N.C. 93 RESET 126 LAD23 

28 N.C. 61 N.C. 94 N.C. 127 LAD24 

29 Vee 62 N.C. 95 N.C. 128 LAD25 

30 Vee 63 N.C. 96 N.C. 129 BADAC 

31 N.C. 64 N.C. 97 N.C. 130 HOLD/HLDAR 

32 Vss 65 N.C. 98 N.C. 131 N.C. 

33 Vss 66 N.C. 99 Vss 132 ADS 

3-73 



80960KA 

Table 9. 80960KA Plastic Package Pinout.,...,..ln Signal Order 

Signal Pin Signal Pin Signal Pin Signal Pin 

ADS 132 LAD22 124 . N.C. 49 Vee 41 

ALE 2 LAD23 126 N.C. 50 Vee 55 

BADAC 129 LAD24 127 N.C. 51 Vee 56 

BEO 14 LAD25 128 N.C. 54 Vee 70 

BE1 15 LAD26 3 N.C. 58 Vee 71 

BE2 16 LAD27 4 N.C. 59 Vee 74 

BE3 17 LAD28 5 N.C. 60 Vee 82 

CACHE 10 LAD29 6 N.C. 61 Vee 83 

CLK2 91 LAD3 104 N.C. 62 Vee 92 

DEN 21 LAD30 7 N.C. 63 Vss 9 

DT/R 13 LAD31 8 N.C. 64 Vss 19 

FAILURE 18 LAD4 105 N.C. 65 Vss 22 

HLDAlHOLDR 1 LAD5 106 N.C. 66 Vss 23 

HOLD/HLDAR 130 LAD6 107 N.C. 69 Vss 26 

lAC/INTO 85 LAD7 108 N.C. 72 Vss 27 

INT1 86 LAD8 109 N.C. 75 Vss 32 

INT211NTR 87 LAD9 110 N.C. 76 Vss 33 

INT3/INTA 88 LOCK 20 N.C. 77 Vss 42 

LADO 100 N.C. 24 N.C. 78 Vss 52 

LAD1 101 N.C. 25 N.C. 81 Vss 53 

LAD10 111 N.C. 28 N.C. 89 Vss 57 

LAD11 112 N.C. 31 N.C. 94 Vss 67 

LAD12 113 N.C. 34 N.C. 95 Vss 68 

LAD13 115 N.C. 37 N.C. 96 Vss 73 

LAD14 116 N.C. 38 N.C. 97 Vss 79 

LAD15 117 N.C. 39 N.C. 98 Vss 80 

LAD16 118 N.C. 40 N.C. 131 Vss 84 

LAD17 119 N.C. 43 READY 12 Vss 90 

LAD18 120 N.C. 44 RESET 93 Vss 99 

LAD19 121 N.C. 45 Vee 29 Vss 103 

LAD2 102 N.C. 46 Vee 30 Vss 114 

LAD20 122 N.C. 47 Vee 35 Vss 125 

LAD21 123 N.C. 48 Vee 36 W/R 11 

3-74 



80960KA 

Table 10. 80960KA PGA Package Thermal Characteristics 

Thermal Resistance-OC/Watt 

Airflow-ft.!min (m/sec) 
Parameter 0 50 100 200 400 600 800 

(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

8 Junction-to-Case 
(Case Measured 2 2 2 2 2 2 2 9JPJn (\ 

as shown in Figure 26) I 
8 Case-to-Ambient 
(No Heatsink) 

19 18 17 15 12 10 9 UUlJ 
8 Case-to-Ambient 
(with Omnidirectional 16 15 14 12 9 7 6 
Heatsink) 

8 Case-to-Ambient 
(with Unidirectional) 15 14 13 11 8 6 5 
Heatsink) 

NOTES: 
1. This table applies to 80960KA PGA 3. 0J.CAP = 4'C/w (approx.) 
plugged into socket or soldered di- OJ-PIN = 4'C/w (inner pins) (approx.) 
rectly into board. OJ-PIN = 8'C/w (outer pins) (approx.) 
2. 0JA = 0JC + 0CA· 

Table 11. 80960KA PQFP Package Thermal Characteristics 

PQFP Thermal Resistance-°C/Watt 

Airflow-ft.!min (m/sec) 
Parameter 0 50 100 200 400 

(0) (0.25) (0.50) (1.01) (2.03) 

8 Junction-to-Case 
(Case Measured 9 9 9 9 9 
as shown in Figure 26) 

8 Case-to-Ambient 
22 19 18 16 11 

(No Heatsink) 

NOTES: 
1. This table applies to 80960KA 3. 0JL = 18'C/Watt 
PQFP soldered directly into board. 0JB = 18'C/Watt 
2. 0JA = 0JC + 0CA· 

3-75 

600 
(3.04) 

9 

9 

800 
(4.06) 

9 

8 

OJ. 

'Jo 

'J cop I 
UUU 

270775-38 

II 

270775-39 



80960KA 

To Td Tr 

CLK2 

CLK 

LAD31 -

LADO 

ALE 

ADS 

BE3-BEO 

W/R 

DT/R 

DEN 

READY 

270775-37 

Figure 33. Read Transaction 

3-76 



int:eL 

ClK2 

ClK 

lAD31 -

lADo 

w/p. 

DT/p. 

80960KA 

Figure 34. Write Transaction with One Wait State 

To Td Td Td 

CLK2 

elK 

LAD3,-

LADo 

ALE 

ADS 

BE3-BEo 

w/P. 

DT/P. 

DEN 

READY 

Figure 35. Burst Read Transaction 

3-77 

• 
270775-40 

T, 

270775-41 



intel~ 80960KA 

CLK2 

CLK 

W/R 

OT/R 

270775-42 

Figure 36. Burst Write Transaction with One Wait State 

3-78 



inteL 80960KA 

I- PREVIOUS t INTERRUPT t IDLE --j-:- INTERRUPT j 
CYCLE ACKNOWLEDGEMENT . (5 BUS STATES) ACKNOWLEDGEMENT 

CYCLE 1 CYCLE 2 

T T To Td T, TI TI TI TI TI To Td Tw T, 

CLK J~ ~ "w ~ ("'w ~ "w ~ ~ "w "w ~ ~ ~ " 
INTR -~ ~"" ~""" ~""~ ~""~ 0-.""'0 ~""~ 0-.""'0 ~""" ~""" ~""" -0."~ \0-.""",-,: :0 

-.~ ~R~ ~OR~~ ,10...""~ ~"""" ::x ADDR ~ " " ~"" -0.""" 0...""~ ~""~ ~""~ ~""~ 0 _ ......... - - -
V V 

"----V "---- J 

- -/ \. / 

DT/il ~""",-,: 10.""~ ~ A."'-': ~""~ ~""",-,: 0...""~ \0-.""",-,: ~,,~ ~ ~ ~ 

"----V \. r ,..-

\. / 

\. V 'V 
~ 

270775-43 

NOTE: 
INTR can go low no sooner than 5 ns (input hold time) following the beginning of interrupt acknowledgement cycle 1. 
For a second interrupt to be acknowledged. INTR must be low for at least three cycles before it can be reasserted. 

Figure 37. Interrupt Acknowledge Transaction 

3·79 



intei® 

PPSM BUS 
STATE 

SBM BUS 
STATE 

elK 

LAD31 -

lADo 

w/fl 

PSM ALE 

SBM ALE 

SBM 
HOlDR 

PSM 
HOLD 

PSM 
HlDA 

SBM 
HlDAR 

J"w '\..., 
'"'~ XiiAT'A - - -
~~ 

~&v 

\. 

-f-I 

-~ 
r-

'\..., "w "w "w 
~ ~ xo;.TA ~ - - - -
~ ~ A"'~ 

"'" '" '-:: ~ '" '" '-:: ~ '" '" '-:: ~"''''~ 

V \. !J 

'--
l/L 

Ii' 
~ 

/ 

80960KA 

To Td Td Th 

Thr Thr Thr Thr 

"w "w ~ "w "w 
~ - .XoMA - XoMA - ~ - ~ -
~ ~ ?7 

~/ ~"'~ ~ '" '" '-:: 
V 

\. V\. V 
1I 

~ p 
r------

~ 

\. / 

"w "w 
xo;.TA - )(Di.iA -

0."''''''''' ~ '" '" '-:: 

\. V\. 

T, 

~ 
~"'~ 

'''' '" '-:: 
0."''''~ 

V 
\. 

i' 
L-

T, 

T, 

~ 
~"'''0: 

~"''''~ 

~ '" '" '-:: 

"--

'-

r-

~ 

f0: 

'0 

I-

I-

270775-44 

Figure 38. Bus Exchange Transaction (PBM = Primary Bus Master, SBM = Secondary Bus Master) 

3-80 



iii 

• 

Ill! 

.1i1lI 

flI 

80960KB 
EMBEDDED 32-BIT PROCESSOR 

WITH INTEGRATED FLOATING-POINT UNIT 
High-Performance Embedded II Multiple Register Sets 
Architecture - Sixteen Global 32-Bit Registers 
- 25 MIPS Burst Execution at 25 MHz - Sixteen Local 32-Bit Registers 
- 9.4 MIPS' Sustained Execution at - Four Local Register Sets Stored 

25 MHz On-Chip 

On-Chip Floating-Point Unit - Register Score boarding 

- Supports IEEE 754 Standard III Built-In Interrupt Controller 
- Four SO-Bit Registers - 32 Priority Levels 256 Vectors 
- 5.2 Million Whetstones/s at - 3.4 !-,-S Latency 

25 MHz III Easy to Use, High Bandwidth 32-Bit Bus 
512-Byte On-Chip Instruction Cache -66.7 Mbytes/s Burst 
- Direct Mapped - Up to 16-Bytes Transferred per Burst 
- Parallel Load/Decode for Uncached eJ Uses S5C960 Bus Controller 

Instructions 

4 Gigabyte, Linear Address Space 
lE Supported by 27960KX Burst EPROMs 

132-Lead PGA and PQFP Packages 

The 80960KB is the first member of Intel's new 32·bit processor family, the i960 series, which is designed 
especially for embedded applications. It is based on the family's high performance, common core architecture, 
and includes a 512-byte instruction cache, a built-in interrupt controller, and an integrated floating-point unit. 
The 80960KB has a large register set, multiple parallel execution units and a high-bandwidth, burst bus. Using 
advanced RiSe technology, this high performance processor is capable of execution rates in excess of 9.4 
million instructions per second.' The 80960KBis well-suited for a wide range of embedded applications, 
including laser printers, image processing, industrial control, robotics and telecommunications. 

'Relative to Digital Equipment Corporation's VAX-111780" at 1 MIPS 

BUS 
CONTROL 

LOGIC 
AND 

INTERRUPT 32-BIT 
CONTROLLER BURST 

BUS 

270565-1 

Figure 1. The 80960KB's Highly Parallel Microarchitecture 

"VAX-l1TM is a trademark of Digital Equipment Corporation. 

3-81 
September 1991 

Order Number: 270565-006 



infel@ 80960KB 

THE 960 SERIES 

The 80960KB is the first member ofa new family of 
32-bit microprocessors from Intel known as the 960 
Series. This series was especially designed to serve 
the needs of embedded applications. The embed­
ded market includes applications as diverse as in­
dustrial automation, avionics, image processing, 
graphics, robotics, telecommunications and automo­
biles. These types of applications require high 
integration, low power consumption, quick interrupt 
response times and high performance. Since time to 
market is critical, embedded microprocessors· need 
to be easy to use in both hardware and software 
designs. 

gO 

SIXTEEN 
32-BIT 

REGISTERS 

g15 '--___ ---J 

GLOBAL 
REGISTERS(1) 

All members of the 80960 series share a common 
core architecture which utilizes RISC technology so 
that, except for special functions, the family mem­
bers are object code compatible. Each new proces­
sor in the series will add its own special set of func­
tions to the core to satisfy the needs of a specific 
application or range of applications in the embedded 
market. For example, future processors may include 
a DMA controller, a timer or an AID converter. 

The 80960KB includes an integrated floating-pOint 
unit. Intel also offers a pin-compatible version, called 
the 80960KA, without an FPU, and a military-grade 
version, the 80960MC, with support for memory 
management, mutitasking, multiprocessing and fault 
tolerance. 

o 

fpO 

FOUR 80-BIT REGISTERS 
fp3 '--_________ ---J 

FLOATING­
POINT 
REGISTERS 

rO 

r15 

NOTES: 

SIXTEEN 
32-BIT 

REGISTERS 

32-BITS 

32-BITS 

32-BITS 

32-BITS 

LOCAL 
REGISTERS(2) 

ARITHMETIC CONTROLS 

INSTRUCTION POINTER 

PROCESS CONTROLS 

TRACE CONTROLS 

232 -1 

1. Register g15 is reserved for stack management functions. 
2. Registers rO, r1, and r2 are reserved for stack management functions. 

Figure 2. Register Set 

3-82 

ADDRESS 
SPACE 



intel® 80960KB 

KEY PERFORMANCE FEATURES 

The 80960KB's architecture is based on the most 
recent advances in RISC technology and is ground­
ed in Intel's long experience in designing embedded 
controllers. Many features contribute to the 
80960KB's exceptional performance: 

1. Large Register Set. Having a large number of 
registers reduces the number of times that a proces· 
sor needs to access memory. Modern compilers can 
take advantage of this feature to optimize execution 
speed. For maximum flexibility, the 80960KB pro· 
vides 32 32-bit registers and four 80-bit floating­
point registers. (See Figure2.) 

2. Fast Instruction Execution. Simple functions 
make up the bulk of instructions in most programs, 

Control 

Compare 
and Branch 

Register 
to Register 

Memory 
Access-Short 

Memory 
Access-Long 

Opcode 

Opcode Reg/Lit 

Opcode Reg 

Opcode Reg 

Opcode Reg 

so that execution speed can be greatly improved by 
ensuring that these core instructions execute in as 
short a time as possible. The most-frequently exe­
cuted instructions such as register-register moves, 
add/subtract, logical operations, and shifts execute 
in one to two cycles (Table 1 contains a list of in­
structions.) 

3. Load/Store Architecture. Like other processors 
based on RISC technology, the 80960KB has a 
Load/Store architecture, only the LOAD and STORE 
instructions reference memory; all other instructions 
operate on registers. This type of architecture simpli­
fies instruction decoding and is used in combination 
with other techniques to increase parallelism. 

Displacement 

Reg M Displacement 

Reg/Lit Modes Ext'dOp Reg/Lit 

Base M x Offset 

Base Mode Scale xx Index 

Displacement 

Figure 3. Instruction Formats 

3-83 



80960KB 

Table 1. 80960KB Instruction Set 

Data Movement Arithmetic Logical Bit and Bit 
Field 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Not Not Bit 
Load Address Divide Or Check Bit 

Remainder Exclusive Or Alter Bit 
Modulo Not Or Scan for Bit 
Shift Or Not Scan over Bit 
Extended Multiply Nor Extract 
Extended Divide Exclusive Nor Modify 

Not 
Nand 
Rotate 

Comparison Branch Call/Return Fault 

Compare Unconditional Call Conditional Fault 
Conditional Branch Call Extended Synchronize Faults 

Compare Conditional Branch Call System 
Compare and Compare and Return 

Increment Branch Branch and Link 
Compare and 

Decrement 

Debug Miscellaneous Decimal 

Modify Trace , Atomic Add Move 
Controls Atomic Modify Add with Carry 

Mark Flush Local Registers Subtract with Carry 
Force Mark Modify Arithmetic 

Controls 
Modify Process Controls 
Scan Byte for Equal 
Test Condition Code 

Conversion Floating-Point Synchronous 

Convert Real to Integer Move Real Synchronous Load 
Convert Integer to Real Add Synchronous Move 

Subtract 
Multiply 
Divide 
Remainder 
Scale 
Round 
Square Root 
Sine 
Cosine 
Tangent 
Arctangent 
Log 
Log Binary 
Log Natural 
Exponent 
Classify 
Copy Real Extended 
Compare 

3-84 



intel® 80960KB 

4. Simple Instruction Formats. All instructions in 
the B0960KB are 32-bits long and must be aligned 
on word boundaries. This alignment makes it possi­
ble to eliminate the instruction-alignment stage in 
the pipeline. To simplify the instruction decoder fur­
ther, there are only five instruction formats and each 
instruction uses only one format. (See Figure 3.) 

5. Overlapped Instruction Execution. A load oper­
ation allows execution of subsequent instructions to 
continue before the data has been returned from 
memory, so that these instructions can overlap the 
load. The B0960KB manages this process transpar­
ently to software through the use of a register score­
board. Conditional instructions also make use of a 
scoreboard so that subsequent unrelated instruc­
tions cari be executed while the conditional instruc­
tion is pending. 

6. Integer Execution Optimization. When the re­
sult of an operation is used as an operand in a sub­
sequent calculation, the value is sent immediately to 
its destination register. Yet at the same time, the 
value is put back on a bypass path to the ALU, 
thereby saving the time that otherwise would be re­
quired to retrieve the value for the next operation. 

7. Bandwidth Optimizations. The B0960KB gets 
optimal use of its memory bus bandwidth because 
the bus is tuned for use with the cache: the line size 
of the instruction cache matches the maximum burst 
size for instruction fetches. The B0960KB automati­
cally fetches four words in a burst and stores them 
directly in the cache. Due to the size of the cache 
and the fact that it is continually filled in anticipation 
of needed instructions in the program flow, the 
B0960KB is exceptionally insensitive to memory wait 
states. In fact, each wait state causes only· a 7% 
degradation in system perfomance. The benefit is 
that the B0960KB will deliver outstanding perform­
ance even with a low cost memory system. 

8. Cache Bypass. If there is a cache miss, the proc­
essor fetches the needed instruction, then sends it 
on to the instruction decoder at the same time it 
updates the cache. Thus, no extra time is taken to 
load and read the cache. 

Memory Space and Addressing Modes 

The B0960KB offers a linear programming environ­
ment so that all programs running on the processor 
are contained ina single address space. The maxi­
mum size of the address space is 4 Gigabytes (232 

bytes). 

For ease of use, the B0960KB has a small number of 
addressing modes, but includes all those necessary 

to ensure efficient compiler implementations of high­
level languages such as C, Fortran and Ada. Table 2 
lists the memory addressing modes. 

Data Types 

The B0960KB recognizes the following data types: 

Numeric: 
.. B-, 16-, 32- and 64-bit ordinals 
.. B-, 16, 32- and 64-bit integers 
o 32-, 64- and aO-bit real numbers 

Non·Numeric: 
.. Bit 
o Bit Field 
o Triple-Word (96 bits) 
o Quad-Word (12B bits) 

large Register Set 

The programming environment of the a0960KB inc 
eludes a large number of registers. In fact, 36 regis­
ters are available at any time. The availability of this 
many registers greatly reduces the number of mem­
ory accesses required to execute most programs, 
which leads to greater instruction processing speed. 

There are two types of general-purpose registers: 
local and global. The 20 global registers consist of 
sixteen 32-bit registers (GO through G15) and four 
BO-bit registers (FPO through FP3). These registers 
perform the same function as the general-purpose 
registers provided in other popular microprocessors. 
The term global refers to the fact that these regis­
ters retain their contents across procedure calls. 

The local registers, on the other hand, are proce­
dure specific. For each procedure call, the B0960KB 
allocates 16 local registers (RO through R 15). Each 
local register is 32 bits wide. Any register can also 
be used for single or double-precision floating-point 
operations; the BO-bit floating-point registers are pro­
vided for extended precision. 

Multiple Register Sets 

To further increase the efficiency of the register set, 
multiple sets of local registers are stored on-chip. 
This cache holds up to four local register frames, 
which means that up to three procedure calls can be 
made without having to access the procedure stack 
resident in memory. 

Although programs may have procedure calls nest­
ed many calls deep, a program typically oscillates 
back and forth between only two or three levels. As 



InteL 80960KB 

Table 2. Memory Addressing Modes 

• 12-Bit Offset 

• 32-Bit Offset 

• Register-Indirect 

• Register + 12-Bit Offset 

• Register + 32-Bit Offset 

• Register + (Index-Register x Scale-Factor) 

• Register x Scale Factor + 32-Bit Displacement 

• Register + (Index-Register x Scale-Factor) + 32-Bit Displacement 

Scale-Factor is 1, 2, 4, 8 or 16 

a result, with four stack frames in the cache, the 
probability of there being a free frame on the cache 
when a call is made is very high. In fact, runs of 
representative C-Ianguage programs show that 80% 
of the calls are handled without needing to access 
memory. 

If there are four or more active procedures and a 
new procedure is called, the processor moves the 
oldest set of local registers in the register cache to a 

FOUR ONE OF 
LOCA 

REGISTER 
L 
SETS 

--------

REGISTER 
CACHE 

----. 

procedure stack in memory to make room for a new 
set of registers. Global register G15 is used by the 
processor as the frame pointer (FP) for the proce­
dure stack. 

Note that the global and floating-point registers are 
not exchanged on a procedure call, but retain their 
contents, making them available to all procedures 
for fast parameter passing. An illustration of the reg­
ister cache is shown in Figure 4. 

RO 

31 o 
270565-2 

Figure 4. Multiple Register Sets Are Stored On-Chip 

3-86 



80960KB 

Instruction Cache 

To further reduce memory accesses, the 80960KB 
includes a S12-byte on-Chip instruction cache. The 
instruction cache is based on the concept of locality 
of reference; that is, most programs are not usually 
executed in a steady stream but consist of many 
branches and loops that lead to jumping back and 
forth within the same small section of code. Thus, by 
maintaining a block of instructions in a cache, the 
number of memory references required to read in­
structions into the processor can be greatly reduced. 

To load the instruction cache, instructions are 
fetched in 16-byte blocks, so that up to four instruc­
tions can be fetched at one time. An efficient 
prefetch algorithm increases the probability that an 
instruction will already be in the cache when it is 
needed. 

Code for small loops will often fit entirely within the 
cache, leading to a great increase in processing 
speed since further memory references might not be 
necessary until the program exits the loop. Similarly, 
when calling short procedures, the code for the call­
ing procedure is likely to remain in the cache, so it 
will be there on the procedure's return. 

Register Scoreboarding 

The instruction decoder has been optimized in sev­
eral ways. One of these optimizations is the ability to 
do instruction overlapping by means of register 
score boarding, 

Register scoreboarding occurs when a LOAD in­
struction is executed to move a variable from memo­
ry into a register. When the instruction is initiated, a 
scoreboard bit on the target register is set. When the 
register is actually loaded, the bit is reset. In be­
tween, any reference to the register contents is ac­
companied by a test of the scoreboard bit to insure 
that the load has completed before processing con­
tinues. Since the processor does not have to wait for 
the LOAD to be completed, it can go on to execute 
additional instructions placed in between the LOAD 
instruction and the instruction that uses the register 
contents, as shown in the following example: 

LOAD R4, address 1 
LOAD RS, address 2 
Unrelated instruction 
Unrelated instruction 
ADD R4, RS, R6 

3-87 

In essence, the two unrelated instructions between 
the LOAD and ADD instructions are executed for 
free (i.e., take no apparent time to execute) because 
they are executed while the register is being loaded. 
Up to three LOAD instructions can be pending at 
one time with three corresponding scoreboard bits 
set. By exploiting this feature, system programmers 
and compilers have a useful tool for optimizing exe­
cution speed. 

Floating-Point Arithmetic 

In the 80960KB, floating-point arithmetic has been 
made an integral part of the architecture. Having the 
floating-point unit integrated on-chip provides two 
advantages. First, it improves the performance of 
the chip for floating-point applications, since no 
additional bus overhead is associated with floating­
point calculations, thereby leaving more time for oth­
er bus operations such as 1/0. Second, the cost of 
using floating-point operations is reduced because a 
separate coprocessor chip is not required. 

The 80960KB floating-point (real number) data types 
include single-precision (32-bit), double-precision 
(64-bit), and extended precision (80-bit) floating­
point numbers. Any register may be used to execute 
floating-point operations. . 

The processor provides hardware support for both 
mandatory and recommended portions of IEEE 
Standard 754 for floating-point arithmetic, including 
all arithmetic, exponential, logarithmic, and other 
transcendental functions. Table 3 shows execution 
times for some representative instructions. 

Table 3. Sample Floating-Point Execution 
Times (,...s) at 25 MHz 

32-Bit 64-Bit 

Add 0.4 0.5 
Subtract 0.4 0.5 
Multiply 0.7 1.3 
Divide 1.3 2.9 

Square Root 3.7 3.9 
Arctangent 10.1 13.1 
Exponent 11.3 12.5 
Sine 15.2 16.6 
Cosine 15.2 16.6 



80960KB 

High Bandwidth Local Bus 

An 80960KB CPU resides on a high-bandwidth ad­
dress/data bus known as the local bus (L-Bus). The 
L-Bus provides a direct communication path be­
tween the processor and the memory and 110 sub­
system interfaces. The processor uses the local bus 
to fetch instructions, manipulate memory; and re­
spond to interrupts. Its features include: 

• 32-bit multiplexed address/data path 

• Four-word burst capability, which allows transfers 
from 1 to 16 bytes at a time . 

• High bandwidth reads and writes at 66.7 Mbytes 
per second 

• Special signal to indicate whet.her a memory 
transaction can be cached . 

Figure 5 identifies the groups of signals which con­
stitute the L-Bus. Table 4 lists the function of the L­
Bus and o~her processor-support signals, such as 
the interrupt lines. 

Interrupt Handling 

The 80960KB can be interrupted in one of two ways: 
by the activation of one of four interriJpt pins or by 
sending a message on the processor's data bus. 

The 80960KB is unusual in that it automatically han­
dles interrupts on a priority basis and tracks pending 
interrupts through its on-chip interrupt controller. 
Two of the interrupt pins can be configured to pro­
vide 8259A handshaking for expansion beyond four 
interrupt lines. 

LOCAL BUS 

\ 

Debug Features 

The 80960KB has built-in debug capabilities. There 
are two types of breakpoints and six different trace 
modes. The debug features are controlled by two 
internal 32-bit registers, the Process-Controls Word 
and the Trace-Controls Word. By setting bits in 
these control words, a software debug monitor can 
closely control how the processor responds during 
program execution. . 

The 80960KB has both hardware and software 
breakpoints. It provides two hardware breakpoint 
registers on-chip which can be set by a special com­
mand to any value. When the instruction pointer 
matches the value in one of the breakpoint registers, 
the breakpoint will fire, and a breakpoint handling 
routine is called automatically. 

The 80960KB also provides software breakpoints 
through the use of two instructions, MARK and 
FMARK. These instructions can be placed at any 
point in a program and will cause the processor to 
halt execution at that point and call the breakpoint 
handling routhie. The breakpoint mechanism is easy 
to use and provides a powerful debugging tool. 

Tracing is available for instructions (single-step exe­
cution), calls and returns, and branching. Each dif­
ferent type of trace may be enabled separately by a 
special debug instruction. In each case, the 
80960KB executes the instruction first and then 
calls a trace handling routine (usually part of a soft­
ware debug monitor). Further program execution is 
halted until the trace routine is completed. When the 
trace event handling routine is completed, instruc­
tion execution resumes at the next instruction; The 

LOCAL BUS SIGNAL GROUPS 

\ 
ADDRESS/DATA (32 LINES) 

<.--------> 
CONTROL (ADDRESS,DATA, and OPERATION SIGNALS - 15 LINES) 

< > 
ARBITRATION (2 LINES) 

270565-3 

Figure 5. Local Bus Signal Groups 

3-88 



80960KB 

80960KB's tracing mechanisms, which are imple­
mented completely in hardware, greatly simplify the 
task of testing and debugging software. 

FAULT DETECTION 

The 80960KB has an automatic mechanism to 
handle faults. There are ten fault types including 
trace, arithmetic, and floating-point faults. When the 
processor detects a fault, it automatically calls the 
appropriate fault handling routine and saves the cur­
rent instruction pointer and necessary state informa­
tion to make efficient recovery possible. The proces­
sor posts diagnostic information on the type of fault 
to a Fault Record. Like interrupt handling routines, 
fault handling routines are usually written to meet 
the needs of a specific application and are often in­
cluded as part of the operating system or kernel. 

For each of the ten fault types, there are numerous 
subtypes that provide specific information about a 
fault. For example, a floating-point fault may have its 
subtype set to an Overflow or Zero-Divide fault. The 
fault handler can use this specific information to re­
spond correctly to the fault. 

BUILT-IN TESTABILITY 

Upon reset, the 80960KB automatically condu9ts an 
extensive internal test (self-test) of its major blocks 

of logic. Then, before executing its first instruction, it 
does a zero check sum on the first eight words in 
memory to ensure that the system has been loaded 
correctly. If a problem is discovered at any point dur­
ing the self-test, the 80960KB will assert its FAIL­
URE pin and will not begin program execution. The 
self-test takes approximately 47,000 cycles to com­
plete. 

System manufacturers can use the 80960KB's self­
test feature during incoming parts inspection. No 
special diagnostic programs need to be written, and 
the test is both thorough and fast. The self-test ca­
pability helps ensure that defective parts will be dis­
covered before systems are shipped, and once in 
the field, the self-test makes it easier to distinguish 
between problems caused by processor failure and 
problems resulting from other causes. 

CHMOS 

The 80960KB is fabricated using Intel's CHMOS IV II 
(Complementary High Speed Metal Oxide Semicon-
ductor) process. This advanced technology elimi-
nates the frequency and reliability limitations of older 
CMOS processes and opens a new era in micro­
processor performance. It combines the high per-
formance capabilities of Intel's industry-leading 
HMOS technology with the high density and low 
power characteristics of CMOS. The 80960KB is 
available at 10, 16, 20 and 25 MHz. 

Table 4a. 80960l<B Pin Description: L-Bus Signals 

Symbol Type Name and Function 

CLK2 I SYSTEM CLOCK provides the fundamental timing for 80960KB systems. It is 
divided by two inside the 80960KB to generate the internal processor clock. 

LAD31 I/O LOCAL ADDRESS/DATA BUS carries 32-bit physical addresses and data to and 
-LADo T.5. from memory. During an address (T a) cycle, bits 2-31 contain a physical word 

address (bits 0-1 indicate SIZE; see below). During a data (T d) cycle, bits 0-31 
contain read or write data. The LAD lines are active HIGH and float to a high 
impedance state when not active. 

SIZE, which is comprised of bits 0-1 of the LAD lines during aT a cycle, specifies 
the size of a burst transfer in words. 

LAD 1 LAD 0 

0 0 1 Word 
0 1 2 Words 
1 0 3 Words 
1 1 4 Words 

ALE 0 ADDRESS-LATCH ENABLE indicates the transfer of a physical address. ALE is 
T.S. asserted during aT a cycle and deasserted before the beginning of the T d state. It 

is active LOW and floats to a high impedance state during a hold cycle (Thor T hr). 
I/O ~ Input/Output, 0 ~ Output. I ~ Input, 0.0. ~ Open· Drain, T.S. ~ tn·state 

3-89 



80960KB 

Table 4a. 80960KB Pin Description: L-Bus Signals (Continued) 

Symbol Type Name and Function 

ADS a ADDRESS/DATA STATUS indicates an address state. ADS is asserted every T a 
0.0. state and deasserted during the the following T d state. For a burst transaction, 

ADS is asserted again every T d state where READY was asserted in the previous 
cycle. 

W/R a WRITE/READ specifies, during aT a cycle, whether the operation is a write or 
0.0. read. It is latched on-chip and remains valid during T d cycles. 

DT/R a DATA TRANSMIT/RECEIVE indicates the direction of data transfer to and from 
0.0. the L-Bus. It is low during T a and T d cycles for a read or interrupt 

acknowledgement; it is high during T a and T d cycles for a write. DT IR never 
changes state when DEN is asserted (see Timing Diagrams). 

DEN a DATA ENABLE is asserted during T d cycles and indicates transfer of data on the 
0.0. LAD bus lines. 

READY I READY indicates that data on LAD lines can be sampled or removed. If READY is 
not asserted during a T d cycle, the T d cycle is extended to the next cycle by 
inserting a wait state (T w), and ADS is not asserted in the next cycle. . 

LOCK 110 BUS LOCK prevents other bus masters from gaining control of the L-Bus 
0.0. following the current cycle (if they would assert LOCK to do so). LOCK is used by 

the processor or any bus agent when it performs indivisible Read/Modify/Write 
(RMW) operations. Do not leave LOCK unconnected. It must be pulled high for the 
processor to function properly. 

For a read that is designated as a RMW-read, LOCK is examined. if asserted, the 
processor waits until it is not asserted; if not asserted, the processor asserts 
LOCK during the T a cycle and leaves it asserted. 

A write thatis designated as an RMW-write de asserts LOCK in the T a cycle. 
During the time LOCK is asserted, a bus agent can perform a normal read or write 
but no RMW operations; LOCK is also held asserted during an interrupt-
acknowledge transaction. 

BE3-BEo a BYTE ENABLE LINES specify which data bytes (up to four) on the bus take part 
0.0. in the current bus cycle. BE3 corresponds to LAD31.,..LAD24 and BEo corresponds 

to LAD7-LADo. 

The byte enables are provided in advance of data. The byte enables asserted 
during T a specify the bytes of the first data word. The byte enables asserted 
during T d specify the bytes of the next data word (if any), that is, the word to be 
transmitted following the next assertion of READY. The byte enables during the 
T d cycles preceding the last assertion of READY are undefined. The byte enables 
are latched on-chip and remain constant from one T d cycle to the next when 
READY is not asserted. 

For reads, the byte enables specify the byte(s) that the processor will actually use. 
L-Bus agents are required to assert only adjacent byte enables (e.g., asserting just 
BEo and BE2 is not permitted), and are required to assert at least one byte enable. 
To produce address bits Ao and A1 externally, they can be decoded from the byte 
enables. 

I/O ~ Input/Output, 0 ~ output, I ~ Input, 0.0. ~ Open-Drain, T.S. ~ tn-state 

3-90 



intet 80960KB 

Table 4a. 80960KB Pin Description: L·Bus Signals (Continued) 

Symbol Type Name and Function 

HOLD/ I HOLD: If the processor is the primary bus master (PBM), the input is interpreted 
HLDAR as HOLD, a request from a secondary bus master to acquire the bus. When the 

processor receives HOLD and grants another master control of the bus, it floats 
its tri·state bus lines and then asserts HLDA and enters the T h state. When HOLD 
is deasserted, the processor will deassert HLDA and go to either the Tj or T a 
state. 

HOLD ACKNOWLEDGE RECEIVED: If the processor is a secondary bus master 
(SBM), the input is HLDAR, which indicates, when HOLDR output is high, that the 
processor has acquired the bus. Processors and other agents can be told at reset 
if they are the primary bus master (PBM). 

HLDA/ 0 HOLD ACKNOWLEDGE: If the processor is a primary bus master, the output is 
HOLDR T.S. HLDA, which relinquishes control of the bus to another bus master. 

HOLD REQUEST: For secondary bus masters (SBM), the output is HOLDR, which 
is a requestto acquire the bus. The bus is said to be acquired if the agent is a 
primary bus master and does not have its HLDA output asserted, or if the agent is 
a secondary bus master and has its HOLD input and HLDA output asserted. 

CACHE 0 CACHE indicates if an access is cacheable during aT a cycle. It is not asserted 
T.S. during any synchronous access, such as a synchronous load or move instruction· 

used for sending an lAC message. The CACHE signal floats to a high impedance 
state when the processor is idle. 

Table 4b. 80960KB Pin Description: Module Support Signals 

Symi:lol Type Name and Function 

BADAC I BAD ACCESS, if asserted in the cycle following the one in which the last READY 
of a transaction is asserted, indicates that an unrecoverable error has occurred on 
the current bus transaction, or that a synchronous load/store instruction has not 
been acknowledged. 

STARTUP: During system reset, the BADAC signal is interpreted differently. If the 
signal is high, it indicates that this processor will perform system initialization. If it 
is low, another processor in the system will perform system initialization instead. 

RESET I RESET clears the internal logic of the processor and causes it to re·initialize. 

During RESET assertion, the input pins are ignored (except for BADAC and 
lAC/INTo), the tri·state output pins are placed in a high impedance state, and 
other output pins are placed in their non·asserted state. 

RESET must be asserted for at least 41 CLK2 cycles for a predictable RESET. 
The HIGH to LOW transition of RESET should occur after the rising edge of both 
CLK2 and the external bus CLK, and before the next rising edge of CLK2. 

FAILURE 0 INITIALIZATION FAILURE indicates that the processor has failed to initialize 
0.0. correctly. After RESET is deasserted and before the first bus transaction begins, 

FAILURE is asserted while the processor performs a self-test. If the self-test 
. completes successfully, then FAILURE is deasserted. Next, the processor 

performs a zero checksum on the first eight words of memory. If it fails, FAILURE 
is asserted for a second time and remains asserted; if it passes, system 
initialization continues and FAILURE remains deasserted. 

N.C. N/A NOT CONNECTED indicates pins should not be connected. Never connect any 
pin marked N.C. 

110 = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain, T.S. = tn-state 

3-91 



80960KB 

Table 4b. 80960KB Pin Description: Module Support Signals (Continued) 

Symbol Type Name and. Function 

lAC I INTERAGENT COMMUNICATION REQUEST/INTERRUPT 0 indicates either 
INTO that there is a pending lAC message for the processor or an interrupt. The bus 

interrupt control register determines in which way the signal should be interpreted. 
To signal an interrupt or lAC request in a synchronous system, this pin (as well as 
the other interrupt pins) must be enabled by being de asserted for at least one bus 
cycle and then asserted for at least one additional bus cycle; in an asynchronous 
system, the pin must remain deasserted for at least two bus cycles and then be 
asserted for at least two more bus cycles. 

LOCAL PROCESSOR NUMBER: This signal is interpreted differently during 
system reset. If the signal is at a high voltage level, it indicates that this processor 
is a primary bus master (Local Processor Number = 0); if it is at a low voltage 
level, it indicates that this processor is a secondary bus master (Local Processor 
Number = 1). 

INT1 I INTERRUPT 1, like INTO, provides direct interrupt signaling. 

INT2/ I INTERRUPT 2/1NTERRUPT REQUEST: The bus control registers determines 
INTR how this pin is interpreted. If INT2, it has the same interpretation as the INTO and 

INT1 pins. If INTR, it is used to receive an interrupt request from an external 
interrupt controller. 

INT3/ I/O INTERRUPT 3/1NTERRUPT ACKNOWLEDGE: The bus interrupt control register 
INTA 0.0. determines how this pin is interpreted. If INT3, it has the same interpretation as 

the INTO, INT1, and INT2 pins. If INTA, it is used as an output to control interrupt-
acknowledge bus transactions. The INTA output is latched on-chip and remains 
valid during T d cycles; as an output, it is open-drain. 

1/0 = Input/Output. 0 = Output, I = Input, O.D. = Open·Draln. T.S. = tn·state 

ELECTRICAL SPECIFICATIONS Power Oecoupling Recommendations 

Liberal decoupling capacitance should be placed 
near the 80960KB. The processor can cause tran­
sient power surges when driving the L-Bus, particu­
larly when it is connected to a large capacitive load. 

Power and Grounding 

The 80960KB is implemented in CHMOS IV technol­
ogy and has modest power requirements. Its high 
clock frequency and numerous output buffers (ad­
dress/ data, control, error, and arbitration signals) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 12 Vee 
and 13 Vss pins separately feed functional units of 
the 80960KB in the PGA. 

Power and ground connections must be made to all 
power and ground pins of the 80960KB. On the cir­
cuit board, all Vee pins must be strapped closely 
together, preferably on a power plane. Likewise, all 
Vss pins should be strapped together, preferably on 
a ground plane. These pins may not be connected 
together within the chip. 

3-92 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
the board traces between the processor and de­
coupling capacitors as much as possible. Capacitors 
specifically designed for PGA packages are also 
commercially available and offer the lowest possible 
inductance. 

Connection Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if 
one or more interrupt lines are not used, they should 
be pulled up. No inputs should ever be left floating. 



int'el.. 80960KB 

All open-drain outputs require a pullup device. While 
in some cases a simple pullup resistor will be ade­
quate, we recommend a network of pullup and pull­
down resistors biased to a valid VIH (::<:3.4V) and 
terminated in the characteristic impedance of the cir­
cuit board. Figure 6 shows our recommendations for 
the resistor values for both a low and high current 
drive network, which assumes that the circuit board 
has a characteristic impedance of 100n. The advan­
tage of terminating the output signals in this fashion 
is that it limits signal swing and reduces AC power 
consumption. 

Characteristic Curves 

Figure 7 shows the typical supply current require­
ments over the operating temperature range of the 
processor at supply voltage (Vee> of 5V. Figure 8 
shows the typical power supply current (Ice> re­
quired by the 80960KB at various operating frequen­
cies when measured at three input voltage (Vee> 
levels. 

For a given output current (Iod, the curve in Figure 9 
shows the worst case output low voltage (Vod. 

80960KB 
OPEN-DRAIN 

OUTPUT 

Low Drive Network: 
• VOH = 3.42V 
• IOL = 25.3 rnA 

vee 

180.0. 

390.0. 

270565-25 

Figure 10 shows the typical capacitive derating 
curve for the 80960KB measured from 1.5V on the 
system clock (CLK) to 1.5V on the falling edge and 
1.5V on the rising edge of the L-Bus addressl data 
(LAD) signals. 

Test Load Circuit 

Figure 13 illustrates the load circuit used to test the 
80960KB's tristate pins, and Figure 14 shows the 
load circuit used to test the open drain outputs. The 
open drain test uses an active load circuit in the form 
of a matched diode bridge. Since the open-drain out­
puts sink current, only the IOL legs of the bridge are 
necessary and the IOH legs are not used. When the 
80960KB driver under test is turned off, the output 
pin is pulled up to VREF (Le., VOH). Diode Dl is 
turned off and the IOL current source flows through 
diode D2. 

When the 80960KB open-drain driver under test is 
on, diode Dl is also on, and the voltage on the pin 
being tested drops to VOL. Diode D2 turns' off and 
IOL flows through diode Dl. 

80960KB 
OPEN-DRAIN 

OUTPUT 

High Drive Network: 
• VOH = 3.41V 
• IOL = 33.8 rnA 

vee 

130.0. 

280.0. 

270565-26 

Figure 6. Connection Recommendations for Low and High Current Drive Networks 

3-93 



80960KB 

Vee = 5,OV 

380 

360 - -340 

320 

'-----300 

280 ..... 
260 

240 

220 

200 

180 
-60 

- - ---
-40 -20 20 40 60 80 

CASE TEMPERATURE (OC) 

1_25MHZ D20lAHz +16MHz 010MHz I 

Figure 7. Typical Supply Current (Icc) 

(Temp ~ +22°C) 

500 

]: 450 

~ 400 
~ 350 
a 300 

~ 250 
0.. 200 

~ 150 .... 
~ 100 

~ 50 

o 
o 

.,../" 

--- :..0----
......-: :..--: ,....-
~ ;--

Ii!:::: p-

5· 10 15 

OPERATING FREQUENCY (MHz) 

1_@4.5v O@5.0V .@5.5V 1 

v 
y 
~ 

20 

100 

,........ -
-----

25 

270565-28 

Figure 8. Typical Current vs Frequency 

120 

270565-27 

[remp ~ + 85°C, Vee ~ 4.5V) (Temp ~ + 85°C, Vee ~ 4.5V) 

0.8 

>' '& 0.6 

~ 
> 0.4 
j 

" ~ 0.2 
o 

0.0 
o 

/ 

/ 
V 

/ 
/" 

10 20 30 40 50 

Output Low Current (mA) 
270565-29 

Figure 9. Worst Case Voltage vs Output 
Current on Open-Drain Pins 

3-94 

30 

! 
~ 25 .. 
o 20 
:!! 

~ 15 

" a. 
~ 10 
o 

-5 
~ 

~ 

FALL NG 

)..... V ----::..--~ RISI G 

o 
o 20 40 60 80 100 

Capacitive Load (pr) 
270565-30 

Figure 10. Capacitive Derating Curve 



80960KB 

ABSOLUTE MAXIMUM RATINGS* 

Operating Temperature ........ O'C to + 85'C Case 

Storage Temperature .......... - 65'C to + 150'C 

Voltage on Any Pin .......... -0.5V to Vcc + 0.5V 

Power Dissipation ................. 2.5W (25 MHz) 

DC CHARACTERISTICS 

PGA: 

NOTICE: This is a production data sheet. The specifi­
cations are subject to change without notice. 

* WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

80960KB (16 MHz): TCASE = O'C to + 85'C, Vcc = 5V ± 10% 
80960KB (20 and 25 MHz): T CASE = O'C to + 85'C, Vcc = 5V ± 5% 

PQFP: 
80960KA (10 and 16 MHz): TCASE = O'C to +100'C, Vcc = 5V ±10% 
80960KA (20 MHz): TCASE = O'C to + 100'C, VCC = 5V ±5% 

Symbol Parameter Min Mal( 

Vil Input Low Voltage -0.3 +0.8 

VIH Input High Voltage 2.0 VCC + 0.3 

VCl CLK2 Input Low Voltage -0.3 +0.8 

VCH CLK2 Input High Voltage 0.55 VCC VCC + 0.3 

VOL Output Low Voltage 0.45 

VOH Output High Voltage 2.4 

Icc Power Supply Current: 
10 MHz 300 
16 MHz 375 
20 MHz 420 
25 MHz 480 

III Input Leakage Current ±15 

ILO Output Leakage Current ±15 

CIN Input Capacitance 10 

Co 1/0 or Output Capacitance 12 

CClK Clock Capacitance 10 

NOTES: 
1. For tri-state outputs, this parameter is measured at: 

Units Test Conditions 

V 

V 

V 

V 

V (1,5) 

V (2,4) 

mA 
mA 
mA 
mA 

}J-A 0:0: VIN :0: VCC 

}J-A 0.45 :0: Vo :0: VCC 

pF fC = 1 MHz(3) 

pF Ic = 1 MHz(3) 

pF IC = 1 MHz(3) 

Address/Data ........................................................... : ............................. .4.0 mA 
Controls ............................................................................................... 5.0 mA 

2. This parameter is measured at: 
Address/Data ........................................................................................ -1.0 mA 
Controls ............................................................................................. -0.9 mA 
ALE ................................................................................................. -5.0 mA 

3. Input, output, and clock capacitance are not tested. 
4. Not measured on open-drain outputs. 
5. For open-drain outputs .................................................................................. 25 mA 

3-95 



80960KB 

AC SPECIFICATIONS 

This sec~ion describes the AC specifications for the 
S0960KB pins. All input and output timings are spec­
ified relative to the 1.5V level of the rising edge. For 
output timings, the specifications refer to the time it 
takes the signal to reach 1.5V. 

EDGE 

CLK2 

OUlPUTS: 
LAD31 -LADO' 
ADS, 
W!ii,DEN, 
BE3-BEO 
HLDA/HOLDR, 
CACHE 
LOCK,INTA 

DT!ii 

INPUTS: 
LAD31 -LADo' 
BADAC, , 
IAC/INTo,INT l' 

INT 2/INTR.iNi' 3 

HOLD.HLDAR. 
LOCK. ' 
READY 

A B C 

For input timings, the specifications refer to the time 
at which the signal reaches (for input setup) or 
leaves (for hold time) the TTL levels of LOW.(O.SV) 
or HIGH (2.0V). All AC testing should be done with 
input clock voltages of 0.4V and 2.4V, except for the 
clock (CLK2), which should be tested with input volt­
ages of,0.45 Vee and 0.55 Vee. 

D A B C 

270565-4 

Figure 11. Drive Levels and Timing Relationships for a0960KB Signals 

3-96 



int:eL 80960KB 

To Td Tr To Td Td Tr 

ClK2 

ClK 

A/D 

ALE 

ADS 

BE(0:3) 

W/R 

DT/R 

DEN 

READY 

270565-5 

Figure 12. Timing Relationship of L-Bus Signals 

3·97 



intei~ 80960KB 

AC Specification Tables 
80960KB AC Characteristics (10 MHz. PQFP Only) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 50 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 12 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 12 ns VIH = 90% Point 
High Time (CLK2) = 0.1V·+ 0.5 Vcc 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 , Output Valid 2 25 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls)(2) 

T6H HOLDA Output 4 31 ns CL = 75 pF' 
Valid Delay 

T7 ALE Width 25 ns CL = 75 pF 

Te ALE Output Valid Delay 0 20 ns CL = 75 pF(2) 

Tg Output Float 2 20 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls) 

T9H HOLDA Output 4 20 ns CL = 75pF 
Float Delay 

TlO Input Setup 1 3 ns 

T11 Input Hold 5 ns 

Tl1H HOLD Input Hold 4 ns 

T12 Input Setup 2 8 ns 

T13 Setup to ALE 10 ns CL = 100 pF (LAD) 
Inactive CL = 75 pF (Controls) 

T14 Hold after ALE 8 ns CL = 100 pF (LAD) 
Inactive CL = 75 pF (Controls) 

T15 Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 1640 ns 41 CLK2 Periods Minimum 

NOTES: 
1. iAC/INTo. INT1. INT2/INTR. INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested. but should be 
no longer than the valid delay. 
3. Clock rise and fall times are not tested. 

3-98 



B0960KB 

80960KB AC Characteristics (16 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 31.25 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 8 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 8 ns VIH = 90% Point 
High Time (CLK2) = 0.1V + 0.5 Vee 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 2 25 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls) 

T6H HOLDA Output 4 31 ns CL = 75 pF 
Valid Delay 

T7 ALE Width 15 ns CL = 75pF 

Ts ALE Output Valid Delay 0 20 ns CL = 75pF(2) 

Ta Output Float 2 20 ns CL = 100 pF (LAD) 
Delay CL = 75 pF (Controls)(2) 

TaH HOLDA Output 4 20 ns CL = 75pF 
Float Delay 

T10 Input Setup 1 3 ns 

T11 Input Hold 5 ns 

T11H HOLD Input Hold 4 ns 

T12 Input Setup 2 8 ns 

T13 Setup to ALE 10 ns CL = 100 pF(LAD) 
Inactive CL = 75 pF (Controls) 

T14 Hold after ALE 8 ns CL = 100 pF (LAD) 
InaCtive CL = 75 pF (Controls) 

T15 Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 1281 ns 41 CLK2 Periods Minimum 

NOTES: 
1. lAC/INTo. INT1. INT2/INTR. INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested. but should be 
no longer than the valid delay. 
3. Clock rise and fall times are not tested. 

3-99 



inlet 80960KB 

80960KB AC Characteristics (20 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 25 125 ~ ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 6 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 6 ns VIH = 90% Point 
High Time (CLK2) = 0.1V + 0.5VCC 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 2 20 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls) 

T6H HOLDA Output 4 26 ns CL = 50 pF 
Valid Delay 

T7 ALE Width 12 ns CL = 50pF 

Ts ALE Output Valid Delay 0 20 ns CL = 50pF(2) 

T9 Output Float 2 20 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls)(2) 

T9H HOLDA Output 4 20 ns CL = 50pF 
Float Delay 

T10 Input Setup 1 3 ns 

T11 Input Hold 5 ns 

T11H HOLD Input Hold 4 ns 

T12 Input Setup 2 7 ns 

T13 Setup to ALE 10 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T14 Hold after ALE 8 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T15 Reset Hold 3 ns 

T16 Reset Setup 5 ns 

T17 Reset Width 1025 ns 41 CLK2 Periods Minimum 

NOTES: 
1. IAC/INTo, INT1, INT2/INTR, INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be 
no longer than the valid delay. 
3. Clock rise and fall times are not tested. 

80960KB 
TRISTATE OUTPUT 0-----.1 

CL ~ 
270565-31 

Figure 13. Test Load Circuit for 
Tri-State Output Pins 

IOL 

Bl 
~~~~~~~AIN OUTPUT D, ~2 
O---,....--H~I---'--t*""--o VR£F

I IOL Tested at 25 and 40 rnA
cL T VREF = Vee

'<7 D, and D2 are rnaiched
270565-32

Figure 14. Test Load Circuit for, Open-Drain Output Pins

3-100

intel® 80960KB

80960KB AC Characteristics (25 MHz, PGA Only)

Symbol Parameter Min Max Units Test Conditions

T1 Processor 20 125 ns VIN = 1.5V
Clock Period (CLK2)

T2 Processor Clock 5 ns VIL = 10% Point
Low Time (CLK2) = 1.2V

T3 Processor Clock 5 ns VIH = 90% Point
High Time = 0.1V + 0.5 Vcc

T4 Processor Clock 10 ns VIN = 90% Point to 10%
Fall Time (CLK2) Point

T5 Processor Clock 10 ns VIN = 10% Point to 90%
Rise Time (CLK2) Point

T6 Output Valid 2 18 ns CL = 60 pF (LAD)
Delay CL = 50 pF (Controls)

T6H HOLDA Output 4 24 ns CL = 50 pF
Valid Delay

T7 ALE Width 12 ns CL = 50 pF

Ts ALE Output Valid Delay 0 20 ns CL = 50 pF (2)

Tg Output Float 2 18 ns CL = 60 pF (LAD)
Delay CL = 50 pF (Controls)

TgH HOLDA Output 4 20 ns CL = 50pF
Float Delay

T10 Input Setup 1 3 ns

T11 Input Hold 5 ns

T11H HOLD Input Hold 4 ns

T12 Input Setup 2 7 ns

T13 Setup to ALE 8 ns CL = 60 pF (LAD)
Inactive CL = 50 pF (Controls)

T14 Hold after ALE 8 ns CL = 60 pF (LAD)
Inactive CL = 50 pF (Controls)

. T15 Reset Hold 3 ns

T16 Reset Setup 5 ns

T17 Reset Width 820 ns 41 CLK2 Periods Minimum

NOTES:
1. IACIINTO, INTi, INT2I1NTR, INT3 can be asynchronous. .
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested, but should be
no longer than the valid delay.
3. Clock rise and fall times are not tested.

3-101

HIGH LEVEL (MIN) 0.S5VCC

LOW LEVEL (MAX) O.BV
I
I
I

90%

10%

80960KB

I
I
I
I ~I~~--------~

T4~
T2

Ts :..-.-.: , ,

Figure 15. Processor Clock Pulse (CLK2)

FIRST

ABC 0 A

••• CLK2

CLK
•••
•••

RESET

T17

OUTPUTS •••

INIT PARAMETERS (BADAC. ~
IACQ) MUST BE SETUP 8 CLOCKS
PRIOR TO THIS CLK2 EDGE

INIT PARAMETERS MUS, BE HELD
BEYOND THIS CLK2 EDGE

Figure 16. RESET Signal Timing

3-102

TIS = RESET HOLD
T16 = RESET SETUP
T 17 = RESET WIDTH

270565-6

270565-7

80960KB

Th Th Th Th

ClK2

ClK

HOlOR

HOLD

HlOA

HlDAR

270565-8

PRIMARY SECONOARY

HOlO ~ I HOlOR

~ ______ Hl_OA-t~--------~~~H_O_lO_AR ____ ~
270565-24

Figure 17. Hold Timing

Design Considerations

Input hold times can be disregarded by the designer
whenever the input is removed because a subse­
quent output from the processor is deasserted (e.g.,
DEN becomes deasserted).

Whenever the processor generates an output that
indicates a transition into a subsequent state, any
outputs that are specified to be tri-stated in this new
state are guaranteed to be tri-stated. For example, in
the T d cycle following~ cycle for a read, the mini­
mum output delay of DEN is 2 ns, but the maximum
float time of LAD is 20 ns. When DEN is asserted,
however, the LAD outputs are guaranteed to have
been tri-stated.

Designing for the ICE-960KB

The 80960KB In-Circuit Emulator assists in debug­
ging both 80960KA and 80960KB hardware and
software designs. The product consists of a probe
module, cable, and control unit. Because of the high
operating frequency of 80960KB systems, the probe
module connects directly to the 80960KB socket.

When designing an 80960KB hardware system that
uses the ICE-960KB to debug the system, several
electrical and mechanical characteristics should be
considered. These considerations include capacitive
loading, drive requirement, power requirement and
physical layout.

The ICE-960KB probe module increases the load
capacitance of each line by up to 25 pF. It also adds
one standard Schottky TTL load on the CLK2 line,
up to one advanced low-power Schottky TTL load
for each control signal line, and one advanced low­
power Schottky TTL load for each address/data and
byte enable line. These loads originate from the
probe module and are driven by the 80960KB proc­
essor.

To achieve high noise immunity, the ICE-960KB
probe is powered by the user's system. The high­
speed probe circuitry draws up to 1".1 A plus the max­
imum current (led of the 80960KB processor.

The mechanical considerations are shown in Figure
18, which illustrates the lateral clearance require­
ments for the ICE-960KB probe as viewed from
above the socket of the 80960KB processor.

3-103

infei~ 80960KB

~~----- 3.8"-----~-

1--1.22"--1 1-,.13"-1 ~
-0""'.1""5"--'---'--

r------- ..
I USER CPU I
I SOCKET I

0 ' UNDER '0
I EMULATION I
I PROCESSOR I : ----~

VERTICAL
CLEARANCE 1.2"

• _______ .a

o \
EMULATION
PROCESSOR

4.75"

VIEW fROM
ABOVE USER CPU

SOCKET ICE PROCESSOR MODULE 5.5"

n n
RIBBON CABLE CONNECTOR I

MINIMUM CABLE
BEND RADIUS:
LESS THAN 3.0"

cABLE TO ICE CONTROL UNIT I' -----''--
~'

-~~..II.AI "'-_....J
270565-9

Figure 18.ICE-960KB Lateral Clearance Requirements

MECHANICAL DATA

Package Dimensions and Mounting

The 80960KB is available in two different packages:
a 132-lead ceramic pin-grid array (PGA) and a 132-
lead pla:stic quad flat pack (PQFP). Pins in the ce­
ramic package are arranged 0.100 inch (2.54 mm)
center-to-center, in a14 by 14 matrix, three rows
around. (See Figure 19.) The plastic package uses
fine·pitch gull wing leads arranged in a single row
along the perimeter of the package with 0.025 inch
(0.64 mm) spacing. (See Figure 20.) Dimensions are
given in Figure 21 and Table 7.

There are a wide va:riety of sockets available for the
ceramic PGApackage including low-insertion or
zero-insertion force mountings, and a choice of ter­
minals such as soldertail, surface mount, or wire

. wrap. Several applicable sockets are shown in Fig-
ure 22. .

The PQFP is normally surface mounted to take best
advantage Of the' plastiC package's small footprint
and low cost. In some applications, however, de­
signers may prefer to use a socket, either to improve

heat dissipation or reduce repair costs, Figures 23a
and 23b show two of the many sockets available.

Pin Assignment

The PGA and PQFP have different pin assignments.
Figure 24 shows the view from :the bottom of the
PGA (pins facing up) and Figure 25 shows a view
from the top of the PGA (pins facing down). Figures
20 and 32 show. the top view of the PQFP; notice
that the pins are numbered in order from 1 to 132
around the package's perimeter. Tables 5 and 6 lis.t
the function· of each pin in the PGA, and Tables 8
and 9 list the function of each pin in the PQFP.

Vee and GND connections must be made to multi­
ple Vee and GND pins. Each Vee and GND pin must
be connected to the appropriate voltage or ground
and externally strapped close to the package. We
recommend that you: include sepa~ate power. and
ground planes in your circuit board for power distri-
bution. .

NOTE:
Pins identified as N.C., "No Connect," should never
be connected.

3-104

80960KB

Package Thermal Specification

The 80960KB is specified for operation when case
temperature is within the range O°C to + 85°C (PGA)
or + 100°C (PQFP). The case temperature should
be measured at the top center of the package as
shown in Figure 26.

The ambient temperature can be calculated from lIje
and lIja by using the following equations:

TJ = Tc + P*lIje

TA = TJ - P*lIja

Tc = TA + P*[lIja - lIje]

Values for 8ja and lIje are given in Table 10 for the
PGA pacl<age and in Table 11 for the PQFP for vari­
ous airflows. Note that the lIja for the PGA package
can be reduced by adding a heatsink, while a heat­
sink is not generally used with the plastic package
since it is intended to be surface mounted. The max­
imum allowable ambient temperature (T A) permitted
without exceeding T c is shown by the charts in Fig­
ures 27 through 30 for 10 MHz, 16 MHz, 20 MHz,
and 25 MHz respectively.

The curves assume the maximum permitted supply
current (Icc) at each speed, Vcc of 5.0V, and a
TCASE of + 85°C (PGA) or + 100°C (PQFP).

If you will be using the 80960KB in a harsh environ­
ment where the ambient temperature may exceed
the limits for the normal commercial part, you should
consider using an extended temperature part. These
parts are designed by the prefix "TA" and are avail­
able at 16, 20 and 25 MHz in the ceramic PGA pack­
age. The extended operating temperature range is
- 40°C to + 125°C case. Figure 30 shows the maxi­
mum allowable ambient temperature for the 20 MHz
extended temperature TA80960KB at various air­
flows. The curve assumes an Icc of 420 mA, Vcc of
5.0V, and aT CASE of + 125°C.

WAVEFORMS

Figures 33 through 38 show the waveforms for vari­
ous transactions on the 80960KB's local bus.

SUPPORT COMPONENTS

85C960 Burst Bus Controller

The Intel 85C960 performs burst logic, ready gener­
ation, and address decode for the 80960KA and
80960KB. The burst logic supports both standard
and burst mode memories and peripherals. The
ready generation and timing control supports 0 to 15
wait states across eight address ranges for read/
write and burst accesses. The address decoder de­
codes eight address inputs into four external and
four internal chip selects. The wait state and chip
select values may be programmed by the user; the
timing control and burst logic are fixed.

The 85C960 operates with the 80960KA and
80960KB at all frequencies and consumes only 50
mA at 25 MHz. The 85C960 is housed in a 28-pin,
300-mil ceramic DIP and plastic DIP packages or 28-
pin PLCC package for surface mount. In the ceramic
DIP package the part is UV-erasable, which makes it
easy to revise designs. Order the 85C960 data sheet
(No. 290192) for full details.

27960K}{ Bursi Mode !EPROM

Intel 27960KX one-megabit EPROM is designed
specifically to support the 80960KA and 80960KB. It
uses a burst interface to offer near zero wait-state
performance without the high cost of alternative
memory technologies. The 27960KX removes the
need for "dumping" code and data stored in slow
EPROMs or ROMs into expensive high-speed
"shadow" RAM.

Internally, the 27960KX is organized in blocks of four
bytes that are accessed sequentially. The address
of the four-byte block is latched and incremented
internally. After a set number of wait-states (1 or 2),
data is output one word at a time each subsequent
clock cycle. High-performance outputs provide zero
wait-state data-to-data burst accesses. Extra power
and ground pins dedicated to the output reduce the
effect of fast output switching on the device. The
27960KX offers 1-0-0-0 performance at 20 MHz and
2-0-0-0 performance at 25 MHz. Full details can be
found in the 27960KX data sheet (No. 290337).

3-105

inteL

CIN #1 POSITION

80960KB

..-.....-.....-.. _____ 0lI"_
en II) .., N It') 0'1 0
'D 0 00 en
"'! ~ "1 IX! ...: ..; ui cO
.:::.eee.::..-=...:::..:::.

• ® (!)(~) (!)(!) ®'I® ® ® ® ® ® ®
®®®®®®®®®®®®®®

3 ®®18®®®®'®®®®18®®
4 ®®® ®®®
5 ®®® ®®®
6 ®®® I ®®®
7 ®®® + ®®®
8 -®®® -- -- ®®®
9 ®®® ®®®

10 ®®® ®®®
11 ®®® ®®®
12 ®®18®®®®.®®®® ®®
13 ®®®®®®®I®®®®®®®
14 ®®®®®®®1®®®®®®®

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
o

SWEDGE PIN
STANDOFF
(4) PLACES

.001 (0.025) R,
MIN TYP

.01 8D~~'~J 1.

'16S(4'189~1 ~
.110(2::Lj

Figure 19. A 132-Lead Pin-Grid Array (PGA) Used to Package the 80960KB

o

270565-39

270565-12

Figure 20. The 132-Lead Plastic Quad Flat Pack (PQFP) used to Package the 80960KB

3-106

80960KB

I BASE PLANE

II
mm (Inch)

270565-34

Figure 21a. Principal Dimensions of the 132-Lead PQFP

~-----------------D2----------------~

270565-35

Figure 21b. Details of the Molding of the 132-Lead PQFP

3-107

int'eL 80960KB

SEE DETAIL L
i+--------D3/E3---------'-.!

'--________ _ _____ ~=::::;:H-SEE DETAIL J
r D4/E4

i+-----------D/E---------~

0.31(0.012)-1 I-
0.20 (0.008)

mm (Inch) DETAIL J DETAIL L

0.20 (0.008)
0.14 (0.005)

8DEG.
o DEG.

~
Figure 21c. Terminal Details for the 132-Lead PQFP

3-108

270565-36

Symbol

N

A

Al

D,E

Dl,El

D2,E2

D3,E3

D4,E4

Ll

80960KB

1---------1.100"---------1'1

L=
t~

0.025"~
=

I
= = = = = = = = = = = = = = = = = 1.100" = = = = = = = = = = = = = = = =

270565-37

Figure 21d. Board Footprint Area for the 132-Lead PQFP

Table 7. Package Dimension: 80960KB PQFP

Inches MM
Description

Min Max Min Max

Leadcount 132 Leads 132 Leads

Package Height 0.160 0.170 4.060 4.320

Standoff 0.020 . 0.030 0.510 0.760

Terminal Dimension 1.075 1.085 27.310 27.560

Package Body 0.947 0.953 24.050 24.210

Bumper Distance
Without Flash 1.097 1.103 27.860 28.010
With Flash 1.097 1.110 27.860 28.190

Lead Dimension 0.800 REF 20.32 REF

Foot Radius Location 1.023 1.037 25.890 26.330

Foot Length 0.020 0.030 0.510 0.760

3-109

II

inteL

• Low insertion force (lIF) soldertail
55274-1

• Amp tests indicate 50% reduction in
insertion force compared to
machined sockets

Other socket options
• Zero insertion force (ZIF) soldertail

55583-1
• Zero insertion force (ZIF) Burn-in

version 55573-2
Amp Incorporated

(Harrisburg. PA 17105 U.S.A
Phone 717-564-0100)

80960KB

55274·1

Cam handle locks in low profile position when 80960KB is installed
(handle UP for open and DOWN for closed positions).

Peel-A-Way' Mylar and Kapton
Socket Terminal Carriers

• Low insertion force surface
mount CS132-37TG

• Low insertion force soldertail
CS132-0fTG

• Low insertion force wire~wrap
CS132-02TG (two-level)
CS132-03TG (thee-level)

'. Low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street)
Warwick. RI 02818 U.S.A.
Phone 401-885-0485)

Peel-A-Way Carrier No. 132:
Kapton Carrier is KS132
Mylar Carrier is MS132

Molded Plastic Body KS132
is shown below:

FOOT PRINT NO. 132

14x14Jl3AOWS

. 270565-14

'Peel-A-Way is a trademark of Advanced Interconnections.

Courtesy Amp Incorporated

SOLDER TAIL ..(11 LOW PROFILE ·04 PAESSFIT-05

r r r i ~
... -r :iii

l-i -t
Fe .n .. "

----iifD1A. ~ .--L-

~~~ .... . .... ~A • 

-=- =iT
:-

WIRE WRAP -02/.03 SOLDER TAIL ·33 SURFACE MOUNTING ·31 

ti 
PEEL-A-WAY 

!~ Tti 

~. . u .... 
1.1. -OZ' 

~ :iii 2LEYEL .!:ll. 
11.7. -03 .... 

...:..J. .110 SLEVEL ;'-1\0-~ D ... 

270565-15 
Courtesy Advanced Interconnections 

(Peel-A-Way Terminal Carriers 
U.S. Patent No. 4442938) 

Figure 22. Several Socket Options for Mounting the 80960KB 

3-110 



InteL 80960KB 

o 

Part Number: 1·821932·5 

Figure 23a. AMP Micropitch Socket for the 132-Lead Plastic 
Quad Flat Pack, 0.025" Lead Spacing, Gull Wing Leads 

3-111 

• 

270565-38 



intal. 80960KB 

Part Number: 
2-0132-07244-000-018007 

270565-46 

Figure 23b. 3M Company PQFP Socket and lid 

3-112 



80960KB 

2 3 4 5 6 7 8 9 10 11 12 13 14 

.' 

p 00000 0 0 0 0 0 0 000 p 

VCC N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS VCC 

N o 0 0 0 0 0 0 0 0 0 0 000 N 
VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 

000 0 0 0 0 0 0 0 0 000 
N.C. VCC VSS VSS VCC N.C. N.C. N.C. N.C. VSS VCC N.C. N.C. N.C. 

000 000 L 
DEN . N.C. VCC VSS N.C. N.C. 

K 000 000 K 

BE3 .AIL VSS VCC N.C. N.C. 

000 000 
OTR BEZ VSS N.C. N.C. N.C. 

000 000 H 

WR BEa LOCK S0960KB 
N.C. N.C. N.C. 

G 000 000 G 

LAD30 READY BE, N.C. N.C. N.C. 

• 000 000 • 
LADZ9 LAD31 CACHE N.C. N.C. N.C. 

E 000 000 E 

LADZS LADZ6 LADZ7 N.C. VSS N.C. 

D 000 000 D 
ALE ADS HLDA VCC N.C. N.C. 

C 000 0 0 0 0 0 0 000 0 0 C 

HOLD LADZ5 BADAC VCC VSS LADZD LA~3 LADS LAD3 VCC VSS INT3 INT, INTO 

B 000 0 0 0 0 0 0 0 000 0 B 

LAD23 LADZ4 LADZZ LADZI LA~ 8 LAD,5 LAD1Z LAD,O LADS LADZ CLK LADO RESET VSS 

A o 0 0 0 0 0 0 000 000 0 A 

VCC VSS LAD,9 LAD,7 LAD,6 LAD,4 LAD" LAD9 LA~ LAD5 LAD4 LAD, INTZ VCC 

2 3 4 5 6 7 8 9 10 11 12 13 14 
270565-10 

Figure 24. 80960KB PGA Pinout-View from Bottom (Pins Facing Up) 

3-113 



80960KB 

14 13 12 11 10 9 8 7 6 5 4 3 2 
'. 

p o 0 0 0 0 0 0 0 0 0 0 0 0 0 p 

Vee Vss N.C. N.C. N.C. N.C. N.C. N.C. N:C. N.C. N.C. N.C. N.C. Vee 

N o 0 0 0 0 0 0 0 0 0 0 0 0 0 N 

N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 
N.C. N.C. N.C. Vee Vss N.C. N.C. N.C. N.C. Vee Vss Vss N'.C. N.C. 

000 000 L 

N.C. N.C. Vss Vee N.C. DEN 

K 000 000 K 
N.C. N.C. Vee Vss FAIL BE3 

000 000 
N.C. N.C. N.C. Vss BE2 DTR 

H 000 000 H 

N.C. N.C. N.C. 80960KB LOCK BEo WR 

G 000 000 G 
N.C. N.C. N.C. BEl READY LAD30 

000 000 F 
N.C. N.C. N.C. CACHE LAD31 LAD29 

o b 0 000 E 

N.C. Vss N.C. LAD27 LAD2S LAD28 

° 000 000 ° N.C. N.C. Vee HLDA ADS ALE 

C o 0 0 0 0 0 0 0 boo 0 0 0 C 

INTo INTI INT3 Vss Vee LAD3 LADs LAD13 LAD20 Vss Vee BADAC LAD25 HOLD 

o 0 0 0 0 0 0 0 0 0 0 0, 0 0 B 
Vss RESET LADo CLK LAD2 LADs LAD10 LAD12 LAD15 LAD1S LAD2l LAD22 LAD24 LAD23 

A o 0 0 0 000 0 0 boo 0 0 A 
Vee INT2 LADI LAD4 LAD5 LAD7 LADg LADl1 LAD14 LAD1S LAD17 LAD19 Vss Vee 

14 13 12 11 10 9 8 7 6 5 4 3 2 

270565-11 

Figure 25. 80960KB PGA Pinout-View from Top (Pins Facing Down) 

3-114 



intel® 80960KB 

Table 5. 80960KB PGA Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal 

A1 Vee C6 LAD20 H1 W/p, M10 Vss 
A2 Vss C7 LAD13 H2 BEo M11 Vee 
A3 LAD19 CB LAD8. H3 LOCK M12 N.C. 

A4 LAD17 C9 LAD3 H12 N.C M13 N.C. 

AS LAD16 C10 Vee H13 N.C. M14 N.C. 

A6 LAD14 C11 Vss H14 N.C. N1 Vss 
A7 LAD11 C12 INT3/INTA J1 DT/R N2 N.C. 

AB LAD9 C13 INT1 J2 BE2 N3 N.C. 

A9 LAD7 C14 lAC/INTo J3 Vss N4 ·N.C. 

A10 LADs 01 ALE J12 N.C NS N.C. 

A11 LAD4 02 ADS J13 N.C. N6 N.C. 

A12 LAD1 03 HLDA/HLDR J14 N.C. N7 N.C. 

A13 INT2/INTR 012 Vee K1 BE3 NB N.C. 

A14 Vee 013 N.C. K2 FAILURE N9 N.C. 

B1 LAD23 014 N.C. K3 Vss N10 N.C. 

B2 LAD24 E1 LAD28 K12 Vee N11 N.C. 

B3 LAD22 E2 LAD26 K13 N.C. N12 N.C. 

B4 LAD21 E3 LAD27 K14 N.C. N13 N.C. 

BS LAD18 E12 N.C. L1 DEN N14 N.C. 

B6 LAD1S E13 Vss L2 N.C. .. P1 Vee 
B7 LAD12 E14 N.C. L3 \Icc P2 N.C. 

B8 LADlO F1 LAD29 L12 Vss P3 N.C. 

B9 LAD6 F2 LAD31 L13 N.C. P4 N.C. 

B10 LAD2 F3 CACHE L14 N.C. PS N.C. 

B11 CLK2 F12 N.C. M1 N.C. P6 N.C. 

B12 LADo F13 N.C. M2 Vee P7 N.C. 

B13 RESET F14 N.C. M3 Vss PB N.C. 

B14 Vss G1 LAD30 M4 Vss P9 N.C. 

C1 HOLD/HLDAR G2 READY MS Vee P10 N.C. 

C2 LAD2S G3 BE1 M6 N.C. P11 N.C. 

C3 BADAC G12 N.C. M7 N.C. P12 N.C. 

C4 Vee G13 N.C. MB N.C. P13 Vss 
CS Vss G14 N.C. M9 N.C. P14 Vee 

3-11S 



a0960K6 

Table 6. 80960KB PGA Pinout-In Signal Order 

Signal Pin Signal Pin Signal Pin Signal Pin 

ADS D2 LAD15 B6 N.C. J14 N.C. P9 
ALE 01 LAD16 A5 N.C. K13 N.C. P10 
BADAC C3 LAD17 A4 N.C. K14 N.C. P11 

BEo H2 LAD1S B5 N.C. L13 N.C. P12 

BEl G3 LAD19 A3 N.C. L14 N.C. L2 

BE2 J2 LAD20 C6 N.C. M1 READY G2 

BE3 K1 LAD2l B4 N.C. M6 RESET B13 

CACHE F3 LAD22 B3 N.C. M7 Vee A1 
CLK2 B11 LAD23 B1 N.C. M8 Vee A14 
DEN L1 LAD24 B2 N.C. M9 Vee C4 

DTiR J1 LAD25 C2 N.C. M12 Vee C10 

FAILURE K2 LAD26 E2 N.C. M13 Vee 012 
HLDA/HOLDR 03 LAD27 E3 N.C. M14 Vee K12 
HOLD/HLDAR C1. LAD2S E1 N.C. N2 Vee L3 

lAC/INTo C14 LAD29 F1 N.C. N3 Vee M2 

INTl C13 LAD30 G1 N.C. N4 Vee M5 

INT2/INTR A13 LAD3l F2 N.C. N5 Vee M11 

INT311NTA C12 LOCK H3 N.C. N6 Vee P1 

LADo· B12 N.C. D13 N.C. N7 Vee P14 

LADl A12 N.C. D14 N.C. N8 Vss A2 

LAD2 B10 N.C. E12 N.C. N9 Vss B14 

LAD3 C9 N.C. E14 N.C. N10 Vss C5 

LAD4 A11 N.C. F12 N.C. N11 Vss C11 

LAD5 A10 N.C. F13 N.C. N12 Vss E13 

LAD6 B9 N.C. . F14 N.C. N13 Vss J3 

LAD7 A9 N.C. G12 N.C. N14 Vss K3 

LADs C8 N.C. . G13 N.C. P2 Vss L12 

LAD9 A8 N.C. G14 N.C. P3 Vss M3 

LAD10 B8 N.C. H12 N.C. P4 Vss M4 

LAD 11 A7 N.C. Hi3 N.C. P5 Vss M10 

LAD12 B7 N.C. H14 N.C. P6 Vss N1 

LAD13 C7 N.C. J12 N.C. P7 Vss P13 

LAD14 A6 N.C. J13 N.C. P8 W/R H1 

3-116 



80960KB 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

MEASURE PQFP TEMPERATURE AT 
CENTER OF TOP SURFACE 

o 

Figure 26. Measuring 80960K8 PGA and PQFP Case Temperature 

t 
w 

'" => 
!:;: 

~ 
~ 

85 

80 

75 

70 

65 

60 

55 

50 

-----/ 
".. V~ 
~ 

p-

P" ~J"'" 

V 

200 

~ ~ 

400 

AIRFLOW (fl/min) 

600 800 

D PQFP 0 PGA with no 0 PGA with omni- ~ PGA with uni-
heatsink directional heatsink directional heatsink 

270565-40 

270565-.48 

Figure 27. 10 MHz 80960 K-Series Maxim':lm Allowable Ambient Temperature 

400 

AIRFLOW (It/min) 

600 

• PGA with omni- ~ PGA with uni-

800 

directional heatsink directional heatsink 
270565-33 

Figure 28. 16 MHz 80960 K-Series Maximum Allowable Ambient Temperature 

3-117 

II 



t 
'" '" '" I-

~ 
~ 

80 

75 

70 

65 

60 

55 

50 

45 

40 

80960K8 

~ 

l----::->-" -
~ ~ 

~~ 

~ ,..... 
~ 

200 

-------
400 

AIRFLOW (lt/min) 

600 800 

• PQFP OPCA with no +PCA with omni- oPCA with unl-
heatsink directional heatslnk . directional heatsink 

270565-41 

Figure 29. 20 MHz 80960 K-Series Maximum Allowable Ambient Temperature 

E 
UJ 

'" :::l 
I-... 
'" UJ 
Il. 
:'E 
UJ 
l-
I-z 
UJ 
in 
:'E ... 

75 

.70 

65 

60 

55 

SO 

45 

40 

--= t:::--< ;;-
........ ~ ---' 

~ ;:::--- ...--r-
......:; V / 

........... 

y-a /" 
./' 

35 
a 100 200 300 400 500 600 700 800 

• PGA with no 
heotslnk 

AIRFLOW (ft/mln) 

o PGA with omnl- • PGA with uni-
directional heatslnk directional heatslnk 

Figure 30. Maximum Allowable Ambient Temperature for 
the 80960KB at 25 MHz (available in PGA only) 

E 
UJ 

'" :::> 
I-... 
'" UJ 
"-
:'E 
UJ 
l-
I-
Z 
UJ 
in 
:'E ... 

115 

110 

105 

100 

SS 

90 

~ 
....-:::::::::; 

~ V -' 
---' 

~ V --~t-/. 

/, V /" V 
V /' 

V 

,/ 
85 

a 100 200 300 400 500 600 700 800 

• PGA with no 
heatslnk 

AIRFLOW (It/min) 

o PGA with omnl- • PGA with uni-
directional heatslnk directional heats Ink 

270565-42 

270565-43 

Figure 31. Maximum Allowable Ambient Temperature for the Extended 
Temperature T A-80960KB at 20 MHz (available in PGA only) 

3-118 



LADO 100 

LADl 101 

LAD2 102 

Vss 103 

LAD3 104 

LAD4 105 

LADS 106 

LAD6 107 

LAD7 lOB 

LADB 109 

LAD9 110 

LAD10 111 

LAD11 112 

LAD12 113 

Vss 114 

LAD13 115 

LADU 116 

LAD15 117 

LAD16 lIB 

LAD17 119 

LAD1B 120 

LAD19 121 

LAD20 122 

LAD21 123 

LAD22 124 

Vss 125 

LAD23 126 

LAD24 127 

LAD25 12B 

BADAe 129 

HOLD/HLDAR 130 

Ne 131 

ADS 

5 
0 

" "-< 
:l 
" 

I~ 

80960KB 

80960KB 

u ~ u u (.) (.) en (.) 
Z Z Z > > z 

Figure 32. 80960KB PQFP Pinout-View from Top 

3-119 

u " u u U 
> > z 

66 Ne 

65 He 

64 Ne 

63 Ne 

62 Ne 

61 Ne 

60 Ne 

59 He 

5B Ne 

57 Vss 

56 Vee 

55 Vee 

54 Ne 

53 Vss 

52 Vss 

51 He 

II 50 He 

49 Ne 

4B Ne 

47 Ne 

46 He 

45 He 

44 Ne 

43 Ne 

42 Vss 

41 Vee 

40 Ne 
39 Ne 
3B He 

37 Ne 

36 Vee 

35 Vee 

34 Ne 

270565-47 



80960K8 

Table S. S0960KB Plastic Package Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal 

1 HLDAlHOLR 34 N.C. 67 Vss 100 LADO 

2 ALE 35 Vee 68 Vss 101 LADI 

3 LAD26 36 Vee 69 N.C. 102 LAD2 

4 LAD27 37 N.C. 70 Vee 103 Vss 
.5 LAD28 38 N.C. 71 Vee 104 LAD3 

6 LAD29 39 N.C. 72 N.C. 105 LAD4 

7 LAD30 40 N.C. 73 Vss 106 LAD5 

8 LAD31 41 Vee 74 Vee 107 LAD6 

9 Vss 42 Vss 75 N.C. 108 LAD7 

10 CACHE 43 N.C. 76 N.C. 109 LAD8 

11 W/R 44 N.C. 77 N.C. 110 LAD9 

12 READY 45 N.C. 78 N.C. 111 LAD10 

13 DT/R 46 N.C. 79 Vss 112 LAD11 

14 BEO 47 N.C. 80 Vss 113 LAD12 

15 BE1 48 N.C. 81 N.C. 114 Vss 
16 BE2 49 N.C. 82 Vee 115 LAD13 

17 BE3 50 N.C. 83 Vee 116 LAD14 

18 FAILURE 51 N.C. 84 Vss 117 .LAD15 

19 Vss 52 Vss 85 IACIINTO 118 LAD16 

20 LOCK 53 Vss 86 INT1 119 LAD17 

21 DEN 54 N.C. 87 INT2/1NTR 120 LAD18 

22 Vss 55 Vee 88 INT3/INTA 121 LAD19 

23 Vss 56 Vee 89 N.C. 122 LAD20 

24 N.C. 57 Vss 90 Vss 123 LAD21 

25 N.C. 58 N.C. 91 CLK2 124 LAD22 

26 Vss 59 N.C. 92 Vee 125 Vss 
27 Vss 60 N.C. 93 RESET 126 LAD23 

28 N.C. 61 N.C. 94 N.C. 127 LAD24 

29 Vee 62 N.C. 95 N.C. 128 LAD25 

30 Vee 63 N.C. 96 N.C. 129 BADAC 

31 N.C. 64 N.C. 97 N.C. 130 HOLD/HLDAR 

32 Vss 65 N.C. 98 N.C. 131 N.C. 

33 Vss 66 N.C. 99 Vss 132 ADS 

3-120 



80960KB 

Table 9. 80960KB Plastic Package Pinout-In Signal Order 

Signal Pin Signal Pin Signal Pin Signal Pin 

ADS 132 LAD22 124 N.C. 49 Vee 41 

ALE 2 LAD23 126 N.C. 50 Vee 55 

BADAC 129 LAD24 127 N.C. 51 Vee 56 

BEO 14 LAD25 128 N.C. 54 Vee 70 

BE1 15 LAD26 3 N.C. 58 Vee 71 

BE2 16 LAD27 4 N.C. 59 Vee 74 

BE3 17 LAD28 5 N.C. 60 Vee 82 

CACHE 10 LAD29 6 N.C. 61 Vee 83 

CLK2 91 LAD3 104 N.C. 62 Vee 92 

DEN 21 LAD30 7 N.C. 63 Vss 9 

DT/R 13 LAD31 8 N.C. 64 Vss 19 

FAILURE 18 LAD4 105 N.C. 65 Vss 22 

HLDAlHOLR 1 LAD5 106 N.C. 66 Vss 23 

HOLD/HLDAR 130 LAD6 107 N.C. 69 Vss 26 

lAC/INTO 85 LAD7 108 N.C. 72 Vss 27 

INT1 86 LAD8 109 N.C. 75 Vss 32 

INT211NTR 87 LAD9 110 N.C. 76 Vss 33 

INT3/INTA 88 LOCK 20 N.C. 77 Vss 42 

LADO 100 N.C. 24 N:C. 78 . Vss 52 

LAD1 101 N.C. 25 N.C. 81 Vss 53 

LAD10 111 N.C. 28 N.C. 89 Vss 57 

LAD11 112 N.C. 31 N.C. 94 Vss 67 

LAD12 113 N.C. 34 N.C. 95 Vss 68 

LAD13 115 N.C. 37 N.C. 96 Vss 73 

LAD14 116 N.C. 38 N.C. 97 Vss 79 

LAD15 117 N.C. 39 N.C. 98 Vss 80 

LAD16 118 N.C. 40 N.C. 131 Vss 84 

LAD17 119 N.C. 43 READY 12 Vss 90 

LAD18 120 N.C. 44 RESET 93 Vss 99 

LAD19 121 N.C. 45 Vee 29 Vss 103 

LAD2 102 N.C. 46 Vee 30 Vss 114 

LAD20 122 N.C. 47 Vee 35 Vss 125 

LAD21 123 N.C. 48 Vee 36 W/R 11 

3-121 



80960K13 

Table 10. 80960KB PGA Package Thermal Characteristics 

Thermal Resistance-°CIWatt 

Airflow-ft.!mln (m/sec) 
Parameter 0 50 100 200 400 600 800 

(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

(} Junction-to-Case 
(Case Measured 2 2 2 2 2 2 2 'J pin '" 

as shown in Figure 26) I 
(} Case-to-Ambient 
(No Heatsink) 

19 18 17 15 12 10 9 UUl' 
(} Case-to-Ambient 
(with Omnidirectional 16 15 14 12 9 7 6 
Heatsink) 

(} Case-to-Ambient 
(with Unidirectional) 15 14 13 11 8 6 5 
Heatsink) 

NOTES: 
1. This table applies to.S0960KB PGA 3.0J.CAP = 4°C/w (approx:) 
plugged into socket or soldered di- o J-PIN= 4°C/w (inner pins) (approx.). 
rectly into board. OJ-PIN = SOC/w (outer pins) (approx.) 
2. OJA = OJC + 0CA. 

Table 11. 80960KB PQFP Package Thermal Characteristics 

PQFP Thermal Resistance-oC/Watt 

Airflow-ft.!min (m/sec) 
Parameter 0 50 100 200 400 

(O) (O.25) (O.50) (1.01) (2.03) 

(} Junction-to-Case 
(Case Measured 9 9 9 9 9 
as shown in Figure 26) 

(} Case-to-Ambient 
22 19 18 16 11 

(No Heatsink) 

NOTES: 
1. This table applies to S0960KB 3. OJL = 1SoC/Wati 
PQFP soldered directly into board. OJB = 1SoC/Wati 
2. 6JA= OJC + 0CA· 

3-122 

600 
(3.04) 

9 

9 

800 
(4.06) 

9 

8 

'Ja 

'J, 

'J cap I 
UUU 

270565-45 

270565-44 



80960KB 

To Td Tr 

ClK2 

ClK 

lAD31 -

lADo 

ALE 

ADS 

BE3-BEO 

W/R 

DT/R 

DEN 

READY 

270565-18 

Figure 33. Read Transaction 

3·123 



80960KB 

270565-19 

Figure 34. Write Transaction with One Wait State 

To Td Td Td T, 

ClK2 

ClK 

LAD31 -

LADo 

ALE 

ADS 

&3-BEO 

W/R 

DT/R 

DEN 

READY 

270565-20 

Figure 35. Burst Read Transaction 

3-124 



CLK2 

CLK 

LAD31 -

LADO 

w/" 

DT/" 

B0960KB 

• 
270565-21 

Figure 36. Burst Write Transaction with One Wait State 

3·125 



eLK 

INTR 

DT/R 

NOTE: 

tlnn~ft.,." 
uu~uun.g 

I- t 't; ---t- j PREVIOUS INTERRUPT IDLE INTERRUPT 
CYCLE ACKNOWLEDGEMENT (5 BUS STATES) ACKNOWLEDGEMENT 

~1 " ' ~2 

T T To Td Tr TI TI TI TI TI To Td Tw Tr 

J"w ru ru "w "w ru ru '\... "w "w ru ru ~ "w " 
-~ ~"" ~"" " ~ """ ~"" " ~"",,'\ ~"",\:: ~"",,'\ ~"" " ~""",\ ~" "" "'~'\ ~"\."\.": ~'\' 

~"",\:: ~"",\:: r:iAOOR~ ~"" ~""" K'\"" " ~" "" ~"" ,,{AoiiR~ 
,...-

~ -~ -- --~~ 
V 

"-!./ "-V 
\. / / -

~"\."\." ~"\."\."0 ~ A": ~"\."\."0 ~"\."\.": ~"\."\."0 ~"\."\.": ~"\."\."0 ~ ~ ~ 

r -"-!./ '" , 

"- / 

\.J -\. !./ 

270565-22 

INTR can go low no sooner than 5 ns (input hold time) following the beginning of interrupt acknowledgement cycle 1. 
For a second interrupt to be acknowledged, INTR must be low for at least three cycles before it can be reasserted. 

Figure 37. Interrupt Acknowledge Transaction 

3-126 



PPSM BUS 
STATE 

SBIoi BUS 
STATE 

elK 

W/R 

PSM ALE 

SBIoi ALE 

SBIoi 
HOlDR 

PSM 
HOLD 

PSM 
HlDA 

SBIoi 
HlDAR 

J~ 
,,~ 
.... '""-

~~ 

~~ 

-V 

-~ 

~ "'---~ 
')(DATA 
'""-
~ ........... ~ '""-

~ t\ 

'\."" " ~""~ 

\. / 

'/ 

/ 

80960KB 

T, 

~ ~ ~ "'---
)(DATA 
'""-~ ~ '""-

)(DATA 
'""-

A"" ~ 

~""" ~""~ ~/ 

\. V \. 

"-- / 

/L ~ "/ 
----~ 

~ 

'\. 

"'---"'---"'---"'---"'---
)(DATA 
'""-
~ ........... :XAoDii 

'""-
)(DATA 
'""-

)(DATA 
'""-

~ ~ 

~,,~ 

~""" 0-.,,"" ~""~ 
V 

./\. / \. ./\. 

/ 

T, 

~ 
X-..,,~ 

'\.,,"~ 

10.""~ 

V 
'\. 

! 
l -
~ 

T, 

T, 

"w 

~""~ 

0.,,""" 
~""~ 

~ 

"--

r-

~ 

~ 

~ 

-
I-

270565-23 

Figure 38. Bus Exchange Transaction (PBM = Primary Bus Master, SBM = Secondary Bus Master) 

3·127 



80960CA 
Product Overview 

· October 1989 

32-Bit High-Performance Embedded Processo~ 
with On-Chip DMA Controller, Interrupt Controller, 

High-Speed Bus Unit, Instruction and Register Caches 

Order Number: 270669-001 
3-128 



80960CA PRODUCT 
OVERVIEW 

CONTENTS PAGE 

1.0 PURPOSE ......................... 3-130 

2.0 80960CA 32-BIT EMBEDDED 
PROCESSOR .................... 3-130 

2.1 80960 Architecture ............. 3-130 

2.280960 C-Series Core ............ 3-131 

2.3 80960CA System Peripherals ... 3-131 

3.0 EXECUTION ENVIRONMENT ...... 3-131 

3.1 Registers and Literals ........... 3-.131 

3.2 Address Space and Memory .... 3-133 

3.3 Memory Addressing Modes .... '.3-134 

3.4 Data Types ..................... 3-135 

3.5 Instruction Set .................. 3-136 

3.6 Arithmetic Controls ............. 3-141 

3.7 Process Management ........... 3-141 

3.8 Call and Return Mechanism ..... 3-142 

3.9 Interrupts ....................... 3-146 

3.10 Fault Handling and Instruction 
Tracing ..................... 3-148 

4.0 80960CA SYSTEM 
IMPLEMENTATION .............. 3-152 

4.1 Peripheral Interface ............. 3-152 

4.2 Bus Controller Unit .............. 3-152 

4.3 DMA Controller ................. 3-157 

4.4 InterruptController .............. 3~161 

APPENDIX A 
80960CA CORE IMPLEMENTATION .. 3-163 

A.1 I nstruction Sequencer .......... 3-163 

A.2 Register File .................... 3-165 

A.3 Execution Unit .................. 3-165 

A.4 Multiply Divide Unit ............. 3-165 

A.5 Address Generation Unit ........ 3·165 

A.6 Data RAM and Local Register 
Cache .............. ' ......... 3-165 

3-129 



80960CA PRODUCT OVERVIEW 

1.0 PURPOSE 

The 80960CA Product Overview is a summary of the 
features and operation of Intel's 80960CA Embedded 
Processor. The Product Overview is intended for those 
who are not familiar with the 80960 architecture or the 
80960CA, a product built around this architecture. The 
80960CA Product Overview provides a programmer or 
a system designer with a quick, global view of software 
and hardware design considerations for the 80960CA. 
For further information, refer to the following refer­
ence documents: 

The 80960CA User.'s Manual contains detailed tech­
nical information and examples for designing em­
bedded systems using the 80960CA. 

The 80960CA Data Sheet provides electrical specifi­
cations for the device, such as the DC and AC pa­
rameters, operating conditions, and packaging spec­
ifications. 

2.0 80960CA 32-BIT EMBEDDED 
PROCESSOR 

The 80960CA (Figure 2-1) is optimized for embedded 
processing applications. This product features the high­
performance C-Series core plus built-in system periph~ 
erals, effectively integrating a high-speed CPU and sys­
tem components onto a single silicon die. The 80960CA 
is a member of Intel's 80960 embedded processor fami­
ly. Each member of the 80960 family is based on a 
common architectural definition referred to as the core 
architecture. 

An 80960. family member, such as the 80960CA, is 
made up of an implementation of the core architecture 
plus application-specific extensions. These extensions 
may consist of integrated peripherals, instruction-set 
extensions, or additional registers and caches beyond 
those defined by the architecture. The common core 
architecture provides a basis for code compatibility for 
all 80960 family products, while application-specific ex­
tensions optimize a particular product for a class of 
applications. 

The 80960 architectural target is the execution of mul­
tiple instructions per clock (i.e., fractional clocks per 
instruction). By defining an architecture which sup­
ports parallel instruction execution and out-of-order in­
struction execution, performance advances are not con­
strained by the system clock. 

The 80960CA is capable of launching and executing 
instructions in parallel. This is accomplished by the use 
of advanced silicon technology as well as innovative 
"microarchitectural" constructs. The term microarchi-

tecture refers to the implementation of the instruction 
set and programming resources. For example, different 
microarchitectures may have different pipeline con­
struction, internal bus widths, register set porting, de­
grees of parallelism, and cache parameterization (two­
way, four-way, etc.). 

A principal objective of the 80960 architecture is to 
provide the framework to allow microarchitectural ad­
vances to translate directly into increased performance 
without architectural limitations. 

270669-2 

Figure 2·1. 80960CA 

2.1 80960 Architecture 

Embedded applications are cost sensitive, require a dif­
ferent mix of instructions than reprogrammable appli­
cations, have demanding interrupt response require­
ments, and often use real-time executives rather than 
full-blown operating systems. The 80960 architecture 
was developed with these factors in mind. Several key 
optimizations which are provided by the architecture 
are explained below. 

Instruction Set! Powerful Boolean operations are pro­
vided. Frequently executed functions are available as 
single instructions for greater code density and per­
formance. Call, Return, Compare-and-Branch, Condi­
tional-Compare, Compare-and-Increment or Decre­
ment, and Bit-Field-Extract are each single instruc­
tions. 

Interrupts! A priority interrupt structure simplifies the 
management of real-time events. With 31 discrete levels 
of priority and 248 possible interrupt-handling proce­
dures, this structure provides the low latency and high 
throughput interrupt handling required in embedded 
processor applications. 

3-130 



80960CA PRODUCT OVERVIEW 

Faults: A generalized fault-handling mechanism simpli­
fies the task of detecting errant arithmetic calculations 
or other conditions that typically require a significant 
amount of in-line user code. . 

Application-Specific Extensions: The core architecture 
is designed to accept application-specific extensions 
such as instruction set extensions (e.g., string functions, 
floating point), special purpose registers, larger caches, 
on-chip program and data memory, a memory manage­
ment and protection unit, fault-tolerance support, mul­
tiprocessing support, and real-time peripherals (DMA, 
serial ports, etc.). 

2.2 80960 C-Series Core 

The C-series core is an implementation of the 80960 
core architecture. The core can execute instructions at 
a sustained speed of 66 MIPS(I) with bursts of perform­
ance up to 99 MIPS. To achieve this level of perform­
ance, Intel has incorporated state-of-the-art silicon 
technology and innovative microarchitectural con­

, structs into the C-Series core. Factors which contribute 
to the core's performance are listed below. 

Parallel instruction decoding allows the 80960CA 
to start two instructions in every clock, with bursts 
of three instructions per clock. 

Most instructions execute in a single clock cycle. 

Multiple independent execution units enable over­
lapping instruction execution. 

Advanced silicon technology allows operation with 
a 33 MHz internal clock. 

- Efficient instruction pipeline is designed to mini­
mize pipeline break losses. 

Register and resource. scoreboarding transparently 
manage parallel execution. . 

Branch look-ahead feature enables branches to exe­
cute in parallel with other instructions. 

- Local"register cache is integrated on-chip. 

- 1 Kbyte two-way set associative instruction cache is 
integrated on-chip. 

- 1 Kbyte Static Data RAM is integrated on-chip. 

These factors combine to make the 80960CA an ultra­
high performance computing engine. 

NOTE: 
1. Single clockinstructicins at 33 MHz. 

2.3 80960CA System Peripherals 

The 80960CA features several extensions to the core 
architecture in the form of integrated peripherals. 
These peripherals are intended to reduce the external 
system requirements needed for embedded applications. 
These peripherals are described below. 

Bus Controller Unit: A 32-bit high-performance bus 
controller interfaces the 80960CA to external memory 
and peripherals. The bus controller transfers instruc­
tions or data at a maximum rate of 132 Mbytesper 
second'(2) Internally programmable wait states and 16 
separately configurable memory regions allow the bus 
controller to interface with a variety of memory subys­
terns with minimum system complexity and maximum 
performance. 

DMA Controller: A four channel DMA controller per­
forms high speed data transfers between peripherals 
and memory. The DMA controller provides advanced 
features such as data chaining, byte assembly and disas­
sembly, and a fly-by mode capable of transfer speeds of 
up to 66 Mbytes per second. The DMA controller fea­
tures a performance and flexibility which is only possi­
ble by integrating the DMA controller and the 
80960CA core. 

Interrupt Controller: A priority interrupt controller 
manages 8 exterual interrupt inputs, 4 internal inter- • 
rupt sources from the DMA controller, and a single 
non-maskable interrupt input (NMI). A total of 248 

. external interrupt sources are supported by the inter­
rupt controller by configuring the 8 external interrupt 
pins as an 8-bit input port. The interrupt controller pro­
vides the mechanism for the low latency and high 
throughput interrupt service featured by the 80960CA. 
The interrupt latency for the 80960CAis typically less 
than 1 J.Ls. 

3.0 EXECUTION ENVIRONMENT 

The Execution Environment (Figure 3-1) refers to the 
resources which are available for executing code on the 
80960CA. The foI.Iowing sections describe the elements 
of the execution environment. 

3.1 Registers and Literals 

The 80960CA provides four types of working data reg­
isters: Global Registers, Local Registers, Special Func­
tion Registers (SFRs), and Control Registers. 

Global and local registers are general purpose 32-bit 
data registers. The SFRs and the control registers pro­
vide a programmer's interface to the on-chip peripher­
als (i.e., the DMA controller, interrupt controller, and 
bus controller). 

NOTE: 
2. 33 MHz internal clock, load or instruction fetch on 
o wait state, pipelined burst bus. 

3-131 



infel .. 80960CA PRODUCT OVERVIEW 

OOOOOOOOH 

Address Space 

Fetch 

Instr~·~tl~n 
Stre.am 

Load Store 

3 Special Function Registers 

Control Registers 

270669-4 

Figure 3-1. Execution Environment 

The 80960 architecture is a register-oriented architec­
ture, That is, operands and results of instructions are 
placed in working data registers rather than in memory, 
Since the architecture is register oriented, an ample 
supply of registers is provided, The architecture's work­
ing register set consists of 16, 32-6it global regis,ters and 
16, 32-bit local registers, 

3.1.1 GLOBAL AND LOCAL REGISTERS 

The procedure call and return mechanism, which is 
part of the 80960 architecture; inspires the names given 
to the local and global registers, When a procedure call 
or return is executed, the contents of global registers 
are preserved across prqcedure boundaries, In other 
words, the same set of global registers is used for each 
procedure, A new set oflocal registers, however, is allo- . 
cated for each procedure. The 80960's call and return 
mechanism is explained in Section 3,8. 

The 80960CA supplies 16, 32-bit global registers desig­
nated gO through g15. Registers gO through g14 are 
general purpose global registers. Register' g15 is. re­
served foi' the current Frame Pointer. This register is 
available in assembly language as the fp register. The fp 
contains the address of the first byte in the current 
stack frame. The fp register and the stack frame are 
described in Section 3.8. 

The 80960CA supplies 16, 32-bit Local Registers desig­
nated rO through r15. Registers r3 through r15 are gen­

, eral purpose local registers. Registers rO, rl, and r2 are 
reserved for special functions as follows: rO contains the 
Previous Frame Pointer" r1 contains the Stack Pointer, 
and r2 is reserved for the Return Instrnction Poinier. 
These registers are available in assembly language as, 
respectively, the pfp, sp,and rip registers. The pfp, sp, 
and rip registers manage stack frame linkage for the 
80960's procedure call and return mechanism. The 
function of these registers is decribed in Section 3.8. 

3.1.2 SPECIAL FUNCTION REGISTERS AND 
CONTROL REGISTERS 

The 80960CA uses 3 Special Function Registers (SFRs) 
for communicating with on-chip peripherals. These 
SFR's are an architectural extension specific to the 
80960CA. The SFRs on the 80960CA are designated as 
sm, sn, and sn. SFRs are accessed as souree operands 
by most of the 80960CA's instructions. The registers 
serve as part of the' programlll-er's interface to the 
DMA and interrupt controller. 

3-132 



80960CA PRODUCT OVERVIEW 

Control registers, like SFRs are used to communicate 
with the on-chip peripherals. Configuration informa­
tion for the peripherals is generally stored in these reg­
isters. Control registers can only be accessed by using 
the system control (sysctl) instruction. The sysctl 
instruction is used to load the internal control register 
from a table in external memory called the control ta­
ble. In order to simplify the process of peripheral con­
figuration, the control registers are automatically load­
ed from this table at initialization. 

3.1.3 LITERALS 

The 80960CA provides literals which may be used in 
the place of source register operands in most instruc­
tions. The literals range from 0 to 31 (5 bits). When a 
literal is used as an operand, the processor expands it to 
32 bits by adding leading zeros. If the instruction de­
fines an operand larger than 32 bits, the processor zero 
extends the literal to the operand size. 

ADDRESS 

0000 0000 H 

3 .. 2 Address Space and Memory 

The address space of the 80960CA (Figure 3-2) is con­
sidered a subset of the execution environment since the 
code, data, data structures, and external peripherals for 
the processor reside here. The 80960 family has an ad­
dress space which is 232 bytes (4 Gbytes) in size. This 
address space is linear (unsegmented); therefore, code, 
data, and peripherals may be placed anywhere in the 
usable space. For the 80960CA, some memory loca­
tions are reserved or are assigned special functions as 
shown in Figure 3-2. 

3.2.1 INTERNAL DATA RAM 

The 80960CA provides I Kbyte of internal static RAM 
for fast access of frequently used data. The data RAM 
allows time critical data storage and retrieval, with no 
dependence on the performance of the external bus. 
Any load or store, induding quad-word 

a 
Interrupt Vectors (optional) 

0000 003F 
0000 0040 

0000 OOBF 
0000 OOCO 

H 
H 

H 
H 

H 0000 OOFF 
0000 0100 H 

H 0000 03FF 
0000 0400 H 

H FEFF FFFF 
FFOO 0000 H 

~ 

:<~ 
H FFFF FEFF 

FFFF FFOO 

FFFF FF2C 
FFFF FF2D 

H 

H 
H 

FFFF FFFF H 

(Internal SRAM) 

64 
DMA Registers (optional) 

(Internal SRAM) 

Data RAM (Internal SRAM, 
192 

User Write Protected) 

256 
Data RAM (Internal SRAM. 

Programmable User 
Write Protection) 

1024 

Code/Data 
Architectu rally ;:. 
Defined Data 
Structures 

(External Memory) 

Reserved ~ 
Initialization Boot Record 

(External Memory) 

Reserved 
232 -1(4 GbytesZ 

270669-5 

Figure 3·2. Address Space 

3-133 



InteL 80960CA .PRODUCT OVERVIEW 

operations, execute in a single clock cycle when direct­
ed to internal data RAM. The data RAM is located at 
address OOHin the processor's address space. When the 
DMA .controller is in use, 32 bytes of data RAM are 
reserved for each active DMA channel. Additionally, 
64 bytes of data RAM are reserved for 16 interrupt 
vectors which may be cached internally to reduce inter­
rupt latency. The data RAM reserved for the DMA 
controller and the interrupt controller can be used for 
additional data storage when these peripherals are not 
used. 

Two execution modes are possible on the 80960CA, 
user mode or supervisor mode. These modes are used to 
implement a protection model in which system data 
structures are isolated from user code. As shown in 
Figure 3-2, the first 256 bytes of data RAM are always 
write protected when a program is executing in user 
mode but may always be written when executing in 
supervisor mode. The remainder of the data RAM can 
be programmed for. this protection feature. The user 
and supervisor modes are described further in Section 
3.7. 

3.2.2 RESERVED ADDRESS SPACE 

The upper 16 Mbytes of memory (FFOOOOOOH­
FFFFFFFFH) are reserved for specific functions and 
extensions to the 80960 architecture. The 12 words in 
reserved space (FFFFFFOOH - FFFFFF2CH) are used 
to start up the processor when it comes out of reset. 
These 12 words are called the initialization boot record. 

3.2.3 ARCHITECTURALLY DEFINED DATA 
STRUCTURES 

To execute a program on the 80960CA, data structures 
specific to the 80960 architecture must reside in the 
processor's address space. Architecture-defined data 
structures include stacks, initialization structures, and 
various procedure entry tables. These data structures 
may generally be located anywhere in the address 
space. Pointers to each data structure are specified 
when the 80960CA is initialized. The architecture-de­
fined data· structures include: 

- Interrupt Table 

- System-Procedure 
Table 

- Fault Table 

User Stack 

Interrupt Stack 

Supervisor Stack 

In addition to the data structure defined by the archi­
tecture, the 80960CA requires several implementation­
specific data structures which are used for configuring 
peripherals and initialization. These data structures in­
clude: 

Control Table 

- Process Control Block 

- Initialization Boot Record 

Each data structure will be explained in more detail 
later in this product overview. 

3.3 Memory Addressing Modes 

The 80960CA offers a variety of modes for memory 
addressing; The addressing modes available are summa­
rized in Table 3-1. 

Absolute addressing is used to reference an address as 
an offset from address 0 of the processor's address 
space. At the machine level, absolute addressing may be 
implemented in one of two ways depending on the size 
of the absolute offset from address O. Two instruction 
formats, MEMA and MEMB, are used to provide abso­
lute addressing modes. For the MEMA format, the off­
set is an ordinal number ranging from 0 to 2048. For 
the MEMB format, the offset is an integer (called a 
displacement) ranging from - 231 - 1 to 231. An assem­
bler will choose the MEMA or MEMB format based on 
the .size of the offset. 

Register-indirect addressing modes use a 32-bit ordinal 
value in a register as the base for the address calcula­
tion. Offsets and indexes are added to this address base 
depending on the particular addressing mode. The 
register-indirect-with-index addressing mode adds a 
scaled index to the address base. The index is specified 
as a value in a register. The scale value may be selected 
as 1, 2, 4, 8, or 16. 

The index-with-displacement addressing mode uses a 
scaled index plus an integer displacement. No address 
base is used in this address calculation. 

The IP-with-displacement addressing mode is used with 
load and store instructions to make them IP relative. In 
this mode, an integer displacement plus a constant of 8 
is added to the IP of the instruction to calculate the 
next address. 

Table 3·1. Memory Addressing Modes 

Mode Description 

Absolute Offset Offset 

Absolute Displacement Displacement 

Register Indirect Abase 

Register Indirect with Abase + Offset . 

Offset 

Register Indirect with Abase + (Index'Scale) 
Index. 

Register Indirect with Abase + (Index' Scale) 
Index and Displacement + Displacement 

Index with Displacement (Index' Scale) + 
Displacement 

Register Indirect with Abase + Displacement 
Displacement 

IP with Displacement IP + Displacement + 8 

3-134 



80960CA PRODUCT OVERVIEW 

3.4 Data Types 

The 80960CA operates on the following data types (Figure 3-3): 

- Integer (8, 16, 32, and 64 bits) 

- Ordinal (8, 16, 32, and 64 bits) 

- Bit 

- Bit Field 

- Triple Word (96 bits) 

- Quad Word (128 bits) 

31 L-.J 0 

LENGTH (1 TO 32 BITS)---1' 

B~S I BYTE I 
7 0 

B11:S I SHORT I 
15 0 

WORDI . B~SLI ______ ....I 

31 0 

LONG I ~~~I ______ ------~~~ 

B
9rrs6 L· ______ ~ ______ ~ __ ~~~~ _ TRIPLE WORD I 

128 1 'I 1 BITS L __ ...;.. ___ --' _______ .....IL-____ ...,._"-__ .....:Q:,:U;,;;;A:,D.:,:W,:,OR:.;:D:J 

270669-.6 

Class Data Type Length Range 

Numeric Byte Integer 8 bits -27 to 27 - 1 
(Integer) Short Integer 16 bits -215 to 215 - 1. 

Integer 32 bits -231 to 231 - 1 
Long Integer 64 bits -263 to 263 - 1 

Numeric Byte Ordinal 8 bits Oto28 - 1 
(Ordinal) Short Ordinal 16 bits o to 216 - 1 

Ordinal 32 bits o to 232 - 1 
Long Ordinal 64 bits Oto264 - 1 

Non-Numeric Bit 1-bit 
Bit Field 1-32 bits 

N/A 
Triple Word 96 bits 
Quad Word 128 bits 

Figure 3·3. Data Types 

3-135 



intel® 80960CA PRODUCT OVERVIEW 

The following sections describe the data types support­
ed by the 80960CA. 

3.4.1 NUMERIC DATA TYPES 

Integers and ordinals are considered numeric data 
types since the processor performs arithmetic opera­
tions with this data. The integer data type is a signed 
binary value in standard 2's complement representa­
tion. The ordinal data type is an unsigned binary value. 

3.4.2 NON-NUMERIC DATA TYPES 

The remaining data types (bit field, triple word, and 
quad word) represent groupings of bits or bytes that the 
processor can operate on as a whole, regardless of the 
nature of the data contained in the group. These data 
types facilitate the moving of blocks of bits or bytes. 

3.5 Instruction Set 

The 80960CA features a comprehensive instruction set 
(Table 3-2). Much of the instruction set is that of a 
RISC architecture. Unlike pure RISe machines, how­
ever, the 80960CA provides an e'xtension to the RISC 
instruction set with instructions that perform complex 
functions such as procedure calls and returns, high­
speed multiplies, and other complex control, arithme­
tic, and logical operations. The instruction set allows 
functionally complex yet highly compact code to be 
written for embedded control applications where mem­
ory is a valuable commodity .. 

3.5.1 INSTRUCTION GROUPS 

The 80960CA instruction set is most easily described if 
grouped by the functions listed below: 

- Data Movement 

- Address Computation 

- Logical and Arithmetic 

- Bit and Bit Field 

- Comparison 

- Branch 

- Call and, Return 

- Fault 

- Debug 

- Processor Management 

The instructions which make up each of these groups 
are described in the following sections. 

3.5.1.1 Data Movement Instructions 

The data movement instructions move data from mem­
ory to registers, from registers to memory, and between 
registers. The load instructions copy bytes, words, or 
multiple words from memory to a selected register or 
group of registers. Conversely, the store instructions 
copy bytes, words, or groups of words from a selected 
register or group of registers to memory. The move in-
structions copy data between registers. . 

load Instructions 

-Id 
-Idob 
-Idos 
-Idib 
-Idis 
-Idl 
-Idt 
-Idq 

load word 
load orainal byte 
load ordinal short 
load integer byte 
load integer short 
load long 
load triple 
load quad 

Store Instructions 

- st store word 
- stob store ordinal byte 
- stos store ordinal short 
- stib store integer byte 
- stis store integer short 
- stl store long 
- stt store triple 
- stq store quad 

Move Instructions 

-mov 
-movi 
- movt 
-movq 

move word 
move long 
move triple 
move quad 

3.5.1.2 Address Computation Instructions 

The load address (Ida) instruction causes a 32-bit ad­
dress to be computed and placed in a destination regis­
ter. The address is computed based on the addressing 
mode selected. The load and store instructions perf9rm 
a function identical to that of the Ida instruction when 
calculating a source or destination address. The Ida in­
struction is useful for loading a 32-bit constant into a 
register. 

3.5.1.3 Logical and Arithmetic Instructions 

Logical instructions perform bitwise Boolean opera­
tions on operands in registers. Since this group of in­
structions performs only bitwise manipulations of data, 
separate logical instructions for integer and ordinal 
data types do not exist. In the table below, srcl and 
src2 represent processor registers or literals which are 
the operands for these instructions. 

3-136 



80960CA PROPUCT OVERVIEW 

Table 3·2. Instruction Set Summary 

Data 
Arithmetic Logical 

Bit and 
Movement Bit Field 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Not Not Bit 

Divide Or Check Bit 
Remainder Exclusive Or Alter Bit 
Modulo NotOr Scan for Bit 

Scan for Byte 
Shift Or Not Span over Bit 
Extended Nor Extract 

Shift Exclusive Nor Modify 
Extended Not 

Multiply Nand 
Extended Rotate 

Divide 
Add with 

Carry 
Subtract with 

Carry 

Comparison Branch 
Call and 

Fault 
Return 

Compare Unconditional Call Conditional 
Condition Branch Call Extended Fault 

Compare Conditional Call System Synchronize 
Compare and Branch Return Faults 

Increment Branch and 
Compare and Link 

Decrement Condition 
Condition Test Compare 

and Conditional 
Branch 

Debug 
Processor Address 

Atomic 
Management Computation 

Modify Trace Modify Load Address Atomic Add 
Controls Process Atomic Modify 

Mark Controls 
Force Mark Modify 

Arithmetic 
Controls 

System Control 
Update DMA 
Setup DMA 
Flush Local 

Registers 

3-137 



=_'" I 
1l1'eII'" 8li96liCA PRODUCT OVERViEW 

Logical Instructions 

-and src1 and src2 
- notand src1 and (not src2) 

(not src1) and src2 
src1 or src2 

- and not 
- or 
- notor 
- ornot 
- xor 
-xnor 
- nor 
- nand 
- not 

src1 or (not src2) 
(not src1) or src2 
src1 xor src2 
src1 xnor src2 
not (src1 or src2) 
not (src1 and src2) 
not (src1) 

Arithmetic instructions perform add, subtract, multi­
ply, divide, and shift operations on integer or ordinal 
operands in registers. 

Arithmetic Instructions 

- addi add integer 
- ad do add ordinal 
-subi 
-subo 
-muli 
-mulo 
-divi 
-divo 
-remi 
-remo 
-modi 
- rotate 
- shli 
-shlo 
- shri 
-shro 
- shrdi 

subtract integer 
subtract ordinal 
multiply integer 
multiply ordinal 
divide integer 
divide ordinal 
remainder integer 
remainder ordinal 
modulo integer 
rotate bit left 
shift left integer 
shift left ordinal 
shift right integer 
shift right ordinal 
shift right dividing integer 

Extended arithmetic instructions facilitate computation 
on ordinals and integers which are longer than 32 bits. 
In add with carry and subtract with carry instructions, 
the carry out from the previous arithmetic instruction 
is used in the computation. The extended multiply in­
struction multiplies two ordinal source operands pro­
ducing a long ordinal result (64 bits). The extended 
divide instruction divides a long ordinal dividend by an 
ordinal divisor and produces a 64-bit result. The ex­
tended shift right instruction shifts a 64-bit source val­
ue and produces the lower order 32 bits of the shifted 
value. 

Extended Arithmetic Instructions 

- addc add ordinal with carry 
- subc subtract ordinal with carry 
- emul extended multiply 
- ediv extended divide 
- eshro shift right extended ordinal 

The atomic instructions perform read-modify-write op­
erations on operands in memory. They allow a system 
to insure that when an atomic operation is performed 
on a specified memory location, the operation will be 
completed before another agent is allowed to perform 
an operation on the same memory. These instructions 
are required to enable synchronization between inter­
rupt handlers and background tasks in any system. 
They are also particularly useful in systems where sev­
eral agents (processors, coprocessors, or external logic) 
have access to the same system memory for communi­
cation. 

Atomic Instructions 

- atadd atomic add 
-atmod atomic modify 

3.5.1.4 Bit and Bit Field Instructions 

The bit instructions operate on a specified bit in a regis­
ter. 

Bit Instructions 

- setbit set bit 
- clrbit clear bit 
- notblt not bit 
- alterbit 
-scanbit 
" span bit 

alter bit 
scan for bit 
span over bit 

Bit field instructions operate on a specified contiguous 
group of bits in a register. This group of bits can be 
from 0 to 32 bits in length. 

Bit Field Instructions 

- extract 
- modify 
- scanbyte 

extract field 
modify field 
scan for byte 

3.5.1.5 Branch Instructions 

The branch instructions allow the direction of program 
flow to be changed by explicitly modifying the 
Instruction Pointer (IP). The target IP in a branch in­
struction is generally specified as a displacement to be 
added to the current IP. The extended branch instruc­
tions allow IP calculation using any addressing mode. 

The unconditional branch instructions always alter pro­
gram flow when executed. 

Unconditional Branch 
Instructions 

- b branch 
- bx branch extended 

The RISe branch-and-link instructions automatically 
save a Return -Instruction Pointer (RIP) before the 

3-138 



80960CA PRODUCT OVERVIEW 

jump is taken. The RIP is the address of the instruction 
following the branch and link. 

Branch and Link Instructions 

- bal branch and link 
- balx branch and link extended 

Conditional branch instructions alter program. flow 
only if the condition code flags in the arithmetic control 
register match a value specified in the instruction. The 
condition code flags indicate conditions of equality or 
inequality between two operands in a previously execut­
ed instruction. The arithmetic control register and con­
dition code flags are described in Section 3.6. 

Based on a branch prediction flag located in the ma­
chine level instruction, the 80960CA will assume that 
an instruction usually takes or does not take a condi­
tional branch. By executing along the predicted path of 
program flow, delays due to breaks in the instruction 
stream are often avoided. This feature of the 80960CA 
is referred to as branch prediction. The 80960CA incor­
porates the branch prediction feature because code us­
ing a conditional branch instruction usually favors a 
single direction of program flow. 

The branch prediction flag is specified at the assembly 
level by appending a . t or .f to a conditional branch 
instruction meaning, respectively, "assume branch tak­
en" or "assume branch not taken". For example, the 
assembler mnemonic be.t means that the processor will 
assume that this branch-if-equal instruction usually 
branches when encountered. In the following table .p 
represents the branch prediction flag. 

Conditional Branch Instructions 

- be.p branch if equal 
- bne.p branch if not equal 
- bl.p branch if less 
- ble.p branch if less or equal 
- bg.p branch if greater 
- bge.p branch if greater or equal 
- bo.p branch if ordered 
- bno.p branch if unordered 

Compare and conditional branch instructions compare 
two operands, then branch according to the immediate 
results. 

Conditional Compare and 
Conditions Branch Instructions 

- cmpibe.p compare integer 
and branch if 
equal 

- cmpibne.p compare integer 
and branch if 
not equal 

- cmpibl.p compare integer 
and branch if less 

- cmpible.p compare integer 
and branch if less 
or equal 

-cmpibg.p compare integer 
and branch if 
greater 

-cmpibge.p compare integer 
and branch if 
greater or equal 

-cmpibo.p compare integer 
and branch if 
ordered 

-cmpibno.p compare integer 
and branch if 
unordered 

-cmpobe.p compare ordinal 
and branch if 

. equal 
- cmpobne.p compare ordinal 

and branch if 
not equal 

-cmpobl.p compare ordinal 
and branch if less 

-cmpoble.p compare ordinal 
and branch if less 
or equal 

-cmpobg.p compare ordinal 
and branch if 
greater 

-cmpobge.p compare ordinal 
and branch if 
greater or equal 

- bbs.p check bit 
and branch 
if set 

- bbc.p check bit 
and branch 
if clear 

3.5.1.6 Compare and Condition Test 
Instructions 

The 80960CA provides several types of instructions 
that are used to compare two operands. The condition 
code flags in the arithmetic control register are set to 
indicate whether one operand is less than, equal to, or 
greater than the other operand. 

Compare Instructions 

-cmpi 
-cmpo 
- chkbit 

compare integer 
compare ordinal 
check bit 

Conditional compare instructions test the eXlstmg 
status of the condition code flags before a compare is 

3-139 



80960CA PRODUCT OVERVIEW ~IQ)W~OO©[§· OOO[f@OOfiVAl~jfO@OO . . 

performed. These conditional compare instructions are 
provided to optimize two·sided range comparisons (i.e. 
to test if a value is less than one number but greater 
than another). 

Conditional Compare Instructions 

-concmpi 
-concmpo 

conditional compare integer 
conditional compare ordinal 

The compare and increment and compare and decre­
ment instructions set the condition code flags based on 
a comparison of two register sources, decrements or 
increments' one of the sources, and finally stores this 
result in a destination register. 

-cmpinci 
-cmpinco 
-cmpdeci 
-cmpdeco 

compare and increment integer 
compare and increment ordinal 
compare and decrement integer 
compare and decrement ordinal 

The condition test instructions allow the state of the 
condition code flags to be t~sted. Based on the outcome 
of the comparison, a true or false code is stored in a 
destination register. The branch prediction flag is used 
in this instruction to reduce the execution time of the 
instruction when the test outcome is predicted correct­
ly. For example teste.t (test if equal) will execute in a 
shorter time if the condition code flags test true for the 
equal condition. Analogous to the function of the 
branch prediction flag in the conditional compare and 
branch instructions, the prediction flag in this case 
eliminates breaks in the micro-instruction sequence 
which is used to implement the condition test instruc­
tions. 

Condition Test Instructions 
- teste.p test if equal 
- testne.p test if not equal 
- testl.p test if less 
- testle.p test if less or equal 
- testg.p test if greater 
- testge.p test if greater or equal 
- testo.p test if ordered 
- testno.p test if not ordered 

3.5.1.7 Call and Return Inlltructions 

The S0960cA features an on-chip call and return 
mechanism, for making procedure calls to local and sys­
tem proqedures. The call instructions and the call and 
return mechanism is described in Section 3.S. 

Call and Return Instructions 

-call call 
- calix call extended 
- calls call system 
- ret return 

3.5.1.8 Fault Instructions 

The S0960CA will fault automatically as the result of 
certain errant operations which may oqcur when exe­
cuting code. Fault procedures are then invoked auto­
matically to handle the various types of faults. In addi­
tion, the fault instructions permit a fault to be generat­
ed explicitly based on the value of the condition code 
flags. The branch prediction flag in these instructions is 
used to reduce the execution time of these instructions 
when the state of the condition code flags are guessed 
correctly. 

Conditional Fault Instructions 

- faulte.p fault if equal 
- faultne.p fault if not equal 
- faultl.p fault if less 
- faultle.p fault if less or equal 
- -faultg.p fault if greater 
- faultge.p fault if greater or equal 
~ faulto.p· fault if ordered 
- faultno.p fault if unordered 

The syncf instruction causes the processor to wait for 
all faults to be generated which are associated with any 
prior uncompleted instructions. 

- syncf synchronize faults 

3.5.1.9 Debug Instructions 

The processor supports debugging and monitoring of 
program activity through the use of trace events. The 
debug instructions support debugging and monitoring 
software. 

Debug Instructions 

- modtc 
- mark 
- fmark 

modify trace controls 
mark 
force mark 

3.5.1.10 Processor Management Instructions 

The S0960CA provides several instructions for direct 
control of processor functions and for configuring the 
S0960CA's peripherals. A brief description of the proc­
essor management instructions is given below. 

Processor Management Instructions 

- modpc modify process controls 
- modac modify arithmetic controls 
- sysctl . system control instruction 
- udma update DMA SRAM 
- sdma setup DMA 
- flush reg flush local registers 

3-140 



intel® 80960CA PRODUCT OVERVIEW 

3.6 Arithmetic Controls 

The Arithmetic Control (AC) Register is a 32-bit on-chip 
register (Figure 3-4). The AC register is used primarily 
to monitor and control the execution of 80960CA arith­
metic instructions. The processor reads and modifies 
bits in the AC register when performing many arithme­
tic operations. The AC register is also used to control 
the faulting conditions for some instructions. The 
modac instruction allows the user to directly read or 
modify the AC register. 

The processor sets the condition code flags (bits 0-2) to 
indicate equality or inequality as the result of certain 
instructions (such as the compare instructions). Other 
instructions, such as the conditional branch instruc­
tions, take action based on the value of the condition 
code flags. Table 3-3 shows the functional assignment 
for each condition code flag. 

Table 3-3. Arithmetic Condition Codes 

Condition 
Condition 

Code 

001 Greater Than 
010 Equal 
100 Less Than 

The integer overflow flag (bit 8) and the integer over­
flow mask (bit 12) are used in conjunction with the 
arithmetic integer overflow fault. The mask bit masks 
the integer overflow fault. When the fault is masked, 
and an integer overflow occurs, the integer overflow 
flag is set but no fault handling action is taken. If the 
fault is not masked, and an integer overflow occurs, the 
integer overflow fault is taken and the integer overflow 
flag is not set. 

The no imprecise faults flag (bit IS) determines if im­
precise faults are allowed to occur. Fault handling and 
precise and imprecise faults in the 80960CA are dis­
cussed in Section 3.10. 

3.7 Process Management 

Process management refers to the monitoring and con­
trol of certain properties of an executing process. The 
following sections describe the mechanisms available on 
the 80960CA to perform this function. 

31 15 12 8 2 0 

1<11.· ••• ,> •• ,>111 •• 11<11 ••• ·111>11 III 1111 1/[1111 I I I 

Reserved (Initialize to 0) 
1 1 i L Condition Code 

Integer Overflow flag 

_ Intoger Overflow Mask 
L.. _____________ No Imprecise faults 

270669-7 

Figure 3-4. Arithmetic Control Register 

3-141 

II 



int'eL 80960CA PRODUCT OVERVIEW 

3.7.1 PROCESS CONTROL REGISTER 

The Process Control (PC) Register (Figure 3-5) provides 
access to process state information. The function for 
the PC register is described below. 

Execution Mode Flag-This flag indicates that the 
processor is executing in user mode (0) or supervisor 
mode (I). 

Priority Field-This 5-bit field indicates the current ex­
ecuting priority of the processor. Priority values range 
from 0 to 31, with 0 as the lowest and 31 as the highest 
priority. 

State Flag-This flag determines the executing state of 
the processor. The processor state is either executing 
state (0) or interrupted state (I). 

Trace Enable Bit and Trace Fault Pending Flags­
These fields control and monitor trace activity in the 
processor. The Trace Enable Bit enables fault genera­
tion for trace events. The Trace Fault Pending Flag 
indicates that a trace event has been detected. 

The process controls can be modified by software with 
the modify process controls (modpc) instruction. The 
modpc instruction may only write the PC register when 
the processor is in supervisor mode. 

3.7.2 PRIORITIES 

The 80960 architecture defines 11 means to assign priori-. 
ties to executing programs and interrupts. The current 
priority of the processor is stored in the priority field of 
the PC register. This priority is used to determine if an 
interrupt will be serviced and in which order multiple 
pending interrupts will be serviced. Setting the priority 
of an executing program above that of interrupts allows 
critical code to be prioritized and executed without in­
terruption. 

The priority field of the PC register can be modified 
. directly using the modpc instruction. The priority field 

is also modified to reflect the priority of serviced inter­
rupts. On a return from an interrupt routine, the priori-

ty of the processor is restored to its priority before the 
interrupt occurred. 

3.7.3 PROCESSOR STATES AND MODES 

The 80960CA may execute programs in user mode or 
supervisor mode. The user-supervisor protection mecha­
nism allows a system to be designed in which kernel 
code and data reside in the same address space as user 
code and data, but access to the kernel procedures and 
data is only allowed through a tightly controlled inter­
face. This interface is the system call table and the in­
terrupt mechanism. The 80960CA provides a supervi­
sor pin (SUP) to implement memory systems which 
protect code and data from possible corruption by pro­
grams executing in user mode. Some instructions and 
functions of the 80960CA are also insulated from code 
executing in user mode. 

The processor has two operating states: executing and 
interrupted. In executing state, the processor can exe­
cute in user or supervisor mode. In the interrupted 
state, the processor always executes in supervisor mode. 

3.8 Call and Return Mechanism 

The 80960 architecture features a built-in call and re­
turn mechanism. This mechanism is designed to make 
procedure calls simple and fast, and to provide a flex­
ible method for storing and handling variables that are 
local to a procedure. A call automatically allocates a 
new set of local· registers and a new stack frame. All 
linkage information is maintained by the processor, 
making procedure calls and returns virtually transpar­
ent to the user. A system call instruction is provided as 
a method for calling privileged procedures such as a 
kernel service. The call and return model supports effi­
cient translation of structured high level code (such as 
C, or ADA) to 80960 machine language. 

The procedure call and return mechanism provides a 
number of significant benefits which contribute to the 
performance and ease of use of the 80960CA . 

1) The call and return instructions are implemented en­
tirely on-chip, resulting in an extremely high per­
formance implementation of these commonly used 
functions. 

31 2019181716 13 10 1 0 

Llil t 111>111>1111111111··111111InI1111 

~Reserved 
~ (Initialize to 0) 

1 i tt Trace Enoble' 

L Execution Mode 

'------- Trace Fault Pe~dlng L.... __________ State 1 L-______________ Priority 

Figure 3-5. Process Control Register 

3-142 

270669-17 



80960CA PRODUCT OVERVIEW 

2) A single instruction to implement each call or return 
operation results in code density improvements com­
pared to processors which require multiple instruc­
tions to encode these functions. 

3) By implementing the call and return functions as 
single instructions, the 80960 architecture is open for 
further optimization of these instructions, while 
maintaining assembly-level compatibility. 

4) A program does not have to explicitly save or restore 
the variables stored in the local registers when a call 
or return is executed. The processor does this implic­
itly on procedure calls and on returns. 

5) The call and return mechanism provides a structure 
for storing a virtually unlimited number of local 
variables for each procedure: the on-chip local regis­
ters provide quick access to often used variables and 
the stack provides space for additional variables. 

3.8.1 LOCAL REGISTERS AND THE STACK 
FRAME 

At any point in a program, the 80960 has access to a 
local register set and a section of the procedure stack 
referred to as a stack frame. When a call is executed, a 
new stack frame is allocated for the called procedure. 
Additionally, the current local register set is saved by 
the processor, freeing these registers for use by the new­
ly called procedure. In this way, every procedure has a 
unique stack and unique set of local registers. When a 

Coli Nostlng : 

call procedurel 
call procedure2 

call procedure3 
o 
o 
o 

Executing call procedure(n-I) 
Here ---{> call procedure(n) 

return is executed, the current local register set and 
current stack frame are deallocated. The previous local 
register set and previous stack frame are restored. This 
call and return mechanism is illustrated in Figure 3-6 
where n is procedure depth for the currently executing 
procedure. 

The procedure stack structure is defined by the 80960 
architecture. The procedure stack always grows up­
ward (i.e. towards higher addresses) and the stack 
pointer (SP) always points to the next available byte of 
the stack frame. The 80960CA requires that each stack 
frame begins on a 16-byte boundary. Due to this align­
ment requirement, a padding space of 0 to IS bytes may 
exist between adjacent stack frames in memory. When 
a stack frame is allocated, the first 16 words are always 
assigned as storage for the local registers; therefore, the 
SP initially points to the 17th word in the stack frame. 
It should be noted that although each stack frame is 
assigned storage space for the local registers, these loca­
tions in the stack are not guaranteed to contain the 
values of the saved local registers. This is because sever­
al sets of local registers are cached on-chip rather than 
written tothe stack in external memory. This caching 
mechanism is described in detail later in this section. 

3.8.2 PROCEDURE LINKING 

The 80960· architecture automatically manages proce­
dure linkage. One global register and three local regis­
ters are reserved for procedure linkage information. 

STACK 

Stack Growth 
(towards 

higher 
addresses) 

* 
Stock 

Pointer 
~ 

~ = Saved Registers 

c::=i = Current Registers 

Figure 3-6. Call and Return Mechanism 

3-143 

270669-8 



iniaL 80960CA PRODUCT OVERVIEW 

Figure· 3"7 describes the pointer structure used to link 
frames and to provide a unique SP for each frame. Reg­
ister g15 is the Frame Pointer (FP). The FP is the ad­
dress of the first byte of the current (topmost) stack 
frame. The FP is always updated to point to the current 
frame when calls and returns are executed. Register rO 
is the Previous Frame Pointer (PFP). The PFP is the 
address of the first byte ofthe stack frame which was 
created prior to the frame containing this PFP. Register 
rl is the Stack Pointer (SP). The SP points to the next 
available byte of the stack frame. Register r2 is reserved 
for the Return Instruction Pointer (RIP). The RIP is 
the address of the instruction which follows a call in­
struction, this is also the target address for the return 
from that procedure. The RIP is automatically stored 
in register r2 of the calling procedure when a call is 
executed. 

3.8.3 PARAMETER PASSING 

Parameters may be passed by value or passed by refer­
ence between procedures. The global registers, the 
stack, or predefined data structures in memory may be 
used to pass these parameters. 

The global registers provide the fastest method for pass­
ing parameters. The values to be passed into a proce­
dure reside in the global registers of the calling proce­
dure. When a procedure is called, the values in the 
global registers are preserved. If more parameters are to 
be passed than will fit in the global registers, additional 
parameters may be passed in the stack of the calling 
procedure, or in a data structure which is referenced by 
a pointer passed in the global registers. 

3.8.4 LOCAL REGISTER CACHE 

The 80960CA provides an on-chip cache for saving and 
restoring the local registers on calls and returns. This 
cache greatly enhances performance of the call and re-

_ turn mechanism on the 80960CA. Movement of d·ata 
between the local registers and the register cache is typ­
ically accomplished in only 4 processor clocks with no 
external bus traffic. When this cache is filled, the regis­
ters associated with the oldest stack frame are moved to 
the area reserved for those registers on the physical 
stack (Figure 3-7). 

STACK 

• 
• 
• 

St 
(toward 

ack Growth 
higher addresses) 

1::::::·:·::·:·::·::::::::···::··::::::::::::::::::<:::::.::::::::::--::::::.:::::::.::: I ::: Previous Frame Pointer rO 

Previous Stack Pointer rl I---
Local 

::.:. Return Instruction Pointer r2 Register Set 

• 
2 gO • 

• r15 
.. 

1 6 Global Registers Optional Stack Variables 
on Chip 

Padding Area 

Frame Pointer g15 
Previous Frame Pointer rO 

Current , .... Stack Pointer· rl 
Local !i Reserved for RIP r2 Register Set 

1< " 
W .. 

• r15 

Optional Stack Variables 

Unused Stack 

I:: :·:1 Reserved 
for Local Registers 

270669-9 

Figure 3-7. Stack Frame Linkage 

3-144 



80960CA PRODUCT OVERVIEW 

The local register cache is a physical extension of the 
internal data RAM. The part of the data RAM used for 
this cache is not visible to the user and is large enough 
to hold up to 5 sets of local registers. The register cache 
may be extended to hold up to 15 sets of local registers. 
When extended, each new register set consumes 16 
words of the user's data RAM, beginning at the highest 
address and growing downward. The size of the local 
register cache is selected when the processor is initial­
ized. 

In some cases, the contents of the cached local register 
sets may require examination or modification (e.g. for 
fault handling). Since the local registers are cached, the 
flushreg instruction is provided to flush the local regis­
ter cache to the locations reserved for the registers on 
the stack. This insures that the values in external mem­
ory are consistent with the values held in the local reg­
ister cache. 

3.S.5 LOCAL AND SYSTEM CALLS 

The 80960CA provides two methods for making proce, 
dure calls: local calls and system calls. Local and sys­
tem calls differ in their operation and use in an applica­
tion. 

Procedure Entry 2 

Procedure Entry 3 

The local call instructions initiate a procedure call us­
ing the call and return mechanism described earlier. 
The stack frames for these procedure calls are allocated 
on the local procedure stack. A local call is made using 
either of two local call instructions: call or calix. The 
call instruction specifies the address of the called proce­
dure using an IP plus displacement addressing mode 
with a range of - 223 to 223 - 4 bytes from the current 
IP. The calix (call extended) instruction specifies the 
address of the calling procedure using any of the 
80960's addressing modes. 

A system call is made using the calls instruction. This 
call is similar to a local call except that the processor 
gets the IP for the called procedure from a data struc­
ture called the system procedure table. The calls in­
struction requires a procedure number operand. This 
procedure number serves as an index into the system 
procedure table, which contains IP's for specific proce­
dures. The system procedure table is shown in Figure 
3-8. 

The system call mechanism supports two types of pro­
cedure calls: system-local calls and system-supervisor 
calls (also referred to as supervisor calls). The systcm-

(

Procedure Entry 259 1084 

L3-1-----pr-o-c-ed-u-r-e-E-n~t-ry-----2---1-0~ 
~I-------A-d-dr-es-s------TI-x-,xl 

1-::-::-:---:1 Reserved (Initialize to 0) 

~ Preserved 

L OO-Local-
10-Supervlsor 

Figure 3-S. System Procedure Table 

3-145 

270669-11 



80960CA PRODUCT OVERVIEW 

local call performs the same action as the local call 
instructions with one exception: the IP target for a sys­
tem-local call is fetched from the system-procedure ta­
ble. The supervisor "all differs from the local call as 
follows: 

1) A supervisor call causes the processor to switch t6 
another stack (called the supervisor stack). 

2) A supervisor call ~auses the processor to switch' to 
the supervisor execution mode and asserts the 
80960CA's' supervisor (SUP) pin for all bus accesses. 

The system call mechanism offers several benefits. The 
system call promotes the portability of application soft­
ware. System calls are commonly used for kernel serv­
ices. By calling these services with a procedure number 
rather than a specific IP, application software does not 
have to be changed each time the implementation of the 
kernel service is modified. Additionally, the ability to 
switch to a different execution mode and stack allows 
kernel procedures and data 'to be insulated from appli­
cation code. 

3.S.6 IMPLIC.IT PROCEDURE CALLS 

The call" and return mechanism described for procedure 
calls· applies to several classes of call instructions as 
welt as to the context switching initiated by interrupts 
and faults. When an interrupt or fault condition occurs, 
an implicit call is performed that saves the current state 
of the processor before branching to the interrupt or 
fault handling procedure. When this context switch oc­
curs, the local registers are saved and a new stack frame 
is allocated. Additionally, the values of the AC register 
and PC register are saved when the implicit call occurs. 
These values are restored on the return from the inter­
rupt or fault handler. 

3.9 Interrupts 

An interrupt is a temporary break in the control stream 
'of a program so that the processor can handle another 
task. Interrupts may be triggered by the instruction 
stream or by hardware sources internal and external to 
the 80960CA. An interrupt request is associated with a 
vector (i.e. an address) of an interrupt handling proce­
dure. The processor will branch to the handling proce­
dure when an interrupt is serviced. When the handling . 
action is completed, the processor is restored to its state 
prior to the interrupt: 

3.9.1 INTERRUPT VECTORS AND PRIORITY 

Interrupt vectors are simply instruction pointers (ad­
.dresses) to interrupt handling procedures. The 80960 
architecture defines 248 interrupt vectors. This means 

that 248 unique interrupt handling procedures may be 
used. An 8-bit interrupt vector number is associated 
with each interrupt vector. This number ranges from 8 
to 255. Each interrupt vector has a priority from I to 
31, which is determined by the 5 most significant bits of 
the interrupt vector number. Priority 1 is the lowest 
priority and 31 is the highest. Priority 0 interrupts are 
not defined; 

The 80960CA executes with a unique priority ranging 
from 0 to 31. When an interrupt is serviced, the proces­
sor'spriority switches to the priority corresponding to 
that of the interrupt request. When a return from an 
interrupt procedure is executed,. the process priority is 
restored to its value prior to servicing the interrupt. 
This priority switching is handled automatically by the 
80960CA, 

The 80960CA compares its current priority and the pri­
ority of an interrupt request to determine whether to 
serviqe an interrupt immediately or to delay service. If a 
requested interrupt priority is greater than the proces­
sor's current priority or equal to 31, the processor serv­
ices the interrupt immediately; otherwise, the proceSsor 
saves (posts) the interrupt request as a pending inter­
rupt so that it can be serviced later. When the proces­
sor's priority falls below the priority of a pending inter­
rupt, the pending interrupt is serviced. With the:mecha­
nism described, interrupts with a priority of 0 will nev­
er be serviced. For this reason, vectors numbered 0 to 7 
are not defined. 

. 3.9.2 INTERRUPT TABLE 

The interrupt table (Figure 3-9) is an architecturally 
defined data structure which holds the interrupt vectors 
and information on pending interrupts. The first 36 
bytes of the table are used to post interrupts. The 31 
most significant bits in the 32-bit pending priorities 
field represent a possible priority (1 to 31) of a pending 
interrupt. When the processor posts an interrupt in the 
interrupt table, the bit corresponding to the interrupt's 
priority is set. For example, if an interrupt with a prior­
ity of 10 is posted in the interrupt table, bit 10 is set in 
the pending priorities field. 

The pending interrupts field contains a 256-bit string in 
which each bit represents an interrupt vector. When the 
processor posts an interrupt in the interrupt table, the 
bit corresponding to the vector number of that inter" 
rupt is set. 

Portions of the interrupt table are cached on-chip in a 
non-transparent fashion. This caching is implemented 
to minimized interrupt latency by reducing the number 
of accesses to the table in external memory when an 
interrupt is serviced, 

3-146 



80960CA PRODUCT OVERVIEW 

Pending Priorities 

Pending Interrupts 

Vector 8 

Vector 9 

Vector 10 

0 .. 

o 
4 

3 

3 

4 

4 

2 

6 

o 
4 

.~ 0 .> 

Vector 255 1 

( Procedure Entry Format 
31 2 1 0 
rl~------A~d~d-re-ss----~lx~l~xl 

024 

270669-12 

Figure 3-9. Interrupt Table 

3.9.3 INTERRUPT STACK 

Stack frames for interrupt handling procedures are allo­
cated on a separate interrupt stack. The interrupt stack 
can be located anywhere in the processor's address 
space. The beginning address of the interrupt stack is 
specified when the processor is initialized. 

3.9.4 INTERRUPT HANDLING ACTION 

When an interrupt is serviced, the processor saves the 
processor state and calls the interrupt procedure. The 
processor state is restored upon return from the inter· 
rupt procedure. 

This interrupt service. mechanism is handled by an im· 
plicit call operation. When the interrupt is serviced, the 
current local registers are saved. A new local register 
set and stack frame are allocated on the interrupt stack 
for the interrupt handler procedure and the processor 
switches to supervisor execution mode. In addition to 
the local registers, the current value of the AC and PC 
registers are saved as an interrupt record on the inter· 
rupt stack. 

3.9.5 PENDING INTERRUPTS 

Any of the 248 interrupts can be requested by software. 
The system control instruction (sysctl) is provided to 
support this feature. When the system control instruc· 
tion requests an interrupt, one of two actions may oc­
cur depending on the priority of the requested interrupt 

and the current process pnonty. I) The interrupt is 
serviced immediately, or 2) the interrupt is posted (the 
pending priorities field and the pending interrupts field 
are modified to reflect a pending interrupt). 

Interrupts may also be requested by hardware sources 
internal and external to the 80960CA. Managing the 
hardware sources and posting these interrupts is han­
dled by the interrupt controller. Interrupts requested by 
hardware are posted in an internal register, not in the 
interrupt table. A mask register enables or disables in­
terrupts from each hardware source. Requesting and 
posting hardware interrupts is described in Section 4.4 
Interrupt Controller. 

3.9.6 INTERRUPT LATENCY 

The time required to perform an interrupt task switch 
is referred to as the illterrupt latellcy. The latency is the 
time measured between the activation of an interrupt 
source and the execution of the first instruction for the 
interrupt-handling procedure for the source. 

Interrupt latency for the 80960CA varies depending on 
conditions such as: 

Complex instructions are executing when thc intcr­
rupt occurs (e.g. sysctl, call, ret, etc.). 

Outstanding loads to a local register are pending, 
delaying the interrupt context switch. 

Division, multiplication, or other multi-cycle in­
structions with a local register as destination are 
executing. 

The 80960CA has been designed to optimize latency 
and throughput for interrupts. Two processor features 
are designed for this purpose: 

First, in the interrupt table, all interrupt vectors with 
an index whose least significant four bits are 00102 can 
be cached in internal data RAM. The processor will 
automatically read these vectors from data RAM when 
the interrupt is serviced. This feature reduces the added 
latency due to an external access of the interrupt table 
for that vector. The NMI vector is always cached in 
data RAM. 

Second, an instruction cache locking mechanism allows 
interrupt procedures or segments of interrupt proce­
dures to be stored in the instruction cache. These rou­
tines are always executed from the internal cache, elim­
inating external code fetches and reducing latency and 
increasing throughput for the interrupt. 

3-147 



80960CA PRODUCT OVERVIEW 

3.10 Fault Handling and Instruction 
Tracing 

The 80960CA is able to detect various conditions in 
code or in its internal state that could cause the proces­
sor to d~liver incorrect or inappropriate results or that 
could cause it to head down an undesirable control 
path. These conditions are referred to as faults. The 
80960 architecture provides fault handling mechanisms 
to detect and, in most cases, fully recover from a fault. 

The 80960CA provides on-chip debug support by trig­
gering trace events and servicing the trace fault. A trace 
event is activated when a particular instruction or type 
of instruction is encountered in an instruction stream. 
The trace event optionally signals a fault. A fault han­
dling procedure for the trace fault can act as a debug 
monitor and analyze the state of the processor when the 
trace event occurred. 

3.10.1 FAULT TYPES AND SUBTYPES 

Table 3-4. Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record 

Parallel XXOO OOXX 

Trace Instruction Type XX01 0002 
Branch Trace XX01 0004 
Call Trace XX01 0008 
Return Trace XX01 0010 
Prereturn Trace XX01 0020 
Supervisor Trace XX010040 
Breakpoint Trace XX01 0080 

Operation Invalid Opcode XX020001 
Unimplemented X0020002 
Invalid Operand XX020004 

Arithmetic Integer Overflow XX030001 
Arithmetic Zero-Divide XX030002 

Constraint Range XX050001 
Privileged XX050002 

Protection Length XX070001 

Type Mismatch XXOA 0001 
All of the faults that the processor detects are pre­
defined. These faults are divided into types and sub­
types, each of which is given a number. Table 3-4 lists 
the faults that the processor detects arranged by type 
and sUbtype. 

NOTE: X refers to preserved locations in the fault record. 

Parallel Fault Entry 

Trace Fault Entry 

Operation Fault Entry 

Arithmetic Fault Entry 

0 

8 

1 

2 

6 

4 
:::::'::<::::::::::::.:::::::>:'::::.::::::::::.,::::::::: ... :.:::.::':.::'::::::'::':::':' 

j,;.: 

""'" 
(::.:.:::. 

Constraint Fault Entry 

Protection F Quit Entry 

Type Fault Entry 

.: .. :.: .... :: .. : 

Reserved 
(Initialize to 0) 

4 o 

5 6 

8 o 

.::., ,. 
2 52 

Local Procedure Fault Table Entry 
31 1 0 

I:.::::.... Address ........ :: . .::::::.:1.0:1:0.1 

System Procedure Table Fault Table Entry 
31 1 0 

Index 

Set to 0000027F 16 

Figure 3-10. Fault Table 

3-148 

270.669-13 



80960CA PRODUCT OVERVIEW 

---------------------------------------------------------------------------------

31 o 
Process Controls o 

4 Arithmetic Control 

Fault Flags I Fault Type I .. I Fault Subtype 

Address of Faulting Instruction 12 

o Roserved 
270669-14 

Figure 3·11. Fault Record 

3.10.2 FAULT TABLE 

The fault table (Figure 3-10) provides the processor 
with a pathway to fault handling procedures. The fault 
table is an architecture-defined data structure, which 
may be located anywhere in the processor's address 
space. The location of the fault table is specified at ini­
tialization. When a fault occurs, an entry in the table is 
selected based on the type of fault that occurs. The 
entry in the fault table contains a pointer to a specific 
fault handler. 

The fault table can contain two types of entries (Figure 
3-10). The first type of entry is simply a pointer to the 
address of the fault-handling procedure. The second 
type of entry is an index into the system-procedure ta­
ble. Fault-handling procedures accessed through the 
system-procedure table may be executed in user or su­
pervisor execution mode. 

3.10.3 FAULT HANDLING ACTION 

When a fault occurs, the processor performs an implicit 
call operation to the procedure specified in the fault 
table. In addition to performing the implicit call opera­
tion, the processor creates a fault record. in its newly 
allocated stack frame. This fault record contains infor­
mation on the state of the processor when the fault 
occurred and the fault type and subtype (Figure 3-11). 

Some faults can be recovered from easily. When recov­
ery from a fault is possible, the processor's fault han­
dling mechanism allows the processor to automatically 
resume work where the fault was signalled. The re­
sumption action is initiated with the ret instruction. If 
simple recovery from a fault is not possible, then the 
fault handling procedure may call a debug monitor, ini­
tiate a reset, or take other actions to recover from the 
fault. 

3.10.4 TRACING AND DEBUG 

The 80960CA provides a facility for monitoring the ac­
tivity of the processor by tracing the instruction stream. 
A trace event occurs at points in a program where cer­
tain types of instructions are encountered or a certain 

IP or data address is encountered. When a trace event 
occurs, a trace fault can be generated and a trace-fault 
handler called which displays or analyzes the state of 
the processor. 

3.10.4.1 Trace Events 

The Trace Control (TC) Register (Figure 3-12) is used 
to specify the types of instructions which cause trace 
events. When a mode bit in the TC register is set, spe­
cific instructions will generate trace events. For exam­
ple, if the branch trace mode bit is enabled and a 
branch instruction is executed, a branch trace event will 
be signalled. An event flag is used to record trace 
events. A single event flag is provided for each mode 
bit. Any trace event generates a trace fault when the 
trace enable bit in the process control register is set. 

The 80960CA recognizes 7 trace events. These events 
are described below. 

Instruction Trace Event-Signalled each time an in­
struction is executed. This trace event can be used with 
a debug monitor to single step the processor. 

Branch Trace Event-Signalled each time a branch in­
struction is executed. For conditional branch instruc­
tions, this event is only signalled when the branch is 
taken. Branch-and-link, call, and return instructions do 
not signal this trace event. 

Call Trace Event-Signalled each time a branch-and­
link or call instruction is executed. Implicit calls, such 
as those used in interrupt or fault handling, signal this 
event. When a call trace event occurs, the prereturn 
trace flag (bit 3 in local register rO) is set by the proces­
sor to indicate a prereturn trace pending. 

Pre-Return Trace Event-Signalled just prior to any ret 
instruction. This event is only signalled if the pre-return 
trace flag in register rO is set. Since the pre-return trace 
flag is set when a call trace event occurs, the call trace 
mode must be enabled before a pre-return trace event 
can be signalled. 

Return Trace Event-Signalled each time a ret instruc­
tion is executed. 

3-149 



80960CA PRODUCT OVERVIEW 

31 2726252423222120191817 76 5 4 3 2 1 

11111 I I I I I I I I I I 1111':1111] I I I I I I [I 

l!~f L Instruction Trace Mode ,C Branch Trace Mode 

Call Trace Mode 

Return Trace Mode 
Pre return Trace Mode 

'-------- Supervisor Trace Mode 
L-______ Breakpoint Trace Mode 

Trace Event Flogs: 

'-------------.,.---- Instruction Trace 

'------------------ Branch Trace 

'------------------- Call Trace 
'---------------------- Return Trace 

'-------------------- Prereturn Trace 
'--------------------- Supervisor Trace 

'---------------------- Breakpoint Trace 

'---------------------- Data Address Breakpoint 0 

'------------------------ Data Address Breakpoint I 
'------------------------- Instruction Address Breakpoint 0 

'-------------------------- Instruction Address Breakpoint 1 

Reserved 
(Inltlallz~d to 6) 

270669-15 

Figure :3-12. Trace Control Register 

Supervisor Trace Event-Signalled each time a calls 
instruction is executed where the selected entry type is 
supervisor, or when a ret from supervisor mode is exe­
cuted. ' 

Breakpoint Trace Events--Signalled each time a mark 
instruction, fmark instruction, or specified address is 
encountered in the instruction stream. The mark in­
struction signals an event when the breakpoint trace 
mode is enabled, the fmark (force mark) instruction 
will generate a breakpoint trace event regardless of the 
value of the breakpoint trace mode bit. 

Two IP breakpoint registers and two internaL data ad­
dress breakpoint registers are provided' on the 

,80960CA. These breakpoints are loaded' with an in­
struction or data address using the system control 
(sysctl) instruction. Whim the address is encountered 
and the breakpoint ,trace mode bit is set, a breakpoint 
trace event occurs. A corresponding instruction or data 
address event flag is set in the TC register when the 

, addreSs is encountered. 

3.10.5 PROCESSOR INITIALIZATION 

The Initial Memory Image (IMI) are the data struc­
tures needed to initialize the 80960CA (Figure 3-13). 
The initialization boot record, in reserved memory be­
ginning at FFFFFFOOH, contains a pointer to the Proc­
essor Control Block (PRCB). The PRCB in turn holds 
pointers to the data structures which are necessary to 
execute code on the 80960CA. The PRCB also holds 
several fields which contain information to initially 
configure the 80960CA. 

Processor initialization begins by asserting the RESET 
pin. At initialization the processor optionally performs 
an internal self-test. A bus confidence test 'is also per­
formed by calculating a checksum of 8 words read from 
externai memory. If either of these self-tests fails, the 
FAIL pin indicates the failure and the processor aborts 
initialization. If the self-test passes, the 80960CA con­
tinues with initialization and branches to the first ad­
dress of the user's code. 

3-150 



80960CA PRODUCT OVERVIEW 

Address 

FFFFFFOOH 

FFFFFF10H 

FFFFFF14H 

FFFFFF18H 

FFFFFF2CH 

Fixed Data Structures 

Initialization Boot Record: 

Bus 
Configuration 

(Least Significant Byte) 

First Instruction Pointer 

PRCB Pointer 

6 Check Words 
(for bus confidence self-test) 

-

Relocatable'Data Structures 

User Code: 

1 
Process Control Block (PRCB): 

B 

Fault Table Bose Address 

r--- Control Table Bose Address 

AC Register Initial Image 

Fault Configuration Word 

:......- Interrupt Table Bose Address 

- System Procedure Table 
Bose Address 

•.••••••••• >?·.· ... ·.·.·.·.c .. ·.·.~ .... :.:....: .. : ...... 

- Interrupt Stack Pointer 

Instruction Cache 
Configuration Word 

Register Cache 
Configuration Word 

- Control Table 

...;1> ~l> 

---+ 
Interrupt Table 

"I "I 

---+ 
System Procedure Table 

...;1> ...;l> - Other Architecturally Defined 
Data Structures 

(not required as part of 1M!) 

Figure 3-13. Initial Memory Image 

3-151 

yte Offset 

OH 

4H 

BH 

CH 

10H 

II 14H 

18H 

1 CH 

20H 

24H 

270669-19 



intel~ 80960CA PRODUCT OVERVIEW 

4.0 80960CA SYSTEM 
IMPLEMENTATION 

This section is an overview of the peripherals integrated 
with the 80960CA core. The features and operation of 
the Bus Controller, DMA Controller, Interrupt Con­
troller, and the interfaces between these peripherals and 
the core are described. 

4.1 Peripheral Interface 

A program communicates with the on-chip peripherals 
by reading or modifying the special function registers 
(SFRs) or by loading control registers. The SFRs gen­
erally serve to transfer status information and data be­
tween a peripheral and the core, and the control regis­
ters serve to configure the peripherals. SFRs are ac­
cessed directly as instruction operands. The control 
registers are loaded by using the system control (sysctl) 
instruction. 

4.2 Bus Controller Unit 

Thc Bus Controller Unit (BCU) manages the data and 
instruction path between the 80960CA and extcrnal 
memory. Data operations and instruction fetches share 
a 32-bit data bus. Memory addresses are output on a 
separate 32-bit address bus. The BCU incorporates sev­
eral advanced features to simplify the bus interface to 
external memory. A programmable memory region con­
figuration table allows the characteristics of the exter­
nal bus to be programmed differently for 16 separate 
regions in memory. The attributes of the external bus 
which are programmable include wait states and exter­
nal ready control, data bu~ width (8, 16, or 32 bits), 
burst mode, address pipelining, and byte ordering. The 
region programmable bus options are described in this 
section. 

4.2.1 BUS TRANSFERS, ACCESSES, AND 
REQUESTS 

The distinction between transfer, bus access, and bus 
request, as these terms apply to the 80960CA,.must be 
presented before beginning a discussion of the BCU. 

Transfer-A bus transfer is defined simply as a move­
mentof code or data between a memory system and the 
80960CA. A write transfer occurs when the memory 
system is the destination of a data movement. A read 
transfer occurs when the 80960CA is the destination 
for a data or a code fetch from memory. 

Bus Access-A bus access is defined as an address cycle 
and one or more transfers. In burst mode, an access can 
consist of a single address cycle and I to 4 transfers. 

Bus Request-A bus request is issued by the core and 
directed to the Bus Controller. A bus request is sent to 
the BCU when a load, store, or an atomic instruction is 
executed, or wheJl an instruction fetch is needed. Bus 
requests are also issued by the core to 'perform DMA 
transfers. A bus request can consist of one or more bus 
accesses. For example, an aligned word (32-bit) request 
to an 8"bit memory region will result in four byte­
length accesses. 

4.2.2 BUS CONTROL COPROCESSOR 

The 80960CA's peripherals are often referred to as co-. 
processors, since their operation is decoupled from the 
execution of the instruction stream. As an integrated 
coprocessor, the BCD receives 'bus requests and inde­
pendently carries out the action of moving data or code 
between the processor and external memory. The BCU 
uses a three deep queue to store pending bus requests. 
The queue decouples the core from the BCU, since a 
series of adjacent requests may be issued faster than the 
BCU can service each request. Two of 'the three queue 
entries store requests from a user's program (loads, 
stores, fetches, etc.). The third queue entry is used by 
requests originating from a DMA operation. This 
queue entry takes user requests when the DMA is 
turned off. The 80960CA alternates service of requests 
issued by the user program and requests issued by a 
DMA operation. 

4.2.3 SIGNAL DESCRIPTIONS 

The external bus signals consist of 30 address signals, 4 
byte enables, 32 data lines, and various control signals. 

D31-DO 32-bit Data Bus (bi-directional)-32-, 16-, 
and 8-bit values are transmitted and re: 
ceived on these lines. The 8- and 16-bit 
quantities are transferred on the low order 
data lines when a memory region is config­
ured respectively for an 8- or 16-bit bus. 

A31-Al 30-bit Address (outputs)-The 3D-bit ad­
dress bus identifies all external addresses to 
word (4-byte) boundaries. The byte enable 
lines indicate the selected byte in each 
word. 

BE3-BEO Byte Enables (outputs)-The byte enables 
select which of 4 addressed bytes are active 
in a memory access. When a memory re­
~ is configured for an 8-bit bus width, 
BEl and BEO act .as the lower two bits of 
the address. For a 16-bit memory region, 
BEI,BE3, and BED are encoded to provide 
AI, BHE, and BLE respectively. 

W/R" Write or Read (output)-This signal is low 
for read accesses and high for write access~ 
es. 

ADS Address Strobe (output)-Indicates valid 
address and the start of a new bus access. 

3-152 



in~. 

DT/R 

DIC 

80960CA PRODUCT OVERVIEW 

Data Transmit or Receive (output)­
Direction control for data transceivers; 
similar to W iR. 
Data Enable (output)-Low during a 
bus request after the first address cy­
cle. This signal is used to control data 
transceivers and to indicate the end of 
a bus request. 

Wait (output)-Indicates that wait 
states are being inserted by the internal 
wait state generator. 

Ready (input)-Signals that data is 
valid for a read transfer or ends data 
hold for a write transfer. This function 
can be disabled for a memory region. 

Burst Terminate (input)-Terminates 
a burst access. Another address is gen­
erated to complete the request when 
the signal is deasserted. This function 
can be disabled for a memory region. 

Data or Code (output)-Indicates a 
data transfer or a code fetch. 

DMA Access (output)-Indicates that 
a bus request was initiated by either 
the user program or the DMA. 

Supervisor Access (output)-Indicates 
that a bus access originated from a bus 
request issued in supervisor mode. 
This signal can be used to protect sys­
tem data structures, or peripherals 
from errant modification by the user 
code. 

PCLK [ 

ADS [ 

HOLD 

HOLDA 

BREQ 

Lock (output)-Indicates that an 
atomic memory operation is in prog­
ress. This signal can be used to inhibit 
external agents from modifying memo­
ry which is atomically accessed. 

Burst Last (output)-Indicates the last 
transfer in a burst access. 

Hold (input)-HOLD can be used by 
a bus requester to request access to the 
bus. The processor asserts HLDA af­
ter the current bus request or locked 
requests have completed. 

Hold Acknowledge (output)'-:Indi­
cates to a bus requester that the proc­
essor has relinquished control of the 
bus. 

Bus Request (output)-Indicates that 
requests are queued in the bus control­
ler and are waiting to be serviced. 
BREQ can be used for external bus ar­
bitration logic in conjunction with 
HOLD and HLDA to regain bus mas­
tership .. 

Figure 4-1 shows the timing for a simple, non-burst, 
non-pipelined read and write access. The timing rela­
tions for the key control signals are shown in this fig­
ure. 

A31 :4.SDE [--'""IXr-~--'---'-~--'---':'---'""IXr--
DMA, Die Valid 

BE3:0 

W/R [ --\ r-
I 

T 'L-l 

~ 

BLAST [ 

DT/R [ 

iJ\ - II 5EN[ 

Figure 4·1. Basic Read and Write Request 
3-153 

r 

270669-20 



intel® 80960CA PRODUCT OVERVIEW 

4.2.4 MEMORY REGION CONFIGURATION 
TABLE 

The BCU can be configured differently for 16 separate 
sections (referred to as regions) of the address space. 
The four most significant bits of a memory address de­
fine the location of each region in memory. The bus 
characteristics in a region are specified in the memory 
region configuration table. When a bus request is serv­
iced, the BCU accesses the configuration table entry for 
the region addressed and services the request based on 
the bus characteristics programmed for that region. 
The characteristics programmed for each region are 
listed below: 

Burst Mode (on/oft) Ready Inputs (on/oft) 

Wait States 
(5 parameters) 

Bus Width 
(8-, 16-, or 32-bit) 

Address Pipelining 
(on/oft) 

Byte Ordering 
(Big/Little Endian) 

The flexibility of region programming simplifies the bus 
interface in applications where a memory system is 
made up of a variety of sub-systems, such as SRAM, 
DRAM, ROM, and memory mapped peripherals. Each 
memory sub-system can be mapped into a different re­
gion in memory, and that region can be configured spe-

, cifically for the requirements of the particular memory 
sub-system. 

MEMORY REGION 

Region CONFIGURATION TABLE 

o 1--------4 11-______ --4 

2 1--------4 
3 1--------4 
4 1--------4 
5 1---------4 

7 1--------4 
8 1--------4 

10 1---------4 
11 1---------4 
12 1---------4 
13 1---------4 14 !-_____ .....,-I 
15 L-______ --I 

~ Reserved L...l.....J (initialize To 0) 

The configuration table is made up of 16 on-chip con­
trol registers (Figure 4-2). Each register is programmed 
with the configuration information for a single region. 
Since the region table is located on-chip, access to re­
gion information does not affect the performance of the 
bus. 

4.2.4.1 Burst Accesses 

The 80960CA BCU is capable of burst accesses to 
memory systems which are designed to support this fea­
ture. Burst mode is intended to get the most perform­
ance from low cost memory systems. A burst access is a 
single address cycle followed by successive data or in­
struction transfers. The transfers reference data or in­
structions at sequential addresses starting at the address 
which began the burst access (Figure 4-3). In a burst 
memory system, the upper 28 bits of an address remain 
fixed while the lower two bits A2 and A3 increment to 
access subsequent locations. 

Wait state timing for the first access of a burst request 
is controlled. independently from the timing for subse­
quent accesses. A memory sub-system using static col­
umn mode or page mode DRAMs, for example, can 
take advantage of the short column access times for 
these devices by using burst mode. Interleaved ROM or 
EPROM systems can also be constructed which simul­
taneously access several words and then use burst mode 
to multiplex the multi-word array onto the data bus. 

REGION TABLE ENTRY 

L----------------------------------BnEOROER 

270669-22 

Figure 4-2. Memory Region Configuration Table 

3-154 



80960CA PRODUCT OVERVIEW 

Read Request: 

Clock o o o o • • • 
Address ZKJ( X X X »00000OO« 
Data -------------<::}-----<::}-----<:}-----<::}---------------
Data Transfer 

Bus Accoss 

Read Request: 

Walt Stot. 
Counter 

Clock 

Addross 

Doto 

Data Transfer 

Bus Accoss 

Write Request: 

Walt Stot. 
Counter 

Clock 

Addross 

Data 

Dato Transfer 

Bus Access 

I·· ,: .. 

Figure 4-3. Burst Memory Request 

NRAD = 3 1 NRDD = 2 1 NRDD = 2 1 NRDD = 21 
o 3 o 2 10 0 2 1 0 2 1 0 2 

~ X X X lOOOOOOOO(I 

-------------0-----0----0-----0------------.---

I····· 

NWAD = 3 

o 3 2 

..... · .. ··· .. ·············1 

! NWDO =21 NWOO =21 NWOO =2! 
o 2 1 0 2 102 1 0 3 

,::->::.:: .. :. 

NXOA = 3 .1 
2 0 3 2 

~~--~'~~r--~--~~~-x X X lOOOOOOOO(I 

~~ __ ~ ___ ~~ ___ A-___ X l( X XXlOOOOOOO()(XC 
. ":::. 1: :: :"':-:'. :-.::':.:::- -:-:-:-,. :-. :.::. ·:·:.;.:<·:·:·::-:·:::1·: :-:. ::.. ";:. :';': . .' -:1 

.................................................•.... ···1 
I .. •·••······· 

Figure 4-4. Programmable Wait States 

3-155 

270669-21 

270669-23 

270669-24 

• 



intel® 80960CA PRODUCT OVERVIEW 

4.2.4.2 Programmable Wait State Generation 

The 80960CA may be interfaced with a variety of mem­
ory sub-systems and peripherals with a minimum sys­
tem cost and complexity. To achieve this interface flexi­
bility, the 80960CA implements an internal program­
mable wait state generator. Internally generated wait 
states eliminate the potential system delays which come 
from generating wait states with external logic. 

Wait states are programmed for each region in the 
memory region configuration table. The number of wait 
states is programmable over a range which allows effi­
cient control of memory devices ranging from ultra-fast 
SRAMs to slow peripherals. An external ready signal is 
also provided for external wait state control. 

The wait states which can be generated by the 
80960CA are shown in Figure 4-4. In this table N is the 
number of wait states inserted. The wait states for read 
accesses and for write accesses are described by three 
parameters each. For read accesses, NRAD is the num­
ber of states between the address cycle and the first 
data cycle and NRDD is the number of states between 
consecutive data cycles in a burst access. For writes, 
NWAD is the number of states that data is held after an 
address cycle, and NWDD is the number of states that 
data is held for consecutive data cycles in a burst write. 
For both reads and writes, NXDA is the number of 
dead cycles after the last data cycle and before the next 
address. 

4.2.4.3 READY Control 

The memory region configuration table allows the 
ready input (READY) to be enabled or disabled for 
each region. If the ready input is disabled, the external 
input has no effect on the wait states generated for a 
memory access; all wait states are generated internally. 
If the ready input is enabled, it works in conjunction 
with the programmable wait state generator. In this 

Wait Stat. 
Counter 

Clock • 
o 1 

• • 

case, the ready input has no effect until the number of 
programmed wait states has expired. When the wait 
state counter reaches 0, the ready input is sampled, and 
wait states continue or are terminated based on the val­
ue of the ready input. In order to gain complete exter­
nal control over wait states, all wait state parameters 
for a region can be set to O. 

4.2.4.4 Pipelined Reads 

The 80960CA BCU provides an address pipelining 
mode (Figure 4-5) to optimize the performance of in­
struction and data fetches from external memory. 
When the pipelined read mode is enabled, an address 
cycle overlaps with the last data cycle in each access, 
effectively reducing the total time needed for each ac­
cess. Pipelining mode is selected in each region by pro­
gramming the memory region configuration table. 

4.2.4.5 Byte Ordering 

One of two configurations for byte ordering, often re­
ferred to as little endian or big endian, is selected for 
each region by programming the memory region con­
figuration table. The byte ordering options make the 
80960CA capable of sharing memory with a processor 
which uses either byte ordering scheme. Byte ordering 
refers to the way that the 80960CA relates internal data 
to the way that data is stored or fetched from memory. 
The little endian configuration· orders the bytes in a 
short-word or word so that the least significant byte of 
the quantity is positioned at the lowest address and the 
most significant byte at the highest address in memory. 
Conversely, for the big endian configuration, the least 
significant byte is positioned at the highest address, and 
the most significant byte at the lowest address. For ex­
ample, for little endian ordering, byte 0 for word data 
would be found in memory· at an address of the form 
XXXX XXXOH and, for big endian, at address XXXX 
XXX3H. 

o o o 
• • • 

Address m X X X XXXXXXXXXX 

Data --------------<::::}-----<::::)----<::::}-----<::::}---
Dato Transfer 

Bus Access I ,-:. 
,::: ---., ,-.. -. 

270669-25 

Figure 4·5. Pipelined Read Request 

3-156 



80960CA PRODUCT OVERVIEW 

4.2.4.6 Data Alignment 

The 80960CA can service any aligned or non-aligned 
bus request. Aligned requests are directed to their natu­
ral boundary in memory. In other words, the addresses 
for aligned requests are even multiples of the length of 
the data transferred: Non-aligned requests are not serv­
iced directly by the BCU but are assisted by microcode. 
Microcode automatically breaks non-aligned requests 
into multiple aligned requests which are then reissued 
to the BCU. Depending on the degree of non-alignment 
and the length of the original request, the resulting re­
quests by microcode will consist of a combination of 
byte, short-word, and double-word requests. The BCU 
is able to generate an operation-unaligned fault when a 
non-aligned bus request is first received. This fault can 
be selectively masked at initialization. 

4.3 DMA Controller 

The DMA controller is a high-performance, full-func­
tioned integrated peripheral. The DMA controller can 
manage 4 channels of DMA transfer concurrent with 
program execution. Separate external control for each 
channel is provided. Each channel supports high-per­
formance memory to memory transfers where the 
sourCe and destination can be any combination of inter­
nal data RAM or external memory. The DMA Con­
troller supports various types of transfers such as high­
speed fly-by transfers and data chaining with the use of 
linked descriptor lists in memory. 

The 80960CA's DMA controller is implemented using 
dedicated hardware and microcode. Because of the effi­
ciency of the core, it is possible for the microcode to 
execute DMA transfers at high speeds. DMA transfers 
are performed by the core concurrently with execution 
of the user's program. Internal DMA logic is used for 
sampling requests, synchronizing transfers with exter­
nal devices, and handling the service of multiple active 
channels. 

4.3.1 SIGNAL DESCRIPTIONS 

Twelve pins are dedicated to the DMA controller. 
Three pins are associated with each, DMA channel. 
These pins are described below. In this description, the 
pin number corresponds to the channel number. For 
example, the DREQO pin is the request pin for 
channelO. 

DMA Request (input)-This input in­
dicates that an external device is re­
questing a DMA transfer. A DMA 
transfer refers to the complete transfer 
of one byte, short-word, word, or quad­
word, depending on the transfer data 
width selected for the channel. 

EOP3/TC3-
EOPO/TCO 

DMA Acknowledge (output)-This 
output becomes active when the re­
questing device is accessed. 

End of Process (input) or Terminal 
Count (output)-This pin functions ei­
ther as an input (EOPx) or as an output 
(TCx). When programmed as an out­
put, the pin is driven active for one 
clock after byte count reaches zero and 
a DMA terminates. When programmed 
as an input, an external device can 
cause the DMA operation to terminate. 

4.3.2 DMA TRANSFERS 

The 80960CA DMA controller supports a variety of 
transfer modes and variations of these modes, allowing 
the DMA to adapt to a number of hardware systems 
and the performance requirements of these systems. 

4.3.2.1 Standard Block and Demand Mode II 
Transfers 

A standard DMA transfer is made up of multiple bus 
requests. Loads from a source address are followed hy 
stores to a destination address. The DMA controller 
issues the proper combination of these bus requests (0 

execute the DMA transfer. For example, a typical 
DMA transfer between memory and an 8-bit peripheral 
could appear as a single byte load request directed to 
the source memory, followed by a single byte store re­
quest directed to the 8-bit peripheral. 

The DMA controller has two basic transfer modes: 
block mode (unsynchronized) and demand mode (syn­
chronized). Any DMA transfer will be serviced by one 
of these basic transfer modes. 

A block mode DMA is initiated by software. Block 
mode DMAs are generally between memory. Block 
mode DMA transfers are not synchronized with any 
type of request from an external device. Once the DMA 
begins, it will continue until the entire block is com­
plete or until it is suspended. The source 'and destina­
tion addresses for block mode transfers can be incre­
mented or held constant for a DMA. 

A demand mode DMA is controlled by an external 
device. Demand mode DMAs are generally between an 
external device and memory. In demand mode, each 
individual DMA transfer can be synchronized with a 
request. The request is signalled when an external de­
vice activates a DMA channel request pin (DREQ3-
DREQO). The DMA controller acknowledges this re­
quest with the DMA acknowledge pin (DACK3-
DACKO) when the requesting device is accessed. A de­
mand mode transfer may be synchronized with either 
the source or the destination device. 

3-157 



int:eL 80960CA PRODUCT OVERVIEW 

4.3.2.2 Fly-by Transfers 

A fly-by transfer mode is provided for the most per­
formance-critical DMA applications. Fly-by mode also 
makes very efficient use of the external bus during a 
DMA. Standard DMA transfers involve mUltiple bus 
requests: load requests directed to the source and a 
store request directed to the destination. Fly-by trans­
fers only require a single bus request. For a fly-by trans­
fer, memory sees a load or a store on the bus while the 
requesting device is selected by the DMA acknowledge 
pin. The data is never actually read from or written to 
the 80960CA. For memory to device transfers, the 
processor issues a load, and, while reading the memory; 
accesses the external device with the DMA acknowl­
edge pin. The data is then written directly to the desti­
nation device with a single bus request. For a device to 
memory transfer, the reverse operation is performed. 
The DMA issues a store, and, while writing the memo­
ry, accesses the source device with the DMA acknowl­
edge pin. In this case, the processor floats the data bus 
and the device's data is written directly into memory. 

4.3.2.3 Data Chaining 

Each DMA channel can be programmed in a data 
chaining mode. In this mode, all transfer information is 
taken from a linked-list descriptor in memory (Figure 
4-6). Data chaining is started by specifying a pointer to 
a descriptor in memory. The transfer continues until 

Internal Register 

t 
User Loads 

BC = Byte Count 
SA = Source Address 
DA = Destination Address 
NPTR = Next Pointer 

Not Used For Source Chaining 

Terminate 

the number of bytes in the byte count field in the de­
scriptor is transferred. At this time, another linked-list 
descriptor may be executed. The next descriptor is 
specified by the next-pointer field in the current de­
scription. Data chaining continues until a null pointer 
is encountered in the next-pointer field. Data ch-aining 
can be designated as source chaining, destination chain­
ing, or both. 

In data chaining mode, an option exists which allows 
chaining descriptors to be updated while the DMA is 
running. When this option is enabled, the DMA sets a 
bit in the DMA's special function register after loading 
a descriptor and then checks this bit before loading the 
next descriptor. If the bit has been cleared by the user, 
the DMA.continues; otherwise, the DMA waits for the 
next descriptor to be set up and for the user to -clear the 
bit. An interrupt can be generated when each buffer is 
complete or when the DMA is terminated with a null 
pointer or the EOP pin. 

4.3.3 TRANSFER CHARACTERISTICS 

The DMA controller provides the programmer with a 
number of options for configuring the characteristics of 
a DMA transfer. Intelligent selection' of transfer char­
acteristics works to balance DMA performance and 
functionality with performance of the user program 
when the DMA is in progress. 

Destination Buffer 

---------

270669-26 

Figure 4-6. Source Data Chaining 
I 

3-158 



80960CA PRODUCT OVERVIEW 

The DMA controller provides features to opttmlze 
transfers by moving a maximum amount of data for 
each bus request issued. This is controlled by specifying 
the width of the source and destination directed bus 
requests for a DMA transfer, and by on-chip assembly 
or disassembly of the transfer when source and destina­
tion are not of equal widths. 

Data alignment is performed automatically by the 
DMA controller when the source and destination of a 
transfer are not aligned. The alignment algorithm is 
optimized for many transfers, providing a performance 
comparable to the aligned transfer cases. 

4.3.3.1 Transfer Data Length 

The transfer data length specifies the length of bus re­
quests directed to the source and destination in a stan­
dard DMA transfer. Byte, short, word, or quad-word 
loads and stores are selected for either source or desti­
nation when a DMA channel is set up. Assembly and 
disassembly of data is automatically performed when 
the source and destination widths are different. This 
feature provides the most efficient use of the bus when 
DMA transfers occur between a source and a destina­
tion with different exte~nal bus widths. 

LSB 
USB 

Source 
Uemory 
Region 

Destination 
Memory 
Region 

The DMA controller provides the option of using quad 
word transfers to enhance DMA performance. When 
quad transfers are specified, the DMA will request a 
four-word load request and four-word store request for 
each DMA transfer. The trade-off for the added DMA 
performance is latency on the external bus, preventing 
requests by the core, or by another DMA channel from 
being immediately serviced. 

4.3.3.2 Data Alignment 

The DMA controller supports transfer of source and 
destination data aligned to different byte boundaries in 
memory. The DMA implements microcode algorithms 
to transfer some non-aligned data with a performance 
level approaching that for aligned transfers. The DMA 
accomplishes this by attempting to ~sue the maximum 
number of aligned bus requests during a DMA (Figure 
4-7). As shown, most of the overhead due to non­
aligned DMAs is incurred at the beginning and end of 
the DMA. DMAs with low byte counts, therefore, do 
not benefit as much from the dataalignment features of II 
the DMA. The alignment feature ~ optimized for 8-bit 
to 8-bit, 32-bit to 32-bit and for 8-blt and 32-bit combi-
nations of source and destination lengths. 

Address 

Access 

00DOO200H Number 

1 
DODO 0204H 2 

3 
0000 C208H 4 

5 
0000 C20CH 6 

7 
8 
9 

0000 0300H 

0000 0304H 

0000 C30SH 

0000030CH 

270669-27 

Bus Operation 

Operation Address 

load_word 00000200H 
store_byte 00000303H 
load_word 00000204H 
store_word 00000304H 
load_word 00000208H 
store_word 00000308H 
loael-word 0000020CH 
store_short 0000030CH 
store_byte 0000030EH 

Byte Number. 

270669-28 

Figure 4-7. DMA Data Alignment 

3-159 



in1'et· 80960CA PRODUCT OVERVIEW 

4.3.3.3 Channel Priority 

The DMA controller arbitrates the priority of the 4 
DMA channels. If multiple DMA channels are en­
abled, the DMA controller will determine in which or­
der each channel is serviced. 

The DMA controller can be configured in one of two 
priority modes, fixed mode or rotating mode. The fixed 
mode assumes a fixed priority for each channel with 
channel 0 having the highest priority, followed by chan­
nels I, 2, and 3, with channel 3 having the lowest prior­
ity. The rotating mode ilpdates a·channel's priority to 
the lowest priority after that channel's DMA is made. 
This insures that a single channel is never locked out by 
other active channels. The priority sequence is always 
in the same order, with priority rotating from the low 
channel numbers to the high channel numbers. 

4.3.3.4 Performance and Latency 
Considerations 

DMA operations and the user program share the re­
sources of the core and of the external bu.s. DMA .per­
formance and the performance of the user program are 
coupled directly to the balance of load sharing between 
these two processes. The core resources necessary to 
perform a DMA transfer vary depending on the way a 
channel has been configured. For example, byte assem­
bly and disassembly requires more processor overhead 
per byte of transfer than does a transfer in which the 
source and destination transfer lengths are equal. The 
performance of a DMA is also tightly coupled to the 
user program's use of the external bus. If the user pro­
gram does not make frequent. bus requests, the requests 
by the DMA controller will be serviced with little or no 
delay. 

The user can enhance performance· of the DMA with 
trade-ami in system complexity and flexibility. Aligned 
transfers eliminate the. microcode overhead needed to 
perform, the internal· alignments. DMAs between re­
gions of equal transfer widths eliminate overhead for 

1 

assembly and disassembly. Source or destination mem­
ory configured as burst memory will provide the most 
efficient use of the DMA controller when the quad­
transfer feature is enabled. Using the fly-by mode reo. 
duces the number of bus requests needed for a DMA 
since fly-by mode uses only a single load or a single 
store request for each transfer. 

4;3.4 DMA CONTROL AND CONFIGURATION 

The DMA Controlier uses an SFR register, the DMA 
command (DMAC) register, and the setup DMA 
(sdma) instruction for configuration and control of a 
DMA. The sdma instruction is used to configure each 
DMA channel. Transfer widths, byte count, source and 
destination addresses for a DMA are specified in this 
instruction. 

The DMAC register (Figure 4-8) is described. below. 

The channel enable field enables a DMA once the 
channel is set up. Clearing these bits will also. cause a 
DMA transfer to be s.uspended. 

The terminal count field signals that byte count has 
reached zero and a DMA has ended. 

The channel active field indicates that a channel is idle 
or active. If set, this bit inpiciltes that the channel is 
active. This implies that the channel is servicing a 

. transfer or has a request pending. The active bits are 
status information only. 

The channel done field indicates that a DMA operation 
is complete. The done bits are status information only. 

The channel wait field is· used for handshaking with a 
user program in data chaining mode. The DMA sets 
these bits when a new linked-list descriptor is read. The 
DMA will not read the next descriptor until this bit is 
cleared by the user. The user can set up the next de­
scriptor and then clear the channel wait bits to dynami­
cally change descriptors. 

Reserved 
(Initialize To 0) 

'----------------...... --Priorlty Mode Bit 
'--------------------Throttle Bit 

270669-29 

Figure 4~8. DMA Command Register 

3-160 



80960CA PRODUCT OVERVIEW 

A priority mode bit selects rotating or fixed priority 
mode. 

The throttle bit selects the maximum amount of core 
resources that the DMA microcode will receive in rela­
tion to the execution of the user program. 

4.3.5 DMA INTERRUPTS 

The DMA controller is the source of 4 hardware inter­
rupts in the 80960CA. The DMA Controller can be 
programmed to request an interrupt when a DMA is 
complete, or when a buffer transfer is completed in 
chaining mode. Each channel requests a different inter­
rupt. 

4.4 Interrupt Controller 

The 80960CA Interrupt Controller manages interrupts 
which are requested by external agents or by the DMA 
Controller. The interrupt controller manages 4 internal 
DMA interrupt sources, a single NMI (Non-Maskable 
Interrupt) pin, and 8 external interrupt pins. Up to 248 
external interrupt sources can be supported by the in­
terrupt controller. The interrupt controller handles the 
prioritization of software interrupts, hardware inter­
rupts, and the process priority, and signals the core 
when interrupts are to be serviced. The interrupt con­
troller provides the low-latency interrupt service fea­
tured on the 80960CA. 

4.4.1 EXTERNAL INTERRUPTS 

The 80960CA provides 8 interrupt pins and one NMI 
pin for detecting external requests. The interrupt con-

Dedicated !.tode 

NMl 4--- NMI Source 

B0960CA 

.....-- External Source 7 

...---ExternolSoufce6 
External Source 5 

External Source 0 

t.llxed l.4ode 

troller allows the 8 interrupt pins to be configured as 
dedicated inputs capable of requesting 8 interrupts, or 
as a vectored input capable of requesting up to 248 
interrupts. The NMI pin is always a dedicated input. 
The interrupt controller pins are described below. 

XINT7 - External Interrupts (inputs)-These pins 
XINTO can be used as dedicated inputs, or acting 

together as an 8-bit number, request any in­
terrupt. The inputs are edge or level detect­
ed, and are optionally debounced internally. 

NMI Non-Maskable Interrupt (input)-NMI re­
quests the highest priority interrupt. NMI 
is always taken and is not maskable (as the 
name implies), and not interruptable. 

4.4.2 INTERRUPT MODES 

The 8 external interrupt pins can be configured in one 
of three modes: dedicated mode, expanded mode, or 
mixed mode (Figure 4-9). 

4.4.2.1 Dedicated Mode Interrupts 

In dedicated mode, each of the 8 interrupt pins acts as a 
dedicated input. When an external event is detected on 
an interrupt pin, a unique interrupt is requested for that 
pin. It is possible to map each dedicated pin to one of a 
number of possible interrupt vectors. This is accom­
plished by programming the interrupt map (IMAP) 
control registers with an interrupt vector number for 
each pin. (Recall that interrupt vector numbers are 
8-bit values which reference the 248 vectors in the in­
terrupt table.) 

Expanded Mode 

NiJj 1.'4------- NMI Source 

B0960CA 

Priority 248 
Encoding Exterool 
LogIc 248 Sources 

fiiil I.,f-------Nt.ll Source 

80960CA 

~§~;;;;;;~= EJ(ternal Source 2 External Source 1 
External Source 0 

30 
External 
Sources 

Figure 4-9. Interrupt Modes 

3-161 

270669-32 

• 



inteL 80960CA PRODUCT OVERVIEW 

Only the upper four bits of the vector number can be 
programmed for a dedicated mode interrupt. The lower 
four bits are fixed at the value 00102. With four pro­
grammable bits, one of 15 interrupt vectors is available 
for each dedicated pin. These interrupt vectors span the 
even priority levels from priority 2 to 30. The vector at 
priority 0 is not defined. 

The 15 interrupt vectors available to dedicated sources 
clm be cached in internal data RAM. If this interrupt 
vector caching feature is selected, the processor will au­
tomatically fetch the vector from data RAM, eliminat­
ing the latency caused· by a bus request for a vector in 
external memory. 

The DMA Controller can request four interrupts to sig­
nal the end of a DMA for each of four channels. The 
four interrupt signals froni the DMA are handled by 
the interrupt .controller in the same way as an interrupt 
pin configured as a dedicated input. Each of the four 
DMA sources may request one of 15 interrupts by pro­
gramming the IMAP for that source. 

4_4.2.2 Expanded Mode Interrupts 

In expanded mode, external hardware considers the in­
terrupt pins (XINTO-XINT7) as an 8-bit binary num­
ber. This number is used directly as the interrupt vector 
number. Each of the 248 possible interrupt vectors can 
be referenced in this way, allowing a separate external 
source for ea.ch vector. External hardware is responsi­
ble for recognizing individual hardware sources and 
then driving the interrupt vector number corresponding 
to that source onto the interrupt pins. 

4.4.2.3 Mixed Mode Interrupts 

In mixed mode, the 8 interrupt pins are divided into 
two functional sets. One set functions in dedicated 

mode, the other in expanded mode. In mixed mode, 
three pins are dedicated interrupt pins (XINT7-
XINT5). A programmable vector number is associated 
with each of these pins. The remaining five interrupt 
pins (XINT4-XINTO) are treated as the most signifi­
cant five bits of the expanded mode vector number. The 
lower order bits are internally forced to 0102 to form 
the full 8-bit value for the vector number. 

4.4.3 INTERRUPT CONTROLLER SETUP 

The interrupt controller uses two special function regis­
ters to manage interrupt requests by hardware sources. 
The hardware interrupt pending register (IPND) and 
the hardware interrupt mask register (IMSK) are ad­
dressed as sm and sft respectively. A single bit in each 
register corresponds to each of the 8 possible external 
sources and 4 DMA sources for hardware interrupts. 
The IMSK register performs the function of masking 
hardware interrupts and the IPND register implements 
posting of interrupts requested by hardware. When 
configured for expanded or mixed mode interrupts, bit 
o of the IMSK register globally masks the expanded 
mode interrupts. 

4.4.4. NON-MASKABLE INTERRUPT 

In addition to the maskable hardware interrupts, a sin­
gle Non-Maskable Interrupt (NMI) is provided. A dedi­
cated NMI pin is used to request this interrupt. NMI is 
defined as a higher priority than any hardware inter­
rupt, software interrupt, or process priority. The NMI 
procedure, therefore, can never be interrupted and 
must execute the return instruction before other proce­
dures can execute. The NMI procedure is entered 
through vector 248. This vector is cached in internal 
data RAM at initialization to reduce latency for the 
NMI. 

3-162 



80960CA PRODUCT OVERVIEW 

APPENDiX A 
80960CA CORE ~MPl!EMENTAT~ON 

The 80960CA Core is a high-performance implementa­
tion of the 80960 Core Architecture. This section brief­
ly describes the microarchitecture of the 80960CA core 
and the key constructs used to achieve parallel instruc­
tion execution. 

The 80960CA core can be divided into the 6 main sub­
units listed below. 

Instruction Sequencer 

Register File 

Execution Unit 

Multiply and Divide Unit 

Address Generation Unit 

Static Data RAM and Local Register Cache 

Figure A -I is a simple block diagram of the 80960CA. 
The nucleus of the processor is the Instruction Se­
quencer and Register File. The other subunits of the 
core, referred to as coprocessors, radiate from these 
units, connecting to either the. register (REG) side or 
the memory (MEM) side of the processor. The Instruc­
tion Sequencer issues directives, via the REG and 
MEM interfaces, which target a specific coprocessor. 
That coprocessor then executes an express function vir­
tually decoupled from the IS and the other coproces-

r------- .. 
I Othor I 

sors. The REG and MEM data busses shown in Figure 
A-I are used to transfer data between the common 
Register File and the coprocessors. 

A.1 Instruction Sequencer 

The Instruction Sequencer (IS) decodes the instruction 
stream and drives the decoded instruction stream onto 
the coprocessor interfaces. In a single clock, the IS de­
codes up to 4 instruction and issues up to three of these 
instructions to the on-chip coprocessors or to the IS 
itself. One register (REG) format, one memory (MEM) 
format, and one control or control and branch (CTRL 
or COER) format instruction can be issued at one time. 
These instructions are directed respectively to the REG 
coprocessors, the MEM coprocessors, or to the IS. The 
ability to issue multiple instructions in parallel can re­
sult in the simultaneous execution of many instructions 
at once. An optimizing compiler or hand optimization 
of assembly code can easily produce an instruction 
stream which takes full advantage of the parallel execu­
tion of the core. 

A technique known as resource scoreboarding is used to 
manage the parallel execution of instructions and the 
common resources of the processor. A coprocessor, for 
example, can scoreboard itself, indicating that it cannot 

..------- .. 
I Other I 

I I B0960CA Core I I 
I REG I I MEM I 
I I 
I Co- I 
I 

Processors : I . -:.:.:.:. --. 

~ 
=> • 0. 

j 
.E 

T 

,.---------------------------------------------------~ 

t !~~ €o~~o~~s~o~ =S~d: = j Instruction [~~~ ~~~~c~s~~ =S~d~ =] 
I 
I 

Sequencer .... I 

REG Coprocessor Interface (IS) MEM Coprocessor Interface I 
I 

tEG Data BUSS..! 

~tructl~ I I Cache I 
I 
I 
I 

,EM Data Bussesl I 

i t • 1 Register I ... I 

I f i Flies ... 
! , ! I 

'C17 
I 

I (RF) I 
I I 
I Multiply Execution Address On-Chip I 
I I 
I Divide Unit Generation RAM/Local I 
I 

Unit Register 
I 

I Unit I 
I (MDU) (EU) (AddGen) Cache I 
I I 
I I 
I I 
I I . ---------------------------------------------------~ 

Figure A·1. 80960CA Block Diagram 
3-163 

I I 
I Co- I 

: Processors 
I 
I . --..::.:,;-" 

... :. .!! .. ,g e 
c: C 
0 0 

U u 
« " ~ ::J 
0 m 

ntL-I . f.I. 

270669-30 



intel® 80960CA PRODUCT OVERVIEW 

act on another instruction until an instruction currently 
executing on that coprocessor is completed. A specific 
form of resource scoreboarding is referred to as register 
scoreboarding. When the computation stage of an in­
struction takes more than one clock, the destination 
register or registers for the result are scoreboarded as 
busy. A subsequent operation needing that particular 
register will be delayed until the multi-clock operation 
is completed. Instructions which do not use the score­
boarded registers can be executed in parallel. 

The IS manages a three stage parallel instruction pipe­
line (Figure A-2). In the first stage of the pipeline (pipe 
0), the address of the next instruction is calculated. 
This address may be the next sequential instruction, the 
target of a branch, or a location in microcode. In the 
second stage of the pipeline (pipe 1), the instructions 
are issued to the rest of the machine. In the third stage 
(pipe 2), the instruction computation is started, and for 
single cycle instructions, a result is returned' i . 

Several microarchitectural features of the core are de­
signed to minimize performance loss due to pipeline 
breaks. 

Branch Prediction-To minimize pipeline breaks due to 
branching, the user can specify the direction that a con­
ditional branch instruction will usually follow. The 
processor will execute along the specified instruction 
path with no pipeline break. If the branch direction 
specified was the direction actually selected by execu­
tion of the conditional branch, no pipeline break oc­
curs. The direction of the branch guess is determined 
by a bit value in the CTRL format instructions. 

Register Bypassing-Register bypassing is a feature 
which forwards the result of an instruction for immedi­
ate use as the source of another instruction. This for­
warding occurs at the same time that the value is writ-

State 

Pipe 0 decode 

Pipe 1 xxxxx 

Pipe 2 xxxxx 

ten to its destination register. Bypassing the register file 
saves the one clock cycle break which would otherwise 
occur while waiting for the value to be written to the 
register file and the register scoreboard to be cleared. 

On-chip Cache-The on-chip instruction cache and lo­
cal register cache eliminate many pipeline breaks which 
will occur if the IS is forced to wait for code or data to 
be moved between the 80960CA and external memory. 

Register File Access-The Register File allows multiple 
instructions to gain access to the register set simulta­
neously. This eliminates pipeline breaks which would 
be caused by a loss of access to the register set by any 
coprocessor. 

A.1.1 INSTRUCTION CACHE 

The IS includes a 1 Kbyte two-way set associative in­
struction cache capable of delivering up to four instruc­
tions each clock to the Instruction Sequencer. The 
cache allows inner loops of code to execute with no 
external instruction fetches. 

A.1.2 MICROCODE ROM 

The 80960CA uses microcode ROM to implement com­
plex instructions and functions. This includes calls, re­
turns, DMA transfers, and initialization sequences. Mi­
crocode provides an inexpensive and simple.method for 
implementing complex instructions in the mostly RISC 
environment of the 80960CA. When the IS encounters 
a microcoded instruction, it automatically branches to 
the microcode routine. The 80960CA performs this mi­
crocode branch in 0 clocks. 

2 

decode 

issue 

xxxxx 

3 

decode 

issue 

execute & 
return 

Figure A-2. Instruction Pipeline 

3-164 



in~® 80960CA PRODUCT OVERVIEW 

A.2 Register File 

The Register File (RF) contains the 16 local and 16 
global registers. The register file has six ports (Figure 
A-3), allowing parallel access of the register set by sev­
eral 80960CA coprocessors. This parallel access results 
in an ability to execute one simple logic or arithmetic 
instruction, one memory operation (load/store), and 
one address calculation per clock. 

MEM coprocessors interface to the RF with a 128-bit 
wide load bus and a 128-bit wide store bus. These bus~ 
ses enable movement of up to 4 words per clock to and 
from the RF. These busses also allow LOAD data from 
a previous read access and STORE data from a current 
write access to be processed in the register file simulta­
neously. An additional 32-bit port allows an address or 
address reduction operand to be simultaneously fetched 
by the Address Generation Unit. 

REG coprocessors interface to the RF with two 64-bit 
source busses and a single 64-bit destination bus. With 
this bus structure, two source operands are simulta­
neously issued to a REG coprocessor when an instruc­
tion is issued. A 64-bit destination bus allows the result 
from the previous operation to be written to the RF at 
the same time that the current operation's source oper­
ands are issued. 

A.3 Execution Unit 

The Execution Unit is the 32-bit Arithmetic and Logic 
Unit of the 80960CA Core. The EU can be viewed as a 
self-contained REG coprocessor with its own instruc­
tion set. As such, the EU is responsible for executing or 
supporting the execution of all the integer and ordinal 
arithmetic instructions, the logic and shift instructions, 
the move instructions, the bit and bit field instructions, 
and the compare operations. The EU performs any 
arithmetic or logical iJistructions in a single clock. 

A.4 Multiply Divide Unit 

The Multiply and Divide Unit (MDU) is a REG coproc­
essor which performs integer and ordinal multiply, di­
vide, remainder, and modulo operations. The MDU de­
tects integer overflow and divide by zero errors. The 
MDU is optimized for multiplication, performing 32-
bit multiplies in 4 clocks. The MDU performs multi­
plies and divides in parallel with the main execution 
unit. 

A.S Address Generation Unit 

The Address Generation Unit (AGU) is a MEM coproc­
essor which computes the effective addresses for memo­
ry operations. It directly executes the load address in­
struction (Ida) and calculates addresses for loads and 
stores based on the addressing mode specified in these 
instructions. The address calculations are performed in 
parallel with the main execution unit (EU). 

A.6 Data RAM and local Register 
Cache 

The Data RAM and Local Register Cache is part of a 
1.5 Kbyte block of on-chip Static RAM (SRAM). 
I Kbyte of this SRAM is mapped into the 80960CA's 
address space from location OOOOOOOOH to 
000003FFH. A portion of the remaining 512 bytes is 
dedicated to the Local Register Cache. This part of 
internal SRAM is not directly visible to the user. Loads 
and Stores, including quad-word accesses, to the inter­
nal SRAM are typically performed in only one clock. 
The complete local register set, therefore, can be moved 
to the local register cache in only four clocks. 

~":,u"""':""':"~ 128 
~ SiX-Port Register file ~ , 

64 
/>///////////////////// % 

Load 

SRC1 

SRC2 

DEST 

REG DATA 

BUSSES 

64 \ 

64 
\ 

I 16 Local Registers I 
I 16 Global Registers I 

Figure A-3. Six-Port Register File 

3-165 

, 128 

32 

Store 

Address 
Bose 

MEM DATA 

BUSSES 
270669-31 



80960CA-33, -25, -16 
32-BIT HIGH PERFORMANCE EMBEDDED PROCESSOR 

• Two Instructions/Clock Sustained Execution 
• Four 59 Mbytes/s DMA Channels with Data Chaining 

• Demultiplexed 32-Bit Burst Bus with Pipelining 

_ 32-bit Parallel Architecture _ High Bandwidth On-Chip Data Ram 
- Two Instructions/clock Execution -1 Kbytes On-chip RAM for Data 
- Load/Store Architecture - Sustain 128-bits per clock access 
-16, 32-b!t Global Re~isters _ Four On~Chip DMA Channels 
-16, ~2-bIt Local ~e~lst~rs -:- 59 Mbytes/s Fly-by Transfers 
- Manipulate ~4-Blt Bit Fields _ 32 Mbytes/s Two-Cycle Transfers 
- 11 Addressing Modes _ Data Chaining I 

- Full Pa~allel Fault 1II!0dei _ Data Packing/Unpacking 
- Supervisor Protection Model _ Programmable Priority Method 

_ Fast Procedure Call/Return Model 
, - Full Procedure Call in 4 clocks 

- RISC Call in 2 clocks (BAL) 
_ On-Chip Register Cache 

- Caches Registers on Call/Ret 
- Minimum of 6 Frames provided 
- Number of Frames Programmable, 

up to 15 

Ii On-Chip Instruction Cache 
- 1 Kbyte Two-Way Set Associative 
-128-bit Path to Instruction Sequencer 
- Cache-Lock Modes 
- Cache-Off M~de 

• 32-Bit Demultiplexed Burst Bus 
-128-Bit Internal Data Paths to and 

from Registers 
- Burst Bus for DRAM InterfaCing 
- Address Pipelining Option 
- Fully Programmable Wait States 
-Supports 8, 16 or 32-bit Bus Widths 
- Supports Unaligned Accesse.s 
- Supervisor Protection Pin 

_ High-Speed Interrupt Controller 
- Up to 248 External Interrupts 
- 32 Fully Programmable Priorities 
- Multi-mode 8-bit Interrupt Port . 
- Four Internal DMA Interrupts· I 

- Separate, Non-maskable Interrupt Pin 
- Context Switch in 750 ns Typical 

270727-1 

Figure 1. 80960CA Die Photo 

3·166 
November 1991 

Order Number: 270727·004 



80960CA-33, -25, -16 
32-Bit High Performance Embedded Processor 

CONTIENTS PAGE CONTIENTS PAGE 

1.0 PURPOSE ......................... 3-169 

2.0 80960CA OVERViEW .............. 3-169 

2.1 The C-Series Core ............... 3-170 

2.2 Pipelined, Burst Bus ............. 3-170 

2.3 Flexible DMA Controller ......... 3-170 

2.4 Priority Interrupt Controller ....... 3-170 

2.5 Instruction Set Summary ......... 3-171 

3.0 PACKAGE INFORMATION ........ 3-172 

3.1 Package Introduction ............ 3-172 

3.2 Pin Descriptions ................. 3-172 

3.3 80960CA Pinout ................. 3-178 

3.4 Mechanical Data ................ 3-185 

3.5 Package Thermal 
Specifications ..................... 3-189 

3.6 Stepping Register Information ... 3-191 

3.7 Suggested Sources for 80960CA 
Accessories ...................... 3-191 

4.0 ELECTRICAL SPECIFICATIONS .. 3-192 

4.1 Absolute Maximum Ratings ...... 3-192 

4.2 Operating Conditions ............ 3-192 

4.3 Recommended Connections ..... 3-192 

4.4 DC Specifications ............... 3-193 

4.5 AC Specifications ................ 3-194 

5.0 RESET, BACKOFF AND HOLD 
ACKNOWLEDGE .................... 3-205 

6.0 BUS WAVEFORMS ................ 3-206 

FIGURES 

Figure 1 80960CA Die Photo ........ 3-166 

Figure 2 80960CA Block Diagram ... 3-169 

Figure 3 Example Pin Description 
Entry ...................... 3-172 

Figure 4a 80960CA PGA Pinout (View 
from Top Side) ............. 3-180 

Figure 4b 80960CA PGA Pinout (View 
from Bottom Side) ......... 3-181 

Figure 46 80960CA PQFP Pinout (View 
from Top Side) ............. 3-184 

Figure 5 168-Lead Ceramic PGA 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

Figure 14 

Figure 15 

Package Dimensions ...... 3-185 

Principal Dimensions and 
Datum ..................... 3-187 

Molded Details ............. 3-187 

Detail M ................... 3-187 

Terminal Details ........... 3-188 

Typical Lead ............... 3-188 

80960CA PGA Package 
Thermal Characteristics .... 3-189 

80960CA PQFP Package 
Thermal Characteristics .... 3-190 

Measuring 80960CA PGA 
and PQFP Case 
Temperature ............... 3-190 

Register GO ................ 3-191 

AC Test Load .............. 3-200 

Figure 16a Input and Output Clocks 
Waveform ................. 3-200 

3-167 



CONTENTS PAGE 

Figure 16b ClKIN Waveform ........... 3-200 

Figure 17 Output Delay and Float 
Waveform .................. 3-201 

Figure 18a Input Setup and Hold 
Waveform .................. 3-201 

Figure 18b XINTO:7Input Setup and Hold 

Figure 19 

Figure 20 

Figure 21 

Figure 22 

Figure 23 

Waveform .................. 3-201 

Hold Acknowledge 
Timings .................... 3-202 

Bus Back-Off (BOFF) 
Timings .................... 3-202 

Relative-Timings 
Waveforms ................. 3-203 . 

Output Delay or Hold vs load 
Capacitance ................ 3-203 

Rise and Fall Time Derating at 
Highest Operating 
Temperature and Minimum 
Vcc : ....................... 3-204 

Figure 24 Icc vs Frequency and 
Temperature ......•........ 3-204 

Figure 25 Cold Reset Waveform ...... 3-206 

Figure 26 Warm Reset Waveform ..... 3-207 

Figure 27 Entering the ONCETM 
State ....................... 3-208 

Figure 28 Clock Synchronization in the 
2x Clock Mode ............. 3-209 

Figure 29 Non-Burst, Non-Pipelined 
Accesses without Wait 
States ...................... 3-210 

Figure 30 Non-Burst,. Non-Pipelined 
Read with Wait States ...... 3-211 

Figure 31 Non-Burst, Non-Pipelined 
Write with Wait States ...... 3-212 

Figure 32 Burst, Non-Pipelined Read 
without Wait States, 32-Bit 
Bus ........................ 3-213 

Figure 33 Burst, Non-Pipelined Read 
with Wait States, 32-Bit 
Bus ........................ 3-214 

Figure 34 Burst, Non-Pipelined Write 
without Wait States, 32-Bit 
Bus .... ; ................... 3-215 

CONTENTS PAGE 

Figure 35 

Figure 36 

Figure 37 

Figure 38 

Figure 39 

Figure 40 

Figure 41 

Figure 42 

Figure 43 

Figure 44 

Figure 45 

Figure 46 

Figure 47 

Figure 48 

Figure 49 

Figure 50 

Figure 51 

Figure 52 

Figure 53 .. 

Burst, Non-Pipelined Write 
with Wait States, 32-Bit 
Bus ........................ 3-216 

Burst, Non-Pipelined Read 
with Wait States, 16-Bit 
Bus; ....................... 3-217 

Burst, Non-Pipelined Read 
with Wait States,B-Bit 
Bus ........................ 3-218 

Non-Burst, Pipelined Read 
without Wait States, 32-Bit 
Bus ........................ 3-219 

Non-Burst, Pipe lined Read 
with Wait States, 32-Bit 
Bus ........................ 3-220 

Burst, Pipelined Read without 
Wait States, 32-Bit Bus ..... 3-221 

Burst, Pipelined Read with 
Wait States, 32-Bit Bus ..... 3-222 

Burst, Pipelined Read with 
Wait States, 16-Bit Bus ..... 3-223 

Burst; Pipelined Read with 
Wait States, 8-Bit Bus ...... 3-224 

Using External READY ..... 3-225 

Terminating a Burst with 
BTERM .................... 3-226 

BOFF Functional Timing ... 3-227 

HOLD Functional Timing ... 3-227 

DREQ and DACK Functional 
Timing ................... ; .. 3-228 

EOP Functional Timing ..... 3-228 

Terminal Count Functional 
Timing ........... ; ......... 3-229 

FAil Functional Timing .... 3-229 

A Summary of Aligned and 
Unaligned Transfers for Little 
Endian Regions ............ 3-230 

A Summary of Aligned and 
Unaligned Transfers for Little 
Endian Regions 
(Continued) ................ 3-231 

Figure 54 . Idle Bus Operation ......... 3-232 

3-168 



80960CA-33, -25, -16 

1.0 PURPOSE 

This document provides a preview of the electrical 
characteristics expected of the 33, 25 and 16 MHz 
versions of the 80960CA. For a detailed description 
of any 80960CA functional topic, other than para­
metric performance, consult the latest 80960CA 
Product Overview (Order No. 270669), or the 
80960CA User's Manual (Order No. 270710). 

2.0 80960CA OVERVIEW 

The 80960CA is the second-generation member of 
the 80960 Family of embedded processors. The 
80960CA is object code compatible with the 32-bit 
80960 Core Architecture while including Special 
Function Register extensions to control on-chip pe­
ripherals, and instruction set extensions to shift 64-
bit operands and configure on-chip hardware. Multi­
ple 128-bit internal busses, on-chip instruction cach­
ing and a sophisticated. instruction scheduler allow 
the processor to sustain execution of two in'struc­
tions every clock, and peak at execution of 3 instruc­
tions per clock. 

A 32-bit demultiplexed and pipe lined burst bus pro­
vides a 132 Mbyte/s bandwidth to a system's high­
speed external memory sub-system. In addition, the 
80960CA's on-chip caching of instructions, proce­
dure context and critical program data substantially 
decouples system performance from the wait states 
associated with accesses to the system's slower, 
cost sensitive, main memory sub-system. 

The 80960CA bus controller also integrates full wait 
state and bus width control for highest system per­
formance with minimal system design complexity. 
Unaligned access and Big Endian byte order support 
reduces the cost of porting existing applications to 
the 80960CA. 

The processor also integrates four complete c;:lata­
chaining DMA channels and a high-speed interrupt 
controller on-chip. The DMA channels perform: sin­
gle-cycle or two-cycle transfers, data packing and 
unpacking, and data chaining. Block transfers, in ad­
dition to source or destination synchronized trans­
fers are provided. 

The interrupt controller provides full programrnability 
of 248 interrupt sources into 32 priority levels with a 
typical interrupt task switch ("latency") time of 
750 ns. . 

FOUR·CHANNEL 
DMA CONTROLLER 

PROGRAMMABLE 
INTERRUPT CONTROLLER 

(IK byte. Two·way set associative) 

MULTIPLY/DIVIDE 
UNIT 

SIX·PORT 
REGISTER FILE 

Figure 2. 80960CA Block Diagram 

3-169 

270727-2 

• 



int:eL 80960CA-33, -25, -16 

2.1. The C-Series Core 

The C-Series core is a very high performance micro­
architectural implementation of the 80960 Core Ar­
chitecture. The C-Series core can sustain execution 
of two instructions per clock (66 MIPs at 33 MHz). 
To achieve this level of performance, Intel has incor­
porated state-of-the-art silicon technology and inno­
vative microarchitectural constructs into the imple­
mentation of the C-Series core. Factors that contrib­
ute to the core's performance include: 

- Parallel instruction decoding allows issue of up 
to three instructions per clock. 

- Most instructions execute in a single clock. 

- Parallel instruction decode allows sustained, 
simultaneous execution of two single-clock in­
structions every clock cycle. 

- Efficient instruction pipeline is designed to mini-
mize pipeline break losses. . 

- Register and resource scoreboarding allow 
simultaneous multi-clock instruction execution. 

-Branch look-ahead and prediction allows many 
branches to execute with no pipeline break. 

- Local Register Cache integrated on-chip caches 
CalilReturn context. 

- Two-way set associative, 1 Kbyte integrated in­
struction cache 

- 1 Kbyte integrated Data RAM sustains a four­
word (128-bit) access every clock cycle. 

2.2. Pipelined, Burst Bus 

A 32-bit high performance bus controller interfaces 
the 80960CA to external memory and peripherals. 
The Bus Control Unit features a maximum transfer 
rate of 132 Mbytes per second (at 33 MHz). Internal­
ly programmable wait states and 16 separately con­
figurable memory regions allow the processor to in­
terface with a variety of memory subsystems with a 
minimum of system complexity. and a maximum of 
performance. The Bus Controller's main features in­
clude: 

- Demultiplexed, Burst Bus to exploit most efficient 
DRAM access modes 

- Address Pipelining to reduce memory cost while 
maintaining performance . 

- 32-,16- and 8-bit modes for 1/0 interfacing ease. 

- Full internal wait state generation to reduce sys-
tem cost 

- Little and Big Endian support to ease application 
development 

- Unaligned access support for code portability 

- Three-deep request queue to decouple the bus 
from the core 

- Direct interface to Intel's 27C960 Burst EPROM 
.. and 82596 Ethernet Controller. 

2.3. Flexible DMA Controller 

A four channel DMA controller provides high speed 
DMA control for data transfers involving peripherals 
and memory. The DMA provides advanced features 
such as data chaining, byte assembly and disassem­
bly, and a high performance fly-by mode capable of 
transfer speed of up to 59 Mbytes per second at 
33 MHz. The DMA controller features a performance 
and flexibility which is only possible by integrating 
the DMA controller and the 80960CA core. 

2.4. Priority Interrupt Controller 

A programmable-priority interrupt controller man­
ages up to 248 external sources through the 8-bit 
external interrupt port. The Interrupt Unit also han­
dles the 4 internal sources from the DMA controller, 
and a single non-maskable interrupt input. The 8-bit 
interrupt port can also be configured to provide indi­
vidual interrupt sources that are level, or edge trig­
gered. 

Interrupts in the 80960CA are prioritized and sig­
naled within 270 ns of the request. If the interrupt is 
of higher priority than the processor priority, the con­
text switch to the interrupt routine typically is com­
plete in another 480 ns: The interrupt unit provides 
the mechanism for the low latency and high through­
put interrupt service which is essential for embedded 
applications. 

3-170 



80960CA-33, -25, -16 

2.5. Instruction Set Summary 

The following table summarizes the 80960CA instruction set by logical groupings. See the 80960CA User's 
Manual for a complete description of the instruction set. 

Data Arithmetic Logical Bit, Bit Field 
.Movement and Byte 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Neit Not Bit 
Load Address Divide Or Alter Bit 

Remainder Exclusive Or Scan for Bit 
Modulo Not Or Span over Bit 
Shift Or Not Extract 
'Extended Nor Modify 

Shift Exclusive Nor Scan Byte for Equal 
Extended Not 

Multiply Nand 
Extended 

Divide 
Add with 

Carry 
Subtract with 

Carry 
Rotate 

Comparison Branch Call and Return Fault 

Compare Unconditional Call Conditional 
Conditional Branch Call Extended Fault 

Compare Conditional Call System Synchronize 
Compare and Branch Return Faults 

Increment Branch and Link 
Compare and 

Decrement Compare and 
Condition Test Branch 
Check Bit 

Debug Processor Atomic 
Management 

Modify Trace Modify Atomic Add 
Controls Process Atomic Modify 

Mark Controls 
Force Mark Modify 

Arithmetic 
Controls 

'System Control 
*DMA Control 
Flush Local 

Registers 

NOTE: 
Instructions marked by (*) are 80960CA extensions to the 80960 instruction set. 

3-171 



intel® 80960CA-33, -25, -16 

3.0 PACKAGE INFORMATION Table 1. Pin Description Nomenclature 

3.1. Package Introduction 

This section describes the pins, pinouts and thermal 
characteristics for the 80960CA in the 168-pin Ce­
ramic Pin Grid Array (PGA) package and the 196 pin 
Plastic Quad Flat Package (PQFP). For complete 
package specifications and information, see the Intel 
Packaging Specification (Order # 231369). 

3.2. Pin Descriptions 

The 80960CA pins are described in this section. Ta­
ble 1 presents the legend for interpreting the pin de­
scriptions in the following tables. 

The pins associated with the 32-bit demultiplexed 
processor bus are described in Table 2. The pins 
associated with basic processor configuration and 
control are described in Table 3. The pins associat­
ed with the 80960CA OMA Controller and Interrupt 
Unit are described in Table 4. 

Figure 3 provides an example pin description table 
entry. The "1/0" signifies that the data pins are in­
put·output. The "S" indicates the pins aresynchro­
nous to PCLK2:1. The "H(Z)" indicates that these 
pins float while the processor bus is in a Hold Ac­
knowledge state. The "R(Z)" notation indicates that 
the pins also float while RESET is low. 

All pins float while the processor is in the ONCETM 
mode. 

Name Type 

Symbol 

I 

0 

1/0 

-

S( ... ) 

A( ... ) 

H( ... ) 

R( ... ) 

Description 

Description 

Input only pin 

Output only pin 

Pin can be either an input or output 

Pins "must be" connected as 
described 

Synchronous. Inputs must meet setup 
and hold times relative to PCLK2:1 for 
proper operation of the processor. All 
outputs are synchronous to PCLK2:1. 
S(E) Edge sensitive input 
S(L) Level sensitive input 

Asynchronous. Inputs may be 
asynchronous to PCLK2: 1. 
A(E) Edge sensitive input 
A(L) Level sensitive input 

While the processor's bus is in the 
Hold Acknowledge or Bus Backoff 
state, the pin: 

H(1) is driven to Vee 
H(O) is driven to V ss 
H(Z) floats 
H(Q) continues to be a valid output 

While the processor's RESET pin is 
low, the pin 

R(1) is driven to Vee 
R(O) is driven to V ss 
R(Z) floats 
R(Q) continues to be a valid output 

D31:0 1/0 DATA BUS carries 32, 16 or 8-bit data quantities depending on bus width configuration. The 
S(L) least significant bit of the data is carried on 00 and the most significant on 031. When the 
H(Z) bus is configured for 8 bit data, the lower 8 data lines, 07:0 are used. For 16 bit data widths, 

R(Z) 015:0 are used. For 32 bit data the full data bus is used. 

Figure 3. Example Pin Description Entry 

3-172 



80960CA-33, -25, -16 

Table 2. 80960CAPin Description-External Bus Signals 

Name Type Description 

A31:2 0 ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most 
S significant address bit and A2 is the least significant. During a bus access, A31:2 

H(Z) identify all external addresses to word (4-byte) boundaries. The byte enable 

R(Z) signals indicate the selected byte in each word. During burst accesses, A3 and A2 
increment to indicate successive data cycles. 

031:0 I/O DATA BUS carries 32, 16 or 8-bit data quantities depending on bus width 
S(L) configuration. The least significant bit of the data is carried on DO and the most 
H(Z) significant on D31. When the bus is configured for 8 bit data, the lower 8 data 

R(Z) lines, 07:0 are used. For 16 bit bus widths, 015:0 are used. For 32 bit bus widths 
the full data bus is used. 

BE3 0 BYTE ENABLES select which of the four bytes addressed by A31:2 are active 
BE2 S during an access t~emory region configured for a 32-bit data-bus width. BE3 
BE1 H(Z) applies to 031 :24; BE2 applies to 023:16; BE1 applies to 015:8; and BEO applies 

BEO R(I) to 07:0. 
32-bit bus: BE3 -Byte Enable 3 -enable 031 :24 

BE2 -Byte Enable 2 -enable 023:16 
BE1 -Byte Enable 1 -enable 015:8 
BEO -Byte Enable 0 -enable 07:0 

For accesses to a memory region configured for a 16-bit data-bus width, ~ 
processor directly encodes BE3, BE1 and BEO to provided BHE, A 1 and BLE 
respectively. 

16-bit bus: BE3 -Byte High Enable (BHE) -enable 015:8 
BE2 -Not used (is driven high or low) 
BE1 -Address Bit 1 (A1) 
BEO -Byte Low Enable (BLE) -enable 07:0 

For accesses to a memory region co~red for an 8-bit data bus width, the 
processor directly encodes BE1 and BEO to provide A 1 and AO respectively. 

8-bit bus: BE3 -Not used (is driven high or low) 
BE2 -Not used (is driven high or low) 
BE1 -Address Bit 1 (A 1) 
BEO -Address Bit 0 (AO) . 

W/R 0 WRiTE/READ is low (0) for read requests and h.!.9!!J1) for write requests. The 
S W fR signal changes in the same clock cycle as ADS. It remains valid for the entire 

H(Z) access in non-pipelined regions. In pipelined regions, W fR may not be valid in the 

R(O) last cycle of a read access. 

ADS 0 ADDRESS STROBE indicates valid address and the start of a new bus access. 
S ADS is asserted for the first clock of a bus access. 

H(Z) 
R(1) 

READY I READY is an input which Signals the termination of a data transfer. READY is 
S(L) used to indicate that read data on the bus is valid, or that a write-data transfer has 
H(Z) completed. The READY signal works in conjunction with the internally 

R(Z) programmed wait-state generator. If READY is enabled in a region, the p~ 
sampled after the programmed number of wait-states has expired. If the READY 
pin is deasserted high, wait states will continue to be inserted until READY 
becomes asserted low. This is true for the NRAD, NRDD, NWAD, and NWDD wait 
states. The NXDA wait states cannot be extended. 

3-173 



80960CA-33, -25, -16 

Table 2. 80960CA Pin Description-External Bus Signals (Continued) 

Name Type Description 

BTERM I BURST TERMINATE-The burst terminate signal breaks up a burst access and 
S(L) causes another address cycle to occur. The STERM signal works in conjunction 
H(Z) with the internally programmed wait,state generator. If READY and STERM are 
R(Z) enabled in a region, the STERM pin is sampled after the programmed number of 

wait states has expired. When STERM is asserted, additional wait states are 
inserted until STERM is deasserted. When STERM is deasserted, a new ADS 
signal is generated and the access is completed. The READY input is ignored 
when STERM is asserted. STERM must be externally synchronized to satisfy the 
STERM setup and hold times. 

WAIT 0 WAIT indicates the status of the internal wait state generator. WAIT is active 
S when wait states are being caused by the internal wait state generator and not by 

H(Z) the READY or BTERM inputs. WAIT can be used to derive a write·data strobe. 
R(1) WAIT can also be thought of as a READY output that the processor provides 

when it is inserting wait states. 

BLAST 0 BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the 
S last data transfer of burst and non-burst accesses after the wait state counter 

H(Z) reaches zero. BLAST remains active until the clock following the last cycle of the 
R(O) last data transfer of a bus access. If the READY or BTERM input is used to extend 

wait states, the BLAST signal remains active until READY or BTERM terminates 
the access. 

DTIR 0 DATA TRANSMIT IRECEIVE indicates direction for data transceivers. DT fR is 
S used in conjunction with DEti to provide control for data transceivers attached to 

H(Z) the external bus. When DT fR is low (0), the signal indicates that the proce~sor will 
R(O) receive datC\. Conversely, when high (1) the processor will send data. DT fR will 

change only while DEN is high. 

DEN 0 DATA ENABLE indicates data cycles in a bus access. DEN is asserted (low) at 
S the start of the first data cycle of a bus request and is de asserted (high) at the end 

H(Z) of the last data cycle. DEN is used in conjunction with DT /R' to provide control for 
R(1) data transceivers attached to the external bus. DEN remains asserted for 

sequential reads from pipelinedmemory regions. DEN is high when DT/R' 
changes. 

LOCK 0 BUS LOCK indicates that an atomic read-modify-write operation is in progress. 
S LOCK may be used to pr~vent external agents from accessing memory which is 

H(Z) currently involved in an atomic operation. LOCK is asserted (0) in the first clock of 
R(1) an atomic operation, and deasserted in the clock cycle following the last bus 

access for the atomic operation. To allow the most flexibility for a memory system 
enforcement of locked accesses, the processor will acknowledge a bus hold 
request when LOCK is asserted. The processor will perform DMA transfers while 
LOCK is active. 

HOLD I HOLD REQUEST signals that an external agent requests access to the external 
S(L) bus. The processor asserts HOLDA after completing the current bus request. 
H(Z) HOLD, HOLDA,and BREQ are used together to arbitrate access to the 
R(Z) processor's external bus by external bus agents. 

BOFF I BOFF BUS BACKOFF -The backoff pin, when asserted (0), suspends the 
S(L) current access and causes the bus pins to float. When the pin is deasserted (1), 
H(Z) the ADS signal is asserted on the next clock cycle and the access is resumed. 
R(Z) 

3-174 



80960CA-33, -25, -16 

Table 2. 80960CAPin Description-EJ(ternal Bus Signals (Continued) 

Name Type Description 

HOLDA 0 HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has 
S relinquished control of the external bus. When HOLDAis asserted, the external 

H(1) address bus, data bus, and bus control signals are floated. HOLD, BOFF, HOLDA 

R(O) and BREO are used together to arbitrate access to the processor's external bus 
by external bus agents. Since the processor will grant HOLD requests and enter 
the Hold Acknowledge state even while RESET is active, the state of the HOLDA 
pin will be independent of the RESET pin. 

BREQ 0 BUS REQUEST indicates that the processor wishes to perform a bus request. 
S BREO can be used by external bus arbitration logic in conjunction with HOLD and 

H(O) HOLDA to determine when to return mastership of the external bus to the 

R(O) processor. 

DIC 0 DATA OR CODE indicates that a bus request is a data request (1) or a instruction 
S request (0). DIG has the same timing as W /R 

H(Z) 
R(Z) 

DMA 0 DMA ACCESS indicates whether the bus request was initiated by the DMA 
S controller. DMA will be asserted (low) for any DMA request. DMA will be 

H(Z) deasserted (high) for all other requests. 

R(Z) 

SUP 0 SUPERVISOR ACCESS indicates whether the bus request is issued while in 
S supervisor mode. SUP will be asserted (low) when the request has supervisor 

H(Z) privileges, and will be deasserted (high) otherwise. SUP can be used to isolate 

R(Z) supervisor code and data structures from non·supervisor requests. 

Table 3. 80960CA Pin Description-Processor Control Signals 

Name Type Description 

RESET I RESET causes the chip to reset. When RESET is asserted (low), all external signals 
A(L) return to the reset state. When RESET is deasserted, initialization begins. When the 
H(Z) two-x clock mode is selected, RESET must remain asserted for 16 PCLK2:1 cycles 

R(Z) before being deasserted in .order to guarantee correct initialization of the processor. 

N(Z) When the one-x clock mode is selected, RESET must remain asserted for 10,000 
PCLK2:1 cycles before being deasserted in order to guarantee correct initialization of 
the processor. The CLKMODE pin selects one-x or two-x input clock division of the 
CLKIN pin. 
The processor's Hold Acknowledge bus state functions while the chip is reset. If the 
processor's bus is in the Hold Acknowledge state when RESET is activated, the 
processor will internally reset, but will maintain the Hold Acknowledge state on 
external pins until the Hold request is removed. If a hold request is made while the 
processor is in the reset state, the processor bus will grant HOLDA .and enter the Hold 
Acknowledge state. 

FAIL 0 FAIL indicates failure of the processor's self-test performed at initialization. When 
S RESET is deasserted and the processor begins initialization, the FAIL pin is asserted 

H(O) (0). An internal self-test is performed as part of the initialization process. If this self-test 

R(O) passes, the FAIL pin is de asserted (1) otherwise it remains asserted. The FAIL pin is 
reasserted while the processor performs and external bus self-confidence test. If this 
self-test passes, the processor deasserts the FAIL pin and branches to the users 
initialization routine, otherwise the FAIL pin remains asserted. Internal self-test and the 
use of the FAIL pin can be disabled with the STEST pin. 

3-175 



intel® 80960CA-33, -25, -16 

Table 3. 80960CA Pin Description-Processor Control Signals (Continued) 

Name Type Description 

STEST .1 SELF TEST causes the processor's internal self-testfeature to be enabled or 
S(l) disabled at initialization. STEST is read on the rising edge of RESET. When asserted 
H(Z) (high) the processor's internal self-test and external bus confidence tests are 

R(Z) performed during processor initialization. When deasserted (low), only.the internal 
self-test is not performed during initialization. 

ONCETM I ON CIRCUIT EMULATION causes all outputs to be floated when asserted (low), 
A(l) ONCE is continuously sampled while RESET is low, and is latched on the rising edge 
H(Z) of RESET. To place the processor in the ONCE state: 

R(Z) (1 ) assert RESET and ONCE (order does not matter) 
(2) wait for at least 16 ClKIN periods in two-x mode, or 10,000 ClKIN periods in 

one-x mode, after Vee and ClKIN are within operating specifications 
(3) deassert RESET 
(4) wait at least 32 ClKIN periods 

(The processor will now be latched in the ONCE state as long as RESET is high.) 

To exit the ONCE state, bring Vee and ClKIN to operating conditions, then assert 
RESET and bring ONCE high prior to deasserting RESET. 

ClKIN must operate within the specified operating conditions of the processor until 
step 4 above has been completed. The ClKIN may then be changed to DC to 
achieve the lowest possible ONCE mode leakage current. 

ONCE can be used by emulator products or for board testers to effectively make an 
installed processor transparent in the board. 

ClKIN I CLOCK INPUT is an input for the external clock needed to run the processor. The 
A(E) external clock is internally divided as prescribed by the ClKMODE pin to produce 
H(Z) PClK2:1. 

R(Z) 

ClKMODE I CLOCK MODE selects the division factor applied to the external clock input (ClKIN). 
A(L) When ClKMODE is high (1), ClKIN is divided by one to create PClK2:1 and the 
H(Z) processor's internal clock. When ClKMODE is low (0), ClKIN is divided by two to 

R(Z) create PClK2:1 and the processor's internal clock. ClKMODEshouid be tied high, or 
low in a system, as the clock mode is not latched by the processor. If left 
unconnected, the processor will internally pull the ClKMODE pin low (0), enabling the 
two-x clock mode. 

PClK2 0 PROCESSOR OUTPUT CLOCKS provide a timing reference for all inputs and 
PClK1 S outputs of the processor. All inputs and output timings are specified in relation to 

H(Q) PClK2 and PClK1. PClK2 and PClK1 are identical signals. Two output pins are 

R(Q) provided to allow flexibility in the system's allocation of capacitive loading on the 
clock. PClK2:1 may also be connected at the processor to form a single clock signal. 

Vss - GROUND connections consist of 24 pins which must be connected externally to a 
Vss board plane. 

Vee - .. POWER connections consist of 24 pins which must be connected externally to a Vee 
board plane. 

N/C - NOCONNECT pins must not be connected in a system. 

3-176 



InteL 80960CA-33, -25, -16 

Table 4. 80960CA Pin Description-DMA and Interrupt Unit Control Signals 

Name Type Description 

DREQ3 I DMA REQUEST causes a DMA transfer to be requested. Each of the four signals 
DREQ2 A(L) requests a transfer on a single channel. DREQO requests channel 0, DREQ1 

DREQ1 H(Z) requests channel 1, etc. When two or more channels are requested simultaneously, 

DREQO R(Z) the channel with the highest priority is serviced first. The channel priority mode is 
programmable. 

DACK3 0 DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the 
DACK2 S four signals acknowledges a transfer for a single channel. DACKO acknowledges 
DACK1 H(1) channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are active (0) when the 

DACKO R(1) requesting device of a DMA is accessed. 

EOP3/TC3 I/O END OF PROCESS/TERMINAL COUNT can be programmed as either an input 
EOP2/TC2 A(L) (EOP3:0) or as an output (TC3:0), but not both. Each pin is individually 
EOP1/TC1 H(Z/Q) programmable. When programmed as an input, EOPx causes the termination of a 

EOPO/TCO R(Z) current DMA transfer for the channel corresponding to the EOPx pin. EOPO 
corresponds to channel 0, EOP1 corresponds to channel 1, etc. When a channel is 
configured for source and destination chaining, the EOP pin for that channel causes 
termination of only the current buffer transferred and causes the next buffer to be' 
transferred. EOP3:0 are asynchronous inputs. 

When programmed as an output, the channel's TCx pin indicates that the channel 
byte count has reached 0 and a DMA has terminated. TCx is driven with the same 
timing as DACKx during the last DMA transfer for a buffer. If the last bus request is 
executed as multiple bus accesses, TCx will stay asserted for the entire bus request. 

XINT7 I EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can be 
XINT6 A(E/L) configured in three modes. 
XINT5 H(Z) In the Dedicated Mode, each pin is a dedicated external interrupt source. Dedicated 
XINT4 R(Z) inputs can be individually programmed to be level (low) or edge (falling) activated. 

XINT3 In the Expanded Mode, the 8 pins act together as an 8-bit vectored interrupt source. 

XINT2 The interrupt pins in this mode are level activated. Since the interrupt pins are active 

XINT1 low, the vector number requested is the one's complement of the positive logic value 

XINTO 
place on the port. This eliminates glue logic to interface to combinational priority 
encoders which output negative logic. 
In the Mixed Mode, XINT7:5 are dedicated sources and XINT4:0 act as the 5 most 
significant bits of an expanded mode vector. The least significant bits are set to 010 
internally. 

NMI I NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. 
A(E) NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated 
H(Z) source. 

R(Z) 

3-177 



intel® 

3.3. 80960CA Pinout 

3.3.1 80960CA CPGA PINOUT 

80960CA-33, -25, -16 

80960CApinout as viewed from the top side of the 
component (Le., pins facing down). Figure 4b shows 
the complete 80960CA pinout as viewed from the 
pin,side of the package (Le., pins facing up). See 

Tables 5 and 6 list the 80960CA pin names with 
package location. Figure 4-a depicts the complete 

.. 5.ection 4.0, Electrical Specifications for specifica­
tions and recommended connections. 

Table 5. PGA Pin Name with Package Location (Signal Order) 

Address Bus Data Bus 'Bus Control Processor Control I/O 
Name .. Location, Name .. Location Name .. Location Name .... Location Name . . Location 
A31 ........ S15 031 ........ R03 BE3 ........ S05 RESET .......• A16 OREQ3 ..... A07 
A30 ........ Q13 030 ........ Q05 BE2 ........ S06 OREQ2 ..... B06 
A29 ........ R14 D29 ........ S02 BEl ........ S07 FAIL .......... A02 OREQI ..... A06 
A28 ........ Q14 028 ........ Q04 BEO .... ; ... R09 OREQO ..... B05 
A27 ........ S16 027 ........ R02 STEST ........ B02 
A26 ........ R15 026 ......... Q03 W/R ....... S10 OACK3 ..... Al0 
A25 ........ S17 025 : ....... SOl ONCE ........ C03 OACK2 ..... A09 
A24 ........ Q15 024 ........ ROI ADS ....... R06 OACKI ..... A08 
A23 ........ H16 023 ......... Q02 CKLIN ... , .... C13 OACKO ..... B08 
A22 ........ R17 022 ........ P03 READY. ; ... S03 CLKMOOE .... C14 
A21 ...... : .Q16 021 ........ QOl ' BTERM ..... R04 PCLK1 ... :.;. :B14 EOP/TCO ... All 
A20 ........ P15 020 ........ P02 PCLK2 ......•. B13 EOP/TCI ... A12 
A19 ........ P16 019 ........ POI WAIT ....... S12 EOP/TC2 ... A13 
A18 ........ Q17 0.18 ........ N02 BLAST ..... S08 Vss EOP/TC3 " .A14 
A17 ........ P17 017 ........ NOI Location 
A16 ........ N16 016 ........ MOI OT/R ....... Sll C07, C08,G09, XINT7 ...... C17 
A15 ........ N17 015 ........ LOI DEN .. ; .... S09 Cl0, Cll, C12, XINT6 ....... C16 
A14 ........ M17 014 ........ L02 

F15, G03, G15, 
XINT5 ...... B17 H03, H15, J03, 

A13 ........ L16 013 ........ KOI LOCK ...... S14 J15, K03, K15, XINT4 ...... C15 
A12 ........ L17 012 ........ JOI L03, L 15, M03, XINT3 ...... B16 

M15, Q07, Q08, 
All ........ K17 011 ........ HOI HOLD .. , .... R05 Q09, Ql 0, Qll XINT2 ...... A17 

Al0 ........ J17 010 ........ H02 HOLDA ..... S04 Vee XINTI .' ..... A15 
A9 ......... H17 09 ......... GOI BREQ ...... R13 Location XINTO ...... B15 
AS ......... G17 08 ......... FOI B07, B09, Bl0, 
A7 ......... G16 07 ......... EOI O/C ....... . S13 B 11 , B 12, C06, NMI ........ 015 
A6 ......... F17 06 ......... F02 OMA ....... R12 

E15, F03, F16, 
G02, H16, J02, 

A5 ......... E17 05 ......... 001 SUP ....... Q12 J16, K02, K16, M02, 

A4 ......... E16 04 ......... E02 M16, N03, N15, 
Q06, R07, R08, 
Rl0,Rll 

A3 ......... 017 03 ......... COI BOFF ...... BOI No Connect 
A2 ......... 016 02 ......... 002 Location 

01 ......... C02 A01, A03, A04, A05, 
B03, B04, C04, C05, 
003 

~O ......... E03 

3-178 



80960CA-33, -25, -16 

Table 6. PGA Pin Name with Package Location (Pin Order) 

Address Bus Data Bus Bus Control Processor Control 1/0 
Location .. Name Location .. Name Location .. Name Location . ... Name Location .. Name 
A01 ......... NC C01 ......... 03 G01 ......... 09 M01 ......... 016 R01 ........ 024 
A02 ....... FAIL C02 .......... 01 G02 ........ Vee M02 ......... Vee R02 ........ 027 

A03 ......... NC C03 ...... ONCE G03 ........ Vss M03 .......... Vss R03 ........ 031 

A04 ......... NC C04 ......... NC G15 ........ Vss M15 .......... Vss R04 ..... BTERM 
A05 ......... NC C05 ......... NC G16 ......... A7 M16 ......... Vee R05 ...... HOLD 
A06 ..... 0RE01 C06 ........ Vee G17 ......... AB M17 .......... A14 R06 ....... ADS 

A07 ..... ORE03 C07 ........ Vss R07 ........ Vee 
AOB ..... DACK1 COB ........ Vss HOi ........ 011 N01 .......... 017 ROB ........ Vee 
A09 ..... OACK2 C09 ........ Vss H02 ........ 010 N02 .......... 01B R09 ........ BEO 
A10 ..... OACK3 C10 ........ Vss H03 ........ Vss N03 .......... Vee R10 ........ Vee 
A11 ... EOP/TCO C11 ........ Vss H15 ........ Vss N15 .......... Vee R11 ........ Vee 
A12 ... EOP/TC1 C12 ........ Vss H16 ........ Vee N16 .......... A16 R12 ....... OMA 
A13 ... EOP/TC2 C13 ...... CLKIN H17 ......... A9 N17 .......... A15 R13 ...... BREO 

A14 ... EOP/TC3 C14 .. CLKMOOE R14 ........ A29 

A15 ...... XINT1 C15 ...... XINT4 J01 ........ 012 POi .......... 019 R15 ........ A26 

A16 ..... RESET C16 ...... XINT6 J02 ........ Vee P02 .......... 020 R16 ........ A23 

A17 ...... XINT2 C17 ...... XINT7 J03 ........ Vss P03 .......... 022 R17 ........ A22 

J15 ........ Vss P15 .......... A20 

B01 ...... BOFF 001 ......... 05 J16 ........ Vee P16 .......... A19 S01 ........ 025 

B02 ..... STEST 002 ......... 02 J17 ........ A10 P17 .......... A17 S02 ........ 029 
B03 ......... NC 003 ......... NC S03 ..... READY 

B04 ......... NC 015 ........ NMI K01 ........ 013 001 .......... 021 S04 ..... HOLOA 

B05 ..... DREOO 016 ......... A2 K02 ........ Vee 002 .......... 023 S05 ........ BE3 

B06 ..... ORE02 017 ......... A3 K03 ........ Vss 003 .......... 026 S06 ........ BE2 

B07 ........ Vee K15 ........ Vss 004 .......... 02B S07 ........ BE1 

B08 ..... OACKO E01 ......... 07 K16 ........ Vee 005 .......... 030 SOB ..... BLAST 

B09 ........ Vee E02 ......... 04 K17 ........ A11 006 .......... Vee S09 ....... DEN 

B10 ........ Vee E03 ......... 00 007 .......... Vss S10 ....... WIR 

B11 ........ Vee E15 ........ Vee L01 ........ 015 OOB ........... Vss S11 ....... OT/R 

B12 ........ Vee E16 ......... A4 L02 ........ 014 009 .......... Vss S12 ....... WAIT 

B13 ..... PCLK2 E17 ......... A5 L03 ........ Vss 010 .......... Vss S13 ....... . 0/C 
B14 ..... PCLK1 L15 ..... , .. Vss 011 .......... Vss S14 ...... LOCK 

B15 ...... XINTO F01 ......... OB L16 ........ A13 012 ......... SUP S15 ........ A31 

B16 ...... XINT3 F02 ......... 06 L17 ........ A12 013 .......... A30 S16 ........ A27 
B17 ...... XINT5 F03 ........ Vee 014 .......... A2B S17 ........ A25 

F15 ........ Vss 015 .......... A24 

F16 ........ Vee 016 .......... A21 

F17 ......... A6 017 .......... A1B 

3-17.9 



int:eL 80960CA-33, ~25, -16 

S R Q P N M L K J H G F E D C B A 

~ 

sNF NC 025 024 021 019 017 016 015 013 012 011 09 08 07 05 03 

2 ~ 

027 023 V~e FAIL 
2 029 020 018 Vee 014 Vee 010 Vee 06 04 02 01 STEST 

3 
READY 031 026 022 Vee vss vss v;s V;s Vss V;s Vee DO NC ONCE Ne NC 

3 

4 
sTERM 

~ 4 HOLDA 028 NC NC NC 

5 
BE3 HOLD 030 NC DREOO NC 

5 

6 v';;'e 
~ 6 BE2 ADS Vce DAEQ2 OREQl 

7 Bii' vee v;s DREo3 7 
vss vee 

8 
BLAST v~e vss v;s OAcKO B'Aa<r 8 

9 
DEN BEO V;s Vss Vee DACK2 9 

10 ~ ~ C 
DACK3 10 WIA vee vss vss vee 

11 
v~e v;s v;s 

~ 
EOPiTCQ 11 DT/A vee 

12 wiff OMA sUP v;s EOPifCi 12 
vec 

13 O/~ BREa A30 CLKINPCLK2 EOPfTC2 13 

14 coN< ..\29 A28 eLKMOOE PCLK 1 EOPfrC3 14 

15 
A31 A26 ..\24 A20 vee Vss vss Vss vss vss ' vss vss V;e NMJ XINT4 XMO XINT1 

15 

16 
A27 A23 A21 A19 A1S vee A13 v~c v;e vee A7 vee A4 A2 XINT6 XINT3 RESET 

16 

17 
A25 ..\22 Al8 A17 A15 A14 A12 A11 A10 A9 AI! A6 AS A3 XIN17 XINT5 

~ 17 
XINT2 .. 

S R Q P N M L K J H G F E D C B A 
270727-3 

Figure 4a. 80960CA PGA Pinout (View from Top Side) 

3-180 



80960CA-33, -25, -16 

A B C D E F G H J K L M N P Q R S 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NC llOFF 03 05 07 06 09 011 012 013 015 016 017 019 021 024 025 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 FAiL STEST 01 02 04 06 Vee 010 Vee Vee 014 Vee 018 020 023 027 029 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 NC NC ONCE NC DO VCC VSS VSS VSS VSS VSS Vss Vee 022 026 031 READY 

4 0 0 0 0 
BT?RM 

0 4 NC NC NC 028 HOLDA 

5 0 0 0 0 0 Q.... 5 NC iiREOo NC 030 HOLD BE3 

6 ~ 0 0 METAL LID 0 Q 0 6 DREQ1 DREQ2 vcc vee ADS en 

7 DRE~ 0 0 0 0 0 7 
vee vss vss vce BE1 

8 0 
DA'6KO 

0 0 0 0 8 llJ\CK1 vss vss vee BLAST 

9 ~ 0 0 0 Q ~EN 9 DACK2 vee vss vss BEQ 

10 
DAC2 

0 0 0 0 0_ 10 
vce vss vss vee WIR 

11 0 0 0 0 0 0_ 11 EOPffCO vee Vss vss vee OTIR 

12 0 0 0 
SU'? D~A ~ 12 EOPffCl vee Vss WAIT 

13 EOP~2 0 0 0 0 0_ 13 peLK2 CLKIN A30 BREQ O/C 

14 0 0 0 0 0 ~ 14 EOPift3 PCLKl eLKMOOE A26 A29 LOCK 

15 -Sd 0 ~ o 0 0 0 0 0 0 0 0 0 0 0 0 0 15 XINTl XINTQ XINT4 NMI vee vss vss vss vss vss vss vss vee A20 A24 A26 A31 

16 ~ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 RESET XINT3 XINT6 A2 A4 Vee A7 Vee Vee Vee A13 Vee A16 A19 A21 A23 A27 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 XINT2 XINTS XINT7 A3 AS A6 AS A9 A10 A11 A12 A14 A15 A17 A1B A22 A2S .. .A 

A B C 0 E F G H J K L M N P Q R S 
270727:4 

Figure 4b. 80960CA PGA Pinout (View from Bottom Side) 

3-181 



80960CA-33, -25, -16 

3.3.2 80960CA PQFP Pinout See Section 4.0, Electrical Specifications for 
specifications and recommended connections. 

Tables 7 and 8 list the 80960CA pin names with 
package location. 

Table 7. PQFP Pin Name with Package Location (Pin Order) 

Address Bus Data Bus Bus Control Processor Control 

Name .. Location Name .. Location Name . . Location Name . ....... Location 

A31 ........ 153 031 ........ 186 BE3 ........ 176 RESET ........... 091 

A30 ........ 152 030 ........ 187 BE2 ........ 175 

A29 ........ 151 029 ........ 188 BE1 ........ 172 FAil ............. 045 

A28 ........ 145 028 ........ 189 BEO ........ 170 

A27 ........ 144 027 ........ 191 STEST ........... 046 

A26 ........ 143 026 ........ 192 W/R ........ 164 

A25 ........ 142 025 ........ 194 ONCE ............ 043 

A24 ........ 141 024 ........ 195 ADS ........ 178 

A23 ........ 139 023 ........ 003 ClKIN ............ 087 

A22 ........ 138 022 ........ 004 READy ..... 182 ClKMOOE ........ 085 

A21 ........ 137 021 ........ 005 BTERM ..... 184 PClK1 ........... 078 

A20 ........ 136 020 ........ 006 PClK2 ........... 074 

A19 ........ 134 019 ........ 008 WAIT ....... 162 

A18 ........ 133 018 ........ 009 BLAST ...... 169 Vss 
A17 ........ 132 017 ........ 010 Location 
A16 ........ 130 016 ........ 011 OT/R ....... 163 2,7,16,24,30,38, 

A15 ........ 129 015 ........ 013 DEN ........ 167 39,49,56, 70, 75, 

A14 ........ 128 014 ........ 014 
77,81,83,88,89, 
92,98,105,109,110, 

A13 ........ 124 013 ........ 015 lOCK ...... 156 121, 125, 131, 135, 

A12 ........ 123 012 ........ 017 147,150,161,165, 
173,174,185,196 

A11 ........ 122 011 ........ 018 HOLD ...... 181 

A10 ........ 120 010 ........ 019 HOLDA ..... 179 Vee 
A9 · ........ 119 09 ......... 021 BREQ ...... 155 Location 
A8 · ........ 118 08 ......... 022 1,12,20,28, 
A7 ......... 117 07 ......... 023 O/C ........ 159 32,37,44,50, 

A6 · ........ 116 06 ......... 025 OMA ....... 160 
61,71,72,79, 
82, 96, 99, 103, 

A5' ......... 114 05 ......... 026 SUP ........ 158 115,127,140,148, 

A4 ......... 113 04 ......... 027 154, 168, 171, 180, 
190 

A3 · ........ 112 03 ......... 033 BOFF ....... 040 No Connect 
A2 ......... 111 02 ......... 034 Location 

01 ......... 035 29,41,42,47, 
48,51,52,53, 
54, 55, 73, 76, 
80, 84, 86, 90, 97, 
104,126,146,149,157, 
166,177,183,193 

DO ......... 036 

3·182 

110 
Name .. Location 
OREQ3 ..... 060 

OREQ2 ..... 059 

OREQ1 ..... 058 

OREQO ..... 057 

OACK3 ..... 065 

OACK2 ..... 064 

OACK1 ..... 063 

OACKO ..... 062 

EOP/TC3 ... 069 

EOP/TC2 ... 068 

EOP/TC1 ... 067 

EOP/TCO ... 066 

XINT7 ...... 107 

XINT6 ...... 106 

XINT5 ...... 102 

XINT4 ...... 101 

XINT3 ...... 100 

XINT2 ...... 095 

XINT1 ...... 094 

XINTO ...... 093 

NMI ........ 108 



80960CA-33, -25, -16 

Table 8. PQFP Pin Name with Package Location (Pin Order) 
Pin Signal Pin Signal Pin Signal Pin Signal 
1 Vee 50 Vee 99 Vee 148 Vee 
2 Vss 51 NC 100 XINT3 149 NC 
3 023 52 NC 101 XINT4 150 Vss 
4 022 53 NC 102 XINT5 151 A29 
5 021 54 NC 103 Vee 152 A30 
6 020 55 NC 104 NC 153 A31 
7 Vss 56 Vss 105 Vss 154 Vee 
8 019 57 OREQO 106 XINT6 155 BREQ 
9 018 58 OREQ1 107 XINT7 156 lOCK 
10 017 59 OREQ2 108 NMI 157 NC 
11 016 60 OREQ3 109 Vss 158 SUP 
12 Vee 61 Vee 110 Vss 159 O/C 
13 015 62 OACKO 111 A2 160 OMA 
14 014 63 OACK1 112 A3 161 Vss 
15 013 64 OACK2 113 A4 162 WAIT 
16 Vss 65 OACK3 114 A5 163 OT/R 
17 012 66 EOPO/TCO 115 Vee 164 W/R 
18 011 67 EOP1/TC1 116 A6 165 Vss 
19 010 68 EOP2/TC2 117 A7 166 NC 
20 Vee 69 EOP3/TC3 118 A8 167 DEN 
21 09 70 Vss 119 A9 168 Vee 
22 08 71 Vee 120 A10 169 BLAST 
23 07 72 Vee 121 Vss 170 BEO 
24 Vss 73 NC 122, A11 171 Vee 
25 06 74 PCLK2 123 A12 172 BE1 
26 05 75 Vss 124 A13 173 Vss 
27 04 76 NC ' , 125 Vss 174- Vss 
28 Vee 77 Vss 126 NC 175 BE2 
29 NC 78 PClK1 127 Vee 176 BE3 
30 Vss 79 Vee 128 A14 177 NC 
31 NC 80 NC 129 A15 178 ADS 
32 Vee 81 Vss 130 A16 179 HlOA 
33 03 82 Vee 131 Vss 180 Vee 
34 02 83 Vss 132 A17 181 HOLD 
35 01 84 NC 133 A18 182 READY 
36 DO 85 ClKMOOE 134 A19 183 NC 
37 Vee 86 NC 135 Vss 184 BTERM 
38 Vss 87 ClKIN 136 A20 185 Vss 
39 Vss 88 Vss 137 A21 186 031 
40 BOFF 89 Vss 138 A22 187 030 
41 NC 90 NC 139 A23 188 029 
42 NC 91 RESET 140 Vee 189 028 
43 ONCE 92 Vss 141 A24 190 Vee 
44 Vee 93 XINTO 142 A25 191 027 
45 FAIL 94 XINT1 143 A26 192 026 
46 STEST 95 XINT2 144 A27 193 NC 
47 NC 96 Vee 145 A28 194 025 
48 NC 97 NC 146 NC 195 024 
49 Vss 98 Vss 147 Vss 196 Vss 

3-183 



inteL 80960CA-33, -25, -16 

98 50 

49 

PIN 1 

148 196 
270727-53 

Figure 4c. 80960CA PQFP Pinout (View from Top Side) 

3-184 



intel· 80960CA-33, -25, -16 

3.4. Mechanical Data 

3.4.1 CERAMIC PGA PACKAGE 

SEATING __ 

I'j' 
0 

S1~'~ 
PLANE __ A 

01 
A3-- r-r 

III 1.65 @@@@@@@@@@@@@@@@@ + .:t~~ 
RL @@@@@@@@@@@@@@@@@ t-I-
t 

@@@@@@@@@@@@@@@@@ 
81 -

@@@ @@@ ... 
@@@ @@@ ... 
@@@ @@@ - SEATING - PLANE~ @@@ @@@ - IllB (ALL PINS) 
@@@ ( '\ @@@ <= 

t=~ @@@ @@@ 0 <= 

@@@ @@@ .... 
PIN C3~ @@@ "- ./ @@@ .... SWAGGED 

@@@ @@@ ... PIN 
DETAIL 

~ ®@@ -
@ @ @@@ -
@@O@@@@@@@@@@@ii: ' .. 
@@@@@@@@@@@@@@@o@ -L @@@@@@@@@@@@@@@o@ ... 

r- \ -
A1-+ I- L 2.29 REF SWAGGED 

1.52 • PIN BASE- A2 
45° CHAMFER (4 PL) PLANE-

(INDEX CORNER) 

270727-52 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max Notes 

A 3.56 4.57 0.140 0.180 

A1 0.64 1.14 SOLID LID 0:025 0.045 SOLID LID 

A2 23 0.30 SOLID LID 0.110 0.140 SOLID LID 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

D 44.07 44.83 1.735 1.765 

D1 40.51 40.77 1.595 1.605 

81 2.29 2.79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

S1 1.52 2.54 0.060 0.100 

ISSUE IWS REVX 7/15/88 

Figure 5. 1G8-Lead Ceramic PGA Package Dimensions 

3-185 



inteL 80960CA.;33, ~25, -16 

Table 9. Ceramic PGA Package Dimension Symbols 

Letter or Description of Dimensions 
Symbol .. 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

81 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non·cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "S", "Sl" and "C" are nominal. 
5. Details of Pin 1 identifier are optional. 



80960CA-33, -25, -16 

3.4.2 PLASTIC QUAD FLAT PACKAGE 

E2 

mm (inch) 

mm (inch) 

mm (inch) 

A 
-C- SEATING PLANE 
o 0.10 (.004) 

Figure 6. Principal Dimensions and Datums 

~oo 
1 ~ 10.25 (.010)@lcIA®-B®ID®lA 
1 ~I .002 MM/MM <IN/IN) 1 A-B 1 

Dl 
1~10.25 (.01H)@ICIA®-B®ID®lA 
1 ~1·002 MM/MM (IN/IN) IA-BI 

rri .1;1 
j 

3.81 (.150) MAX TYP 

I 

• • 
-=.,,-SEE DETAIL M 

,"') - f- 1. 91 (.075) MAX TYP 

~ H.25 (.01H)@lcIA®-B® D® 
~ . H02 MM/MM (IN/IN) D 

~ 10.25 <-010)@lcIA®-B®ID®1& 
~1.002 MM/MM (IN/IN) IDI 

I 

Figure 7. Molded Details 

1.32 
1.22 

1.32 (.052) 

1.22 (.048) ~ 
0.90 (.035) MIN. 

2.03 (.080) 
1.93 (.07b) 

----D2 ----I 

270727-54 

270727-55 

270727-58 

Figure 8. Detail M 

3-187 

II 



mm (inch) 

mm (inch) 

80960CA-33, -25, -16 

-11-\0.635 '0.025)\ 

lk SEE DETAIL L 

. '-l--It-SEE OETAIL J 

f--.. 03/E3-----1 
04/E4----I 

O/E----I 

Figure 9. Terminal Details 

--D4/E4 

r:\ ~.-r.:1 0:-:. 2"'9--:'--:. e=e"'e )"'@"I'-c 0.1 .",,®<",-'="B®"'s -r.1 D""®~IM 

DetailJ Detail L 

. Figure 10. Typical Lead 

270727-56 

e DEG. 
D DEG. 

270727-57 

Table 10. PQFP Package Dimension Symbols 

Symbol Description Min Max Min Max 

N Leadcount 196 196 

A Package Height 0.160 0.170 4.06 4.32 

A1 Standoff 0.020 0.030 0.51 0,76 

D,E Terminal Dimension 1.475 1.485 37.47 37.72 

01, E1 Package Body 1.347 1.353 34.21 34.37 

D2,E2 Bumper Distance 1.497 1.503 38.02 38.18 

D3,E3 Lead Dimension 1.200 REF 30.48 REF 

D4,E4 Foot Radius Location 1.423 1.437 36.14 36.49 

L1 Foot Length 0.020 0.030 0.51 0.76 

Dimension INCH mm 

NOTES: 
1. All dimensions and tolerances conform to ANSI Y14.SM-1982. 
2. Datum plane -H-Iocated at the mold parting line and coincident with the bottom of the.lead where lead exits plastiC body. 
3. Datums A-8 and -D- to be determined where center leads exit plastic body at datum plane -H-. 
4. ContrOlling Dimension, Inch. 
5. Dimensions D1, D2, E1 and E2 are measured at the mold parting line. D1 and E1 do not include an allowable mold 
protrusion of 0.18 mm (0.007 in) per side. D2 and E2 do not include a total allowable mold protrusion of 0.18 mm (0.007 in) 
at maximum package size. ' 
6. Pin 1 identifier is located within one of the two zones indicated. 
7. Measured at datum plane -H-. 
8. Measured at seating plane datum -C-. 

3-188 



intel® 80960CA-33, -25, -16 

3.5. Package Thermal Specifications 

The 80960CA is specified for operation when T c 
(the case temperature) is within the range of O°C-
100°C. T c may be measured in any environment to 
determine whether the 80960CA is within specified 
operating range. The case temperature should be 
measured at the center of the top surface, opposite 
the pins. Refer to Figure 13. 

T A (the ambient temperature) can be calculated 
from ()CA (thermal resistance from case to ambient) 
with the following equation: 

TA = Tc - P'OCA 

Table 11 shows the maximum T A allowable (without 
exceeding T cl at various airflows and operating fre­
quencies (fPCLK)' 

Note that T A is greatly improved by attaching fins or 
a heat sink to the package. P (the maximum power 
consumption) is calculated by using the typical Icc 
as tabulated in Section 4.4, DC Characteristics, 
and Vcc of 5V. 

Table 11. Maximum T A at Various Airflows In °C (PGA Package Only) 

Airflow-ft/min (m/sec) 

fpCLK 0 200 400 600 BOO 1000 
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

TA 33 51 66 79 81 85 87 
with 25 61 73 83 85 88 89 
Heat Sink' 16 74 82 89 90 92 93 

TA 33 36 47 59 66 73 75 
without 25 49 58 67 73 78 80 
Heat Sink 16 66 72 78 82 86 87 

.. , 0.2B5" high unidirectional heat smk (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fm spacmg). 

PGA Thermal Resistance-oC/Watt 

Airflow-ft.!min (m/sec) 

Parameter 0 200 400 600 BOO 1000 
(0) (1.01) (2.03) (3.07) (4.06) (5.07) 'J. 

() Junction-to-Case 
OJ pin r-'\ ·Jo 

(Case Measured 1.5 1.5 1.5 1.5 1.5 1.5 
as shown in Figure 13) I OJ cap I 
() Case-to-Ambient 

17 14 11 9 7.1 6.6 UUlJ UUD (No Heatsink) 
270727-59 

() Case-to-Ambient 
(with Unidirectional) 13 9 5.5 5.0 3.9 3.4 
Heatsink)* 

NOTES: 
1. This table applies to B0960CA PGA plugged into socket or soldered directly 
into board. 
2.0JA = OJC + 0CA· 
3. OJ-CAP = 4'C/W (approx.) 

OJ-PIN = 4'C/W (inner pins) (approx.) 
OJ-PIN = BOC/W (outer pins) (approx.) 

, 0.285" high unidirectional heat sink (AI alloy 6061, 50 mil fin width, 150 mil 
center-to-center fin spacing). 

Figure 11. B0960CA PGA Package Thermal Characteristics 

3-189 



intel" 80960CA-33, -25, -16 

PQFP Thermal Resistance-oC/Watt 

Airflow-ft.lmin (m/sec) 
, Parameter 0 50 100 200 400 600 

(0) (0.25) (0.50) (1.01) (2.03) (3.04) 

(J Junction-to-Case 
(Case Measured) 5 5 5 5 5 5 
as shown in Figure 13) 

e Case-to-Ambient 
19 18 17 15 12 10 

(No Heatsink) 

NOTES: 
1. This table applies to B0960CA PQFP soldered directly into board. 
2. 0JA = 0JC + 0CA· 
3. l/JL = 18'C/Walt 

0J8 = 1B'C/Walt 

.800 
(4.06) 

5 

9 

270727-60 

Figure 12. 80960CA PQFP Package Thermal Characteristics 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

270727-61 

MEASURE PQFP TEMPERATURE AT 
CENTER OF TOP SURFACE 

o 

270727-62 

Figure 13. Measuring 80960CA PGA and PQFP Case Temperature 

3-190 



80960CA-33, -25, -16 

3.6 Stepping Register Information 

Upon Reset, Register GO contains die stepping in­
formation. The following figure shows how GO is 
configured. The most significant byte contains an 
ASCII o. The upper middle byte contains an ASCII C. 
The lower middle byte contains an ASCII A. The 
least significant byte contains the stepping number 
in ASCII. GO retains this information until it is written 
over by the user program. 

Table 12 contains a cross reference of the number 
in the least significant byte of register GO to the die 
stepping number. 

ASCII 

DECIMAL 

MSB 

Stepping Number 

Stepping Number 

LSB 

Figure 14. Register GO 

Table 12. Die Stepping Cross Reference 

GO Least 
Die Stepping 

Significant Byte 

01 B 

02 C-1 

03 C-2 

04 D 

3.7 Suggested Sources for 80960CA 
Accessories 

The following are some suggested sources of ac­
cessories for the 80960CA. They are not an en­
dorsement of any kind, nor a warranty of the per­
formance of any of the listed products and/or com­
panies. 

Sockets 

1. 3M Textool Test and Interconnection Products 
Department 
P.O. Box 2963 
Austin, TX 78769-2963 

2. Augat, Inc. 
Interconnection Products Group 
33 Perry Avenue 
P.O. Box 779 
Attleboro, MA 02703 
(508) 222-2202 

3. Concept Manufacturing Inc. 
(Decoupling Sockets) . 
43024 Christy Street 
Fremont, CA 94538 
(415) 651-3804 

Heat Sinks/Fins 

1. Thermalloy, Inc. 
2021 West Valley View Lane 
Dallas, TX 75381-0839 
(214) 243-4321 

2. E G & G Division 
60 Audubon Road 
Wakefield, MA 01880 
(617) 245-5900 

3-191 



inlet 80960CA-33, -25, -16 

4.0 ELECTRICAL SPECIFICATIONS 

4.1 Absolute Maximum Ratings 
Parameter Maximum Rating 

Storage Temperature -65 'C to + 150 'C 
Case Temperature Under Bias -65 'c to +110'(; 
Supply Voltage wrt. Vss - 0.5V to + 6.5V 
Voltage on Other pins wrt Vss -0.5V to Vcc'+0.5V 

4.2. Operating Conditions 

NOTICE: This is a production data sheet. The .specifi­
cations are subject tq change without notice. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause ·permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. . . 

Operating Conditions (80960CA-33, -25, -16) 

Symbol Parameter Min Max Units Notes 

VCC Supply Voltage 80960CA-33 . 4.75 5.25 
80960CA-25 4.50 5.50 V 
80960CA-16 4,50 5.50 

fClK2x Input Clock Frequency (2-x Mode) 80960CA-33 0 66 MHz 
80960CA-25 0 50 MHz 
80960CA-16 0 32 MHz 

fClKlx Input Clock Frequency (1-x Mode) 80960CA-33 8 33 MHz 
80960CA-25 8 25 MHz (1 ) 
80960CA-16 8 16 MHz 

Tc Case Temperature Under Bias PGAPackage 0 100 'c 80960CA-33, -25, -16 196-Pin PQFP 0 100 

NOTE: 
(1) When in the 1-x input clock· mode, ClKIN is an input to an internal phase-locked loop and must maintain a minimum 
frequency of 8 MHz for proper processor operation. However, in the 1-x Mode, ClKIN may still be stopped when the 
processor either is in a reset condition or is reset. If ClKIN is stopped, the specified RESET low time must be provided once 
ClKIN restarts and has stabilized. 

4.3 Recommended Connections 

Power and ground connections must be made to 
multiple Vcc and Vss (GND) pins. Every 80960CA­
based circuit board should include power (Vce) and 
ground (Vss) planes for power distribution. Every 
VCC pin must be connected to the power plane, and 
every Vss pin must be connected to the ground 
plane. Pins identified as "N.C." must not be con­
nected in the system. 

Liberal decoupling capacitance should be placed 
near the 80960CA. The processor can cause tran­
sierit power surges when its numerous output buff­
ers transition, particularly when connected to large 
capacitive loads. 

Low· inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
the board traces between the processor and decou­
piing capacitors as much as possible. Capacitors 
specifically designed for PGA packages will offer the 
lowest possible inductance. 

For reliable operation, always connect unused in­
puts to an appropriate si~ level. In particular, any 
unused interrupt (XI NT, NMI) or DMA (DREQ) input 
should be connected to Vcc through a pull-up resis­
tor, as should BTERM if not used. Pull-up resistors 
should be in the range of 20 KO for each pin tied 
high. If READY or HOLD are not used, the unused 
input should be connected to ground. N.C_ pins 
must always remain unconnected. Refer to the 
80960CA User's Manual for more information. 

3-192 



80960CA-33, -25, -16 

4.4. DC Specifications 
DC Characteristics 

(80960CA-33, -25, -16 under the conditions described in Section 4.2, Operatin!,) Conditions.) 

Symbol Parameter 

VIL Input Low Voltage for all pins except RESET 

VIH Input High Voltage for all pins except RESET 

VOL Output Low Voltage 

VOH Output High Voltage IOH = -1mA 
IOH = - 200fLA 

VILR Input Low Voltage for RESET 

VIHR Input High Voltage for RESET 

IU1 Input Leakage Current for each pin except 
BTERM, ONCE, DRE03:0, STEST, 
EOP3:0ITC3:0, NMI, XINT7:0, 
READY,HOLD,BOFF,CLKMODE 

IU2 Input Leakage Current for: 
BTERM, ONCE, DRE03:0, STEST, 
EOP3:0/TC3:0, NMI, XINT7:0, BOFF 

IU3 Input Leakage Current for: 
READY, HOLD, CLKMODE 

ILO Output Leakage Current 

IcC Supply Current (80960CA-33) 
IcC Max 
Icc Typ 

ICC Supply Current (80960CA-25) 
IcC Max 
IccTyp 

Icc Supply Current (80960CA-16) 
IcC Max 
ICCTyp 

IONCE ONCE-mode Supply Current 

CIN Input Capacitance for: 
CLKIN,RESET, ONCE, 
READY, HOLD, DRE03:0, BOFF 
XINT7:0, NMI, BTERM, CLKMODE 

COUT Output Capacitance of each output pin 

CliO 1/0 Pin Capacitance 

NOTES: 
(1) No Pull-up or pull-down. 
(2) These pins have internal pullup resistors. 
(3) These pins have internal pulldown resistors. 

Min Max Units Notes 

-0.3 0.8 V 

2.0 Vcc + 0.3 V 

0.45 V IOL = 5 mA 

2.4 V 
Vcc - 0.5 V 

- 0.3 1.5 V 

3.5 Vcc + 0.3 V 

±15 p.A OVsVINsVCC (1) 

0 -300 p.A VIN = 0.45V (2) 

0 500 p.A VIN = 2.4V (3) 

±15 fLA O.45VsVOUTsVCC 

900 mA (4) 
750 (5) 

750 mA (4) 
600 (5) 

550 mA (4) 
400 (5) 

100 mA 

0 12 pF Fe = 1 MHz 

12 pF Fc = 1 MHz, (6) 

12 pF Fc = 1 MHz 

(4) Measured at worst case frequency, Vee and temperature, with device operating and outputs loaded to the test conditions 
described in Section 4.5.1, AC Test Conditions. . 
(5) Ice Typical is not tested. 
(6) Output Capacitance is the capacitive load of a floating output. 
(7) CLKMODE pin has a pull down resistor only when ONCE pin is deasserted. 

3-193 



80960CA-33, -25, -16 

4.5 AC Specification 

AC Characteristics - 80960CA-33 
(80960CA-33 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, 
AC Test Conditions.) 

Symbol Parameter Min Max Units Notes 

INPUT CLOCK(10) 

TF ClKIN Frequency 0 66 MHz (1 ) 

Tc ClKIN Period In One-X.Mode (fCLK1x) 30.3 125 ns (1,12) 
In Two-X Mode (fCLK2x) 15.15 00 ns (1 ) 

Tcs ClKIN Period Stability In One-X Mode (fCLK1x) ±0.1% I!.. (1,13) 

TCH ClKIN High Time In One-X Mode (fCLK1x) 6 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 6 00 ns (1 ) 

TCL ClKIN low Time In One-X Mode (fCLK1x) 6 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 6 00 ns (1 ) 

TCR ClKIN Rise Time 0 6 ns (1 ) 

TCF ClKIN Fall Time 0 6 ns (1 ) 

OUTPUT CLOCKS(9) 

Tcp ClKIN to PClK2:1 Delay In One-X Mode (fCLK1x) -2 2 ns (1,3,13,14) 
In Two-X Mode (fCLK2x) 2 25 ns (1,3) 

T PClK2:1 Period In One-X Mode (fCLK1x) TC ns (1,i 3) 
In Two-X Mode (fCLK2x) 2Tc ns (1,3) 

TpH PClK2:1 High Time 
... 

(T/2) - 2 T/2 ns (1,13) 

TpL PClK2:1 low Time (T/2) - 2 T/2 ns (1,13) 

TpR PClK2:1 Rise Time 1 4 ns (1,3) 

TpF PClK2:1 Fall Time 1 4 ns (1,3) 

SYNCHRONOUS OUTPUTS(10) 

Tov Output Valid Delay, Output Hold (6,11) 
TOH TOV1' TOH1 A31:2 3 14 ns 

TOV2' TOH2 BE3:0 3 16 ns 
TOV3, TOH3 ADS 6 18 ns 
TOV4' TOH4 W/A 3 18 ns 
TOV5, TOH5 DIG, SUP, DMA 4 16 ns 
TOV6, TOH6 BLAST, WAIT 5 16 ns 
TOV?, TOH? DEN 3 16' ns 
TOV8, TOH8 HOLDA, BREQ 4 16 ns 
TOV9, TOH9 lOCK 4 16 ns 
TOV1O, TOH10 DACK3:0, EOP3:0/TC3:0 3 18 ns 
TOV11 , TOH11 D31:0 3 16 ns 
TOV12' TOH12 DT/A T/2 + 3 T/2. + 14 ns 
TOV13, TOH13 FAil 2 14 ns (6,11) 

TOF Output Float for all outputs 3 22 ns (6) 

SYNCHRONOUS INPUTS(10) 

TIS Input Setup 
TIS1 D31:0 3 ns (1,11) 
TIS2 BOFF 17 ns (1,11 ) 
TIS3 BTERM/READY 7 ns 0,11) 
TIS4 HOLD 7 ns (1,11 ) 

TIH Input Hold 
TIH1 D31:0 5 ns (1,11 ) 
TIH2 BOFF 5 , ns (1,11 ) 
TIH3 BTERM/READY 2 ns (1,11) 
TIH4 HOLD 3 ns (1; 11) 

3-194 



intel® 80960CA-33, -25, -16 

AC Characteristics - 80960CA-33 
80960CA-33 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.t, 
AC Test Conditions.) (Continued) 

Symbol Parameter Min Max 

RELATIVE OUTPUTTIMINGS(9,7) 

TAVSH1 A31:2 Valid to ADS Rising T-4 T+4 

TAVSH2 BE3:0, WIR, SUP, DIG, 
DMA, DAGK3:0 Valid to ADS Rising T-6 T+6 

TAVEL1 A31:2 Valid to DEN Falling T-4 T+4 

TAVEL2 BE3:0, WIR, SUP, INST, 
DMA, DAGK3:0 Valid to DEN Falling T-6 T+6 

TNLQV WAIT Falling to Output Data Valid ±4 

TOVNH Output Data Valid to WAIT Rising N*T - 4 N*T + 4 

TNLNH WAIT Falling to WAIT Rising N*T ± 4 

TNHQX Output Data Hold after WAIT Rising (N + 1) • T - 4 (N + 1) * T + 4 

TEHTV DT/R Hold after DEN High T/2 - 4 00 

TTVEL DT IR Valid to DEN Falling T/2 - 4 T/2 + 4 

RELATIVE INPUT TIMINGS(7) 

TIS5 RESET Input Setup 6 

TIH5 RESET Input Hold 5 

TIS6 DREQ3:0 Input Setup 12 

TIH6 DREQ3:0 Input Hold 7 

TIS7 XINT7:0, NMllnput Setup 7 

TIH7 XINT7:0, NMllnput Hold 3 

NOTES: 
(1) See Section 4.5.2, AC Timin9 Waveforms for waveforms and definitions. 
(2) See Figure 22 for capacitive derating information for output delays and hold times. 
(3) See Figure 23 for capacitive derating information for rise and fall times. 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns (4) 

ns (4) 

ns (5) 

ns (6) 

ns (7) 

ns (15) 

ns (15) 

ns (8) 

ns (8) 

ns (15) 

ns (15) 

(4) Where N is the number of NRAD, NRDD, NWAD, ~DD wait states that are programmed in the Bus Controller Region 
Table. When there are no wait states in an access, WAIT never goes active. 
(5) N = Number of wait states inserted with READY. 
(6) Output Data and/or DT /Rmay be driven indefinitely following a cycle if there is no subsequent bus activity. 
(7) See Notes 1, 2 and 3. 
(8) Since asynchronous inputs are synchronized internally by the 80960CA they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular rising 
edge of PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive 
PCLK2:1 rising edges to be seen by the processor. 
(9) These specifications are guaranteed by the processor. 
(10) These specifications must be met by the system for proper operation of the processor. 
(11) This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3 to adjust the timing for 
PCLK2:1 loading. 
(12) In the One-x input clock mode the maximum input clock period is limited to 125 ns while the processor is operating. 
When the processor is in reset, the input clock may stop even in One-x mode. 
(13) When in the One-x input clock mode, these specifications assume a stable input clock with a period variation of less 
than ±O.l% between adjacent cycles. 
(14) This parameter is not tested. 
(15) Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular 
falling edge of PCLK2: 1 the setup times shown must be met. Asynchronous inputs must be active for at least twoconsecu­
tive PCLK2:1 falling edges to be seen by the processor. 

3-195 



intel~ 80960CA-33, -25,-16 

AC Characteristics - 80960CA-25 
(80960CA-25 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, 
AC Test Conditions.) 

Symbol Parameter Min Max Units Notes 

INPUT CLOCK(10) 

TF ClKIN Frequency 0 50 MHz (1 ) 

Tc ClKIN Period In One-X Mode (fCLK1x) 40 125 ns (1,12) 
In Two-X Mode (fCLK2x) 20 00 ns (1) 

Tcs ClKIN Period Stability In One-X Mode (fCLK1x) ±0.1% !1 (1,13) 

TCH ClKIN High Time In One-X Mode (fCLK1x) 8 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 8 00 ns (1) 

TCL ClKIN low Time In One-X Mode (fCLK1x) 8 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 8 ". 00 ns (1 ) 

TCA ClKIN Rise Time 0 6 ns (1 ) 

TCF elKIN Fall Time 0 6 ns (1 ) 

OUTPUT CLOCKS(9) 

TCp ClKIN to PClK2:1 Delay In One-X Mode (fCLK1x) -2 2 ns (1,3,13,14) 
In Two-X Mode (fCLK2x) 2 25 ns (1,3) 

T PClK2:1 Period In One-X Mode (fCLK1x) TC ns (1,13) 
In Two-X Mode (fCLK2x) 2Tc ns (1,3) 

TpH PClK2:1 High Time (T/2) - 3 T/2 ns (1,13) 

TpL PClK2:1 low Time (T/2) - 3 T/2 ns (1,13) 

TpA PClK2:1 Rise Time 1 4 ns . (1,3) 

TpF PClK2:1 Fall Time 1 4 ns (1,3) 

SYNCHRONOUS OUTPUTS(10) 

Tov Output Valid Delay, Output Hold (6, 11) 
TOH TOV1' TOH1 A31:2 3 16 ns 

TOV2' TOH2 BE3:0 3 18 ns 
TOV3, TOH3 ADS 6 20 ns 
TOV4, TOH4 W/R ·3 20 ns 
TOV5, TOH5 D/C,SUP,DMA 4 18 . ns 
TOV6, TOH6 BLAST, WAIT 5 18 ns 
TOV7' TOH7 DEN 3 18 ns 

TOVB' TOHB HOLDA, BREQ 4 18 ns 
TOV9, TOH9 lOCK 4 18 ns 
T OV10, TOH10 DACK3:0, EOP3:0/TC3:0 4 20 ns 
TOV11' TOH11 031:0 3 18 ns 

TOV12' TOH12 DT/R T/2 + 3 T/2 + 16 ns 
TOV13, TOH13 FAil 2 16 ns (6,11 ) 

TOF Output Float for all outputs 3 22 ns (6) 

SYNCHRONOUS INPUTS(10) 

TIS Input Setup 
TIS1 031:0 5 ns (1,11 ) 
TIS2 BOFF 19 ns (1,11 ) 

I 
TIS3 BTERM/READY 9 ns (1,11) 
TIS4 HOLD 9 ns (1,11 ) 

TIH Input Hold 
TIH1 031:0 5 ns (1,11 ) 
TIH2 BOFF 7 ns (1,11 ) 
TIH3 BTERM/READY 2 ns (1,11 ) 
TIH4 HOLD 5 ns (1,11 ) 

3-196 



80960CA-33, -25, -16 

AC Characteristics - 80960CA-25 
(80960CA-25 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, 
AC Test Conditions.) (Continued) 

Symbol Parameter Min Max 

RELATIVE OUTPUT TIMINGS(9,7) 

TAVSH1 A31:2 Valid to ADS Rising T-4 T+4 

TAVSH2 BE3:0, W/R, SUP, DIG, 
DMA, DAGK3:0 Valid to ADS Rising T-6 T+6 

TAVEL1 A31:2 Valid to DEN Falling T-4 T+4 

TAVEL2 BE3:0, W/R, SUP, INST, 
DMA, DAGK3:0 Valid to DEN Falling T-6 T+6 

TNLQV WAIT Falling to Output Data Valid ±4 

TDVNH Output Data Valid to WAIT Rising N*T-4 N*T + 4 

TNLNH WAIT Falling to WAIT Rising N*T ± 4 

TNHQX Output Data Hold after WAIT Rising (N + 1)' T - 4 (N + 1)' T + 4 

TEHTV DT IR Hold after DEN High T/2 - 4 00 

TTVEL DT IR Valid to DEN Falling T/2 - 4 T/2 + 4 

. RELATIVE INPUT TIMINGS(7) 

TIS5 RESET Input Setup 8 

TIH5 RESET Input Hold 7 

TIS6 DREQ3:0 Input Setup 14 

TIH6 DREQ3:0 Input Hold 9 

TIS7 XINT7:0, NMllnput Setup 9 

TIH7 XINT7:0, NMllnput Hold 5 

NOTES: 
(1) See Section 4.5.2, AC Timing Waveforms for waveforms and definitions. 
(2) See Figure 22 for capacitive derating information for output delays and hold times. 
(3) See Figure 23 for capacitive derating information for rise and fall times. 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns (4) 

ns (4) 

ns (5) 

ns (6) 

ns (7) 

ns (15) 

ns (15) 

ns (8) 

ns (8) 

ns (15) 

ns (15) 

(4) Where N is the number of NRAD, NRDD, NWAD, or NWDD wait states that are programmed in the Bus Controller Region 
Table. When there are no wait states in an access, WAIT never goes active. 
(5) N = Number of wait states inserted with READY. 
(6) Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity. 
(7) See Notes 1, 2 and 3. 
(8) Since asynchronous inputs are synchronized internally by the 80960CA they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular rising 
edge of PCLK2:1 the setup times shown must be met. Asynchronous in·puts must be active for at least two consecutive 
PCLK2:1 rising edges to be seen by the processor. 
(9) These specifications are guaranteed by the processor. 
(1 0)· These specifications must be met by the system for proper operation of the processor. 
(11) This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3 to adjust the timing for 
PCLK2:1 loading. . 
(12) In the One-x input clock mode the maximum input clock period is limited to 125 ns while the processor is operating. 
When the processor is in reset, the input clock may stop even in One-x mode. 
(13) When in the One-x input clock mode, these specifications assume a stable input clock with a period variation of less· 
than ± 0.1 % between adjacent cycles. . 
(14) This parameter is not tested. 
(15) Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular 
falling edge of PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecu­
tive PCLK2:1 falling edges to be seen by the processor. 

3-197 



intel~ 80960CA-33, -25, -16 

AC Characteristics - 80960CA-16 
(80960CA-16 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, 
AC Test Conditions.) (Continued) 

Symbol Parameter Min Max Units Notes 

INPUT CLOCK(10) 

TF ClKIN Frequency 0 32 MHz (1 ) 

Tc ClKIN Period In One-X Mode (fCLK1x) 62.5 125 ns (1,12) 
In Two-X Mode (fCLK2x) 31.25 00 ns (1 ) 

Tcs ClKIN Period Stability In One-X Mode (fCLK1X) ±0.1% A (1,13) 

TCH ClKIN High Time In One-X Mode (fCLK1x) 10 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 10 00 ns (1 ) 

TCL ClKIN low Time In One-X Mode (fCLK1x) 10 62.5 ns (1,12) 
In Two-X Mode (fCLK2x) 10 00 ns (1) 

TCA ClKIN Rise Time 0 6 ns (1 ) 

TCF ClKIN Fall Time 0 6 ns (1 ) 

OUTPUT CLOCKS(9) 

Tcp ClKIN to PClK2:1 Delay In One-X Mode (fCLK1x) -2 2 ns (1,3,13,14) 
In Two-X Mode (fCLK2x) 2 25 ns (1,3) 

T PClK2: 1 Period In One-X Mode (fCLK1x) TC ns (1,13) 
In Two-X Mode (fCLK2x) 2Tc ns (1,3) 

TpH PClK2:1 High Time (T/2) - 4 T/2 ns (1,13) 

TpL PClK2:1 low Time (T/2) - 4 T/2 ns (1,13) 

TpA PClK2:1 Rise Time 1 4 ns (1,3) 

TpF PClK2:1 Fall Time 1 4 ns (1,3) 

SYNCHRONOUS OUTPUTS(10) 

Tov Output Valid Delay, Output Hold (6, 11) 
TOH TOV1, TOH1 A31:2 3 18 ns 

TOV2, TOH2 BE3:0 3 20 ns 
TOV3, TOH3 ADS 6 22 ns 
TOV4, TOH4 W/A 3 22 ns 
Tovs, TOHS ole, SUP, DMA 4 20 ns 
TOV6, TOH6 BLAST, WAIT 5 20 ns 
TOV?, TOH? DEN 3 20 ns 
Tovs, TOHS HOLDA, BREQ 4 20 ns 
TOV9, TOH9 lOCK 4 20 ns 
T OV1O, TOH10 . DACK3:0, EOP3:0/TC3:0 4 22 ns 
Tov", TOH11 031:0 3 20 ns 

TOV12' TOH12 DT/A T/2 + 3 T/2 + 18 ns 
TOV13, TOH13 FAil 2 18 ns (6, 11) 

TOF Output Float for all outputs 3 22 ns (6) 

SYNCHRONOUS INPUTS(10) 

TIS Input Setup 
TIS1 031:0 5 ns (1,11 ) 
TIS2 BOFF 21 ns (1,11 ) 
TIS3 BTERM/READY 9 ns (1,11 ) 
TIS4 HOLD 9 ns (1,11 ) 

TIH Input Hold 
TIH1 031:0 5 ns (1,11 ) 
TIH2 BOFF 7 ns (1,11 ) 
TIH3 BTERM/READY 2 ns (1,11 ) 
TIH4 HOLD 5 ns (1,11 ) 

3-198 



80960CA-33, -25, -16 

AC Characteristics - 80960CA-16 
(80960CA-16 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, 
AC Test Conditions.) (Continued) . 

Symbol Parameter Min Max 

RELATIVE OUTPUT T1MINGS(9,7) 

TAVSH1 A31:2 Valid to ADS Rising T-4 T+4 

TAVSH2 BE3:0, W/R, SUP, D/C, 
OM A, DACK3:0 Valid to ADS Rising T-6 T+6 

TAVEL1 A31:2 Valid to DEN Falling T-6 T+6 

TAVEL2 BE3:0, W/R, SUP, INST, 
DMA, DACK3:0 Valid to DEN Falling T-6 T+6 

TNLQV WAIT Falling to Output Data Valid ±4 

TDVNH Output Data Valid to WAIT Rising N*T - 4 N*T + 4 

TNLNH WAIT Falling to WAIT Rising N*T ± 4 

TNHQX Output Data Hold after WAIT Rising (N + 1) * T - 4 (N + 1)' T + 4 

TEHTV DT/R Hold after DEN High T/2 - 4 

TTVEL DT/R Valid to DEN Falling T/2 - 4 

RELATIVE INPUT TIMINGS(7) 

TIS5 RESET Input Setup 10 

TIH5 RESET Input Hold 9 

TIS6 DREQ3:0 Input Setup 16 

TIH6 DREQ3:0 Input Hold 11 

TIS7 XINT7:0, NMllnput Setup 9 

TIH7 XINT7:0, NMI Input Hold 5 

NOTES: 
(1) See Section 4.5.2, AC Timing Waveforms for waveforms and definitions. 
(2) See Figure 22 for capacitive derating information for output delays and hold times. 
(3) See Figure 23 for capacitive derating information for rise and fall times. 

00 

T/2 + 4 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns (4) 

ns (4) 

ns (5) 

ns (6) 

ns (7) 

ns (15) 

ns (15) 

ns (8) 

ns (8) 

ns (15) 

ns (15) 

(4) Where N is the number of NRAD, NRDD, NWAD, ~DD wait states that are programmed in the Bus Controller Region 
Table. When there are no wait states in an access, WAIT never goes active. 
(5) N = Number of wait state inserted with READY. 
(6) Output Data and/or DT /R may be driven indefinitely following a cycle if there is no subsequent bus activity. 
(7) See Notes 1, 2 and 3. 
(8) Since asynchronous inputs are synchronized internally by the 80960CA they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular rising 
edge of PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive 
PCLK2:1 rising edges to be seen by the processor. 
(9) These specifications are guaranteed by the processor. 
(10) These specifications must be met by the system for proper operation of the processor. 
(11) This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Figure 22 to adjust the timing for 
PCLK2:1 loading. 
(12) In the One·x input clock mode the maximum input clock period is limited to 125 ns while the processor is operating. 
When the processor is in reset, the input clock may stop even in One·x mode. 
(13) When in the One·x input clock mode, these specifications assume a stable input clock with a period variation of less 
than ± 0.1 % between adjacent cycles. 
(14) This parameter is not tested. 
(15) Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times in 
order to be recognized and for proper operation. However, in order to guarantee recognition of the input at a particular 
falling edge of PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecu· 
tive PCLK2:1 falling edges to be seen by the processor. 

3·199 



infel® 

4.5.1. AC TEST CONDITIONS 

oU~~UJ-------'l 

r 
CL = 50pf for all signals 

Figure 15. AC Test load 

4.5.2. AC TIMING WAVEFORMS 

ClKIN 

PClK2:1 

80960CA-33, -25, -16 

270727-11 

The AC Specifications in Section 4.5 are tested with 
the 50 pf load shown in Figure 15. See Figure 22 to 
see how timings vary with load capacitance. 

Specifications are measured at the 1.5V crossing 
point, unless otherwise indicated. Input waveforms 
are assumed to have a rise-and-fall time of ,,; 2 ns 
from O.BV to 2.0V. See Section 4.5.2, AC Timing 
Waveforms, for AC spec definitions, test points, 
and illustrations. 

270727-12 

Figure 16a. Input and Output Clocks Waveform 

--2.0Y 

---O.BY 

~--------~TC~--------~ 

270727-63 

Figure 16b. ClKIN Waveform 

3-200 



inteL 80960CA-33, -25, -16 

PCLK2:1 ~ 

OUTPUTS 

, 

Sl:--::-"""'",---~ MAX 

1.SV I 

---"-r-· OUTPUTS 

270727-13 

Figure 17. Output Delay and Float Waveform 

PCLK2:1 

INPUTS 
(AEAi5Y. HOLD. BTEAM. BOFr 

D31:0 on reads) 

Figure 18a.lnputSetup and Hold Waveform 

@@ - OUTPUT DELAY - The maximum output delay is referred to 

as the Output Valid Delay (Tov)' The minimum output delay is 

ref.erred to as the Output Hold (T OH)' 

S - OUTPUT FLOAT DELAY - The output float condition occurs 

when the maximum output current becomes less than I LO .in magnitude. 

-INPUT SETUP AND HOLD - The input setup and hold requirements 

specify the sampling window during which synchronous inputs must be 

stable for correct processor operation. 

PCLK2:1 

RESET. NMI. XINT 7:0 

270727-14 

270727-64 

270727-74 

Figure 18b. RESET, NMI, XINT7:0 Input Setup and Hold Waveform 

3-201 

• 



inlet 

PCLK2:1 

OUTPUTS 

~3~1 ---:a,_ 
ADS, BLASJ. IR, 

LOCK~6~: P: OMA) 

HOLD 

HOLDA 

PCLK2: 1 f I.SV 

I 

OUTPUTS 
A31 :2.031:0. ii'E3:O. AO'S 
iii:AsT. WAiT. w /ii. OT /ii. 

DEN. lOCK, etc. SuP, OMA 

80960CA-33, -25, -16 

- OUTPUT DELAY - Themaximum output delay is referred to 

as tlie Output Valid Delay (T OV). The minimum outpu1 delay is 

referred to as the Outpu1Hold (T OH). 

- OUTPUT FLOAT DELAY - The output float condition occurs 

when the maximum output current becomes less than I LO in magnitude. 

- INPUT SETUP AND HOLD - The input setup and hold requirements 

specify the sampling window during which synchronous inputs must be 

stable for correct 'processor' operation: . 

Figure 19. Hold Ackilowledge Timings 

\: I.SV 

VALID 

® 

t.SV 

f l.SV 

I 

® 

I.SV 

\: 1.5V I- I.SV 

I 

®: 
I 

, 
I.SV 

Figure 20. Bus Back-Off (BOFF) Timings 

3-202 

\: I.SV 

I.SV 

270727-15 

f1.SV 

VALID 

270727-75 



InteL 80960CA-33, -25, -16 

, , 
, 

~" , ' 
I TAVSH , ' 

A31:2. BE3:D!....W/R. LOCK • ..!. 1.SV 
SUP, DIG, DMA : 

031:0 OUT 

1.SV 

OTifi 

1.5V 

v"- ' 

031:0 
~ ___ . __ . _______ .1 _______________ ) ____________ ~-v!~ 
: : : ~Vl 
: : I I 

Figure 21. Relative-timings Waveforms 

270727-16 

DERATING CURVES 

> 
oil 

@> 

] 
'" >-

d 
<> 
<> 
::J « 
> 
>-

~ 
=> 
0 

NOTE: 
PCLK Load 50 pF 

nam+IQ 

nom+5 

,/ 

, , , 
/ 

, 
/ 

f' , 

100 

, , 
, , 

/ 

, 
, , , , 
l 

--All outputs except: LOCK DMA SUP I 
BREQ, DACK3:0, EOP3:0/Tc3:0, rAil 

- - - lOCK, DM.&2!LP ~Q, DACK3:0, 
EOP3:0/TC3:0, rAil 

150 

Ct. (pr) 

Figure 22. Output Delay or Hold vs Load Capacitance 

3-203 

270727-17 



int:et 80960CA-33, -25, -16 

10 

O.BV to 2.0V 

50 100 

cL (pr) 

(a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ, 
DACK3:0, EOP3:0/TC3:0, FAIL 

(b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0, 
EOP3:0/TC3:0, FAIL 

270727-18 

Figure 23. Rise and Fall Time Derating at Highest Operating Temperature and Minimum Vcc 

1000 ,..---.,--------------:l 

o~------------~ o ~ 

fpClK (MHz) 

270727-19 
Icc-Icc under test conditions 

Figure 24. Icc vs Frequency and Temperature 

3-204 



80960CA-33, -25, -16 

5.0 RESET, BACKOFF AND HOLD 
ACKNOWLEDGE 

The following table lists the condition of each proc­
essor output pin while RESET is asserted (low). 

Table 13. Reset Conditions 

Pins State During Reset 
(HOLDA inactive)1 

A31:A2 Floating 

031:00 Floating 

BE3:0 Driven high (Inactive) 

W/R Driven low (Read) 

ADS Driven high (Inactive) 

WAIT Driven high (Inactive) 

BLAST Driven low (Active) 

DT/R Driven low (Receive) 

DEN Driven high (Inactive) 

LOCK Driven high (Inactive) 

BREQ Driven low (Inactive) 

D/G Floating 

DMA Floating 

SUP Floating 

FAIL Driven low (Active) 

DACK3 Driven high (Inactive) 

DACK2 Driven high (Inactive) 

DACK1 Driven high (Inactive) 

DACKO Driven high (Inactive) 

EOP/TC3 Floating (set to input mode) 

EOP/TC2 Floating (set to input mode) 

EOP/TC1 Floating (set to input mode) 

EOP/TCO Floating (set to input mode) 

NOTE: 
. (1) With regard to bus output pin state only, the Hold Ac­

knowledge state takes precedence over the reset state. Al­
though asserting the RESET pin will internally reset the . 
processor, the processor's bus output pins will not enter 
the reset state if it has granted Hold Acknowledge to a pre­
vious HOLD request (HOLDA is active). Furthermore, the 
processor will grant new HOLD requests and enter the 
Hold Acknowledge state even while in reset. 
For example, if HOLDA is not active and the processor is 
in the reset state, then HOLD is asserted, the processor's 
bus pins will enter the Hold Acknowledge state and 
HOLDA will be granted. The processor will not be able to 
perform memory accesses until the HOLD request is re­
moved, even if the RESET pin is brought high. This opera­
tion is provided to simplify boot-up synchronization among 
multiple processors sharing the same bus. 

The following table lists the condition of each proc­
essor output pin while HOLDA is asserted (low). 

Table 14. Hold Acknowledge 
and Backoff Conditions 

Pins State During HOLDA 

A31:A2 Floating 

031:00 Floating 

BE3:0 Floating 

W/R Floating 

ADS Floating 

WAIT Floating 

BLAST Floating 

DT/R Floating 

DEN Floating 

LOCK Floating 

BREQ Driven (high or low) 

D/C Floating 

DMA Floating 

SUP Floating 

FAIL Driven high (Inactive) 

DACK3 Driven high (Inactive) 

DACK2 Driven high (Inactive) 

DACK1 Driven high (Inactive) 

DACKO Driven high (Inactive) 

EOP/TC3 Driven if output 

EOP/TC2 Driven if output 

EOP/TC1 Driven if output 

EOP/TCO Driven if output 

3-205 



CLKIN 

Vee' ONCE 

PCLK1.2 

__ ADS. 
-,=--OCK WAIT 
DEN. DACKO:3 

"TI 
iEi 
c wiR.Qlli .. 
CD BREO.FAIL 

I\) 
01 

0 1 BLAST 

0 
Co) a: 
~ ::XJ 0 CD ifrn'. D. 
'0') 

III ~.= CD .. 
~ _QQM... 

EOPITCO:3 

< 
CD 
0'1 STEST .. 
3 

RESET 

c~ 
[ : ~ II VCCANDCU<INStabIe I I II I .---il 

~ I toOutputsValid,~irTllm ": :.: : : : : : : : 
32CLKINPeriod$. I I I I I , I I I 

c: /\J\JLnr-v-uv-\JLfLN ~ . I I I I I I I 

[: ~tNWtNWHNWWm_ II II !d ' 
----tl -~ I , , 

C~I ~~ .11 II :cj 
" I I Tdela 

C ~ I ~-rrrnTlnI'I"I"lITI'i~' , [1iiCiJ(;t---i----i 

, I I' I I 

[~I rmfqqqrm««mf«fWI/:tIll#_·---f--,I--:-----~ , 'N+O' b 
I . I' I I : I I I I • I 

[ '~~----:---II-i-----:- ---~----1--~.-~----1C' ~llnpul. _~::::::: I 

C'. ~ ___ ':' '~ 
~I ., , , , 

[
' ' , I , 

~I II II :' 

CLKIN AND Vee Siable to ROiii high.1Tlinirnum 
32 ClKIN Periods in T~x Mode, ~o.ooo COON Pe~s in One-x Mode. 

, 
: .1 

ReSeiHigh 10 First Bus Acl:ivily. approximately 

32 PctK Periods 

270727-20 

~ 
0 

m 
c: en 
:e 
):10 
< rn 
." 
0 
::u 
s:::: en 

_. 
€: 

8 

01) 
o 
CD en o 

~ 
Co) 

~ 
~ 
,?I 

I ...... 
en 



PClKl.2 
[ 

_ ADS. [ 
LOCK WAIT 

DEN. 0ACi<t3 

wiR.o.lli [' BREO, FAIL 

"TI 
cO' 

BLAST [ C .. 
CD 
N 
!» _ SUP. [ 
::E 

DMI'h~ 
DfC,BEO:3 

C) 

u:> .. 
N 3 _QQ1.L. [ 
0 :D EOPITCO:3 

-..J CD 
III 
! STEST [ ::e 
C) 

< C CD - RESET 
0 .. 
3 

I . I I :/\ :/\ :/\ :/\ J\fU 
HL1L.(LJ~ , , 

' , : II' , \ : 
II :~ ~:" ~" ~"~"------'v"~~~r-----' : : 

[0 '-~----~-----r----~---II , " " II " "1 II_ '0000,""" 1\,0 " ~ 1 '1-1_;-'-' __ 
' I'PCLJ<,~ 

: : :1 :' ,I:: q 
I I I I I I 'e I I I I I I I I 

- - - r - - ., r -,- - - - - .L - - - - - ,- - - - - ..!. - - 11 - T - - - - -' I 

; ::':-
, , ' 

7-----...;....-----.~, lrlITI'I"\(nlrll';': 'I"\(nITIT\ '- ~Xlmum R::LL:;:~;::~t State , 

Reset High to First eU5 AcUvity,'c.pproxlmnW:,y 32 PCLK Periods 

I L.J!",mum Reset Low. TIIm.16 PClK Periods 

270727~21 

=. 

l 

co 
o 
CO 
C'l 
o 
(") 
)::0 
I 

(,) 

-(,) 

I 
N 
91 

I .... 
C'l 



"11 
ii'J' 
r: 
iil 
I\) 

:"I 
m = ;-

(,.) :::!. , = 
I\) CD 
o .. 
ex> :::T 

CD 
o z 
n 
m 
-I 
!: 

i 

eLKIN 

Vee 

PClKI.2 

ADS. BEO:3.A2:32. 00:31. 
lOCK. WAif. BlAST. WiR. 

eLKIN may noilloal 

II musl be drrven high or low. or contll1ue 10 run 

\1\10\10\10\1\10\1\1\10 

_____ I- Vc~~DClKINSlable II 11------11---,---------
1------- toOutputsValid.manTlUtTl .. : 

32 elKIN Periods 

0';; DEN. OT'A. HOlD. HOLDA. [i ~~----:---II-~-----:-;---~--I -11--1 __ ~......ss:z~~!.IJNi::J:JJOOCIJI:alLlLlLlq _ I I I I ' 

ReSfi 

ONCE 

11----:--: [~I-----:-------,--- II 

[~I 

eLKIN and VccSta.OJe and RESET low and ~lowto 
RESET high. rninirrIU'n 32 eLKIN PeriodS in Two-x Mode. 

10,000 elKIN Periods in One-x Mode. 

270727-51 

_. 
£ 
~ 

CD o 
CD 
Q) 
o 
o 
):0 
I 

Co) 

~ 
I 

I'\) 

~U1 
I .... 

Q) 



InteL 

NOTE: 

CLKIN 

PCLK2:1 
(Case I) 

PCLK2:1 
(Case 2) 

80960CA-33, -25, -16 

MAX 
MIN 

t SYNC 

Case 1 and Case 2 show two possible polarities of PCLK2:1. 

Figure 28. Clock Synchronization in the 2x Clock Mode 

3-209 

270727-65 



in1:et 

a · Byte > · Order · '" bits 31 23 bil22 

0 X 
0,,0 

'PClK [ 

ADS [ 
A31:4,$JP, [ 

DMA~ !:OCR. 3:0 

W,R [ 

BLAST [ 

DT,R [ 

DEN [ 

A3:2 [ 

WAIT [ 

031:0 [ 

80960CA-33, -25, -16 

Region Table Entry 
a 

Bus Nwdd Nwad 'Nxdo Nrdd 
Width . 

'" bit 21 bits 20·19 bits 18-17 bits 16 12 bits 11-10 bits 9-8 

0 X X '0 X 

0 00000 00 

A D A D 

.......... -:- .......... 
, , , 

Nrad 
Pipe- Exlernst 
lining Ready 

Coniroi 

bits 7·3 bl12 bit! 

Off Disabled 

00000 0 0 

A D 

Figure 29. Non-Burst, Non-Pipelined Accesses without wait states 

3-210 

Burst 

bit 0 
Disabled 

0 

270727-26 



v 

~ .. 
b!1s.31·23 

0 
0 ... 0 

PCLK [ 

ADS [ 

A31:2, BE3:O [ 

wlii [ 

BLAST [ 

DTIA [ 

DEN [ 
SiJP,OOA, 
O/~,~ [ 

WAIT [ 

031:0 [ 

v 
By1. 

Order . .. 
till 22 bot" 

X 0 
, 0 

A 

80960CA-33, -25, -16 

Region Table Entry 

Bus Nwdd NWDd N.d. Nrdd 
Wld1h 

Ms20-19 bits 18 17 bIIs 16-12 Ms 1110 bits 9·8 

X X X 1 X 

" " XXXXI ,,, 
" 

3 2 

Valid 

Nrad 

bits 7 3 

3 
000" 

D 

I 
I 

, : 
: .: : : ! 

'Plpe-
lining 

bII' 
Oft 

" 

: : : : 0 I I , 
-- .... --- .. ' ......... _ .. - ....... -- .... - .. -- .. _................. IN -- .. --

I I I , 
I I I I 
I I I I, , 

, I 
, 0 

blernal 
R •• dy 
Conlrot 

bill 

Disabled 

" 
A 

Figure 30. Non-Burst, Non-Pipelined Read with wait states 

3-211 

Burat 

""0 
DI •• blad 

0 

270727-27 



int:et 

" · · · : .. 
bits 31-23 

0 
0 .. 0 

PCLK [ 

ADs [ 

A31 :2. BE3:li [ 

. W,R [ 

etm[ 

OT,R [ 

DEN [ 

SUP.ImA. [ 
Of~.~ 

WAIT [ 

031:0 [ 

80960CA-33, -25, -16 

Region Table.Entry 

" Byte 

~ 
Bu. Plpe-Nwdd Nwad Nada Nrdd Nrad 

Order Width lining. .. 
b1122 bll21 bilS 20-19 bits 18·17 bits 16,'2 bits 11-10 bIIs9-S bits 7 3 "'2 

X 0 X X 3 1 X X Oil . 0 .. .. 00011 0' .. xxxxx 0 

A D 3 

Valid 

muu+< '--___ OUT __ -~) .. -- .. 

: 
1 

, , 

Externa' 
R •• dy 

Control 

bl11 

Di •• bled 

0 

Figure 31. Non-Burst, Non-Plpellned Write with wait states 

3.212 

Burst 

"'0 
DI •• bled 

'" 

270727-28 



80960CA-33, -25, -16 

Region Table Entry 
~ ~ 

Plp.- External . Bylo Bus > Nwdd N\'Iad Nxd. Nrdd Nrad Burst . Order Wldlh lining Ready 
Contral 

~ ~ 

blls31·23 bil22 tH\21 bils 20·19 bils 18·17 bits 16·12 blIs ,,.,0 blts9·B bits 7·3 bit 2 bit 1 bit 0 

0 X 0 32-blt X X 0 0 0 Off Disabled Enabled 

0 ... 0 , 0 '0 " xxxxx, 00 00 00000 0 a 1 

A o o o o A 

PCLK [ 

ADS [ 

A~~'[ OMA,D/C, 
meR, BE3:O 

BLAST [ 

DTIR [ 

A3:2 [ 

WAIT [ 

, 

031:0 [ 

, , 
, " -----+ ----e----E}---6 ---
; : : -: 

270727-29 

Figure 32. Burst, Non-Pipelined Read without wait states, 32-bit bus 

3-213 



int'et 

" · · · "' bits ]1·23 

0 
O .. 0 

PCLK [ 

ADS [ 

SUP,OWI, [ D/C,WCi( 

A31:4, BE3:0 [ 

w-fi [ 

BLAST [ 

DTIA [ 

DEN [ 

A3:2 [ 

WAIT [ 

031:0 [ 

Byte 
Order 

bit 22 

X 
, 

A 

80960CA-33, -25, -16 

Region Table Entry 

" · Bus · Width Nwdd Nwad Nxda Nrdd 

· "' M21 bits 20·19 bits 18-17 bits 16·12 bls 11-10 bIIsS·8 

0 32-blt X X 1 1 
0 '0 " .,(leU 0' 0' 

2 1 0 D D 

Pipe· Nrad lining 

bits 7·3 brt2 

2 Off 
000'0 ° 
D 

Exl.rn.1 
Reidy 

Conlrol 

bIt 1 

DI •• bled 

I 
I 
I 

0 

I I , f I 

Burst 

briO 

En.bled , 
A 

... j ..... l ... : L·8· L e··:··8··:· ~. . ..... 
I :: :::';: 

270727-30 

Figure 33. Burst, Non-Pipelined Read with wait states, 32-bit bus 

3-214 



80960CA-33, -25, -16 

Region Table Entry 
~ . Pipe· External Byte Bus Nwdd Nwod Nxda Nrdd Nrad Burst 

Order Width lining RODdy 
Control 

~ ~ 

bits 31·23 bit 22 b,12! bils 20-19 bits 18-17 blls 16-12 blls 11-10 b'ls 9-8 bits 7·3 bit 2 bit1 bit 0 

0 X 0 32·blt 0 0 0 X X Oft Disabled Enabled 

0 ... 0 , '" 10 00 00000 00 " XXXKX 0 0 1 

A 0 0 0 0 A 

PCLK [ 

ADS [ 
A31:4,SQP, [ llMA, Ole, 

[(jCK, B!:3:O 

W~ [ 

BLAST [ 

DT/R [ 

DEN [ 

A3:2 [ 

WAIT [ 

031:0 [ ............ : 
, 

270727-31 

Figure 34. Burst, Non-Pipelined Write without wait states, 32-bit bus 

3·215 



inlet 80960CA-33, -25, -16 

Region Table Entry 
~ ~ 

Byte · Bus Pipe. Exlern.' 

! Ordar · Width Nwdd Nwad Nxd. Nrdd Nrad lining Re.dy Burst 

· Control 
~ ~ 

bIIs 31·23 bif 22 bil21 bfls 20-19 bits 18-17 bils 16-12 bits 11·10 bits 9 8 bits 7 3 M2 bIT 1 bilO 

0 X 0 32·bll 1 3 1 X X Oft Di .. bled Enabled 

0 ... 0 , 0 10 01 00011 01 " xuxx 0 0 1 

A 
, 2 D D D A 

PCLK [ 

ADS [ 
WP,l5MA, [ DIG, LOCK 

A31:4, BE3:O [ 

w~[ 

BLAST [ 

DT/R [ 

DEN [ 

A3:2 [ 

WAIT [ 

1 

03,:0 [ uu:( aUTO X OUT1 X OUT2 X OUT3 }-- ___ 01 

1 . , , I 
I 

270727-32 

Figure 35. Burst, Non-Pipelined Write with wait states, 32-bit bus 

3-216 



. 
~ 

bus 31-23 

0 

PClK [ 

ADS [ 

sup, OM A, [. 
DIG, COCi< 

A31:4, BE3/BHE, [ 
BEO/BlE 

w;R [ 

BLAST [ 

DT;R [ 

DEN [ 

BEliAl [ 

WAIT [ 

031:0 I 

0 
0 

80960CA-33, -25, -16 

Region Table Entry . 
Byte . Bun Pip.· E.t.rnal > Nwdd N\1Iad !I.do Nrdd Nrod 

Order Width lining Roady 
Control 

~ 

btl 22 bit 21 bIIs 20·19 ~ts 18·17 bLts 16·12 bits 11·10 bits 9-8 bls 7·3 bit 2 ba 1 

X 0 16·blt X X 1 1 2 Oft Dlo.blod . 0 (" u xuu 0' Q' 00010 Q Q 

A, 2 D D D D 

, , , 
, I' I I 
I I I I I I , t , I 

i i i@:i@:!@:!ei .......... __ .... ; .. _ ...... ; .... 015:0 ....... - D15:0 --;-- 015:0 ..... __ 015:0 ._ 
I I I AhO ' AI_I I Al.o I Aht 
, I I ' I I 

: I : I I!! I 

Figure 36. Burst, Non-Pipelined Read with wait states, 16-bit bus 

3-217 

Surat 

bilO 

Enoblod , 
A 

270727-33 



infel .. 

" ~ -
: 
: 

b/tS3t·23 

0 
0 ... 0 

PCLK [ 

ADS [ 

SIJIi, I)W;, [ 
DR:,~ 

'A31:4 [ 

W~ [ 

B~AST [ 

DTIR [ 

A3:~ [ 

BEliAl [ 
BEOIAO 

WAif [ 

031:0 [. 

Byte 
Order 

till 22 

X , 

A 

" . 
j .... 
0 
0 

80960CA-33, -25, -16 

Region Table Entry 

Bua 
Width 

brts 20 19 

2 

a·blt 
00 

, , , 

Nwdd 

bits 18-17 

X 

" 
o 

\ :, I, , 
Al·0 = 00: 

Nwad N,d. Nrdd 

bit116·12 bils "·10 blts9·S 

X 1 1 
xxxxx e" CI' 

o 

Valid 

Valid 

A3:2 = 00, 01, 100r 11 

Pipe· Nrad lining 

bits 7·3 bot. 

2 all 
00010 CI 

o 

'-~---,t' I I': 
I I I I I I 

ElI.rn.' 
Ready Burs. 
Control 

"'" ... 0 

DI •• bled Enabled 

0 1 

A 

.,' ':e:e: :'e::e • __ ~ __ ••• ,._ •• _: __ 07:0 __ ~ __ 07:0 __ : __ 07:0 __ ~ __ 7.0 ______ , 
I I I D I S»,tel I Byle I Byte 

: : ~ I.: .! : I 

270727-34 

i=lgure 37. Burst, Non-Plpelined Read with wait states, 8~bit bus 

3-218 



InteL 

~ 

Byte 
Order 

~ 

MsJl·23 biln 

0 X 
0. ,0 , 

PCLK [ 

ADS [ 

A31:4, SUf, [ 
DMA,D/C, 

LOCK 

WIR [ 

..&s [ BE3:0 

D31:0 [ 

WAIT [ 

BLAST [ 

DT/R [ 

DEN [ 

80960CA-33, -25, -16 

Region Table Entry 

Bu. 
Width 

~ 
bl121 bits 20·19 

0 X 
0 " 

A 

Nwdd 

blIs 18·17 

A' 
D 

X 

" 

Nwad 

blt5 16·12 

X 
XOll( 

A" 
D' 

Non-pipeHned access concludes, 
pipetined reads begin 

Nxd. 

bl;S 11·\0 

X 

" 
A'" 
D" 

Nrdd 

blls 9-8 

X 

" 

Nr.d 

bits 7-3 

0 
00000 

A"" 
D'" 

Pipe-
lining 

bit 2 

On 
I 

D"" 

Plpelined reads conclude, 
Non-pipelined accesses begin 

External 
Ready 

Control 

bill 

X 
, 

Figure 38. Non-Burst, Pipelined Read without wait states, 32-bit bus 

3-219 

Burst 

biiO 

Dlsablod 

a 

.. 

270727-35 



intel· 

I Byte I 

i ~ 
Order J ~ 

bits3U3 bit 22 bit 21 

0 X 0 

" ... " . " 

PCLK [ 

ADS [ 

~mJI5.[ 
~ 

W,R [ 

A3~ [ Bffi 

031:0 [ 

WAIT [ 

BLAST [ 

DTIA [ 

DEN [ 

80960CA-33, -25, -16 

Region Table Entry 

Bu. 
Nwdd Nwad Nlde Nrdd Width 

bits 20·19 bits 18·'7 bits 16·,2 bits 1'·10 bils9·8 

X X X X X 
xx xx lIXlOIJt xx xx 

A A' 
D 

Valid Valid 

Non-p;pelined _ concludes. 
pipoHned reads begin 

Plp.- Ext.rn.1 
Nrad Burat lining Rudy 

Control 

bits 7·3 bit2 twt1 MO 
1 On X Dlubled 

00001 , , 0 

D' 

Figure 39. Non-Burst, Pipelined Read with wait states, 32-bit bus 

3-220 

270727-36 



80960CA-33, -25, -16 

Region Table Entry 

" " E Byte · BUI Pip •• eltern,1 · Nwdd Nwod Nxda Nrdd Nrad Burat 
: Order · Width lining Reidy 

~ · Control .. 
bits 31·23 bil22 blU' bits2().19 bits 18·17 bits 16·12 bils 11·10 blts9·B bits 7·3 bil2 '"' biiO 

0 ·X 0 32·811 X X l( 0 0 On X Enable, 
0 ... 0 , 0 10 " XlUIXX " 00 00000 1 , 1 

A D D D A' D' D' 
D 

PCLK [ 

~~:[ 
meR. §E3:ij 

A3:2 [ • 
031:0 [ 

270727-37 

Figure 40. Burst, Pipelined Read without wait states, 32-bit bus 

3·221 



inteL 80960CA-33, -25, -16 

Region Table Entry 

1 Byte 1 Bu. Nwdd NWld Nxd. Nrdd Nr.d Plp.- Eat.rnal 
Bur.t : Order Width lining A .. dy 

Conha • 
a: .. 

bitl31-23 bil22 "" bits 20·19 bits 18·17 bits 16·12 bitslHO bils9-8 bits 7-3 ba2 I';" bUD 

0 X 0 32-BII X X X 1 2 On X En.bled 
0 ... 0 , 0 10 " "'" " 0' 00010 1 , 1 

'A 2 o D o A' 2 D' 
D 

PCLK [ 

Ai>S[ 

BT 
W,R [ 

A3:2 [ 

031:0 [ 

WAiT [ 

BLASr[ 

DTIA [ 

DEN [ 

270727-38 

Figure 41. Burst, Pipelined Read with wait states, 32-bit bus 

3-222 



PCLK [ 

ADS [ 

A31:4,SUP, [ 
l5W;,o/(;, 
~/liHl:, 

[(lQ(,BEO/m:E 

A3:2 [ 

BElIA1 [ 

031:0 [ 

WAIT [ 

BLAST [ 

DT/R [ 

DEN [ 

80960CA-33, -25, -16 

Region Table Entry 
.. 

Oyle . Bua 
Ordor Width Nwdd Nwad Nxda Nrdd 

0 

'" '" 
bits 31-23 bit 22 bil21 bits 20-19 bits 16-17 bits 16-12 bits 11·10 bits9-B 

0 X 0 16·BII X X X 1 
0 ... 0 x 0 01 xx X)(XXX xx 01 

A 2 D 'D D 

Valid 

A3:2 '= 00 or 10 A3:2 = 01 or 11 ' 

Nrad 

bit:. 7-3 

2 
00010 

A' 
D 

Pipe· 
lining 

bit2 

On 
1 

2 

Exterul 
Readv 

Control 

bot 1 

X 
, 

D' 

P!pelinod reads conclude. 
Non-pipelined accesses begin 

Figure 42. Burst, Pipe lined Read with wait states, 16-bit bus 

3·223 

Burst 

bit 0 

Enabled 

1 

270727-39 



int:eL 

PCLK.[ 

A3l :4.U. [ 
~~ 

A3:2 [ 

BE1/Al. [ 
BEO/AO 

WArT [ 

iiLAsT[ 

DTIR [ 

ilEN[ 

" 
E :: 

bits 31-23 

0 
0, .. 0 

80960CA-33, -25, -16 

Region Table Entry 
" By1e E Bu. Nwdd Nwad Nxda Nrdd Nrad 

Plpe- Ext.rnal Bura' 
Ordar : Width lining A .. d, 

Control 
II: 

b022 "'" bits 20-19 bits 18·17 bit816·12 bits 11·10 bils9·8 bits 7·3 bil2 bOl ... 0 

X 0 8-BIt X X X 1 2 On X Enabled 

x 0 00 xx xxxxx xx 01 00010 1 x 1 

A 2 o o o 2 0' 

Valid 

A3:2 = 00. 01.10,11 

270727-40 

Figure 43. Burst, Pipelined Read with wait states, 8·bit bus 

3-224 



PCLK 

Quad-Word Read 
Nrad " O. Nrdd " 0, Nxda '" 0 

Ready Enabled 

80960CA-33, -25, -16 

Quad·Word Wnlc 
Nwad= 1, Nwdd" 0, Nxda" 0 

Read Enabled 

A3IA.;;UP. M.r--'-_ .... __ .L.. __ ..... --''---''r-.... --.L..-_ ..... _....l __ ....L_-....... -_ ..... _-''----'---! 
~~ - -O/C·~~'--~ __ ~ __ ~ __ ~ ___ ~~ ___ ~/~_~ ______ ~ ____ ~_~ ______ ~ ____ ~ ______ ~ ___ ~~ ___ ~ ______ -! 

,I 

WAIT ~---~------~------~------~------r------l-------n 
I 

I I I I I 

031:0 --~--~~--0-0-0- 03 00 03 

270727-41 

Figure 44. Using External READY 

3-225 



intel~ 

NOTE: 

80960CA-33, -25, -.16 

PClK 

A31;4,SUP 
mJA,INST 
~C.BE"O ~\-~ ____ ~ ____ ~ ____ ~ ____ ~~~ ____ ~ ____ ~ ____ ~ __ ~ ____ ~n-__ ~ 

wiFi 

DT~ 

A3,A2 

I I I I I I I I I I 

D31:0 -!,- - - ~- - -0- --! - ~- ~- -, ~- -~,-~ - - - ~- - .¢.- ~,- ~ --
I I~I I~,I ,-x:J', 

I I' i I I I 

270727-42 

READY adds memory access time to data transfers, .whether or not the bus access is a burst access. BTERM interrupts 
a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM 
signal will terminate a bus access if the signal is asserted during the last (or only) data transfer of the bus access. 

Figure 45. Terminating a Burst with BTERM 

3-226 



int:et 80960CA-33, -25, -16 

~' 1 S \.:::, :7Tr;r:e~i_DS ______ --!-_ 
ADS :::: -r-~r"'--T /: I I 

I I I I I I I 
I I , I I I I I I I I :c:: ±;i>8u;st : _~~rl __ ls+8urs:t : ~i i 
I I I 1 I I I I I 
I I I I I I 
I • I I I I ' 'I I 
I Non-Burst t I I Non-Burst I I 

~-+--+--'i-r--";-i~IS i ~i i I~: r+ 
~--.. _~ __ ..,:I ~: : ~ : 

I I I I : I 

+--.;...-...;-------1 ::: I 1 ~: : IS 
s-J 1 1 1 

Suspend Request I: Res~me Re~uest 
1 

I I I I I I I I 

i ! X ::: :}-~~r~--+< i :s-;-: ---Mi)c:t 
I I I I I I I I I I '-+--;',~ 1 1 

031:0 (Writes) -:- --i- --i---ictb -~ ~r ~ - - ~ { i :b-~-
: : : ~ • I I : :: I I I 

I I I Begin Request I I I I I End Request 
I .', , __ , I I I I I 
I I BOFF may be asserted to suspend request I 

BOrF may not I I I I I : 

be asserted I 

NOTE: READY /BTERM must be enabled; NRAD , NRDD , NWAD ' NWDO = 0 1 

PCLK2: 1 

A31 :2. SUP. 

DMA. D/C. 
BE3:0. WAIT. 

DEN. DT/ii 

HOLD 

HOLDA 

Figure 46. BOFF Functional Timing 

Word Read 
NRAO =l. NXOA=l 

HOLD STATE Word Read 

NRAO=O. NXOA=O 

Figure 47. HOLD Functional Timing 

3-227 

1 BOFF may n 
be asserted 

270727-66 

HOLD STATE 

270727-67 

• 



intel" 80960CA-33, -25, -16 

PClK2:1~ System 
clock 

!(BlAST 
&: READY) 

DACKx 
(All modes) 

DREQx 
(Case 1) 
(Note 1) 

NOTES: 

DREQx 
(Case 2) 
(Note 2) 

, , , 
~\I-_""" ___ ""' __ -'-___ .i-__ -+ ___ .i-_ Start DMA 

I I I bus request 
I I I I 

: . \\1------'"': '---+'r--~--_!---..L..- ~:~ ~~q~~~ 
, : ,r--..L..---!---..L..- DMA 

'"t---'----rll--...... , ___ ..... __ ...J..J acknowledge 
(Se. Not.) 

, High to prevent 
I I next DMA cycle 

.~_~~~'%W--, ,b: ~H5 
I I I High to prevent 
I I I I next DMA cycle 

~-~~~~--, , , '~S5 ' ~H5 

} 
DMA 
request 

I I I I I 

270727-70 

1. Case 1: DREQ must deassert before DACK deasserts. Applications are Fly-by and some packing and unpacking 
modes, adjacent load-stores or store-loads, loads followed by loads, and stores followed by stores. 
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high. Applications are non 
fly-by transfers and adjacent load-stores or store-loads. . 
3. DACKiis asserted for the duration of a DMA bus request. The request may consist of multiple bus accesses (defined 
by ADS and BLAST. Refer to User's Manual for "access", "request" definition. 

Figure 48. DREQ and DACK Functional Timing 

~ 
I I I I 

': ~~ 
~ 2 ClKS MIN ---: 

,. 
,...,.0---1----_+- 15 ClKS MAX -i----!---....... , 

270727-71 

NOTE: 
EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. 
EOP is NOT edge triggered. EOP must be held for a minimum of 2 clock cycles then EOP must be deasserted 
within 15 clock cycles. 

Figure 49. EOP Functional Timing 

3-228 



80960CA-33, -25, -16 

PCLK2 

DREQ 

ADS ~ V 
DACK ~ V 

Tc ~ V 
270727-72 

NOTE: 
Terminal Count becomes active during the last bus request of a buffer transfer. If the last LOAD/STORE bus request is 
executed as multiple bus accesses, the TC will be active for the entire bus request. Refer to the User's Manual for 
further information. 

Figure 50. Terminal Count Functional Timing 

RESET ---1 

--~----~!I~----~ 
- 60.000 CYCLES 

INTERNAL SELF TEST 
PASS 

5 CYCLES 

I 

Figure 51. FAIL Functional Timing 

3-229 

102 CYCLES 

BUS TEST 
PASS 

270727-73 



80960CA-33, "25, -16 

WORD OFFSET 0 2 3 4 5 6 

SHORT-WORD 
LOAD/STORE 

WORD 
LOAD/STORE 

DOUBLE-WORD 
LOAD/STORE 

I I 
SHORT REQUEST (ALIGNED) 

f7.T7I , , 
~ BYTE, BYTE REQU,ESTS 

Hi~)l ';'" ,,,om ("."0) 

..;/\: BYTE, B~E REQUESTS I 
I"""= ...... '"""i WORD REQUErT (ALIGNED) I 

SHORT, BYTE, BYTE REQUESTS 
=~ , , 

SHORT, SHORT REQUESTS 
~~, , 

BYTE, SHORT, BYTE REQUESTS 
""""l='"""""= I I 

ONE DOUBLE-WORD REQUEST (ALIGNED) 
~="+",,",,,=9 , , 

BYTE, SHORT, WORD, BYTE REQUESTS 
=~=~ , , 

SHORT, WORD, SHORT REQUESTS 
~~~~'"""" , 

BYTE, WORD, SHORT, BYTE REQUESTS
=¥====¥=~ ,

ONE DOUBLE-WORD REQUEST (ALIGNED)

~~="'"""i I I
270727-68

Figure 52. A Summary of Aligned and Unaligned Transfers for Little Endian Regions

3-230

intel· 80960CA-33, -25, -16

WORD OFFSET 0 2 3 4 5

TRIPLE-WORD
LOAD/STORE

QUAD-WORD
LOAD/STORE

.1
ONE THREE-WORD REQUEST (ALIGNED)

~~~~~~""""I I I 
BYTE, SHORT, WORD, WORD, BYTE REQUESTS 

~~~=F=~ I I I 
SHORT, WORD, WORD, SHORT REQUESTS

~¥=~+=~~~ I I I
BYTE, WORD, WORD, SHORT, BYTE REQUESTS

~~~~~~~ I I 
WORD, WORD, WORD REQUESTS 

~~~===+~~ I 
WORD, WORD, WORD REQUESTS

~~4=~=+~~ 1

1
ONE FOUR-WORD REQUEST (ALIGNED)

p=====~====~====~==~ I I
rn7T777mh77STS7771m BYTE, SHORT, WORD, WORD, WORD,
LLZ+ZZ:zqp:Z:Z:Z;;;PEEWqW BYTE REQ~ESTS I

rITtITmmmmmmmtrr.rr.rr.mrr.:m SHORT, WORD, WORD, WORD,

"""'~¥;;';';;';';;';';;';';;';';;';''"4====+'''=':;';';;';':;';';;';4''''=:J SHOR~ REQUESTS I
BYTE, WORD, WORD, WORD, SHORT,

.... +-" """''''''''''''+'''''''===t='''''''''''"'''''"'''''+=-"''''''''''"'' BYTE REQUESTS I
WORD, WORD, WORD,

PZZ24222ZPZ££$ZZ22j WORD REQUESTS
~,..,..,,..,..,,..,..,,.,...,,..,..,.,.,.,.,.,.,,.,,,..,.,.,",,,,,,,.,,..,,.,,..,,.,,..+,.,..,.,.,..,.,.,..,..,,.,,j DOUBLE-WORD,

DOUBLE-WORD
F===+=;':;';';;;':;';';;;':;';';;"","==~+~~~~ REQUESTS

270727-69

Figure 53. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued)

3-231

U)

N
U)
I\:l

"TI
cS'
c
~
UI
f-
a:
iD
ID
c
UI

o
"0
ID

a o·
:::I

PCLK

ADS

Write
Nwad;: 2, Nxda;: 0

Ready Disabled

Idle bus
(not In Hold Acknowledge state)

Write
Nrad;: 1, Nxda = 0

Ready Disabled

A31:4. SUP. n'r--..... --..... __ _-.!.n--"'"n-! """""':-r--""':r--""':r--""':r--....,Iri I-_..". __ ..". __ __ __ ~, __
DMA.INST.
D/C,BE3:0'~1~ ________________ ~&-__ ~~~~~ ____ ~ __ ~~ __ ~~ __ ~~~~~ __ ~~ __ ~ ____ ~ __ ~~~~

=

W/RV

BLAST ~

-I I' DT/R f---I

1\

:LV

DEN ~ ~ II

x x x x x x 1. J
LH~ , ,

, , , , , ,

y~~~~ \.i ,

A3.A2!.X A32={~111213} i~1 ,X ,X ,X ,X ,xii ,X :x ~.2={0111,2{3} :x:::~

WAIT ': \ :II
D310 ~ - - (OUT :> -- t , ,

,

'~' " ,
__ L___ OUT ---, , ,

" ,

:\

I I I I I I
, ,

READY.BTERM_~~_ ,

270727-46

_.
::::s

<£:

co
o
CO
0)
o
(')
l> ,
Co)

~Co)

N
~U1
0)

i960™ Me PROCESSOR
PRODUCT OVERVIEW

This chapter provides an overview of the architecture
of the i960 Me processor.

The i960 Me processor is the military-grade member of
a new family of processors from Intel. This processor
family is based on a new 32-bit architecture called the
i960 architecture. The i960 architecture has been de­
signed specifically to meet the needs of embedded appli­
cations such as avionics, aerospace, weapons systems,
robotics and instrumentation, where high reliability is
critical. It represents a renewed commitment from Intel
to provide reliable, high-performance processors and
controllers for the embedded processor marketplace.

The i960 architecture can best be characterized as a
high-performance computing engine. It features high­
speed instrumentation execution and ease of program­
ming. It is also easily extensible, allowing processors
and controllers based on this architecture to be conve­
niently customized to meet the needs of specific pro­
cessing and control appplications.

Some' of the important attributes of the i960 architec-
ture include: .

o full 32-bit registers

.. high-speed, pipelined instruction execution

o a convenient program execution environment with
.32 general-purpose registers and a versatile set of
special-function registers

<> a highly optimized procedure call mechanism that
features on-chip caching of local variables and pa­
rameters

o extensive facilities for handling interrupts and faults

o extensive tracing facilities to support efficient pro­
gram debugging and monitoring

o register scoreboarding and write buffering to permit
efficient operation with lower performance memory
subsystems

The i960 Me processor implements the i960 architec­
ture, plus it offers several extensions to the architecture.
Some of these extensions, such as on-chip support for
floating-point arithmetic, virtual memory management
and multitasking, are designed to enhance overall sys­
tem performance. Several other extensions are designed
to enhance system reliability and robustness. These ex­
tensions include facilities for hardware enforced protec­
tion of software modules and for creating fault tolerant
systems through the use of redundant processors.

The following sections describe those features of the
i960 architecture that are provided to streamline code
execution and simplify programming. The extensions to
this architecture provided in the i960 Me processor are
described at the end of the chapter.

HIGH PERFORMANCE PROGRAM
EXECUTION

Much of the design of the i960 architecture has been
aimed at maximizing the processor's computational
and data processing speed through increased parallel­
ism. The following paragraphs describe several of the
mechanisms and techniques used to accomplish this
goal, including:

o an efficient load and store memory-access model

o caching of code and procedural data

o overlapped execution of instructions

o many one or two clock-cycle instructions

Load and Store Model

One of the more important features of the i960 archi­
tecture is that most of its operations are performed on
operands in registers, rather than in memory. For ex­
ample, all the arithmetic, logical, comparison, branch­
ing and bit operations are performed with registers and
literals.

This feature provides two benefits. First, it increases
program execution speed by minimizing the number of
memory accesses required to execute a program. Sec­
ond, it reduces memory latency encountered when us­
ing slower, lower-cost memory parts.

To support this concept, the architecture provides a
generous supply of general-purpose registers. For each
procedure, 32 registers are available (28 of which are
available for general use). These registers are divided
into two types: global and local. Both these' types of
registers can be used for general storage of operands.
The only difference is that global registers retain their
contents across procedure boundaries, whereas the
processor allocates a new set of local registers each time
a new procedure is called.

3-233 Order Number: 272031-001

intel® i960™ MC PROCESSOR PRODUCT OVERVIEW

The architecture also provides a set of fast, versatile
load and store instructions. These instructions allow
burst transfers of I, 2, 4, 8, 12 or 16 bytes of informa­
tion between memory and the registers.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture
offers two mechanisms for caching code and data on
chip: an instruction cache and multiple sets of local
registers. The instruction cache allows prefetching of
blocks of instruction from memory, which helps insure
that the instruction execution pipeline is supplied with
a steady stream of instructions. It also reduces the
number of memory accesses required when performing
iterative operations such as loops. (The size of the in­
struction cache can vary. With the i960 Me processor,
it is 512 bytes.)

To optimize the architecture's procedure call mecha­
nism, the processor provides multiple sets of local regis­
ters. This allows the processor to perform most proce­
dure calls without having to write the local registers out
to the stack in memory. .

(The number of local-register sets provided depends on
the processor implementation. The i960 Me processor
provides four sets of local registers.)

Overlapped Instruction Execution

Another technique that the i960 architecture employs
to enhance program execution speed is overlapping the
execution of some instructions. This is accomplished
through two mechanisms: register scoreboarding and
branch prediction.

Register scoreboarding permits instruction execution to
continue while data is being fetched from memory.
When a load instruction is executed, the processor sets
one or more scoreboard bits to indicate the target regis­
ters to be loaded. After the target registers are loaded,
the scoreboard bits are cleared. While the target regis­
ters are being loaded, the processor is allowed to exe­
cute other instructions that do not use these registers.
The processor uses the scoreboard bits to insure that
target registers are not used until the loads are com­
plete. (The checking of scoreboard bits is transparent to
software.) The net result of using this technique is that
code can often be optimized in such a way as to allow
some instructions to be executed parallel.

Single-Clock Instructions

It is the intent of the i960 architecture that a processor
be able to execute commonly used instructions such as
move, add, subtract, logical operations, compare and
branch in a minimum number of clock cycles (prefer­
ably one clock cycle). The architecture supports this
concept in several ways. For example, the load and
store model described earlier in this chapter (with its
concentration on register-to-register operations) allows
simple operations to be performed without the over­
head of memory-to-memory operations.

Also, all the instructions in the i960 architecture are
32 bits or 64 bits long and aligned on 32-bit boundaries.
This feature allows instructions to be decoded in one
clock cycle. It also eliminates the need for an instruc­
tion-alignment stage in the pipeline.

The design of the i960 Me processor takes full advan­
tage of these features of the architecture, resulting in
more than 50 instructions that can be executed in a
single clock-cycle.

Efficient Interrupt Model

The i960 architecture provides an efficient ll1echanism
for servicing interrupts from external sources; To· han~
die interrupts, the processor maintains an interrupt ta­
ble of 248 interrupt vectors (240 of which are available
for general use). When an interrupt is signaled, the
processor uses a pointer from the interrupt table to per­
form an implicit call to an interrupt handler procedure.
In performing this call, the processor automatically
saves the state of the processor prior. to receiving the
interrupt; performs the interrupt routine; and· then re­
stores the state of the processor. A separate interrupt
stack is .also provided to segregate interrupt handling
from application programs.

The interrupt handling facilites also feature a method
of prioritizing interrupts. Using this technique, the
processor is able to store interrupts that are lower in
priority than the task the processor is currently work­
ing on in a pending interrupt section of the interrupt
table. At certain defined times, the processor checks the
pending interrupts and services them.

3-234

nn~® i960™ MC PROCESSOR PRODUCT OVERVIEW

SIMPLIFIED PROGRAMMING
ENVIRONMENT

Partly as a side benefit of its streamlined execution en­
vironment and partly by design, processors based on
the i960 architecture are particularly easy to program.
For example, the large number of general-purpose reg­
isters allows relatively complex algorithms to be execut­
ed with a minimum number of memory accesses. The
following paragraphs describe some of the other fea­
tures that simplify programming.

Highly Efficient Procedure Call
Mechanism

The procedure call mechanism makes procedure calls
and parameter passing between procedures simple and
compact. Each time a call instruction is issued, the
processor automatically saves the current set of local
registers and allocates a new set of local registers for
the called procedure. Likewise, on a return from a pro­
cedure, the current set of local registers is deallocated
and the local registers for the procedure being returned
to are restored. On a procedure call, the program thus
never has to explicitly save and restore those local vari­
ables and parameters that are stored in local registers.

Versatile Instruction Set and
Addressing

The selection of instructions and addressing modes also,
simplifies programming. The architecture offers a full
set of load, store, move, arithmetic, comparison and
branch instructions, with operations on both integer
and ordinal data types. It also provides a complete set
of Boolean and bit-field instructions, to simplify opera­
tions on bits and bit strings.

The addressing modes are efficient and straightforward,
while at the same time providing the necessary indexing
and scaling modes required to address complex arrays
and record structures.

The large 4-gigabyte address space provides ample
room to store programs and data. The availability of 32
addressing lines allows some address lines to be memo­
ry-mapped to control hardware functions.

Extensive Fault Handling Capability

To aid in program development, the i960 architecture
defines a wide selection of faults that the processor de­
tects, including arithmetic faults, invalid operands, in-

valid operations and machine faults. When a fault is
detected, the processor makes an implicit call to a fault
handler routine, using a mechanism similar to that de­
scribed above for interrupts. The information collected
for each fault allows program developers to quickly
correct faulting code. It also allows automatic recovery
from some faults.

Debugging and Monitoring

To support debugging systems, the i960 architecture
provides a mechanism for monitoring processor activity
by means of trace events. The processor can be config­
ured to detect as many as seven different trace events,
including branches, calls, supervisor calls, returns, pre­
returns, breakpoints and the ·execution of any instruc­
tion. When the processor detects a trace event, it sig­
nals a trace fault and calls a fault handler. Intel pro­
vides several tools that use this feature, including an in­
circuit emulator (ICETM) device.

SUPPORT FOR ARCHITECTURAL
!EXTENSIONS

The i960 architecture described earlier in this chapter
provides a high-performance computing engine for use
as the computational and data-processing core of em­
bedded processor or controllers. The architecture also
provides several features that enable processors based
on this architecture to be easily customized to meet the
needs of specific embedded applications, such as signal
processing, array processing or graphics processing.

The most important of these features is a set of 32 spe­
cial-function registers. These registers provide a conve­
nient interface to circuitry in the processor or to pins
that can be connected to external hardware. They can
be used to control timers, to perform operations on spe"
cial data types or to perform I/O functions.

The special-function registers are similar to the global
registers. They can be addressed by all the register-ac­
cess instructions.

EXTENSIONS INCLUDED IN THE
80960MC PROCESSOR

The extensions to the i960 architecture included in the
i960 MC processor are built on top of the processor's
core computing engine. These extensions are aimed at
improving the efficiency and reliability of embedded
systems.

3-235

infel~ i960TM MC PROCESSOR PRODUCT OVERVIEW

On-Chip Floating Point

The i960 MC.processor provides a complete implemen­
tation of the IEEE standard for binary floating-point
arithmetic (IEEE 754-185). This implementation in~

cludes a full set of floating-point operations, including
add, subtract, multiply, divide, trigonometric functions
and logarithmic functions. These operations are per­
formed on single precision (32-bit), double precision
(64-bit) and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the
floating-point handling facilities are completely inte­
grated into the normal instruction execution environ­
ment. Single- and double-precision floating-point values
are stored in the same registers as non-floating point
values. Also, four 80-bit floating-point registers are pro­
vided to hold extended-precision values. .

String and Decimai Operations

The i960 MC processor provides several instructions
for moving, filling and comparing byte strings in mem­
ory. These instructions speed up string operations and
reduce tbe amount of code required to handle strings.

The decimal instructions perform move, add with carry
and subtract with carry operations on. binary-coded
decimal (BCD) strings.

Virtual-Memory Support' .

Another of the i960 MC processor's important features
is support for virtual-memory management. When us­
ing the processor in virtual-memory mode, the proces­
sor provides each process (or task) with an address
space of up to 232 bytes. This address space is paged
into physical memory in 4 Kbyte pages. On-chip mem­
ory-management facilities handle virtual-to-physical
address translation. A translation look-aside buffer
(TLB) speeds address translation by storing virtual-to­
physical address translations for frequently accessed
parts of memory, such as the location of the page tables
and the location of often used system data structures.

Protection

The i960 MC processor offers two mechanisms for pro­
tecting critical data structures or software modules.
The first is the ability to use page rights bits to restrict
access to individual pages. Page rights allow varioiJs
levels of access to be assigned to. a.page, ranging from
no access to read only to read-write.

The second protection mechanism is a user/supervisor
protection model. This two-level protection model pro­
vides hardware enforced protection of kernel proce­
dures and data structures. When using this protection
mechanism, priviledged procedures and data are placed
in protected pages of memory. These pages can then be
accessed only through a procedure table, which pro­
vides a tightly controlled interface to kernel functions.

Multitasking

The i960 MC processor offers a variety of process man­
agement facilities to support concurrent execution of
multiple tasks. These facilities can be divided into two
groups: process scheduling and interprocess communi­
cations.

The process scheduling facilities consist of a set of gen­
eral-purpose data structures and instructions, which are
designed . to support several different multitasking
schemes. For example, the processor provides a set of
instructions that allow the kernel to explicitly dispatch
a task (bind it to the processor) and to suspend a task
(save the current state of a task so that another. task can
be bound to the processor). These instructions can be
used within kernel procedures to schedule, dispatch
and preempt multiple tasks.

The processor also provides a unique feature called self
dispatching. Here, the kernel schedules tasks by queu­
ing them toa dispatch port.'Thereafter, the processor
handles the dispatching, preempting and rescheduling
of the tasks automatically, independent of the kernel.
When using this mechanism, tasks can be scheduled by
priority, with up to 32 priority levels to choose from.

3-236

i960™ MC PROCESSOR PRODUCT OVERVIEW

The processor's interprocess communication facilities
include support for semaphores and communication
ports. These facilities allow synchronization of interde­
pendent tasks and asynchronous communication be­
tween tasks.

l\Iluliiprocessing

The i960 MC processor provides several mechanisms
designed to simplify the design of multiple-processor
systems, allowing several processors to run in parallel,
using shared memory resources. One of these mecha­
nisms is the self-dispatching capability described above.
Here, two or more processors can schedule and dis­
patch processes from a single dispatch port, with each
processor equally sharing the processing load.

The processor also provides an inter-agent communica­
tion (lAC) mechanism that allows processors to ex­
change messages among themselves on the bus. This
mechanism operates similarly to the interrupt mecha­
nism, except that lAC messages are passed through
dedicated sections of memory. The lAC mechanism
can be used to preempt processes running on another
processor, to manage interrupt haridling or to initialize
and synchronize several processors.

A set of atomic instructions are also provided to syn­
chronize memory accesses. Multiple processors can
then access shared memory without inserting inaccura­
cies and ambiguities into shared data structures.

Fault Tolerance

The i960 family of components supports fault-tolerant·
system design through the use of the M82965 Bus Ex­
tension Unit component. The M82965 allows two proc­
essors to be operated in tandem to form a self-checking
module. The two M82965s check the outputs of two
processors (a master and a checker) cycle-by-cycle. If
the checking M82965 detects a difference between out­
puts, it signals an error. A software recovery procedure
can then be initiated.

This fault detection mechanism supports several fault
detection and recovery techniques, including self heal­
ing, and continuous-operation (non-stop) systems.

LOOK FOR MORE IN THE FUTURE

The i960 architecture offers exceptional performance,
plus a wealth of useful features to help in the design of
efficient and reliable embedded systems. But equally
important, it offers lots of room to grow. The i960 MC
processor provides average instruction processing rates
of 7.5 million instructions per second (7.5 MIPS) at
20 MHz clock rate and 10 MIPS at a 25 MHz clock
rate(1).

However, the i960 MC processor is only the beginning.
With improvements in VLSI technology, future imple­
mentations of the i960 architecture will offer even
greater performance. They will also offer a variety of
useful extensions to solve specific control and monitor­
ing needs in the field of embedded applications.

1. 1 MIP is equivalent to the performance of a Digital Equipment Corp. VAX 11/780.

3-237

80960MC
EMBEDDED 32-BIT MICROPROCESSOR

WITH INTEGRATED FLOATING-POINT UNIT
AND MEMORY MANAGEMENT UNIT

• High-Performance Embedded
Architecture
- 25 MIPS Burst Execution at 25 MHz
- 9.4 MIPS* Sustained Execution at

25 MHz

• On-Chip Floating-Point Unit
- Supports IEEE 754 Floating-Point

Standard
- Full Transcendental Support
- Four 80-Bit Registers
- 5.2 Million Whetstones/Second at

25 MHz

• 512-Byte On-Chip Instruction Cache
- Direct Mapped
- Parallel Load/Decode for Uncached

Instructions

• Multiple Register Sets
- Sixteen Global 32-Bit Registers
- Sixteen Local 32-Bit Registers
- Four Local Register Sets Stored

Military

• On-Chip Memory Management Unit
- 4 Gigabyte Virtual Address Space

per Task
- 4 Kbyte Pages with Supervisor/User

Protection

• Built-In Interrupt Controller
- 32 Priority Levels
- 248 Vectors
- Supports M8259A
- 3.4 /Ls Latency

• Easy to Use, High Bandwidth 32-Bit Bus
- 66.7 MBytes/s Burst
- Up to 16-Bytes Transferred per Burst

• Multitasking and Multiprocessor
Support
- Automatic Task Dispatching
- Prioritized Task Queues

• Advanced Package Technology
-132 Lead Ceramic Pin Grid Array
-164 Lead Ceramic Quad Flatpack

On-Chip (Sixteen 32-Bit Registers
per Set) • Military Temperature Range

- Register Scoreboarding - - 55°C to + 125°C (T c)
The 80960MC isthe enhanced military member of Intel's new 32-bit microprocessor family, the 960 series,
which is designed especially for embedded applications. It is based on the family's high performance, com­
mon core architecture, and includes a 512-byte instruction cache, a built-in interrupt controller, an integrated
floating-point unit and a memory management unit. The 80960MC has a large register set, multiple parallel
execution units, and a high-bandwidth, burst bus. Using advanced RISC technology, this high performance
processor can respond to interrupts in under 3.4 f.Ls and is capable of execution rates in excess of 9.4 million
instructions per second.' The 80960MC is well-suited for a wide range of military and other high reliability
applications, including avionics, airborne radar, navigation, and instrumentation.

'Relative to Digital Equipment Corporation's VAX-ll/780" at 1 MIPS

Figure 1. The 80960MC's Highly Parallel Microarchitecture
"VAX-l1TM is a trademark of Digital Equipment Corporation.

3-238

. 271080-1

February 1991
Order Number: 271080-007

80960MC

THE 960 SIERIES

The 80960MC is the enhanced military member of a
new family of 32-bit microprocessors from Intel
known as the 960 Series. This series was especially
designed to serve the needs of embedded applica­
tions. The embedded market includes applications
as diverse as industrial automation, avionics, image
processing, graphics, robotics, telecomrnunications;
and automobiles. These types of applications re­
quire high integration, low power consumption; quick
interrupt response times, and high performance.
Since time to market is critical, embedded micro­
processors need to be easy to use in both hardware
and software designs.

gO

SI}{TEEN GLOBAL
32-BIT REGISTERS(l)

REGISTERS

g15

All members of the 80960 series share a common
core architecture which utilizes RISC technoiogy so
that, except for special functions; the family mem­
bers are object code compatible. Each ,new proces­
sor in the series will add its own special set of func­
tions to the .core to satisfy the needs. of a specific
application or range of applicationsin the embedded
marllet. For example, future processors may include
a DMA controller, a timer, or·an AID converter.

The 80960MC includes an integrated Floating Point
Unit (FPU), a Memory Management Unit (MMU),
multitasking support, and multiprocessor support.
There are also two commercial members of the fam­
ily: the 80960KB processor with integrated FPU and
the 80960KA without floating-point.

0

fpO
FLOATING-

FOUR 80-BITREGISTERS POINT

fp3 REGISTERS

rO

SI}{TEEN LOCAL
32-BIT REGISTERS(2)

REGISTERS

r15

32-BITS ARITHMETIC CONTROLS

32-BITS INSTRUCTION POINTER

232 -1

32-BITS PROCESS CONTROLS

32-BITS TRACE CONTROLS

NOTES:
1. Register g15 is reserved for stack management functions.
2. Registers rO, r1, and r2 are reserved for stack management functions.

Figure 2. Register Set

3-239

ADDRESS
SPACE

80960MC

KEY PERFORMANCE FEATURES

The a0960MC's architecture is based on the most
recent advances in RISC technology and is ground­
ed in Intel's long experience in designing embedded
controllers. Many features contribute to the
a0960MC's exceptional performance:

1. Large Register Set. Having a large number of
registers reduces the number of times that a proces­
sor needs to access memory. Modern compilers can
take advantage of this feature to optimize execution
speed. For maximum flexibility, the a0960MC pro­
vides thirty-two 32-bit registers (sixteen local and
sixteen global) and four a~-bit floating-point global
registers. (See Figure 2.)

2. Fast Instruction Execution. Simple functions
make up the bulk of instructions in most programs,

Control Opcode

Compare Opcode Reg/Lit
and Branch

Register Opcode Reg
to Register

Memory Opcode Reg
Access-Short

Memory Opcode Reg
Access-Long

so that execution speed can be greatly improved by
ensuring that these core instructions execute in as
short a time as possible. The most-frequently exe­
cuted instructions such as register-register moves,
add/subtract, logical operations, and shifts execute
in one to two cycles (Table 1 contains a list of in­
structions.)

. 3. Load/Store Architecture. Like other processors
based on RISC technology, the a0960MC has a
Load/Store architecture, only the LOAD and STORE
instructions reference memory; all other instructions
operate on registers. This type of architecture simpli­
fies instruction decoding and is used in combination
with other techniques to increase parallelism.

Displacement

Reg M Displacement

Reg/Lit Modes Ext'd Op Reg/Lit

Base M x Offset

Base Mode Scale xx Index

Displacement

Figure 3. Instruction Formats

3-240

80960MC

Table 1. B0960MC Instruction Set

Data Movement Arithmetic
Floating

Logical
Point

Load Add Add And
Store Subtract Subtract Not And
Move Multiply Multiply And Not
Load Address Divide Divide Or
Load Physical Remainder Remainder Exclusive Or

Address Modulo Scale NotOr
Shift Round Or Not

Square Root Nor
Sine Exclusive Nor
Cosine Not.
Tangent Nand
Arctangent Rotate
Log
Log Binary
Log Natural
Exponent
Classify
Copy Real

Extended
Compare

Comparison Branch
Bit and String Bit Field

Compare Unconditional Set Bit Move String
Conditional Branch Clear Bit Move Quick String

Compare Conditional Branch Not Bit Fill String
Compare and Compare and Check Bit Compare String

Increment Branch Alter Bit Scan Byte for
Compare and Scan for Bit Equal

Decrement Scan over Bit
Extract
Modify

Conversion Decimal Call/Return
Process

Management

Convert Real to Move Call Schedule Process
Integer Add with Carry Call Extended Saves Process

Convert Integer to Subtract with Carry Call System Resume Process
Real Return Load Process Time

Branch and Link Modify Process
Controls

Wait
Conditional Wait
Signal
Receive
Conditional

Receive
Send
Send Service
Atomic Add
Atomic Modify

Fault Debug Miscellaneous

Conditional Fault Modify Trace Flush Local
Synchronize Faults Controls Registers

Mark Inspect Access
Force Mark Modify Arithmetic

Controls
Test Condition

Code

3-241

infel® 80960MC

4. Simple Instruction Formats. All instructions· in
the 80960MC are 32·bits long and must be aligned
on word boundaries. This alignment makes it possi-'
ble to eliminate the instruction-alignment stage in
the pipeline. To simplify the instruction decoder fur­
ther, there are only five instruction formats and each
instruction uses only one format. (See Figure 3.)

5. Overlapped Instruction Execution. A load oper­
ation allows execution of subsequent instructions to
continue before the data has been returned from
memory, so that these instructions can overlap the
load. The 80960MC manages this process transpar­
ently to software through the use of a register score­
board. Conditional instructions also make use of a
scoreboard so that subsequent unrelated instruc­
tions can be executed while the conditional instruc­
tion is pending.

6. Integer Execution Optimization. When the re­
sult of an operation is used as an operand in a.sub­
sequent calculation, the value is sent immediately to
its destination register. Yet at the same time, the
value is put back on a bypass path to the ALU,
thereby saving the time that otherwise would be re­
quired to retrieve the value for the next operation.

7. Bandwidth Optimizations. The 80960MC gets
optimal use of its memory bus bandwidth because
the bus is tuned for use with the cache: the line size
of the instruction cache matches the maximum burst
size for instruction fetches. The 80960MC automati­
cally fetches four words in a burst and stores them
directly in the. cache. Due to the size Of the cache
and the fact that it is continually filled in anticipation
of needed instructions in the program flow, the
80960MC is exceptionally insensitive to memory
wait states. In fact,each wait state causes only a
7% degradation in system perfomance. The benefit
is that the 80960MC will deliver outstanding per­
formance even with a low cost memory system.

8. Cache Bypass, If there is a cache miss, the proc­
essor fetches the needed instruction, then sends it
on to the instruction decoder at the same time it
updates the cache. Thus, no extra time is taken to
load and read the cache.

Memory Space and Addressing Modes

The 80960MC allows each task (process) to ad­
dress a logical memory space of up to 4 Gbytes. In
turn, each task's address space is divided into four
1-Gbyte regions and each region can be mapped to
physical addresses by zero, one, or two levels of
page tables. The region with the highest addresses
(Region 3) is common to all tasks.

In keeping with RISC design principles, the number
of addressing modes has been kept to a minimum
but includes all those necessary to ensure efficient
execution of high-level languages such as Ada, C,
and Fortran. Table 2 lists the memory addressing
modes.

Data Types

The 80960MC recognizes the following data types:

Numeric:
o 8-, 16-, 32- and 64-bit ordinals
o 8-, 16, 32- and 64-bit integers
o 32-, 64- and 80-bit real numbers

Non-Numeric:
oBit
o Bit Field
o Triple-Word (96 bits)
o Quad-Word (128 bits)

Large Register Set

The programming environment of the 80960MC in­
cludes a large number of registers. In fact, 36 regis­
ters are available at any time. The availability of this
many registers greatly reduces the number of mem­
ory accesses required to execute most programs,
which leads to greater instruction processing speed.

There are two types of general-purpose registers:
local and global. The 20 global registers consist of
sixteen 32-bit registers (GO through G 15) and four
80-bit registers (FPO through FP3). These registers
perform the same function as the general-purpose
registers provided in other popular microprocessors.
The term global refers to the fact that these regis­
ters retain their contents across procedure calls.

The local registers, on the other hand, are proce­
dure specific. For each procedure call, the 80960MC
allocates 16 local registers (RO through R 15). Each
local register is 32 bits wide. Any register can also
be used for floating-point operations; the 80-bit float­
ing-point registers are provided for extended preci­
sion.

Multiple Register Sets

To further increase the efficiency of the register set,
multiple sets of local registers are stored on-chip.
This cache holds up to four local register frames,
which means that up to three procedure calls can be
made without having to access the procedure stack
resident in memory.

3-242

80960MC

Table 2. Memory Addressing Modes

" 12-Bit Offset
o 32-Bit Offset

• Register-Indirect

o Register + 12-Bit Offset

• Register + 32-Bit Offset
.. Register + (Index-Register x Scale-Factor)

• Register x Scale Factor + 32-Bit Displacement

II Register + (Index-Register x Scale-Factor) + 32-Bit Displacement

Scale-Factor is 1, 2, 4, 8 or 16

Although programs may have procedure calls nest­
ed many calls deep, a pr.ogram typically oscillates
back and forth between only two or three levels. As
a result, with four stack frames in the cache, the
probability of there being a free frame on the cache
when a call is made is very high. In fact, runs of
representative C-Ianguage programs show that 80%
of the calls are handled without needing to access
memory.

If there are four or more active procedures and a
new procedure is called, the processor moves the
oldest set of local registers in the register cache to a

FOUR ONE OF
LOC

REGISTER
AL

SETS

REGISTER
CACHE

---.........

~ ------==-=

procedure stack in memory to make room for a new
set of registers. Global register G15 is used by the
processor as the frame pointer (FP) for the proce­
dure stack.

Note that the global and floating-point registers are
not exchanged on a procedure call, but retain their
contents,. making .them available to all procedures
for fast parameter passing. An illustration of the reg­
ister cache is shown. in Figure 4.

LOCAL REGISTER SET

31 o
271080-2

Figure 4. Multiple Register Sets Are Stored On-Chip

3-243

infel .. 80960MC

Instruction Cache

To further reduce memory accesses, the 80960MC
includes a 512-byte on-chip instruction cache. The
instruction cache is based on the concept of locality
of reference; that is, most programs are not usually
executed in a steady stream but consist of many
branches and loops that lead to jumping back and
forth within the same small section of code. Thus, by
maintaining a block of instructions in a cache, the
number of memory references required to read in­
structions into the processor can be greatly reduced.

To load the instruction cache, instructions are
fetched in 16-byte blocks, so that up to four instruc­
tions can be fetched at one time. An efficient
prefetch algorithm increases the probability that an
instruction will already be in the cache whim it is
needed. ' .

Code for small loops will often fit entirely within the
cache, leading to a great increase in processing
speed since further memory references might not be
necessary until the program exits the loop. Similarly,
when calling short procedures, the code for the call­
ing' procedure is likely to remain in the cache, so it
will be there on the procedure's return. . '

Register Scoreboarding

. The instruction decoder has been optimized in sev­
eral ways. One of these optimizations is the ability to
do instruction overlapping by means of register
scoreboarding.

Register score boarding occurs when a LOAD in­
struction is executed to move a variable from memo­
ry into a register. When the instruction is initiated, a
.scoreboard bit on the target register is set. When the
register is actually loaded, the bit is reset. Inbe­
tween, any. r~ference to the register contents is ac­
companied by a test of the scoreboard bit to insure
that the load has completed before processing con­
tinues. Since the processor does not have to wait for
the LOAD to be completed, it can go on to execute
additional instructions placed in between the LOAD
instruction and the instruction that uses the register
contents, as shown in the following example:

LOAD R4, address 1
LOAD R5, address 2
Unrelated instruction
Unrelated instruction
ADD R4, R5, R6

In essence, the two unrelated instructions between
the LOAD and ADD instructions are executed for

·free (Le., take no apparent time to execute) because
they are executed while the register is being loaded.
Up to three LOAD instructions can be pending at
one time with three corresponding scoreboard bits
set. By exploiting this feature, syst~m programmers
and compilers have a useful tool for optimizing exe-
cution speed. .

Memory Management and Protection

The 80960MC will be especially useful for multitask­
ing applications that require software protection and
a very large address space. To ensure the highest
level of performance possible, the memory manage­
ment unit and translation look-aside buffer (TLB) are
contained on-chip. .

The 80960MCsupports a conventional form of de­
mand-paged virtual memory in which the address
space is divided. into 4 Kbyte pages .. Studies have
shown that a 4 Kbyte page is the optimum size for a
broad range of applications.

Each page table entry includes a 2-bit page rights
field that specifies whether the page is a no-access;
read-only, or read-write page. This field is interpret­
ed differently depending on whether the current task
(process) is executing in user or supervisor mode, as
shown below:

Rights
00
01
10
11

User
No Access
No Access
Read-Only
Read-Write

Floating-Point Arithmetic

Supervisor
Read-Only
Read-Write
Read-Write
Read-Write

In the 80960MC, floating-point arithmetic has been
made an integral part of the architecture. Having the
floating-point unit integrated on-chip provides two
advantages. First, it improves ,the performance of
the chip for floating-point applications, since no
additional bus overhead is associated with floating~
point calculations, thereby leaving more time for oth­
er bus operations such as 1/0. Second, the cost of
using floating-point operations is reduced because a
separate coprocessor chip is not required.

The 80960MC floating-point (real number) data'
types include single-precision (32-bit), double-preci­
sion (64-bit), and extended precision (80-bit) float­
ing-point numbers. Any register may be used to exe­
cute floating-point operations.

3-244

80960MC

The processor provides hardware support for both
mandatory and recommended portions of IEEE
Standard 754 for floating-point arithmetic, including
all arithmetic, exponential, logarithmic, and other
transcendental functions. Table 3 shows execution
times for some representative instructions.

Table 3. Sample Floating-Point Ellecution
Times (!-,-s) at 25 MHz

32-Bit 64-Bit

Add 0.4 0.5
Subtract 0.4 0.5
Multiply 0.7 1.3
Divide 1.3 2.9

Square Root 3.7 3.9
Arctangent 10.1 13.1
Exponent 11.3 12.5
Sine 15.2 16.6
Cosine 15.2 16.6

Multitasking Support

Multitasl<ing programs commonly involve the moni­
toring and control of an external operation, such as
the activities of a process controller or the move­
ments of a machine tool. These programs generally
consist of a number of processes that run indepen­
dently of one another, but share a common data­
base or pass data among themselves.

The 80960MC offers several hardware functions de­
signed to support multitasking systems. One unique
feature, called self-dispatching, allows a processor
to switch itself automatically among scheduled
tasks. When self-dispatching is used, all the operat­
ing system is required to do is place the task in the
scheduling queue.

When the processor becomes available, it dis­
patches the task from the beginning of the queue
and then executes it until it becomes blocked, inter­
rupted, or until its time-slice expires. It thim returns
the task to the end of the queue (Le., automatically
reschedules it) and dispatches the next ready task.

During these operations, no communication be­
tween the processor and the operating system is
necessary until the running task is complete or an
interrupt is issued.

Synchronization and Communication

The 80960MC also offers instructions to set up and
test semaphores to ensure that concurrent tasks
remain synchronized and no data inconsistency
results. Special data structures, known as communi­
cation ports, provide the means for exchanging
parameters and data structures. Transmission of in­
formation by means of communication ports is asyn­
chronous and automatically buffered by the proces­
sor.

Communication between tasks by means of ports
can be carried out independently of the operating
system. Once the ports have been set up by the
programmer, the processor handles the message
passing automatically.

~HQlh iaandwidth Local Bus

An 80960MC CPU resides on a high-bandwidth ad­
dress/data bus known as the local bus (L-Bus). The
L-Bus provides a direct communication path be­
tween the processor and the memory and I/O sub­
system interfaces. The processor uses the local bus
to fetch instructions, manipulate memory, and re­
spond to interrupts. Its features include:

o 32-bit multiplexed address/data path

o Four-word burst capability, which allows transfers
from .1 to 16 bytes at a time

o High bandwidth reads and writes at 66.7 MBytes
per second

a Special signal to indicate whether a memory
transaction can be cached

Figure 5 identifies the groups of signals which con­
stitute the L-Bus. Table 4 lists the function of the L­
Bus and other processor-support signals, such as
the interrupt lines.

3-245

80960MC

LOCAL BUS

\
LOCAL BUS SIGNAL GROUPS

\
ADDRESS/DATA (32 LINES)

< > CONTROL(ADDRESS,DATA, and OPERATION SIGNALS- 15 LINES)

< > ARBITRATION (2 LINES)
271080-3

Figure 5. Local Bus Signal Groups

Multiple Processor Support

One means of increasing the processing power of a
system is to run two or more processors in parallel.
Since microprocessors are not generally designed to
run in tandem with other processors, designing such
a . system is usually difficult and costly.

The 80960MC solves this problem by offering a
number of ·functions to coordinate the actions of
multiple processors. First, messages can be passed
between processors to initiate actions such as flush­
ing a cache, stopping or starting another processor,
or preempting a task. The messages are passed on
the bus and allow multiple processors to run togeth­
er smoothly, with rare need to lock the bus or memo­
ry.

Second, a set of synchronization instructions help ,
maintain the coherency of memory. These instruc­
tions permit several processors to modify memory at
the same time without inserting inaccuracies or am­
biguities into shared data structures.

The self-dispatching mechanism, in addition to being
used in single-processor. systems, provides the
means to increase the performance of a system
merely by adding processors. Each processor can
either work on the same pool of tasks (sharing the
same queue with other processors) or can be re­
stricted to its own queue.

When processors perform system operations, they
synchronize themselves by using atomic operations
and sending special messages between each other.
And changing the number of processors in a system

never requires a software change. Software will exe­
cute correctly regardless of the number of proces­
sors in the system; systems with more processors
simply execute faster.

Interrupt Handling

The 80960MC can be interrupted in one of two
ways: by the activation of one of four interrupt pins
or by sending a message on the processor's data
bUL .

The 80960MC is unusual in that it automatically han­
dles interrupts on a priority basis and tracks pending
interrupts through its on-chip interrupt controller.
Two of the interrupt pins can be configured to pro­
vide M8259A handshaking for expansion beyond
four interrupt lines.

An interrupt message is made up of a vector number
and an interrupt priority. If the interrupt priority is
greater than that of the currently running task, the
processor accepts the interrupt and uses the vector
as an index into the interrupt table. If the priority of
the interrupt message ·is below that of the current
task, the processor saves the information in a sec­
tion of the interrupt table reserved for pending inter­
rupts.

Debug Features

The 80960MC has built-in debug capabilities. There
are two types of breakpoints and six different trace
modes. The debug features are controlled by two

3-246

80960MC

internal 32-bit registers, the Process-Controls Word
and the Trace-Controls Word. By setting bits in
these control words, a software debug monitor can
closely control· how the processor responds during
program execution.

The 80960MC has both hardware and software
breakpoints. It provides two hardware breakpoint
registers on-chip which can be set by a special com­
mand to any value. When the instruction pointer
matches the value in one of the breakpoint registers,
the breakpoint will fire, and a breakpoint handling
routine is called automatically.

The 80960MC also provides software breakpoints
through the use of two instructions, MARK and
FMARK. These instructions can be placed at any
point in a program and will cause the processor to
halt execution at that point and call the breakpoint
handling routine. The breakpoint mechanism is easy
to use and provides a powerful debugging tool.

Tracing is available for instructions (single-step exe­
cution), calls and returns, and branching. Each dif­
ferent type of trace may be enabled separately by a
special debug instruction. In each case, the
80960MC executes the instruction first and then
calls a trace handling routine (usually part of a soft­
ware debug monitor). Further program execution is
halted until the trace routine is completed. When the
trace event handling routine is completed, instruc­
tion execution resumes at the next iristruction. The
80960MC's tracing mechanisms, which are imple­
mented completely in hardware, greatly simplify the
task of testing and debugging software.

IFAUL T DETECTION

The 80960MC has an automatic mechanism to
handle faults. There are ten· fault types including
trace, arithmE;ltic, and floating-point faults. When the
processor detects a fault, it automatically calls the
appropriate fault handling routine and saves the cur­
rent instruction pointer and necessary state informa­
tion to make efficient recovery possible. The proces­
sor posts diagnostic information on the type of fault
to a Fault Record. Like interrupt handling routines,
fault handling routines are usually written to meet
the needs of a specific application and are often in­
cluded as part of the operating system or kernel.

For each of the ten fault types, there are numerous .
subtypes that provide specific information about a
fault. For example, a floating-point fault may have its
subtype set to an Overflow or Zero-Divide fault. The
fault handler can use this specific information to re­
spond correctly to the fault.

Interagent Communications (lAC)

In order to coordinate their actions, processors in a
multiple processor system need a means for com­
municating with each other. The 80960MC does this
through a mechanism known as Interagent Commu­
nication messages or lACs.

lAC messages cause a variety of actions including
starting and stopping processors, flushing instruc­
tion caches and TLBs, and sending interrupts to oth­
er processors in the system. The upper 16 Mbytes of
the processor's physical memory space is reserved
for sending and receiving lAC messages.

BUILT-IN TESTABILITY

Upon reset, the 80960MC automatically conductsan
exhaustive internal test of its major blocks of logic.

Then, before executing its first instruction, it does a
zero check sum on the first eight words in memory
to ensure that the system has been loaded correctly.
If a problem is discovered at any point during the·
self-test, the 80960MC will assert its FAILURE pin
and will not begin program execution. The self-test·
takes approximately 47,000 cycles to complete.

System manufacturers can use the 80960MC's self­
test feature during incoming parts inspection. No
special diagnostic programs need to be written, and
the test is both thorough and fast. The self-test ca­
pability helps ensure that defective parts will be dis­
covered before systems are shipped, and once in
the field, the self-test makes it easier to distinguish
between problems caused by processor failure and
problems resulting from other causes.

COMPATIBILITY WITH 80960K-SERIES

Application programs written for the 80960K-Series
microprocessors can· be run on the 80960MC with­
out modification. The 80960K-Series instruction set
forms the core of the 80960MC's instructions, so bi­
nary compatibility is assured.

3-247

intel@ 80960MC

CHMOS CMOS processes and opens a new era in micro-
processor performance. It combines the high per-

The 80960MC is fabricated using Intel's CHMOS IV formance capabilities of Intel's industry-leading
(Complementary High Speed Metal Oxide Semicon- HMOS technology with the high density and low
ductor) process. This advanced technology elimi- power characteristics of CMOS. The 80960MC is
nates the frequency and reliability limitations of older available at 16, 20 and 25 MHz.

Table 4a. 80960MC Pin Description: L-Bus Signals

Symbol Type Name and Function

CLK2 I SYSTEM CLOCK provides the fundamental timing for 80960MC systems. It is
divided by two inside the 80960MC to generate the internal processor clock. CLK2
is shown in Figure 9.

LAD31 I/O LOCAL ADDRESS/DATA BUS carries 32-bit physical addresses .and data to and
-LADo T.S. from memory. During an address (T a) cycle, bits 2-31 contain a physical word

address (bits 0-1 indicate SIZE; see below). During a data (T d) cycle, bits 0-31
contain read or write data. The LAD lines are active HIGH and float to a high
impedance state when not active.

SIZE; which is comprised of bits 0-1 of the LAD lines during a T a cycle, specifies
the size of a transfer in words for a burst transaction.

LAD 1 LAD 0

0 0 1 Word
0 1 2 Words
1 0 3 Words
1 1 4 Words

ALE 0 ADDRESS-LATCH ENABLE indicates the transfer of.a physical address. ALE is
T.S. asserted during aT a cycle and deasserted before the beginning of the T d state. It

is active LOW and floats to a high impedance state when the processor is idle or
is at the end of any bus access.

ADS 0 ADDRESS STATUS indicates an address state. ADS is asserted every T a state
0.0. and deasserted during the the following T d state. For a burst transaction, ADS is

asserted again every T d state where READY was asserted in the previous cycle.

W/R 0 WRITE/READ ~pecifies, during a T a cycle, whether the operation is a write or
0.0. read. It is latched on-chip and remains valid during T d and T w states.

DT/R 0 DATA TRANSMIT/RECEIVE indicates the direction of data transfer to and from
0.0. the L-Bus. It is low during Ta, T wand T d cycles for a read or interrupt

acknowledgement; it is high during T a, T wand T d cycles for a write. DT /R" never
changes state when DEN is asserted (see Timing Diagrams).

DEN 0 DATA ENABLE is asserted during T d and T w cycles and indicates transfer of data
0.0. on the LAD bus lines.

READY I READY indicates that data on LAD lines can be sampled or removed. If READY is
not asserted during aT d cycle, the T d cycle i~ extended to the next cycle by
inserting wait states (T w), and ADS is not asserted in the next cycle.

LOCK 110 BUS LOCK prevents other bus masters from gaining control of the L-Bus
0.0. following the current cycle (if they would assert LOCK to do so). LOCK is used by

the processor or any bus agent when it performs indivisible Read/Modify/Write
(RMW) operations.

For a read that is designated as a RMW-read, LOCK is examined, if asserted, the
processor waits until it is not asserted; if not asserted, the processor asserts
LOCK during the T a cycle and leaves it asserted ..

A write that is designated as an RMW-write deasserts LOCK in the T a cycle.

I/O = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain, T.S. = three state
T a = T Address, T d = T Data, T W = T Wait, T r = T Recovery, Ti = Tldle, T h = T Hold

3-248

80960MC

Table 4a. 80960MC Pin Description: L-Bus Signals (Continued)

Symbol Type Name and Function

BE3-BEa 0 BYTE ENABLE LINES specify which data bytes (up to four) on the bus take part
O.D. in the current bus cycle. BE3 corresponds to LAD31-LAD24 and BEa corresponds

to LAD7-LADa.

The byte enables are provided in advance of data. The byte enables asserted
during T a specify the bytes of the first data word. The byte enables asserted
during T d specify the bytes of the next data word (if any), that is, the word to be
transmitted following the next assertion of READY. The byte enables during the
T d cycles preceding the last assertion of READY are undefined. The byte enables
are latched on-chip and remain constant from one T d cycle to the next when
READY is not asserted.

For reads, the byte enables specify the byte{s) that the processor will actually use.
80960MC's will assert only adjacent byte enables (e.g., asserting just BEa and
BE2 is not permitted), and are required to assert at least one byte enable.
Accesses must also be naturally aligned (e.g., asserting BE1 and BE2 is not
allowed even though they are adjacent). To produce address bits Ao and A1
externally, they can be decoded from the byte enables.

HOLD I HOLD indicates a request from a secondary bus master to acquire the bus. If the
(HLDAR) processor is initialized as the primary bus master this input will be interpreted as

HOLD. When the processor receives HOLD and grants another master control of
the bus, it floats its three-state bus lines, asserts HOLD ACKNOWLEDGE, and
enters the T h state. When HOLD is deasserted, the processor will deassert HOLD
ACKNOWLEDGE and go to either the Ti or T a state.

HOLD ACKNOWLEDGE RECEIVED indicates that the processor has acquired
the bus. If the processor is initialized as the secondary bus master this input is
interpreted as HLDAR.

HOLD timing is shown in Figure 11.

HLDA O· HOLD ACKNOWLEDGE relinquishes control of the bus to another bus master. If
(HOLDR) T.S. the processor is initialized as the primary bus master this output will be interpreted

as HLDA. When HOLD is de asserted, the processor will de assert HLDA and go to
either the Ti or T a state.

HOLD REQUEST indicates a request to acquire the bus. If the processor is
initialized as the secondary bus master this output will be interpreted as HOLDR.

HOLD timing is shown in Figure, 11.

CACHE 0 CACHE indicates if an access is cacheable during a Ta cycle. The CACHE signal
T.S. floats to a high imp~dance state when the processor is, idle.

I/O = Input/Output, 0 = Output, I = Input, 0.0. = Open-Drain, T.S. = three state
T a = T Address. T d = T Data. T W = TWait. Tr = T Recovery. Ti = Tldle. T h = T Hold

3-249

80960MC

Table 4b. 80960MC Pin Description: Module Support Signals

Symbol Type Name and Function

BADAC I BAD ACCESS, if asserted in the cycle following the one in which the last READY
of a transaction is asserted, indicates that an unrecoverable error has occurred on
the current bus transaction, or that a synchronous load/store instruction has not
been acknowledged.

STARTUP: During system reset, the BADAC signal is interpreted differently. If the
signal is high, it indicates that this processor will perform system initialization. If it
is low, another processor in the system will perform system initialization instead.

RESET I RESET clears the internal logic of the processor and causes it to re-initialize.

During RESET assertion, the input pins are ignored (except for BADAC and
lAC/INTo), the tri-state output pins are placed in a high impedance state, and
other output pins are placed in their non-asserted state.

RESET must be asserted for at least 41 ClK2 cycles for a predictable RESET.
The HIGH to lOW transition of RESET should occur after the rising edge of both
ClK2 and the external bus ClK, and before the next rising edge of ClK2.

RESET timing is shown in Figure 10.

FAILURE 0 INITIALIZATION FAILURE indicates that the processor has failed to initialize
0.0. correctly. After RESET is deasserted and before the first bus transaction begins,

FAilURE is asserted while the processor performs a self-test. If the self-test
completes successfully, then FAilURE is deasserted. Next, the processor
performs a zero checksum on the first eight words of memory. If it fails, FAILURE
is asserted for a second time and remains asserted; if it passes, system
initialization continues and FAilURE remains deasserted.

N.C. N/A NOT CONNECTED indicates pins should not be connected. Never connect any
pin marked N.C.

lAC I INTERAGENT COMMUNICATION REQUEST/INTERRUPT 0 indicates either
(INTo) that there is a pending lAC message for the processor or an interrupt. The bus

interrupt control register determines in which way the signal should be interpreted.
To signal an interrupt or lAC request in a synchronous system, this pin (as well as
the other interrupt pins) must be enabled by being de asserted for at least one bus
cycle and then asserted for at least one additional bus cycle; in an asynchronous
system, the pin must remain deasserted for at least two bus cycles and then be
asserted for at least two more bus cycles.

LOCAL PROCESSOR NUMBER: This signal is interpreted differently during
system reset. If the signal is at a high voltage level, it indicates that this processor
is a primary bus master (local Processor Number = 0); if it is at a low voltage
level, it indicates that this processor is a secondary bus master (local Processor
Number = 1).

INTj I INTERRUPT 1, like INTo, provides direct interrupt signaling.

INT2 I INTERRUPT 2/1NTERRUPT REQUEST: The bus control registers determines
(INTR) how this pin is interpreted. If INT 2, it has the same interpretation as the INTo and

INTI pins. If INTR, it is used to receive an interrupt request from an external
interrupt controller.

INT3 I/O INTERRUPT 3/INTERRUPT ACKNOWLEDGE: The bus interrupt control register
(INTA) 0.0. determines how this pin is interpreted. If INT 3, it has the same interpretation as

the INTo, INT1, and INT 2 pins. If INTA, it is used as an output to control interrupt-
'acknowledge bus transactions. The INTA output is latched on-chip and remains
valid during T d cycles; as an output, it is open-drain.

1/0 = Input/Output, 0 = Output. I = Input. 0.0. = Open-Drain. T.S. = three state
Ta = TAddress. Td= TDa!a. Tw = TWai!. Tr = TRecovery. Ti = Tldle. Th = THoid

3-250

80960MC

ELECTRICAL SPECIFICATIONS
Power and Grounding

The B0960MC is implemented in CHMOS III technol­
ogy and has modest power requirements. Its high
clock frequency and numerous output buffers (ad­
dress/ data, control, error and arbitration signals)
can cause power surges as multiple output buffers
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 12 Vee
and 13 Vss pins separately feed functional units of
the B0960MC.

Power and ground connections must be made to all
power and ground pins of the B0960MC. On the cir­
cuit board, all Vee pins must be strapped closely
together, preferably on a power plane. Likewise, all
Vss pins should be strapped together, preferably on
a ground plane.

Power Decoupling Recommendations

Liberal decoupling capacitance should be placed
near the B0960MC. The processor can cause tran­
sient power surges when driving the LoBus, particu­
larly when it is connected to a large capacitive load.

low inductance capacitors and interconnects are
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening
the board traces between the processor and decou-
piing capacitors as much as possible. .

Connection Recommendations

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if

a0960Mc
OPEN-DRAIN

OUTPUT

Low Drive Network:
• VOH = 3.42V
• IOL = 25.3 rnA

Vee

laon.

; 390n.

271080-27

one or more interrupt lines are not used, they should
be pulled up or down to their respective deasserted
states. No inputs should ever be left floating.

All open-drain outputs require a pullup device. While
in some cases a simple pullup resistor will be ade­
quate, we recommend a network of pullup and pull­
down resistors biased to a valid VIH (:2 3.4V) and
terminated in the characteristic impedance of the cir­
cuit board. Figure 6 shows our recommendations for
the resistor values for both a low and high current
drive network, which assumes that the circuit board
has a characteristic impedance of 1 oon. The advan­
tage of terminating the output signals in this fashion
is that it limits signal swing and reduces AC power
consumption.

Characteristic Curves

Figure 7 shows the typical supply current require-II
ments over the operating temperature range of the
processor at supply voltage (Ved of 5V. Figure 8
shows the typical power supply current (led re-
quired by the B0960MC at various operating fre-
quencies when measured at three input voltage
(Vedlevels.

Figure 9 shows the typical capacitive derating curve
for the B0960MC measured from 1.5V on the system
clock (ClK) to O.BV on the falling edge and 2.0V on
the rising edge of the LoBus address/data (lAD) sig­
nals.

a0960MC
OPEN-DRAIN

OUTPUT

High Drive Network:
• VOH = 3.4lV
• IOL = 33.8 rnA

Vee

130n.

: 2aon.

~
271080-28

Figure 6. Connection Recommendations for Low and High Current Drive Networks

3-251

intel.. 80960MC

Vee = S.OV

"'" "< .80
.5 .60

~ ·340

a .20

~
.00

280

iil 2.0

~ 240

!l 220

200

vee = 5.0V

...
-------------. 25UHz

"-
~ - '------coooO-o-..o 20MHz

• 16WHz

-60 -40 -20 0 20 40 60 80 100 120 140

CASE TEMPERATURE (OC)

(DATA POINTS TAKEN 0 -60, -5, 25. 95, 130OC)

271080-29

Figure 7. Typical Supply Current (Icc)

Test Load Circuit

Figure 10 illustrates the load circuit used to test the
80960MC's tristate pins, and Figure 11 shows the
load circuit used to test the open drain outputs. The
open drain test uses an active load circuit in the form
of a matched diode bridge. Since the open-drain out­
puts sink current. only the IOL legs of the bridge are
necessary and the IOH legs are, not used. When the
80960MC driver under test is turned off, the output
pin is pulled up to VREF (i.e., VOH). Diode 01 is
turned off and the IOL current source flows through
diode 02.

When the 80960MC open-drain driver under test is
on, diode 01 is also on, and the voltage on the pin
being tested drops to VOL. Diode 02 turns off and
IOL flows through diode 01.

80960MC
TRISTATE OUTPUT

O_-c-1'"l
.,~~

271080-32

Figure 10. Test Load Circuit for
TRI-STATE Output Pins

500 :1 450
I- 400

i5 350
lli
::> 300

" ~ 250
8:: 209
iil 150
-'
~ 100

~ 50
o
o

ii!::=

.,.,....--

--- :rr-
/. :..-- ~
~ .-

10 15

OPERATING FREQUENCY (MHz)

1.@4.5V D@5.0V .@5.5V I

,/ ...-' ,....----

20 25

271080"':30

Figure 8. Typical Current vs Frequency

30
'iii'
..5-
~ 25

~ 20
Ji!

~ 15

" .s-
" 10 o

5

1...--:
~

FALL NG

~ ~ ~ -----" I'-RISI G

o
o 20 40 60 80 100

Capacitive Load. (pF)
271080-31

Figure 9. Capacitive Derating Curve

271080-33

Figure 11_ Test Load Circuit for Open-Drain Output Pins

3-252

nntel® 80960MC

ABSOLUTE MAXIMUM RATINGS*

Case Temperature
under Bias(7)•... - 55'C to + 125'C

Storage Temperature - 65'C to + 150'C

Voltage on Any Pin -0.5V to Vcc + 0.5V

Power Dissipation 2.6W (25 MHz)

D.C. CHARACTERISTICS

NOTICE: This data sheet contains information on
products in the sampling and initial production phases
of development. The specifications are subject to
change without notice. Verify with your local Intel
Sales office that you have the latest data sheet be­
fore finalizing a deSign.

* WARNING: Stressing the device beyond the "Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions"
may affect device reliability.

80960MC: T CASE(6) = - 55'C to + 125'C, V CC = 5V ± 5 %

Symbol Parameter Min Max Units Test Conditions

Vil Input Low Voltage -0.3 +0.8 V

VIH Input High Voltage 2.0 Vcc + 0.3 V

VCl CLK2 Input Low Voltage -0.3 +0.8 V

VCH CLK2 Input High Voltage 0.55 Vcc VCC + 0.3 V

Val Output Low Voltage 0.45 V (1,5)

VOH Output High Voltage 2.4 V (2,4)

Icc Power Supply Current:
16 MHz 375 mA
20 MHz 420 mA
25MHz 480 mA

III Input Leakage Current ±15 p.A 0,,;: Va ,,;: Vcc

ILO Output Leakage Current ±15 p.A . 0.45 ,,;: Va ,,;: Vcc

CIN Input Capacitance 10 pF IC = 1 MHz(3)

Co I/O or Output Capacitance 12 pF Ic = 1 MHz(3)

CClK Clock Capacitance 10 pF Ic = 1 MHz(3)

°JA Thermal Resistance
(Junction-to-Ambient)

Pin Grid Array 21 'C/W
Ceramic Quad Flatpack 29 'C/W

°JC Thermal Resistance
(Junction-to-Case)

Pin Grid Array 4 'C/W
Ceramic Quad Flatpack 8 'C/W

NOTES:
1. For three-state outputs, this parameter is measured at:

Address/Data ; .. ;4.0 mA
Controls ... 5.0 mA

2. This parameter is measured at:
Address/Data .. ' -1.0 mA
Controls ... - 0.9 mA
ALE ... -5.0 mA

3. Input, output, and clock capacitance are not tested.
4. Not measured on open-drain outputs.
5. For open-drain outputs .. 25 mA
6. Case temperatures are "instant on;'.

3-253

•

int'eL 80960MC

AC SPECIFICATIONS

This section describes the AC specifications for the
B0960MC pins. All input and output timings are
specified relative to the 1.5V level of the rising edge
of CLK2, and refer to the time at which the signal

EDGE

CLK2

OUTPUTS:
LAD31-LADO'
ADS,
W/R,DEN,
BE3-BEo;
HLDA/HOLDR,
CACHE
LOCK,INTA

DT/R

INPUTS:
LAD31 -LADo,
BADAC,
IAC/INTo,INT1,

INT 2/INTR ,iNT 3

HOLD,HLDAR,
LOCK,
READY

NOTE 1:

A B

For Tri-State pins, T 6 and T 9 are measured at 1.5V.

C

For Open-Drain pins, T 6 is measured at 1.5V, T 9 at O.BV.

reaches (for output delay and input setup) or leaves
(for hold time) the TTL levels of LOW (O.BV) or HIGH
(2.0V). All AC testing should be done with input volt­
ages of OAV and 2AV, except for the clock (CLK2),
which should be. tested with input voltages of OA5V
and 0.55 Vee.

D A B C

271080-4

Figure 12. Drive Levels and Timing Relationships for 80960MC Signals

3-254

80960MC

To Td T, To Td Td T,

ClK2 ~1t~~~rv\..,rv\..,r'vr'v
ClK ~[r--.,~['---'[r--.,~~~Lr-'~r---.

H6+-T13--T I-Tg T,±~t H 6-r-- T'31 I- T6} - T:C

LAD(31-0) ~~ ADDRESS ~ "'''''''''''''~ DATA~~~~"''''''''-: ~ ~ ADDRESS ~~ DATA ~ '\: ~"''''~
I- Ts T'4 I-- Ts - -Tg

ALE M'\ R. ~""~ ~"""~ ~,,~ I;\:, ~"'~ ~'" '" '" '-:
-T7~ -TA

ADS ~

BE(0:3) ~ ~ ",,,,,,,,,,,,,,,,'\: ~"''''~ ~"''''~ ~ ~~~"'~~ "\ ~"'''''''''' '" '" '" " ~ ~"''''~ ~'" '" ~
~1--T'3--1 T'4 - Tge I- T,3• T14 I-- - Tgl--

W/R ~ '~:J~::~ '" ~ ~ ~
I-T6l Tg - I::. I-T61 - T9r-

DT/R ~"'''''''''' '" ",,,,"I.. ~~ ~ '" '" '" '" "'~ 'f&. - T6.1 ~T~
DEN ~'\. M ~'" rY

~r'2-
I-Tll , i T12

-
I-Tll1 T'2- I-Tl1

READY

~ "'''' "'''' '" '" '" "" ~ k "'''''''~ ~'" '" '" '" '" "'''''''-.....:: ~'" '" '" "'~ ~"''''~ ~ "'~'" '" '" '\:
271080-5

Figure 13. Timing Relationship of L·Bus Signals

3·255

intel® 80960MC

A.C. Specification Tables
80960MC A.C. Characteristics (16 MHz)
TeASE(3) = -55°C to + 125°C, VCC = 5V ±5%

Symbol Parameter Min

Tl Processor Clock 31.25
Period (CLK2)

T2 Processor Clock 8
Low Time (CLK2)

T3 Processor Clock 8
High Time (CLK2)

T4 Processor Clock
Fall Time (CLK2)

T5 Processor Clock
Rise Time (CLK2)

T6 Output Valid 2
Delay

T6H HOLDA Output 4
Valid Delay

T7 ALE Width 15

Ts ALE Invalid Delay 0

Ts Output Float 2
Delay

TSH HOLDA Output 4
Float Delay

TlO Input Setup 1 3

T11 Input Hold 5

T11H HOLD Input Hold 4

T12 Input Setup 2 8

T13 Setup to ALE 10
Inactive

T14 Hold after ALE 8
Inactive

T15 Reset Hold 3

T16 Reset Setup 5

T17 Reset Width 1281

NOTES:
1. lAC/INTo, INT1, INT2/INTR, INT3 can be asynchronous.

Max

125

10

10

25

31

20

20

20

Units Test Conditions

ns VIN = 1.5V

ns VIL = 10% Point
= 1.2V

ns VIH = 90% Point
= 0.1V + 0.5 Vec

ns VIN = 90% Point to 10%
Point

ns VIN = 10% Point to 90%
Point

ns CL = 100 pF (LAD)
CL = 75 pF (Controls)

ns CL = 75 pF

ns CL = 75 pF

ns CL = 75 pF(2)

ns CL = 100 pF (LAD)
CL = 75 pF (Controls)(2)

ns CL = 75 pF

ns (Note 1)

ns (Note 1)

ns

ns

ns CL = 100 pF (LAD)
CL = 75 pF (Controls)

ns CL = 100 pF (LAD)
CL = 75 pF (Controls)

ns

ns

ns 41 CLK2 Periods Minimum

2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be
no longer than the valid delay.
3. ease temperatures are "instant on".

3-256

InteL 80960MC

A.C. Specification Tables (Continued)
80960MC A.C. Characteristics (20 MHz)
T CASE(3) = - 55°C to + 125°C, VCC = 5V ± 5%

Symbol Parameter Min

Tl Processor Clock 25
Period (CLK2)

T2 Processor Clock 6
Low Time (CLK2)

T3 Processor Clock 6
High Time (CLK2)

T4 Processor Clock
Fall Time (CLK2)

T5 Processor Clock
Rise Time (CLK2)

Ts Output Valid 2
Delay

TSH HOLDA Output 4
Valid Delay

T7 ALE Width 12

Te ALE Invalid Delay 0

T9 Output Float 2
Delay

T9H HOLDA Output 4
Float Delay

TlO Input Setup 1 3

Tll Input Hold 5

TllH HOLD Input Hold 4

T12 Input Setup 2 7

T13 Setup to ALE 10
Inactive

T14 Hold after ALE 8
Inactive

T15 Reset Hold 3

T1S Reset Setup 5

T17 Reset Width 1025

NOTES:
1. lAC/INTo, INT1, INT2/INTR, INT3 can be asynchronous.

Max

125

10

10

20

26

20

20

20

Units Test Conditions.

ns VIN = 1.5V

ns VIL = 10% Point
= 1.2V

ns VIH = 90% Point
= 0.1V + 0.5 VCC

ns VIN = 90% Point to 10%
Point

ns VIN = 10% Point to 90%
Point

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)

ns CL = 50 pF

ns CL = 50 pF

ns CL = 50pF(2)

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)(2)

ns CL=50pF

ns (Note 1)

ns (Note 1)
-

ns

ns

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)

ns

ns

ns 41 CLK2 'Periods Minimum

2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be
no longer than the. valid delay.
3. Case temperatures are "instant on".

3-257

intel~ 80960MC

A.C. Specification Tables (Continued)
80960MC A.C. Characteristics (25 MHz)
TCASE(3) = -55·Cto + 125·C, Vcc = 5V ±5%

Symbol Parameter Min

T1 Processor Clock 20
Period (CLK2)

T2 Processor Clock 5
Low Time (CLK2)

T3 Processor Clock 5
High Time (CLK2)

T4 Processor Clock
Fall Time (CLK2)

Ts Processor Clock
Rise Time (CLK2)

T6 Output Valid 2
Delay

T6H HOLDA Output 4
Valid Delay

T7 ALE Width 12

Te AL.E Invalid 0
Delay

T9 Output Float 2
Delay

T9H HOLDA Output 41

Float Delay

T10 Input Setup 1 3

Tn Input Hold 5

T11H HOLD Input Hold 4

T12 Input Setup 2 7

T13 Setup to ALE 8
Inactive

T14 Hold after ALE 8
Inactive

T1S Reset Hold 3

T16 Reset Setup 5

T17 Reset Width 820

NOTES:
1. IACIiNTo, INT" INT2I1NTR, INT3 can be asynchronous.

Max

125

10

10

19

24

20

19

20

Units Test Conditions

ns VIN = 1,5V

ns VIL = 10% Point
= 1.2V

ns VIH = 90% Point
= 0.1V + 0.5 VCC

ns VIN = 90% Point to
10% Point

ns VIN = 10% Point to
90% Point

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)

ns CL = 50 pF

ns CL = 50pF

ns ' CL = 50 pF(2)

ns CL = 60 pF (LAD)
CL = 50 pF (Controls)(2) ,

ns CL = 50pF

ns (Note 1)

ns (Note 1)

ns

ns

ns CL = 60 pF (LAD)
CL = 50pF (Controls)

ns CL = 60 pF (LAD)
'" CL = 50 pF (Controls)

ns
"

ns

ns 41 CLK2 Periods Minimum

2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested, but should be
no longer than the valid delay,
3. Case temperatures are "instant on".

3-258

80960MC

Tl
;;<CICI---------------~'

HIGH LEVEL (MIN) 0.55VCC

LOW LEVEL (MAX) O.SV

CLK2

CLK

RESET

OUTPUTS

A

1
1

I
1
1
1
1
1
I
1
1

90%

: 10%

1
1

T5~

1 ____ --1

1
1<11------

T4 I4--I>i ,

Figure 14. Processor Clock Pulse.(CLK2)

FIRST

C ' C ABC D A

aGO

:t~~--1~ eo Q --t--+--+----I~--I--

INIT PARAMETERS (BADAC, ~
IACo) MUST BE SETUP S CLOCKS ---
PRIOR TO THIS CLK2 EDGE

INIT PARAMETERS MUST BE HELD
BEYOND THIS CLK2 EDGE

TIS = RESET HOLD
T 16 = RESET SETUP
T17 = RESET WIDTH

Figure 15. RESET Signal Timing

3·259

271080-6

271080-7

int:et 80960MC

Th Th Th Th

ClK2

ClK

HOlDR

HOLD

HlDA

HLDAR

271080-8

PRIMARY SECONDARY

HOlD~HOlDR
HlDA t---m-----.j HOlDAR

~------~ ~------~
DELAY OF 5 ns MINIMUM

IS REQUIRED
271080-24

Figure 16. Hold Timing

Design Considerations

Input hold times can be disregarded by the designer
whenever the input is removed because a subse­
quent output from the processor is deasserted (e.g.,
DEN becomes deasserted).

In other words, whenever the processor generates
an output that indicates a transition into a subse­
quent state, the processor must have sampled any
inputs for the previous state.

Similarly, whenever the processor generates an out­
put that indicates a transition into a subsequent
state, any outputs that are specified to be three stat­
ed in this new state are guaranteed to be three stat­
ed.

Designing for the ICE-960MC
The 80960MC In-Circuit Emulator assists in debug­
ging 80960MC hardware and software designs. The
product consists of a probe module, cable, and con­
trol unit. Because of the high operating frequency of
80960MC systems, the probe module connects di­
rectlyto the 80960MC socket.

When designing an 80960MC hardware system that
uses the ICE-960MC to debug the system, several
electrical and mechanical characteristics should be
considered. These considerations include capacitive
loading, drive requirement, power requirement, and

. physical layout.

. TheICE-960MC probe module increases the load
capacitance of each line by up to 25 pF. It also adds

. one standard Schottky TTL load on the CLK2 line,
up to one advanced low-power Schottky TTL load
for each control signal line, and one advanced low­
power Schottky TTL load for each address/data and
byte enable line. These loads originate from the
probe module and are driven by the 80960MC proc­
essor.

To achieve high noise immunity, the ICE-960MC
probe is powered by the user's system. The high­
speed probe circuitry draws up to 1.1 A plus the max­
imum current (Icd of the 80960MC processor.

The mechanical considerations are shown in Figure
17, which illustrates the lateral clearance require­
ments for the ICE-960MC probe as viewed from
above the socket of the 80960MC processor.

3-260

80960MC

I+t------ 3.8"-----~-.I

~ 1.22" --.j ~ 1.13" -I l
0.15"

r-------,
I USER CPU I
I SOCKET I

0 , UNDER '0
I E"U[AlION I
: PROCESSOR :
I ---_.,

VERTICAL
CLEARANCE 1.2"

.------_.1
o \

[I.IUl,ATION
PROCESSOR

4.75"

VIEW FROM
ABOVE USER CPU

SOCKET ICE PROCESSOR I.IODULE
5.5"

n r
RIBBON CABLE CONNECTOR

V CABLE TO ICE CONTROL UNIT 'J _____ ..::L-.

-
271080-9

Figure 17.ICE-960MC Lateral Clearance Requirements

MECHANICAL DATA

Pin Assignment

The 80960MC is packaged in a 132-lead ceramic pin
grid array and a 164-lead ceramic quad flatpack. The
80960MC pin grid array pinout as viewed from the
substrate side of the component is shown in Figure
18 and from the pin side in Figure 19. The 80960MC
ceramic quad flatpack pinout as viewed from the top
of the package is shown in Figure 20.

Vee and GND connections must be made to multi­
ple Vee and GND pins. Each Vee and GND pin must
be connected to the appropriate voltage or ground
and externally strapped close to the package. Pref­
erably, the circuit board should include power and
ground planes for power distribution. Tables 5, 6, 7
and 8 list the function of each pin.

NOTE:
Pins identified as N.C., "No Connect," should never
be connected under any circumstances.

3-261

Package Dimensions and Mounting

Pins in the pin grid array package are arranged
0.100 inch (2.54mm) center-to-center, in a 14 by 14
matrix, three rows around. (See Figure 21.)

A wide variety of available sockets allow low-inser­
tion or zero-insertion force mountings, and a choice
of terminals such as soldertail, surface mount, or
wire wrap. Several applicable sockets are shown in
Figure 22.

Package Thermal Specification

The 80960MC is specified for operation when its
case temperature is within the range of - 55°C to
+ 125°C. The PGA case temperature should be
measured at the center of the top surface opposite
the pins as shown in Figure 23. The ceramic quad
flatpack case temperature should be measured at
the center of the lid on the top surface of the pack­
age.

WAVEFORMS

Figures 24 through 30 show the waveforms for vari­
ous transactions on the 80960MC's local bus.

int:eL 80960MC

14 13 12 11 10 9 B 7 6 5 4 3 2

p o 0 0 0 0 0 0 0 0 0 0 0 0 0 p

Vee Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vee

N o 0 0 0 0 0 0 0 0 0 0 0 0 0 N
N~ N~ N~ N~ N~ N~ N~ N~ N~ N~ N~ N~ N~ Vg

M o 0 0 000 0 0 0 0 0 0 0 0 M

N.C. N.C. N.C. Vee Vss N.C. N.C. N.C. N.C. Vee Vss Vss Vee N.C.

L 000 000 L

N.C. N.C. Vss Vee N.C. DEN

K 000 000 K
N.C. N.C. Vee Vss FAIL BE3

000 000
N.C. N.C. N.C. Vss BEz DT/R

H 000 000 H

G

LOCK BEo W/R

000 G

N.C. N.C. N.C.

000
MGB0960MC

N.C. N.C. N.C. BEl READY LAD30

F 000 000 F
N.C. N.C. N.C. CACHE LAD3l LADz9

E 000 000 E

N.C. Vss N.C. LADz~ LADz6 LADzs

° 000 000 ° N.C. N.C. Vee HLPA ADS ALE

C o 0 0 0 0 0 d 0 0 0 0 000 C

INTo INTI INT3 Vss Vee LAD3 LADs LAD13 LADzo Vss Vee BADAC LADz5 HOLD

B o 0 0 0 0 0 000 0 0 0 0 0 B

Vss RESET LADo CLK2 LAD2 LAD6 LADlO LAD12 LADIS LADIS LAD21 LAD22 LAD24 LAD23

A 000 0 0 0 0 0 0 0 0 0 0 0 A
Vee INT2 LADI LAD4 LADs LAD7 LAD9 LADll LAD14 LAD16 LAD17 LAD19 Vss Vee

14 13 12 11 10 9 B 7 6 5 4 3 2
271080-11

Figure 18. MG80960MC Pinout-View from Top (Pins Facing Down)

3-262

80960MC

2 3 4 5 6 7 8 9 10 11 12 13 14

p o 000 0 0 0 0 0 0 0 0 0 0 p

Vee N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss Vee

N o 000 000 000 0 0 0 0 N
Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.

o 0 0 0 000 0 0 0 0 0 0 0
N.C. Vee Vss Vss Vee N.C. N.C. N.C. N.C. Vss Vee N.C. N.C. N.C.

L 000 000 L
DEN N.C. Vee Vss N.C. N.C.

K 000 000 K

BE3 FAIL Vss Vee N.C. N.C.

000 000
DT/R BE2 Vss N.C. N.C. N.C.

H 000 000 H
W/R BEo LOCK N.C. N.C. N.C.

MG80960MC
G 000 000 G

LAD30 READY BEl N.C. N.C. N.C.

F 000 000 F
LAD29 LAD31 CACHE N.C. N.C. N.C.

E 000 000 E
LAD2S LAD26 LAD27 N.C. Vss N.C.

D 000 000 D
ALE ADS HLDA Vee N.C. N.C.

C o 000 o 0 0 0 0 0 0 0 0 0 C

HOLD LAD2S BADAC Vee Vss LAD20 LAD13 LADs LAD3 Vee Vss INT3 INTI INTo

B o 000 000 0 0 0 0 000 B

LAD23 LAD24 LAD22 LAD21 LAD18 LAD1S LAD12 LADlO LAD6 LAD2 CLK2 LADo RESET Vss

A o 00 0 0 0 0 0 0 0 0 0 0 0 A

Vee Vss LAD19 LAD17 LAD16 LAD14 LADll LAD9 LAD7 LADs LAD4 LADI INT2 Vee

2 3 4 5 6 7 B 9 10 11 12 13 14
271080-10

Figure 19. MG80960MC Pinout-View from Bottom (Pins Facing Up)

3·263

intel® 80960MC

" C> ;;; L.U

I~ u N N :I:
U u I~ I~

<> <> <> U o NI:::! VI u U
I~ I~ L:': u u u VI U U U U > > Z ...J ...J ...J U Z Z Z > Z Z Z Z

'" ;;; '" " on '" ;;; '" " on
N " on '" '" " on '" '" on on on on " " " -... '" '" 0

N N '" "" I~
CIl CIl <> <> <> <> "" ~ Ii '" VI IZ VI u CIl CIl ...J ~ I~ VI L.U CIl U U U U U U > > :I: ...J ...J ...J <> > <> > Z > Z Z Z Z

0 " '" o <Xl '" " '" 0 <Xl '" ro ~ ~ NOW W W ~ ~ ~ ~ ~ ~ ~

rll~~~~~~I~~~I~~~~A~AlliA~
Vee 22 PIN NO.1 144 NC

Vss 23=: ;=143 NC
Vee 24 142 NC

Vss 25=: ;=141 NC
Vee 26

27=:
140 NC

HOLD ;=139 NC
8ADAC 28

LAD2S 29=: ;=137
138 NC

NC
LAD24 30 136 NC

LAD23 31=i ;=135 NC
LAD21 32 134 NC

LAD22 33=: ;=133 NC
LAD19 34

355
132 NC

LAD20 ;=131 NC
LAD17 36 130 NC

LAD18 37=: ;=129 NC
LAD16 38

39=:
128 NC

LAD1S ;=127 NC
LAD14 40 126 Vee LAD13 41=: !'P125 Vss
LADll 42 MQ80960MC 124 NC

LAD12 435 ;=123 NC
LADg 44 122 NC

LAD10 45~ ;=121 NC
LAD7 46

47~
120 Vee

LADs 48
LADs ;=119 Vss

118 NC
LADs 49=: :=117 NC

LAD4 50
515

116 NC
LADI ;=115 NC

CLK2 52 114 NC
INT2 53=: :=113 NC

LAD3 54 112 NC
LAD2 55=: :j=111 NC

LADo 56 110 NC
RESET 57=: !'PI 09 NC

INT3 58 108 NC
INTI 59=: ~107 NC

Vss 60 106 NC
Vee 61=: !'PI 05 NC

Vss 62 104 NC

~~!m~m~~!~Y1[!mY~[!~!~
'" '" '" " " " " " <Xl <Xl 00 <Xl <Xl '" '" '" '" '" 0 0 - -

VI CIl U U U U U U U U U U U U U U U u
Jl u VI ,:' Z Z Z Z Z Z Z Z U Z Z Z Z Z Z Z Z > >

'" on " '" ;:::: '" on " '" ;;; '" on " '" '" on " '" 0 '" '" '" '" '" " " " " <Xl <Xl <Xl <Xl '" '" '" '" '" 0

u u u u u u If u u u u u VI u u u u u u u VI
u u u z Z z z z z z z VI z z z z z z z ,:' > > > >

271080-26

(Staggered pin arrangement is shown for clarity only. Actual package has pins of equal length.)

Figure 20. MQ80960MC Pinout-View from Top of Package

3-264

80960MC

Table 5. MG80960MC (PGA) Pinout-In Pin Order

Pin Signal Pin Signal Pin Signal Pin Signal

A1 Vee C6 LAD20 H1 W/R M10 Vss
A2 Vss C7 LAD13 H2 BEo M11 Vec
A3 LAD19 C8 LAD8 H3 LOCK M12 N.C.

A4 LAD1? C9 LAD3 H12 N.C M13 N.C.

A5 LAD16 C10 Vee H13 N.C. M14 N.C.

A6 LAD14 C11 Vss H14 N.C. N1 Vss
A7 LADll C12 INT3/INTA J1 DTIR N2 N.C.

A8 LAD9 C13 INTl J2 BE2 N3 N.C.

A9 LAD? C14 lAC/INTo J3 Vss N4 N.C.

A10 LAD5 01 ALE J12 N.C N5 N.C.

A11 LAD4 02 ADS J13 N.C. N6 N.C.

A12 LADl 03 HLDAlHLDR J14 N.C. N7 N.C.

A13 INT2/INTR 012 Vee K1 BEs NB N.C.

A14 Vce 013 N.C. K2 FAILURE N9 N.C.

81 LAD23 014 N.C. K3 Vss N10 N.C.

B2 LAD24 E1 LAD28 K12 Vec N11 N.C.

B3 LAD22 E2 LAD26 K13 N.C. N12 N.C.

B4 LAD2l E3 LAD27 K14 N.C. N13 N.C.

B5 LAD18 E12 N.C. L1 DEN N14 N.C.

B6 LAD15 E13 Vss L2 N.C. P1 Vcc
B7 LAD12 E14 N.C. L3 Vee P2 N.C.

B8 LADlO F1 LAD29 L12 Vss P3 N.C.

B9 LAD6 F2 LAD3l L13 N.C. P4 N.C.

B10 LAD2 F3 CACHE L14 N.C. P5 N.C.

B11 CLK2 F12 N.C. M1 N.G. P6 N.C.

812 LADo F13 N.C. M2 Vec P7 N.C.

B13 RESET F14 N.C. M3 Vss P8 N.C.

B14 Vss G1 LAD30 M4 Vss P9 N.C.

C1 HOLD/HLDAR G2 READY M5 Vee P10 N.C.

C2 LAD25 G3 BEl M6 N.C. P11 N.C.

C3 BADAC G12 N.C. M7 N.C. P12 N.C.

C4 Vee G13 N.C. M8 N.C. P13 Vss
C5 Vss G14 N.C. . M9 N.C. P14 Vce

NOTE:
Pins identified as N.C. ("No Connect") should never be connected under any circumstances.

3-265

intel· 80960MC

Table 6. MG80960MC (PGA) Pinout-In Signal Order

Signal Pin Signal . Pin Signal Pin Signal Pin

ADS D2 LAD15 B6 N.C. J14 N.C. P9
ALE D1 LAD16 A5 N.C. K13 N.C. P10
BADAC C3 LAD17 A4 N.C. K14 N.C. P11

BEo H2 LAD18 B5 N.C. L13 N.C. P12

BE1 G3 LAD19 A3 N.C. L14 N.C. L2

BE2 J2 LAD20 C6 N.C. M1 READY G2

BE3 K1 LAD21 B4 N.C. M6 RESET B13
CACHE F3 LAD22 B3 N.C. M7 Vee A1
CLK2 B11 LAD23 B1 N.C. M8 Vee A14
DEN L1 LAD24 B2 N.C. M9 Vee C4
DT/R J1 LAD25 C2 N.C. M12 Vee C10
FAILURE K2 LAD26 E2 N.C. M13 Vee D12
HLDAlHOLDR D3 LAD27 E3 N.C. M14 Vee K12
HOLD/HLDAR C1 LAD28 E1 N.C. N2 Vee L3
lAC/INTo C14 LAD29 F1 N.C. N3 Vee M2
INT1 C13 LAD30 G1 N.C. N4 Vee M5
INT2/INTR A13 LAD31 F2 N.C. N5 Vee M11
INT3/INTA C12 LOCK H3 N.C. N6 Vee P1

;

LADo B12 N.C. D13 N.C. N7 Vee P14
LAD1 A12 N.C. D14 N.C. N8 Vss A2
LAD2 B10 N.C. E12 N.C. N9 Vss B14
LAD3 C9 N.C. E14 N.C. N10 Vss C5

LAD4 A11 N.C. F12 N.C. N11 Vss C11
LAD5 A10 N.C. F13 N.C. N12 Vss E13
LAD6 B9 N.C. F14 N.C. N13 Vss J3
LAD7 A9 N.C. G12 N.C. N14 Vss K3

LAD8 C8 N.C. G13 N.C. P2 Vss L12
LADg A8 N.C. G14 N.C. P3 Vss M3

LAD10 B8 N.C. H12 N.C. P4 Vss M4

LAD11 A7 N.C. H13 N.C. P5 Vss M10

LAD12 B7 N.C. H14 N.C. P6 Vss N1

LAD13 C7 N.C. J12 N.C. P7 Vss P13

LAD14 A6 N.C. J13 N.C. P8 W/R H1

NOTE:
Pins identified as N.C. ("No Connect") should never be connected under any circumstances.

3·266

80960MC

Table 7. MOa0960MC (COP) Pinout-In Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal
1 BEo 42 LAD11 83 !'I.C. 124 N.C.
2 BE3 43 LAD12 84 Vee 125 VSS
3 READY 44 LAD9 85 N.C. 126 Vee
4 BE1 45 LADlO 86 N.C. 127 N.C.
5 CACHE 46 LAD7 87 VSS 128 N.C.
6 DT/R 47 LADs 88 N.C. 129 N.C.
7 LAD31 48 LAD5 89 N.C. 130 N.C.
8 W/R 49 LAD6 90 N.C. 131 N.C.
9 LAD29 50 LAD4 91 N.C. 132 N.C.
10 LAD30 - 51 LAD1 92 -N.C. 133 N.C.
11 LAD27 52 CLK2 93 N.C. 134 N.C.
12 LAD2S 53 INT2 94 N.C. 135 N.C.
13 ALE 54 LAD3 95 N.C. 136 N.C.
14 LAD26 55 LAD2 96 N.C. 137 N.C.
15 ADS 56 LADo 97 N.C. 138 N.C.
16 HLDA 57 RESET 98 N.C. 139 N.C.
17 N.C. 58 INT3 99 N.C. 140 N.C.
18 VSS 59 INT1 100 Vee 141 N.C.
19 Vee 60 VSS 101 N.C. 142 N.C.
20 VSS 61 Vee 102 N.C. 143 N.C.
21 Vee 62 VSS 103 VSS 144 N.C.
22 Vee 63 Vee 104 N.C. 145 N.C.
23 VSS 64 VSS 105 N.C. 146 N.C.
24 Vee 65 Vee 106 N.C. 147 N.C.
25 Vss 66 Vss 107 N.C. 148 N.C.
26 Vee 67 Vee 108 N.C. 149 N.C.
27 HOLD 68 N.C. 109 N.C. 150 N.C.
28 BADAC 69 N.C. 110 N.C. 151 N.C.
29 LAD25 70 N.C. 111 N.C. 152 N.C.
30 LAD24 71 N.C. 112 N.C. 153 Vss
31 LAD23 72 N.C. 113 N.C. 154 Vee
32 LAD21 73 N.C. 114 N.C. 155 N.C.
33 LAD22 74 N.C. 115 N.C. 156 N.C.
34 LAD19 75 INTo 116 N.C. 157 N.C.
35 LAD20 .76 N.C. 117 N.C. 158 VSS
36 LAD17 77 N.C. 118 N.C. 159 N.C.
37 LAD1S 78 N.C. 119 VSS 160 LOCK
38 LAD16 79 N.C. 120 Vee 161 FAIL
39 LAD15 80 N.C. 121 N.C. 162 DEN
40 LAD14 81 N.C. 122 N.C. 163 BE2
41 LAD13 82 N.C. 123 N.C. 164 VSS

NOTE:
Pins identified as N.C. ("No Connect") should never be connected under any circumstances.

3-267

intel® 80960MC

Table 8. M080960MC (COP) Pinout-In Signal Order

Signal Pin Signal Pin Signal Pin Signal Pin
ADS 15 LAD23 31 N.C. 102 N.C. 148
ALE 13 LAD24 30 N.C. 104 N.C. 149
BADAC 28 LAD25 29 N.C. 105 N.C. 150
BEo 1 LAD26 14 N.C. 106 N.C. 151
BE1 4 LAD2? 11 N.C. 107 N.C. 152
BE2 163 LAD28 12 N.C. 108 N.C. 155
BE3 2 LAD29 9 N.C. 109 N.C. 156
CACHE 5 LAD30 10 N.C. 110 N.C. 157
CLK2 52 LAD31 7 N.C. 111 N.C. 159
DEN 162 LOCK 160 N.C. 112 READY 3
DT/R 6 N.C. 17 N.C. 113 RESET 57
FAILURE 161 N.C. 68 N.C. 114 Vee 19
HLDA/HOLDR 16 N.C. 69 N.C. 115 Vee 21
HOLD/HLDAR 27 N.C. 70 N.C. 116 Vee 22
lAC/INTo 75 N.C. 71 N.C. 117 Vee 24
INT1 59 N.C. 72 N.C. 118 Vee 26
INT2/INTR 53 N.C. 73 N.C. 121 Vee 61
INT3/INTA 58 N.C. 74 N.C. 122 Vee 63
LADo 56 N.C. 76 N.C. 123 Vee 65
LAD1 51 N.C. 77 N.C. 124 Vee 67
LAD2 55 N.C. 78 N.C. 127 Vee 84
LAD3 54 N.C. 79 N.C. 128 Vee 100
LAD4 50 N.C. 80 N.C. 129 Vee 120
LAD5 48 N.C. 81 N.C. 130 Vee 126
LAD6 49 N.C. 82 N.C. 131 Vee 154
LAD? 46 N.C. 83 N.C. 132 Vss 18
LAD8 47 N.C. 85 N.C. 133 Vss 20
LAD9 44 N.C. 86 N.C. 134 Vss 23
LAD10 45 N.C. 88 N.C. 135 Vss 25
LAD11 42 N.C. 89 N.C. 136 Vss 60
LAD12 43 N.C. 90 N.C. 137 Vss 62
LAD13 41 N.C. 91 N.C. 138 Vss 64
LAD14 40 N.C. 92 N.C. 139 Vss 66
LAD15 39 N.C. 93 N.C. 140 Vss 87
LAD16 38 N.C. 94 N.C. 141 Vss 103
LAD17 36 N.C. 95 N.C. 142 Vss 119
LAD18 37 N.C. 96 N.C. 143 Vss 125
LAD19 34 N.C. 97 N.C. 144 Vss 153
LAD20 35 N.C. 98 N.C. 145 Vss 158
LAD21 32 N.C. 99 N.C. 146 Vss 164
LAD22 33 N.C. 101 N:C. 147 W/R 8

NOTE:
Pins identified as N.C. ("No Connect") should never be connected under any circumstances.

3-268

CIN #1 POSITION

80960MC

.......... ,-....
......... ,,-... ..- en ,.... ..­
en ,.... I.() tf) C"I LO en 0
1.0 a ..q. 00 "<t m "<t .q-
N co tf) tx) • • • •

• • • • ,.... .." CD co
.::.~ee,::,.::...::...::,

1 O@@@@@®'I®@@@@®®
2 ®®®®@@®@@@®®®@
3 @@@l@@@@'@@®@@l®®
4 @@@ @@@
5 @®@ @@®
6 ®@@ I @®®

7 5~)@~ __ + __ ~®~
8 @@@ @@@
9 @@@ ®@@

10 @@@ @@@

11 ®@® ®®®
12 @ @ @@@ @ @,@@@® '3 @ @
13 @@@@@@@i@@@@@®@
14 @@@@@®@,@®®®®@@

ABC D E F G H J K L M N P Ii
.020(0.508) .020 -
MIN TYP (0.508)

__ --- .070(1.777) DIA
TYP BRAZE PAD

1-----1.450 (36.802) ,

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
o

SWEDGE PIN
STANDOFF
(4) PLACES

.057 (1.269) -1
1
-

MAX TYP

.001 (0.025) R
MIN TYP

.018(0.47) 1 =~~
DIA TYP = 't.

.165(4.189: I .~
.110(2~

271080-12

Figure 21. A 132-Lead Pin-Grid Array (PGA) Used to Pacl<age the MG80960MC

3-269

intel®

• Low insertion force (LlF) soldertail
55274-1

• Amp tests indicate 50% reduction in
insertion force compared to
machined sockets

Other socket options
• Zero insertion force (ZIF) soldertail

55583-1
• Zero insertion force (ZIF) Burn-in

version 55573-2
Amp Incorporated

(Harrisburg, PA 17105 U.S.A
Phone 717-564-0100)

80960MC

AMP ZIF SOCKET
55583-1

271080-13

Cam handle locks in low profile position when MG80960MC is installed
(handle UP for open and DOWN for closed positions).

Peel-A-Way' Mylar and Kapton
Socket Terminal Carriers

• Low insertion force surface
mount CS132-37TG

• Low insertion force soldertail
CS132-01TG

• Low insertion force wire~wrap
CS132-02TG (twa-level)
CS132-03TG (thee-level)

• Low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street)
Warwick, RI 02818 U.SA
Phone 401-885-0485)

Peel-A-Way Carrier No. 132:
Kapton Carrier is KS132
Mylar Carrier is MS132

Molded Plastic Body KS132
is shown below:

14x14x3ROWS

271080-14

*Peel-A-Way is a trademark of Advanced Interconnections.

Courtesy Amp Incorporated

SOLDER TAIL-01 LOW PROFILE-04 PRESS FIT -05

r r r 'I-±:
< .. -r Ttl

-+ :iii ."
~~A.

:iii
--'-- ~A ~~1loDl'.

-::::,'" =~:J4~
WIRE WRAP-OV.03 SOLDER lAll.33 SURFACE MOUNTING -37

ti
PEEL·A·WAY

!! :iii

~' ., ..
.. u .02

c! :iii 2 LEVEL .!.:.1!.
1!:!!..03

., ..
.100 3 LEVEL ~-l~ I..J .-D'"

271080-15
Courtesy Advanced Interconnections

(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

Figure 22. Several Socket Options for Mounting the MG80960MC

3-270

int:et

MEASURE CASE TEMPERATURE
AT CENTER OF TOP SURFACE

271080-16

Figure 23. Measuring MG80960MC PGA
Case Temperature (T c)

CLK2

CLK

LAD3,­

LADo

W/R

80960MC

CLK2

CLK

271080-17

Figure 24. System and Processor
Clock Relationship

T,

271080-18

Figure 25. Read Transaction

3-271

infel~ 80960MC

To Td Tw Tr

ClK2

ClK

LAD31 -

LADo

ALE

ADS

BE3-BEO

W/R

DT/R

DEN

READY

271080-19

Figure 26. Write Transaction with One Wait State

3-272

80960MC

To Td Td Td T,

CLK2

elK

LAD31 -

lADo

ALE

ADS

BE,3-BEo

W/R

DT/"

DEN

READY

271080-20

Figure 27. Burst ReadTransaction

271080-21

Figure 28. Burst Write Transaction with One Wait State

3-273

intel® 80960MC

r PREVIOUS t INTERRUPT r. IDLE ~ INTERRUPT j
.

CYCLE ACKNOWLEDGEMENT (5 BUS STATES) ACKNOWLEDGEMENT
CYCLE 1 CYCLE 2

T T To Td Tr Tl T, TI T, T, To· Td Tw Tr

ClK '~ J'r ~ ~r ~ ~ ~r ~ L/' J'r '--

INTR -~ ~",\: -0.""" 10.""",\ -0."" '\: ~""" 10.""" ~""-""-""-" -0.""" 10.",," -0.""" -0.""" -0.""-""-"': 0

.: .. }{AoiiR)(DATA
"'--- "'---

~'0 """-,,,,-,\: 10.""-""-'0 """-",,-,,,: ~""-""-""-" """-",,-,,,: ::X'AoDR~ "'--- ~~~ - ~

\./ \.""-'0 """-,,,,-,\: ~""-""-'0 ~""-""-"': ~""-""-'0 """-,,,,-~ ~/ ~ ~

'-- / '--~
/ \.

DT/R ,~""-",,-,,,: ~""-""-'0 ~ &. ~""-~ "",,-""-"': ~""-""-""-" """-,,,,-~ ~""-""-""-'\: ,,\. ~ ~

'-- / '\ / ~

/

\. / \V I--
271080-22

Figure 29. Interrupt Acknowledge Transaction

3-274

nntel®

PBM BUS
STATE

SSM 8US
STATE

elK

LAD31 -

LADO

W/R

PBM ALE

S8M ALE

S8M
HOlDR

P8M
HOLD

P8M
HLDA

S8M
HlDAR

.... u
~~ -
;:~

~~

,~

_J

-~

J' J'

)(DAi.i - ;c

.~

""",\::
~"",\: ~"",\:

\. /

'I

/

80960MC

U U V V ~
~)@ ~ ~)~
~ ~'\: IY

~"",\:: ~"",\: ~"",\: ~/

~\. / "",,'\: ~"",\:: ~"",\::
\. / \.

"- /

/L ~ /'
----~

l\

\.

J' U V V V
~)~ ~ ~ ~
~ ?1

~",\: ~"",\:: ~"",\:: ~"",\:

~"",\:: ~"",\: ~,/

/\. / \. ./\.

/

V
~
\."",\::

~"",\::

"" '\:
V

t
L

T,

T,

V I'-

~~'\: ~

~"",\: ~

~"",\: ~

~"",\: ~

~ -

"--
271080-23

Figure 30. Bus Exchange Transaction (PBM = Primary Bus Master, SBM = Secondary Bus Master)

Revision History

1. 20 MHz timing specifications were added.
2. Pin 158, ceramic quad pack, (see Figure 20) changed from NC (No Connect) to VSS.

3-275

M82965
FAULT TOLERANT BUS EXTENSION UNIT

Military

II Multiprocessor Support II Message Passing
- Connect up to 32 Processor and - Supports Interagent Communication

Memory Modules in a Single System - Redundant Error Reporting Network

II Multiple Bus Support with No External .. Two 1/0 Prefetch Channels
Logic - Provides High-Bandwidth, Low
- Connect up to Four 32-Bit Buses for Latency Access to Memory or 1/0

High-Bandwidth Access to for Sequential Transfers
Interleaved Memory .. Memory Module Support

II Software-Transparent Fault Tolerance -Interfaces Discrete Memory
- Recover from a Single-Point Failure Controller and DRAM Array to AP-

in a Module or Bus without Affecting Bus
Program Execution .. Advanced CHMOS III Technology

II Cache Control Support .. Advanced Package Technology
- Provides Directory, Coherency - 132 Lead Ceramic Pin Grid Array

Logic, and Control Signals for a -164 Lead Ceramic Quad Flatpack
Two-Way Set-Associative Cache

- Single BXU Supports 16 Kbytes II Military Temperature Range:
- Combine up to Four BXUs to - 55°C to + 125°C (T c>

Support 64 Kbytes

The M82965 Bus Extension Unit (BXU) is the key to building multiprocessor and fault-tolerant systems with the
80960MC 32-bit microprocessor. BXUs connect to each other in an expandable matrix that can support up to
32 processor and memory modules in a single, high-performance system. No external interface logic is re­
quired. The BXU increases overall system performance by providing hardware support for local caches, I/O
prefetch, message passing, and multiprocessor arbitration. Through redundant modules, fault-tolerant systems
based on the BXU can sustain a single-point failure and then reconfigure themselves automatically, while
application programs continue undisrupted. Truly a VLSI building block, the M82965 BXU supports a wide
range of fault tolerance and performance options to meet a diverse set of cost, performance, and reliability
needs.

FAULT
TOLERANCE

,.-----..,-,;=,..,--,=,.-,,;-;.,..,..-;=----'\1 LOGIC

AP-BUS
INTERFACE ".---v

Figure 1. M82965 Block Diagram

3-276

271082-1

January 1990
Order Number: 271082-003

M82965

FUNCTIONAL OVERVIEW

The M82965 Bus Extension Unit (BXU) is the key
component in building multiprocessor and fault-toler­
ant system designs with the 80960MC 32-bit micro­
processor. Its primary function is to connect the Lo­
cal bus (L-Bus) of a system module to a system-wide
bus called the Advanced Processor Bus (AP-Bus),
allowing the system to expand incrementally as
each new module or AP-Bus is added.

Several important features are provided within the
BXU which streamline 80960MC multiprocessor sys­
tem operation. To increase the available system bus
bandwidth, multiple BXUs can be employed within
each system module to support up to four AP-Buses.
To reduce AP-Bus traffic, BXU components can di­
rectly support a two-way set-associative cache. I/O
prefetch channels are incorporated within each BXU
to reduce the time necessary to transfer large blocks
of data from shared system memory or I/O. BXUs
support processor-to-processor communication by
recognizing, storing, and exchanging Interagent
Communication (lAC) messages with other BXUs
along the AP-Bus. Requests for access to the AP­
Bus are resolved through BXU arbitration logic
which ensures that no system modules will suffer
from resource starvation.

BXUs support fault tolerant system operation
through several mechanisms used to detect, isolate
and recover from hardware errors. Paired BXUs
monitor each other's operation on a cycle-by-cycle

ACTIVE MODULE PASSIVE MODULE

basis through a method called Functional Redun­
dancy Checking (FRC). Errors on the AP-Bus are
detected through interlaced parity bits on the ad­
dress/data and control lines, signal duplication on
the transaction control lines, and a bus timer used to
monitor the bus for non-response to a request. Re­
covery mechanisms include the capability to marry
FRC modules in a primary-shadow pair (Quad Modu­
lar Redundancy), so that if either fails, the surviving
spouse can take over operations immediately. Tran­
sient errors on the AP-Bus are automatically retried,
and in the case of permanent errors, the failed bus is
disabled and all memory accesses switched to a
backup bus.

MUL TIPROCIESSOR SUPPORT

A multiprocessor 80960MC system is composed of
a set of modules connected to an AP-Bus. Figure 2
shows the three possible types of modules: active,
passive, and the combination of both an active and
passive module. Active modules contain up to two
80960MC processors, cache or private memory, and
a BXU. Passive modules contain a memory array
and controller and a BXU. Active/Passive modules
contain either processors and global memory, or
master and slave I/O devices.

ACTIVE/PASSIVE MODULE ACTIVE/PASSIVE IWDULE

AP-BUS,

271082-2

Figure 2. Types of Modules

3-277

intel® M82965

Local Bus

In a multiprocessor system each module has its own
Local Bus (L-Bus), which is typically confined to a
single board. The L-Bus is provided to interconnect
components within a module. It is a 32-bit multi­
plexed, synchronous bus with a maximum bandwidth
of 43 Mbytes per second at 16 MHz. It has been
designed to interface with standard support compo­
nents using minimal glue logic. The L-Bus uses
HOLD/HOLDA for arbitration with bus slaves and
LOCK for signaling indivisible operations. A READY
signal can be used to lengthen bus transactions.

Local Bus protocol permits both primary and sec­
ondary bus masters to coexist on the bus (often a
processor and a DMA, or occasionally two proces­
sors). A secondary bus master must obtain use of
the L-Bus from the bus master through the use of
HOLDR/HOLDAR. A BXU is always used as a mas­
ter in a memory module and is generally used as a
slave in a processor module. Fifty BXU pins are ded­
icated to L-Bus and module support operations (in­
cluding cache control). The L-Bus control registers
are shown in Table 1.

Table 1. L-Bus Control Registers

Register Description

Physical-ID (Local) This register contains a unique identifier for a specific BXU on the L-Bus. It
corresponds to the AP-Bus Physical-ID register.

Logical-I 0 (Local) This register holds the Logical-ID of the BXU. It corresponds to the AP-Bus
Logical-ID register. '

LBI Control This is the major control register for BXU functions on the L-Bus. It is used to
set the interleaving factor for the cache, determines if the BXU should act as
a master on the L-Bus, and indicates whether the BXU is in memory or
processor mode.

System Bus 10 This register uniquely identifies the BXU as attached to one of four AP-Buses.

Local-Bus Test This register allows system diagnostics to check on the type of recognition
that was done on the previous L-Bus request.

Match 0 The contents of this register determine which bits in the L-Bus address should
be recognized by the BXU. This register provides a base address for a
partition of memory recognized by the BXU.

Mask 0 The contents of this register determine if certain bits in the Match 0 register
should be ignored (Le., marked "don't care") during address recognition.

Match 1 Same function as Match Register O.

Mask 1 Same function as Mask Register O.

Match 2 Same function as Match Register O.

Mask 2 Same function as Mask Register O.

Private Memory Match Private memory address recognizer.

Private Memory Mask Private memory mask register.

3-278

M82965

Advanced Processor Bus

A highly optimized multiprocessing bus called the
Advanced Processor Bus (AP-Bus) interconnects
B0960MC system modules. The AP-Bus is synchro­
nous, in that all components in the system, including
processors and BXUs, are driven by the same clock
edge. It is a 32-bit multiplexed bus with a maximum
bandwidth of 43 Mbytes per second at 16 MHz.

Transactions over the AP-Bus are encoded into
pairs of request and reply packets. A request packet
defines the operation, amount of data, and the loca­
tion (or address) where the transaction will occur. In
the case of a write request, the packet will also in­
clude data. The reply packet indicates whether or
not the action completed successfully, and in the
case of read replies, will also include the requested
data. Table 2 lists the various types of AP-Bus oper­
ations.

The AP-Bus supports a pipelining feature that allows
up to three requests to be pending at any time. Re­
ply packets are returned in the order requested un­
less deferred, but requests and replies may be inter­
mixed. For example, two requests may be made, fol­
lowed by a single reply packet, then another request
packet, before being completed by two reply pack­
ets.

The AP-Bus consists of 47 bi-directional signals, a
clock signal, a RESET signal, and five module sup­
port signals which are used to interface system mod­
ules to the AP-Bus (see Figure 3). The BXU is the
only component that attaches to the AP-Bus.

BXUs connect to each other in the form of a matrix
to allow orderly growth in the system by the addition
of buses or modules. An B0960MC multiprocessing
system allows up to 32 modules and four AP-Buses.
In practice, the number of modules in a system will
be somewhat less in order to meet the AP-Bus's
timing and electrical specifications; a practical limit
may be 20 to 25 connections to an AP-Bus. Table 3
contains a summary of the functions of the AP-Bus
Interface Registers.

Table 2. Types of AP-Bus Operations

Packet Base Specific
Type Action Operation

Request Write Write Word(s)

RMW Write Word(s)

Read Read Word(s)

RMW Read Word(s)

Reply Accepted Read Reply Word(s)

Acknowledge
. (Write Reply)

Refused Reissue

Not Acknowledged
(NACK)

Bad Access

3-279

intel~

Transaction Control
• Arbitration: ARB (3:.0)
• Reply Ordering: RPYOEF

Packet Signals
• Specification: SPEC (5 .. 0)
• Address/Oata:AO (31..0)

Error Signal Group
, • Check Signal: CHK (1 .. 0)

• Bus Error: (1..0)

M82965

< PACKET SIGNALS (38 LINES) >
< ERROR SIGNAL GROUP (4 LINES) >
< SYNCHRONIZATION (2 LINES) >
< > MODULE SU~PORT (7 LINES)

271082-3

Synchronization and Initialization Group
• System Clock: CLK2
• Initialization: RESET

Module Support Group
• Identification: INITIO
• Module Check: MOOCHK
• Bus Output Control: BOUT
• Communication: COM
• Voltage Reference: VREF
• Pop Queue: POPQUE
• Subsystem Busy: SSBUSY

Figure 3. Advanced Processor Bus

3-280

M82965

Table 3. AP-Bus Interface Registers

Register Description

PhysicallD This register contains a unique identifier for a specific BXU (or FRC pair of
BXUs) on an AP-Bus.

LogicallD This register holds the logical ID for the BXU. In every case, all BXUs in the
same module will share the same 10gicallD. When two modules are married
in a OMR configuration, they will also share the same logical 10.

Component The contents of this read-only register are fixed at manufacture and specify
Specifier the type and stepping of the component.

Arbitration ID When the BXU needs to issue a request on the AP-Bus, it must actively I
arbitrate for the bus. The time and order in which a BXU arbitrates is
determined by the contents of this write-only register.

Com This register is used for loading external information, such as the type of
board the BXU resides on, into the BXU. The register is useful for both
initialization and diagnostics.

AP-Bus Control This register is the general control and status register for the BXU's AP-Bus
interface.

FT1 Most of the BXU fault-tolerant capabilities can be selectively enabled by
altering control bits in this register.

Maxtime The value in this register determines the length of time that BXUs will remain
quiescent following the beginning of an error report.

FRC Splitting Writing to this register allows a master/checker pair of BXUs to be split into
Control separately functioning components.

FRC Register The contents of this register determine of a BXU is part of a master/checker
pair and how the component responds if it is part of a OMR module.

Test Detection Bits in this register enable parity logic and other internal self testing diagnostic
features.

AP Match Bits in this register are compared against the corresponding bits in the AP-
Bus address cycle and determine which partition of the address space is
recognized by this BXU.

AP Mask If a bit in this register is cleared, it will cause the corresponding bit position in
the Address Match register to be ignored during comparisons.

Memory addressing over the AP-Bus is divided into
16-byte blocks. The location of a bus transaction is
defined by a 32-bit address. Each address points to
a single byte that is part of a larger 16-byte block. All
transactions are performed on a single block or por­
tion of a block, and do not overlap multiple blocks.

In Processor mode, the BXU supports cache, I/O
prefetch and lAC message functions. The BXU can
act as either a master or slave on the L-Bus and
requests can flow in either direction between the
AP-Bus and the L-Bus. The assumption is, however,
that most traffic will flow from the L-Bus out onto the
AP-Bus. In a processor-only module, there is no
need for the BXU to participate in arbitration for the
L-Bus, since it will operate only as a slave. Modes of Operation

The BXU operates in either Processor or Memory
mode. Processor mode provides support for Active
or Active/Passive modules, while Memory mode
supports Passive modules. The functions of several
BXU signals are dependent on the operating mode
of the BXU.

3-281

In Memory mode, the BXU always operates as a
master on the L-Bus and no requests are ever ac­
cepted from the L-Bus. All requests flow from the
AP-Bus into the module. In this mode, the BXU sup­
ports memory functions and signaling, but does not
provide caching or I/O prefetch.

II

intel· M82965

Read-Modify-Write Transactions

Read-Modify-Write (RMW) operations are provided
to give BXUs.the ability to read and modify a location
as a single indivisible action. A RMW-Read opera­
tion initiates the indivi~ible action by asserting the
LOCK signal on the L-bus. A RMW-Write operation
is used to terminate the action.

When an RMW-Read transaction occurs, the block
of memory addressed is marked by the BXU control­
ling that portion of memory as locked (the lock cov­
ers a fixed address space based on address bits 4
and 6). Once locked, any other RMW-Reads to this
block will be rejected, but the block remains avail­
ablefor other types of memory operations.

When an RMW-Read is issued, the BXU controlling
the affected memory will either respond with data in
a normal Read Reply (and set the appropriate lock),
or it will respond with a Reissue Reply indicating that
the requested block is already locked. If refused, the
requesting BXU will wait a short interval and then put
the RMW-Read request back into the arbitration pro­
cess and try again.

RMW-Writes are equivalent to Write Word(s) except
'that it resets the lock for that memory location. The
only valid reply packet is the Ack (Write Reply).

Interagent Communications (lAC)
Support

Bus Extension Units and 80960MC processors com­
municate by sending Interagent Communication
(lAC) messages, which are a set of memory-mapped
addresses recognized by all BXUs. These messages
are used for such system functions as initialization,
cache flushing, access to error logs and interrupts.
The upper 16 Mbytes of the 80960MC's 4 Gigabyte
address range are reserved for lAC communica­
tions.

lAC requests fall into two major groups: messages
and register requests. Messages are sent between
processors to cause a processor to perform a spe­
cific action (e.g., start, stop, flush cache, etc.) and
are held in the lAC message support registers; Table
4 summarizes the function of these four registers.
Register requests are used by software to read and
write to BXU registers in order to control the system
operation or configuration.

An lAC message always originates on an L-Bus and
usually from a processor. From the originator, the
request flows to the BXU where it may be handled
internally or propagated on to the AP-Bus. If the lAC
is sent on to the AP-Bus, the final destination of the
lAC (another BXU) must reside on that bus. The lAC
will not be propagated onto another L-Bus or AP­
Bus. lAC messages can be one to four words long.

Although each L-Bus (processor or memory module)
may be connected to as many as four AP-Buses, at
any point in time only one bus will be designated as
the message bus. All lAC messages will flow over
that bus. The BXUs on the message bus are respon­
sible for handling the lAC message traffic on behalf
of the processors residing on their L-Bus .(an L-Bus
may support one or two processors).

AP-Bus 0 normally serves as the message bus. If
AP-Bus 0 is not functional, then AP-Bus 1 serves as
the message bus, completely transparent to the
software. Processors are unaware of which bus is
actually acting as the message bus.

110 Prefetch Support

The BXU offers two I/O prefetch channels to pro­
vide high bandwidth, low latency access to memory
for sequential transfers. Each channel buffers 32
bytes of data in two 16-byte blocks. As data is re­
quested from the buffers, the BXU automatically pre­
fetches the next data block. The BXU can take

Table 4. lAC Support Registers

Register Description

Processor 0 Priority This register holds the priority of the task (process) which Processor 0 on the
BXU's L-Bus is currently executing.

Processor 0 Message This register buffers four words of data from an lAC message for ProcessorO.

Processor 1 Priority This register holds the priority of the task (process) which Processor 1 on the
BXU's L-Bus is currently executing.

Processor 1 Message This register buffers four words of data from an lAC message for Processor 1 ..

3-282

M82965

advantage of the three-deep AP-Bus pipeline to
quickly fill the buffers if 'it ever gets behind because
of momentary surges in AP-Bus traffic. In this way,
the prefetch logic acts to provide stable, bounded
response times, even in large multiprocessor config­
urations.

Because the normal operation of the BXU hides the
latency of write requests by replying immediately on
the L-Bus, the prefetch unit operates only for read
requests. On a read request from the L-Bus, the pre­
fetch logic returns the amount of data requested.
Any processor or intelligent device used with the
BXU must guarantee that it will split all memory re­
quests that cross 16-byte boundaries into two re­
quests.

Cache Support

The main function of a cache is to provide local high
speed storage for frequently accessed memory lo­
cations. Storing the information locally, the cache
intercepts memory references and handles them di­
rectly without transferring the request to the AP-Bus.
This action results in lower traffic on the AP-Bus and
decreased latency on the L-Bus, leading to im-

AP-BUS ADDRESS

l-LAD IZ LAD1Z-LAD7 LADs-LAD4 LAD3-LADo
,

t ~ • r
,

TAG ~

proved performance for a processor on the L-Bus. It
also increases potential system performance in a
multiprocessor system by reducing each processor's
demand for AP-Bus bandwidth, thereby allowing
more processors in a system.

The BXU provides cache directory, coherency logic,
and control signals, while external SRAM is used for
data storage. A CACHE signal output from the
80960MC processor indicates to the BXU whether a
request is cacheable. The operation of the BXU
cache is not dependent on the size of the data trans­
fer and therefore can support partial writes. Both
data and instructions can be contained within the
local cache.

The BXU supports a two-way, set associative cache
with 64 sets. The (read address) tag field is 20 bits
long and consists of LAD lines 31-12. There are
eight bits that indicate if a line is valid (a line is 16
bytes). The control bits in the cache control registers
can be used to mask some of these bits to change II
cache configurations. All entries in the directory can
be invalidated by sending an INVALIDATE CACHE
Command to each BXU in the module. Figure 4
shows one example of a BXU cache directory and
its relation to L-Bus addresses.

WAYO

I"'""t----t> STORED ADDRESSES STORED ADDRESSES SET 0

SET 1

SET 2
D~

~ t----t>
0
D
E
R t----t>

..... t----t>
SET 62

SET 63

i TAG

LINE SELECT

~~ ,. . v -*~ Ii" • Ii"
COMPARE I I COMPARE

WORD SELECT ~ J
I ENCODER I

WAY BIT J

'<;;' "', ~ , ~
CACHE ADDRESS

271082-4

Figure 4_ Example of a Cache Directory Array

3-283

int:et M82965

A single BXU supports 16 Kbytes of cache. When a
processor module uses multiple BXUs (and there­
fore multiple buses), the BXUs cooperate to provide
a larger directory and addressing for a larger cache.
The best way to view this larger directory is to think
of it as having an increased number of sets. Thus a
cache managed by two BXUs will have a directory
consisting of 128 sets instead of 64. The maximum
size cache is 64 Kbytes (four BXUs supporting four
AP-Buses per processor module).

The cache is managed using a write-through policy
that guarantees that the shared system memory will
always have the most recent copy of all data; BXU
caches never contain the only copy of revised data.
Any time a processor updates a cache entry, it al­
ways causes a write request on the AP-Bus, so that
there are never any hidden updates. In addition, all
BXUs monitor AP-Bus traffic to detect if an update is
being made to a location which they are storing in

LA031 -LAOO ~ t-j~

BE3-BEo 1-.. -1--1--:------...... 00-03

W/R CLR

READY PE

M82965
BXU

their own cache. If so, that line in the cache directory
is marked invalid. This procedure guarantees that a
BXU cache will always return correct data even
when a system uses multiple caches, when multiple
processors treat a single data item differently (some
caching, some not), or when two processors are
used on a single L-Bus.

An example of an SRAM control design using a sin­
gle BXU is shown in Figure 5. The BXU supplies six
memory control signals to interface the directory and
control logic with an external cache composed of
static RAM: Cache Read (CR), Cache Write (CW) ,
WayO (WYO) , Way1 (WY1), WordO (WOO), and
Word1 (WD1). SRAM control also requires use of
the L-Bus byte enable (BE3-BEO) signals and cer­
tain address lines. To simplify latching the byte en­
able signals, the BXU asserts READY on all address
and recovery cycles as well as when it is transferring
data.

M51C68
SRAM

(EIGHT 4K x 4)

>O-If--Cf CSo

>O-If--Cf cs1

CR ~---+----I ~~===:-+====----.t-:---<J I-------~----~~-fi~-C~ .~ ow ~ ______ ~
WDo 1------1------1 01

1------1------1 D254F175Q2 I---=---------t ..
t---tI>CLK.r

271082-5

Figure 5. Sample Cache SRAM Control Design Using a BXU

3-284

intel® M82965

The tight timing specifications of SRAMs require a
small amount of external logic to interface a static
RAM cache to a BXU. Since all BXU cache signals
have a relatively wide clock to data valid specifica­
tion (T cd), external flip-flops are used to achieve
tighter resolution of the Cache Write and Word edg­
es. The address bits are latched using ALE from the
processor. WayO selects between the two "ways" in
the cache directory, and Way1 selects between the
cache and private memory (if present on the L-Bus).

In order to ensure that the cache is filled properly,
the byte enable latch is c.leared on read requests. If

the processor made a read request for two bytes
that missed the cache, the BXU would first write the
entire 16-byte block, then return the requested infor­
mation to the processor. If the byte enable latches
weren't set, then the write into the cache wouldn't
work correctly because not all byte enables would
be asserted. Byte enable information does not need
to be held on reads because data is always returned
in full words and the processor selects the portion of
the word that it needs internally. Signal timings are
shown in Figures 6-10.

271082-6

Figure 6. Cache Read Signal Timing for 35 ns SRAMs

3-285

M82965

To TW TdO Td, Td2 Td3 T,

CLK2

CLK3

LAD3,-LADO

CR

CACHE

READY

Cvi

Wii,-WiiO

W'i0

Cs

WE

271082-7

Figure 7. Cache Write Signal Timing for 35 ns SRAMs

To Tw Tw TdO Tw Td, T,

CLK2
-' ~ ~ ~ ~ ~ ~ 1r

CLK3 '"" tJ V tJ tJ V tJ IJ J\..

~ =x ADDRESS XXXxxxx [XX [XX [X --"- .-......
[l(XXXXX~T~XXXXXX X [XX lXXXDATA,X

.-~

''00\ AXY

READY .~ ~XY '<Xx. ~XY "<XA J:X"l>..
CACHE

-'

>flx :l(:l('YY ADDRo
'~

ADDR, X :X :X :X 'l(

:X :l('XX
.............. ...
XX :X
'"""""",,, f.>

'<XA ~XY

271082-8

Figure 8. Cache Read Signal Timing for 70 ns SRAMs

3-286

intel@ M82965

T,

CLK2

CLK3

LAD3 ,-LADO 4.:lQo~"'::'::="'./'Cf'-__ t--""':::':':4----.,....I\l!..J\.._~L...:::=~--+-.N.~~~~
CACHE

READY ~~~~~±=~~'"
CW

W51-W50~~~~3~~~~F~*~~~; WYo ~
Cs

WE

271082-9

Figure 9. Cache Write Signal Timing for 70 ns SRAMs •

3·287

~
c ...
CD ...
?
0
QI
()
:::T
CD
(J)

cO"
::3
!!!. To TW . TdO Td, TdZ

::!
3
3"

IQ CLK3

.... ~ ~ J~ ~ ~ ~ -'v----' v----' v----' ~ ~
CLK2

-0 ...
QI

LAD3,-LADO (J(J(XADDRESS DATAo XXX OATA, JO(l{ OATA2 - --
U) ~ N
CD ...
CD Co

Cii

CACHE

:tJ
CD
QI A'J READY
Co

~" "
~'A C'ii

:r
QI

0
Wil,-Wilo ADDRo XXX ADDR _XXX ADDR2 XXX

QI " ()
:::T ViiO
CD

~ cs ~ ~ I\-r -0 ... '\. WE
Co)
U1
::3
III
(J)
:tJ
l>

== en

Td3 TW TdO Td , TdZ Td3

~ ~ ~ ~ ~ ~
v----'r--' v----' ~ v----' ~

JO(l{ DATA3 -- ""TAo~J{""TA,JO()Q()(]{"'" _

'X.'XA

U.A nlm. nlm. ~

~]{y

ADDR3 ADORa XXX ADDR, XXX ADDR2 XXX "A55R,"

'-.I '<XX

I'

T,

'\J"\....ir"

~~

~X.[XY

~

X ex:
-~

or-r

271082-10

_.
c(
•

s;:
00
N
co
Ol
U1

~
1§1

~
~
©
IiiiiJ

~
'liiJ
©
2&
~
~
~

©
~

M82965

The BXU has four memory address recognizers for
the L-Bus plus an additional recognizer for initializa­
tion RAM. Three of the memory address recognizers
(Mask2-0 and Match2-0) map to shared system
memory, while the fourth address recognizer maps
requests to SRAM on the local bus, called private
memory. The INIT-RAM recognizer serves two func­
tions: it enables bootstrap software to use the
SRAM cache as a scratch pad during system initiali­
zation, and it provides the means for executing a
memory test on the SRAM cache. The private mem­
ory recognizer allows SRAM to be used on the local
bus as normal memory in addition to a cache. Pri­
vate memory is not accessable by other modules on
the AP-Bus.

Memory Module Support

When operating in Memory mode, the BXU is a Lo­
cal Bus master and only handles requests inbound
from the AP-Bus. The cache control logic is disabled
since it is unnecessary in a memory module.

A read request received by an idle BXU will be seen
on the L-Bus 1.5 clock cycles after it was received
on the AP-Bus. BXUs offer two reply speed options
for inbound Read requests. The high-performance
option, called the "fast reply" mode, allows data to
flow onto the AP-Bus with only a half-cycle delay
through the BXU. This option requires the L-Bus
memory controller to be able to supply data on every
clock cycle. In the "slow reply" mode, the BXU buff­
ers the entire AP-Bus reply packet before sending it
onto the AP-Bus. This option permits the use of
slower, less costly memory.

Write requests are fully buffered before being
passed to the L-Bus. Once the BXU has received an
error-free packet, it initiates the L-Bus transaction.
When the last data word has been accepted on the
L-Bus, the BXU generates a reply on the AP-Bus.

In memory mode, the BXU provides two or four
Ready-Modify-Write locks with timeouts. Four locks
are available if the module is not interleaved with
other modules, two locks if it is interleaved. When
interleaving occurs, address bit 4 is used as part of
the address recognition for the module, which there­
by restricts a module to use either locks 0 and 2, or
1 and 3. This approach ensures that if a bus switch
occurs, the locks that may have been allocated on
the failed bus will not overlap with locks that are
currently allocated on the surviving bus (since all
traffic is rerouted to the surviving bus).

FAULT TOLERANCE

Three basic tenets form the basis for the implemen­
tation of 80960MC fault tolerant systems. First,

fault tolerant functions are achieved through the rep­
lication of VLSI components. Second, the system is
partitioned into a set of confinement areas which
form the basis of error detection and recovery. Third,
only bus-oriented communication paths are used to
provide system communication.

The BXU is unique in that it provides all the functions
necessary to detect, isolate, and recover from a fail­
ure in any single system module or AP-Bus. Unlike
many other fault tolerant system designs, 80960MC
systems do not rely on voter components for fault
detection, thereby eliminating one potential source
of single-point failures. Although the BXU registers
must be initialized by software, all the fault tolerant
mechanisms are built into the hardware, and correct
fault recovery of a system built using the BXU does
not depend on software intervention.

The purpose of a confinement area is to inhibit dam­
age from error propagation and to isolate the faulty
area for subsequent recovery and repair. A confine­
ment area is defined as a unit (system module or
AP-Bus) that has a limited number of tightly con­
trolled interfaces. Figure 11 shows the confinement
areas within a small system. Detection mechanisms
exist at every interface to ensure that no inconsist­
ent data can leave the confinement area and corrupt
other confinement areas. When a fault occurs in the
system, it is immediately isolated to a confinement
area. The fault is known to be in that confinement
area, and all other confinement areas are known to
be fault-free. All intermodule communication in an
80960MC system occurs over buses. There are no
point-to-point or daisy-chained signals.

This arrangement makes modular growth and on­
line repair possible since no signal definition is de­
pendent on the number of resources in the system.
The presence or absence of any module cannot pre­
vent communication between any other modules.
The AP-Bus provides a uniform communications
matrix that allows multiprocessor and fault-tolerant
systems to expand modularly.

In 80960MC systems, there are three distinct steps
in responding to an error. First, the error is detected
and isolated to a confinement area. Next, the error is
reported to all the modules in the system. This ac­
tion prevents the incorrect data from propagating
into another confinement area and provides all the
modules with the information required to perform re­
covery. Finally, the faulty confinement area is isolat­
ed from the system. Recovery occurs through the
application of redundant resources available in the
system. Table 5 describes the fault-tolerant control
registers.

3-289

intaL M82965

, 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1

1 1

1 1
'I 1 ' , "

1 1
, ,

1 1

271082~11

Figure 11. Fault Confinement Areas in an 80960MC System

Table 5. Fault Tolerance Support Registers and Commands

Register Description

TestType The Test Report command instructs the BXU to test the error reporting
network. The type of error report generated is determined by the content of
this register.

SpouselD In a QMR module, this register holds the module ID of the FRC module to
which this module is married.

QMR The contents of this register determine if a module is part of a QMR pair, and
if it should function as the primary or shadow in the pair.

Module Error ID Identifies the BXU as part of a specific module confinement area.

Bus Error 10 Determines the BuslD contents.in an error report.

Error Log Records the type of the most recent error report received and the number of
errors that have occurred since the last Terminate Permanant Error Window
command.

Error Record Holds the contents of the previous error report.

FT2 Holds additional fault-tolerant control parameters.

Test Report Command The Test Report command instructs the BXU to test the error reporting
network. The type of error report generated is determined by the contents of
the Test Type Register.

Primary Catastrophe A write to this register causes a Primary Catastrophe error report, usually
Command indicating a primary module power failure.

Shadow Catastrophe A write to this register causes a Shadow Catastrophe error report, usually
Command indicating a shadow module power failure.

Terminate Permanent A write to this register closes the permanent error window, so that a
Error Window reoccurance of a previous error is not recorded as permanent.
Command

Attach Bus Command A write to this register causes the identified bus to be attached to the system
and become active.

Detach Bus Command A write to this register causes the identified bus to be detached from the
system and become inactive.

Sync Refresh Command A write to this register causes BXUs in memory mode to assert their ForceRef
pin and enables AP-Bus address matching.

3-290

M82965

Functional Redundancy Checking

BXU components can be paired together to com·
pare their outputs to ensure that they agree. This
detection mechanism is called Functional Redun·
dancy Checking (FRC) because identical compo·
nents are used to check operations.

At initialization time, one component in the BXU pair
is selected to be the "Master", while the other is
designated the "Checker". The Master BXU is re·
sponsible for carrying out the normal operation of
the system and behaves as it would if it were operat·
ing in a non·fault tolerant system. The Checker BXU,
in contrast, disables its Ap·Bus outputs and instead
monitors the AP·Bus pins of the Master (see Figure
12). The Checker BXU is responsible for duplicating
the operation of the Master and using its internal
comparison circuitry to detect any inconsistency be·
tween its result and the output of the Master.

The Master and Checker BXUs run in lock step,
comparing operations cycle·by·cycle. If at any point
the Master or Checker disagree, an FRC error will be
signaled and an error reporting cycle will begin.

When using the FRC mechanism, the BXU pins
comprising the electrical connection to the Ap·Bus
must be connected together. A BXU provides FRC
coverage on the AD, SPEC, BOUT and MODCHK
pins.

MASTER

PROCESSORS,
I/O, OR
MEMORY

L-BUS

M82965
BXU

Failures in the Checker's Ap·Bus drivers can be de·
tected by reversing the role of the Master and
Checker BXU. When Master/Checker Toggling is
enabled, the Roles of the Master and Checker are
switched after each bus cycle.

Parity, Duplication and Timeouts

In order to prevent incorrect AP·Bus operation for
passing corrupted data to the BXU (and onto the
Local Bus), the BXU uses parity, signal duplication,
and bus timeouts to check for errors. Specifically,
the AP·Bus has interlaced parity bits covering the
AD and SPEC signals, signal duplication is used on
both arbitration and RPYDEF, and a bus timer is set
to monitor the bus for non·response to a request.

The BXU calculates two separate parity bits across
alternate AD and SPEC signals, which are indicated
by the CHKO and CHK1 pins. CHKO is even parity
across the even AD and SPEC pins, and CHK1 is
even parity across the odd pins. Since the arbitration
and RPYDEF lines are driven independently by mul·
tiple bus agents (BXUs), parity cannot be used for
error detection, rather the detection of errors is done
by duplicating each set of lines, one set for Masters,
the other set for Checkers. Consequently, each BXU
connects to only one arbitration network. If there is a
disagreement between the two sets of signals on

INPUT ONLY

AP-BUS
271082-12

Figure 12. Functional Redundancy Checking (FRC)

3·291

intel® M82965

the AP-Bus, it will be detected through an FRC dis­
agreement. The BXU uses a timer to determine if no
response has been received and too long a period
has elapsed since. the bus request was made. Dur­
ing normal operation the timer is active whenever
the bus pipeline is not empty. The timer is reset on
every bus reply or deferral. If the BXU was the
source of the requests and a timeout occurs, it sig­
nals a Bad Access Reply on the AP-Bus. The timer
is nominally 64 clocks.

Error Reporting

The error reporting network is the backbone of fault
isolation and recovery. When an error is detected,
the BXU detecting the error reports its type and lo­
cation to all other nodes in the system. The error
reporting network is designed so that, independent
of an error in the system, each node not only re-

ceives an error report, but is guaranteed to receive
the same error report. Each BXU in the system uni­
formly logs each error report, and is able to use this
information to proceed independently with the ap­
propriate recovery procedure.

The BXU has two serial Error Reporting Lines asso­
ciated with each bus interface (BERLs for the AP­
Bus and LERLs for the Local Bus). An indentical se­
rial error report is sent over each pair of lines associ­
ated with each bus.

An AP-Bus error reporting cycle consists of five
phases: Reporting, Partner Communications, Tran­
sient Waiting Period, Retry, and the Permanent Error
Window (see Figure 13). The reporting phase lasts
256 cycles from the beginning of the first report re­
ceived on the BXU's error reporting lines. The BXU
becomes quiescent as soon as it detects the start bit
of an error report and remains quiescent through the
Transient Waiting Period.

271082-13

Figure 13. Error Reporting Cycle

3-292

InteL M82965

During partner communications, BXUs communicate
with each other via their POPQUE lines to determine
whether to retry accesses in the case that one of the
AP-Buses is removed from the system. Partner or­
dering lasts 256 cycles.

During the RETRY phase, all accesses that were
pending at the time that the error report was re­
ceived will be retried. At the same time as RETRY
begins, the BXU enters the Permanent Error Win­
dow. During this interval, the BXU watches for the
error to reoccur.

Transient waiting enables the system to sustain dis­
turbances from mechanical vibrations and brief elec­
trical transients without needing to permanently re­
configure the system. The BXUs simply wait a pre­
determined time for the transient to subside. The du­
ration of the Transient Waiting Period is adjustable
and can be set by software (16 /ls to 500 ms at
16 MHz). During this period, the BXU completes its
internal recovery mechanisms (if the error is perma­
nent). Since the transient waiting mechanism on the
buses depends on all buses moving to the retry
state at the same time, all BXUs must have identical
values for the Transient Waiting Period.

Each BXU has two registers that are used for log­
ging error reports. The ERROR LOG register con­
tains the current error report and the ERROR REC­
ORD register contains the previous error report.
When a error report is received, the contents of the
ERROR LOG register are copied into the ERROR
RECORD register. Both registers are accessible by
software and are the primary means by which the
software routines responsible for system manage­
ment communicate with the hardware fault handling
mechanisms. Table 6 lists the types of errors that
can be reported.

Table 6. Error Types Reported

Error Type Description

Unsafe Confinement This type of report is issued when an error is detected that would make a rEltry
Area dangerous.

Primary Catastophe Generated in response to a Primary Catastrophe Command from software.
The command is usually issued when all primary modules are about to fail
because of a loss of power.

Shadow Catastophe Generated in response to a Shadow Catastrophe Command from software.
The command is usually issued when all shadow modules are about to fail
because of a loss of power.

Error Reporting Error The report indicates that a BXU has detected.a failure on one of its error
reporting lines.

Bus Arbitration This report is issued when an FRC error is detected on the BOUT pin of the
BXU indicating a bus arbitration error.

Bus Parity Indicates that a parity error has been detected on the AP-Bus.

Component Indicates that a checker has detected an FRC error while its master was
driving the AP-Bus.

Uncorrectable Array An uncorrectable error has been detected in one of the memory arrays.
Error

Correctable ECC A correctable error has been detected in one of the memory arrays.

COM Altered This error report occurs when the COM input is toggled (two cycles high,
followed by two cycles low) and may be used by external Circuits to notify the
system of an external fault.

Attach Bus Issued in response to an Attach Bus command, this report is used to
reactivate a bus that was previously out of service.

Detach Bus Issued in response to a Detach Bus command, this report is used to remove a
faulty bus from the system.

Terminate Permanent Receiving this report signifies the end of the Permanent Error Window.
Error Window

Sync Refresh Used to synchronize memory modules that are being married to form a
Primary/Shadow Pair.

3-293

int'eL M82965

The BXU's hardware compares the contents of the
two error reporting registers to determine if a bus
retry has resulted in a repeat of the previous error
(which therefore must be considered a permanent
error). Software can clear the two registers by send­
ing a Terminate Permanent Error Window command.
The registers allow software to monitor the health of
the system and. to respond appropriately in case of
hardware problems. The availability of this informa­
tion simplifies diagnostic routines.

The ERROR LOG register is handled independently
by hardware and software; hardware always re­
sponds immediately to an error report so that it is
never lost by failure of software to respond. During
normal system operation, software should never
write to this register, since it is both read and written
by hardware. The ERROR LOG register is cleared
on a cold start, but its contents are retained across a
warm start.

PRIMARY

RECOVERY MECHANISMS

Module Shadowing

Automatic recovery from permanent single-point fail­
ures in a module is accomplished through module
shadowing, or what is more formally called Quad
Modular Redundancy (QMR). Using this technique,
two FRC pairs (master/checker) of the same type
are logically linked to form a primary/shadow pair
(see Figure 14). The marriage of the two modules is
performed by software which sets the logical ID of
the two modules equal and restarts them in lock
step (or synchronous operation). There is no direct
electrical connection between a primary/shadow
pair. They are usually on separate boards so that
either can be removed in the case of a failure in that
module.

SHADOW
p-------------------------~ MASTER

Processor
or Memory

L-BUS

1.182965
8XU

CHECKER

Processor
or Memory

L-BUS

1.182965
BXU

MASTER

Processor
or Memory

L-BUS

1.182965
BXU

1.182965
BXU

CHECKER

Processor
or Memory

L-BUS

1.182965
BXU

271082-14

Figure 14.ln Quad Modular Redundancy (QMR), Self·Checking Modules are Paired

3-294

ante!. M82965

The primary/shadow pair operate in lock step so
that there is always a complete and current backup
for an FRC pair. At any point in time, one FRC pair
will be active (Le., sending its output to the AP-Bus)
while the other will be passive (Le., its outputs will be
disabled). Initially, the primary FRC pair is active and
is responsible for issuing requests or replies to the
AP-Bus. Data leaves only by means of the active
FRC pair.

As an option, the roles of active and passive mod­
ules are switched after every second bus cycle. (In
contrast, master/checker pairs are toggled every cy­
cle). This ping-pong action exercises all of the logic
in both primary and shadow modules. Any latent fail­
ure that exists in the AP-Bus drivers will be detected
immediately. All of the logic to perform this lock step
operation is contained in the BXU and neither the
processors nor any discrete logic contained in a
module is aware that the module is participating as
one-half of a primary/shadow pair.

Each physical FRC pair (primary and shadow) re­
mains a self-checking pair. Whether in an active or
passive module, all detection mechanisms remain

PRIMARY
PROCESSOR

NOTE: [:JI mc PAIR

SHADOW
PROCESSOR

enabled and continuously check the operation of
that module. Neither the primary nor the shadow
check the operation of the other; FRC is used for
fault detection, while module shadowing (Quad Mod­
ular Redundancy) is used to ensure immediate re­
covery.

Automatic Module Recovery

If a permanent error is detected in either a primary or
a shadow FRC pair, the faulty pair will immediately
be disabled as all BXUs in the pair shutdown. The
surviving spouse then separates itself from the faulty
FRC pair and operates as an active pair on every
bus cycle. At that point, recovery is complete.

Hardware recovery is autonomous and requires no
software intervention to complete. The operating
system can be informed that a hardware reconfigu­
ration has taken place by tying an error report line to
one of the processor's interrupt pins. Then when a
fault occurs, a processor can examine the error re­
port log to discover what has happened and then re­
examine the system configuration. Figure 15 shows
an example of module recovery.

PRIMARY
MEMORY

SHADOW
MEMORY

271082-15

Figure 15. Faulty Modules are Automatically Disabled

3-295

intel® M82965

Bus Switching

All AP-Buses in an 80960MC system are physically
identical, but when a system is operational each bus
handlesa unique address range. The8XU has been
designed so that it is possible to pair together two
AP-Busses and have them act as redundant or alter­
nate resources for each other. AP-Bus 0 is paired
with AP-Bus 1 and AP-Bus 2 is paired with AP-Bus 3.
In order for an FRC pair to have an additional bus, it
must also have another pair of Master/Checker
BXUs. Normally the memory addresses will be inter­
leaved between the two (or four) buses, but this isn't
necessary for bus switching.

Since the AP-Bus does not hold state information
(as do processors and memory), all buses in the sys-

Legend:
C = CPU
B = BXU

PRIMARY

M = Memory Array

SHADOW

tem may be used during normal operation. There is
no degradation of throughput to achieve bus redun­
dancy. Each bus is fully operational.

When a permanent error has been detected on an
AP-Bus, all BXUs on the faulty bus disable them­
selves. L-Bus requests for the failed bus will be ig­
nored by the disabled BXUs and picked up instead
by the BXUs attached to the backup bus. If a BXU
has a cache, the BXU invalidates its cache directory
since the directory must be reorganized to match the
new (and larger) address space, including a new in­
terleaving factor. Figure 16 shows an example of
bus switching.

PRIMARY SHADOW

271082-16

Hardware automatically reconfigures to bypass the faulty bus (AP-Buso).
AP-BuS1 takes over the address space of AP-Buso.

Figure 16.11 a Bus Fails, Its Backup Bus Takes Over Immediately

3-296

M82965

Self-Healing Systems

In some applications it is important to guarantee the
integrity of the data, but momentary interruptions in
processing can occur without seriously affecting op­
erations or jeopardizing human lives. For these ap­
plications, a cost effective approach may be to use
self-healing systems.

Self-healing systems use Functional Redundancy
Checking to ensure that all errors are detected and
that faults are confined within a module. Fault recov­
ery is not automatic; recovery and reconfiguration is
done by software following error detection. Self­
healing systems are less costly than fully fault-toler­
ant systems because fewer components are neces­
sary.

Self-healing systems do not operate continuously in
the case of a hardware failure. Program execution
cannot proceed after detection of a permanent error
until the system has been reconfigured. Transient
errors will still be taken care of by the hardware
components. Upon detection of a permanent error,
the system will cease operation, however FRC en­
sures that no data will have been corrupted.

After the system stops, it must be reset and a diag- .
nostic program run which reads the BXU errors logs
and determines the most appropriate action to take.
Recovery and reconfiguration may be complete and
the system back on-line within a few seconds to sev­
eral minutes, depending on the nature of the. fault.

Self-healing systems are not appropriate for real­
time applications where program delays longer than
a few milliseconds cannot be tolerated. In these crit­
ical applications, an interruption in system operation
might result in damage to expensive material and
equipment, or endangerment of human lives. The
80960MC system fault tolerant architecture provides
the means for building systems that will recover au­
tomatically within 48 ,""s.

BXU Registers

Initialization and control of the BXU is done by read­
ing and writing the BXU's internal registers. The reg­
isters are mapped to the upper 16 Mbytes of the
B0960MC processor's physical address space.

Initialization of a system using BXUs occurs in three
stages. In the first stage which immediately follows
RESET, all registers (except for the registers con­
taining error report information) are loaded with 0 or
with values sampled off a set of pins.

During this stage the BXU's System Bus 10 and
mode of operation are established. In the second
stage, software assigns logical, physical, and arbitra­
tion IDs to each BXU. Then in the third stage, the
COM pin can be used to load board-specific infor­
mation into the BXU and software can change the
default values of any of the registers.

Once software has established the initial configura­
tion of the system, no further interaction between
the system software and the BXU may be necessary
except for testing the error reporting functions and
for making on-line changes to the system's initial
configuration.

This Advance Information Data Sheet contains a
functional description for each of the BXU's major
register groups. For more specific details on control­
ling each of the registers, please consult the
B0960MC Hardware Designer's Reference Manual.

SIGNAL DESCRIPTIONS

Tables 7 through 11 describe the function of each of
the BXU signals. Many of the pins are multiplexed
and have different interpretations depending on
whether the BXU is in Processor or Memory mode.

3-297

int'eL M82965

Table 7. M82965 BXU L-Bus Signals

'Symbol Type Name and Function

LAD31 I/O LOCAL ADDRESS/DATA BUS: Carries 32-bit physical addresses and data to and from a
-LADo T.S. processor or memory. During an address (T a) cycle, bits 2-31 contain a physical weird

addres (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, bits 0-31 contain
read or write data. The LAD lines are active HIGH and float to a three·state OFF when the
bus is not acquired.
SIZE: Which is comprised of bits 0-1 of the LAD bus during a T a cycle, specifies the size
of a transfer in words. '
LAD1 LADo

0 0 1 Word
0 1 2 Words
1 0 3 Words

.; 1 1 4 Words

ALE 0 ADDRESS-LATCH ENABLE: Indicates the transfer of a physical address. ALE is
T.S. asserted during a T a cycle,and deasserted during T d cycles and the second half of T a

cycles. It is active LOW and floats to a three-state OFF when the L-Bus is not acquired.

ADS I/O ADDRESS STATUS: Is used to detect address cycles and additional data cycles.
0.0.

CACHE I CACHEABLE: During a T a cycle, specifies whether data is cacheable. When operating
in the MEMORY mode this pin should be tied to ground through a 10 ,kn resistor.

W/R I/O WRITE/READ: specifies, during aT a cycle, whether the operation is a write or read. It is
,0.0. latched on-chip and remains valid during T d cycles.

CW/DEN 0 CACHE WRITE: (Defined only when the BXU is in PROCESSOR mode). This signal
0.0. indicates that the cache SRAM should be written with data from the L-Bus and is used to

, generate the chip select, and write enable signals required by the SRAM. The signal is
open drain so it can be shared among multiple BXUs controlling a single set of SRAMs.
DATA ENABLE: (Defined only when the BXU is in MEMORY mode). Is asserted during
T D cycles and indicates transfer of data on the local AD bus lines.

CRI 0 CACHE READ: (Defined only when the BXU is in PROCESSOR mode). This signal
DT/R 0.0. indicates that the cache SRAM should drive data onto the L-Bus in response to a read

request and is used to generate the chip select and output enable signals required by the
SRAM. This signal is open drain so it can be shared among multiple BXUs controlling a
single cache.
DATA TRANSMIT/RECEIVE: (Defined only when the BXU is in MEMORY mode).
Indicates the direction of data transfer. It is low during T a and T d cycles for a read or
interrupt acknowledgement; it is high during T a and T d cycles for a write. DT /R never
changes state when DEN is asserted.

LOCK I BUS LOCK: Is used by the BXU to distinguish b~tween normal reads and RMW-reads,
normal writes and RMW-writes.
An 80960MC processor asserts LOCK at the beginning of an RMW cycle, and the BXU
recognizes it as an RMW-read. If the read operation is accepted by the module serving
memory, the processor drops LOCK, and executes an RMW-write. LOCK is also held
asserted during an interrupt-acknowledge transaction.

READY I/O READY: Indicates that data on LAD lines can be sampled or removed. If READY is not
0.0 asserted during a T d cycle, the T d cycle is extended to the next cycle, and ADS is not

asserted in the next cycle. READY is driven on T a, Tr and Ti cycles.

NOTES:
1/0 = Input/Output, I = Input, 0 = Output, O.D. = Open Drain, T.S. = three·state

3-298

in~® M82965

Table 7. M82965 BXU L-Bus Signals (Continued)

Symbol Type Name and Function

BE3_ I/O BYTE ENABLES: Specify which data bytes on the local bus will take part in
BEo 0.0. the next bus cycle. BE3 corresponds to LAD24-LAD31 and BEo corresponds

to LADo-LAD7'

HOLD/ I HOLD: Indicates that a master I/O peripheral requests control of the bus.
HOLDAR When the BXU receives HOLD and grants the peripheral control of the bus, it

floats the bus lines and then asserts HL.DA and enters the T h state. When
HOLD is deasserted, the BXU will deassert H LOA and go to either the Ti or T a
state.

HOLD ACKNOWLEDGE REQUEST: Is an input to the secondary bus master
that the primary bus master has relinquished control of the bus.

HLDA/ 0 HOLD ACKNOWLEDGE: Relinquishes control of the bus to a master I/O
HOLDR peripheral.

HOLD REQUST: Is used by a Secondary Bus Master to request use of the
bus from the Primary Bus Master.

Table 8. M82965 BXU L-Bus Module Support Signals

Symbol Type Name and Function

BADAC 0 BAD ACCESS: If asserted in the cycle following the one in which the last READY of a
0.0. transaction is asserted as a result of a bad access, it indicates that the transaction has

exceeded the AP-Bus time-out period.

IACo/ERR I/O INTERAGENT COMMUNICATION: PROCESSOR 0: (Defined only when the BXU is in
0.0. PROCESSOR mode). Is an open-drain output that indicates that there is a pending lAC

message for Processor 0 on the BXU's local bus.
EXTERNAL ERROR: (Defined only when the BXU is in MEMORY mode). Is an input that
indicates that an error has been detected in external logic (e.g., a failure in a discrete
memory controller).

IAC1/FRF 0 INTERAGENT COMMUNICATION: PROCESSOR 1: (Defined only when the BXU is in
0.0. PROCESSOR mode). Is an open-drain output that indicates that there is a pending lAC

message for Processor 1 on the BXU's local bus.
FORCE REFRESH: (Defined only when the BXU is in memory mode). Is an open-drain
output that tells the external memory controller to immediately execute a refresh
operation.

PFETCH I PREFETCH: Is used in conjunction with the Cache and Write/Read (W/R) signals to
define the type of request being issued (0 = LO, 1 = HI):
PFETCH CACHE W/R

0 0 0 Read using Prefetch Channel 0
0 0 1 Start for Prefetch Channel 0
0 1 0 Read using Prefetch Channel 1
0 1 1 Start for Prefetch Channel 1
1 0 0 Noncacheable Read
1 0 1 Noncacheable Write
1 1 0 Cacheable Read
1 1 1 Cacheable Write

NOTES:
I/O = Input/Output, I = Input, 0 = Output, 0.0. = Open Drain

3-299

int:eL M829.65

Table 9. M82965 BXU Ap·Bus Signals

Symbol Type Name and Function

AOal-AOo I/O SYSTEM ADDRESS/DATA LINES: Carry 32·bit addresses and data
0.0. between modules (BXUs) on an AP-Bus. The content of the AD lines is

defined by the SPEC encoding during the same bus cycle.

SPEC5-SPECo I/O PACKET SPECIFICATION: Signals define the packet type and the
0.0. parameters required for the transaction:

SPECs: REQUEST: Is asserted if the packet is a request packet.
SPEC4: MUL TICYCLE: Is asserted if the packet consists of more than
one bus cycle.,
SPEC3-SPEC2: CYCLE COUNT:These two bits are used in
conjunction with Request and Multicycle signals to specify the length
of the packet (in bus cycles) and the data length (in words).
SPEC1-SPECo: OPERATION/STATUS TYPE: These two bits identify
the specific operation or status conveyed by the packet.

CHK1-CHKo I/O CHECK SIGNALS: Provide interlaced parity for the SPEC and AD
0.0. lines.

ARBa-ARBo I/O ARBITRATION: Signals are used by the bus agents (BXUs) to
0.0. determine which agent has access to the bus next. These signals have

a timing that is one-half cycle out of phase with the AD lines. .

,RPYOEF I/O REPLY DEFER: Signal allows an agent to give up its "slot" on the bus
0.0. temporarily if its access is going to take a long time. This action

reorders the pipeline, moving the deferred request to the bottom of the
queue, resets the bus time-out counter and permits another agent to
use the bus.

BERL1-BERLo I/O BUS ERROR REPORT LINES: Is used to signal errors from bus
0.0. transactions or from within modules connected to the bus.

NOTES:
I/O = Input/Output, I = Input, 0 = Output, 0.0. = Open Drain

3-300

nntel® M82965

Table 10. M82965 BXU AP-Bus (Local Agent) Support Signals

Symbol Type Name and Function

CLK2 I SYSTEM CLOCK: Provides the base timing and synchronization for all agents
(BXUs) in the system. It is sourced to all agents from a central clock and is
twice the frequency of the bus cycle.

NOTE:
The clock skew over the AP-Bus for a typical system should be no greater
than 6 ns for correct system operation.

BOUT 1/0 BUS OUTPUT CONTROL: Is asserted whenever a component is driving the
0.0. AP-Bus. Functional Redundancy Checks on BOUT can be used to detect

arbitration failures.

MODCHK 1/0 MODULE CHECK: Is connected between MasterlChecker pairs, allowing a
0.0. Functional Redundancy Check to be performed on internal states.

INITIO I INITIALIZE 10: Is connected to one of the 32 AD lines and is used in
conjunction with the IDENTIFY DEVICE lAC to provide a unique address for
each BXU at initialization time.

VREF I VOLTAGE REFERENCE: Provides a stable voltage reference for the input
buffers of components connected to the AP-Bus. External hardware must
provide a VREF/W voltage (see Table 14) on the VREF pin during normal
operation of the component. The VREF pin is also used to distinguish between
a warm start (system memory and the Error Record register retain their state)
and a cold start (system memory and BXU registers are cleared).

RESET I RESET: Forces all agents on the bus to reset and synchronize. The bus cycle
begins the first CLK2 period after RESET is deasserted. The RESET signal is
the way a BXU is synchronized to the rest of the system.

COM 1/0 COMMUNICATION: Can be used to load information into a component as
0.0. part of the initialization sequence or to inform external logic that the

component has failed. The BXU will asserted COM if it has shut itself off due
to a failure in its module.
The COM signal is not involved in any aspect of AP-Bus operation, but can be
used to load board-dependent information into the BXU or to signal the rest of
the system that an external error has occurred.

NOTES:
I/O = Input/Output, I = Input, 0 = Output, 0.0. = Open Drain

, 3-301

intel® M82965

Table 11. M82965 BXU Module Support Signals

,Symbol Type Name and Function

WYo/COR a WAYo: (When the BXUisin processor mode). Indicates which one of
0.0. the two "ways" in a directory set had a cache hit. The line is intended

to drive the SRAM address pins and will remain stable' throughout the
length of a cache access.
CORRECT: (When the BXU is in memory mode). Is used by the BXU to
tell an external ECC controller to correct the memory data as it flows
onto the local bus. If this signal is not asserted, then the memory data
may flow directly onto the local bus with only error checking, but no
correction.

WY1/MEM 0 WAY1: (Defined only when the.BXU is in PROCESSOR mode).
0.0. Indicates if the access is for the cache or private memory half of the

SRAM. The line is intended to drive the SRAM address lines directly
and will remain stable throughout the length of a cache access.
MEMORY IREGISTER REQUEST: (Defined only when the BXU is in
MEMORY mode). This signal allows mapping some of the BXU's
register space out to the registers in an external controller. If the signal
is high, the associated L-Busrequest is a memory request; otherwise,
the L-Bus request is to an external register on the board.

WDo/UNC 1/0 WORDo: (Only defined when the BXU is in PROCESSOR mode).
0.0. Provides the low order bit of the word address for the SRAM. Together

'with WORD1, the two bits indicate which of the four words within an
address line should be addressed. Because SRAM timing is critical, an
external latch could be required. The signals change for each word of
data transferred.
UNCORRECTABLE ECC: (Only defined when the BXU is in MEMORY
mode). Is an input used by the external ECC logic to signal to the BXU
that it has detected an uncorrectable memory error.

WD1/ECC 110 WORD1: (Defined only when the BXU is in PROCESSOR mode).
0.0. Provides the high order bit of the word address for the SRAM.

Together with WORDo, the two bits indicate which of the four words
within an address line should be addressed. Because SRAM timing is
critical, an external latch will be required. The signals change for each
word of data transferred.
ECC ERROR: (Defined only when the BXU is in MEMORY mode). Is
an input used by the external ECC logic to signal to the BXU that it has
detected a memory error. The signal will be asserted even though
external logic may be correcting the error and providing correct data
on the L-Bus. If the BXU is asserting its CORRECT signal, the ECC
ERROR signal will be ignored. Only the UNC pin will be checked for an
error indication under these conditions.

SSBUSY 1/0 SUBSYSTEM BUSY: Connects together all BXUs in a module that are
0.0. in the same subsystem. When the signal is pulled low (BUSY), the

BXUs will accept a request address, but will not continue with the data
cycles. This signal is used to ensure that the BXUs always handle
RMW-writes, Interagent Communication messages, and retries
correctly. An external signal is needed because BXUs can generate
AP-Bus requests internally because of the prefetcher, or their internal
logic can be tied up handling an lAC request from the AP-Bus.

3-302

M82965

Table 11. M82965 BXU Module Support Signals (Continued)

Symbol Type Name and Function

POPQUE I/O POP QUEUE: Is used by the two BXUs acting as bus backups for each
0.0. other to communicate status on the completion of outstanding L-Bus

requests. Usually, this signal is asserted when the oldest write in the
queue has completed. During the partner ordering period, a different
protocol is used to convey the status of all write requests outstanding.

LERL1- LERLo I/O LOCAL ERROR REPORTING LINES: Are identical to the BERL
0.0. signals defined for the AP-Bus, but are used on the module side to

connect all BXUs on a single L-Bus.

NOTES:
1/0 = Input/Output, I = Input, 0 = Output, 0.0. = Open Drain

MECHANICAL DATA Vee and GND connections must be made to multi­
ple Vee and GND pins. Each Vee and GND pin must
be connected to the appropriate voltage or ground
and externally strapped close to the package. Pref­
erably, the circuit board should include power and
ground planes for power distribution. Table 12 lists
the function of each pin.

Pin Assignment

The MG82965 BXU (PGA package) pinout as
viewed from the top side of the component (pins
down) is shown in Figure 17 and from the bottom
side (pins up) in Figure 18. Many of the signals are multiplexed and several sig­

nals have different interpretations depending on
whether the BXU is used in Processor or Memory
mode.

13 12 11 10

o 0 000 000 000 000

000 0 0 0 0 0 0 0 0 000
Vss RESET LADo CLK2 LAOz LADs LADIO LAO'2 LAO,s LADIB LAD2! lA022 LAo24 LADZ3

000 0 0 0 0 0 0 0 0 000
CtiK, BERLo VREf Vee Vss lA03 LADe lAD,3 LADlO Vee Vss SADAC lADZ5 HLDA

000
IdDCK CHKo Yss

000
AD, 0 Ao'4 BERL,

000
ADa COM BOUT

000
ARB, ADg A06

000
ADs ADo ARea

MG82965

BXU

000
HOLD ADS ALE

000
LAD27 LADZ6 LADze

000
BE, ROY LAD30

000
LOCK BEo WR

000
CROT BEl BE3

000
WYl t.4 w'(oc eWOE

000
Vss prCH WDOU

o 0 0 000 0 0 0 0 0 0 0 0
AD, ARBz INITIO Vss Vee SPCz A029 AD24 AO Z2 Vss Yee LERlo WDIE SSBY

o 0 0 0 0 000 0 0 0 0 0 0
Vss Vss RPYD SPC", A031 SPC,' A027 AO:1:3 A0 19 A018 ADI7 lAir lADE Yss

o 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee spe5 SPC3 speo AD28 A026 A030 A025 A021 AD20 A0 16 PPQU Vss lERll

14 13 12 11 10

Figure 17. MG82965 BXU Pinout-View from Top Side (Pins Down) .

3-303

271082-17

int:eL M82965

10 11 12 13 14

o 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 000 0 0 0 0 000 0 0
LA.023 LAD24 LA02Z LAD21 LAD,S lAD'!I LAD!2 lAOIO LADS LAOz elK2 LADO RESET VS5

o 0 0 0 0 0 0 000 0 0 0 0
HLDA LA025 BADAC "55 Vee LAD2a lA.DIl LADs LAD3 "55 Vee VREF SERLo CHK,

000
ALE AOS HOLD

000
LAD28 LA026 LAD27

000
lAD29 LAD31 CACHE

000
WR BEO lOCK

000
BE3 BEl eROT

000
CWOE WYOC WYl'"

000
WDOU PfCH V55

MGB2965

BXU

000
V55 CHKo h40CK

000
BnK, AD,. AD IO

000
BOUT COh4 ADa

000
A06 ADg ARB,

000
'-________________ -' ARBo ADo ADs

o 0 0 0 0 0 0 0 0 0 0 0 0 0
SS8Y WDI [lERLo Yee VS5 A022 AD24 A029 SPCz Vee VS5 INITIO ARBl AD, _

o 0 0 0 0 0 0 0 000 000
'Iss lADE IAlf AO'7 AD'8 AD'9 A023 A027 SPC, "031 SPC. RPYO VS5 VS5

o 0 0 0 0 0 0 0 0 0 0 0 0 0
LERl, VS5 PPQU AD'6 A020 AD21 "025 A030 A026 A028 speo SPC3 spes Vee

10 11 12 13 14

Figure 18. MG82965 BXU Pinout-View from Bottom Side (Pins Up)

3-304

271082-18

InteL M82965

Table 12. M82965 PGA Pinout-In Pin Order

Pin Signal Pin Signal Pin Signal Pin Signal

A1 LERLl C6 AD22 H1 LAD30 M10 Vss
A2 Vss C7 AD24 H2 READY M11 Vee
A3 POPQUE C8 AD29 H3 BEl M12 VREF
A4 AD16 C9 SPEC2 H12 AD13 M13 BERLo

A5 AD20 C10 Vee H13 AD15 M14 CHKl

A6 AD2l C11 Vss H14 AD4 N1 LAD23

A7 AD25 C12 INITIO J1 LAD29 N2 LAD24

A8 AD30 C13 ARB2 J2 LAD3l N3 LAD22

A9 AD26 C14 ADl J3 CACHE N4. LAD2l

A10 AD2S 01 WDo/UNC J12 BOUT N5 LAD1S

A11 SPECo 02 PFETCH J13 COM N6 LAD15

A12 SPEC3 03 Vss J14 ADs N7 LAD12

A13 SPEC5 012 ARBo K1 LAD2S N8 LAD10

A14 Vee 013 ADo K2 LAD26 N9 LADs

B1 ·Vss 014 AD5 K3 LAD27 N10 LAD2

B2 IACo/ERR E1 CW/DEN K12 BERLl N11 CLK2

B3 IAC1/FRF E2 ~Yo/COR K13 AD14 N12 LADo

B4 AD17 E3 WYl/MEM K14 ADlO N13 RESET

B5 AD1S E12 AD3 L1 ALE N14 Vss
B6 AD19 E13 AD7 L2 ADS P1 Vee
B7 AD23 E14 ARB3 L3 HOLD P2 Vss
B8 AD27 F1 BE3 L12 Vss P3 LAD19

B9 SPECl F2 BE2 L13 CHKo P4 LAD17

B10 AD3l F3 CR/DT/R L14 MODCHK P5 LAD16

B11 SPEC4 F12 AD6 M1 HLDA P6 LAD14

B12 RPYDEF F13 AD9 M2 LAD25 P7 LADll

B13 Vss F14 ARBl M3 BADAC P8 LAD9

B14 Vss G1 W/R M4 Vss . P9 LAD7

C1 SSBUSY G2 BEo M5 Vee P10 LAD5

C2 WDl/ECC G3 LOCK M6 LAD20 P11 LAD4

C3 LERLo G12 ADll M7 LAD13 P12 LADl

C4 Vee G13 AD12 M8. LADs P13 Vss
C5 Vss G14 AD2 M9 LAD3 P14 Vee

3-305

nnfel® M82965

Table 13. M82965 Pinout-In Signal Order

Signal
PGA

Signal
PGA

Signal
PGA

Signal PGA
Pin Pin Pin Pin

ADo D13 ALE L1 LADs M8 SPECo A11

AD1 C14 ARBo D12 LAD9 P8 SPEC1 B9

AD2 G14 ARB1 F14 LAD10 N8 SPEC2 C9

AD3 E12 ARB2 C13 LAD11 P7 SPEC3 A12

AD4 H14 ARB3 E14 LAD12 N7 SPEC4 B11

AD5 D14 BADAC M3 LAD13 M7 SPEC5 A13

AD6 F12 BEo G2 LAD14 P6 SSBUSY C1

AD7 E13 BE1 H3 LAD15 N6 Vee A14

ADs J14 BE2 F2 LAD16 P5 Vee C4

AD9 F13 BE3 F1 LAD17 P4 Vee C10

AD10 K14 BERLo M13 LAD1S N5 Vee M5

AD11 G12 BERL1 K12 LAD19 P3 Vee M11

AD12 G13 BOUT J12 LAD20 M6 Vee P1

AD13 H12 CACHE J3 LAD21 N4 Vee P14

AD14 K13 CHKo L13 LAD22 N3 VREF M12

AD15 H13 CHK1 M14 LAD23 N1 Vss A2

AD16 A4 CLK2 N11 LAD24 N2 Vss B1

AD17 B4 COM J13 LAD25 M2 Vss B13

AD18 B5 CR/DT/R F3 LAD26 K2 Vss B14

AD19 B6 CW/DEN E1 LAD27 K3 Vss C5

AD20 A5 HLDA M1 LAD2S K1 Vss C11

AD21 A6 HOLD L3 LAD29 J1 Vss D3

AD22 C6 IACo/ERR B2 LAD30 H1 Vss L12

AD23 B7 IAC1/FRF B3 LAD31 J2 Vss M4

AD24 C7 INITID C12 LERLo C3 Vss M10

AD25 A7 LADo N12 LERL1 A1 Vss N14

AD26 A9 LAD1 P12 LOCK G3 Vss P2

AD27 Be LAD2 N10 MODCHK L14 Vss P13

AD28 A10 LAD3 M9 PFETCH D2 WDo/UNC D1

AD29 C8 LAD4 P11 POPQUE A3 WD1/ECC C2

AD30 A8 LAD5 P10 READY H2 WIR G1

AD31 B10 LAD6 N9 RESET N13 WYo/COR E2

ADS L2 LAD7 P9 RPYDEF B12 WY1/MEM E3

3·306

M82965

Package Dimensions and Mounting

The MG82965 BXU is packaged in either a 132-lead
ceramic pin-grid array (PGA) or a 164-pin cap pack­
age. (Contact factory for details on cap availability.)
Pins in the PGA package are arranged 0.100 inch
(2.54 mm) center-to-center, in a 14 by 14 matrix,
three rows around. See Figure 19.

of terminals such as soldertail, surface mount, or
wire-wrap. Figure 20 shows several applicable sock­
ets.

Pac~(age Thermal Specification

A wide variety of available sockets allows low-inser­
tion or zero-insertion force mountings, and a choice

The M82965 BXU is specified for operation when its
case temperature is within the range of - 55°C to
+ 125°C. The PGA case temperature should be
measured at the center of the top surface opposite
the pins as shown in Figure 21.

2

3

4

5

6

7

~ ~

~ t:' "' -;;;- N en " en '" en
<0 0 ... !Xl ": en ...
"! !Xl '" !Xl ,.,; .0
.::::. e ~ ~ .::::. .::::. .::::.

O@@@@@@'I@@@@@@@
@@@@@@@@@@@@@@
@@@@ @ @@,@@@@@@@
@@@ @@@
@@@ @@@
@@@ I @@@

0 ...
<Xi
.::::.
'" N
":

@@@ . + @@@
8 -® @ ® -- - - @ @ ®
9

10

11

12

13

14

®@® @@@
@@@. @@@
@@@ @@@
@@@@ @ @@'@ @@ @ 0 @@
@@@@@ @@I@@@@@@@
@@@@@@@,@@@@@@@

C D E F G H J K L M N P Ii
.020 (0.508) .020 -
MIN TYP (0.508) •
• 070(1.777) DIA
TYP BRAZE PAD

1------ 1.450(36.802) ------~

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
o

SWEDGE PIN
STANDOFF
(4) PLACES

.057(1.269) -1
1
-

MAX TYP

.001 (0.025) R
MIN TYP

.018 (0.47) 1
D1A TYP - =::(*1j1.

'165(4'189~ CU
.110(2.792)

271082-20

Figure 19. A 132-Lead Pin-Grid Array (PGA) Used to Package the MG82965 BXU

3-307

intel®

• Low insertion force (lIF) soldertail
55274-1

• Amp tests indicate 50% reduction in in­
sertion force compared to machined
sockets

Other socket options

• Zero insertion force (ZIF) soldertail
55583-1

• Zero insertion force (ZIF) Burn-in version
55573-2

Amp Incorporated
(Harrisburg, PA 17105 U.S.A
Phone 717-564-0100)

M82965

Amp lIF Socket
55274-1

Amp lIF Socket

271082-21
Cam handle locks in low profile position when MG82965 is installed
(handle UP for'open and DOWN for closed positions).

Peel-A-Way' and Kapton Sock­
et Terminal Carriers
• Low insertion' force surface

mount CS132-37TG

• Low insertion force soldertail
CS132-0tTG

• Low insertion force wire-wrap
CS132-02TG (two-level)
CS132-03TG (three-level)

• low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street)
Warwick, RI 02818 U.S.A.
Phone 401-885-0485)

Peel-A-Way Carrier No. 132:
Kapton Carrier is KS132
Mylar Carrier is MS132

Molded Plastic Body KS 132 is
shown below:

FOOT PAINT NO. 132

.., J- .100np

14.14.3ROWS

271082-22

'Peel-A-Way is a trademark of Advanced Interconnections.

Courtesy Amp Incorporated

SOLDER TAIL.o1 LOW PROFILE·04 PRESS FIT-05

r l6 r I .. ,. m :iii

I--± . -l-
:iii .n .. " ~DI".

::itO
-'- tt~A ~~~

-:::.- =~'t:'
WlAE WRAP -021-03 SOLDER TAIL-33 SURFACE MOUNTING ·37

r
PEEL-A.-WAY

!~ :tii

1. ~. ij .• u

db ' :iii" 2LEVEL ~
~-03 .. "

--1 .100 3LEVEL ;'-11-~ D'A.

271082-23
Courtesy Advanced Interconnections

(Peel-A-Way Terminal Carriers
U.S .. Patent No. 4442938)

Figure 20. Several Socket Options for Mounting the M82965 BXU

3-308

M82965

MEASURE CASE TEMPERATURE
AT CENTER OF TOP SURFACE

271062-25

Figure 21. Measuring MG82965 Case Temperature

ELECTRICAL SPECIFICATIONS

Power and Grounding

The M82965 is implemented in CHMOS III technolo­
gy and has modest power requirements. Its high
clock frequency and numerous output buffers (ad­
dress/data, control, error, and arbitration signals)
can cause power surges as multiple output buffers
drive new signal levels simuitaneously. For clean on­
chip power distribution at high frequency, seven Vee
and thirteen Vss pins separately feed functional
units of the M82965.

Power and ground connections must be made to all
Vee and Vss pins of the M82965. On the circuit
board, all Vee pins must be strapped closely togeth­
er, preferably on a Vee plane. Likewise, all Vss pins
should be strapped together, preferably on a ground
plane.

Power Decoupling Recommendations

Liberal decoupling capacitance should be placed
near .the M82965. The BXU. when driving its two 32-

. bit address/data buses (AP-Bus and L-Bus) can'
cause transient power surges, particularly when driv­
ing large capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening
the board traces between the BXU and decoupling
capacitors as much as possible.

Connection Recommendations

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if
PFETCH or LERLo_1 are not used, they should be
pulled up and if the CACHE input is not used (Le.,
BXU operating in the Memory mode) it should be
tied low through a 10 kO resistor. No inputs should
ever be left floating.

All open-drain outputs require a pullup device. While
inmost cases a simple pullup resistor will be ade­
quate, a network of pullup and pulldown resistors
biased to a valid VIH (e.g., 3.5V) will limit noise and
AC power consumption, especially on the AP-Bus.

3-309

int:et M82965

ABSOLUTE MAXIMUM RATINGS*

Case Temperature
under Bias(1) - 55°C to + 125°C Case

Storage Temperature - 65'C to + 150'C .

Voltage on Any Pin -0.5V to Vee + 0.5V

Power Dissipation 2.5W

Operating Conditions
Symbol Description

Tc Case Temperature (Instant On)

Vcc Digital Supply Voltage

NOTICE: This data sheet contains informatio~ on
products in the sampling and initial production phases
of development. The specifications are subject to
change without notice. Verify with your local Intel
Sales office that you have the latest data sheet be­
fore finalizing a design.

* WARNING: Stressing the device beyond the "Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions"
may affect device reliability.

Min Max Units

-55 +125 'C

4.75 5.25 V

Table 14. D.C. Characteristics (Over Specified Operating Conditions)

Symbol Parameter Min Max Units Comments

VIL Input Low Voltage -0.3 +0.8 V

VILA Input Low Voltage: AP-Bus -0.5 +1.0 V

VIH Input High Voltage 2.0 Vec + 0.3 V

VIHA Input High Voltage: AP-Bus 2.0 Vcc V

VREF/C VREF Trip Point Cold Start Vcc - 0.7 V

VREF/W VREF Trip Point Warm Start 1.7 1.8 V

Vel CLK2 Input Low Voltage -0.3 +1.0 V

VeH CLK2 Input High Voltage 0.55 Vee Vcc V

VOL Output Low Voltage:
10l = 4 mA: LAD Lines 0.45 V
10l = 5 mA: Controls(2) 0.45 V
10l = 25 rnA: . L-Bus 0.45 V

Open-Drain
Outputs

10l = 80 mA: AP-Bus 0.70 V
Open-Drain
Outputs

VOH Output High Voltage:
10H = 1 mA: LAD. Lines 2.4 V
10H = 0.9 rnA: Controls(2) 2.4 V
IOH = 5.0 rnA: ALE 2.4 V

Icc Power Supply Current 450 rnA

III Input Leakage Current ±15 p,A OV:;; Vo:;; Vee

IlO Output Leakage Current ±15 p,A 0.45V :;; Vo :;; Vcc

CIN Input Capacitance 10 pF Note 1

Co I/O or Output Capacitance 12 pF Note 1

CClK Clock Capacitance 12 pF Note 1

NOTES:
1. Test frequency = 1 MHz, Tc = 25'C, unmeasured pins at GND.
2. "Controls" include all l-Bus 1/0 pins not otherwise specified.

3-310

M82965

A.C. SPECIFICATIONS

This section describes the A.G. specifications for the
M82965 pins. All input and output timings are speci­
fied relative to the 1.5V level of the rising edge of
GLK2, and refer to the time at which the signal
reaches (for output delay and input setup) or leaves
(for hold time) the TTL levels of LOW (O.8V) or HIGH
(2.0V).

All A.G. testing should be done with input voltages of
0.45V and 2.4V.

Maximum output hold times are the same as mini­
mum output delays. Tri-state signals have no resis­
tive load or termination.

The Output Delay specified for open-drain signals
includes both the low to high and high to low tran­
sitions. The float delay is the amount of time that the
pulldown transistor may remain active. This specifi­
cation is provided to help system designers calcu­
late propagation delay for terminations other than
the one used for testing.

3-311

inteL M82965

Table 15. M82965 A.C. Timing Specifications (Over Specified Operating Conditions)

Symbol Parameter Min Max Units Comments.

T1 Clock Period 31.25 125 ns VIN = 1.5V

T2 Clock Low Time 11 ns VIN = 10% Point = 1.2V

T3 Clock High Time 11 ns VIN = 90%Point = 0.1V + 0.5 Vcc

T4 Clock Fall Time 10 ns VIN = 90% Point to 10% Point

T5 Clock Rise Time 10 ns VIN = 10% Point to 90% Point

T6 Output Valid Delay:
LAD 4 35 ns CL = 100 pF
WY 4 35 ns CL = 125 pF
CW, WD, SS Busy 4 30 ns CL = 75 pF
CR 4 45 ns CL = 75 pF
Controls(1) 2 35 ns CL = 75 pF

T7 ALE Width 15 ns CL = 75 pF

T8 ALE Invalid Delay 20 ns CL = 75 pF

T9 Output Float Delay:
LAD 5 20 ns CL = 100 pF
WY 5 22 ns CL = 125 pF
Controls(1) 5 22 ns CL = 75 pF

TlO Input Setup Time:
LOCK, HOLD, HOLDAR,READY 8 ns 10% Point
ECC, UNC 15 ns 10% Point
Controls(1) 3 ns 10% Point

T11 Input Data Hold 10 ns 90% Point

T12 Setup to ALE Inactive 10 ns CL = 100 pF (LAD)
CL = 75 pF (Controls)

T13 Hold after ALE Inactive 8 ns CL = 100 pF (LAD)
'CL = 75 pF (Controls)

T14 RESET Hold 5 ns

T15 RESET Setup 8 ns

T16 RESET Width 1250 ns 40 CLK2 Periods Minimum

T17 Clock to Data Valid 17 ns CL = 50 pF
(AP-Bus) 10L = 50 mA

T18 Clock to High 14 ns
Impedance (AP-Bus)

T19 Output Hold 5 ns CL = 50 pF
(AP-Bus) 10L = 50 mA

T20 Input Setup (AP-Bus) 7 ns

T21 Input Hold (AP-Bus) 10 ns

NOTE:
1. "Controls" include all L-Bus I/O pins not otherwise specified.

3-312

EDGE

CLK2

OUTPUTS:
LAD31 -LADo·

READY, CR,
BAOAe. iAc':: l , iACo

Cw'WY1'WYO'

Wo1.WoO

LERL" LERLo

INPUTS:
LAD31 -LADo'
CACHE.W/R,

BE3-BEO'

LOCK,ADS

LERL,> LERlO

'NOTE:

M82965

HIGH LEVEL (MIN) o.SSVcc ---'-- ,.....------.

LOW LEVEL (MAX) 1.0V I
I
I

Ts 1+--+1

10%
I
I

'1
I ~I.----_.J

T4 1+--+1

Figure 22. CLK2 Timing

.'

T:' .. :t T9.r--~
XXXXXXXXXXIt-""~.~""~--~-VA-Ll-D ~--:~""'.~,;-,[~:XXXXXXXXXXXXXX

271082-26

xxxxxJxxx~xx~~.~:!.-~ __ VA_LID -j--...:~~~Wx
xxxxxxiiJ~~:~~~ _1 __ ----.,; ___ I_~~.~<:::.::I;t,..".x."..,..xx~x

T,O ---l--- T"

VALID ~AMP #1

271082-27

LERL signals must be asserted at both edges A2 and A3 in order for them to be recognized by the BXU.

Figure 23. Drive Levels and Measurement Points for A.C. Specifications.
L-Bus Timings for the BXU as a Bus Slave

3-313

EDGE

ClK2

OUTPUTS:
LAD31 - LADO'

ADS. BE3-BEO' DEN.

CACHE. HOlDR. FRF. COR. t.lEt.I.
W IR. lOCK. HlDA. HOlDR

"NOTE:

DT/R

INPUTS:
LAD31 -LADo'

READY. ERR.
ECC.UNC.

lOCK. HOLD.
HOlDAR

M82965

C D B C D

~~~~~~~~~~~~~--~--V-Al-ID-O-U-TP-U-T,----l-~:~,:~"j~ 
O,8~~ 

VALID OUTPUT 

LERL signals must be asserted at bot~ edges A2 and A3 in order for them to be recognized by the BXU. 

Figure 24. Drive Levels and Measurement Points for A.C. Specifications. 
L-Bus Timings for the BXU as a Bus Master 

3-314 

271082-28 



in"tol® M82965 -
T, 

I-T8~ T141--­

ALE ~ R,~~-----4~~~~~1 

ADS ~ -Trl 

~TI3- T14 r- - T91=. I- T13- T14 I- - T91--

W/R ~ ~'::; ~"""'::; f0.,~ ~ 
~T:l T9 ~ i-=. i-T61 

- T9r-
OT/R ~""" " " " " "-

~~ ~ " " """,,'1 ~ - T6 1 -T~ 
DEN ~ M ~, '(::/ 

271082-29 

Figure 25. Relative Timing for L-Bus Signals 

3-315 



intel® M82965 

EDGE A C o A C A 

CLK2 

BUS CYCLE 

OUTPUTS: 

S:~:=~~: .~~~~~~~~~~~~~~~~~~~~ ________ VA~L~ID ______ ~~ __ ~ ___ 

RPYDEF L ~ ±i 
~::::=~~ ~~~g::::;'''''''----V-A-Ll-D-----~--.T,;,:9;...18jJ~ ______ _ 

INPUTS: 
AD(3'-O)' 

SPEC(5_0)' 

RPYDEF 

CHK(3_0) 

ARB(3_0) 

'NOTE: 

~T17 I 
VALID 

SERL signals must be asserted at both edges A2 and A3 in order for them to be recognized by the SXU. 

CLK2 

CLK 

RESET 

OUTPUTS 

Figure 26. Relative Timing for AP-Bus Signals 

C C 

FIRST 

A2 BCDA3 

~-~ •• • --------+----+----+---1-

INIT PARAMETERS (BADAC. ~ 
iACo) MUST BE SETUP 8 CLOCKS 
PRIOR TO THIS CLK2 EDGE 

INIT PARAMETERS MUST BE HELD 
BEYOND THIS CLK2 EDGE 

L ALL COMPONENTS MUST 
AGREE ON THIS EDGE AS EDGE A3• 
NOT EDGE A2 

Figure 27. RESET Setup and HOLD Timing 

3-316 

271082-30 

271082-31 



M82965 

L-BUS DESIGN CONSIDERATIONS 

Input hold times can be disregarded by the designer 
whenever the input is removed because of a subse­
quent output from the BXU (e.g., DEN becomes 
deasserted). In other words, whenever the BXU gen­
erates an output that indicates a transition into a 
subsequent state, the BXU will have sampled any 
inputs for the previous state. 

As an example, in the recovery (Tr) cycle following a 
read, the minimum time (t6 Min) that DEN becomes 
asserted is specified to be less than the minimum 
hold time on the data (t11 Min). When DEN is assert­
ed, however, the data is guaranteed to have been 
sampled. 

Similarly, whenever the BXU generates an output 
that indicates a transition to a subsequent state, any 
outputs that are specified to be tri-stated in this new 
state will be tri-stated. 

For example, in the data (T d) cycle following an ad­
dress (T a) cycle for a read, the minimum output de­
lay (t6 Min) of DEN is specified to be less than the 
maximum float time of LAD (t9 Max). When DEN is 
asserted, however, the LAD outputs are guaranteed 
to have been tri-stated. 

AP-BUS SIGNAL TIMING 
CONSIDERATIONS 

The AP-Bus uses three-quarter cycle signaling for 
data transmission. Data is driven on edge 0 and 
sampled on edge C. This approach allows three­
quarters of the bus cycle to be used for data trans­
mission. 

The remaining (one-quarter) time allows for clock 
skew and signal hold time. All AP-Bus signals except 
for the ARB, CHK, and BERL signals use this timing. 
The relationship of the AP-Bus signals is shown in 
Figure 28. 

The CHK signals (interlaced parity) are delayed by 
one-half cycle or one phase to allow for generation 
of parity from the internal data that is being transmit­
ted. The CHK lines are sampled one phase after the 
data has been sampled and compared against the 
parity generated for the received data. 

Most input signals on the AP-Bus are sampled on 
the rising edge of CLK2 at edge C. The exceptions 
are the error signals CHK, BERL and ARB, which 
are sampled on the rising edge of CLK2 at edge A. 
Regardless of the edge, the setup and hold times 
are the same. 

All outputs on the AP-Bus are driven relative to the 
falling edge of CLK2 at the middle of phase 2, ex­
cept CHK, BERL and ARB, which transition on the 
falling edge of CLK2 at the middle of phase 1. 

When designing a system based on the AP-Bus, the 
system topology will be limited by the available prop­
agation time for signals in the system. The propaga­
tion time must allow for settling of ringing, ground 
shift, and crosstalk, all of which are dependent on 
board and system materials and design. 

The following equation gives the propagation time 
available, given a specific clock implementation and 
frequency: 

Where T skew is the worst case clock skew between 
BXUs (clock skew is the time delay between any two 
clocks in the system due to physical distribution lim­
its). 

In AP-Bus systems, this skew is defined as follows: 

L-Bus Waveforms 

Figures 30 through 36 illustrate the relationship of L­
Bus signals during a variety of bus transactions. For 
a detailed discussion of the operation of the L-Bus, 
consult the B0960MC Hardware Designer's Refer­
ence Manual. 

3-317 



intet 

ClK2 

AP- BUS 
ADDRESS/DATA 

CYCLE 

AP- BUS 
ARBITRATION 

CYCLE 

AP- BUS 
ERROR CYCLE 

ClK2 

ClK 

M82965 

Figure 28. AP-Bus Signal Timing 

Figure 29. System and Processor Clock Relationship 

3-318 

271082-32 

271082-33 



iVl82965 

To Td Tr 

ClK2 

ClK 

lAD31 -
lADo 

ALE 

ADS 

BE3-BEO 

W/R • DT/R 

DEN 

READY 

271082-34 

Figure 30. L-Bus Read Transaction 

3-319 



inteL M82965 

To Tw Td Tr 

ClK2 

ClK 

lAD31 -

lADo 

ALE 

ADS 

BE3-BEO 

W/R 

DT/R 

DEN 

READY 

271082-35 

Figure 31. L-Bus Write Transaction 

3-320 



intel· M82965 

To Td Td Td Tr 

ClK2 

ClK 

lAD31 -

lADo 

ALE 

ADS 

&3-&0 

W/R 

DT/R 

DEN 

READY 

271082-36 

Figure 32. L-Bus Burst Read Transaction 

3-321 



M82965 

To Tw Td Td Tr 

ClK2 

ClK 

LAD31 -

LADo 

ALE 

ADS 

BE3-BEO 

W/R 

DT/R 

DEN 

READY 

271082-37 

Figure 33. L-Bus Burst Write Transaction with One Wait State 

3-322 



M82965 

Th Th Th Th 

ClK2 

ClK 

HOlDR 

HOLD 

HlDA 

HlDAR 

271082-38 

PRIMARY SECONDARY 

HOLD~HOLDR 
L-______ HL_M~~LH_O_LD_AR ____ ~ 

DELAY OF 5 os MINIMUM 
IS REOUIRED 

271082-39 

Figure 34. Hold Timing 

3·323 



infel~ M82965 

I- PREVIOUS t INTERRUPT ~ IDLE -t:- INTERRUPT "j 
CYCLE . ACKNOWLEDGEMENT (5 BUS STATES) ACKNOWLEDGEMENT 

CYCLE 1 ." CYCLE 2 

.·T i· To Td T, . Tl TI TI TI TI To . Td Tw T, 

CLK 'V ~ J: ~ V' ~ V' V' V' ~ ~ V' V ~ '--

INTR -~ ~"-.'0 ~"-."-.~ 10..."-."-.~ ~"-."-.~ 0-."-."-.~ ,"""" ~"-.~ ~"-."-.'\: ~"-.~ ~"-."-.'\: ~"-.~ -0,."-."-.~ ~ 
,'::Z,,'\': "'-0::<.,, ~R}(DATA -- x..,."-.'0 ~"-."-."" 0-."-."-.'0 ~"-."-.~ 10..."-."-.~ -0,."-."-."" ~R~ --~O~"" - 0-.' 

\./ \.,," " ~""'" 0-.,,""" ~""'" ~"""" ~""'" 
0-., / ~ ~ 

'--- / '---V 
'\ / '\ / 

DT/R \~"-.~ 0-."-."-.'0 ~ ~ 10."-."-.~ ~"-."-.'\: 10."-."-.~ ~"-."-.~ ~"-."-.~ ~ ~ ~ 

r -'--- / \. 

\. / 

\. / 'V :--
271082-40 

Figure 35. Interrupt Acknowledge Transaction 

3-324 



inteJ® 

PBM BUS 
STATE 

SBM BUS 
STATE 

elK 

LAD.31-

LADO 

W/R 

P8M ALE 

S8M ALE 

S8M 
HOlDR 

PBM 
HOLD 

PBM 
HlDA 

S8M 
HlDAR 

J""' 

"~ 

.. ~ 

~W 

,~"",\ 

~ 

-~ 

J""' J""' V V 
~ 

~ )C ~ ~ 
~ ~ 

~"",\ ~"",\ ~"",\ 

~",,'\ ~""'\; ~/ 

\. / \. 

r--

/ 

M82965 

~ ~ ~ ~ ~ ~ 

Tr Thr Thr Thr Thr To 

V V V' V' V' V' 
~ ~ ~ ~ ~ ~ -
~ I::r ~ [;1 

~"",\ ~~/ "'" '\; ~"",\ 
~"",\ ~"",\ ~"",\ ~",,,,\:: ~~ ~'J 

V \. V\ V 
'-V 

~ ~ p 
r---

~ 
~ 

\. / 

V' '.J' 
-X DATA - X DATA -

~'W ~~ 

\. V\ 

J' 

~,,'\; 

\."",\: 

&""'''0 

~""''\:: 

/ 

\. 

I 
L-

T, 

T, 

V' 
~"",\ 

~,,"0 

~"",\:: 

~,,"0 

~ 

"---

I\-

10:' 

I'\: 

~ 

I'\: 

r-

r-

271082-41 

Figure 36. Bus Exchange Transaction (PBM = Primary Bus Master, SBM = Secondary Bus Master) 

3-325 





Memories and Peripherals 4 





85C960 
iai\iHCRON CHMOS 

80960 KaSIERllES BUS CONTROL ]LPlD 
D Burst Logic, Ready Control, and 

Address Decode Support for 80960 
KAlKB Embedded Controllers in Single 
Chip 

I!II Burst Logic Supports Both Standard 
and New Generation "Burst Mode" 
Memories and Peripherals 

E3 Ready/Timing Control Supports 0-15 
Wait States across 8 Address Ranges, 
Read/Write Accesses, Burst 
Transactions 

o 8 Dedicated Inputs Decoded into 8 
Latched Chip Selects (4 E}{ternal/ 
Internal; 4 Internal Only) 

'CHMOS is a patented technology of Intel Corporation. 

RESET/VPP VCC 

17 ADS# 

16 DEN# 

15 W/R# 

14 CSO# 

13 CS1# 

12 CS2# 

11 CS3# 

10 ADO 

BLAST# AD1 

RDY# AD2 

WCLK# AD3 

A3 A2 

GND CLK2 

290192-1 

# = Active Low Signals 

o Operates with 80960KA/KB at 20 MHz 
and 25 MHz 

EI Icc = 50 mA Max. 

EI UV Erasable (CerDIP) or OTpTM 

D 100% Generically Testable Logic Array 

EJ Based on Low Power CHMOS IIIE* 
Technology 

EI Available in 28-Pin 300-mil CerDIP and 
PDIP Packages and in 28-Pin PLCC 
Package 
(See Packaging Spec., Order Number #231369) 

a. 
a. 
> 
~ 

"" w 
(I) U (I) 

!!! ~ t:: w u 0 
De > c( 

14 

13 

12 

11 N85C960 
10 

BLAST# 

RDY# 

"" z 
W 
0 

25 W/R# 

CSO# 

CS1# 

CS2# 

CS3# 

ADO 

AD1 

290192-2 

Figure 1. Pinout Diagram. 

4-1 
August 1990 

Order Number: 290192'002 



intel~ 85C960 

GENERAL DESCRIPTION 

The Intel 85C960 is a single-chip burst/ready/de­
code ""PLD (Microcomputer Programmable Logic 
Device) designed to interface 80960 KAlKB embed­
ded controllers to system memory and I/O. The 
85C960 provides programmable chip selects, a pro­
grammable read/write access wait state/ready gen­
erator, and burst address (A2, A3) cycling. Burst 
transaction cycling of A2, A3, and WCLK# (Write 
Clock) is also supported for intelligent peripherals on 
the bus. 

For its programmable functions, the 85C960 uses 
advanced EPROM cells as logic array and wait-state 
table memory elements. Coupled with Intel's propri­
etary CHMOS IIIE technology, the result is a pro-

17 
16 
15 
14 
13 

12 
11 
10 

LE 

8 

W/R# 
ADO 
ADI 

grammable device able to support Intel's 32-bit 
80960 KAlKB embedded controllers at speeds up to 
25 MHz. 

ARCHITECTURE DESCRIPTION 

The 85C960 ""PLD integrates burst control, ready 
generation, and chip select decoding into a single 
device. Figure 2 shows the architecture of the 
85C960. Table 1 lists and describes each signal on 
the device. The 85C960 replaces 6-10 separate 
PLD/discrete logic devices in small- and medium­
sized 80960 systems. For medium- to large-sized 
systems, the 85C960 can be supplemented with an 
additional decoder, such as the 85C508, and a sec­
ond 85C960. Figure 3 'shows a single 85C960 in a 
typical application. 

CS4#-CS7# 
(INTERNAL) 

CSO# 
CS1# 
CS2# 

CS3# 

(OPEN DRAIN) 
t-...;..-..-~--1C:J1 RDY# 

t----------------oDBLAST# 
L_"T"""_J---------'---------C> WCLK# 

BUS STATE 
AD2 TRACKER 
AD3 

ADS# 
DEN# 

CLK2 

RESET 

~---------------~A3 
t----------------~A2 

r,;:)((}' PROGRAMMABLE RESOURCES 

290192-3 

Figure 2. 85C960 Block Diagram 

4-2 



A L-BUS 

~ LAD31-LADO DATA 
~ TRANSCEIVERS 

DT/R f----+ DIR 

DEN f---c G 

~ 
r--vI LAD31-LAD4 

ALE f---c CE ADDRESS 
LATCHES 

80960A/KB 
PROCESSOR Vee 

..,. 
~ 2- fl~: 8 ~ AD3-ADO 

~ 
17-10 

DEN 

ADS ADS 
85C960 
BURST/ 

READY RDY READY/ 
DECODE 

G~D 
CLK2 CLK2 

W/R W/R 

RESET RESET 

SYSTEM RESET ------

CLK2 FROM 
SYSTEM CLOCK 

DATA 

'l 

ADDRESS 

CSO 
MEMSELO 

CSl 
MEMSELl 

10SELO --< CS2 

CS3 
10SELl 

A2 

L A3 

WCLK 

BLAST 

TO I/O 
DEVICES 

W/R 

READY FROM 
OTHER SUBSYSTEMS 

~ 

1\ 

v 

. 7- • 7-

CS NON-BURST MODE 
MEMORY 

WE 

DE 

CS BURST MODE 
MEMORY 

BLAST 

i i i 
ADS CLK2 RESET 

290192-4 

""'. 

c( 
@ 

co 
01 
(') 
to 
en 
o 



int:eL 85C960 

Table 1. 85C960 Pin Descriptions 

Symbol Type Name and Function 

RESET I RESET. When RESET is high for a minimum of four CLK2 cycles, internal 
circuits are reset to a known state. 

17-10 I INPUT 7-INPUT O. These are the address range inputs to the 
programmable decode logic array .. 

CLK2 I SYSTEM CLOCK. This input, which connects to the 80960 CLK2 signal, 
provides the timing reference for all 85C960 operations. 

A03-AOO I ADDRESS IN 3-ADDRESS IN O. These inputs are driven by LAOO-LA03 
from the Local Bus (L-Bus) to provide addressing and burst access decode 
information. 

W/R# I WRITE/READ. Write/Read from controller. When low, indicates that the 
current access is a read. When high, indicates that the current access is a 
write. 

OEN# I DATA ENABLE. This input from the controller indicates that data is present 
on the L-Bus. 

AOS# I ADDRESS/DATA STROBE. This input from the 80960 indicates whether 
address or data information is currently on the L-Bus. When low, address 
information is changing. The 85C960 chip select timing is based in part on 
ADS # low during Ta states. 

BLAST # a BURST LAST. This signal, when low, indicates that the current read/write 
access is the last access in a burst transaction. BLAST# is not cycled if 
ROY # is generated off-chip. 

WCLK# a WRITE CLOCK. This output provides a write enable strobe to memories that 
do not support burst mode acces!). 

A3,A2 a ADDRESS OUT 3,2. These outputs cycle during burst transactions. 
Typically connected to lowest memory address signals. 

CS3#-CSO# a CHIP SELECT 3-CHIP SELECT O. Single p-term select outputs that are 
driven active (low) for the programmed address com~ition on 17 -10. 

ROY# 1/0 READY. ROY# is an active low, bidirectional, open·drain signal that should 
be connected to the controller's Ready input As an output, ROY # goes high 
to cause the controller to extend the current access. ROY # goes low to 
indicate that the data on the L-Bus bus may be sampled (read) or removed 
(write). ROY # is controlled by the 85C960 Ready Generation and Wait-State 
Logic. The open-drain output allows ROY # to be OR-tied to other circuitry 

. that may drive the controller's Ready input. As a bidirectional input, ROY # 
allows the 85C960 fo provide Ready timing and burst cycling for intelligent 
peripherals that do not generate these signals themselves. 

4-4 



85C960 

80960 L-Bus (Local Bus) cycles are monitored by 
the Bus State Tracker tq synchronize the functional 
blocks in the 85C960 to the L-Bus. CLK2 provides 
the timing reference for all 85C960 operations. 

Four external chip selects (CSO # -CS3 #) are gen­
erated by the programmable Chip Select Decoder_ 
These four signals provide decoded selects to mem­
ory and I/O devices and are routed to the program­
mable Wait-State Table so that the 85C960 can 
generate ROY # at the appropriate time. Four addi­
tional selects are decoded (internal only) and routed 
to the Wait-State Table so that the 85C960 can gen­
erate ROY # for up to four additional address 
ranges. 

The Ready Generation block generates ROY # to 
the controller under control of the Wait-State Table. 
Depending on the contents programmed into this ta­
ble and the current type of access, from 0-15 wait 
states can be introduced into each bus cycle. An 
independent wait state value can be chosen for 
each select and each access type. Four access 
types are possible: read first, read subsequent, write 
first, and write subsequent. 

The Burst Control and Address Counter blocks 
control burst transaction timing to memory and I/O. 
Note that the ROY # pin is sampled by the Burst 
Control block to allow the 85C960 to generate burst 
transaction timing for other bus peripherals. WCLK # 
provides a write enable strobe for memory and I/O 
that do not support burst mode. BLAST # informs 
burst-mode devices that the current access is the 
last one in a burst transaction. /\2 and A3 are cycled 
to select the address location for each access. 

fUNCTIONAL DESCRIPTION 

The following paragraphs provide a detailed descrip­
tion of each functional block in the 85C960 !J,PLD. 

Chip Select Decoder 

The Chip Select Decoder, shown in Figure 4, is a 
high speed, single p-term (product-term) latched de­
coder circuit with eight inputs (10-17) and eight 
latched outputs. Each output goes low when its as­
sociated product term is true. Four of these outputs 
(CSO#-CS3#) are available externally to be used 
as device selects. The remaining four outputs 
(CS4#-CS7#) are available internally so that the 
85C960 can provide ready and burst timing for four 
more device selects. (The actual selects for these 
four additional devices/resources must be generat-
ed by external logic.) -

The input to each latch is a single NAND p-term that 
can be connected to the dedicated inputs. The true 

4-5 

and complements of all inputs (17-10) are available 
to all eight NAND p-terms. 

Each intersecting point in the logic array is connect­
ed or not connected based on the value pro­
grammed in the EPROM array. Initially (EPROM 
erased state), no connections exist between any 
p-term and any input. Connections can be made by 
programming the appropriate EPROM cells. Since 
p-terms are implemented as NANOs, a true condi­
tion on a p-term drives the output low. Current con­
sumption is higher when both true- and complement 
p-terms for the same input are programmed. 

Selects are latched on the falling edge of an internal 
Latch Enable (LE), which is generated from ADS#, 
DEN #, and CLK2. The proper combination of these 
signals occurs during an 80960 address state (Ta). 
Figure 5 shows the relationship of the internal LE 
and external chip selects to the three signals at the 
end of a Ta state. All selects are cleared to an inac­
tive high state at the start of a recovery state. (Tr). 
All eight selects (four external and four internal) are 
routed to the Wait-State Table. -

Wait State Table 

Chip selects, WR (Write/Read), and SW (Subse­
quent Word) feed the Wait-State Table. Each chip 
select points to a set of four wait state values while 
WR and SW determine which of the four values to 
route to the Ready Generation block (see Figure 6). 
The four values are grouped into read and write 
groups with each group having a value for the first 
access and subsequent access (second through 
fourth). The four-bit wait-state value is sent to the 
Ready Generation block (via WSO#-WS3#) to be 
used as an initial count value. If two selects are ac­
tive, the resulting count value is the logical bit AND 
of the two individual values. If more than two selects 
are active and the individual count values are not the 
same, the resulting count value is indeterminate. If 
no select is active, no count value is loaded (and the 
Ready Generation circuit is disabled). 

Ready Generation 

ROY # is high at the start of each burst transaction. 
The ROY Generator begins to count down from the 
wait state value, decrementing the counter at the 
start of each wait state. When the internal counter 
reaches 0000, ROY # is pulled low (CLK2c during 
the data state). On the next CLK2c edge (for a wait 
state), ROY # is released, allowing an external resis­
tor to pull ROY # high. Figure 7 shows the timing for 
a four-word burst write transaction with 1 wait state 
for the first access and 0 wait states for the remain­
ing three accesses (Burst Write 1-0-0-0). 



int'et 85C960 

RDY # is an open-drain I/O pin, which must be con­
nected to pullup and pull down resistors as shown in 
Figure 8. During a wait-state access, ROY # is pulled 
high to cause the controller to extend the current 
access so that the memory or peripheral chip has 
time to present data to the bus (read), or sample 
data on the bus (write). ROY# is released on the 

• • • 
10 

11 

12 

• 
• 
• 

17 

CLK2 D----I 

ADS# D-----------<=I 

DEN# D------------I 

LE 

CLK2a edge of a Tr state. If a Read or Write access 
occurs without a chip select having been decoded 
on-chip, the ROY # output buffer is disabled and 
ROY # is sampled as an input. This allows the 
85C960 to cycle A2, A3, and WCLK # to provide 
burst transaction timing for other bus controllers. 
ROY # may be OR-tied with other bus controllers so 
they can access the processor Ready signal. 

CSO# 

CS1# 

CS2# 

CS3# 

290192-5 

Figure 4. 85C960 Chip Select Decoder Block 

4-6 



85C960 

CLK2 

ADS 

LE 
(INTERNAL) 

CH IP SELECT ACTIVE 
(BASED ON 10-17) 

Ta Tw 

290192-6 
Latch opens when CLK2 and DEN# go high and ADS# goes low. 
Latch closes when DEN# goes low or ADS# or CLK2 go high. 

Figure 5. Internal LE and EJcternal Chip Select Timing 

Burst Transactions 

AD3, AD2 are latched to indicate the starting ad­
dress of a burst transaction. The 85C960 places 
these. two signals out on A3 and A2, respectively, 
then cycles the two addresses upward until the last 
access of the burst. The 85C960 assumes that the 
processor handles splitting of the burst transaction 
when a 16-byte boundary is crossed. 

ADO and AD1 specify the size of the burst transfer in 
double-words as shown in Table 2. 

Table 2. ADO-AD1 vs Burst Size 

AD1 ADO 
No. of 

Words Transferred 

0 0 1 
0 1 2 
1 0 3 
1 1 4 

4-7 

WCU( #, BLAST # Generation 

WCLK # is the write enable signal for writing to non­
burst mode memories. When low, address outputs 
A2 and A3 are valid. Its trailing edge (Iow-to-high 
transition) can be used to latch data into non-burst 
mode memories. WCLK# is only provided during 
writes; during reads, WCLK # remains high. 

BLAST # indicates that the current access is the last 
access in a burst transaction. BLAST# is used by 
burst-mode memories to reset internal address 
counters. BLAST # is not cycled when ROY # is gen­
erated off-chip. 

POWER-ON CHARACTERISTICS 

85C960 inputs and outputs begin responding 1 p.s 
(max.) after Vcc power-up (VCC = 4.75V) or after a 
power-Ioss/power-up sequence. RESET must be 
synchronous to CLK2 and must be held high for a 
minimum of 4 clock cycles after Vec reaches 4.75 V. 
After 4 clock cycles, A2 and A3 are high, CSO #­
CS3# (and CS4#-CS7#), BLAST#, WCLK# are 
high, and the open drain RDY # signal is inactive. 



int:et 85C960 

Select 
Write/Read 

CSOf# WR = 0 WR = 1 
(Read) (Write) 

SW=O msb Isb msb Isb 
(First Word) 0000 0000 

SW=1 msb Isb msb Isb 
(Subsequent Word) 0011 0010 

msb = most significant bit 
Isb = least significant bit 

Figure 6. Example Wait-State Entries for CSOf# 

ERASURE CHARACTERISTICS 

Erasure time for the 85C960' is 20 minutes at 
12,000 p.Wsec/cm2 with a 2537A UV lamp. 

Erasure characteristics of the device are such that 
erasure begins to occur upon exposure to light with 
wavelengths shorter than approximately 4000A. It 
should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000A-
4000A range. Data shows that constant exposure to 
room level fluorescent lighting could erase the typi­
cal 85C960 in approximately two years, while it 
would take approximately. two weeks to erase the 
device when exposed to direct sunlight. If the device 
is to be exposed to these lighting conditions for ex­
tended periods of time, conductive opaque labels 
should be placed over the device window to prevent 
unintentional erasur.e. 

The recommended erasure procedure for the 
85C960 is exposure to shortwave ultraviolet light 
with a wavelength of 2537 A. The integrated dose 
(I.e., UV intensity x exposure time) for erasure 
should be a minimum of fifteen (15) Wsec/cm2. The 
erasure time with this dosage is approximately 20 
minutes using an ultraviolet lamp with a 12,000 p.W/ 
cm2 power rating. The device should be placed with­
in 1 inch of the lamp tubes during exposure. The 
maximum integrated dose the 85C960 can be ex­
posed to without damage is 7258 Wsec/cm2 (1 
week at 12,000 p.W/cm2). Exposure to high in'tensity 
UV light for longer periods may cause permanent 
damage to the. device. 

LATCH-UP IMMUNITY 

All of the input, output, and clock pins of the device 
have been designed to resist latch-up which is inher-. 
ent in inferior CMOS processes. The 85C960 is de­

. signed with Intel's proprietary 1-micron' CHMOS 
EPROM process. Thus, each of the pins will not ex-

4-8 

perience latch-up with currents up to ± 100 mA and 
voltages ranging from -0.5V to (Vee + 0.5V). The 
programming pin is designed to resist latch-up to the 
13.5V max. device limit. 

DESIGN RECOMMENDATIONS 

For proper operation, it is recommended that all in­
put and output pins be constrained to the voltage 
range GND :::; (VIN or VOUT) :s; Vee. All unused in­
puts should be tied high or low to minimize power \ 
consumption (do not leave them floating). Unused 
outputs may be left floating. A high-speed ceramic 
decoupling capacitor of at least 0.2 p.F must be con­
nected directly between the Vee and GNDpin. 

As with all CMOS devices, ESD handling procedures 
should be used with the 85C960 to prevent-damage 
to the device during programming, assembly, and 
test. 

FUNCTIONAL TESTING 

Since the programmable sections of the 85C960 are 
controlled by EPROM elements, the device is com­
pletely testable during the manufacturing process. 
Each programmable EPROM bit controlling the in­
ternal logic is tested using .application independent 
test patterns. EF?ROM cells in the device are 100% 
tested for programming and erasure. After testing, 
the devices are erased before shipments to the cus­
tomers. No post-programming tests of the EPROM 
array are required. 

The testability and reliability of EPROM-based pro­
grammable logic devices is an important feature 
over similar devices based on fuse technology. 
Fuse-based programmable logic devices require a 
user to perform post-programming tests to insure 
device functionality. During the manufacturing pro­
cess, tests on fuse-based parts can only be per­
formed in very restricted ways in order to avoid pre­
programming the array. 



85C960 

To Tw Td Td Td Td Tr 

CLK2 ~ ~ ~ ~ ~ ~ ~ 
ADS 1\ / / 

\. ;--

ADO-AD3 =:::x 
X ~ "-r---" 

10-17 

W/R --.I \. 

CSO-CS3 \. \. / 

,,----- --------- X x X. ______ , 
~ 

, A2,A3 

I ~ ~ ~ 
ROY / 

\. / 

290192-7 

Figure 7. Burst Write Transaction (1-0-0-0) 

4-9 



intel® 85C960 

Q vee 

85C960 I 
OPEN-DRAIN ,1--0--. 

OUTPUT 

IOL = 28.8 rnA 
VOH = 3.DV 

150.n 

220.n 

290192-8 

Figure S. ROY # Pullup/Pulidown Resistors 

IN-CIRCUIT RECONFIGURATION 

The 85C960 allows in-circuit configuration changes 
after the device has powered up. At power-up, the 
device is configured according to the information 
programmed into the EPROM cells. After power-up, 
new information can be shifted in on select pins to 
alter device configuration. The new configuration is 
retained until the device is powered down or until the 
information is overwritten by another configuration 
change. 

ORDERING INFORMATION 

Note that in-circuit configuration changes allow "on­
the-fly" changes .to be made, but do not alter 
EPROM cell data. At the next power-up, the device 
will be configured according to the original data pro­
grammed into the EPROM cells. In-circuit reconfigu­
ration requires additional circuitry external to the 
85C960. For details on in-circuit configuration 
changes, refer to AP-337, In-9ircuit Reconfiguration 
of 85C960 and 85C508 pPLDs, order number 
292072. 

DESIGN SOFTWARE 

Software support is provided by version 2.1 (or later) 
of iPLS II (Intel Programmable Logic Software II). 
Programming is supported on the iUP-PC PC-based 
programmer or iUP-200Al201A Universal Program­
mer via the GUPI base module and the GUPI 
85EPLD28 programming adaptor. 

For detailed information on iPLS II, refer to the 
iPLDS II Data Sheet, order number: 290134. The 
tools section of the Programmable Logic handbook 
contains a complete listing of all design tools for In­
tel EPLDs. 

S0960KA/KB 
J.LPLO Order Code Package Operating Range 

Clock Frequency 

* D85C960-20 CERDIP 
20 MHz Commercial 

N85C960-20 PLCC 

*D85C960-25 CERDIP 
25 MHz Commercial 

N85C960-25 PLCC 

'Only wmdowed CERDIP allows UV-erase. 

4-10 



85C960 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage (V ecl(1) .......... - 2.0V to + 7.0V 

Programming Supply 
Voltage (Vpp)(1) .............. - 2.0V to + 13.5V 

D.C. Input Voltage (VI)(1, 2) ... -0.5V to Vee + 0.5V 

Storage Temperature (T stg) ..... - 65°C to + 150°C 

Ambient Temperature (T A)(3) ..... -10°C to + 85°C 

NOTES: 
1. Voltages with respect to GND. 
2. Minimum D.C. input is -0.5V. During transitions, the in­
puts may undershoot to -2.0V or overshoot to +7.0V for 
periods of less than 20 ns under no load conditions. 
3. Under bias. Extended Temperature versions are also 
available. 

NOTICE: This is a production data sheet. The specifi­
cations are subject to change without notice. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

RECOMMENDED OPERATING CONDITIONS 
Symbol Parameter Min Mal( Units 

Vee Supply Voltage 4.75 5.25 V 

VIN Input Voltage 0 Vee V 

Va Output Voltage 0 Vee V 

TA Operating Temperature 0 +70 °C 

4-11 



85C960 

D.C. CHARACTERISTICS (T A = O·C to + 70·C, Vee = 5.0V ± 5%) 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIH1(4) High Level Input Voltage 2.0 Vee + O.S V 
(All Inputs except for 
ADS #, ADO-ADS, DEN #, 
andW/R#) 

VIH2(4) High Level Input Voltage 2.2 V 
for ADS #, ADO-ADS, 
DEN#, and W/R# -

VIL(4) Low Level Input Voltage -O.S 0.8 V 

VOH High Level Output Voltage 2.4 V 10H = -4.0 mA D.C., 
Vee = Min. 

Vou Low Level Output Voltage 0.4 . V IOL = 4.0 mA D.C., Vee = Min., 
CL = SO pF 

VOL2 Low Level Output Voltage 0.45 V 10L = 24 mA D.C., Vee = Min., 
for A2, AS CL = 60 pF 

VOL3 Low Level Output Voltage 0.5 V 10L = SO mA D.C., Vee = Min., 
for Open Drain (RDY #) CL = SO pF 

II Input Leakage Current ±10 p,A Vee = Max., 
GND :;:; VIN :;:; Vee 

loz Output Leakage Current ±10 p,A Vee = Max., 
GND :;:; VOUT :;:; Vee 

ISc!5) Output Short Circuit Current ,-SO -90 mA Vee = Max., VOUT = 0.5V 

Icc Power Supply Current 10 50 mA Vee = Max., VIN = Vee or GND, 
No Load, CLK2 =50 MHz 

NOTES: 
4. Absolute values with respect to device GND; all over and undershoots due to system or tester noise are included. 
5. Not more than 1 output should be tested at a time. Duration of that test should not exceed 1 second. 

A.C. TESTING LOAD CIRCUIT (RDY#) 

02 
ou~~~~ O-...... ---fIIIlI--.... --IM--o vee 

290192-9 

See D.C. Characteristics Table for Current and Capaci­
tance Specifications. 
D1 and D2 are matched. 

4-12 

A.C. TESTING LOAD CIRCUIT 
(ALL OUTPUTS EXCEPT RDY#) 

Vee 

290192-18 
See D.C. Characteristics Table for Current and Capaci­
tance Specifications. 
D1 and D2 are matched 
D3 and D4 are matched 



85C960 

A.C. TESTING WAVEFORM-SYNCHRONOUS INPUTS AND OUTPUTS 

3.0 

CLK2 los; 1-- TEST POINTS - 1.5V 

0.45 

2.4 =>< INPUT (SETUP 2.0> <2.0 K TEST OINTS 
AND HOLD) O.B O.B 

0.4 

OUTPUTS ~:>m''''~' 
290192-10 

A.C. Testing: Inputs are driven at 2AV for a Logic "1" and OAV for a Logic "0". CLK2 is driven at 3.0V for a Logic "1" 
and OA5V for a Logic "0". Timing Measurements made relative to CLK2 are made from 1.5V on CLK2. Inputs and 
outputs are measured at 2.0V for a high and O.BV for a low. Device input rise and fall times are less than 3 ns. 

A.C. TESTING WAVEFORM-ASYNCHRONOUS INPUTS AND OUTPUTS 

2.4 

X 2.0> 
INPUTS TEST POINTS 

O.B 
0.4 

)< 2.0> 
OUTPUTS TEST POINTS 

0.8 

290192-11 
A.C. Testing: Inputs are driven at 2AV for a Logic "1" and OAV for a Logic "0". Input timing is measured at 1.5V for 
high:to·low and low·to·high transitions. Outputs are measured at 2.0V for a high and O.BV for a low. Device input rise and 
fall times are less than 3 ns. 

4-13 



85C960 

A.C. CHARACTERISTICS (TA = O°Cto + 70°C, VCC =5.0V ±5%) 

85C960-25 85C960-20 
Symbol Parameter Units 

Min Max Min Max 

11(6) Input Setup to CLK2a 12 15 ns 

12(6) Input Hold from CLK2a 2 2 ns 

t3 CLK2a to A2, A3 Valid Delay 0 8 0 10 ns 

t4 CLK2c to ROY # Output Low Delay 10 15 ns 

t5(7) CLK2c to RDY# Output High Delay 10 15 ns 

t6 CLK2a to CSO#-CS3# High Delay 5 40 5 50 ns 

t7 CLK2a to BLAST # Low Delay 20 20 ns 

t8 CLK2a to BLAST # High Delay 5 5 ns 

t9(8) CLK2b to WCLK # Low Delay 0 10 0 12 ns 

tlO(8) CLK2d to WCLK # High Delay 0 10 0 12 ns 

t11 (9) ADS# Low to CSO#-CS3# Low Delay 10 12 ns 

t12(9) CLK2c to CSO # -CS3 # Low Delay 12 15 ns 

t13(10) 10-17 Setup to CLK2a 5 7 ns 

t14(10) 10-17 Hold from CLK2a 2 2 ns 

115(11) 10-17 Valid to CSO#-CS3#Valid Delay-(tPD) 10 12 ns 

t16 ROY # Input Setup to CLK2d (Write) 7.5 10 ns 

t17 ROY # Input Setup to CLK2a (Read) 9 9 ns 

t18 ROY # Input Hold after CLK2a (Read/Write) 5 10 ns 

t19(12) RESET High Setup to CLK2 i 0 0 ns 

t20(13) RESET High Hold from CLK2 i 3 3 ns 

t21 (12) RESET Low Setup to CLK2a 5 5 ns 

NOTES: 
6. Applies to ADS#, DEN#, W/R#, and ADO-AD3. DEN# is high during· the entire Ta state in 80960 KAlKB systems. 
7. ROY # is an open-drain output. Specified time includes ROY # output float delay and pull-up/pull-down resistors 
(Figure 8). ROY # remains low for a minimum of 10 ns at the start of a Tr state and goes high by CLK2a of the next Tx state. 
8. Minimum WCLK # pulse width is one clock period minus 3 ns. For example, at 25 MHz: 20 ns - 3 ns· = a 17 ns minimum 
WCLK # pulse. 
9. Chip Select Decoder latches are transparent flow-through types. Latches open when ADS# is low, DEN # is high, and 
CLK2 goes high during the middle of a Tx state (CLK2c). Since DEN # is high during the entire Ta state in 80960 KAlKB 
systems, only CLK2c and ADS# are specified. . 
10. Chip Select Decoder latches are transparent flow-through types. Latches close when ADS# is high or DEN# is low, or 
when CLK2 goes high at the start of a Tx state (CLK2a) after the latches have opened. Since ADS # is low and DEN # is 
high at the end of a Ta in 80960 KAlKB systems, setup and hold times are specified with reference to CLK2a only. 
11. Propagation delay while. latches are open (transparent); one output switching (high-to-Iow). 
12. RESET must be held high for a minimum of 4 CLK2 cycles (80960 specifies 41 CLK2 cycles minimum). 
13. RESET must hold after the low-to-high transition immediately prior to CLK2a. CLK2a is defined as the first low-to-high 
transition after RESET goes low. 

4-14 



85C960 

CLK2 EDGES 

CLK2 

NOTE: 
Minimum CLK2 high and low times are 8 ns measured from 1.5V to 1.5V. 

CAPACITANCE (TA = O·Ctc +70·C;Vcc = 5.0V ± 5%) 

Symbol Parameter Min Typ Max 

CIN Input Capacitance 6 10 

COUT Output Capacitance 6 10 

CCLK CLK2 Capacitance 6 10 

Cvpp Vpp Pin Capacitance 10 25 

CRDY ROY # Capacitance 6 10 

4-15 

Unit 

pF 

pF 

pF 

pF 

pF 

290192-12 

Conditions 

VIN = OV, f = 1.0 MHz 

VOUT = OV, f = 1.0 MHz 

VIN = OV, f = 1.0 MHz 

Vpp on Pin 1 (RESET) 

VOUT = OV, f = 1.0 MHZ 

• HI 



.• Tw 

CLK2 

ADS ~ ~ / 

- 0-
DEN \. 

0J .1 0 
ADO-AD3 X X 

! 
10-17 

0) 

X ~ - r--
r- 0 -

W/R W 
CSO-CS3 \. \. -01-

A2.A3 '\. 

WCLK \. 

RDY 

BLAST 

4 Word Burst Write with 1 Wait State on Each Access 
ROY # is Generated by the 85C960 

(Same Timing for Read Cycle, Except WCLK # Remains High) 
Td Tw Td Tw Td Tw 

~~ ~'"'-.J 'V'u ~ 'V'u ~ 

~ 

' .. ' 

.- C0 ---- ---- X X '-- - - - --

;-1\ r ;--"\ ;-:--\ 
0- - t..® 

\. 
-

/ \. / -

Td 

'V'u 

-

-------. 

J 

"-o -
\. 

Tr 

~ 
/ 

.~ 
/ 

~/ 

~ C@ 
/ 

290192-13 

_. 
c( 
• 

CI) 
U1 o 
co 
0) 
o 



85C960 

WCLK# TIMING 

I Tx 
a b d' 

CLK2 

WCLK 

290192-14 

10-17 AND CSO#-CS3# TIMING 

Ta Tw/Td 

CLK2 

ADS 

DEN II 
@ 

ADO-AD3 

CSO-CS3 

290192-15 

NOTE: 
CLK2, ADS #, and DEN # generate ,internal latch enable, See Figure 7 f~r details. 

4·17 



int:et 

CLK2 

85C960 

3 Word Burst with 0 Wait States on Each Access 
ROY # is Generated Externally 

(WCLK# is Only Generated During Burst Write Transactions) 
Ta Td' Td Td Tr 

W!R PJErr-r-iT--i--i--';\I]_ 

A2,A3 

RESET INPUT TIMING 

a 

CLK2 

, RESET I,-~----------... ------------~I 
-~--'I 

1-__ 4 CLK2 CYCLES -------1 
(MINIMUM) 

4-18 

290192-16 

290192-17 



27960CX 
PIPEl~NtED BURST ACCESS 1M (128K x 8) CHMOS EPROM 

9 Synchronous 4 Byte Data Burst Access Ed Pipelined Addressing for. Optimal Bus 

I:J No Glue Interface to 80960CA Bandwidth on B0960CA 
- Next Addressing Overlaps Last Data 

L'l'I High Performance Clock to Data Out Byte 
- Zero Wait State Data to Data Burst 
- Up to 33 MHz B0960CA Performance III CHIVIOS III-E for High Performance and 

Low Power 
I1lI Asynch Microcontroller Reset Function - 125 mA Active, 30 _ mA Standby 

- Returns to Known State with High-Z - TTL Compatible Inputs 
Outputs 

II] 1 Mbit Density Configures as 12BK x B 

Intel's 27960CX is a 5V only, '1,048,576 bit, Erasable Programmable Read Only Memory, organized as 128K 
words of 8 bits. 

The 27960CX provides a no glue synchronous burst interface to the 80960CA bus. Internally the 27960CX is 
organized in 4 byte blocks, in which each byte is accessed sequentially. The internal state machine is factory 
configured to generate either 1 or 2 wait-states between the address and first data byte. High performance 
outputs provide zero wait-state-data to data accesses at clock frequencies up to 33 MHz. 

Pipelining capability allows addresses to overlap previous data, further optimizing bus bandwidth in 80960CA 
applications. An asynchronous microcontroller RESET feature puts the outputs in the high impedance state 
and takes the internal state machine to a known state where a new burst access can begin. 

The 27960CX is available in 44-lead PLCC package, providing optimum cost effectiveness. 

The 27960CX is manufactured on Intel's 1 micron CHMOS III-E technology. The Quick-Pulse ProgrammingTM 
algorithm provides fast, reliable programming with throughput under 17 seconds for optimized equipment. 

'CHMOS is a Patented Process of Intel Corporation. 

A L 

Ao-A I6 0 A 
0 T 
R C 
E H 
5 E 
5 5 

5 M 
T A 
A C 
T H 
E I 

CLK N 
E 

cs 

Figure 1. 27960CX Burst EPROM Block Diagram 

4-19 

290236-t 

September 1991 
Order Number: 290236-006 

.. 



intel® 27960CX 

27960CX BURST EPROM 

EPROMs are established as the preferred code stor­
age device in embedded applications. The non-vola­
tile, flexible, reliable, cost effective EPROM makes a 
product easier to design, manufacture and service. 
Until recently, however, EPROMs could not match 
the performance needs of high-end systems. The 
27960CX was designed to support the 80960CA em­
bedded processor. It utilizes the burst interface to 
offer near zero wait-state performance without the 
high cost normally associated with this performance. 

In embedded designs, board space and cost must 
be kept at a minimum without impacting perform­
ance and reliability. The 27960CX removes the need 
for expensive high-speed shadow RAM backed up 
by slow EPROM or ROM for non-volatile code stor­
age. Code optimization concerns are reduced with 
"off-chip" code fetches no longer crippling to sys­
tem performance. FONTs can be run directly out of 
these EPROMs at the same performance as high­
speed DRAMs. With the 27960CX, the EPROM is 
the ideal code or FONT storage device for your 
80960CA system. . 

'CERQUAD is available in a socket only version. 

ADDRESS 

DATA 

< 'I 

ADS 

BLAST 

RESET 

ClK 

PGM 

17 

8 

Architecture 

The 27960CX provides a no-glue, synchronous burst 
interface to the 80960CA's bus. It operates in pipe­
lined or non-pipelined modes. Internally, the 
27960CX is organized in 4 byte blocks which are 
accessed sequentially. A burst access begins on the 
first clock pulse after ADS and CS are asserted. The 
address·of the 4 byte block is latched on the rising 
edge of clock following ADS. After a preset number 
of wait-states (1 or 2), data is output one byte at a 
time on each subsequent clock cycle. A burst ac­
cess is terminated on the rising edge of clock with 
BLAST asserted. High performance outputs provide 
zero wait-state data to data accesses at clock fre­
quencies up to 33 MHz. Extra power and ground 
pins dedicated to the outputs reduce the effects of 
fast output switching on device performance. 

The pipelining capability of the 27960CX allows the 
address to overlap the last data byte of the burst, 
further optimizing bus band width in 80960CA appli­
cations. In the pipe lined mode, with a non-buffered 
interface, the 27960CX delivers 4 bytes of data in 
6 clock cycles at 33 MHz. In a 32-bit configuration, 

. this translates into a read bandwidth of 88 Mbytes/ 
sec. Performance capability of the 27960CX in dif­
ferent 80960CA systems is given in Table I. 

~ 
-" 
~ 

27960CX 
BURST 
EPROM 

128K x 8 

290236-2 

Figure 2. 27960CX Burst EPROM Signal Set 

4-20 



intel~ 27960CX ~OO~!LO~O[f{]~OOW 

Table 1. Performance Capability 

33 MHz 2WS Non-Buffered: 4 Words/6 Clock Cycles - 88 Mbytes/Sec 

AOOR Aoo WS WS AOl WS WS A02 WS 
DATA 000 001 002 003 010 011 D12 013 
PCLK C1 C2 C3 C4 C5 C6 C7 Cl C2 C3 C4 C5 C6 Cl 

25 MHz 2WS Buffered: 4 Words/6 Clock Cycles - 66 Mbytes/Sec 

AOOR Aoo WS WS AOl WS WS A02 WS 
DATA 000 001 002 003 010 011 D12 013 
PCLK Cl C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 Cl 

16 MHz 1 WS Buffered: 4 Words/5 Clock Cycles - 51 Mbytes/Sec 

AOOR Aoo WS AOl WS A02 WS 
DATA 000 001 002 003 010 011 0 12 013 
PCLK Cl C2 C3 C4 C5 C6 Cl C2 C3 C4 C5 C1 

Os 

VSS2 

AlB 

A1s II 
VCC1 ~4 

05 

04 11 
N27960CX ~3 

44 LEAD PLCC ~2 
VSS3 ~1 

03 13 0.650" x 0.650" ~o 
TOP VIEW 

O2 Ag 

VSS4 31 As 

VCC2 A7 

°1 As 

290236-3 

Figure 3. 27960CX 44 Lead PLCC Pinout 

4-21 



27960CX 

PIN DESCRIPTIONS 
Symbol Pin Function 

Ao-A16 23-39 ADDRESS INPUTS: During a burst operation, A2-A16 provides the 
base address pointing to a block of four consective bytes. Ao and Al 
select the first byte of the burst access. The 27960CX latches 
addresses in the first clock cycle. An internal address generator 
increments addresses Ao and Al for subsequent bytes of the burst. 

00-0 7 18,17,14, DATAINPUTS/OUTPUTS 
13,11,10, 

7,6 

ADS 42 ADDRESS STROBE: Indicates the start of a new bus access. ADS is 
active low in the first clock cycle of a bus access. , 

CS 3 CHIP SELECT: Master device enable. When asserted (active low) 
data can be written to and read from the device. In 'read mode, CS 
enables the state machine and the I/O circuitry. 

NOTE: 
1. The address decode path is independent of CS, i.e., X and Y 
decoding is always powered up. 
2. For programming, CS should remain low for the entire cycle. 
Program and verify functions are done one byte at a time. 
3. CS going high does not terminate a concurrent burst cycle. 

BLAST 1 BURST LAST: Terminates a concurrent burst data cycle at the rising 
edge of the ClK. It must be asserted byth,e fourth data byte. 

RESET 22 RESET: Resets the state machine into a known state, tri:states the 
outputs. RESET must be asserted for a l)1inimum of 1 0 clock cycles. At 
least 5 clock cycles are reguired after deassertion of RESET before 
beginning the next cycle. RESET will abort a concurrent bus cycle. 

PGM 43 PROGRAM-PULSE CONTROL INPUT , 

Vpp 2 PROGRAMMING POWER SUPPLY 

Vss 5,8,12, GROUND 
15,19,21 

Vee 9,16,20,44 SUPPLY VOLTAGE INPUT 

4·22 



27960C}( 

iNTERFACIE EXAMPLIE 

Overview 

This example illustrates 8-, 16- and 32-bit wide 
27960CX interfaces to the 80960CA. The designs 
offer a simple "no-glue" interface. 

A non-buffered 27960CX system organized as 256K 
x 32 is shown in Figure 4A. Since the 27960CX is 
capable of driving a 80 pF load, large, non-buffered 
systems can be implemented by stacking up to 2 
banks of 4 EPROMs, resulting in a 256K x 32 memo­
ry subsystem. The input capacitive load seen 

r---
CS2 

DEC .....- CS, 

"--

rcsL-
CS , 
27960CX I--

128K I--
ADDRESS 

x 
8 

B0960CA l-

A DATA t 
'I 

CS 

on the address lines (due to the EPROM only) is 
24 pF for a 128K x 32 system and 48 pF for a 256K x 
32 system. The EPROM is specified at 6 pF for input 
capacitance (15 pF max) and 12 pF typical for out­
put capacitance. Larger systems can be implement­
ed with buffers (Figure 48). 

Chip Select Logic 

High order address lines are decoded to provide CS. 
Qualification with other signals is not required. The 
chip select logic can be implemented with standard 
asynchronous decoders, PAL's or PLO's (like Intel's 
85C508). 

n"-CS nt- ~"-CS 

CS CS 
27960CX f- 27960CX f- 27960CX 

128K I-- 128K f- 128K 
x x x 
8 8 8 

t-- l- I-

J 1 1 
290236-4 

Figure 4A. 256K l( 32 Non-Buffered Burst EPROM Memory System 

r--- CS N 

DEC CS 2 

CS, 

"--
~--~ ~--~ ~~s~ ~~--CS CS CS 

ADDRESS -- cs~ -'-- _I.-

DRIVER CS CS CS 
...-- CS CS cs cs ., I----..A 27960CX 27960CX 27960CX 27960CX 

ADDRESS ~ r-----v 128K 128K 128K 128K 
x x x 

f0-
x 

fo-L-- 8 8 8 8 
B0960CA !-- I-- I-- I--

r--- t r 1 J DATA A 

XCVR I\r 
I.....-

290236-5 

Figure 4B. Buffered Burst EPROM Memory System 

4-23 

.. 



inlet 27960CX 

Schematics 

Figure 5 shows a non-buffered, 128K x 32 27960CX 
EPROM system. 

Chip select logic, the only external logic that is re­
quired for this interface, can be derived from the 
global system chip select circuitry. 

In a non-buffered, 16-bit system (Figure 6A) BE1 
and A2 connect to the lower order address bits of 
the 27960CX. BE1 connects to Ao of both EPROMs, 
while A2 connects to both A1'S. 

In a non-buffered, 8~bit system (Figure 6B) SEO and 
BE1 connect to Ao and A1 respectively. 

DECODER I-c_S __ ------_------..---'-'----.., 
(85C508) 

ADDRESS A2-A'8 CS CS CS 
AD-A16 AD-A16 AD-A16 

17 
27960CX 

ADS 
ADS 128Kx8 

27960CX 27960CX 

ADS 128Kx8 ADS l28Kx8 
PClK 

ClK ClK ClK 
BLAST 

80960CA BLAST BLAST BLAST 

DATA 

32 

290236-6 

Figure 5. 128K x 32 27960CX Burst EPROM System 

-
DECODER CS - (85C508) 

ADDRESS A3-A 17 1\ CS ---A cs 
/ A2-A16 ---v A2-A16 
15 I' 

-
ADS 

ADS ADS 
PClK 

27960CX 27960CX 

ClK l28K x 8 ClK l28K x 8 
BLAST -- --

80960CA BLAST BLAST 
A2 

Al Al 
BEl 

Ao Ao 

A DATA 
~O-D7 ~8-D15 

/ "-
'I 16 

, 
290236-7 

Figure 6A. 27960CX Burst EPROM in a 16-Bit System 

4-24 



27960CX 

-
DECODER CS 

r- (85C508) 

ADDRESS A2-A'6 ~ CS 

15 V 
A2-A'6 

ADS -
ADS 27960CX 

PClK 12BK x B ClK 
BLAST 

BLAST B0960CA 
BEl 

BEO 
A, 

Ao 

DATA 
lto- D7 

l\r " B / 

290236-8 

Figure 6B. 27960CX Burst EPROM in a a·Bit System 

Waveforms 

Figure 7 shows the timing waveforms of a 27960CX 
pipelined read in a 32-bit system. 

CS Setup Time 

CS setup time is the time between CS being assert­
ed and the first ClK rising edge (during the address 
cycle). Since a memory access begins on the first 
ClK rising edge after ADS and CS are asserted, a 
minimum CS setup time of 7 ns (tSVCH) at 33 MHz is 

4-25 

required. With the 80960CA's maximum valid ad­
dress delay of 14 ns at 33 MHz, 9 ns remains for CS 
decoding logic. 

Bootup 

The wait state configuration (1 or 2), of the 27960CX 
is programmed by the user into the 80960CA Region 
Table parameters of NRAD, NRDD, and NXDA. 
NRDD is always 0 for the 27960CX. 



intel® 27960CX 

ws AID WS WS 

elK 

DATA t--t--t---{ 

NOTES: 

AID 

NRAD = 2 
NRDD = 0 
NXOA == 0 

PIPELINED BURST READ 

290236-9 

1. The EPROM can also operate in non pipelined mode i.e, next address and ADS can be asserted in the clock cycle 
following the last data word of the burst. 
2. 2 - 0 - 0 - 0 Burst Read --+ 2 indicates the number of wait states to access the first word 

O's indicate the number of wait states for subsequent data words: 
o in this case! 

Figure 7. Two Cycles of a 27960CX 2 Wait State 4 Byte Read (2-0-0-0 Burst Read) in a 32 Bit System 

During boot-up (Figure 8), the 80960CA picks up it's 
Region Table data from addresses FFFF FFOO; 
FFFF FF04; FFFF FF08 and FFFF FFOC. Only the 
least significant byte of each of the above four 32-bit 
accesses is used to configure the Region Table. For 
boot-up, the wait-state parameters NRAD and NXDA 
default to 31 and 3 respectively. During boot-up, the 
27960CX will wrap around the first word of the four­
word burst and hold the first word until BLAST is 
asserted. 

27960CX DEVICE NAMES 

The device names on the 27960CX were derived as 
mnemonics that correspond to the number of wait 
states and expected operating frequency for the de­
vice. For example, the 25 MHz, 2 wait state 
27960CX is named 27960C2-25. 

AC TIMING DERIVATIONS 

The AC timings for the 27960CX were generated 
specifically to meet the requirements of the 
80960CA microprocessor. In each case the applica­
ble 80960CA clock frequency and AC timing were 
taken together with an address buffer delay (if need­
ed) and a typical 2 ns guard band to generate the 
27960CX AC timing. Worst case timings were 

4-26 

always assumed. On timings where the EPROM is 
faster than the microprocessor, we specified the 
time required by the EPROM and left the excess 
time as additional system guardband. The example 
below shows how the 27960C2-33 tavcoh timing 
was derived. 

@33 MHz the clock cycle is ~30 ns. 

tOV2 of the 80960CA is 3 ns - 14 ns. 

Typical 2 ns guardband. 

27960C2-33 tavcoh = 30 ns - 14 ns - 2 ns 

= 14 ns 

Decoders are needed for the systems chip select 
decoding. For the 27960CX timings we assumed a 
10 ns chip select decoder for 16 MHz and a 7 ns 
decoder for 25 MHz and 33 MHz systems. The ex­
ample below shows how the 27960C2-33 tsvch tim­
ing was derived. 

@33 MHz the clock cycle is ~ 30 ns. 

tOV2 of the 80960CA is 3 ns - 14 ns. 

Decoder = 7 ns 

27960C2-33 tsvch = 30 ns - 14 ns - 7 ns 

= 9 ns 



a 1 2 3 • 5 6 7 31 

PCLK 

I n. n. n. rL rL rt. rL n. ~t n. rt rt rt rL rL rL 
"T1 

cE' 
e:: ADDR ... 
CD 

!» 
~ 

\fA. 
FFFF FFOO XI; m: ml IX 

N 
-.J 
:gl ADS 
0 
0 

1 1 \ 
)( ..... 

f" gl CS 
I\) CD '\ /' 1----" 
-.J en 

0 
0 
:ro-
IDI DATA 
0 

V \ FIRST BYTE W~APPED AROUND 

Ill: 00~01~02~031JJ \ 00 
n: m:l!: 

0 ... 
e:: -NWS· 

't:I 

::II BLAST 3 
S· Wi \ ~ 

(Q 

NRAD = 31 !--NXDA=3-

n. rt rt. rt. rt rL rt. rt. rt. rt 
~,. 

FFFF FFO' II .m 1m 11K 

1 \ 

m m04~05~06~07n m m m: 

\1 , 

-2WS- -NXDA=3-

II 

rL n. rL n. rt. rt. rt rL n. n.. 
IA. 

FFFF FF06 ll: m: 1mB 

V \ 

m: mmloB~09~ A ~ B U: (I: 

\ ~ 
!--2WS- !--NXDA=3-

n. rt n.. rt rL ~ 
FFFF FFOC I: 

J 

m: mOC~OD~OE~OFt:tJJ0 

\ r 
-2WS-

290236-10 

""". d (2: 
G 

I\) 

"'" co 
Ol 
o 
C') 
X 

~ 
2$ 
!fiiil 
F 

~ 
~ 
~ 
2$ 
~ 



infel~ 27960CX 

u u z z 

290236-11 

CLK 

BINARY SE~UENCE FROM AO TO A16 

290236-12 
Vpp = + 5V R = 1 KO CS = GND 
VCC = +5V GND = OV CLK = 1 MHz 

Figure 9. 27960CX Burn In Blasing Diagram 

System Buffering Considerations 

For large system applications buffering may be re­
quired between the microprocessor and memory de­
vices. The 25 and 16 MHz 27960CX AC timings take 
this into account. For applications not requiring buff­
ering these devices will provide additional system 
guardband. 

The list below shows the buffers used in generating 
the 27960CX timings: 

25 MHz 
16 MHz 

Input 
Buffer 

8 ns 
10 ns 

Output 
Buffer 
5 ns 
7 ns 

4-28 

Note that the 25 MHz buffers are slightly faster in 
keeping with the increased sensitivity for higher per­
formance. Significantly faster buffers are available 
for applications requiring them. The example below 
shows the tchqv timing analysis for a buffered 
27960C2-25. 

@25 MHz the clock cycle is - 40 ns. 

tlH1 of the 80960CA is 5 ns. 

Output buffer for 25 MHz = 5 ns 

27960C2-25 tCHQV = 40 ns - 5 ns - 5 ns 

= 30 ns 



intel® 27960CX 

ABSOLUTE MAXIMUM RATINGS* 

Read Operating Temperature ...... O°C to + 70°C(8) 

Case Temperature Under Bias .. -10°C to + 80°C(8) 

Storage Temperature .......... -65°C to + 125°C 

All Input or Output Voltages 
with Respect to Ground ...... - 0.6V to + 6.5V(4) 

Voltage on Ag 
with Respect to Ground ..... - 0.6V to + 13.0V(4) 

Vpp Supply Voltage 
with Respect to Ground ..... - 0.6V to + 14.0V(4) 

Vee Supply Voltage 
with Respect to Ground ...... - 0.6V to + 7.0V(4) 

READ OPERATION 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. Verify with 
your local Intel Sales office that you have the latest 
data sheet before finalizing a design. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

DC CHARACTIERISTICS O°C < TA + 70°C, Vee = 5V ±10%, TTL Inputs 

Symbol Parameter Notes Min Mal( Unit Test Condition 

III Input Load Current 1 /LA VIN = 5.5V 

ILO Output Leakage Current 10 /LA VOUT = 5.5V 

Ipp Vpp Load Current Read 10 /LA Vpp = 0 to Vee, PGM = VIH 

ISB Vee Standby I Switching 2 45 mA CS = VIH, f = 33.MHz 

I Stable 2 30 mA CS = VIH 

lee Vee Active Current 1,3,7 125 mA CS = VIL, f = 33 MHz, 

lOUT = 0 rnA 

VIL Input Low Voltage 4 -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 1 V 

VOL Output Low Voltage 0.45 V 10L = 2.1 rnA 

VOH Output High Voltage 5 Vee - 0.8 V 10H = -100/LA 

5 2.4 V 10H = -400/LA 

los Output Short Circuit 6 100 mA 

NOTES: 
1. Maximum current is with outputs unloaded. 
2. Icc standby current assumes no output loading i.e., 10H = 10L = a mA. 
3. Icc is. the sum of current through VCC3 + VCC4 and does not include the current through VCC1 and VCC2' (VCC1 and 
VCC2 supply power to the output drivers. VCC3 and VCC4 supply power to the reset of the device.) 
4. Minimum De input voltage on input and output pins is -0.5V. During transitions, this level may undershoot to -2.0V for 
periods less than 20 ns. 
5. Maximum De voltage on input and output pins is VCC + 0.5V which may overshoot to VCC + 2.0V for periods less than 
20 ns. 
6. One output shorted for no more than one second. los is sampled but not 100% tested. 
7. Icc max measured with a 10.11 p.F capacitor betWeen V cc and V ss. 
8. This specification defines commercial product operating temperatures. 

4-29 



infel® 27960CX 

EXPLANATION OF AC SYMBOLS 

The nomenclature used for timing parameters are as 
per IEEE STD 662-1980 IEEE Standard Terminology 
for Semiconductor Memory. 

The fifth character represents the signal level indi­
cated for the fourth character. The list below shows 
character representations. 

A: Address 
B: BLAST 
C: Clock 

R: Reset 
Q: Data 
S: CS 

H: logic High level t: Time 
l: ADS/logic low level V: Valid 

Each timing symbol has five characters. The first is 
always a "t" (for time). The second character repre­
sents a Signal name. e.g., (ClK, ADS, etc.). The third 
character represents the signal's level (high or low) 
for the signal indicated by the second character. The 
fourth character represents a signal name at which a 
transition occurs marking the end of the time interval 
being specified. 

P: Vpp Programming Voltage Z: Tri-state level 
X: No longer a valid "driven" logic level 

AC CHARACTERISTICS: READ OPERATION O°C < TA < + 70°C, Vcc = 5V ±10% 

27960C2-33 27960C2-25 27960Cl-16 

Versions 33 MHz 25 MHz 16MHz 
2 Wait State 2 Wait State 1 Wait State 

Unit 

No. Symbol Parameter Notes Min Max Min Max Min Max 

1 tAvcoH Address Valid to ClKo 12 10 22 ns 
ClK High 

2 tCNHAX ClK High to 2 0 0 0 ns 
Address Invalid 

3 tLLCH ADS low to ClK High ClKo 8 8 22 ns 

4 tCHLH ClK high to ADS High 5 6 22 6 32 6 40 ns 

5 tSVCH CS Valid to 1 7 7 14 ns 
ClK High 

6 tCNHSX ClK High to 2 0 0 0 ns 
CS Invalid , 

7 tCHOV ClK High to Data Valid 7 27 30 40 ns 

8 tCHOX ClK High to Data Invalid 5 5 5 ns 

9 tCHOZ ClK High to Data High Z 6 25 30 30 ns 

10 tBVCH BLAST Valid to 8 8 22 ns 
ClKHigh 

11 tCHBX ClK High to 3 5 22 5 32 5 40 ns 
BLAST Invalid 

NOTES: 
1. Valid signal level is meant to be either a logic high or logic low. 
2. The subscript N represents the number of wait states for this parameter. CS can be de-asserted (high) after the number 
of wait states (N) has expired and the EPROM will continue to burst out data for the current cycle. 
3. BLAST # must be returned high before the next rising clock edge. 
4. The sum of tCHOV + tAVCH +, NCLK will not equal actual tAVOV if independent test conditions are used to obtain tAVCH 
and tCHOV (N = number of wait states). 
5. ADS must be returned high before the next rising clock edge. 
6. Sampled, not 100% tested. The transition is measured ±500 mV from steady state voltage. 
7. For capacitive loads above 80 pF, tCHOV can be derated by 1 ns/20 pF. 

4-30 



ui 
J-

~ 
$I 

$I 

$I 

Ul 

J-

Ul 

J-

~ ~ 1 -(.) 

27960C}{ 

~ 

~ 

--
~ 

en 

co 

..... 

CD 

"' 

... 

'" 

'" 

0 

'" '" I~ I~ ~ I~ 
.....I Q 
(.) Q 13 ~ 

Figure 10. 27960CX Pipelined 2 Wait State AC Waveforms 

4-31 

© 
® 



intel® 

AC CONDITIONS OF TEST 
Input Rise and Fall Times 

27960CX 

(10% to 90%) ........................... .4 ns Input Timing Reference Level ................ 1.5V 

Input Pulse Levels .................. 0.45V to 2.4V Output Timing Reference Level .............. 1.5V 

Table 2. Mode Table 

Mode CS PGM BLAST ADS RESET Ag Vpp Vee OUTPUT 

Read VIL VIH VIH(1) VIH(2) VIH X Vee Vee DOUT 

Standby(6) VIH X X X VIH X Vee (5) Vee HighZ 

Program VIL VIL VIH VIH(2) VIH X (3) (3) DIN 

. Program Verify VIL VIH VIH(1) VIH VIH X (3) (3) DOUT 

Program Inhibit VIH X X X VIH X (3) (3) HighZ 

10 Byte 0: Manufacturer VIL VIH VIH(I) VIH(2) VIH VID(3) Vee Vee 89H 

10 Byte 1: Part (27960) VIL VIH VIH(I) VIH(2) VIH Vld3) Vee Vee EOH 

10 Byte 2: CX VIL VIH VIH(I) VIH(2) VIH VID(3) Vee Vee 01B 

10 Byte 3: 1 Wait State VIL VIH VIH(1) VIH(2) VIH Vld3) Vee Vee 01B 
2 Wait States 10B 

Reset X X X X VIL X Vee Vee HighZ 

NOTES: 
1. VIH until data terminated at which time BLAST must go to VIL. 
2. Need to toggle from VII·i to VIL to VIH· 
3. See De Programming Characteristics for Vee, VID and Vpp voltages. 
4. X can be VIL or VIH. 
5. Vpp = Vee to meet standy current specification. Vee> Vpp > VIL will cause a slight increase in standby current. 
6. The device must be in the idle state (by asserting RESET or using BLAST) before going into standby. 

CAPACITANCE(1) TA = 25°C, f = 1.0 MHz 

Symbol Parameter Typ Max Unit Condition 

CIN Input Capacitance 4 6 pF VIN = OV 

COUT Output Capacitance 12 15 pF VOUT = OV 

Cvpp Vpp Capacitance 40 45 pF VIN = OV 

NOTE: 
1. Sampled. Not 100% tested. 

4-32 



27960C}( 

AC INPUT/OUTPUT REFERENCE WAVEFORMS AC TESTING lOAD CIRCUIT 

VOH:==\ 

INPUT (1'5V 

VOL ~,------~ 
TIMING PARAMETER 

,.._----VOH 

OUTPUT 

'------ VOL 

290236-14 

Input and output timings are measured from 1,5V, 
Timing values are specified assuming maximum input 
and output rise and fall time = 4 ns, 

ClOC~( CHARACTERISTICS 

Versions 33 MHz 25 MHz 

Symbol Parameter Min Mal( Min 

elK Period 30,3 40 

tpR Rise Time 1 4 1 

tpF Fall Time 1 4 1 

tpL low Time (tl2) - 2 tl2 (tl2) - 3 

tPH High Time (tl2) - 2 tl2 (tl2) - 3 

780n 

I DEVICE I 
UNDER II---Q---O 
TEST 

iCL=SOPF 

CL includes jig capacitance 
For tCHQZCL = 5 pF and RL = 4050 

20 MHz 16MHz 

Mal( Min Max Min 

50 62,5 

4 1 4 1 

4 1 4 1 

tl2 (tl2) - 4 tl2 (tl2) - 4 

tl2 (tl2) - 4 tl2 (tl2) - 4 

Max Rise Time for Programming elK = 100 ns 

ClOC" WAVEFORM 

i-o----cLK-----i 

290236-16 

4-33 

290236-15 

Units 
Max 

ns 

4 ns 

4 ns 

tl2 ns 

tl2 ns 



intel® 27960CX 

Program/Program Verify 

Initially, and after each erasure, all bits of the 
EPROM are in the "1 's" state. Data is introduced by 
selectively programming "O's" into the desired bit 
locations. Although only "O's" can be programmed, 
both "1 's" and "O's" can be present in the data 
word. Ultraviolet erasure is the only way to change 
"D's" to "1 '5", 

Programming mode is entered when Vpp is raised to 
12.75V. ProgramlVerify operation is synchronous 
with the clock and can only be initiated following an 
idle state. Program and Program Verify take place in 
3 clock cycles. In the first clock cycle, addresses 
and data are input and programming occurs. Pro­
gram Verify follows in the second clock cycle and 
the third clock cycle terminates synchronous Pro­
gramlVerify operation, returning the state machine 
to the idle .state with outputs at high impedance. 

As in the Read mode, A2-A16 point to a four byte 
block in the memory array. During programming, the 
internal address increment circuitry is disabled and 
the programmer must supply Ao and A1 to point to 
an individual byte within the four byte block that is to 
be programmed. Only one byte is programmed in 
each 3 cycle Program/Verify sequence. 

Program Inhibit 

The Program Inhibit mode allows parallel program­
ming and verification of multiple devices with differ­
ent data. With Vpp at 12.75V, a ProgramlVerify se­
quence is initiated for any device that receives a val­
id ADS pulse and rising clock edge while es is as­
serted. A PGM pulse programs data in the first cycle 
of the sequence and data for Program Verify is out­
put in the second cycle. The ProgramlVerify se­
quence is inhibited on any devices for which es is 
not asserted. Data will not be programmed and the 
outputs will remain in their high impedance state. 

inteligent Identifier™ Mode 

The device's manufacturer, product type, and con­
figuration are stored in a four byte block that can be 
accessed by using the inteligent IdentifierTM mode. 

The programmer can verify the device identifier and 
choose the programming algorithm that corresponds 
to the Intel 27960eX. The inteligent Identifier can 
also be used to verify that the product is configured 
with the desired Read mode options for wait states. 

inteligent Identifier mode is entered when Ag (pin 32) 
is raised to its high voltage (VID) level. The internal 
state machine is then set for intelligent Identifier 
Read operation. Reading the identifier is similar to a 
Read operation on a one wait state configured prod­
uct. Up to four bytes can be read in a single burst 
access. inteligent Identifier read is terminated by a 
synchronous BLAST input,returning the state ma­
chine to the idle state with outputs at high imped­
ance. 

The four byte block code for the inteligent Identifier 
code is located at address OOH through 03H and is 
encoded as follows: 

4-34 

MEANING (A1, AO) DATA 
IntellD Byte 00 89h 

27960 Byte 01 EOh 
ex Byte 10 01b 

1 Wait State Byte 11 01b 
2 Wait States Byte 11 10b 

RESET MODE 

Due to the synchronous nature of the 27960eX, the 
various operating modes must be initiated from a 
known idle state. During normal operation, the inter­
nal state machine returns to an idle state at the ter­
mination of a bus access (after BLAST is asserted). 

During initial device power up, the state machine is 
in an indeterminant state. The reset mode is provid­
ed to force operation into the idle state. Reset mode 
is entered when the RESET pin is asserted. Output 
pins are asynchronously set to the high impedance 
state and address latches are put into the flow 
through mode. A reset is successfully completed 
and the state machine set in an idle state when 
RESET has been asserted for a minimum of 10 
clock cycles and deasserted for five clock cycles. 



inteL 27960CX 

FAIL .. 

290236-17 

Figure 11. Quick-Pulse Programming™ Algorithm 

4-35 



inteJ® 27960CX 

QUICK-PULSE PROGRAMMINGTM 
ALGORITHM 

The Quick-Pulse Programming algorithm programs 
Intel's 27960CX. Developed to substantially reduce 
programming throughput time, this algorithm allows 
optimized equipment to program a 27960CX in un­
der 17 seconds. Actual programming time depends 
on the programmer used. 

The Quick-Pulse Programming algorithm uses a 
100 p.s pulse followed by a byte verification to deter-

mine when the addressed byte is correctly pro­
grammed. The algorithm terminates if 25 100 p.s 
pulses fail to program a byte. Figure 11 shows the 
27960CX Quick-Pulse Programming algorithm flow­
chart. 

The entire program-pulse/byte-verify sequence is 
performed with Vee = 6.25V and Vpp = 12.75V. 
The program equipment must establish Vee before 
applying voltages to any other pins. When program­
ming is complete, all bytes should be compared to 
the original data with Vee = 5.0V and Vpp = 
12.75V. 

D.C. PROGRAMMING CHARACTERISTICS TA = 25° +5°C -
Symbol Parameter Notes Min Max Unit Condition 

III Input Load Current 10 p.A VIN = VIH or VIL 

lee Vee Program Current 1 125 mA CS = VIL 

Ipp Vpp Program Current 1 50 mA CS = VIL 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 0.5 V 

VOL Output Low Voltage(Verify) 0.40 V IOL = 2.1 mA 

VOH Output High Voltage(Verify) Vee - 0.8 V IOH = - 400 p.A 

VIO Ag inteligent Identifier 
11.5 12.5 V 

Voltage 

Vee Supply Voltage (Program) 2 6.0 6.5 V 

Vpp Program Voltage 2 12.5 13.0 V 

NOTES: . 
1. The maximium current value is with outputs unloaded. 
2. Vee must be applied simultaneously or before Vpp and removed simultaneously or after Vpp. 
3. During programming clock levels are VIH and VIL. 

4-36 



27960CX 

A.C. PROGRAMMING, RESET AND ID CHARACTERISTICS T A = 25°C ± 5°C 

No. Symbol Parameter Notes Min Max Unit 

1 tAVPl Address Valid to PGM low 2 /Ls 

2 tCHAX ClK High to Address Invalid 50 ns 

3 tllCH ADS low to ClK High 1 50 ns 

4 tCHlH ClK High to ADS High 2 50 ns 

5 tSVCH CS Valid to ClK High 50 ns 

6 tCHSX ClK High to CS Invalid 3 ns 

7 tCHQV ClK High to DOUT Valid 100 ns 

8 tCHOX ClK High to DOUT Invalid 0 ns 

9 tBVCH BLAST Valid to ClK High 50 ns 

10 tCHBX ClK High to BLAST Invalid 4 50 ns 

11 tOVPl DATA Valid to PGM low 2 /Ls 
, 

12 tplPH PGM Program Pulse Width 95 105 /Ls 

13 tpHQX PGM High to DIN Invalid 2 /Ls 

14 tClPl ClK low to PGM low 50 ns 

15 tQZCH DIN Tri-State to ClK High 2 /Ls 

16 tvcs VCC Program Voltage to ClK High 7 2 /Ls 

17 tvps VPP Program Voltage to ClK High 7 2 /Ls 

18 tAgHCH Ag VID Voltage to ClK High 2 /Ls 

19 tCHAgX ClK High to Ag Not VID Voltage 2 /Ls 

20 tRVCH RESET Valid to ClK High 6 50 ns 

21 tCHCl ClK High to ClK low 5 100 ns 

22 tClCH ClK low to ClK High 5 100 ns 

NOTES: 
1. If CS is low, ADS can go low no sooner than the falling edge of the previous ClK. 
2. ADS must retum high prior to the next rising edge of clock. 
3. CS must remain low until after the rising edge of ClK1. 
4. BLAST must return high prior to the next rising edge of ClK. 
5. Max ClK rise/fall time is 100 ns. 
6. RESET must be low for 10 clock cycles and high for 5 clock cycles. 
7. Vee must be applied simultaneously or before Vpp and removed simultaneously or after Vpp. 

4-37 



intel® 27960CX 

012 

'" :,: Jt--' -@-1-11-=-______ fihn 
CD : :0 1.....-__ _ 

ADDR H .... ' ":". ___ -1-: ____ A:_~_RE_S_S_0 _____ _!__i~3 (ADDRESS 1 

VIH 
DATA 

_ VIH 
PGM 

__ VIH 
BLAST 

~~0 
---< 

: 

u 
'@ 

, B 
DATA 0 IN DATA O~ / DATA 1 

@ jC?: 
OUT :.IF .... 

@ @ 
"I 

@ 
\ ) 

:---- 141--

290236-18 

Figure 12. 27960CX Programming Waveforms 

4-38 



27960C){ 

RESET and inteligent Identifier Waveforms 

ADDR 

DATA 

Vpp 

:8: ---

__ ~_--I)( '~:~~!~: xxZZXXXXXXXXXXX 

\ IX! 
----~--~--~fi«V'~·D.~ ."h 8yta 0 

@:.~. @ VID ,.......;:...-___________ ~ • 

f: :~ 
Ag VIH....,.XX....,...X.,......"XX....,...X ....... XZ ......... Z ........ XX ......... Z...-Jy: : : ~ 

290236-19 

Figure 13. 27960C)( RESET and ID Waveforms 

4-39 



27960KX 
BURST ACCESS 1 M (128K x 8) CHMOS EPROM 

• Synchronous 4-Byte Data Burst Access 

• Simple Interface to the 80960KAlKB 

• High Performance Clock to Data Out 
- Zero Wait State Data-to-Data Burst 
- Supports 16, 20 and 25 MHz 

80960KAlKB Devices 

• Asynch Microcontrol/er Reset Function 
- Returns to Known State with High Z 

Outputs 

• CHMOS* II/-E for High Performance and 
Low Power 
-125 rnA Active, 30 rnA Standby 
- TTL Compatible Inputs 

• 1 Mbit Density Configures as 128K x 8 

Intel's 27960KX is a 5V only, 1,048,576 bit, Erasable Programmable Read Only Memory, organized as 128K 
words of 8 bits. 

The 27960KXprovides a simple synchronous burst interface to the 80960KAlKB bus. Internally the 27960KX 
is organized in 4 byte blocks, in which each byte is accessed sequentially. The internal state machine is factory 
configured to generate either 1 or 2 wait-states between the address and first data byte. High performance 
outputs provide zero wait-state data to data accesses at clock frequencies up to 25 MHz., 

An asynchronous microcontroller RESET feature. puts the outputs in the high impedance state and takes the 
internal state machine to a known state where a new burst access can begin. 

The 27960KX is available in 44 lead PLCC package, providing optimum cost effectiveness. 

The 27960KX is manufactured on Intel's 1 micron CHMOS III-E technology. The Quick-Pulse Programming™ 
algorithm provides fast, reliable programming with throughput under 17 seconds for optimized equipment. 

'CHMOS is a patented process of Intel Corporation. 

elK 

Figure 1. 27960KX Burst EPROM Block Diagram 

4-40 

290237-1 

September 1991 
Order Number: 290237-006 



27960KX 

27960KX BURST EPROM 

EPROMs are established as the preferred code stor­
age device in embedded applications. The non-vola­
tile, flexible, reliable, cost effective EPROM makes a 
product easier to design, manufacture and service. 
Until recently, however, EPROMs could not match 
the performance needs of high-end systems. The 
27960KX was designed to support the 80960KAlKB 
embedded processor. It utilizes the burst interface to 
offer near zero-wait state performance without the 
high cost normally associated with this performance. 

In embedded designs, board space and cost must 
be kept at a minimum without impacting perform­
ance and reliability. The 27960KX removes the need 
for expensive high-speed shadow RAM backed up 
by slow EPROM or ROM for non-volatile code stor­
age. Code optimization concerns are reduced with 
"off-chip" code fetches no longer crippling to sys­
tem performance. FONTs can be run directly out of 
these EPROMs at the same performance as high­
speed DRAMs. With the 27960KX, the EPROM is 
the ideal code or FONT storage device for your 
80960KAlKB system. 

ADDRESS 

A DATA 

~ 
ALE 

BLAST 

RESET 

eLK 

PGM 

17 

8 

Architecture 

The 27960KX provides a simple, synchronous burst 
interface to the 80960KAlKB's bus. Internally, the 
27960KX is organized in 4 byte blocks each byte is 
accessed sequentially. A burst access begins on the 
first clock pulse after CS is asserted. The address of 
the four byte block is latched by the rising edge of 
ALE. After a preset number of wait-states (1 or 2), 
data is output one byte at a time on each subse­
quent clock cycle. A burst access is terminated on 
the rising edge of CLOCK if BLAST is asserted. High 
performance outputs provide zero wait-state data to 
data accesses at clock frequencies up to 25 MHz. 
Extra power and ground pins dedicated to the out­
puts reduce the effects of fast output switching on 
device performance. 

The 27960KX delivers 4 bytes of data in 8 clock 
cycles at 25 MHz and 4 bytes of data in 7 clock 
cycles· at 20 MHz. In a 32-bit configuration, this 
translates into a read bandwidth of 50 Mbytes/sec 
and 45 Mbytes/sec respectively. Performance capa­
bility of the 27960KX in different 80960KAlKB sys­
tems is given in Table 1. 

! 
" 
I' 

27960KX 
BURST 
EPROM 

128K x 8 

290237-2 

Figure 2. 27960KX Burst EPROM Signal Set 

4-41 

.. 



intel~ 27960KX 

A,6 
A,s 
A,4 

N27960KX. A,3 

44· LEAD PLCC A,2 
A,1 

0.650" x 0.650" A,o 
.rOP VIEW 

Ag 
31 AS 

A7 

As 

290237-3 

Fi~ure 3. 27960KX 44-Lead PLCC Pinout 

PIN DESCRIPTIONS 

Symbol Pin Function 

Ao-A16: 23-39 ADDRESS INPUTS: During a burst operation, A2 through A16 provide the base 
address painting to a block of four consecutive bytes. Ao and A1 select the first 
byte of the burst access. The 27960KX latches valid addresses in the first clock 
cycle. An internal address generator increments addresses Ao and A1 for 
subsequent bytes of the burst. 

00-0 7: 18,17,14,13, DATAINPUTS/OUTPUTS 
11,10,7,6 

ALE 42 ADDRESS LATCH ENABLE: Indicates the transfer of a physical address. ALE 
is an active low signal used to latch the addresses from the processor. 
Addresses are latched on the rising edge of ALE. Valid addresses must be 
present at or before ALE becomes valid. 

es 3 CHIP SELECT: Master device enable. When asserted (active low) data can be 
written to and read from the device. In read mode, es enables the state 
machine and the liD circuitry. 

NOTES: 
1. The address decode path is independent of es, i.e., X and Y decoding is 
always powered up. 
2. For programming, es should remain low for the entire cycle. Program and 
verify functions are done one byte at a time. 
3. es going high does not terminate a concurrent burst cycle. 
4. es must be deasserted between bursts. 

BLAST 1 BURST LAST: Terminates a concurrent burst data cycle at the rising edge of the 
elK. It must be asserted by the fourth data byte. 

RESET 22 RESET: Resets the state machine into a known state, tri-states the outputs. The 
duration of RESET should be 10 elK cycles minimum. At least 5 clock cycles 
are required after deassertion of RESET before beginning the next cycle. Reset 
will abort a concurrent bus cycle. 

4-42 



27960KX 

PIN DESCRIPTIONS (Continued) 

Symbol Pin Function 

PGM 43 PROGRAM-PULSE CONTROL INPUT 

Vpp 2 PROGRAMMING POWER SUPPLY Vpp 

Vss 5, B, 12, GROUND 
15, 19,21 

Vee 9,16,20,44 SUPPLY VOLTAGE INPUT 

Table 1. Performance Capability 

25/20 MHz 2 WS NON-BUFFERED : 4 WORDS/S CLOC" CYCLES - 50/40 MBYTES/SEC 

AOOR Aoo WS WS RS A01 WS WS RS 
OATA 000 001 002 003 010 011 012 013 
ClK C1 C2 C3 C4 C5 Cs C7 Ca C1 C2 C3 C4 C5 Cs C7 Ca 

20 MHz 1 WS NON-BUFFERED : 4 WORDSI7 CLOC" CYCLES - 45 MBYTES/SEC 

AOOR Aoo WS RS Ao1 WS RS Ao3 WS 
OATA 000 001 002 003 010 011 012 013 
ClK C1 C2 C3 C4 C5 Cs C7 C1 C2 C3 C4 C5 Cs C7 

16 MHz 1 WS BUFFERED: 4 WORDSI7 CLOC" CYCLES - 36 MBVTES/SEC 

AOOR Aoo WS RS 
OATA 000 001 002 003 
ClK C1 C2 C3 C4 C5 Cs C7 

INTERFACE EXAMPLE 

Overview 

The following design offers a simple interface to the 
80960KAlKB's bus. 

A non-buffered 27960KX burst EPROM system is 
shown in Figure 4. Since the 27960KX is capable of 
driving a 120 pF load, large, non-buffered systems 
can be implemented by stacking up to 2 banks of 4 
EPROMs, giving a memory size of 256K x 32. The 
input capacitive load seen on the address lines (due 
to the EPROM only) is 24 pF for a 128K x 32 

A01 WS RS A03 WS 
010 011 012 013 

C1 C2 C3 C4 C5 Cs C7 

4-43 

system (shown) and 4B pF for a 256K x 32 system. 
The EPROM is specified at 4 pF for input capaci­
tance and 12 pF typical for output capacitance. 
Larger systems can be implemented with buffers. 

Chip Select Logic 

High order address lines are decoded to provide CS. 
Qualification with other 'signals is not required. The 
chip select logic can be implemented with standard 
asynchronous decoders, PAL's or PlO's (like Intel's 
85C960). 

• 



int:et 27960KX 

ADDRESS 
LATCHES 

1====:> ADDRESS TO NON-BURST MODE MEMORY 

80960KX 

CLK2 

NOTE: 

LAO(31:0) 

'--_--' • SEE NOTE 

CLK(25I.1HZ) 

RESET 

27960KX does not require address latches 

290237-6 

Figure 4. 128K x 32 Burst EPROM System 

Waveforms 

Figure 5 shows the timing waveforms of 27960KX 
reads in a 32-bit system. 

CS setup time 

CS setup time is the time between CS asserted and 
the first rising ClK edge of ClK (during the address 
cycle). Since a memory access begins on the first 
ClK rising edge after CS asserted, a minimum CS 
setup time of 5 ns (tsvCH) at 25 MHz is required. 
With the 80960KA/KB's maximum valid address de­
lay of 18 ns at 25 MHz, 13 ns remains for CS decod­
ing logic. 

4-44 

CS Deassert between bursts 

After every EPROM read (one to four words) CS 
must be deasserted. 

Reset and RESET 

The 27960KX uses RESET. The 80960 KAlKB 
RESET signal must be inverted for the 27960KX. 

Clock Phase 

The initial rising edge of ClK and ClK2 must be in 
phase with as small a skew as possible. 



·27960K){ 

NOTES: 

A 
CLK 

ws RC A ws RC 

290237-9 

1. 1-0-0-0 Burst Read -+ 1 indicates the number of wait states to access the first word 
O's indicate the number of wait states for subsequent data words (0 in this case) 

2. 279S0KX latches addresses on the rising edge of ALE: it has an internal address generator which increments ad­
dresses for subsequent words of the burst. 

Figure 5. Two Cycles of a 27960K)( 1 Wait State, 4-Byte Read (1-0-0-0 Burst Read) in a 32-Bit System 

27960KX DEVICE NAMES 

The device names on the 27960KX were derived as 
mnemonics that correspond to the number of wait 
states and expected operating frequency for the de­
vice. For example, the 25 MHz, 2 wait state 
27960KX is named 27960K2-25. 

AC TIMING DERIVATIONS 

The AC timings for the 27960KX were generated 
specifically to meet the requirements of the 
80960KAlKB microprocessor. In each case the ap­
plicable 80960KA/KB clock frequency and AC tim­
ing were taken together with an address buffer delay 
(if needed) and a 4 ns positive clock skew or a 2 ns 
negative clock skew (see Figure 6A). guardband to 

4-45 

generate the 27960KX AC timing. Worst case tim­
ings were always assumed. The example below 
shows how the 27960K1-20 tavcoh timing was de­
rived. 

@20 MHz the clock cycle is - 50 ns. 
ts of the B0960KAlKB is 2-20 ns. 
4 ns clock skew guardband. 

27960K1-20 tavcoh = 50 ns - 20 ns - 4 ns 
= 26ns 

On timings such as this, where the EPROM is faster 
than the microprocessor, we specified the EPROM's 
timing leaving the excess time as system guard­
band. 



int:et 

NOTE: 

CLK2 
(\0 80960) 

27960KX 

~ 
2n0-1 r- I 

CLK jJ ! 
I I 
I I -_ .. 

290237-11 

The 27960KX allows a positive clock skew (ClK2 leading ClK) of up to 4 ns and a negative clock skew (ClK2 lagging 
ClK) of up to 2 ns. The larger positive clock skew takes into account longer trace lengths and heavier loading on the Ix 
clock trace. 

150 ~Hz I CLOCK 

I 
Combinatorial 

PAL 
16l8-7 

NOTE: 

Figure 6A: D~finition of Positive and Negative Clock Skew 
\ 

80960KB 

---. ClK2 

Driver 
74F244 ClK ---. l J I I 

27960KX 27960KX 27960KX 27960KX 

290237-12 

ClK and ClK2 are generated by the same PAL. This minimizes skew between ClK and ClK2. Both PAL outputs are fed 
to a 74F244 driver. The EPROMs should be as close to the clock driver as possible. 

Figure 6B. Example Clock Circuit with Minimum Skew 

4-46 



27960KX 

NOTE: 

100 MHz 
osc 

Vee 

10K 

Po 

P1 

P2 

P3 

74ACT163 

CP 

eET 
CEP 

Vee 

10K 

ClK2 50 MHz 
0 0 

ClK 25 MHz 
0 1 

°2 
7 4AS 1804 NAND DRIVERS 

03 

290237-20 

This clock generation circuit uses a 100 MHz oscillator. The EPROMs should be as close to the NAND drivers as 
possible. 

Figure 6C. Example Clocl< Circuit Using a 100 MHz Oscillator 

Decoders are needed for the systems address (chip 
select) decoding. For the 27960KX's timings we as­
sumed a 5-10 ns chip select decoder for 16 MHz 
and 20 MHz frequencies and a 5-9 ns decoder for 
25 MHz systems. The example below shows how 
the 27960K2-25 tsvch timing was derived. 

@25 MHz the clock cycle is ~ 40 ns. 
t6 of the 80960KA/KB is 2-18 ns. 
Decoder = 9 ns 
4 ns clock skew guardband 

27960K2-25 tsvch = 40 ns - 18 ns - 9 ns - 4 ns 
= 9 ns 

SYSTEM BUFFERING CONSIDERATIONS 

For many large system applications buffering may 
be required between the microprocessor and memo­
ry devices. The 20 MHz - 2 WS and 16 MHz 
27960KX AC timings take this into account. For ap­
plications at these frequencies not requiring buffer­
ing these devices will provide an additional 5-10 ns 
of system guardband. 

4-47 

The .list below shows the buffers used in generating 
these timings: 

20 MHz 
16 MHz 

Input 
Buffer 

9 ns 
10 ns 

Output 
Buffer 

5 ns 
7 ns 

The 20 MHz buffers are slightly faster in keeping 
with the increased sensitivity for higher perform­
ance. We chose the above buffers because of their 
wide availability. Significantly faster buffers are avail­
able for applications requiring them. The example 
below shows tchqv for the 27960K2-20. 

@20 MHz the clock cycle is ~ 50 ns. 
tlO of the 80960KAlKB is 3 ns. 
Output buffer for 20 MHz = 5 ns. 
4 ns clock skew guard band 

27960K2-20 tchqv = 50 ns - 5 ns - 3 ns - 4 ns 
= 38 ns 



intel® 27960KX 

ABSOLUTE MAXIMUM RATINGS* 

Read Operating Temperature ...... O°C to + 70°C(8) 

Case Temperature under Bias .. -10°C to + 80°C(8) 

Storage Temperature .......... - 65°C to + 125°C 

All Input or Output Voltages ..... - 0.6V to + 6.5V(4) 
with Respect to Ground 

Voltage on A9 ................ -0.6V to + 13.0V(4) 
with Respect to Ground 

Vpp Supply Voltage ........... -0.6V to + 14.0V(4) 
with Respect to Ground 

Vee Supply Voltage ' ........... -0.6V to + 7.0V(4) 
with Respect to Ground 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. Verify with 
your local Intel Sales office that you have the latest 
data sheet before finalizing a design. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

DC CHARACTERISTICS: READ OPERATION 
O°C < T A < + 70°C, Vee = 5V ± 10%, TTL Inputs 

Symbol Parameter Notes Min' Max Unit Test Condition 

III Input Load Current 1 /LA VIN = 5.5V 

ILO Output Leakage Current 10 /LA VOUT = 5.5V 

Ipp Vpp Load Current Read 10 p,A Vpp = 0 to Vee, PGM = VIH 

IS8 Vee Standby I Switching 2 45 mA CS = VIH, f = 25 MHz 

I Stable 2 30 mA CS = VIH 

Icc Vce Active Current 1,3,7 125 mA CS = VIL, f = 25 MHz, lOUT = 0 mA 

VIL Input Low Voltage 4 -,--0.5 0.8 V 

VIH Input High Voltage 2.0 Vee+ 1 V 

VOL Output Low Voltage 0.45 V 10L = 2.1 mA 

VOH Output High Voltage 5 Vee- 0.8 V 10H = -100/LA 

5 2.4 V 10H = -400/LA 

los Output Short Circuit 6 100 mA 

NOTES: 
1. Maximum current is with outputs unloaded. 
2. Icc standby current assumes no output loading, i.e., 10H = 10L = 0 mAo 
3. Icc is the sum of current through VCC3 + VCC4 and does not include the current through VCC1 and VCC2. (VCC1 and 
V CC2 supply power to the output drivers. V CC3 and V CC4 supply power to the rest of the device.) 
4. Minimum De voltage on input and output pins is -0.5V. During transitions, this level may undershoot to -2.0V for 
periods less than 20 ns. 
5. Maximum De voltage on input and output pins is Vcc + 0.5V which may overshoot to VCC + 2.0V for periods less than 
20 ns. 
6. One output shorted for no more than one second. los. is sampled but not 100% tested. 
7. Icc max measured with a 10.11 /LF capacitor between VCC and Vss. 
8. This specification defines commercial product operating temperatures. 

4-48 



27960K)( 

EXPLANATION OF AC SYMBOLS 

The nomenclature used for timing parameters are as 
per IEEE STD 662-1980 IEEE Standard Terminology 
for Semiconductor Memory. 

The fifth character represents the signal level indi­
cated for the fourth character. The list below shows 
character representations. 

A: Address R: Reset 
B: BLAST Q: Data 
C: Clock S: CS 
H: Logic High Level t: Time 
L: ALE/Logic Low Level V: Valid 

Each timing symbol has five characters. The first is 
always a "t" (for time). The second character repre­
sents a signal name, e.g., (CLK, ALE, etc.). The third 
character represents the signal's level (high or low) 
for the signal indicated by the second character. The 
fourth character represents a signal name at which a 
transition occurs marl<ing the end of the time interval 
being specified. 

P: Vpp Programming Voltage Z: Tri-state level 
X: No longer a valid "driven" logic level 

AC CHARACTIERISTICS: RIEAD OPIERATION O°C < TA < + 70°C, Vcc = 5V ±10% 

27960K2-25 27960K1-20 27960K2-20 27960K1-16 

Versions 25MHz 20 MHz 20 MHz 16MHz 
2 Wait States 1 Wait State 2 Wait States 1 Wait State 

Unit 

No Symbol Characteristic Notes Min Max Min Max Min Max Min Max 

1 tAVCOH Address Valid to 
CLKO 12 10 15 

CLK High 
18 ns 

2 tAVLH Address Valid 
10 

to ALE High 
10 10 10 ns 

3 tLLLH ALE low to ALE High 12 12 12 12 ns 

4 tLHAX ALE High to 
8 8 8 8 

Address Invalid 
ns 

5 tsvCH CSVaiid 
1,5 5 8 

toClK High 
8 7 ns 

6 tCNHSX ClK High to CS 
2 0 0 

Invalid 
0 0 ns 

7 tCHOV ClK High to Data Valid 7 33 43 38 45 ns 

8 tCHOX ClK High to Data Invalid 7 7 7 7 ns 

9 tCHOZ ClK High to Data High-Z 6 30 35 35 35 ns 

10 tBVCH BLAST Valid to 
15 15 15 15 

ClK High 
ns 

11 tCHBX ClK High to 
3 5 35 45 5 45 5 

BLAST Invalid 
5 45 ns 

NOTES: 
1. Valid signal level is meant to be either a logic high or logic low. 
2. tCNHSX-The subscript N represents the number of wait states for this parameter. CS can be de-asserted (high) after the 
number of wait states (N) has expired. The EPROM will continue to burst out data for the current cycle. 
3. BLAST must be returned high before the next rising clock edge. 
4. The sum of tCHOV + tAVCH + NClK will not equal actual tAVOV if independent test conditions are used to obtain tAVCH 
and tCHOV (N = number of wait states). 
5. CS must be deasserted after every burst read (see Figure 7). 
6. Sampled, not 100% tested. The transition is measured ± 500 mV from steady state voltage. 
7. For capacitive loads above 120 pF, tCHOV can be derated by 1 ns/20 pF. 

4-49 

.. 



_. 
(: 
• 

ClK ---
tA ~w ~ ~ ~ hD hR hA hW ~ ~ ~ ~ hR t--1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 h 14 

ClK 
I 

"11 
iEi 
c: 
~I ADDR 
;-J 
N .... 
CD 

'" 0 

'" >< ': ~ ~ .... ~ ........................ ~ ... ~ ~ .... ~ ........ ........ ~ ........ ~ 
I\) .... ...... 

f" =e CD 
C7I 01 en 0 o » ................ " 0 >< 

:JJ 
CD 
III 

~" I ®I 
I '1'XXx1'xXX1':®1 

a. 
=e 
III 
< 
CD P® 0' .. 
3 
1/1 

BLAST 
I 
~ 
@)@ 

290237-13 I I iI 
F 
=:. 

~ 
=:. 

~ 
~ 
~ 
~ 



27960K){ 

AC CONDITIONS OF TEST 

Input Rise and Fall Times 
(10% to 90%) ............................ 4 ns 

Input Pulse Levels .................. 0.45V to 2.4V 

Input Timing Reference Level ................ 1.5V 

Output Timing Reference Level ...... O.BV and 2.0V 

Table 2. Mode Table 

MODE CS PGM BLAST ALE RESET A9 Vpp Vee OUTPUT 

Read VIL VIH VIH(1) VIH(2) VIH X(4) Vee Vee DOUT 

Standby (6) VIH X X X VIH X Vec<5) Vee HighZ 

Program VIL VIL VIH VIH(2) VIH X (3) (3) DIN 

Program Verify VIL VIH VIH(1) VIH VIH X (3) (3) Dour 

Program Inhibit VIH X X X VIH X (3) (3) HighZ 

ID Byte 0: Manufacturer VIL VIH VIH(1) VIH(2) VIH VIO(3) Vee Vee B9H 

ID Byte 1: Part (27960) VIL VIH VIH(1) VIH(2) VIH VIO(3) Vee Vee EOH 

ID Byte 2: KX VIL VIH VIH(1) VIH(2) VIH VIO(3) Vee Vee 008 

ID Byte 3: 1 Wait·State VIL VIH VIH(1) VIH(2) VIH VIO(3) Vee Vee 018 
2 Wait-States 108 

Reset X X X X VIL X Vee Vee HighZ 

NOTES: 
1. VIH until data terminated at which time BLAST must go to VIL. 
2. Need to toggle from VIH to VIL to VIH to latch address. 
3. See oe Programming Characteristics for Vee, VID and Vpp voltages. 
4. X can be VIL or VIH. 
5. Vpp = Vee to meet standby current specification. Vee> Vpp > VIL will cause a slight increase in standby current. 
6. The device must be in the idle state (by asserting RESET or using BLAST) before going into standby. 

4-51 



int:eL 27960KX 

CAPACITANCE(1) T A = 25°C, f = 1.0 MHz 

Symbol Parameter 

CIN Input Capacitance 

COUT Output Capacitance 

CVPP VPP Capacitance 

NOTE: 
1. Sampled, not 100% tested 

AC INPUT/OUTPUT REFERENCE WAVEFORMS 

1.5V 

TIMING PARAMETER 

290237-14 
AC test inputs are driven at 2.4V (VOH) for a logic '1' 
and 0.45V (VoLl for a logic '0'. 
Input timing begins at 1.5V. 
Output timing ends at VIH (2.0V) and VIL (0.8V) 
Input Rise and fall times (10% to 90%) < 4.0 ns 

CLOCK CHARACTERISTICS 

Versions 25 MHz 

Symbol Parameter Min Max 

ClK Period 40 

T5 Rise Time 10 

T4 Fall Time 10 

T2 low Time 7 

T3 High Time 7 

Typ 

4 

12 

40 

Max Unit Condition 

6 pF VIN =OV 

15 pF VOUT =OV 

45 pF VIN =OV 

AC TESTING LOAD CIRCUIT 

'Z.1V 

780n 

ICL= 1Z0pF 

For tCHQZ CL = 5 pF and RL = 4050 
CL includes jig capacitance 

20 MHz 16MHz 

Min Max Min Max 

50 62.5 

10 10 

10 10 

8 11 

8 11 

290237-15 

Units 

ns 

ns 

ns 

ns 

ns 

Max ClK Rise Time during Programming is 100 ns 

CLOCK WAVEFORM 

290237-16 

4-52 



intel® 27960KX 

Program/Program Verify 

Initially, and after each erasure, all bits of the 
EPROM are in the "1's" state. Data is introduced by 
selectively programming "O's" into the desired bit 
locations. Although only "O's" can be programmed, 
both "1's" and "O's" can be present in the data 
word. Ultraviolet erasure is the only way to change 
"a's" to "1 's", 

Program mode is entered when Vpp is raised to 
12.75V. ProgramlVerify operation is synchronous 
with the clock and can only be initiated following an 
idle state. Program and Program Verify take place in 
3 clock cycles. In the first clock cycle, addresses 
and data are input and programming occurs. Pro­
gram Verify follows in the second clock cycle and 
the third clock cycle terminates synchronous Pro­
gramlVerify operation, returning the state machine 
to the idle state with outputs at high impedance. 

As in the Read mode, A2-A16 point to a four byte 
block in the memory array. During Programming the 
internal address increment circuitry is disabled and 
the programmer must supply Ao and A1 to point to 
an individual byte within the four byte block that is to 
be programmed. Only one byte is programmed in 
each 3 cycle programlVerify sequence. 

Program Inhibit 

Program Inhibit mode allows parallel programming 
and verification of multiple devices with different 
data. With Vpp at 12.75V, a ProgramlVerify se­
quence is initiated for any device that receives a val­
id ALE pulse and rising clock edge while CS is as­
serted. A PGM pulse programs data in the first cycle 
of the sequence and data for Program Verify is out­
put in the second cycle. The ProgramlVerify se­
quence is inhibited on any devices for which CS is 
not asserted during the first (ALE) cycle. Data will 
not be programmed and the outputs will remain in 
their high impedance state. 

inteligent IdentifierTM Mode 

The device's manufacturer, product type, and con­
figuration are stored in a four byte block that can be 

4-53 

accessed by using the inteligent Identifier™ mode. 
The programmer can verify the device identifier and 
choose the programming algorithm that corresponds 
to the Intel 27960KX. The inteligent Identifier can 
also be used to verify that the product is configured 
with the desired Read mode options for wait states. 

Inteligent Identifier mode is entered when Ag (pin 
32) is raised to its high voltage (VH) level. The inter­
nal state machine is then set for inteligent Identifier 
Read operation. Reading the Identifier is similar to a 
Read operation on a one wait state configured prod­
uct. Up to four bytes can be read in a single burst 
access. inteligent Identifier read is terminated by a 
synchronous BLAST input, returning the state ma­
chine to the idle state with outputs at high imped­
ance. 

The four byte block code for the inteligent Identifier 
code is located at address OOH through 03H and is 
encoded as follows: 

MEANING (A1, Ao) DATA 

IntellD Byte 00 89h 

27960 Byte 01 EOh 
KX Byte 10 OOb 

1 wait state Byte 11 01b 
2 wait states Byte 11 10b 

RESET MODE 

Due to the synchronous nature of the 27960KX, the 
various operating modes must be initiated from a 
known idle state. During normal operation, the inter­
nal state machine returns to an idle state at the ter­
mination of a bus access (after BLAST is asserted). 

During initial device power up, the state machine is 
in an indeterminant state. The reset mode is provid­
ed to force operation in to the idle state. Reset mode 
is entered when the RESET pin is asserted. Output 
pins are asynchronously set to the high impedance 
state and address latches are put into the flow 
through mode. A reset is successfully completed 
and the state machine set in an idle state in the 
cycle after RESET has been asserted for a minimum 
of 10 clock cycles and deasserted for five clock cy­
cles. 



intel® 27960KX 

FAIL 

290237-17 

FigureS. Quick-Pulse Programming™ Algorithm 

4-54 



27960K}{ 

QUICK-PULSE PROGRAMMING 
ALGORITHM 

The Quick-Pulse Programming algorithm programs 
Intel's 27960KX. Developed to substantially reduce 
programming throughput time, this algorithm allows 
optimized equipment to program a 27960KX in un­
der 17 seconds. Actual programming time depends 
on the programmer used. 

The Quick-Pulse Programming algorithm uses a 
100 fLs pulse followed by a byte verfication to deter­
mine when the addressed byte is correctly pro­
grammed. The algorithm terminates if 25 100fLs 

pulses fail to program a byte. Figure 8 shows the 
27960KX Quick-Pulse Programming algorithm flow­
chart. 

The entire program-pulse, byte-verify sequence is 
performed with Vee = 6.25V and Vpp = 12.75V. 
The programming equipment must establish Vee be­
fore applying voltages to any other pins. When pro­
gramming is complete, all bytes should be compared 
to the original data with Vee = 5.0V and Vpp = 
12.75V. 

D.C. PROGRAMMING CHARACTIERISTICS TA= 25°C +5°C -
Symbol Parameter Notes Min Mal( Unit Test Condition 

III Input Load Current 10 fLA VIN = VIH or VIL 

lee Vee Program Current 1 125 mA CS = VIL 

Ipp Vpp Program Current 1 50 mA CS = VIL 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 0.5 V 

VOL Output Low Voltage (Verify) 0.40 V IOL = 2.1 mA 

VOH Output High Voltage (Verify) Vee- 0.8 V IOH = - 400 fLA 

VID Ag inteligent Identifier Voltage 11.5 12.5 V 

Vee Supply Voltage (Program) 2 6.0 6.5 V 

Vpp Program Voltage 2 12.5 13.0 V 

NOTES: 
1. The maximum current value is with outputs unloaded. 
2. Vce must be applied simultaneously or before Vpp and remove simultaneously or after Vpp. 
3. During programming clock levels are VIH and VIL. 

4-55 



intel® 27960KX 

AC PROGRAMMING, RESET AND ID CHARACTERISTICS TA = 25°C ± 5°C 

No Symbol Parameter Notes Min Max Units 

1 tAVPl Address Valid to PGM low 2 /Ls 

2 tCHAX ClK High to Address Invalid 50 ns 

3 tlLCH ALE low to ClK High 1 50 ns 

4 tCHLH ClK High to ALE High 2 50 ns 

5 tSVCH CS Valid to ClK High 50 ns 

6 tCHSX ClK High to CS Invalid 3 ns 

7 tCHQV ClKHigh to DOUT·Valid 100 ns 

8 tCHQX ClK High to DOUT Invalid 0 ns 

9 tBVCH BLAST Valid to ClK High 50 ns 

10 tCHBX ClK High to BLAST Invalid 4 50 ns 

11 tQVPL DATA Valid to PGM low 2 /Ls 

12 tpLPH PGM Program Pulse Width 95 105 /Ls 

13 tpHQX PGM High to DIN Invalid 2 /Ls 

14 tCLPL ClK low to PGM low .50 ns 

15 tQZCH DIN in Tri-State to ClK High 2 /Ls 

16 tvcs VCC Program Voltage to ClK High 7 2 /Ls 

17 tvps Vpp Program Voltage to ClK High 7 2 /Ls 

18 tAgHCH Ag VID Voltage to ClK High 2 /Ls 

19 tCHA9X ClK High to A9 not VID Voltage 2 /Ls 

20 tRVCH RESET Valid to ClK High 6 50 ns 

21 tCHCL ClK High to ClK low 5 100 ns 

22 tCLCH ClK low to ClK High 5 100 ns 

NOTES: 
1. If CS is low, ALE can go low no sooner than the falling edge of the previous CLK. 
2. ALE must return high prior to the next rising edge of clock. 
3. CS must remain low until after the rising edge CLK1. 
4. BLAST must return high prior to the next rising edge of ClK. 
5. Max CLK rise/fall time is 100 ns. 
6. RESET must be held low for 10 cycles and high for 5 cycles before performing a read. 
7. Vee must be applied simultaneously or before Vpp and removed simultaneously or after Vpp. 

4-56 



!! 
co 
I: ... 
(\) 

!O 
N 

;;:l 
en 
0 

" >< 
"0 

""'" 0 cJ, CO 
-..j ... 

III 
3 
3 
:i" 
co 
:E 
III 
< 
(\) -0 ... 
3 
fIl 

m;,j@ i ~ 
IL . CD" '0 '------

H ,:l .• : :32 
Y' . . 

AD DR IH ADDRESS 0 : _~-« ADDRESS 1 

:1: 1d! : 
ill : U 

YIL . . 

:17\ :@ 
3 :~ : 

~H . • 

DATA DATA 0 IN 
YIL 

1-7-----;...-@ ·1· @~-=-i 
@ 

_YIH 
PGM 

YIL : ~ J 
~@----"O 

YIH ]: BLAST : 

% : 

®: !® ®!@) 
- Y,H4:- ~ .. 
CS y .-: ~ 

IL • . . 
@: . . 

12.7SV y;... ~_~ 
Vpp~ 

6.2SY : YCC4 
@ 

290237-18 

""". 
c( 

@ 

I\) 
...... 
CO 
Cl 
o 

" X 

~ 
2:§J 
ffiiil 
F = 
~ 
~ 
~ 
2:§J 
~ 



ADDR 

DATA 

Vpp 

27960KX 

__ ----i-__ ----JXI~~~:; XXXXXXXXXXXXXXX 

\tV 
----,...-----....;...---41«« I.D. ~ ~ Byte 0 

@! @! 
V10 r:-...-:-: -~~---------..;..--.....::-~: 

Ag V
1H xxxxxxxxxxxxf i ~ 

290237-19 

Figure 10. 27960KX RESET and 10 Waveforms 

4-58 



Jill 

II 

I::l 

t;1l 

~ 

82596CA 
HIGH-PERFORMANCE 32-BIT LOCAL 

AREA NETWORK COPROCESSOR 

Performs Complete CSMAlCD Medium I:l Optimized CPU Interface 
Access Control (MAC) Functions- - Optimized Bus Interface to Intel's 
Independently of CPU i486™D}(, i486™S}( and 80960CA 
-IEEE 802.3 (EOC) Frame Delimiting Processors 
- HDLC Frame Delimiting - Supports Big Endian and Little 

Supports Industry Standard LANs Endian Byte Ordering 

-IEEE TYPE 10BASE-T, IliI 32-Bit Bus Master Interface 
IEEE TYPE 10BASE5 (Ethernet*), -106 MB/s Bus Bandwidth 
IEEE TYPE 10BASE2 (Cheapernet), - Burst Bus Transfers 
IEEE TYPE 1BASE5 (StarLAN), - Bus Throttle Timers 
and the Proposed Standard - Transfers Data at 100% of Serial 
10BASE-F Bandwidth 

- Proprietary CSMA/CD Networks Up - 128-Byte Receive fiFO, 64-Byte 
to 20 Mb/s Transmit FIFO 

On-Chip Memory Management ~ Self-Test Diagnostics 
- Automatic Bufier Chaining 

El Configurable Initialization Root for Data 
- Buffer Reclamation after Receipt of Structures 

Bad Frames; Optional Save Bad 
Frames 0 High-Speed, 5V, CHMOS'* IV 

- 32-Bit Segmented or Linear (Flat) Technology 
Memory Addressing Formats D 132-Pin Plastic Quad Flat Pack (PQFP) 

Network Management and Diagnostics and PGA Package 
- Monitor Mode (See Packaging Spec Order No. 240800·001, 

- 32-Bit Statistical Counters Package Type KU and A) 

82586 Software Compatible 
i486 is a trademark of Intel Corporation. 

'Ethernet is a registered trademark of Xerox Corporation. 
"CHMOS is a patented process of Intel Corporation. 

r---------------------, 1"'-------, r-------------, 
I Sorial FIFO I I Poro1ls1 

- I Subsyst~m Subsystem I I Subsystem 
LPBK I A' I 

RTS I 

~ 
I Control 

CTS Transmit 

~ 
Transmit ;;'1 I I 

~ I Bit By to FIFO 32-Bit DBus Data TxC Machine Machine I- R ' I Interface 
TxD I Rx I Unit 

32-Bit DBus (DIU) 
I 8 I 

CRS I Carrier - -- - - _ .. I 
,-l\ Sense I 

COT 
I Collision I 

V J ~J Detect r- I 
I Logic I 
I , ------ , ~ Bus I 

Exponential I I L Interface 
I Backoff ~ .J\ Unit 
I Timer Switch j[trOI 

(BIU) 
I . , 

U I ~ '" 0. 

RxD I 
1i5 Receive ~ Rece;ve ~ I 

I Bit Byte -+ Micro ~ RxC I Machine Machine Machine D~A 
I ~ I 
I '--- ----y' 

Figure 1. 82596CA Block Diagram 

4-59 

I 
I lE/BE 

I 
I PORT 

I 
I ~ 

Dala. Bus . 
I 
I 
I 
I 
I 
I 

Control ) , 
I 
I 
I 
I 
I 
I Address 
I 
I 
I B te Enable,) 
I 

290218-1 

November 1991 
Order Number: 290218·004 



int'eL 82596CA 

82596CA High-Performance 32-Bit 
local Area Network Coprocessor 

CONTENTS PAGE CONTENTS PAGE 

INTRODUCTION ........................ 4-61 SYSTEM CONTROL BLOCK (SCB) ..... 4-84 

PIN DESCRIPTIONS .................... 4-65 SCB OFFSET ADDRESSES . ............ 4-87 

82596 AND HOST CPU CBL Offset (Address) .................... 4-87 

INTERACTION ....................... 4-69 RFA Offset (Address) .................... 4-87 

82596 BUS INTERFACE ................ 4-69 SCB STATISTICAL COU~TERS ........ 4-88 

82596 MEMORY ADDRESSiNG ........ 4-69 Statistical Counter Operation ............ 4-88 

82596 SYSTEM MEMORY ACTION COMMANDS AND 
STRUCTURE .. " ....................... 4-71 OPERATING MODES ................. 4-89 

TRANSMIT AND RECEIVE MEMORY NOP .................................... 4-90 

STRUCTURES . ....................... 4-72 Individual Address Setup ................ 4-90 

TRANSMITTING FRAMES .............. 4-75 
Configure ............................... 4-91 

Multicast-Setup ......................... 4-97 
RECEIVING FRAMES . .................. 4-76 Transmit ................................ 4-98 

82596 NETWORK MAt'JAGEMEt'n Mm Jamming Rules .......................... 4~ 100 
DIAGNOSTICS ....................... 4-76 TOR .............. ; .................... 4-101 

NETWORK PLANNING AND Dump ., ................................ 4-103 
MAINTENANCE ...................... 4-78 Diagnose ............................. ; 4' 106 

STATION DIAGNOSTICS AND SELF-
TEST ................................. 4-79 

RECEIVE FRAME DESCRiPTOR ...... 4-107 

Simplified Memory Structure ............ 4-107 
82586 SOFTWARE COMPATIBILITY ... 4-79 Flexible Memory Structure .............. 4-108 

INITIALIZING THE 82596 ............... 4-79 Receive Buffer Descriptor (RBD) ....... 4-109 

SYSTEM CONFIGURATION POINTER PGA PACKAGE THERMAL 
(SCP) ................................. 4-79 SPECIFICATIONS ................... 4-114 

Writing the Sysbus ...................... 4-80 ELECTRICAL AND TIMING 

INTERMEDIATE SYSTEM CHARACTERISTICS ................ 4-114 

CONFIGURATION POINTER Absolute Maximum Ratings ............. 4-114 
(ISCP) ............................. ; .. 4-81 DC Characteristics ..................... 4-114 

INITIALIZATION PROCESS ............ 4-81 AC Characteristics ..................... 4-115 

CONTROLLING THE 82596CA ......... 4-82 82596CA Input/Output System 
Timings .............................. 4-115 

82596 CPU ACCESS INTERFACE Transmit/ Receive Clock Parameters ... 4-117 
(PORT) ............................... 4-82 

82596CA BUS Operation ............... 4-120 

MEMORY ADDRESSING FORMATS .... 4-82 System Interface AC Timing 

LITTLE EN DIAN AND BIG ENDIAN 
BYTE ORDERING .................... 4-83 

Characteristics ....................... 4-121 

Input Waveforms ....................... 4-122 

COMMAND UNIT (CU) .................. .4-83 
Serial AC Timing Characteristics ........ 4-124 

RECEIVE UNIT (RU) .................... 4-84 
OUTLINE DIAGRAMS ................. 4-126 

4-60 



in~® 82596CA 

INTRODUCTION 

The 82596CA is an intelligent, high-performance 
32-bit Local Area Network coprocessor. The 
82596CA implements the CSMAlCD access method 
and can be configured to support all existing IEEE 
802.3 standards-TYPEs 1 OBASE-T, 10BASE5, 
10BASE2, 1 BASE5, and 10BROAD36. It can also be 
used to implement the proposed standard TYPE 
10BASE-F. The 82596CA performs high-level com­
mands, command chaining, and interprocessor com­
munications via shared memory, thus relieving the 
host CPU of many tasks associated with network 
control. All time-critical functions are performed in­
dependently of the CPU, this increases network per­
formance and efficiency. The 82596CA bus interfac­
es is optimized for Intel's i486™SX, i486™DX, 
80960CA, and 80960KB processors. 

The 82596CA implements all IEEE 802.3 Medium 
Access Control and channel interface functions, 
these include framing, preamble generation and 
stripping, source address generation, destination ad­
dress checking, short-frame detection, and automat­
ic length-field handling. Data rates up to 20 Mb/s are 
supported. 

The 82596CA provides a powerful host system inter­
face. It manages memory structures automatically, 
with command chaining and bidirectional data chain­
ing. An on-chip DMA controller manages four chan­
nels, this allows autonomous transfer of data blocks 
(buffers and frames) and relieves the CPU of byte 
transfer overhead. Buffers containing errored or col­
lided frames can be automatically recovered without 
CPU intervention. The 82596CA provides an up­
grade path for existing 82586 software drivers by 
providing an 82586-software-compatible mode that 
supports the current 82586 memory structure. The 
82586CA also has a Flexible memory structure and 
a Simplified memory structure. The .82596CA can 
address up to 4 gigabytes of memory. The 82596CA 
supports Little Endian and Big Endian byte ordering. 

The 82596CA bus interface can achieve a burst 
transfer rate of 106 MB/s at 33 MHz. The bus inter­
face employs bus throttle timers to regulate 
82596CA bus use. Two large, independent FIFOs-
128 bytes for Receive and 64 bytes for Transmit­
tolerate long bus latencies and provide programma­
ble thresholds that allow the user to optimize bus 
overhead for any worst-case bus latency. The high­
performance bus is capable of back-to-back trans­
mission and reception during the IEEE 802.3 9.6-fLs 
Interframe Spacing (IFS) period. 

The 82596CA provides a wide range of diagnostics 
and network management functions, these include 
internal and external loop back, exception condition 

4-61 

tallies, channel activity indicators, optional capture 
of all frames regardless of destination address 
(promiscuous mode), optional capture of errored or 
collided frames, and time domain reflectometry for 
locating fault points on the network cable. The sta­
tistical counters, in 32-bit segmented and linear 
modes, are 32-bits each and include CRC errors, 
alignment errors, overrun errors, resource errors, 
short frames, and received collisions. The 82596CA 
also features a monitor mode for network analysis. 
In this mode the 82596CA can capture status bytes, 
and update statistical counters, of frames monitored 
on the link without transferring the contents of the 
frames to memory. This can be done concurrently 
while transmitting and receiving frames destined for 
that station. 

The 82596CA can be used in both baseband and 
broadband networks. It can be configured for maxi­
mum network efficiency (minimum contention over­
head) with networks of any length. Its highly flexible 
CSMA/CD unit supports address field lengths of 
zero through six bytes-configurable to either' IEEE 
B02.3/Ethernet or HDLC frame delimitation. It also 
supports 16- or 32-bit cyclic redundancy checks. 
The CRC can be transferred directly to memory for 
receive operations, or dynamically inserted for trans­
mit operations. The CSMAlCD unit can also be con­
figured for full duplex operation for high throughput 
in point-to-point connections. 

82596 B-Stepping 

The 82956 B-Step incorporates new features com­
pared to the 82596 A 1 stepping. The following is a 
summary of the 82596 B-step new features. 

o The 82596 B-step transmit buffers can now be 
byte aligned. 

o In big endian mode, and when configured to lin­
ear mode, the 82596 B-step treats 32-bit address 
pointers as big endian 32-bit entities. However, 
the SCB absolute address and statistical coun­
ters are still treated as two 16-bit big endian enti­
ties. This big endian 32-bit entity support is con­
figured through the SYSBUS byte; not setting this 
mode will configure the 82596 B-step to be 100% 
compatible to the 82596 A1-step big endian 
mode. 

a The 82596 B-step has improved performance on 
back-to-back frame transmission. 

o The 82596 B-step can be configured to reread 
the next Command Block on the CB list upon re­
ceiving a CU RESUME Control Command. 

The 82596CA is fabricated with Intel's reliable, 5-V, 
CHMOS IV (process 648.8) technology. It is avail­
able in a 132-pin PQFP or PGA package. 



intel$ 82596CA 

82596CA 
(Top View) 

Figure 2. 82596CA PQFP Pin Configuration 

4-62 

2902.18-2 



82596CA 

A 

01 I" 0 o o o o o o o o o o o o o 01 

015 013 06 05 Vss VSS O' 

02 0 o o o o o o o o o o o o o 02 

018 012 09 D8 02 Vee DO Vee CPO PORT "iIT:AST HOLD 

03 0 o o o o o o o o o o o o o 03 

020 D16 Dl. Dll 010 D7 D3 01 elK OP3 DPI READY lNT/iNf CA 

04 0 o o o o o 04 

D22 D21 D17 
METAL LID lOCK w/fi BREa 

05 0 o o o o o 05 

026 024 019 Ws AHOLD BEl 

06 0 o o o o o 06 

Vss Vee D23 HLDA BOfF Vss 

07 0 o o (82596CA Pin View) 
Vss Vee 025 

08 0 o o o o o 08 

Vss 027 D2e 

09 0 o o o o o P9 

D29 D31 030 A3 A2 BE3 

10 0 o o o o o 10 

A4 

11 0 o o o o o 11 

TxD RxC CTS A8 A6 A5 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 o 12 

i:Pe'i( RxD TxC A30 A2B A25 A23 A21 AI8 AlB A12 AIO A9 A7 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 o 13 

COT RESET Vee A29 Vee A26 Vee Vee Vee A19 Vee AI4 Al.3 All 

14 0 o o o o o o o o o o o o o 
CRS lE!iiE A31 A27 Vss A24 Vss Vss Vss A22 Vss A20 AI7 A1S 

A 

290218-3 

Figure 3. 82596CA PGA Pinout 

4-63 



82596CA 

82596CA PGA Cross Reference by Pin Name 

Address Data Control 
Serial 

Vee Vss Interface 

Signal Pin No. Signal Pin No. Signal Pin No. Signal Pin No. Pin No. Pin No. 

A2 N9 DO J2 ADS M5 COl: A13 86 A6 
A3 M9 01 H3 AHOLO N5 CRS A14 87 A7 
A4 M10 02 G2 8EO M7 CTS C11 810 A8 
A5 P11 03 G3 8E1 P5 LP8K A12 C13 A10 
A6 N11 04 G1 8E2 M8 RTS C10 E2 E1 
A7 P12 05 01 8E3 P9 RxC 811 E13 E14 
A8 M11 06 C1 8LAST N2 RxO 812 F2 F1 
A9 N12 07 F3 80FF N6 TxC C12 G13 G14 
A10 M12 08 02 8ROY M1 TxO A11 H2 H1 
A11 P13 09 C2 8REQ P4 H13 H14 
A12 L12 010 E3 8S16 N1 J13 J1 
A13 N13 011 03 CA P3 K2 J14 
A14 M13 012 82 CLK J3 L13 K1 
A15 P14 013 81 OPO L2 N7 L14 
A16 K12 014 C3 OP1 L3 N8 P6 
A17 N14 015 A1 OP2 L1 , N10 P7 
A18 J12 016 83 OP3 K3 P8 
A19 K13 017 C4 HLDA M6 P10 
A20 M14 018 A2 HOLD P2 
A21 H12 019 C5 INT/INT N3 
A22 K14 020 A3 LE/8E 814 
A23 G12 021 84 LOCK M4 
A24 F14 022 A4 PCHK P1 
A25 F12 023 C6 PORT M2 
A26 F13 024 85 READY M3 
A27 014 025 C7 RESET 813 
A28 E12 026 A5 WIA N4 
A29 013 027 88 
A30 012 028 C8 
A31 C14 029 A9 

030 C9 
031 89 

4-64 



82596CA 

PIN DIESCRIPTIONS 

Symbol 
PQFP 

Type Name and Function 
Pin No. 

ClK 9 I CLOCK. The system clock input provides the fundamental timing for 
the 82596. It is a 1 X ClK input used to generate the 82596 clock and 
requires TTL levels. All external timing parameters are specified in 
reference to the rising edge of ClK. 

00-031 14-53 I/O DATA BUS. The 32 Data Bus lines are bidirectional, tri·state lines that 
provide the general purpose data path between the 82596 and 
memory. With the 82596 the bus can be either 16 or 32 bits wide; this 
is determined by the BS16 signal. The 82596 always drives all 32 data 
lines during Write operations, even with a 16-bit bus. 031- DO are 
floated after a Reset or when the bus is not acquired. 
These lines are inputs during a CPU Port access; in this mode the CPU 
writes the next address to the 82596 through the data lines. During 
PORT commands (Relocatable SCP, Self-Test, Reset and Dump) the 
address must be aligned to a 16-byte boundary. This frees the 03-00 
lines so they can be used to distinguish the commands. The following 
is a summary of the decoding data. 

DO 01 02 03 031-04 Function 

0 0 0 0 0000 Reset 
0 1 0 0 AOOR Relocatable SCP 
1 0 0 0 AD DR Self-Test 
1 1 0 0 AOOR Dump Command 

OPO-OP3 4-7 I/O DATA PARITY. These aretri-stated data parity pins. There is one 
parity line for each byte of the data bus. The 82596 drives them with 
even-parity information during write operations having the same timing 
as data writes. Likewise, even-parity information, with the same timing 
as read information, must be driven back to the 82596 over these pins 
to ensure that the correct parity check status is indicated by the 
82596. 

PCHK 127 0 PARITY CHECK. This pin is driven high one clock after ROY to inform 
Read operations of the parity status of data sampled at the end of the 
previous clock cycle. When driven low it indicates that incorrect parity 
data has been sampled. It only checks the parity status of enabled 

'bytes, which are indicated by the Byte Enable and Bus Size signals. 
PCHK is only valid for one clock time after data read is returned to the 
82596; i.e., it is inactive (high) at all other times. 

A31-A2 70-108 0 ADDRESS LINES. These 30 tri-stated Address lines output the 
address bits required for memory operation. These lines are floated 
after a Reset or when the bus is not acquired. 

BE3-BEO 109-114 0 BYTE ENABLE. These tri-stated signals are used to indicate which 
bytes are involved with the current memory access. The number of 
Byte Enable signals asserted indicates the physical size of the data 
being transferred (1, 2, 3, or 4 bytes). 
" BEO indicates 07 -DO 
" BE1 indicates 015-08 
o BE2 indicates 023-016 
o BE3 indicates 031-024 

These lines are floated after a Reset or when the bus is not acquired. 

W/R 120 0 WRITE/READ. This dual function pin is used to distinguish Write and 
Read cycles. This line is floated after a Reset or when the bus is not 
acquired. 

4-65 



int:eL 82596CA 

PIN DESCRIPTIONS (Continued) 

Symbol 
PQFP 

Type Name and Function 
Pin No. 

ADS 124 0 ADDRESS· STATUS. The 82596 uses this tri-state pin to indicate to 
indicate that a valid bus cycle has begun and that A31-A2, BE3-BEO, 
and W/R are being driven. It is asserted during t1 bus states. This line 
is floated after a Reset or when the bus is not acquired. 

RDY 130 I READY. Active low. This signal is the acknowledgment from 
addressed memory that the transfer cycle can be completed. When 
high, it causes wait states to be inserted. It is ignored at the end of the 
first clock of the bus cycle's data cycle. This active-low signal does not 
have an internal pull-up resistor. This signal must meet the setup and 
hold times to operate correctly. 

BRDY 2 I BURST READY. Active low. Burst Ready, like RDY, indicates that the 
external system has presented valid data on the data pins in response 
to a Read, or that the external system has accepted the 82596 data in 
response to a Write request Also, like RDY, this signal is ignored at 
the end of the first clock in a bus cycle. If the 82596 can still receive 
data from the previous cycle, ADS will not be asserted in the next 
clock cycle; however, Address and Byte Enable will change to reflect . 
the next data item expected by the 82596. BRDY will be sampled 

. during each succeeding clock and if active, the data on the pins will be 
strobed to the 82596 or to external memory (read/write). BRDY 
operates exactly like READY during the last data cycle of a burst 
sequence and during nonburstable cycles. 

BLAST 128 0 BURST LAST. A signal (active low) on this tri-state pin indicates that 
the burst cycle is finished and when BRDY is next returned it will be 
treated as a normal ready; I.e., another set of addresses will be driven 
with ADS or the bus will go idle. BLAST is not asserted if the bus is not 
acquired. 

AHOLD 117 I ADDRESS HOLD. This hold signal is active high, it allows another bus 
master to access the 82596 address bus. In a system where an 82596 
and an i486 processor share the local bus, AHOLD allows the cache 
controller to make a cache invalidation cycle while the 82596 holds the 
address lines. In response to a signal on this pin,·the 82596 

'immediately (I.e. during the next clock) stops driving the entire address 
bus (A31..:.A2); the rest of the bus can remain active. For example, 
data can be returned for a previously specified bus cycle during 
Address Hold. The 82596 will not begin another bus cycle while 
AHOLD is active. 

BOFF 116 I BACKOFF. This signal is active low, it informs the 82596 that another 
bus master requires access to the bus before the 82596 bus cycle 
completes. The 82596 immediately (I.e. during the next clock) floats its 
bus. Any data returned to the 82596 while BOFF is asserted is ignored. 
BOFF has higher priority than RDY or BRDY; if two such signals are 
returned in the same clock period, BOFF is given preference. The 
82596 remains in Hold until BOFF goes high, then the 82596 resumes 
its bus cycle by driving out the address and status, and asserting ADS. 
BOFF should not be asserted during T1. 

LOCK 126 0 LOCK. This tri-state pin is used to distinguish locked and unlocked bus 
cycles. LOCK generatesa semaphore handshake to the CPU. LOCK 
can be active for several memory cycles, it goes active during the first 
locked memory cycle (t1) and goes inactive at the last locked cycle 
(t2). This line is floated after a Reset or when the bus is not acquired. 
LOCK can be disabled via the sysbus byte in software. 

4-66 



82596CA 

PIN DIESCRIPTIONS (Continued) 

Symbol 
PQFP 

Type Nnme nnd Function 
Pin No. 

B816 129 I BUS SIZE. This signal allows the 82596CA to work with either 16· or 
32-bit bytes. Inserting B816 low causes the 82596 to perform two 16-
bit memory accesses when transferring 32-bit data. In little endian 
mode the 015-00 lines are driven when B816 is inserted, in Big 
Endian mode the 031-016 lines are driven. 

HOLD 123 0 HOLD. The HOLD signal is active high, the 82596 uses it to request 
local bus r)lastership. In normal operation HOLD goes inactive before 
HLDA. The 82596 can be forced off the bus by deasserting HLDA or if 
the bus throttle timers expire. 

HLDA 118 I HOLD ACKNOWLEDGE. The HLDA signal is active high, it indicates 
that bus mastership has been given to the 82596. HLDA is internally 
synchronized; after HOLD is detected low, the CPU drives HLOA low. 

NOTE: 
Do not connect HLDA to VC~it will cause a deadlock. A user wanting 
to give the 82596 permanent access to the bus should connect HLDA 
to HOLD. If HLOA goes inactive before HOLD, the 82596 will release 
the bus (by deasserting HOLD) within a maximum of within a specified 
number of bus cycles as specified in the 82596 User's Manual. 

BREQ 115 I BUS RIEQUEST. This signal, when configured to an externally 
activated mode, is used to trigger the bus throttle timers. 

PORT 3 I PORT. When this signal is received, the 82596 latches the data on the 
data bus into an internal 32-bit register. When the CPU is asserting this 
signal it can write into the 82596 (via the data bus). This pin must be 
activated twice during all CPU Port access commands. 

RE8ET 69 I RESET. This active high, internally synchronized signal causes the 
82596 to terminate current activity. The signal must be high for at least 
five system clock cycles. After five system clock cycles and four TxC 
clock cycles the 82596 will execute a Reset when it receives a high 
RE8ET signal. When RE8ET returns to low the 82596 waits for the 
first CA signal and then begins the initialization sequence. 

LE/BE 65 I LITTLE ENDIAN/BIG ENDIAN. This dual-function pin is used to 
I select byte ordering. When LE/BE is high, little end ian byte ordering is 

used; when low, big endian byte ordering is used for data in frames 
(bytes) and for control (8CB, RFD, CBL, etc). 

CA 119 I CHANNEL ATTENTION. The CPU uses this pin to force the 82596 to 
begin executing memory resident Command blocks. The CA signal is 
internally synchronized. The signal must be high for at least one 
system clock. It is latched internally on the high to low edge and then 
detected by the 82596. 
The first CA after a Reset forces the 82596 into the initialization 

.. 
sequence beginning at location 00FFFFF6h or an 8CP address written 
to the 82596 using CPU Port access. All subsequent CA signals cause 
the 82596 to begin executing new command sequences from the 8CB. 

INTIINT 125 0 INTERRUPT_ A high signal on this pin notifies the CPU that the 82596 
is requesting an interrupt. This signal is an edge triggered interrupt 
signal, and can be configured to be active high or low. 

4-67 



intel® 82596CA 

PIN DESCRIPTIONS (Continued) 

Symbol 
PQFP 

Type Name and Function 
Pin No. 

Vee 17 Pins POWER. +5 V ± 10%. 

Vss 17 Pins GROUND.OV. 

TxD 54 a TRANSMIT DATA. This pin transmits data to the serial link. It is high 
when not transmitting. 

TxC 64 I TRANSMIT CLOCK. This signal provides the fundamental timing for 
the serial subsystem. The clock is also used to transmit data 
synchronously on the TxD pin. For NRZ encoding, data is transferred 
to the TxD pin on the high to low clock transition. For Manchester 
encoding, the transmitted bit center is aligned with the low to high 
transition. Transmit clock must always be running for proper device 
operation. 

LPBK 58 a LOOPBACK. This TTL·level control signal enables the loopback 
mode. In this mode serial data on the TxD input is routed through the 
82C501 internal circuits and back to the RxD output without driving the 
transceiver cable. To enable this signal, both internal and external 
loopback need to be set with the Configure command. 

RxD 60 I RECEIVE DATA. This pin receives NRZ serial data only. It must be 
high when not receiving. 

RxC 59 I RECEiVE CLOCK. This signal provides timing information to the 
internal shifting logic. For NRZ data the state of the RxD pin is 
sampled on the high to low transition of the clock. 

RTS 57 a REQUEST TO SEND. When this signal is low the 82596 informs the 
external interface that it has data to transmit. It is forced high after a 
Reset or when transmission is stopped. 

CTS 62 I CLEAR TO SEND. An active· low signal that enables the 82596 to 
send data. It is normally used as an interface handshake to RTS. 
Asserting CTS high stops transmission. CTS is internally synchronized. 
If CTS goes inactive, meeting the setup time to the TxC negative edge, 
the transmission will stop and RTS will go inactive within, at most, two 
TxC cycles. 

CRS 63 I CARRIER SENSE. This signal is active low, it is used to notify the 
82596 that traffic is on the serial link. It is only used if the 82596 is 
configured for external Carrier Sense. In this configuration external 
Circuitry is required for detecting traffic on the serial link. CRS is 
internally synchronized. To be accepted, the signal must remain active 
for at least two serial clock cycles (for CRSF = 0). 

CDT 61 I COLLISION DETECT. This active·low signal informs the 82596 that a 
collision has occurred. It is only used if the 82596 is configured for 
external Collision Detect. External circuitry is required for collision 
detection. CDT is internally synchronized. To be accepted; the signal 
must remain active for at least two serial clock cycles (for CDTF = 0). 

4·68 



82596CA 

82596 AND HOST CPU INTERACTION 

The 82596CA and the host CPU communicate 
through shared memory. Because of its on-chip 
DMA capability, the 82596 can make data block 
transfers (buffers and frames) independently of the 
CPU; this greatly reduces the CPU byte transfer 
overhead. 

The 82596 is a multitasking coprocessor that com­
prises two independent logical units-the Command 
Unit (CU) and the Receive Unit (RU). The CU exe­
cutes commands from shared memory. The RU han­
dles all activities related to frame reception. The in­
dependence of the CU and RU enables the 82596 to 
engage in both activities Simultaneously-the CU 
can fetch and execute commands from memory 
while the RU is storing received frames in memory. 
The CPU is only involved with this process after the 
CU has executed a sequence of commands or the 
RU has finished storing a sequence of frames. 

The CPU and the 82596 use the hardware signals 
Interrupt (lNT) and Channel Attention (CA) to initiate 
communication with the System Control Block 
(SCB), see Figure 4. The 82596 uses INT to alert the 
CPU of a change in the contents of the SCB, the 
CPU uses CA to alert the 82596. 

The 82596 has a CPU Port Access state that allows 
the CPU to execute certain functions without ac­
cessing memory. The 82596 PORT pin and data bus 
pins are used to enable this feature. The CPU can. 
directly activate four operations when the 82596 is in 
this state. 

o Write an alternative System Configuration Pointer 
(SCP). This can be used when the 82596 cannot 
use the default SCP address space. 

o Write a different Dump Command Pointer and ex­
ecute Dump. This can be used for troubleshoot­
ing No Response problems. 

o The CPU can reset the 82596 via software with­
out disturbing the rest of the system. 

o A self,test can be used for board testing; the 
82596 will execute a self-test and write the re­
sults to memory. 

4-69 

82596 BUS INTERFACE 

The 82596CA has bus interface timings and pin defi­
nitions that are compatible with Intel's 32-bit 
i486™SX and i486™DX microprocessors. This 
eliminates the need for additional bus interface logic. 
Operating at 33 MHz, the 82596's bus bandwidth 
can be as high as 106 MB/s. Since Ethernet only 
requires 1.25 MB/s, this leaves a considerable 
amount of bandwidth for the CPU. The 82596 also 
has a bus throttle to regulate its use of the bus. Two 
timers can be programmed through the SCB: one 
controls the maximum time the 82596 can remain on 
the bus, the other controls the time the 82596 must 
stay off the bus (see Figure 5). The bus throttle can 
be programmed to trigger internally with HLDA or 
externally with BREQ. These timers can restrict the 
82596 HOLD activation time and improve bus utiliza­
tion. 

82596 MIEMORY ADDRIESSING 

The 82596 has a 32-bit memory address range, 
which allows addressing up to four gigabytes of 
memory. The 82596 has three memory addressing 
modes (see Table 1). 

II 82586 Mode. The 82596 has a 24-bit memory 
address range. The System Control Block, Com­
mand List, Receive Descriptor List, and Buffer 
Descriptors must reside in one 64-KB memory 
segment. Transmit and Receive buffers can re­
side in a 24·bit address space. 

o 32-Bit Segmented Mode. The 82596 has a 32-
bit memory address range. The System Control 
Block, Command List, Receive Descriptor List, 
and Buffer Descriptors must reside in one 64-KB 
memory segment. Transmit and Receive buffers 
can reside in a 32-bit address space. 

II Linear Mode. The 82596 has a 32-bit memory 
address range. Any memory structure can reside 
anywhere within the 32-bit memory address 
range. 



intel® 

Pointer or Offset 

ISCP Address 

SCB Address 

82596CA 

CHANNEL ATTENTION I CPU .1 CA I INTERRUPT I 82596 INT 

. ..t. ;>- "" 

SHARED MEMORY 

INITIALIZATION 
ROOT 

"-
~ SYSTEM CONTROL A 

BLOCK (SCB). 
v "MAILBOX" ~ 

• • RECEIVE 
COMMAND FRAME 

AREA LIST 

Figure 4. 82596 and Host CPU Intervention 

82596 Bus Use 
without Bus 
Throttle Timers 

82596 Bus Us. 
with Bus Throttle 
Timers 

I I r-t1 ·1 
I T-ON IT-OFF rr:oNl 

Lt2--1 lt3J 
t1 =t2+t3 

Figure 5. Bus Throttle Timers 

Table 1.82596 Memory Addressing Formats 

Operation Mode 

32-Bit 

;>-

82586 
Segmented 

24-Bit Linear 32-Bit Linear 

290218-4 

290218-5 

Linear 

32-Bit Linear 

Base (24) + Offset (16) Base (32) + Offset (16) 32-Bit Linear 

Command Block Pointers Base (24) + Offset (16) Base (32) + Offset (16) 32-Bit Linear 

Rx Frame Descriptors Base (24) + Offset (16) Base (32) + Offset (16) 32-Bit Linear 

Tx Frame Descriptors Base (24) + Offset (16) Base (32) + Offset(16) 32-Bit Linear 

Rx Buffer Descriptors Base (24) + Offset (16) Base (32) + Offset (16) 32-Bit Linear 

Tx Buffer Descriptors Base (24) + Offset (16) Base (32) + Offset (16) 32-Bit Linear 

Rx Buffers 24-Bit Linear 32-Bit Linear 32-Bit Linear 

Tx Buffers 24-Bit Linear 32-Bit Linear 32-Bit Linear 

4-70 



82596CA 

INITIALIZATION ROOT 

CO~~~NNT~iIST 1-----;.-1>1 

RECEIVE FRAME 
POINTER 

STATISTICS 

1 
BUS I 

THROTTLE 1 
1 

10 ______ ---_ .. 

RECEIVE 
BUFFER 

DESCRIPTOR 
(RBD) 

COMMAND LIST (Cl) 

L..-__ ......I (N) 

El~ 1 

TRANSMIT TRANSMIT 
BUFFER BUFFER 

DESCRIPTOR 
(TBD) 

1 TRANSMIT 1 
1 

BUFFER 

T 1 J (1) 

RECEIVE FRAME AREA (RFA) 

El~ 1 
RECEIVE 
BUFFER 

DESCRIPTOR 

'--__ --I (N) 

(RBD) 
L-_.-----I (N) 

TL..-_......IJ l'----......IT 1 T 
290218-6 

Figure 6. 82596 Shared Memory Structure 

82596 SYSTEM MEMORY STRUCTURE 

The Shared Memory structure consists of four parts: 
the Initialization Root, the System Control Block, the 
Command List, and the Receive Frame Area (see 
Figure 6). 

The Initialization Root is in an established location 
known to the host CPU and the 82596 (OOFFFFF6h). 
However, the CPU can establish the Initialization 
Root in another location by using the CPU Port ac­
cess. This root is accessed during initialization, and 
points to the System Control Block. 

4-71 

The System Control Block serves as a bidirectional 
mail drop for the host CPU and the 82596 CU and 
RU. It is the central point through which the CPU and 
the 82596 exchange control and status information. 
The SCB has two areas. The first contains instruc­
tions from the CPU to the 82596. These include: 
control of the CU and RU (Start, Abort, Suspend, 
and Resume), a pointer to the list of CU commands, 
a pointer to the Receive Frame Area, a set of Inter­
rupt Acknowledge bits, and the T-ON and T-OFF 
timers for the bus throttle. The second area contains 
status information the 82596 is sending to the CPU. 
Such as, the CU and RU states (Idle, Active 



Intel. 82596CA 

Ready, Suspended, No Receive Resources, etc.), in­
terrupt bits (Command Completed, Frame Received, 
CU Not Ready, and RU Not Ready), and statistical 
counters. 

The Command List functions as a program for the 
CU; individual commands are placed in memory 
units called Command Blocks. (CBs). These CBs 
contain the parameters and status of specific high­
level commands called Action Commands; e.g., 
Transmit or Configure. 

Transmit causes the 82596 to transmit a frame. The 
Transmit CB contains the destination address, the 
length field, and a pointer to a list of linked buffers 
holding the frame that is to be constructed from sev­
eral buffers scattered throughout memory. The 
Command Unit operates without CPU intervention; 
the DMA for each buffer, and the prefetching of ref­
erences to new buffers, is performed in parallel. The 
CPU is notified only after a transmission is complete. 

The Receive Frame Area is a list of Free Frame De­
scriptors (descriptors not yet used) and a list of user­
prepared buffers. Frames arrive at the 82596 unso­
licited; the 82596 must always be ready to receive 
and store them in the Free Frame Area. The Re­
ceive Unit fills the buffers when it receives frames, 
and reformats the Free Buffer List into received­
frame structures. The frame structure is, for all prac­
tical purposes, identical to the format of the frame to 
be transmitted. The first Frame descriptor is refer­
enced by the 8CB. Unless the 82596 is configured 
to Save Bad Frames, the frame descriptor, and the 
associated buffer descriptor, which is wasted when 
a bad frame is received, are automatically reclaimed 
and returned to the Free Buffer List. 

Receive buffer chaining (storing incoming frames in 
a linked buffer list) significantly improves memory 
utilization. Without buffer chaining, the user must al­
locate consecutive blocks of memory, each capable 
of containing a maximum frame (for Ethernet, 1518 
bytes). Since an average frame is about 200 bytes, 
this is very inefficient. With buffer chaining, the user 
can allocate small buffers and the 82596 will only 
use those that are needed. 

Figure 7 A-D illustrates how the 82596 uses the 
Receive Frame Area. Figure 7 A shows an unused 
Receive Frame Area composed of Free Frame De­
scriptors and Free Receive Buffers prepared by the 
user. The SCB points to the first Frame Descriptor of 
the Frame Descriptor List. Figure 7B shows the 
same Receive Frame Area after receiving one 
frame. This first frame occupies two Receive Buffers 
and one Frame Descriptor-a valid received frame 
will only occupy one Frame Descriptor. After receiv-

ing this frame'the 82596 sets the next Free Frame 
Descriptor RBD pointer to the next Free RBD. Figure 
7C shows the RFA after receiving a second frame. 
In this example the second frame occupies only one 
Receive Buffer and one RFD. The 82596 again sets 
the RBD pointer. This process is repeated again in 
Figure 7D, showing the reception of another frame 
using one Receive Buffer; in this example there is an 
extra Frame Descriptor. 

TRANSMIT AND RECEIVE MEMORY 
STRUCTURES 

There are three memory structures for reception and 
transmission. The 82586 memory structure, the 
Flexible memory structure, and the Simplified memo­
ry structure. The 82586 mode is selected by config­
uring the 82596 during initialization. In this mode all 
the 82596 memory structures are compatible with 
the 82586 memory structures. 

When the 82596 is not configured to the 82586 
mOde, the other two memory structures, Simplified 
and Flexible, are available for transmitting and re­
ceiving. These structures can be selected on a 
frame-by-frame basis by setting the S/F bit in the 
Transmit Command and the Receive Frame De­
scriptor (see Figures 29, 30, 41, and 42). The Simpli­
fied memory structure offers a simple structure for 
ease of programming (see Figure 8). All information 
about a frame is contained in one structure; for ex­
ample, during reception the RFD and data field are 
contained in one structure. 

4-72 

The Flexible memory structure (see Figure 9) has a 
control field that allows the programmer to specify 
the amount of receive data the RFD will contain for 
receive operations and the amount of transmit data 
the Transmit Command Block will contain for trans­
mit operations. For example, when the control field 
in the RFD is set to 20 bytes during a reception, the 
first 20 bytes of the data field are stored in the RFD 
(6 bytes of destination address, 6 bytes of source 
address, 2 bytes of length field, and 6 bytes of data) 
and the remainder of the data field is stored in the 
Receive Data Buffers. This is us.eful for capturing 
frame headers when header information is con­
tained in the data field. The header information can 
then be automatically stored in the RFD partitioned 
from the Receive Data Buffer. 

The control field can also be used for the Transmit 
Command when the Flexible memory structure is 
used. The quantity of data field bytes to be transmit­
ted from the Transmit Command Block is specified 
by the variable control field. 



7. A 

82596CA 

~> EL=l T RBD 

Ef:] 

Figure 7. Frame Reception in the RFA 

4-73 

}"'..., ...,~ 

Om 
'" m 

290218-7 



intel® 82596CA 

seB 

STATUS TO COMMAND LIST 

I" RECEIVE FRAME AREA •• I 

FD I 
I 
I FD1 FDZ FD3 FD4 

POINTER I 
STATUS 

I 
STATUS S STATUS lJ STATUS Lt: STATISTICS I 

I - - -I BUS I I 

I THROTTLE I I 

I I I ._-----_ .. I 
I 
I VARIABLE 
I 
I DATA EMPTY EMPTY EMPTY 

I FIELD 
RECEIVE I 

FRAME I 

DESCRIPTORS I 
I 

~ RECEIVE FRAME LIST --"'~"':~II-------- FREE FRAME LIST ---------I~~, 

290218-8 

Figure 8. Simplified Memory Structure 

SCB 

Pr 
TO COMMAND LIST 

, 4 RECEIVE FRAME AREA ~ 

FD1 FD2 FD3 FD4 

FD I STATUS STATUS S STATUS lJ STATUS r: POINTER I - - -STATISTICS 

I BUS I -r-- --
I THROTTLE I CONTROL I I .. -----_. FIELD 

VARIABLE EMPTY EMPTY EMPTY 

RECEIVE 
DATA 

FRAME FIELD 

DESCRIPTORS 

L RBDI RBD2 I RBD3 RBD4 RBDS 

S if ~ r 54 ..- 0- - - ..-

RECEIVE 

T T T T T BUFFER 
DESCRIPTORS 

J- J- J- J- J-
DATA DATA 

EMPTY EMPTY FIELD FIELD EMPTY 

RECEIVE 
BUFFERS '---- '--- '---- L...- L...-

BUFFER I BUFFER Z 
I 

BUFFER 3 BUFFER 4 BUFFER S 

,+--- RECEIVE FRAME LIST ~:4 FREE FRAME LIST . : 
290218-9 

Figure 9. Flexible Memory Structure 

4·74 



82596CA 

TRANSMITTING FRAMES 

The 82596 executes high-level Action Commands 
from the Command List in system memory. Action 
Commands are fetched and executed in parallel with 
the host CPU operation, thereby significantly improv­
ing system performance. The format of the Action 
Commands is shown in Figure 10. Figure 28 shows 
the 82586 mode, and Figures 29 and 30 show the 
command formats of the Linear and 32-bit Segment­
ed modes. 

A single Transmit command contains, as part of the 
command-specific parameters, the destination ad­
dress and length field of the transmitted frame and a 
pointer to buffer area in memory containing the data 
portion of the frame. The data field is contained in a 
memory data structure consisting of a buffer de­
scriptor (BO) and a data buffer-or a linked list of 
buffer descriptors and buffers-as shown in Figure 
11. 

Multiple data buffers can be chained together using 
the BOs. Thus, a frame with a long data field can be 
transmitted using several (shorter) data buffers 
chained together. This chaining technique allows the 
system designer to develop efficient buffer manage­
ment. 

The 82596 automatically generates the preamble 
(alternating 1 s and as) and start frame delimiter, 
fetches the destination address and length field from 
the Transmit command, inserts its unique address 
as the source address, fetches the data field speci­
fied by the Transmit command, and computes and 
appends the CRC to the end of the frame (see Fig­
ure 12). In the Linear and 32-bit Segmented mode 
the CRC can be optionally inserted on a frame-by­
frame basis by setting the NC bit in the Transmit 
Command Block (see Figures 29 and 30). 

The 82596 can be configured to generate two types 
of start and end frame delimiters-End of Carrier 
(EOC) or HOLC. In EOC mode the start frame delimi­
ter is 10101011 and the end frame delimiter is indi-

START 
DESTINATION SOURCE 

PREAMBLE FRAME 
ADDRESS ADDRESS 

DELIMITER 

cated by the lack of a signal after the last bit of the 
frame check sequence field has been transmitted. In 
EOC mode the 82596 can be configured to extend 
short frames by adding pad bytes (7Eh) during trans­
mission, according to the length field. In HOLC mode 
the 82596 will generate the 01111110 flag for the 
start and end frame delimiters, and do standard bit 
stuffing and stripping. Furthermore, the 82596 can 
be configured to pad frames shorter than the speci­
fied minimum frame length by appending the appro­
priate number of flags to the end of the frame. 

When a collision occurs, the 82596 manages the 
jam, random wait, and retry processes, reinitializing 
OMA pointers without CPU intervention. Multiple 
frames can be sent by linking the appropriate num­
ber of Transmit commands together. This is particu­
larly useful when transmitting a message larger than 
the maximum frame size (1518 bytes for Ethernet). 

CONTROL I COMMAND STATUS 
FIELDS I COMMAND 

(POINTER ~~KN~~;L~OMMAND) 0 

PARAMETER FIELD 
(COMMAND-SPECIFIC 

PARAMETERS) 

-,'> NEXT 
COMMAND 

290218-10 

Figure 10. Action Command Format 

TRANSMIT BD 

ACTUAL COUNT 

LINK FIELD 0-
r NEXT BUFFER DES CRIPTOR 

DB ADDRESS c> 
(24 BITS) 

--» 
DATA 

BUFFER 
(DB) 

290218-11 

Figure 11. Data Buffer Descriptor and 
Data Buffer Structure 

LENGTH DATA 
FRAME END 

FIELD FIELD 
CHECK FRAME 

SEQUENCE DELIMITER 

Figure 12. Frame Format 

4-75 



intel® 82596CA 

RECEIVING FRAMES 

To reduce CPU overhead, the 82596 is designed to 
receive frames without CPU supervision. The host 
CPU first sets aside an adequate receive buffer 
space and then enables the 82596 Receive. Unit. 
Once enabled, the RU watches for arriving frames 
and automatically stores them in the Receive Frame 
Area (RFA). The RFA contains Receive Frame De­
scriptors, Receive Buffer Descriptors, and Data Buff­
ers (see Figure 13). The individual Receive Frame 
Descriptors make up a Receive Descriptor List 
(RDL) used by the 82596 to store the destination 
and source addresses, the length field, and the 
status of each frame received (see Figure 14). 

Once enabled, the 82596 checks each passing 
frame for an address match. The 82596 will recog­
nize its own unique address, one or more multicast 
addresses, or the broadcast address. If a match is 
found the 82596 stores the destination and source 
addresses and the length field in the next available 
RFD. It then begins filling the next available Data 
Buffer on the FBL, which is pointed to by the current 
RFD, with the data portion of the incoming frame. As 
one Data Buffer is filled, the 82596 automatically 
fetches the next DB on the FBL until the entire frame 
is received. This buffer chaining technique is particu­
larly memory efficient because it allows the system 
designer to set aside buffers to fit frames much 
shorter than the maximum allowable frame length. If 
AL-LOC = 1, or if the flexible memory structure is 
used, the addresses and length field can be placed 
in the Receive Buffer. 

Once the entire frame is received without error, the 
82596 does the following housekeeping tasks. 

.. The actual count field of the last Buffer Descrip­
tor used to hold the frame just received is updat­
ed with the number of bytes stored in the associ­
ated Data Buffer. 

.. The next available Receive Frame Descriptor is 
fetched. 

.. The address of the next available Buffer Descrip­
tor is written to the next available Receive Frame 
Descriptor. 

.. A frame received interrupt status bit is posted in 
the SCB. 

.. An interrupt is sent to the CPU. 

If a frame error occurs, for example a CRC error, the 
82596 automatically reinitializes its DMA pointers 
and reclaims any data buffers containing the bad 

4-76 

frame. The 82596 will continue to receive frames 
without CPU help as long as Receive Frame De­
scriptors and Data Buffers are /ivailable. 

82596 NETWORK MANAGEMENT 
AND DIAGNOSTICS 

The behavior of data communication networks is 
normally very complex because of their distributed 
and asynchronous nature. It is particularly difficult to 
pinpoint a failure when it occurs. The 82596 has ex­
tensive diagnostic and network management func­
tions that help improve reliability and testability. The 
82596 reports on the following events after each 
frame is transmitted. 

• Transmission successful. 

• Transmission unsuccessful. Lost Carrier Sense. 

• Transmission unsuccessful. Lost Clear to Send. 

• Transmission unsuccessful. A DMA underrun oc­
curred because the system bus did not keep up 
with the transmission. 

• Transmission unsuccessful. The number of colli­
sions exceeded the maximum allowed. 

• Number of Collisions. The number of collisions 
experienced during the frame. 

• Heartbeat Indicator. This indicates the presence 
of a heartbeat during the last Interframe Spacing 
(IFS) after transmission. 

When configured to Save Bad Frames the 82596 
checks each incoming frame and reports the follow­
ing errors. 

• CRC error. Incorrect CRC in a properly aligned 
frame . 

• Alignment error. Incorrect CRC in a misaligned 
frame. 

• Frame too short. The frame is shorter than the 
value configured for minimum frame length . 

• Overrun. Part of the frame was not placed in 
memory because the system bus did not keep up 
with incoming data. 

• Out of buffer. Part of the frame was discarded 
because of insufficient memory storage space . 

• Receive collision. A collision was detected during 
reception . 

• Length error. A frame not matching the frame 
length parameter was detected. 



int:et 82596CA 

RECEIVER FRAME AREA (RFA) 

FD 
00-4L...-_

FD 
-----I 

FREE BUFFER LIST (FBL) 

RECEIVE 
BUFFER 

DESCRIPTOR(RBD) 

DATA 
BUFFER (DB) 

RBD 

[J 
Figure 13. Receive Frame Area Diagram 

RECEIVE FRAME STATUS 

LINK FIELD 

BUFFER DESCRIPTOR 
LINK FIELD 

DESTINATION ADDRESS 

SOURCE ADDRESS 

LENGTH FIELD 

C> -> 

C> -> 

NEXT RECEIVE 
FRAME DESCRIPTOR 

BUFFER DESCRIPTOR 

Figure 14. Receive Frame Descriptor 

4-77 

RBD 

[J 

290218-13 

290218-12 



intel® 82596CA 

NETWORK PLANNING AND 
MAINTENANCE 

To properly plan, operate, and maintain a communi­
cation network, the network management entity 
must accumulate information on network behavior. 
The 82596 provides a rich set of network-wide diag­
nostics that can serve as the basis fora network 
management entity. 

Information on network activity is provided in the 
status of each frame transmitted. The 82596 reports 
the following activity indicators after each frame. 

o Number of collisions. The number of collisions 
the 82596 experienced while attempting to trans­
mit the frame. 

• Deferred transmission. During the first transmis­
sion attempt the 82596 had to defer to traffic on 
the link. 

The 82596 updates its 32-bit statistical counters af­
ter each received frame that both passes address 
filtering and is longer than the· Minimum Frame 
Length configuration parameter. The 82596 reports 
the following statistics. 

• CRC errors. The number of well-aligned frames 
that experienced a CRC error. 

e Alignment errors. The number of misaligned 
frames that experienced a CRC error. 

o No resources. The number of frames that were 
discarded because of insufficient resources for 
reception. 

o Overrun errors. The number of frames that were 
not completely stored in memory because the 
system bus did not keep up with incoming data. 

o Receive Collision counter. The number of colli­
sions detected during receive. 

• Short Frame counter. The number of frames that 
were discarded because they were shorter than 
the configured minimum frame length. 

The 82596 can be configured to Promiscuous mode. 
In this mode it captures all frames transmitted on the 
network without checking the Destination Address. 
This is useful when implementing a monitoring sta­
tion to capture all frames for analysis. 

A useful method of capturing frame headers is to 
use the Simplified memory mode, configure the 
82596 to Save Bad Frames, and configure the 
82596 to Promiscuous mode with space in the RFD 
allocated for specific number of receive data bytes. 

The 82596 will receive all frames and put them in the 
RFD. Frames that exceed the available space in the 
RFD will be truncated, the status will be updated, 
and the 82596 will retrieve the next RFD.This allows 
the user to capture the initial data bytes of each 
frame (for instance, the header) and discard the re­
mainder of the frame. 

The 82596 also has a monitor mode for network 
analysis. During normal operation the receive func­
tion enables the 82596 to receive frames that pass 
address filtering. These frames must have the Start 
of Frame Delimiter (SFD) field and must be longer 
than the absolute minimum frame length of 5 bytes 
(6 bytes in case of Multicast address filtering). Con­
tents and status of the received frames are trans­
ferred to memory. The monitor function enables the 
82596 to simply evaluate the incoming frames. The 
82596 can monitor the frames that pass or do not 
pass the address filtering. It can also monitor frames 
which do not have the SFD fields. The 82596 can be 
configured to only keep statistical information about 
monitor frames. Three options are available in the 
Monitor mode. These options are selected by the 
two monitor mode configuration bits available in the 
configuration command. 

When the first option is selected, the 82596 receives 
good frames that pass address. filtering and trans­
fers them to memory while monitoring frames that 
do not pass address filtering or are shorter than the 
minimum frame size (these frames are not trans­
ferred to memory). When this option is used the 
82596 updates six counters: CRC errors, alignment 
errors, no resource errors, overrun errors, short 
frames and total good frames received. 

When the second option is selected, the receive 
function is completely disabled. The 82596 monitors 
only those frames that pass address filterings and 
meet the minimum frame length requirement. When 
this option is used the 82596 updates six counters: 
CRC errors, alignment errors, total frames (good and 

. bad), short frames, collisions detected and total 
good frames. 

4-78 

When the third option is selected, the receive func­
tion is completely disabled. The 82596 monitors all 
frames, including frames that do not have a Start 
Frame Delimiter. When this option is used the 82596 
updates six counters: CRC errors, alignment errors, 
total frames (good and bad), short frames, collisions 
detected and total good frames. 



intel® 82596CA 

STATION DIAGNOSTICS 
AND SELF-TEST 

The 82596 provides a large set of diagnostic and 
network management functions. These include inter­
nal and external loopback and time domain reflec­
tometry for locating fault points in the network cable. 
The 82596 ensures software reliability by dumping 
the contents of the 82596 internal registers into sys­
tem memory. The 82596 has a self-test mode that 
enables it to run an internal self-test and place the 
results in system memory. 

82586 SOFTWARE COMPATIBILITY 

The 82596 has a software-compatible state in which 
all its memory structures are compatible with the 
82586 memory structure. This includes all the Action 
Commands, the Receive Frame Area (including the 
RFD, Buffer Descriptors, and Data Buffers), the Sys­
tem Control Block, and the initialization procedures. 
There are two minor differences between the 82596 
in the 82586-Compatible memory structure and the 
82586. 

o When the internal and external loopback bits in 
the Configure command are set to 11 the 82596 
is in external loopback and the LPBK pin is acti­
vated; in the 82586 this situation would produce 
internal loopback. 

o During a Dump command both the 82596 and 
82586 dump the same number of bytes; however, 
the data format is different. 

4-79 

INITIALIZING THE 82596 

A Reset command is issued to the 82596 to prepare 
it for normal operation. The 82596 is initialized 
through two data structures that are addressed by 
two pointers, the System Configuration Pointer 
(SCP) and the Intermediate System Configuration 
Pointer (ISCP). The initialization procedure begins 
when a Channel Attention signal is asserted after 
RESET. The 82596 uses the address of the double 
word that contains the SCP as a default-
00FFFFF4h. Before the CA signal is asserted this 
default address can be changed to any other avail­
able address by asserting the PORT pin and provid­
ing the desired address over the D31-D4 pins of the 
address bus. Pins 03-00 must be 0010; i.e., any 
alternative address must be aligned to 16-byte 
boundaries. All addresses sent to the 82596 must be 
word aligned, which means that all pointers and 
memory structures must start on an even address 
(Ao=zero). 

SYSTEM CONlIFIGU~ATIONI I?OiNiTlE1F;l 
(SCP) 

The SCP contains the sysbus byte and the location 
of the next structure of the initialization process, the 
ISCP. The following parameters are selected in the 
SYSBUS. 

o The 82596 operation mode. 

o The Bus Throttle timer triggering method. 

o Lock enabled. 

II Interrupt polarity. 

o Big Endian 32-bit entity mode. 

Byte ordering is determined by the LEIBE pin. 
LE/BE= 1 selects Little Endian byte ordering and 
LEIBE = 0 selects Big Endian byte ordering. 

NOTE: 
In the following, X indicates a bit not checked 
82586 mode. This bit must be set to 0 in all other 
modes. 



82596CA 

The following diagram illustrates the format of the SCPo 

31 ODD WORD 16 15 EVEN WORD 0 

X X X X X X X X SYSBUS 10 0 0 0 0 0 0 oj 0 0 0 0 0 0 0 o OFFFFF4h 

X X X X X X X X X X X X X X X xix X X X X X X xix X X X X X X X OFFFFF8h 

A31 ................ A24 A23 ISCP ADDRESS AO OFFFFFCh 

A31 ................ A24 are not checked in 82586 mode 
X .................... X areas are not checked in 82586 mode; they must be 0 in all other modes. 

23 16 

SYS8US I BE I 1 liNT I LOCK I TRG I t.41 t.40 I x I 
0- The 32-bit address pointers 'in linear mo. de ore treated ~ J 

as two 16-bit big endian entities. This is identical to 
. tho 82596 A 1 stopping definition. 

1 - The 32-blt address pointers in linear mode ore treated 
as 32-bit big endien entities. This mode is only supported 
in the 82596 8 stepping. In this mode the see absolute 
address and statistical counters are still treated as two 
16-bit big end ion entities. 

Interrupt polarity 
o - Interrupt pin is active 

high 
1, - Interrupt pin is active 

low 

l U L : NOT CHECKED 

L 0 0 : 82586 mode 
o 1 : 32-8it Segmented mode 
1 0 : Linear mode 
1 1 : Reserved 

o : internal triggering of the 
Bus Throttle timers 

1 : external triggering of the 
Bus Throttle timers 

L...--....-..:- 0 : Lock function enabled 
1 : Lock function disabled 

290218-14 

ISCP ADDRESS- The physical address of the ISCP. In the 82586 mode, bits A31-A24 are considered to 
be zero. 

Figure 15. The System Configuration Pointer 

Writing the Sysbus 

When writing the sysbus byte it is important to pay attention to the byte order . 

.. When a Little Endian processor is used, the sysbus byte is located at byte address 00FFFFF6h (or address 
n + 2 if an alternative SCP address n was programmed). 

" When a processor using Big Endian byte ordering is used, the sysbus, alternative SCP, and ISCP addresses 
will be different. 

o The sysbus byte is located at 00FFFFF5h. 

" If an alternative SCP address is programmed, the sysbus byte should be at byte address n + 1. 

4·80 



82596CA 

INTERMEDIATE SYSTEM CONFIGURATION POINTER (ISCP) 

The ISCP indicates the location of the System Control Block. Often the SCP is in ROM and the.ISCP is in RAM. 
The CPU loads the SCB address (or an equivalent data structure) into the ISCP and asserts CA. This Channel 
Attention signal causes the 82596 to begin its initialization procedure and to get the SCB address from the 
ISCP and SCPo In 82586 and 32-bit Segmented modes the SCP base address is also the base address of all 
Command Blocks, Frame Descriptors, and Buffer Descriptors (but not buffers). All these data structures must 
reside in one 64-KB segment; however, in Linear mode no such limitation is imposed. 

The following diagram illustrates the ISCP format. 

ODD WORD 
31 16 15 

EVEN WORD 
8 7 o 

A15 SCB OFFSET AO BUSY ISCP 
~---------------.----------------L----------------L---------------4 
L..-______________ ....L.A;...2c:..3 ________________ S;...C:..:B:..:B:..:A;...S:..:E:..:A;...D:..:D:..:R;...E:..:S:..:S'--______________ -=-=AO.:.J ISCP + 4 

i 
X X X X X X X X - in 82586 mode 
A31 ................ A24 - in 32-bit segmented mode. 

BUSY - Indicates that the 82596 is being initialized. The CPU sets the ISCP to 01 h before it gives 
the first CA to the 82596. The ISCP is cleared by the 82596 after the SCB base and offset 
are read. Note that the most significant byte of the first word of the ISCP is not modified 
when BUSY is cleared. 

SCB OFFSET-This 16-bit quantity specifies the offset portion of the address of the SCB. 

SCB BASE - Specifies the base portion of the address of the SCB. The base of SCB is also. the base of • 
all 82596 Command Blocks, Frame Descriptors and Buffer Descriptors. In the 82586 A 

mode, bits A31-A24 are considered to be zero. 

Figure 16. The Intermediate System Configuration Pointer-82586 and 32-Bit Segmented Modes 

31 

BUSY 

ODD WORD 
16 15 

EVEN WORD 
8 7 

000 

o 

- Indicates that the 82596 is being .initialized. The ISCP is set to 01 h by the CPU before its 
first CA to the 82596. It is cleared by the 82596 after the SCB address is read. 

SCB ADDRESS- This 32-bit quantity specifies the physical address of the SCB. 

Figure 17. The Intermediate System Configuration Pointer-Linear Mode. 

INITIALIZATION PROCESS 

The CPU sets up the SCP, ISCP, and the SCB structures, and, if desired, an alternative SCP address. It also 
sets BUSY to 01 h. The 82596 is initialized when a Channel Attention signal follows a Reset signal, causing the 
82596 to access the System Configuration Pointer. The sysbus byte, the operational mode,the bus throttle 
timer triggering method, the interrupt polarity, and the state of LOCK are read. After reset the Bus Throttle 

. timers are essentially disabled-the T-ON value is infinite, the T-OFF value is zero. After the SCP is read, the 
82596 reads the ISCP and saves the SCB address. In 82586 and 32-bit Segmented modes this address is 
represented as a base address plus the offset (this base address is also the base address of all the control 
blocks). In Linear mode the base address is also an absolute address. The 82596 clears BUSY, sets CX and 
CNR to equal 1 in the SCB, clears the SCB command word, sends an interrupt to the CPU, and awaits another 
Channel Attention signal. RESET configures the 82596 to its default state before CA is asserted. 

4-81 



int:eL 82596CA 

CONTROLLING THE 82596CA 

The host CPU controls the 82596 with the commands, data structures, and methods described in this section. 
The CPU and the 82596 communicate through shared memory structures. The 82596 contains two indepen· 
dent units: the Command Unit and the Receive Unit. The Command Unit executes commands from the CPU, 
and the Receive Unit handles frame reception. These two units are controlled and monitored by the CPU 
through a shared memory structure called the System Control Block (SCB). The CPU and the 82596 use the 
CA and INT signals to communicate with the SCB. 

82596 CPU ACCESS INTERFACE (PORT) 

The 82596 has a CPU access interface that allows the host CPU to do four things. 

• Write an alternative System Configuration Pointer address. 

• Write an alternative Dump area pointer and perform Dump. 

• Execute a software reset. 

• Execute a self·test. 

The following events initiate the CPU access state. 

• Presence of an address on the D31-D4 data bus pins. 

• The D3-DO pins are used to select one of the four functions. 

• The PORT input ,pin is asserted, as in a regular write cycle. 

NOTE. 
TheSCP Dump and Self·Test addresses must be 16·byte aligned. 

The 82596 requires two 16·bit write cycles for a port command. The first write holds the internal machines and 
reads the first 16 bits; the second activates the PORT command and reads the second 1,6 bits. 

The PORT Reset is useful when only the 82596 needs to be reset. The CPU must wait for 1 a·system and 5·se· 
rial clocks before issuing another CA to the 82596; this new CA begins a new initialization process. 

The Dump function is useful for troubleshooting No Response problems. If the chip is in a No Response state, 
the PORT Dump operation can be executed and a PORT Reset can be used to reinitialize the 82596 without 
disturbing the rest of the system. 

The Self·Test function can be used for, board testing; the 82596 will execute a self·test and write the results to 
memory. 

Table 2. PORT Function Selection 

031 ................................. . 04 ............................ . 00 

Function Addresses and Results 03 02 01 00 

Reset A31 Don't Care A4 a 0 a a 

Self·Test A31 Self·Test Results Address A4 a 0 a 1 

,SCP A31 Alternative SCP Address A4 a 0 1 0 

Dump A31 ' Dump Area Pointer A4 a a 1 1 

MEMORY ADDRESSING FORMATS 

The 82596 accesses memory by 32·bit addresses. There are two types of 32·bit addresses: linear and seg· 
mented. The type of address used depends on the 82596 operating mode and the type of memory structure it 
is addressing. The 82596 has three operating modes. 

4·82 



82596CA 

o 82586 Mode 

o A Linear address is a single 24-bit entity. Address pins A31 -A24 are always zero. 

o A Segmented address uses a 24-bit base and a 16-bit offset. 

o 32-bit Segmented Mode 

., A Linear address is a sin.gle 32-bit entity. 

o A Segmented address uses a 32-bit base and a 16-bit offset. 

NOTE: 
In the previous two memory addressing modes, each command header (CB, TBD, RFD, RBD, and SCB) 
must wholly reside within one segment. If the 82596 encounters a memory structure that does not follow this 
restriction, the 82596 will fetch the next contiguous location in memory (beyond the segment). 

o Linear Mode 

o A Linear address is a single 32-bit entity. 

o There are no Segmented addresses. 

Linear addresses are primarily used to address transmit and receive data buffers: In the 82586 and 32-bit 
Segmented modes, segmented addresses (base plus offset) are used for all Command Blocks, Buffer Descrip­
tors, Frame Descriptors, and System Control Blocks. When using Segmented addresses, only the offset 
portion of the entity being addressed is specified in the block. The base for all offsets is the same-that of the 
SCB. See Table 1. 

LITTLE ENDIAN AND BIG ENDIAN BYTE ORDERING 

The 82596 supports both Little Endian and Big Endian byte ordering for its memory structures. 

The 82596 A1 stepping supports Big Endian byte ordering for word and byte entities. Dword entities are not 
supported with 82596 A1 Big Endian byte ordering. This results in slightly different 82596A1 memory struc­
tures for Big Endian operation. These structures are defined in the 32 LAN Components Users Manual 

The 82596 B stepping supports Big Endian byte ordering for Linear mode only. All 82596 B 32-bit address 
pointers are treated as 32-bit Big Endian entities, however, the SCB absolute address and statistical counters 
are treated as two 16-bit Big Endian entities. This 32-bit Big Endian entity support is configured through bit 7 in 
the SYSBUS byte. 

NOTE: 
All 82596 memory entities must be word or dword aligned, except the transmit buffers can be byte aligned 
for the 82596 B-Stepping. 

An example of a dword entity is a frame descriptor command/status dword, whereas the raw data of the frame 
are byte entities. Both 32- and 16-bit buses are supported. When a 16-bit bus is used with Big Endian memory 
organization, data lines 015-00 are used. The 82596 has an internal crossover that handles these swap 
operations. 

COMMAND UNIT (CU) 

The Command Unit is the logical unit that executes Action Commands from a list of commands very similar to 
a CPU program. A Command Block is associated with each Action Command. The CU is modeled as a logical 
machine that takes, at any given time, one of the following states. 

o Idle. The CU is not executing a command and is not associated with a CB on the list. This is the initial state. 

.. Suspended. The CU is not executing a command; however, it is associated with a CB on the list. 

o Active. The CU is executing an Action Command and pointing to its CB. 

4-83 

II 



intel® 82596CA 

The CPU can affect CU operation in two ways: by issuing a CU Control Command or by setting bits in the 
Command word of the Action Command. 

RECEIVE UNIT (RU) 

The Receive Unit is the logical unit that receives frames and stores them in memory. The RU is modeled as a 
logical machine that takes, at any given time, one of the following states. 

• Idle. The RU has no memory resources and is discarding incoming frames. This is the initial state. 

• No Resources. The RUhas no memory resources and is discarding incoming frames. This state differs 
from Idle in thattheRU accumulates statistics on the number of discarded frames. 

• Suspended. The RU has memory available for storing frames, but is discarding them. The suspend state 
can only be reached if the CPU forces this through the SCB or sets the suspend bit in the RFD. 

• Ready. The RU has memory available and is storing incoming frames. 

The CPU can affect RU operation in three ways: by issuing an RU Control Command, by setting bits in the 
Frame Descriptor Command word of the frame being received, or by setting the El bit of the current buffer's 
Buffer Descriptor. . 

SYSTEM CONTROL BLOCK (SCB) 

The SCB is a memory block that plays a major role in communications between the CPU and the 82596. Such 
communications include the following. 

• Commands issued by the CPU 

• Status reported by the 82596 

Control commands are sent to the 82596 by writing them into the SCB and then asserting CA. The 82596 
examines the command, performs the required action, and then clears the SCB command word. Control 
commands perform the following types of tasks. . 

• Operation of the Command Unit (CU). The SCB controls the CU by specifying the address of the Command 
Block List (CBl) and by starting, suspending, resuming, or aborting execution of CBl commands. 

o Operation of the Bus Throttle. The SCB controls the Bus Throttle timers by providing them with new values 
and sending the load and Start timer commands. The timers can be operated in both the 32-bit Segmented 
and Linear modes. 

• Reception of frames by the Receive Unit (RU). The SCB controls the RU by specifying the address of the 
Receive Frame Area and by starting; suspending, resuming, or aborting frame reception. 

• Acknowledgment of events that cause interrupts. 

• Resetting the chip. 

The 82596 sends status reports to the CPU via the System Control Block. The SCB contains four types of 
status reports. 

• The cause of the current interrupts. These interrupts are caused by one or more of the following 82596 
events. 

• The Command Unit completes an Action Command that has its I bit set. 

o The Receive Unit receives a frame. 

• The Command Unit becomes inactive. 

• The Receive Unit becomes not ready. 

• The sta,tus of the Command Unit. 

• The status of the Receive Unit. 

• Status reports from the 82596 regarding reception of corrupted frames. 

4-84 



82596CA 

Events can be cleared only by CPU acknowledgment. If some events are not acknowledged by the ACK field 
the Interrupt signal (INT) will be reissued after Channel Attention (CA) is processed. Furthermore, if a new 
event occurs while an interrupt is set, the interrupt is temporarily cleared to trigger edge-triggered interrupt 
controllers. ' 

The CPU uses the Channel Attention line to cause the 82596 to examine the SCB. This signal is trailing-edge 
triggered-the 82596 latches CA on the trailing edge. The latch is cleared by the 82596 before the SCB 
control command is read. 

31 ODD WORD 16 15 EVEN WORD 0 

ACK I xl cuc I R I RUC I X X X X STAT 10 1 CUS I 0 I RUS I 0 0 0 0 SCB 

RFAOFFSET CBLOFFSET SCB + 4 

ALIGNMENT ERRORS CRCERRORS SCB + 8 

OVERRUN ERRORS RESOURCE ERRORS SCB + 12 

Figure 18. SCB-82586 Mode 

31 ODD WORD 16 15 EVEN WORD 0 

ACK 101 cuc I R I RUC I 0 o 0 01 STAT 101 CUS I RUS ITlo 0 0 SCB 

RFAOFFSET I CBLOFFSET SCB + 4 

CRCERRORS SCB + 8 

ALIGNMENT ERRORS SCB + 12 

RESOURCE ERRORS (*) SCB + 16 

OVERRUN ERRORS (') SCB + 20 

RCVCDT ERRORS (*) SCB + 24 

SHORT FRAME ERRORS SCB + 28 

T-ONTIMER I T-OFFTIMER SCB + 32 

*In monitor mode these counters change function 

Figure 19. SCB-32·Bit Segmented Mode 

31 ODD WORD 16 15 EVEN WORD 0 

ACK 101 cuc IRI RUC 10 0 0 01 STAT 10 1 CUS I RUS ITlo 0 o SCB 

COMMAND BLOCK ADDRESS SCB + 4 

RECEIVE FRAME AREA ADDRESS SCB + 8 

CRCERRORS SCB + 12 

ALIGNMENT ERRORS SCB + 16 

RESOURCE ERRORS (*) SCB + 20 

OVERRUN ERRORS (*) SCB + 24 

RCVCDT ERRORS (*) SCB + 28 

SHORT FRAME ERRORS SCB + 32 

T-ON TIMER I T-OFFTIMER SCB + 36 

*In MONITOR mode these counters change function 

Figure 20. SCB-Linear Mode 

4-85 



int:et 82596CA 

Command Word 
31 16 

o : cue: R : Rue: o o o o 8eB + 2 

These bits specify the action to be performed as a result of a CA. This word is set by the CPU and cleared by 
the 82596. Defined bits are: 

Bit 31 ACK-CX - Acknowledges that the CU completed an Action Command. 

Bit 30 ACK-FR 

Bit 29 ACK-CNA 

Bit 28 ACK-RNR 

Bits 24-26 CUC 

Bit 23 RESET 

Bits 20-22 RUC 

- Acknowledges that the RU received a frame. 

- Acknowledges that the Command Unit became not active. 

- Acknowledges that the Receive Unit became not ready. 

- (3 bits) This field contains the command to the Command Unit. Valid values are: 

o - NOP (does not affect current state of the unit). 

- Start execution of the first command on the CBL. If a command is executing, 
complete it before starting the new CBL. The beginning of the CBL is in CBL 
OFFSET (address). 

2 - Resume the operation of the Command Unit by executing the next command. 
This operation assumes that the Command Unit has been previously sus­
pended. 

3 - Suspend execution of commands on CBL after current command is complete. 

4 - Abort current command immediately. 

5 - Loads the Bus Throttle timers so they will be initialized with their new values 
after the active timer (T-ON or T-OFF) reaches Terminal Count. If no timer is 
active new values will be loaded immediately. This command is not valid in 
82586 mode. 

6 - Loads and immediately restarts the Bus Throttle timers with their new values. 
This command is not valid in 82586 mode. 

7 - Reserved. 

- Reset chip (logically the same as hardware RESET). 

- (3 bits) This field contains the command to the Receive Unit. Valid values are: 

o - NOP (does not alter current state of unit). 

1 - Start reception of frames. The beginning of the RFA is contained in the RFA 
OFFSET (address). If a frame is being received complete reception before 
starting. 

2 - Resume frame reception (only when in suspended state). 

3 - Suspend frame reception. If a frame is being received complete its reception 
before suspending. 

4 - Abort receiver operation immediately. 

5-7 - Reserved. 

4-86 



Status Word 
15 

82586 mode 

15 

o I 

I 0 I 
32-Bit Segmented and Linear mode. 

82596CA 

: GUS: o I : RUS: 

: GUS : 

0 I 0 I 0 

I T 0 I 0 

Indicates the status of the 82596. This word is modified only by the 82596. Defined bits are: 

Bit 15 CX - The CU finished executing a command with its I (interrupt) bit set. 

Bit 14 FR - The RU finished receiving a frame. 

Bit 13 CNA - The Command Unit left the Active state. 

- The Receive Unit left the Ready state. 

0 

0 

0 

I 0 

Bit 12 RNR 

Bits8-10CUS - (3 bits) This field contains the status of the command unit. Valid values are: 

o -Idle 

1 - Suspended 

2 -Active 

3-7 - Not used 

Bits 4-7 RUS - This field contains the status of the receive unit. Valid values are: 

Oh (0000) - Idle 

1h (0001) - Suspended 

I SGB 

I SGB 

2h (0010) - No Resources. This bit indicates both no resources due to lack of 

Bit3 T 

RFDs in the RDl and no resources due to lack of RBDs in the FBl. 

4h (0100) - Ready 

Ah (1010) - No resources due to no more RBDs (not in the 82586 mode). 

Ch (1100) - No more RBDs (not in 82586 mode) 

No other combinations are allowed 

- Bus Throttle timers loaded (not in 82586 mode). 

SCB OIFIFSIET ADDRIESSIES 

CBl Offset (Address) 

In 82586 and 32-bit Segmented modes this 16-bit quantity indicates the offset portion of the address for the 
first Command Block on the CBl. In Linear mode it is a 32-bit linear address for the first Command Block on 
the CBl. It is accessed only if CUC equals Start. 

RFA Offset (Address) 

In 82586 and 32-bit Segmented modes this 16-bit quantity indicates the offset portion of the address for the 
Receive Frame Area. In Linear mode it is a 32-bit linear address for the Receive Frame Area. It is accessed 
only if RUC equals Start. 

4-87 

.. 



inlet 82596CA 

SCB STATISTICAL COUNTERS 

Statistical Counter Operation 
o The CPU is responsible for clearing all error counters before initializing the 82596. The 82596 updates 

these counters by reading them, adding 1, and then writing them back to the SCB. 

e The counters are wraparound counters. After reaching FFFFFFFFh the counters wrap around to zero. 

D The 82596 updates the required counters for each frame. It is possible for more than one counter to be 
updated; multiple errors will result in all affected counters being updated. 

• The 82596 executes the read-counter lincrementlwrite-counter operation without relinquishing the bus 
(locked operation). This is to ensure that no logical contention exists between the 82596 and the CPU due 
to both attempting to write to the counters simultaneously. In the dual-port memory configuration the CPU 
should not execute any write operation to a counter if LOCK is asserted. 

• The counters are 32-bits wide and their behavior is fully compatible with the IEEE 802.3 standard. The 
82596 supports all relevant statistics (mandatory, optional, and desired) through the status of the transmit 
and receive header and directly through SCB statistics. 

CRCERRS 

This 32-bit quantity contains the number of aligned frames discarded because of a CRC error. This counter is 
updated, if needed, regardless of the RU state. 

ALNERRS 

This 32-bit quantity contains the number of frames that both are misaligned (i.e., where CRS deasserts on a 
rionoctet boundary) and contain a CRC error. The counter is updated, if needed, regardless of the RU state. 

SHRTFRM 

This 32-bit quantity contains the number of received frames shorter than the minimum frame length. 

The last three counters change function in monitor mode. 

RSCERRS 

This 32-bit quantity contains the number of good frames discarded because there were no resources to 
contain them. Frames intended for a host whose RU is in the No Receive Resources state, fall into this 
category. This counter is updated only if the RU is in the No Resc;>urces state. When in Monitor mode this 
counter counts the total number of frames-good and bad. 

4-88 



82596CA 

OVRNERRS 
This 32-bit quantity contains the number of frames known to be lost because the local system bus was not 
available. If the traffic problem lasts longer than the duration of one frame, the frames that follow the first are 
lost without an indicator, and they are not counted. This counter is updated, if needed, regardless of the RU 
state. 

RCVCDT 
This 32-bit quantity contains the number of collisions detected during frame reception. In Monitor mode this 
counter counts the total number of good frames. 

ACTION COMMANDS AND OPERATiNG MODIES 

This section lists all the Action Commands of the Command Unit Command Block List (CBL). Each command 
contains the Command field, the Status and Control fields, the link to the next Action Command, and any 
command-specific parameters. There are three basic types of action commands: 82596 Configuration and 
Setup, Transmission, and Diagnostics. The following is a list of the actual commands. 

o NOP 0 Transmit 

o Individual Address Setup o TOR 

o Configure o Dump 

o MC Setup o Diagnose 

The 82596 has three addressing modes. In the 82586 mode all the Action Commands look exactly like those 
of the 82586. 

o 82586 Mode. The 82596 software and memory structure is compatible with the 82586. 

o 32-Bit Segmented Mode. The 82596 can access the entire system memory and use the two new memory 
structures-Simplified and Flexible-while still using the segmented approach. This does not require any 
significant changes to existing software. 

o Linear Mode. The 82596 operates in a flat, linear, 4 gigabyte memory space without segmentation. It can 
also use the two new memory structures. 

In the 32-bit Segmented mode there are some differences between the 82596 and 82586 action commands, 
mainly in programming and activating new 82596 features. Those bits marked "don't care" in the compatible 
mode are not checked; however, we strongly recommend that those bits all be zeroes; this will allow future 
enchancements and extensions. 

In the Linear mode all of the address offsets become 32-bit address pointers. All new 82596 features are 
accessible in this mode, and all bits previously marked "don't care" must be zeroes. 

The Action Commands, and all other 82596 memory structures, must begin on even byte boundaries, i.e., they 
must be word aligned. 

4-89 



inteL 82596CA 

NOP 

This command results in no action by the 82596 except for those performed in the normal command process­
ing. It is used to manipulate the CBl manipulation. The format of the NOPcommand is shown in Figure 21. 

NOP-82586 and 32-8it Segmented Modes 
ODD WORD EVEN WORD 0 

X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 o 0 

X X X X X X X X X X LINK OFFSET AO 4 

NOP-Linear Mode 
ODD WORD EVEN WORD 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 

LINK ADDRESS AO 4 

Figure 21 

where: 

LINK POINTER - In the 82586 or 32-bit Segmented modes this is a 16-bit offset to the next Command 
Block. In the Linear mode this is the 32-bit address of the next Command Block. 

El - If set, this bit indicates that this command block is the last on the CBL. 

S - If set to one, suspend the CU upon completion of this CB. 

- If set to one, the 82596 will generate an interrupt after execution of the command is 
complete. If I is not set to one, the CX bit will not be set. 

CMD (bits 16-18) - The NOP command. Value: Oh. 

Bits 19-28 - Reserved (zero in the 32-bit Segmented and Linear modes). 

C - This bit indicates the execution status of the command. The CPU initially resets it to zero 

B 

when the Command Block is placed on the CBl. Following a command Completion, the 
82596 will set it to one. 

- This bit indicates that the 82596 is currently executing the Nap command. It is initially 
reset to zero by the CPU. The 82596 sets it to one when execution begins and to zero 
when execution is completed. This bit is also set when the 82596 prefetches the com­
mand. 

NOTE: 
The C and B bits are modified in one operation. 

OK - Indicates that the command was executed without error. If set to one no error occurred 
(command executed OK). If zero an error occured. 

Individual Address Setup 

This command is used to load the 82596 with the Individual Address. This address is used by the 82596 for 
inserting the Source Address during transmission and recognizing the Destination Address during reception. 
After RESET, and prior to Individual Address Setup Command execution, the 82596 assumes the Broadcast 
Address is the Individual Address in all aspects, Le.: 

• This will be the Individual Address Match reference. 

• This will be the Source Address of a transmitted frame (for Al-lOC = 0 mode only). 

4-90 



82596CA 

The format of the Individual Address Setup command is shown in Figure 22. 

IA Setup-82586 and 32-Bit Segmented Modes 
31 ODD WORD 1615 EVEN WORD 

ELls111 x X X X X X X X X xlo 0 1 cJBJoKIAlo 0 0 0 0 0 0 0 0 0 

INDIVIDUAL ADDRESS 1st byte A15 LINK OFFSET 

6th byte 5th byte 4th byte 3rd byte 

IA Setup-Linear Mode 
31 ODD WORD 1615 EVEN WORD 

ELI S II 10 0 0 0 0 0 0 0 0 010 0 1 c I B lOKI A 10 0 0 0 0 0 0 0 0 0 

A31 LINK ADDRESS 

4th byte 3rd byte INDIVIDUAL ADDRESS 1st byte 

6th byte 5th by1e 

Figure 22 

where: 

LINK ADDRESS, 
EL, B, C, I, S 

- As per standard Command Block (see the NOP command for details) 

0 

0 o 0 

AO 4 

B 

0 

0 o 0 

AO 4 

B 

C 

A - Indicates that the command was abnormally terminated due to CU Abort control 
command. If one, then the command was aborted, and if necessary it should be 
repeated. If this bit is zero, the command was not aborted. 

Bits 19-28 - Reserved (zero in the 32-bit Segmented and Linear modes). 

CMD (bits 16-18) - The Address Setup command. Value: 1h. 

INDIVIDUAL ADDRESS - The individual address of the node, 0 to 6 bytes long. 

The least significant bit of the Individual Address must be zero for Ethernet (see the Command Structure). 
However, no enforcement of 0 is provided by the 82596. Thus, an Individual Address with 1 as its least 
significant bit is a valid Individual Address in all aspects. 

The default address length is 6 bytes long, as in 802.3. If a different length is used the IA Setup command 
should be executed after the Configure command. 

Coniigure 

The Configure command loads the 82596 with its operating parameters. It allows changing some of the 
parameters by specifying a byte count less than the maximum number of configuration bytes (11 in the 82586 
mode, 14 in the 32-Bit Segmented and Linear modes). The 82596 configuration depends on its mode of 
operation. When configuring the 12th byte (Byte 11 undefined) in 82586 mode this byte should be all ones. 

o ,In the 82586 mode the maximum number of configuration bytes is 12. Any number larger than 12 will be 
reduced to 12 and any number less than 4 will be increased to 4. 

o The additional features of the serial side are disabled in the 82586 mode. 

o In both the 32-Bit Segmented and Linear modes there are four additional configuration bytes, which hold 
parameters for additional 82596 features. If these parameters are not accessed, the 82596 will follow their 
default values. 

o For more detailed information refer to the 32-Bit LAN Components User's Manual. 

4-91 



int'et 82596CA 

The format of the Configure command is shown in Figure 23,24 and 25. 

31 ODD WORD 1615 EVEN WORD 

ELI S II I X X X X X X X X X xlo 1 0 c I B lOKI A 10 0 0 0 o 0 0 0 0 

Byte 1 Byte 0 A15 . LINK OFFSET 

Byte 5 Byte 4 Byte 3 Byte 2 

Byte 9 Byte 8 Byte 7 Byte 6 

X X X X X X X X X X X X X X X X X X X X X X X X Byte 10 

Figure 23. CONFIGURE-82586 Mode 

31 ODD WORD 1615 EVEN WORD 

ELI S II 10 0 0 0 0 0 0 0 0 010 1 o c I B lOKI A I 0 0 0 0 0 0 0 0 0 

. Byte 1 Byte 0 A15 LINK OFFSET 

Byte 5 Byte 4 BYte 3 Byte 2 

Byte 9 Byte 8 Byte 7 Byte 6 

Byte 13 Byte 12 Byte 11 Byte 10 

Figure 24. CONFIGURE-32-Bit Segmented Mode 

31 ODD WORD 1615 EVEN WORD 

ELI S II 10 0 0 000 0 0 o 010 1 o c I B lOKI A I 0 o 0 0 0 0 0 0 0 

A31 LINK ADDRESS . 

Byte 3 Byte 2 Byte 1 Byte 0 

Byte 7 Byte 6 Byte 5 Byte 4 

Byte 11 Byte 10 Byte 9 Byte 8 

X X X X X X X X X X X X X X X X Byte 13 Byte 12 

Figure 25. CONFIGURE-'-Linear Mode 

LINK ADDRESS, - As per standard Command Block (see the NOP command for details) 
EL, B, C,I, S 

0 

0 0 o 0 

AO 4 

8 

12 

16 

0 

0 0 o 0 

AO 4 

8 

12 

16 

0 

o 0 o 0 

AO 4 

8 

12 

16 

20 

A - Indicates that the command was abnormally terminated due to a CU Abort control com­
mand. If 1, then the command was aborted and if necessary it should be repeated. If this 
bit is O,the command was not aborted. 

Bits 19-28 - Reserved (zero in the 32-Bit Segmented and Linear Modes) 

CMD (bit~ 16-18) - The CONFIGURE command. Value: 2h. 

The interpretation of the fields follows: 

7 6 5 
p. X X 

BYTE 0 

BYTE CNT (Bits 0-3) 

PREFETCHED (Bit 7) 

4 3 2 1 o 
X .BYTE90UNT 

Byte Count. Number of bytes, including this one, that hold pa­
rameters to be configured. 

Enable the 82596 to write the prefetched bit in all prefetch 
RBDs. 

4-92 



intel® 82596CA 

NOTE: 
The P bit is valid only in the new memory structure modes. In 82586 mode this bit is disabled (Le., no 
prefetched mark). 

7 

BYTE 1 

7 

FIFO Limit (Bits 0-3) 

MONITOR # (Bits 6- 7) 

DEFAULT: C8h 

SAVBF 

BYTE 2 

7 

SAV BF (Bit 7) 

DEFAULT: 40h 
RESUME_RD (Bit 1) 

x 

o 

o 
x 

FIFO limit. 

Receive monitor options. If the Byte Count of the configure 

command is less than 12 bytes then these Monitor bits are ignored: 

o o o 

O-Received bad frames are not saved in the memory. 

1-Received bad frames are saved in the memory. 

o 
o 

o - The 82596 does not reread the next CB on the list when aCU Resume 
Control Command is issued. 

1 - The 82596 will reread the next CB on the list when a CU Resume 
Control Command is issued. This is available only on the 825968 step-II A 
ping. 

o 
LOOP BACK 

MODE 
PREAMBLE LENGTH ADDRESS LENGTH 

BYTE 3 

7 

ADR LEN (Bits 0-2) 

NO SCR ADD INS (Bit 3) 

PREAM LEN (Bits 4-5) 

LP BCK MODE (Bits 6-7) 

DEFAULT: 26h 

Address length (any kind). 

No Source Address Insertion. 
In the 82586 this bit is called AL LOC. 

Preamble length. 

Loopback mode. 

I BOFMETD I EXPO~ENTIAL PRlpRITY o 

BYTE 4 

7 

LIN PRIO (Bits 0-2) 

EXP PRIO (Bits 4-6) 

BOF METD (Bit 7) 

DEFAULT: OOh 

BYTE 5 

INTERFRAME SPACING 

DEFAULT: 60h 

Linear Priority. 

Exponential Priority. 

E?<ponential Backott method. 

: INTER FRA¥E SPACING : 

Interframe spacing. 

4-93 

o 

o 



7 

BYTE 6 

7 

SLOT TIME (L) 

DEFAULT: OOh 

: 

82596CA 

SLOT TI¥E - LOW 

Slot time, low byte. 

¥AXIMUM RE!RY NUMBE~ o . S~OT TIME - HI~H 
BYTE 7 

SLOT TIME (H) 
(Bits 0-2) 

RETRY NUM (Bits 4-7) 

DEFAULT: F2h 

BYTE 8 

7 

PRM (Bit 0) 

BC DIS (Bit 1) 

MANCH/NRZ (Bit 2) 

TONO CRS (Bit 3) 

NOCRC INS (Bit 4) 

CRC-16/CRC-32 (Bit 5) 

BIT STF (Bit 6) 

PAD (Bit 7) 

DEFAULT: OOh 

I CDTSRC I 
BYTE 9 

CRSF (Bits 0-2) 

CRS SRC (Bit 3) 

CDTF (Bits 4-6) 

CDT SRC (Bit 7) 

DEFAULT: OOh 

Slot time, high part. 

Number of transmission retries on collision. 

Promiscuous mode. 

Broadcast disable. 

Manchester or NRZ encoding. See specific timing require­
ments ·for TXC in Manchester mode. 

Transmit on no CRS. 

No CRC insertion. 

CRC type. 

Bit stuffing. 

Padding. 

Carrier Sense filter (length). 

Carrier Sense source. 

Collision Detect filter (length) . 

. ·CollisionDetect source. 

4-94 

o 

o 

o 



82596CA 

7 0 

~I ______ ~ ____ ~L_ ____ ~:_M_IN_IM_U_M_F~R~LM_E_L_EN_G_T_H~: ______ ~ ______ ~ ____ ~I· 
BYTE 10 

7 

MIN FRAME LEN 

DEFAULT: 40h 

BYTE 11 

7 

PRECRS (Bit 0) 

LNGFLD (Bit 1) 

CRCINM (Bit 2) 

AUTOTX (Bit 3) 

CDBSAC (Bit 4) 

MCJLL (Bit 5) 

MONITOR (Bits S-7) 

DEFAULT: FFH 

o FDX 

BYTE 12 

7 

FDX (BitS) 

DEFAULT: OOh 

BYTE 13 

MUL T _IA (Bit S) 

DIS_BOF (Bit 7) 

DEFAULT: 3Fh 

Minimum frame length. 

o 
MCJLL CDBSAC AUTOTX CRCINM LNGFLD PRECRS I 

Preamble until Carrier Sense 

Length field. Enables padding at the End-of-Carrier framing (802.3). 

Rx CRC appended to the frame in memory. 

Auto retransmit when a collision occurs during the preamble. 

Collision Detect by source address recognition. 

Enable to receive all MC frames. 

Receive monitor options. 

o o o 

Enables Full Duplex operation. 

I 
Multiple individual address. 

Disable the backoff algorithm. 

4-95 

o o 
o 

o 

o 



intel® 82596CA 

A reset (hardware or software) configures the 82596 according to the following defaults. 

Table 4. Configuration Defaults 

Parameter Default Value Units/Meaning 

ADDRESS LENGTH "6 Bytes 
AIL FIELD LOCATION 0 Located in FD 

• AUTO RETRANSMIT 1 Auto Retransmit Enable 
BITSTUFFING/EOC 0 EOC 
BROADCAST DISABLE 0 Broadcast Reception Enabled· , 
CDBSAC 1 Disabled 
COT FILTER 0 Bit Times 
CDTSRC 0 External Collision Detection 

• CRC IN MEMORY 1 CRC Not Transferred to Memory 
CRC·16/CRC·32 "0 CRC-32 
CRS FILTER 0 o Bit Times 
CRSSRC 0 External CRS · DISBOF 0 Backoff Enabled 
EXT LOOPBACK 0 Disabled 
EXPONENTIAL PRIORITY "0 802.3 Algorithm 
EXPONENTIAL BACKOFF METHOD "0 802.3 Algorithm · FULL DUPLEX (FOX) 0 CSMAlCD Protocol (No FOX) 
FIFO THRESHOLD 8 TX: 32 Bytes, RX: 64 Bytes 
INT LOOPBACK 0 Disabled 
INTERFRAME SPACING **96 Bit Times 
LINEAR PRIORITY "0 802.3 Algorithm · LENGTH FIELD Padding Disabled 
MIN FRAME LENGTH "64 Bytes , 
MCALL 1 Disabled 

• MONITOR 11 Disabled 
MANCHESTER/NRZ 0 NRZ , 
MULTI IA 0 Disabled 
NUMBER OF RETRIES "15 Maximum Number of Retries 
NO CRC INSERTION 0 CRC Appended to Frame 
PREFETCH BIT IN RBD 0 Disabled (Valid Only in New Modes) 
PREAMBLE LENGTH "7 Bytes , 
Preamble Until CRS 1 Disabled 
PROMISCUOUS·MODE 0 Address Filter On 
PADDING 0 No Padding 
SLOT TIME "512 Bit Times 
SAVE BAD FRAME 0 Discards Bad Frames 
TRANSMIT ON NO CRS 0 Disabled 

NOTES: 
1. This configuration setup is compatible with the IEEE 802.3 specification. 
2. The Asterisk "*" signifies a new configuration parameter not available in the 82586. 
3. The default value of the Auto retransmit configuration parameter is enabled(1). 
4. Double Asterisk "**" signifies IEEE 802.3 requirements. 

4-96 



82596CA 

Multicast-Setup 

This command is used to load the 82596 with the Multicast-IDs that should be accepted. As noted previously, 
the filtering done on the Multicast-IDs is not perfect and some unwanted frames may be accepted. This 
command resets the current filter and reloads it with the specified Multicast-IDs. The format of the Multicast­
addresses setup command is: 

31 

ELI S III X X X 

xlxl 

4th byte 

Nth byte 

31 

ELI S 1110 o 0 

A31 

2nd byte 

Nth byte 

where: 

LINK ADDRESS, 
EL, B, C, I, S 

A 

Bits 19-28 

CMD (bits 16-18) 

MC-CNT 

MC LIST 

ODD WORD 1615 EVEN WORD 0 

X X X X X X xlo 1 1 C I B lOKI A 10 0 0 0 0 0 0 0 0 o 0 0 

MCCOUNT A15 LINK OFFSET AO 

1st byte 

MULTICAST AiDRESSES LIST 

Fig~re 26. MC Setup-82586 and 32-Bit Segmented Modes 

ODD WORD 1615 EVEN WORD 0 

0 0 0 0 0 0 ola 1 11clsiOKI A 10 a 0 o 0 0 0 a a a a a 

LINK ADDRESS Aa 

1st bytel X I X I MCCOUNT 

MULTICAST AiDRESSES LIST 

Figure 27. MC Setup-Linear Mode 

- As per standard Command Block (see the NOP command for details) 

- Indicates that the command was abnormally terminated due to a CU Abort control 
command. If one, then the command was aborted and if necessary it should be 
repeated. If this bit is zero, the command was not aborted. 

- Reserved (0 in both the 32-Bit Segmented and Linear Modes). 

- The MC SETUP command value: 3h. 

This 14-bit field indicates the number of bytes in the MC LIST field. The MC CNT 
must be a multiple of the ADDR LEN; otherwise, the 82596 reduces the MC CNT to 
the nearest AD DR LEN multiple. MC CNT = 0 implies resetting the Hash table 
which is equivalent to disabling the Multicast filtering mechanism. 

- A list of Multicast Addresses to be accepted by the 82596. The least significant bit 
of each MC address must be 1. 

NOTE: 
The list is sequential; i.e., the most significant byte of an address is immediately followed by the least signifi­
cant byte of the next address. 

- When the 82596 is configured to recognize multiple Individual Address (Multi-IA), 
the MC-Setup command is also used to set up the Hash table for the individual 
address. 

The least significant bit in the first byte of each IA address must be O. 

4-97 

II 



inteL 82596CA 

Transmit 

This command is used to transmit Ii. frame of user data onto the serial link. The format of a Transmit command 
is as follows. ' 

31 ODD WORD 1615 EVEN WORD 0 

ELI S II I X x x x x x x x x X 11 0 0 C 1 BI STATUS BITS 1 MAXCOLL 0 

A15 TBDOFFSET AO A15 LINK OFFSET AO 4 

4th byte DESTINATION ADDRESS 1st byte 8 

LENGTH FIELD 6th byte 12 

Figure 28. TRANSMIT -82586 Mode 

31 ODD WORD 1615 EVEN WORD 0 

ELlsl I 1010101010101010iNCIsFI1 0 0 C I B I STATUS BITS I ' MAXCOLL 0 

A15 TBDOFFSET AO A15 LINK OFFSET 

o 0 0 o 0 0 000 o 0 0 o 0 0 o EOFI 0 I TCBCOUNT 

4th byte D,ESTINATION ADDRESS 

LENGTH FIELD 6th byte 

OPTIONAL DATA 

Figure 29. TRANSMIT -32-Bit Segmented Mode 

31 ODD WORD 1615 EVEN WORD 

ELlsl 1i010101010101010iNCIsFI1 0 0 C I BI STATUS BITS 1 

A31 LINK ADDRESS 

A31 TRANSMIT BUFFER DESCRIPTOR ADDRESS 

<i 0 0 o 0 0 o 0 0 o 0 0 o 0 0 o EOFI 0 I 

4th byte DESTINATION ADDRESS 

LENGTH FIELD 6th byte 

.oPTIONAL DATA 

Figure 30. TRANSMIT:-Linear Mode 

31 COMMAND WORD 16 

IELI S II I 0 I 0 I 0 10 I 0 I 0 I 01 0iNcIsFI1 0 012 

t t 
0: No CRC Insertion disable; when the 

configure command is configured to 
not insert the CRC during 
transmission the NC bit has no 
effect. 

1: No CRC Insertion enable; when the 
configure command is configured to 
insert the CRC during transmission 
the CRC will not be inserted when 
NC = 1. 

0: Simplified Mode, all the Tx data is in 
the Transmit Command Block. The 
Transmit Buffer Descriptor Address 
field is all 1 s. 

1: Flexible Mode. Data is in the TCB and 
in a linked list of TBDs. 

4-98 

TCBCOUNT 

AO 4 

8 

1st byte 12 

16 

0 

MAXCOLL 0 

AO 4 

AD 8 

12 

1st byte 16 

20 



anteL 

where: 

EL, B, C, I, S 

OK (Bit 13) 

A (Bit 12) 

Bits 19-28 

CMD (Bits 16-18) 

Status Bit 11 

Status Bit 10 

Status Bit 9 

Status Bit 8 

Status Bit 7 

Status Bit 6 

Status Bit 5 

Status Bit 4 

MAX-COL 
(Bits 3-0) 

LINK OFFSET 

TBD POINTER 

DEST ADDRESS 

LENGTH FIELD 

TCBCOUNT 

EOF Bit 

82596CA 

- As per standard Command Block (see the NOP command for details). 

- Error free completion. 

- Indicates that the command was abnormally terminated due to CU Abort control 
command. If 1, then the command was aborted, and if necessary it should be 
repeated. If this bit is 0, the command was not aborted. 

- Reserved (0 in the 32-bit Segmented and Linear modes). 

- The transmit command: 4h. 

- Late collision. A late collision (a collision after the slot time is elapsed) is detected. 

- No Carrier Sense signal during transmission. Carrier Sense signal is monitored 
from the end of Preamble transmission until the end of the Frame Check Sequence 
for TONOCRS= 1 (Transmit On No Carrier Sense mode) it indicates that transmis­
sion has been executed despite a lack of CRS. For TONOeRS = 0 (Ethernet 
mode), this bit also indicates unsuccessful transmission (transmission stopped 
when lack of Carrier Sense has been detected). 

- Transmission unsuccessful (stopped) due to Loss of CTS. 

- Transmission unsuccessful (stopped) due to DMA Underrun; Le., the system did 
not supply data for transmission. 

- Transmission Deferred, Le., transmission was not immediate due to previous link 
activity. 

- Heartbeat Indicator, Indicates that after a previously performed transmission, and 
before the most recently performed transmission, (Interframe Spacing) the CDT 
signal was monitored as active. This indicates that the Ethernet Transceiver Colli­
sion Detect logic is performing properly. The Heartbeat is monitored during the 
Interframe Spacing period. 

- Transmission attempt was stopped because the number of collisions exceeded the 
maximum allowable number of retries. 

- 0 (Reserved). 

- The number of Collisions experienced during this frame. Max Col = 0 plus S5 = 1 
indicates 16 collisions. 

- As per standard Command Block (see the NOP Command for details) 

- In the 82586 and 32-bit Segmented modes this is the offset of the first Tx Buffer 
Descriptor containing the data to be transmitted. In the Linear mode this is the 32-
bit address of the first Tx Buffer Descriptor on the list. If the TBD POINTER is all 1 s 
it indicates that no TBD is used. 

- Contains the Destination Address of the frame. The least significant bit (MC) indi­
cates the address type. 

MC = 0: Individual Address. 

MC = 1: Multicast or Broadcast Address. 

If the Destination Address bits are all 1 s this is a Broadcast Address. 

- The contents of this 2-byte field are user defined. In 802.3 it contains the length of 
the data field. It is placed in memory in the same order it is transmitted; Le., most 
significant byte first, least significant byte second. 

- This 14-bit counter indicates the number of bytes that will be transmitted from the 
Transmit Command Block, starting from the third byte after the TCB COUNT field 
(address n+ 12 in the 32-bit Segmented mode, N+ 16 in the Linear mode). The 
TCB COUNT field can be any number of bytes (including an odd byte), this allows 
the user to transmit a frame with a header having an odd number of bytes. The 
TCB COUNT field is not used in the 82586 mode. 

- Indicates that the whole frame is kept in the Transmit Command Block. In the 
Simplified memory model it must be always asserted. 

4-99 



intel® 82596CA 

The interpretation of whatis transmitted depends on the No Source Address insertion configuration bit and the 
memory model being used. 

NOTES: 

1. The Destination Address and the Length Field are sequential. The Length Field immediately follows ihe 
most significant byte of the Destination Address. 

2. In case the 82596 is configured with No Source Address insertion bit equal to 0, the 82596 inserts its 
configured Source Address in the transmitted frame. 

• In the 82586 mode, or when the Simplified memory model is used, the Destination and Length fields of the 
transmitted frame are taken from the Transmit Command Block . 

• If the FLEXIBLE memory model is used, the Destination and Length fields of the transmitted frame can be 
found either in the TCB or TBD, depending on the TCB COUNT. 

3. If the 82596 is configured with the Address/Length Field Location equal to 1 ,the 82596 does not insert its 
configured Source Address in the transmitted frame. The first (2 X Address Length) + 2 bytes of the 
transmitted frame are interpreted as Destination Address, Source Address, and Length fields respectively. 
The location of the first transmitted byte depends on the operational mode of the 82596: 

• In the 82586 mode, it is always the first byte of the first Tx Buffer. 

o In both the 32-bit Segmented and Linear modes it depends on the SF bit and TCB COUNT: 

- In the Simplified memory mode the first transmitted byte is always the third byte after the TCB COUNT 
field. 

- In the Flexible mode, if the TCB COUNT is greater than 0 then it is the third byte after the TCB COUNT 
field. If TCB COUNT equals 0 then it is first byte of the first Tx Buffer. 

to Transmit frames shorter than six bytes are invalid. The transmission will be aborted (only in 82586 mode) 
because of a DMA Underrun. 

4. Frames which are aborted during transmission are jammed. Such an interruption of transmission can be 
caused by any reason indicated by any of the status bits 8, 9, 10 and 1.2. 

Jamming Rules 

1. Jamming will not start before completion of preamble transmission. 

2. Collisions detected during transmission of the last ·11· bits will not result in jamming. 

The format of a Transmit Buffer Descriptor is: 

82586 Mode 
31 ODD WORD 16 15 13 EVEN WORD 0 

I NEXT TBD OFFSET IEOFI X I SIZE (ACT COUNT) 0 

Ix X X X X X X xl TRANSMIT BUFFER ADDRESS 4 

32-Bit Segmented Mode 
31 ODD WORD 16 15 13 EVEN. WORD 0 

I NEXT TBD OFFSET IEOFI 0 I SIZE (ACT COUNT) 0 

I TRANSMIT BUFFER ADDRESS 4 

Linear Mode 
31 ODD WORD 16 15 13 EVEN WORD 0 

0 0 0 0 0 0 0 oj 0 0 0 0 0 0 0 o IEOFI 0 I SIZE (ACT COUNT) 0 

NEXT TBD ADDRESS .. 4 

TRANSMIT BUFFER ADDRESS 8 

Figure 31 

4-100 



nnte!® 82596CA 

where: 

EOF - This bit indicates that this TBD is the last one associated with the frame being 
transmitted. It is set by the CPU before transmit. 

SIZE (ACT COUNT) - This 14-bit quantity specifies the number of bytes that hold information for the 
current buffer. It is set by the CPU before transmission. 

NEXT TBD ADDRESS - In the 82586 and 32-bit Segmented modes, it is the offset of the next TBD on the 
list. In the Linear mode this is the 32-bit address of the next TBD on the list. It is 
meaningless if EOF = 1. 

BUFFER ADDRESS - The starting address of the memory area that contains the data to be sent. In the 
82586 mode, this is a 24-bit address (A31-A24 are considered to be zero). In the 
32-bit Segmented and Linear modes this is a 32-bit address. This buffer can be 
byte aligned for the 82596 B step. 

TDR 

This operation activates Time Domain Reflectomet, which is a mechanism to detect open or short circuits on 
the link and their distance from the diagnosing station. The TDR command has no parameters. The TOR 
transmit sequence was changed, compared to the 82586, to form a regular transmission. The TDR bit stream 
is as follows. 

- Preamble 

- Source address 

- Another Source address (the TOR frame is transmitted back to the sending station, 
so DEST ADR = SRC ADR). 

- Data field containing 7Eh patterns. 

- Jam Pattern, which is the inverse CRC of the transmitted frame. 

Maximum length of the TOR frame is 2048 bits. If the 82596 senses collision while transmitting the TOR frame 
it transmits the jam pattern and stops the transmission. The 82596 then triggers an internal timer (STC); the 
timer is reset at the beginning of transmission and reset if CRS is returned. The timer measures the time 
elapsed from the start of transmission until an echo is returned. The echo is indicated by Collision Detect going 
active or a drop in the Carrier Sense signal. The following table lists the possible cases that the 82596 is able 
to analyze. 

Conditions of TOR as Interpreted by the 82596 

Transceiver Type 
Ethernet Non Ethernet 

Condition 

Carrier Sense was inactive for 2048-bit-time Short or Open on the NA 
periods Transceiver Cable 

Carrier Sense signal dropped Short on the Ethernet cable NA 

Collision Detect went active Open on the Ethernet cable Open on the Serial Link 

The Carrier Sense Signal did not drop or the No Problem No Problem 
Collision Detect did not go active within 
2048-bit time period 

An Ethernet transceiver is defined as one that returns transmitted data on the receive pair and activates the 
Carrier Sense Signal while transmitting. A Non-Ethernet Transceiver is defined as one that does not do so. 

4-101 



intel· 82596CA 

The format of the Time Domain Reflectometer command is: 

82586 and 32·Bit Segmented Modes 
31 ODD WORD 1615 EVEN WORD 0 

EL S I X X X X X X X X X X 11 o 1 C I B lOKI 0 0 o 0 0 0 0 0 o 000 0 

LNK XVR ET 
ETrl X I 

TIME A15 LINK OFFSET AO 
OK PRB OPN SRT (11 bits) 

31 

ELJsl1 10 0 

A31 

0 0 0 0 0 

where: 

LINK ADDRESS, 
EL, B, C, I, S 

A 

Bits 19-28 

CMD (Bits 16-18) 

TIME 

LNK OK (Bit IS) 

XCVR PRB (Bit 14) 

ET OPN (Bit 13) 

ET SRT (Bit 12) 

0 

0 

Linear Mode 
ODD WORD 16 15 EVEN WORD 0 

0 

0 

0 0 0 0 0 o 11 0 11 CB lOKI 0 0 o 0 0 o 0 0 o 0 0 0 0 

LINK ADDRESS AO 

0 0 0 0 0 o 0 0 0 I LNK I XVR I ET I ETI X I TIME 
OK PRB OPN SRT (11 bits) 

Figure 32. TOR 

- As per standard Command Block (see the NOP command for details). 

- Indicates that the command was abnormally terminated due to CU Abort control 
command. If one, then the command was aborted, and if necessary it should be 
repeated. If this bit is zero, the command was not aborted. 

- Reserved (0 in the 32-bit Segmented and Linear Modes). 

- The TOR command. Value: Sh. 

- An II-bit field that specifies the number of TxC cycles that elapsed before an echo 
was observed. No echo is indicated by a reception consisting of "IS" only. Be­
cause the network contains various elements such as transceiver links, transceiv­
ers, Ethernet, repeaters etc., the TIME is not exactly proportional to the problems 
distance. 

- No link problem identified. TIME=7FFh. 

- Indicates a Transceiver problem. Carrier Sense was inactive for 2048-bit time peri-
od. LNK OK=O. TIME=7FFh. 

- The transmission line is not properly terminated. Collision Detect went active and 
LNK OK=O. 

- There is a short circuit on the transmission line. Carrier Sense Signal dropped and 
LNK OK=O. 

4-102 



82596CA 

DUMP 

This command causes the contents of various 82596 registers to be placed in a memory area specified by the 
user. It is supplied as a 82596 self-diagnostic tool, and to provide registers of interest to the user. The format 
of the DUMP command is: 

82586 and 32-Bit Segmented Modes 
31 ODD WORD 1615 EVEN WORD 

ELI S I I I X X X X X X X X X X 11 1 ole I B lOKI 0 0 0 0 0 0 0 0 0 0 

A15 BUFFER OFFSET AoIA15 LINK OFFSET 

31 

ELI S II I X X X 

A31 

A31 

where: 

LINK ADDRESS, 
EL, B, C, I, S 

OK 

Bits 19-28 

Linear Mode 
ODD WORD 1615 EVEN WORD 

X X X X X X X 11 1 ole I B lOKI 0 0 0 0 0 0 0 0 0 0 

LINK ADDRESS 

BUFFER ADDRESS 

Figure 33. Dump 

- As per standard Command Block (see the NOP command for details). 

- Indicates error free completion. 

- Reserved (0 in the 32-bit Segmented and Linear Modes). 

- The Dump command. Value: 6h. 

0 

0 0 01 

Aol 

0 

0 0 0 

AO 

AO 

CMD (Bits 16-18) 

BUFFER POINTER - In the 82586 and 32-bit Segmented modes this is the 16-bit-offset portion of the 
dump area address. In the Linear mode this is the 32-bit linear address of the dump 
area. 

Dump Area Information Format 

o The 82596 is not Dump compatible with the 82586 because of the 32-bit internal architecture. In 82586 
mode the 82596 will dump the same number of bytes as the 82586. The compatible data will be marked 
with an asterisk. 

o In 82586 mode the dump area is 170 bytes. 

o The DUMP area format of the 32-bit Segmented and Linear modes is described in Figure 35. 

• The size of the dump area of the 32-bit Segmented and Linear modes is 304 bytes. 

• When the Dump is executed by the Port command an extra word will be appended to the Dump Area. The 
extra word is a copy of the Dump Area status word (containing the C, B, and OK Bits). The C and OK Bits 
are set when the 82596 has completed the Port Dump command. 

4-103 



intel® 82596CA 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DMA CONTROL REGISTER 00 

CONFIGURE BYTES' 3, 2 02 'The 82596 is not Dump compatible with' 

CONFIGURE BYTES' 5, 4 04 the 82586 because of the 32-bit internal ar-

CONFIGURE BYTES' 7, 6 06 
chitecture. In 82586 mode the 82596 will 
dump the same number of bytes as the 

CONFIGURE BYTES' 9, 8 08 82586. 
CONFIGURE BYTES' 10 OA "These bytes are not user defined, results 

LA. BYTES 1, 0' OC may vary from Dump command to Dump 
command. 

LA. BYTES3, 2' OE 

LA. BYTES 5, 4' 10 

LAST T.X. STATUS' 12 

T.X. CRC BYTES 1,0' 14 

T.X. CRC BYTES 3, 2' 16 

R.x. CRC BYTES 1, 0' 18 

R.x. CRC BYTES 3, 2' 1A 

R.x. TEMP MEMORY 1,0' 1C 

R.x. TEMP MEMORY 3, 2' 1E 

R.X. TEMP MEMORY 5, 4' 20 

LAST RECEIVED STII:TUS' 22 

HASH REGISTER BYTES 1, 0' 24 

HASH REGISTER BYTES 3, 2' 26 

HASH REGISTER BYTES 5, 4' 28 

HASH REGISTER BYTES 7, 6' 2A 

SLOT TIME COUNTER' 2C 

WAIT TIME COUNTER' 2E 

MICRO MACHINE" 30 

REGISTER FILE 

60 BYTES 6A 

MICRO MACHINE LFSR" 6C 

MICRO MACHINE" 6E 

FLAG ARRAY 

14 BYTES 7A 

QUEUE MEMORY" 7C 

CUPORT 
8 BYTES 82 

MICRO MACHINE ALU" 84 

RESERVED" 86 

.M.M. TEMP A ROTATE R" 88 

M.M. TEMP A" 8A 

T.x. DMA BYTE COUNT" 8C 

M.M. INPUT PORT ADDRESS" 8E 

T.X. DMA ADDRESS 90 

M.M. OUTPUT PORT" 92 

R.x. DMA BYTE COUNT" 94 

M.M. OUTPUT PORT ADDRESS REGISTER" 96 

R. DMA ADDRESS" 98 

RESERVED" 9A 

BUS THROTILE TIMERS 9C i 

DIU CONTROL REGISTER" 9E 

RESERVED" AO 

DMA CONTROL REGISTER" A2 

BIU CONTROL REGISTER" A4 

M.M. DISPATCHER REG." A6 

M.M. STATUS REGISTER" A8 

Figure 34. Dump Area Format-82586 Mode 

4-104 



82596CA 

31 0 

CONFIGURE BYTES 5, 4, 3, 2 00 The 82596 is not Dump compatible with the 

CONFIGURE BYTES 9, 8, 7, 6 04 
82586 because of the 32·bit internal archi· 
lecture. In 82586 mode the 82596 will dump 

CONFIGURE BYTES 13, 12, 11, 10 08 the same number of bytes as the 82586. 
*"These bytes are not user defined, results 

I.A. BYTES 1, 0 X X X X X X X X OC may vary from Dump command to Dump 

I.A. BYTES 5, 2 10 command. 

TX CRC BYTES 0, 1 LASTT.X. STATUS 14 

RX CRC BYTES 0, 1 TX CRC BYTES 3, 2 18 

RX TEMP MEMORY 1, 0 RX CRC BYTES 3, 2 lC 

R.X. TEMP MEMORY 5, 2 20 

HASH REGISTERS 1, 0 LAST R.X. STATUS 24 

HASH REGISTER BYTES 5, 2 28 

SLOT TIME COUNTER HASH REGISTERS 7, 6 2C 

RECEIVE FRAME LENGTH WAIT·TIME COUNTER 30 

MICRO MACHINE" 34 

.' 

REGISTER FILE 

128 BYTES BO 

MICRO MACHINE LFSR" B4 

MICRO MACHINE" B8 

FLAG ARRAY 

28 BYTES DO 

M.M. INPUT PORT" 
D4 

16 BYTES 
EO 

MICRO MACHINE ALU" E4 

RESERVED" E8 

M.M. TEMP A ROTATE R." EC 

M.M. TEMP A" FO 

T.X. DMA BYTE COUNT" F4 

M.M. INPUT PORT ADDRESS REGISTER" F8 

T.X. DMA ADDRESS" FC 

M.M. OUTPUT PORT REGISTER" 100 

R.X. DMA BYTE COUNT" 104 

M.M. OUTPUT PORT ADDRESS REGISTEW' 108 

R.X. DMA ADDRESS REGISTER" 10C 

RESERVED" 110 

BUS THROTTLE TIMERS 114 

DIU CONTROL REGISTER" 118 

RESERVED" llC 

DMA CONTROL REGISTER" 120 

BIU CONTROL REGISTER" 124 

M.M. DISPATCHER REG." 128 

M.M. STATUS REGISTER" 12C 

Figure 35. Dump Area Format-Linear and 32-Bit Segmented Mode 

4-105 



82596CA 

Diagnose 

The Diagnose Command triggers an internal self-test procedure that checks internal 82596 hardware, which 
includes: 

• Exponential Sackoff Random Number Generator (Linear Feedback Shift Register). 

• Exponential Sackoff Timeout Counter. 

• Slot Time Period Counter. 

• Collision Number Counter. 

• Exponential Sackoff Shift Register. 

• Exponential Sackoff Mask Logic. 

• Timer Trigger Logic. 

This procedure checks the operation of the Sackoff block, which resides in the serial side and is not easily 
controlled. The Diagnose command is performed in two phases. 

The format of the 82596 Diagnose command is: 

82586 and 32·Bit Segmented Modes 
ODD WORD 1615 EVEN WORD o 

x x x x x x x x x o 0 0 0 0 0 000 0 

x x X X X X X X X LINK OFFSET AO 

where: 

LINK ADDRESS, 
EL, S, C,I, S 

Sits 19-28 

CMD (bits 16-18) 

OK (bit 13) 

F (bit 11) 

ODD WORD 
Linear Mode 

16 15 EVEN WORD o 
000 0 0 0 0 o 0 0 0 0 0 0 0 000 

AO 

Figure 36. Diagnose 

- As per standard Command Siock (see the NOP command for details). 

- Reserved (0 in the 32-bit Segmented and Linear Modes). 

- The Diagnose command. Value: 7h. 

- Indicates error free completion. 

- Indicates that the self-test procedure has failed. 

4-106 



82596CA 

RECEIVE FRAME DESCRIPTOR 

Each received frame is described by one Receive Frame Descriptor (see Figure 37). Two new memory 
structures are available for the received frames. The structures are available only in the Linear and 32-bit 
Segmented modes. 

Simpliiiecl Memoi'Y Sti'uciui'e 

The first is the Simplified memory structure, the data section of the received frame is part of the RFD and is 
located immediately after the Length Field. Receive Buffer Descriptors are not used with the Simplified struc­
ture, it is primarily used to make programming easier. If the length of the data area described in the. Size Field 
is smaller than the incoming frame, the following happens. 

1. The received frame is truncated. 

2. The No Resource error counter is updated. 

3. If the 82596 is configured to Save Bad Frames the RFD is not reused; otherwise, the same RFD is used to 
hold the next received frame, and the only action taken regarding the truncated frame is to update the 
counter. 

4. The 82596 continues to receive the next frame in the next RFD. 

L SCB <J RECEIVE FRAME AREA 

;-- -0 RFD 1 

RFA STATUS STATUS f STATUS Lr STATUS S POINTER J 0-- 0- 0-
STATISTICS 

<>- t-- 0-- -
TO 

OMMAND RECEIVE VALID EMPn' EMPTY EMPn' 
BLOCK FRAME PARAMETERS 

LIST DESCRIPTORS L RBDl RBD2 I RBD3 RBD4 RBD5 

O\ACT-:Lr 1 I ACT-cnt It o I ACT-cnt f 01 ACT-ent LJ a I ACT-ent lJ 0- 0-- .- 0-
RECEIVE 
BUFFER 

DESCRIPTORS 
9 9 9 9 'L 

J- ~ 0 0 0 RECEIVE VALID VALID 

BUFFERS DATA DATA 

'--- -
BUFFER 1 BUFFER 2 BUFFER 3 BUFFER 4 BUFFER 5 

I+-- RECEIVE FRAME LIST FREE FRAME LIST 

290218-15 

Figure 37. The Receive Frame Area 

4-107 

.. 



int'eL 82596CA 

Note that this sequence is very useful for monitoring. If the 82596 is configured to Save Bad Frames, to 
receive in Promiscuous mode, and to use the Simplified memory structure, any programmed length of received 
data can be saved in memory. . 

The Simplified memory structure is shown in Figure 38. 

SCB 

STATUS Lr TO COf.4f.4AND LIST 

CBL' 4 
POINTER 

RFA 

II FD1 
POINTER 

STATUS 

I STATISTICS 

I BUS I 
I THROTTLE I 
I I .. _----_. 

RECEIVE VARIABLE 
FRAf.4E DATA 

DESCRIPTORS FIELD 

RECEIVE FRAf.4E AREA 

FD2 FD3 FD4 

STATUS y! - Bt------! 
I I 
I I 
I I 
I Ef.4PTY I 
I I 
I I 
I I 
I I ._---- .. 

I 
.1 
I 
I Ef.4PTY 
I 

.. 
I 
I 

Ef.4PTY I 
I 
I 
I 
I 

.' 

:.- RECEIVE FRAf.4E LIST -......j.~:.4------- FREE FRAME LIST -------......j.~, 

290218-16 

Figure 38. RFA Simplified Memory Structure 

Flexible Memory Structure 

The second structure is the Flexible memory structure, the data structure of the received frame is stored in 
both the RFD and in a linked list of Receive Buffers-Receive Buffer Descriptors. The received frame is placed 
in the RFD as configured in the Size field. Any remaining data is placed in a linked list of RBDs. 

The Flexible memory structure is shown in Figure 39. 

4-108 



nntel· 

SCB 

STATUS 

CBL 
POINTER 

RFA 
POINTER 

STATISTICS 

BUS 
THROTTLE 

• _______ 01 

RECEIVE 
FRAME 

DESCRIPTORS 

RECEIVE 
BUFFER 

DESCRIPTORS 

RECEIVE 
BUFFERS 

82596CA 

TO COMMAND LIST 

'<: RECEIVE FRAME AREA ~, 

FDl FD2 FD3 FD4 

STATUS 

S 
CONTROL 

FIELD 

VARIABLE 
DATA 

EMPTY EMPTY EMPTY 

FIELD 

._----_. ._----_. ._----_. 

EMPTY EMPTY 

BUFFER 1 BUFFER 2 BUFFER 3 BUFFER 4 BUFFER 5 

,4--- RECEIVE FRAME LIST ---I>,<ll-------- FREE FRAME LIST --------11>, 

290218-17 

Figure 39. RFA FleJdble Memory Structure 

Buffers on the receive side can be different lengths. The 82596 will not place more bytes into a buffer than 
indicated in the associated RBD. The 82596 will fetch the next RBD before it is needed. The 82596 will 
attempt to receive frames as long as the FBL is not exhausted. If there are no more buffers, the 82596 
Receive Unit will enter the No Resources state. Before starting the RU, the CPU must place the FBL pointer in 
the RBD pointer field of the first RFD. All remaining RBD pointer fields for subsequent RFDs should be "1 s." If 
the Receive Frame Descriptor and the associated Receive Buffers are not reused (e.g., the frame is properly 
received or the 82596 is configured to Save Bad Frames), the 82596 writes the address of the next free RBD 
to the RBD pointer field of the next RFD. 

Receive Buffer Descriptor (RBD) 

The RBDs are used to store received data in a flexible set of linked buffers. The portion of the frame's data 
field that is outside the RFD is placed in a set of buffers chained by a sequence of RBDs. The RFD points to 
the first RBD, and the last RBD is flagged with an EOF bit set to 1. Each buffer in the linked list of buffers 
related to a particular frame can be any size up to 214 bytes but must be word aligned (begin on an even 
numbered byte). This ensures optimum use of the memory resources while maintaining low overhead. All 
buffers in a frame are filled with the received data except for the last, in which the actual count can be smaller 
than the allocated buffer space. 

4-109 



intet 82596CA 

31 ODD WORD 1615 EVEN WORD 0 

ELI S I x x x x x x x x x x x x x x C I B lOKI 0 I STATUS BITS 10 0 0 0 0 o 0 

A15 RBDOFFSET AO A15 LINK OFFSET AO 4 

4th byte DESTINATION ADDRESS 1st byte 8 ' 

SOURCE ADDRESS 1st byte 6th byte 12 

6th byte 4th byte 16 

X X X X X X X, X X X X X X X X X LENGTH FIELD 20 

Figure 40. Receive Frame Descrlptor-82586 ~ode 

31 ODD WORD 1615 EVEN WORD 0 

ELI S 10 0 o 0 0 0 o 0 o 0 ISFI 0 0 0 C I B lOKI STATUS BITS 0 

A15 RBDOFFSET AO A15 LINK OFFSET AO 4 

0101 SIZE EOFI FI ACTUAL COUNT 8 

4th byte DESTINATION ADDRESS 1st byte 12 

SOURCE ADDRESS 1st byte 6th byte 16 

6th byte 4th byte 20 

LENGTH FIELD 24 

, OPTIONAL DATA AREA 

Figure 41. Receive Frame Descriptor-32-Bit Segmented Mode 

31 ODD WORD 1615 EVEN WORD 0 

ELI S 10 0 o 0 0 0 0 0 0 o ISFI 0 0 0 C I BloKI STATUS BITS 0 

A31 LINK ADDRESS AO 4 

A31 RECEIVE BUFFER DESCRIPTOR ADDRESS A08 

0101 SIZE EOFI FI ACTUAL COUNT 12 

4th byte DESTINATION ADDRESS 1st byte 16 

SOURCE ADDRESS 1st byte 6th byte 20 

6th byte 4th byte 24 

LENGTH FIELD " 28 

OPTIONAL DATA AREA 

Figure 42. Receive Frame Descriptor-Linear Mode 

4-110 



ontel® 

where: 

EL 

S 

SF 

C 

B 

OK (bit 13) 

STATUS 

82596CA 

- When set, this bit indicates that this RFD is the last one on the RDL. 

- When set, this bit suspends the RU after receiving the frame. 

- This bit selects between the Simplified or the Flexible mode. 

0- Simplified mode, all the RX data is in the RFD. RBD ADDRESS field is all 
"1s," 

1 - Flexible mode. Data is in the RFD and in a linked list of Receive Buffer De­
scriptors. 

- This bit indicates the completion of frame reception. It is set by the 82596. 

- This bit indicates that the 82596 is currently receiving this frame, or that the 82596 
is ready to receive the frame. It is initially set to 0 by the CPU. The 82596 sets it to 
1 when reception set up begins, and to 0 upon completion. The C and B bits are 
set during the same operation. 

- Frame received successfully, without errors. RFDs with bit 13 equal to 0 are possi­
ble only if the save bad frames, configuration option is selected. Otherwise all 
frames with errors will be discarded, although statistics will be collected on them. 

- The results of the Receive operation. Defined bits are, 

Bit 12: Length error if configured to check length 

Bit 11: CRC error in an aligned frame 

Bit 10: Alignment error (CRC error in misaligned frame) 

Bit 9: Ran out of buffer space-no resources 

Bit 8: DMA Overrun failure to acquire the system bus. 

Bit 7: Frame too short. 

Bit 6: No EOP flag (for Bit stuffing only) 

Bit 5: When the SF bit equals zero, and the 82596 is configured to save bad 
frames, this bit signals that the receive frame was truncated. Otherwise it 
is zero. 

Bits 2-4: Zeros 

Bit 1: When it is zero, the destination address of the received frame matches 
the IA address. When it is a 1, the destination address of the received 
frame did not match the individual address. For example, a multicast 
address or broadcast address will set this bit to a 1. 

Bit 0: Receive collision, a collision is detected during reception. 

LINK ADDRESS - A 16-bit offset (32-bit address. in the Linear mode) to the next Receive Frame 
Descriptor. The Link Address of the last frame can be used to form a cyclical list. 

RBD POINTER - The offset (address in the Linear mode) of the first RBD containing the received 
frame data. An RBD pointer of all ones indicates no RBD. 

EOF - These fields are for the Simplified and Flexible memory models. They are exactly 
F the same as the respective fields in the Receive Buffer Descriptor. See the next 
SIZE section for detailed explanation of their functions. 

ACT COUNT 

MC - Multicast bit. 

DESTINATION - The contents of the destination address of the receive frame. The field is 0 to 6 
ADDRESS bytes long. 

SOURCE ADDRESS - The contents of the Source Address field of the received frame. It is 0 to 6 bytes 
long. 

LENGTH FIELD - The contents of this 2-byte field are user defined. In 802.3 it contains the length of 
the data field. It is placed in memory in the same order it is received, i.e., most 
significant byte first, least significant byte second. 

4-111 



intel® 82596CA 

NOTES 
1. The Destination address, Source address and Length fields are packed, i.e., one field immediately follows 
the next. 
2. The affect of Add ressl Length Location (No Source Address Insertion) configuration parameter while re­
ceiving is as follows: 

- 82586 Mode: The Destination address, Source address and Length field ar.e not used, they are placed in 
the RX data buffers. 

- 32-Bit Segmented and Linear Modes: when the Simplified memory model is used, the Destination address, 
Source address and Length fields reside in their respective fields in the RFD. When the Flexible memory 
strucrture is uSed the Destination address, Source address, and Length field locations depend on the SIZE 
field of the RFD. They can be placed in the RFD, in the RX data buffers, or partially in the RFD and the rest 
in the RX data buffers, depending on the SIZE field value. 

82586 Mode 
31 ODD WORD 16 15 EVEN WORD 0 

A15 NEXT RBD OFFSET AolEOFI FI ACTUAL COUNT 0 

X X X X X X X X IA23 RECEIVE BUFFER ADDRESS A04 

X X X X X X X X X X X X X X X X JEL I X I SIZE 8 

32·Bit Segmented Mode 
31 ODD WORD 16 15 EVEN WORD 0 

A15 NEXT RBD OFFSET AojEOFjF I ACTUAL COUNT 0 

A31 RECEIVE BUFFER ADDRESS AO 4 

0 0 0 0 0 0 0 0 000 0 0 0 0 01 EL I pi SIZE 8 

Linear Mode 
31 ODD WORD 1615 EVEN WORD 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OIEOFI FI ACTUAL COUNT 0 

A31 NEXT RBD ADDRESS AO 4 

A31 RECEIVE BUFFER ADDRESS AO 8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 olELipL SIZE 

Figure 43. Receive Buffer Descriptor 

4-112 



intel® 82596CA 

where: 

EOF - Indicates that this is the last buffer related to the frame. It is cleared by the CPU 
before starting the RU, and is written by the 82596 at the end of reception of the 
frame. 

F - Indicates that this buffer has already been used. The Actual Count has no meaning 
unless the F bit equals one. This bit is cleared by the CPU before starting the RU, 
and is set by the 82596 after the associated buffer has been. This bit has the same 
meaning as the Complete bit in the RFD and CB. 

ACT COUNT - This 14-bit quantity indicates the number of meaningful bytes in the buffer. It is 
cleared by the CPU before starting the RU, and is written by the 82596 after the 
associated buffer has already been used. In general, after the buffer is full, the 
Actual Count value equals the size field of the same buffer. For the last buffer of 
the frame, Actual Count can be less than the buffer size. 

NEXT BD ADDRESS - The offset (absolute address in the Linear mode) of the next RBD on the list. It is 

BUFFER ADDRESS 

EL 

P 

SIZE 

meaningless if EL = 1. 

- The starting address of the memory area that contains the received data. In the 
82586 mode, this is a 24-bit address (with pins A24-A31 = 0). In the 32-bit Seg­
mented and Linear modes this is a 32-bit address. 

- Indicates that the buffer associated with this RBD is last in the FBL. 

- This bit indicates that the 82596 has already prefetched the RBDs and any change 
in the RBD data will be ignored. This bit is valid only in the new 82596 memory 
modes, and if this feature has been enabled during configure command. The 
82596 Prefetches the RBDs in locked cycles; after prefetching the RBD the 82596 
performs a write cycle where the P bit is set to one and the rest of the data remains 
unchanged. The CPU is responsible for resetting it in all RBDs. The 82596 will not 
check this bit before setting it. 

- This 14-bit quantity indicates the size, in bytes, of the associated buffer. This quan­
tity must be an even number. 

4-113 

.. 



intel· 82596CA 

PGA PACKAGE THERMAL SPECIFICATION 
Parameter Thermal Resistance 

8JC 3°C/W 

8JA 24°C/W 

ELECTRICAL AND TIMING 
CHARACTERISTICS 

Absolute Maximum Ratings 

• Storage Temperature ........ -65°C to + 150°C 

o Case Temperature under Bias - 65°C to + 110°C 

• Supply Voltage' 
with Aespect to Vss . ........ - 0.5V to + 6.5V 

.. Voltage on Other Pins .... -0.5V to Vcc + 0.5V 

DC Characteristics 

T c = 0°C-85°C, Vcc = 5V ± 1 0% LE/BE have MaS levels (see VMll, VMIH). 
All other signals have TTL levels (see Vil VIH VOL VOH) , , , 

Symbol Parameter Min Max Units 

Vil Input Low Voltage (TTL) -0.3 +0.8 V 

VIH Input High Voltage (TTL) 2.0 Vcc + 0.3 '" V 

VMll Input Low Voltage (MaS) -0.3 +0.8 V 

VMIH Input High Voltage (MaS) 3.7 VCC+ 0.3 V 

Val Output Low Voltage (TTL) 0.45 V 

VCll AXC, TXC Input Low Voltage -0.5 0.6 V 

VCIH AXC, TXC Input High Voltage 3.3 Vcc+ 0.5 V 

VOH Output High Voltage (TTL) 2.4 V 

III Input Leakage Current ±15 }loA 

ILO Output Leakage Current ±15 }loA 

CIN Capacitance of Input Buffer 10 pF 

COUT Capacitance of Input/Output 12 pF 
Buffer 

CClK CLK Capacitance 20 pF 

Icc Power Supply 200 mA 

Icc Power Supply 300 mA 

4-114 

Notes 

IOl = 4.0mA 

IOH = 0.9 mA-1 mA 

Os VIN s Vcc 

0.45 < VOUT < Vcc 

FC = 1 MHz 

FC = 1 MHz 

FC = 1 MHz 

At 25 MHz 
Icc Typical = 100 mA 

At33 MHz 
Icc Typical = 150 mA 



inteJ® 82596CA 

AC Characteristics 

82596CA INPUT/OUTPUT SYSTEM TIMINGS 

Te = 0°C-85°C, Vee = 5V ± 1 0%. These timing assume the CL on all outputs is 50 pF unless otherwise 
specified. CL can be 20 pF to 120 pF however timings must be derated. All timing requirements are given in 
nanoseconds. 

25 MHz 
Symbol Parameter Notes 

Min Max 

Operating Frequency 12.5 MHz 25 MHz 1X ClK Input 

T1 ClK Period 40 80 

T1a ClK Period Stability 0.1% Adjacent ClK l:;. 

T2 ClK High 14 2.0V 

T3 ClK low 14 0.8V 

T4 ClK Rise Time 4 0.8V to 2.0V 

T5 ClK Fall Time 4 2.0V to 0.8V 

T6 BEn, lOCK, and A2-A31 Valid Delay 3 22 

T6a BLAST, PCHK Valid Delay 3 27 

T7 BEn, lOCK, BLAST, A2-A31 Float Delay 3 30 

T8 WfR and ADS Valid Delay 3 22 

T9 W fR and ADS Float Delay 3 30 

T10 00-031, OPn Write Data Valid Delay 3 22 

T11 00- 031, OPn Write Data Float Delay 3 30 

T12 HOLD Valid Delay 3 22 

T13 CA and BREQ Setup Time 7 1,2 

T14 CA and BREQ Hold Time 3 1,2 

.115 BS16 Setup Time 8 2 

T16 BS16 Hold Time 3 2 

T17 BROY, ROY Setup Time 8 2 

T18 BROY, ROY Hold Time 3 2 

T19 00-031, OPn READ Setup Time 5 2 

T20 00-031, OPn READ Hold Time 3 2 

T21 AHOlO and HlOA Setup Time 10 1,2 

T22 AHOlO Hold Time· 3 1,2 

T22a HlOA Hold Time 3 1,2 

T23 RESET Setup Time 10 1,2 

T24 RESET Hold Time 3 1,2 

T25 INT liNT Valid Delay 1 26 

T26 CA and BREQ, PORT Pulse Width 2T1 1,2,3 

T27 00-031 CPU PORT Access Setup Time 5 2 

T28 00-031 CPU PORT Access Hold Time 3 2 

T29 PORT Setup Time 7 2 

T30 PORT Hold Time 3 2 

T31 BOFF Setup Time 10 2 

T32 BOFF Hold Time 3 2 

4-115 

.. 



intaL 82596CA 

AC Characteristics (Continued) 

82596CA INPUT IOUTPUT SYSTEM. TIMINGS 

Te = 0·C-85·C, Vee = 5V ±5%. These timing assume the CL on all outputs is 50 pF unless otherwise 
specified. CL can be 20 pF to 120 pF, however timings must be derated. All timing requirements are given in 
nanoseco·nds. . 

33 MHz 
Symbol Parameter Notes 

Min Max 

Operating Frequency 12.5 MHz 33 MIi~'L 1X ClK Input 

T1 ClK Period 30 ',~~@~{~'If\' 
T1a ClK Period Stability ,"0"3,% 

'I" "'~"~ 
Adjacent ClK I::. 

T2 ClK High If0ij~!l 11 ,.:C. <:'1,'\it 2.0V 

T3 ClKlow .. ' 1''2>'' 11~" 0.8V 

T4 ClK Rise Time {," ';!~,i\ . . ·di\:!l" 3 0.8Vto2.0V 

T5 ClK Fall Time i,.;,jf;;~1fJi"· 3 2.0VtoO.8V 

T6 BEn, lOCK; and A2-A31 V!!llj lay 19 

T6a BLAST, PCHK Valid De " 22 

T7 BEn, lOCK, BLAST, 1 Flo' 20 

T8 W/R and ADS V~ 3 19 

T9 .W/R and ADS F'Rl~t .. 3 20 

T10 00-031, OPn Write 
Ii ·'t·'·· 3 19 

T11 00-031, OPn Writ 
0" 

Y 3 20 

T12 HOLD Valid Del ' 3 19 

. T13 CA and BR(;g Se pTime - 7 1,2 

T14 CA and.aJil~61iHold Time 3 1,2 

T15 BS1 ~~e,jup Time 6 2 

T16 BS16 Hold Time 3 2 

T17 BROY, ROY Setup Time 6 2 

T18 BROY, ROY Hold Time .3 2 

T19 DO-031, OPn READ Setup Time 5 2 

T20 00-031, DPn READ Hold Time 3 2. 

T21 AHOlO and HlOA Setup Time 8 1,2 

T22 AHOlO Hold Time 3 1,2 



82596CA 

AC Characteristics (Continued) 

82596CA INPUT/OUTPUT SYSTEM TIMINGS 

CL on all outputs is 50 pF unless otherwise specified. 
All timing requirements are given in nanoseconds. 

Symbol Parameter 

T22a HLDA Hold Time 

T23 RESET Setup Time 

T24· RESET Hold Time 

T25 INT liNT Valid Delay 

T26 CA and BREQ, PORT Pulse Width 

T27 DO-D31 CPU PORT Access Setup Time 

T28 DO-D31 CPU PORT Access Hold Time 

T29 PORT Setup Time 

T30 PORT Hold Time 

T31 BOFF Setup Time 

T32 BOFF Hold Time 

NOTES: 

33 MHz 

Min Mal( 
Notes 

3 1,2 

8 1,2 

3 1,2 

1 20 

2T1 1,2,3 

5 2 

3 2 

7 2 

3 2 

8 2 

3 2 

1. RESET, HLDA, and CA are intemallysynchronized.This timing is to guarantee recognition at next clock for RESET. HLDA 
and CA. 
2. All set·up. hold and delay timings are at maximum frequency specification Fmax. and must be derated according to the 

following equation for operation at lower frequencies: 
Tderated = (Fmax/Fopr) x T 
where: 
Tderate = Specifies the value to derate the specification. 
Fmax = Maximum operating frequency. 
Fopr = Actual operating frequency. 
T = Specification at maximum frequency. 
This calculation only provides a rough estimate for derating the frequency. For more detailed information, contact your 
Intel Sales Office for the data sheet supplement. . 

3. CA pulse width need only be 1 T1 wide if the set up and hold times are met; BREQ must meet setup and hold times and 
need only be 1 T1 wide. 

TRANSMIT/RECEIVE CLOCK PARAMETERS 

Symbol Parameter 20 MHz Notes 
Min Max 

T36 TxCCycle 50 1,3 

T38 TxC Rise Time 5 1 

T39 TxC Fall Time 5 1 

T40 TxC High Time 19 1,3 

T41 TxC Low Time 18 1,3 

T42 TxD Rise Time 10 4 

T43 TxDFaliTime 10 4 

T44 TxD Transition 20 2,4 

T45 TxC Low to TxD Valid 25 4,6 

T46 TxC Low to TxD Transition 25 2,4 

T47 TxC High to TxD Transition 25 2,4 

T48 TxC Low to TxD High (At End of Transition) 25 4 

4-117 



82596CA 

TRANSMIT IRECEIVE CLOCK PARAMETERS (Continued) 

Symbol Parameter 
20MHz 

Notes 
Min Max 

RTS AND CTS PARAMETERS 

T49 TxC Low to RTS Low, 25 5 
Time to Activate RTS 

T50 CTS Low to TxC Low, CTS Setup Time 20 

T51 TxC Low to CTS Invalid, CTS Hold Time 10 7 

T52 TxC Low to RTS High .. 25 5 

RECEIVE CLOCK PARAMETERS 
... 

T53 RXCCycle 50 1,3 

T54 RXC Rise Time . .. ;. 5 1 

T55 RXCFaliTime ... ... 5 1 

T56 RXC High Time < 
.c 

19 1 

T57 RXC Low Time 
.. . ..• 

18 1 ... 

RECEIVED DATA PARAMETERS.·.···· . 
.... 

T58 RXD Setup Time 20 6 

T59 RXD Hold Time .... 
.. / 

10 
.. 

6 . 
T60 RXD Rise Time 

. . ... 
10 .... 

T61 RXD Fall Tin'l.e 10 .. 

CRS AND COT PARAMETERS 

T62 CDT Lowto TXC HIGH 20 
External Collision Detect Setup Time 

T63 TXC High toCDT Inactive, CDT Hold Time 10 

T64 CDT Low to Jam Start 10 

T65 CRS Low to TXC High, 20 
Carrier Sense Setup Time 

T66 TXC High to CRS Inactive, CRS Hold Time 10 
(Internal Collision Detect) 

T67 CRS High to Jamming Start, 12 

T68 Jamming Period 11 

T69 CRS High to RXC High, 30. 
CRS Inactive Setup Time 

T70 RXC High to CRS High, 10 
CRS Inactive Hold Time 

4-118 



82596CA 

TRANSMIT/RECEIVE CLOCK PARAMETERS (Continued) 

Symbol 

I 
Parameter 

INTERFRAME SPACING PARAMETERS 

T71 I Interframe Delay 

EXTERNAL LOOPBACK-PIN PARAMETERS 

T72 I TXC Low to LPBK Low 

T73 I TXC Low to LPBK High 

NOTES: 
1 .. Special MOS levels. VCll = 0.9V and VCIH = 3.0V. 
2. Manchester only. 
3. Manchester. Needs 50% duty cycle. 
4.1 TTL load + 50 pF. 
5. 1 TTL load + 100 pF. 
6. NRZ only. 
7. Abnormal end of transmission-CTS expires before RTS. 
B. Normal end to transmission. 
9. Programmable value: 

T71 = NIFS. T36 
where: NIFS = the IFS configuration value 
(if NIFS is less than 12 then NIFS is forced to 12). 

10. Programmable value: 
T64 = (NCDF 0 T36) + x 0 T36 
(If the collision occurs after the preamble) 
where: 
NCDF = the collision detect filter configuration value, 
and 
x = 12,13,14, or15 

11. T6B = 32· T36 
12. Programmable value: 

T67 = (NCSF. T36) + x· T36 
where: NCSF = the Carrier Sense Filter configuration 
value, and 
x = 12,13, 14, or 15 

13. To guarantee recognition on the next clock. 

I 
I 

I 

J 
I 

4-119 

20 MHz J Notes 
Min I Max I 

I I 9 

J T36 I 4 

I T36 I 4 

• 



inteL 82596CA 

82596CA BUS OPERATION 

The following figures show the 82596CA basic bus cycle and basic burst cycle. 

Please refer to the 32-Bit LAN Component User's Manual. 

tlDlE T1 T2 T2 T1 T2 11 T2 tlDlE 

ClK 

A~~~~; ____ ~-JX~~----~~X~~----~~X~~----~JX.--~----~---
W/R \ I : \ I 

I I I I I I I I I 

ROY 

I I I I I I I W I 

1 I I I 
I I I I 

BLAST rT\ CT\ CT\ CT\ C 
I I I I 
I I I 
I I I 

DATA ----7---~--< 

READ 

IDLE 

ClK 

WRITE READ 

Figure 44. Basic 82596CA Bus Cycle 

T1 

I 
I 

T2 

LU 
I 
I 

T2 T2 

WRITE 

T2 tlDlE 

A31-A2 
W/R 

8ED-3 i xii crcD---;i-
I I I I I I 

BLAST ----7-~~ 
I 
I 
I 

DATA ----'----'---{ 

Figure 45. Basic 82596CA Burst Cycle 

4,120 

\ c 

290218-40 

290218-41 



82596CA 

SYSTEM INTERFACE A.C. TIMING CHARACTERISTICS 

The measurements should be done at: 

• T e = 0°C-85°C, Vee = 5V ± 10%, C = 50 pF unless otherwise specified. 

o A.C. testing inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0". 

o Timing measurements are made at 1.5V for both logic "1" and "0". 

o Rise and Fall time of inputs and outputs signals are measured between 0.8V and 2.0V respectively unless 
otherwise specified. 

.. All timings are relative to ClK crossing the 1.5V level. 

o All A.C. parameters are valid only after 100 JLs from power up. 

2.4V ~ 1.5V rest Point ?r--
0.45V ----..I\.:. ~ 

Figure 46. ClK Timings 

Two types of timing specifications are presented below: 

1. Input Timing-minimum setup and hold times. 

2. Output Timings-output delays and float times from ClK rising edge. 

Figure 47 defines how the measurements should be done: 

LEGEND: 
T8 = Input Setup Time 
Th = Input Hold Time 

elK 

Tn = Minimum output delay or Mininum float delay 
Tx = Maximum output delay or Maximum float delay 

290218-18 

290218-19 

1.5V 

290218-20 

Figure 47. Drive levels and Measurements Points for A.C. Specifications 

Ts = T13, T15, T17, T19, T21, T23, T27, T29, T31 
Th = T14, T16, T18, T20, T22, T22a, T24, T28, T30, T32 
Tn = T6, T6a, T7, T8, T9, T10, T11, T12, T25 
Tx = T6, T6a, T7, T8, T9, T10, T11, T12, T25 

4-121 



inteL 82596CA 

INPUT WAVEFORMS 

ClK 

HOLD 

ClK 

BREQ 
CA 

Figure 48. CA and BREQ Input Timing 

Figure 49. INT liNT Output Timing 

290218-21 

290218-22 

L.JL.JL.rU-U--U-U-
1121 ~1r-____ +-"'T_12""\.~11 

I. T22 \.,, ___ _ 
r-T21 .... -T22aj 

BOFF CT31 .... -<-T32::J 

A~~~~ ---------x x'---
Figure 50. HOLD/HLDA Timings 

ClK 

031-00 
OP3-0PO 

Figure 51. Input Setup and Hold Time 

4-122 

290218-24 

290218-23 



82596CA 

-i T1 r- T2 
ClK \ . 

T61-1" 

A31-A2,BEn, T60 ~i,~'~.r~.",.IMAX 
__ lOCK (T6) VALID n ~ n+l 
PCHK, BLAST (T60) I- I 

_:..I_T_8_'IMIN 'IMAX 

VAllon~n+l W/R, ADS 

OP3-0PO 
031-00 

(OUTPUT) 

r T1 0:t=::1 MAX 

_____ ~IO DATA 

ClK 

A31-A2, BEn 
lOCK, BLAST 

PCHK 

Figure 52. Output Valid Delay Timing 

T7 

MIN MAX 
FLOAT 

VALID n 

T9 

MIN MAX 

VALID n 
Fl9AT 

T11 

MIN MAX 
FLOAT 

VALID n 

290218-25 

OP3-0PO 
031-00 

(OUTPUT) 
290218-26 

Figure 53. Output Float Delay Timing 

elK 

00-031 

290218-27 

Figure 54. PORT Setup and Hold Time 

4-123 



intel .. 82596CA 

RESET 

290218-,28 

Figure 55. RESET Input Timing 

SERIAL AC TIMING CHARACTERISTICS 

3.0V 

0.9V 

~,T41 1+:-----T36 T57 
, 153 

290218-29 

Figure 56. Serial Input Clock Timing 

CTS 

----------------------~ 

CRS 

TXD-•• ____ -'~6!_;1· • .;-}!'!.---'i_1,~-----16-7=1 .. -------------____ _ 
v v " • 

(NRZ) _." ••. - ------ •• "._-- - - - _.' '-----------------.-
-11441-TXD _.'" •• ",,".",,"'. _ .. __ .'" •• ""." _ .". _ _ ,:-0 ________________ _ 

(M'ANCHESTER) ••• ~ ••• "._,l'. __ . ___ •• " ••• " •• ___ .' 
290218-30 

Figure 57. Transmit Data Waveforms 

4-124 



inteL 82596CA 

CRS 

TXD----.....;.-.... -,- -.".- - - -... ~ .. -----
(NRZ) T43 ._-- _ •• - - - --

H T47 r-
("'<H.,:,~~.::::::~ 

290218-31 

Figure 58. Transmit Data Waveforms 

T59~;-___ --j_ I-T60. T61 

RXD ___ >CJ( >C 
290218-32 

Figure 59. Receive Data Waveforms (NRZ) 

290218-33 

Figure 60. Receive Data Waveforms (CRS) 

4-125 



int'eL 82596CA 

OUTLINE DIAGRAMS 

132 LEAD CERAMIC PIN GRID ARRAY PACKAGE INTEL TYPE A 

SEATING 
PLANE 

SEATING~ PLANE 

'" B (ALL PINS) 

t=~ 
SWAGGED 

PIN 
DETAIL 

mm (inch) 

290218-34 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max Notes 

A 3.56 4.57 0.140 0.180 

Al 0.76 1.27 Solid Lid 0.030 0.050 Solid Lid 

, A2 2.67 3.43 Solid Lid 0.105 0.135 Solid Lid 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

0 36.45 37.21 1.435 1.465 

01 32.89 33.15 1.295 1.305 

91 2.29 2.79 0.090 0.110 

L 2.54 3.30· 0.100 0.130 

N 132 132 

SI 1.27 2.54 0.050 0.100 

ISSUE IWS 10/12/88 

4-126 



Symbol 

N 

A 

A1 

D,E 

01, E1 

02, E2 

03, E3 

D4,E4 

L1 

Issue 

Symbol 

N 

A 

A1 

D,E 

01, E1 

02, E2 

03, E3 

D4,E4 

L1 

Issue 

Description 

Leadcount 

Package Height 

Standoff 

Terminal Dimension 

Package Body 

Bumper Distance 

Lead Dimension 

Foot Radius Location 

Foot Length 

Min 

82596CA 

Intel Case Outline Drawings 
Plastic Quad Flat Pack (PQFP) 

0.025 Inch (0.635mm) Pitch 

Max Min Mal( Min Max 

68 84 100 

0.160 0.170 0.160 0.170 0.160 0.170 

0.020 0.030 0.020 0.030 0.020 0.030 

0.675 0.685 0.775 0.785 0.875 0.885 

0.547 0.553 0.647 0.653 0.747 0.753 

0.697 0.703 0.797 0.803 0.897 0.903 

0.400 REF 0.500 REF 0.600 REF 

0.623 0.637 0.723 0.737 0.823 0.837 

0.020 0.030 0.020 0.030 0.020 0.030 

IWS Preliminary 12/12/88 

Description Min Max Min Max Min Max 

Leadcount 68 84 100 

Package Height 4.06 4.32 4.06 4.32 4.06 4.32 

Standoff 0.51 0.76 0.51 0.76 0.51 0.76 

Terminal Dimension 17.15 17.40 19.69 19.94 22.23 22.48 

Package Body 13.89 14.05 16.43 16.59 18.97 19.13 

Bumper Distance 17.70 17.85 20.24 20.39 22.78 22.93 

Lead Dimension 10.16 REF 12.70 REF 15.24 REF 

Foot Radius Location 15.82 16.17 .18.36 18.71 21.25 21.25 

Foot Length 0.51 0.76 0.51 0.76 0.51 0.76 

IWS Preliminary 12/12/88 

4·127 

Min Mal( Min Max Min Mal( 

132 164 196 

0.160 0.170 0.160 0.170 0.160 0.170 

0.020 0.030 0.020 0.030 0.020 0.030 

1.075 1.085 1.275 1.285 1.475 1.485 

0.947 0.953 1.147 1.153 1.347 1.353 

1.097 1.103 1.297 1.303 1.497 1.503 

0.800 REF 1.000 REF 1.200 REF 

1.023 1.037 1.223 1.237 1.423 1.437 

0.020 0.030 0.020 0.030 0.020 0.030 

INCH 

Min Mal( Min Malt Min Mal{ 

132 164 196 

4.06 4.32 4.06 4.32 4.06 4.32 

0.51 0.76 0.51 0.76 0.51 0.76 

27.31 27.56 32.39 32.64 37.47 37.72 

24.05 24.21 29.13 29.29 34.21 34.37 

27.86 28.01 32.94 33.09 38.02 38.18 

20.32 REF 25.40 REF 30.48 REF 

25.89 26.33 31.06 31.41 36.14 36.49 

0.51 0.76 0.51 0.76 0.51 0.76 

mm 



intel.. 82596CA 

mm (hich) 
290218-35 

Figure 61. Principal Dimensions and Datums 

mm (inch) 
290218-36 

Figure 62. Molded Details 

4-128 



mm (inch) 

82596CA 

-11-1"'.635 <lU25) 1 

SEE DETAIL L 

'-1-----14--- SEE DETAIL J 

I---- D3/E3---l 

1----- D4/E4 ---..I 

1----- DIE -------I 

Figure 63. Terminal Details 

IL41 (.IHb) 
IL20 (.008) 

290218-37 

0.20 (.008) 
IJ..-.__t--r ~.14 (.H.BS) 

0.31 (.012)--11<>-
0.20 (.008) 

=:NO D4/E4 ----Q>oj 

'"I $"-'-,0-.-20-( -. 0-08-)""""'@".....'.-C ... , A----'®=S --B----,®=-s -.--, D-'®=-~ 

mm (inch) 

Detail J Detail L 

Figure 64. Typical Lead 

4-129 

8 DEG. 
o DEG. 

290218-38 



mm (inch) 

82596CA 

t 
1.32 (.952) 
1.22 (.948) 

9.99 (.935) MIN. ~ 
2.lI3 (.lIBlI)-l 
1.93 (.lI76) 

--~---D2------

Figure 65. Detail M 

4-130 

29021B-39 



Development Support Tools 5 





i9S0TM FAMJIL Y OF §OFTW ARE DElBUGGERS 

280916-1 

COMPREHENSIVE SOFTWARE DEBUG SUPPORT FOR i960™ 
EMBEDDEDAPPLICATIONS 
Intel provides comprehensive software debug support for all members of the i960TM 
component architecture, including the newest members, the i960SA and i960SB. All 
Intel's i960 software debug products share the same high-level, windowed user interface 
emerging as the standard for all i960 tools from Intel. This innovative debug interface 
allows users to focus their efforts on finding bugs rather than spending time learning and 
manipulating the ,debug environment. 

Intel's i960 software debug tools support a wide variety of debug environments, including 
code debug on a simulated target environment, a PC-based evaluation board, a serial­
based Intel evaluation board, or a serial-based, customized target system. 

GENERAL i960 SOFTWARE DEBUGGER FEATURES 
o Windowed, pull down menu user 

interface shared by other i960 
Development Tools 

o Full symbolic debug with source level 
display allows C or assembly code 
debugging 

o Debugging productivity enhanced by 
ability to quickly browse source code and 
view call stacks or symbol run-time 
values 

o Breakpoints may be defined symbolically 
using module names, procedure names 
and line numbers 

o Single step execution, code assembly / 
disassembly, memory and register 
display/modification 

o Run-time library support allows 
programs to access host files and perform 
I/O 

*IBM, PCI AT, and Personal System/2 are registered trademarks of International Business Machines Corporation. 
'Compaq is a registered trademark of the Compaq Corporation. 
"Intel is a registered trademark of the Intel Corporation. 

5-1 
November 1991 

Order Number: 280916·002 



intel® 

FEATURES 

EASY TO USE, POWERFUL 
USER INTERFACE 
All i960 debuggers share the same high-level, 
powerful user interface as other i960 
development tools. Utilizing pulldown menus, 
users have access to a color, windowed 
environment featuring source-level, symbolic 
debugging. Multiple, non-overlapping windows 
can be used to display source code, registers, 
variable values, and command line entries. 

DEBUGGING FEATURES 
High-level source or disassembled code can be 
displayed in the source window. Users can 
scroll through the source, browse from module 
to module in a program, scope to any 
executable point in the source, or 
instantaneously relocate from a symbol name 
to the location where it was defined 
(hyperscope operation). Symbol names in the 
source can be highlighted to inspect the 
current run-time value of program variables. 
Call stacks can be examined to trace execution 
flow. 

A variety of breakpoints can be specified 
including source breakpoints, watch points, 
passpoints, or event-action breakpoints. 
Breakpoints can be defined symbolically using 
module names, procedure names and line 
numbers. Watch points allow users to observe 
a variable as it changes during program 
execution. Passpoints display a message when 
a specified instruction is executed, giving the 
user a non-realtime way to track execution of 
key code sequences without halting instruction 
flow. The event-action form allows complex 
breakpoint conditions to be set up, including 
data breakpoints (when supported by on-chip 
registers). 

Users can step through program execution via 
a single assembly language instruction, a high­
level language statement or a high-level 
function or procedure. Memory can be 
displayed or modified as common data types 
and all processor registers and system tables 
can be examined or changed. 

Expressions involving symbol names, memory 
references, or both, can be defined as watch 
expressions whose values are monitored in a 
Watch window as a program executes. The 
i960 family of software debuggers also allows 
screen flipping between the debugger 
environment and the display output from the 
program. 

Low level, run time libraries are provided that 
allow programs running on an i960 board to 
access the file system on the host or to perform 
I/O operations. 

RETARGET ABLE SOFTWARE 
DEBUGGER 
Intel's DB-960 Retargetable Software 
Debugger is a combination application and 
system level debugger designed for use with 
the i960 family of embedded microprocessors. 
DB-960's retargetable monitor can be 
customized to a target system, allowing source­
level, symbolic debug across a serial interface 
cable. 

RETARGETABLEMONITOR 
Utilizing a combination of object files and 
source code, a retargetable monitor is provided 
with DB-960 for users to customize and 
incorporate into their proprietary target 
systems. This retargetable monitor is designed 
to support all members of the i960 family. Most 
ofthe monitor code is provided in object code 
and does not need to be changed. Hardware­
dependent source code is supplied for 
modification by users. Example code is 
provided for porting the monitor to the Intel 
EV80960CA and QT960 target boards. Both 
boards use an Intel 82510 UART serial 
controller chip and the Intel 82C54 Counter/ 
Timer. 

HARDWARE DEBUG 
DB-960 takes advantage of on-chip debug 
registers like those found on the i960CA to 
provide two hardware execution address 
breakpoints and two data address breakpoints. 
Once the monitor has been retargeted to the 
target system, hardware designers can 
download initialization code, read/write to 
registers and examine memory or register 
contents. 

HIGH SPEED SERIAL LINK 

5-2 

DB-960 communications between the host and 
target system is supported via RS232 and 
RS422 communication links. RS232 allows 
access to industry standard serial protocols 
while the RS422 interface provides higher 
speed communication (up to 115K baud) for 
faster code and data download. PC-AT bus­
compatible RS422 communication boards are 
available from various third party vendors. 



FEATURES 

CUSTOMIZED ENVIRONMENT 
Because the user has control over the target 
board and serial driver source code, a highly 
customized target environment can be 
developed. Serial communication functions can 
be modified to allow for parallel 
communication schemes, allowing faster 
download speeds. 

LICENSING 
There are no incorporation or royalty fees for 
customers shipping the retargeted DB-960 
monitor with their product or system. 

PC-BASED SOFTWARE 
DEBUGGER 
The DB960KBDEV A Software Debugger is 
designed for debugging i960KA or i960KB code 
executing on an Intel EV A-960KB4MB 
Software Execution Vehicle plugged into PC­
ATs or compatibles using DOS. 
DB960KBDEV A offers the same powerful 
debug user interface as other i960 softerware 
debuggers and utilizes I/O resources provided 
by the pc. Due to compatibility with the 
i960KA and i960KB, i960SA and i960SB code 
can be executed and debugged using the Intel 
EV A-960KB4MB Software Execution Vehicle 
in conjunction with the DB960KBDEV A 
Software Debugger. 

SIMULATOR-BASED 
SOFTWARE DEBUGGER 
The DBSIM960 Debug Simulator combines an 
i960 CA/KA/SA instruction-level simulator 
with the easy to use, powerful DB960 software 
debugger interface. Users can debug i960 
applications without a hardware target system 
being available, allowing products to get to 
market sooner. For i960 CA designs, 
performance information is provided, with 
timing profiles accurate to plus or minus 5%. 

Users can specify the target system's clock 
speed and wait-state information for each 
region of memory. * DBSIM960 uses this 
information to provide i960 CA performance 
statistics. DBSIM960 expects COFF executable 
files generated by Intel's CTOOLS960 compiler 
and assembler. Execution flow can be 
monitored by using a trace capability, which 
reports the 8 digit cycle address, 8 digit 
instruction pointer value, and the 
disassembled instruction for each operation. 

Program execution statistics reported 
include: 
o Total number of instructions executed 
o Total time 
o Number oftimes a call caused processor to 

write registers to external memory 
o Current clock setting in cycles per second 
o Current wait-state setting for each of the 16 

memory regions 
o Number of instruction words executed from 

cache rather than external memory 
o Total number of cycles elapsed 
o Number of stack frames or register sets 

cached on chip 
o Number of times an unaligned load or store 

operation occurred 
o Bus utilization 
o Branch prediction efficiency 
o Usage for load, store, call and branch cache 

instructions 

Generally, DBSIM960 provides all the full 
symbolic, debug capabilities found in the i960 
family of debug tools, while providing a 
complete benchmarking environment prior to 
target system availability. 
"'By being able to easily change the waitstate definition for 
their code, the user's hardware and software design can be 
optimized before any hardware development takes place. 

IN-CIRCUIT DEBUG MONITOR 
Intel's DB960CADIC in-circuit debug monitor 
hosted on extended DOS/386 allows users to 
debug high-speed, cached applications at the 
full speed of the i960CA target processor. 
DB960CADIC can be used by both hardware 
and software developers, at any stage of design. 
Early in the development process, 
DB960CADIC allows software debugging when 
inserted into an existing i960CA board such as 
the EV80960CA, or in the DB960CASAST 
stand-alone self-test unit. Later in the design 
cycle, DB960CADIC can be inserted into the 
user's target system, facilitating debug of 
hardware/software integration. 

DB960CADIC offers the same, windowed debug 
user interface as other i960 software debuggers 
and is also available with an optional 4 MB 
standalone selftest chassis to debug and test 
code before prototype hardware is available. 
For further information, see fact sheet 
# 280900 from Intel. . 

5-3 



intel® 

FEATURES 

SOFTWARE COMPLETES THE 
SYSTEM 
Intel provides a comprehensive software 
development environment to complement DB-
960. This environment includes a C Compiler, 
an i960 Assembler, a system generator for 
automating the compilation process and 
instruction-level simulators. The languages 
support the entire range ofi960 embedded 
processors. 

WORLDWIDE SERVICE, 
SUPPORT, AND TRAINING 
To augment its development tools, Intel offers 
a full array of seminars, classes, workshops, 
field application engineering expertise, hotline 
technical support, and on-site service. 

Intel also offers a Software Support Contract 
which includes technical software information, 
automatic distributions of software and 
documentation updates, iCOMMENTS 
publication, remote diagnostic software, and a 
development tools troubleshooting guide. 

Intel's 90,day Hardware Support package 
includes technical hardware information, 
telephone support, warranty on parts, labor, 
material, and on-site hardware support. 

Intel Development Tools also offers a 30-day, 
money-back guarantee to customers who are 
not satisfied after purchasing any Intel 
development tool. 

SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
Host system requirements to run Intel's i960 
family of software debuggers include the. 
following: 
• DOS version 3.3 or later excluding DOS 4.0 
• 640K bytes of RAM in conventional memory 
• A fixed disk drive with at least 1.25M bytes 

of free disk space 
• One disk drive capable of reading 5.25 inch, 

360K byte disks 
• RS232 serial port (COM! or COM2) 

Evaluated Systems include: 

IBM PC-AT' with DOS 3.3 
COMPAQ 386* with DOS 3.3 
Intel 30'/302' with DOS 3.3 
IBM Personal System/2* Model 70/80 with 
DOS4.0! 

5-4 



ORDERING INFORMATION 

DB960KBDEV DOS-based, retargetable 
software debugger for the 
960KA, i960KB, i960SA, 
i960SB and i960CA 
embedded microprocessors. 
Includes host debug 
software, retargetable 
monitor, host I/O libraries 
and documentation. 

DB960KBDEV A DOS-based source level 
debugger for the i960KA, 
i960KB, i960SA and i960SB 
embedded microprocessors. 
Requires EV A-960KB4MB 
Software Execution Vehicle 
and PC-AT compatible bus. 

DBSIM960D DOS/386-hosted debug 
simulator for the i960 CA, 
i960 KA and i960 SA which 
utilizes an i960 CA 
instruction-level simulator 
allowing code development 
and debug prior to hardware 
prototype availability. 

DBSIM960S UNIX System V /386-hosted 
debug simulator for the i960 
CA, i960 KA and i960 SA 
which utilizes an i960 CA 
instruction-level simulator 
allowing code development 
and debug prior to hardware 
prototype availability. 

5-5 

DBSIM960R 

DB960CADIC 

IBM RS/6000-hosted debug 
simulator for the i960 CA, 
i960 KA and i960 SA which 
utilizes an i960 CA 
instruction-level simulator 
allowing code development 
and debug prior to hardware 
prototype availability. 

DOS/386 hosted in-circuit 
debug monitor for i960CA 
only. Includes small board 
with i960CA processor, 
system debug monitor and 
serial interface. Plugs into 
i960CA socket on hardware 
prototype system. 

DB960CASAST Standalone Self Test Unit for 
DB960CADIC. Includes built-
in power supply, self-test 
board, 4M byte of usable 
DRAM for code development 
and enclosure. 

To order your Intel Development Tool product, 
for more information, or for the number of 
your nearest sales office or distributor, call 
800-874-6835 (North America). For literature 
on other Intel products call 800-548-4725 
(North America). Outside of North America, 
please contact your local Intel sales office or 
distributor for more information. 



inteL 
EXV-960MC EXECUTION VEHICLE 

280879-1 

B0960MC-BASED TARGET SYSTEM SUPPORTING EARLY 
SOFTWARE DEVELOPMENT AND BENCHMARKING 
EXV-960MC is a software execution vehicle designed to support 80960MC-based designs. 
Users can use the EXV-960MC board to execute and debug their application software 
before a functional hardware prototype is available. The EXV-960MC is also designed 
with programmable waitstate SRAM to support benchmarking activities. The EXV-
960MC is supported by the complete set ofIntel C, assembler and Ada code generation 
tools. Both ofthe VAX/VMS*-hosted 80960MC software debuggers, the SDM-960MC 
system debug monitor and the Ada-960MC source-level debugger, can be used for 
debugging software running on the EXV-960MC. 

EXV-960MC includes a Multibus I form factor board and a set of SDM-960MC target 
monitor EPROMS. The SDM-960MC and the Ada-960MC debugger are preconfigured to 
support the EXV-960MC execution environment. Designers can select the software 
debugger best suited to their development needs. The Ada-960MC debugger is a source­
level symbolic debugger which provides a productive debugging environment for Ada 
applications. The SDM-960MC debug monitor offers a complete debugging facility for 
applications written in C, assembler or Ada. 

"VAX/VMS is a trademark of Digital Equipment Corp. 

5-6 
December 1990 

Order Number: 280879-002 



SDM-960MC RETARGETABLE SYSTEM DEBUG 
MONITOR 

FEATURES 
o 25 MHz 80960MC processor 
o 256 Kbytes of (0,0,0,0) programmable wait-state SRAM 
o 4 Mbytes dual-ported (3,1,1,1) wait-state DRAM 
o iSBXTM interface 
o Two serial ports, one bi-directional parallel port 
o 8254 programmable interval timer 
o 8259A programmable interrupt controller 

ELECTRICAL CHARACTERISTICS 
lOA @ +5V 

50mA @ +12V 

50mA @ -12V 

ENVIRONMENTAL CHARACTERISTICS 
Operating temperature: 0° to + 60°C (32° to 140°F), 300 LFM 

Operating Humidity: 10% to 90% non-condensing 

SOFTWARE DEBUGGING SUPPORT 
The SDM-960MC is a VAX/VMS*-hosted system debug monitor that provides a complete, flexible 
environment to execute and debug 80960MC-based applications. Users can tailor the execution 
environment as software development evolves. Initially, the application may require the full 
support of the system debug monitor to establish a run-time environment. As the application 
evolves, the SDM-960MC allows the application to take more ofthe responsibility for system 
functions. 

The default execution environment of the SDM-960MC is the EXV-960MC execution vehicle. The 
VAX-hosted portion ofthe SDM-960MC debug monitor provides complete on-target debugging 
support through its interface with the target-resident portion of the SDM-960MC. To facilitate 
debugging on a user's custom target system, the SDM-960MC includes source and object files 
necessary to reconfigure the target monitor. SDM-960MC and other 80960MC development tools 
allow the developers to take full advantage of the 80960MC processor. 

FEATURES 
o assemble and disassemble 80960MC 

instructions 
o single step program execution 
o access to memory and processor resources 
• support 64 execution breakpoints 
• issue Interagent Communications (lACs) 
o powerful execution trace 
o serial download 

HARDWARE REQUIREMENTS 
• a serial interface 
o 25 Kbytes of EPROM 
• contiguous 50 Kbytes of RAM 

5-7 

WORLDWIDE SERVICE AND 
SUPPORT 
Intel augments its 80960 architecture family 
development tools with a full array of 
seminars, classes, and workshops; on-site 
consulting services and telephone support are 
available at all stages of development. 

ORDERING INFORMATION 
Product Code Description 

EXV960MC 80960MC execution vehicle 
(board and target EPROM) 

SDM960MC VAX, Micro VAX/VMS 
hosted System Debug 
Monitor, retargetable source 
is included 



80960SA/SB DEVELOPMENT SUPPORT 

260906-1 

COMPREHENSIVE DEVELOPMENT SUPPORT FOR 80960SAI 
SB EMBEDDED APPLICATIONS 
Intel provides comprehensive development support for the 80960 component 
architecture, including the newest members, the 80960SA and 80960SB. Tools range from 
compilers to simulators and from debuggers to emulators. All designed specifically for 
members of the 80960 family, allowing you to take full advantage of their RISC-based 
design while reducing time to market. 

DEVELOPMENT TOOLS AVAILABLE: 
• ASM-960 macro assembler for 

developing and tuning speed-critical code 
• iC-960 highly optimizing C language 

compiler for high-level language 
software development 

• GEN-960 system generator for 
initializing your design to take 
advantage of 80960 on-chip features 

• DB/SIM960KA debug simulator for 
80960KA and 80960SA applications 

o Windowed, interactive, source-level DB-
960 debugger which can be targeted to 
one of the evaluation and development 
boards below, or customized to your 
target system 

o Evaluation and development boards 
including the EV960SB, the QT80960KB, 
and the EV A960KB 

• ICE-960SA/SB offers a full featured in­
circuit emulator for the 80960SA/SB 
components 

5-8 
November 1990 

Order Number: 280906·001 



80960SA/SB DEVELOPMENT SUPPORT 

.... 
SQytceFile 

o 
o 

ASM-960 MACRO ASSEMBLER 
The ASM-960 macro assembler is used to fine­
tune sections of code for peak program 
execution speed on the 80960S,A, 80960SB, 
80960KA, 80960KB, 80960MC, and 80960CA. 
ASM-960 does this by giving you absolute 
control over program instructions. In addition 
to the assembler and macro preprocessor, 
ASM-960 includes several utilities for 
application program maintenance and debug: 
• LINKER provides incremental program 

linking/locating and link-time optimization. 
• ARCHIVER allows you to build reusable 

function libraries for applications. 
o DISASSEMBLER produces assembly 

language from object files: 
o SYMBOL DUMPER provides symbolic 

information from a program file for 
facilitating low-level debug. 

• ROM IMAGE BUILDER produces a hex file 
suitable for PROM programmers. 

• Macro preprocessor provides code generation 
flexibility and improves code readability, 

. reducing maintenance costs. 

A Floating Point Arithmetic Library (FP AL) is 
included for the 80960SA, 80960KA, and 
80960CA components. It eliminates the need to 
develop your own floating point code. 

P .... 

~ 
1 

"""""" To 
"""",.Codo ... 

280906-2 

GEN-960 SYSTEM GENERATOR 
The 80960 System Generator (GEN-960) helps 
you set up data structures for standalone, 

. embedded applications that use the on-chip 
features of the 80960 architecture. GEN-960 is 
used with other 80960 tools to generate and 
refine ROM or RAM code. GEN-960 supplies a 
set of command and template files containing 
assembly code and linker control commands to 
set up processor control blocks, inter-agent 
communication mechanisms, system procedure 
tables, and other requirements for 
initialization. The result is a batch file 
containing all the commands needed to 
compile, assemble and link the final target 
system. 

5-9 

o Improves engineering productivity by 
automating the compilation, assembly and 
linking process 

o Supplies sample initialization code, reducing 
programming time 

• Save engineering time by simplifyingthe 
task of initializing each processor for on-chip 
capabilities 



intel® 

80960SA/SB DEVELOPMENT SUPPORT 

iC-960 COMPILER 
iC-960 is a highly optimizing C language 
compiler for the S0960 family of 
microprocessors. iC-960 supports the full C . 
language as described in the Kernighan and 
Ritchie book, The C Programming Language 
(Prentice-Hall, 1975). iC-960 includes standard 
ANSI extensions to the C language and is used 
in conjunction with ASM-960 for creating 
object files. 

The iC-960 compiler supports a number of 
processor dependent optimizations including 
global register allocation, constant 
propagation, arithmetic identity folding, 
redundant load/store elimination, strength 
reduction and register allocation/scheduling of 
arguments. Processor independent 
optimizations include common sub-expression 
elimination, folding of constant expressions, 
elimination of superfluous branches, removing 
unreachable code, tail recursion and procedure 
incorporation. 

iC-960 includes a standard C library with I/O 
functions and mathematical routines. A second 
library provides low level, environment­
dependent routines emulating UNIX' system 
calls and supplies I/O routines for the EV Ac 
960 Software Execution Vehicle. 

iC-960 also includes the following 
enhancements for embedded application 
development: 

Programs may be easily placed in ROM. 
Memory-mapped I/O allows high-level 
language access to application-specific input 
and output. 
In-line assembly simplifies the integration of 
C language and assembly code for speed­
critical functions. 

Floating point support produces in-line code 
to take full advantage ofthe floating point 
capability of the S0960SB, S0960KB and 
S0960MC. 

Symbolic debugging of source code for iC-960 
and ASM-960 is provided by the DB-960 Source 
Level Debugger, the DBSIM960KA debugging 
simulator, the DB960CADIC in-target 
debugger, and the ICE960SB and ICE960KB 
emulators. 

DEBUGGING SIMULATOR 
The DBSIM960KA simulator features an easy 
to use, pulldown menu user interface combined 
with an S0960SA/S0960KA instruction 
simulator. DBSIM960KA facilitates debugging 
S0960SA and S0960KA applications by 
providing debugging capabilities before target 
hardware is available. DBSIM960KA's 
powerful, windowed, source-oriented interface 
allows you to focus your efforts on finding bugs 
rather than on learning and manipulating the 
debug environment. 

Ease of learning. Drop-down menus make the 
debugger easy to learn for new or casual users. 
A command line interface allows direct 
command entry for solving more complex 
problems, improving productivity of 
knowledgeable users. 

Extensive debug modes. You can set 
conditional breakpoints, pass points, and 
temporary breakpoints as needed. 

See into your program. Using pull-down 
menus or function keys, you can browse source 
and Call stacks, monitor processor registers, 
view screen output, and watch the values of 
variables chang~. 

Full debug symbolics for maximum 
productivity. You need not know whether a 
variable is an unsigned integer, a real, or a 
structure: the debugger displays program 
variables in their respective type formats. 

5-10 



80960SA/SB DEVELOPMENT SUPPORT 

EVA-960KB4MB SOFTWARE 
EXECUTION VEHICLE 
The EV A-960KB4MB is a software execution 
vehicle for the 80960KA/KB microprocessor. It 
is a single PC AT plug-in board which provides 
easy and convenient architecture evaluation 
and benchmarking, as well as software 
development. Since the board uses an 
80960KB, 80960SA and 80960SB performance 
can be extrapolated. The EV A-960KB4MB 
contains the following: 
• 4 MB or 16 MB (EV A960KB16MB) of one 

wait-state program memory (DRAM) 
o 64 Kbytes of zero wait-state program 

memory (SRAM) 
o Three-channel programmable interval timer 

SOURCE-LEVEL DEBUGGER 
The DB-960 Debugger with source-level debug 
capabilities is available for PC ATs equipped 
with DOS. DB-960 can debug 80960 code 
executing on an Intel EV A-960 Software 
Execution Vehicle or on a hardware target 
system via a serial interface. The EVA-960 
targeted debugger uses I/O resources provided 
by the PC, while 80960 code executes at high 
speed on the EV A-960. Two serial versions of 
DB-960 are available. DB-960CADIC plugs 
directly into the 80960CA socket on your 
prototype, offering a "plug-in and go" debug 
environment. DB-960D is a serial, retargetable 
version ofDB-960 whose system debug monitor 
can be customized for 80960SA/SB, 80960KAI 
KB, or 80960CA operation. 

Ease oflearning. Drop-down menus make the 
debugger easy to learn for new or casual users. 
A command line interface allows direct 
command entry for solving more complex 
problems, improving productivity of 
knowledgeable users. 

• Hosted debug monitor which supports two 
hardware and 64 software breakpoints, 
single-step program execution, register and 
memory access, program download and 
upload 

o DOS access libraries that allow: screen 
display, keyboard input, read and write disk 
files, and the ability to spawn a DOS process 
that could communicate with serial or 
parallel I/O 

o 20 MHz operation, allowing software to 
operate at full speed of 80960KB 

EV A-960KB4MB also operates with the DB-
960 Source Level Debugger for code 
development/debug prior to target system 
availability. 

Extensive debug modes_ You can set 
conditional breakpoints, pass points, and 
temporary breakpoints as needed. 

See into your program. Using pull-down 
menus or function keys, you can browse source 
and Call stacks, monitor processor registers, 
view screen output, and watch the values of 
variables change. 

Full debug symbolics for maximum 
productivity. You need not know whether a 
variable is an unsigned integer, a real, or a 
structure: the debugger displays program 
variables in their respective type formats. 

In-Target Debug. Porting the DB960D 
retargetable monitor to your target system 
allows the debugger to be used in-target, thus 
facilitating debugging of code dependent upon 
hardware interaction. 

5-11 



int:et 

80960SA/SB DEVELOPMENT SUPPORT 

ICE960SB IN-CIRCUIT 
EMULATOR 
ICE960SB is a full featured in~circuit emulator 
for the B0960SA and B0960SB components. A 
separate ICE probe can be purchased to 
support B0960KA and B0960KB components. 
ICE960SB includ~s: 
Full speed emulation of the B0960SA/SB 
components to 16 MHz 
• Complete symbolic information when used 

with Intel B0960 compilers 
• 1024 Frames Bus or Execution Trace with 

Time-Tags '. 
• Comprehensive break capal;lilities including 

execution addresses, instruction type, bus 
read/write/access, data values, and external 
synchlines 

WORLDWIDE SERVICE, .' 
SUPPORT, AND TRAINING 
To augment its development tools, Intel offers 
a full array 'of seminars, classes, and 
workshops, field application engineering 
expertise, hotline technical support, and on­
site service. 

Intel also offers a Software Support package 
which includes technical software information, 

• Qualification of break conditions based on a 
B-state machine or an ()ccurrence counter 

o Fastbreaks.to dynamically access mem<;>ry ,or 
variables during emulation 

• Examine and modify memory and B0960 
registers . ,. . 

o Stand-Alone Self-Test module provides 
diagnostic circuitry and 256 Kbytes of 
memory for software development 

• Optional 2 Mbyte.of relocatable expansion 
memory 

o Support for socketed and surface mounted B4 
Pin PLCC components and surface mounted 
BO Pin EIAJ components via ONCE mode 

o DOS Hosting with support for RS232 and 
RS422 communication linkS ' 

telephone support, automatic diStribution of 
software and documentation updates, access to 
the "TooITalk" electronic bulletin board, 
"iComments" publication, remote diagnostic, 
software, and a development tools 
troubleshooting guide. 

Intel's Hardware Support package includes 
technical hardware information, telephone 
support, warranty on partS, labor, material, 
and on-site hardware suppoM;. 

5-12 



80960SA/SB. DEVELOPMENT SUPPORT 

80960SA/SB DEVELOPMENT 
TOOLS 
ASM960 Assembler package 

containing the assembler, 
linker/loader, macro 
preprocessor, archiver, 
ROM image builder, other 
object file utilities, and the 
80960SA/KA/CA floating 
point arithmetic library. 

C960 Optimizing C Compiler, 
with ANSI extensions for 
embedded control 
applications; contains 
standard STDIO libraries 
and in-line assembly 
capability. 

GEN960 80960 System Generation 
software automates the 
compilation, assembly and 
linking process. Simplifies 
usage of 80960 sophisticated 
features. 

DBSIM960KA Debugging Simulator 
software emulates the 
80960SA and 80960KA 
instruction set allowing 
code development and 
debugging prior to 
hardware prototype 
availability. 

DB960KBDEV A Source Level Debugger 
software for the 80960KBI 
KA with powerful debug 
capabilities including 
conditional breakpoints, 
source and Call stack 
browsing, memory/register 
display and modification, 
and ability to watch 
variables change value. 
Requires EV A-960KB4MB 
Software Execution 
Vehicle. For PC AT hosted 
systems only. 

DB960D Source Level Debugger 
software for 80960SA/SB, 
80960KA/KB, or CA 
processors resident on 
serially-interfaced 
hardware prototype 
systems. Includes 
customizable system debug 
monitor and serial interface 
protocol specifications. For 
PC AT hosted systems only. 

EV A960KB4MB Software Execution Vehicle 
for 80960SA/SB and 
80960KA/KB components. 
Includes 4 Mbyte of on­
board memory, system 
debug monitor and code 
download software. Code 
compatible with the 
80960SA/SB components. 
Required by 
DB960KBDEV A. 

EV A960KB16MB Identical to 
EV A960KB4MB with 
16 Mbyte of DRAM instead 
of4Mbyte. 

ICE960SB In-Circuit emulator for the 
80960SA/SB components. 
Includes ICE base and 
probe, stand-alone self-test 
module, and your choice of 
PLCC or PQFP target 
adapters. Optional 2 Mbyte 
relocatable expansion 
memory option provides 
overlayable memory for 
software prototyping and 
hardware debugging. 

5-13 

• 



intel~ 

80960SA/SB DEVELOPMENT SUPPORT .1' 

ARCHITECTURE EVALUATION 
STARTER KITS 
960SKit3 Contains ASM960D Assembler 

and iC960D Compiler 

DB960KIT2 Kit contains DB-960KBDEV A 
(KB version of DB-960 used with 
EV A-960), EV A960KB4MB 
Software Execution Vehicle, 
ASM960D and C960E. Requires 
PC AT with 640K memory. 

DB960KIT3 Kit contains DB-960D (serial 
version of DB-960 supporting the 
80960SA/SB, 80960KA/KB and 
80960CA components (operating 
on PC-AT/DOS), ASM960D and 
C960D. Requires PC AT with 
640K memory. 

Product Code to order, by Host 

Product PC-AT/DOS UNIX-38G OS/2 Sun 3/ HP9000/ VAX/ ",VAX/ 
Category V.4 UNIX HP-UX ULTRIX ULTRIX 

Assembler: ASM960D ASM960S ASM960P ASM960U ASM960H ASM960VX ASM960MX 

CCompiler 'C960D C960S C960P C960U CP60H C960VX C960VX 

SystemGen GEN960D - - GEN960U GEN960H - -
SXDebugger DB960D - - -'- - - -
KXDebugger DB960KBDEVA - - - - - -

DB960D . - - - - - -
CADebugger DB960CADIC - - - - - -

DB960D - - - - - -
SA Simulator - DBSIM960KAS - - - - -
CA Simulator SIM960CAD - - SIM960CAU SIM960CAH - -
ICE960SB ICE960SB - - - - - -
ICE960KB ICE960KB - - - - - -

5-14 



ICETM-960SB AND ICE-960KB 
IN-CIRCUIT EMULATOR 

280852-1 

INTERCHANGEABLE PROBES 
The ICETM-960 in-circuit emulator delivers real-time hardware and software debugging 
capabilities for i960TM SA/SB and i960 KA/KB-based designs. Features include full­
speed emulation of each of the microprocessors, powerful breakpoint specification, 
fastbreaks, optional relocatable expansion memory, two types of trace capability, large 
trace buffering, sophisticated human interface and high-speed communication links with 
the DOS host. The ICE-960 inccircuit emulator gives you unmatched control over all 
phases of hardware/software debug, including developing, integrating and testing, which 
improves development productivity and improves ~ime to market. 

FEATURES 
o Real-Time Emulation of the i960 KA/KB 

microprocessors up to 25 MHz and 
emulation of the i960 SA/SB to 16 MHz 

o Full symbolic integration with Intel 
ASM and C compilers 

• Optional ICE960KBREM/ 
ICE960SBREM boards provide 2 Mbytes 

. oflCE memory which can overlay user 
ROM or RAM . 

.. Examine and modify memory and the 
i960 registers . 

• Dynamically monitor and update 
program variables via fastbreaks 

• Breakpoint capabilities include: 
execution address, instruction ~e, bus 
read/write/ access, and data value. 
Qualification of events is based on an 
occurrence counter and an 8-state states­
machine 

5-15 
October 1991 

Order Number: 280852-003 



FEATURES 

• Hosted on IBM PC AT' or compatible and 
supporting RS232, RS422 and Ethernet 
operation 

• 1024 frame trace buffer for execution and/or 
bus trace and time tags 

• The on-chip cache does not effect collection of 
the execution trace . 

• 256 Kbytes of memory in standalone self-test 
(SAST) unit 

o Real-time bus trace with time-tags for 
tracking code execution time. 

• Assembly and disassembly of code in 1960 
instruction mnemonics 

• ICE to component interconnect includes 
support for surface-mounted and socketed 84-
pin PLCCD and surface mounted 80-pin 
EIAJ QFP i960 SA/SB and 132-pin PGA for 
i960KA/KB 

The ICE-960 in-circuit emulator provides 
emulation of the i960 SA/SB at speeds to 
16 MHz and the i960 KA/KB at speeds to 
25 MHz, thus providing early detection of 
subtle timing problems that may arise at full 
speed. Intel's intimate knowledge ofthe 
component makes possible the tightest 
conceivable conformance between timing 
parameters of the emulator and the target 
microprocessor. 

PROCESSOR/MEMORY 
EXAMINATION AND 
MODIFICATION 
The i960 registers can be accessed 
mnemonically (e.g. g12, r5, fp3) with the ICE-
960 emulator software. Data can be displayed 
or modified in hexadecimal, decimal, oCtal, or 
binary and by data type (byte, word, etc). 
Program memory contents can be modified as 
i960 assembly instruction mnemonics. 

PROGRAM TRACING 
The ICE-960 emulator can store 1024 frames of 
program execution history processor/address/ 
data bus activity in the trace buffer. Each 
frame of program execiltion contains a 
discontinuity address (branch, ca,ll, return, etc) 
and a time-tag. This information can be used to 
reconstruct a history of the program execution. 
With the execution trace option enabled, the 
ICE-960 will run at less than full speed. Each 
trace frame of bus cycles contains one complete 
bus burst trace. Collection of trace information 
is controlled by a logic analyzer type moving 
trace window and by bus access type. 

EVENT RECOGNITION 
(BREAKPOINT CONTROL) AND 
EMULATION CONTROL 
ICE~960 provides comprehensive event 
recognition capabilities including: two 
hardware and thirty-two software breakpoints 
for instruction execution breakpoints, and use 
of the internal debug registers to recognize 
execution of certain instruction types such as 
branch or call instructions. Bus analysis logic 
provides recognition of external bus addresses 
qualified by read, write, or access type as well 
as data values. The data values may be entered 
as masked values and qualified by type. Two 
synchronization lines are provided for 
recognition of external events. ICE-960 also 
provides qualification ·of events based on an 
occurrence counter or by Ii recognition 
sequence of up to 8 events: Additionally, 
emulation can be automatically stopped when 
the trace buffer is full. Besides the ability to 
execute program code at full speed between 
specified points, the ICE-960 emulator provides 
the capability to single-step through program 
code. - . 

RELOCATABLE EXPANSION 
MEMORY 
An optional board provides ICE-960 with 2 
Mbytes of relocatable expansion memory 
which allows users to develop applications 
either before the target system memory is 
working, or in place of ROM or EPROM to 
speed the debugging cycle. This memory can be 
mapped in two separate 1 Mbyte partitions on 
1 Mbyte boundaries. 

For thenew ICE960KBREM board, the 
memory waitstate pattern is (3,1,1,1) when the 
users system does not return RDY # for 
accesses in the mapped area. For accesses 
where the user system does return RDY # for 
these areas, the waitstate pattern will be the 
larger of (3,1,1,1) or user waitstate pattern plus 
(2,2,2,2). For either board, the size and shape of 
the board is identical to the ICE probe and is. 
installed between the probe and the user's 
target system when in use. The memory 
configuration can be mapped via an ICE MAP 
command. 

. . 
The ICE960KBREM/ICE960SBREM cards add 
some constraints when used with the ICE in a 
users target system. First, users should qualify 
bus drivers/buffers with DEN # in order to 
eliminate potential bus conflict between the 
REM board and their target memory while 

5-16 



FEATURES 

using the ICE. Second, the 1M Byte partition 
size can not be reduced and may effect the 
design of the users memory subsystem. Third, 
the REM boards delay the ADS # and DEN # 
signals by 5 ns (typical) and delays the RDY # 
signal by 4 ns (typical). Fourth, it adds loading, 
capacitance, and power requirements as shown 
in tables 3 and 4. 

STANDALONE OPERATION 
Product software can be developed and 
debugged prior to and independent of 
hardware availability with the Standalone Self 
Test unit (SAST), which contains 256 Kbytes of 
two wait-state program memory. The SAST 
also provides diagnostic testing to assure full 
functionality of the ICE-960 emulator. 

VERSATILE AND POWERFUL 
HOST SOFTWARE 
ICE-960 provides an easy-to-use human 
interface which utilizes color forms to 
complement a powerful command set. The 
software includes: an on-line help facility, a 
dynamic command entry and syntax guide, 
screen oriented editor, assembler and 
disassembler, input/output redirection, 
command piping, DOS command entry, and 
the ability to customize the command set via 
debug procedures and literal definitions. 

DEBUG PROCEDURES AND 
LITERALS 
Debug procedures (PROCs) are user-defined 
groups ofICE960 emulator commands. They 
can be stored on disk and recalled during later 
debugging sessions. PROCs can be used to 
simplify the process of debugging by grouping 
repetitive emulator commands, which can then 
be accessed by typing the name of the PROC. 
Literals are user-defined abbreviations for 
whole or partial ICE-960 emulator commands. 
Literals are a shorthand method of 
customizing the emulator commands to fit 
your needs and preferences. 

ICE TO COMPONENT 
INTERCONNECT SYSTEM 
Using the On-Circuit Emulation (ONCE) i960 
SA/SB silicon feature, ICE960SB can be used 
in systems with surface-mounted i960 SA/SB 
components in either PLCC or EIAJ QFP 
packages. The hinge cable adapters included in 
the various ICE kits and pictured to the right, 
are placed directly on top of the surface 
mounted i960 SA/SB device. The circuitry 
necessary for the emulator to take control 
from the target processor is fully supported in 
the emulator. No additional circuitry is 
required. 

Of course, socketed support for i960 SA/SB 
components in PLCC packages, or i960 KA/KB 
components in PGA packages are also 
supported. Please see Figures 1, 2, 3, and 4 for 
ICE Probe physical characteristics. Refer to 
Table 5 for hinge cable loading and delay 
characteristics. 

WORLDWIDE SERVICE, 
SUPPORT, AND TRAINING 
To augment its development tools, Intel offers 
a full array of seminars, classes, workshops, 
field application engineering expertise, hotline 
technical support, and on-site service. 

Intel also offers a Software Support contract 
which includes technical software information, 
automatic distributions of software and 
documentation updates, iCOMMENTS 
publication, remote diagnostic software, and a 
development tools troubleshooting guide. 

5-17 



intel" 

FEATURES 

HIGH-SPEED HOST-TO~ICE 
COMMUNICATIONS 
PROTOCOLS 
ICE-960 supports RS232 and RS422 
communications protocols to 115 KBaud and 
1152 KBaud respectively deperidingupon the 
ability of the host to support the specific rate. 
Testing for these systems and' the 
configurations involved are described in the 
following sections. 

j' SPECIFICATIONS 'j 

HOST REQUIREMENTS 
IBM PC-AT (minimum requirements) with 640 
KBytes of conventional memory 

1 MByte of RAM (Lotus, Intel, Microsoft 
expanded memory specification) 

20 MByte Fixed Disk 

At least one 5%" or 3'12" Floppy Disk drive 
RS232 or RS422 Communication Interface 
DOS Operating System (version 3.2 or 3.3) 

TESTED HOS'I' 
CONFIGURATIONS 
IBM PC-AT with DOS 3.3. Tested with built­

, in RS232 and a Quatech DS202 Asynchronous 
RS422 Communications Board with 16550 
Option 

MECHANICAL SPECIFICATIONS 

Intel's 90-day Hardware Support package 
includes technical hardware information, 
warranty on parts, labor, material, and on.site 
hardware support. . 

IntelDevelopmerit'l'0ols also offers a 30-day, 
money-back guara~teeto customers who are 
not satisfied after purchasing any Intel 
development tool. 

COMP~Q Deskpro 386' with DOS 3.3. 
Tested with built-in RS232 and Quatech DS202 
Asynchronous RS422 Communications Board 
with 16550 Option 

Systems Based on an Inte1301/302™ Box, 
with DOS 3.3. Tested with buiit-in RS232 to ' 
115.2 KBaud and a Quatech DS202' 
Asynchronous RS422 Communications Board 
with 16550 Option to 1.152 MBaud " 

IBM Personal System/2* with DOS 4.01. 
Tested with built-in RS232 ' 

REQUIRED SYSTEM 
RESOURCES 
The ICE-960 emulator requires the following: 
a) exclusive use of the i960 SA/SB or i960 KAI 
KB's on-chip debug registers and b) a ' " 
minimum of 256 bytes of target system RAM 
used to flush the i960 local registers. 

TABLE 1. ICE-960 Emulator Physicai Characte~istics 

Width Height' , Length Weight 
Unit 

Inches em Inches em Inches em lbs kg 

Control Unit 10.5 26.7 1.5 3.8 16.0 40.6 6.0 2.72 

Processor Module' 3.8 9.6 1.5 3.8 5.0 12.7 

SAST 6.0 15.2 2.0 5.1 8.0 20.3 3.5 ' 1.59 

OIB 3.8 ' 9.6 0.9 2.3 5.1 13.0 

Power Supply 2.8 7.1 4.2 10.7 11.0 27.9 4.7 2.14 

User Cable 22.0 55.9 

Serial Cables 12.0' 3.66m 
'Measurement mcludes target adaptor 

5-18 



intel® 

SPECIFICATIONS 

SIOEYIEW 

I' 5.35 'I 
t a ,I .80 

t 1.20 

• i 

. 13 

TOPYIEW 

n o· 0 

PIN 1 
3.00 

LJ 
1.700 

~ 
a 

1==-:-" .DD 

280852-2 

Figure 1: ICE960KB25 Processor Module 

SiDE VIEW 

I 
i 

TOP VIEW 

I~ 5.100 ~I 

r 
3.800 

L 
O.lea 
2PL 

280852-3 

Figure 2: Optional Isolation Board 

5-19 



intel~ 

SPECIFICATIONS 

PLCC Hinge Cable Dimensions 

17.5 

~ ____ .. __ ~~ r--~w.w..ww.u.u,..,-, 

iiiliiliiiiiiiiiii 0.5,-1 ---i~--~ 
~ Side View 

Required Clearance for Surface 

All Measurements In Centimeters 
Mount ComponenlS 

Figure 3: ICE960SB16C Adapter 

5-20 

260852-4 



SPECIFICATIONS 

ELECTRICAL SPECIFICATIONS 
SYNC Line Specification 

The SYNCIN line must be valid for at least one 
instruction cycle because it is only sampled on 
bus access boundaries. The SYNCIN line is a 
standard TTL input. The SYNCOUT line is 
driven by a TTL open collector with a 4.75 Kn 
pull-up resistor 

ACIDC Specifications 

The Optional Isolation Board (OlB) isolates the 
ICE-960 probe from an untested user target 
system. When the OlB is in use, the ICE-960 
AC and DC specifications differ from the i960 
microprocessor as shown below. When the OIB 
is not installed, the ICE-960KB timing 
specifications are identical to those of the i960 
component. 

TABLE 2. AC Specifications with the OIB Installed 

16 MHz 25 MHz 
Symbol' Parameter 80960SB 80960KB 

Min Max Min Max 

T1 Clock Period 32ns 125 ns 20ns. 125ns 

T2 Clock Low Time 9ns 6ns 

T3 Clock High Time 9ns 6ns 

T4 Clock Fall Time IOns IOns 

T5 Clock Rise IOns . IOns 

T6 Output Valid Delay 
A(2:3), BE#(O:l), BLAST # " 40ns 33ns 
DEN#,DTR#, WR#" 
AID Lines'" 40ns 33ns 

T6AS AS Valid Delay (AS#) 36ns 33ns 

T7 ALE# Width 16ns 12ns 

T8 ALE # Valid Delay 36ns 33ns 

T9 Output Float Delay 
A(2:3), BE#(O:l), BLAST#,* 50ns 35ns 
DEN#, DTR#, WR#" 
AID Lines 50ns 40ns 

T10 Input Setup 1 
HLDA, INTO #, INTI, INT2, INT3 # 13ns 6ns 

T11 Input Hold 
HLDA, INTO # , INTI, INT2, INT3 # IOns 13ns 
HOLD, READY#, LOCK# IOns 13ns 

T12 Input Setup 2 
HOLD, READY #, LOCK # 17ns 11 ns 

T13 Setup to ALE # Inactive 7 ns 7ns 

T14 Hold after ALE # 5ns 5ns 

T15 RESET# Hold 4ns 4ns 

T16 RESET# Setup 4ns 4ns 

T17 RESET # Width 1281 ns 820ns 
*TpLH dependent on termmatIon for KB control sIgnals 

"OIB does not float AID bus during Tr and Tj (between bus cycles) 
"'Output Valid Delay for contr~l signals after HOLD ACKNOWLEDGE is deasserted 50 ns for 809608B and 43 ns for 80960KB 

5-21 



\ 

iniaL 

SPECIFICATIONS 

TABLE 3. ICE-960 Emulator DC Specifications 

ICE Probe OIB 

ICE960SB 1.4 

ICE960KB 1.4 

TARGET SYSTEM DESIGN 
CONSIDERATIONS 
In addition to the mechanical, power 
consumption, and signal loading 
considerations for the ICE probe, the following 
points should be taken into account when the 
target system is being designed: 

1) [SA/SB/KA/KB/MC] 

The AD bus should not be driven by an 
external source unless DEN # is asserted. 

2) [SAISB/KA/KB/MC] 

The LOCK # signal must be terminated as 
recommended in the 80960SA/SB 
component data sheet. 

0.4 

0.6 

REM Processor Speed 

0.5 16 

0.7 25 

3) [SA/SB/KA/KB/MC] 

To guarantee timings, the ICE requires 
± 5% supply voltage to the target system 
(i.e., ICE probe power). 

4) [SA/SB] 

To ensure correct bus trace the ICE requires 
a data hold time (TIl) of 4 ns. 

5) [SA/SB/KA/KB/MC] 

Each Vee and GND pin of the processor 
must be connected to the appropriate 
voltage or ground and externally strapped 
close to the package. 

6) [SAISB/KA/KB/MC] 

Processor no connect (N.C.) pins must be 
left disconnected. ' 

5-22 



SPECIFICATIONS 

TABLE 4. Additional DC Loading 

(ICE Probe) (OlB) (KBREM) (SBREM) 
Signal IIH IlL IIH IlL IIH IlL IIH IlL 

Max Max· Max Max Max Max Max Max 

AD(0:31) 25~A 25~A 15~A -15~A 120~A 0.7mA 20~A 100~A 

ADS # 25~A 25~A 1l5~A -15~A Driven by 74AS760 lO~A lO~A 

DEN # 25~A 25~A 1l5~A -15~A 
wi 4.7k Pull-Up 

W/R# 25~A 25~A 1l5~A -15~A 150~A 1.7mA lO~A lO~A 

CLK2 50~A 500~A 25~A -25~A 130~A 2.9mA ,20~A 1600 ~A 

RESET 25~A 250~A 45~A -750~A 250~A 0.3mA lO~A lO~A 

BE(0:3)# 25~A 25~A 1l5~A -15~A lO~A O.lmA lO~A lO~A 

READY # 25~A 25~A 45~A -750~A 750~A O.SmA 25~A 260~A 

ALE # 25~A 25~A 15~A -15~A 20~A 0.5mA· lO~A 1600 ~A 

DT/R# 25~A 25~A 1l5~A -15~A 

INT(0:3) 25~A 25~A 15~A -565~A 

BADAC# 25~A 25~A 15~A -565~A 

LOCK # 25~A 25~A 140~A -500~A 

HOLD 25~A 25~A 45~A -750~A 

FAILURE # 25~A 25~A 20~A -lmA 

TABLE 5. 80960SB PLCC Hinge Cable Loading and Delay 

Signal Loading 15 pF Typical 

Signal Delay Signals from Processor delayed 4 ns typical, Setup and Hold Timings unaffected. 

5-23 



inial.. 

ORDERING INFORMATION 

Order Code 
'ADPT80EIAJ 

ADPT84PLCC 

ICE960SB16C 

Description 
Hinge Cable Adapter for 
surface-mount i960SB EIAJ 
QFP packages. This adapter is 
included in the ICE960SBI6J 
kit. 
Hinge Cable Adapter fur 
surface-mount and socketed 
i960SB PLCC packages. This 
adapter is included in the 
ICE960SBI6C kit. 
ICE960 base, i960 SA/SB 
probe, 84-pin PLCC surface­
mount and socketed target 
component interconnect, and 
RS232 and RS422 
communication cables. 
(Shrink-Wrap license, Class 1) 

ICE960SBI6J ICE960 base, i960 SA/SB 
probe, 80-pin EIAJ surface­
mount target component 
interconnect, and RS232 and 
RS422 communication cables. 
(Shrink-Wrap license, Class 1) 

ICE960KB25 ICE960 base, i960 KA/KB 
probe, 132-pin PGA target 
component interconnect, and 
RS232 and RS422 
communication cables. 
(Shrink-Wrap license, Class 1) 

Order Code Description 
ICE960SBREM Optional 2 MByte Relocatable 

Expansion Memory Board for 
i960 SA/SB components. 

ICE960KBREM Optional 2 MByte Relocatable 
Expansion Memory Board for 
80960KA/KB components. 

PTOI960SBI6 Probe and Software to convert 
ICE960KB25 to ICE960SBI6. 
An ADPT80EIAJ or 
ADPT84PLCC adapter kit 
should also be ordered with 
this package to support the 
component packaging type of 
your choice. (Shrink-Wrap 
license, Class 1) 

PTOI960KB25 Probe and Software to convert 
ICE960SBI6C or 
ICE960SBI6J to ICE960KB25. 
(Shrink-Wrap license, Class 1) 

5-24 



ICETM-960MC IN-CIRCUIT EMULATOR 

260699-1 

IN-CIRCUIT EMULATOR FOR THE 80960BiC 
MICROPROCESSOR 
The ICETM-960MC In-circuit Emulator delivers real-time hardware and software 
debugging capabilities for 80960MC based designs. Features include emulation ofthe 
80960MC microprocessor, powerful breakpoint specification, fastbreaks, optional 
relocatable expansion memory, two types oftrace capability, large trace buffering, 
support of virtual and physical component addressing modes, and sophisticated human 
interface. The ICE-960MC In-circuit Emulator gives you unmatched control over all 
phases of hardware/software debug, including developing, integrating and testing, which 
improves development productivity and speeds time to market. 

FEATURES 
• Real-Time Emulation of the 80960MC 

microprocessors up to 20 MHz (25 MHz 
optional) 

o Full Symbolic Information Relating to 
Code. Data symbolics subject to some 
limitations in virtual addressing mode 

o Optional ICE960KBREM Board Provides 
2 Mbytes of ICE Memory Which Can 
Overlay User ROM or RAM. 

o Zero wait-state operation from user 
memory 

o Examine and modify Memory ,and the 
80960 Registers 

o Breakpoint Capabilities include: 
Execution Address, Instruction Type, 
Bus Read/Write/Access, and Data 
Value. Qualification of Events is Based 
on an Occurrence Counter and an 8 state 
State-Machine 

o Hosted on IBM PC AT or compatible 
o Dynamically monitor or update program 

variables or memory during emulation 
with Fastbreaks 

o 1024 Frame Trace Buffer for execution 
and/ or Bus Trace and time tags 

o 256 Kbytes of Memory in Standalone 
Self-Test (SAST) Unit 

5-25 
November 1990 

Order Number: 280899·001 



intel® 

ICETM-960MC IN-CIRCUIT EMULATOR 

REAL·TIME EMULATION 
The ICE-960MC In-circuit Emulator provides 
emulation of the 80960MC at speeds up to 20 
MHz (25 MHz optional), thus providing early 
detection of subtle timing problems. Intel's 
intimate knowledge of the component makes 
possible the tightest conceivable conformance 
between timing parameters of the emulator 
and the target microprocessor. 

PROCESSOR/MEMORY 
EXAMINATION AND 
MODIFICATION 
The 80960MC registers can.be accessed 
mnemonically (e.g. g12, r5, fp3) with the ICE-
960MC emulator software. Data can be 
displayed or modified in one of four bases 
(hexadecimal, decimal, octal, or binary) and by 
data type (byte, word, etc). Program memory 
contents can be disassembled and displayed as 
80960 assembly instruction mnemonics. 
Additionally, 80960 assembly instruction 
mnemonics can be assembled and stored into 
program memory. 80960MC system data 
structures such as the segment table, dispatch 
port, and page tables can also be accessed and 
modified mnemonically. 

PROGRAM TRACING 
The ICE-960MC emulator can store 1024 
frames of program execution history or 1024 
frames ofthe 80960MC address/data bus 
activity in the trace buffer. Each frame of 
program execution contains a discontinuity 
address (branch, call, return, etc) and a time­
tag: This information can be used to 
reconstruct a history of the program execution. 
With the execution trace option enabled, the 
ICE-960MC will run at less than full speed. 
Each trace frame of bus cycles contains one 
complete bus burst trace. Collection of trace 
information is controlled by a logic analyzer 
type moving trace window and by bus access 
type. 

EVENT RECOGNITION 
(BREAKPOINT CONTROL) AND 
EMULATION CONTROL 
ICE-960MC provides comprehensive event 
recognition capabilities including: two 
hardware and thirty-two software breakpoints 
for instruction execution breakpoints, and use 
of the internal debug registers to recognize 
execution of certain instruction types such as 

branch or call instructions. Bus analysis logic 
provides recognition of external bus addresses 
qualified by read, write, or access type as well 
as data values which may be entered as 
masked values; Two synchronization lines are 
provided for recognition of external events. 
ICE-960MC also provides qualification of 
events based on an occurrence counter or by a 
recognition sequence of up to 8 events. Special 
additions for the 80960MC include the ability 
to recognize process binds. Additionally, 
emulation can be automatically stopped when 
the trace buffer is full. Besides the ability to 
execute program code at full speed between 
specified points, the ICE-960MC emulator 
provides the capability to single-step through 
program code. 

RELOCATABLEEXPANSION 
MEMORY 
An optional.board provides ICE-960MC with 2 
Mbytes of relocatable expansion memory 
which allows users to develop applications 
either before the target system memory is 
working, or in place of ROM or EPROM to 
speed the debugging cycle. This memory can be 
mapped in two separate 1 Mbyte partitions on 
1 Mbyte boundaries. The memory waitstate 
pattern is (3,1,1,1) when the user's system does 
not return RDY # for accesses directed to the 
ICE960KBREM board. For accesses where the 
user system does return RDY # the waitstate 
pattern will be the larger of(3,1,1,1) or user 
waitstate pattern plus (2,2,2,2). The size aJ;ld 
shape ofthe board is identical to the ICE probe 
and is installed between the probe and the 
user's target system whIm in use. The memory 
configuration can be mapped via either an ICE 
MAP command or via switches on the 
ICE960KBREM board. 

The ICE-960KBREM card adds some 
constraints when used with the ICE in a user's 
target system. First, users should qualify bus 
drivers/buffers with DEN # in order to 
eliminate potential bus conflict between 
REM960 and their target memory. Second, the 
1 Mbyte partition size can not be reduced and 
may effect the design ofthe user's memory 
subsystem. Third, ICE960KBREM delays the 
ADS # and DEN # signals by 5 nsec (typical) 
and delays the RDY # signal by 2 nsec (typical). 
Fourth, it adds loading, capacitance, and power 
requirements as shown in tables 3 and 4. 

5-26 



ICETM-960MC IN-CIRCUIT EMULATOR 

STANDALONE OPERATION 
Product software can be developed and 
debugged prior to and independent of 
hardware availability with the Standalone Self 
Test unit (SAST), which contains 256 Kbytes of 
two wait-state program memory. The SAST 
also provides diagnostic testing to assure full 
functionality of the ICE-960MC emulator. 

VERSATILE AND POWERFUL 
HOST SOFTWARE 
ICE-960MC provides an easy-to-use human 
interface which utilizes color and pull-down 
menus to complement a powerful command 
set. The software includes: an on-line help 
facility, a dynamic command entry and syntax 
guide, screen oriented editor, assembler and 
disassembler, input/output redirection, 
command piping, DOS command entry, and 
the ability to customize the command set via 
debug procedures and literal definitions. 

Special software commands are provided to 
display, interpret, and modify the 80960MC 
hardware data structures including the 
segment table, dispatch port, process control 
block, and the page tables and directories. 

DEBUG PROCED URES AND 
LITERALS 
Debug procedures (PROCs) are user-defined 
groups of ICE-960MC emulator commands. 
They can be stored on disk and recalled during 
later debugging sessions. PROCs can be used to 
simplify the process of debugging by grouping 
repetitive emulator commands, which can then 
be accessed by typing the name of the PROC. 
Literals are user-defined abbreviations for 
whole or partial ICE-96()MC emulator 
commands. Literals are a shorthand method of 
customizing the emulator commands to fit 
your needs and preferences. 

5-27 



intel® 

ICETM·960MC IN· CIRCUIT EMULATOR 

WORLDWIDE SERVICE, 
SUPPORT, AND TRAINING 
To augment its development tools, Intel offers 
a full array of seminars, classes, and 
workshops, field application engineering 
expertise, hotline technical support, and on­
site service. 

Intel also offers a Software Support package 
which includes technical software information, 

SPECIFICATIONS 

HOST REQUIREMENTS 
IBM PC AT (minimum requirements) with 640 
KB of conventional memory 
• 1 MB of RAM (Lotus, Intel, Microsoft 

expanded memory specification) 
• 20 MB Fixed Disk 
• At least one 5-1/ 4 // Floppy Disk drive 
• A serial interface 
• DOS Operating system (version 3.2 or later 

excluding 4.x) 

Mechanical Specifications 

telephone support, automatic distribution of 
software and documentation updates, access to 
the "TooITalk" electronic bulletin board, 
"iComments" publication, remote diagnostic 
software, and a development tools 
troubleshooting guide. 

Intel's Hardware Support package includes 
technical hardware information, telephone 
support, warranty on parts, labor, material, 
and on-site hardware support. 

REQUIRED SYSTEM 
RESOURCES 
The ICE-960MC emulator requires the 
following: a) exclusive use ofthe B0960MC's on­
chip debug registers and b) a minimum of 256 
bytes of target system RAM used to flush the 
B0960 local registers. 

TABLE 1. ICE-960MC Emulator Physical Characteristics 

Width Height Length Weight 
Unit Inches cm Inches cm Inches cm lbs kg 

Control unit 10.5 26.7 1.5 3.B 16.0 40.6 6.0 2.72 
Processor module' 3.B 9.6 1.5 3.B 5.0 12.7 
SAST 6.0 15.2 2.0 5.1 B.O 20.3 3.5 1.59 
OIB 3.B 9.6 .9 2.3 5.1 13.0 
Power supply 2.B 7.1 4.2 10.7 11.0 27.9 4.7 2.14 
User cable 22.0 55.9 
Serial cable 12.0 ft 3.66m 

tmeasurement mcludes target adaptor 

5-28 



ICETM-9160MC IN-CIRCUIT EMUl.ATOR 

SIOEVIE.W 

\' 
5.35 ·1 , 

t 9 ,I f .00 
I , 1.20 

I 

* 
4' 9· - - 9 

.13 

TOPVIE\', 

it 
0 0 i 

TO r .200 

'I 

~·L PIU 1 
3.CO 

L~ ~ 
/ 

IT--

0 

L..10n 
-<> ~'_ -<- .CO 

2 PL 
PROCESSOR UQDULE 

280899-2 

Figure 1: Processor Module 

SIOEV1E\'/ 

i§~~~'3+ .50 ~I I .80 REF 

I F-=--===f---.i... 
TOPVIEW 

1---' -_.,00_'\ 
0 0 0 0 

,j, ,.'00 
Jl 

PIN 1 

1 .1 Plf~ 1 J' 

I 'r 1 

3.000 

1.26 

~'" 1 1 p 0 0 0 __ I 
..- .\.15+- 8 .OO~ 0.18 

.1 

OPTIONAL ISOLATION BOARD , PL 

280899-3 

Figure 2: Optional Isolation 

5-29 



intel~ 

SPECIFICATIONS 

ELECTRICAL SPECIFICATIONS 
SYNC Line Specification 
The SYNCIN line must be valid for at least one 
instruction cycle because it is only sampled on 
instruction boundaries. The SYNCIN line is a 
standard TTL input. The SYNCOUT line is 
driven by a TTL open collector with a 4.75K­
ohm pull-up resistor. 

ACIDC Specifications 
The Optional Isolation Board (OIB) isola.tes the 
ICE-960MC probe from an untested user target 
system. When the OIB is in use, the ICE-
960MC AC and DC specifications differ from 
the 80960MC microprocessor as shown below. 
When the OIB is not installed, the ICE-960MC 
specifications are identical to those of the 
80960MC component. 

TABLE 2. AC Specifications With The OIB Installed 

Symbol' Parameter Minimum Maximum 

t2 clock low time 2+1nS 
t3 clock high time 3+1ns 
t6 output valid delay 

AID 0:31 6+8ns t6+16Ns 
DT/R#, DEN#, BEO-3#, ADS#, W/R# 6+7nS t6+ 14ns 
HLDA, CACHE, LOCK #, INTA # 6+6ns t6+8nS 
ALE # 6+lOnS t6+20nS 

t7 ALE# width 7-6.5nS 
t8 ALE # disable delay 8+nS t8+14nS 
t9 output float delay 

AID 0:31 t9+5nS t9+22nS 
DT/R#, DEN#, BEO-3#, ADS#, W/R# t9+7nS t9+15ns 
HLDA, CACHE, LOCK #, INTA # t9+6nS t9+8nS 

tlO input setup 1 
AID 0:31 tlO+2nS 
BADAC #, INTO-3 # deassertion tlO+ 14nS 

tll input hold 
AID 0:31, HOLD tll+6nS 
BADAC#,INTO-3#, 
READY # tll +7nS 

tl6 reset setup time . 16+6 
'symbol refers to 80960MC speCificatIon 

TABLE 3. ICE-960MC Emulator DC Specifications 

Symbol' Parameter Ma~imum 

PM-Icc Supply current with 80960KB-20 1400mA 
OIB-Icc Supply current PM-Icc + 1l00mA 
REM-Icc Supply current PM-Icc + 1300mA (1700 Total Typical) 

5-30 



SPECIFICATIONS 

TABLE 4. Additional DC Loading 

(without (with (with 
OIB installed) OIB installed) REM installed) 
lih IiI lih IiI lih IiI 

Signal Maximum Maximum Maximum Maximum Maximum Maximum 

AD (0:31) 100uA 0.6 rnA 20uA -1mA 120uA 0.7 rnA 
ADS# 140uA 1.6 rnA 20uA -1mA Driven by 74AS760 
DEN # 40uA l.OmA 20uA -1mA wi 4.7k pull-up 
W/R# 140uA 1.6 rnA 20uA -1mA 150uA l.7mA 
CLK2 BOuA 2.2 rnA 50uA -2mA l30uA 2.9 rnA 
RESET 50uA -2mA 250uA 0.3 rnA 
BE (0:3)# 20uA -lmA 10uA 0.1 rnA 
READY # 20uA -lmA 750uA O.BmA 
ALE# 20uA -lmA 20uA 0.5 rnA 
DT/R# 20uA -lmA 
INTO # , INT3 # 20uA -lmA 
INT1,INT2 20uA -1mA 
BADAC# 20uA -lmA 
LOCK# 20uA -lmA 
HOLD 20uA -lmA 
FAILURE # 20uA -lmA 

5-31 



int:eL 

SPECIFICATIONS 

POWER SUPPLY 
100-120V or 220-240V (Selectable) 
50-60Hz 
2 amps (AC Max) @ l20V 
1 amp (AC Max) @ 240V 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating Temperature 10°C to 40°C 

(50°F to 104°F) 

Operating Humidity Maximum 85% 
Relative Humidity, 
non-condensing 

ORDERING INFORMATION 
Order Code Description 

ICE960MC The complete 20 MHz ICE-
960MC emulator system 
including coritrol unit, 
processor module, power 
supply, SAST, OIB, SAB, 
serial communications cable 
(SCOM4), IEDIT, V1.0 
software. (Requires software 
license, Class I) 

ICE960MC25P 25 MHz ICE960MC as 
described above 

I960MCUPG Conversion kit to convert 
ICE-960KB to ICE-960MC. 
Consists of new host and 
probe software, probe 
firmware, and manual. 
Requires ICE-960KB V2.0 
hardware. 

ICE960KBREM Optional 2 Mbyte Relocatable 
Expansion Memory Board. 

5-32 



QT960 EVALUATION AND PROTOTYPING 
BOARD 

LOW COST EVALUATION TOOL 

270743·1 

The QT960 products give you a 32-bit starter kit to begin software evaluation and 
hardware design at a low cost. The boards feature the 20 MHz 80960KB 32-bit embedded 
processor. The 80960KB has integrated floating point, instruction and register caches, 
and an on-chip interrupt controller. The 80960K-series are the first in a new 
architectural family of embedded processors from Intel built using Intel's CHMOS Ivt 
process. These boards provide you with full access to the features ofthe 80960KB 
processor. A wire wrap prototyping area offers you easy access to board features to test 
your designs. Interleaved EPROM means fast execution of your code taking advantage of 
the 80960KB's burst bus. A programmable wait state generator simulates different 
memory environments useful in evaluating the performance of your code. These features 
make the QT960 boards useful low cost tools for the 32-bit embedded designer. 

Once written, you can debug your program with NINDY, an EPROM resident debug 
monitor. NINDY enables you to download code, set seven different trace modes, display 
and modify memory or registers, and disassemble problem code sequences. 

Available separately from Intel are the ASM-960 (assembly language) and iC-960 (high­
level language) products which provide you with the code development environment for 
the QT960 boards. 

The starter kit comes in two versions: the QT960F version has fast SRAM, high speed 
EPROM and Flash memory; the QT960E version has lower cost SRAM, Flash memory 
and no high speed EPROM. Each version has NINDY in either EPROM (QT960F) or 
Flash memory (QT960E), power supply cable, and the QT960 User Manual. Both versions 
also include the parts list, source code of the debug monitor, and the board data base 
(schematics) all on diskette. Armed with this starter kit you now have a system to 
evaluate and prototype your product ideas quickly and at low cost. 

5-33 
November 1990 

Order Number: 270743·002 



int'et 

FEATURES 

QT960 FEATURES 
• 20 MHz Execution Speed 
• 128K Bytes to Zero Wait State EPROMt 
• 128K Bytes of Flash Memory 
• 128K Bytes of Zero Wait State SRAM+ 
• Programmable Wait State Generator 
• Prototyping Wire Wrap Area 
• Five Instruction Traces 
• Two Hardware Breakpoints 

• Display/Modify Memory and Registers 
• Code Disassembly 
• High Level Language Support 
• RS-232 Communications Link 
• The QT960E Version has 128K Bytes of Two 

Wait State SRAM and 128K Bytes Four Wait 
State Flash Memory 

Product Order Codes: EVQT960F20 and EVQT960E20 
tCHMOS IV is a patented Intel process. 
*QT960F Version only. 

FAST AND EASY CODE UPDATES 
128K Bytes of Intel's 28F256 Flash memory provides an easy and quick method of changing your 
code in nonvolatile memory. Flash memory may be conveniently reprogrammed without 
removing it from the board while software is under development. 

FAST EPROM 
Interleaved fast EPROM (Intel's 27C202) on the QT960F version yields one-zero-zero-zero wait 
state code access. It efficiently utilizes the four word burst capabilities of the 80960KB bus 
maximizing program performance. 

PROTOTYPING SUPPORT 
A prototyping wire wrap area is provided on board with access to the system's signals and buses. 
This area gives you access to the board's features and allows you to easily test design ideas. A 
system bus connector is also provided for off board prototyping. 

PROGRAMMABLE WAIT STATE GENERATOR 
A software programmable wait state generator enables you to quickly model various memory 
speeds. Under software control you can set over 16 different wait state combinations and evaluate 
the performance of your target system. 

DMA 
The board offers you eight DMA channels accessed through a NINDYlibrary function using 
Intel's 82380. In addition, off board connectors provide DMA I/O capabilities. 

FIVE INSTRUCTION TRACES AND TWO HARDWARE 
BREAKPOINTS 
NINDY utilizes the built-in trace capabilities of the 80960KB to provide you with single· step, 
supervisor, call, return, and branch instruction tracing offering you extensive debug capabilities 
for software examination and modification. Two hardware breakpoints enable you to break on 
and examine EPROM resident code. 

5-34 



FEATURES 

HIGH LE VEL LANGUAGE SUPPORT 
NINDY is capable of downloading absolute object code generated by ASM-960 or iC-960. ASM-960 
and iC-960 may be purchased separately from Intel. 

COMMUNICATION AND SOFTWARE REQUIREMENTS 
The QT960 boards communicate with the host through the RS-232 link using an Intel 82510 
UART provided on board. The boards support five baud rates: 1200,2400,9600,19200, and 38400. 
The default is 9600 baud. To communicate with the QT960 boards you must meet the following 
minimum software requirements: 

o Terminal Emulator 

80960KB 
CPU 

CLOCK 
RESET 

-I WAIT STATE I 
GENERATOR 

ADDRESS 

T 
LATCHES 

I 

EPROM 

128K BYTES 

I 

o XMODEM Download Capabilities 

82380 
SYSTEM 

SUPPORT f-
PERIPHERAL 

I 

I 
fLASH 

MEMORY 

128K BYTES 

82510 
SERIAL 

CONTROLLER -
I 

U= 
I -
SRAM 

128K BYTES 

WIRE 
WRAP 
PINS 

Off 
BOARD 
CONNECTOR 

Block Diagram of the QT960 Board 

For information or the number of your nearest sales office call BOO·54S-4 7 52 (U.S. and Canada). 
Intel Corporaton, Literature Department, 3065 Bowers Avenue, Santa Clara CA 95051, United States. Tel: 408·987-8080. 

5-35 

270743-2 



DB960CADIC IN-CIRCUIT DEBUG MONITOR 

DB960CADIC 
280~OO-1 

Intel's DB960CADIC, the in-circuit delmg monitor for the 33 MHz i960CA embedded 
microprocessor, represents a new generation of development tool technology. 

DB960CADIC allows users to debug high-speed, cached applications at the full speed of 
the i960CA target processor. Controlled by Intel's DB interface, DB960CADIC offers the 
user a tool with a powerful feature set at a fraction of the cost oftraditional development 
tools. DB960CADIC is designed to improve productivity by allowing the user to debug 
software before and after the target system arrives, with minimal hardware intrusion. 

Features 
• Real-time emulation ofthe i960CA 

embedded microprocessor at speeds up to 
33 MHz 

• Full development and debug support for 
i960CA on-chip cache and RAM 

• Minimal intrusive operation, allowing 
the user to debug the target system with 
minimal modification subject to initial 
design constraints 

• Breakpoint capabilities include ten 
software breakpoints, two hardware 
execution address breakpoints, and two 
hardware data address breakpoints. The 
human interface supplements these 
breakpoints with the ability to break on 
data values, conditions, and a four-state 
state machine in non-real time. 

• Low-Cost 
• Source-Level, Symbolic Debugging in a 

Windowed Human Interface with pull 
down Menus (DB). This interface is 
consistent across i960CA tools. 

• 128K Bytes User Memory 
• Virtual 110, the ability to perform 110 

between the DB960CADIC unit and the 
host 

• In-Circuit operation facilitates easy 
transition between target systems 

• Optional Stand-Alone Self-Test 
(DB960CASAST) Module 

• Optional Logic Analyzer Interface Board 
(LAI960CA) 

5-36 
June 1991 

Order Number: 280900-002 



DB960CADIC IN· CIRCUIT DEBUG MONITOR 

Full-Speed Debug and 
Development 
The DB960CADIC In-Circuit Debug Monitor 
provides sophisticated real-time hardware and 
software debug capabilities for i960CA 
embedded microprocessor-based designs. The 
user can run at the full speed ofthe target 
processor, ensuring th"at elusive timing bugs 
will be found. The DB960CADIC is jumpered to 
receive a clock pulse from either the user's 
target system, or from an internal 25 MHz 
clock. 

Ideal for All Stages of 
Development 
DB960CADIC can be used by both hardware 
and software developers, at any stage of design. 
Early in the development process, 
DB960CADIC allows software debugging when 
inserted into an existing i960CA board such as 
the DB960CASAST module or the EV80960CA 
board. Later in the design cycle, DB960CADIC 
can be inserted into the user's target system, 
thus facilitating debug of hardware/software 
integration. 

Speed Development with Source 
Code, Symbolic Debugging 
Using source code oriented debugging in a 
windowed, symbolic interface, software 
engineers can increase productivity by 
debugging in the medium they are familiar 
with, software source. 

Commands can be entered via either function 
keys, pull-down menus which group logically 
related commands, or a supplementary 
command line which allows entry of complex 
conditions. In addition, source code symbolics 
can be used to examine and modify memory 
and registers. Optimal symbolic debugging can 
be achieved when using DB960CADIC with 
genuine Intel languages. 

Powerful Break Capabilities 
DB960CADIC provides complex emulation 
control by utilizing the on-chip debug registers 
within the i960CA. Real-time break 
capabilities include the ability to break on any 
two execution addresses or data access 

addresses in hardware. Software breakpoints 
are also used to supplement the hardware 
breakpoints for RAM-based memory 
subsystems. DB960CADIC extends these 
capabilities by providing the ability to break 
on data values, NOT data values, or 
combinations ofthe above in a four-state state 
machine. More complex conditions such as 
breaking when a variable is less than a certain 
value can be entered via a very flexible feature 
called conditional breakpoints. 

128K Bytes User Memory 
DB960CADIC provides the user with 128K 
bytes of memory in Region F of the i960CA 
target space. Since the debug monitor is also 
placed in Region F, the on-chip bus interface 
unit of the i960CA is configured to address 
region F as byte-wide memory with 5 
waitstates and no burst accesses allowed. 

Virtual Input/Output 
DB960CADIC is shipped with documented 
library calls which provide users with a built­
in mechanism of performing target I/O using 
the host system. These libraries provide the 
ability to simulate I/O operations in the target 
system before target hardware is available. 

High Speed Serial Link 
Communication between a host and the 
DB960CADIC module is supported via RS232 
and RS422 communication links. RS232 allows 
access to industry standard serial protocols 
while the RS422 link provides a higher speed 
communication mechanism currently 
emerging in the development market. PC/ AT 
Compatible RS422 communication boards are 
available from various third party vendors. 

Optional Stand-Alone Self Test 
Chassis 
An optional stand-alone self test chassis 
complements DB960CADIC by allowing the 
user to debug and test code before prototype 
hardware is available. The DB960CASAST 
includes self-test circuitry to ensure that the 
DB960CADIC unit is working correctly. It also 
provides 4 Megabyte of DRAM to be used for 

5-37 



intel~ 

DB960CADIC IN-CIRCUIT DEBUG MONITOR 

developing applications. This memory has a 
(3,1,1,1) waitstate pattern at 25 MHz. This 
waitstate pattern is programmable using the 
bus controller unit in the i960CA. It also 
includes an 8254 programmable timer which 
can optionally interrupt the i960CAprocessor 
and provide the ability to time code sequences. 

Optional Logic Analyzer Interface 
Board 
The LAI960CA board provides access to 
i960CA pins by routing the signals to easily 
accessible stake pins while passing them 
through to the target system. 

Software Completes the System 
Intel provides a comprehensive software 
development environment to complement 
DB960CADIC. This environment includes C 
and ASM source languages, a retargetable 
debug monitor, and DB960CADIC. The 
languages support the entire range of 80960 
embedded processors. 

Worldwide Service, Support, and 
Training 
To augment its development tools, Intel offers 
a full array of seminars, classes, workshops, 
field application engineering expertise, hotline 
technical support, and on-site service. 

Intel also offers a Software Support contract 
which includes technical software information, 
telephone support, automatic distributions of 
software and documentation updates, 
iCOMMENTS publication, remote diagnostic 
software, and a development tools 
troubleshooting guide. 

Intel's 90-day Hardware Support package 
includes technical hardware information, 
telephone support, warranty on parts, labor, 
material, and on-site hardware support. 

Intel Development Tools also offers a 30-day, 
money-back guarantee to customers who are 
not satisfied after purchasing any Intel 
development tool. 

IDB960CADIC SPECIFICATIONS AND REQUIREMENTS I 
Host System Requirements 
Host system requirements to run the in-circuit 
debugger include the following: 

-DOS version 3.2 or later excluding DOS 4.0 

-640 bytes of RAM in conventional memory 

-A 20 MB hard disk 

-An RS232 or RS422 Serial Port 

Evaluated Systems include: 

IBM PC-AT' with DOS 3.3 

COMPAQ 386* with DOS 3.3 

Intel 301/302* with DOS 3.3 

IBM Personal System/2* Model 70/80 with 
DOS 4.01 

Environment Characteristics 
Operating Temperature: + 10°C to + 40°C 

(50°F to 104°F) 

Operating Humidity: 

5-38 

Maximum of 90% 
relative humidity, 
non-condensing. 



DB960CADIC IN-CIRCUIT DEBUG MONITOR 

DO 
02 
D4 
D6 
~ 

D6 
010 
012 
014 
016 
01B 
D20 
D22 
-?> 
024 
D26 
026 
D30 

BTRM" 
HOLD 
BLST" 
~ 

o 

001 
003 
005 
007 
O~ 
ODO 
0011 
.0013 
0015 
0017 
0019 
0021 
0023 
O~ 
0025 
0027 
0029 
0031 
o ROY" 
o HOLDA 
o ADS" 
o SUP" 

o 
e31 

Serial Cable 

1< 

0 

A20 
MO 
A6 0 
~O 

AGO 
Ala 0 
A120 
A140 
A160 
AlB 0 
A200 

C4 A220 

0 
~o 
A240 
A260 
A2B 0 
A30 0 

BEO" 0 
BE2" 0 
<E--o 

LOCK" 0 
O/C"O 

WAIT" 0 
W/R" 0 

4.375" ~ 12cm 

Figure 1 

1.2" 
~3cm 

~ ,."" .. 1 .. <f-O.4" 
1.3cm 

t f', 
r---Pin 1 4.0" 

'T :-----------: 

6.5" >1 
16.5cm 

~ 

::.:::: I 
1.5" 
4cm 

---.or 
Figure 2 

5-39 

A3 
A5 
A7 
~ 
A9 
All 
A13 
A15 
A17 
A19 
A21 3.125" 
A23 Bcm <E-
A25 
A27 
A29 
A31 
BEl" 
BE3" 

'$ieO" 
DMA" 
OT/R" 
DEN" 

280900-3 

• 

280900-4 



intel® 

DB960CADIC IN-CIRCUIT DEBUG MONITOR 

DB960CADIC Interface 
Considerations 
Target systems intended to receive 
DB960CADIC must meet the following 
requirements: 
• The target system mustnot respond to 

memory accesses in Region F (OFOOOOOOO­
OFFFFFFFF) with DB960CADIC installed. 
DB960CADIC provides an ACTIVE out 
signal which can be used to qualify bus logic 
to prevent this occurrence when 
DB960CADIC is installed. 

• The Target System must provide 1.3 Amps of 
power (worst case) .9 Amps average to power 
the DB960CADIC unit. 

• Use of one of the nine directly accessible 
i960CA interrupts. 

• Use of interrupt table entry 242 or 248. 
• Additional Signal Loading as follows: 

The DB960CADIC makes use of the PCLK 
outputs, DO through D7, and some ofthe 
address and control signals of the processor. 
The following table lists the worst case 
loadings added by the presence of the 
DB960CADIC circuitry. 

Signal DC Load Capacitive 
Name (p,A) Load (pF) 

PCLK1 +25/-250 8 
PCLK2 + 30/ -255 17 
CLKIN +12/ -12 13 
DO:D7 + 20/ -600 10 
A31:26 +25/ -250 11 
A2:A17 +20/-100 10 
BEO', BEl' +20/-100 10 
ADS' +50/-500 13 
W/R* +50/-500 13 
WAIT* + 25/ -250 8 
BLAST' +25/-250 8 
FAIL* +20/-20 8 
RESET' +15/-15 25 
INTO:7* +20/ -500 15 
NMI* +20/-500 15 

Additional Loading Imposed on the Target by 
the DB960CADIC 

Ordering Information 
DB960CADIC In-circuit debug monitor for 

the i960CA embedded 
microprocessor. Operates at 
speeds up to 33 MHz. Includes 
hardware debug module, 
RS232/RS422 serial cables, 
DOS host software, and 
documentation. 

DB960CASAST Stand-Alone Self Test Unit for 
DB960CADIC. Includes built­
in power supply, self-test 
board, 4Mbyte of usable 
DRAM for code development, 
and enclosure. 

DB960CAST 

LAI960CA 

5-40 

DB960CADIC and 
DB960CASAST as described 
above. 

Optional Logic Analyzer 
Interface Board for the 
i960CA system. Does not 
require DB960CADIC. 



inY ...,® 

INTEL DEVELOPMENT TOOLS SOFTWARE 
SERVICES 

280921-1 

Intel is committed to providing high quality products and customer support. Our 
commitment to quality is demonstrated by a 30 day, money-back, unconditional refund to 
customers not satisfied with their purchase of an Intel Development Tools product. 

Intel supports its customers by offering a 90-day software warranty and standard 
software support including free technical support over the phone. 

Intel software is continuously undergoing improvement. For customers who desire the 
security of having the most current software and the convenience of having updates sent 
automatically, Intel offers inexpensive Software Support Contracts. 

SOFTWARE WARRANTY 
The standard software warranty is 90 days 
and entitles the customer to the following 
(provided the customer has registered their 
software by returning a completed 
Warranty Registration Card): 
• Replacement of defective media 
• Software product updates occurring 

within the 90 day warranty period. 

STANDARD SOFTWARE 
SUPPORT 
Standard Software Support, provided at no 
additional cost, offers the following 
additional benefits: 
o Free Technical Information Phone 

Service ("TIPS') 
o Timely response to Software Problem 

Reports 

5-41 
June 1991 

Order Number: 280921·001 



lINTEL DEVELOPMENT TOOLS SOFTWARE SERVICESI 

Software Support Contracts 
Software Support Contracts cover products for 
one year from the date of purchase and are 
renewable annually. The following benefits are 
provided: 
• Automatic Software Updates 
• Standard Software Support 

.. Remote Diagnostic Software for DOS-based 
products. 

• Monthly issues of iCOMMENTS, a technical 
support publication 

• Quarterly issues of Troubleshooting Guides 
(host-specific) 

• Quantity discounts 

ORDERING INFORMATION 

Ordering Procedures 
For more information, call 1-800-468-3548 or 
your local Intel sales office. Similar support 
offerings are available outside of North 
America. Software Support Contracts are 
available for North American customers only. 

All orders for contracts, including renewals, 
can be submitted through the local Intel sales 
office or directly to the Development Tools 
Operation by calling 1-800-874-6835. 

To order a Software Support Contract, a 
customer must have registered their product . 
or provide proof of ownership. Customers must 
also have the most current version ofthe 
software, otherwise, they must order a product 
upgrade before a support contract may be 
purchased. 

Pricing is a percentage of the List Price, based 
on the number of copies covered by the 
Software Support Contract. For emulators, the 
percentage will be applied to the identified list 
price of the software portion only, not the full 
list price ofthe emulator. . 

Pricing Information· 
Quantity discounts.are: 

. product quantity 

1..,.10 copies 
11-25 copies 
26+ copies 

pricing per copy 

20% of List Price 
15% of List Price 
10% of List Price 

V AX and Micro V AX software not included. 
Please call 1-800-874-6835 for price quote. 

Ordering Information 
order code description 

SWSUPPORT51 Software Support Contract 
for 51 family 

SWSUPPORT86 Software Support Contract 
for86 family 

SWSUPPORT96 Software Support Contract 
for 96 family 

SWSUPPORT286 Software Support Contract 
for 286 family 

SWSUPPORT386 Software Support Contract 
for 386 family 

SWSUPPORT486 Software Support Contract 
for 486 family 

SWSUPPORT960 Software Support Contract 
for 960 family 

5-42 



iRMKTM 960 
REAL-TIME KERNEL 

E!l 32-Bit Real-Time Multi-Tasking Kernel III Requires Only an i960 KA, KB or MC 
for the i960™ Microprocessor Family Embedded Processor 

II Flexible, Modular Design to Ease ~ Bus Independent 
System Integration rn Easy Customization and Add-On 

!!II Fast Execution with Predictable Enhancements 
Response Time for Time-Critical .. Easily EPROMmable 
Applications 

Compact Code Size (14 Kbytes-
1m Comprehensive Development Tool 

E1I Support 
Including All Optional Modules) 

The iRMK 960 Real-Time Kernel is the 32-bit real-time executive developed and supported by Intel, the i960 
architecture experts. The kernel isa small, fast and highly modular package of system control software. It 
contains the basic software building blocks that act as the foundation in using the key features of the i960 
microprocessor. The iRMK 960 software is fully supported by an array of tools that work in the most popular 
development environments (i.e., DOS', VAXIVMS', SUN'). 

The iRMK 960 Real-Time Kernel is available off-the-shelf. The kernel reduces the cost and risk of designing 
and maintaining software for numerous real-time applications such as, embedded control systems and dedi­
cated real-time subsystems in multiprocessor environment. Use of the kernel can save man years that might 
otherwise be spent developing or porting another real-time kernel. This means reduced time to market for the 
user. 

*DOS® is a registered trademark of Microsoft Corporation. 
V AXIVMSTM is a trademark of Digital Equipment Corporation. 
SUNTM is a trademark of Sun Microsystems. 

5-43 
October 1991 

Order Number: 281006-001 



intel® iRMKTM 960 

ARCHITECTURAL OVERVIEW 

At the heart of the architecture are the kernel core 
modules consisting of a scheduler, task manager, 
interrupt manager and time manager (See Figure 1). 
As additional building blocks, the kernel provid~s op­
tional modules consisting of a mailbox manager, 
semaphore manager, memory manager, on-proces­
sor interrupt controller manager and ·fault handler 
manager. The optional device. manager for the 
82380 Integrated System Peripheral (ISP) and 8254 
Programmable Interval Timer (PIT) complete the ar­
chitecture. 

FUNCTIONAL FEATURES 

A Full Set of Real-Time Building Blocks 

The kernel provides a full set of services for real­
time applications including task management, time 
management, synchronization of and communica­
tions between tasks, and memory pool manage­
ment. 

APPLICATION 

TASK MANAGEMENT 

The iRMK 960 kernel uses system calls to create, 
manage and schedule tasks in a multi-tasking envi­
ronment. It provides pre-emptive priority scheduling 
combined with optional time-slice (round robin) 
scheduling. 

The scheduling algorithm used by the kernel en­
ables tasks to be rescheduled in a fixed amount of 
time regardless of the number of tasks. Applications 
may contain any number of tasks. 

An application can integrate optional task handlers 
to customize task management. These handlers can 
execute on task creation, task switch, task deletion 
and task priority change. Task handlers can be used 
for a wide range of functions, including saving and 
restoring the state of coprocessor registers on task 
switch, masking interrupts based on. task priority or 
implementing statistical and diagnostic monitors. 

INTERRUPT MANAGEMENT 

iRMK 960 interrupts are managed by immediately 
switching control to user-written interrupt handlers 
when an interrupt occurs. 

LANGUAGE INTERFACE LIBRARIES ] 

USER­
SUPPLIED 
SYSTEM 

ROUTINES 

KERNEL 
CORE 

MODULES 

KERNEL 
OPTIONAL 
MODULES 

HARDWARE 

KERNEL 
SUPPLIED 

DEVICE 
MANAGERS 

Figure 1. iRMKTM 960 Real-Time Architecture 

5-44 

281006-1 



iRMI(TM 960 

Response to interrupts is both fast and predictable. 
Most of the kernel's system calls can be executed 
directly from interrupt handlers. 

TIME MANAGEMENT 

The time management features included in the ker­
nel provide single-shot alarms, repetitive alarms and 
a real-time clock. In addition, alarms can be reset. 

These time management facilities can solve a wide 
range of real-time programming problems. Single­
shot alarms, for example, can be used to handle 
timeouts. If the timeout occurs, the alarm invokes a 
user-written handler; if the event occurs before the 
timeout, the application simply deletes the alarm. 
Other uses for the kernel's time management facili­
ties including polling devices with repetitive alarms, 
putting tasks to sleep for specified periods of time, 
or implementing a time-of-day clock. 

INTERTAS;( SYNCHRONIZATION AND 
COMMUNICATION 

Semaphores, regions and mailboxes are the key 
mechanisms the kernel uses for synchronizing tasks 
and communicating between tasks. 

Semaphores are objects used for intertask signaling 
and synchronization. Tasks exchange abstract 
"units" with semaphores as a means of becoming 
synchronized. A tasl< requests a unit from a sema­
phore to gain access to a resource. If the resource is 
available, the semaphore will have a unit to give to 
the task, enabling the task to proceed. A task sends 
a unit to a semaphore to indicate that it has released 
a previously obtained resource. 

A special binary type of semaphore is called a Re­
gion. Regions are used to ensure mutual exclusion, 
thus preventing deadlock when tasks contend for 
control of system resources. A task holding a re­
gion's unit runs at the priority of the highest priority 
task waiting in queue for the region's unit. 

Mailboxes are queues that can hold any number of 
messages and are used to exchange data between 
tasks. Either data or pointers can be sent using mail­
boxes. The kernel allows mailbox messages to be of 
any length. High priority messages can be placed 
Gammed) at the front of the message queue to en­
sure that they are received and processed before 
other messages queued at the mailbox. 

To ensure that high priority tasks are not blocked by 
lower priority tasks, the kernel allows tasks to queue 
at semaphores and mailboxes in priority order. The 
kernel also supports first-in, first-out task queueing. 

5-45 

MEMORY POOL MANAGEMENT 

The iRMK 960 kernel uses the concept of memory 
pools to efficiently divide and manage blocks of 
memory. The memory pool manager provides for 
both fixed and variable block allocation. 

Memory can be divided into any number of pools. 
Multiple memory pools might be created for different 
speed memories, or for allocating different size 
blocks. The times to allocate and de-allocate fixed­
size areas from within a pool have a fixed upper 
bound. 

The kernel-supplied memory manager works with 
flat memory architecture. Users can also write their 
own memory manager to provide different memory 
management policies or support virtual memory. 

Hardware Requirements and Support 

The kernel requires only an i960 microprocessor and 
sufficient memory for itself and its application. The 
kernel's design, however, recognizes that many sys­
tems use additional programmable peripheral devic­
es and coprocessors. The kernel provides optional 
device managers for: 

o The 82380 Integrated System Peripheral (ISP) 
chip 

o The 8254 Programmable Interval Timer (PIT) chip 

An application can supply managers for other devic­
es and coprocessors in addition to or in replacement 
of the devices listed above. 

The openness of the iRMK 960 kernel is a major 
benefit to the OEM. The kernel is designed to be 
programmed into PROM or EPROM, making it easy 
to use in embedded designs. In addition, it can be 
used with any system bus, including those of MULTI­
BUS I and MUL TIBUS II bus architectures. 

A Modular Architecture for Easy 
Customization 

The kernel is designed for maximum flexibility. It can 
be customized for any application. Each major func­
tion, mailboxes for example, is implemented as a 
separate module. The kernel's modules have not 
been linked together and are supplied individually. 
(See Table 1 for the list of kernel modules, and their 
approximate sizes.) 

The user links only the modules needed for his appli­
cation. Any module not used does not need to be 
linked in, and does not increase the size of the ker­
nel in your application. The user can also replace 

II 



intel® iRMKTM 960 

any optional kernel module with one that imple­
ments specific features required by the application. 
For example, the user might want to replace the ker­
nel's memory manager with one that supports virtual 
memory. 

Table 1_ iRMKTM 960 Kernel Modules 
and Approximate Sizes 

Core Modules 
Task Manager 
Interrupt Manager 
Time Manager 
Scheduler 
Initialization 

Optional Modules 
Mailbox Manager 
Semaphore Manager 
Memory Manger 
Fault Handler Manager 
Miscellaneous 

Optional Device Manager 

Bytes 
2600 

150 
3000 
1700 

50 

1250 
2900 
1260 

50 
300 

82380 Integrated System Peripheral 4200 
8254 Programmable Interval Timer 1200 

Total size of the (entire) kernel (minus device man­
agers) is about 13.5 Kbytes. 

Developing with the iRMKTM 960 
Real-Time Kernel 

Kernel applications can be written using any lan­
guage or compiler that produces code that executes 
on the i960 microprocessor. This independence is 
achieved by using an interface library. This library 
works with the. idiosyncracies of a particular lan­
guage-for example, the ordering of parameters. 
The interface library translates the calls provided by 
the language into a standard format expected by the 
kernel. Intel provides an interface library for our iC 
960 compiler. The source code of this library is in­
cluded, so that the user can modify it to support oth­
er compliers. 

Because the kernel is supplied as unlinked object 
modules, applications can be developed on any sys­
tem that hosts the development tools needed. 

Comprehensive Development Tool 
Support 

Intel provides a complete line of 80960 development 
tools for writing and debugging iRMK 960 applica­
tions. 

5-46 

These tools include: 

Software: ASM 960 assembler iC 960 
compiler 

Oebuggers: 

NOTE: 
These tools are available for ~OS, 
VAXIVMS*, MicroVAX*, SUN' and 
EVA960KB 4MB environment 

ICETM 960 In-Circuit Emulator for the i960 mi­
croprocessor 

SMOTM 960 System Debug Monitor for the i960 
microprocessor 

Evaluation 
Vehicles: 

EVA960KB 
A960KB4MB 

QT960 

AT Bus-Compatible Board 
AT Bus-Compatible Board with 
4 Mbytes of Memory 
Standalone Evaluation Vehicle 

Intel Support, Consulting and Training 

With iRMK 960 kernel software, the developer has 
available the total Intel i960 architecture and real­
time expertise of Intel's support engineers. Intel pro­
vides telephone support, on or off-site consulting, 
troubleshooting guides and updates. The kernel in­
cludes 90 days of Intel's Technical Information 
Phone Service (TIPS). Extended support and con­
sulting are also available. 

Contents of the iRMKTM 960 Kernel 
Development Package 

The iRMK 960 Kernel comes in a comprehensive 
package including: 

• Kernel object modules 

• Source for the kernel supplied 82380 Integrated 
System Peripheral and 8254 PIT device manag­
ers 

• Source for the iC 960 interface library 

• Source for sample applications showing the fol­
lowing: 

- Structure of kernel applications 

- Use'of the kernel with an application written in iC 
960 language 

- Compile, bind' and build sequences 

- Sample initialization code for the i960 microproc-
essor 

- Applications written to execute in a flat memory 
space 

• User reference guide 

• 90 days of customer support 



iRMKTM 960 

LICENSING 

iRMK 960 software requires prior execution of the 
standard Intel Software License Agreement (SLA). A 
single development copy requires a Class I license 
and allows iRMK 960 software to be loaded and run 
on one single-processor system. 

SPECIFICATIONS 

System Calls 

The following items are system calls arranged by 
type: 

iRMKTM 960 KERNEL SYSTEM CALLS LISTING 

KERNEL INITIALIZATION 

KN_initialize Initialize kernel 

OBJECT MANAGEMENT 

KN_token_to_ptr 

KN_currenLtask 

TASK MANAGEMENT 

KN_create_task 

KN_delete_task 

KN_suspend_task 

KN_resume_task 

KN_seLpriority 

KN_geLpriority 

Returns a pointer to the 
area holding object 

Returns a pointer for the 
current task 

Creates a task 

Deletes a task 

Suspends a task 

Resumes a task 

Change priority of a task 

Return priority of a task 

INTERRUPT MANAGEMENT 

KN_seLinterrupt 

KN_stop_scheduling 

KN_starLscheduling 

TIME MANAGEMENT 

KN_sleep 

KN_create_alarm 

KN_reseLalarm ., 
KN_delete_alarm 

Specify interrupt handler 

Suspend task switching 

Resume task switching 

Put calling task to sleep 

Create and start virtual 
alarm clock 

Reset an existing alarm 

Delete alarm 

5-47 

KN_geLtime 

KN_seLtime 

KN_tick 

Get time 

Set time 

Notify kernel that clock 
tick has occurred 

INTERTASK COMMUNICATION AND 
SYNCHRONIZATION 

KN_create_semaphore Create a semaphore 

KN_delete_semaphore Delete a semaphore 

KN_send_unit Add a unit to a 
semaphore 

KN_create_mailbox 

KN_delete_mailbox 

Receive a unit from a 
semaphore 

Create a mailbox 

Delete a mailbox 

KN_send_data Send data to a mailbox 

KN_send_priority_data Place Gam) priority 
message at head of 
message queue 

MEMORY MANAGEMENT 

KN_create_pool 

KN_delete_pool 

KN_create_area 

Request a message 
from a mailbox 

Create a memory pool 

Delete a memory pool 

Create a memory area 
from a pool 

KN_delete_area Return a memory area to 
a memory pool 

KN~geLpool_attributes Get a memory pool's 
attributes 

PROGRAMMABLE INTERRUPT 
CONTROLLER MANAGEMENT 

KN_initialize_PICs 

KN_masLslot 

KN_new_masks 

KN_geLslot 

KN_geLinterrupt 

Initialize PIC's 

Mask out interrupts on a 
specified slot 

Unmask interrupts on a 
specified slot 

Signal the PIC that the 
interrupt on a specified 
slot has been serviced 

Change interrupt masks 

Return the most 
important active interrupt 
slot 

Get address of specified 
interrupt handler 

• 



iRMKTM 960 

PROGRAMMABLE INTERVAL CONTROLLER 
MANAGEMENT 

KN_initialize_PIT Initialize the PIT 

KN_start_PIT Start PIT counting 

KN_geLPIT _interval Return PIT interval 

PROCESSOR RECOGNIZED FAULT HANDLING 

KN_geLfaulLhandler Get address of fault 
handler currently -
associated with 
specified fault type 

KN_seLfaulLhandler Establish address of 
fault handler for the 
specified fault type 

PROCESSOR INTERRUPT 
CONTROLLER SUPPORT 

KN_geLprocessor_ 
_priority 

KN_seLprocessor_ 
_priority 

PERFORMANCE 

Returns value of the 
processor _ 

Change the value of ttie 
processor priority 

The figures listed below were derived from a test 
suite running on a EVA-960 evaluation vehicle using 
an 80960KB running at 20 MHz. The EVA-960 has 
what is known a~ 2-1-1-1 wait state memory; what 
this means is that the first instruction of a four in­
struction fetch takes two wait states, and each of the 
three successive instructions takes one wait state. 
The figures are the worst case values obtained from 
several sets of test runs. The code was generated 
using the iC 960 DOS hosted compiler, Version 1.1. 

Action 
Create Pool 
Get Pool Attributes 
Delete Pool 
Create Area 
Delete Area 

Time (in /ks) 
18 
36_ 

1 
35 
32 

5-48 

Action Time (in /kS) 
Create Semaphore 6 
Delete Semaphore 14 
FIFO Semaphore Send Unit 7 
FIFO Semaphore Receive Unit 7 
Region Semaphore Send Unit 18 
Region Semaphore Receive Unit 14 

Create Mailbox 19 
Delete Mailbox 23 
Send Data 21 
Receive Data 21 

Create Alarm 29 
Delete Alarm 30 
FIFO Semaphore Send/Receive 

Unit with Task Switch 75 
Suspend Task with Task Switch 70 
Basic Task Switch 50 
Create Task 62 
Suspend Task 26 
-Resume Task 50 
Delete Task 50 
Get Priority 5 
Set Priority 27 

Set Interrupt 3 
Get Interrupt 3 

MANUALS 

iRMK 960 User's Manual (Intel Order #463863-
001). 

TRAINING INFORMATION 

Intel Customer Service Training: 

"80960 KAlKB Embedded. Processor Training 
Course" 

ORDERING INFORMATION 

Ordering Code 

RMK960 

Product Description 

iRMK 960 Real-Time Kernel 



EV80960CA Evaluation Board 

270870-1 

Low Cost Processor Evaluation Tool 
Intel's EV80960CA evaluation board provides a low-cost hardware environment for code 
execution and software debugging. The board features the 80960CA, the newest and 
highest performance member of Intel's family of 32-bit embedded microprocessors. The 
board allows a user's program to take full advantage of the power of the 80960CA and 
provides zero wait state execution of the user's code. 

Popular features such as single line assemblerldisassembler, single-step program 
execution and software breakpoints are standard on the EV80960CA's on-board monitor. 
Available separately, Intel offers a complete code development environment using the 
assembler (ASM-960) as well as high-level languages, such as Intel's iC-960 C compiler, to 
accelerate development schedules. 

The EV80960CA evaluation board package features the 80960CA System Debug Monitor 
(SDM) in EPROM, a SDM host software floppy disk, a power supply cable, a 9-pin PCI AT 
serial connector for terminal and the EV80960CA User's Manual. The EV80960CA 
User's Manual includes schematics ofthe board, a part list and programmable logic 
(PLD) equations. The board is hosted on an IBM or BIOS-compatible PCI AT. 

'The SRAM memory system provides zero wait state read (0-0-0-0-0) and one wait state write (1-1-1-1-0) performance. 
"The DRAM memory system provides 2-1-1-1-1 reads and writes. 

5-49 
October 1991 

Order Number: 270870-001 



EV80960CA Evaluation Board 

EV80960CA Features 
• 25 MHz Execution Speed 
• 32 Kbytes of EPROM for 80960CA SDM 

Target Operating Firmware 
• 64 Kbytes of Zero Wait State Pipelined 

SRAM' 
• 1 Mbyte of Static-Column Mode DRAM" 

expandable to 4. Mbytes 
• Concurrent Interrogation of Memory and 

Registers 
• Software Breakpoints 
• Code Disassembly 
• High-Level Language Support 
• Two RS-232s for Host and User 

Communication 
• Two iSBX 1/0 Connectors 
• An Expansion Bus to Accommodate 

Eurocard Form-Factor Prototyping Boards 

Fast Pipelined SRAM Memory 
System 
The pipelined-read memory system of the 
EV80960CA provides true zero wait state read 
and one wait state performance. The memory 
design utilizes the internal wait state 
generator of the 80960CA. 

1 MBYTES 
BUS 

B0960CA 
DRAM 

BUFFERING 
CPU AND 

CONTROL 

Fast Static-Column Mode DRAM 
The memory design of the EV80960CA uses 
the 80960CA burst mode bus and static-column 
DRAM mode. The DRAM control PLDs are 
functionally isolated into interconnected state 
machines. The PLDs can be changed to allow 
alternative DRAM memory implementations 
with different DRAM access modes (static­
column mode;nibble mode or fast-page mode). 

Concurrent Interrogation of 
Memory and Registers 
The 80960CA System Debug Monitor (SDM) for 
the EV80960CA allows the user to read and 
modify internal registers and external memory 
while the user's program is running on the 
board. 

iSBX I/O Connectors and 
Expansion Interface 
The EV80960CA evaluation board has two 
connectors to support both 8- and 16-bit 
standard iSBX Expansion Modules. The board 
also provides an expansion bus to 
accommodate Eurocard form-factor 
prototYping boards. 

I BOOT I I SENSEI 
EPROM SWITCHES 

I/O EXPANSION 
WITH STANDARD 

iSBX BOARDS 

J I 

I iSBX I 
EXPANSION 

I SIGNAL H BUFFER I 
I 

GEN. 

64 KBYTES I 
O-WAIT 32-BIT 

FAULT AND TIMER/ 
STATE EXPANSION 

USER LEOS COUNTERS 
SRAM BUS 

Block Diagram of the EV80960CA Board 

5-50 

I UARTS I 
I I 

HOST USER 
INTERFACE PORT 

PORT 
270870-2 



inteL 

EV80960CA Evaluation Board 

Communication Link 
The EV80960CA board communicates with the 
host through the RS-232 link using an Intel 
82510 UART provided on board. The board 
supports seven baud rates: 300, 1200, 2400, 
4800, 9600, 19200 and 38400. 

Power Requirements 
The EV80960CA Evaluation Board requires 5V 
at 2000 rnA and ± 12V at 25 rnA. 

Host System Requirements 
The EV80960CA Evaluation Board is hosted on 
an IBM PCI AT or compatibles; a 386-based PC 
is recommended. The host system must meet 
the following minimum requirements: 
• 512 Kbytes of Memory 
• One 1.2 Mbyte Floppy Disk Drive 
• PC-DOS 3.2 or Later 
o A Serial Port (COM1 or COM2) 

5-51 

• 



i960TM SA/SB EVALUATION BOARD 

272033-1 

i960™ SA/SB EVALUATION BOARD 
The EV80960SX board is a general purpose evaluation tool for the i960TM SA/SB 
embedded processors. This evaluation board provides a high-performance DRAM 
subsystem, an interleaved EPROM subsystem, and a robust set of peripheral devices for 
benchmarking and debugging application code written for the i960 SA/SB embedded 
processors. 

The EV80960SX is a great starter kit for your 32-bit application. The EV80960SX, 
NINDY debug environment, along with assembler and C-compiler (not provided) provide 
a seamless environment for developing code and evaluating the i960 SA/SB processors. 
The NINDY monitor provides code download capabilities from a number of popular 
development systems, including DOS-based PC's. Single step, breakpoints, register and 
memory display are among the full set of features provided by NINDY. 

The board is provided with the following The EPROM subsystem accommodates 
features: four, 32-pin or 28-pin 8-bit wide EPROMs 
• DRAM Subsystem operates at with up to 150 ns access times. 

1-0-0-0-0-0-0-0 wait states for read and • Flash EPROM Subsystem reads and 
write cycles in the burst mode. The writes two 8-bit wide Flash EPROMS. 
DRAM subsystem runs at the maximum • 8259A Interrupt Controller provides 
processor frequency of 16 MHz, using expanded interrupt capabilities using 
100 ns fast page mode DRAMs. The the i960 SA/SB's interrupt controller 
DRAM subsystem can accommodate interface. 
from 512 Kbytes to 4 Mbytes, using 4 or 8 • Parallel Port Input allows fast 
ZIP-packaged DRAMs. downloads of code or data to the 

• Interleaved EPROM Subsystem executes EV80960SX board. The parallel port 
burst program fetches with a 2-0-1-0-2-0- provides auto-busy and interrupt 
1-0 wait state performance. capabilities, and is a full implementation 

of the Centronics standard. 

ACE5! ®, ICE® and MCS@ are registered trademarks of Intel Corporation. 
Ethernet® is a registered trademark of Xerox Corporation. 

·CHMOS is a patented Intel process. 

5-52 
June 1991 

Order Number: 272033-001 



i960TM SA/SB EVALUATION BOARD 

o Two serial ports provide queued and 
interrupt driven serial transfer at up to 
128000 baud. 

o 82C54 Timer/Counter provides a 32-bit 
counter and l6-bit counter, each with 
dedicated interrupts. 

o Expansion/Prototype Bus (XBUS) allows 
expansion cards and prototype hardware 
direct access to the i960 SA/sB's bus and 
control signals. Optionally, a configurable 
wait state scheme provides a no glue 
interface to most peripherals attached to the 
XBUS. 

o LEDs and Switches are user programmable. 
One 10-segment bar LED, a 7-segment LED 
and an 8-position switch are under program 
control. 

o Local Area Networking (LAN) is 
implemented using an 82596SX LAN 
coprocessor. 

o Laser Printer Control provides interfaces to 
TEC or Canon compatible laser engines. 

o Monitor and Self-test diagnostics are 
provided for the EV80960SX in the EPROMs 
installed in the board. 

The evaluation board comes complete with a 
design database included on diskette, the 
NINDY debug monitor on diskette and in 
EPROM, power and serial cables, schematics 
and user's manual. 

The EV80960SX is a public domain design. The 
hardware is fully documented and provides 
working examples of popular memory and 
peripheral interfaces to the i960 SA/SB 
processor. The schematic and PLD database 
are provided with each board. The EV80960SX 
designs are easily duplicated and can be used 
directly as the building blocks for custom 
designs. Custom hardware can be prototyped 
using the expansion bus (XBUS) connector. 

. 272033-2 

EV80960SX Evaluation Board 

5-53 

II 



ALABAMA 

Intel Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 
Tel: (205) 630-4010 
FAX: (205) 837-2640 

ARIZONA 

tlntel Corp. 
410 North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602) 231-0366 
FAX: (602) 244-0446 

CALIFORNIA 

tlntal Corp. 
21515 Vanowen Street 
Suite 116 
Canoga Park 91303 
Tel: (616) 704-6500 
FAX: (616) 340-1144 

Intel Corp. 
1 Sierra Gate Plaza 
Suite 280C 
Roseville 95678 
Tel: (916) 782-8086 
FAX: (916) 762-8153 

tlntel Corp. 
9665 Chesapeake Dr. 
Suite 325 
San Diego 92123 
Tel: (619) 292-6066 
FAX: (619) 292-0626 

-tlntel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 635-9642 
TWX: 910-595-1114 
FAX: (714) 541-9157 

-tlntel Corp. 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 
Tel: (408) 986-8066 
TWX: 910-338-0255 
FAX: (408) 727-2620 

COLORADO 

Intel Corp. 
4445 Northpark Drive 
Suite 100 
Colorado Springs 80907 
Tel: (719) 594-6622 
FAX: (303) 594-0720 

-tlntal Corp. 
BOO S. Cherry 51. 
Suite 700 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931-2289 
FAX: (303) 322-8670 

CONNECTICUT 

~~lte~~°TP.irm Cor~or~te Park 
83 Wooster Heights Ad. 
Danbury 06810 
Tel: (203) 746-3130 
FAX: (203) 794-0339 

FLORIDA 

tlnlel Corp. 
800 Fairway Drive 
Suite 160 
Deerfield Beach 33441 
Tel: (305) 421-0506 
FAX: (305) 421-2444 

tSales and Service Office 
*Field Application Location 

NORTH AMERICAN SALES OFFICES 
tlntel Corp. *tlnte! Corp. *tlntel Corp. 
5850 T.G. Lee Blvd. 2950 Express Dr., South 7322 S.W. Freeway 
Suite 340 Suite 130 Suite 1490 
Orlando 32822 Islandia 11722 Houston 77074 
Tel: (407) 240-8000 Tel: (516) 231-3300 Tel: (713) 988-6066 
FAX: (407) 240-8097 TWX: 510-227-6236 TWX: 910-681-2490 

FAX: (516) 348-7939 FAX: (713) 988-3660 
GEORGIA 

tlntel Corp. 
tlntel Corp. 300 Westage BUSiness Center UTAH 
20 Technology Parkway Suite 230 
Suite 150 Fishkilr 12524 tlntel Corp. 
Norcross 30092 Tel: (914) 897-3860 428 East 6400 South 
Tel: (404) 449-0541 FAX: (914) 897-3125 Suite 104 
FAX: (404) 605-9762 Murray 84107 

OHIO Tel: (801) 263-8051 
ILLINOIS FAX: (801) 268-1457 

*tlntel Corp. 
*tlntel Corp. 
3401 Park Center Drive 

WASHINGTON Woodfield Corp. Center III Suite 220 
300 N. Martingale Road Dayton 45414 

tlntel Corp. Suite 400 Tel: (513) 890-5350 
Schaumburg 60173 TWX: 810-450-2528 155 108th Avenue N.E. 
Tel: (708) 605-6031 FAX: (513) 890-8658 Suite 386 
FAX: (708) 706-9762 Bellevue 98004 

*tlntel Corp. Tel: (206) 453-8086 
INDIANA 25700 Science Park Dr. TWX: 910-443-3002 

tlntel Corp. 
Suite 100 FAX: (206) 451-9556 
Beachwood 44122 

8910 Purdue Road Tel: (216) 464-2736 Intel Corp. 
Suite 350 TWX: 810-427-9298 408 N. Mullan Road 
Indianapolis 46268 FAX: (804) 282-0673 Suite 102 
Tel: (317) 675-0623 Spokane 99206 
FAX: (317) 875-6938 OKLAHOMA Tel: (509) 928-8086 

MARYLAND Intel Corp. 
FAX: (509) 928-9467 

*tlnlel Corp. 
6801 N. Broadway 

WISCONSIN Suite 115 
10010 Junction Or. Oklahoma City 73162 
Suite 200 Tel: (405) 848-8086 Intel Corp. 
Annapolis Junction 20701 FAX: (405) 640-9819 330 S. Executive Dr. 
Tel: (301) 206-2860 Suite 102 
FAX: (301) 206-3677 

OREGON Brookfield 53005 
(301) 206-3678 Tel: (414) 784-8087 

MASSACHUS~nS 
tlntel Corp. FAX: (414) 796-2115 
15254 N.W. Greenbrier Pkwy. 

*tlntel Corp. Building B 
Beaverton 97006 CANADA Westford Corp. Center, 
Tel: (503) 645-8051 3 Carlisle Road 

2nd Floor TWX: 910-467-6741 

Westford 01886 FAX: (503) 645-8181 
BRITISH COLUMBIA 

Tel: (508) 692-0960 
PENNSYLVANIA TWX: 710-343-6333 Intel Semiconductor of 

FAX: (508) 692-7867 ·tlntel Corp. Canada, Ltd. 

MICHIGAN 
925 Harvest Drive 4585 Canada Way 
Suite 200 Suite 202 

tlntel Corp. Blue Bell 19422 Burnaby V5G 4L6 

7071 Orchard Lake Road Tel: (215) 641-1000 Tel: (604) 298-0387 

Suite 100 FAX: (215) 641-0785 FAX: (604) 298-8234 

West Bloomfield 48322 *tlntel Corp. Tel: (313) 851-8096 400 Penn Center Blvd. ONTARIO 
FAX: (313) 651-8770 Suite 610 

MINNESOTA 
Pittsburgh 15235 tlntel Semiconductor of 
Tel: (412) 823-4970 Canada, Ltd. 

tlntel Corp. FAX: (412) 629-7578 2650 Queensview Drive 

3500 W. 80th 51. Suite 250 

Suite 360 PUERTO RICO Ottawa K2B 8H6 

Bloomington 55431 Tel: (613) 829-9714 

Tel: (612) 835-6722 tlntel Corp. FAX: (613) 820-5936 
TWX: 910-576-2867 South Industrial Park 

FAX: (612) 631-6497 P.O. Box 910 tlntel Semiconductor of 
Las Piedras 00671 Canada, Ltd. 

NEW JERSEY Tel: (809) 733-8616 190 Attwell Drive 
Suite 500 

~r~~~~ri C8ff?ce Center 
TEXAS Rexdale M9W 6H8 

Tel: (416) 675-2105 
125 Half Mile Road tlntel Corp. FAX: (416) 675-2438 
Red Bank 07701 8911 N. Capital of Texas Hwy. 
Tel: (908) 747-2233 Suite 4230 

QUEBEC FAX: (908) 747-0983 Austin 78759 
Tel: (512) 794-8086 

tlntel Semiconductor of NEW YORK FAX: (512) 336-9335 
Canada, ltd. 

*lntel.Corp. *tlntel Corp. 1 Rue Holiday 
8S0 Crosskeys Office Park 12000 Ford Road Suite 115 
Fairport 14450 Suite 400 Tour East 
Tel: (716) 425-2750 Dallas 75234 PI. Claire H9R 5N3 
TWX: 510-253-7391 Tel: (214) 241-8087 Tel: (514) 694-9130 
FAX: (716) 223-2561 FAX: (214) 484-1180 FAX: 514-694-0064 



ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35806 
Tel: (205) 837-6955 
FAX: (205) 721-1581 

Hamilton/Avnet Electronics 
4960 Corporate Drive, #135 
Huntsville 35805 
Tel: (205) 837-7210 
FAX: (205) 721-0356 

MTI Systems Sales 
4950 Corporate Drive 
Suite 120 
Huntsville 35805 
Tel: (205) 830-9526 
FAX: (205) 830-9557 

PioneerfTechnotogies Group, Inc. 
4835 University Square, #5 
Huntsville 35805 
Tel: (205) 837-9300 
FAX: (205) 837-9358 

ARIZONA 

tArrow ElectrOnics, Inc. 
4134 E. Wood Street 
Phoenix 85040 
Tel: (602) 437-0750 
FAX: (602) 252-9109 

Avnel Computer 
30 South McKemy Avenue 
Chandler 85226 
Tel: (602) 961-6460 
FAX: (602) 961-4787 

Hamilton/Avnet Electronics 
30 South McKemy Avenue 
Chandler 85226 
Tel: (602) 961-6403 
FAX: (602) 961-1331 

Wyle Distribution Group 
4141 E. Raymond 
Phoenix 85040 
Tel: (602) 437-2088 
FAX: (602) 437-2124 

CALIFORNIA 

Arrow Commercial System Group 
1502 Crocker Avenue 
Hayward 94544 
Tel: (415) 489-5371 
FAX: (415) 489-9393 

Arrow Commercial $ystem Group 
14242 Chambers Road 
Tustin 92680 
Tel: (714) 544-0200 
FAX: (714) 731-8438 

tArrow Electronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 
Tel: (818) 701-7500 
FAX: (818) 772-8930 

tAr row Electronics, Inc. 
9511 Ridgehaven Court 
San Diego 92123 
Tel: (619) 565-4800 
FAX: (619) 279-8062 

tArrow Electronics, Inc. 
1180 Murphy Avenue 
San Jose 95131 
Tel: (408) 441-9700 
FAX: (408) 453-4810 

tArrow Electronics, Inc. 
2961 Dow Avenue 
Tustin 92680 
Tel: (714) 838-5422 
FAX: (714) 838-4151 

Avnet Computer 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4121 
FAX: (714) 641-4170 

Avnet Computer . 
1361B West 190th Street 
Gardena 90248 
Tel: (800) 345-3870 
FAX: (213) 327-5389 

tCertified VAD 

NORTH AMERICAN DISTRIBUTORS 
Avnet Computer 
755 Sunrise Blvd., #150 
Roseville 95661 
Tel: (916) 781-2521 
FAX: (916) 781-3819 

Avnet Computer 
1175 Bordeaux Drive, #A 
Sunnyvale 94089 
Tel: (408) 743-3304 
FAX: (408) 743-3348 

Avne! Computer 
21150 Califa Street 
Woodland Hills 91376 
Tel: (808) 345-3870 
FAX: (818) 594-8333 

tHamliton/Avnet Electronics 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4100 
FAX: (714) 754-6033 

tHamliton/Avnet Electronics 
1175 Bordeaux Drive, #A 
Sunnyvale 94089 
Tel: (408) 743-3300 
FAX: (408) 745-6679 

tHamilton/Avnet Electronics 
4545 Viewridge Avenue 
San Diego 92123 
Tel: (619) 571-1900 
FAX: (619) 571-8761 

tHamilton/Avnet Electronics 
21150 Califa SI. 
Woodland Hills 91367 
Tel: (818) 594-0403 
FAX: (818) 594-8234 

tHamiiton/Avnet Electronics 
13618 West 190th Street 
Gardena 90248 
Tel: (213) 516-8600 
FAX: (213) 217-6822 

tHamilton/Avnet Electronics 
755 Sunrise Avenue, #150 
Roseville 95661 
Tel: (916) 925-2216 
FAX: (916) 925-3478 

Pioneer!Technologies Group, Inc. 
134 Aio Robles 
San Jose 95134 
Tel: (408) 954-9100 
FAX: 408-954-9113 

tWyle Distribution Group 
124 Maryland Street 
EI Segundo 90245 
Tel: (213) 322-8100 
FAX: (213) 416-1151 

WyJe Distribution Group 
7431 Chapman Ave. 
Garden Grove 92641 
Tel: (714) 891-1717 
FAX: (714) 891-1621 

tWyle Distribution Group 
2951 Sunrise Blvd., SUite 175 
Rancho Cordova 95742 
Tel: (916) 638-5282 
FAX: (916) 638-1491 

tWyle Distribution Group 
9525 Chesapeake Drive 
San Diego 92123 
Tel: (619) 565-9171 
FAX: (619) 365-0512 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel: (408) 727-2500 
FAX: (408) 727-5896 

tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 863-9953 
FAX: (714) 263-0473 

tWyle Distribution Group 
26010 Mureau Road, #150 
Calabasas 91302 
Tel: (818) 880-9000 
FAX: (818) 880-5510 

COLORADO 

Arrow Electronics, Inc. 
3254 C Frazer Street 
Aurora 80011 
Tel: (303) 373-5616 
FAX: (303) 373-5760 

tHamiiton/Avnet Electronics 
9605 Maroon Circle, #200 
Englewood 80112 
Tel: (303) 799-7800 
FAX: (303) 799-7801 

tWyle Distribution Group 
451 E 124th Avenue 
Thornton 80241 
Tel: (303) 457-9953 
FAX: (303) 457-4831 

CONNECTICUT 

tArrow Electronics, Inc. 
12 Beaumont Road 
Wallingford 06492 
Tel: (203) 265-7741 
FAX: (203) 265-7988 

Avnet Computer 
55 Federal Road, #103 
Danbury 06810 
Tel: (203) 797-2880 
FAX: (203) 791-9050 

tHamilton/Avnet Electronics 
55 Federal Road, #103 
Danbury 06810 
Tel: (203) 743-6077 
FAX: (203) 791-9050 

tPioneerlStandard Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
FAX: (203) 838-9901 

FLORIDA 

tArrow Electronics, Inc. 
400 Fairway Drive, #102 
Deerfield Beach 33441 
Tel: (305) 429-8200 
FAX: (305) 428-3991 

tArrow Electronics, Inc. 
37 Skyline Dnve, #3101 
Lake Mary 32746 
Tel: (407) 333-9300 
FAX: (407) 333-9320 

Avnet Computer 
3343 W. Commercial Blvd. 
Bldg. C/O, Suite 107 
Ft. Lauderdale 33309 
Tel: (305) 979-9067 
FAX: (305) 730-0368 

Avnet Computer 
3247 Tech Drive North 
SI. Petersburg 33716 
Tel: (813) 573-5524 
FAX: (813) 572-4324 

tHamilton/Avnet Electronics 
5371 N.W. 33rd Avenue 
Ft. Lauderdale 33309 
Tel: (305) 484-5016 
FAX: (305) 484-8369 

tHamilton/Avnet Electronics 
3247 Tech OrNe North 
St. Petersburg 33716 
Tel: (813) 573-3930 
FAX: (813) 572-4329 

tHamiiton/Avnet Electronics 
7079 University Boulevard 
Winter Park 32791 
Tel: (407) 657-3300 
FAX: (407) 678-1878 

tPioneer!Technologies Group, Inc. 
337 Northlake Blvd., Suite 1000 
Alta Monte Springs 32701 
Tel: (407) 834-9090 
FAX: (407) 834-0865 

Pioneer!Technologles Group, Inc. 
674 S. Military Trail 
Deerfield Beach 33442 
Tel: (305) 428-8877 
FAX: (305) 481-2950 

GEORGIA 

Arrow Commercial System Group 
3400 C. Corporate Way 
Duluth 30136 
Tel: (404) 623-8825 
FAX: (404) 623-8802 

tArrow Electronic~, Inc. 
4250 E. Aivergreen Pkwy., #E 
Duluth 30136 
Tel: (404) 497-1300 
FAX: (404) 476-1493 

Avnet Computer 
3425 Corporate Way, #G 
Duluth 30136 
Tel: (404) 623-5452 
FAX: (404) 476-0125 

Hamilton/Avnet Electronics 
3425 Corporate Way, #G 
Duluth 30136 
Tel: (404) 446-0611 
FAX: (404) 446-1011 

Pioneer!Technologies Group, Inc. 
4250 C. Rivergreen Parkway 
Duluth 30136 
Tel: (404) 623-1003 
FAX: (404) 623-0665 

ILLINOIS 

tArrow Electronics, Inc. 
1140 W. Thorndale Rd. 
Itasca 60143 
Tel: (708) 250-0500 

Avnet Computer 
1124 Thorndale Avenue 
Bensenville 60106 
Tel: (708) 860-8573 
FAX: (708) 773-7976 

tHamilton/Avnet Electronics 
1130 Thorndale Avenue 
Bensenville 60106 
Tel: (708) 860-7700 
FAX: (708) 860-8530 

MTI Systems 
1140W. Thorndale Avenue 
Itasca 60143 
Tel: (708) 250-8222 
FAX: (708) 250-8275 

tPioneer/Standard Electronics 
2171 Executive Dr., Suite 200 
Addison 60101 
Tel: (708) 495-9680 
FAX: (708) 495-9831 

INDIANA 

tArrow Electronics, tnc. 
7108 Lakeview Parkway West Dr. 
Indianapolis 46268 
Tel: (317) 299-2071 
FAX: (317) 299-2379 

Avnet Computer 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 575-8029 
FAX: (317) 844-4964 

Hamllton/Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844-9333 
FAX: (317) 844-5921 

tPioneer/Standard Electronics 
9350 Priority Way West Dr. 
Indianapolis 46250 
Tel: (317) 573-0880 
FAX: (317) 573-0979 



NORTH AMERICAN DISTRIBUTORS (Contd.) 
IOWA 

Hamilton/Avnet Electronics 
2335A Blairsferry Ad., N.E. 
Cedar Rapids 52402 
Tel: (319) 362-4757 
FAX: (319) 393-7050 

KANSAS 

Arrow Electronics, Inc. 
8208 Melrose Dr., Suite 210 
Lenexa 66214 
Tel: (913) 541-9542 
FAX: (913) 541-0328 

Avnet Computer 
15313 W. 95th Street 
Lenexa 61219 
Tel: (913) 541-7989 
FAX: (913) 541-7904 

tHamilton/Avnet Electronics 
15313 W. 951h 
Overland Park 66215 
Tel: (913) 888-1055 
FAX: (913) 541-7951 

KENTUCKY 

Hamilton/Avnet Electronics 
805 A. Newtown Circle 
Lexington 40511 
Tel: (606) 259-1475 
FAX: (606) 252-3238 

MARYLAND 

Arrow Commercial Systems Group 
200 Perry Parkway 
Gaithersburg 20877 
Tel: (301) 670-1600 
FAX: (301) 670-0188 

tArrow Electronics, Inc. 
8300 Guilford Road, #H 
Columbia 21046 
Tel: (301) 995-6002 
FAX: (301) 995-6201 

Avnet Computer 
7172 Columbia Gateway Dr., #G 
Columbia 21045 
Tel: (301) 995-0020 
FAX: (301) 995-3515 

tHamilton/Avnet Electronics 
7172 Columbia Gateway Dr., #F 
Columbia 21045 
Tel: (301) 995-3554 
FAX: (301) 995-3515 

tNorth Atlantic Industries 
Systems Division 
7125 Riverwood Dr. 
Columbia 21046 
Tel: (301) 290-3999 

tPioneerfTechnologies Group, Inc. 
15810 Gaither Road 
Gaithersburg 20877 
Tel: (301) 921-0660 
FAX: (301) 670-6746 

MASSACHUSETTS 

Arrow Electronics, Inc. 
25 Upton Dr. 
Wilmington 01887 
Tel: (508) 658-0900 
FAX: (508) 694-1754 

Avnet Computer 
10 0 Centennial Drive 
Peabody 01960 
Tel: (508) 532-9886 
FAX: (?08) 532-9660 

tHamilton/Avnet Electronics 
tOO Centennial Drive 
Peabody 01960 
Tel: (508) 531-7430 
FAX: (508) 532-9802 

tpioneer/Standard Electronics 
44 Hartwell Avenue 
Lexington 02173 
Tel: (617) 861-9200 
FAX: (617) 863-1547 

Wyle Distribution Group 
15 Third Avenue 
Burlington 01803 
Tel: (617) 272-7300 
FAX: (617) 272-6809 

tCertified VAD 

MICHIGAN 

tArrow Electronics, Inc. 
19880 Haggerty Road 
Livonia 48152 
Tel: (313) 665-4100 
FAX: (313) 462-2686 

Avnet Computer 
2876 28th Street, S.W., #5 
Grandville 49418 
Tel: (616) 531-9607 
FAX: (616) 531-0059 

Avnet Computer 
41650 Garden Road 
Novi 48375 
Tel: (313) 347-1820 
FAX: (313) 347-4067 

Hamllton/Avnet Electronics 
2876 28th Street, SW., #5 
Grandville 49418 
Tel: (616) 243-8805 
FAX: (616) 531-0059 

Hamilton/Avnet Electronics 
41650 Garden Brook Rd., #100 
Novl48375 
Tel: (313) 347-4270 
FAX: (313) 347-4021 

tpioneer/Slandard Electronics 
4505 8roadmoor S.E. 
Grand Rapids 49512 
Tel: (616) 698-1800 
FAX: (616) 698-1831 

tPloneer/Standard Electronics 
13485 Stamford 
L1vonla 48150 
Tel: (313) 525-1800 
FAX: (313) 427-3720 

MINNESOTA 

tArrow Electronics, Inc. 
10120A West 76th Street 
Eden Prairie 55344 
Tel: (612) 829-5588 
FAX: (612) 942-7803 

Avnet Computer 
10000 West 76th Street 
Eden Prairie 55344 
Tel: (612) 829-0025 
FAX: (612) 944-2781 

tHamilton/Avnet Electronics 
12400 Whitewater Drive 
Minnetonka 55343 
Tel: (612) 932-0600 
FAX: (612) 932-0613 

tPioneerlStandard Electronics 
7625 Golden Triange Dr., #G 
Eden Prairie 55344 
Tel: (612) 944-3355 
FAX: (612) 944-3794 

MISSOURI 

tArrow Electronics, Inc. 
2380 Schuetz Road 
S1. Louis 63141 
Tel: (314) 567-6888 
FAX: (314) 567-1164 

Avne! Computer 
739 Goddard Avenue 
Chesterfield 63005 
Tel: (314) 537-2725 
FAX: (314) 537-4248 

tHamiiton/Avnet Electronics 
741 Goddard 
Chesterfield 63005 
Tel: (314) 537-1600 
FAX: (314) 537-4248 

NEW HAMPSHIRE 

Avnet Computer 
2 Executive Park Drive 
Bedford 03102 
Tel: (603) 624-6630 
FAX: (603) 624-2402 

NEW JERSEY 

tArrow Electronics, Inc. 
4 East Stow Road 
Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
FAX: (609) 596-9632 

tArrow Electronics, Inc. 
6 Century Drive 
Parsipanny 07054 
Tel: (201) 538-0900 
FAX: (201) 538-4962 

Avnet Computer 
1-8 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-8961 
FAX: (609) 751-2502 

Avnet Computer 
10 Industrial Road 
Fairfield 07006 
Tel: (201) 882-2879 
FAX: (201) 808-9251 

tHamiiton/Avnet Electronics 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
FAX: (609) 751-2552 

tHamilton/Avnet Electronics 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
FAX: (201) 575-5839 

tMTI Systems Sales 
6 Century Drive 
Parsippany 07054 
Tel: (201) 539-6496 
FAX: (201) 539-6430 

tPloneer/Standard Electronics 
14-A Madison Rd. 
Fairfield 07006 
Tel: (201) 575-3510 
FAX: (201) 575-3454 

NEW MEXICO 

Alliance Electronics Inc. 
10510 Research Avenue 
Albuquerque 87123 
Tel: (505) 292-3360 
FAX: (505) 275-6392 

Avne! Computer 
7801 Academy Road 
Bldg. 1, Suite 204 
Albuquerque 87109 
Tel: (505) 828-9725 
FAX: (505) 828-0360 

tHamilton/Avnet Electronics 
7801 Academy Rd."N.E. 
Bldg. 1, Suile 204 
Albuquerque 87108 
Tel: (505) 765-1500 
FAX: (505) 243-1395 

NEW YORK 

tArrow Electronics, Inc. 
3375 Brighton Henrietta Townline Rd. 
Rochester 14623 
Tel: (716) 427-0300 
FAX: (716) 427-0735 

Arrow Electronics, Inc. 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516) 231-1000 
FAX: (516) 231-1072 

Avne! Computer 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9040 
FAX: (516) 434-7426 

Avnet Computer 
2060 Townline 
Rochester 14623 
Tel: (716) 272-9306 
FAX: (716) 272-9685 

tHamilton/Avnet Electronics 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
FAX: (516) 434-7426 

tHamilton/Avnel Electronics 
2060 Townline Rd. 
Rochester 14623 
Tel: (716) 292-0730 
FAX: (716) 292-0810 

Hamilton/Avnet Electronics 
103 Twin Oaks Drive 
Syracuse 13120 
Tel: (315) 437-2641 
FAX: (315) 432-0740 

MTI Systems 
50 Horseblock Road 
Brookhaven 11719 
Tel: (516) 924-9400 
FAX: (516) 924-1103 

MTI Systems 
1 Penn Plaza 
250 W. 34th Sheet 
New York 10119 
Tel: (212) 643-1280 
FAX: (212) 643-1288 

Pioneer/Standard Electronics 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
FAX: (607) 722-9562 

tPioneer/Standard Electronics 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (516) 921-8700 
FAX: (516) 921-2143 

tPioneer/Standard Electronics 
840 Fairport Park 
'Fairport 14450 
Tel: (716) 381-7070 
FAX: (716) 381-5955 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
Raleigh 27604 
Tel: (919) 876-3132 
FAX: (919) 878-9517 

Avnet Computer 
2725 Millbrook Rd., #123 
Raleigh 27604 
Tel: (919) 790-1735 
FAX: (919) 872-4972 

Hamilton/Avnet Electronics 
5250·77 Center Dr. #350 
Charlone 28217 
Tel: (704) 527-2485 
FAX: (704) 527-8058 

tHamilton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 

~~oo~eL~~oe~~~~~o~I~: gf~cr~' Inc. 
Charlotte 28210 
Tel: (704) 527-8188 
FAX: (704) 522-8564 

Pioneer Technologies Group, Inc. 
2810 Meridian Parkway, #148 
Durham 27713 . 
Tel: (919) 544-5400 
FAX: (919) 544-5885 

OHIO 

Arrow Commercial System Group 
284 Cramer Creek Court 
Dublin 43017 
Tel: (614) 889-9347 
FAX: (614) 889-9680 

tArrow ElectroniCs, Inc. 
6573 Cochran Road, #E 
Solon 44139 
Tel: (216) 248-3990 
FAX: (216) 248-1106 

Arrow Electronics, Inc. 
8200 Washington Village Dr. 
Centerville 45458 
Tel: (513) 435-5563 
FAX: (513) 435-2049 



OHIO (Conld.) 

Avnet Computer 
7764 Washington Village Dr. 
Dayton 45459 
Tel: (513) 439·6756 
FAX: (513) 439·6719 

Avnet Computer 
30325 Bainbridge Rd .• Bldg. A 
Solon 44139 
Tel: (216) 349-2505 
FAX: (216) 349-1894 

tHamilton/Avnet Electronics 
7760 Washington Village Dr. 
Dayton 45459 
Tel: (513) 439-6733 
FAX: (513) 439-6711 

tHamiJton/Avnet Electronics 
30325 Bainbridge 
Solon 44139 
Tel: (800) 543-2984 
FAX: (216) 349-1894 

Hamilton/Avnet Electronics 
2600 Corp Exchange Dr1ve. #180 
Columbus 43231 
Tel: (614) 882-7004 
FAX: (614) 882-8650 

MTI Systems Sales 
23404 Commerce Park Road 
Beachwood 44122 
Tel: (216) 464-6688 
FAX: (216) 464-3564 

tpioneerlStandard Electronics 
4433 Interpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
FAX: (513) 236-8133 

tPioneer/Standard Electronics 
4800 E. 131st Street 
Cleveland 44105 
Tel: (216) 587-3600 
FAX: (216) 663-1004 

OKLAHOMA 

Arrow Electronics, Inc. 
12111 East 51st Street, #101 
Tulsa 74146 
Tel: (918) 252-7537 
FAX: (918) 254-0917 

tHamilton/Avnet Electronics 
12121 E. 51st St.. Suite 102A 
Tulsa 74146 
Tel: (918) 664-0444 
FAX: (918) 250-8763 

OREGON 

tArmac Electronics Corp. 
1885 N.W. 169th Place 
Beaverton 97006 
Tel: (503) 629-8090 
FAX: 503-645-0611 

Avnet Computer 
9409 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627-0900 
FAX: (503) 526-6242 

1Hamilton/Avnet Electronics 
9409 S.W. Nimbus Ave. 

~:~(~~~)i;~g~OI . 
FAX: (50.31 641-4012 

Wyle 
9640 Sunshine Court 
Bldg. G, suns 200 
Beaverton 97005, 
Tel: (503) 643-7900 
FAX: (503) 646-5466 

PENNSYLVANIA 

Avnet Computer 
213 Executive Drive, #320 
Mars 16046 
Tel: (412) 772-1888 
FAX: (4121 772-1890 

Hamilton/Avnet Electronics 
213 Executive, #320 
Mars 16045 
Tel: (412) 281-4152 
FAX: (412) 772-1890 

1Certified VAD 

NORTH AMERICAN' DISTRIBUTORS (Contd.) 
Pioneer/Technologies Group, Inc. 
259 Kappa Drive 
PiHsburgh 15238 
Tel: (4121 782-2300 
FAX: (412) 963-8255 

tPioneerfTechnologies Group, Inc. 
500 Enterprise Road 
Keith Valley Business Center 
Horsham 19044 
Tel: (215) 674-4000 
FAX: (215) 674-3107 

TENNESSEE 

Arrow CommerCial System Group 
3635 Knight Road, #7 
Memphis 38118 
Tel: (901) 367-0540 
FAX: (90.1) 367-2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 
Tel: (214) 380-6464 
FAX: (214) 248-7208 

Avnet Computer 
4004 BeltJine, Suite 200 
Dallas 75244 
Tel: (214) 308-8181 
FAX:·(214) 308-8129 

Avnet Computer 
1235 Noith Loop West. #525 
Houston 77008 
Tel: (713) 867-7500 
FAX: (713) 861-6851 

tHamiiton/Avnet Electronics 
1626-F Kramer Lane 
Austin 76758 
Tel: (800) 772-5668 
FAX: (512) 832-4315 

tHamilton/Avnet Electronics 
4004 Beltline. #200 
Dallas 75244 
Tel: (214) 308-8111 
FAX: (214) 308-8109 

tHamiltonJAvnet Electronics 
1235 N. loop West, #521 
Houston 77006 
Tel: (713) 240-7733 
FAX: (713) 861-6541 

tPioneer/Standard Electronics 
1826-0 Kramer Lane 
Austin 78758 
Tel: (512) 835-4000 
FAX: (512) 835-9829 

tPioneerlStandard Electronics 
13765 Beta Road 
Dallas 75244 
Tel: (214) 386-7300 
FAX: (214) 490-6419 

tPioneer/Standard Electronics 
10530 Rockley Road, #100 
Houston 77099 
Tel: (713) 495-4700 
FAX: (713) 495-5642 

tWyle Distribution Group 
1810 Greenville Avenue 
Richardson 75081 
Tel: (214) 235-9953 
FAX: (214) 644-5064 

Wyle Distrjbutlon Gr()up 
4030 West Braker lane, #330 
Austin 78758 . 
Tel: (512) 345-8853 
FAX: (512) 345-9330 

Wyle Distribution Group 
11001 South Wilcrest, #100 
Houston 77099 
Tel: (713) 879-9953 
FAX: (713) 879-6540 

UTAH 

Arrow Electronics, Inc. 
1946 W. Parkway Blvd. 
Salt Lake City 84119 
Tel: (801) 973-6913 

Avnet Computer 
1100 E. 6600 South. #150 
Salt Lake City 84121 
Tel: (801) 266-1115 
FAX: (801) 266-0362 

Avnet Computer 
17761 Northeast 78th Place 
Redmond 98052 
Tel: (206) 867-0160 
FAX: (206) 867-0161 

tHamiiton/Avnet Electronics 
1100 Easl 6600 South. #120 
Salt lake City 84121 
Tel: (801) 972-2800 
FAX: (801) 263-0104 

tWyle Distribution Group 
1325 West 2200 South, #E 
West Valley 84119 
Tel: (801) 974-9953 
FAX: (801) 972-2524 

WASHINGTON 

tAlmac Electronics Corp. 
14360 S.E. Eastgate Way 
Bellevue 98007 
Tel: (206) 643-9992 
FAX: (206) 643-9709 

tHamiiton/Avnet Electronics 
17761 N.E. 78th Place. #C 
Redmond 98052 
Tel: (206) 241-8555 
FAX: (206) 241-5472 

Wyle Distribution Group 
15385 N.E_ 90th Street 
Redmond 98052 
Tel: (206) 881-1150 
FAX: (206) 881-1567 

WISCONSIN 

Arrow Electronics, Inc. 
200 N.-?atrick Blvd., Ste. 100 
Brookfield 53005 
Tel: (414) 792-0150 
FAX: (414) 792-0t56 

Avnet Computer 
20875 Crossroads Circle, #400 
Waukesha 53186 

. Tel: (414) 784-8205 
FAX: (414) 784-6006 

tHamiiton/Avnet Electronics 
28875 Crossroads Circle, #400 
Waukesha 53186 
Tel: (414) 784-4510 
FAX: (414) 784-9509 

Pioneer/Standard Electronics 
120 Bishops Way #163 
Brookfield 53005 
Tel: (414) 784-3480 

ALASKA 

Avnet Computer 
1400 West Benson Blvd. 
Suite 400 

re~~~~;~~~~~9O:99 
FAX: (907) 277-2639 

CANADA 
ALBERTA. 

Avnet Computer 
2816 21st Street Northeast 
Calgary T2E 622 
Tel: (4031 291-3284 
FAX: (403) 250-1591 

Zentronics 
6815 8th Street N.E .. #100 
Calgsry.T2E 7H 
Tel: (403) 295-8838 
FAX: (403) 295-8714 

BRITISH COLUMBIA 

tHamiiton/Avnet Electronics 
8610 Commerce Court 
Burnaby V5A 4N6 
Tel: (604) 420-4101 
FAX: (604) 420-5376 

Zentronics 
11400 Bridgeport Rd., #108 
Richmond V6X 1T2 . 
Tel: (604) 273-5575 
FAX: (604) 273-2413 

ONTARIO 

'Arrow Electronics, Inc. 
36 Antares Dr., Unit 100 
Nepean K2E 7W5 
Tel: (613) 226-6903 
FAX: (613) 723-2018 

tArrow Electronics, Inc. 
1093 Meyerside, Unit 2 
Mississauga L5T 1 M4 
Tel: (416) 670-7769 
F/IX:(416) 670-7781 

. Avnet Computer 
Canada System Engineering 
Group 
3688 Nashua Dr., Unit 6 
Mississuaga L4V 1 M5 
Tel: (416) 672-8638 
FAX: (416) 677-5091 

Avnet Computer 
6845 Rexwood Road 
Un~s 7-9 
Mississuaga l4V 1 M4 
Tel: (416) 672-8638 
FAX: (416) 672-8650 

Avnet Computer 
190 Colonade Road 
Nepean K2E 7 J5 
Tel: (613) 727-7529 
FAX: (613) 226-1184 

tHamiiton/Avnet Electronics 
6845 Rexwood Rd., Units 3-5 
Mississauga l4T 1 R2 . 
Tel: (416) 677-7432 
FAX: (416) 677-0940 

tHamilton/Avnet Electronics 
190 Colonade Road 
Nepean K2E 7 J5 
Tel: (613) 226-1700 
FAX: (613) 226-1184 

tZentronics 
1355 Meyerside Drive 
Mississauga l5T 1 C9 

··Tel: (416) 564-9600 
FAX: (416) 564-3127 , 

tZentronics 
155 Colonade Rd., South 
UnH 17 
Napean K2E 7KI 
Tel: (613) 226-8840 
FAX: (613) 226-6352 

.QUEBEC 

Arrow Electronics Inc. 
.1100 51. Regis Blvd. 
Dorval H9P 2T5 

. Tel: (514) 421-7411 
FAX: (514) 421-7430 

Arrow Electronics, Inc. 
500 Boul. 5t-Jean-Baptiste Ave. 
Quebec H2E 5R9 
Tel: (418) 871-7500 
FAX: (418) 871-6816 

Avnet Computer 
2795 Rue Halpern 
51. laurent H4S 1 P6' 
Tel: (514) 335-2483 
FAX: (514) 335-2481 

tHamilton/Avnet Electronics 
2795 Halpern 
S1. Laurent H4S 1 P8 
Tel: (514) 335-1000 
FAX: (514) 335-2461 

tZentronics 
520 McCaffrey 
SI. laurent H4T 1 N3 
Tel: (514) 737-9700 
FAX: (514) 737-5212 



~LAND 

101 Finland OY 
,uosilantie 2 
10390 Helsinki 
r 01. (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

Intel Corporation S.A.A.l. 
1, Rue Edison·BP 303 
78054 St. Quenlin·en·Yvelines 
Cedex 
Tel: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 60 32 

EUROPEAN SALES OFFICES 
GERMANY 

Intel GmbH 
Dornacher Strasse 1 
8016 Feldkirchen bel Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/9043948 

ISRAEL 

Intel Semiconductor Ltd. . 
Atidim Industrial Park·Neve Sharet 
P.O. Box 43202 
Tel·Aviv 61430 
Tel: (972) 03498080 
FAX: (972) 03491870 

ITALY 

Intel Corporation Italia S.p.A. 
Milanofiori Palazzo E 
20094 Assago 
Milano 
Tel: (39) (02) 89200950 
FAX: (39) (2) 3498464 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 84130 
3009 CC Rotterdam 
Tel: (31) 104071111 
FAX: (31) 10455 4688 

SPAIN 

Intel Iberia SA 
Zubaran,28 
28010 Madrid 
Tel: (34) 308 25 52 
FAX: (34) 410 7570 

SWEDEN 

Intel Sweden A.B. 
Dalvagen 24 
171 36 Solna 
Tel: (46) 873401 00 
FAX: (46) 8 278085 

UNITED KINGDOM 

Intel Corporation (UK) Ltd. 
Pipers Way 
Swindon, Wiltshire SN3 lRJ 
Tel: (44) (0793) 696000 
FAX: (44) (0793) 641440 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Proelectron Vertriebs GmbH Lasl Elettronica S.pA In Multikomponent NS Bytech Systems 

Sacher Electronics GmbH Max-Planck-Strasse 1-3 P.I.00839000155 Naverland 29 Unit 3 
6072 Dreieich Viale Fulvia Testi, N.280 DK-2600 Glastrup The Western Centre Rotenmuehlgasse 26 Tel: 49 6103 304343 20126 Milano Denmark Western Road A-1120 Wien FAX: 49 6103 304425 Tel: 39 2 66101370 Tel: 010 45 42 451822 Bracknell Tel: 43 22281356460 FAX: 39 2 66101385 FAX: 010 45 42 457624 Berks RG12 1 RW 

FAX: 43 222 834276 Rein Electronik GmbH Tel: 0344 55333 

BELGIUM 
Loetscher Weg 66 Telcom s.r.i.-Divisione MDS Nordisk Elektronik NS FAX: 0344 867270 
4054 Nettelal 1 Via Trombetta Postboks 122 

Inelco Belgium SA Tel: 49 2153 7330 Zona Marconi Smedsvingen 4 Metralogie 
Oorlogskruisenlaan 94 FAX: 49 2153 733513 Strada Cassanese N~ 1364 Hvalstad Rapid House 
8-1120 Bruxelles . Segrate - Milano Norway Oxford Road 
Tel: 32 2 244 2811 Tel: 39 2 2138010 Tel: 47 2 846210 High Wycombe 
FAX: 32 2 216 4301 GREECE FAX: 39 2 216061 FAX: 47 2 846545 Bucks 

Herts HP11 2EE 
FRANCE Pouliadis Associates Corp. Nordisk Electronrk AS Tel: 0494 474147 

5 Koumbari Street NETHERLANDS Box 36 FAX: 0494452144 
Almcx Kolonaki Square Torshamnsgatan 39 
48. Ruc de l'Aubepine 10674 Athens Koning en Hartman BV. S-16493 Kista Jermyn 
B.P, 102 Tel: 30 13603741 Energieweg 1 Sweden Vestry Estate 
92164 Antony Cedex FAX: 30 1 360 7501 2627 AP Delft Tel: 46 8 7034630 Otford Road 
Tel: 33 t 40965400 Tel: 31 15609906 FAX: 46 8 7039845 Sevenoaks 
FAX: 33 1 4666 "6028 FAX: 31 15619194 Kent TN14 5EU IRELAND Tel: 0732 450144 Lex Electronics SWITZERLAND FAX: 0732451251 Silic 585 Micro Marketing PORTUGAL 
60 Rue des Gemeaux Tany Hall lndustrade AG. MMD 94663 Aungis Cedex Egfinton Terrace ArD Electronica LOA Hertistrasse 31 3 Bennet Court TeJ: 33 1 4978 4978 Dundrum Rua Dr_ Faria de CH-8304 Wallisellen Bennet Road FAX: 33 1 4978 0596 Dublin Vasconcelos, 3a Tel: 4118328111 Reading 
Metrologie Tel: 0001 989400 1900 Lisboa FAX: 41 18307550 Berkshire RG2 OOX 
Tour d'Asnieres FAX: 0001 989 8282 Tel: 351 1 8472200 Tel: 0734 313232 
4, Avenue laurent Cely FAX: 351 1 8472197 FAX: 0734 313255 

TURKEY 92606 Asnieres Cedex ISRAEL Tel: 33 1 47906240 SPAIN EMPA 
Rapid Silicon 

FAX: 33 1 4790 5947 Eastronics Ltd. 80050 Sishane 3 Bennet Court 
Bennet Road Tekelec-Air1ronic Aozanis 11 ATD Electronica Refik Saydam Cad No. 89/5 
~~~~~n~G2 OQX Cite Des Bruyeres P.O.B.39300 Plaza Cludad de Viana, 6 Istanbul 

Rue Carle Vernet Tel Baruch 28040 Madrid Tel: 90 1 1436212 Tel: 0734 752266 BP 2 Tel-Aviv 61392 Tel: 34 1 534 4000/09 FAX: 90 1.143 6547 FAX: 0734312728 92310 Sevres Tel: 972 3 475151 FAX: 34 1 534 7663
Tel: 33 1 4623 2425 FAX: 972 3 475125

Metro Systems FAX: 33 1 4507 2191 Metrologia Iberica UNITED KINGDOM Rapid House etra De Fuencarral N.80
GERMANY ITALY 28100'Alcobendas Access Elect Camp Ltd. Oxford Road

Madrid Jubilee House High Wycombe
E2000 Vertriebs-AG Celdis Spa Tel: 34 1 6538611 Jubilee Road Bucks HP11 2EE
Stahlgruberring 12 Via F.ll i Gracchi 36 FAX: 34 1 6517549 Letchworth Tel: 0494474171
8000 Muenchen 82 20092 CiniseUo Balsamo Hertfordshire FAX: 049421860
Tel: 49 89 420010 Milano SG61QH
FAX: 49 8942001209 Tel: 39 2 66012003 SCANDINAVIA Tel: 0462 480888 YUGOSLAVIA
Jermyn GmbH FAX: 39 2 6182433 FAX: 0462 682467

OY Fintronic AS
H.R. Microelectronics Corp. 1m Dachsstueck 9 Intes; Div. Della Deutsche Heikkilantie 2a Bytech Components Ltd. 6250 Limburg Divisione In SF-00210 Helsinki 12a Cedarwood
2005 de la Cruz Blvd.

Tel: 49 6431 5080 Industries GmbH Tel: 358 0 6926022 Chineham Business Park Suite 220
FAX: 496431 508289 P.1. 06550110156 FAX: 358 0 6821251 Crockford Lane Santa Clara, CA 95050

U.S.A. Metrologie GmbH Milanofiori Palazzo E5 Basingstoke Tel: (408) 988·0286 Steinerstrasse 15 20094 Assago (Milano) Hants RG12 lRW FAX: (408) 988-0306 8000 Muenchen 70 Tel: 39 2 824701 Tel: 0256 707107
Tel: 49 89 724470 FAX: 39 2 8242631 FAX: 0256707162
FAX: 49 8972447111

AUSTRALIA

Intel Australia Ply. Ltd.
Unit 13
Allambie Grove Business Park
25 Frenchs forest Road East
Frenchs Forest, NSW, 2086
Sydney
Tel: 61-2-975-3300
FAX: 61-2-975-3375

Intel Australia Ply. Ltd.
711 High Street
151 Floor
East Kw. Vic., 3102
Melbourne
Tel: 61-3-810-2141
FAX: 61-3-819 7200

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 11S9-CJS 404/405
01311 - Sao Paulo· S,P.
Tel: 55-11-287-5899
TLX: 11-37-557-ISOB
FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC
Tel: (1) 500-4850
TLX: 22947 INTEL CN
FAX: (1) 500-2953

INTERNATIONAL SALES OFFICES
Intel Semiconductor Ltd. *
1 OfF East Tower
Bond Center
Queensway, Central
Hong Kong
Tel: (852) 844-4555
FAX: (852) 868-1989

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
51. Mark's Road
Bangalore 560001
Tel: 91-812-215773
TLX: 953-845-2646 INTEL IN
FAX: 091-812-215067

JAPAN

Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki. 300-26
Tel: 0298-47-8511
FAX: 0298-47-8450

Intel Japan K.K.*
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi. Tokyo 192
Tel: 0426-48-8770
FAX: 0426-48-8775

Intel Japan K.K.'"
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Sailama 360
Tel: 0485-24-6871
FAX: 0485-24-7518

Intel Japan K.K.*
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222
Tel: 045-474-7661
FAX: 045-471-4394

Inlel Japan K.K.*
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi,·Osaka 560
Tel: 06-863-1091
FAX: 06-863-1084

In lei Japan KK.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-3201-3621
FAX: 03-3201-6850

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460
Tel: 052-204-1261
FAX: 052-204-1285

KOREA

Intel Korea. Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-Ku
Seoul 150-010
Tel: (2) 784·8186
FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square
Singapore 1130
Tel: (65) 250-7811
FAX: (65) 250-9256

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei
Tel: 886-2-5144202
FAX: 886-2-717-2455

~ NTIERNATIONAl D~STFU BUTOrAS/REPRIESENT AT~VIES
ARGENTINA

Dafsys S.RL
Chacabuco, 90-6 Piso
1069-Buenos Aires
Tel: 54-1-34-7726
FAX: 54-1-34-1871

AUSTRALIA

Email Electronics
15-17 Hume Street
Huntingdale, 3166
Tel: 011·61·3-544-8244
TLX: AA 30895
FAX: 011-61-3-543-8179

NSD-Australia
205 Middleborough Rd.
Box Hill, Victoria 3128
Tel: 03 8900970
FAX: 03 8990819

BRAZIL

Microlinear
Largo do Arouche, 24
01219 Sao Paulo, SP
Tel: 5511-220-2215
FAX: 5511-220-5750

CHILE

Sisteco
Vecinal 40 - Las Condes
Santiago
Tel: 562-234-1644
FAX: 562-233-9895

CHINA/HONG KONG

Novel Precision Machinery Co., Ltd.
Room 728 Trade Square
681 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: (852) 360-8999
TWX: 32032 NVTNL HX
FAX: (852) 725-3695

GUATEMALA

Abinitio
11 Calle2-Zona9
Guatemala City
Tel: 5022-32-4104
FAX: 5022-32-4123

*Field Application Location

INDIA

Micronic Devices
Arun Complex
No. 65 D.V.G. Road
Basavanagudi
Bangalore 560 004
Tel: 011-91-812-600-631

011-91-812-611-365
TLX: 9538458332 MOBG

Micronic Devices
No. 516 5th Floor
Swastik Chambers
Sian, Trombay Road
Chembur
Bombay 400 071
TLX: 9531 171447 MDEV

Micronic Devices
25/8, 1 st Floor
Bada Bazaar Marg
Old Rajinder Nagar
New Delhi 110 060
Tel: 011-91-11-5723509

011-91-11-589771
TLX: 031·63253 MONO IN

Micronic Devices
6-3·348/12A Dwarakapuri COlony
Hyderabad 500 482
Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TLX: 820281
FAX: (408) 978-8635

JAMAICA

MC Systems
10-12 Grenada Crescent
Kingston 5
Tel: (809) 929-2638

(809) 926-0188
FAX: (809) 926-0104

JAPAN

Asahi Electronics Co. Ltd.
KMM Bldg. 2-14-1 Asano
Kokurakita·ku
Kitakyushu-shi 802
Tel: 093-511-6471
FAX: 093-551-7861

CTC Components Systems Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki·shi, Kanagawa 213
Tel: 044-852-5121
FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shinmachi Higashi-kan
1-23 Shinmachi, Setagaya-ku
Tokyo 154
Tel: 03-3439-1600
FAX: 03-3439-1601

Okaya Koki
2+18 Sakae
Naka-ku, Nagoya-shi 460
Tel: 052-204-8315
FAX: 052-204-8380

Ryoyo Electro Corp.
Konwa Bldg.
1-12·22 Tsukiji
Chuo-ku, Tokyo 104
Tel: 03-3546-5011
FAX: 03-3546-5044

KOREA

J-Tek Corporation
Dong Sung Bldg. 9/F
158-24, Samsung-Dong, Kangnam·Ku
Seoul 135-090
Tel: (822) 557-8039
FAX: (822) 557-8304

Samsung Electronics
Samsung Main Bldg.
150 Taepyung-Ro-2KA, Chung-Ku
Seoul 100-102
C.P.O. Box 8780
Tel: (822) 751-3680
TWX: KORSST K 27970
FAX: (822) 753-9065

MEXICO

PSI SA de C.V.
Fco. Villa esq. Ajusco sin
Cuernavaca, MOR 62130
Tel: 52-73-13-9412

52·73-17-5340
FAX: 52-73-17-5333

NEW ZEALAND

Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011-64-9-591-155
FAX: 011-64-9-592-681

SAUDI ARABIA

ME Systems, Inc.
642 N. Pastoria Ave.
Sunnyvale, CA 94086
U.S.A_
Tel: (408) 732-1710
FAX: (408) 732-3095
TLX: 494-3405 AAE SYS

SINGAPORE

Electronic Resources Pte, Ltd.
17 Harvey RO.J.d
#03-01 Singnpore 1336
Tel (65) 283-0888
TWX: RS 56541 ERS
FAX: (6S) 289-5327

SOUTH AFRICA

Electronic Building Elements
178 Erasmus SI. (off Watermeyet St.)
Meyerspark, Pretoria. 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN

Micro Electronics Corporation
1 21h Floor, Section 3
285 Nanking East Road
Taipei, R.O.C.
Tel: (886) 2-7198419
FAX: (886) 2-7107916

Acer Sertek Inc.
15th Floor, Section 2
Chien Kuo North Rd.
Taipei 18479 R.O.C.
Tel: 886-2-501-0055
TWX: 23756 SERTEK
FAX: (886) 2-5012521

URUGUAY

Interfase
Zabala 1378
11000 Montevideo
Tel: 5982-96-0490

5982-96·1143
FAX: 5982-96-2965

VENEZUELA

Unix:el CA
4 Transversal de Monte Cristo
Edt AXXA, Piso 1, of. 1 &2
Centro Empresarial Boleita
Caracas
Tel: 582-238-6082
FAX: 582-238-1816

ALASKA

Intel Corp.
c/o TransAlaska Network
1515 Lore Rd.
Anchorage 99507
Tel: (907) 522-1776

Intel Corp.
c/o TransAlaska Data Systems
c/o Gel Operations
520 Fifth Ave., Suite 407
Fairbanks 99701
Tel: (907) 452-6264

ARIZONA

*Intel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (602) 231-0386
FAX: (602) 244-0446

"Intel Corp.
500 E. Fry Blvd., Suite M-15
Sierra Vista 85635
Tel: (602) 459-5010

ARKANSAS

Inlel Corp.
cIa Federal Express
1500 West Park Drive
Little Rock 72204

CALIFORNIA

*Intel Corp.
21515 Vanowen St., Ste.116
Canoga Park 91303
Tel: (818) 704-8500

"Intel Corp.
300 N. Continental Blvd.
Suite 100
EI Segundo 90245
Tel: (213) 640-6040

"Intel Corp.
1900 Prairie City Rd.
Folsom 95630-9597
Tel: (916) 351-6143

"Intel Corp.
9665 Chesapeake Dr., Suite 325
San Diego 92123
Tel: (619) 292-8086

"·Inlel Corp.
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642

··Inlel Corp
2700 San Tomas Exp., 1st Floor
Santa Clara 95051
Tel: (408) 970-1747

COLORADO

*Inlel Corp.
600 S. Cherry St., Suile 700
Denver B0222
Tel: (303) 321-8086

ARIZONA

2402 W. Beardsley Road
Phoenix B5027
Tel: (602) 869-4288

1 -800-468-3548

MINNESOTA

3500 W. BOth Street
Suite 360
Bloomington 55431
Tel: (612) 835-6722

*Carry-in locations
**Carry-in/maiHn locations

NORTH AMERICAN SERVICE OFFICES
CONNECTICUT

*Intel Corp.
301 Lee Farm Corporale Park
83 Wooster HeIghts Rd.
Danbury 06811
Tel: (203) 748-3130

FLORIDA

**Inlel Corp.
BOO Fairway Dr., Suite 160
Deerfield Beach 33441
Tel: (305) 421-0506
FAX: (305) 421-2444

*Intel Corp.
5B50 T.G. Lee Blvd., Ste. 340
Orlando 32B22
Tel: (407) 240-8000

GEORGIA

*Inlel Carp.
20 Technology Park, Suite 150
Norcross 30092
Tel: (404) 449-0541

5523 Theresa Street
Columbus 31907

HAWAlI

**Intel Corp.
Honolulu 96B20
Tel: (808) 847-6738

ILLINOIS

**tlntei Corp.
Woodfield Corp. Cenler 111
300 N. Martingale Rd., Sle. 400
Schaumburg 60173
Tel: (708) 605-8031

INDIANA

*Inlel Carp.
6910 Purdue Rd., Sle. 350
Indianapolis 46268
Tel: (317) 875-0623

KANSAS

*Intel Corp.
10985 Cody, Suite 140
Overland Park 66210
Tel: (913) 345-2727

KENTUCKY

Intel Corp.
133 Walton Ave., Office lA
Lexington 40508
Tel: (606) 255-2957

Intel Corp.
896 Hillcrest Road, Apt. A
Radcliff 40160 (Louisville)

LOUISIANA

Hammond 70401
(serviced from Jackson, MS)

MARYLAND

**Inlel Corp.
10010 Junction Dr., Suite 200
Annapolis Junction ·20701
Tel: (301) 206-2860

MASSACHUSETTS

**Intel Corp.
Westford Corp. Center
3 Carlisle Rd., 2nd Floor
Westford 01666
Tel: (508) 692-0960

MICHIGAN

*Inlel Corp.
7071 Orchard Lake Rd., Ste. 100
West Bloomfield 48322
Tel: (313) 851-8905

MINNESOTA

*Inlel Carp.
3500 W. 80th St., Suite 360
Bloomington 55431
Tel: (612) 835-6722

MISSISSIPPI

Intel Corp.
cia Compu-Care
2001 Airport Road, Suite 205F
Jackson 39208
Tel: (601) 932-6275

MISSOURI

*Inlel Corp.
3300 Rider Trail South
Suile 170
Earth City 63045
Tel: (314) 291-1990

Intel Corp.
Route 2, Box 221
Smithville 64089
Tel: (913) 345-2727

NEW JERSEY

**Inlel Corp.
300 Sylvan Avenue
Englewood Cliffs 07632
Tel: (201) 567-0821

*Inlel Corp.
Lincroft Office Cenler
125 Half Mile Road
Red Bank 07701
Tel: (908) 747-2233

NEW MEXICO

Intel Corp.
Rio Rancho 1
4100 Sara Road
Rio Rancho 87124-1025
(near Albuquerque)
Tel: (505) 893-7000

NEW YORK

*Inlel Corp.
2950 Expressway Or. South
Suite 130
Islandia 11722
Tel: (516) 231-3300

Intel Corp.
300 Westage Business Center
Suile 230
Fishkill 12524
Tel: (914) 897-3860

Intel Corp.
5858 East Molloy Road
Syracuse 13211
Tel: (315) 454-0576

NORTH CAROLINA

*Intel Corp
5800 Executive Center Drive
Suile 105
Charlotte 28212
Tel: (704) 568-8966

**Intel Corp.
5540 Centerview Dr., Suile 215
Raleigh 27606
Tel: (919) 851-9537

OHIO

**Intel Corp..
3401 Park Center Dr., Sle. 220
Dayton 45414
Tel: (513) 890-5350

*Inlel Corp.
25700 Science Park Dr., Ste. 100
Beachwood 44122
Tel: (216) 464-2736

OREGON

**Inlel Corp.
15254 N.W. Greenbrier Pkwy.
Building B
Beaverton 97006
Tel: (503) 645-8051

PENNSYLVANIA

*tlntel Corp.
925 Harvest Drive
Suite 200
Blue Bell 19422
Tel: (215} 641-1000
1-800-468-3548
FAX: (215) 641-0785

**tlntel Corp.
400 Penn Cenler B!vd., Sle. 610
Pittsburgh 15235
Tel: (412} 823-4970

*Inlel Corp.
1513 Cedar Cliff Dr.
Camp Hill 17011
Tel: (717) 761-0860

CUSTOMER TRAINING CENTERS

SYSTEMS ENGINEERiNG OFFICES
NEW YORK

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300

PUERTO RICO

Intel Corp.
South Industrial Park
P.O. Box 910
Las Piedras 00671
Tel: (809) 733-8616

TEXAS

**!ntel Corp.
Westech 360, Suite 4230
8911 N. Capito! of Texas Hwy.
Austin 78752-1239
Tel: (512) 794-8086

**tlntel Corp
12000 Ford Rd., Suite 401
Dallas 75234
Tel: (214) 241-8087

**Intel Corp.
7322 SW Freeway, Suite 1490
Houston 77074
Tel: (713} 988-8086

UTAH

Inlel Corp.
428 East 6400 South
Suile 104
Murray 84107
Tel: (801) 263-8051
FAX: (801) 268-1457

VIRGINIA

*Inlel Corp.
9030 Slony Point Pkwy.
Suite 360
Richmond 23235
Tel: (804) 330-9393

WASHINGTON

**Intel Corp.
155 10Bth Avenue N.E., Sle. 386
Bellevue 98004
Tel: (206) 453-8086

CANADA
ONTARIO

**Intel Semiconductor of
Canada, Ltd.
2650 Queensview Dr., Sle. 250
Ottawa K2B 8H6
Tel: (613) 829-9714

**Inlel Semiconductor of
Canada, Ltd.
190 Attwell Dr., Ste. 102
Rexdale (Toronto) M9W 6H8
Tel: (416) 675-2105

QUEBEC

**Inlel Semiconductor of
Canada, Ltd
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Tel: (514) 694-9130
FAX: 514-694-0064

