
l -
1-- r ~ -
I ---1----1--+---J-----1--

LITERATURE
To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

TITLE

SET OF THIRTEEN HANDBOOKS
(Available 1n U S and Canada)

INTEL
ORDER NUMBER

231003

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

COMPONENTS QUALITY/RELIABILITY 210997

EMBEDDED APPLICATIONS 270648

8-BIT EMBEDDED CONTROLLERS 270645

16-BIT EMBEDDED CONTROLLERS 270646

16/32-BIT EMBEDDED PROCESSORS 270647

MEMORY PRODUCTS 210830

MICROCOMMUN !CATIONS 231658

MICROCOMPUTER PRODUCTS 280407

MICROPROCESSORS 230843

PACKAGING 240800

PERIPHERAL COMPONENTS 296467

PRODUCT GUIDE 210846
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792

INTERNATIONAL LITERATURE GUIDE E00029
(Available in Europe only)

CUSTOMER LITERATURE GUIDE 210620

MILITARY HANDBOOK 210461
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762

ISBN

N/A

1-55512-132-2

1-55512-123-3

1-55512-121-7

1-55512-120-9

1-55512-122-5

1-55512-117-9

1-55512-119-5

1-55512-118-7

1-55512-115-2

1-55512-128-4

1-55512-127-6

1-55512-116-0

1-55512-124-1

1-55512-125-x

N/A

N/A

1-55512-126-8

1-55512-046-6

U.S. and CANADA LITERATURE ORDER FORM

NAME:

COMPANY: -~~~~~~~~~~~~~~~~~~~~~~­

ADDRESS:

CITY: -------------- STATE:
___ ZIP:

COUNTRY:

PHONE NO.:

ORDER NO

L

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTY. PRICE TOTAL

x

x =
x =
x

x =
x =
x =
x =
x =
x

Subtotal

Must Add Your
Local Sales Tax

Postage

Total

Pay by check, money order, or include company purchase order with this form ($100 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery.

D VISA D MasterCard D American Express Expiration Date -------------

Account No.-----------------------------~

Signature -------------------------------

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31/91.
Source HB

INTERNATIONAL LITERATURE ORDER FORM

NAME: ______ __, __ ... __ ... _,.. ... ~

COMPANY: ---
ADDRESS: ... --------~----------
CITY: _ .. - STATE: .-....--- ZIP: ---

COUNTRY: -----------....--.-------------PHONE NO.:......_ _ __._ ______________ ...,....,.. ____ _

ORDER NO. TITLE QTY. PRICE TOTAL

x =
x =
x = ---
x =
x =
x = -·
x =

I x =
I x =

x =
Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your count.Y. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.

Intel Corporation is a leading supplier of microcomputer components,
modules and systems. When Intel invented the microprocessor in 1971, it

created the era of the microcomputer. Today, Intel architectures are considered
world standards. Whether used in embedded applications such as automobiles,

printers and microwave ovens, or as the CPU in personal computers, client
servers or supercomputers, Intel delivers leading~edge technology.

MICROPROCESSORS

VOLUME II

1991

About Our Cover.·

Thinkers, inventors, and artists throughout history have breathed
life into their ideas byconverting them into rough working sketches, models,

and products. This series of covers shows a few of these creations, along
with the applications and products created by Intel customers.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

287, 376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
ActionMedia, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK,
Genius, i, 1, i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 12 1CE, iLBX, iMDDX,
iMMX, Inboard, lnsite, Intel, intel. lntel386, intelBOS, Intel Certified, lntelevision, inteligent
Identifier, inteligent Programming, lntellec, lntellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, Pro750, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, READY LAN, RMX/80, RUPI, Seamless, SLD, SugarCube, SX, ToolTALK,
UPI, VAPI, Visual Edge, VLSiCEL, and ZapCode, and the combination of ICE, iCS, iRMX,
iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MOS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt: Prospect, IL 60056-7641

©INTEL CORPORATION 1990

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is extensive. It can start with assistance during your development
effort to network management. 100 Intel sales and service offices are located worldwide-in the U.S., Canada,
Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close
reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFIWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

NETWORK SERVICE AND SUPPORT

Today's broad spectrum of powerful networking capabilities are only as good as the customer support provided
by the vendor. Intel offers network services and support structured to meet a wide variety of end-user comput­
ing needs. From a ground up design of your network's physical and logical design to implementation, installa­
tion and network wide maintenance. From software products to tum-key system solutions; Intel offers the
customer a complete networked solution. With over 10 years of network experience in both the commercial
and Government arena; network products, services and support from Intel provide you the most optimized
network offering in the industry.

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS'" and
LAN applications.

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of· the document as it
relates to the product. The marking appears in the upper, right-hand comer of the data
sheet. The following is the definition of these markings:

Data Sheet Marking

Product Preview

Advanced Information

Preliminary

No Marking

Description

Contains information on products in the design phase of
development. Do not finalize a design with this
information. Revised information will be published when
the product becomes available.

Contains information on products being sampled or in
the initial production phase of development.*

Contains preliminary information on new products in
production.*

Contains information on products in full production.*

*Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales
office that you have the latest data sheet before finalizing a design.

Overview

8086 Microprocessor Family

80286 Microprocessor Family

Development Tools for the
8086,80186,80188,and
80286

Intel386™ Family

i860™ Microprocessor Family

i7 50™ Video Processor Family

Development Tools for the
80386 and 80486

II
ti
•
•
II
II
•
•

Table of Contents

Alphanumeric Index .. .

CHAPTER 1
Overview

Introduction

CHAPTER2
8086 Microprocessor Family

DATA SHEETS
808616-Bit HMOS Microprocessor 8086/8086-2/8086-1 *
80C86A 16-Bit CHMOS Microprocessor
8088 8-Bit HMOS Microprocessor 8088/8088-2
80C88A 8-Bit CHMOS Microprocessor
8087 Math Coprocessor .. .

CHAPTER3
80286 Microprocessor Family

DATA SHEETS
80C286 High Performance Microprocessor with Memory Management and

Protection
80286 High Performance Microprocessor with Memory Management and

Protection
80287XL/XL T CHMOS Ill Math CoProcessor
82C288 Bus Controller for 80286 Processors (82C288-12, 82C288-10, 82C288-8) .
82C284 Clock Generator and Ready Interface for 80286 Processors (82C284-12,

82C284-10, 82C284-8) .. .

CHAPTER4
Development Tools for the 8086, 80186, 80188, and 80286

LANGUAGES AND SOFTWARE DEVELOPMENT TOOLS
8086/80186 Software Development Packages
iC-86/286 C Compiler .. .
AEDIT Source Code and Text Editor .. .
iPAT Performance Analysis Tool

IN-CIRCUIT EMULATORS
121CE In-Circuit Emulation System .. .
ICE-186 and ICE-188 In-Circuit Emulators
ICE-186EB and ICE-188EB In-Circuit Emulators
ICE-286 In-Circuit Emulator .. .

CHAPTERS
INTEL386™ Family

DATA SHEETS
i486 Microprocessor .. .
485Turbocache Module i486 Microprocessor Cache Upgrade
82485 Second Level Cache Controller for the i486 Microprocessor
AP-447 A Memory Subsystem for the i486 CPU Including Second Level Cache
386 DX Microprocessor High Performance 32-Bit CH MOS Microprocessor with

Integrated Memory Management•.................
387 DX Math Coprocessor .. .
82395DX High Performance 386 Smart Cache•..................
82385 High Performance 32-Bit Cache Controller
AP-442 33 MHz 386 System Design Considerations
386 SL Microprocessor Superset .. .
386 SX Microprocessor
387 SX Math Coprocessor .. .

ix

xi

1-1

2-1
2-31
2-60
2-90

2-122

3-1

3-60
3-116
3-148

3-169

4-1,
4-8

4-12
4-14

4-18
4-22
4-25
4-32

5-1
5-177
5-206
5-207

5-287
5-425
5-466
5-547
5-620
5-731
5-864
5-962

Table of Contents <Continued>

82395SX 386 SX Smart Cache•..•................................. 5-1002
82385SX High Performance Cache Controller 5-1003
82380 High Performance 32-Bit OMA Controller with Integrated System Support

Peripherals•....................... · 5-1080
376 Higt:i Performance 32-Bit Embedded Processor 5-1217
82370 Integrated System Peripheral : 5-1312

CHAPTER&
i860TM Microprocessor Family

i860 64-Bit Microprocessor•.......... , ; : 6-1
AP-434 Using i860 Microprocessor Graphics Instructions for 3-D Rendering 6-81
AP-435 Fast Fourier Transforms on the 1860 Microprocessor. 6-96

CHAPTER7
i750TM Video Processor Family

82750PB Pixel Processor . • . 7-1
8275008 Display Processor ~.................. 7-3

CHAPTERS
Development Tools for the 80386 and 80486

LANGUAGES AND SOFTWARE DEVELOPMENT TOOLS
lntel386/i486 Family Development Support............. 8-1
Intel 376 Family Development Support . • • 8-11
ICG-486 In-Circuit Debugger•...•... ; . 8-23

IN-CIRCUIT EMULATORS
lntel386 Family of In-Circuit Emulators•....... ~ 8-29
Intel i486 In-Circuit Emulator ~ 8-55

x

Alphanumeric Index

376 High Performance 32-Bit Embedded Processor 5-1217
386 DX Microprocessor High Performance 32-Bit CH MOS Microprocessor with Integrated

Memory Management . 5-287
386 SL Microprocessor Superset . 5-731
386 SX Microprocessor . 5-864
387 DX Math Coprocessor . 5-425
387 SX Math Coprocessor . 5-962
485Turbocache Module i486 Microprocessor Cache Upgrade . 5-177
80286 High Performance Microprocessor with Memory Management and Protection. 3-60
80287XL/XL T CHMOS Ill Math CoProcessor . 3-116
8086 16-Bit HMOS Microprocessor 8086/8086-2/8086-1 * . 2-1
8086/80186 Software Development Packages . 4-1
8087 Math Coprocessor . 2-122
8088 8-Bit HMOS Microprocessor 8088/8088-2 . 2-60
80C286 High Performance Microprocessor with Memory Management and Protection 3-1
80C86A 16-Bit CHMOS Microprocessor . 2-31
80C88A 8-Bit CH MOS Microprocessor. 2-90
82370 Integrated System Peripheral. ... 5-1312
82380 High Performance 32-Bit OMA Controller with Integrated System Support

Peripherals . 5-1 080
82385 High Performance 32-Bit Cache Controller . 5-547
82385SX High Performance Cache Controller 5-1003
82395DX High Performance 386 Smart Cache . 5-466
82395SX 386 SX Smart Cache .. 5-1002
82485 Second Level Cache Controller for the i486 Microprocessor . 5-206
8275008 Display Processor... 7-3
82750PB Pixel Processor . 7-1
82C284 Clock Generator and Ready Interface for 80286 Processors (82C284-12,

82C284-10, 82C284-8) . 3-169
82C288 Bus Controller for 80286 Processors (82C288-12, 82C288-10, 82C288-8). 3-148
AEDIT Source Code and Text Editor.. 4-12
AP-434 Using i860 Microprocessor Graphics Instructions for 3-D Rendering 6-81
AP-435 Fast Fourier Transforms on the i860 Microprocessor . 6-96
AP-442 33 MHz 386 System Design Considerations . 5-620
AP-447 A Memory Subsystem for the i486 CPU Including Second Level Cache. 5-207
121CE In-Circuit Emulation System . 4-18
i486 Microprocessor . 5-1
i860 64-Bit Microprocessor . 6-1
iC-86/286 C Compiler . 4-8
ICD-486 In-Circuit Debugger. 8-23
ICE-186 and ICE-188 In-Circuit Emulators... 4-22
ICE-186EB and ICE-188EB In-Circuit Emulators...................................... 4-25
ICE-286 In-Circuit Emulator . 4-32
Intel 376 Family Development Support. 8-11
lntel386 Family of In-Circuit Emulators . 8-29
lntel386/i486 Family Development Support . 8-1
Intel i486 In-Circuit Emulator . 8-55
iPAT Performance Analysis Tool... 4-14

xi

Intel386™ Family 5

•

i486™ MICROPROCESSOR

• Binary Compatible with Large • High Performance Design
Software Base - Frequent Instructions Execute In One
-MS-DOS*, OS/2**, Windows Clock
- UNIX*** System V/386 - 25 MHz and 33 MHz Clock
- iRMX®, iRMK™ Kernels Frequencies

• High Integration Enables On-Chip -80 and 106 Mbyte/Sec Burst Bus

- 8 Kbyte Code and Data Cache - CH MOS IV Process Technology

- Floating Point Unit -Dynamic Bus Sizing for 8-, 16- and

- Paged, Virtual Memory Management 32-Bit Susses

• Easy To Use • Complete 32-Bit Architecture

- Built-In Self Test -Address and Data Susses

- Hardware Debugging Support -Registers

- Intel Software Support - 8-, 16- and 32-Bit Data Types

- Extensive Third Party Software • Multiprocessor Support
Support - Multiprocessor Instructions

• 168-Pin Grid Array Package - Cache Consistency Protocols
- Support for Second Level Cache

The i486™ CPU offers the highest performance for DOS, OS/2, Windows and UNIX System V /386 applica­
tions. It is 100% binary compatible with the 386™ CPU. Over one million transistors integrate cache memory,
floating point hardware and memory management on-chip while retaining binary compatibility with previous
members of the X86 architectural family. Frequently used instructions execute in.one cycle resulting in RISC
performance levels. An 8 Kbyte unified code and data cache combined with a 106 Mbyte/Sec burst bus at
33.3 MHz ensure high system throughput even with inexpensive DRAMs.

New features enhance multiprocessing systems. New instructions speed manipulation of memory based sem­
aphores. On-chip hardware ensures cache consistency and provides hooks for multilevel caches .

The built in self test extensively tests on-chip logic, cache memory and the on-chip paging translation cache.
Debug features include breakpoint traps on code execution and data accesses.

1486™ Microprocessor Pipelined 32-Bit Microarchitecture

Barret Shlft.r ;
1--------1 ~.•x,. .. -_...,_--I

!let..,. f'lll 32 Rqlaters

........
Un•

F.P. hlJkhr
Fiio

Limit and
PLJ.

32

32
Lktear Addreu Bus

32

... In • POD, PWT

"""
20

Physical
Tron11atlon
Lookmld•

Butt.r

128

lao•rrMnt Bu•
32

COdo 32 Byte Code Queue

24
2 x 16 B)'le1

iRMX, iRMK, 386, 387, 486, i486 are trademarks of Intel Corporation.
'MS-DOS® is a registered trademark of Microsoft Corporation .

.. OS/2™ is a trademark of Microsoft Corporation.
•••UNIX™ is a trademark of AT&T.

5-1

Bus lnt.rfac• A2-A31,

Write Buffers
Dato

Tronacetvers

Bu1Controf

Requ .. t Sequencer

Burst Bus Control

Bus Size Control

Cache Control

Parity Generation
and Control

8EOf-BE3f

BRD,Y# BLASTI

BS16f BSBlf

~'!,{.~,\'/,
PCH
OPO- 3

240440-1

November 1990
Order Number: 240440-003

•

i486™ MICROPROCESSOR

CONTENTS PAGE

1.0 TABLE OF CONTENTS 5-2

Pinout•.................... 5-6

Brief Pin Descriptions ; 5-9

Component and Revision ID 5-13

2.0 ARCHITECTURAL OVERVIEW 5-14

2.1 Register Set . , 5-14

2.1.1 Base Architecture
Registers , 5-15

2.1.2 System Level Registers ... , .. 5-19

2.1.3 Floating Point Registers 5-23

2.1 .4 Debug and Test Registers ... 5-30

2.1.5 Register Accessibility 5-30

2.'1.6 Compatibility 5-31 ·

2.2 Instruction Set 5-32
23M 0 . t' .. . emory rganiza ion 5-32

2.3.1 Address Spaces ; , ... 5-32

2.3.2 Segment Register Usage 5-33

2.4 1/0 Space , 5-33

2.5 Addressing Modes 5-34

2.5.1 Addressing Modes·
Overview 5-34

2.5.2 Register and Immediate
Modes 5-34

2.5.3 32-Bit Memory Addressing
Modes 5-34

2.5.4 Differences between 16- and
32-Bit Addresses ,. 5-36

2.6 Data Formats 5-36

2.6.1 Data Types 5-36

2.6.2 Little Endian vs Big Endian
Data Formats 5-40

2.7 Interrupts 5-40

2. 7 .1 Interrupts and Exceptions 5-40

2.7.2 Interrupt Processing 5-40

2.7.3 Maskable Interrupt 5-41

2.7.4 Non-Maskable Interrupt 5-42

2.7.5 Software Interrupts : 5-42

2.7.6 Interrupt and Exception
Priorities 5-42

2.7.7 Instruction Restart 5-43

5-2

CONTENTS PAGE
2.7.8 Double Fault , 5-43

2.7.9 Floating Point Interrupt ·
Vectors ... · 5-43

3.0 REAL MODE ARCHITECTURE 5-44

3.1 Real Mode. Introduction •... ., 5-44

3.2 Memory Addressing 5-45

. 3.3 Reserved Locatjons•....... 5-45

3.4 Interrupts ... ; ·•.... , 5-45

3.5 Shutdown and Halt : 5-45

4.0 PROTECTED MODE
ARCHITECTURE : 5-46

4.1 Introduction 5-46

4.2. Addressing Mechanism 5-46

~,3 Segmentation' 5-47

4.3.1 Segmentation Introduction , .. 5-47

4.3.2 Terminology•......... 5"47

4.3.3 Descriptor Tables 5-48

. 4.3.4 Descriptors 5-49

4.4 Protection 5-58

4.4.1 Protection Concepts 5-58

4.4.2 Rules of Privilege 5-59

4.4.3 Prfvilege Levels 5-59

4.4.4 Privilege Level· Transfers 5-60

4.4.5 Call.Gates 5-63

4.4.6 Task Switching 5-63

4.4.7 Initialization and Transition to
Protected Mode ; 5-64

4'.4.8 Tools for Building Protected
Systems 5-65

4.5 Paging • 5-65

4.5.1 Paging Concepts 5-65

4.5.2 Paging Organization 5-66

4.5.3 Page Level Protection
(R/W, U/S Bits) ; 5-67

4.5.4 Page Cacheability
(PWT, PCD Bits) 5-68

4.5.5 Translation Lookaside
Buffer ; 5-68

4:5.6 Paging Operation 5~69
4.5.7 Operating System

Responsibilities 5-70

i486™ MICROPROCESSOR

CONTENTS PAGE CONTENTS PAGE

4.6 Virtual 8086 Environment 5-70 6.2.6 Bus Control 5-83

4.6.1 Executing 8086 Programs 5-70 Address Status Output

4.6.2 Virtual 8086 Addressing (ADS#) 5-83

Mechanism 5-70 Non-Burst Ready Input

4.6.3 Paging in Virtual Mode 5-70 (ROY#) 5-83

4.6.4 Protection and Virtual 8086 6.2. 7 Burst Control 5-83

Mode to 1/0 Permission Burst Ready Input
Bitmap 5-71 (BROY#) 5-83

4.6.5 Interrupt Handling 5-72 Burst Last Output

4.6.6 Entering and Leaving Virtual (BLAST#) 5-83

8086 Mode 5-73 6.2.8 Interrupt Signals 5-84

5.0 ON-CHIP CACHE 5-75 Reset Input (RESET) 5-84

5.1 Cache Organization 5-75 Maskable Interrupt Request
Input (INTR) 5-84

5.2 Cache Control 5-76 Non-Maskable Interrupt
5.3 Cache Line Fills 5-76 Request Input (NMI) 5-84

5.4 Cache Line Invalidations 5-77 6.2.9 Bus Arbitration Signals 5-84

5.5 Cache Replacement 5-77 Bus Request Output

5.6 Page Cacheability 5-78 (BREQ) 5-84

5.7 Cache Flushing 5-79

5.8 Caching Translation Lookaside
Buffer Entries 5-79

6.0 HARDWARE INTERFACE 5-80

Bus Hold Request Input
(HOLD) 5-84

Bus Hold Acknowledge
Output (HLDA) 5-84

Backoff Input (BOFF #) 5-85
El

6.1 Introduction 5-80 6.2.10 Cache Invalidation 5-85

6.2 Signal Descriptions 5-81

6.2.1 Clock (CLK) 5-81

Address Hold Request Input
(AHOLD) 5-85

6.2.2 Address Bus
(A31-A2, BEO#-BE3#) 5-81

External Address Valid Input
(EADS#) 5-85

6.2.3 Data Lines (031-00) 5-81 6.2.11 Cache Control 5-85

6.2.4 Parity 5-82

Data Parity Input/Outputs
(DPO-DP3) 5-82

Parity Status Output
(PCHK#) 5-82

6.2.5 Bus Cycle Definition 5-82

M/10#, DIC#, W/R#
Outputs 5-82

Bus Lock Output
(LOCK#) 5·82

Pseudo-Lock Output
(PLOCK#) 5-82

Cache Enable Input
(KEN#) 5-85

Cache Flush Input
(FLUSH#) 5-86

6.2.12 Page Cacheability Outputs
(PWT, PCD) 5-86

6.2.13 Numeric Error Reporting 5-86

Floating Point Error Output
(FERR#) 5-86

Ignore Numeric Error Input
(IGNNE#) 5-86

6.2.14 Bus Size Control
(BS16#, BS8#) 5-86

5-3

i486™ MICROPROCESSOR

CONTENTS PAGE CONTENTS PAGE

6.2.15 Address Bit 20 Mask 7.2.14 Floating Point Error
(A20M #) 5-87 Handling 5-122

6.3 Write Buffers 5-87 8.0 TESTABILITY 5-122
6.3.1 Write Buffers and 1/0

Cycles 5-88 8.1 Built-In SelfTest (BIST) 5-122

6.3.2 Write Buffers Implications on 8.2 On-Chip Cache Testing 5-123

Locked Bus Cycles 5-88 8.2.1 Cache Testing Registers TR3,

6.4 Interrupt and Non-Maskable TR4 and TR5 5-123

Interrupt Interface 5-88 Cache Data Test Register:

6.4.1 Interrupt Logic 5-88

6.4.2 NMI Logic 5-89

TR3 5-124

Cache Status Test Register:
TR4 5-124

6.5 Reset and Initialization 5c59

6.5.1 Pin State during Reset 5-90
Cache Control Test Register:

TR5 5-124

7 .0 BUS OPERATION 5-92 8.2.2 Cache Testability Write 5-124

7.1 Data Transfer Mechanism 5-92 8.2.3 Cache Testability Read 5-126

7.1.1 Memory and 1/0 Spaces 5-92 8.2.4 Flush Cache 5-126

7.1.2 Memory and 1/0 Space
Organization 5-93

8.3 Translation Lookaside Buffer (TLB)
Testing 5-126

7.1.3 Dynamic Data Bus Sizing 5-94

7.1.4 Interfacing with 8-, 16- and 32-
bit Memories 5-95

8.3.1 Translation Lookaside Buffer
Organization 5-126

8.3.2 TLB Test Registers: TR6 and
TR7 5-127

7 .1.5 Dynamic Bus Sizing during
Cache Line Fills 5-97 Command Test Register:

TR6 5-128
7 .1.6 Operand Alignment 5-97

7.2 Bus Functional Description 5-98
Data Test Register: TR7 5-128

8.3.3 TLB Write Test 5-129
7 .2.1 Non-Cacheable Non-Burst

Single Cycle 5-98 8.3.4 TLB Lookup Test 5-129

7 .2.2 Multiple and Burst Cycle Bus 8.4 Tristate Output Test Mode 5-129

Transfers 5-99 9.0 DEBUGGING SUPPORT 5-130
7.2.3 Cacheable Cycles 5-103

7.2.4 Burst Mode Details 5-106

7.2.5 8-and16-BitCycles 5-110

7 .2.6 Locked Cycles 5-112

7.2.7 Pseudo-Locked Cycles 5-113

9.1 Breakpoint Instructions 5-130

9.2 Single Step Instructions 5-130

9.3 Debug Registers 5-130

9.3.1 Linear Address Breakpoint
Registers 5-130

7.2.8 Invalidate Cycles 5-113 9.3.2 Debug Control Register 5-130

7.2.9 Bus Hold 5-117 9.3.3 Debug Status Register 5-133

7 .2.1 O Interrupt Acknowledge 5-117

7. 2.11 Special Bus Cycles 5-119

9.3.4 Use of Resume Flag (RF) in
Flag Register 5-133

7 .2.12 Bus Cycle Restart 5-120

7 .2.13 Bus States 5-121

5-4

i486™ MICROPROCESSOR

CONTENTS PAGE

10.0 INSTRUCTION SET SUMMARY .. 5-133

10.1 486™ Microprocessor Instruction
Encoding and Clock Count
Summary 5-134

10.2 Instruction Encoding 5-152

10.2.1 Overview 5-152

10.2.2 32-Bit Extensions of the
Instruction Set 5-153

10.2.3 Encoding of Integer
Instruction Fields 5-154

10.2.4 Encoding of Floating Point
Instruction Fields 5-160

11.0 DIFFERENCES WITH THE 386™
MICROPROCESSOR 5-160

CONTENTS PAGE

12.0 ELECTRICAL DATA 5-161

12.1 Power and Grounding 5-161

12.2 Maximum Ratings 5-161

12.3 D.C. Specifications 5-162

12.4 A.G. Specifications 5-162

12.5 Designing for ICD-486 5-167

13.0 MECHANICAL DATA 5-172

13.1 Package Thermal
Specifications 5-173

14.0 SUGGESTED SOURCES FOR i486
ACCESSORIES 5-174

15.0 REVISION HISTORY 5-175

5-5

•

intef 14~6™ MICROPROCESSOR

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s AZ7 AZ6 AZ3 NC A14 vss A1Z vss vss vss vss vss A10 vss A6 A4 AOS# s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R A28 A25 vcc vss A18 VCC A15 VCC vcc vcc vcc A11 A8 vcc A3 BLAST# NC R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q A31 vss A17 A19 A21 AZ4 AZ2 A20 A16 A13 A9 A5 A7 AZ BREQ PLOCK# PCHK# Q
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p DO AZ9 A30 HLOA vcc vss p
0 0 0 0 0 0

N oz 01 OPO LOCK# M/10# W /R# N 0 0 0 0 0 0

M vss VCC 04 0/C# vcc VSS M 0 0 0 0 0 0

L vss 06 07 PWT vcc vss L 0 0 0 0 0 0

K vss vcc 014 1486 ™ Microprocessor BEO# vcc vss K 0 0 0 PIN SIDE VIEW 0 0 0

J
VCC 05 016 BEZ# BE1# PCO J 0 0 0 0 0 0

H vss 03 OP2 BROY# vcc vss H 0 0 0 0 0 0

G vss VCC 012 NC vcc vss G 0 0 0 0 0 0

F OP1 08 015 KEN# ROY# BE3# F 0 0 0 0 0 0

E vss VCC 010 HOLD vcc vss E 0 0 0 0 0 0

D 09 013 017 A20M# BS8# BOFF# D 0 0 0 0 0 0

c 011 018 CLK vcc vcc 027 OZ6 OZ8 030 NC NC NC NC FERR# FLUSH# RESET BS16# c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 019 OZ1 vss vss vss 025 vcc D31 vcc NC vcc NC NC NC NMI NC EADS# B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A DZO 02Z NC D23 DP3 024 vss DZ9 vss NC vss NC NC NC IGNNE# INTR AHOLD A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
240440-2

Figure 1.1

5-6

intef i486™ MICROPROCESSOR

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

s ADS# A4 A6 VSS A10 VSS vss VSS VSS vss A12 vss A14 NC A23 A26 A27 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R NC BLAST# A3 vcc AB A11 vcc VCC vcc vcc A15 vcc A18 VSS vcc A25 A28 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q PCHK# PLOCK# BREQ A2 A7 AS A9 A13 A16 A20 A22 A24 A21 A19 A17 vss A31 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p vss vcc HLDA A30 A29 DO p
0 0 0 0 0 0

N W/R# t.l/10# LOCK# DPO 01 02 N 0 0 0 0 0 0

M vss vcc D/C# 04 VCC vss M 0 0 0 0 0 0

L vss vcc PWT 07 06 vss L 0 0 0 0 0 0

K vss vcc BED# 14861M Microprocessor Plnout 014 vcc vss K 0 0 0 TOP SIDE VIEW 0 0 0

J PCD BE1# BE2# 016 05 vcc
J 0 0 0 0 0 0

H vss VCC BROY# DP2 03 vss H 0 0 0 0 0 0

G
VSS vcc NC 012 VCC vss

G 0 0 0 0 0 0

F BE3# ROY# KEN# 015 08 DP1
F 0 0 0 0 0 0

E VSS vcc HOLD DID vcc vss E 0 0 0 0 0 0

D BOFF# BSB# A20t.l# 017 013 09 D 0 0 0 0 0 0

c BS16# RESET FLUSH# FERR# NC NC NC NC 030 028 026 027 vcc vcc CLK 018 011 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B EADS# NC Nt.ll NC NC NC vcc NC vcc 031 vcc 025 vss vss vss 021 019 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A AHOLD INTR IGNNE# NC NC NC vss NC vss 029 vss 024 DP3 023 NC 022 020 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
240440-3

Figure 1.2

5-7

intJ i486™ MICROPROCESSOR

Pin Cross Reference by Pin Name

Address Data Control N/C Vee Vss
A2 014 Do P1 A20M# D1S A3 B7 A7
A3 R1S D1 N2 ADS# S17 A10 B9 A9
A4 S16 D2 N1 AHOLD A17 A12 B11 A11
A5 012 03 H2 BEO# K1S A13 C4 B3
As S1S 04 M3 BE1# J16 A14 cs B4
A7 013 05 J2 BE2# J1S B10 E2 BS
As R13 Ds L2 BE3# F17 B12 E16 E1
Ag 011 07 L3 BLAST# R16 B13 G2 E17
A10 S13 De F2 BOFF# 017 B14 G16 G1
A11 R12 09 01 BROY# H1S B16 H16 G17
A12 S7 D10 E3 BREO# 01S C10 J1 H1
A13 010 011 C1 BS8# 016 C11 K2 H17
A14 SS 012 G3 BS16# C17 C12 K16 K1
A15 R7 013 02 CLK C3 C13 L16 K17
A15 09 014 K3 DIC# M1S G1S M2 L1
A17 03 015 F3 DPO N3 R17 M16 L17
Arn RS D1s J3 DP1 F1 S4 P16 M1
A19 04 017 03 DP2 H3 R3 M17
A2o 08 D1s C2 DP3 AS R6 P17
A21 05 019 B1 EADS# B17 R8 02
A22 Q7 020 A1 FERR# C14 R9 R4
A23 S3 D21 B2 FLUSH# C15 R10 S6
A24 06 022 A2 HLDA P1S R11 sa
A25 R2 023 A4 HOLD E15 R14 S9
A2s S2 024 A6 IGNNE# A15 S10
A27 S1 025 B6 INTR A16 S11
A2s R1 D2s C7 KEN# F15 S12
A29 P2 027 C6 LOCK# N15 S14
A3o P3 025 ca M/10#. N16
A31 01 029 A8 NMI B15

030 C9 PCD J17
031 B8 PCHK# 017

PWT L15
PLOCK# 016
ROY# F16
RESET C16
W/R# N17

5-8

inter i486™ MICROPROCESSOR

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol Type Name and Function

CLK I Clock provides the fundamental timing and the internal operating frequency for the 486
microprocessor. All external timing parameters are specified with respect to the rising
edge of CLK.

ADDRESS BUS

A31-A4 1/0 A31-A2 are the address lines of the microprocessor. A31-A2, together with the byte
A2-A3 0 enables BEO#-BE3#, define the physical area of memory or input/output space

accessed. Address lines A31-A4 are used to drive addresses into the microprocessor to
perform cache line invalidations. Input signals must meet setup and hold times t22 and
t23. A31-A2 are not driven during bus or address hold.

BE0-3# 0 The byte enable signals indicate active bytes during read and write cycles. During the
first cycle of a cache fill, the external system should assume that all byte enables are
active. BE3 # applies to D24-D31, BE2 # applies to D16-D23, BE1 # applies to DB-
D15 and BEO# applies to DO-D7. BEO#-BE3# are active LOW and are not driven
during bus hold.

DATA BUS

D31-DO 1/0 These are the data lines for the 486 microprocessor. Lines DO-D7 define the least
significant byte of the data bus while lines D24-D31 define the most significant byte of
the data bus. These signals must meet setup and hold times t22 and t23 for proper
operation on reads. These pins are driven during the second and subsequent clocks of
write cycles.

DATA PARITY

DPO-DP3 1/0 There is one data parity pin for each byte of the data bus. Data parity is generated on all
write data cycles with the same timing as the data driven by the 486 microprocessor.
Even parity information must be driven back into the microprocessor on the data parity
pins with the same timing as read information to insure that the correct parity check
status is indicated by the 486 microprocessor. The signals read on these pins do not I
affect program execution.
Input signals must meet setup and hold times t22 and t23. DPO-DP3 should be
connected to Vee through a pullup resistor in systems which do not use parity. DPO-DP3
are active HIGH and are driven during the second and subsequent clocks of write cycles.

PCHK# 0 Parity Status is driven on the PCH K # pin the clock after ready for read operations. The
parity status is for data sampled at the end of the previous clock. A parity error is
indicated by PCH K # being LOW. Parity status is only checked for enabled bytes as
indicated by the byte enable and bus size signals. PCHK # is valid only in the clock
immediately after read data is returned to the microprocessor. At all other times PCHK #
is inactive (HIGH). PCHK # is never floated.

BUS CYCLE DEFINITION

M/10# 0 The memory/input-output, data/control and write/read lines are the primary bus
DIC# 0 definition signals. These signals are driven valid as the ADS# signal is asserted.
W/R# 0 M/10# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 110 Read
0 1 1 l/OWrite
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

5-9

intJ i486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

BUS CYCLE DEFINITION (Continued)

LOCK# 0 The bus lock pin indicates that the current bus cycle is locked. The 486 microprocessor
will not allow a bus hold when LOCK# is asserted (but address holds are allowed).
LOCK# goes active in the first clock of the first locked bus cycle and goes inactive after
the last clock of the last locked bus cycle. The last locked cycle ends when ready is
returned. LOCK# is active LOW and is not driven during bus hold. Locked read cycles
will not be transformed into cache fill cycles if KEN# is returned active.

PLOCK# 0 The pseudo-lock pin indicates that the current bus transaction requires more than one
bus cycle to complete. Examples of such operations are floating point long reads and
writes (64 bits), segment table descriptor reads (64 bits), in addition to cache line fills
(128 bits). The 486 microprocessor will drive PLOCK# active until the addresses for the
last bus cycle of the transaction have been driven regardless of whether ADY# or
BADY# have been returned.
Normally PLOCK# and BLAST# are inverse of each other. However during the first bus
cycle of a 64-bit floating point write, both PLOCK# and BLAST# will be asserted.
PLOCK# is a function of the BS8 #, BS 16 # and KEN# inputs. PLOCK# should be
sampled only in the clock ready is returned. PLOCK# is active LOW and is not driven
during bus hold.

BUS CONTROL

ADS# 0 The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS# is driven active in the same
clock as the addresses are driven. ADS# is active LOW and is not driven during bus hold.

ADY# I The non-burst ready input indicates that the current bus cycle is complete. ADY#
indicates that the external system has presented valid data on the data pins in response
to a read or that the external system has accepted data from the 486 microprocessor in
response to a write. ADY# is ignored when the bus is idle and at the end of the first clock
of the bus cycle.
ADY# is active during address hold. Data can be returned to the processor while AHOLD
is active.
ADY# is active LOW, and is not provided with an internal pullup resistor. ADY# must
satisfy setup and hold times t16 and t17 for proper chip operation.

BURST CONTROL

BROY# I The burst ready input performs the same function during a burst cycle that ADY#
performs during a non-burst cycle. BADY# indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BADY# is ignored when the bus is idle and at the end of the first
clock in a bus cycle.
BADY# is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BADY# is
sampled active. If ADY# is returned simultaneously with BADY#, BADY# is ignored and
the burst cycle is prematurely aborted.
BADY# is active LOW and is provided with a small pullup resistor. BADY# must satisfy
the setup and hold times.t16 and t17.

BLAST# 0 The burst last signal indicates that the next time BADY# is returned the burst bus cycle is
complete. BLAST# is active for both burst and non-burst bus cycles. BLAST# is active
LOW and is not driven during bus hold.

5-10

intJ i486TM MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

INTERRUPTS

RESET I The reset input forces the 486 microprocessor to begin execution at a known state. The
microprocessor cannot begin execution of instructions until at least 1 ms after Vee and
CLK have reached their proper DC and AC specifications. The RESET pin should remain
active during this time to insure proper microprocessor operation. RESET is active HIGH.
RESET is asynchronous but must meet setup and hold times t20 and t21 for recognition in
any specific clock.

INTR I The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
486 microprocessor will generate two locked interrupt acknowledge bus cycles in
response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.
INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times t2o and t21 for recognition in any
specific clock.

NMI I The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NMI is not provided with an internal
pulldown resistor. NMI is asynchronous, but must meet setup and hold times t20 and t21
for recognition in any specific clock.

BUS ARBITRATION

BREQ 0 The internal cycle pending signal indicates that the 486 microprocessor has internally
generated a bus request. BREQ is generated whether or not the 486 microprocessor is
driving the bus. BREQ is active HIGH and is never floated.

HOLD I The bus hold request allows another bus master complete control of the 486
microprocessor bus. In response to HOLD going active the 486 microprocessor will float
most of its output and inputloutputpins. HLDA will be asserted after completing the I
current bus cycle, burst cycle or sequence of locked cycles. The 486 microprocessor will
remain in this state until HOLD is deasserted. HOLD is active high and is not provided with
an internal pulldown resistor. HOLD must satisfy setup and hold times t1a and t19 for
proper operation.

HLDA 0 Hold acknowledge goes active in response to a hold request presented on the HOLD pin.
HLDA indicates that the 486 microprocessor has given the bus to another local bus
master. HLDA is driven active in the same clock that the 486 microprocessor floats its
bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and remains
driven during bus hold.

BOFF# I The backoffinput forces the 486 microprocessor to float its bus in the next clock. The
microprocessor will float all pins normally floated during bus hold but HLDA will not be
asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #; if
both are returned in the same clock, BOFF # takes effect. The microprocessor remains in
bus hold until BOFF # is negated. If a bus cycle was in progress when BOFF # was
asserted the cycle will be restarted. BOFF # is active LOW and must meet setup and hold
times t18 and t19 for proper operation.

CACHE INVALIDATION

AHOLD I The address hold request allows another bus master access to the 486 microprocessor's
address bus for a cache invalidation cycle. The 486 microprocessor will stop driving its
address bus in the clock following AHOLD going active. Only the address bus will be
floated during address hold, the remainder of the bus will remain active. AHOLD is active
HIGH and is provided with a small internal pulldown resistor. For proper operation AHOLD
must meet setup and hold times t18 and t19.

5-11

intJ 1486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

CACHE INVALIDATION (Continued)

EADS# I This signal indicates that a valid external address has been driven onto the 486
microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS# is active LOW and is provided with an internal pullup resistor.
EADS# must satisfy setup and hold times t12 and t13 for proper operation.

CACHE CONTROL

KEN# I The cache enable pin is used to determine whether the current cycle is cacheable. When
the 486 microprocessor generates a cycle that can be cached and KEN# is active, the
cycle will become a cache line fill cycle. Returning KEN# active one clock before ready
during the last read in the cache line fill will cause the line to be placed in the on-chip
cache. KEN# is active LOW and is provided with a small internal pullup resistor. KEN#
must satisfy setup and hold times t14 and t15 for proper operation.

FLUSH# I The cache flush input forces the 486 microprocessor to flush its entire internal cache.
FLUSH# is active low and need only be asserted for one clock. FLUSH# is
asynchronous but setup and hold times t20 and t21 must be met for recognition in any
specific clock. FLUSH# being sampled low in the clock before the falling edge of RESET
causes the 486 microprocessor to enter the tri-state test mode.

PAGE CACHEABILITY

PWT 0 The page write-through and page cache disable pins reflect the state of the page
PCD 0 attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is

disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/10#, DIC# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register o.

NUMERIC ERROR REPORTING

FERR# 0 The floating point error pin is driven active when a floating point error occurs. FERR# is
similar to the ERROR# pin on the 387™ math coprocessor. FERR# is included for
compatibility with systems using DOS type floating point error reporting. FERR# will not
go active if FP errors are masked in FPU register. FERR# is active LOW, and is not
floated during bus hold.

IGNNE# I When the ignore numeric error pin is asserted the 486 microprocessor will ignore a
numeric error and continue executing non-control floating point instructions, but FERR#
will still be activated by the i486. When IGNNE # is deasserted the 486 microprocessor
will freeze on a non-control floating point instruction, if a previous floating point instruction
caused an error. IGNNE # has no effect when the NE bit in control register O is set.
IGNNE# is active LOW and is provided with a small internal pullup resistor. IGNNE# is
asynchronous but setup and hold times t20 and t21 must be met to insure recognition on
any specific clock.

BUS SIZE CONTROL

BS16# I The bus size 16 and bus size 8 pins (bus sizing pins) cause the 486 microprocessor to run
BS8# I multiple bus cycles to complete a request from devices that cannot provide or accept 32

bits of data in a single cycle. The bus sizing pins are sampled every clock. The state of
these pins in the clock before ready is used by the 486 microprocessor to determine the
bus size. These signals are active LOW and are provided with internal pullup resistors.
These inputs must satisfy setup and hold times t14 and t15 for proper operation.

5-12

intef i486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

ADDRESS MASK

A20M# I When the address bit 20 mask pin is asserted, the 486 microprocessor masks physical
address bit 20 (A20) before performing a lookup to the internal cache or driving a memory
cycle on the bus. A20M# emulates the address wraparound at one Mbyte which occurs
on the 8086. A20M # is active LOW and should be asserted only when the processor is in
real mode. This pin is asynchronous but should meet setup and hold times t20 and t21 for
recognition in any specific clock. For proper operation, A20M # should be sampled high at
the falling edge of RESET.

Table 1.1. Output Pins Table 1.2. Input Pins

Name
Active When
Level Floated

Name
Active Synchronous/
Level Asynchronous

BREQ HIGH CLK
HLDA HIGH RESET HIGH Asynchronous

BEO#-BE3# LOW Bus Hold HOLD HIGH Synchronous
PWT, PCD HIGH Bus Hold AHOLD HIGH Synchronous

W/R#, DIC#, M/10# HIGH Bus Hold EADS# LOW Synchronous
LOCK# LOW Bus Hold BOFF# LOW Synchronous

PLOCK# LOW Bus Hold FLUSH# LOW Asynchronous
ADS# LOW Bus Hold A20M# LOW· Asynchronous

BLAST# LOW Bus Hold BS16#, BS8# LOW Synchronous
PCHK# LOW KEN# LOW Synchronous
FERR# LOW ROY# LOW Synchronous
A2-A3 HIGH Bus, Address Hold BROY# LOW Synchronous

INTR HIGH Asynchronous
NMI HIGH Asynchronous

IGNNE# LOW Asynchronous II
Table 1.3. Input/Output Pins Table 1.4 Component and Revision ID

Name
Active When
Level Floated

i486™ CPU Component Revision
Stepping Name ID ID

D0-031 HIGH Bus Hold B3 04 01
DPO-DP3 HIGH Bus Hold B4 04 01
A4-A31 HIGH Bus, Address Hold B5 04 01

B6 04 01
co 04 02

5-13

intef ; i486™ MICROPROCESSOR

2.0 ARCHITECTURAL OVERVIEW

The 486 microprocessor is a 32-bit architecture with
on-chip memory management, floating point and
cache memory units. · ·

The 486 microprocessor contains all the features of
the 386™ microprocessor with enhancements to in­
crease performance. The instruction set includes the
comple,te 386 microprocessor instruction. set along
with extensions to serve new applications. The on­
chip memory management unit (MMU) is completely
compatible with the 386 microprocessor MMU. The
486 microprocessor brings the 387™ math coproc­
essor on:chip. All software written .for the 386 micro­
processor, 387 math coprocessor and previous
members of the 86/87 architectural family will run on
the 486 microprocessor without any modifications.

Several enhancements have been added to the 486
. microprocessor to increase performance. On-chip
cache memory allows frequently used data and
code to be stored on-chip reducing accesses to the
external' bus. RISC design techniques have been
used to reduce instruction cycle times. A burst bus
feature enables fast cache fills. All of these features,
combined, lead to performance greater than twice
that of a 386 microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical addre.ss space by
providing easy data and code relocatibility and effi­
cient sharing of global resources. The paging mech­
anism operates beneath segmentation and is trans­
parent to the segmentation process. Paging is op­
tional and can be disabled by system software. Each
segment can be divided into one or more 4 Kbyte
segments. To implement a virtual memory system,
the 486 microprocessor supports full restartability
for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (232
bytes) in size. A segment can have attributes .associ­
ated with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on a 486 microprocessor can have a max­
imum of 16,381 segments, each up to four gigabytes
in size. Thus each task has a maximum of 64 tera­
bytes (trillion bytes) of virtual memory.

rhe segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows .the design of systems
with a high degree of integrity.

The 486 microprocessor has two modes of opera­
tion: Real Address Mode (Real Mode) and Protected

Mode Virtual Address Mode (Protected Mode). In
Real Mode the 486 microprocessor operates as a
very fast 8Q86. Real Mode is required primarily to set
up the processor for Protected Mode operation. Pro­
tected Mode provides access. to the sophisticated
memory management paging and privilege capabili-
ties of the processor. ·

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica­
tio11 program or an entire operating system) to exe­
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logic unit and provides arith­
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func­
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
IEEE standard 754-1985 tor floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associ.ative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en­
abled and disabled by software or hardware.

Finally the 486 microprocessor has features to facili­
tate high performance hardware designs. The 1 X
clock eases high frequency board level designs. The
burst bus feature enables fast cache fills. These fea­
tures are described beginning in Section 6.

2.1 Register Set

The 486 microprocessor register set includes all the
registers contained in the 386 microprocessor and
the 387 math coprocessor. The register set can be
split into the following categories:

5-14

Base Architecture Registers

General Purpose Registers ·

Instruction· Pointer

Flags Register

Segment Registers

Systems Level Registers

Control Registers

System Address Registers

i486™ MICROPROCESSOR

Floating Point Registers

Data Registers

.Tag Word

Status Word

Instruction and Data Pointers

Control Word

Debug and Test Registers

The base architecture and floating point registers
are accessible by the applications program. The sys­
tem level registers are only accessible at privilege
level O and are used by the systems level program.
The debug and test registers are also only accessi­
ble at privilege level 0.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the 486 microprocessor base ar­
chitecture registers. The contents of these registers
are task-specific and are automatically loaded with a
new context upon a task switch operation.

31

31

General Purpose Registers
24123

15

16 15 a11
AH AX AL

BH BX BL

CH ex CL

DH DX DL

SI

DI

BP

SP

Segment Registers
0

0

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

1---------ics Code Segment
SS Stack Segment

t---------t

1---------i~:] Data Segments
FS ,__ _____ __,
GS .__ _____ __.

Instruction Pointer
18 15 0

~----------IP __ ~I EIP

Flags Register

~-----~l ___ F_LA_G_s __ ~IEFLAGS

Figure 2.1. Base Architecture Registers

The base architecture includes six directly accessi­
ble descriptors, each specifying a segment up to 4
Gbytes in size. The descriptors are indicated by the
selector values placed in the 486 microprocessor
segment registers. Various selector values can be
loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, SI, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa­
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-11
15) of the general purpose registers AX, BX, CX and
DX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces-
sibility offers additional flexibility for data operations
but is not used for effective address calculation.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0-15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

. The flags register is a 32-bit register named
EFLAGS. The defined . bits and bit fields within
EFLAGS control certain operations and indicate
status of the 486 microprocessor. The lower 16 bits
(bit 0-15) of EFLAGS contain the 16-bit register
named FLAGS, which is most useful when executing
8086 and 80286 code. EFLAGS is shown in Figure
2.2.

5-15

intJ i486™ MICROPROCESSOR

FLAGS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1·
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 0 9 8 7 6 5 4 3 2 1 0

EFLAGS

ALIGNMENT CHECK-----­
VIRTUAL MODE-------­
RESUME FLAG-----------'
NESTED TASK FLAG---------
1/0 PRIVILEGE LEVEL---------'"'
OVERFLOW---------------'
DIRECTION FLAG------------­
INTERRUPT ENABLE--------------'

CARRY FLAG
.__--PARITY FLAG

-----AUXILIARY CARRY
.__-----ZERO FLAG

'--------SIGN FLAG
--------TRAP FLAG

240440-6

NOTE:
lindicates Intel Reserved: do not define; see Section 2.1.6.

Figure 2.2. Flags Register

EFLAGS bits 1, 3, 5, 15 and 19-31 are "undefined".
When these bits are stored during interrupt process­
ing or with a PUSHF instruction (push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31.

The EFLAGS register in the 486 microprocessor
contains a new bit not previously defined. The new
bit, AC, is defined in the upper 16 bits of the register
and it enables faults on accesses to misaligned
data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access

to an odd address, a dword access to an ad­
dress that is not on a dword boundary, or an
8-byte reference to an address that is not on a
64-bit word boundary. See Section 7 .1.6 for
more information on operand alignment.

Alignment faults are only generated by pro­
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re­
ported through interrupt 17, with an error code
of 0. Table 2.1 gives the alignment required
for the 486 microprocessor data types.

Table 2.1. Data Type Alignment Requirements

Memory Access Alignment (Byte Boundary)

Word 2
Dword 4
Single Precision Real 4
Double Precision Real 8
Extended Precision Real 8
Selector 2
48-Bit Segmented Pointer 4
32-Bit Flat Pointer 4
32-Bit Segmented Pointer 2
48-Bit "Pseudo-Descriptor" 4
FSTENV /FLDENV Save Area 4/2 (On Operand Size)
FSAVE/FRSTOR Save Area 4/2 (On Operand Size)
Bit String 4

5-16

intef i486™ MICROPROCESSOR

IMPLEMENTATION NOTE:
Several instructions on the 486 microprocessor
generate misaligned references, even if their mem­
ory address is aligned. For example, on the 486 mi­
croprocessor, the SGDT/SIDT (store global/inter­
rupt descriptor table) instruction reads/writes two
bytes, and then reads/writes four bytes from a
"pseudo-descriptor" at the given address. The 486
microprocessor will generate misaligned references
unless the address is on a 2 mod 4 boundary. The
FSAVE and FRSTOR instructions (floating point
save and restore state) will generate misaligned
references for one-half of the register save/ restore
cycles. The 486 microprocessor will not cause any
AC faults if the effective address given in the in­
struction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the 486 Micro­
processor is in Protected Mode, the 486 Mi­
croprocessor will switch to Virtual 8086 opera­
tion, handling segment loads as the 8086
does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set
only in Protected Mode, by the IRET instruc­
tion (if current privilege level = 0) and by task
switches at any privilege level. The VM bit is
unaffected by POPF. PUSHF always pushes a
0 in this bit, even if executing in Virtual 8086
Mode. The EFLAGS image pushed during in­
terrupt processing or saved during task
switches will contain a 1 in this bit if the inter­
rupted code was executing as a Virtual 8086
Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in­
structions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine, the IRET instruc­
tion can pop an EFLAG image having the RF
bit set and resume the program's execution at
the breakpoint address without generating an­
other breakpoint fault on the same location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates

5-17

that the current nested task's Task State Seg­
ment (TSS) has a valid back link to the previ­
ous task's TSS. This bit is set or reset by con­
trol transfers to other tasks. The value of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac­
cording to the image popped, at any privilege
level.

IOPL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex­
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per­
mission Bitmap. It also indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in­
struction can alter the IOPL field when execut­
ed at CPL = 0. Task switches can always al­
ter the IOPL field, when the new flag image is
loaded from the incoming task's TSS.

OF (Overflow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order •
bit, or vice-versa. For 8-, 16-, 32-bit opera-
tions, OF is set according to overflow at bit 7,
15, 31, respectively.

OF (Direction Flag, bit 10)

OF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if OF
is reset. Postdecrement occurs if OF is set.

IF (INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset: external interrupts signalled
on the INTR are not recognized. IOPL indi­
cates the maximum CPL value allowing altera­
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the 486 Microprocessor generates an
exception 1 trap after the next instruction is
executed. When TF is reset, exception 1 traps
occur only as a function of the breakpoint ad­
dresses loaded into debug registers DRO­
DR3.

1486111 MICROPROCESSOR

SF (Sign Flag, bit 7) NOTE:,
SF is set if the high-order bit of the result is
set, it is reset otherwise.. For 8·, 16·, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

In these descriptions, "set" means "set to 1 ;'' and
"reset". means "reset to O."

ZF (Zero Flag, bit 6)
2.1.1.4. Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. In protected mOde, each segment may
range in size from one byte. up to the entire linear
and physical address space of the. machine, 4
Gbytes (232 bytes). In real address mode, the maxi­
mum segment size is fixed at 64 Kbytes (216 bytes).

ZF is set if all bits of the result are 0. Other­
wise it is reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
tie$. AF is set if the operation resulted in a
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset. AF is
affected by carry out of, or borrow into bit 3
only, regardless of overall operand length: 8,
16 or 32 bits.

PF (Parity Flags, bit 2)

The six addressable segments are· defined by the
segment registers CS, SS, OS, ES, FS and GS. The
selector in CS indicates the current code segment;
the selector in SS indicates the . current s1$ck seg­
ment; the selectors in DS, ES, FS and GS indicate
the current data segments.

PF is set if the low-order eight bits of the oper­
ation contains an even number of "1 's" (even
parity). PF is reset if the low-order eight bits
have odd parity. PF is a function of only the
low-order eight bits, regardless of operand
size.

2.1.1.s Segment Descriptor C.che Registers

CF (Garry Flag, bit 0)

The segment descriptor cache registers are not pro­
grammer visible, yet it is very useful to understand
their content. A programmer invisible descriptor
cache register is· associated. with each programmer­
visible segment register, as· shown by Figure 2.3.
Each descriptor cache register holds a 32-bit base
address, a 32-bit segment limit, and the other neces-

15

CF is $et if the operation resulted· in a carry
out of (addition), or a borrow into (subtraction)
the high-order bit. Otherwise .CF is reset. For
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7, 15 or 31, respec­
tively.

$ary segment attributes. ·

SEGMENT
REGISTERS

Selector

.· Selector

Selector

Selector

Selector

Selector

DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)

Other

o Physical Base Address Segment Limit
Segment

Attributes from Descriptor

CS-

SS-
1--~~~~~~~1--~~~~1---1.---i.~-1--1---11---'---1-~1--1

DS-
1--~~~~~~~1--~~~~1---1----1-~+.---1---'lf-.-l-'-l-~l--l

ES-
1--~~~~~~~1--~~~~1---1.---i.~-1--1---11---'---1-~~

FS-
1--~~~~~~~1--~~~~1---1----1-~+.---1---'lf-.-l-'-l-~l--l

GS-

Figure 2,3. 1486™ Microprocessor Segment Registers and Associated Descriptor Cache Registers
I

5-18

intef i486™ MICROPROCESSOR

When a selector value is loaded into a segment reg­
ister, the associated descriptor cache register is au­
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat­
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri­
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg­
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad­
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera­
tion of the on-chip cache, the on-chip floating point

31 241_23 161_15

unit (FPU) and the segmentation and paging mecha­
nisms. These registers are only accessible to pro­
grams running at privilege level 0, the highest privi­
lege level.

The system level registers include three control reg­
isters and four segmentation base registers. The
three control registers are CAO, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg­
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta­
ble Register (IOTA), the Local Descriptor Table Reg­
ister (LOTA) and the Task State Segment Register
(TR).

2. 1.2.1 Control Registers

Control Register O (CRO)

CAO, shown in Figure 2.5, contains 10 bits for con­
trol and status purposes. Five of the bits defined in
the 486 microprocessor's CAO are newly defined.
The new bits are CD, NW, AM, WP and NE. The
function of the bits in CAO can be categorized as
follows:

Bl? 0

PAGE FAULT LINEAR ADDRESS REGISTER

CAO

CR2

CR3 PAGE DIRECTORY BASE REGISTER l
SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0

~~~:I I I 
SYSTEM SEGMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

'15 o' 
TR SELECTOR 

f--------l 

LDTR SELECTOR 

31 

P C N 
G D W 

NOTE: 

( 32-BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT 

I 
Figure 2.4. System Level Registers 

MSW 

N 
E 

I indicates Intel reserved: Do not define; See Section 2.1.6 

Figure 2.5. Control Register 0 

5-19 

ATIRIBUTES\ 

II 11 

0 

TEMPCRO 
S M P E 

II 



i486™. MICROPROCESSOR 

486 Microprocessor Operating Modes: PG, PE 
(Table 2.2) 

On-Chip Cache Control Modes: CD, NW (Table 2.3) 

On-Floating Point Unit Control: TS, EM, MP, NE 
(Table 2.4) 

Alignment Check Control: AM 

Supervisor Write Protect: WP 

Table 2.2. Processor Operating Modes 

PG PE Mode 

0 0 REAL Mode. Exact 8086 semantics, 
with 32-bit extensions available with 
prefixes. 

0 1 Protected Mode. Exact 80286 
semantics, plus 32-bit extensions 
through both prefixes and "default" 
prefix setting associated with code 
segment descriptors. Also, a sub-
mode is defined to support a virtual 
8086 within the context of the 
extended 80286 protection model. 

1 0 UNDEFINED. Loading CAO with this 
combination of PG and PE bits will 
raise a GP fault with error code 0. 

1 1 Paged Protected Mode. All the 
facilities of Protected mode, with 
paging enabled underneath 
segmentation. 

Table 2.3. On-Chip Cache Control Modes 

CD NW Operating Mode 

1 1 Cache fills disabled, write-through and 
invalidates disabled. 

1 0 Cache fills disabled, write-through and 
invalidates enabled. 

0 1 INVALID. If CAO is loaded with this 
configuration of bits, a GP fault with 
error code is raised. 

0 0 Cache fills enabled, write-through and 
invalidates enabled. 

Table 2.4. On-Chip Floating Point Unit Control 

CROBIT Instruction Type 

EM TS MP Floating-Point Wait 

0 0 0 Execute Execute 
0 0 1 Execute Execute 
0 1 0 Trap7 Execute 
0 1 1 Trap7 Trap7 
1 0 0 Trap7 Execute 
1 0 1 Trap7 Execute 
1 1 0 Trap? Execute 
1 1 1 Trap? Trap7 

The low-order 16 bits of CAO are also known as the 
Machine Status Word (MSW), for compatibility with 
the 80286 protected mode. LMSW and SMSW (load 
and store MSW) instructions are taken as special 
aliases of the load and store CAO operations, where 
only the low-order 16 bits of CAO are involved. The 
LMSW and SMSW instructions in the 486 microproc­
essor work in an identical fashion to the LMSW and 
SMSW instructions in the 80286 (i.e., they only oper­
ate on the low-order 16 bits of CAO and ignores the 
new bits). New 486 microprocessor operating sys­
tems should use the MOV CAO, Reg instruction. 

The defined CAO bits are described below. 

PG (Paging Enable, bit 31) 

The PG bit is used to indicate whether paging is 
enabled (PG=1) or disabled (PG=O). See Ta­
ble 2.2. 

CD (Cache Disable, bit 30) 

The CD bit is used to enable the on-chip cache. 
When CD= 1, the cache will not be filled on 
cache misses. When CD= 0, cache fills may be 
performed on misses. See Table 2.3. 

The state of the CD bit, the cache enable input 
pin (KEN#), and the relevant page cache dis­
able (PCD) bit determine if a line read in re­
sponse to a cache miss will be installed in the 
cache. A line is installed in the cache only if 
CD= O and KEN# and PCD are both zero. The 
relevant PCD bit comes from either the page 
table entry, page directory entry or control reg­
ister 3. Refer to Section 5.6 for more details on 
page cacheability. 

5-20 

CD is set to one after RESET. 

NW (Not Write-Through, bit 29) 

The NW bit enables on-chip cache write­
throughs and write-invalidate cycles (NW= 0). 
When NW= 0, all writes, including cache hits, 
are sent out to the pins. Invalidate cycles are 
enabled when NW= 0 .. During an invalidate cy­
cle a line will be removed from the cache if the 
invalidate address hits in the cache. See Table 
2.3. 

When NW= 1, write-throughs and write-invali­
date cycles are disabled. A write will not be sent 
to the pins if the write hits in the cache. With 
NW= 1 the only write cycles that reach the ex­
ternal bus are cache misses. Write hits with 
NW=.1 will never update main memory. Invali­
date cycles are ignored when NW= 1. 

AM (Alignment Mask, bit 18) 

The AM bit controls whether the alignment 
check (AC) bit in the flag register (EFLAGS) can 
allow an alignment fault. AM = 0 disables the 
AC bit. AM = 1 enables the AC bit. AM = 0 is the 
386 microprocessor compatible mode. 



intef i486™ MICROPROCESSOR 

386 microprocessor software may load incor­
rect data into the AC bit in the EFLAGS register. 
Setting AM= 0 will prevent AC faults from oc­
curring before the 486 microprocessor has cre­
ated the AC interrupt service routine. 

WP (Write Protect, bit 16) 

WP protects read-only pages from supervisor 
write access. The 386 microprocessor allows a 
read-only page to be written from privilege lev­
els 0-2. The 486 microprocessor is compatible 
with the 386 microprocessor when WP= O. 
WP= 1 forces a fault on a write to a read-only 
page from any privilege level. Operating sys­
tems with Copy-on-Write features can be sup­
ported with the WP bit. Refer to Section 4.5.3 
for further details on use of the WP bit. 

NE (Numerics Exception, bit 5) 

The NE bit controls whether unmasked floating 
point exceptions (UFPE) are handled through 
interrupt vector 16 (NE= 1) or through an exter­
nal interrupt (NE= 0). NE= O (default at reset) 
supports the DOS operating system error re­
porting scheme from the 8087, 80287 and 387 
math coprocessor. In DOS systems, math co­
processor errors are reported via external inter­
rupt vector 13. DOS uses interrupt vector 16 for 
an operating system call. Refer to Sections 
6.2.13 and 7.2.14 for more information on float­
ing point error reporting. 

For any UFPE the floating point error output pin 
(FERR#) will be driven active. 

For NE=O, the 486 microprocessor works in 
conjunction with the ignore numeric error input 
(IGNNE#) and the FERR# output pins. When a 
UFPE occurs and the IGNNE # input is inactive, 
the 486 microprocessor freezes immediately 
before executing the next floating point instruc­
tion. An external interrupt controller will supply 
an interrupt vector when FERR# is driven ac­
tive. The UFPE is ignored if IGNNE# is active 
and floating point execution continues. 

NOTE: 

The freeze does not take place if the next in­
struction is one of the control instructions 
FNCLEX, FNINIT, FNSAVE, FNSTENV, 
FNSTCW, FNSTSW, FNSTSW AX, FNENI, 
FNDISI and FNSETPM. The freeze does occur 
if the next instruction is WAIT. 

For NE= 1, any UFPE will result in a software 
interrupt 16, immediately before executing the 
next non-control floating point or WAIT instruc­
tion. The ignore numeric error input (IGNNE#) 
signal will be ignored. 

5-21 

TS (Task Switched, bit 3) 

The TS bit is set whenever a task switch opera­
tion is performed. Execution of a floating point 
instruction with TS= 1 will cause a device not 
available (DNA) fault (trap vector 7). If TS= 1 
and MP= 1 (monitor coprocessor in CRO) a 
WAIT instruction will cause a DNA fault. See 
Table 2.4. 

EM (Emulate Coprocessor, bit 2) 

The EM bit determines whether floating point 
instructions are trapped (EM= 1) or executed. If 
EM= 1, all floating point instructions will cause 
fault 7. 

NOTE: 
WAIT instructions are not affected by the state 
of EM. See Table 2.4. 

MP (Monitor Coprocessor, bit 1) 

The MP bit is used in conjunction with the TS bit 
to determine if WAIT instructions should trap. If 
MP= 1 and TS= 1, WAIT instructions cause 
fault 7. Refer to Table 2.4. The TS bit is set to 1 
on task switches by the 486 microprocessor. 
Floating point instructions are not affected by 
the state of the MP bit. It is recommended that 
the MP bit be set to one for the normal opera­
tion of the 486 microprocessor. 

PE (Protection Enable, bit 0) 

The PE bit enables the segment based protec­
tion mechanism. If PE= 1 protection is enabled. 
When PE= O the 486 microprocessor operates 
in REAL mode, with segment based protection 
disabled, and addresses formed as in an 8086. 
Refer to Table 2.2. 

All new CRO bits added to the 386 and 486 micro­
processors, except for ET and NE, are upward com­
patible with the 80286 because they are in register 
bits not defined in the 80286. For strict compatibility 
with the 80286, the load machine status word 
(LMSW) instruction is defined to not change the ET 
or NE bits. 

Control Register 1 (CR1) 

CR1 is reserved for use in future Intel microproces­
sors. 

Control Register 2 (CR2) 

CR2, shown in Figure 2.6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The 
error code pushed onto the page fault handler's 
stack when it is invoked provides additional status 
information on this page fault. 

El 



intef 1486™ MICROPROCESSOR 

31 0 

~l~~~~~~~~~~P-AG~E-FA_u_L_T_L_1N_E_A_R_A_D_D_R_E_s_s_R_E_G_1s_T_E_R~~~~~~~~~--'ICR2 
31 

PAGE DIRECTORY BASE REGISTER CR3 

NOTE: 
lindicates Intel reserved: Do not define; See Section 2.1.6. 

Figure 2.6. Control Registers 2 and 3 

Control Register 3 (CR3) 

CR3, shown in Figure 2.6, contains the physical 
base address of the page directory table. The 486 
microprocessor page directory is always page 
aligned (4 Kbyte-aligned). This alignment is enforced 
by only storing bits 20-31 in CR3. 

In the 486 microprocessor CR3 contains two new 
bits, page write-through (PWT) (bit 3) and page 

· cache disable (PCD) (bit 4). The page table entry 
(PTE) and page directory entry (PDE) also contain 
PWT and PCD bits. PWT and PCD control ·page 
cacheability. When a page is accessed in external 
memory, the state of PWT and PCD are driven out 
on the PWT and PCD pins. The source of PWT and 
PCD can be CR3, the PTE or the PDE. PWT and 
PCD are sourced from CR3 when the PDE. is being 
updated. When paging is disabled (PG = 0 in CRO), 

· PCD and PWT are assumed to be 0, regardless of 
their state in CR3. 

A task switch through a task state segment (TSS). 
which changes the values in CR3, or an explicit load 
into CR3 with any value, will invalidate all cached 
page table entries. in the translation lookaside buffer 
(TLB). 

The page directory base address in CR3 is a physi­
cal address. The page directory can be paged out 
while its associated task is suspended, but the oper­
ating system must ensure that the page directory is 

· resident in physical memory before the task is dis­
patched. The entry in the TSS for CR3 has a physi­
cal address, with no provision for a present bit.. This 
means that the page directory for a task must be 
resident in physical memory. The CR3 image in a 
TSS must point to this area, before the task can be 
dispatched through its TSS. 

2.1.2.2 System Address Registers 

Four special registers are defined to reference the 
tables or segments supported by the 80286, 386 
and 486 microprocessor protection model. These ta­
bles or segments are: 

GOT (Global Descriptor Table) 
IDT (Interrupt Descriptor Table) 
LDT (Local Descriptor Table) · 
TSS (Task State Segment) 

The addresses of these tables and segments are 
stored in special registers, the System Address and 
System Segment Registers, illustrated in Figure 2.4. 
These registers are named GDTR, IOTA, LOTA and 
TR respectively. Section 4~ Protected Mode Archi­
tecture, de8cribes the use of these registers. 

System Address Registers: GDTR and IDTR 

The GDTR and IOTA hold the 32-bit linear base ad­
dress and 16-bit limit of the GOT and IDT, respec­
tively. 

Since the GOT and IDT segments are global to all 
tasks in the system, the GOT and IDT are defined by 
32-bit linear addresses (subject to page translation if 
paging is enabled) and 16-bit limit values. 

5-22 

System Segment Registers: LDTR and .TR 

The LOTA and TR hold the 16-bit selector for the 
LDT descriptor and the TSS descriptor, respectively. 

Since the LDT and TSS segments are task specific 
segments, the LDT and TSS are defined by selector 
values stored in the system segment registers. 

.NOTE: 
A programmer-invisible segment descriptor register 
is associated with each system segment register. 



intef i486™ MICROPROCESSOR 

2.1.3 FLOATING POINT REGISTERS 

Figure 2. 7 shows the floating point register set. The 
on-chip FPU contains eight data registers, a tag 
word, a control register, a status register, an instruc­
tion pointer and a data pointer. 

79 78 64 63 0 

RO Sign Exponent 

R1 

Significand 

1--~+-~~~1--~~~~~---1 

R2 
t--~+-~~~t--~~~~~--< 

R3 
t--~+-~~~t--~~~~~--< 

R4 
1--~+-~~~1--~~~~~--l 

R5 
t--~+-~~~t--~~~~~--< 

R6 
t--~+-~~--l~~~~~~-l 

R7 

15 0 47 

Control Register 

Status Register 

Tag Word 

Instruction Pointer 

Data Pointer 

Figure 2.7. Floating Point Registers 

Tag 
Field 
1 0 

0 

The operation of the 486 microprocessor's on-chip 
floating point unit is exactly the same as the 387 
math coprocessor. Software written for the 387 
math coprocessor will run on the on-chip floating 
point unit (FPU) without any modifications. 

2.1.3.1 Data Registers 

Floating point computations use the 486 microproc­
essor's FPU data registers. These eight 80-bit regis­
ters provide the equivalent capacity of twenty 32-bit 
registers. Each of the eight data registers is divided 

15 

TAG(?) TAG(6) TAG(5) TAG(4) 

NOTE: 

into "fields" corresponding to the FPU's extended­
precision data type. 

The FPU's register set can be accessed either as a 
stack, with instructions operating on the top one or 
two stack elements, or as a fixed register set, with 
instructions operating on explicitly designated regis­
ters. The TOP field in the status word identifies the 
current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value into the 
new top register. A "pop" operation stores the value 
from the current top register and then increments 
TOP by one. Like other 486 microprocessor stacks 
in memory, the FPU register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP 
points. Other instructions allow the programmer to 
explicitly specify which register to use. This explicit 
register addressing is also relative to TOP. 

2.1.3.2 Tag Word 

The tag word marks the content of each numeric 
data register, as shown in Figure 2.8. Each two-bit 
tag represents one of the eight data registers. The 
principal function of the tag word is to optimize the 
FPUs performance and stack handling by making it El 
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the 
&Gtual data. 

2.1.3.3 Status Word 

The 16-bit status word reflects the overall state of 
the FPU. The status word is shown in Figure 2.9 and 
is located in the status register. 

0 

TAG(3) TAG(2) TAG (1) TAG (0) 

The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i) 
field refers to logical top of stack. 
TAG VALUES: 

00 =Valid 
01 = Zero 
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats 
11 = Empty 

Figure 2.8. FPU Tag Word 

5-23 



intef i486™ MICROPROCESSOR 

.----~--------------BUSY 

-~~------------- TOP Of" STACK POINTER 

.--+-+--+--.-----..----,.---------- CONDITION CODE 

15 

TOP 

ERROR SUMMARY STATUS-----~ 
STACK f"LAG ------~ 

EXCEPTION FLAGS : 
PRECISION-------~ 

UNDERFLOW----------' 
OVERFLOW-------~---' 

0 

Z D 
E E 

ZERO DIVIDE------------' 
DENORMALIZED OPERAND--------------' 

INVALID OPERATION-------------~ 

ES is set ~ any unmasked exception bit is set; cleared otherwise. 
See Table 2.5 for interpretation of condition code. 
TOP values: 

000 = Register O is Top of Stack 
001 = Register 1 is Top of Stack 

• 

111 = Register 7 is Top of Stack 
For definitions of exceptions, refer to the Section entitled 
"Exception Handling". 

Figure 2.9. FPU Status Word 

240440-7 

The B bit (Busy, bit 15) is included for 8087 compati­
bility. The B bit reflects the contents of the ES bit (bit 
7 of the status word). 

The four numeric condition code bits, CO-C3, are 
similar to the flags in EFLAGS. Instructions that per­
form arithmetic operations update CO-C3 to reflect 
the outcome. The effects of these instructions on 
the condition codes are summarized in Tables 2.5 
through 2.8. 

Bits 13-11 (TOP) point to the FPU register that is 
the current top-of-stack. 

5-24 



i486™ MICROPROCESSOR 

Table 2.5. FPU Condition Code Interpretation 

Instruction CO(S) l C3(Z) C1 (A) C2 (C) 

FPREM, FPREM1 Three least significant bits 
Reduction (see Table 2.3) of quotient 

O =complete 
02 00 01 

or O/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.7) 
or O/U# 

comparable 
FUCOMPP, FICOM, (Table 2.7) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.8) orO/U# (Table2.8) 

FCHS, FABS, FXCH, 
FINCTOP, FDECTOP, 
Constant loads, 

UNDEFINED 
Zero 

UNDEFINED 
FXTRACT, FLO, orO/U# 
FILO, FBLD, 
FSTP (ext real) 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, FMUL, 
FDIV, FDIVR, 

UNDEFINED 
Roundup 

UNDEFINED FSUB, FSUBR, orO/U# 
FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN Roundup Reduction • FCOS, FSINCOS UNDEFINED orO/U#, 0 =complete 
undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory 

FINIT Clears these bits 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINE.D 
FCLEX, FSAVE 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial 
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 

5-25 



intef i486™ MICROPROCESSOR 

Table 2.6. Condition Code Interpretation after FPREM and FPREM1 Instructions 

Condition Code 
Interpretation after FPREM and FPREM 1 

C2 C3 C1 co 
Incomplete Reduction: 

1 x x x further interaction required 
for complete reduction 

01 00 02 OMOD8 

0 0 0 0 
0 1 0 1 

Complete Reduction: 
1 0 0 2 

0 
1 1 0 3 

CO, C3, C1 contain three least 

0 0 1 4 
significant bits of quotient 

0 1 1 5 
1 0 1 6 
1 1 1 7 

Table 2.7. Condition Code Resulting from Comparison 

Order C3 C2 co 
TOP > Operand 0 0 0 
TOP < Operand 0 0 1 
TOP = Operand 1 0 0 
Unordered 1 1 1 

Table 2.8. Condition Code Defining Operand Class 

C3 C2 C1 co Value at TOP 

0 0 0 0 + Unsupported 
0 0 0 1 +NaN 
0 0 1 0 - Unsupported 
0 0 1 1 - NaN 
0 1 0 0 +Normal 
0 1 0 1 +Infinity 
0 1 1 0 - Normal 
0 1 1 1 - Infinity 
1 0 0 0 +o 
1 0 Q, 1 +Empty 
1 0 1 0 -,0 
1 0 1 1 - Empty 
1 1 0 0 + Denormal 
1 1 1 0 - Denormal 

5-26 



intef i486™ MICROPROCESSOR 

Bit 7 is the error summary (ES) status bit. The ES bit 
is set if any unmasked exception bit (bits 0-5 in the 
status word) is set; ES is clear otherwise. The 
FERR# (floating point error) signal is asserted when 
ES is set. 

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow. When SF is set, bit 9 (C1) distinguishes be­
tween stack overflow (C1 = 1) and underflow 
(C1 =O). 

Table 2.9 shows the six exception flags in bits 0-5 
of the status word. Bits 0-5 are set to indicate that 
the FPU has detected an exception while executing 
an instruction. 

The six exception flags in the status word can be 
individually masked by mask bits in the FPU control 
word. Table 2.9 lists the exception conditions, and 
their causes in order of precedence. Table 2.9 also 
shows the action taken by the FPU if the corre­
sponding exception flag is masked. 

An exception that is not masked by the control word 
will cause three things to happen: the corresponding 
exception flag in the status word will be set, the ES 
bit in the status word will be set and the FERR# 
output signal will be asserted. When the 486 micro­
processor attempts to execute another floating point 
or WAIT instruction, exception 16 occurs or an exter­
nal interrupt happens if the NE= 1 in control register 

0. The exception condition must be resolved via an 
interrupt service routine. The FPU saves the address 
of the floating point instruction that caused the ex­
ception and the address of any memory operand re­
quired by that instruction in the instruction and data 
pointers (see Section 2.1.3.4). 

Note that when a new value is loaded into the status 
word by the FLDENV (load environment) or 
FRSTOR (restore state) instruction, the value of ES 
(bit 7) and its reflection in the B bit (bit 15) are not 
derived from the values loaded from memory. The 
values of ES and B are dependent upon the values 
of the exception flags in the status word and their 
corresponding masks in the control word. If ES is set 
in such a case, the FERR# output of the 486 micro­
processor is activated immediately. 

2.1.3.4 Instruction and Data Pointers 

Because the FPU operates in parallel with the ALU 
(in the 486 microprocessor the arithmetic and logic 
unit (ALU) consists of the base architecture regis­
ters), any errors detected by the FPU may be report­
ed after the ALU has executed the floating point in­
struction that caused it. To allow identification of the 
failing numeric instruction, the 486 microprocessor 
contains two pointer registers that supply the ad­
dress of the failing numeric instruction and the ad­
dress of its numeric memory operand (if appropri­
ate). 

Table 2.9. FPU Exceptions 

Exception Cause 
Default Action 

(if exception is masked) 

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer 
Operation indeterminate form (0* oo, 010, ( + oo) + (- oo ), etc.), or indefinite, or BCD indefinite 

stack overflow/underflow (SF is also set). 

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing 
Operand the smallest exponent but a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is oo 

nonzero number. 

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value 
format. or oo 

Underflow The true result is nonzero but too small to be Result is denormalized or 
represented in the specified format, and, if underflow zero 
exception is masked, denormalization causes loss of 
accuracy. 

Inexact The true result is not exactly representable in the Normal processing 
Result specified format (e.g., 1 /3); the result is rounded continues 
(Precision) according to the rounding mode. 

5-27 

II 



intef i486™ MICROPROCESSOR 

The instruction and data pointers are provided for 
user-written error handlers. These registers are ac­
cessed by the FLDENV (load environment), 
FSTENV (store environment), FSAVE (save state) 
and FRSTOR (restore state) instructions. Whenever 
the 486 microprocessor decodes a new floating 
point instruction, it saves the instruction (including 
any prefixes that may be present), the address of 
the operand (if present) and the opcode. 

The instruction and data pointers appear in one of 
four formats depending on the operating mode of 
the 486 microprocessor (protected mode or real-ad-

dress mode) and depending on the operandcsize at­
tribute in effect (32-bit operand or 16-bit operand). 
When the 486 microprocessor is in the virtual-86 
mode, the real address mode formats are used. The 
four formats are shown in Figures 2.10-2.13. The 
floating point instructions FLDENV, FSTENV, 
FSAVE and FRSTOR are used to transfer these val­
ues to and from memory. Note that the value of the 
data pointer is undefined if the prior floating point 
instruction did not have a memory operand. 

NOTE: 
The operand size attribute is the D bit in a segment 
descriptor. 

31 23 
32-BIT PROTECTED MODE FORMAT 

15 7 0 

31 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

IP OFFSET 

00000 I OPCODE10 .. o CS SELECTOR 

DATA OPERAND OFFSET 

RESERVED OPERAND SELECTOR 

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format 

0000 l 
0000 l 

23 
32-BIT REAL-ADDRESS MODE FORMAT 

15 7 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

RESERVED INSTRUCTION POINTER 15 .. 0 

INSTRUCTION POINTER 31 .. 16 1 ° l OPCODE 10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

OPERAND POINTER 31 .. 16 I 0000 00000000 

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32·Bit Format 

0 

0 

4 

8 

c 

10 

14 

18 

0 

4 

8 

c 

10 

14 

18 



intJ i486TM MICROPROCESSOR 

16-BIT PROTECTED MODE FORMAT 
15 7 0 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IP OFFSET 

CS SELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

Figure 2.12. Protected Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16-Bit Format 

2. 1.3.5 FPU Control Word 

0 

2 

4 

6 

8 

A 

c 

15 

16-BIT REAL-ADDRESS MODE AND 
VIRTUAL-8086 MODE FORMAT 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER 15 .. 0 

IP19.16 J oJ OPCODE 10 .. 0 

OPERAND POINTER 15 .. 0 

0 

DP 19.16 I oJ o o o o o o o o 0 0 0 

Figure 2.13. Real Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16-Bit Format 

0 

2 

4 

6 

8 

A 

c 

The FPU provides several processing options that are selected by loading a control word from memory into 
the control register. Figure 2.14 shows the format and encoding of fields in the control word. 

------------------- RESERVED 
~-------------- RESERVED* 
~------------- ROUNDING CONTROL 

~~---------- PRECISION CONTROL 

15 0 

X X X X RC 

RESERVED -------'--' 

EXCEPTION MASKS : 
PRECISION--------~ 

UNDERFLOW---------~ 

OVERFLOW--------------' 

• "O" AFTER RESET OR FINIT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD (CW}. PROGRAMS 
MUST IGNORE THIS BIT. 

ZERO DIVIDE-----------~ 
DENORMALIZED OPERAND-------------~ 

INVALID OPERATION---------------' 

Precision Control 
00-24 bits (single precision) 
O 1-(reserved) 
10-53 bits (double precision) 
11-64 bits (extended precision) 

Rounding Control 
00-Round to nearest or even 
01-Round down (toward - co) 
10-Round up (toward + oo) 
11-Chop (truncate toward zero) 

Figure 2.14. FPU Control Word 

5-29 

240440-8 

I 



intJ i486TM MICROPROCESSOR 

The low-ordE!r byte of the FPU control word config­
ures the FPU error and exception masking. Bits 0-5 
of the control word contain individual masks for each 
of the six exceptions that the FPU recognizes. 

The high-order byte of the control word configures 
the FPU operating mode, including precision and 
rounding. 

RC (Rounding Control, bits 10-11) 

The RC bits provide for directed rounding and 
true chop, as well as the unbiased round to 
nearest even mode specified in the IEEE stan­
dard. Rounding control affects only those in­
structions that perform rounding at the end of 
the operation (and thus can generate a preci­
sion exception); namely, FST, FSTP, FIST, all 
arithmetic instructions (except FPREM, 
FPREM1, FXTRACT, FABS and FCHS), and all 
transcendental instructions. 

PC (Precision Control, bits 8~9) 

The PC bits can be used to set the FPU internal 
operating precision of the significand at less 
than the default of 64 bits (extended precision). 
This can be useful in providing compatibility with 
early generation arithmetic processors of small­
er precision. PC affects only the instructions 
ADD, SUB, DIV, MUL, and SQRT. For all other 
instructions, either the precision is determined 
by the opcode or extended precision is used. 

2.1.4 DEBUG AND TEST REGISTERS 

2.1.4.1 Debug Registers 

The six programmer accessible debug registers, Fig­
ure 2.15, provide on-chip support for debugging. De­
bug registers DR0-3 specify the four linear break­
points. The Debug control register DR7, is used to 
set the breakpoints and the Debug Status Register, 
DR6, displays the current state of the breakpoints. 
The use of the Debug registers is described in Sec­
tion 9. 

Debug Registers 

LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

LINEAR BREAKPOINT ADDRESS 3 

Intel Reserved Do Not Define 

Intel Reserved Do Not Define. 

BREAKPOINT STATUS 

BREAKPOINT CONTROL 

Test Registers 

CACHE TEST DA TA 

CACHE TEST ST A TUS 

CACHE TEST CONTROL 

TLB TEST CONTROL 

TLB TEST STATUS 

TLB = Translation Lookaside Buffer 

Figure 2.15 

2.1.4.2 Test Registers 

ORO 

DR1 

DR2 

DR3 

DR4 

DRS 

DR6 

DR7 

TR3 

TR4 

TR5 

TR6 

TR7 

The 486 microprocessor contains five test registers. 
The test registers are shown in Figure 2.15. TR6 and 
TR7 are used to control the testing of the translation 
lookaside buffer. TR3, TR4 and TR5 are used for 
testing the on-chip cache. The use of the test regis­
ters is discussed in Section 8. 

2.1.5 REGISTER ACCESSIBILITY 

There are a few differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble 2.10 summarizes these differences. See Section 
4, Protected Mode Architecture, for further details. 

5-30 



intef i486™ MICROPROCESSOR 

Table 2.10. Register Usage 

Use in Use in Use in 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Yes Yes Yes Yes Yes Yes 

Segment Register Yes Yes Yes Yes Yes Yes 

Flag Register Yes Yes Yes Yes IOPL IOPL* 

Control Registers Yes Yes PL= 0 PL= 0 No Yes 

GDTR Yes Yes PL= 0 Yes No Yes 

IDTR Yes Yes PL= 0 Yes No Yes 

LDTR No No PL= 0 Yes No No 

TR No No PL= 0 Yes No No 

FPU Data Registers Yes Yes Yes Yes Yes Yes 

FPU Control Registers Yes Yes Yes Yes Yes Yes 

FPU Status Registers Yes Yes Yes Yes Yes Yes 

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes 

FPU Data Pointer Yes Yes Yes Yes Yes Yes 

Debug Registers Yes Yes PL= 0 PL= 0 No No 

Test Registers Yes Yes PL= 0 PL= 0 No No 

NOTES: 
PL = 0: The registers can be accessed only when the current privilege level is zero. 
*IOPL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 86 Mode. 

2.1.6 COMPATIBILITY 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer­
tain 486 Microprocessor register bits are Intel re­
served. When reserved bits are called out, treat 
them as fully undefined. This is essential for 
your software compatibility with future proces­
sors! Follow the guidelines below: 

1) Do not depend on the states of any unde­
fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde­
fined bits when storing them to memory or 
another register. 

5-31 

3) Do not depend on the ability to retain infor­
mation written into any undefined bits. 

4) When loading registers always load the unde­
fined bits as zeros. 

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing. 

Depending upon the values of undefined regis­
ter bits will make your software dependent upon 
the unspecified 486 Microprocessor handling of 
these bits. Depending on undefined values risks 
making your software incompatible with future 
processors that define usages for the 486 Micro­
processor-undefined bits. AVOID ANY SOFT­
WARE DEPENDENCE UPON THE STATE OF UN­
DEFINED 486 MICROPROCESSOR REGISTER 
BITS. 

I 



intef i486™ MICROPROCESSOR 

2.2 Instruction Set 

The 486 microprocessor instruction set can be divid­
ed into 11 categories of operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 
Floating Point 
Floating Point Control 

The 486 microprocessor instructions are listed in 
Section 1 o. Note that all floating point unit instruc­
tion mnemonics begin with an F. 

All 486 microprocessor instructions operate on ei­
ther 0, 1, 2 or 3 operands; where an operand resides 
in a register, in the instruction itself or in memory. 
Most zero operand instructions (e.g., CU, STI) take 
only one byte. One operand instructions generally 
are two bytes long. The average instruction is 3.2 
bytes long. Since the 486 microprocessor has a 32-
byte instruction queue, an average of 1 O instructions 
will be prefetched. The use of two operands permits 
the following types of common instructions: 

Register to Register 
Memory to Register 
Memory to Memory 
Immediate to Register 
Register to Memory 
Immediate to Memory 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
486 or 386 microprocessors (32-bit code), operands 
are 8 or 32 bits; when executing existing 80286 or 
8086 code (16-bit code), operands are 8 or 16 bits. 
Prefixes can be added to all instructions which over­
ride the default length of the operands (i.e., use 32-
bit operands for 16-bit code, or 16-bit operands for 
32-bit code). 

2.3 Memory Organization 

Introduction 

Memory on the 486 Microprocessor is divided up 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address, the high order byte at the 

high address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address, the high-order byte at the highest ad­
dress. The address of a word or dword is the byte 
address of the low-order byte; 

In addition to these basic data types, the 486 Micro­
processor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or 
more 4 Kbyte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 486 Microprocessor supports 
both pages and segments in order to provide maxi­
mum flexibility to the system designer. Segmentation 
and paging are complementary. Segmentation is 
useful for organizing memory in logical modules, and 
as such is a tool for the application programmer, 
while pages are useful for the system programmer 
for managing the physical memory of a system. 

2.3.1 ADDRESS SPACES 

The 486 Microprocessor has three distinct address 
spaces: logical, linear, and physical. A logical 
address (also known as a virtual address) consists 
of a selector and an offset. A selector is the cone 
tents of a segment register. An offset is formed by 
summing all of the addressing components (BASE, 
INDEX, DISPLACEMENT) discussed in Section 
2.5.3 Memory Addressing Modes into an effective 
address. Since each task on the 486 Microproces­
sor has a maximum of 16K (214 -1) selectors, and 
offsets can be 4 gigabytes, (232 bits) this gives a 
total of 246 bits or 64 terabytes of logical address 
space per task. The programmer sees this virtual 
address space. 

5-32 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The 
paging unit translates the linear address space into 
the physical address space. The physical address 
is what appears on the address pins. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs 
the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to form the linear address. While in Protected 
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in 
one of two operating system tables (i.e., the Local 
Descriptor Table or Global Descriptor Table). The 
selector's linear base address is added to the offset 
to form the final linear address. 



intef i486™ MICROPROCESSOR 

ErFECTIVE ADDRESS CALCULATION 

BE3-BEO 
A31 -A2 

31 0 

PHYSICAL 
MEMORY 

15 3 2 O LOGICAt~:ESS SEGMENTATION 32 PAGING UNIT 
VIRTUAL ADDRESS UNIT l-L-IN-E-AR-;-11>1 (OPTIONAL USE) 

32 

R 13 ADDRESS 
SELECTOR r t--ll-0:-:E:::SC:':R'.'.':IP:::TO:":R:---·._-----

PHYSICAL 
ADDRESS 

SEGMENT 
REGISTER 

INDEX 

240440-4 

Figure 2.16. Address Translation 

Figure 2.16 shows the relationship between the vari­
ous address spaces. 

2.3.2 SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 486 Microprocessor, segme~ts 
are variable sized blocks of linear addresses which 
have certain attributes associated with them. There 
are two main types of segments: code and data, the 
segments are of variable size and can be as small 
as 1 byte or as large as 4 gigabytes (232 bytes). 

In order to provide compact instruction encoding, 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2.11 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the OS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents 
of the Instruction Pointer provide the offset. Special 
segment override prefixes allow the ~xplicit u~e o! ~ 
given segment register, and over~1de th~ 1mphc1t 
rules listed in Table 2.11. The override prefixes also 
allow the use of the ES, FS and GS segment regis­
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 

5-33 

and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in Section 4.1. 

2.4 1/0 Space 

The 486 Microprocessor has two distinct physical 
address spaces: Memory and 1/0. Generally, periph­
erals are placed in 1/0 space although the 486 Mi­
croprocessor also supports memory-mapped periph­
erals. The 1/0 space consists of 64 Kbytes, it can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K 
32-bit ports, or any combination of ports which add 
up to less than 64 Kbytes. The 64K 1/0 address 
space refers to physical memory rather than linear 
address since 1/0 instructions do not go through the 
segmentation or paging hardw~re. The Mii<?# pin 
acts as an additional address lme thus allowing the 
system designer to easily determine which address 
space the processor is accessing. 

The 1/0 ports are accessed via the IN and OUT 1/0 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
DX register. All 8- and 16-bit port addresses are zero 
extended on the upper address lines. The 1/0 in­
structions cause the M/10# pin to be driven low. 

1/0 port addresses OOF8H through OOFFH are re­
served for use by Intel. 

I 



intJ i486™ MICROPROCESSOR 

Table 2.11. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, 
IRET, RET instructions 

Destination of STOS, MOVS, REP 
STOS, REP MOVS Instructions 
(DI is Base Register) 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[ESP] 
[ESP] 

2.5 Addressing Modes 

2.5.1 ADDRESSING MODES OVERVIEW 

The 486 Microprocessor provides a total of 11 ad­
dressing modes for instructions to specify operands. 
The addressing modes are optimized to allow the 
efficient execution of high level languages such as C 
and FORTRAN, and they cover the vast majority of 
data references needed by high-level languages. 

2.5.2 REGISTER AND IMMEDIATE MODES 

Two of the addressing modes provide for .instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

cs None 

SS None 

SS None 

ES None 

OS 
OS 
OS 
OS 

All 
OS 
DS 
SS 
SS 

2.5.3 32-BIT MEMORY ADDRESSING MODES 

The remaining 9 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by using combina­
tions of the following four address elements: 

DISPLACEMENT: An 8-, or 32-bit immediate value, 
following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

5-34 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. 

SCALE: The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 



intef i486™ MICROPROCESSOR 

mode is especially useful for accessing arrays or 
structures. 

Combinations of these 4 components make up the 9 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2.17, the effective address (EA) 
of an operand is calculated according to the follow­
ing formula. 

EA= Base Reg+ (Index Reg • Scaling)+ Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis­
placement. 
EXAMPLE: INC Word PTA [500) 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operand's offset. 
EXAMPLE: MOV ECX, [EAX + 24] 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to form the operand's offset. 
EXAMPLE: ADD EAX, TABLE[ESI] 

Scaled Index Mode: An INDEX register's contents is 
multiplied by a scaling factor which is added to a 
DISPLACEMENT to form the operand's offset. 
EXAMPLE: IMUL EBX, TABLE[ESl*4],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESI] [EBX] 

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and 
the result is added to the contents of a BASE regis­
ter to obtain the operand's offset. 
EXAMPLE: MOV ECX, [EDX*S] [EAX] 

SEGMENT REGISTER ..--------t BASE REGISTER 

SS 
GS 

fS 
ES 

OS 

DESCRIPTOR REGISTERS 

+1+------1 

EffECTIVE 
ADDRESS 

LINEAR 
ADDRESS 

~ 

------~ 

TARGET ADDRESS 

SEGMENT BASE ADDRESS 

Figure 2.17. Addressing Mode Calculations 

5-35 

/ 
SEGMENT 
LIMIT 

SELECTED 
SEGMENT 

240440-5 

I 



intJ 1486™ MICROPROCESSOR 

Based Index Mode with Displacement: The contents 
of an INDEX Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ESI] [EBP+OOFFFFFOH] 

Based Scaled Index Mode with Displacement: The 
contents of an INDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. 
EXAMPLE: MOY EAX, LOCALTABLE[EDl*4] 
[EBP+80] 

2.5.4 DIFFERENCES BETWEEN 16· AND 32-BIT 
ADDRESSES 

In order to provide software compatibility with the 
80286 and the 8086, the 486 Microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in 
the CS segment Descriptor. If the D bit is O then all 
operand lengths and effective addresses are as­
sumed to be 16 bits long. If the D bit is 1 then the 
default length for operands and addresses is 32 bits. 
In Real Mode the default size for operands and ad­
dresses is 16-bits. 

Regardless of the default precision of the operands 
or addresses, the 486 Microprocessor is able to exe­
cute either 16- or 32-bit instructions. This is specified 
via the use of override prefixes. Two prefixes, the 
Operand Size Prefix and the Address Length Pre­
fix, override the value of the D bit on an individual 
instruction basis. These prefixes are automatically 
added by Intel assemblers. 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis­
ters. The assembler code for this might be MOV 
EAX, 32-bit MEMORYOP, ASM486 Macro Assem­
bler automatically determines that an Operand Size 
Prefix is needed and generates it. 

Example: The D bit is 0, and the programmer wishes 
to use Scaled Index addressing mode to access an 
array. The Address Length Prefix allows the use of 
MOV DX, TABLE[ESl*2]. The assembler uses an 

Address Length Prefix since, with D = O, the default 
addressing mode is 16-bits. 

Example: The D bit is 1, and the program wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
DX. 

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64 Kbytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 486 Microprocessor addressing modes. 

When executing 32-bit code, the 486 Microproces­
sor uses either 8-, or 32-bit displacements, and any 
register can be used as base or index registers. 
When executing 16-bit code, the displacements are 
either 8, or 16 bits, and the base and index register 
conform to the 80286 model. Table 2.12 illustrates 
the differences. 

2.6 Data Formats 

2.6.1 DATA TYPES 

The 486 microprocessor can support a wide-variety 
of data types. In the following descriptions, the on­
chip floating point unit (FPU) consists of the floating 
point registers. The central processing unit (CPU) 
consists of the base architecture registers. 

2.6.1.1 Unsigned Data Types 

The FPU does not support unsigned data types. Re­
fer to Table 2.13. 

Byte: Unsigned 8-bit quantity 

Word: Unsigned 16-bit quantity 

Dword: Unsigned 32-bit quantity 

The least significant bit (LSB) in a byte is bit O, and 
the most significant bit is 7. 

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16-Bit Addressing 32-Bit Addressing 

BASE REGISTER BX,BP Any 32-bit GP Register 
INDEX REGISTER Sl,DI Any 32-bit GP Register 

Except ESP 
SCALE FACTOR none 1, 2, 4, 8 
DISPLACEMENT 0, 8, 16 bits o, 8, 32 bits 

5-36 



intJ i486™ MICROPROCESSOR 

2.6.1.2 Signed Data Types 

All signed data types assume 2's complement nota­
tion. The signed data types contain two fields, a sign 
bit and a magnitude. The sign bit is the most signifi­
cant bit (MSB). The number is negative if the sign bit 
is 1. If the sign bit is 0, the number is positive. The 
magnitude field consists of the remaining bits in the 
number. Refer to Table 2.13. 

8-bit Integer: Signed 8-bit quantity 

16-bit Integer: Signed 16-bit quantity 

32-bit Integer: Signed 32-bit quantity 

64-bit Integer: Signed 64-bit quantity 

The FPU only supports 16-, 32- and 64-bit integers. 
The CPU only supports 8-, 16- and 32-bit integers. 

2.6.1.3 Floating Point Data Types 

Floating point data type in the 486 microprocessor 
contain three fields, sign, significand and exponent. 
The sign field is one bit and is the MSB of the float­
ing point number. The number is negative if the sign 
bit is 1. If the sign bit is O, the number is positive. The 
significand gives the significant bits of the number. 
The exponent field contains the power of 2 needed 
to scale the significand. Refer to Table 2.13. 

Only the FPU supports floating point data types. 

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total. 

Double Precision Real: 52-bit significand and 11-
bit exponent. 64 bits total. 

Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total. 

5-37 

2.6.1.4 BCD Data Types 

The 486 microprocessor supports packed and un­
packed binary coded decimal (BCD) data types. A 
packed BCD data type contains two digits per byte, 
the lower digit is in bits 0-3 and the upper digit in 
bits 4-7. An unpacked BCD data type contains 1 
digit per byte stored in bits 0-3. 

The CPU supports 8-bit packed and unpacked BCD 
data types. The FPU only supports 80-bit packed 
BCD data types. Refer to Table 2.13. 

2.6.1.5 String Data Types 

A string data type is a contiguous sequence of bits, 
bytes, words or dwords. A string may contain be­
tween 1 byte and 4 Gbytes. Refer to Table 2.14. 

String data types are only supported by the CPU. 

Byte String: Contiguous sequence of bytes. 

Word String: Contiguous sequence of words. 

Dword String: Contiguous sequence of dwords. 

Bit String: A set of contiguous bits. In the 486 micro­
processor bit strings can be up to 4 gigabits long. 

2.6.1.6 ASCII Data Types 

The 486 microprocessor supports ASCII (American 
Standard Code for Information Interchange) strings 
and can perform arithmetic operations (such as ad­
dition and division) on ASCli data. The CPU can only 
operate on ASCII data. Refer to Table 2.14. 

I 



intef i486™ MICROPROCESSOR 

Table 2.13. i486™ Microprocessor Data Types 
supported by supported by 

-e Registers FPU Least Significant Byte 
J, J, J, 

Data Format Range Precision 1 ~7 17 p ~7 ~7 17 11 17 ~7 0 

Byte x 0-255 8 bits c 
15 0 

Word x 0-64K 16 bits [ 

31 0 

Dword x 0-4G 32 bits [ 

8-Bit Integer x 102 8 bits Two's •[Ij Complement 

Sign Bit t 

15 0 

16-Bit Integer xx 104 16 bits Two's [I 
Complement 

SignBit t 

31 0 

32-Bit Integer xx 109 32 bits Two's [ I 
Complement 

Sign Bit t 

63 0 

64-Bit Integer x 1019 64 bits Two's l l 
Complement 

SignBlt t 

7 0 

8-Bit Unpacked BCD x 0-9 1 Digit One BCD Digit per Byte [ 

7 0 

8-Bit Packed BCD x 0-9 2 Digits Two BCD Digits per Bytel 

79 72 0 

80-Bit Packed BCD x ±10±18 18 Digits llgoored l 
t SignBit 

31 23 0 

Single Precision Real x ±10±38 24 Bits [ !=~ Significand 

Sign Bit t 

63 52 0 

Double Precision Real x ±10±308 53 Bits l lB~e1 Exp. Significand 

Sign Bit t 

79 63 0 

Extended Precision Real x ± 10±4932 64 Bits I Biased I, Significand Exp. 
t .Sign Bit 

5-38 



intJ i486™ MICROPROCESSOR 

Table 2.14. String and ASCII Data Types 

String Data Types 

Address A+N A+1 A 

CJ 17 

1 
017 

0 

ol Byte String ... 

A+2N+1 A+2N A+3 A+2 A+1 A 

115 

I 

ol 115 

I 

ol15 

I 

ol Word String N ... 1 0 

A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+1 A 

Dwordl ' I ' 
ol 131 

' I ' 
0131 

' I ' 
ol String 31 

N ... 1 0 

A+ 268,435,455 A - 268,435,456 
! A+3 A+2 A+1 A A-1 A-2 A-3 ! 

Bit I 
017 01 ll 17 017 017 017 017 017 017 01 ll 17 017 0

1 String 7 ... 1 

t t t i t 
+2,147,483,647 +7 +10 -2,147,483,648 

ASCII Data Types 

ASCII Character D 
2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types 

A pointer data type contains a value that gives the 
address of a piece of data. The 486 microprocessor 
supports two types of pointers. Refer to Table 2.15. 

48-bit Pointer: 16-bit selector and 32-bit offset 

32-bit Pointer: 32-bit offset 

48-Bit Pointer 

32-Bit Pointer 

5-39 

Least Sig Byte 

Selector Offset 

31 

Offset 



intef i486™ MICROPROCESSOR 

2.6.2 LITTLE ENDIAN vs BIG ENDIAN 
DATA FORMATS 

The 486 microprocessor, as well as all other mem­
bers· of the 86 architecture use the "little-endian" 
method for storing data types that are larger than 
one byte. Words are stored in two consecutive bytes 
in memory with the low-order byte at the lowest ad­
dress and the high order byte at the high address. 
Dwords are stored in four consecutive bytes in mem­
ory with the low-order byte at the lowest address 
and the high order byte at the highest address. The 
address of a word or dword data item is the byte 
address of the low-order byte. 

Figure 2.18 ·illustrates the differences between the 
big-endian and little-endian formats for dwords. The 
32 bits of data are shown with the low order bit num­
bered bit 0 and the high order bit numbered 32. Big­
endian data is stored with the high-order bits at the 
lowest addressed byte. Little-endian data is stored 
with the high-order bits in the highest addressed 
byte. 

The 486 microprocessor has two instructions which 
can convert 16- or 32-bit data between the two byte 
orderings. BSWAP (byte swap) handles four byte 
values and XCHG (exchange) handles two byte val­
ues. 

m+3 m+2 m+1 m 
31 24 23 16 15 8 7 0 

Dword in Little-Endlan Memory Format 

m m+1 m+2 m+3 
31 24 23 16 15 8 7 0 

Dword in Big-Endian Memory Format 

Figure 2.18. Big vs Little Endian Memory Format 

2.7 Interrupts 

2.7.1 INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions alter the normal program 
flow, in order to handle external events, to report 
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. Sections 2.7.3 and 
2.7.4 discuss the differences between Maskable and 
Non-Maskable interrupts. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and· serviced before the execution of the 
faulting instruction. A fault would occur in a virtual 
memory system, when the processor referenced a 
page or a segment which was not present. The oper­
ating system would fetch the page or segment from 
disk, and then the 486 Microprocessorwould restart 
the instruction. Traps are exceptions that are report­
ed immediately after the execution of the instruction 
which caused the problem. User defined interrupts 
are examples of traps. Aborts are exceptions which 
do not permit the precise location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in system tables. 

5-40 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point at the instruction 
causing the exception and include any leading in­
struction prefixes. Table 2.16 summarizes the possi­
ble interrupts for the 486 Microprocessor and shows 
where the return address points. 

The 486 Microprocessor has the ability to handle up 
to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are 
simply pointers to the appropriate interrupt service 
routine. In Real Mode (see Section 3.1 ), the vectors 
are 4 byte quantities, a Code Segment plus a 16-bit 
offset; in Protected Mode, the interrupt vectors are 8 
byte quantities, which are put in an Interrupt Descrip­
tor Table (see Section 4.3.3.4). Of the 256 possible 
interrupts, 32 are reserved for use by Intel, the re­
maining 224 are free to be used by the system de­
signer. 

2.7.2 INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 486 Microprocessor which identifies the 



infef i486™ MICROPROCESSOR 

2.7.3 MASKABLE INTERRUPT appropriate entry in the interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user supplied interrupt service 
routine is executed. Finally, when an IRET instruc­
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 486 Mi­
croprocessor in several different ways: exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maska­
ble hardware interrupts are assigned to interrupt 
vector 2. 

Maskable interrupts are the most common way used 
by the 486 Microprocessor to respond to asynchro­
nous external hardware events. A hardware interrupt 
occurs when the INTR is pulled high and the Inter­
rupt Flag bit (IF) is enabled. The processor only re­
sponds to interrupts between instructions, (REPeat 
String instructions, have an "interrupt window'', be­
tween memory moves, which allows interrupts dur­
ing long string moves). When an interrupt occurs the 
processor reads an 8-bit vector supplied by the 
hardware which identifies the source of the interrupt, 
(one of 224 user defined interrupts). The exact na­
ture of the interrupt sequence is discussed in Sec­
tion 7.2.10. 

Table 2.16. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function 
Interrupt 

Can Cause 
Points to 

Type 
Number Faulting 

Exception 
Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 Any Instruction YES TRAP* 

NMI Interrupt 2 INT 2 orNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC, WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Intel Reserved 9 

lnvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Intel Reserved 15 

Floating Point Error 16 Floating Point, WAIT YES FAULT 

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT 

Intel Reserved 18-31 

Two Byte Interrupt 0-255 INTn NO TRAP 

*Some debug exceptions may report bott) traps on the previous instruction, and faults on the next instruction. 

5-41 



i486™ MICROPROCESSOR 

The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the 
original state of the IF is restored. 

2.7.4 NON-MASKABLE INTERRUPT 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example 
of the use of a non-maskable interrupt (NMI) would 
be to activate a power failure routine. When the NMI 
input is pulled high it causes an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

Whi.le executing the NMI servicing procedure, the 
486 Microprocessor will not service further NMI re­
quests until an interrupt return (IRET) instruction is 
executed or the processor is reset. If NMI occurs 
while currently servicing an NMI, its presence will be 
saved for servicing after executing the first IRET in­
struction. The IF bit is cleared at the beginning of an 
NMI interrupt to inhibit further INTR interrupts. 

2.7.5 SOFTWARE INTERRUPTS 

A third type of interrupt/ exception for the 486 Micro­
processor is the software interrupt. An INT n instruc­
tion causes the processor to execute the interrupt 
service routine. pointed to by the nth vector in the 
interrupt table. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt is the single step 
interrupt. It is discussed in. Section 9.2. 

5-42 

2.7.6 INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries; When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 486 Microprocessor invokes the NMI 
service routine first. If, after the NMI service routine 
has been invoked, maskable interrupts are still en­
abled, then the 486 Microprocessor will invoke the 
appropriate interrupt service routine. 

Table 2. 17a. i486™ Microprocessor Priority for 
Invoking Service Routines in Case of 

Simultaneous External Interrupts 

1. NMI 

2. INTR 

Exceptions are internally-generated events. Excep­
tions are detected by the 486 Microprocessor if, in 
the course of executing an instruction, the 486 Mi­
croprocessor detects a problematic condition. The 
486 Microprocessor then immediately invokes the 
appropriate exception service routine. The state of 
the 486 Microprocessor is such that the instruction 
causing the exception can be restarted. H the excep­
tion service routine has taken care of the problemat­
ic condition, the instruction will execute without 
causing the ~ame exception. 

It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper­
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner, 
exceptions are serviced until the instruction exe­
cutes successfully. 

As the 486 Microprocessor executes instructions, it 
follows a consistent cycle in checking for excep­
tions, as shown in Table 2.17b. This cycle is repeat­
ed as each instruction is executed, and occurs in 
paralleLwith instruction decoding and execution. 



intJ i486™ MICROPROCESSOR 

Table 2.17b. Sequence of Exception Checking 

Consider the case of the 486 Microprocessor 
having just completed an instruction. It then per· 
forms the following checks before reaching the 
point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruc· 
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis· 
ters). 

2. Check for Exception 1 Faults in the next in· 
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc· 
tion). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11or13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see Section 4.6.4); or exception 
13 if instruction is longer than 15 bytes, or priv­
ilege violation in Protected Mode (i.e., not at 
IOPL or at CPL=O). 

7. If WAIT opcode, check if TS= 1 and MP= 1 
(exception 7 if both are 1). 

8. If opcode for Floating Point Unit, check if 
EM= 1 or TS= 1 (exception 7 if either are 1 ). 

9. If opcode for Floating Point Unit (FPU), check 
FPU error status (exception 16 if error status is 
asserted). 

1 o. Check in the following order for each memo­
ry reference required by the instruction: 

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti­
ty (exceptions 11, 12, 13). 

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14). 

NOTE: 
The order stated supports the concept of the 
paging mechanism being "underneath" the seg­
mentation mechanism. Therefore, for any given 
code or data reference in memory, segmenta­
tion exceptions are generated before paging ex­
ceptions are generated. 

2.7.7 INSTRUCTION RESTART 

The 486 Microprocessor fully supports restarting all 
instructions after faults. If an exception is detected in 
the instruction to be executed (exception categories 
4 through 10 in Table 2.17b), the 486 Microproces­
sor invokes the appropriate exception service rou­
tine. The 486 Microprocessor is in a state that per­
mits restart of the instruction, for all cases but those 
in Table 2.17c. Note that all such cases are easily 
avoided by proper design of the operating system. 

Table 2.17c. Conditions Preventing 
Instruction Restart 

An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be avoid­
ed either by keeping the TSS's of such tasks 
present in memory, or by aligning TSS segments 
to reside entirely within a single 4K page (for TSS 
segments of 4 Kbytes or less). 

NOTE: 
These conditions are avoided by using the oper­
ating system designs mentioned in this table. 

2.7.8 DOUBLE FAULT 

5-43 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception 
other than a Page Fault (exception 14). 

A Double Fault (exception 8) will also be generated 
when the processor attempts to invoke the Page 
Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any 
functional system, the entire Page Fault service rou­
tine must remain "present" in memory. 

When a Double Fault occurs, the 486 Microproces­
sor invokes the exception service routine for excep­
tion 8. 

2.7.9 FLOATING POINT INTERRUPT VECTORS 

Several interrupt vectors of the 486 microprocessor 
are used to report exceptional conditions while exe­
cuting numeric programs in either real or protected 
mode. Table 2.18 shows these interrupts and their 
causes. 

I 



intef 1486™ MICROPROCESSOR 

Table 2.18. lnt,rrupt Vectors Used by FPU 

lntem.1pt Cause of Interrupt 
Number . 

7 A Floating Point instruction was encountered when EM or TS of the 486™ processor 
control register zero (CAO) was set. EM = 1 indicates that software emulation of the 
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes 
interrupt 7. This indicates that the current FPU context may not belong to the current task. 

13 The first word or doubleword of a numeric operand is not entirely within the limit of its 
segment. The return address pushed onto the stack of the exception handler points at the 
Floating Point instruction that caused the exception, including any prefixes. The FPU has 
not executed this instruction; the instruction pointer and data pointer register refer to a 
previous, correctly executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the 
faulty instruction and the address of its operand are stored in the instruction pointer and 
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt. 
The 486™ processor return address pushed onto the stack of the exception handler 
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be 
restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX, 
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt. 

3.0 REAL MODE ARCHITECTURE All of the. 486 Microprocessor instructions are avail­
able in Real Mode (except those instructions listed 
in Section 4.6.4). The default operand size in Real 
Mode is 16 bits, just like the 8086. In order to use the 
32-bit registers and addressing modes, override pre­
fixes must be used. In addition, the segment 
size on the 486 Microprocessor in Real Mode is 
64 Kbytes so 32-bit effective addresses must have a 
value less the OOOOFFFFH~ The primary purpose of 
Real Mode is to set up the processor for Protected 
Mode Operation. 

3.1 Real Mode Introduction 

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32-bit register set of the 486 Microprocessor. The 
addressing mechanism, memory size, interrupt han­
dling, are all identical to the Real Mode on the 
80286. 

15 0 

OFFSET 

19 

SEGMENT 
SELECTOR 0000 

0 

SEGMENT BASE 

Figure 3.1. Real Address Mode Addressing 

5-44 

SELECTED 
SEGMENT 

240440-9 



intef i486™ MICROPROCESSOR 

The LOCK prefix on the 486 Microprocessor, even in 
Real Mode, is more restrictive than on the 80286. 
This is due to the addition of paging on the 486 Mi­
croprocessor in Protected Mode and Virtual 8086 
Mode. Paging makes it impossible to guarantee that 
repeated string instructions can be LOCKed. The 
486 Microprocessor can't require that all pages 
holding the string be physically present in memory. 
Hence, a Page Fault (exception 14) might have to be 
taken during the repeated string instruction. There­
fore the LOCK prefix can't be supported during re­
peated string instructions. 

These are the only instruction forms where the 
LOCK prefix is legal on the 486 Microprocessor: 

Opcode 
Operands 

(Dest, Source) 

BIT Test and Mem, Reg/immed 
SET /RESET /COMPLEMENT 

XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 
CMPXCHG, XADD Mem, Reg 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. For example, even the 
ADD Reg, Mem is not LOCKable, because the Mem 
operand is not the destination (and therefore no 
memory read/modify/operation is being performed). 

Since, on the 486 Microprocessor, repeated string 
instructions are not LOCKable, it is not possible to 
LOCK the bus for a long period of time. Therefore, 
the LOCK prefix is not IOPL-sensitive on the 486 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed above. 

3.2 Memory Addressing 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A 19 are 
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until 
an intersegment jump or call is executed (see Sec­
tion 6.5)). 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective 

address. This addition results in a physical address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits, Real Mode segments always 
start on 16 byte boundaries. 

All segments in Real Mode are exactly 64 Kbytes 
long, and may be read, written, or executed. The 486 
Microprocessor will generate an exception 13 if a 
data operand or instruction fetch occurs past the 
end of a segment (i.e., if an operand has an offset 
greater than FFFFH, for example a word with a low 
byte at FFFFH and the high byte at OOOOH). 

Segments may be overlapped in Real Mode. Thus, if 
a particular segment does not use all 64 Kbytes an­
other segment can be overlayed on top of the un­
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 

3.3 Reserved Locations 

There are two fixed areas in memory which are re­
served in Real address mode: system initialization 
area and the interrupt table area. Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
jump vector reserved for it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for system initiali­
zation. 

3.4 Interrupts 

5-45 

Many of the exceptions shown in Table 2.16 and 
discussed in Section 2.7 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
17, will not happen in Real Mode. Other exceptions 
have slightly different meanings in Real Mode; Table 
3.1 identifies these exceptions. 

3.5 Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF= 1 ), or RESET will force the 486 Microprocessor 
out of halt. If interrupted, the saved CS:IP will point 
to the next instruction after the HL T. 

As in the case in protected mode, the shutdown will 
occur when a severe error is detected that prevents 
further processing. In Real Mode, shutdown can oc­
cur under two conditions: 

An interrupt or an exception occur (exceptions 8 or 
13) and the interrupt vector is larger than the Inter­
rupt Descriptor Table (i.e., there is not an interrupt 
handler for the interrupt). 

I 



intef 1486™ MICROPROCESSOR 

Table 3.1; Exceptions with Different Meanings In Real Mode (see Table 2.16) 

Function 
Interrupt 
Number 

Interrupt table limit too small 8 

CS, OS, ES, FS, GS 13 
Segment overrun exception 

SS Segment overrun exception 12 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even (i.e., 
pushing a value on the stack when SP = 0001 re­
sulting in a stack segment greater than FFFFH). ' 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is 11;1.rge 
enough to contain the NMI interrupt vector (at least 
0017H) and the stack has enough room to contain 
the vector and flag information (i.e., SP is greater 
than 0005H). If these conditions are not met, the 
i486 CPU is unable to execute the NMI and executes 
another shutdown cycle. In this case, the processor 
remains in the shutdown and can only exit via the 
RESET input. 

4.0 PROTECTED MODE 
ARCHITECTURE 

4.1 Introduction 

The complete capabilities of the 486 Microprocessor 
are unlocked when the processor operates in Pro­
tected Virtual Address Mode (Protected Mode). Pro­
tected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim­
ited size (64 terabytes or 246 bytes). In addition Pro­
tected Mode allows the 486 Microprocessor to run 
all of the existing 8086, 80286 and 386 microproces­
sor software, while providing a sophisticated memo­
ry management and a hardware-assisted protection 
mechanism. Protected Mode allows the use of addi­
tional instructions especially optimized for support­
ing multitasking operating systems. The base archi­
tecture of the 486 Microprocessor remains the 
same, the registers, instructions, and addressing 
modes described in the previous sections are re-

Related Return 
Instructions Address Location 

INT Vector is not 
~ 

Before 
within table limit Instruction 

Word memory reference Before 
beyond offset = FFFFH. Instruction 
An attempt to execute 
pastthe end of CS segment. 

Stack Reference Before 
beyond offset = FFFFH Instruction 

tained. The main difference between Protected 
Mode, and Real Mode from a programmer's view is 
the increased address space, and a different ad­
dressing mechanism. 

4.2 Addressi".19 Mechanism 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating 
system defined table (see Figure 4.1 ). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

5-46 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments .of the 486 Microprocessor. As such, pag­
ing operates beneath segmentation. The paging 
mechanism translates the protected linear address 
which comes from the segmentation unit into a 
physical address. Figure 4.2 shows the complete 
4.86 Microprocessor addressing mechanism with 
paging enabled. 



inter i486TM MICROPROCESSOR 

48/32 BIT POINTER 
SEGMENT LIMIT 

SELECTOR OFFSET 

47/31 31/15 

0----+ MEMORY OPERAND 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SELECTED 
SEGMENT 

SEGMENT 
DESCRIPTOR 

SEGMENT BASE 
ADDRESS 

240440-10 

Figure 4.1. Protected Mode Addressing 

48 BIT POINTER 

15 31 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

486™ CPU 
PAGING 

MECHANISM PHYSICAL 
ADDRESS 

PAGE FRAME 

ADDRESS 

PHYSICAL ADDRESS 

! 4KBYTES 

4KBYTES 

4KBYTES 

MEMORY OPERAND PHYSICAL PAGE: 
4KBYTES 

4KBYTES 

4KBYTES 

! 4KBYTES 

240440-11 

Figure 4.2. Paging and Segmentation 

4.3 Segmentation 

4.3.1 SEGMENTATION INTRODUCTION 

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about a 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 

5-47 

4.3.2 TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level O is the most privileged level 
and level 3 is the least privileged. More privileged 
levels are numerically smaller than less privileged 
levels. 

APL: Requester Privilege Level-The privilege level 
of the original supplier of the selector. APL is deter­
mined by the least two significant bits of a selector. 

I 



intJ i486™ MICROPROCESSOR 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 
CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the APL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of APL and 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

4.3.3 DESCRIPTOR TABLES 

4.3.3.1 Descriptor Tables Introduction 

The descriptor tables define all of the segments 
which are used in an 486 Microprocessor system. 
There are three types of tables on the 486 Micro­
processor which hold descriptors: the Global De­
scriptor Table, Local Descriptor Table, and the Inter­
rupt Descriptor Table. All of the tables are variable 
length memory arrays. They can range in size be­
tween 8 bytes and 64 Kbytes. Each table can hold 
up to 8192 8-byte descriptors. The upper 13 bits of a 
selector are used as an index into the descriptor ta­
ble. The tables have registers associated with them 
which hold the 32-bit linear base address, and the 
16-bit limit of each table. 

Each of the tables has a register associated with it, 
the GDTR, LOTA, and the IOTA (see Figure 4.3). 
The LGDT, LLDT, and LIDT instructions, load the 
base and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLOT, and SIDT store the base 
and limit values. These tables are manipulated by 
the operating system. Therefore, the load descriptor 
table instructions are privileged instructions. 

15 

LOTR LOT DESCR 
SELECTOR 

15 

IDT LIMIT 

IDTR IDT BASE 
LINEAR ADDRESS 

31 

15 

GOT LIMIT 

GOTR 
GOT BASE 
LINEAR ADDRESS 

31 

0 : 15 0 
I 

' LDT LIMIT 
I 
I 
I LDT BASE 

O : LINEAR ADDRESS 

: 32 

0 

0 

I PROGRAM INVISIBLE 
: AUTOMATICALLY LOADED 
1 FROM LDT DESCRIPTOR 

240440-12 

Figure 4.3. Descriptor Table Registers 

4.3.3.2 Global Descriptor Table 

The Global Descriptor Table (GOT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GOT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (i.e., interrupt and trap 
descriptors). Every 486 Microprocessor system con­
tains a GOT. Generally the GOT contains code and 
data segments used by the operating systems and 
task state segments, and descriptors for the LDTs in 
a system.· 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

5-48 

4.3.3.3 Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GOT. This pro-



intJ i486™ MICROPROCESSOR 

vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GOT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT. 

4.3.3.4 Interrupt Descriptor Table 

The third table needed for 486 Microprocessor sys­
tems is the Interrupt Descriptor Table. (See Figure 
.4.4.) The IDT contains the descriptors which point to 
the location of up to 256 interrupt service routines. 
The IDT may contain only task gates, interrupt 
gates, and trap gates. The IDT should be at least 
256 bytes in size in order to hold the descriptors for 
the 32 Intel Reserved Interrupts. Every interrupt 
used by a system must have an entry in the IDT. The 
IDT entries are referenced via INT instructions, ex­
ternal interrupt vectors, and exceptions. (See Sec­
tion 2.7 Interrupts). 

I'\, -y '"I.. 

GAT£FOR 
INTERRUPT #n 

GAT£FOR 
INTERRUPT #n-1 

INTERRUPT 
DESCRIPTOR 
TABLE 
(IDT) 

GAT£FOR 
tNTEAAUPT #1 

l hi GAT£FOR 
INTERRUPT #0 

" ~ "" 240440-13 

Figure 4.4. Interrupt Descriptor 
Table Register Use 

5-49 

4.3.4 DESCRIPTORS 

4.3.4. 1 Descriptor Attribute Bits 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space (i.e., a segment). These 
attributes include the 32-bit base linear address of 
the segment, the 20-bit length and granularity of the 
segment, the protection level, read, write or execute 
privileges, the default size of the operands (16-bit or 
32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4.5 shows the gen­
eral format of a descriptor. All segments on the 486 
Microprocessor have three attribute fields in com­
mon: the P bit, the DPL bit, and the S bit. The Pres­
ent P bit is 1 if the segment is loaded in physical 
memory, if P=O then any attempt to access this 
segment causes a not present exception (exception 
11 ). The Descriptor Privilege Level DPL is a two-bit 
field which specifies the protection level 0-3 associ­
ated with a segment. 

The 486 Microprocessor has two main categories of 
segments: system segments and non-system seg­
ments (for code and data). The segment S bit in the 
segment descriptor determines if a given segment is 
a system segment or a code or data segment. If the 
S bit is 1 then the segment is either a code or data 5 segment, if it is 0 then the segment is a system seg-
ment. 

4.3.4.2 1486™ CPU Code, Data Descriptors 
(S=1) 

Figure 4.6 shows the general format of a code and 
data descriptor and Table 4.1 illustrates how the bits 
in the Access Rights Byte are interpreted. 



intJ 
31 

SEGMENT BASE 15 ... 0 

BASE31 ... 24 G D 0 AVL 

BASE Base Address of the segment 
LIMIT The length of the segment 

i486™ MICROPROCESSOR 

LIMIT 
19 ... 16 

SEGMENT LIMIT 15 ... 0 

p DPL s TYPE 

P Present Bit 1 =Present 0 = Not Present 
DPL Descriptor Privilege Level 0-3 

A 

S Segment Descriptor O =System Descriptor 1 =Code or Data Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 

0 

BASE 
23 ... 16 

BYTE 
ADDRESS 

0 

+4 

G Granularity Bit 1 =Segment length i$ page granular O=Segment length is byte granular 
D Default Operation Size (recognized in code segment descriptors only) 

1 = 32-bit segment O = 16-bit segment 
O Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

NOTE: 
In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the 
segment base s.hould be zero (i.e., segment base 11 ... 000 = OOOH). 

Figure 4.5. Segment D.escriptors 

31 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .•. 0 

LIMIT 
BASE31 ... 24 G D 0 AVL 

19 ... 16 

D/B 1 =Default Instruction Attributes are 32-Bits 
O =Default Instruction Attributes are 16-Bits 

AVL Available field for user or OS 
G Granularity Bit 1 =Segment length is page granular 

O =Segment length is byte granular 
O Bit must be zero (0) for compatibility with future processors 

ACCESS 
RIGHTS 

BYTE 

Figure 4.6. Segment Descriptors 

5-50 

0 

0 

BASE 

23 ... 16 
+4 



intJ i486™ MICROPROCESSOR 

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) p = 1 Segment is mapped into physical memory. 
p = 0 No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip- s = 1 Code or Data (includes stacks) segment descriptor. 

tor (S) S=O System Segment Descriptor or Gate Descriptor. 

Type 
Field 
Definition 

3 
2 

1 

Executable (E) 
Expansion Direc-
tion (ED) 
Writeable (W) 

E ~ O De"ripto< type;, data •ogmeot } If 
ED = O Expand up segment, offsets must be '.": limit. Data 
ED = 1 Expand down segment, offsets must be > limit. Segment 
W = 0 Data segment may not be written into. (S = 1 , 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

r 2 Conforming (C) c = 1 Code segment may only be executed Code 
when CPL ?: DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R = 1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A= 1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or 
page-granular. 486 Microprocessor segments can 
be one megabyte long with byte granularity (G = 0) 
or four gigabytes with page granularity (G = 1 ), (i.e., 
220 pages each page is 4 Kbytes in length). The 
granularity is totally unrelated to paging. A. 486 Mi­
croprocessor system can consist of segments with 
byte granularity, and page granularity, whether or not 
paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1, S = 1) may be 
execute-only or execute/read as determined by the 
Read R bit. Code segments are execute only if 
R = O, and execute/read if R = 1. Code segments 
may never be written into. 

NOTE: 
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the 
same range of linear address space as the code 
segment. 

5-51 

The D bit indicates the default length for operands • 
and effective addresses. If D= 1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If 
D = O then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 80286 
code segments will execute on the 486 Microproc-
essor assuming the D bit is set 0. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C = 1, 
can be executed and shared by programs at differ­
ent privilege levels. (See Section 4.4 Protection.) 

Segments identified as data segments (E = 0, S = 1) 
are used for two types of 486 Microprocessor seg­
ments: stack and data segments. The expansion di­
rection (ED) bit specifies if a segment expands 
downward (stack) or upward (data). If a segment is a 
stack segment all offsets must be greater than the 
segment limit. On a data segment all offsets must be 
less than or equal to the limit. In other words, stack 
segments start at the base linear address plus the 
maximum segment limit and grow down to the base 
linear address plus the limit. On the other hand, data 
segments start at the base linear address and ex­
pand to the base linear address plus limit. 



intJ i486™ MICROPROCESSOR 

The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = 0. The 
stack segment must have W = 1 . 

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLS all use 
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B=O, stack 
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH. 

4.3.4.3 System Descriptor Formats 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4. 7 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
486 Microprocessor system descriptors contain a 
32-bit base linear address and a 20-bit segment lim­
it. 80286 system descriptors have a 24-bit base ad­
dress and a 16-bit segment limit. 80286 system de­
scriptors are identified by the upper 16 bits being all 
zero. 

4.3.4.4 LDT Descriptors (S = 0, TYPE= 2) 

LDT descriptors (S = O, TYPE= 2) contain informa­
tion about Local Descriptor Tables. LDTs contain a 
table of segment descriptors, unique to a particular 
task. Since the instruction to load the LDTR is only 
available at privilege level O, the DPL field is ignored. 
LDT descriptors are only allowed in the Global De­
scriptor Table (GOT). 

31 16 

SEGMENT BASE 15 ... 0 

BASE31 ... 24 G 0 0 0 
LIMIT 

19 ... 16 
Type Defines 
0 Invalid 
1 Available 80286 TSS 
2 LDT 
3 Busy 80286 TSS 
4 80286 Call Gate 
5 Task Gate (for 80286 or 486TM CPU Task) 
6 80286 Interrupt Gate 
7 80286 Trap Gate 

4.3.4.5 TSS Descriptors (S = 0, 
TYPE= 1, 3, 9, B) 

A Task State Segment (TSS) descriptor contains in­
formation about the location, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (i.e., on a 
chain of active tasks) or the TSS is available. The 
TYPE field also indicates if the segment contains a 
80286 or a 486 Microprocessor TSS. The Task Reg­
ister (TR) contains the selector which points to the 
current Task State Segment. 

4.3.4.6 Gate Descriptors (S = 0, 
TYPE=4-7, C, F) 

Gates are used to control access to entry points 
within the target code segment. The various types of 
gate descriptors are call gates, task gates, 
interrupt gates, and trap gates. Gates provide a 
level of indirection between the source and destina­
tion of the control transfer. This indirection allows 
the processor to automatically perform protection · 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege levels (see Section 4.4 
Protection), task gates are used to perform a task 
switch, and interrupt and trap gates are used to 
specify interrupt service routines. 

0 

SEGMENT LIMIT 15 ... 0 0 

p DPL 

Type 
8 
9 
A 
B 
c 
D 
E 
F 

0 TYPE 

Defines 
Invalid 
Available 486™ CPU TSS 
Undefined (Intel Reserved) 
Busy 486TM CPU TSS 
486™ CPU Call Gate 
Undefined (Intel Reserved) 
486TM CPU Interrupt Gate 
486Tf,t CPU Trap Gate 

BASE 
23 ... 16 

+4 

Figure 4.7. System Segment Descriptors 

5-52 



intef i486™ MICROPROCESSOR 

Figure 4.8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to the start of a routine and a word count 
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called 
routine. The word count field is only used by call 
gates when there is a change in the privilege level, 
other types of gates ignore the word count field. 

Interrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as 
a pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates and 
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not. 

Task gates are used to switch tasks. Task gates 
may only refer to a task state segment (see Section 
4.4.6 Task Switching) therefore only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. 

31 24 16 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = O indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see Section 4.4 
Protection). The S field, bit 4 of the access rights 
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as 
indicated in Figure 4.8. 

4.3.4.7 Differences Between i486™ 
Microprocessor and 80286 Descriptors 

In order to provide operating system compatibility 
between the 80286 and 486 Microprocessor, the 
486 Microprocessor supports all of the 80286 seg­
ment descriptors. Figure 4.9 shows the general for­
mat of an 80286 system segment descriptor. The 
only differences between 80286 and 486 Microproc­
essor descriptor formats are that the values of the 
type fields, and the limit and base address fields 
have been expanded for the 486 Microprocessor. 
The 80286 system segment descriptors contained a 
24-bit base address and 16-bit limit, while the 486 
Microprocessor system segment descriptors have a 
32-bit base address, a 20-bit limit field, and a granu­
larity bit. 

8 5 0 

SELECTOR OFFSET 15 ... 0 0 

OFFSET 31 ... 16 

Name 
Type 

p 

Value 
4 
5 
6 
7 
c 
E 
F 
0 
1 

p DPL 0 

Gate Descriptor Fields 
Description 

80286 call gate 
Task gate (for 80286 or 486™ CPU task) 
80286 interrupt gate 
80286 trap gate 
486™ CPU call gate 
486TM CPU interrupt gate 
486™ CPU trap gate 
Descriptor contents are not valid 
Descriptor contents are valid 

WORD 
TYPE 0 0 0 COUNT +4 

...L .l ...L 
4 ... 0 

DPL-least privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32-bit quantities for 486™ CPU gates, and 16-bit quantities for 80286 gates. · 

DESTINATION 16-bit Selector to the target code segment 
SELECTOR selector or 

DESTINATION 
OFFSET 

Selector to the target task state segment for task gate 

offset Entry point within the target code segment 
16-bit 80286 
32-bit 486™ CPU 

Figure 4.8. Gate Descriptor Formats 

5-53 



intef i486™ MICROPROCESSOR 

By supporting 80286 system segments the 486 Mi­
croprocessor is able to execute · 80286 application 
programs on a 486 Microprocessor operating sys­
tem. This is possible because the processor auto­
matically understands which descriptors are 80286-
style descriptors and which descriptors are 486 Mi­
croprocessor-style descriptors. In particular, if the 
upper word of a descriptor is zero, then that descrip­
tor is a 80286-style descriptor. 

The only other differences between 80286-style de­
scriptors and 486 Microprocessor descriptors is the 
interpretation of the word count field of call gates 
and the B bit. The word cotlnt field specifies the 
number of 16-bit quantities to copy for 80286 call 
gates and 32-bit quantities for 486 Microprocessor 
call gates. The B bit controls the size of PUSHes 
when using a call gate; if B = 0 PUSHes are 16 bits, 
if B = 1 PUSHes are 32 bits. 

4.3.4.8 Selector Fields 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table Indicator (Tl), Descriptor 

31 

Entry Index (Index),. and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4.10. The 
Tl bits select one of two memory-bas~d tables of 
descriptors (the Global Descriptor Table or the Local 
Descriptor Table). The Index selects one of SK de­
scriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

4.3.4.9 Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs . which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's val­
ue. 

0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

Intel Reserved 
Set to 0 

BASE 
LIMIT. 
p 

Base Address of the segment 
The length of the segment 
Present Bit 1 = Present O = Not Present 

p l DPL 
_J_ 

DPL 
s 
TYPE 

Jsj TYPE l BASE 
-1. -1. -1. 

23 ... 16 
Descriptor Privilege Level 0-3 
System Descriptor 0 = System 1 = User 
Type of Segment 

Figure 4.9. 80286 Code and Data Segment Descriptors 

5-54 

+4 



intef i486™ MICROPROCESSOR 

SEGMENT 
REGISTER 

SELECTOR 

4 3 2 1 0 

Tl RPL 
1 

,__._~~---................ .,... ............ 
INDEX TABLE 

INDICATOR 

Tl=1 Tl=O 

N N 

DESCRIPTOR 
NUMBER 

6 

5 

4 
3 OESC~IJ'TOR •. 

6 

5 

4 

3 

2 2 

0 

LOCAL 
DESCRIPTOR 

TABLE 

0 NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
240440-14 

Figure 4.10. Example Descriptor Selection 

4.3.4.10 Segment Descriptor Register Settings 

The contents of the segment descriptor cache vary 
depending on the mode the 486 Microprocessor is 
operating in. When operating in Real Address Mode, 
the segment base, limit, and other attributes within 
the segment cache registers are defined as shown 
in Figure 4.11. For compatibility with the 8086 archi-

5-55 

tecture, the base is set to sixteen times the current 
selector value, the limit is fixed at OOOOFFFFH, and 5 the attributes are fixed so as to indicate the segment 
is present and fully usable. In Real Address Mode, 
the internal "privilege level" is always fixed to the 
highest level, level 0, so 1/0 and other privileged 
opcodes may be executed. 



intef i486™ MICROPROCESSOR 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32-BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32- BIT LIMIT 

(FIXED) 

OTHER ATTRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE----------------------. 
STACK SIZE-------------------------. 
EXECUTABLE-----------------------... 
WRITEABLE-----------------------.., 
READABLE-----------------------. 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED l 
PRIVILEGE LEVEL l 
~R~~E~~ - - - - - - - ~A~~ - - - - - - - - - - - ~I~~ - - - t _ ~ -- - -- - - t'_ ~ 
cs 16X CURRENT CS SELECTOR* OOOOFFFFH y 0 y B u y y y - N 
SS 16X CURRENT SS SELECTOR OOOOFFFFH y 0 y B u y y N w -
DS 16X CURRENT DS SELECTOR OOOOFFFFH y 0 y B u y y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH y 0 y B u y y N - -
FS 1 6X CURRENT FS SELECTOR OOOOFFFFH y 0 y B u y y N - -
GS 16X CURRENT GS SELECTOR OOOOFFFFH y 0 y B u y y N - -

240440-15 

'Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., intersegment CALL, or 
intersegment JMP, or INT). (See Figure 4.13 Example.) 

Key: Y =yes 
N =no 
O = privilege level O 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

D = expand down 
B = byte granularity 
P = page granularity 
W = push/pop 16-bit words 
F = push/pop 32-bit dwords 
- = does not apply to that segment cache register 

Figure 4.11. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 

When operating in Protected Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4.12. 
In Protected Mode, each of these fields are defined 

according to the contents of the segment descriptor 
indexed by the selector value loaded into the seg­
ment register. 

5-56 



intef i486™ MICROPROCESSOR 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

32 - BIT LIMIT 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

OTHER ATIRIBUTES 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

CONFORMING PRIVILEGE----------------------. 
STACK SIZE-------------------------. 
EXECUTABLE-----------------------... 

WRITEABLE ----------------------.., 
READABLE~~~~------------------. 

EXPANSION DIRECTION 

GRANULARITY l 
ACCESSED l 
~~~i~~~E _L:~E~ ~~S~ - - - - - - - - - - - ~l~I~ - - - - - - t _ 1 _!_ - - .. _t 
cs BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d N y -

SS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d r w N d

d

-
DS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N - -
ES

FS

GS

Key: Y ~ fixed yes
N ~fixed no

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

d = per segment descriptor

LIMIT PER SEG DESCR p d d

LIMIT PER SEG DESCR p d d

LIMIT PER SEG DESCR p d d

p = per segment descriptor; descriptor must indicate "present" to avoid exception 11
(exception 12 in case of SS)

d

d

d

r = per segment descriptor, but descriptor must indicate "readable" to avoid exception 13
(special case for SS)

w = per segment descriptor, but descriptor must indicate "writable" to avoid exception 13
(special case for SS)

- = does not apply to that segment cache register

d d d N - -
d d d N - -
d d d N - -

240440-16

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de·
fined as shown in Figure 4.13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

5-57

OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-0-only instructions.

El

intef i486™ MICROPROCESSOR

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32-BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

32 - BIT LIMIT

(FIXED)

OTHER ATTRIBUTES

(FIXED)

CONFORMING PRIVILEGE---------------------.
STACK SIZE-----------------------.
EXECUTABLE----------------------.
WRITEABLE----------------------.
READABLE--------------------~
EXPANSION DIRECTION

GRANULARITY l
ACCESSED l
PRIVILEGE LEVEL !
~R~~E~~ _______ B~5_E ____________ :1~1: ___ t _ i _ _ _ __
cs 1 6X CURRENT CS SELECTOR OOOOFFFFH y 3 y B U y y y - N
SS 16X CURRENT SS SELECTOR OOOOFFFFH y 3 y B u y y N w -
OS 16X CURRENT DS SELECTOR OOOOFFFFH y 3 y B u y y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH y 3 y B u y y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH y 3 y B u y y N - -
GS 16X CURRENT GS SELECTOR OOOOFFFFH y 3 y B u y y N - -

240440-17

Key: Y = yes
N =no

D = expand down
B = by1e granularity
P = page granularity O = privilege level O

1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

W = push/pop 16-bit words
F = push/pop 32-bit dwords
- = does not apply to that segment cache register

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

4.4 Protection

4.4.1 PROTECTION CONCEPTS

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

240440-18

Figure 4.14. Four-Level Hierarchical Protection

The 486 Microprocessor has four levels of protec­
tion which are optimized to support the needs of a
multi-tasking operating system to isolate and protect
user programs from each other and the operating
system. The privilege levels control the use of privi­
leged instructions, 1/0 instructions, and access to
segments and segment descriptors. Unlike tradition­
al microprocessor-based systems where this protec­
tion is achieved only through the use of complex
external hardware and software the 486 Microproc­
essor provides the protection as part of its integrat­
ed Memory Management Unit. The 486 Microproc­
essor offers an additional type of protection on a
page basis, when paging is enabled (See Section
4.5.3 Page Level Protection).

5-58

The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the user I
supervisor privilege mode commonly used by mini­
computers and, in fact, the user/supervisor mode is
fully supported by the 486 Microprocessor paging

intJ i486™ MICROPROCESSOR

mechanism. The privilege levels (PL) are numbered
0 through 3. Level 0 is the most privileged or trusted
level.

4.4.2 RULES OF PRIVILEGE

The 486 Microprocessor controls access to both
data and procedures between levels of a task, ac­
cording to the following rules.

• Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

• A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 PRIVILEGE LEVELS

4.4.3. 1 Task Privilege

At any point in time, a task on the 486 Microproces­
sor always executes at one of the four privilege lev­
els. The Current Privilege Level (CPL) specifies the
task's privilege level. A task's CPL may only be
changed by control transfers through gate descrip­
tors to a code segment with a different privilege lev­
el. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task's CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (APL)

The privilege level of a selector is specified by the
APL field. The APL is the two least significant bits of
the selector. The selector's APL is only used to es­
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task's effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu­
merically larger) level of a task's CPL and a selec­
tor's APL. Thus, if selector's APL = 0 then the CPL
always specifies the privilege level for making an ac­
cess using the selector. On the other hand if APL =
3 then a selector can only access segments at level

5-59

3 regardless of the task's CPL. The APL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi­
nated the pointer. Since the originator of a selector
can specify any APL value, the Adjust APL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 1/0 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per­
formed. 1/0 instructions can be unconditionally per­
formed when CPL s IOPL. (The 1/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > IOPL, and the current task is associat­
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with a 486 Microprocessor
TSS, the 1/0 Permission Bitmap (part of a 486 Mi­
croprocessor TSS) is consulted on whether 1/0 to
the port is allowed, or an exception 13 fault is to be
generated instead. For diagrams of the 1/0 Permis­
sion Bitmap, refer to Figures 4.15a and 4.15b. For
further information on how the 1/0 Permission Bit­
map is used in Protected Mode or in Virtual 8086
Mode, refer to Section 4.6.4 Protection and 1/0 Per­
mission Bitmap.

The 1/0 privilege level (IOPL) also affects whether I
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called "IOPL-sensitive" instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL­
sensitive on the 486 Microprocessor.)

The IOPL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL s IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP'ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

intef 1486™ MICROPROCESSOR

Table 4.2. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the

APL of the selector to the
numeric maximum of
current selector APL value
and the APL value in the
register. Set zero flag if
selector APL was
changed.

VEAR Selector VERify for Read: sets the ,
zero flag it the segment
referred to by the selector
can be read.

VERW Selector VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

LSL Register, Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access

rights byte into the register
if privilege rules allow. Set
zero flag if successful.

4.4.3.4 Privilege Validation

The 486 Microprocessor provides several instruc­
tions to speed pointer testing and help maintain sys­
tem integrity by verifying that the selector value
refers to an appropriate segment. Table 4.2 summa­
rizes the selector validation procedures available for
the 486 Microprocessor.

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-

tion to ensure that the APL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Dete.r­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
APL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the 486 Microprocessor makes
protection validation checks. Selectors loaded in the
DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data ac­
cess rules are specified in Section 4.4.2 Rules of
Privilege. The only exception to those rules is read­
able conforming code segments which can be ac­
cessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen­
eral protection fault) is generated.

5-60

The rules regarding the stack segment are slightly
different than those involving data segments. In­
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many. of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

intJ i486™ MICROPROCESSOR

Table 4.3. Descriptor Types Used for Control Transfer

Control Transfer Types

lntersegment within the same privilege level

lntersegment to the same or higher privilege level
Interrupt within task may change CPL

lntersegment to a lower privilege level
(changes task CPL)

Task Switch

*NT (Nested Task bit of flag register) = O
**NT (Nested Task bit of flag register) = 1

Control transfers can only occur if the operation
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

- Privilege level transitions can only occur via
gates.

- JMPs can be made to a non-conforming code
segment with the same privilege or to a conform­
ing code segment with greater or equal privilege.

- CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

- Interrupts handled within the task obey the same
privilege rules as CALLS.

- Conforming Code segments are accessible by
privilege levels which are the same or less privi­
leged than the conforming-code segment's DPL.

- Both the requested privilege level (RPL) in the
selector pointing to the gate and the task's CPL
must be of equal or greater privilege than the
gate's DPL.

- The code segment selected in the gate must be
the same or more privileged than the task's CPL.

Operation Types
Descriptor Descriptor
Referenced Table

JMP, CALL, RET, IRET* Code Segment GOT/LDT

CALL Call Gate GOT/LDT

Interrupt Instruction, Trap or IDT
Exception, External Interrupt
Interrupt Gate

RET, IRET* Code Segment GOT/LDT

CALL,JMP Task State GOT
Segment

CALL, JMP Task Gate GOT/LDT

IRET** Task Gate IDT
Interrupt Instruction,
Exception, External
Interrupt

5-61

- Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

- Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi­
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack
pointer upon return.

intef

NOTE:
BIT_MA
must be

P_OFFSET
~ DFFFH

.. ------------- .. I

ACCESS I TSS
I

I i+ I RIGHTS LIMIT
I I
I I
I BASE i+ I
I I

::s1 PROGRAM QI
I

I INVISIBLE I ·----------·--"
TASK REGISTER

TR SELECTOR _H
15 0

I-

31

Type= 9: Available 486TM CPU TSS,
Type = B: Busy 486TM CPU TSS

i486™ MICROPROCESSOR

31 16 15

0000000000000000

ESPO

0000000000000000

ESP1

BACK LINK
0 0 J

4

. sso 8

c

10

TSS BASE

STACKS
FOR

0000000000000000 SS1 CPL 0, 1,2

ESP2

0000000000000000 SS2

CR3

EIP

EFLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

0000000000000000 ES

0000000000000000 cs

0000000000000000 SS

0000000000000000 DS

0000000000000000 FS

0000000000000000 GS

0000000000000000 LDT

BILMAP _OFFSET(15:0) 0000000000000000

AVAILABLE

-----h SYSTEM STATUS, ETC.

'f' IN 486 TM CPU TSS

31 24 23 16 15 8 7

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

SC

60

T'D "' r
0 i-

CURRENT
TASK
STATE

DEBUG
TRAP BIT

63 56 55 48 47 40 39 32 l\ILM AP_OFFSET

95 88 87 80 79 72

....
r 1/0 PERMISSION BITMAP

65407 (ONE BIT PER BYTE 1/0
PORT. BITMAP MAY BE 65439

TRUNCATED USING TSS LIMIT.)
65471 _L
65503 l
65535

71 64

96

....
"f'

65472

65504

"FFH"

OFFSE T + C

ET+ 10. OFFS

OFFS

OFFSE

ET+ 1FEC

T + 1FFO

ET+ 1FF4

ET+ 1FF8

T + 1FFC

ET+ 2000

OFFS

OFFS

OFFSE

OFFS

_j TSS LIMIT" 0 FFSET + 2000H

486 TM CPU TSS DESCRIPTOR (IN GOT) 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .. 0

BASE 31..24}}lo}I 1L~~~~ ;:{or_L}I_._TY[\ I BASE
23 .. 16

240440-19

Figure 4.15a. i486™ Microprocessor TSS and TSS Registers

5-62

i486™ MICROPROCESSOR

31

63

95

127

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1

1

0

1 1 1 1 1 1 1 1

~ etc. _;
110 Ports Accessible: 2 --+ 9, 12, 13, 15, 20 --+ 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 --+ 60, 62, 63, 96 --+ 127 240440-20

Figure 4.15b. Sample 1/0 Permission Bit Map

4.4.5 CALL GATES

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo­
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv­
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou­
tine. When an inter-level 486 Microprocessor call
gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity

2. SS is pushed zero-extended to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex­
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 TASK SWITCHING

A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch
between tasks or processes. The 486 Microproces­
sor directly supports this operation by providing a
task switch instruction in hardware. The 486 Micro­
processor task switch operation saves the entire

5-63

state of the machine (all of the registers, address
space, and a link to the previous task), loads a new
execution state, performs protection checks, and
commences execution in the new task, in about 1 O
microseconds. Like transfer of control via gates, the
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to
a Task State Segment (TSS), or a task gate descrip­
tor in the GOT or LDT. An INT n instruction, excep­
tion, trap, or external interrupt may also invoke the
task switch operation if there is a task gate descrip­
tor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
4.15) containing the entire 486 Microprocessor exe­
cution state while a task gate descriptor contains a
TSS selector. The 486 Microprocessor supports
both 80286 and 486 Microprocessor style TSSs. Fig­
ure 4.16 shows a 80286 TSS. The limit of a 486
Microprocessor TSS must be greater than 0064H
(002BH for a 80286 TSS), and can be as large as 4
Gigabytes. In the additional TSS space, the operat­
ing system is free to store additional information
such as the reason the task is inactive, time the task
has spent running, and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
486 Microprocessor called the Task State Segment
Register (TR). This register contains a selector refer­
ring to the task state segment descriptor that de­
fines the current TSS. A hidden base and limit regis­
ter associated with TR are loaded whenever TR is
loaded with a new selector. Returning from a task is
accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was
interrupted. The current executing task's state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow­
ing fashion:

El

intJ i486™ MICROPROCESSOR

15 0

BACK LINK SELECTOR TO TSS

SP FOR CPL 0

SS FOR CPL 0

SP FOR CPL 1

SS FOR CPL 1

SP FOR CPL 2

SS FOR CPL 2

IP (ENTRY POINT)

FLAGS

AX

ex
DX

BX

SP

BP

SI

DI

ES SELECTOR

CS SELECTOR

SS SELECTOR

OS SELECTOR

TASK'S LDT SELECTOR

"'AVAILABLE "'

0

2

4

6 INITIAL
STACKS

8 FORCPL0,1,2
A

c

10

12

14

16

18
CURRENT

1A TASK

IC STATE

IE

20

22

24

26

28

2A

240440-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The 486 Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer­
ences a busy task state segment causes an excep­
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU's state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU's state in a multi­
tasking environment. Whenever the 486 Micro-

processor switches tasks, it sets the TS bit. The 486
Microprocessor detects the first use of a processor
extension instruction after a task switch and causes
the processor extension not available exception 7.
The exception handler for exception 7 may then de­
cide whether to save the state of the FPU. A proces­
sor extension not present exception (7) will occur
when attempting to execute a Floating Point or
WAIT instruction if the Task Switched and Monitor
coprocessor extension bits are both set (i.e. TS = 1
and MP= 1).

The T bit in the 486 Microprocessor TSS indicates
that the processor should generate a debug excep­
tion when switching to a task. If T = 1 then upon
entry to a new task a debug exception 1 will be gen­
erated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the 486 Microprocessor begins executing in
Real Mode immediately after RESET it is necessary
to initialize the system tables a,nd registers with the
appropriate values.

The GOT and IDT registers must refer to a valid GOT
and IDT. The IDT should be at least 256 byt(:ls long,
and GOT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta­
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode 486 Microprocessor system.
It has a single code and single data/stack segment
each four gigabytes long and a single privilege level
PL= 0.

5-64

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the 486 Microprocessor in Pro­
tected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GOT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

intef i486™ MICROPROCESSOR

31
O FFFFFFFF

15 0 RESET ROUTINES

ss(3
FFFFFFFO

INITIALIZATION

Gs(3

ROUTINES

FS(3

ES(3

cs

GDTR """" l 00000110

NULL SELECTOR
00000108 GOT

IDTR 00000100

INTERRUPT t
BASE ADDRESS DESCRIPTORS (32)

IDT
t

00000000
240440-22

Figure 4.17. Simple Protected System

2

DATA
DESCRIPTOR

CODE
DESCRIPTOR

0

BASE31 ... 24 G D 0
00 (H) 1

0
1

SEGMENT BASE 15 ... 0
0118 (H)

BASE31 ... 24 G D 0
00 (H) 1

0
1

SEGMENT BASE 15 ... 0
0118 (H)

31 24

LIMIT
19.16 1 0 0 1 0 0 1 O BASE 23 ... 16

F(H)
00 (H)

l I _J_

SEGMENT LIMIT 15 ... 0
FFFF (H)

LIMIT
19.16 1 0 0 1 1 0 1 O BASE 23 ... 16

F(H)
OO(H)

I I __]_

SEGMENT LIMIT 15 ... 0
FFFF (H)

NULL DESCRIPTOR

16 15 8 0

Figure 4.18. GOT Descriptors for Simple System

4.4.8 TOOLS FOR BUILDING PROTECTED
SYSTEMS

In order to simplify the design of a protected multi­
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
486 Microprocessor system. This tool is the builder
BLD-386™. BLD-386 lets the operating system writ­
er specify all of the segment descriptors discussed
in the previous sections (LDTs, IDTs, GDTs, Gates,
and TSSs) in a high-level language.

5-65

4.5 Paging

4.5.1 PAGING CONCEPTS

Paging is another type of memory management
useful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
wam~ ~nd data into variable length segments, pag­
ing d1v1des programs into multiple uniform size
pages. Pages bear no direct relation to the logical

El

intef i486™ MICROPROCESSOR

structure of a program. While segment selectors can
be considered the logical "name" of a program
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture.

By taking advantage of the locality of reference dis­
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The 486 Microprocessor uses two levels of tables to
translate the linear address (from the segmentation
unit) into a physical address. There are three com­
ponents to the paging mechanism of the 486 Micro­
processor: the page directory, the page tables, and
the page itself (page frame). All memory-resident el­
ements of the 486 Microprocessor paging mecha­
nism are the same size, namely, 4 Kbytes. A uniform
size for all of the elements simplifies memory alloca­
tion and reallocation schemes, since there is no
problem with memory fragmentation. Figure 4.19.
shows how the paging mechanism works.

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CAO. (See 4.5.5 Translation
Lookaside Buffer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

CRO

CR1

CR2

31 22 12 0

DIRECTORY TABLE OFFSET
LINEAR

ADDRESS
10 10

486™ CPU
31

31 0

-----1
-----1
-----1

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

12

31

PAGE TABLE

Figure 4.19. Paging Mechanism

31 12 11 10 9 8 7 6

OS
PAGE TABLE ADDRESS 31 .. 12 RESERVED 0 0 D

5 4

p
A c

D

Figure 4.20. Page Directory Entry (Points to Page Table)

5-66

USER
MEMORY

ADDRESS

3 2

p u
w -
T s

240440-23

0

R
- p
w

inter i486™ MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 0

OS p p u R
PAGE FRAME ADDRESS 31 .. 12 RESERVED 0 0 D A c w - - p

D T s w

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad­
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the 486 Microproc­
essor for both types of entries before a read or write
access occurs to an address covered by the entry.
The D (Dirty) bit 6 is set to 1 before a write to an
address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the 486
Microprocessor, the processor generates a Read­
Modify-Write cycle which locks the bus and prevents
conflicts with other processors or perpherials. Soft­
ware which modifies these bits should use the LOCK
prefix to ensure the integrity of the page tables in
multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

The (User/Supervisor) UIS bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The 486 microprocessor provides a set of protection
attributes for paging systems. The paging mecha­
nism distinguishes between two levels of protection:
User which corresponds to level 3 of the segmenta­
tion based protection, and supervisor which encom­
passes all of the other protection levels (0, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The 386
microprocessor does not contain the WP bit. The
WP bit has been added to the 486 microprocessor
to protect read-only pages from supervisor write ac­
cesses. The 386 microprocessor allows a read-only
page to be written from protection levels 0, 1 or 2.
WP= 0 is the 386 microprocessor compatible mode. 1 When WP= O the supervisor can write to a read-only
page as defined by the U/S and R/W bits. When
WP= 1 supervisor access to a read-only page
(R/W=O) will cause a page fault (exception 14).

Table 4.4 shows the affect of the WP, U/S and R/W

5-67

bits on accessing memory. When WP=O, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP= 1 and R/W=O the supervi-
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S=O), or write
to a read only page will cause a page fault (excep-
tion 14).

The R/W and UIS bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di­
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
table pointed to by that directory entry. The UIS and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the UIS and R/W bits from the Page
Directory Table and the Page Table Entry are used
to address a page.

Example: If the UIS and R/W bits for the Page Di­
rectory entry were 10 (user read/execute) and the

i486™ MICROPROCESSOR

UIS and R/W bits for the Page Table Entry were 01
{no user access at all). the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read­
only for level O, 1 or 2 via use of segmented protec­
tion mechanisms. {Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD {page cache dis­
able) are two new bits defined in entries in both lev­
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con­
trol page cacheability and write policy.

PWT controls write policy. PWT= 1 defines a write­
through policy for the current page. PWT = 0 allows
the possibility of write-back. PWT is ignored internal­
ly because the 486 microprocessor has a write­
through cache. PWT can be used to control the write
policy of a second level cache. ·

PCD controls cacheability. PCD = O enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN# {cache
enable) input signal and the state of the CD {cache
disable bit) and NW {no write-through) bits in control
register 0 {CAO). When PCD = 1, caching is disabled
regardless of the state of KEN#, CD and NW. {See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register 3 {CR3), the Page Direc­
tory Entry or the Page Table Entry; depending on the
type of cycle run. However, when paging is disabled
{PG = o in CAO) or for cycles which bypass paging
{i.e., 1/0 {input/output) references, INTR {interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The i486 CPU assumes PCD =
0 and PWT = O and drives these values on the PCD
and PWT pins.

When paging is enabled (PG= 1 in CAO), the bits
from the page table entry are cached in the transla­
tion lookaside buffer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta­
ble Entry. During TLB refresh cycles when the Page
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc­
tory Entry when the Page Table Entry is being updat­
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft­
ware.

4.5.5 TRANSLATION LOOKASIDE BUFFER

The 486 Microprocessor paging hardware is de­
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the 486 Microprocessor keeps a
cache . of the most recently accessed pages, this
cache is called the Translation Lookaside Buffer
{TLB). The TLB is a four-way set associative 32-en­
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces­
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad­
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com­
plements the 486 Microprocessor's paging mecha­
nism.

Reading a new entry into the TLB {TLB refresh) is a
two step process handled by the 486 microproces­
sor hardware. The sequence of data cycles to per­
form a TLB refresh are:

Table 4.4. Page L.evel Protection Attributes

UIS R/W WP User Access Supervisor Access

0 0 0 None Read/Write/Execute
0 0 None Read/Write/ Execute

0 0 Read/Execute Read/Write/Execute
1 0 Read/Write/ Execute Read/Write/Execute

0 0 None Read/Execute
0 None Read/Write/Execute

0 Read/Execute Read/Execute
1 Read/Write/Execute Read/Write/ Execute

5-68

intef i486™ MICROPROCESSOR

1. Read the correct Page Directory Entry, as point­
ed to by the page base register and the upper 1 O
bits of the linear address. The page base register
is in control register 3.

1 a. Optionally perform a locked read/write to set the
accessed bit in the directory entry. The directory
entry will actually get read twice if the 486 micro­
processor needs to set any of the bits in the en­
try. If the page directory entry changes between
the first and second reads, the data returned for
the second read will be used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

2a. Optionally perform a locked read/write to set the
accessed and/or dirty bit in the page table entry.
Again, note that the page table entry will actually
get read twice if the 486 microproi:;essor needs
to set any of the bits in the entry. Like the direc­
tory entry, if the data changes between the first
and second read the data returned for the sec­
ond read will be used.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig­
naled from either the page directory read or the
page table read. Page directory and page table en­
tries may be placed in the 486 on-chip cache just
like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES

TRANSLATION

A~~~~S -+-1 LOOKASIOE
BUFFER Hf!

MISS

31 0

41 L0
PAGE

DIRECTORY
PAGE

TABLE

e 98% HIT RATE

PHYSICAL
MEMORY

t---'

240440-24

Figure 4.22. Translation Lookaside Buffer

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

5-69

However, if the page table entry is not in the TLB,
the 486 Microprocessor will read the appropriate
Page Directory Entry. If P = 1 on the Page Directory
Entry indicating that the page table is in memory,
then the 486 Microprocessor will read the appropri­
ate Page Table Entry and set the Access bit. If P =
1 on the Page Table Entry indicating that the page is
in memory, the 486 Microprocessor will update the
Access and Dirty bits as needed and fetch the oper­
and. The upper 20 bits of the linear address, read
from the page table, will be stored in the TLB for
future accesses. However, if P = O for either the
Page Directory Entry or the Page Table Entry, then
the processor will generate a page fault, an Excep­
tion 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (i.e., UIS or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc­
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault. Fig­
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4.23b indicates
what type of access caused the page fault.

15 3 2 1 0

lulululululululululululululul~l~IPI
Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether .the access
causing the fault occurred when the processor was
executing in User Mode (UIS = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W /R = O) or a Write
(W/R = 1).

I

1486™ MICROPROCESSOR ,

P: . The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1).

U: UNDEFINED

UIS W/R Access Type

0 0 Supervisor• Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access.will fault with UIS = O, even H the program
is executing at level 3. ·

Figure 4.23b. Type of Access
Causing Page Fault

4.i;.7 OPERATING SYSTEM RESPONSIBILITIES

The 486 Microprocessor takes care of the page ad­
dress translation process, relieving the burden from
an operating system in a demand-paged system.
The operating system is responsible for setting up
the initial,page tables, and handling any page faults.
The operating system also is required to invalidate
(i.e., flush) the TLB when any changes are made to
any of the page table entries. The operating system
must reload CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating· space for the Page Directory and the
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want ta take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

~6.1 EXECUTING 8086 PROGRAMS

The 486 Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system de­
signer the most flexibility. The Virtual 8086 Mode al­
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the 486 Microprocessor protection mechanism. In

particular, the 486 Microprocessor allows the simul­
taneous execution of 8086 operating systems and
its applications, and a 486 Microprocessor operating
system and both 80286 and 486 Microprocessor ap­
plications. Thus, in a multi-user 486 Microprocessor
computer, one person could be running an MS-DOS
spreadsheet, another person using MS-DOS, and a
third person could be running mult_iple Unix utilities
and applications. Each person in this scenario would
believe that he had the computer completely to him­
self. Figure 4.24 illustrates this concept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between 486 Micro­
processor Real and Protected modes is how the
segment selectors are interpreted. When the proc­
essor is executing in Virtual _8086 Mode the segment
registers are used in an identical fashion to Real
Mode. The contents of the segment register is shift­
ed left 4 bits and added to the offset to form the
segment base linear address.

The 486 Microprocessor allows the operating sys­
tem to specify which programs use ttie 8086 style
address mechanism, and which programs use Pro­
tected Mode addressing, on a per task. basis~
Through the use of paging, the one megabyte ad­
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the 486 Microprocessor. Like Real Mode, Virtual
Mode effective addresses (i.e., segment offsets) that
exceed 64 Kbyte will cause an exception 13. Howev­
er, these restrictions should riot prove to be impor­
tant, because most tasks running in Virtual 8086
Mode will simply be existing 8086 application pro­
grams.

5-70

4.6.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec­
tion and operating system .isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode 'task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig­
abyte physical address space of the 486 Microproc­
essor. In addition, since CR3 (the Page Directory
Base Register) is loaded by a task switch, each Vir­
tual Mode task can use a different mapping scheme
to map pages to different physical locations.

intef i486™ MICROPROCESSOR

Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 4.24 shows how the 486
Microprocessor paging hardware enables multiple
8086 programs to run under a virtual memory de­
mand paged system.

4.6.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at­
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > O) causes an excep­
tion 13 fault:

VIRTUAL MODE
8086 TASK

PAGE DIRECTORY
ROOT

VIRTUAL MODE
8086 TASK

PAGE N

8086 OS

EMPTY

TASK 2 PAGE
TABLE

PAGE DIRECTORY
TASK 2

PAGE N

PAGE 1

8086 OS

EMPTY

TASK 1 PAGE
TABLE

PAGE DIRECTORY
TASK 1

LIDT;
LGDT;
LMSW;
CLTS;
HLT;

MOV DRn,reg;
MOV TRn,reg;
MOV CRn, reg;

MOV reg,DRn;
MOV reg, TRn;
MOV reg,CRn.

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR;
LLDT;
LAR;
LSL;
ARPL.

STR;
SLDT;
VERR;
VERW;

The instructions which are IOPL-sensitive in Protect­
ed Mode are:

IN;
OUT;
INS;
OUTS;
REP INS;
REP OUTS;

ST!;
CLI

PHYSICAL
MEMORY

OOOOOOOO(H)

• TASK 1 • 8086 OS
MEMORY MEMORY

l777J TASK 2 ~ 386™ CPU OS
((ft.I MEMORY ~ MEMORY

240440-25

Figure 4.24. Virtual 8086 Environment Memory Management

5-71

I

intef i486TM MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in­
structions are made IOPL-sensitive. The following in­
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL­
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren't
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be­
come automatically sensitive to the 1/0 Permission
Bitmap contained in the 486 Microprocessor Task
State Segment. The 1/0 Permission Bitmap, auto­
matically used by the 486 Microprocessor in Virtual
8086 Mode, is iliustrated by Figures 4.15a and
4.15b.

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
BiLMap_Offset in the current TSS. BiLMap_
Offset must be s DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets s FFFFH from the TSS base. The 16-bit
pointer BiLMap_Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4.15a.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4.15a. If a bit is 0, 1/0 to the corresponding byte­
~ide port can occur without generating an excep­
tion. Otherwise the 1/0 instruction causes an excep­
tion 13 fault. Since every byte-wide 1/0 port must be
protectable, all bits corresponding to a Word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the 1/0
Permission Bitmap, the bitmap may be located any­
where within the TSS, or may be ignored completely
by pointing the BiLMap_Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of BK of memory when a complete bitmap is not
required, while allowing the fully general case if de­
sired.

EXAMPLE OF BITMAP FOR 1/0 PORTS 0-255:
Setting the TSS limit to {biLMap_Offset + 31
+ 1 * * l [•• see note below] will allow a 32-byte bit­
map for the 1/0 ports #0-255, plus a terminator
byte of all 1 's [* • see note below]. This allows the
1/0 bitmap to control 1/0 Permission to 110 port 0-
255 while causing an exception 13 fault on attempt­
ed 1/0 to any 1/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the 1/0
Permission Bitmap must be a byte containing all 1 's.
The byte of all 1 's must be within the limit of the 486
Microprocessor TSS segment (see Figure 4.15a).

4.6.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi­
lege change back to the host 486 Microprocessor
operating system. The 486 Microprocessor operat­
ing system determines if the interrupt comes from a
Protected Mode application or from a Virtual Mode
program by examining the VM bit in the EFLAGS
image stored on the stack.

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level o, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 486 Microprocessor operating system in turn
handles the exception or interrupt and then returns
control to the 8086 program. The 486 Microproces­
sor operating system may choose to let the 8086
operating system handle the interrupt or it may emu­
late the function of the interrupt handler. For exam­
ple, many 8086 operating system calls are accessed
by PUSHing parameters on the stack, and then exe­
cuting an INT n instruction. If the IOPL is set to o
then all INT n instructions will be intercepted by the
486 Microprocessor operating system. The 486 Mi­
croprocessor operating system could emulate the
8086 operating system's call. Figure 4.25 shows
how the 486 Microprocessor operating system could
intercept an 8086 operating system's call to "Open
a File".

5-72

A 4~6 Microprocessor operating system can provide
a Virtual 8086 Environment which is totally transpar­
ent to the application software via intercepting and
~hen emulating 8086 operating system's calls, and
intercepting IN and OUT instructions.

intef i486™ MICROPROCESSOR

4.6.6 ENTERING AND LEAVING VIRTUAL
8086 MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=O), or Task Switch (at any CPL)
to a 486 Microprocessor task whose 486 Microproc­
essor TSS has a FLAGS image containing a 1 in the
VM bit position while the processor is executing in
Protected Mode. That is, one way to enter Virtual
8086 mode is to switch to a task with a 486 Micro­
processor TSS that has a 1 in the VM bit in the
EFLAGS image. The other way is to execute a 32-bit
IRET instruction at privilege level 0, where the stack
has a 1 in the VM bit in the EFLAGS image. POPF
does not affect the VM bit, even if the processor is in
Protected Mode or level 0, and so cannot be used to
enter Virtual 8086 Mode. PUSHF always pushes a 0
in the VM bit, even if the processor is in Virtual 8086
Mode, so that a program cannot tell if it is executing
in REAL mode, or in Virtual 8086 mode.

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM = 1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to 486 Micro­
processor protected mode occurs only on receipt of
an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode IDT,
and enter an interrupt handler in protected 486 Mi­
croprocessor mode. That is, as part of interrupt pro­
cessing, the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter­
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg­
ments, or through segments with DPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 Task Switches To/From Virtual
8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new 486 Microproc­
essor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with a 486 Microprocessor TSS. All of the pro­
grammer visible state, including the FLAGS register
with the VM bit set to 1, is stored in the TSS.

5-73

The segment registers in the TSS will contain 8086
segment base values rather than selectors.

A task switch into a task described by a 486 Micro­
processor TSS will have an additional check to de­
termine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image in
80286 format TSS has only the low order 16 FLAGS
bits). Before loading the segment register images
from a 486 Microprocessor TSS, the FLAGS image
is loaded, so that the segment registers are loaded
from the TSS image as 8086 segment base values.
The task is now ready to resume in virtual 8086 exe­
cution mode.

4.6.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a 486 Microprocessor
Trap Gate (Type 14), or 486 Microprocessor Inter­
rupt Gate (Type 15), which must point to a non-con­
forming level 0 segment (DPL = 0) in order to permit
the trap handler to IRET back to the Virtual 8086
program. The Gate must point to a non-conforming
level O segment to perform a level switch to level O I
so that the matching IRET can change the VM bit.
486 Microprocessor gates must be used, since
80286 gates save only the low 16 bits of the FLAGS
register, so that the VM bit will not be saved on tran-
sitions through the 80286 gates. Also, the 16-bit
IRET (presumably) used to terminate the 80286 in-
terrupt handler will pop only the lower 16 bits from
FLAGS, and will not affect the VM bit. The action
taken for a 486 Microprocessor Trap or Interrupt
gate if an interrupt occurs while the task is executing
in virtual 8086 mode is given by the following se­
quence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This pro­
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

intJ i486™ MICROPROCESSOR

8086 Application makes "Open File Call" -+ causes
General Protection Fault (Arrow # 1)
Virtual 8086 Monitor intercepts call. Calls 486TM CPU OS (Arrow # 2)
486™ CPU OS opens file returns control to 8086 OS (Arrow '#3)
8086 OS returns control to application. (Arrow # 4)
Tran'!Parent to Application

240440-26

Figure 4.25. Virtual 8086 Environment Interrupt and C811 Handling

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, OS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

(4) Pus" the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above. ·

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto .the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register. ··

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected 486 Microprocessor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang­
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the· OS, ES, FS, and GS registers as
80286 selectors. This is needed so that ·interrupt
handlers which don't care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not

a "native" mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis­
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex­
pect values in the segment registers, or return val­
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know. where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended 486 Microproc­
essors IRET instruction (operand size=32) can be
used, and must be executed at level 0 to change the
VM bit to 1.

5-74

(1) If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following sequence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac­
tive in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS. value. in the lower 16 bits. If

intef i486™ MICROPROCESSOR

VM = 0, this CS load is done as a protected
mode segment load. If VM = 1, this will be done
as an 8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was "popped" in step 1.

(5) If VM = 1, load segment registers ES, DS, FS,
and GS from memory locations SS:[ESP+8],
SS: [ESP+ 12], SS: [ESP+ 16], and
SS:[ESP+20], respectively, where the new val­
ue of ESP stored in step 4 is used. Since VM = 1,
these are done as 8086 segment register loads.

Else if VM = 0, check that the selectors in ES,
OS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=O, SS is loaded as a
protected mode segment register load. If VM = 1 ,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual 8086
mode.

5.0 ON-CHIP CACHE

To meet its performance goals the 486 microproces­
sor contains an eight Kbyte cache. The cache is

software transparent to maintain binary compatibility
with previous generations of the x86 architecture.

The on-chip cache has been designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de­
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

5. 1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac­
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16 bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks each containing 128 lines (see Fig­
ure 5.1). Associated with each 2-Kbyte block are
128 21-bit tags. There is a valid bit for each line in
the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

I- 16-Byte Line Size -1
J.

Sets

_i

r 3 LRU --i-- 4 Voltd --j
Bits I Bits I

I IJ
240440-27

Figure 5.1. On-Chip Cache Physical Organization
5-75

I

intJ i486™ MICROPROCESSOR

The write strategy of on-chip cache is write-through.
All writes will drive an external write bus cycle in
addition to writing the information to the internal
cache if the write was a cache hit. A write to an
address not contained in the internal cache will only
be written to external memory. Cache allocations
are not made on write misses.

5.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 5.1. These
modes provide flexibility in how the on-chip cache is
used.

The CD and NW bits define four operating modes of
the on-chip code and data cache, as given in the
following table:

Table 5.1. Cache Operating Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-through and
invalidates disabled

1 0 Cache fills disabled, write-through and
invalidates enabled

0 1 INVALID. IF CRO is loaded with this
configuration of bits, a GP fault with
error code of O is raised.

0 0 Cache fills enabled, write-through and
invalidates enabled

CD=1, NW=1

The cache is completely disabled by setting
CD= 1 and NW= 1 and then flushing the
cache. This mode may be useful for debug­
ging programs where it is important to see
all memory cycles at the pins. Writes which
hit in the cache will not appear on the exter­
nal bus.

It is possible to use the on-chip cache as
fast static RAM by "pre-loading" certain
memory areas into the cache and then set­
ting CD= 1 and NW= 1. Pre-loading can be
done by careful choice of memory refer­
ences with the cache turned on or by use of
the testability functions (see Section 8.2).
When the cache is turned off the memory
mapped by the cache is "frozen" into the
cache since fills and invalidates are dis­
abled.

CD=1, NW=O

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KEN# pin was strapped
HIGH disabling cache fills. Write-throughs
and invalidates may still occur to keep the
cache valid. This mode is useful if the soft­
ware must disable the cache for a short pe­
riod of time, and then re-enable it. without
flushing the original contents.

CD=O, NW=1

INVALID. If CRO is loaded with this bit con­
figuration, a General Protection fault with
error code of 0 is raised. Note that this
mode would imply a non-transparent write­
back cache. A future processor may define
this combination of bits to implement a
write-back cache.

CD=O, NW=O

This is the normal operating mode.

Completely disabling the cache is a two step pro­
cess. First CD and NW must be set to 1 and then the
cache must be flushed. If the cache is not flushed,
cache hits on reads will still occur and data will be
read from the cache.

5.3 Cache Line Fills

Any area of memory can be cached in the 486 mi­
croprocessor. Non-cacheable portions of memory
can be defined by the external system or by soft­
ware. The external system can inform the 486 micro­
processor that a memory address is non-cacheable
by returning the KEN# pin inactive during a memory
access (refer to Section 7.2.3). Software can pre­
vent certain pages from being cached by setting the
PCD bit in the page table entry.

A read request can be generated from program op­
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

5-76

If the read request is to a cacheable portion of mem­
ory, the 486 microprocessor initiates a cache line fill.
During a line fill a 16-byte line is read into the 486
microprocessor.

Cache fills will only be generated for read misses.
Write misses will never cause a line in the internal
cache to be allocated. If a cache hit occurs on a
write, the line will be updated.

intef i486™ MICROPROCESSOR

Cache line fills can be performed over 8- and 16-bit
busses using the dynamic bus sizing feature. Refer
to Section 7 .1.3 for a description of dynamic bus
sizing.

Refer to Section 7.2.3 for further information on
cacheable cycles.

5.4 Cache Line Invalidations

The 486 microprocessor contains both a hardware
and software mechanism for invalidating lines in its
internal cache. Cache line invalidations are needed
to keep the 486 microprocessor's cache contents
consistent with external memory.

Refer to Section 7.2.8 for further information on
cache line invalidations.

5.5 Cache Replacement

When a line needs to be placed in its internal cache
the 486 microprocessor first checks to see if there is
a non-valid line in the set that can be replaced. If all
four lines in the set are valid, a pseudo least-recent­
ly-used mechanism is used to determine which line
should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four

valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, 11, 12, and 13.
The order in which the valid bits are checked during
an invalidation is 10, 11, 12 and 13. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.

If the most recent access to the set was to 10 or 11,
BO is set to 1. BO is set to 0 if the most recent ac­
cess was to 12 or 13. If the most recent access to
10:11 was to 10, B1 is set to 1, else B1 is set to O. If
the most recent access to 12:13 was to 12, 82 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:11 and 12:13 was least re­
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
5.2. When the processor is reset or when the cache
is flushed all 128 sets of three LRU bits are set to 0.

All four lines In the set valid? ~ Replace non-volld line

80=0?
Yes: 10 or 11 least recently used No: 12 or 13 least recently used

81 =O? 82=0?

~ ~
Replace

10
Replace

11
Replace Replace

12 13

Figure 5.2. On-Chip Cache Replacement Strategy

5-77

240440-28

I

intJ i486™ MICROPROCESSOR

5.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de­
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls write policy for second level
caches used with the 486 microprocessor. Setting
PWT= 1 defines a write-through policy for the cur­
rent page while PWT = o allows the possibility of
write-back. The state of PWT is ignored internally by
the 486 microprocessor since the on-chip cache is
write through.

CRO

CACHE CONTROL LOGIC

CACHE MEMORY

I

LINEAR
AODRESS

31

CRO

1 CR1

0

I ----1
I CR2
I 1----I

31 0

PCD, PWT

: CR3 PCD, PWT _..._....._ __ _,

I DIRECTORY
I CONTROL REGISTERS

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally ANDed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 5.3). PCD=O enables cach­
ing while PCD = 1 forbids it. Note that cache fills are
enabled when PCD=O AND KEN# =O. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem­
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re­
quested information. The external system then re­
turns KEN# telling the 486 microprocessor if the
area is cacheable. The 486 microprocessor initiates
a cache line fill if PCD and KEN# indicate that the
requested information is cacheable.

FLUSH#

KEN

0

PCD

PWT

31 0 I ----.'
PCD, PWT 1

I

1 CD
PAGE TABLE : {From CRO)

I I

~---------------------------~
240440-29

Figure 5.3. Page Cacheabllity

5-78

intef i486™ MICROPROCESSOR

The PCD bit is masked with the CD (cache disable)
bit in control register 0 to determine the state of the
PCD pin. If CD= 1 the 486 microprocessor forces
the PCD pin HIGH. If CD= 0 the PCD pin is driven
with the value for the page table entry/directory. See
Figure 5.3.

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (1/0 references, interrupt ac­
knowledge and Halt cycles), the PWT and PCD bits
are taken from CR3. These bits are initialized to O on
reset, but can be set to any value by level O soft­
ware.

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up­
dated the bits are obtained from CR3.

5.7 Cache Flushing

The on-chip cache can be flushed by external hard­
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSH# pin.

The flush pin needs to be asserted for one clock if
driven synchronously or for two clocks if driven
asynchronously. The flush input is asynchronous but
setup and hold times must be met. The flush pin
should be deasserted after the cache flush is com­
plete. Failure to deassert the pin will cause execu­
tion to stop as the processor will be repeatedly flush­
ing the cache. If external hardware activates flush in
response to an 1/0 write, flush must be asserted for
at least two clocks prior to ready being returned for
the 1/0 write. This ensures that the flush completes
before the CPU begins execution of the instruction
following the OUT instruction.

Flush is recognized during HOLD just like EADS#.

The instructions INVD and WBINVD cause the on­
cache to be flushed. External caches connected to
the 486 microprocessor are signalled to flush their
contents when these instructions are executed.

WBINVD will cause an external write-back cache to
write back dirty lines before flushing its contents.
The external cache is signalled using the bus cycle
definition pins and the byte enables (refer to Section

5-79

6.2.5 for the bus cycle definition pins and Section
7.2.11 for special bus cycles). Refer to the 486 mi­
croprocessor programmers reference manual for de­
tailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the 486 microproc­
essor's on-chip cache since the cache is write­
through. Note that the INVD and WBINVD instruc­
tions are machine dependent. Future members of
the 486 microprocessor family may change the defi­
nition of this instruction.

5.8 Caching Translation Lookaside
Buffer Entries

The 486 microprocessor contains an integrated pag­
ing unit with a translation lookaside buffer (TLB). The
TLB contains 32 entries. The TLB has been en­
hanced over the 386 microprocessor's TLB by up­
grading the replacement strategy to a pseudo-LAU
(least recently used) algorithm. The pseudo-LAU re­
placement algorithm is the same as that used in the
on-chip cache.

The paging TLB operation is automatic whenever
paging is enabled. The TLB contains the most re­
cently used page table entries. A page table entry
translates the linear addr(lss pointing to a particular
page to the physical address where the page is
stored in memory (refer to Section 4.5, Paging).

The paging unit will look up the linear address in the
TLB in response to an internal bus request. The cor­
responding physical address is passed on to the on­
chip cache or the external bus (in the event of a
cache miss) when the linear address is present in
the TLB.

The paging unit will access the page tables in exter­
nal memory if the linear address is not in the TLB.
The required page table entry will be read into the
TLB and then the cache or bus cycle for the actual
data will take place. The process of reading a new
page table entry into the TLB is called a TLB refresh.

A TLB refresh is a two step process. The paging unit
must first read the page directory entry which points
to the appropriate page table. The page table entry
to be stored in the TLB is then read from the page
table. Control register 3 (CR3) points to the base of
the page directory table. ·

The 486 microprocessor will allow page directory
and page table entries (returned during TLB refresh­
es) to be stored in the on-chip cache. Setting the
PCD bits in CR3 and the page directory entry to 1
will prevent the page directory and page table en­
tries from being stored in the on-chip cache (see
Section 5.6, Page Cacheablllty).

II

intJ i486™ MICROPROCESSOR

6.0 HARDWARE INTERFACE

6.1 Introduction

The 486 microprocessor bus has been designed to
be similar to the 386 microprocessor bus whenever
possible. Several new features have been added to
the 486 microprocessor bus resulting in increased
performance and functionality. New features include
a 1 X clock, a burst bus mechanism for high-speed
internal cache fills, a cache line invalidation mecha­
nism, enhanced bus arbitration capabilities, a BS8#
bus sizing mechanism and parity support.

The 486 microprocessor is driven by a 1 X clock as
opposed to a 2X clock in the 386 microprocessor. A
25 MHz 486 microprocessor uses a 25 MHz clock in
contrast to a 25 MHz 386 microprocessor which re­
quires a 50 MHz clock. A 1X clock allows simpler
system design by cutting in half the clock speed re­
quired in the external system.

Like the 386 microprocessor, the 486 microproces­
sor has separate parallel busses for data and ad­
dresses. The bidirectonal data bus is 32 bits in width.
The address bus consists of two components: 30
address lines (A2-A31) and 4 byte enable lines
(BEO#-BE3#). The address bus addresses exter-

Bu•
Control

Interrupt
Signals

Cache
Control

Page
Cochlng
Control

Numeric
Error
Reporting

Address Bit
20 Mask

CLK

{
ADS#

ROY#

INTR

{
RESET

NMI

{ AHOLD

{ KEN
FLUSH#

{
PWT

PCO

FERR

IGNNE

A20M

nal memory in the same manner as the 386 micro­
processor: The address lines form the upper 30 bits
of the address and the byte enables select individual
bytes within a 4 byte location. The address lines are
bidirectional for use in cache line invalidations.

The 486 microprocessor's burst bus mechanism en­
ables high-speed cache fills from external memory.
Burst cycles can strobe data into the processor at a
rate of one item every clock. Non-burst cycles have
a maximum rate of one item every two clocks. Burst
cycles are not limited to cache fills: all bus cycles
requiring more than a single data cycle can be burst­
ed.

The 486 microprocessor has a bus hold feature simi­
lar to that of the 386 microprocessor. During bus
hold, the 486 microprocessor relinquishes control of
the local bus by floating its address, data and control
busses.

The 486 microprocessor has an address hold fea­
ture in addition to bus hold. During address hold only
the address bus is floated, the data and control bus­
ses can remain active. Address hold is used for
cache line invalidations.

Ahead is a brief description of the 486 microproces­
sor input and output signals arranged by functional

1-~"'"oc'"""RK#-+ g~~n~~~~
PLOCK

HOLD

HLOA }

BROY#

} Bu"I
Control BLAST#

BSB# }

240440-30

Figure 6.1. Functional Signal Groupings

5-80

intef i486™ MICROPROCESSOR

groups. Before beginning the signal descriptions a
few terms need to be defined. The # symbol at the
end of a signal name indicates the active, or assert­
ed, state occurs when the signal is at a low voltage.
When a # is not present after the signal name, the
signal is active at the high voltage level. The term
"ready" is used to indicate that the cycle is terminat­
ed with ROY# or BROY#.

Section 6 and 7 will discuss bus cycles and data
cycles. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the 486 microprocessor during a data cycle. A bus
cycle contains one or more data cycles.

6.2 Signal Descriptions

6.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter­
nal operating frequency for the 486 microprocessor.
All external timing parameters are specified with re­
spect to the rising edge of CLK.

The 486 microprocessor can operate over a wide
frequency range but CLK's frequency cannot
change rapidly while RESET is inactive. CLK's fre­
quency must be stable for proper chip operation
since a single edge of CLK is used internally to gen­
erate two phases. CLK only needs TTL lave.ls for
proper operation. Figure 6.2. illustrates the CLK
waveform.

6.2.2 Address Bus (A31-A2, BEO#-BE3#)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and 1/0 port address-

t2

tx = input setup times
ty = input hold times, output float, valid and hold times

es. The 486 microprocessor is capable of address­
ing 4 gigabytes of physical memory space
(OOOOOOOOH through FFFFFFFFH), and 64 Kbytes
of 1/0 address space (OOOOOOOOH through
OOOOFFFFH). A31-A2 identify addresses to a 4-byte
location. 8E0#-8E3# identify which bytes within
the 4-byte location are involved in the current trans­
fer.

Addresses are driven back into the 486 microproc­
essor over A31-A4 during cache line invalidations.
The address lines are active HIGH. When used as
inputs into the processor, A31-A4 must meet the
setup and hold times, t22 and t23. A31-A2 are not
driven during bus or address hold.

The byte enable outputs, 8E0#-8E3#, determine
which bytes must be driven valid for read and write
cycles to external memory.

8E3# applies to 024-031

8E2# applies to 016-023

8E1 # applies to 08-015

8EO# applies to 00-07

8E0#-8E3# can be decoded to generate AO, A1
and 8HE# signals used in 8- and 16-bit systems
(see Table 7.5). 8E0#-8E3# are active LOW and
are not driven during bus hold.

6.2.3 DATA LINES (031-DO)

The bidirectional lines, 031-00, form the data bus
for the 486 microprocessor. 00-07 define the least
significant byte and 024-031 the most significant
byte. Data transfers to 8- or 16-bit devices is possi­
ble using the data bus sizing feature controlled by

· the 858# or 8516# input pins.

tx ty

-1.SV

240440-31

Figure 6.2. CLK waveform
5-81

I

intJ i486™ MICROPROCESSOR

D31-DO are active HIGH. For reads, D31-DO must
meet the setup and hold times, t22 and t23. D31-DO
are not driven during read cycles and bus hold.

6.2.4 PARITY

Data Parity Input/Outputs (DPO-DP3)

DPO-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera­
tors/ checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre­
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the 486 micro­
processor. Even parity information must be driven
back to the 486 microprocessor on these pins with
the same timing as read information to insure that
the correct parity check status is indicated by the
486 microprocessor.

The values read on these pins do not affect program
execution. It is the responsibility of the system to
take appropriate actions if a parity error occurs.

Input signals on DPO-DP3 must meet setup and
hold times t22 and t23 for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK# pin, and a pari­
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and 110 reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK # only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned ,to the 486 microprocessor. At
all other times it is inactive (HIGH). PCHK# is never
floated.

Driving PCHK# is the only effect that bad input pari­
ty has on the 486 microprocessor. The 486 micro­
processor will not vector to a bus error interrupt
when bad data parity is returned. In systems that will
not employ parity, PCHK # can be ignored. In sys­
tems not using parity, DPO-DP3 should be connect­
ed to Vee through a pullup resistor.

6.2.5 BUS CYCLE DEFINITION

M/10#, DIC#, WIR# Outputs

M/10#, DIC# and WIR# are the primary bus cycle
definition signals. They are driven valid as the ADS#

signal is asserted. M/10# distinguishes between
memory and 110 cycles, DIC# distinguishes be­
tween data and control cycles and WIR# distin­
guishes between write and read cycles.

Bus cycle definitions as a function of MllO#, DIC#
and WIR# are given in Table 6.1. Note there is a
difference between the 486 microprocessor and 386
microprocessor bus cycle definitions. The halt bus
cycle type has been moved to location 001 in the
486 microprocessor from location 101 in the 386 mi­
croprocessor. Location 101 is now reserved and will
never be generated ?Y the 486 microprocessor.

Table 6.1. ADS# Initiated Bus Cycle Definitions

M/10# D/C# W/R# Bus Cycle Initiated

') 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 l/ORead
0 1 1 l/OWrite
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read

Memory Write

Special bus cycles are discussed in Section 7 .2.11.

Bus Lock Output (LOCK#)

LOCK# indicates that the 486 microprocessor is
running a read-modify-write cycle where the external
bus must not be relinquished between the read and
write cycles. Read-modify-write cycles are used to
implement memory-based semaphores. Multiple
reads or writes can be locked.

When LOCK# is asserted, the current bus cycle is
locked and the 486 microprocessor should be al­
lowed exclusive access to the system bus. LOCK#
goes active in the first clock of the first locked bus
cycle and goes inactive after ready is returned indi­
cating the last locked bus cycle.

The 486 microprocessor will not acknowledge bus
hold when LOCK# is asserted (though it will allow
an address hold). LOCK# is active LOW and is float­
ed during bus hold. Locked read cycles will not be
transformed into cache fill cycles if KEN# is re­
turned active. Refer to Section 7 .2.6 for a detailed
discussion of Locked bus cycles.

5-82

Pseudo-Lock Output (PLOCK#)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to

intJ i486TM MICROPROCESSOR

transfer. The 486 microprocessor asserts PLOCK#
during floating point long reads and writes (64 bits),
segment table descriptor reads (64 bits) and cache
line fills (128 bits).

When PLOCK# is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo­
locked reads and writes, with one exception. During
non-cacheable · non-bursted code pref etches, HOLD
is recognized on memory cycle boundaries even
though PLOCK# is asserted. The 486 microproces­
sor will drive PLOCK# active until the addresses for
the last bus cycle of the transaction have been driv­
en regardless of whether BROY# or ROY# are re­
turned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con­
tained within a single cache line. A 64-bit floating
point number must be aligned to an 8-byte boundary
to guarantee an atomic access.

Normally PLOCK# and BLAST# are inverse of
each other. However during the first cycle of a 64-bit
floating point write, both PLOCK# and BLAST# will
be asserted.

Since PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to Section
7.2.7 for a detailed discussion of pseudo-locked bus
cycles.

6.2.6 BUS CONTROL

The bus control signals allow the processor to indi­
cate when a bus cycle has begun, and allow other
system hardware to control burst cycles, data bus
width and bus cycle termination.

Address St!itus Output (ADS#)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signal will
go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS# is also inactive when the bus is idle.

ADS# is used by external bus circuitry as the indica­
tion that the processor has started a bus cycle. The
external circuit must sample the bus cycle definition
pins on the next rising edge of the clock after ADS#
is driven active.

ADS# is active LOW and is not driven during bus
hold.

5-83

Non-burst Ready Input (ROY#)

ROY# indicates that the current bus cycle is com­
plete. In response to a read, ROY# indicates that
the external system has presented valid data on the
data pins. In response to a write request, ROY# indi­
cates that the external system has accepted the 486
microprocessor data. ROY# is ignored when the
bus is idle and at the end of the first clock of the bus
cycle. Since ROY# is sampled during address hold,
data can be returned to the processor when AHOLD
is active.

ROY# is active LOW, and is not provided with an
internal pullup resistor. This input must satisfy setup
and hold times t16 and t17 for proper chip operation.

6.2.7 BURST CONTROL

Burst Ready Input (BROY#)

BROY# performs the same function during a burst
cycle that ROY# performs during a non-burst cycle.
BROY# indicates that the external system has pre­
sented valid data on the data pins in response to a
read or that the external system has accepted the
486 microprocessor data in response to a write.
BROY# is ignored when the bus is idle and at the
end of the first clock in a bus cycle.

During a burst cycle, BROY# will be sampled each I
clock,. and if active, the data presented on the data
bus pins will be strobed into the 486 microprocessor.
ADS# is negated during the second through last
data cycles in the burst, but address lines A2-A3
and byte enables will change to reflect the next data
item expected by the 486 microprocessor.

If ROY# is returned simultaneously with BROY#,
BROY# is ignored and the burst cycle is premature­
ly aborted. An additional complete bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BROY# is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to Section 7.2.2 for
burst cycle timing.

BROY# is active LOW and is provided with a small
internal pullup resistor. BROY# must satisfy the set­
up and hold times t1s and t11.

Burst Last Output (BLAST#)

BLAST# indicates that the next time BROY# is re­
turned it will be treated as a normal ROY#, terminat­
ing the line fill or other multiple-data-cycle transfer.
BLAST# is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

intef i486™ MICROPROCESSOR

6.2.8 INTERRUPT SIGNALS {RESET, INTR, NMI)

The interrupt signals can interrupt or suspend exe­
cution of the processor's current inst~uction stream.

Reset Input {RESET)

RESET forces the 486 microprocessor to begin exe­
cution at a known state. For a power-up {cold start)
reset, Vee and CLK must reach their proper DC and
AC specifications. for at least 1 ms before the 486
microprocessor begins instruction execution. The
RESET pin should remain active during this time to
ensure proper 486 microprocessor operation. How­
ever, for a warm boot-up case, RESET is required to
remain active for a minimum of 15 clocks. The testa­
bility operating modes are programmed by the falling
(inactive going) edge of RESET. (Refer to Section
8.0 for a description of the test modes during reset.)

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register,

The 486 microprocessor will generate two locked in­
terrupt acknowledge bus cycles in response to as­
serting the INTR pin. An 8-bit interrupt number will
be latched from an external interrupt controller at
the end of the second interrupt acknowledge cycle.
INTR must remain active until the interrupt acknowl­
edges have been performed to assure program in­
terruption. Refer to Section 7 .2.10 for a detailed dis·
cussion of interrupt acknowledge cycles.

The INTR pin is active HIGH and is not provided with
an internal pulldown resistor. INTR is asynchronous,
but the INTR setup and hold times, t20 and t21 , must
be met to assure recognition on any specific clock.

Non-maskable Interrupt Request Input {NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally
supplied vector value of 2. External interrupt ac­
knowledge cycles are not generated since the NMI
interrupt vector is internally generated. When NMI
processing begins, the NMI signal will be masked
internally until the IRET instruction is executed.

NMI is rising edge sensitive after internal synchroni­
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pulldown resis­
tor. NMI is asynchronous but setup and hold times,
t2o and t21 must be met to assure recognition on any
specific clock.

6.2.9 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output {BREQ)

The 486 asserts BREQ whenever a bus. cycle is
pending internally. Thus, BREQ is always asserted in
the first clock of a bus cycle, along with ADS#. Fur­
thermore, if the 486 is currently not driving the bus
(due to HOLD, AHOLD, or BOFF #). BREQ is assert­
ed in the same clock that ADS# would have been
asserted if the processor were driving the bus. After
the first clock of the bus cycle, BREQ may change
state. It will be asserted if additional cycles are nec­
essary to complete a transfer (via BS8 #, BS 16 #,
KEN#), or if more cycles are pending internally.
However, if no additional cycles are necessary to
complete the current transfer, BREQ can be negat­
ed before ready comes back for the current cycle.
External logic can use the BREQ signal to arbitrate
among multiple processors. This pin is driven re­
gardless of the state of bus hold or address hold.
BREQ is active HIGH and is never floated. During a
hold state, internal events may cause BREQ to be
deasserted prior to any bus cycles. ·

Bus Hold Request Input {HOLD)

5-84

HOLD allows another bus master complete control
of the 486 microprocessor bus. The 486 microproc­
essor will respond to an active HOLD signal by as­
serting HLDA and placing most of its output and in­
put/ output pins in a high impedance state (floated)
after completing its current bus cycle, burst cycle, or
sequence of locked cycles. The BREQ, HLDA,
PCHK# and FERR# pins are not floated during bus
hold. The 486 microprocessor will maintain its bus in
this state until the HOLD is deasserted. Refer to
Section 7.2.9 for timing diagri;ims for a bus hold cy­
cle.

Unlike the 386 microprocessor, the 486 microproc­
essor will recognize HOLD during reset. Pullup resis­
tors are not provided for the outputs that are floated
in response to HOLD. HOLD is active HIGH and is
not provided with an internal pulldown resistor.
HOLD must satisfy setup and hold times t10 and t19
for proper chip operation.

Bus Hold Acknowledge Olltput {HLDA)

HLDA indicates that the 486 microprocessor has
given the bus to another local bus master. HLDA
goes active i.n response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
clock that the 486 microprocessor floats its bus.

intef i486™ MICROPROCESSOR

HLDA will be driven inactive when leaving bus hold
and the 486 microprocessor will resume driving the
bus. The 486 microprocessor will not cease internal
activity during bus hold since the internal cache will
satisfy the majority of bus requests. HLDA is active
HIGH and remains driven during bus hold.

Backoff Input (BOFF #)

Asserting the BOFF # input forces the 486 micro­
processor to release control of its bus in the next
clock. The pins floated are exactly the same as in
response to HOLD. The response to BOFF # differs
from the response to HOLD in two ways: First, the
bus is floated immediately in response to BOFF #
while the 486 completes the current bus cycle be­
fore floating its bus in response to HOLD. Second
the 486 does not assert HLDA in response to
BOFF#.

The processor remains in bus t)old until BOFF # is
negated. Upon negation, the 486 microprocessor re­
starts the bus cycle aborted when BOFF # was as­
serted. To the internal execution engine the effect of
BOFF# is the same as inserting a few wait states to
the original cycle. Refer to Section 7 .2.12 for a de­
scription of bus cycle restart.

Any data returned to the processor while BOFF # is
asserted is ignored. BOFF # has higher priority than
ROY# or BROY#. If both 80FF # and ready are
returned in the same clock, BOFF # takes effect. If
BOFF # is asserted while the bus is idle, the 486
microprocessor will float its bus in the next clock.
80FF # is active LOW and must meet setup and
hold times t18 and t19 for proper chip operation.

6.2.10 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cycles. AHOLD conditions the
486 microprocessors address lines, A4-A31, to ac­
cept an address input. EADS# indicates that an ex­
ternal address is actually valid on the address
inputs. Activating EADS# will cause the 486 mi­
croprocessor to read the external address bus
and perform an internal cache invalidation cycle to
the address indicated. Refer to Section 7.2.8 for
cache invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth­
er bus master access to the 486 microprocessor
address bus for performing an internal cache invali­
dation cycle. Asserting AHOLD will force the 486 mi­
croprocessor to stop driving its address bus in the
next clock. While AHOLD is active only the address
bus will be floated, the remainder of the bus can

5-85

remain active. For example, data can be returned for
a previously specified bus cycle when AHOLD is ac­
tive. The 486 microprocessor will not initiate another
bus cycle during address hold. Since the 486 micro­
processor floats its bus immediately in response to
AHOLD, an address hold acknowledge is not re­
quired. If AHOLD is asserted while a bus cycle is in
progress, and no readies are returned during the
time AHOLD is asserted, the 486 will redrive the
same address (that it originally sent out) once
AHOLD is negated.

AHOLD is recognized during reset. Since the entire
cache is invalidated by reset, any invalidation cycles
run during reset will be unnecessary. AHOLD is ac­
tive HIGH and is provided with a small internal pull­
down resistor. It must satisfy the setup and hold
times t18 and t19 for proper chip operation. This pin
determines whether or not the built in self test fea­
tures of the 486 microprocessor will be exercised on
assertion of RESET.

External Address Valid Input (EADS#)

EADS# indicates that a valid external address has
been driven onto the 486 address pins. This address
will be used to perform an internal cache invalidation
cycle. The external address will be checked with the
current cache contents. If the address specified
matches any areas in the cache, that area will imme­
diately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #. EADS# is active LOW and is provided
with an internal pullup resistor. EADS# must satisfy
the setup and hold times t12 and t13 for proper chip
operation.

6.2.11 CACHE CONTROL

Cache Enable Input (KEN#)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active
and the 486 microprocessor generates a cycle that
can be cached (most any memory read cycle), the
cycle will be transformed into a cache line fill cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig­
nored and data should be returned as if all four byte
enables were asserted. The 486 microprocessor will
run between 4 and 16 contiguous bus cycles to fill
the line depending on the bus data width selected by
8S8# and 8S16#. Refer to Section 7.2.3 for a de­
scription of cache line fill cycles.

I

intef i486™ MICROPROCESSOR

The KEN# input is active LOW and is provided with
a small internal pullup resistor. It must satisfy the
setup and hold times t14 and t15 for proper chip op­
eration.

Cache Flush Input (FLUSH#)

The FLUSH# input forces the. 486 microprocessor
to flush its entire internal cache. FLUSH# is active
LOW and need only be asserted for one clock.
FLUSH# is asynchronous but setup and hold times
t2o and t21 must be met for recognition on any spe­
cific clock.

FLUSH# also determines whether or not the tristate
test mode of the 486 microprocessor will be invoked
on assertion of RESET.

6.2.12 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag­
ing is enabled, PWT ahd PCD correspond to bits 3
and 4 of the page table entry respectively. When
paging is disabled, or for cycles that are not paged
when paging is enabled (for example 1/0 cycles)
PWT and PCD correspond to bits 3 and 4 in control
register 3.

PCD is masked by the CD (cache disable) bit in con­
trol register 0 (CRO). When CD= 1 (cache line fills
disabled) the 486 microprocessor forces PCD HIGH.
When CD= 0, PCD is driven with the value of the
page table entry/directory.

The purpose of PCD is to provide a cacheable/non­
cacheable indication on a page by page basis. The
486 will not perform a cache fill to any page in which
bit 4 of the page table entry is set. PWT corresponds
to the write-back bit and can be used by an external
cache to provide this functionality. PCD and PWT
bits are assigned to be zero during real ·mode or
whenever paging is disabled. Refer to Sections 4.5.4
and 5.6 for a discussion of non-cacheable pages.

PCD and PWT have the same timing as the cycle
definition pins (M/10#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

6.2.13 NUMERIC ERROR REPORTING
(FERR#, IGNNE#)

To allow PC-type floating point error reporting, the
486 microprocessor provides two pins, FERR# and
IGNNE#.

Floating Poinl Error Output (FERR#)

The 486. microprocessor asserts FERR# whenever
an unmasked floating point error is encountered.
FERR# is similar to the ERROR# pin on the 387
math coprocessor. FERR# can be used by external
logic for PC-type floating point error reporting in 486
microprocessor systems. FERR# is active LOW,
and is not floated during bus hold.

In some cases, FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe­
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in­
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FEHR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transc.endental in­
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1). FXTRACT, FBLD,
and FBSTP.

5-86

2. Any exception on all basic arithmetic, load, com­
pare, ·and control instructions (i.e., all other in­
structions).

Ignore Numeric Error Input (IGNNE #)

The 486 microprocessor will ignore a numeric error
and continue executing non-control floating point in­
structions when IGNNE# is asserted, but FERR#
will still be activated. When deasserted, the 486 mi­
croprocessor will freeze on a non-control floating
point instruction if a previous instruction caused an
error. IGNNE # has no effect when the NE bit in con­
trol register 0 is set.

The IGNNE# input is active LOW and is provided
with a small internal pullup resistor. This input is
asynchronous, but must meet setup and hold times
t2o and t21 to insure recognition on any specific
clock.

6.2.14 BUS SIZE CONTROL (BS16#, 858#)

The BS16# and BS8# inputs allow external 16- and
8-bit busses to be supported with a small number of
external components. The 486 CPU samples these

intJ i486™ MICROPROCESSOR

pins every clock. The value sampled in the clock
before ready determines the bus size. When assert­
ing BS16# or BS8# only 16 or 8 bits of the data bus
need be valid. If both 8S16# and 8S8# are assert­
ed, an 8-bit bus width is selected.

When BS16# or BS8# are asserted the 486 micro­
processor will convert a larger data request to the
appropriate number of smaller transfers. The byte
enables will also be modified appropriately for the
bus size selected.

BS 16 # and BS8 # are active LOW and are provided
with small internal pullup resistors. BS16# and
BS8# must satisfy the setup and hold times t14 and
t15 for proper chip operation.

6.2.15 ADDRESS BIT 20 MASK (A20M#)

Asserting the A20M # input causes the 486 micro­
processor to mask physical address bit 20 before
performing a lookup in the internal cache and before
driving a memory cycle to the outside world. When
A20M # is asserted, the 486 microprocessor emu­
lates the 1 Mbyte address wraparound that occurs
on the 8086. A20M # is active LOW and must be
asserted only when the processor is in real mode.
The A20M # is not defined in Protected Mode.
A20M# is asynchronous but should meet setup and
hold times t20 and t21 for recognition in any specific
clock. For correct operation of the chip, A20M #
should be sampled high 2 clocks before and 2
clocks after RESET goes low.

6.3 Write Buffers

The 486 microprocessor contains four write buffers
to enhance the performance of consecutive writes
to memory. The buffers can be filled at a rate of one
write per clock until all four buffers are filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the.time the write is generated internally,
the write will be placed in the write buffers and prop­
agate to the bus as soon as the bus becomes avail­
able. The write is stored in the on-chip cache imme­
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will
go onto the external bus before the memory writes
pending in the buffer even though the writes oc­
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If

5-87

all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
486 microprocessor will not read from an external
memory location that needs to be updated by one of
the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:
The CPU writes to location X. Location X is in the
internal cache, so it is updated there immediately.
However, the bus is busy so the write out to main
memory is buffered (see Figure 6.3(a)). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.

i486 CPU Cache Write Buffer Main Memory

~[E]atax Y datay
z

Figure 6.3(a)

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Since
the write in the write buffer is a cache hit, the read is
reordered. When location Y is read, it is put into the
cache. The possibility exists that location Y will re­
place location X in the cache. If this is true, location
X would no longer be cached (see Figure 6.3(b)).

i486 CPU Cache Write Buffer Main Memory

[:J
Figure 6.3(b)

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff­
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Since one of the condi­
tions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al­
lowed until all of those flagged writes propogate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache
misses.

I

intef i486™ MICROPROCESSOR

For multiple processor systems and/or systems us­
ing OMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con­
sistency.

6.3.1 WRITE BUFFERS AND 1/0 CYCLES

Input/Output (1/0) cycles must be handled in a dif­
ferent manner by the write buffers.

1/0 reads are never reordered in front of buffered
memory. writes. This insures that the 486 microproc­
essor will update all memory locations before read­
ing status from an 1/0 device.

Th.e 486 microprocessor never buffers single 1/0
writes. When processing an OUT instruction, internal
execution stops until the 1/0 write actually com­
pletes on the external bus. This allows time for the
external system to drive an invalidate into the 486
microprocessor or to mask interrupts before the
processor progresses to the instruction following
OUT. REP OUTS instructions will be buffered.

i/O device recovery time must be handled slightly
differently by the 486 l')"licroprocessor than with the
386 microprocessor. 1/0 device back-to-back write
recovery times could be guaranteed by the 386 mi­
croprocessor by inserting a jump to the next instruc­
tion in the code that writes to the device. The jump
forces the 386 microprocessor to generate a pre­
fetch bus cycle which can't begin until the 1/0 write
completes.

Inserting a jump to the next write will not work with
the 486 microprocessor because the prefetch could
be satisfied by the on-chip cache. A read cycle must
be explicitly generated to a non-cacheable location
in memory to guarantee that a read bus cycle is per­
formed. This read will not be allowed to proceed to
the bus until after the 1/0 write has completed be­
cause 1/0 writes are not buffered. The 1/0 device
will have time to recover to accept another write dur­
ing the read cycle.

6.3.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac­
cess, a memory base variable is read, modified and
~hen written back to the same memory location. It is
important that no . other bus cycles, generated by
other bus masters ,or by the 486 microprocessor it­
self, be allowed on the external bus between the
read and write portion of the locked sequence.

D~ring a locked read cycle the 486 microprocessor
will always access external memory, it will never
lo~k for the location in the on-chip cache, but for
wnte cycles, data is written in the internal cache (if
cache hit) and in the external memory. All data
pending in the 486 microprocessor's write buffers
will be written to memory before a locked cycle is
allowed to proceed to the external bus.

The 486. microprocessor will assert the LOCK# pin
after the write buffers are emptied during a locked
bus cycle. With the. LOCK# pin asserted, the micro­
processor will read the data, operate on the data
and place the results in a write buffer. The contents
of the write buffer will then be written to external
memory. LOCK# will become inactive after the write
part of the locked cycle.

6.4 Interrupt and Non-Maskable

5-88

Interrupt Interface

!he 486 f'!licroprocessor provides two asynchronous
interrupt inputs, INTR (interrupt request) and NMI
(non-maskable interrupt input). This section de­
scribes the hardware interface between the instruc­
tion execution u.nit and the pins. For a description of
the algorithmic response to interrupts refer to Sec­
tion 2. 7. For interrupt timings refer to Section 7 .2.1 o. .

6.4.1 INTERRUPT LOGIC

The ~86 microprocessor contains a two-clock syn­
c~rornzer on the interrupt line. An interrupt request
will reach the internal instruction execution unit two
?locks ~fter the INT~ pin is asserted, if proper setup
1s provided to the first stage of the synchronizer.

intef i486™ MICROPROCESSOR

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen­
sitive and must remain active for the instruction exe­
cution unit to recognize it. The interrupt will not be
serviced by the 486 microprocessor if the INTR sig­
nal does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac­
cepted at these boundaries.

An interrupt must be presented to the 486 micro­
processor INTR pin three clocks before the end of
an instruction for the interrupt to be acknowledged.
Presenting the interrupt 3 clocks before the end of
an instruction allows the interrupt to pass through
the two clock synchronizer leaving one clock to pre­
vent the initiation of the next sequential instruction
and to begin interrupt service. If the interrupt is not
received in time to prevent the next instruction, it will
be accepted at the end of next instruction, assuming
INTR is still held active. The interrupt service micro­
code will start after two dead clocks.

The longest latency between when an interrupt re­
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock
required to vector into the interrupt service micro­
code.

6.4.2 NMI LOGIC

The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log­
ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig­
gered INTR signal. The rising edge of the NMI signal

5-89

is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac­
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NMI is not held inactive for at least two clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc­
tion is executed. Masking the NMI signal prevents
recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMI is done. Only one NMI can be
pending while NMI is masked.

6.5 Reset and Initialization

The 486 microprocessor has a built in self test
(BIST) that can be run during reset. The BIST is in­
voked if the AHOLD pin is asserted for 2 clocks be­
fore and 2 clocks after RESET is deasserted. RE­
SET must be active for 15 clocks with or with no
BIST being enabled. Refer to Section 8.0 for infor­
mation on 486 microprocessor testability.

The 486 microprocessor registers have the values
shown in Table 6.2 after RESET is performed. The
EAX register contains information on the success or
failure of the BIST if the self test is executed. The
DX register always contains a component identifier
at the conclusion of RESET. The upper byte of DX
(DH) will contain 04 and the lower byte (DL) will con­
tain a stepping identifier (see Table 6-3). The floating
point registers are initialized as if the FINIT /FNINIT
(initialize processor) instruction was executed if the
BIST was performed. If the BIST is not executed, the
floating point registers are unchanged.

II

intef 1486™ MICROPROCESSOR

Table 6.2. Register Values after Reset

Register

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI
EFLAGS
EIP
ES
cs
SS
OS
FS

Initial Value
(BIST)

Zero(Pass)
Undefined
0400 + Revision ID
Undefined
Undefined
Undefined
Undefined
Undefined
00000002h
OFFFOh
OOOOh
FOOOh*
OOOOh
OOOOh
OOOOh
OOOOh

Initial Value
(No Bist)

. Undefined
Undefined
0400 + Revision ID
Undefined
Undefined
Undefined
Undefined
Undefined
00000002h.
OFFFOh
OOOOh
FOOOh*
OOOOh
OOOOh
OOOOh
OOOOh GS

IDTR
CAO
DR7

Base =; 0, Limit = 3FFh
60000010h

Base = 0, Limit = 3FFh
60000.010h

cw
SW
TW
FIP
FEA
FCS
FDS
FOP
FSTACK

OOOOOOOOh

037Fh
OOOOh
FFFFh
OOOOOOOOh
-OOOOOOOOh
OOOOh
OOOOh
OOOh
Undefined

Table 6-3. 1486™ CPU Revision ID

14$6!M CPU
Revlsio.n ID

Stepping Name._

B3 01
B4 01
B5 01
B6 01
co 02

The 486 microprocessor will start executing instruc­
tions at location FFFFFFFOH after RESET. When
the first lnterSegment Jump or Call is executed, ad­
dress lines A20-A31 will drop LOW for CS-relative
memory cycles, and the 486 microprocessor will
only execute instructions in the lower one Mbyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of RESETs.

RESET forces the 486 microprocessor to terminate
all execution and local bus activity. No instruction or
bus activity will occur as long as RESET is active.

OOOOOOOOh

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

All entries in the cache are invalidated by RESET.

6.5.1 PIN STATE DURING RESET

The 486 microprocessor recognizes and can re­
spond to HOLD, AHOLD, and BOFF # requests re­
gardless of the state of RESET. Thus, even though
the processor is in reset, it can still .float its bus in
response to any of these requests.

5-90

While in reset, the 486 microprocessor bus is in the
state shown in Figure 6.4 if the HOLD, AHOLD and
BOFF # requests are inactive. Note that the address
(A31-A2, BE3#-BEO#) and cycle definition
(M/10#, D/C#, W/R#) pins are undefined from the
time reset is asserted up to the start of the first bus
cycle. All undefined pins (except FERR#) assume
known values at the beginning of the first bus cycle.
The first bus cycle is always a code fetch to address
FFFFFFFOH. FERR# reflects the state of the ES
(error summary status) bit in the floating point unit
status word. The ES bit is initialized whenever the
floating point unit state is initialized.

~I
c ..
:. I
;i.
"ti :;·

(11 en ...
cb DI ID

Ill
c.
c
:::!.
:::I

IQ

:D
m en
!!11

CLK

RESET f<-----......, z20 CLKs If self-test -----.j

A20M#

i
FLUSH#

!ii

~ ,.@

AHOLD ---,.©

ADS#

BREQ

A31 -A4, MIO#, BLAST UNDEFINED

~
BEO-BE3#, PWT, PCD ~

A3, A2, PLOCK# UNDEF'INEO

D/C#, W/R#

PCHK#,

LOCK#
7777

031-Do,
DP0-3 ________ >)).....,>>- -- ---- --- -- -- --- ---- --- ---- --------- ----- ----------.

HLDA ©
240440-32

NOTES:
1. RESET is an asynchronous input. t20 must be met only to guarantee recognition on a specific clock edge.
2. High for 2 CLKs before and 2 CLKs after RESET goes inactive, for correct operation of the part.
3. Low for 2 CLKs before and 2 CLKs after RESET goes inactive, if tri-state output test mode is to be entered. All outputs are generated tri-stated within 1 O CLKs of
RESET being 'deasserted.
4. High for 2 CLKs before and 2 CLKs after RESET goes inactive, to initiate self-test.
5. Hold is recognized normally during RESET.
6. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at least 1 ms after Vee and CLK are stable.

Iii

l

i:
co en
!!:

s::
0
:D
0
"U
:D
0
0
rn en en
0
:D

intJ i486TM MICROPROCESSOR

7 .0 BUS OPERATION

7.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
dword lengths may be transferred without restric­
tions on physical address alignment. Data may be
accessed at any byte boundary but two or three cy­
cles may be required for unaligned data transfers.
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op­
erand Alignment.

The 486 microprocessor address signals are split
into two components. High-order address bits are
provided by the address lines, A2-A31. The byte
enables, BEO#-BE3#, form the low-order address
and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as­
sociated data bus bytes are involved with the pres­
ent bus cycle, as listed in Table 7.1. Byte enable
pattems which have a negated byte enable separat­
ing two or three asserted byte enables will never
occur (see Table 7.5). All other byte enable patterns
are possible.

Table 7.1. Byte Enables and Associated
Data and Operand Bytes

Byte
Enable Associated Data Bus Signals
Signal

BEO# 00-07 (byte 0-least significant)

BE1# D8-015 (byte 1)

BE2# D16-D23 (byte 2)

BE3# D24-D31 (byte 3-most significant)

Address bits AO and A 1 of the physical operand's
base address can be created when necessary. Use
of the byte enables to create AO and A 1 is shown in
Table 7.2. The byte enables can also be decoded to
generate BLE# (byte low enable) and BHE# (byte
high enable). These signals are needed to address
16-bit memory systems (see Section 7.1.4 Inter­
facing with 8- and 16-bit memories).

5-92

A31

A31

A31

A31

A31

A31

Table 7.2. Generating AO-A31 from
BEO#-BE3# and A2-A31

486™ CPU Address Signals

......... A2 BE3# BE2# BE1#

Physical Base

Address

......... A2 A1 AO

......... A2 0 0 x x x

......... A2 0 1 x x Low

......... A2 1 0 x Low High

......... A2 1 1 Low High High

7.1.1 MEMORY AND 1/0 SPACES

BEO#

Low

High

High

High

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the ,system may ei­
ther be memory-mapped, or 110-mapped, or both.
Physical memory addresses range from OOOOOOOOH
to FFFFFFFFH (4 gigabytes). 1/0 addresses range
from OOOOOOOOH to OOOOFFFFH (64 Kbytes) for pro­
grammed 1/0. See Figure 7.1.

intef 1486™ MICROPROCESSOR

f"Ffff"Ff"f"H ----

PHYSICAL
MEMORY

4GBYTE

~ W.!~

~r
I /Nor/).

~ .//~
OOOOFf"Ff"H 8 } ACCESSll'ILE

64kBYTE PROGRAMMEO
OOOOOOOOH 1/0 SPACE 240440-33

OOOOOOOOH .._ __ __,

Physical Memory Space l/OSpace

Figure 7.1. Physical Memory and 1/0 Spaces

7.1.2 MEMORY AND 1/0 SPACE
ORGANIZATION

The 486 microprocessor datapath to memory and
input/output (110) spaces can be 32-, 16- or 8-bits
wide. The byte enable signals, 8E0#-8E3#, allow
byte granularity when addressing any memory or 1/0
structure whether 8, 16 or 32 bits wide.

The 486 microprocessor includes bus control pins,
8S16# and 8$8#, which allow direct connection to
16- and 8-bit memories and 1/0 devices. Cycles to
32-, 16- and 8-bit may occur in any sequence, since
the 8$8# and 8816# signals are sampled during
each bus cycle.

32-bit wide memory and 1/0 spaces are organized
as arrays of physical 4-byte words. Each memory or
1/0 4-byte word has four individually addressable
bytes at consecutive byte addresses (see Figure
7.2). The lowest addressed byte is associated with
data signals 00-07; the highest-addressed byte
with 024-031. Physical 4-byte words begin at ad­
dresses divisible by four.

5-93

32-Blt Wide Organization

ITTITT~, I I I l''ITT~"
00000003H '---. , • , • , .,......, OOOOOOOOH

BE3# BE2# BE1# BEO#
240440-34

16-Bit Wide Organization

~'~ DJITTITT'~

00000001 H ..__ , __, OOOOOOOOH

BHE# BLE#
240440-35

Figure 7.2. Physical Memory
and 1/0 Space Organization

I

intef i486™ MICROPROCESSOR

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad­
dresses divisible by two. The byte enables BEO # -
BE3#, must be decoded to A1, BLE# and BHE# to
address 16-bit memories (see Section 7.1.4).

To address 8-bit memories, the two low order ad­
dress bits AO and A 1, must be decoded from BEO #­
BE3 #. The same logic can be used for 8- and 16-bit
memories since the decoding logic for BLE# and AO
are the same (see Section 7.1.4).

7.1.3 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc­
essor connection to 32-, 16- or 8-bit buses for mem­
ory or 1/0. A processor may connect to all three bus
sizes. Transfers to or from 32-, 16- or 8-bit devices
are supported by dynamically determining the bus
width during each bus cycle. Address decoding cir­
cuitry may assert BS 16 # for 16-bit devices, or
BS8 # for 8-bit devices during e~ch bus cycle. BS8 #
and BS16# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both
BS16# and BS8# are asserted.

BS16# and BS8# force the 486 microprocessor to
run additional bus cycles to complete requests larg­
er than 16- or 8 bits. A 32-bit transfer will be convert­
ed into two 16-bit transfers (or 3 transfers if the data
is misaligned) when BS16# is asserted. Asserting
BS8# will convert a 32-bit transfer into four 8-bit
transfers.

Extra cycles forced by BS16# or BS8# should be
viewed as independent bus cycles. BS16# or BS8#
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it can return between
cycles.

The 486 microprocessor will drive the byte enables
appropriately during extra cycles forced by BS8 #
and BS16#. A2-A31 will not change if accesses are
to a 32-bit aligned area. Table 7.3 shows the set of
byte enables that will be generated on the next cycle
for each of the valid possibilities of the byte enables
on the current cycle.

The dynamic bus sizing feature of the 486 micro­
processor is significantly different than that of the
386 microprocessor. Unlike the 386 microprocessor,
the 486 microprocessor requires that data bytes be
driven on the addressed data pins. The simplest ex­
ample of this function is a 32-bit aligned, BS16#
read. When the 486 microprocessor reads the two
high order bytes, they must be driven on the data
bus pins 016-031. The 486 microprocessor ex­
pects the two low order bytes on 00-015. The 386
mieroprocessor expects both the high and low order
bytes on 00-015. The 386 microprocessor always
reads or writes data on the lower 16 bits of the data
bus when BS16# is asserted.

The external system must contain buffers to enable
the 486 microprocessor to read and write data on
the appropriate data bus pins. Table 7.4 shows the
data bus lines where the 486 microprocessor ex­
pects data to be returned for each valid combination
of byte enables and bus sizing options.

Valid data will only be driven onto data bus pins cor­
responding to active byte enables during write cy­
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the 386 micro­
processor, the 486 microprocessor will not duplicate
write data onto parts of the data bus for which the
corresponding byte enable is negated.

Table 7.3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16#
BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO#

1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 n n n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n

"n" means that another bus cycle will not be required to satisfy the request.

5-94

intef i486™ MICROPROCESSOR

Table 7.4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO#

1 1 1 0
1 1 0 0
1 0 0 0
0 0 0 0
1 1 0 1
1 0 0 1
0 0 0 1
1 0 1 1
0 0 1 1
0 1 1 1

7.1.4 INTERFACING WITH 8·, 16· AND 32-BIT
MEMORIES

In 32-bit physical memories such as Figure 7.3, each
4-byte word begins at a byte address that is a multi­
ple of four. A2-A31 are used as a 4-byte word se­
lect. 8E0#-8E3# select individual bytes within the
4-byte word. 8$8# and 8816# are negated for all
bus cycles involving the 32-bit array.

32 DATA BUS (DO-D31)
485TM 1~ 32-BIT

CPU ADDRESS BUS (BEO#-BE3#,A2-A31) MEMORY

fes8# lBs16#

"HIGH" "HIGH"
240440-36

Figure 7.3. 1486™ Microprocessor
with 32~Blt Memory

w/o BS8#/BS16# wBS8# WBS16#

07-00 07-00 07-00
015-00 07-00 015-00
023-00 07-00 015-00
031-00 07-00 015-00
015-08 015-08 015-08
023-08 015-08 015-08
031-08 015-08 015-08
023-016 023-016 023-016
031-016 023-016 031-016
031-024 031-024 031-024

16- and 8-bit memories require external byte swap­
ping logic for routing data to the appropriate data
lines and logic for generating 8HE#, 8LE# and A1.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
8816# or 888#.

Figure 7.4 shows the 486 microprocessor address
bus interface to 32-, 16- and 8-bit memories. To ad­
dress 16-bit memories the byte enables must be
decoded to produce A1, 8HE# and 8LE# (AO). For
8-bit wide memories the byte enables must be de­
coded to produce AO and A 1. The same byte select
logic can be used in 16- and 8-bit systems since
BLE# is exactly the same as AO .(see Table 7.5).

8EO#-BE3# can be decoded as shown in Table
7.5 to generate A1, 8HE# and 8LE#. The byte se­
lect logic necessary to generate BHE# and BLE# is
shown in Figure 7 .5.

486 TM Microprocessor
Address Bus (A31-A2 BEO#-BE3#) 32-Blt

Memory

S8#I I BS16#

A31-A2

8

Address I+--
16-Blt

Decode BHEfl. BLEfl. A1
Memory

BEO#-BE3# Byte
Select Logic

AO{_Blfil A 1
8-Blt

A3i-A2 Memory
--.-

240440-37

Figure 7.4. Addressing 16· and 8-Bit Memories

5-95

I

intJ i486™ MICROPROCESSOR

Table 7.5. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices

1486™ CPU Signals 8, 16·Blt Bus Signals
Comments

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO)

H* H* H* H* x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L .H H H H L
H* L* H* L* x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x x x x-not contiguous bytes
L* H* L* H* x x x · x-not contiguous bytes
L* H* L* L* x x x x-not contiguous bytes
L L H H H L L
L* L* H* L* x x x x-not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when 00-07of16-bit bus is active.
BHE # asserted when 08-015 of 16-bit bus is active.
A 1 low for all even words; A 1 high for all odd words.

Key:
x =don't care
H = high voltage level
L = low voltage level
• = a non-occurring pattern of Byte Enables; either none are asserted,

or the pattern has Byte Enables asserted for non-contiguous bytes

240440-38 240440-39

BEO#

BE2

240440-40

Figure 7.5. Logic to Generate A1, BHE# and BLE# for 16-Blt Busses

Combinations of BEO#-BE3# which never occur
are those in which two or three asserted byte en­
ables are separated by one or more negated byte
enables. These combinations are "don't care" con­
ditions in the decoder. A decoder can use the non­
occurring BEO#-BE3# combinations to its best ad­
vantage.

5-96

Figure 7.6 shows a 486 microprocessor data bus in­
terface to 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so
that data is supplied to, and received from the 486
microprocessor on the correct data pins (see Table
7.4).

intef i486™ MICROPROCESSOR

00-07 4
08-015 4 32-81\

486 TM Microprocessor 016-023 4
~

Memory
024-031 4

858 #
8516# (A2-A31, BEO#-BE3#)

~I
Byte

'16 16-81\ I Swap 4 } Memory Logic

Address Byte 8 8-81\
Decode Swap Memory

Logic

240440-74

Figure 7.6. Data Bus Interface to 16· and 8-bit Memories

7.1.5 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

888# and 8816# can be driven during cache line
fills. The 486 microprocessor will generate enough
8- or 16-bit cycles to fill the cache line. This can be
up to 16 8-bit cycles.

The external system should assume that all byte en­
ables are active for the first cycle of a cache line fill.
The 486 microprocessor will generate proper byte
enables for subsequent cycles in the line fill. Table
7.6 shows the appropriate AO (8LE#), A1 and
8HE# for the various combinations of the 486 mi­
croprocessor byte enables on both the first and sub­
sequent cycles of the cache line fill. The "*" marks
all combinations of byte enables that will be generat­
ed by the 486 microprocessor during a cache line fill.

7.1.6 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
operand that spans more than one physical 4-byte
word of memory or 1/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad­
dresses that are not evenly divisible by 4, or 2-byte I
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 7.7 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz­
ing. When multiple cycles are required to transfer a
multi-byte logical operand, the highest-order bytes
are transferred first. For example, when the proces­
sor does a 4-byte unaligned read beginning at loca­
tion x11 in the 4-byte aligned space, the three high
order bytes are read in the first bus cycle. The low
byte is read in a subsequent bus cycle.

Table 7.6. Generating AO, A1 and BHE# from the i486™ Microprocessor Byte Enables

BE3# BE2# BE1# BEO#
First Cache Fill Cycle Any Other Cycle

AO A1 BHE# AO A1 BHE#

1 1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

•o 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0

•o 0 0 1 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 1

•o 0 1 1 0 0 0 0 1 0
•o 1 1 1 0 0 0 1 1 0

5-97

intJ 1486™ MICROPROCESSOR

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte Address in
Memory (Low Order Bits)

Transfer Cycles
· over 32-Bit Bus

Transfer Cycles over
16-Bit Data Bus
I = BS 16 # Asserted

Transfer Cycles over
8-Bit Data Bus
I = .BS8 # Asserted

KEV:
b = byte transfer
w = 2-byte transfer

· 3 = 3-byte transfer
d = 4-byte transfer

xx 00

b

b

b

h = high-order portion
I = low-order portion
m = mid-order portion

01

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS 16 # or BS8 # forcing extra cycles, low­
order bytes or words are transferred first (opposite
to the example above). When the 486 microproces­
sor requests a 4-byte read and the external system
asserts BS16 #, the lower 2 bytes are read first fol­
lowed by the upper 2 bytes.

In the unaligned transfer described above, the proc­
essor requested three bytes on the first cycle. If the
external system asserted BS16# during this 3-byte
transfer, the lower word is transferred first followed
by the upper byte. In the final cycle the lower byte of
the 4-byte operand is transferred as in the 32-bit ex-

. ample above.

7 .2 Bus Functional Description

The 486 microprocessor supports a wide variety of
bus transfers to meet the needs of high performance
systems. Bus transfers can be single cycle or multi­
ple cycle, burst or non-burst, cacheable or non­
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To
support multiprocessing systems there are cache in­
validation cycles and locked cycles.

10 11 00

4-Byte Operand

01 10 11

lb I mlb I mhbl hb

t t
byte with
lowest
address

byte with
highest

address

This section begins with basic non-cacheable non­
burst single cycle transfers .. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in Section 7.2.3. The re­
maining sections describe locked, pseudo-locked,
invalidate, bus hold and interrupt cycles.

Bus cycles and data cycle!!! are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or' from
the 486 microprocessor during a data cycle. A bus
cycle contains one or more data cycles.

Refer to Section 7 .2.13 for a description of the bus
states shown in the timing diagrams.

7.2.1 NON·CACHEABLE NON-BURST SINGLE
CYCLE .

5-98

7.2.1.1 No Walt States

The fastest non-burst bus cycle that the 486 micro­
processor supports is two clocks long. These cycles
are called 2-2 cycles because reads and writes take
two cycles each. The first 2 refers to reads and the

intef i486™ MICROPROCESSOR

second to writes. For example, if a wait state needs
to be added to a write, the cycle would be called 2-3.

Basic two clock read and write cycles are shown in
Figure 7.7. The 486 microprocessor initiates a cycle
by asserting the address status signal (ADS#) at the
rising edge of the first clock. The ADS# output indi­
cates that a valid bus cycle definition and address is
available on the cycle definition lines and address
bus.

The non-burst ready input (ROY#) is returned by the
external system in the second clock. ROY# indi­
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The 486 microprocessor samples ROY# at the end
of the second clock. The cycle is complete if ROY#
is active (LOW) when sampled. Note that ROY# is
ignored at the end of the first clock of the bus cycle.

The burst last signal (BLAST#) is asserted (LOW)
by the 486 microprocessor during the second clock
of the first cycle in all bus transfers illustrated in Fig­
ure 7.7. This indicates that each transfer is complete
after a single cycle. The 486 microprocessor asserts
BLAST# in the last cycle of a bus transfer.

The timing of the parity check output (PCHK#) is
shown in Figure 7.7. The 486 microprocessor drives
the PCHK# output one clock after ready terminates
a read cycle. PCHK# indicates the parity status for
the data sampled at the end of the previous clock.
The PCHK# signal can be used by the external sys­
tem. The 486 microprocessor does nothing in re­
sponse to the PCH K # output.

7.2.1.2 Inserting Wait States

The external system can insert wait states into the
' basic 2-2 cycle by driving ROY# inactive at the end

of the second clock. ROY# must be driven inactive
to insert a wait state. Figure 7.8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to a
486 microprocessor bus cycle by maintaining ROY#
inactive.

The burst ready input (BROY#) must be driven inac­
tive on all clock edges where ROY# is driven inac­
tive for proper operation of these simple non-burst
cycles.

5-99

7.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter­
nal requests from the 486 microprocessor or by the
external memory system. An internal request for a
64-bit floating point load or a 128-bit pre-fetch must
take more than one cycle. Internal requests for un­
aligned data may also require multiple bus cycles. A
cache line fill requires multiple cycles to complete.
The external system can cause a multiple cycle
transfer when it can only supply 8 or 16 bits per
cycle.

Only multiple cycle transfers caused by internal re­
quests are considered in this section. Cacheable cy­
cles and 8- and 16-bit transfers are covered in Sec­
tions 7.2.3 and 7.2.5.

7.2.2.1 Burst Cycles

The 486 microprocessor can accept burst cycles for
any bus requests that require more than a single
data cycle. During burst cycles, a new data item is
strobed into the 486 microprocessor every clock
rather than every other clock as in non-burst cycles.
The fastest burst cycle requires 2 clocks for the first
data item with subsequent data items returned every
clock.

The 486 microprocessor is capable of bursting a I
maximum of 32 bits during a write. Burst writes can
only occur if BS8# or BS16# is asserted. For exam-
ple, the 486 microprocessor can burst write four 8-
bit operands or two 16-bit operands in a single burst
cycle. But the 486 microprocessor cannot burst mul-
tiple 32-bit writes in a single burst cycle.

Burst cycles begin with the 486 microprocessor driv­
ing out an address and asserting ADS# in the same
manner as non-burst cycles. The 486 microproces­
sor indicates that it is willing to perform a burst cycle
by holding the burst last signal (BLAST#) inactive in
the second clock of the cycle. The external system
indicates its willingness to do a burst cycle by return­
ing the burst ready signal (BROY#) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre­
sponding to an internal 486 microprocessor cache
line). A 16-byte aligned area begins at location
XXXXXXXO and ends at location XXXXXXXF. During
a burst cycle, only BE0-3#, A2, and Aa may
change. A4-A31, M/10#, DIC#, and W/R# will re­
main stable throughout a burst. Given the first ad­
dress in a burst, external hardware can easily calcu­
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the 486 microprocessor internal cache
lines.

intJ 1486™ MICROPROCESSOR

TI T1 T2 T1 T2 T1 T2 T1 T2 TI

CLK

\ \ I ADS#. I \ I \ I I .,
A2-A31 I

M/10# x x x x D/C#
BE0-3#

W/R# \ I \ ,I I
ROY#

BLAST# x \ I ~ I \ I ~ c
DATA TO FROM CPU TO FROM CPU CPU CPU

PCHK#
I

Q OJ I

READ WRITE READ WRITE
240440-50

Figure 7.7. Basic 2·2 Bus Cycle

TI T1 T2 T2 T1 T2 T2 TI

CLK

ADS# \ I \ I
A2-A31

M/10# x x D/C#
BE0-3#

W/R# \ I
ROY#

x \ BLAST# I \ c
I
I

DATA @ (: FROM CPU >-
I

READ WRITE '·
240440-51

Figure 7.8. Basic 3·3 Bus Cycle

5-100

inter i486™ MICROPROCESSOR

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the 486 microproces­
sor can be converted into a burst cycle. The 486
microprocessor will only burst the number of bytes
needed to complete a transfer. For example, eight
bytes will be bursted in for a 64-bit floating point
non-cacheable read.

The external system converts a multiple cycle re­
quest into a burst cycle by returning BROY# active
rather than ROY# (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be bursted such
as interrupt acknowledge and halt, BROY# has the
same effect as ROY#. BROY# is ignored if both
BROY# and ROY# are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with ROY#.

7.2.2.2 Terminating Multiple and
Burst Cycle Transfers

The 486 microprocessor drives BLAST# inactive for
all but the last cycle in a multiple cycle transfer.
BLAST# is driven inactive in the first cycle to inform
the external system that the transfer could take ad­
ditional cycles. BLAST# is driven active in the last
cycle of the transfer indicating that the next time
BROY# or ROY# is returned the transfer is com­
plete.

BLAST# is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse­
quent clocks when ROY# or BROY# is returned.

The number of cycles in a transfer is a function of
several factors including the number of bytes the mi­
croprocessor needs to complete an internal request
(1, 2, 4, 8, or 16), the state of the bus size inputs
(BS8# and BS16#), the state of the cache enable
input (KEN#) and alignment of the data to be trans­
ferred.

When the 486 microprocessor initiates a request it
knows how many bytes will be transferred and if the
data is aligned. The external system must tell the
microprocessor whether the data is cacheable (if the
transfer is a read) and the width of the bus by return­
ing the state of the KEN#, BS8 # and BS16# inputs
one clock before ROY# or BROY# is returned. The
486 microprocessor determines how many cycles a
transfer will take based on its internal information
and inputs from the external system.

BLAST# is not valid in the first clock of a bus cycle
because the 486 microprocessor cannot determine
the number of cycles a transfer will take until the

external system returns KEN#, BS8# and BS16#.
BLAST# should only be sampled in the second and
subsequent clocks of a cycle when the external sys­
tem returns ROY# or BROY#.

The system may terminate a burst cycle by returning
ROY# instead of BROY#. BLAST# will remain
deasserted until the last transfer. However, any
transfers required to complete a cache line fill will
follow the burst order, e.g., if burst order was 4, 0, C,
8 and ROY# was returned at after 0, the next trans­
fers will be from C and 8.

7 .2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 7.9 illustrates a 2 cycle non-burst, non-cache­
able multiple cycle read. This transfer is simply a
sequence of two single cycle transfers. The 486 mi­
croprocessor indicates to the external system that
this is a multiple cycle transfer by driving BLAST#
inactive during the second clock of the first cycle.
The external system returns ROY# active indicating
that it will not burst the data. The external system
also indicates that the data is not cacheable by re­
turning KEN# inactive one clock before it returns
ROY# active. When the 486 microprocessor sam­
ples ROY# active it ignores BROY#.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns ROY# active.

The 486 microprocessor indicates the last cycle of
the transfer by driving BLAST# active. The next
ROY# returned by the external system terminates
the transfer.

7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re­
quest into a burst cycle by returning BROY# active
rather than ROY# in the first cycle of the transfer.
This is illustrated in Figure 7.10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. ROY# must be driven inactive when
BROY# is returned active.

BLAST# behaves exactly as it does in the non-burst
read. BLAST# is driven inactive in the second clock
of the first cycle of the transfer indicating more cy­
cles to follow. In the last cycle, BLAST# is driven
active telling the external memory system to end the
burst after returning the next BROY#.

5-101

I

intef i486™ MICROPROCESSOR

TI T1 T2 T1 T2 Tl

CLK

ADS# \ I \ I
A2-A31

M/10#

x x D/C#
W/R#

BE0-3#

ROY#

BROY#

KEN#

BLAST# x 7 \ ~ I
I
I

DATA TO
CPU

1st DATA 2nd DATA
240440-52

Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers

TI 'T1 T2 T2 TI TI

CLK

ADS# \ I
A2-A31

M/10#

x x D/C#
W/R#

BE0-3#

ROY#

BROY#

KEN#

BLAST# x I \ I I

I I

DATA ©----@ CPU CPU

240440-53

Figure 7.10. Non-Cacheable Burst Cycle

5-102

i486™ MICROPROCESSOR

7.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re­
quest to fill a cache line by returning KEN# active
one clock before ROY# or BROY# during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining three require­
ments described below are met, the 486 microproc­
essor will fetch an entire cache line regardless of the
state of KEN#. KEN# must be returned active in
the last cycle of the transfer for the data to be writ­
ten into the internal cache. The 486 microprocessor
will only convert memory reads or prefetches into a
cache fill.

KEN# is ignored during write or 1/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. 1/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock pri­
or to ROY# or BROY# being returned for the
first data cycle.

2. The cycle must be of the type that can be inter­
nally cached. (Locked reads, 1/0 reads, and in­
terrupt acknowledge cycles are never cached).

3. The page table entry must have the page cache
disable bit (PCD) set to O. To cache a page
table entry, the page directory must have
PCD==o. To cache reads or prefetches when
paging is disabled, or to cache the page direc­
tory entry, control register 3 (CR3) must have
PCD=O.

4. The cache disable (CD) bit in control register 0
(CRO) must be clear.

External hardware can determine when the 486 mi­
croprocessor has transformed a read or prefetch
into a cache fill by examining the KEN#, M/10#,
DIC#, W/R#, LOCK#, and PCD pins. These pins
convey to the system the outcome of conditions 1 -3
in the above list. In addition, the 486 drives PCD high
whenever the CD bit in CRO is set, so that external
hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

7 .2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The 486 microprocessor expects to receive valid
data on its entire bus (32 bits) in the first cycle of a
cache line fill. Data should be returned with the as­
sumption that all the byte enable pins are driven ac­
tive. However if BS8# is asserted only one byte
need be returned on data lines D0-07. Similarly if
BS16# is asserted two bytes should be returned on
00-015.

The 486 microprocessor will generate the addresses
and byte enables for all subsequent cycles in the
line fill. The order in which data is read during a line
fill depends on the address of the first item read.
Byte ordering is discussed in Section 7.2.4.

7.2.3.2 Non-Burst Cacheable Cycles

Figure 7.11 shows a non-burst cacheable cycle. The
cycle becomes a cache fill when the 486 microproc­
essor samples KEN# active at the end of the first
clock. The 486 microprocessor drives BLAST# in­
active in the second clock in response to KEN#.
BLAST# is driven inactive because a cache fill re-
quires 3 additional cycles to complete. BLAST# re- •
mains inactive until the last transfer in the cache line
fill. KEN# must be returned active in the last cycle
of the transfer for the data to be written into the
internal cache.

Note that this cycle would be a single bus cycle if
KEN# was not sampled active at the end of the first
clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST# output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST# until the sec­
ond clock.

During the first cycle of the cache line fill the exter­
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
486 microprocessor drives the address lines and
byte enables (see Section 7.2.4.2 for Burst and
Cache Line Fill Order).

5-103

intef i486™ MICROPROCESSOR

Ti T1 T2 T1 T2 T1 T2 T1 T2 Ti

CLK

ADS# '-----' '---' '----' I

·I
\.__ /

A2-A31
M/10#
D/C#
W/R#

BE0-3#

ROY#

BROY#

KEN#

BLAST#

I

w w
---.--x ___ , \ _ _.__\ ___ c_

DATA ----+--------<Jpu >---..... ---<J~u >---...... ---<Jpu >---...... ---<Jpu >----

240440-54

Figure 7.11. Non-Burst, Cacheable Cycles

7.2.3.3 Burst Cacheable Cycles

Figure 7 .12 illustrates a burst mode cache fill. As in
Figure 7 .11, -the transfer becomes a cache line fill
when the external system returns KEN# active at
the end ofthe first clock in the cycle.

The external system informs the 486 microproces­
sor that it will burst the line in by driving BADY#
active at the end of the first cycle in the transfer.

Note that during a burst cycle ADS# is only driven
with the first address.

5-104

intef i486TM MICROPROCESSOR

CLK

ADS#

A4-A31,
t.4/10#.
D/C#,
W/R#

A2-A3,
BE0-3#

ROY#

BROY#

KEN#

BLAST#

DATA

PCHK#

Tl T1 T2 T2 T2 T2 Tl

\jJ
I

,.....JX i I \.____,__C_

240440-55

Figure 7.12. Burst Cacheable Cycle

7.2.3.4 Effect of Changing KEN# during a
Cache Line Fill

KEN# can change multiple times as long as it ar­
rives at its final value in the clock before ADY# or
BADY# is returned. This is illustrated in Figure 7.13.
Note that the timing of BLAST# follows that of
KEN# by one clock. The i486 samples KEN# every
clock and uses the value returned in the clock be­
fore ready to determine if a bus cycle would be a

cache line fill. Similarly, it uses the value of KEN# in
the last cycle, before early ROY# to load the line
just retrieved from the memory into the cache.
KEN# is sampled every clock, it must satisfy setup
and hold time.

KEN# can also change multiple times before a burst
cycle as long as it arrives at its final value one clock
before ready is returned active.

5-105

I

intef i486™ MICROPROCESSOR

Ti T1 T2 T2 T2 T1 T2

CLK

ADS# \ I \ I
A4-A31,

M/10#, x D/C#,
W/R#

A2-A3, x x BE0-3#

ROY#

KEN# w w
BLAST# x I \ I ~ 7

I I

DATA @ CPU ®--CPU

240440-56

Figure 7 .13. Effect of Changing KEN#

7.2.4 BURST MODE DETAILS Driving BROY# and ROY# inactive adds a wait
state to the transfer. A burst cycle where two clocks

7.2.4.1 Adding Wait States to Burst Cycles
are required for every burst item is shown in Figure
7.14.

Burst cycles need not return data on every clock.
The 486 microprocessor will only strobe data into
the chip when either ROY# or BROY# are active.

5-106

intJ i486™ MICROPROCESSOR

CLK

ADS#

A4-A31,
t.1/10#.
D/C#,
W/R#

A2-A3,
BE0-3#

ROY#

BROY#

KEN#

BLAST#

DATA

Tl T1 T2 T2 T2 T2

w

Figure 7.14. Slow Burst Cycle

7.2.4.2 Burst and Cache Line Fill Order

The burst order used by the 486 microprocessor is
shown in Table 7.7. This burst order is followed by
any burst cycle (cache or not), cache line fill (burst
or not) or code prefetch.

First
Addr.

0
4
8
c

T2 T2 T2

I

w

240440-57

Table 7.7. Burst Order

Second Third Fourth
Addr. Addr. Addr.

4 8 c
0 c 8
c 0 4
8 4 0

The microprocessor presents each request for data
in an order determined by the first address in the
transfer. For example, if the first address was 104
the next three addresses in the burst will be 100,
10C and 108.

An example of burst address sequencing is shown in
Figure 7.15.

5-107

I

intef i486™ MICROPROCESSOR

Tl T1 T2 T2 T2 T2 Tl

CLK

ADS# \,___.....__,/

A2-A31 __ __..__,X ___ ,o_4 __ X 100 j X 1oc j X 1_oa_: ---

ROY#

BROY#

KEN# \jJ w
BLAST# --..,.-.JX.___..__,/ \....___._C_

DATA

240440-58

Figure 7 .15. Burst Cycle Showing Order of Addresses

The sequences shown in Table 7.7 accommodate
systems with 64-bit busses as well as systems with
32-bit data busses. The sequence applies to all
bursts, regardless of whether the purpose of the
burst is to fill a cache line, do a 64-bit read, or do a
pre-fetch. If either BS8# or BS16# is returned ac­
tive, the 486 microprocessor completes the transfer
of the current 32-bit word before progressing to the
next 32-bit word. For example, a BS16# burst to
address 4 has the following order: 4-6-0-2-C-E-8-A.

7.2.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 7.7.
To support these systems the 486 microprocessor
allows a burst cycle to be interrupted at any time.

The 486 microprocessor will automatically generate
another normal bus cycle after being interrupted to
complete the data transfer. This is called an inter­
rupted burst cycle. The external system can respond
to an interrupted burst cycle with another burst cy­
cle.

The external system can interrupt a burst cycle by
returning ROY# instead of BROY#. ROY# can be
returned after any number of data cycles terminated
with BROY#.

An example of an interrupted burst cycle is shown in
Figure 7 .16. The 486 microprocessor immediately
drives ADS# active to initiate a new bus cycle after
ROY# is returned active. BLAST# is driven inactive
one clock after ADS# begins the second bus cycle
indicating that the transfer is not complete.

5-108

i486™ MICROPROCESSOR

Tl T1 T2 T2 T1 T2 T2 Tl

CLK

ADS# '~~' '~~'
A2-A31 ..,......,......,........_~X~..,......---1-04..,......,...._,X10a; x~..,......---1-ac..,......,...._,X~1-a_s~: ____ _

ROY#

BROY#

I

KEN# w w
BLAST# _ __.X~~' '~~' \.....____......._C_

DATA

240440-59

Figure 7.16. Interrupted Burst Cycle

KEN# need not be returned active in the first data
cycle of the second part of the transfer in Figure
7.16. The cycle had been converted to a cache fill in
the first part of the transfer and the 486 microproc­
essor expects the cache fill to be completed. Note
that the first half and second half of the transfer in
Figure 7 .16 are each two cycle burst transfers.

The order in which the 486 microprocessor requests
operands during an interrupted burst transfer is de­
termined by Table 7.7. Mixing ROY# and BROY#
does not change the order in which operand ad­
dresses are requested by the 486 microprocessor.

An example of the order in which the 486 microproc­
essor requests operands during a cycle in which the
external system mixes ADY# and BADY# is shown
in Figure 7.17. The 486 microprocessor initially re­
quests a transfer beginning at location 104. The
transfer becomes a cache line fill when the external
system returns KEN# active. The first cycle of the
cache fill transfers the contents of location 104 and
is terminated with ADY#. The 486 microprocessor
drives out a new request (by asserting ADS#) to
address 100. If the external system terminates the
second cycle with BADY#, the 486 microprocessor
will next request/ expect address 1 OC. The correct
order is determined by the first cycle in the transfer,
which may not be the first cycle in the burst if the
system mixes ADY# with BADY#.

5-109

I

intJ i486™ MICROPROCESSOR

Ti T1 T2 T1 T2 T2 T2 Ti

CLK

ADS# \ I \ I
A2-A31 x 104 x 100 x 10C i x 108:

ROY#

BROY#

I

KEN# w w
BLAST# x I \ I \ c

DATA T
CPU

240440-60

Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses

7.2.5 8· AND 16-BIT CYCLES

The 486 microprocessor supports both 16- and 8-bit
external busses through the BS16# and BS8# in­
puts. BS16# and BS8# allow the external system to
specify, on a cycle by cycle basis, whether the ad­
dressed component can supply 8, 16 or 32 bits.
BS16# and BS8# can be used in burst cycles as
well as non-burst cycles. If both BS16# and BS8#
are returned active for any bus cycle, the 486 micro­
processor will respond as if only BS8 # were active.

The timing of BS16# and BS8# is the same as that
of KEN#. BS16# and BS8# must be driven active
before the first ROY# or BROY# is driven active.

Driving the BS16# and BS8# active can force the
486 microprocessor to run additional cycles to com­
plete what would have been only a single 32-bit cy­
cle. BS8# and BS16# may change the state of
BLAST# when they force subsequent cycles from
the transfer.

Figure 7.18 shows an example in which BS8#
forces the 486 microprocessor to run two extra cy­
cles to complete a transfer. The 486 microprocessor
issues a request for 24 bits of information. The ex­
ternal system drives BS8# active indicating that
only eight bits of data can be supplied per cycle. The
486 microprocessor issues two extra cycles to com­
plete the transfer.

5-110

intJ 1486™ MICROPROCESSOR

TI T1 T2 T1 T2 T1 T2 Tl

CLK

ADS#

A2-A31
M/10#
D/C#
W/R#

\ _____ , \ _____ , \ _____ , L
~~x~~--~--~~-: c

I

BE0-3#

ROY#

I

BSB# w w w
BLAST# _ __,...........X ______ / \.....__..___.._~c-

DATA ___ ___,,__ __ __. __ -< c!~u >---....... --<c!pu >---...... ---< c!Pu >----

240440-61

Figure 7.18. 8-Bit Bus Size Cycle

Extra cycles forced by the BS 16 # and BS8 # should
be viewed as independent bus cycles. BS16# and
BS8# should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The 486 microprocessor will drive BLAST#
inactive until the last cycle before the transfer is
complete.

Refer to Section 7.1.3 for the sequencing of ad­
dresses while BS8# or BS16# are active.

BSB# and BS16# operate during burst cycles in ex­
actly the same manner as non-burst cycles. For ex­
ample, a single non-cacheable read could be trans­
ferred by the 486 microprocessor as four 8-bit burst
data cycles. Similarly, a single 32-bit write could be
written as four 8-bit burst data cycles. An example of
a burst write is shown in Figure 7.19. Burst writes
can only occur if BSB# or BS16# is asserted.

5-111

I

i486™ MICROPROCESSOR

CLK

ADS#

ADDR
SPEC

BE0-3#

ROY#

BROY#

Tl T1 T2

\ I

x

x

T2 T2 T2 Tl

: 'C
I

x x x : 'C

BSB#
\ _______ ,,

BLAST# __ x __ , \.___C _
DATA ____ __, ____ _..---<(~__,!~•R_o_M_cP_u~i-----;-------J)---

240440-62

Figure 7.19. Burst Write as a Result of 8$8# or 8516#

7.2.6 LOCKED CYCLES

Locked cycles are generated in software for any in­
struction that performs a read-modify-write opera­
tion. During a read-modify-write operation the proc­
essor can read and modify a variable in external
memory and be assured that the variable is not ac­
cessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The xchg (exchange) instruc­
tion generates a locked cycle when one of its oper­
ands is memory based. Locked cycles are generat­
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy­
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

Locked cycles are implemented in hardware with the
LOCK# pin. When LOCK# is active, the processor
is performing a read-modify-write operation and the
external bus should not be relinquished until the cy­
cle is complete. Multiple reads or writes can be
locked. A locked cycle is shown in Figure 7.20.
LOCK# goes active with the address and bus defini­
tion pins at the beginning of the first read cycle and
remains active until ADY# is returned for the last
write cycle. For unaligned 32 bits read-modify-write
operation, the LOCK# remains active for the entire
duration of the multiple cycle. It will go inactive when
ADY# is returned for the last write cycle.

5-112

intJ i486™ MICROPROCESSOR

CLK

ADS#

A2-A31
M/10#
D/C#

BE0-3#

W/R#

ROY#

Tl T1 T2

'~ /

T1 T2 Tl

'~~'

I I

DATA ---------.---®'°"-----1(FROM:CPU)-­

I

I
LOCK# \.__ _______ ____,... _ __./

READ WRITE
240440-63

Figure 7.20. Locked Bus Cycle

When LOCK# is active, the 486 microprocessor will
recognize address hold and backoff but will not rec­
ognize bus hold. It is left to the external system to
properly arbitrate a central bus when the 486 micro­
processor generates LOCK#.

7.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans­
fers which take more than one bus cycle. Examples
include 64-bit floating point read and writes, 64-bit
descriptor loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cy­
cle.

PLOCK# need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

PLOCK# is asserted during the first write to indicate
that another write follows. This behavior is shown in
Figure 7.21.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCK# and BLAST# are
asserted. Normally PLOCK# and BLAST# are the
inverse of each other.

During all of the cycles where PLOCK# is asserted,
HOLD is not acknowledged until the cycle com­
pletes. This results in a large HOLD latency, espe­
cially when BS8# or BS16# is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac­
knowledged during non-cacheable code prefetches.
PLOCK# will be asserted since BLAST# is negat­
ed, but it is ignored and HOLD is recognized during
the prefetch.

PLOCK# can change several times during a cycle
settling to its final value in the clock ready is re­
turned.

The system must examine PLOCK# during 64-bit 7.2.8 INVALIDATE CYCLES
writes since the 486 microprocessor cannot burst
write more than 32 bits. However, burst can be used Invalidate cycles are needed to keep the 486 micro-
within each 32-bit write cycle if BS8# or BS16# is processor's internal cache contents consistent with
asserted. BLAST will be deasserted in response to external memory. The 486 microprocessor contains
BS8# or BS16#. A 64-bit write will be driven out as a mechanism for listening to writes by other devices
two non-burst bus cycles. BLAST# is asserted dur- to external memory. When the processor finds a
ing both writes since a burst is not possible. write to a Section of external memory contained in

5-113

I

intJ 1486™ MICROPROCESSOR

CLK

ADS#

A2-A31
t.l/10#
D/C#

BE0-3#

W/R#

PLOCK#

ROY#

Tl T1 T2

\ I
x

x ~

T1 T2 TI

\ I
x

' '.

I L

BLAST# ~----x _____ , _____ ,~-'~~c=-

WRITE WRITE
240440-64

Figure 7.21. Pseudo Lock Timing

its internal cache, the processor's internal copy is
invalidated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the 486 microprocessor to immediately relinquish its
address bus. Next, the external system asserts
EADS# indicating that a valid address is on the 486
microprocessor's address bus. EADS# and the in­
validation address, Figure 7-22 shows the fastest
possible invalidation cycle. The i486 cycle CPU rec­
ognizes AHOLD on one CLK edge and floats the
address bus in response. To allow the address bus
to float and avoid contention, EADS# and the invali­
dation address should not be driven until the follow­
ing CLK edge. The microprocessor reads the ad­
dress over its address lines. If the microprocessor
finds this address in its internal cache, the cache
entry is invalidated. Note that the 486 microproces­
sor's address bus is input/output unlike the 386 mi­
croprocessor's bus, which is output only.

The 486 microprocessor immediately relinquishes its
address bus in the next clock upon assertion of
AHOLD. For example, the bus could be 3 wait states
into a read cycle. If AHOLD is activated,. the 486

microprocessor will immediately float its address bus
before ready is returned terminating the bus cycle.

When AHOLD is. asserted only the• address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold (see Figures 7.22, 7.23).

EADS# is normally asserted when an external mas­
ter drives an address onto the bus. AHOLD need not
be driven for EADS# to generate an internal invali­
date. If EADS# alone is asserted while the 486 mi­
croprocessor is driving the address bus, it is possible
that the invalidation address will come from the 486
microprocessor itself.

Note that it is also possible to run an invalidation
cycle by asserting EADS# when HOLD or BUFF# is
asserted.

Running an invalidate cycle prevents the 486 micro­
processor cache from satisfying other internal re­
quests, so invalidations should be run only when
necessary. The fastest possible invalidate cycle is
shown in Figure 7.22, while a more realistic invalida­
tion cycle is shown in 7.23. Both of the examples
take one clock of cache access from the rest of the
486 microprocessor.

5-114

intef i486™ MICROPROCESSOR

intef i486™ MICROPROCESSOR

7.2.B.1 Rate of Invalidate Cycles

The 486 microprocessor can accept one invalidate
per clock except in the last clock of a line fill. O~e
invalidate per clock is possible as long as EADS# 1s
negated in ONE or BOTH of the following cases:

1. In the clock ROY# or BROY# is returned for
the last time.

2. In the clock following ROY# or BROY# being
returned for the last time.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

7.2.B.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the 486 microprocessor's cache in a system
with a second level cache. An example of a system
with a second level cache is shown in Figure 7.24.
An external device can be writing to main memory
over the system bus while the 486 microprocessor is
retrieving data from the second level cache. The 486
microprocessor will need to invalidate a line in its
internal cache if the external device is writing to a
main memory address also contained in the 486 mi­
croprocessor's cache.

External
Memory

455Tt.l

Microprocessor

Second
Level
Cache

Address, Data &: Control Bus

External
Bus Master

240440-67

Figure 7.24. System with Second Level Cache

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the 486 microprocessor is reading data
from the same address in the second level cache.
The system must force an invalidation cycle to invali­
date the data that the 486 microprocessor has re­
quested during the line fill.

If the system asserts EADS# before the first data in
the line fill is returned to the 486 microprocessor, the
system must return data consistent with the new
data in the external memory upon resumption of the
line fill after the invalidation cycle. This is illustrated
by the asserted EADS# signal labeled 1 in Figure
7.25.

5-116

i486™ MICROPROCESSOR

Tl T1 T2 T2 T2 T2 T2 T2 Tl

CLK

ADS#
I

I I

ADDR ~~~--"~JX~~~~J>r_._~__,~~~__..._~~_.....---i<~~--~~~

AHOLD

I

I I

EADS# lli'CJ I I

I

ROY#

BROY#

I I

KEN# w w
DATA

NOTES: 240440-68
1. Data returned must be consistent if its address equals the invalidation address in this clock
2. Data returned will not be cached if its address equals the invalidation address in this clock

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill

If the system asserts EADS# at the same time or
after the first data in the line fill is returned (in the
same clock that the first RDY # or BROY# is re­
turned or any subsequent clock in the line fill) the
data will be read into the 486 microprocessors input
buffers but it will not be stored in the on-chip cache.
This is illustrated by asserted EADS# signal labeled
2 in Figure 7.25. The stale data will be used to satis­
fy the request that initiated the cache fill cycle.

7.2.9 BUS HOLD

The 486 microprocessor provides a bus hold, hold
acknowledge protocol using the bus hold request
(HOLD) and bus hold acknowledge (HLDA) pins. As­
serting the HOLD input indicates that another bus
master desires control of the 486 microprocessor's
bus. The processor will respond by floating its bus
and driving HLDA active when the current bus cycle,
or sequence of locked cycles is complete. An exam­
ple of a HOLD/HLDA transaction is shown in Figure
7.26. Unlike the 386 microprocessor, the 486 micro-

processor can respond to HOLD by floating its bus
and asserting HLDA while RESET is asserted.

Note that HOLD will be recognized during un-aligned
writes (less than or equal to 32-bits) with BLAST#
being active for each write. For greater than 32-bit or
un-aligned write, HOLD# recognition is prevented
by PLOCK# getting asserted.

The pins floated during bus hold are: BEO#-BE3#,
PCD, PWT, W/R#, DIC#, M/10#, LOCK#,
PLOCK#, ADS#, BLAST#, D0-031, A2-A31,
DPO-DP3.

7.2.10 INTERRUPT ACKNOWLEDGE

The 486 microprocessor generates interrupt ac­
knowledge cycles in response to maskable interrupt
requests generated on the interrupt request input
(INTR) pin. Interrupt acknowledge cycles have a
unique cycle type generated on the cycle type pins.

5-117

I

intJ 1486™ MICROPROCESSOR

Tl Tl T1 T2 Tl Tl T1

CLK

ADS# \..._..............,/ '-------~ __
A2-A31

M/10#
D/C#
W/R#

________ x _____ >--·-----C
BE0-3#

ROY#

DATA ---...-------.---<(FROM: CPU)>---.----+----

HOLD --------'· \ __
HLDA I

., '
240440,-69

Figure 7.26. HOLD/HLDA Cycles

An example interrupt acknowledge transaction is
shown in Figure 7.27. Interrupt acknowledge cycles
are generated in locked pairs. Data returned di,iring
the first cycle is ignored. The interrupt vector is re­
turned during the second cycle on the lower 8 bits of
the data bus. The 486 microprocessor has 256 pos­
sible interrupt vectors.

Tl T1 T2 Tl

CLK

ADS# \ I
ADDR x
ROY#

DATA

.,
LOCK#

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1 # high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#-BE1 # high, BEO# low).

Tl T1 T2 Tl

4 CLOCKS 1 \ I
I
I x

CPU

240440-70

.Figure 7.27. Interrupt Acknowledge Cycles

5-118

intef i486™ MICROPROCESSOR

Each of the interrupt acknowledge cycles are termi­
nated when the external system returns ROY# or
BADY#. Wait states can be added by withholding
ADY# or BADY#. The 486 microprocessor auto­
matically generates four idle clocks between the first
and second cycles to allow for 8259A recovery time.

7.2.11 SPECIAL BUS CYCLES

The 486 microprocessor provides four special bus
cycles to indicate that certain instructions have been
executed, or certain con.ditions have occurred inter­
nally. The special bus cycles in Table 7.8 are defined
when the bus cycle definition pins are in the follow­
ing state: M/10#=0, O/C#=O and W/A#=1.
During these cycles the address bus is driven low
while the data bus is undefined.

Two of the special cycles indicate halt or shutdown.
Another special cycle is generated when the 486 mi­
croprocessor executes an INVD (invalidate data
cache) instruction and could be used to flush an ex­
ternal cache. The Write Back cycle is generated
when the 486 microprocessor executes the
WBINVD (write-back invalidate data cache) instruc­
tion and could be used to synchronize an external
write-back cache.

The external hardware must acknowledge these
special bus cycles by returning ADY# or BADY#.

Ti T1 T2 Tb

CLK

I

ADS# _i_J \
I

A2-A31
M/10# 100
D/C#

BE0-3#

ROY#

BROY#

KEN#

BOFF#

I

BLAST# LD ' I

DATA

Tb

Table 7.8. Special Bus Cycle Encoding

BE3# BE2# BE1# BEO#
Special

Bus Cycle

1 1 1 0 Shutdown
1 1 0 1 Flush
1 0 1 1 Halt
0 1 1 1 Write Back

7.2.11.1 Halt Indication Cycle

The i486 Microprocessor halts as a result of execut­
ing a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed.
The halt indication cycle is identified by the bus defi­
nition signals in special bus cycle state and a byte
address of 2. BEO# and BE2# are the only signals
distinguishing halt indication from shutdown indica­
tion, which drives an address of 0. During the halt
cycle undefined data is driven on 00-031. The halt
indication cycle must be acknowledged by READY#
asserted.

A halted i486 Microprocessor resumes execution
when INTR (if interrupts are enabled) or NMI or
RESET is asserted.

T1b T2 T2 T2 T2

' I
100 104 I 108 I 10C I

I

(I _J

240440-71

Figure 7.28. Restarted Read Cycle
5-119

I

intef i486™ MICROPROCESSOR

TI T1 T2 Tb Tb T1b T2 Tl

CLK

ADS# \.__...__! \
\....__....___,/

ADDR
SPEC

_________ X ___ ,___10_0__, __)r--------t---i(___ ;--_10_0 __.~

ROY#

BROY#

BOFF#

DATA --------(FROM:CPU)~: _.._ _____ _....--<(FROM:CPU)--

240440-72

Figure 7.29. Restarted Write Cycle

7.2.11.2 Shutdown Indication Cycle

The i486 Microprocessor shuts down as a result of a
protection fault while attempting to process a double
fault. Signaling its entrance into the shutdown state,
a shutdown indication cycle is performed. The shut­
down indication cycle is identified by the bus defini­
tion signals in special bus cycle state and a byte
address of 0.

7.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the 486 micro~
processor to complete its current bus request. In this
situation the 486 microprocessor will need to restart
its bus cycle after the other bus master has complet­
ed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFF #) input. The 486 micro­
processor samples the BOFF # pin every clock. The
486 microprocessor will immediately (in the next
clock) float its address, data and status pins when
BOFF # is asserted (see Figure 7.28). Any bus cycle
in progress when BOFF # is asserted is aborted and
any data returned to the processor is ignored. The
same pins are floated in response to BOFF #

as are floated in response to HOLD. HLDA is not
generated in response to BOFF #. BOFF # has high­
er priority than ADY# or BADY#. If either ADY# or
BADY# are returned in the same clock as BOFF #,
BOFF # takes effect.

The device asserting BOFF # is free to run any cy­
cles it wants while the 486 microprocessor bus is in
its high impedance state. If backoff is requested af­
ter the 486 microprocessor has started a cycle, the
new master should wait for memory to return ADY#
or BADY# before assuming control of the bus. Wait­
ing for ready provides a handshake to insure that the
memory system is ready to accept a new cycle. If
the bus is idle when BOFF # is asserted, the new
master can start its cycle two clocks after issuing
BOFF#.

The external memory can view BOFF # in the same
manner as BLAST#. Asserting BOFF# tells the ex­
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFF # is negated. Upon negation, the 486 micro­
processor restarts its bus cycle by driving out the
address and status and asserting ADS#. The bus
cycle then continues as usual.

5-120

intef i486™ MICROPROCESSOR

Asserting BOFF# during a burst, BS8# or BS16#
cycle will force the 486 microprocessor to ignore
data returned for that cycle only. Data from previous
cycles will still be valid. For example, if BOFF # is
asserted on the third BROY# of a burst, the 486
microprocessor assumes the data returned with the
first and second BROY# 's is correct and restarts
the burst beginning with the third item. The same
rule applies to transfers broken into multiple cycle by
BS8# or BS16#.

new bus cycle has begun even-though the cycle was
aborted. There are two possible solutions to this
problem. The first is to have all devices recognize
this condition and ignore ADS# until ready comes
back. The second approach is to use a "two clock"
backoff: in the first clock AHOLD is asserted, and in
the second clock BOFF # is asserted. This guaran­
tees that ADS# will not be floating low. This is only
necessary in systems where BOFF # may be assert­
ed in the same clock as ADS#.

Asserting BOFF # in the same clock as ADS# will
cause the 486 microprocessor to float its bus in the
next clock and leave ADS# floating low. Since
ADS# is floating low, a peripheral may think that a

7.2.13 BUS STATES

A bus state diagram is shown in Figure 7.30. A de­
scription of the signals used in the diagram is given
in Table 7.9.

State

Ti

T1

T2

T1b

Tb

(ROY# ASSERTED + (BROY#• BLAST #)ASSERTED) •
(HOLD + AHOLD + NO REQUEST) •
BOFF# NEGATED

REQUEST PENDING•
(ROY# ASSERTED+ (BROY#• BLAST#)ASSERTED)•

HOLD NEGATED•
AHOLD NEGATED•
BOFF# NEGATED•

REQUEST PENDING•
HOLD NEGATED•_
AHOLD NEGATED •
BOFF# NEGATED

AHOLD NEGATED•
BOFF# NEGATED

Figure 7.30. Bus State Diagram

Table 7.9. Bus State Description

Means

BOFF#
NEGATED

240440-73

Bus is idle. Address and status signals may be driven to undefined values, or
the bus may be floated to a high impedance state.

First clock cycle of a bus cycle. Valid address and status are driven and
ADS# is asserted.

Second and subsequent clock cycles of a bus cycle. Data is driven if the
cycle is a write, or data is expected if the cycle is a read. ROY# and BROY#
are sampled.

First clock cycle of a restarted bus cycle. Valid address and status are driven
and ADS# is asserted.

Second and subsequent clock cycles of an aborted bus cycle.

5-121

I

i486™ MICROPROCESSOR

7.2.14 FLOATING POINT ERROR HANDLING

The 486 microprocessor provides two options for re­
porting floating point errors. The simplest method is
to raise interrupt 16 whenever an unmasked floating
point error occurs. This option may be enabled by
setting the NE bit in control register 0 (CAO).

The 486 microprocessor also provides the option of
allowing external hardware to determine how float­
ing point errors are reported. This option is neces­
sary for compatibility with the error reporting scheme
used in DOS based systems. The NE bit must be
cleared in CAO to enable user-defined error report­
ing. User-defined error reporting is the default condi­
tion because the NE bit is cleared on reset.

Two pins, floating point error (FERR#) and ignore
numeric error (IGNNE#), are provided to direct the
actions of hardware if user-defined error reporting is
used. The 486 microprocessor asserts the FERR#
output to indicate that a floating point error has oc­
curred. FERR# corresponds to the ERROR# pin on
the 387 math coprocessor. However, there is a dif­
ference in the behavior of the two.

In some cases FERR# ·is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe­
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in­
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1}, FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in­
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com­
pare, and control instructions (i.e., all other in­
structions).

For both sets of exceptions above, the 387 Math
Coprocessor asserts ERROR# when the error oc­
curs and does .not wait for the next floating point
instruction to be encountered.

IGNNE# is an input to the 486 microprocessor.

When the NE bit in CAO is cleared, and IGNNE# is
asserted, the 486 microprocessor will ignore a user
floating point error and continue executing floating
point instructions. When IGNNE# is negated, the
486 microprocessor will freeze on floating point in­
structions which get errors (except for the control
instructions FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI
and FNSETPM). IGNNE# may be asynchronous to
the 486 clock.

In systems with user-defined error reporting, the
FERR# pin is connected to the interrupt controller.
When an unmasked floating point error occurs, an
interrupt is raised. If IGNNE # is high at the time of
this interrupt, the 486 microprocessor will freeze
(disallowing execution of a subsequent floating point
instruction) until the interrupt handler is invoked. By
driving the IGNNE# pin low (when clearing the inter­
rupt request), the interrupt handler can allow execu­
tion of a floating point instruction, within the interrupt
handler, before the error condition is cleared (by
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execu­
tion of a non-control floating point instruction, within
the floating point interrupt handler, is not needed,
the IGNNE# pin can be tied HIGH.

8.0 TEST ABILITY

Testing in the 486 microprocessor can be divided
into two categories: Built-in Self Test (BIST) and ex­
ternal testing. The BIST tests the non-random logic,
control ROM (CROM), translation lookaside buffer
(TLB) and on-chip cache memory. External tests can
be run on the TLB and the on-chip cache. The 486
microprocessor also has a test mode in which all
outputs are tristated.

8.1 Built-In Self Test (BIST)

The BIST is initiated by holding the AHOLD (address
hold) pin HIGH for 2 CLKs before and 2 CLKs after
RESET going from HIGH to LOW as shown in Figure
6.3. The BIST takes approximately 2**20 clocks, or
approximately 42 milliseconds with a 25 MHz 486
microprocessor. No bus cycles will be run by the 486
microprocessor until the BIST is concluded. Note
that for i486 the RESET must be active for 15 clocks
with or.without BIST being enabled for warm resets.

The results of BIST is stored in the EAX register.
The 486 microprocessor has successfully passed
the BIST if the contents of the EAX register are zero.
If the results in EAX are not zero then the BIST has
detected a flaw in the microprocessor. The micro­
processor performs reset and begins normal opera­
tion at the completion of the BIST.

5-122

intJ i486™ MICROPROCESSOR

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis­
ters TR3, TR4 and TR5 while testing the cache.
These test registers are described in Section 8.2.

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR? while testing the TLB. TR6 and TR? are
described in Section 8.3.

8.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan­
guage testing of the cache.

31

I= unused

The 486 microprocessor contains a cache fill buffer
and a cache read buffer. For testability writes, data
must be written to the cache fill buffer before it can
be written to a location in the cache. Data must be
read from a cache location into the cache read buff­
er before the microprocessor can access the data.
The cache fill and cache read buffer are both 128
bits wide.

8.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TRS

Figure 8.1 shows the three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TR5). External access to these regis­
ters is provided through MOV reg,TREG and MOV
TREG, reg instructions.

0

TR3
Cache Data
Test Register

9 8 7 6 5 4 3 2 1 0

LAU Bits Valid Bits
Vali (used only (used only

during reads) during reads)

4 3 2 1 0

TR5
Set Select Entry Control Cache Control

Select Test Register

Figure 8.1. Cache Test Registers

5-123

I

intef i486™ MICROPROCESSOR

Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fill buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buffer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in
TR5 determine which 32 bits of data TR3 will access
in the buffers.

Cache Status Test Register: TR4

TR4 handles tag, LAU and valid bit information dur­
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LAU bits and four valid
bits from the accessed set.

Cache Control Test Register: TR5

TR5 specifies which testability operation will be per­
formed and the set and entry within the set which
will be accessed.

The seven bit set select field determines which of
the 128 sets will be accessed.

The functionality of the two entry select bits depend
on the state of the control bits. When the fill or read

buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac­
cessed. When a cache location is specified, the en­
try select bits point to one of the four entries in a set.
Refer to Table 8.1.

Five testability functions can be performed on the
cache. The two control bits in TR5 specify the oper­
ation to be executed. The five operations are:

1. Write cache fill buffer

2. Perform a cache testability write

3. Perform a cache testability read

4. Read the cache read buffer

5. Perform a cache flush

Table 8.1 shows the encoding of the two control bits
in TR5 for the cache testability functions. Table 8.1
also shows the functionality of the entry and set se­
lect bits for each control operation.

The cache tests attempt to use as much of the nor­
mal operating circuitry as possible. Therefore when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register
must be set to 1 to disable the cache. See Section
5).

8.2.2 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location. Sample assembly code to do a write
is given in Figure 8.2.

Table 8.1. Cache Control Bit Encoding and Effect of
Control Bits on Entry Select and Set Select Functionality

Control Bits
Operation

Entry Select Bits
Set Select Bits

Bit 1 BitO Function

0 0
Enable

{ Fill Buffer Write Select 32-bit location in fill/read
Read Buffer Read buffer -

0 1 Perform Cache Write Select an entry in set. Select a set to write to

1 0 Perform Cache Read Select an entry in set. Select a set to read from

1 1 Perform Flush Cache - -

5-124

intJ i486™ MICROPROCESSOR

Sample Assembly Code

An example assembly language sequence to perform a cache write is:

eax. ebx. ecx. edx contain the cache line to write
edi contains the tag information to load
CRO already says to enable reads/write to TR5

fill the cache buffer
mov esi,O set up command
mov tr5,esi load to TR5
mov tr3,eax load data into cache fill buffer
mov esi,4
mov tr5,esi
mov tr3,ebx
mov esi,8
mov tr5,esi
mov tr3,ecx
mov esi,Och
mov tr5,esi
mov tr3,edx

load the Cache Status Register

mov tr4,edi ; load 21-bit tag and valid bit

perform the cache write

mov esi,l
mov tr5,esi ; write the cache (set 0, entry 0)

An example assembly language sequence to perform a cache read is:

data into eax, ebx, ecx, edx; status into edi

read the cache line back

read

read

mov esi,2
mov tr5,esi

the data from

mov esi,O
mov tr5,esi
mov eax,tr3
mov esi,4
mov tr5,esi
mov ebx,tr3
mov esi,8
mov tr5,esi
mov ecx,tr3
mov esi,Och
mov tr5,esi
mov edx,tr3

; do cache testability read (set 0, entry 0)

the read buffer

the status from TR4

mov edi,tr4

Figure 8.2 Sample Assembly Code for Cache Testing

5-125

I

intef i486™ MICROPROCESSOR

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TR5, TR3 is writ­
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TR5 and
TR3 four times using a different entry select location
each time.

TR4 must be loaded with the 21-bit tag and valid bit
(bit 1 O in TR4) before the contents of the fill buffer
are written to a cache location.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo­
cation in the cache to be written. The normal cache
LAU update circuitry updates the internal LAU bits
for the selected set.

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit
is control register O is reset to 1). Also note that care
must be taken when directly writing to entries in the
cache. If the entry is set to overlap an area of mem­
ory that is being used in external memory, that
cache entry could inadvertently be used instead of
the external memory. Of course, this is exactly the
type of operation that one would desire if the cache
were to be used as a high speed RAM.

8.2.3 CACHE TESTABILITY READ

A cache testability read is a tWo step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read buffer. Sample assembly
code to do a testability read is given in Figure 8.2.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 1 O and the desired seven-bit set
select and two-bit entry select. In response to the
write to TR5, TR4 is loaded with the 21-bit tag field
and the single valid bit from the cache entry read.
TR4 is also loaded with the three LAU bits and four
valid bits corresponding to the cache set that was
accessed. The cache read buffer is filled with the
128-bit value which was found in the data array at
the specified location.

The contents of the read buffer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TR5 must loaded to indicate
which of the four 32-bit words in the read buffer to

transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa­
tion from TR4 be read before any memory refer­
ences are allowed to occur. If memory operations
are allowed to happen, the contents of the read buff­
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the 486 microprocessor
whether the cache is enabled or not.

8.2.4 FLUSH CACHE

The control bits in TR5 must be written with 11 to
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LAU bits and the
valid bits to O, but will not change the cache tag or
data arrays.

When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex­
ternal system is not run (see Section 7.2.11, Special
Bus Cycles). The cache should be flushed with the
instruction INVD (Invalidate Data Cache) instruction
or the WBINVD (Write-back and Invalidate Data
Cache) instruction.

8.3 Translation Lookaside Buffer
(TLB) Testing

The 486 microprocessor TLB testability hooks are
similar to those in the 386 microprocessor. The test­
ability hooks have been enhanced to provide added
test features and to include new features in the 486
microprocessor. The TLB testability hooks are de­
signed to be accessible during the BIST and for as­
sembly language testing of the TLB.

8.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The 486 microprocessors TLB is 4-way set associa­
tive and has space for 32 entries. The TLB is logical­
ly split into three blocks shown in Figure 8.3.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi­
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and th.e PWT (page write-through) bit. Refer to Sec­
tion 4.5.4 for a discussion of the PCD and PWT bits.

5-126

infef i486™ MICROPROCESSOR

,_--- Tag Page
I 17 Bits Protection

8 r• _____ .._:'_~_Its _ _.

Physical Page t
Address Attributes I
20 Bits 2 Bits 8 Entries _______ J_

I _ ____.I _I ____.
I _ ____.II _ ______.
..._I ____.II..._____.

[J I
8 :r·

240440-43

Figure 8.3. TLB Organization

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec­
tion bits. The protection bits are valid (V), user/su­
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LAU) re­
placement algorithm. These bits are called the LAU
bits. The LAU replacement algorithm used in the

31

Linear Address

Physical Address

TLB is the same as used by the on-chip cache. For a ..
description of this algorithm refer to Section 5.5. Iii
8.3.2 TLB TEST REGISTERS TR6 AND TR?

The two TLB test registers are shown in Figure 8.4.
TR6 is the command test register and TR? is the
data test register. External access to these registers
is provided through MOV reg,TREG and MOV
TREG,reg instructions.

12 11 10 9 8 7 6 5 4 0

V D D# U U# WW#

R7
PCD PWT L2 L 1 LO

LRU Bits est Register
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

t t 
Replacement Pointer Select (Writes) Replacement Pointer (Writes) 

= unused Hit Indication (Lookup) Hit Location (Lookup) 

Figure 8.4. TLB Test Registers 

5-127 



intJ i486™ MICROPROCESSOR 

Command Test Register: TR6 

TR6 contains the tag information and control infor­
mation used in a TLB test. Loading TR6 with tag and 
control information initiates a TLB write or lookup 
test. 

TR6 contains three bit fields, a 20-bit linear address 
(bits 12-31), seven bits for the TLB tag protection 
bits (bits 5-11) and one bit (bit O) to define the type 
of operation to be performed on the TLB. 

The 20-bit linear address forms the tag information 
used in the TLB access. The lower three bits of the 
linear address select which of the eight sets are ac­
cessed. The upper 17 bits of the linear address form 
the tag stored in the tag array. 

The seven TLB tag protection bits are described be­
low. 

V: The valid bit for this TLB entry 

D,D#: The dirty bit for/from the TLB entry 

U,U#: The user/supervisor bit for/from the TLB 
entry 

W,W#: The read/write bit for/from the TLB entry 

Two bits are used to represent the D, U/S and R/W 
bits in the TLB tag to permit the option of a forced 
miss or hit during a TLB lookup operation. The 
forced miss or hit will occur regardless of the state 
of the actual bit in the TLB. The meaning of these 
pairs of bits is given in Table 8.2. 

The operation bit in TR6 determines if the TLB test 
operation will be a write or a lookup. The function of 
the operation bit is given in Table 8.3. 

Table 8.3. TR6 Operation Bit Encoding 

TR6 TLB Operation 
BitO to Be Performed 

0 TLB Write 
1 TLB Lookup 

Data Test Register: TR7 

TR? contains the information stored or read from the 
data block during a TLB test operation. Before a TLB 

test write, TR? contains the physical address and 
the page attribute bits to be stored in the entry. After 
a TLB test lookup hit, TR? contains the physical ad­
dress, page attributes, LAU bits and entry location 
from the access. 

TR? contains a.20-bit physical address (bits 12-31), 
two bits for PCD (bit 11) and PWT (bit 10) and three 
bits for the LAU bits (bits 7-9). The LAU bits in TR? 
are only used during a TLB lookup test. The func­
tionality of TR? bit 4 differs for TLB writes and look­
ups. The encoding of bit 4 is defined in Tables 8.4 
and 8.5. Finally TR7 contains two bits (bits 2-3) to 
specify a TLB replacement pointer or the location of 
a TLB hit. 

Table 8.4. Encoding of Bit 4 of TR7 on Writes 

TR7 Replacement Pointer 
Bit4 Used on TLB Write 

0 Pseudo-LAU Replacement Pointer 
1 Data Test Register Bits 3:2 

Table 8.5. Encoding of Bit 4 of TR7 on Lookups 

TR7 Meaning after TLB 
Bit4 Lookup Operation 

0 TLB Lookup Resulted in a Miss 
1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. 
The pointer indicates which of the four entries in an 
accessed set is to be written. The replacement 
pointer can be specified to be the internal LAU bits 
or bits 2-3 in TR?. The source of the replacement 
pointer is specified by TR? bit 4. The encoding of bit 
4 during a write is given by Table 8.4. 

Note that both testability writes and lookups affect 
the state of the internal LAU bits regardless of the 
replacement pointer used. All TLB write operations 
(testability or normal operation) cause the written 
entry to become the most recently used. For exam­
ple, during a testability write with the replacement 
pointer specified by TR? bits 2-3, the indicated en­
try is written and that entry becomes the most re­
cently used as specified by the internal LAU bits. 

Table 8.2. Meaning of a Pair of TR6 Protection Bits 

TR6 Protection Bit TR6 Protection Bit# Meaning on Meaning on 
(B) (B#) TLB Write Operation TLB Lookup Operation 

0 0 Undefined Miss any TLB TAG Bit B 
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 
1 1 Undefined Match any TLB TAG Bit B 

5-128 



inter i486™ MICROPROCESSOR 

There are two TLB testing operations: write entries 
into the TLB, and perform TLB loe>kups. One major 
enhancement over TLB testing in the 386 micro­
processor is that paging need not be disabled while 
executing testability writes or lookups. 

Note that any time one TLB set contains the same 
linear address in more than one of its entries, look­
ing up that linear address will not result in a hit. 
Therefore a single linear address should not be writ­
ten to one TLB set more than once. 

8.3.3 TLB WRITE TEST 

To perform a TLB write TR7 must be loaded fol­
lowed by a TR6 load. The register operations must 
be performed in this order since the TLB operation is 
triggered by the write to TR6. 

TR7 is loaded with a 20-bit physical address and 
values for PCD and PWT to be written to the data 
portion of the TLB. In addition, bit 4 of TR7 must be 
loaded to indicate whether to use TR7 bits 3-2 or the 
internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRU bits in TR7 
are not used in a write test. 

TR6 must be written to initiate the TLB write opera­
tion. Bit 0 in TR6 must be reset to zero to indicate a 
TLB write. The 20-bit linear address and the seven 
page protection bits must also be written in TR6 to 
specify the tag portion of the TLB entry. Note that 
the three least significant bits of the linear address 
specify which of the eight sets in the data block will 
be loaded with the physical address data. Thus only 
17 of the linear address bits are stored in the tag 
array. 

8.3.4 TLB LOOKUP TEST 

To perform a TLB lookup it is only necessary to write 
the proper tags and control information into TR6. Bit 
0 in TR6 must be set to 1 to indicate a TLB lookup. 
TR6 must be loaded with a 20-bit linear address and 

the seven protection bits. To force misses and 
matches of the individual protection bits on TLB 
lookups, set the seven protection bits as specified in 
Table 8.2. 

A TLB lookup operation is initiated by the write to 
TR6. TR7 will indicate the result of the lookup opera­
tion following the write to TR6. The hit/miss indica­
tion can be found in TR7 bit 4 (see Table 8.5). 

TR7 will contain the following information if bit 4 indi­
cated that the lookup test resulted in a hit. Bits 2-3 
will indicate in which set the match occurred. The 22 
most significant bits in TR7 will contain the physical 
address and page attributes contained in the entry. 
Bits 9-7 will contain the LRU bits associated with 
the accessed set. The state of the LRU bits is previ­
ous to their being updated for the current lookup. 

If bit 4 in TR7 indicated that the lookup test resulted 
in a miss the remaining bits in TR7 are undefined. 

Again it should be noted that a TLB testability lookup 
operation affects the state of the LRU bits. The LAU 
bits will be updated if a hit occurred. The entry which 
was hit will become the most recently used. 

8.4 Tristate Output Test Mode 

The 486 microprocessor provides the ability to float I 
all its outputs and bidirectional pins. This includes all 
pins floated during bus hold as well as pins which 
are never floated in normal operation of the chip 
(HLDA, BREQ, FERR# and PCHK#). When the 486 
microprocessor is in the tri-state output test mode 
external testing can be used to test board connec-
tions. 

The tri-state test mode is invoked by driving 
FLUSH# low for 2 clocks before and 2 clocks after 
RESET going low. The outputs are guaranteed to tri­
state no later than 1 O clocks after RESET goes low 
(see Figure 6.4). The 486 microprocessor remains in 
the tristate test mode until the next RESET. 

5-129 



inter i486™ MICROPROCESSOR 

9.0 DEBUGGING SUPPORT 9.3 Debug Registers 

The 486 Microprocessor provides several features 
which simplify the debugging process. The three cat­
egories of on-chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit 
in the flag register, and 

3) the code and data breakpoint capability provided 
by the Debug Registers DR0-3, DR6, and DR7. 

9.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint 
opcode is OCCH, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break~ 
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

9.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

The Debug Registers are an advanced debugging 
feature of the 486 Microprocessor. They allow data 
access breakpoints as well as code execution 
breakpoints. Since the breakpoints are indicated by 
on-chip· registers, an instruction execution break­
point can be placed in ROM code or in code shared 
. by several tasks, neither of which can be supported 
by the INT3 breakpoint opcode. 

The 486 Microprocessor contains six Debug Regis­
ters, providing the ability to specify up to four distinct 
breakpoints addresses, breakpoint control options, 
and read breakpoint status. Initially after reset, 
breakpoints are in the disabled state. Therefore, no 
breakpoints will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug Reg­
isters are autovectored to exception number 1. 

9.3.1 ·LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 9.1. The breakpoint addresses specified are 
32-bit linear addresses. 486 Microprocessor hard­
ware continuously compares the linear breakpoint 
addresses in DRO-DR3 with the linear addresses 
generated by executing software (a linear address is 
the result of computing the effective address and 
adding the 32-bit segment base address). Note that 
if paging is not enabled the linear address equals the 
physical address. If paging is enabled, the linear ad­
dress is translated to a physical 32-bit address by 
the on-chip paging unit. Regardless of whether pag­
ing is enabled or not, however, the breakpoint regis­
ters hold linear addresses. 

9.3.2 DEBUG CONTROL REGISTER (DR7) 

A Debug Control Register, DR7 shown in Figure 9.1, 
allows several debug control functions such as en­
abling the breakpoints and setting up other control 
options for the breakpoints. The fields within the De­
bug Control Register, DR7, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu­
tion breakpoints must have a length of 1 (LENi = 
00). Encoding of the LENi field is as follows: 

5-130 



intef i486™ MICROPROCESSOR 

31 16 15 0 

BREAKPOINT 0 LINEAR ADDRESS ORO 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 3 LINEAR ADDRESS DR3 

Intel reserved. Do not define. DR4 

DR5 

DR6 

DR7 

31 16 15 0 

NOTE: 
Indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 9.1. Debug Registers 

Usage ot Least 
LENI Breakpoint Significant Bits In 

Encoding Field Width Breakpoint Address 
Register I, (i = 0-3) 

00 1 byte All 32-bits used to 
specify a single-byte 
breakpoint field. 

01 2 bytes A1-A31 used to 
specify a two-byte, 
word-aligned 
breakpoint field. AO in 
Breakpoint Address 
Register is not used. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to 
specify a four-byte, 
dword-aligned 
breakpoint field. AO 
and A 1 in Breakpoint 
Address Register are 
not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low-order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2-byte breakpoint fields be­
gin on Word boundaries, and 4-byte breakpoint 
fields begin on Dword boundaries. 

The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is 00000005H. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

131 I 1~ ... 1 ° I=~: II 
DR2=00000005H; LEN2 = 01B 

31 t 0 

OOOOOOOBH 

+-- bkpt fld2 --+ 00000004H 

I OOOOOOOOH 

DR2 = 00000005H; LEN2 = 11B 
31 

l l I 
0 

1 OOOOOOOBH 

+-- bkptfld2 - 00000004H 

1 OOOOOOOOH 

5-131 



intJ i486™ MICROPROCESSOR 

RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that instruction execution breakpoints are 
taken as faults (i.e., before the instruction exe­
cutes), but data breakpoints are taken as traps 
(i.e.; after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00, 01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GD (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The 
GD bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level O in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger can have full control over the De­
bug Register resources when required, The GD bit, 
when set, causes an exception 1 fault if an instruc­
tion attempts to read or Write any Debug Register. 
The GD bit is then automatically cleared when the 
exception 1 handler is invoked, allowing the excep­
tion 1 handler free access to the debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

The breakpoint mechanism of the 486 Microproces­
sor differs from that of the 386. The 486 Microproc­
essor always does exact data breakpoint matching, 
regardless of GE/LE bit settings. Any data break­
point trap will be reported exactly after completion of 
the instruction that caused the operand transfer. Ex­
act reporting is provided by forcing the 486 Micro­
processor execution unit to wait for completion of 
data operand transfers before beginning execution 
of the next instruction. 

When the 486 Microprocessor performs a task 
switch, the LE bit is cleared. Thus, the LE bit sup­
ports fast task switching out of tasks, that have 
enabled the exact data breakpoint match for their 
task-local breakpoints. The LE bit is cleared by the 
processor during a task switch, to avoid having ex­
act data breakpoint match enabled in the new task. 
Note that exact data breakpoint match must be re­
enabled under software control. 

The 486 'Microprocessor GE bit is unaffected during 
a task switch. The GE bit supports exact data break­
point match that is to remain enabled during all tasks 
executing in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 486 Microprocessor 
detects the ith breakpoint condition, then the excep­
tion 1 handler is invoked. 

When the 486 Microprocessor performs a task 
switch to a new Task State Segment (TSS), all Li 
bits are cleared. Thus, the Li bits support fast task 
switching out of tasks that use some task-local 

5-132 



intJ i486™ MICROPROCESSOR 

breakpoint registers. The Li bits are cleared by the 
processor during a task switch, to avoid spurious ex­
ceptions in the new task. Note that the breakpoints 
must be re-enabled under software control. 

All 486 Microprocessor Gi bits are unaffected during 
a task switch. The Gi bits support breakpoints that 
are active in all tasks executing in the system. 

9.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 9.1, 
allows the exception 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: 

1) DAO Breakpoint fault/trap. 

2) DR1 Breakpoint fault/trap. 

3) DR2 Breakpoint fault/trap. 

4) DR3 Breakpoint fault/trap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex­
ception taken before the instruction is executed), 
while other events are traps (exception taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro­
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register, DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in DRO­
DR3. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 

breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme­
diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GD bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GD bit was set. If such an 
event occurs, then the GD bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a 486 
Microprocessor TSS with the T bit set. Note the task 
switch into the new task occurs normally, but before 
the first instruction of the task is executed, the ex­
ception 1 handler is invoked. With respect to the 
task switch operation, the operation is considered to 
be a trap. 

9.3.4 USE OF RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup­
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. 

10.0 INSTRUCTION SET SUMMARY 

This section describes the 486 microprocessor in­
struction set. Tables 10.1 through 10.3 list all in­
structions along with instruction encoding diagrams 
and clock counts. Further details of the instruction 
encoding are then provided in Section 10.2, which 
completely describes the encoding structure and the 
definition of all fields occurring within the 486 micro­
processor instructions. 

5-133 



intJ 1486™ MICROPROCESSOR 

10.1 1486™ Microprocessor . 
Inst.ruction Encoding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock. count, as listed in Tables 1o~1 
through 10.3 by the processor clock period (e.g., 
40 ns for a 25 MHz 486 microprocessor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Ericod­
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The 486 microprocessor instruction clock count ta­
bles give clock counts assuming data and instruction 
accesses hit in the cache. A separate penalty col­
umn defines clocks to add if a data access misses in 
the cache. The combined instruction and data cache 
hit rate is over 90%. 

A cache miss will force the 486 microprocessor to 
run an external bus cycle. The 486 microprocessor 
32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of clocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and sub­
sequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the 486 microprocessor can support 
is 2-1 - 2 assuming o wait states. The clock counts 
in the cache miss penalty column assume a 2 -1 - 2 
bus. For slower busses add r :._ 2 clocks to the cache 
miss penalty for the first dword accessed. Other fac­
tors also affect instruction clock counts. 

Instruction Clock Count Assumptions 
1. The external bus is available for reads or writes at 

all time.s. Else add clocks to reads until the bus is 
available. 

2. Accesses are aligned. Add three clocks to each 
misaligned access. 

3 .. Cache fills complete before subsequent accesses 
to the same line. If a read misses the cache dur­
ing a cache fill due to a previous reac;I or pre-fetch, 
the read must wait for the cache fill to complete. If 
a read or write accesses a cache line. still being 
filled, it must wait for the. fill to complete. 

4. If an effective address is calculated; the base 
register is not the destination register of the pre­
ceding instruction. If the base r"Eigister is the des­
tination register of the preceding instruction add 
1 to the clock counts shown. Back-to-back 
PUSH and POP instructions are not attected by 
this rule. 

5. An effective address calculation uses one base 
register and does not use an index register. 
However, if the effective address calculation 
uses an index register, 1 clock may be added to 
the clock count shown. 

6. The target of a jump is in the cache. If not, add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read, add 
a maximum of 3b clocks. If the destination in­
struction is not completely contained in the first 
16 byte burst, add a maximum of another r+3b 
clocks. 

7. If no write buffer delay, w clocks are added only 
in the case in which all write buffers are full. Typi­
~lly, this case rarely occurs. 

8. Displacement and immediate not used together. 
If displacement and immediate used together, 1 
clock may be added to the clock count shown. 

9. No invalidate cycles. Add a delay of 1 clock for 
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/external bus when 
the 486 CPU needs to use it. 

1 o. Page translation hits in TLB. A TLB miss will add 
13, 21 or .28 clocks to the instruction depending 
on whether the Accessed arid/or Dirty bit in nei­
ther, one or both of the page entries needs to be 
set in memory~ This assumes that neither page 
entry is in the data cache and a page fault do~s 
not occur on the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt Clock Counts Table 
for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (i.e. task switch, POPA, etc.) and miss .the 
cache are assumed to start the first access on a 
16-byte boundary, If not, an extra cache line fill 
may be necessary which may add up to (r+3b) 
clocks to the cache miss penalty. 

5-134 



intef i486™ MICROPROCESSOR 

Table 10.1. 1486™ Microprocessor Integer .Clock Count Summary 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Mias 

INTEGER OPERATIONS 

MOY= Move: 

reg1 to reg2 I 1000100W 11 reg1 reg2I 1 

reg2toreg1 I 1000101w 11 reg1 reg2I 1 

memory to reg 1000101w mod reg r/ml 1 2 

reg to memory 1000100w mod reg r/ml 1 

Immediate to reg 1100011 w 11000 reg I immediate data 1 

or 1011w reg immediate data 1 

Immediate to Memory 1100011 w mod 0 0 0 rim I displa~ent 
immediate 

1 

Memory to Accumulator 101oooow I lull displacement 1 2 

Accumulator to Memory I 1010001w I full displacement 1 

MOVSX/MOVZX = Move wHh Sign/Zero Extension 

reg2toreg1 I 00001111 I 1011 z11 w l11 reg1 reg2I 3 

memory to reg I 00001111 I 1011 z11 w I mod reg r/ml 3 2 

z Instruction 

0 MOVZX 
1 MOVSX 

PUSH= Push 

reg I 11111111 l11 110 reg I 4 

or 101010 reg I 1 

memory I 11111111 I mod 110 r/ml 4 1 1 

immediate I 011010•0 I immediate data 1 

PUSHA = Push All I 01100000 I 11 

POP= Pop 

reg I 10001111 l11 000 reg I 4 1 

or 101011 reg I 1 2 

memory I 10001111 I mod 000 r/ml 5 2 1 

POPA = Pop All I 01100001 I 9 7/15 16/32 

XCHG = Exchange 

reg1 with reg2 I 1000011w l11 reg1 reg2I 3 2 

Accumulator with reg I 10010 regj 3 2 

Memory with reg I 1000011w I mod reg r/mj 5 2 

NOP = No Operation I 10010000 I 1 

LEA = Load EA to Register I 10001101 I mod reg r/mj 
no Index register 1 
with index register 2 

5-135 



intef i48!>™ MICROPROCESSOR 

Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty If 

Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

Instruction TTT 

ADD= Add 000 

ADC = Add with Carry 010 
AND = Logical AND 100 

OR = Logical OR 001 
SUB = Subtract 101 

SBB = Subtract with Borrow 011 
XOR = Logical Exclusive OR 110 

reg1 to reg2 I OOTTTOOw I 11 reg1 reg2J 1 

reg2toreg1 I OOTTT01w l11 reg1 reg2 J 1 

memory to register I OOTTTO 1 w I mod reg r/ml 2 2 

register to memory I OOTTTOOw I mod reg r/mJ 3 6/2 U/L 

immediate to register I 100000sw I 11 TTT reg I immediate register 1 

immediate to accumulator I OOTTT10w I immedi8te data 1 

immediate to memory I 100000sw I mod TTT rim) immediate data . 3 6/2 U/L 

Instruction TTT 

INC= Increment 000 
DEC = Decrement 001 

reg I 1111111w l11 TTT reg I 1 

or I 01TTT reg I 1 

memory I 1111111w I mod TTT r/ml 3 6/2 U/L 

Instruction TTT 

NOT = Logical Complement 010 
NEG= Negate 011 

reg I 1111011 w l11 TTT reg j 1 

memory I 1111011w I mod TTT rim I 3 6/2 U/L 

CMP = Compare 

reg1 with reg2 I 0011100w l11 reg1 reg2I 1 

reg2 with reg1 I 0011101 w l11 reg1 reg2I 1 

memory with register I 0011100w mod reg r/ml 2 2 

register with memory I 0011101 w mod reg r/ml 2 2 

immediate with register I 100000sw 11 111 reg I immediate data 1 

immediate with acc. I 001111 Ow immediate data 1 

immediate with memory I 100000sw mod 111 rim I immediate data 2 2 

TEST = Logical Compare 

reg1 and reg2 I 1000010w 11 reg1 reg2 I 1 

memory and register I 1000010w mod reg r/ml 2 2 

immediate and register I 1111011W 11 000 reg I immediate data 1 

immediate and acc. I 1010100w immediate data 1 

immediate and memory I 1111011 w mod 000 rim I immediate data 2 2 

5-136 



intef 1486TM MICROPROCESSOR 

Table 10.1. 1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If 
Notes CacheMlaa 

INTEGER OPERATIONS (Continued) 

MUL = Multlply (unsigned) 

acc. with register I 1111011 w l11 100 reg I 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

acc. with memory I 1111011w lmod 100 r/ml 

Multiplier-Byte 13/18 1 MN/MX,3 
Word 13/26 1 MN/MX,3 
Dword 13/42 1 MN/MX,3 

IMUL = Integer Multiply (signed) 

acc. with register I 1111011w l11 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

acc. with memory I 1111011w I mod 101 r/ml 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

reg1 with reg2 I 00001111 I 10101111 l11 reg1 reg2I 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

register with memory I 00001111 I 10101111 I mod reg r/ml 

Multiplier-Byte 13/18 1 MN/MX, 3 
Word 13/26 1 MN/MX,3 
Dword 13/42 1 MN/MX,3 

reg1 with imm. to reg2 I 011010•1 l11 reg1 reg2 I 1mmediate data 
I 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

mem. with imm. to reg. I 011010s1 I mod reg rim I immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 
Word 13/26 2 MN/MX,3 
Dword 13/42 2 MN/MX,3 

DIV = Divide (unsigned) 

acc. by register I 1111011w l11 110 reg I 

Divisor-Byte 16 
Word 24 
Dword 40 

acc. by memory I 1111011w I mod 11 o r/ml 

Divisor-Byte 16 
Word 24 
Dword 40 

IDIV = Integer Divide (signed) 

ecc. by register I 1111011w l11 111 reg I 
Divisor-Byte 19 

Word 27 

Dword 43 

5-137 



inter i486™ MICROPROCESSOR 

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty if 

Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

acc. by memory I 1111011 w Jmod 111 r/mJ 

Divisor·Byte 20 
Word 28 
Dword 44 

CBW = Convert Byte to Word I 10011000 I 3 

CWD = Convert Word to Dword I 10011001 I 3 

Instruction TTT 

AOL = Rotate Left 000 
ROA = Rotate Right 001 
RCL = Rotate through Carry Left 010 
RCR = Rotate through Carry Right 011 
SHL/SAL = Shift Logical/ Arithmetic Left 100 
SHA = Shift Logical Right 101 
SAR = Shift Arithmelic Right 111 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

regby1 I 1101000w l11 TTT reg J 3 

memory by 1 I 1101000w mod TTT r/mJ 4 6 

reg by CL I 1101001w 11 TTT regJ 3 

memory by CL I 1101001w mod TTT rim J 4 6 

reg by immediate count I 1100000w 11 TTT reg J immediate 8-bit data 2 

mem by immediate count I 1100000w mod TTT rim I immediate S·bit data 4 6 

Through Carry (RCL and RCR) 

reg by 1 I 1101000w 11 TTT regJ 3 

memoryby1 I 1101000w mod TTT r/mJ 4 6 

reg by CL I 1101001 w 11 TTT regJ 8/30 MN/MX, 4 

memory by CL I 1101001w mod TTT rim J 9/31 MN/MX,5 

reg by immediate count I 1100000w 11 TTT reg I immediate 8-bit data 8/30 MN/MX,4 

mem by immediate count I 1100000w mod TTT rim J immediate S·bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD = Shift Left Double 100 
SHAD = Shift Right Double 101 

register with immediate I 00001111 I 10TTT100 l11 reg2 reg1 J imm 8-bit data 2 

memory by immediate I 00001111 l10TTT100 I mod reg rim J imm 8-bit data 3 6 

register by CL I 00001111 l10TTT101 l11 reg2 reg1 I 3 

memory by CL I 00001111 l10TTT101 Jmod reg r/ml 4 5 

BSWAP =Byte Swap I 00001111 I 11001 regJ 1 

XADD = Exchange and Add 

reg1, reg2 I 00001111 J11ooooow l11 reg2 reg1 I 3 

memory, reg I 00001111 I 11 OOOOOw Jmod reg r/mJ. 4 612 UIL 

CMPXCHG = Compare and Exchange 

reg1, reg2, I 00001111 J1011ooow l11 reg2 reg1 I 6 

memory, reg I 00001111 J1011ooow Jmod reg r/mJ 7/10 2 6 

5-138 



intef i486™ MICROPROCESSOR 

Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If 
Notes Cache Miss 

CONTROL TRANSFER (within segment) 

NOTE: Times are jump taken/not taken 

Jccc = Jump on ccc 

8-bit displacement I o 111 tttn I 8-bttdisp. I 3/1 TINT, 23 

full displacement I 00001111 I 1 OOOtttn I full displacement 3/1 TINT, 23 

NOTE: Times are jump taken/not taken 

SETcccc ~ Set Byte on cccc (Times are cccc true/false) 

reg I 00001111 I 1001tttn l11 000 reg I 4/3 

memory I 00001111 I 1001tttn I mod 000 r/ml 3/4 

Mnemonic 
Condition tttn cccc 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/ Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/ Above 0111 
s Sign 1000 
NS Not Sign· 1001 
PIPE Parity /Parity Even 1010 
NP/PO Not Parity /Parity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

LOOP ~ LOOP CX Times I 11100010 I 8-bitdisp. I 716 L/NL, 23 

LOOPZ/LOOPE ~ Loop with I 11100001 I 8-bttdisp. I 9/6 L/NL, 23 
I 

Zero/Equal 

LOOPNZ/LOOPNE ~ Loop while I 11100000 I 8-bitdisp. I 9/6 L/NL, 23 
Not Zero 

JCXZ ~ Jump on CX Z11ro I 11100011 I 8-bitdisp. I 8/5 TINT, 23 

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bitdisp. I 8/5 TINT, 23 

(Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP ~ Unconditional Jump (within segment) 

Short I 11101011 I 8-bitdisp. I 3 7,23 

Direct I 11101001 I full displacement 3 7,23 

Register Indirect I 11111111 l11 100 reg I 5 7, 23 

Memory Indirect I 11111111 I mod 100 r/ml 5 5 7 

CALL ~ Call (within segment) 

Direct I 11101 000 I full displacement 3 7,23 

Register Indirect I 11111111 l11 010 reg! 5 7,23 

Memory Indirect I 11111111 jmod 010 r/ml 5 5 7 

RET ~ Return from CALL (within segment) 

I 11000011 I 5 5 

Adding Immediate to SP I 11000010 I 16-bit disp. I 5 5 

5-139 



intef i486™ MICROPROCESSOR 

Table 10.1. 1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT cache Hit 
Penalty If 

Notes 
Cache Miss 

CONTROL TRANSFER (within segment) (Continued) 

ENTER = Enter Procedure I 11001000 116-bit disp., 8-blt 1evej 
Level= O 14 
Level= 1 17 
Level (L) > 1 17+3L 8 

LEAVE = Leave Procedure I 11001001 I 5 1 

MULTIPLE·SEGMENT INSTRUCTIONS 

MOY= Move 

reg. to segment reg, I 10001110 l11 sreg3 reg I 3/9 013 RV/P,9 

memory to segment reg. I 10001110 I mod sreg3 r/ml 3/9 215 RV/P, 9 

segment reg. to reg. I 10001100 l11 sreg3 reg I 3 

segment reg. to memory I 10001100 I mod sreg3 rtml 3 

PUSH= Push 

segment reg. I ooosreg211 ol 3 
(ES, CS, SS, or OS) 

segment reg. (FS or GS)· I 000011t1 I 10 sreg3oooj 3 

POP= Pop 

segment reg. j OOOsreg2111 j 3/9 2/5 RVIP, 9 
(ES, SS, or OS) 

segment reg. (FS or GS) I 00001111 I 10 sreg3001j 3/9 2/5 RV/P.9 

LDS = Load Pointer to DS I 11000101 mod reg rtml 6/12 7/10 RV/P,9 

LES = Load Pointer to ES I 11000100 mod reg rtmj 6/12 7/10 RVIP, 9 

LFS = Load Pointer to FS I 00001111 10110100 I mod reg r/ml 6/12 7/10 RVIP,9 

LGS = Load Pointer to GS I 00001111 10110101 Jmod reg rtml 6/12 7/10 RV/P,9 

LSS = Load Pointer to SS I 00001111 10110010 I mod reg rtml 6/12 7/10 RV/P,9 

CALL= Call 

Direct intersegment I 10011010 I unsigned full olfset, selector 18 2 R, 7,22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words 77+4X 17+n P, 11,9 
toTSS 37+TS 3 P, 10,9 
thru Task Gate 38+TS 3 P, 10,9 

Indirect intersegment I 11111111 jmod 011 rtmj 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 
to inner level, x parameter (d) words 77+4X 24+n P, 11,9 
toTSS 37+TS 10 P, 10,9 
thru Task Gate 38+TS 10 P, 10, 9 

RET = Return from CALL 

intersegment I 11001011 I 13 8 R, 7 

to same level 17 9 P,9 
to outer level 35 12 P,9 

intersegment adding I 11001010 I 16-bit disp. I 
imm.toSP 14 8 R, 7 

to same level 18 9 P,9 
to outer level 36 12 P,9 

5-140 



intJ i486™ MICROPROCESSOR 

Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penally If 

Notes 
Cache Miss 

MULTIPLE-SEGMENT INSTRUCTIONS (Continued) 

JMP = Unconditional Jump 

Direct intersegment I 11101010 I unsigned full offset, selector 17 2 R, 7,22 

to same level 19 3 P, 9 
thru Call Gate to same level 32 6 P,9 
thruTSS 42+TS 3 P, 10,9 
thru Task Gate 43+TS 3 P, 10, 9 

Indirect intersegment I 11111111 I mod 101 r/ml 13 9 R, 7,9 

to same level 18 10 P,9 
thru Call Gate to same level 31 13 P, 9 
thruTSS 41+TS 10 P, 10,9 
thru Task Gate 42+TS 10 P, 10,9 

BIT MANIPULATION 

BT= Test bit 

register, immediate I 00001111 I 1011101 0 l11 100 reg I imm. 8-bit data 3 

memory, immediate I 00001111 I 1011101 0 I mod 100 rim I imm. 8-bit data 3 1 

reg1, reg2 I 00001111 I 10100011 l11 reg2 reg1 I 3 

memory, reg I 00001111 I 10100011 I mod reg rim) 8 2 

Instruction TTT 

BTS = Test Bit and Set 101 
BTR = Test Bit and Reset 110 

BTC = Test Bit and Compliment 111 

register, immediate I 00001111 I 10111010 l11 TTT reg I imm. 8-bit data 6 

memory, immediate I 00001111 I 1011101 0 j mod TTT rim J imm. 8-bit data 8 2/0 U/L 

reg1, reg2 100001111 I 1 OTTT011 l11 reg2 reg1 I 6 

memory, reg I 00001111 I 10TTT011 I mod reg r/ml 13 3/1 U/L 

BSF = Scan Bit Forward 

reg1, reg2 I 00001111 I 101111 00 J11 reg2 reg1 I 6/42 MN/MX, 12 

memory, reg I 00001111 I 101111 00 I mod reg rim I 7/43 2 MN/MX, 13 

BSR = Scan Bit Reverse 

reg1, reg2 I 00001111 I 10111101 J11 reg2 reg1 I 6/103 MN/MX, 14 

memory, reg I 00001111 I 10111101 I mod reg rim) 7/104 1 MN/MX, 15 

STRING INSTRUCTIONS 

CMPS = Compare Byte Word I 1010011w I 8 6 16 

LOOS = Load Byte/Word I 1010110w I 5 2 
to AL/AX/EAX 

MOVS = Move Byte/Word I 1010010w I 7 2 16 

SCAS = Scan Byte/Word I 101 0111 w I 6 2 

STOS = Store Byte/Word I 1010101 w I 5 
from AL/ AX/EX 

XLA T = Translate Siring I 11010111 I 4 2 

5-141 



intJ i486™ MICROPROCESSOR 

Table 10.1. 1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If 
Notes Cache Miss 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C = Count in CX or ECX) 

REPE CMPS = Compare String I 11110011 I 1010011 w I 
(Find Non-Match) 
C=O 5 
C>O 7+7c 16, 17 

REPNE CMPS = Compare String I 11110010 I 1010011w I 
(Find Match) 
C=O 5 
C>O 7+7c 16, 17 

REP LOOS = Load String I 11110010 I 1010110w I 
C=O 5 
C>O 7+4c 16, 18 

REP MOVS = Move String I 11110010 I 1010010w I 
C=O 5 
C= 1 13 1 16 
C>l 12+3c 16, 19 

REPE SCAS = Scsn String I 11110011 I 1010111 w I 
(Find Non-AL/ AXIEAX) 
C=O 5 
C>O 7+5c 20 

REPNE SCAS = Scsn String I 11110010 I 101011 lW I 
(Find AL/ AX/EAX) 

C=O 5 
C>O 7+5c 20 

REP STOS = Store String I 11110010 I 1010101w I 
C=O 5 
C>O 7+4c 

FLAG CONTROL 

CLC = Clear Carry Flag I 11111000 I 2 

STC = Set Carry Flag I 11111001 I 2 

CMC = Complement Carry Flag I 11110101 I 2 

CLD = Clear Direction Flag I 11111100 I 2 

STD = Set Direction Flag I 11111101 I 2 

CLI = Clear Interrupt I 11111010 I 5 

Enable Flag 

STI = Set Interrupt I 11111011 I 5 

Enable Flag 

LAHF = Load AH Into Flag I 10011111 I 3 

SAHF = Store AH Into flags I 10011110 I 2 

PUSHF Push Flags I 10011100 I 4/3 RV/P 

POPF = Pop Flags I 10011101 I 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA = ASCII Adjust for Add I 00110111 I 3 

AAS = ASCII Adjust for I 00111111 I 3 

Subtract 

AAM = ASCII Adjust for I 11010100 I 00001010 I 15 

Multiply 

5-142 



intef i486™ MICROPROCESSOR 

Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If 
Notes Cache Miss 

DECIMAL ARITHMETIC (Continued) 

AAD = ASCII Ad)ustlor I 11010101 I 00001010 I 14 

Divide 

DAA = Decimal Ad)ust for Add I 00100111 I 2 

DAS = Decimal Ad)ust for Subtract I 00101111 I 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT =Halt I 111101 00 I 4 

MOY = Move To and From Control/Debug/Test Registers 

CRO from register I 00001111 00100010 l11 000 regj 17 2 

CR2/CR3 from register I 00001111 00100010 l11 eee reg I 4 

Reg from CR0-3 I 00001111 00100000 111 eee reg I 4 

DA0-3 from register I 00001111 00100011 11 eee reg I 10 

DA6-7 from register I 00001111 00100011 11 eee reg I 10 

Register from DR6-7 I 00001111 00100001 11 eee reg I 9 

Register from DR0-3 I 00001111 0010000·• 11 eee regj 9 

TR3 from register I 00001111 00100110 11 011 reg I 4 

TR4-7 from register I 00001111 I 00100110 11 eee reg I 4 

Register from TR3 I 00001111 00100100 11 011 reg I 3 

RegiS1er from TR4-7 I 00001111 00100100 11 eee reg I 4 

CL TS = Clear Task Switched Flag I 00001111 00000110 I 7 2 

INVD = Invalidate Data Cache I 00001111 00001000 I 4 I 
WBINVD = Write-Back and Invalidate I 00001111 00001001 I 5 

Data Cache 

INVLPG = Invalidate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 r/ml 12/11 HINH 

PREFIX BYTES 

Address Size Prefix I 011 00111 I 1 

LOCK = Bus Lock Prefix I 11110000 I 1 

Operand Size Prefix I 0110011 0 I 1 

Segment Override Prefix 

CS: 0010111 0 I 1 

DS: 00111110 I 1 

ES: 00100110 I 1 

FS: 01100100 I 1 

GS: 01100101 I 1 

SS: 0011011 0 I 1 

5-143 



intef i486™ MICROPROCESSOR 

Table 10.1. 1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT cache Hit Penalty If 
Notes Cache Mias 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From register I o 11ooo11 l11 reg1 reg2I 9 

From memory I 01100011 I mod reg r/ml 9 

LAR = Load Access Rights 

From register I 00001111 I 00000010 l11 reg1 reg2I 11 3 

From memory I 00001111 I 00000010 jmod reg r/ml 11 5 

LGDT = Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 r/ml 12 5 

LIDT = Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I mod 011 r/ml 12 5 

LLDT = Load Local Descriptor 

Table register from reg. I 00001111 I 00000000 l11 010 'reg! 11 3 

Table register from mem. I 00001111 I 00000000 lmod010 r/ml 11 6 

LMSW = Load Machine Status Word 

From register I 00001111 I 00000001 l11 110 reg I 13 

From memory I 00001111 I 00000001 I mod 110 r/ml 13 1 

LSL = Load segment Limit 

From register I 00001111 I 00000011 l11 reg1 reg2 j 10 3 

From memory I 00001111 I 00000011 I mod reg r/ml 10 6 

L TR = Load Task Register 

From Register I 00001111 I 00000000 l11 011 reg I 20 

From Memory I 00001111 I 00000000 J mod o 11 r/ml 20 

SGDT = Store Global Descriptor Table 

I 00001111 I 00000001 I mod 000 r/ml 10 

SIDT = Store Interrupt Descriptor Table 

I 00001111 I 00000001 I mod 001 r/ml 10 

SLOT = Store Local Descriptor Table 

To register I 00001111 I 00000000 l11 000 reg I 2 

To memory I 00001111 I 00000000 I mod 000 r/ml 3 

SMSW = Store Machine Status Word 

To register I 00001111 I 00000001 l11 100 regj 2 

To memory I 00001111 I 00000001 I mod 100 r/ml 3 

STR = Store Task Register 

To register I 00001111 I 00000000 l11 001 reg I 2 

To memory I 00001111 I 00000000 lmod001 r/ml 3 

VERA = Verify Read Access 

Register I 00001111 I 00000000 l11 1 00 r/ml '· 11 3 

Memory I 00001111 I 00000000 lmod100 r/ml 11 7 

VERW = Verify Write Access 

To register I 00001111 I 00000000 l11 101 reg I 11 3 

To memory I 00001111 I 00000000 I mod 101 r/ml 11 7 

5-144 



intef i486™ MICROPROCESSOR 

Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty II 

Notes 
Cache Miss 

INTERRUPT INSTRUCTIONS 

INT n ~ Interrupt Type n I 11001101 I type I INT+4/0 RV/P, 21 

INT 3 ~ Interrupt Type 3 I 11001100 I INT+O 21 

INTO ~ Interrupt 411 I 1100111 0 I 
Overflow Flag Set 
Taken INT+2 21 
Not Taken 3 21 

BOUND ~ Interrupt 5 II Detect I 01100010 I mod reg r/ml 
Value Out Range 

If in range 7 ' 7 21 
If out of range INT+24 7 21 

IRET ~ Interrupt Return I 11001111 I 
Real Mode/Virtual Mode 15 B 
Protected Mode 

To same level 20 11 9 
To outer level 36 19 9 
To nested task (EFLAGS.NT ~ 1) TS+32 4 9, 10 

External Interrupt INT+11 21 

NMI ~ Non·Maskable Interrupt INT+3 21 

Page Fault INT+24 21 

VM86 Exceptions 
cu INT+8 21 
STI INT+8 21 
INTn INT+9 
PUSHF INT+9 21 
POPF INT+8 21 
IRET INT+9 
IN 

Fixed Port INT+50 21 El 
Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 
Variable Port INT+51 21 

INS INT+50 21 
OUTS INT+50 21 
REP INS INT+51 21 
REP OUTS INT+51 21 

Task Switch Clock Counts Table 

Method 
Value for TS 

cache Hit Miss Penalty 

VM/486 CPU/286 TSS To 486 CPU TSS 162 55 
VM/486 CPU/286 TSS To 286 TSS 143 31 
VM/486 CPU/286 TSS To VM TSS 140 37 

5-145 



intef i486TM MICROPROCESSOR 

Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different level 
Task gate 

Abbreviations 
16/32 
U/L 
MN/MX 
L/NL 
RV/P 
R 
p 
TINT 
HINH 

NOTES: 

Definition 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 
real and virtual mode/protected mode 
real mode 
protected mode 
taken/ not taken 
hit/no hit 

Cache Hit 

26 

44 
71 

37 +TS 
.. 

82 
37 +TS 

Value for INT 

Miss Penalty 

2 

6 
17 
3 

17 
3 

1 . Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks= 10 + max(log2(lml).n) 

m = multiplier value (min clocks for m = 0) 
n = 3/5for ±m 

4. Clocks= {quotient(count/operand length)}*7+9 
= 8 if count ~ operand length (8/16/32) 

5. Clocks = {quotient( count/ operand length)} *7 + 9 
= 9 if count ~ operand length (8/ 16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9,10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b = 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4(b+1) + 3(i+ 1) + 3(n+ 1) 
= 6 if second operand = O 

13. Clocks = 9+4(b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 7 if second operand = O 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32-n) 

6 if second operand = o 
15. Clocks = 8 + 3(32-n) 

7 if second operand = O 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

( 1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 

5-146 



intef 1486™ MICROPROCESSOR 

Table 10.2. 1486™ Microprocessor 1/0 Instructions Clock Count Summary 

Real Protected Protected Vlrtual86 INSTRUCTION FORMAT Mode Mode Notea Mode (CPLs:IOPL) (CPL>IOPL) Mode 

110 INSTRUCTIONS 

IN = lnpulfrom: 

Fixed Port I 111001 Ow I port number I 14 9 29 27 

Variable Port I 111011 Ow I 14 8 28 27 

!<>UT = OUtput to: 

Fixed Port 1110011 w port number I 16 11 31 29 

Variable Port 1110111w 16 10 30 29 

NS = Input Byte/Word 0110110w 17 10 32 30 
from DX Port 

louTS = Output Byte/Word 0110111w 17 10 32 30 1 
to DX Port 

lftEP INS = Input String 11110010 011011 Ow I 16+8c 10+8c 30+8c 29+8c 2 

lftEP OUTS = Output String 11110010 0110111 w I 17+5c 11+5c 31+5c 30+5c 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c = count in ex or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 

I 

5-147 



intef i486™ MICROPROCESSOR 

Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary 

Cache Hit Concurrent 

Penalty If Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ... Range ... 

Upper Range) Upper Range) 

DATA TRANSFER 

FLD = Real Load to ST(O) 

32-bit memory I 11011 001lmod 000 r/ml s-i-b/disp. I 3 2 

64-bit memory I 11011 101 I mod 000 r/ml s-i-b/ disp. I 3 3 

BO-bit memory I 11011 011 I mod 101 r/ml s-i-b/disp. I 6 4 

ST(i) I 11011 001111000 ST(i)I 4 

FILD = Integer Load to ST(O) 

16-bit memory I 11011 111 lmod 000 r/ml s-i-b/disp. I 14.5(13-16) 2 4 

32-btt memory I 11011 O 11 I mod 000 r/ml s-i-b/disp. I 11.5(9-12) 2 4(2-4) 

64-bit memory I 11011 111 lmod 101 r/ml s-i-b/disp. I 16.8(10-18) 3 7.8(2-8) 

FBLD = BCD Load to ST(O) I 11011 111 I mod 100 r/ml s-i-b/disp. I 75(70-103) 4 7.7(2-8) 

FST = Store Real from ST(O) 

32-bit memory I 11011 001lmod 010 r/ml s-i-b/ disp. I 7 1 

64-bit memory I 11011 1 01 I mod 010 r/ml s-i-b/disp. I 8 2 

ST(I) I 11011 101I1101 0 ST(i)I 3 

FSTP = Store Real from ST(O) and Pop 

32-bit memory I 11 011 011 J mod 011 r/ml s-i-b/ disp. I 7 1 

64·bit memory I 11011 101 I mod 011 r/ml s-i-b/ disp. I 8 2 

80-bit memory I 11011 O 11 I mod 111 r/ml s-i-b/ disp. I 6 

ST(i) I 11011 101I11001 ST(i)I 3 

FIST = Store Integer from ST(O) 

16-bit memory I 11011 111 I mod 010 r/ml s-i-b/ disp. I 33.4(29-34) 

32-bit memory I 11011 011 I mod 010 r/ml s-i-b/disp. I 32.4(28-34) 

FISTP = Store Integer from ST(O) and Pop 

16-bit memory I 11011 111 mod 011 r/ml s-i-b/disp. I 33.4(29-34) 

32-bit memory I 11011 011 mod 011 r/ml s-i-b/ disp. I 33.4(29-34) 

64-bit memory I 11011 111 mod 111 r/ml s-i-b/ disp. I 33.4(29-34) 

FBSTP = Store BCD from I 11011 111 mod 11 0 r/ml s-i-b/disp. I 175(172-176) 
ST(O) and Pop 

FXCH = Exchange ST(O) and ST(I) I 11011 001 11001 ST(i) I 4 

COMPARISON INSTRUCTIONS 

FCOM = Compare ST(O) with Real 

32-bit memory I 11011 ooolmod 010 r/ml s-i-b/disp. I 4 2 1 

64-bit memory I 11011 1oolmod 010 r/ml s-i-b/disp. I 4 3 1 

ST(i) I 11011 oool11010 ST(i)I 4 1 

FCOMP = Compare ST(O) with Real and Pop 

32-bit memory I 11011 ooolmod 011 r/ml s-i-b/ disp. I 4 2 1 

64-btt memory I 11011 1oolmod 011 r/ml s-i-b/ disp. I 4 3 1 

ST(i) I 11011 000I11011 ST(i)I 4 1 

5-148 



intef i486™ MICROPROCESSOR 

Table 10.3. i486™ Microprocessor Floatlng Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty II Execution 

INSTRUCTION FORMAT Avg(Lower cache Mias Avg(Lower Notes 
Range ••• Range ... 

Upper Range) Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) with I 11011 11ol11o1 1001 I 5 1 
ST(1) and Pop Twice 

FICOM = Compare ST(O) with Integer 

16-bit memory I 11011 11olmod010 r/ml s-i-b/disp. I 16(16-20) 2 1 

32-bit memory I 11011 01olmod 010 r/ml s-i-b/disp. I 16.5(15-17) 2 1 

FICOMP = Compare ST(O) with Integer 

16-bit memory I 11011 11 ol mod 011 r/ml s-i-b/disp. I 16(16-20) 2 1 

32-blt memory I 11011 010 mod 011 r/ml s-i-b/disp. I 16.5(15-17) 2 1 

FTST = Compare ST(O) with 0.0 I 11011 001 1110 o 1 oo I 4 1 

FUCOM = Unordered compare I 11011 101 11100 ST(i)I 4 1 
ST(O) with ST(I) 

FUCOMP = Unordered compare I 11011 101 11101 ST(i)I 4 1 
ST(O) with ST(I) and Pop 

FUCOMPP = Unordered compare I 11011 101 11101 1001 I 5 1 
ST(O) with ST(I) and Pop Twice 

FXAM = Examine ST(O) I 11011 001 1110 0101 I 6 

CONSTANTS 

FLDZ = Load + 0.0 Into ST(O) 11011 001 1110 111 ol 4 

FLD1 = Load+ 1.0 Into ST(O) 11011 001 1110 1 oool 4 

FLDPI = Load "' Into ST(O) 11011 001 1110 1011 I 8 2 I 
FLOUT = Load logo(10) Into ST(O) 11011 001 1110 1001 I 6 2 

FLDL2E = Load logo(e) Into ST(O) 11011 001 1110 101 ol 6 2 

FLDLG2 = Load log1o(2) Into ST(O) 11011 001 1110 11 ool 6 2 

FLDLN2 = Load log8 (2) Into ST(O) 11011 001 1110 11 01 I 6 2 

ARITHMETIC 

FADD = Add Real with ST(O) 

ST(O) +- ST(O) + 32-bil memory I 11011 oool mod 000 r/ml s-i-b/disp. I 10(6-20) 2 7(5-17) 

ST(O) +- ST(O) + 64-blt memory I 11011 1oolmod 000 r/ml s-i-b/disp. I 10(6-20) 3 7(5-17) 

ST(d) +- ST(O) + ST(i) I 11011 dool 11 ooo ST(i)I 10(6-20) 7(5-17) 

FADDP = Add real with ST(O) and I 11011 11ol11 ooo ST(i)I 10(8-20) 7(5-17) 

Pop (ST(I) +- ST(O) + ST(I)) 

FSUB = Subtract real from ST(O) 

ST(O) +- ST(O) - 32-blt memory I 11011 ooo I mod 100 r/ml s-i-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) +- ST(O) - 64-blt memory I 11011 1oolmod 100 rtml s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) +- ST(O) - ST(i) I 11011 dool 11101 ST(i)I 10(8-20) 7(5-17) 

FSUBP = Subtract real from ST(O) I 11011 11ol11101 ST(i)I 10(8-20) 7(5-17) 

and Pop (ST(I) +- ST(O) - ST(I)) 

5·149 



i486™ MICROPROCESSOR 

Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Pe11altyif Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ••• Range ••. 

Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FSUBR = Subtract real reversed (SUbtract ST(O) from real) 

ST(O) <-- 32-bit memory - ST(O) J 11011 oool mod 101 r/ml s-i-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) <-- 64·bit memory - ST(O) J 11011 1oolmod 1 01 r/ml s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) <-- ST(i) - ST(O) I 11011 dool11100 ST(i)I 10(8-20) 7(5-17) 

FSUBRP = Subtract real reversed I 11011 11ol111 oo ST(i)I 10(8-20) 7(5-17) 

and Pop (ST(I) <-- ST(i) - ST(O)) 

FMUL = Multiply real with ST(O) 

ST(O) <-- ST(O) x 32-bit memory J 11011 ooolmod 001 r/ml s-i-b/ disp. I 11 2 8 

ST(O) <-- ST(O) x 64-bit memory J 11011 1oolmod 001 r/ml s-i-b/disp. I 14 3 11 

ST(d) <-- ST(O) x ST(i) I 11011 dool 11001 ST(i)I 16 13 

FMULP = Multlply ST(O) with ST(i) J 11011 110I11001 ST(i)I 16 13 
and Pop (ST(I) ...... ST(O) x ST(i)) 

FDIV = Divide ST(O) by Real 

ST(O) <-- ST(0)/32-bil memory I 11011 ooolmod 11 0 r/ml s-i-b/ disp. I 73 2 70 3 

ST(O) <-- ST(0)/64-bit memory J 11011 1oolmod 100 r/ml s-i-b/disp. I 73 3 70 3 

ST(d) <-- ST(O)/ST(i) J 11011 dOO I 11111 ST(i)I 73 70 3 

FDIVP = Divide ST(O) by ST(I) and J 11 011 11ol11111 ST(i)I 73 70 3 
Pop (ST(I) <- ST(O)/ST(I)) 

FDIVR = Divide real reversed (Real/ST(O)) 

ST(O) <- 32-bit memory/ST(O) I 11011 ooolmod 111 r/ml s-i-b/disp. I 73 2 70 3 

ST(O) <- 64-bit memory /ST(O) I 11011 1oolmod 111 r/ml s-i-b/ disp. I 73 3 70 3 

ST(d) <-- ST(i)/ST(O) I 11011 dool 1111 o ST(i)I 73 70 3 

FDIVRP = Divide real reversed and I 11011 11ol1111 o ST(i)I 73 70 3 

Pop (ST(I) <- ST(l)/ST(O)) 

FIADD = Add Integer to ST(O) 

ST(O) <-- ST(O) + 16-bit memory I 11011 111ilmod 000 r/ml s-i-b/ disp. I 24(20-35) 2 7(5-17) 

ST(O) <- ST(O) + 32-btt memory J 11011 01olmod ooo r/mj s-i-b/ disp. I 22.5(19-32) 2 7(5-17) 

FISUB = Subtract Integer from ST(O) 

ST(O) <- ST(O) - 16-bit memory I 11011 11 ol mod 100 r/ml s-i-b/ disp. I 24(20-35) 2 7(5-17) 

ST(O) <- ST(O) - 32-bit memory J 11011 01olmod 100 r/ml s-i-b/ disp. I 22.5(19-32) 2 7(5-17) 

FISUBR = Integer Subtract Reversed 

ST(O) <- 16-bit memory - ST(O) I 11011 11 ol mod 101 r/ml s-i-b/disp. I 24(20-35) 2 7(5-17) 

ST(O) <- 32-bit memory - ST(O) J 11011 01olmod 1 01 r/ml s-i-b/disp. I 22.5(19-32) 2 7(5-17) 

FIMUL = Multiply Integer with ST(O) 

ST(O) <- ST(O) x 16-bit memory I 11011 11 o I mod 001 r/ml s-i-b/ disp. I 25(23-27) 2 8 

ST(O) <- ST(O) X 32-bit memory J 11011 01olmod 001 r/ml s-i-b/ disp. I 23.5(22-24) 2 8 

FIDIV = Integer Divide 

ST(O) <- ST(0)/16-bit memory J 11011 11 ol mod 110 r/ml s-i-b/ disp. I 87(85-89) 2 70 3 

ST(O) <- ST(0)/32-bit memory I 11011 01olmod 110 r/ml s-i-b/ disp. I 85.5(84-86) 2 70 3 

5-150 



inter i486™ MICROPROCESSOR 

Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty II Execution 

INSTRUCTION FORMAT Avg(Lower cache Miss Avg(Lower Notes 
Range ... Range ... 

Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FIDIVR ~ Integer Divide Reversed 

ST(O) +- 16-bit memory/ST(O) I 11011 11 O I mod 111 r/ml s-i-b/disp. I 87(85-89) 2 70 3 

ST(O) +- 32-bit memory/ST(O) I 11011 010 mod 111 rim! s-i-b/disp. I 85.5(84-86) 2 70 3 

FSQRT ~ Square Root I 11011 001 1111 1o1 o I 85.5(83-87) 70 

FSCALE ~ Scale ST(O) by ST( 1) I 11011 001 1111 1101 I 31(30-32) 2 

FXTRACT ~ Extract components [i!ii1 001 1111 o 1 oo I 19(16-20) 4(2-4) 

o!ST(O) 

FPREM ~ Partial Reminder 11011 001 1111 1 ooo I 84(70-138) 2(2-8) 

FPREM1 ~ Partial Reminder (IEEE) 11011 001 1111 0101 I 94.5(72-167) 5.5(2-18) 

FRNDINT ~ Round ST(O) to Integer 11011 001 1111 11 oo I 29.1 (21-30) 7.4(2-8) 

FABS ~ Absolute value of ST(O) 11011 001 1110 0001 I 3 

FCHS ~ Change sign of ST(O) 11011 001 1110 0000 I 6 

TRANSCENDENTAL 

FCOS ~ Cosine of ST(O) I 11011 001I1111 11111 241(193-279) 2 6, 7 

FPTAN ~ Partlal tangent of ST(O) I 11011 001 1111 oo 1 o I 244(200-273) 70 6, 7 

FPATAN ~ Partial arctangent I 11011 001 1111 0011 I 289(218-303) 5(2-17) 6 

FSIN ~ Sine of ST(O) I 11011 001 1111 111 o I 241(193-279) 2 6, 7 

FSINCOS ~ Sine and cosine of ST(O) I 11011 001 1111 1011 I 291 (243-329) 2 6, 7 

F2XM1 ~ 2ST(O) - 1 I 11011 001 1111 ooool 242(140-279) 2 6 I 
FYL2X ~ ST(1) X log2(ST(O)) I 11011 001 1111 0001 I 311(196-329) 13 6 

FYL2XP1 ~ ST(1) x log2(ST(O) + 1.0) I 1 1 0 1 1 001 1111 1001 I 313(171-326) 13 6 

PROCESSOR CONTROL 

FINIT ~ lnltlallze FPU I 11011 011I1110 0011 I 17 4 

FSTSW AX ~ Store status word I 11011 111I1110 0000 I 3 5 

into AX 

FSTSW ~ Store status word I 11011 1O1 I mod 111 r/mj S·i-b/disp. I 3 5 
Into memory 

FLDCW ~ Load control word I 11011 001 I mod 101 r/ml s-i-b/disp. I 4 2 

FSTCW ~ Store control word I 11011 001 lmod 111 r/ml s-i-b/ disp. I 3 5 

FCLEX ~ Clear exceptions I 11011 011I111 0 oo 1 o I 7 4 

FSTENV ~ Store environment I 11011 001jmod 110 r/mj s-i-b/ disp. I 
Real and Virtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Pr~tected mode 32-bit Address 56 4 

FLDENV ~ Load environment I 11011 001 jmod 100 r/ml s-i-b/ disp. I 
Real and Virtual modes 16-bit Address 44 2 
Real and Virtual modes 32-bit Address 44 2 
Protected mode 16-bit Address 34 2 
Protected mode 32-bit Address 34 2 

5-151 



intef i486™ MICROPROCESSOR 

Table 10 3 i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty If Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range •.• Range ••• 

Upper Range) Upper Range) 

PROCESSOR CONTROL (Continued) 

FSA VE ~ Save state I 11011 101jmod 110 r/mj s-i-b/ disp. I 
Real and Virtual modes 16-bit Address 154 4 
Real and Virtual modes 32-blt Address 154 4 
Protected mode 16-bit Address 143 4 
Protected mode 32-bit Address 143 4 

FRSTOR ~ Restore state I 11011 101Jmod 100 r/mj s-i-b/ I 
Real and Virtual modes 16-bit Address 131 23 
Real and Virtual modes 32-bit Address 131 27 
Protected mode 16-bit Address 120 23 
Protected mode 32-bit Address 120 27 

FINCSTP ~ Increment Stack Pointer I 11011 001I1111 0111 I 3 

FDECSTP ~ Decrement Stack Pointer j 1 1 O 1 1 001I1111 011 ol 3 

FFREE ~ Free ST(I) I 11011 101'11000 ST(i)I 3 

FNOP ~ No operations I 11011 001I1101 ooooj 3 

WAIT ~ Walt until FPU ready I 10011011 I 
(Minimum/Maximum) 1/3 

NOTES: 
1. If operand is 0 clock counts = 27. 
2. If operand is O clock counts = 28. 
3. If CW.PC indicates 24 bit precision then subtract 38 clocks. 

If CW.PC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction add 17 clocks. 
5. If there is a numeric error pending from a previous instruction ad~ 18 clocks. . . 
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency. 
7. If ABS(operand) is greater than w/4 then add n clocks. Where n = (operand/(w/4)). 

encodings of the mod rim byte indicate a second 
10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows 

the mod rim byte to fully specify the addressing 
10.2.1 OVERVIEW mode. 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The field.s defi.ne 
such information as direction of the operation, size 
of the displacements, register encoding, qr sign ex-
tension. · 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rl~ 
byte, specifies the address mode to be used. Certain 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. · 1f a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 10.1 illustrates several of the fields ~hat can 
appear in an instruction, such as the mod f1el~ and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the 486 Microprocessor instruction set. 
Further ahead, following Table 10.4, are detailed ta­
bles for each field. 

5-152 



intJ i486TM MICROPROCESSOR 

JTTTTTTTTJ TTTTTTTT l mod TTT rim l ss index base ld32 I 16 I 8 I none data32 I 16 I 8 I none 

7 0 7 0 \.7 6 5 3 2 0 l\7 6 5 3 2 0 A I 
-----..__.------ ¥ f ---v---

opcode "mod rim" 
byte 

"s-i-b" 
byte 

immediate 
data (one or two bytes) 

(T represents an 
opcode bit.) register and address 

mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 
(4, 2, 1 bytes 

or none) 

Figure 10.1. General Instruction Format 

Table 10.4. Fields within 1486™ Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 

3 for rim 
SS Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

NOTE: 
Tables 10.1-10.3 show encoding of individual instructions. 

10.2.2 32·BIT EXTENSIONS OF THE , 
INSTRUCTION SET 

With the 486 Microprocessor, the 80861801861 
80286 instruction set is extended in two orthogonal 
directions: 32-bit forms of all 16-bit instructions are 
added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all instruc· 
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default 
(0) bit in the code segment descriptor, and by hav· 
ing 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the D bit in 
the code segment descriptor, which gives the de· 
fault length (either 32 bits or 16 bits) for both oper· 
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a D value of 0 is assumed internally by the 486 

4 

Microprocessor when operating in those modes (for 
16-bit default sizes compatible with the 80861 
80186180286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

5-153 

I 



1486™ MICROPROCESSOR 

Encoding of reg Fleld When w Field 
is not Present in Instruction 

) 

Register Selected Register Selected 

These 32-bit extensions are available in all 486 Mi­
croprocessor modes, including the Real Address 
Mode or the Virtual 8086 Mode.· In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the order of prefixes 
is unimportant. 

reg Field During 1&·Bit During 32·Bit 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

10.2.3 ENCODING OF INTEGER 
INSTRUCTION FIELDS 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

10.2.3.1 Encoding of Operand Length (w) Field 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the . 
operation size, the w field encodes the operand size 
as either. one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wFleld During 16-Blt During 32·Blt 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
Register (reg) Field 

The general register is specified by the reg field, 
which may appear inthe primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

5-154 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
ex ECX 
DX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
DI EDI 

Encoding of reg Field When w Fleld 
is Present In Instruction 

Register Specified by reg Field 
During 16-Blt Data Operations: 

Function of w Fleld 

(whenw = 0) (whenw = 1) 

AL AX 
CL ex 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 

Register Specified by reg Field 
During 32-Blt Data Operations 

Function of w Field 

(whenw = O) (whenw = 1) 

AL EAX 
CL ECX 
DL EDX 
BL EBX 
AH ESP 
CH EBP 
DH ESI 
BH EDI 



intJ i486™ MICROPROCESSOR 

10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 486 Microprocessor FS and 
GS segment registers to be specified. 

2-Bit sreg2 Field 

2-Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 cs 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 cs 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

10.2.3.4 Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00, 01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be 
used as a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 

5-155 

I 



intJ i486™ MICROPROCESSOR 

Encoding of 16-bit Address Mode with "mod r/m" Byte 

modr/m Effective Address modr/m Effective Address 

00000 DS:[BX+SI] 10000 DS:[BX+Sl+d16] 
00001 DS:[BX+DI] 10 001 DS:[BX +DI+ d16] 
00010 SS:[BP+SI] 10 010 SS:[BP+Sl+d16] 
00 011 SS:[BP+DI] 10 011 SS:[BP+ Dl+d16] 
00100 DS:[SI] 10 100 DS:[Sl+d16] 
00 101 DS:[DI] 10 101 DS:[Dl+d16] 
00110 DS:d16 10110 SS:[BP+d16] 
00 111 DS:[BX] 10 111 DS:[BX+d16] 

01 000 DS: [BX+ SI+ d8] 11 000 register-see below 
01 001 OS: [BX+ DI+ d8] 11 001 register-see below 
01 010 SS: [BP+ SI+ d8] 11 010 register-see below 
01 011 SS: [BP+ DI+ d8] 11 011 register-see below 
01100 DS:[Sl+d8] 11100 register-see below 
01101 DS:[Dl+d8] 11 101 register-see below 
01110 SS:[BP+d8] 11 110 register,-see below 
01 111 DS:[BX+d8] 11 111 register-see below 

Register Specified by rim Register Specified by r/m 
During 16-Blt Data Operations During 32-Bit Data Operations 

modr/m 
Function of w Field 

modr/m 
Function of w Field 

(whenw=O) (whenw =1) (whenw=O) (whenw =1) 

11 000 AL AX 11 000 AL EAX 
11 001 CL ex 11 001 CL ECX 
11 010 DL DX 11 010 DL EDX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP 11100 AH ESP 
11 101 CH BP 11 101 CH ESP 
11 110 DH SI 11110 DH ESI 
11 111 SH DI 11 111 SH EDI 

5-156 



intJ i486™ MICROPROCESSOR 

Encoding of 32-bit Address Mode with "mod r/m" byte (no "s-i-b" byte present): 

modr/m Effective Address modr/m Effective Address 

00 000 DS:[EAX) 10 000 DS: [EAX + d32) 
00 001 DS:[ECX) 10 001 DS:[ECX+d32] 
00 010 DS:[EDX) 10 010 DS: [EDX + d32) 
00 011 DS:[EBX) 10 011 DS:[EBX+d32) 
00 100 s-i-b is present 10 100 s-i-b is present 
00 101 DS:d32 10 101 SS:[EBP+d32) 
00110 DS:[ESI) 10 110 DS: [ESI + d32) 
00 111 DS:[EDI) 10 111 DS:[EDl+d32) 

01 000 DS:[EAX+d8) 11 000 register-see below 
01 001 DS:[ECX+d8] 11 001 register-see below 
01 010 DS:[EDX+d8) 11 010 register-see below 
01 011 DS:[EBX+d8) 11 011 register-see below 
01 100 s-i-b is present 11 100 register-see below 
01 101 SS:[EBP+d8) 11 101 register-see below 
01 110 DS: [ESI +dB) 11 110 register-see below 
01 111 DS:[EDl+d8] 11 111 register-see below 

Register Specified by reg or r/m Register Specified by reg or r/m 
during 16-Bit Data Operations: during 32-Bit Data Operations: 

modr/m 
Function of w field 

modr/m 
Function of w field 

(whenw=O) (whenw=1) (whenw=O) (whenw=1} 

11 000 AL AX 
11 001 CL ex 
11 010 DL DX 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX I 

11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 DH SI 11 110 DH ESI 
11 111 BH DI 11 111 BH EDI 

5-157 



intef i486TM MICROPROCESSOR 

Encoding of 32-bit Address Mode ("mod r/m" byte and "s-i-b" byte present): 

mod base Effective Address 

00000 OS: [EAX +(scaled index)] 
00001 OS: [ECX +(scaled index)] 
00010 OS: [EDX +(scaled index)] 
00 011 DS: [ESX +(scaled index)] 
00100 SS: [ESP+ (scaled index)] 
00 101 DS: [d32 +(scaled index)] 
00 110 DS:[ESI +(scaled index)] 
00111 DS:[EDI +(scaled index)] 

01 000 OS: [EAX +(scaled index)+ dB] 
01 001 DS: [ECX +(scaled index)+ dB] 
01 010 OS: [EDX +(scaled index)+ dB] 
01011 DS: [ESX +(scaled index)+ dB] 
01100 SS: [ESP+ (scaled index)+ dB] 
01101 SS: [ESP+ (scaled index)+ dB] 
01110 OS: [ESI +(scaled index)+ dB] 
01 111 DS: [EDI+ (scaled index)+ dB] 

10000 DS: [EAX +(scaled index)+ d32] 
10 001 DS: [ECX +(scaled index)+ d32] 
10010 DS:[EDX +(scaled index)+ d32] 
10 011 OS: [ESX +(scaled index)+ d32] 
10100 SS: [ESP+ (scaled index)+ d32] 
10101 SS: [ESP+ (scaled index)+ d32] 
10 110 OS: [ESI +(scaled index)+ d32] 
10 111 OS: [EDI+ (scaled index)+ d32] 

NOTE: 
Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 

SS Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 ESX 
100 no index reg** 
101 ESP 
110 ESI 
111 EDI 

••IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

5-15B 



intJ i486™ MICROPROCESSOR 

10.2.3.5 Encoding of Operation 
Direction (d) Field 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod rim" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod rim" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Immediate 

Data8 Data 16132 

0 None None 

1 Sign-Extend Data8 to Fill None 
16-Bit or 32-Bit Destination 

10.2.3.7 Encoding of Conditional 
Test (tttn) Field 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1 ), 
and ttt giving the condition to test. 

Mnemonic Condition 

0 Overflow 
NO No Overflow 
B/NAE Below/Not Above or Equal 
NB/AE Not Below/ Above or Equal 
E/Z Equal/Zero 
NE/NZ Not Equal/Not Zero 
BE/NA Below or Equal/ Not Above 
NBE/A Not Below or Equal/Above 
s Sign 
NS Not Sign 
PIPE Parity I Parity Even 
NP/PO Not Parity/Parity Odd 
L/NGE Less Than/Not Greater or Equal 
NL/GE Not Less Than/Greater or Equal 
LE/NG Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.8 Encoding of Control or Debug 
or Test Register (eee) Field 

tttn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 
001 DR1 
010 DR2 
011 DR3 
110 DRS 
111 DR? 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR? 

Do not use any other encoding 

5-159 

I 



intef i486™ MICROPROCESSOR 

Instruction 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

15-11 

First Byte 

OPA 

MF 

d p 

0 0 

0 1 

10 9 

1 

OPA 

OPA 

1 

1 

8 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

mod 

mod 

1 

1 

1 

7 

Instructions for the FPU assume one of the five 
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with 
the bit pattern 110118. 

OP = Instruction opcode, possible split into two 
fields OPA and OPB 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

P = Pop 
0-Do not pop stack 
1-Pop stack after operation 

d = Destination 
0-Destination is ST(O) 
1-Destination is ST(i) 

R XOR d = 0-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rim (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions. 

s-i-b (Scale Index Base) byte and disp (displace­
ment) are optionally present in instructions that have 
mod and rim fields. Their presence depends on the 
values of mod and rim, as for integer instructions. 

Optional 

Second Byte Fields 

1 I OPB rim s-i-b 

f 
disp 

OPB rim s-i-b disp 

1 OPB ST(i) 

1 1 I OP 

1 1 l OP 

6 5 4 3 2 1 0 

11.0 DIFFERENCES BETWEEN THE 
i486™ MICROPROCESSOR AND 
THE 386™ MICROPROCESSOR 
PLUS THE 387™ MATH 
COPROCESSOR EXTENSION 

The differences between the 486 microprocessor 
and the 386 microprocessor are due to performance 
enhancements. The differences between the micro­
processors are listed below. 

1. Instruction clock counts have been reduced to 
achieve higher performance. See Section 10. 

2. The 486 microprocessor bus is significantly faster 
than the 386 microprocessor bus. Differences in­
clude a 1 X clock, parity support, burst cycles, 
cacheable cycles, cache invalidate cycles and 8-
bit bus support. The Hardware Interface and Bus 
Operation Sections (Sections 6 and 7) of the data 
sheet should be carefully read to understand the 
486 microprocessor bus functionality. 

3. To support the on-chip cache new bits have been 
added to control register 0 (CD and NW) (Section 
2.1.2.1 ), new pins have been added to the bus 
(Section 6) and new bus cycle types have been 
added (Section 7). The on-chip cache needs to 
be enabled after reset by clearing the CD and 
NW bit in CRO. 

4. The complete 387 math coprocessor instruction 
set and register set have been added. No 1/0 
cycles are performed during Floating Point in­
structions. The instruction and data pointers are 
set to o after FINIT /FSA VE. Interrupt 9 can no 
longer occur, interrupt 13 occurs instead. 

5. The 486 microprocessor supports new floating 
point error reporting modes, to guarantee DOS 
compatibility. These new modes required a new 
bit in control register o (NE) (Section 2.1.2.1) and 
new pins (FERR# and IGNNE#) (Section 6.2.13 
and 7.2.14). 

6. In some cases FERR# is asserted when the next 
floating point instruction is encountered and in 
other cases it is asserted before the next floating 
point instruction is encountered, depending upon 
the execution state the instruction causing ex­
ception (see Sections 6.2.13 and 7.2.14). For 

5-160 



intef i486™ MICROPROCESSOR 

both of these cases, the 387 Math Coprocessor as­
serts ERROR# when the error occurs and does not 
wait for the next floating point instruction to be en­
countered. 

7. Six new instructions have been added: 

Byte Swap (BSWAP) 

Exchange-and-Add (XADD) 

Compare and Exchange (CMPXCHG) 

Invalidate Data Cache (INVD) 

Write-back and Invalidate Data Cache 
(WBINVD) 

Invalidate TLB Entry (INVLPG) 

8. There are two new bits defined in control regis­
ter 3, the page table entries and page directory 
entries (PCD and PWT) (Section 4.5.2.5). 

9. A new page protection feature has been added. 
This feature required a new bit in control register 
0 (WP) (Section 2.1.2.1 and 4.5.3). 

10. A new Alignment Check feature has been add­
ed. This feature required a new bit in the flags 
register (AC) (Section 2.1.1.3) and a new bit in 
control register 0 (AM) (Section 2.1.2.1 ). 

11. The replacement algorithm for the translation 
lookaside buffer has been changed from a ran­
dom algorithm to a pseudo least recently used 
algorithm like that used by the on-chip cache. 
See Section 5.5 for a description of the algo­
rithm. 

12. Three new testability registers, TR3, TR4 and 
TR5, have been added for testing the on-chip 
cache. TLB testability has been enhanced. See 
Section 8. 

13. The prefetch queue has been increased from 16 
bytes to 32 bytes. A jump always needs to exe­
cute after modifying code to guarantee correct 
execution of the new instruction. 

14. After reset, the ID in the upper byte of the DX 
register is 04. The contents of the base regis­
ters including the floating point registers may be 
different after reset. 

12.0 ELECTRICAL DATA 

The following sections describe recommended elec­
trical connections for the 486 microprocessor, and 
its electrical specifications. 

12.1 Power and Grounding 

12.1.1 POWER CONNECTIONS 

The 486 microprocessor is implemented in CHMOS 
IV technology and has modest power requirements. 

5-161 

However, its high clock frequency output buffers can 
cause power surges as multiple output buffers drive 
new signal levels simultaneously. For clean on-chip 
power distribution at high frequency, 24 Vee and 28 
Vss pins feed the 486 microprocessor. 

Power and ground connections must be made to all 
external Vee and GND pins of the 486 microproces­
sor. On the circuit board, all Vee pins must be con­
nected on a Vee plane. All Vss pins must be like­
wise connected on a GND plane. 

12.1.2 POWER DECOUPLING 
RECOMMENDATIONS 

Liberal decoupling capacitance should be placed 
near the 486 microprocessor. The 486 microproces­
sor driving its 32-bit parallel address and data bus­
ses at high frequencies can cause transient power 
surges, particularly when driving large capacitive 
loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the 486 microproces­
sor and decoupling capacitors as much as possible. 
Capacitors specifically for PGA packages are also 
commercially available. 

12.1.3 OTHER CONNECTION 
RECOMMENDATIONS 

N.C. pins should always remain unconnected. 

For reliable operation, always connect unused in­
puts to an appropriate signal level. Active LOW in­
puts should be connected to Vee through a pullup 
resistor. Pullups in the range of 20 Kn are recom­
mended. Active HIGH inputs should be connected to 
GND. 

12.2 Maximum Ratings 

Table 12.1 is a stress rating only, and functional op­
eration at the maximums is not guaranteed. Function 
operating conditions are given in 12.3 D.C. Specifi­
cations and 12.4 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 486 
microprocessor contains protective circuitry to resist 
damage from static electric discharge, always take 
precautions to avoid high static voltages or electric 
fields. 

II 



intJ i486™ MICROPROCESSOR 

Table 12.1. Absolute Maximum Ratings 

Case Temperature under Bias ... - 65°C to + 11 o•c 
Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground ......... -0.5 to Vee + 0.5V 

Supply Voltage with 
RespecttoVss ............... -0.5Vto +6.5V 

12.3 D.C. Specifications 
Functional Operating Range: Vee = 5V ± 5%; T CASE = 0°C to + 85~C 

Table 12.2. DC Parametric Values 

Symbol Parameter 

V1L Input Low Voltage 

V1H Input High Voltage 

VoL Output Low Voltage 

VoH Output High Voltage 

Ice Power Supply Current (25 MHz) 
Power Supply Current (33 MHz) 

lu Input Leakage Current 

l1H Input Leakage Current 

l1L Input Leakage Current 
ILO Output Leakage Current 

C1N Input Capacitance 
Co 1/0 or Output Capacit 

CcLK CLK Capacitance 

NOTES: 
1. This parameter is measured at: 

Address, Data, BEn 4.0 mA 
Definition, Control 5.0 mA 

2. This parameter is measured at: 
Address, Data, BEn -1.0 mA 
Definition, Control -0.9 mA 

3. Typical supply current: 
550 mA @ 25 MHz 
700 mA @ 33 MHz 

Min Max Unit Notes 

v 
v 
v (Note 1) 
v (Note 2) 

mA (Note 3) 

±15 µA (Note 4) 
200 µA (Note 5) 

-400 µA (Note 6) 
±15 µA 
20 pF Fe = 1 MHz (Note 7) 
20 pF Fe = 1 MHz (Note 7) 
20 pF Fe = 1 MHz (Note 7) 

4. This parameter is for inputs without internal pullups or pulldowns and O ,,; V1N ,,; Vee. 
5. This parameter is for inputs with internal pulldowns and V1H = 2.4V. 
6. This parameter is for inputs with internal pullups and V1L = 0.45V. 
7. Not 100% tested. 

12.4 A.C. Specifications 

The A.G. specifications, given in Table 12.3, consist 
of output delays, input setup requirements and input 
hold requirements. All A.G. specifications are rela­
tive to the rising edge of the CLK signal. 

A.G. specifications measurement is defined by Fig­
ures 12.1-12.3. Inputs must be driven to the voltage 
levels indicated by Figure 12.3 when A.G. specifica-

tions are measured. 486 microprocessor output de­
lays are specified with minimum and maximum limits, 
measured as shown. The minimum 486 microproc­
essor delay times are hold times provided to exter­
nal circuitry. 486 microprocessor input setup and 
hold times are specified as minimums, defining the 
smallest acceptable sampling window. Within the 
sampling window, a synchronous input signal must 
be stable for correct 486 microprocessor operation. 

5-162 



intJ i486™ MICROPROCESSOR 

Table 12.3. 25 MHz i486 Microprocessor A.C. Characteristics 

Vee= 5V ±5%; Tease = 0°C to +85°C; C1 = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 25 MHz 1 X Clock Driven to 486 

t1 CLK Period 40 125 ns 12.1 

t1a CLK Period Stability 0.1% l:i Adjacent Clocks 

t2 CLK High Time 14 ns 12.1 at2V 

t3 CLK Low Time 14 ns 12.1 at o.av 
ti CLK Fall Time 4 ns 

t5 CLK Rise Time 4 

ts A2-A31, PWT, PCD, BE0-3#, 3 
M/10#, D/C#, W/R#, ADS#, 
LOCK#,FERR#,BREQ,HLDA 
Valid Delay 

ty A2-A31, PWT, PCD, BE0-3#, Note 1 
M/10#, DIC#, W/R#, ADS#, 
LOCK# Float Delay 

ts PCHK# Valid Delay 

tea 12.5 

tg 12.6 Note 1 

t10 00-031, DP0-3 ns 12.5 
Delay 

t11 00-031, DPO:i73 ns 12.6 Note 1 I Delay 

112 ns 12.2 

t13 3 ns 12.2 

t14 8 ns 12.2 

115 KEN#, 3 ns 12.2 

t15 ROY#, Y # Setup Time 8 ns 12.3 

117 ROY#, BROY# Hold Time 3 ns 12.3 

t18 HOLD, AHOLD, BOFF # Setup Time 10 ns 12.2 

t19 HOLD, AHOLD, BOFF # Hold Time 3 ns 12.2 

t20 RESET, FLUSH#, A20M#, NMI, 10 ns 12.2 
INTR, IGNNE# Setup Time 

121 RESET, FLUSH#, A20M#, NMI, 3 ns 12.2 
INTR, IGNNE# Hold Time 

t22 00-031, DP0-3, A4-A31 Read 5 ns 12.2 
Setup Time 

t23 D0-031, DP0-3, A4-A31 Read 3 ns 12.2 
Hold Time 

NOTE: 
1. Not 100% tested. Guaranteed by design characterization. 

5-163 



intef i486™ MICROPROCESSOR 

Table 12.3. 33 MHz i486 Microprocessor A.C. Characteristics 

Vee= 5V ±5%; Tease= o·c to +85°C; C1 = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 33 MHz 1 X Clock Driven to 486 

t1 CLK Period 30 125 ns 12.1 

t1a CLK Period Stability 0.1% /:;. Adjacent Clocks 

t2 CLK High Til'T)e 11 ns 12.1 at2V 

t3 CLKLowTime 11 ns 12.1 at0.8V 

t4 CLK Fall Time 3 ns 12.1 

t5 CLK Rise Time 3 ns 12.1 

ta A2-A31, PWT, PCD, BE0-3#, 3 16 ns 12.5 
M/10#, DIC#, WIR#, ADS#, 
LOCK#,FERR#,BREQ,HLDA 
Valid Delay 

t1 A2-A31, PWT, PCD, BE0-3#, 
MllO#, DIC#, WIR#, ADS#, 
LOCK# Float Delay 

ta PCHK# Valid Delay 

taa BLAST#, PLOCK# Valid Delay 

tg Note 1 

t10 DO-D31, DP0-3 Write Data 
Delay 

t11 DO-D31, DP0-3 Writ 12.6 Note 1 
Delay 

t12 EADS# Setup T ns 12.2 

t13 ns 12.2 

t14 ns 12.2 

t15 3 ns 12.2 

t15 5 ns 12.3 

t11 3 ns 12.3 

t18 , Setup Time 6 ns 12.2 

t18a BOFF# etupTime 8 ns 12.2 

t19 HOLD, AHOLD, BOFF # Hold Time 3 ns 12.2 

t20 RESET, FLUSH#, A20M #, NMI, 5 ns 12.2 
INTR, IGNNE# Setup Time 

t21 RESET, FLUSH#, A20M #, NMI, 3 ns 12.2 
INTR, IGNNE# Hold Time 

t22 DO-D31, DP0-3, A4-A31 Read 5 ns 12.2 
Setup Time 

t23 DO-D31, DP0-3, A4-A31 Read 3 ns 12.2 
Hold Time 

NOTE: 
1. Not 100% tested. Guaranteed by design characterization. 

5-164 



intef i486™ MICROPROCESSOR 

1.5V 

t5 

----t1----
240440-45 

Figure 12.1. CLK Waveforms 

Tx Tx Tx Tx 

CLK [ 

EADS# [ 

BSB#, BS16#, [ KEN# 

BOFF #. AHOLD, [ HOLD 

RESET, FLUSH#, 
[ A20'M#, IGNNE#, 

INTR, N'MI 

A4-A31 [ (READ) 
I 

240440-46 

Figure 12.2. Input Setup and Hold Timing 

Tz Tx Tx Tx 

240440-47 

Figure 12.3. Input Setup and Hold Timing 

5-165 



intef 

CLK [ 

PCHK# [ 

CLK [ 
A2-A31, PWT, PCD, 

BE0-3#, M/10#, 

[ D/C#, W/R#, ADS#, 
LOCK#, FERR#, BREQ, 

HLDA 

DO-D31, DP0-3, [ (WRITE) 

BLAST#, PLOCK# [ 

[ 

CLK [ 

A2-A31, PWT, PCD, 
BE0-3#, M/10#, 

D/C#, W/R#, ADS#, [ 
LOCK#, FERR#, BREQ, 

HLDA 

DO-D31, DP0-3, [ 
(WRITE) 

BLAST#, PLOCK# [ 

i486™ MICROPROCESSOR 

Tz Tx Tx 

Figure 12.4. PCHK# Valid Delay Timing 

Tx Tx Tx 

Figure 12.5. Output Valid Delay Timing 

Tx Tx Tx 

Figure 12.6. Maximum Float Delay Timing 

5-166. 

Tx 

240440-82 

Tx 

240440-83 

Tx 

240440-84 



intJ i486™ MICROPROCESSOR 

12.4.1 Typical Output Valid Delay versus Load 
Capacitance Under Worst Case 
Conditions 

NOTE: 

~ .. 
5 
j nom+4 

"" c 
.... 
:::> 
0.. .... 
:::> 
0 
_J 

~ 
0.. 

~ 

100 125 150 

CL (picofarads) 

240440-75 

This graph will not be linear outside of the CL range shown. 
nom = nominal value given in A.G. Characteristics table. 

12.4.2 Typical Output Rise Time versus Load 
Capacitance Under Worst-Case 
Conditions 

NOTE: 

7 .--.--.----,r----i---.. 

100 125 150 

CL (picofarads) 

240440-76 

This graph will not be linear outside of the CL range shown. 

12.5 Designing for ICD-486 
(Advance Information) 

The ICD-486 {In-Circuit Debugger) is a hardware as­
sisted debugger for the 486 CPU. To use the ICD-

486, the 486 CPU component must be removed 
from its socket replaced with the ICD-486 module. 
Because of the high operating frequency of 486 CPU 
systems, there is no buffering of signals between the 
486 CPU in the ICD-486 and the target system. A 
direct result of the non-buffered interconnect is that 
the ICD-486 shares the address and data bus of the 
target system. In order for the ICD-486 to function 
properly (without the Optional Isolation Board in­
stalled), the design of the target system must meet 
the following restrictions: 

1 . The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the 486 CPU, other local devices, or other bus 
masters. 

2. Before another bus master drives the local proc­
essor address bus, the other bus master must 
gain access to the address bus through the use 
of HOLD-HLDA, AHOLD, or BOFF #. 

In addition to the above restrictions, the ICD-486 has 
several electrical and mechanical characteristics 
that should be taken into consideration when de­
signing the 486 CPU system. 

Capacitive Loading: ICD-486 adds up to 30 pF to the 
CLK signal, and up to 20 pF to each of the other 486 
CPU signals. 

DC Loading: ICD-486 adds ± 15 µA loading to the 
CLK and data bus signals and ± 5 µA loading to the 
address and control signals. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICD-486 is powered 
by the target system through the power and ground 
pins of the 486 CPU socket. The circuitry on the 
ICD-486 draws up to 1.3A excluding the 486 CPU 
Ice· 

No Connects: Pins specified as N.C. in the 486 CPU 
pin description must be left unconnected. Connec­
tion of any of these pins to power, ground, or any 
other signal may cause the processor or the ICD-
486 to malfunction. 

486 CPU Location and Orientation: The ICD-486 
may require lateral clearance. Figure 12.4 shows the 
clearance requirements of the ICD-486. 

5-167 

II 



intef i486™ MICROPROCESSOR 

Optional Isolation Board (018) 

Due to its unbuffered design, the ICD-486 is suscep­
tible to errors on the target system's bus. The 018 
installs between the ICD-486 and 486 CPU socket in 
the target system and allows the ICD-486 to function 
in systems with faults (i.e., shorted signals). After 
electrical verification the 018 may be removed. The 
018 has the following electrical and mechanical 
characteristics: 

Buffer Characteristics: The 018 buffers the address 
and data busses as well as the byte enables, ADS#, 
W/R#, M/10#, BLAST#, and HLDA. The buffers 
are advanced CMOS devices and have the following 
DC drive specifications: loH = -15 mA, IOL = 
64 mA. The propagation delay of each buffer is 5 ns 
max driving a 50 pF load. To guarantee proper oper-

ation with the 018, the clock period should be in­
creased by the round trip buffer delay (10 ns) unless 
the target system design already has enough timing 
margin. 

Unbuffered Signals: Signals not listed above as buff­
ered are passed through the 018 and will have addi­
tional capacitive loading due to the connectors and 
circuit board of up to 10 pF. 

Power Requirements: The 018 is also powered by 
the target system through the 486 CPU socket and 
requires 0.5A in addition to the ICD-486 and 486 
CPU requirements. 

018 Clearance Requirements: The 018 requires an 
extra 0.55" of vertical clearance in the target system 
above the 486 CPU socket. 

5-168 



intef 

J :;,. 
d 
f 

i486™ MICROPROCESSOR 

!+---~~~~~~~~~ b ~~~~~~~~~---i 
...; 

I---~--

~ -z ;;:: 

""' 

' 

Figure 12.4a. ICD-486™ Probe Dimensions 

5-169 

.... 
....I 

"' j 
:g .. 
Vl 

El 



i 

,, ... ,, 
• .!! s - t--

i rn 
.5 .5 
m 

f\. j 0 
s::. s::. 

i 
.. 

i5 "i 
• GI .a .a 
2 2 a. a. 
Q Q 
S:? S:? 

i486™ MICROPROCESSOR 

i. .. 
~ 

i--~-:--

.l. 

"' 0 

I -
~ 

' ;;j 

( 

'---' 

~ 

~ 
~ 
Jl 

11\,1 

Figure 12.4b. IC0-486™ Probe Dimensions 

5-170 

f'\ 

1---' 



"Tl 
Iii' 
c ., 
CD 
..... 
!" 
~ 

fl 
0 
9 

~ 
~ 
CD 
OI 

j i! 
"ti 
0 er 
CD 

2 
3 
CD 
:I 
In 
(j' 
:I 
In 

1 
I 

l L 0.25" 1.5" jr-
1 ,----41-

1 I PIN 1 
' ' : ' 

Processor Module Board Dimensions 

.------~.J. 
=======l::=----.:==:J0.85" 

I 

1...--•. 5 .. ---J 
240440-44 

Processor Module Assembly Dimensions 
Top View 

17.5" 4.5" 1:.-:::11/PIN1 

[11 I =, tfto I 
Processor Module Assembly Dimensions 

Side View 

[2.2"J 

240440-77 

240440-78 

,, . I 
p D I , I ,1 f"1llll\ 

I $~I 

Processor Module Assembly Dimensions 
Side View, 018 Installed 

1.25" 

I P.-ooe"'" Module 

Pg '·±I ~~~ 
1.75" 

• 

Proc:enor Module 

240440-79 

240440-80 

cf 

:;;.: 
CD 
Q) 

i 
3:: 
0 ::u 
0 .,, 
::u 
0 
0 
m 
~ 
0 ::u 



intef i486™ MICROPROCESSOR 

13.0 MECHANICAL DATA 

\211.65 
REF. 

PIN C3 

I. -D--
--------D,------~ 

s, 

@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@©@@@@@@@@@@@©@@ 
@@@ @@@ 
@@@ @@@ 
@@@ - @@@ 
@@@ @@@ 
@@@ ( \ @@@ 
@@@ @@@ 
@@@ @@@ 

"- ./ @@@ 
@@@ 

@@ @@@ 
@ @ @@@ 
@@o@@@@@@@@@@@o@@ 
@@@@@@@@@@@@@@@ 

L_@@@@@@@@@@@@@@@ 

t 
2.29 RE'" 
1.52 r. 

45o CHAMFER 
(INDEX CORNER) 

SWAGGED-~~ 

PIN 
(4 PL) 

D 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max 

A 3.56 4.57 0.140 0.180 

A1 0.64 1.14 SOLID LID 0.025 0.045 

A2 2.8 3.5 SOLID LID 0.110 0.140 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

D 44.07 44.83 1.735 1.765 

D1 40.51 40.77 1.595 1.605 

01 2.29 2.79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

S1 1.52 2.54 0.060 0.100 

ISSUE IWS REVX 7/15/88 

Notes 

SEATING 
PLANE--i 

\l!B (ALL PINS) I 

f=~ 
SWAGGED 

PIN 
DETAIL 

240440-49 

SOLIDLID 

SOLID LID 

Figure 13.1. 168 Lead Ceramic PGA Package Dimensions 

5-172 



intJ i486™ MICROPROCESSOR 

Table 13.1 Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

S1 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "B", "81" and "C" are nominal. 
5. Details of Pin 1 identifier are optional. 

13.1 Package Thermal Specifications 

The 486 microprocessor is specified for operation 
when Tc (the case temperature) is within the range 
of 0°C-85°C. Tc may be measured in any environ­
ment to determine whether the 486 microprocessor 
is within specified operating range. The case tem­
perature should be measured at the center of the 
top surface opposite the pins. 

The ambient temperature (TA) is guaranteed as long 
as Tc is not violated. The ambient temperature can 
be calculated from 0Jc and OJA from the following 
equations. 

TJ =Tc+ P * llJc 

TA= TJ + P * llJA 

Tc= TA+ P* [llJA - llJcJ 

where T J, TA· Tc = Junction, Ambient and Case 
Temperature respectively. 0Jc, OJA = Junction-to­
Case and Junction-to-Ambient Thermal Resistance, 
respectively. 

P = Maximum Power Consumption 

The values for OJA and 0Jc are given in Table 13.2 
for the 1.75 sq. in., 168-pin, ceramic PGA. 

Table 13.3 shows the TA allowable (without exceed­
ing Tc) at various airflows and operating frequencies 
(fcLK). 

Note that TA is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Ice at 5V as tabulated in the DC Characteris­
tics of Section 12. 

Table 13.2. Thermal Resistance (°C/W) OJc and OJA 

OJA vs Airflow-ft/min (m/sec) 
OJc 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

[With Heat Sink* 2.0 13 8.0 6.0 5.0 4.5 4.25 

r Without Heat Sink 1.5 17 14.5 12.5 11.0 10.0 9.5 

*0.350" high unidirectional heat sink (Al alloy 6063, 40 mil fin width, 155 mil 
center-to-center fin spacing). 

5-173 



intJ 1486™ MICROPROCESSOR 

Heat Sink Dimensions 

0.040"-1 r- --Jo.115" r 

1.53" ___________ __, 

Table 13.3. Maximum TA at Various Airflows 

1n°c 

Airflow-ft/min (m/sec) 

fcLK 0 
(MHz) (0) 

TA with 25.0 47 
Heat Sink 33.3 36 

TA without 25.0 31 
Heat Sink 33.3 15 

14.0 SUGGESTED SOURCES FOR 
i486 ACCESSORIES 

200 
(1.01) 

64 

58 

40 

27 

Following are some suggested sources of accesso­
ries for the i486. They are not an endorsement of 
any kind, nor a warranty of the performance of any 
of the listed products and/ or companies. 

Sockets 

1. McKenzie Technology 
44370 Old Palmspring Blvd. 
Fremont, CA 94538 
Tel: (415) 651-2700 

2. E-CAM Technology, Inc. 
14455 North Hayden Rd. 
Suite 208 
Scottsdale, AZ 85260 
Tel: (602) 443-1949 

3. Augat Inc. (for sockets with decaps) 
Interconnection Products Group 
33 Perry Ave. 
P.O. Box 779 
Attleboro, MA 02703 
Tel: (508) 222-2202 

400 600 800 1000 
(2.03) (3.04) (4.06) (5.07) 

71 75 76 77 

67 72 74 75 

47 52 55 57 

36 42 47 49 

Heat Sinks/Fins 

1. Thermalloy Inc. 
2021 West Valley View Lane 
Dallas, TX 75381-0839 
Tel: (214) 243-4321 

2. E G & G Division 
60 Audubon Road 
Wakefield, MA 01880 
Tel: (617) 245-5900 

TTL Crystals/Oscillators 

1. NFL Frequency Controls, Inc. 
357 Beloit Street 
Burlington, WI 53105 
Tel: (414) 763-3591 

2. M-Tron 
P.O. Box 630 
Yankton, SD 57078 
Tel: (605) 665-9321 

Debugging Tower 

1. Emulation Technology 
2344 Walsh Ave., Building F 
Santa Clara, CA 95051 
Tel: (408) 982-0664 

5-174 

0.350" 

240440-81 



intJ i486™ MICROPROCESSOR 

15.0 REVISION HISTORY 

Revision -003 of the i486 CPU data sheet contains 
many updates and improvements to the original ver­
sion. A revision summary of major changes is listed 
below: 

The sections significantly revised since version -001 
are: 

Section 2.1.2 The polarity and names of the two 
cache control bits in Control Regis­
ter O (CRO) have been modified. 
The Cache Enable (CE) and Writes 
Transparent (WR) have been re­
named Cache Disable (CD) and Not 
Write Through (NW). The value of 
CRO after RESET has been 
changed to reflect the polarity 
change. 

Section 6.2.15 The discussion of A20M # has been 
clarified. During the falling edge of 
RESET, A20M # should be high, for 
proper operation of the CPU. 

Section 6.5 The value of CRO after RESET has 
been modified. 

Section 6.5.1 Figure 6.3, "Pin State during RE­
SET" is added. This Figure is a gen­
eral reference for Reset issues. Pre­
vious Figures 8.1, 8.2, and 8.8 have 
been deleted, since Figure 6.3 now 
contains Reset information. 

Section 7 .2.1 O A discussion of addresses and byte 
enables driven during INTA cycles 
has been added. 

Section 10.1 Clock counts and opcodes have 
been clarified and corrected. 

Section 10.1 The opcode slot for CMPXCHG in­
struction has been moved from 
OFA6/A7 to OFB0/81. 

Section 12.2 Table 12.1 has been enhanced. The 
"Case Temperature under Bias" 
spec was improved. The "Supply 
Voltage with Respect to Vss" spec 
was added. 

Section 12.3 Maximum Ice values have been im­
proved to 700 mA at 25 MHz and 
900 mA at 33 MHz. 

Section 12.3 Typical Ice values have been modi­
fied to 550 mA at 25 MHz and 700 
mA at 33 MHz. 

Section 12.3 C1N. Co, and CcLK values have 
been changed to 20 pF. Testing pa­
rameters and Note 7 were added. 

Section 12.4 The A.G. Specifications have been 
improved. Float delays were im­
proved at both 25 MHz and 33 MHz. 
Note 1 was added to the float de­
lays. Maximum valid delays were re­
duced at 33 MHz. 

Section 12.5 The ICD section was enhanced. 

Section 13.1 Thermal resistance OcA values of 
the 168-pin ceramic package have 
been corrected. 

Section 13.1 Maximum ambient temperatures 
have been corrected to use the max 
Ice values. 

The sections significantly revised since version -002 
are: 

2.1.2.1 

Table 2.16 

Section 3.1 

Section 3.5 

Spec change for PCD and PWT bits. 

Value of Intel Reserved Interrupt 
Vector assignment corrected to '18-
31'. 
Added CMPCHG, XADD instruc­
tions in the table. 
Added explanation about NMI not 
able to bring out the processor from 
shutdown under certain conditions. 

Section 4.4.6 Value of task switching time correct­
ed to 10 ms. 

Section 4.5.4 Specification change for PCD and 
PWT bits. 

Section 5.6 Specification change for PCD and 
PWT bits. 

Section 5.7 Cache flushing procedure ex­
plained, when FLUSH# applied 
synchronously or asynchronously. 

Section 6.2.5 Specification change for PLOCK cy­
cle. 

Section 6.2.8 Added explanation for warm boot­
up. 

Section 6.2.12 Specification change for PCD and 
PWT bits. 

Section 6.2.13 Explanation added for FERR# be­
havior. 

Section 6.2.14 Explanation added for IGNNE# be­
havior. 

Section 6.2.15 Explanation added for A20M # be­
havior in protected mode and during 
RESET. 

Section 6.3 Simplified example for read reorder­
ing in write buffers. 

Section 6.3.1 Corrected REP OUTS instruction. 
Section 6.3.2 Added explanation about cache up­

date on read-modify-write cycle. 
Section 6.5 Added RESET pulse length require­

ment with or without BIST 
Section 6.5 Added table for i486 revision ID. 

5-175 

I 



Table6.2 

Figure6.3 

Section 
.7.2.2.3 

Section 
7.2.3.4 

Figure 7.12 

Figure 7.13 

Figure 7.14 

Section 
7.2.4.2 

Section 7.2.6 

Section 7.2.7 

Section 7.2.8 

Section 7 .2.8 

Flgure7.22 

Figure 7.23 

Figure 7.25 

14861'M MICROPROCESSOR 

Corrected CAO value after Reset. 

Corrected pin state diagram during 
RESET. RESET · pulse length 
changed to 15 CLKs. 

Added explanation to terminate 
burst cycle. 

Clarified text on changing KEN# 
during cache line fill. 
Corrected timing diagram to show 
A4-A31, M/10#, DIC#, WIR# do 
not change during burst. 

Corrected timing diagram t9 show 
A4-A31, M/10#, DIC#, W/R# do 
not change during burst. 
Correpted ·timing diagram to show 
A4-A31, M/10#, DIC#, WIR# do 
not change during burst. 

Added cases that follow burst order. 

Added explanation for read-modify­
write for un-aligned:transfers. 

HOLD latency decreased by provid­
ing window in PLOCK cycle (specifi­
cation change). 

Added explanation about EADS# 
timing. 

Added the case of invalidation with 
BOFF or HOLD. 

Change in Timing Diagram· for 
BREQ. 

Change in Timing Diagram for 
BREQ. 

Change in Timing Diagram for 
ADY #/BADY#. 

Section 7.2.9 Ad.dad explanation about HOLD 
getting recognized during un­
aligned writes. 

Section 7.2.11 Added status of address and data 
busses during special bus cycles. 

Section 7.2.11 Added sections on Halt and Shut­
down cycles. 

Figure 7.30 Corrected state diagram by ANDing 
BADY# and BLAST# for the last 
transfer of the burst cycle. 

Section 7.2.14 .Difference in FERR# and 
ERROR# explained. 

Section 8.1 Changed Reset width to 15 CLKs. 

Section 8.4 Added explanation on tri-state 
status. 

Table 10.1 Corrected value in format. 

Section 11.0 Added Note 6 on FERR# and 
ERROR# difference. 

Section 11.0 

Section 12.3 

Section 12.3 

Added TLB replacement algorithm 
for 386 DX. 

Corrected values in Note 2. 
Added "internal" for pullup and pull­
down resistors. 

Figure 12.2 & Waveforms for input and output sig­
Figure 12.3 ·. · nals have been re-drawn to show 

Section 13.1 

details about set-up, hold and float 
. times. 
Added details about TA calculation 
from 8Jc and BJA· 

Section 14.0 Added new section on suggested 
sources of i486 accessories like 
sockets, debugging tower, heat 
sinks, etc. 

5-176 



485TURBOCACHE MODULE 
i486™ MICROPROCESSOR CACHE UPGRADE 

82485MA (64k Module) 
82485MB (12Bk Module) 

• High Performance 
- Zero Waitstate Access 
- One Clock Bursting 
- Two-Way Set Associative 
- BIOS ROM Cacheing 
- 25/33 MHz Operation 

• Range Of Price/Performance 
- o, 64k, 128k Cache With Single 

Socket 
- Cascadable With Multiple Sockets 

• High Integration 
-Seven Square Inch Area 
- Includes Tag, Data, Parity, and 

Controller 

• Easy To Use 
- Software Transparent 
- End User/Dealer Installation 
- Write-Through Memory Update 
- Same Timing as i486™ CPU 
- Same Invalidation Mechanism as 

i486 CPU 

The 485Turbocache Module is a performance upgrade for 25 MHz or 33 MHz i486™ Microprocessor systems. 
It provides up to 128k bytes of external cache memory in a single, end-user installable module. Support for the 
cache module upgrade is provided by a 113 pin socket in the i486 CPU system. A single socket allows three 
price/performance configurations: no cache, a 64k byte cache, or 128k byte cache. Additional modules may 
be cascaded for larger cache sizes. No jumpers, configuration software, or BIOS/applications/operating sys­
tem support is required to get 5-30% (15% average) performance boost after installing the cache. Cache data 
integrity is monitored by a parity bit per byte. 

ADDRESS 

SYSTEM 
SIGNALS 

PROCESSOR 

SYSTEM 
INTERFACE 

_sl_GN_AL_s ____ PROCESSOR ____ ., 

lNTERF'ACE 

START# 

CLK 

Figure 0.1. 485Turbocache Module Internal Block Diagram 

i466 and 466 are trademarks of Intel Corporation. 

5-177 

240722-1 

November 1990 
Order Number: 240722--002 

El 



intJ 485Turbocache Module 

CONTENTS PAGE 

0.1 PINOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-180 

0.2 PIN DESCRIPTION OVERVIEW ..................................................... 5-181 

1.0 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-183 

1.1 Introduction· .................................................. ·. . . . . . . . . . . . . . . . . . . . 5-183 

1.2 Base Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-184 

1.3 Cache Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-184 

1.3.1 Read Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-184 

1.3.2 Read Hit .................................... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-185 

1.3.3 Write Cycles ..... : .......................... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-185 

1.3.4 Invalidation Cycles......................................................... 5-185 

1.3.5 BOFF # Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-186 

1.4 Incompatibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-187 

2.0 SYSTEM INTERFACE ............................................................... 5-187 

2.1 i486 Microprocessor Signals . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-188 

2.1.1 Address Lines A2-A31 ........................... : . . . . . . . . . . . . . . . . . . . . . . . . . 5-188 

2.1.2 Data Lines DO-D31 and Parity DPO-DP3 . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 5-188 

2.1.3 ADS#, W/R#, M/10#..................................................... 5-188 

2.1.4 Byte Enables BEO#-BE3#................................................. 5-188 

2.1.5 BLAST# ................ · ............ , ............. ·.·......................... 5-189 

2.1.6 BOFF# ................................................•.................... 5-189 

2.1.7 FLUSH# ..................................... ~............................ 5-189 

2.1.8 EADS#, AHOLD ........................... · .. .'.............................. 5-189 

2.1.9 RESET ...................................... ·.............................. 5-189 

2.2 CPU Bus Interface Signals . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-189 

2.2.1 Chip Select CS# . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-189 

2.2.2 CPU Cache Enable CKEN # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.2.3 Burst Ready Out BRDYO#................................................. 5-190 

2.3 Memory Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.1 PRSN#...................... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.2 START# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.3 Write Protect WP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.4 Write Protect Strapping Option WPSTRP# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.5 System Cache Enable SKEN# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-190 

2.3.6 Cache Ready and Burst Ready CADY#, CBRDY # . . . . . . . . . . . . . . . . . . . . . . . . . 5-191 

5-178 



intJ 485Turbocache Module 

CONTENTS PAGE 

3.0 SYSTEM CONFIGURATIONS ........................................................ 5-191 

3.1 Single Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-191 

3.1.1 i486™ Microprocessor Bus Interface . .. .. . . .. .. . . .. .. . . . . . .. .. . . .. . . . . . . .. . 5-191 

3.1.2 Memory Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-191 

3.1.3 KEN# and SKEN# Generation ............................................ 5-191 

3.1.4 ST ART# Generation . .. .. .. .. . . .. . . . .. . .. . . .. .. . .. . . . . . .. . .. . . . .. .. . . .. .. . . 5-191 

3.2 Multiple Cache................................................................... 5-192 

3.2.1 Memory Bus Interface...................................................... 5-192 

3.2.2 START# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-192 

3.2.3 KEN# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-192 

3.2.4 SKEN # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-192 

3.2.5 CS# ........................................................................ 5-193 

3.3 Optional Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-193 

3.3.1 Signal Considerations: START#, CKEN#, BRDYO# . . . . . . . . . . . . . . . . . . . . . . . 5-193 

3.3.2 Considerations With Multiple Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-194 

4.0 OPERATIONAL/PERFORMANCE CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-194 

4.1 Testing and Data Integrity........................................................ 5-194 

4.2 Sectored vs Non-Sectored Cache . .. .. . . .. .. . .. . .. .. .. . .. .. .. .. . .. . .. .. . .. . . . . . . . 5-194 

4.3 Performance Considerations . .. .. . .. . .. . .. .. . . .. . .. . . . . .. .. . . . .. .. . .. . .. .. . . . . .. . 5-195 

::~:~ ~~:l~:t~~s~~~~~::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :~~ :: I 
4.3.3 BOFF # Assertion .. , .. .. .. .. . .. . . .. . . . .. .. .. .. .. .. . .. .. .. .. . . . . .. .. . . . . .. . . 5-195 

4.3.4 START# Predictability..................................................... 5-196 

5.0 MECHANICAL SPECIFICATIONS ................................................... 5-198 

6.0 ABSOLUTE MAXIMUM RATINGS ................................................... 5-199 

7.0 D.C. CHARACTERISTICS ........................................................... 5-199 

8.0 A.C. CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-200 

9.0 WAVEFORMS .................................................................. ·,· ... 5-202 

10.0 REV!SION HISTORY ............................................................... 5-205 

5-179 



inter 485Turbocache Module 1¥>00~16DIMID00£00W 

0.1 PINOUT 

GMD RESET CS• GND GND A30 PRSN# •cc GNO 
a a a a BB a a a a a 

CLK M/10# CRDY# CKEN# A29 A28 DP2 DP3 
a 0 0 0 AA 0 0 0 a 

RESV FLUSH# CBRDY• BRDYO# A27 A26 030 031 
a 'I 0 0 0 0 0 0 

BLAST# EADS# •cc SKEN# A25 ... D29 028 
a 0 0 0 0 0 0 0 

BOFf# •cc WP START# A23 •cc 027 026 
0 0 0 0 0 0 0 0 

ADS# W/R• 00 GMO A22 A21 GND 025 
0 0 0 0 w 0 0 0 0 

GMD WPSTRP# D2 01 •cc A2D 02• 023 
0 0 0 0 a 0 0 0 

BEO# 8[1# GMD D3 A19 A18 D22 •cc 
0 0 0 0 a 0 a 0 

BE2• BE3# D5 •• A17 A16 021 02D 
0 0 a 0 0 a a 0 
A2 GMD 07 D6 A15 GND 019 018 
·0 0 0 0 0 a 0 0 
•cc A3 DB GND ... A13 GNO D17 
a 0, 0 a 0 0 a 0 .. AS D10 •• A31 A12 016 DP1 
a a a a Q a a a a 
A6 A7 •cc 011 GNO A11 DPO GND 
a a a a 0 0 a a 
A9 AB D13 D12 A1D •cc 015 ... 
a a 0 a 0 0 a a a 

AIO Vee D15 D14 •• A8 D13 012 
a a a a 0 a a a 

GND .,, OPO GMO A6 A7 •cc D11 
a a a 0 M a a a a 

A31 A12 D16 DP1 .. AS DID D9 
Q a a a a a a a 0 ... A13 GND 017 Vee A3 D8 GND 

a a a a a a a a 
A15 GMO D19 D1B A2 GND D7 D6 
a a a a a a a a 

A17 A16 D21 D20 BE2# BE3# DS .. 
a 0 a a a 0 a a 

A19 AIB D22 •cc BED# BEi# GND D3 
a a a a a 0 a a •cc A20 02' 023 GND WPSTRP# D2 Dt 
a a a a a a a a 

A22 A21 GND 025 ADS# W/R# DO GND 
w a a a a a a 0 a 

A23 •cc D27 D26 BOFF# Vee WP START# 
a a a a a a 0 a 

A25 A24 D29 D2B BL.AST# EADS# •cc SKEN# 
a a a a a a a a 

A27 A26 D30 D3t RESV FLUSH# CBRDY# · BRDYO# 
a 0 a a c a a 0 0 

A29 A2B DP2 DP3 CLK M/IO# CRDY# CKEN# 
AA a a a a a a a 0 

GND- A30 PRSN# •cc GND GND RESET CS# GND .. a a 0 0 a A a q a a 

240722-2 240722-3 
Top Side View Pin Side View 

Pin Cross Reference 
Pin Location 

Pin 
Location 

Pin Location Pin Location 
Pin 

Location 
Name Name Name Name .Name 

ADS# F1 A20 V2 C8RDY#. C4 010 L4 029 YA 
A2 J1 A21 W2 CKEN# 8S 011 MS 030 Z4 
A3 K2 A22 W1 CLK 81 012 NS 031 ZS 
A4 L1 A23 X1 CROY# 84 013 N4 EADS# 02 

.A5 L2 A24 Y2 CS# A4 014 05 FLUSH# C2 
A6 M1 A25 Y1 DPO P4 015 04 M/10# 82 
A7 M2 A26 Z2 DP1 OS 016 04 PRSN# 883 
A6 N2 A27 Z1 DP2 AA4 017 R5 RESET' A2 
A9 N1 A28 AA2' DPS AA5 018 S5 RESV C1 
A10 01 A29 AA1 DO F4 019 S4 SKEN# DS 
A11 P2 A30 882 01 G5 020 T5 START# ES 
A12 02 A31 01 02 G4 [)21 T4 WP E4 
A13 R2 8EO# 1-i1 03 H5 022 U4 WPSTRP# G2 
A14 R1 8E1# H2 04 IS 023 vs W/R# F2 
A15 S1 8E2# 11 05 14 024 V4 GND A1, G1, P1, 881, 
A16 T2 8E3# 12 [)6 JS D2S W5 J2, S2, H4, R4, 88S, 
A17 T1 BLAST# 01 07 J4 026 X5 W4, A5, F5, K5, P5, 
A18 U2 BOFF# E1 08 K4 027 X4 Vee K1, V1, E2,02,X2, 
A19 U1 8RDYO# C5 [)9 LS 028 Y5 94, M4, 884, US 

Figure 0.2. 485Turbocache Module 64k/128k Pin Configuration 
5-180 



intef 485Turbocache Module 

0.2 PIN DESCRIPTION OVERVIEW 
Pin Name Type Active Description 

CONTROL SIGNALS 

CLK I - CLOCK is the timing reference from which the 485Turbocache 
Module monitors and generates events. CLK must be connected 
to the i486 CPU CLK pin. 

RESET I High RESET CACHE forces the 485Turbocache Module to begin 
execution in a known state and must be connected to the i486 
CPU RESET pin. It also causes all cache lines to be invalidated. 
Setup and hold times t23 and t24 must be met for recognition in 
any specific clock. 

ADS# I Low ADDRESS STROBE is generated by the i486 Microprocessor. It 
is used to determine that a new cycle has been started. Setup 
time t7 must be met for proper operation. 

M/10# I - MEMORY /10 is an i486 CPU generated cycle definition signal 
that indicates a Memory (M/10# high) or 1/0 (M/10# low) 
access. Setup time t7 must be met for proper operation. 

W/R# I - WRITE/READ is an i486 CPU generated cycle definition signal 
used to indicate a Write (W/R# high) or Read (W/R# low) 
access. Setup time t7 must be met for proper operation. 

START# 0 Low MEMORY START indicates that a cache read miss or a write has 
occurred and that the current access must be serviced by the 
memory system. START# is not activated for 1/0 cycles, and is 
not asserted if CS# is inactive. 

BRDYO# 0 Low BURST READY OUT is a burst ready signal driven by the 
485Turbocache Module to the i486 CPU. It is activated when a 
read hit occurs to the 485Turbocache Module and. should be a 
term in the BADY# input to the i486 CPU. I 

CBRDY# I Low CACHE BURST READY IN is the burst ready input from the 
memory system. It is applied to both the 485Turbocache Module 
and the i486 CPU BADY# pin in parallel. CBRDY # is ignored 
during T1 and idle cycles. BLAST# determines the length of the 
transfer. All cacheable read cycles are 4 dword transfers. Setup 
and hold times t9 and t10 must be met for proper operation. 

CADY# I Low CACHE READY IN is the non-burst ready input from the system. 
Like CBRDY #, it is applied to both the cache and i486 CPU 
ADY# pin in parallel. CADY# is ignored during T1 and idle 
cycles. Setup and hold times tg and t10 must be met for proper 
operation. 

BLAST# I Low BURST LAST is output by the i486 CPU and is sampled by the 
485Turbocache Module to determine when the end of a cycle 
occurs. Setup and hold times ta and tsa must be met for proper 
operation. 

BOFF# I Low BACKOFF is an i486 CPU input sampled by the 485Turbocache 
Module to indicate that a cycle be immediately terminated. If 
BOFF # is sampled active, the 485Turbocache Module will float 
its data bus. The 485Turbocache Module will ignore all cycles, 
except invalidation cycles, until BOFF # is deactivated. Setup 
and hold times t17 and t18 must be met for proper operation. 

PRSN# 0 Low PRESENCE is an active low output always asserted by the 
485Turbocache Module. It may be used as a 485Turbocache 
Module presence indicator and should be connected via a 1 OK 
pullup resistor. 

5-181 



intef 485Turbocache Module 

0.2 PIN DESCRIPTION OVERVIEW (Continued) 

Pin Name Type Active Description 

ADDRESS SIGNALS 

A2-A31 I - PROCESSOR ADDRESS LINES A2·A31 are the i486 CPU 
address lines used by the 485Turbocache Module. Address lines 
A2 and A3 are used as burst address bits. In the 64k 
485Turbocache Module, A4-A 14 comprise the set address inputs 
to the 485Turbocache Module and A 15-A31 are used as the tag 
address. In the 128k 485Turbocache Module, A4 becomes a line 
select input, A5-A15 is the set address input and A16-A31 is 
used as the tag address. Setup time ts must be met for proper 
operation. 

BEO#-BE3# I Low BYTE ENABLE inputs are connected to the i486 CPU byte 
enable outputs. They are specifically used for completing partial 
reads from and writes to the 485Turbocache Module during hit 
cycles. During miss cycles, transfers are ignored if all the byte 
enables are not asserted since the 485Turbocache Module only 
caches 32-bit transfers. Setup time ts must be met for proper 
operation. 

CS# I Low CHIP SELECT is used to cascade 485Turbocache Module 
modules. Address bits may be decoded in order to cascade 
multiple devices or be decoded to selectively cache portions of 
memory. Setup and hold times t3o and t31 must be met for proper 
operation. 

DATA SIGNALS 

D0-031 1/0 - PROCESSOR DATA LINES DO·D31 are connected to the i486 
CPU data bus. D0-07 define the least significant byte while 024-
031 define the most significant byte. Setup and hold times t13 
and t14 must be met for proper operation. 

DPO-DP3 1/0 - DATA PARITY are the parity bits associated with the data on the 
data bus. They are connected to the i486 CPU pins with the 
same name. Parity is treated by the 485Turbocache Module as 
additional data bits to be stored. Setup and hold times t13 and t14 
must be met for proper operation. 

CACHEABILITY SIGNALS 

CKEN# 0 Low CACHE ENABLE TO CPU is the KEN# term generated by the 
485Turbocache Module to the i486 Microprocessor. CKEN# is 
activated twice; First during T1 to enable a cache line fill, and 
second on the clock before the last BROY# or RDY # to validate 
the line fill. CKEN# is ALWAYS active in T1, but will not validate 
a line fill if the line fill is a write protected line and WPSTRP# is 
low, or if the cycle is a read miss. 

SKEN# I Low SYSTEM CACHE ENABLE is an input from the main memory 
system to indicate whether the current line fill is cacheable in the 
485Turbocache Module. It is sampled by the 485Turbocache 
Module exactly like KEN# is sampled by the i486 
Microprocessor. Setup and hold times t11 and t12 must be met 
for proper operation. 

FLUSH# I Low FLUSH CACHE causes the 485Turbocache Module to invalidate 
its entire cache contents regardless of CS#. Any line fill in 
progress will continue, but will be invalidated immediately. The 
i486 CPU flush instruction does not affect the 485Turbocache 
Module. Setup and hold times t23 and t24 must be met for 
recognition in any specific clock. 

5-182 



intef 485Turbocache Module 

0.2 PIN DESCRIPTION OVERVIEW (Continued) 

Pin Name Type Active Description 

CACHEABILITY SIGNALS (Continued) 

WP I High WRITE PROTECT defines a line as write protected. WP is 
sampled during the third transfer of a line fill and is maintained 
internally as a state bit. Any subsequent writes to a write 
protected line will have no effect. Setup and hold times t15 and 
t16 must be met for proper operation. 

WPSTRP# I Low WRITE PROTECT STRAPPING OPTION changes the behavior 
of CKEN #. CKEN # is always asserted in T1 to indicate a 
cacheable line transfer but is deasserted on the next clock. 
During read hit cycles, CKEN # is asserted again for the duration 
of the transfer to indicate a cacheable line fill. If WPSTRP# is 
strapped low, and a write protected line is being transferred, 
CKEN # is not activated again for the transfer. This prevents the 
i486 CPU from cacheing write protected lines during read hit 
cycles. WPSTRP# must be valid and not change two clocks 
before and after the falling edge of RESET. 

INVALIDATE SIGNALS 

EADS# I Low VALID EXTERNAL ADDRESS STROBE indicates that an 
invalidation address is present on the i486 CPU address bus. 
The 485Turbocache Module will invalidate this address, if 
present, but will only do so if CS# is active. The 485Turbocache 
Module is capable of accepting an EADS# every other clock. 
The 485Turbocache Module EADS# should be connected to the 
i486 CPU EADS# pin. Setup and hold times t19 and t2o must be 
met for proper operation. 

1.0 FUNCTIONAL DESCRIPTION 1 clock bursting. Because the 485Turbocache Mod­
ule was designed exclusively for the i486 Microproc­
essor, it recognizes i486 CPU invalidations, use of 
BOFF #, and prematurely terminated cycles. The 
cache module is write-through so it supports the 
same i486 CPU consistency mechanisms, stores 
data parity, can cache BIOS in modes where the 
i486 CPU cannot, is software transparent, and may 
be an end-user installable upgrade. 

1.1 Introduction 

The 485Turbocache Module is a complete 2-way 
set-associative 64k or 128k cache housed in a 
113-pin module. It contains 4 or 8 custom data 
SRAMs and the Intel 82485 cache controller. The 
cache module was designed to be cascadable to a 
maximum of 512k with the addition of more mod­
ules. The module was also designed so the system 
may easily detect a cache's presence and reconfig­
ure itself accordingly. The 485Turbocache Module is 
a plug-in option that is an ideal i486™ Microproces­
sor cache solution. 

The cache module interfaces directly to the i486 Mi­
croprocessor. Designing with the cache module is 
easy because it directly supports the timing of 
25 MHz and 33 MHz systems. It is capable of read­
ing and writing data in 0 waitstates, and performing 

Below are the order codes for the 485Turbocache 
Module: 

Size 25MHz 33MHz 

64k 82485MA-25 82485MA-33 
128k 82485MB-25 82485MB-33 

The following Functional Description describes the 
cache module's base architecture, its operation, fea­
tures, and deviations from the i486 CPU specifica­
tion. 

5-183 

El 



intef 485Turbocache Module 

1.2 Base Architecture 

The 485Turbocache Module contains an 82485 
cache controller and 4 (82485MA) or 8 (82485MB) 
SRAMs for a complete 64k or 128k cache. In either 
configuration, the 485Turbocache Module is 2-way 
set-associative with a 16 byte line size. 

Figure 1.1 outlines the 82485 cache controller which 
is the heart of the 485Turbocache Module. Each 
WAY contains 2k tags with 17 bits per tag so it may 
store the complete 4G real address space. The tags 
also reference 2 valid bits and a write-protect bit. 
When the 82485 is configured as a 64k cache, as.in 
the 64k 485Turbocache Module, each tag .refer­
ences a single, 16 byte line. When the 82485 is con­
figured as a 128k cache, as in the .128k 
485Turbocache Module, each tag is forced to refer­
ence two consecutive 16 byte lines; This is called 
sectoring. A 128k 485Turbocache Module contains 
2 sectors per tag. The LS input (address bit A4) de­
termines which sector of each tag is being selected. 

The control units of the 82485 are responsible for 
three main functions: controlling the data SRAMs, 
controlling the tagram structure, and interfacing to 
the i486 CPU. Since these are independent units, 
the 82485 is capable ·of updating its tagram while 
data is being bursted into SAAM, or invalidating dur­
ing a line fill to a different address. Special address 
registers in the 485Turbocache Module allow the 
i486 Microprocessor to drop its address in the first 
T2 (in response to AHOLD) and the system to issue 
a invalidate address with an i486 CPU hold time. 

The 82485 uses the "Least Recently Used" algo­
rithm to determine which tag should be invalidated 

OK 

ADDRESS 

2K 

• 
• 
• 

TAG 8c STATUS RAM 

on cache misses. A single LRU bit per tag is used to 
point to the tag that will be replaced ·should a re­
placement be required. 

The data memory portion of the 485Turbocache 
Module is composed of a set of SRAMs that operate 
at fast 33 MHz speeds. They are capable of 0 wait• 
state reads and writes, and single clock bursting, 
and have minimized capacitive loading on the i486 
CPU clock and data lines. 

1.3 Cache Operation 

To operate at high speeds, the 485Turbocache 
Module must begin its tag lookup to determine a 
cache hit or miss as soon as possible. During normal 
operation, this is done as soon as the i486 CPU gen­
erates an address. SAAM reads, SAAM writes, and 
system signals cannot be generated until a hit or 
miss has been determined. The following sections 
will discuss read miss, read hit, write, invalidate, and 
BOFF # cycles. 

1.3.1 READ MISS 

Figure 1.2 shows 485Turbocache Module activity 
during a normal read miss cycles. In T1, the 
485Turbocache Module begins its tag lookup to see 
if the read cycle is a hit. Once it has been deter­
mined that the address is not present in the cache (a 
miss), START# is issued to indicate to the memory 
system that it must service the current cycle. The 
cache is then idle until SKEN#, the cache's KEN# 
input, is seen active. Should SKEN # be inactive and 
the burst line transfer from memory begin, the line is 
non-cacheable and is ignored .. 

• 
• 
• 

t + WAY 1 LRU WAY 2 t + SECTOR 1 SECTOR 2 
(128K ONLY) 

DD CONTROL LOGIC ------+-. I TO SRAMS 

Figure 1.1. 82485 Cache Controller 

5-184 

240722-4 



intef 485Turbocache Module 

i486TMcpu 
ACTIVITY 

T1 T2 
1 

T2 
1 

T2 
2 

T2 
3 

T2 
4 

MODULE 
ACTIVITY 

BEGIN 
TAG 
LOOKUP 

ISSUE INITIATE TERMINATE 
LINEFILL START# LINE 

SKEN WAIT FILL 

240722-5 

Figure 1.2. Normal Read Miss Cycle 

Once SKEN # has been asserted, the 
485Turbocache Module invalidates a line in the 
cache (or chooses a free line) in preparation for the 
bursted data (see section 4.3.1). The data is bursted 
into the cache and back to the i486 Microprocessor 
simultaneously. If an SKEN # preceded the last 
bursted item, then the line was cacheable, and the 
485Turbocache Module updates its valid bit to indi­
cate so. If the line is invalid, or aborted for any rea­
son (BLAST#, BOFF #) the line is left invalid. 

During a read miss cycle, the 485Turbocache Mod­
ule cannot accept the data from memory in zero 
waitstates. The earliest data may be returned is the 
clock after ST ART# is sampled active. ST ART# is 
the signal that indicates that the memory system 
must complete the current cycle. 

The 485Turbocache Module is also capable of han­
dling non-burst and interrupted burst line fills. Refer 
to the section "4.0. Performance Considerations" 
for improving 485Turbocache Module performance 
during line fills. Note that the 485Turbocache 
Module only caches 32-bit transfers. The 
485Turbocache Module does not input the i486 CPU 
inputs BS#8 or 8S#16. All transfers are assumed 
to be 32-bit transfers with valid data on all 32 data 
lines. 

1.3.2 READ HIT 

During Read Hit cycles, the 485Turbocache Module 
responds directly to the i486 Microprocessor with a 

i486™CPU 
ACTIVITY 

MODULE 
ACTIVITY 

T1 

line of data in 5 clocks. The 485Turbocache Module 
asserts CKEN # (its KEN # output to the i486 CPU) 
in both T1 and the third T2 to indicate this as a 
cacheable transfer. Should the bursted line be write­
protected, AND WPSTRP# is strapped low, CKEN# 
is high for the third T2 and the line is not cached by 
the i486 CPU. The only updating the 485Turbocache 
Module needs to perform during read hit cycles is to 
update the LAU bit to point to the WAY that was not 
transferred. 

1.3.3 WRITE CYCLES 

Since the 485Turbocache Module is a write-through 
cache, all write cycles are written by the i486 CPU to 
main memory. Figure 1.3 shows a write hit where the 
tag lookup in T1 is found to be a hit so the data is 
updated by the cache in T2. Write misses do not 
affect cache contents, nor do writes to write protect­
ed lines. Write hits will alter the LAU bit in the same 
way as a read hit. 

1.3.4 INVALIDATION CYCLES 

The 485Turbocache Module allows invalidation cy­
cles to occur at any time by asserting AHOLD and 
EADS#. Self-invalidations, where AHOLD is not as­
serted, are allowed at any time except on the clock 
edge of the last transfer of a line fill. EADS# asser­
tion allows both the CPU cache and 485Turbocache 
Module to be invalidated at the same time. Regard­
less of what the 485Turbocache Module is doing, 

T2 

BEGIN UPDATE 
TAG DATA 
LOOKUP 

240722-6 

Figure 1.3. Write Hit Cycle 

5-185 

I 



inter 485Turbocache Module 

EADS# causes the address present on the address 
inputs of the 485Turbocache Module to be invalidat­
ed. This includes read hit, read miss, write, and 
BOFF # cycles. 

There may be a performance penalty, however, if 
EADS# is asserted at a time when the tag memory 
of the 485Turbocache Module is in use. Since the 
485Turbocache Module tags are single-ported, only 
one tag access per clock is allowed. 

Figure 1.4 shows a read miss cycle with an invalida­
tion lookup occurring in the third transfer of a line fill. 
Under normal conditions, the 485Turbocache Mod­
ule would, on the next clock, validate the current line 
that is being filled. Since the EADS# occurred, the 
tagram is occupied on the next clock with a tag look­
up to see if the invalidate is a hit, and the current line 
is not yet validated. If it is a hit, the next cycle is used 
to perform the actual invalidation. The following 
clock is spent validating the current line fill. Should 
the i486 Microprocessor begin a cycle immediately, 
the 485Turbocache Module is not able to perform its 
tag lookup until one clock cycle later when the tag 
memory is free. This causes ST ART# to be de­
layed, and ultimately a memory read cycle from be­
ginning. 

For greatest performance, EADS# should not be is­
sued in the second, third or fourth transfer of a 
cache line fill. 

Self-Invalidations, EADS# asserted without AHOLD, 
are not allowed at the clock edge of the last T2 of a 
cycle (the first T1 clock edge of the next cycle). If a 
self-invalidation occurs in T1, ADS# and EADS# 
are sampled at the same time, the 485Turbocache 
Module will invalidate the line and assert ST ART# 
as in a normal read miss cycle. If EADS# is asserted 
at any other time, ST ART# is not asserted. 

1.3.5 BOFF# CYCLES 

When BOFF# is asserted, the 485Turboca.che Mod­
ule, like the i486 Microprocessor, will relinquish the 

i4asTMcpu 
ACTIVITY 

T2 T2 
1 

T2 
2 3 

bus in the next clock cycle. While BOFF # is assert­
ed, as any other time, the 485Turbocache Module 
monitors EADS# to perform any invalidate cycles. 

If BOFF # is asserted during a cache read hit 
(data is being transferred from cache to CPU), the 
485Turbocache Module invalidates the line being 
transferred. Once BOFF # has been released and 
the cycle resumes, the 485Turbocache Module sees 
this as a cache miss and the memory system must 
supply the remaining data. If BOFF # is asserted 
during a cache read miss (memory is transferring to 
cache and CPU), the 485Turbocache Module will 
treat the line fill like an aborted fill, and the line will 
remain invalid. Once BOFF # is released and the cy­
cle is restarted, the remainder of the line fill is treat­
ed like another aborted fill, and remains invalid. 

Figure 1.5 is an example of an aborted line fill. Since 
the line transfer is interrupted before the transfer 
completes, it stays invalidated. Once the transfer re­
sumes, the 485Turbocache Module sees a new cy­
cle begin with ADS#, but it completes with BLAST# 
after three transfers. It treats this as an aborted line 
fill cycle, and the cycle is never validated. · 

Asserting BOFF# in the same clock as ADS# will 
cause the i486 CPU to float its bus in the next clock 
and leave ADS# floating low. Since ADS# is float­
ing low, a peripheral device may think that a new bus 
cycle has begun even though the cycle was aborted. 
The 82485 handles this circumstance in most cases 
since an active ADS# in the clock BOFF# is deas­
serted is ignored. The only circumstance that must 
be handled by the system is as follows: 

BOFF # is asserted in T1, and before BOFF # is 
deasserted, HOLD is asserted and remains asserted 
after BOFF # is deasserted (see Figure 1.6). In this 
circumstance it is necessary for the system to as­
sure that ADS# is either driven to a valid level or 
pulled high in the clock after BOFF # is deasserted 
(meeting the 82485 ADS# setup time). 

T2 T1 T2 T2 
4 

MODULE 
ACTIVITY 

INVALIDATE INVALIDATE VALIDATE BEGIN ISSUE 
LOOKUP TAG LINE FILL TAG START# 

HIT/MISS LOOKUP 

EADS# OCCURS HERE 
240722-7 

Figure 1.4. Invalidation During Read Miss 

5-186 



intef 485Turbocache Module 

T1 T2 T2 T2 T2 T1 T2 T2 T2 T2 T2 

ADS# 

START# 

BOFF# 

CBRDY# 

BLAST# 

240722-8 

Figure 1.5. Aborted Line Fill 

ADS# 

BOFF# 

HOLD .....,,__ ____ ,., 
HLDA 

.....,I-----+----+---' 

ADS# here 
Ignored by 

82485 

j 

ADS# must be 
at a valid level 

by Its setup 
time (18) 

240722-26 

Figure 1.6. BOFF# Asserted in T1 

There are several ways to avoid this system restric­
tion: 

1. Do not assert BOFF # in T1. 

2. Use a "two clock" backoff: in the first clock 
AHOLD is asserted and in the second clock 
BOFF# is asserted. This guarantees that ADS# 
will not be floating low. 

3. Do not assert HOLD when BOFF # is asserted. 

1.4 Incompatibilities 

Below are a list of some special design considera­
tions that the 485Turbocache Module requires to be 
designed into an i486 CPU system. They have been 
summarized to point out any possible inconsisten­
cies between the i486 CPU specification and the 
485Turbocache Module specification: 

1. Invalidation cycles may only be performed every 
two clocks. Unlike the i486 CPU, the 
485Turbocache Module only allows EADS# as­
sertion every other clock at most. 

2. The minimum clock high voltage is slightly higher 
than the i486 CPU specification. It is still within 
TTL levels, however. 

3. The i486 CPU will recognize HOLD during non­
burst, non-cacheable, code prefetches. These 
prefetches are cacheable by the 485Turbocache 
Module. Since the module does not see the HLDA 
signal, another bus master could hold the CPU in 
mid-cycle, begin its own transfer, and coinciden­
tally complete the cacheable transfer. This is only 
possible in systems that have another bus master 
that can drive the module's ADS pin. In these sys­
tems, the CPU's HLDA pin should be inverted and 
connected to the module's BOFF # input. This 
guarantees that cycles interrupted by HLDA will 
be aborted, and not cached, by the 
485Turbocache Module. 

2.0 SYSTEM INTERFACE 

The following section describes the basic connec­
tion of the 485Turbocache Module in an i486 CPU 

5-187 

I 



intef 485Turbocache Module 

D0-031, OPO-DP3 

r A2-A31,8£0#-8£3#,A0$#,M/IO#.W/R# I 1 t J -r 1 
WP 

CKEN# CBRDY# 

BROYO# 485 Turbocache CROY# 

Module SKEN# 

START# 
Main 

i486 TMcpu Ti 
Memory 

EADS# 

.] FLUSH# 

BOFf# 

BLAST# 

~ I 
CLK, RESET 

240722-9 

Figure 2.1. 485Turbocache Module Typical Configuration 

system. The section highlights the CPU bus connec­
tions, memory bus connections, and gives specifics 
about their related signals. 

A typical 485Turbocache Module connection to an 
i486 Microprocessor and memory subsystem . is 
shown in Figure 2.1. All of the signals that the i486 
CPU generate "feed-around" the 485Turbocache 
Module; That is, they go to both the 485Turbocache 
Module and the memory controller. In turn, most 
memory generated signals feed-around the 
485Turbocache Module back to the CPU. This is 
what makes the 485Turbocache Module an optional 
cache. The following describes all the signals the 
485Turbocache Module encounters. 

2.1 i486™ Microprocessor Signals 
The following 485Turbocache Module signals con­
nect directly to the corresponding i486 CPU signals. 
These pins have the same name and functionality as 
the i486 Microprocessor pins. 

2.1.1 ADDRESS LINES A2-A31 

A2-A31 are the address lines generated by the i486 
CPU and used by the cache as set and tag address­
es. A 64k 485Turbocache Module cache will use A4-
A 14 as set address inputs and the remaining ad­
dress bits as tag address. A 128k 485Turbocache 
Module uses A5-A 15 as set address inputs, A4 as 
the line select bit for sectoring, and the remaining 
bits as tag address. Address lines A2 and A3 are 
used as burst address inputs. 

The address lines are also used as invalidate inputs. 
At any time, if EADS# is asserted, the address that 
is present at the address inputs will be invalidated. 
The 485Turbocache Module will not invalidate un-

less CS# is sampled active. Note that the address is 
latched internally so that AHOLD assertion in T1 is 
permitted. 

2.1.2 DATA LINES DO-D31 AND PARITY 
DPO-DP3 

This is the processor data bus common to the i486 
CPU, the 485Turbocache Module, and memory bus. 
The 485Turbocache Module transfers information to 
the CPU on read hits, and stores data from memory 
on read misses. The four parity bits, DPO-DP3 are 
treated just like extra data bits. 

2.1.3 ADS#, W/R#, M/10# 

The processor control signals ADS#, W/R#, and 
M/10# are used by the 485Turbocache Module to 
indicate the start of a new cycle, and identify the 
type of cycle. ADS# assertion indicates a T1 cycle 
and initiates the tag lookup process in the 
485Turbocache Module. 1/0 cycles are ignored. 

ADS# is the primary signal that activates the 
485Turbocache Module. When ADS# goes low, the 
module begins the hit/miss tag lookup regardless of 
the state of Chip Select (CS#). For this reason, any 
bus master that controls the ADS# input to the 
module must meet the module address bus setup 
and hold times, regardless of the state of CS#. Chip 
Select, when inactive, disables the module outputs 
only. (Note that CS# must be asserted for invalida­
tion cycles.) 

2.1.4 BYTE ENABLES BEO#-BE3# 

Byte enable inputs are used to complete partial byte 
or word writes to the 485Turbocache Module on 
cache write hit cycles. All other partial transfers are 
ignored by the 485Turbocache Module. 

5-188 



485Turbocache Module 

2.1.5 BLAST# 

BLAST# is used by the 485Turbocache Module to 
indicate the end of a cycle. If BLAST# is asserted 
early during a cache line fill from a read miss, that 
transfer is left invalid by the 485Turbocache Module. 

2.1.6 BOFF# 

Once BOFF# is sampled by the 485Turbocache 
Module, it relinquishes control of the data bus in the 
next clock. If a read hit line transfer was in progress, 
that transfer will not continue once BOFF # is re­
leased. If a read miss transfer was interrupted by 
BOFF #, the 485Turbocache Module "".ould mark 
the line as invalid even if the transfer continues once 
BOFF# has been released. The 485Turbocache 
Module will recognize invalidations during BOFF #, 
but will only do so if CS# is active. 

2.1.7 FLUSH# 

The 485Turbocache Module FLUSH# input be­
haves exactly like the i486 Microprocessor input. 
Once asserted, FLUSH# will invalidate the entire 
contents of its cache memory regardless of the 
state of CS#. While FLUSH# is asserted, the 
485Turbocache Module continues to track CPU bus 
cycles and treats all accesses as cache misses, ac­
tivating ST ART# appropriately. 

FLUSH# may be used asynchronously with both the 
i486 CPU and the 485Turbocache Module. If the 
proper pulsewidths are given, FLUSH# will be. rec­
ognized, but, it is possible that the FLUSH# will. be 
recognized on different clock edges for each device. 
This may happen if FLUSH# assertion or deasser­
tion is near its setup and hold times when one de­
vice may recognize it and the other may not. 

2.1.8 EADS#, AHOLD 

EADS# assertion causes the 485Turbocache Mod­
ule to invalidate the address present on the address 
bus if CS# is seen active. AHOLD need not be as­
serted, nor is it even used as an input to the 
485Turbocache Module. EADS# may be asserted 
at most once every other clock as that is the fastest 
485Turbocache Module invalidation rate. The sec­
tion titled "invalidation cycles" describes where 
EADS# may be asserted for maximum perform­
ance. 

EADS# may not be asserted on the clock edge ~f 
the last T2 of a cycle (the first T1 of the next cycle) 1f 
AHOLD is not asserted. 

2.1.9 RESET 

RESET is an asynchronous input that causes the 
485Turbocache Module to reset its internal ma­
chines to a known state: its entire cache contents 
invalidated, and expecting the start of a new bus 
cycle. RESET must be high for at least 1 O clocks for 
the 485Turbocache Module to reset properly from a 
warm boot. For a cold boot, RESET must remain 
active for 3000 ns (100 clocks at 33 MHz, 75 clocks 
at 25 MHz). There must be no bus activity for at least 
4 clocks after the falling edge of RESET so the 
485Turbocache Module can reset internally. The 
falling edge of RESET causes the 485Turboc~che 
Module to sample its WPSTRP# strapping option. 

2.2 CPU Bus Interface Signals 

These are signals generated by the 485Turbocache 
Module, or decoded from the i486 CPU that corre­
spond to the CPU bus. 

2.2.1 CHIP SELECT CS# 

Chip Select is used to select the proper 
485Turbocache Module cache module if multiple 
modules are used, otherwise, with one 
485Turbocache Module, CS# may be grounded. 
CS# is generated by decoding the lowest order tag 
addresses coming into the module. For example, I 
two 128k cache modules would decode A 16 for their 
chip selects. A 16 high would select module 1, while 
A 16 low would select module 2. The following table 
summarizes the addresses used for decoding: 

Size Modules Address Bit(s) to Decode 

64k 2 A15 
64k 4 A15, A16 
128k 2 A16 
128k 4 A16, A17 

For compatibility, A 16 and A 17 may be decoded for 
64k modules. Performance may be increased be­
cause of increased granularity, however, if A 15 and 
A16 are used. 

With CS# inactive, invalidation cycles are ignored, 
START# is inactive, and CKEN# is inactive. 
CKEN # does, however, always activate in T1 as it is 
not possible for the 485Turbocache Module to rec­
ognize CS# before then. 

If required, the LOCK# signal may be used as a 
term in the creation of CS#. If locked cycles do not 
generate CS#, START# must be generated exter­
nally so memory may handle the cycle. 

5-189 



intef 485Turbocache Module 

2.2.2 CPU CACHE ENABLE CKEN# 

CKEN # is generated by the 485Turbocache Module . 
to indicate that its current transfer, during a read hit 
cycle, is cacheable. It is always driven (not an open­
collector output) and must be used as one of the 
terms that generates KEN# to the i486 Microproc­
essor. CKEN # is always active in T1, but then goes 
inactive and remains inactive unless the cycle is a 
read hit cycle. 

For read miss and write cycles, CKEN # goes inac­
tive in T2 and remains inactive until the next T1. It is 
the responsibility of the system to generate the 
KEN# signal to the i486 CPU in these cases. 

In a read hit cycle, CKEN # goes active again in the 
second T2 and remains active throughout the cycle. 
This forces external KEN# logic to activate KEN# 
and make the cycle cacheable to the i486 CPU. 
However, if the line being transferred is write-pro­
tected, AND the WPSTRP# pin is strapped low, 
CKEN # stays inactive in T2 and remains inactive 
throughout the cycle. This allows write protected 
lines in the 485Turbocache Module to be cacheable 
only to the 485Turbocache Module. 

2.2.3 BURST READY OUT BRDYO# 

The 485Turbocache Module generates BRDYO# 
when it is bursting data back to the i486 CPU during 
read hit cycles. BRDYO# is always driven (not an 
open collector output) and should be used by exter­
nal logic to create the BADY# input signal to the 
i486 CPU. Since the 485Turbocache Module is a 
zero waitstate, single clock burst cache, BRDYO# is 
activated in the first T2 until the fourth T2 unless the 
cycle is interrupted. 

2.3 Memory Interface Signals 

Memory Interface Signals are signals coming to or 
from the main memory subsystem. The only signal 
the 485Turbocache Module generates to the memo­
ry system is START#, which is the only signal that 
must be handled should the 485Turbocache Module 
be designed as an option. 

2.3.1 PRSN# 

This signal is tied low inside the 485Turbocache 
Module. If the system pulls this signal high with a 
1 OK pullup resistor, cache presence will be indicated 
by that line being pulled low. PRSN # signal is used 
to indicate that external logic should only start mem­
ory cycles when ST ART# goes active rather than 
from ADS# active. 

2.3.2 START# 

START# is a signal asserted by the 485Turbocache 
Module to indicate that the memory subsystem must 
process the current cycle. ST ART# is always driven 
and valid and is asserted for all read miss cycles and 
memory write cycles. ST ART# is not activated for 
1/0 cycles, or if CS# is sampled inactive. START# 
is normally active in the first T2, but may be delayed 
if an invalidation cycle forced the previous cycle to 
be elongated (see 1.3.4 Invalidation cycles). 

2.3.3 WRITE PROTECT WP 

The Write Protect input is an active high input that 
indicates to the 485Turbocache Module that the cur­
rent line transfer is write-protected. It is sampled on 
the clock edge of the third BADY# of a line transfer 
of a read-miss cycle. The 485Turbocache Module 
saves this information as a single bit in each tag 
location. In 128k configurations where there is a sin­
gle tag for 2 consecutive lines, the write protect bit is 
valid for both lines. If a location has been write-pro­
tected, and writes to that location will be ignored. 

WP is a synchronous input and must meet the 
485Turbocache Module setup and hold times re­
gardless of whether it is being sampled or not. 

2.3.4 WRITE PROTECT STRAPPING OPTION 
WPSTRP# 

WPSTRP# is a strapping option that is sampled dur­
ing RESET. It indicates whether write protected 
items in the 485Turbocache Module should be 
cacheable in the i486 CPU cache. If WPSTRP# is 
high , CKEN # will go active in T2 during all read hit 
cycles to indicate that they are cacheable. If 
WPSTRP# is low, CKEN# will be inactive in T2 for 
read hit cycles to locations that are write-protected. 
This allows write protected items to be cached by 
the 485Turbocache Module and not by the i486 
CPU. 

2.3.5 SYSTEM CACHE ENABLE SKEN # 

The SKEN # input to the 485Turbocache Module is 
like the KEN# input to the i486 Microprocessor. It is 
sampled just like KEN#, the clock before the first 
and last transfers of a line fill, to indicate whether the 
line is cacheable. If the KEN# input to the i486 CPU 
is connected to the SKEN# input of the 
485Turbocache Module, the i486 CPU internal 
cache and the 485Turbocache Module will cache 
the same items. It is possible to control KEN# and 
SKEN # separately so the 485Turbocache Module 
and i486 CPU cache different areas of memory. 

5-190 



intef 485Turbocache Module 

SKEN # is a synchronous input and must meet the 
485Turbocache Module setup and hold times re­
gardless of whether it is being sampled or not. 

2.3.6 CACHE READY AND BURST READY 
CRDY#,CBRDY# 

CADY# and CBRDY # are the ready and burst 
ready inputs to the 485Turbocache Module. They 
should behave exactly like the i486 CPU ADY# and 
BADY# inputs. CBRDY # should be used in con­
junction with BRDYO# to generate the i486 CPU 
BADY# input. Likewise, CADY# should be used to 
form the i486 CPU ROY# input. 

The 485Turbocache Module does not sample the 
CBRDY # or CROY# inputs during read hits, so it is 
not possible to artificially add waitstates to the 
485Turbocache Module's burst transfer. The 
CBRDY # and CADY# inputs must, follow 
485Turbocache Module setup and hold times even 
outside the sampling window. 

3.0 SYSTEM CONFIGURATIONS 

Two of the most important features of the 
485Turbocache Module are its cascadability and its 
optionality. Below, it is explained how to design a 
system with a single 485Turbocache Module, multi­
ple 485Turbocache Modules and a socket for an op­
tional 485Turbocache Module. 

3. 1 Single Cache 

In a single cache configuration, the addition of a 
485Turbocache Module requires no or little extra 
logic. Most of the signals are common to the i486 
CPU, the memory bus controller, and the 
485Turbocache Module. The others, such as KEN#, 
SKEN #, and START# will be discussed individually. 

3.1.1 i486™ MICROPROCESSOR BUS 
INTERFACE 

As seen in Figure 2.1, the i486 CPU-related signals 
are connected to both the 485Turbocache Module 
and the memory controller. These are the address 
bus, data and parity bus, ADS#, W/R#, M/10#, 
BEO#-BE3#, BLAST#, RESET, and CLK. 

Since a single 485Turbocache Module resides on 
the address bus, ·cs# may be tied low so the part is 
always chip selected. 

3.1.2 MEMORY BUS INTERFACE 

On the memory bus side, BOFF #, FLUSH#, and 
EADS# are connected to the i486 CPU and the 
485Turbocache Module in parallel. The memory 
ready signals, CADY# and CBRDY #, are connect­
ed directly to the 485Turbocache Module, but are 
combined with other system ready signals to form 
the i486 CPU ADY# and BADY# inputs. One of the 
system ready signals is the 485Turbocache Module 
BRDYO # which must be ANDed with CBRDY # and 
other burst ready signals to form BROY# into the 
CPU. 

The memory system must also generate the WP in­
put. If write-protection is not needed, WP may be 
tied to Vss- If the system would like to prevent write­
protected lines in the 485Turbocache Module from 
being cached by the i486, WPSTRP# should be tied 
to Vss. 

3.1.3 KEN# AND SKEN# GENERATION 

The KEN# input to the i486 Microprocessor is a re­
sult of all the cache enable signals in the system. 
Since the 485Turbocache Module activates CKEN# 
only during a read hit cycle, the CKEN # output may 
be ANDed with the system cache enable signal to 
form KEN# to the i486 CPU. 

If the 485Turbocache Module and i486 CPU internal I 
cache will cache the same areas of memory, the 
KEN# input to the i486 CPU may be tied to the 
SKEN # input of the 485Turbocache Module. Other-
wise, the memory system can generate 2 cache en-
able signals: One that is ANDed with CKEN# to pro-
duce KEN#, and another for the SKEN # input. 

3.1.4 START# GENERATION 

ST ART# goes low to indicate that the memory sys­
tem must complete the current cycle. This is true for 
all memory writes and read misses. It is the memory 
subsystem's responsibility to recognize 1/0 cycles 
and begin an 1/0 access without waiting for 
START#. 

ST ART# is asserted in T2, but may be delayed if 
there was an invalidation in the previous cycle (see 
1.3.4 Invalidation cycles). Because the assertion of 
ST ART# may be somewhat unpredictable, it is rec­
ommended that ST ART# be used to either begin a 
DRAM RAS cycle, or enable DRAM output buffers. 

5-191 



intef 485Turbocache Module 

Figure 3.1a shows that START# may be the indica­
tion to DRAM control to begin a cycle. Once 
ST ART# is sampled active, a RAS and CAS cycle 
begin. This will incur an extra waitstate to cache 
read misses since the earliest a memory cycle will 
begin is the first T2. 

Figure 3.1 b shows that START# may enable DRAM 
data buffers. The actual DRAM cycle begins once 
ADS# and M/10# are sampled low, but will not 
complete until the buffers have been gated allowing 
data to be written to the i486 CPU data bus. Should 
the cycle be a 485Turbocache Module read hit, the 
buffers are never enabled. Since the 
485Turbocache Module takes 5 clock cycles to 
complete the burst transfer, RAS precharge time 
can easily be absorbed. 

See 4.3.4 START# Predictability for detailed infor­
mation how ST ART# may be asserted in a predict­
able manner. 

3.2 Multiple Cache 

A multiple cache scheme is similar to the single 
cache scheme because all of the i486 Microproces­
sor bus interface signal connection remain the 
same. Like the single cache example, only KEN#, 
SKEN#, START#, and now CS#, need special 
handling. Figure 3.2 is an example of a 512k multiple 
cache configuration. 

3.2.1 MEMORY BUS INTERFACE 

Like the i486 Microprocessor bus interface signals, 
BOFF#, FLUSH#, and EADS# are connected to 

START# 

the CPU, memory system, and all caches in parallel. 
The ready and burst ready outputs from the memory 
system connect to the CROY# and CBRDY # inputs 
to all 485Turbocache Module caches. The CBRDY # 
signal is then ANDed with the BRDYO# outputs 
from all 485Turbocache Modules to form BROY# to 
the i486 CPU. 

3.2.2 START# 

START# is activated by a single 485Turbocache 
Module at a time because CS# is active for a single 
485Turbocache Module at a time. START#, there­
fore, may be ANDed with all other START# signals 
to form a system start indication. See section 3.1 
Single Cache for details how ST ART# may be used. 

3.2.3 KEN# 

Like START#, CKEN# is only activated for chip se­
lected modules. Therefore, all CKEN # outputs may 
be ANDed together to form the i486 CPU KEN# sig­
nal. A system cache enable signal must.also be in­
cluded in the AND terms since it is the system's 
responsibility to generate KEN# during read miss 
cycles. 

3.2.4 SKEN# 

Since SKEN # is used during read miss cycles and 
ignored otherwise, the system cache enable signal 
can be connected to all 485Turbocache Modules' 
SKEN # inputs. If multiple sources can create the 

START# 

DATA TO 
CPU 

OE# 

BU HER 

DATA 
FROM 
DRAM 

t----~• RAS# 
DRAM 

CONTROL 

a. BEGIN CYCLE 

---"""'• CAS# 

b. ENABLE OUTPUT 

Figure 3.1. Using START# in DRAM Control 

5-192 

240722-10 



intef 485Turbocache Module 

KEN# signal to the i486 CPU, KEN# may be fed 
into all 485Turbocache Modules. If the i486 CPU 
caches different memory locations than the second­
level cache, SKEN # must be generated separately 
and then connected to all 485Turbocache Module 
inputs. 

3.2.5 CS# 

Chip select is used to identify which 485Turbocache 
Module is being addressed. It is the result of decod­
ing the lowest order tag address bits. Figure 3.2 
shows how a PLO chooses one of four 
485Turbocache Modules. Anytime an address is 
present on the address bus, including invalidation 
cycles, one of the 485Turbocache Modules is se­
lected. 

3.3 Optional Cache 

The 485Turbocache Module is an optional cache. 
However, its most powerful feature is allowing a 
system to reconfigure itself easily once a 
485Turbocache Module has been installed. To ac­
complish this, the 485Turbocache Module is de­
signed as a write-through cache with all signals 
feeding around to the memory subsystem whether 

CKEN# 

CS# 

I+-
KEN# I+- CKEN# 

I+- CS# 

I+-
CKEN# 

~ 
A16 0 

A17 1 
PLD CKEN# 

ADS# 2 

EADS# """1 
3 CS# 

"""1 

the 485Turbocache Module is present or not. There 
are only a few considerations that need to be made 
to allow the 485Turbocache Module to be fully op~ 
tional. 

3.3.1 SIGNAL CONSIDERATIONS: START#, 
CKEN#, BRDYO# 

If the 485Turbocache Module is not present in a sys­
tem that expects it to be, the ST ART# signal will 
never be asserted and memory will never begin a 
cycle. A solution to this problem is to connect the 
PRSN # presence pin into the memory controller 
that accepts ST ART#. If PRSN # is high, the 
485Turbocache Module is not present, and all mem­
ory cycles should begin with· the assertion of ADS#. 
Note that ST ART# should have a pullup resistor to 
ensure it is not left floating. 

When the 485Turbocache Module is removed from 
a system the CKEN# and BROYO# signals, which 
are combined with external logic to form KEN# and 
BROY#, will be left floating. All CKEN#, BROYO#, 
ST ART#, and PRSN # pins should have pullup re­
sistors tied to them. This assures an inactive state 
when no 485Turbocache Module is present. 

System KEN# 
SKEN# 

START# 

485Turbocache 
Module 14------1 

START# ~ SYSTEM 
START# 

485Turbocache 
~ Module 14------1 rl 

START# 

485Turbocacha 
Module 14------1 

START# 

.485Turbocache 
Modula !+------" 

240722-11 

Figure 3.2 Multiple Cache Configuration 

5-193 

I 



intef 485Turbocache Module 

3.3.2 CONSIDERATIONS WITH MULTIPLE 
CACHES 

As long as all the START#, CKEN #, BRDYO#, and 
PRSN # signals have pullup resistors tied to them, 
all empty cache sockets will respond like inactive 
caches. There is, however, a chip selecting problem 
since CS# decoding varies with the number of 
caches that are present. 

Chip select decoding logic, like Figure 3.3 shows, 
should have all PRSN # pins as input. From this in· 
formation, the correct chip select decoding can be 
generated. The logic in Figure 3.3 is able to keep 
CS1 asserted if one cache is detected, decode A16 
if 2 caches are detected, or decode A 16 and A 17 if 
all 4 caches are present. 

The most difficult problem to overcome when allow­
ing an optional number of multiple caches is to ac­
count for capacitive load changes. Since each 
cache has a capacitive load on the data bus and 
clock lines, some amount of design effort must be 
spent resolving capacitive loading. When designing 
with 4 caches, each cache will probably have to re­
ceive a dedicated clock line. As well, the data bus 
will have to be buffered outside of the CPU and 
cache core. 

4.0 OPERATIONAL/PERFORMANCE 
CONSIDERATIONS 

The following sections provide more detailed infor­
mation about operating and designing-in the 
485Turbocache Module. This includes testing the 
cache, understanding sectoring, and making small 
performance adjustments. 

4.1 Testing and Data Integrity 

The 485Turbocache Module can monitor data integ­
rity using parity bits. The i486 Microprocessor has 
the capability of outputting and checking data parity. 

A16 
-.. 

The memory subsystem must also support parity to 
use the parity support on the 485Turbocache Mod­
ule. This data parity information is stored with every 
byte inside the 485Turbocache Module, and is 
checked by the i486 CPU during data reads. To be 
able to identify data errors from memory or cache, 
the parity error check output (PCHK#) of the i486 
CPU can be sampled. 

Power up self test programs test main memory func­
tionality on a cell by cell basis since parity logic is 
not capable of detecting all memory failures. It is 
also important to test cache memory. The following 
algorithm will test any number of 64k 
485Turbocache Modules or 128k 485Turbocache 
Modules up to 512k of cache memory: 

1. Flush or Reset the cache. 

2. Write "1" to every bit of a 512k block of memory. 

3. Read the 512k block twice; this fills the cache. 

4. Disable CS# and write "O" to the 512k block; this 
fills memory. 

5. Read the 512k block: 

• Repetitive assertions of ST ART# indicate the 
cache boundary (size of cache) 

• Data =I= 1 indicates bad tag or SAAM 

6. Repeat with "O" in the cache and "1" in memory. 

4.2 Sectored vs Non-Sectored Cache 

The 64k 485Turbocache Module was designed as a 
64k non-sectored cache; this means each tag of the 
cache points to 1 line of data in the cache memory. 
A 128k cache requires twice the number of tags to 
be non-sectored. This increases tag size, complexi­
ty, and reduces tag lookup speed. For this reason, 
the 128k 485Turbocache Module is a sectored 
cache. Each tag in the 128k 485Turbocache Module 
points to 2 consecutive lines in the cache. A Line 
Select bit, address bit A4, determines which line is 
being referenced. 

CS1 ...... 
A17 DECODE 

-.. CS2 ..... 
PRSN 1 

PRSN 2 
-.. CS3 .,,,.. 
--.-

PRSN 3 
CS4 

PRSN 4 ---i 

240722-12 

Figure 3.3. Chip Select Decoding 

5-194 



intef 485Turbocache Module 

Figure 4.1 is an example of one tag in a sectored 
cache. If this tag points to address 2500h, then the 
adjacent line is reserved for address 2510h (A4 
high). If, for example, address 2510 had been written 
first, the tag would still contain 25 and only address 
2500 could be placed in the first line. 

Since the Line Select Bit is used for a sectored ar­
chitecture, all set and tag address bits are shifted 
higher in the address space. The 128k 
485Turbocache Module internally compensates for 
this shift so pin-compatibility with the 64k 
485Turbocache Module is maintained. This allows 
either cache configuration, 64k 485Turbocache 
Module or 128k 485Turbocache Module, to be hard­
ware-transparent. 

Because a sectored cache references 2 consecutive 
lines, the odds of filling both. lines is reduced, and 
thus the hit rate of the cache. A sectored cache will 
have a slightly reduced hit rate compared to an 
equivalent non-sectored cache, but simulations 
have shown the performance penalties to be mini­
mal (1 to 2 percent). Simulations have also shown 
that a two-way set associative sectored 128k cache 
offers significantly better performance than a direct 
mapped 128k non-sectored cache. 

4.3 Performance Considerations 

The following section offers a few special considera­
tions that will increase cache performance or ease 
hardware design. These considerations are simply 
design notes and are not deviations from the i486 
Microprocessor specification. 

4.3.1 SKEN # ASSERTION 

SKEN# is an input to the 485Turbocache Module to 
indicate the cacheability of a line during a read miss 
cycle. It is sampled exactly like KEN# in the i486 
CPU, one clock before the first dword transfer of a 
line fill, and one clock before the last dword. 

During a line fill, the 485Turbocache Module loads 
the dwords of the line directly into the appropriate 
spot in cache memory. This means that once 

SKEN # has been sampled active by the 
485Turbocache Module, it must "commit" a line and 
invalidate a location to prepare for the incoming line. 
Once a line fill completes with a proper SKEN #, the 
line can be validated. 

A potential performance loss exists if a system de­
signer chooses, during non-cacheable cycles, to 
keep SKEN # active, but inactivate SKEN # the 
clock before the first transfer (see Figure 4.2). Once 
the 485Turbocache Module sees SKEN # low in the 
first T2, it commits a line in the cache by invalidating 
an entry despite the fact that SKEN # was later 
deasserted. The performance loss can be avoided if 
SKEN # was held inactive until cacheability could be 
determined. 

4.3.2 INVALIDATION WINDOW 

When an invalidation is requested with the assertion 
of EADS#, the 485Turbocache Module must imme­
diately invalidate the address present on the ad­
dress bus. If the tag portion of the 485Turbocache 
Module is in use, the invalidation takes priority and 
will suspend the other action .. This may decrease 
performance. To avoid this, EADS# should not be 
issued in the second, third or fourth transfer of a 
cache read miss cycle. Section 1.3.4 Invalidation Cy­
cles under Functional Description explains this in de­
tail. 

4.3.3 BOFF # ASSERTION 

If BOFF# is asserted and the 485Turbocache Mod­
ule is in the middle of a cacheable read miss cycle, 
the 485Turbocache Module treats the current line fill 
as non-cacheable. Once BOFF # is released and 
the cycle continues, the 485Turbocache Module will 
treat the rest of the cycle as a non-cacheable cycle. 

In most systems BOFF # is a rare occurrence, thus 
the performance loss is negligible. If, however, 
BOFF # is regular and predictable, system perform­
ance can be increased by timing BOFF # so that the 
four dword transfers of a line fill are never interrupt­
ed. Section 1.3.5 BOFF # Cycles under Functional 
Description explains aborted cycles in more detail. 

Tag Address 2500 Address 2510 

SET 0 ~.+I :o~~< I I : : : I 
Sector 1 Sector 2 

240722-13 

Figure 4.1 Sectored Example 

5-195 

El 



intef 485Turbocache Module 

T1 T2 T2 T2 

CLK 

ADS# 

BROY# 

BLAST# 

SKEN# 

240722-14 

Figure 4.2 Method of SKEN# Generation Not Recommended 

4.3.4 START# PREDICTABILITY 

ST ART#· is asserted in the first T2 of a read miss 
cycle unless an invalidation occurred in the previous 
cycle: The section titlecl "Invalidation Cycles" ex­
plains why START# may be delayed. If START# 
must be a predictable signal to the system, and in­
validation cycles cannot be timed to occur before 
the second transfer of a read miss cycle, there is a 
way to ensure the predictability of ST ART#. 

When EADS# is asserted towards the end of a read 
miss cycle, there are 3 tag accesses that need to be 
made before T1 of the next cycle: invalidate lookup, 
the actual invalidation (if a hit), and validation of the 
current line fill (if cacheable). Since there is no way 
to predict the hit/miss possibil.ity of an invalidation 
request, it is assumed that 2 tag accesses will be 
required to service it. One tag access can be saved, 
then, by making the current line fill non-cacheable. 

To do this, SKEN# to the 485Turbocache Module 
may be deasserted if AHOLD is detected. If SKEN # 
is cleasserted the clock before the last CBRDY #, 
the line is non-cacheable. Figure 4.3a shows how 

assertion of EADS# during the third transfer of a 
burst cycle incurs a .1 clock delay in ST ART#. Fig­
ure 4.3b shows EADS# as8ertion in the fourth 
clock, but since AHOLD will cause the CPU to delay 
ADS# at least one extra clock, ST ART# is delayed 
only 1 clock as well. Assertion of EADS# in the sec­
ond transfer of a burst .causes a 1 cl0ck delay in 
START# without deasserting SKEN# (see Figure 
4.3c), so there is no advantage in dropping SKEN# 
for EADS# assertion then. · 

In summary, if SKEN# is deasserted in response to 
AHOLD during the third of fourth transfer of a line fill, 
START# will be delayed at most 1 cl.ock. This 
makes START# predictable: It will always be valid in 
the second T2 of a read miss cycle. Note that if 
ST ART# was not delayed, its value .is retained in 
the second T2. 

5-196 



intef 485Turbocache Module 

i4BsTMcpu 
T2 T2 T2 T2 T1 T2 T2 

ACTIVITY 1 2 3 4 

MODULE 
INVALIDATE INVALIDATE BEGIN ISSUE 
LOOKUP TAG TAG START# 

ACTIVITY HIT/MISS LOOKUP• 

t 
EADS# OCCURS HERE 

240722-15 

a. 

i4BsTMcpu T2 T2 T2 T2 r•• T1 T2 T2 
ACTIVITY 1 2 3 4 i 

MODULE 
INVALIDATE INVALIDATE BEGIN ISSUE 
LOOKUP TAG TAG START# 

ACTIVITY HIT/MISS LOOKUP 

t 
EADS# OCCURS HERE 

240722-16 

b. 

i4ssTt.icpu T2 T2 T2 T2 T1 T2 T2 
ACTIVITY 1 2 3 4 

MODULE 
INVALIDATE INVALIDATE VALIDATE BEGIN TAG ISSUE 
LOOKUP TAG LINE FILL LOOKUP START# 

ACTIVITY HIT/MISS I 
t 

EADS# OCCURS HERE 
240722-17 

c. 

NOTES: 
•Tag Validation is not done since SKEN# was deasserted. 

••r1 occurs because AHOLD assertion and deassertion causes ADS# to be delayed. 

Figure 4.3 Predictable START# Delay 

5-197 



inter 485Turbocache Module 

5.0 MECHANICAL SPECIFICATIONS 

2.7" 

2.33" 

0.1" 0.1" 0.1" 
1-----l 

0 ~r0.1" o 0 0 
0 0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 

1.90" 

0 0 
0 0 
0 0 
0 0 

0 
0 0 
0 0 

Pin Side View 

Figures Not Drawn To Scale 

~----------''~ -U U U U 0.23 .. r03" 

OM$f=IT 
0.14'" :t0.02'' 

LJ 0.020" -..J Diameter 
Round 

3.2" 240722-19 

240722-18 

5-198 



intJ 485Turbocache Module 

6.0 ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias .... o·c to + 70°C 

Storage Temperature .......... - 55°C to + 150°C 

Voltage on Any Pin 
with Respect to Ground ... -0.5V to Vee + 0.5V 

Power Dissipation: 
64k 485Turbocache Module ................ 4W 
128k 485Turbocache Module ............... 6W 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. 

•WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

7.0 D.C. CHARACTERISTICS (Vee= 5V ±5%) 

Symbol 

V1L 

V1H 

Vol 

VoH 

Ve1L 

Ve1H 

Ice 

lu 

I Lo 

C1N 

CeLK 

Co 

NOTES: 

Parameter 

Input Low Voltage 

Input High Voltage 

Output Low Voltage 

Output High Voltage 

Clock Input Low Voltage 

Clock Input High Voltage 

Supply Current 
Supply Current 

Input Leakage Current: 
D0-031 and Parity 
DO-Q31 and Parity 
CLK 
CLK 
TAl15, TAl16, WPSTRR~ 
All Other Inputs 

Clock Input Capacitance 
Clock Input Capacitance 

1/0 Capacitance 

1. Measured at 4.5 mA. 
2. Measured at 1.0 mA. 

Min 

-0.3 

2.2 

2.4 

-0.3 

2.2 

5-199 

Max Unit Notes 

+0.8 v 
Vee+ 0.3 v 

0.4 v 

±20 
±40 

20 
20 
20 
20 
25 
45 

45 
75 

25 

v 2 

v 
v 

mA 82485MA 
mA 82485MB 

µA 
µA 
µA 
µA 
µA 
µA 

µA 
µA 

pF 
pF 
pF 
pF 
pF 
pF 
pF 
pF 

pF 

82485MA 
82485MB 
82485MA 
82485MB 

82485MA 
82485MB 

82485MA 
82485MB 

82485MA 
82485MB 

I 



intef 485Turbocache Module ~00!§!!..Dli'1JDOO~OOW 

8.0 A.C. CHARACTERISTICS (Vee = 5V ± 5%) 
All A.C timings are tested with a capacitive load of 50 pF unless otherwise specified. 

25MHz 33MHz 
Symbol Parameter Fig. Notes 

Min{ns) Max{ns) Min{ns) Max{ns) 

t1 CLK Period 40 42 30 42 9.1 

t2 CLK High Time 14 11 9.1 

ts CLKLowTime 14 11 9.1 2 

t4 CLKFallTime 4 3 9.1 

ts CLK Rise Time 4 3 9.1 

t5 A2-A31, BEO#-BE3# Setup 17 ~3 9.3 
Non-Snoop 

t6a A2-A31, BEO#-BE3# Hold Non-Snoop 3 9.3 

t1 ADS#, M/10#, W/R# Setup 17 9.2 

t1a ADS#, M/10#, W/R# Hold 9.2 

ta BLAST# Setup 9.2 

taa BLAST# Hold 9.2 

tg CADY#, CBRDY # Setup 5 9.2 

t10 CADY#, CB ADY# Hold 3 9.2 

t11 SKEN;if Setup 5 9.2 

t12 SKEN# Hold 3 9.2 

t13 5 9.2 

t14 3 9.2 

t15 WP Setup 8 9.2 3 

t16 WP Hold * 3 3 9.2 

t17 BOFF# Setup 10 8 

t19 BOFF# Hold 3 3 

t19 EADS# Setup 8 5 9.3 4 

t20 EADS# Hold 3 3 9.3 

t21 A4-A31 Setup (Snoop) 5 5 9.3 

t22 A4-A31 Hold (Snoop) 3 3 9.3 

t23 RESET, FLUSH# Setup 10 5 9.4 

t24 RESET, FLUSH# Hold 3 3 9.4 

t25 RESET, FLUSH# Pulse Width 60 45 
(Asynchronous Use) 

5-200 



intef 485Turbocache Module 

8.0 A.C. CHARACTERISTICS (Vee= 5V ±5%) (Continued) 
All AC timings are tested with a capacitive load of 50 pF unless otherwise specified. 

Symbol Parameter 
Mln{ns) Max{ns) 

Fig. Notes 

t26 BRDYO# Valid 16 9.3 

t27a CKEN# Valid 3 15 9.3 

t27b CKEN# Hold 12 9.3 5 

t28 START# Valid 5 16 9.2 

t29 24 9.3 6 

t3o CS# Setup 6 9.2 7 

t31 CS# Hold 3 9.2 

NOTES: 
1. At 2.2V. 
2. At O.BV. 
3. Setup to CLK edge of third BROY# in line fill. 
4. Setup to CLK edge where EADS# is valid. 
5. Hold time from CLK edge in which CKEN# will be sampled. 
6. Valid up to CL = 100 pF. 
7. At the clock edge in which ADS# or EADS# is sampled. 

I 

5-201 



intJ 485Turbocache Module 

9.0 WAVEFORMS 

240722-20 
tx = input setup times 
ty = input hold times, output float, valid and hold times 

Figure 9.1. CLK Waveforms 

T1 T2 T2 T2 T2 T2 T1 T2 

CLK 

ADS# 

START# 

SKEN# 

DATA 

CBRDY# 

t9 
WP 

CS# 

BLAST# 

240722-21 

Figure 9.2. Write Protected Read Miss 

5·202 



intef 485Turbocache Module 

T1 T2 T2 T2 T2 T1 T2 T2 

CLK 

ADS# 

START# 

DATA 

BRDYO# 

CKEN# 
( 1) 

CKEN# 
(2) 

AHOLD 

EADS# 
t6 t6a 

ADDR 

CS# 

BLAST# 

1. Normal CKEN # behavior. 
240722-22 I 

2. CKEN# behavior if line is Write Protected and WPSTRP# is low. 

Figure 9.3. Read Hit Cycle and Write Cycle with Invalidation 

CLK 

RESET 

FLUSH# 

240722-25 

Figure 9.4. RESET and FLUSH # 

5-203 



intJ 485Turbocache Module 

T1 T2 T2 T2 T1 T2 T2 T2 

CLK 

ADS# 

START# 

SKEN# 

DATA 

CBRDY# 

CROY# 

CS# 

BLAST# 

240722-23 

Figure 9.5. Multiple Cycle Line Fill 

Read Hit with Invalidation Delayed START# Assertion 
T2 T2 T2 T1 T2 T2 T2 T2 

CLK 

ADS# 

START# 

EADS# 

DATA 

CBRDY# 

BLAST# 

CS# 

240722-24 

Figure 9.6. lnvalldatlon Causing Delayed START# 

5·204 



intJ 485Turbocache Module 

10.0 REVISION HISTORY Section 2.1.9 Corrected RESET specifications. 

Revision -002 of the 485Turbocache Module Data 
Sheet contains several updates and corrections to 
the original version. A revision summary of major 
changes is listed below: 

Throughout The name of the cache module has 
Document been changed from Turbocache 486 

Module to 485Turbocache Module. 

Section 1.3.1 Clarified that all transfers seen by the 
485Turbocache Module are assumed 
to be 32-bit transfers. 

Section 1.4 Removed one incompatibility between 
the 485Turbocache and the i486 
CPU. 

Section 5.0 

Section 6.0 

Section 7.0 

Section 8.0 

5-205 

Made mechanical specifications more 
precise. 

Modified absolute maximum ratings. 

Modified V1H and Vol specifications. 
Added input and output leakage cur­
rent specifications. 

Corrected AC specifications t7 and 
t25· Added AC specifications t6a and 
t?a· 

I 



82485 
SECOND LEVEL CACHE CONTROLLER 
FOR THE i486™ MICROPROCESSOR 

• High Performance 
- Zero Wait State Access on Cache Hit 
- One Clock Bursting 
- Two-Way Set Associative 
- Write Protect Attribute Per Tag 
- Start Memory Cycles in Parallel 

• Easy to Use 
- Matches i486™ Microprocessor Bus 

Timing 
- Supports Invalidation Cycles 
- Maintains Memory on Writes 

• High Integration 
- Single Chip Tag RAM and Controller 
- No Logic Needed for CPU and Cache 

Connection 
- Maps Full 4 Gigabyte Address Space 

• Flexible System Configurations 
-Supports 64K or 128K Cache 

Memory Per Controller 
- Allows Multiple Controllers for 

Larger Cache Size 
- Supports Non-Cacheable Memory 

Areas 

The 82485 is a second-level cache controller designed to improve the performance of i486™ Microprocessor 
systems. One 82485 cache controller supports 64K or 128K bytes of second level cache memory that maps to 
the entire 4 Gigabytes of the i486 microprocessor address space. The controller is completely software 
transparent. Several controllers may be cascaded to provide larger cache sizes. One controller plus SRAMs 
provides a 64K or a 128K cache. External EPROM can be cached yet remain write protected. The 82485 is 
fully compatible with the i486 microprocessor. All i486 CPU bus cycles and timings are supported. 

A complete, optional second level cache controller using the 82485 is available as the 485Turbocache Module 
from Intel (data sheet order number 240722). 

i486 is a trademark of Intel Corporation. 

82485 Internal Block Diagram 

---------------~~ADDRESS 

ADDRESS--1-M SNOOP 
REGISTER 

s~ci~~~ ------

PROii~~~~~ ------

ADDRESS 
REGISTER 

SYSTEM 
INTERFACE 

PROCESSOR 
INTERFACE 

CLK --r----+tL.,_ ____ J......., 

MUX 

START#----------------' 

CMP 

I 

2 WAY 
TAGRAM 

CMP 

TAGRAM CONTROL 
AND TIMING 

SRAM CONTROL 
AND TIMING 

For the complete data sheet on this device, contact Intel's Literature Distribution Dept., (800) 548-4725. 

5-206 

240831-1 

November 1990 
Order Number: 240831-001 



APPLICATION 
NOTE 

AP-447 

November 1990 

A Memory Subsystem for 
the i486™ CPU including 

Second Level Cache 

GREGORY A. ROBERTSON 
SENIOR APPLICATION ENGINEER 

5-207 
Order Number: 240799-001 



A MEMORY SUBSYSTEM FOR THE i486™ CPU 
INCLUDING SECOND LEVEL CACHE 

CONTENTS PAGE CONTENTS PAGE 

1.0 INTRODUCTION ................... 5-209 5.3 Address Path Control ............ 5-228 

2.0 THE 485TURBOCACHE SECOND 5.4 DRAM Interface ................. 5-228 

LEVEL CACHE MODEL ............. 5-209 5.5 Controller Signals ............... 5-229 

3.0 PROCESSOR FEATURE 
REVIEW .............................. 5-215 

5.6 Read Cycles ..................... 5-229 
5.7 Write Cycles ......... : ........... 5-231 

3.1 The Burst Cycle ................. 5-215 5.8 Consecutive Bus Cycles ......... 5-233 

3.2 The KEN# Input ................. 5-216 5.9 Page Miss Cycles ................ 5-234 

3.3 Bus Characteristics .............. 5-217 5.10 Refresh Cycles ................. 5-236 

4.0 DRAM INTERFACE OVERVIEW ... 5-220 
4.1 Functional Blocks ............... 5-220 
4.2 Address Path Logic .............. 5-221 
4.3 Data Path ....................... 5-223 
4.4 Second Level Cache Support . . . . 5-224 
4.5 Control Logic .................... 5-225 

6.0 CONTROLLER 
IMPLEMENTATION ................. 5-237 
6.1 Cycle Tracking Logic ............ 5-238 
6.2 RAS# Logic ..................... 5-241 
6.3 CAS# Logic ..................... 5-242 
6.4 Write Control Logic .............. 5-244 
6.5 Burst Address Logic ............. 5-244 

5.0 MEMORY SUBSYSTEM 
FUNCTION .......................... 5-227 7.0 SUMMARY ......................... 5-246 

5.1 CPU Interface Function .......... 5-227 7.1 Timing Restrictions .............. 5-247 

5.2 Data Path Control ............... 5-228 APPENDIX A .......................... 5-248 

5-208 



intJ AP-447 

1.0 INTRODUCTION 

The i486™ CPU contains several improvements over 
its predecessor, the highly successful 386TM CPU. One 
of the most important of these is the processor's data 
access rate. The i486 CPU can access instructions and 
data from its on-chip cache in the same clock cycle. To 
support the processor's redesigned internal data path, 
the external bus has also been optimized and can access 
external memory at twice the rate of the 386 CPU. The 
internal cache requires rapid access to entire cache 
lines. Invalidation cycles must be supported to maintain 
consistency with external memory. All of these func­
tions must be supported by the external memory sys­
tem. Without them, the full penormance potential of 
the CPU cannot be attained. 

The requirements of todays multitasking and multipro­
cessor operating systems also put increased demand on 
the external memory system. OS support functions 
such as paging and context switching can degrade refer­
ence locality. Without efficient access to external mem­
ory, the performance of these functions is reduced. 

Second level caching is a technique used to improve the 
memory interface. Some applications, such as multiuser 
office computers, require this feature to meet perform­
ance goals. Single-user systems, on the other hand, may 
not warrant the extra cost. Given the variety of applica­
tions incorporating the i486 CPU, memory system ar­
chitecture will be very diverse. 

In this application note, we will work with an example 
to discuss the details of memory system design. In the 
example, we have supported as many functions of the 
CPU as possible. An optional second-level cache is in­
cluded. A write buffer is also implemented to reduce 
write latency. The cache supports zero wait state read 
cycles. The DRAM controller supports the following 
devices with the wait states shown in Table 2. The 
DRAM speed given in Table 1 is the RAS access time 
(tRAC). Table 2 summarizes the bus clocks required 
for each function. 

Table 1 

CPU Clock Freq. 
DRAM 
Speed 

25MHz 100 ns 

33MHz 70 ns 

Many of the functions and optimizations included here 
will not be required in every application. The example 
provides guidelines for the hardware designer but will 
not necessarily provide the optimal cost/performance 
solution for many applications. For example, 11 PLDs 
are required to implement the memory control logic 
partially due to the implementation of a back-off capa­
bility. An address register must also be used to imple­
ment this function. If this function is not used, the con-

trol logic can be substantially reduced. These and other 
optimizations will be discussed in the summary. 

Table2 

DRAM First Subsequent Write 
Function Access Burst Cycles Burst Accesses 

Page Hit 3 1 2 

Page Miss 7 1 5* 

NOTE: 
*Write miss latencies occur only during cycles subsequent 
to a write miss cycle. 

The discussion assumes a working knowledge of com­
puter system design. Items discussed but not explained 
include DRAM operation, PLD programming and op­
eration, worst-case timing analysis and i486 CPU bus 
operation. The complete schematics and PLD equa­
tions are in Appendix A. 

2.0 THE 485TURBOCACHE SECOND 
LEVEL CACHE MODULE 

Several different types of second level cache architec­
tures are possible candidates for use with the 486 CPU. 
For single cpu systems the different architectures offer 
similar performance benefits in most cases. The reason 
they are so similar is the mechanism which improves 
performance. The primary benefit of the second level 
cache is bus cycle latency reduction. 

In most systems which incorporate a single i486 CPU, 
bus traffic from other bus masters is minimal. With any 
reasonable memory system the CPU uses at most 50% 
to 70% of the bus. Therefore reduction of bus cycle 
latency is the only performance benefit external logic 
can offer. 

The second level cache used in this example is an eco­
nonmical method of reducing read cycle latency. The 
485Turbocache module contains the control circuits 
data and tag ram required to implement a 128k byt~ 
cache. It is organized as a two way set associative 
cache. Modules can be cascaded to provide up to 512K 
bytes of cache memory. 

One of the most interesting aspects of this device is it 
can be a system option. To provide this capability the 
device is configured as a look-aside cache. It monitors 
the CPU address and control signals. When a cycle 
occurs in which the cache can supply data, it inter­
venes. The cache module then supplies an entire 
16-byte line with no wait states. 

The performance improvement offered by this cache is 
substantial in some environments. This performance 
improvement is particularly obvious when executing 
multitasking, multiuser operating systems such as 

5-W9 

I 



AP-447 

UNIX and OS/2. Some users, however, ·may not re­
quire the performance improvement offered by the 
cache. In these cases the cache as an option is attract­
ive. 

By' designing the cache subsystem as an option both 
user's requirements can be met. A single system design 
can be manufactured for both customers. The UNIX oi: 
OS/2 user can add the cache module. Other users may 
or may not require the module. They can choose the 
system configuration which meets their price-perform­
ance needs. 

When a single or multiple 485Turbocache Module de­
vices are connected to an i486 processor· system, the 
processor's internal cache should map ·the entire ad­
dress space including that of the 485Turbocache Mod­
ule devices to provide the highest performance. This is 
the most efficient configuration.· The i486 CPU can ac­
cess a line from its internal cache in one clock and the 
485Turbocache Module provides the next fastest access 
in two clocks for the first doubleword and the remain­
ing three doublewords in three clocks. 

CKEN# 

CS# 

r. I KEN# CKEN# .... 
I:' CS# 

CKEN# 

~ 
Al& 0 

A17 1 

ADS# PLD 
~KEN# 

2 

EADS 3 CS# 
~ 

No matter how many 128-kbyte modules are cascaded, 
the set and tag addresses are connected to the same pins 
on the 485Turbocache Module. The processor's address 
bits A2-A31 are connected to A2- -A31 on the 
485Turbocache Module .. Internally, address. bits A4-
A15 are sent to both sets, to seleet one of 4,096 loca­
tions. Because the· cache is two-way set associative, 
each address points to information stored in two banks. 
On each read or write cycle, the value of A16-A31 is 
compared to the tags stored at the location addressed 
by A4-Al5. If they are equal, and if the valid bit is set, 
then a hit occurs. If a read cycle is in progress, then the 
485Turbocache Module returns data to the i486 CPU. 
If the hit cycle is a write cycle, then the new data is 
updated ¥t the 485Turbocache Module. 

When multiple 485Turbocache Modules are used, the 
chip Select starts by decoding A16 onwards. For exam­
ple, with a 256-kbyte cache A16 and A17 are decoded 
for generating the CS#. The set and tag addresses of a 
system with four 485Turbocache Modules is shown in 
Figure 1. 

SYSTEM KEN# 

START# 

485TURBOCACHE 
MODULE SKEN# 

START# L......._. SYSTEM 
START# 

485TURBOCACHE SKEN# ·~ MODULE 

START# 

485TURBOCACHE 
.._SKEN# MOOULE 

START# 

485TURBOCACHE 
.._SKEN# MODULE 
~ 

240799-71 

Figure 1. Multiple 485Turbocache Module Configuration 

5-210 



intef AP-447 

The BRDYO# output and the CBRDY# input must 
be used in forming of the i486 CPU's BRDY # input. 
Similarly, the CRDY# input must be used in forming 
of the i486 CPU's RDY # input. Signals that are com­
mon to the i486 CPU and the 485Turbocache Module 
include BOFF#, BLAST#, EADS#, BEO#-BE3#, 
and DPO-DP3. 

The memory system generates KEN# to the i486 CPU 
when read data needs to be cached. The 485Turbocache 
Module receives this signal as the SKEN # input and 
produces CKEN # when appropriate. The 
485Turbocache Module's CKEN # output can be used 
in the formation of the KEN# input to the i486 CPU. 
CKEN # can be used in conjunction with other logic 
that can deassert KEN# to the CPU when the system 
wants the current line fill to be cached by the 
485Turbocache Module and not cached in the i486 
CPU. The CKEN# signal is always asserted in Tl, but 
is then deasserted if CS# is inactive. 

The 485Turbocache Module connects directly to the 
i486 CPU's address lines A2-A3l. The designer may 
have to add external buffers to the address outputs, 

depending upon the loading. Other signals connected to 
the i486 CPU include the burst control signals, the bus 
cycle definition signals, the byte enables, the ADS# 
signal, and the data and parity signals. The 
485Turbocache Module and CPU connections are 
shown in Figure 2. The 485Turbocache Module main 
memory controller and bus controller interface are 
shown in Figure 3. 

Read Hit Cycles 

A read hit cycle occurs when requested data is present 
in the 485Turbocache Module. The i486 CPU attempts 
to retrieve the entire line from the 485Turbocache 
Module without incurring wait states. This may be ac­
complished by activating the KEN# input at the end 
of Tl (the clock in which ADS# becomes active). 
There is very little time to decode the address, generate 
the KEN# signal to the i486 CPU, and complete a 
zero wait state read operation. Because KEN# is sam­
pled twice, it is possible to always assert KEN# in Tl 
and to wait until the end of a line fill to decide whether 
the data is cacheable. (See Section 3.2.) 

r-------------1 
00-031, DPO-DP3 I 

' 
A2·A31, BEO#-BE3#, 

' l T 
ADS#, M/10#, W/R# 

1 ! i t .. I WP • - ..... - CKEN# ... j CBRDY# - BRDYO# - I CROY# 485TURBOCACHE 
MODULE j SKEN# 

START#j -
I 1486'" CPU . ' t j j1 MAIN 

I EADS# 
MEMORY 

..... - J FLUSH# - j BOFF# -BLAST# l ..... 
I 

1 I j 
.1. 

CLK,RESET I 

L-------------~ 
240799-72 

Figure 2. 485Turbocache Module and i486™ CPU Connections 

5-211 

I 



intef AP-447 

r--------------1 
I 00-031 DPO DP3 

' - _L 

~ ~A31,BEO#-BE3#,-r ADS#, M/10#, W/R# ' ~ 

1 1 ~ 1 I ~ 

-- WP 

CKEN# j_ CBRDY# 
~ 

BRDYO#_j_ CROY# -- 485TURBOCACHE --~ 

T MODULE SKEN# 

START# 

I --
I ' ~ ~ ' 1 MAIN 

i486'" CPU MEMORY 

l EADS# 

j_ FLUSH# 
~ 

I BOFF# 

~BLAST# I ...... 

i --
I I J 

CLK RESET I 
I 
L--------------~ 

240799-73 

Figure 3. 485Turbocache Module and Main Memory Connections 

CKEN # is used in the formation of the KEN# signal 
to the i486 CPU. Therefore, CKEN # is always activat­
ed in Tl (see Figure 4 and Figure 5). If a read hit 
occurs, data can be sent to the i486 CPU in zero wait 
states and can still be cached in the processor's on-chip 
cache. The 485Turbocache Module asserts CKEN # 
which remains asserted for the duration of the read hit 
cycle (unless WPSTRP# is low and the line is write 
protected). This means that the i486 CPU will cache 
the entire line unless external logic is added to cause the 
KEN# signal to be sampled high in the clock before 
the last BRDYO# from the 485Turbocache Module. 

If the CKEN # input from the 485Turbocache Module 
is connected directly to the KEN# input of the i486 
CPU, then the CPU will always sample KEN# active 
at the end of TI. To deassert KEN# to the processor, 
the system must create another signal that is used in the 
formation of the i486 CPU's KEN#, and the 
485Turbocache Module's SKEN #. Using this tech­
nique a non-cacheable, non-burst cycle can be per­
formed. 

The BROY# signal to the i486 CPU can be generated 
from many sources. Therefore, the various signals 

5-212 



AP·447 

should be logically "ORed" to generate the actual i486 
BRDY # input. 

On a cache read hit, the 485Turbocache Module gener­
ates a BRDYO# signal for each of the doublewords it 
transfers. The 485Turbocache Module asserts 
BRDYO# in the first T2 cycle, and BRDYO# remains 
asserted for the duration of the burst. If the i486 CPU 
either terminates a burst early or fails to generate a 
burst cycle as defined by BLAST#, the 485Turbocache 
Module will deassert BRDYO# after the i486 CPU has 
sampled the required data. 

CLK 
ADDR 

ADS# 

W/R# 
M/10# 

READ HIT 

Write Cycles and 1/0 Cycles 

The 485Turbocache Module is a write-through cache, 
so main memory is updated with every write hit or 
miss. The 485Turbocache Module is not required to 
generate a ready signal to the i486 CPU for write cy­
cles. However, it does perform a comparison and up­
dates the cache memory when a write hit occurs (pro­
vided the location isn't write protected). The 
485Turbocache Module is not updated on write misses. 
The timings for write operations are shown in Figure 4 
and Figure 5. 

WRITE MISS 

CROY# 

CBRDY#l--4------1------+-----~------+-----T------T------+----l--­

BLAST# 

CKEN# 
NOTE 1 -----

BRDYO#r-"t"----t-'""\ .... J._~W~P~S~T~R~P~&~W~P~l ........ -i-.... r--r-----t----i---
START# I 

240799-74 

Figure 4. Read Hit-Write 

5-213 

I 



intef AP·447 

CLK 

ADDR 

ADS# 

W/R# 

M/10# 

CROY# 

CBRDY# 

BLAST# 

SKEN# 

CKEN# 

WP 

BRDYO# 

START# 

WRITE HIT 

T1 I T2 I 
READ MISS (1 CLK BURST) 

T1 I T2 I T2 I T2 I T2 .1 T2 

240799-76 

Figure 5. Write-Read Miss 

Because the 485Turbocache Module is a write-through 
cache, writes are immediately forwarded to the system. 
If a processor write occurs on a valid entry that is not 
write protected, the new data will be stored into the 
memory in zero wait states. The 485Turbocache Mod­
ule will not generate a ready signal. It is the systems's 
responsibility to update the system memory on all 
writes and to terminate all cycles with a ready signal. 
Even after the 485Turbocache Module has completed 
its internal write update, it remains idle until the system 
returns a ready to the processor. 

A cache location can be write protected by asserting the 
WP input to the 485Turbocache Module. The WP sig­
nal must be valid during the third BRDYO# or RDY # 
of a cache line fill cycle. It sets a state bit within a 
particular cache location and remains in effect until the 
bit is invalidated. Tieing WPSTRP # low will not allow 
the write protected entry to be cached by the i486 CPU 
in subsequent accesses. The entry can be invalidated by 

any of the following: a flush operation, a reset opera­
tion, an invalidation cycle, or an LRU replacement. 

When an i486 CPU cycle produces a .write hit to a 
write-protected 485Turbocache Module location, data 
in the cache is not modified. The 485Turbocache Mod­
ule responds in the same way whether or not a write hit 
location is write protected by asserting the START# 
signal. It is the designer's responsibility to prevent in­
consistencies between the 485Turbocache Module and 
main memory when using the WP signal. 

The 485Turbocache Module ignores all 1/0 cycles. 
When an 1/0 cycle is executed by the i486 processor, 
the system responds and terminates .the cycle. The 
485Turbocache Module does not assert the START# 
signal for 1/0 accesses, and the system should monitor 
the M/10# signal rather than wait for the assertion of 
the START# signal. 

5-214 



infel" AP-447 

System Cacheability Indication 

The 485Turbocache Module uses the cache enable 
scheme of the i486 CPU. A cache update to the 
485Turbocache Module requires activating the 
SKEN # signal. The signal is sampled twice, first on 
the rising clock edge before the first ready signal from 
BRDY # or RDY #, and again on the rising clock edge 
before the last ready. If SKEN# was deasserted at ei­
ther of the specified sample times, then the access is 
considered non-cacheable. SKEN # is ignored during 
write cycles. 

Typically, the system will use the same logic to gener­
ate the i486 CPU's KEN# signal and the 
485Turbocache Module requires activating the 
SKEN # signal. However, it is not necessary for both to 
be asserted during an access. It is possible to use differ­
ent cacheing maps for the CPU cache and the 
485Turbocache Module cache because the i486 CPU 
and the 485Turbocache Module maintains their own 
cache contents via snooping. 

Cascadable Cache 

The 485Turbocache Module can be cascaded to config­
ure a deeper cache memory for the processor. Up to 
four can be used to provide as much as 512 kbyte of 
cache. 

System Control Signals and Cascadable 
Caches 

The START# signal used by memory is the logical OR 
for each individual 485Turbocache Module START# 
output. If any cache has information that is needed by 
the processor, then its START# signal is at a high 
level, and it inhibits the main memory START# signal 
(as there is no need to access the main memory). If 
needed data is not present in any of the 485Turbocache 
Modules, then the START# signals are low, and main 
memory data is accessed. 

The KEN# input to the i486 processor should be a 
logical OR for each of the 485Turbocache Modules and 
for a memory controller output. The memory control­
ler output can be asserted high to indicate that the in­
formation to the i486 CPU is non-cacheable. 

The SKEN # signal is the cache input to the 
485Turbocache Module. The memory controllers must 
assert SKEN # when a transfer to the 485Turbocache 
Module is cacheable. The SKEN # inputs for all of the 
485Turbocache Modules must be tied together. The 
controller that has its CS# asserted determines which 
cache will receive the information. 

The EADS# signal from the memory controller must 
be connected to the i486 CPU and to all of the 
485Turbocache Modules. In this way, invalidation cy­
cles are executed in all the 485Turbocache Module de­
vices simultaneously. 

The entire memory space is covered in a single cache or 
a cascaded cache configuration. When multiple 
485Turbocache Modules are used, only one 
485Turbocache Module is selected by asserting the 
CS# pin. 

For example, TAO through TA15 are always connect­
ed to A 16 to A3 l. In the configuration with one 
485Turbocache Module, the chip select is grounded. In 
the two 485Turbocache Module configurations, A16 is 
used to decode between the two caches. In the four 
485Turbocache Module configurations, A16 and A17 
are used to generate the CS# signals. 

3.0 PROCESSOR FEATURE REVIEW 

The improvements made to the CPU bus interface obvi­
ously impact the memory subsystem design. It is im­
portant to understand the impact of these features be­
fore attempting to define the system. This section is a 
review of the bus features which affect the memory in­
terface. The features and their impact on memory sys­
tem design is discussed. 

3.1 The Burst Cycle 

The i486 CPU's burst bus cycle feature has more im­
pact on the memory logic than any other feature. It is 
tne most significant departure from previous bus archi­
tectures. A large portion of the control logic is dedicat­
ed to supporting this feature. The second level cache is 
also primarily dedicated to supporting burst cycles. 

To understand why the logic is designed this way, we 
must first understand the function of the burst cycle. 
Burst cycles are generated by the CPU if, and only if, 
two events occur. First, the CPU must request a cycle 
which is longer in bytes than the data bus can accomo­
date. Second, the BRDY # signal must be activated to 
terminate the cycle. When these two events occur a 
burst cycle will take place. Note that this cycle will 
occur regardless of the state of the KEN# input. The 
KEN# input's function is discussed in the next section. 

With this definition we see that several cases are includ­
ed as "burstable". Some examples of burstable cycles 
are listed in Table 3. These cycle's length is shown in 
bytes to clarify the case listed. 

5-215 

I 



AP-447 

Table 3 

Burst Bus Cycle 
Size 

{bytes) 

All Code Fetches 16 

Descriptor Loads 8 

Cacheable Reads 16 

Floating Point Operand Loads 8 

Bus Size 8(16) Writes 4 (max) 

The last case shows that write cycles are burstable. In 
this case a write cycle is transfered on an 8 or 16 bit 
bus. If BRDY # is returned to terminate this cycle the 
CPU will generate another without activating ADS#. 

Using the burst write feature has debatable perform­
ance benefit. Some systems may implement special 
functions which benefit from the use of burst writes. 
However, the 486 CPU does not write cache lines. 
Therefore, all write cycles are 4 bytes long. Also, most 
of the devices which use dynamic bus sizing are read 
only. This fact further reduces the utility of burst 
writes. 

Due to these facts, the design example used here does 
not implement burst write cycles. In fact, the BRDY # 
input is only asserted during main memory read cycles 
and cache hit cycles. RDY # is used to terminate all 
memory write cycles. RDY # is also used for all cycles 
which are not in the memory subsystem or are not ca­
pable of supporting burst cycles. The RDY # input is 
used, for example, to terminate an EPROM or I/0 cy­
cle. 

ADS# 

BLAST# 

KEN# 

DATA 

BROY# 

T1 T2 

SAt.lPLE.D 
HERE 

/ 

T2 

3.2 The KEN# input 

The primary purpose of the KEN# input is to deter­
mine whether a cycle is to be cached. Only read data 
and code cycles can be cached. Therefore, these cycles 
are the only cycles affected by the KEN# input. 

Figure 6 shows a typical burst cycle. In this sequence 
the value of KEN# is important in two different 
places. First, to begin a cacheable cycle KEN# must be 
active the clock before BRDY # is returned. Second, 
KEN# is sampled the clock before BLAST# is active. 
At this time the CPU determines whether this line will 
be written to the cache. 

The state of KEN# also determines when read cycles 
can be bursted. Most read cycles are initiated as 4 byte 
long from the CPU's cache unit. When KEN# is sam­
pled active the clock before BRDY # or RDY # is re­
turned, the cycle is converted to a 16 byte cache line fill 
by the bus unit. This way, a cycle which would not 
have been bursted can now be bursted by activating 
BRDY#. 

Some read cycles can be bursted without activating 
KEN#. The most prevalent example of this type of 
read cycle is code fetches. All code fetches are generat­
ed as 16-byte cycles from the CPU's cache unit. So, 
regardless of the state of KEN#, code fetches are al­
ways burstable. In addition, several types of data read 
cycles are generated as 8-byte cycles. These cycles, 
mentioned previously, are descriptor loads and floating 
point operand loads. These cycles can also be bursted at 
any time. 

T2 T2 

240799-1 

Figure 6. Typical Burst Cycle 

5-216 



intef AP-447 

It's obvious that the use of the KEN# input affects 
performance. The design example used here illustrates 
one way to use this signal effectively. 

The primary concern when using KEN# is generating 
it in time for zero wait state read cycles. Most main 
memory cycles will be zero wait state if a second level 
cache is implemented. In this example, the main memo­
ry is one wait state during most read cycles. Any Cache 
access will take place with zero wait states. KEN# 
must, therefore, be valid during the first T2 of any read 
cycle. 

Once this requirement is established, a problem arises. 
Decode functions are inherently asynchronous. There­
fore, the decoded output which generates KEN# must 
be synchronized. If not, the setup and hold times of the 
CPU will be violated and internal metastability will re­
sult. With synchronization, the delay required to gener­
ate KEN# will be at least three clocks. In this example 
4 clocks are required. In either case the KEN# signal 
will not be valid before BRDY # is returned for zero or 
one wait state cycles. 

This problem is resolved if KEN# is made normally 
active. Figure 7 illustrates this function. In this diagram 
KEN# is active during the first two clocks of the burst 
cycle. If this is a data read cycle, KEN# being active at 
this time causes it to be converted to a 16 byte length. 
The decode and synchronization of KEN# takes place 
during the first two T2 states of the cycle. If the cycle 
turns olit to be non-cacheable, KEN# will be deacit­
vated in the third T2. Otherwise KEN# will be left 
active and the data retrieved will be written to the 
cache. 

T1 

ADS# 

BLAST# 

KEN# 

DATA 

BRDY# 

T2 

SAMPLED 
HERE 

/ 

T2 

Some memory devices may be slow enough that 16-byte 
cycles are undesireable. In this case more than three 
wait states will exist. The KEN# signal can be deacti­
vated prior to returning RDY # or BRDY # if three or 
more wait states are present. As a result these slow 
cycles will not be converted to 16-byte cache line fills. 

3.3 Bus Characteristics 

The internal cache causes other effects which impact 
the memory subsystem design. Perhaps the most obvi­
ous of these is the effect on bus traffic. The fact that the 
internal cache uses the write-through policy dramati­
cally increases the number of write bus cycles. Fig. 8 
illustrates this effect. The top chart shows the bus cycle 
mix for an application executed with the 386DX CPU. 
The bottom chart shows the same application executed 
with the i486 CPU. The percentage of write bus cycles 
jumps to 70% from 30% when this application is exe­
cuted with the i486 CPU. 

It seems intuitively obvious that many of these write 
cycles would be consecutive. In fact, 70% .of all write 
cycles are consecutive. Furthermore, 50% of all write 
cycles occur three in a row. It is obvious from these 
statistics that optimizing the memory subsystem for 
write cycles can improve performance. But it is impor­
tant to optimize the memory system for consecutive 
write cycles. Improving individual write cycle latency 
will not buy much performance if subsequent write cy­
cles suffer. 

A technique called write posting proves ideal for this 
purpose. This technique allows consecutive write cycles 
to be overlapped. It also allows write cycles to be over­
lapped with second level cache cycles and reduces over­
all write miss latency. 

T2 T2 

240799-2 

Figure 7. Burst Cycle KEN Normally Active 

5-217 

El 



intef AP-447 

386DX CPU Bus Cycle Mix 

1486 CPU Bus Cycle Mix 

Figure 8. CPU Bus Cycle Mix 

5-218 

FJI PREFETCH 

DREAD 

rm WRITE 

rm PREFETCH 

DREAD 

FJI WRITE 

240799-3 

240799-4 



intef AP-447 

Using the write posting technique adds complexity to 
the system logic. It is therefore valid to ask what per­
formance improvement is gained by using this tech­
nique. This question is especially pertinent when we 
consider the logic already implemented in the i486 
CPU to improve write performance. The internal i486 
write buffers decouple the processor execution unit 
from the external bus. 

Analysis has shown that, in general, 6% degradation in 
performance can be expected for every additional wait 

KSEL# 
FROM 

DECODE 
SYNCHRONIZER 

FROM KSEL# 

DECODE 

KMSEL# SYNCHRONIZER 

state added to write cycles. This analysis was per­
formed by measuring the CPU clocks required to exe­
cute several applications. 

The same analysis has shown that write posting reduces 
average write latency to 2.5 clocks. Without write post­
ing average write latency is 4 clocks. From this data we 
can conclude that approximately 9% performance im­
provement can be obtained by using write posting. This 
improvement may increase due to other affects. These 
affects, such as overlapping write cycles with cache 
reads, are discussed in subsequent sections. 

SKEN# 

(TO CACHE) 

KEN# 

(TO CPU) 

CKEN# 

(FROM CACHE) 
240799-5 

CKEN# 

(FROM CACHE) 

KEN# 

(TO CPU) 

MS KEN# (TO CACHE) 

240799-6 

Figure 9. KEN# Logic for Second-Level Cache 

5-219 



intef AP-447 

4.0 DRAM INTERFACE OVERVIEW 

The i486 CPU bus interface unit integrates several 
functions which improve the memory access rate. 
These features must be supported by the memory sub­
system to provide the intended performance benefit. 
They are supported by the memory subsystem example. 
The example also includes logic support for a second­
level cache. An overview of the subsystem is presented 
in this section. Details of the function and logic design 
of this subsystem are presented in later sections. 

This subsystem follows a modular design. Only minor 
changes to particular logic sections are needed to imple­
ment variations. For instance, the PLD which gener­
ates the CAS # signal needs only minor changes to sup­
port Static Column mode DRAMs. It is also simple to 
implement a non-interleaved DRAM controller based 
on this design. 

Other possible optimizations will be pointed out 
throughout the discussion. This first section summa­
rizes the features and functions present in the design 
example presented in this section. 

4. 1 Functional Blocks 

Two common design techniques are employed in inter­
facing the i486 CPU to DRAMs. The first, interleaving, 
is used to support the burst bus feature. The second, 
write posting, is used to reduce write cycle latency. 
Both techniques improve performance, and without 
them, performance is degraded by the access require­
ments of currently available DRAMs. 

Interleaving can be implemented in several ways. Here, 
alternate 32-bit DRAM banks are accessed.The bank 
accessed is determined by the value of A2. In this 
way,even DWORDs (A2 = 0) are stored in one bank 
while odd DWORDs (A2= 1) are stored in the other. 
When data is retrieved from memory during a cache 
line fill, cycles are overlapped to allow single clock 
DWORD accesses. Timing of this operation is detailed 
in the next section. 

A multiplexor alternates data flow between the DRAM 
banks and the appropriate data path is selected accord­
ing to the value of A2. The multiplexor prevents bus 
contention. 

With write posting, bus cycles are again overlapped to 
reduce latency. Figure I 0 illustrates how this technique 
is applied within the write cycle. The RDY # signal 
terminates the cycle in the clock after ADS# becomes 
active. This creates a zero- waitstate write cycle, the 
fastest possible. 

When the cycle terminates, however, data must still be 
written to memory. The delay allows additional 
DRAM access time. Figure 10 shows that data is actu­
ally written to memory two clocks after RDY # is re­
turned to the CPU. The CAS# signal completes the 
write cycle four clocks after it is started by the CPU. 

Write data and address registers support the posted 
write function by holding write data and address after 
RDY # is returned to the CPU. These registers are re­
quired to allow the CPU to start another cycle immedi­
ately following the first (see Figure 10). ADS# is acti­
vated in the clock after RDY # is returned to the CPU. 
This cycle starts before the first is complete, and the 
cycles overlap by two clocks. 

I I I I 

ADS# ~ 
I I I 

I I I 

PROCESSOR 
ADDRESS 
~2' 

RDY# 

LATCHED 
ADDRESS 

CAS# 

I 

~ 
I I l I I I 

I l I l I 
I I I 

----.....+--.--..,,-,' --' : : CYCLE 2 
-------'--'"-"CY"'C;;:L;;..;E 1 /DATA TO DRAM CYCLE 1 

: /' DATA TO DRAM 
I I I l 
I I 

----/------~' I I 

RDY# RETURNED 
TO PROCESSOR 

Figure 10. Write Posting 

5-220 

240799-7 



intef AP-447 

In effect the write cycle completes in two clocks. Write 
cycles can be overlapped in this manner indefinitely. 
The timing and logic required to support this function 
is described in Section 5.3. 

Address registers also support invalidation with the 
AHOLD signal. They are required if AHOLD is acti­
vated when bus are cycles in progress to hold the cur­
rent address while the bus cycle completes. 

The efficient CPU interface and invalidation support 
make this DRAM subsystem well-suited for use with 
an optional cache. The memory system includes specif­
ic functions designed to support the optional 486 Tur­
bocache module. The subsystem supports 256K X 4 
and lMbyte X 1 DRAM configurations.The minimum 
memory configuration is 2 Mbytes with 256K x 4 de­
vices; the maximum is 16 Mbytes with lMbyte X 1 
devices. Additional banks can be added to increase the 
memory capacity. 

The control logic for this example is implemented with 
EPLDs.The modular approach allows quick modifica­
tion so that the example can be tailored for specific 
implementation requirements. 

The control state machine is distributed among the var­
ious EPLDs, and each functional block receives control 
input from other blocks. In addition most of the func­
tional blocks are implemented as state machines. 

Figure l la is a top level block diagram of the memory 
system. This diagram depicts the sections of logic that 

Address 
-r 

ADDRESS 
'PATH 
LOGIC 

1 Cont~ Control 
i486TM Logic 

CPU 

Data DATA 
PATH 
LOGIC 

...._ OPTIONAL 

will be described subsequently. We will first discuss the 
address path logic. 

4.2 Address Path Logic 

Unlike processors without on-chip caches, the address 
bus of the i486 processor is bidirectional. The address 
pins serve as inputs whenever external memory is 
changed by DMA or another CPU. The address is driv­
en into the CPU to invalidate the corresponding cache 
entry if present. 

Invalidation 9f the 486 CPU's internal cache can be 
performed in several different ways. This example sup­
ports invalidation cycles during a memory access. 

As described in the previous section, AHOLD is used 
to perform the invalidation function. AHOLD tristates 
the 486 address bus. Address registers must be used to 
hold the address to allow the current bus cycle to be 
completed. These registers hold the current address 
when AHOLD is activated. 

The registers shown in Figure lib hold the entire row 
and column address, as well as the current byte enables 
and control definition. These signals are latched at the 
rising clock edge of the first T2 of a bus cycle. They 
must be held from this edge to allow zero wait state 
write cycles. 

Address_L__ 

10 

RAS#, CAS#, 
WE#, etc. DRAM 

ARRAY 

_L 

36 

L-- 485TURBOCACHE 
MODULE 

MEMORY SUBSYSTEM -------------------------------
Figure 11 a. Memory Subsystem Block Diagram 

5-221 

240799-75 



intef AP-447 

RAS# TO DRAM 

BURST ADDRESS 
BOA3 

_PA_1_3~~~~~~~~~~~~~~~~--;M BURST 1-~~~~~~~-+-B_1_A3-+ 

COLUMN 
ADDRESS 

PA4-PA12 

PA3 

LST# 

ALO# 

REG. 
COL 

REG. 
PIPE 

READ 
ADDRESS 

Add 
LOGIC 

MUXEN# 

DADDRO 
T 
0 

D 
R 
A 
M 

i WRITE ADDRESS 
DADDR1 

ROW 
ADDRESS 

PA13-PA22 
ROW 

ADDRESS 1-H-IT_#-~ 
COMP TO PAL 

6311 

240799-8 

Figure 11 b. Address Path Logic 

Registers with enable inputs are needed. The enable in­
put can select the CLK edge appropriate for latching 
the address and control state. The control logic gener­
ates the enable signal ALD which disables the CLK 
input of the registers during a bus cycle. When ALD is 
active (High) the current row and column addresses are 
held in the registers. 74AS823 registers have enable in­
puts and are used in this example. 

An additional address register is required for posted 
write cycles. This register holds the write column ad­
dress. The address is latched only on write cycles and is 
held until the write cycle completes at the DRAM. 

Separate write and read address paths are implemented 
with a 3 to 1 address multiplexor. The read address 
path is required to meet the timing of a three CLK read 
cycle. In this case the read address must propagate 
through the address mux one CLK sooner than the 
write address. If the initial read access is 4 CLKs long 
the read and write address paths can be combined. See 
section 5.1 for a complete description of read cycle tim­
ing. The third address path is for the row address. 

A delay line is used to meet the row address DRAM 
hold time requirement(tRAH). The RAS# signal is de­
layed 20ns to create the DRAS# signal. This signal is 
used as the multiplexor path select input. When 
DRAS# is inactive (high) the multiplexor always se­
lects the row address path. When DRAS# is active 

(low) the mux enable signal (MENO# or MENI#) 
controls whether the read path or the write path is se­
lected. 

The comparator and register combination is connected 
to the row address path to generate the HIT# signal. 
This signal indicates that the current cycles address is 
in th.e same DRAM row as that of the previous cycle 
and also determines whether RAS# will be deactivat­
ed. 

In this example a standard component designed specifi­
cally for this purpose is used. This component contains 
a register and a comparator. The register in this compo­
nent holds the previous row address. When a bus cycle 
occurs to a new DRAM row, the new row address is 
latched. The RALE signal enables the row address 
latch. 

The timing of this component meets the requirements 
of a 33 MHz CPU clock. Discrete registers and com­
parators can be used to improve the timing of the 
HIT# signal, if desired. 

The last important address logic component is the burst 
address generator. This state machine generate A3 and 
A2 during burst accesses and is needed to achieve zero 
wait state performance during burst cycles. It predicts 
the value of A2 and A3. Section 5.6 contains a com­
plete description of the burst cycle timing. 

5-222 



intJ AP-447 

Note that because interleaving is used, A3 is the lowest 
order DRAM address. Two A3 equivalent signals are 
generated. One for Bank 0 (BOAO) and one for Bank 
BIAO. These signals are connected directly to the 
DRAM devices to meet critical timing requirements. 
The signals must also reflect the lowest order row ad­
dress during miss cycles. As a result A13 is, therefore, 
an input to this logic. It is the lowest order row address 
when IMBxl DRAMs are used. 

4.3 Data Path 

A2 must also be predicted during burst read accesses. 
For this purpose, the burst address logic creates the 
DAT ASEL signal. DATASEL reflects the value of A2 
for each access of a burst cycle and is used to control 
the data multiplexor as shown in Figure 12. 

During burst cycles, the data multiplexor alternates be­
tween the bank 0 and bank 1 data paths. A2 must alter­
nate states each clock for interleaving to function prop­
erly. The i486 CPU's burst address sequence is defined 
such that A2 changes state on every access. 

A2 also selects the bank to which data is written. Data 
path logic is not involved in steering data during writes. 
Figure 12 shows separate data registers for each bank. 
Separate registers are only required to divide the data 
paths. These registers hold the same write data on every 

DATASEL 

MBRDY# 

]._ 

write cycle. The CAS# and WE# (write enable) sig­
nals control doubleword and byte steering. 

Because of write data timing, the data registers must 
have the enable function. This function, can be used to 
select the clock upon which data is latched. The proces­
sor clock can be used as the register clock input to 
guarantee proper data setup and hold times. 

As Figure 12 indicates, the MRDY# signal enables the 
write data registers and terminates memory write cy­
cles. Data is therefore latched during the last clock of 
any write cycle. 

MRDY # is restricted to write cycles while the 
MBRDY # signal is used for read cycles. The need for 
these signals illustrates the convenience of the CPU's 
dual-ready inputs. The MBRDY # signal enables the 
output of the data path multiplexor to prevent bus con­
tention. 

These ready signals are combined with similar system 
logic signals to form the processor RDY # and 
BRDY # inputs. I/0, peripheral and other non-burst 
devices can use the RDY # input. Burst devices, such 
as a second level cache controller must also use the 
BRDY # input. The MBRDY # and MRDY # signals 
are, therefore, used only with the DRAM control logic. 
They are isolated from the rest of the system by combi­
natorial logic. 

1 ..... 
BANKO DRAM DATA (0-31) AND PARITY 

PROCESSOR 
DATA (0-31) 

...._ 
.... 

DATA PARITY (0-3) 

CLK 

MUX 

..... ... 

RDY# 

WE# 

I" 
DRAM DATA (0-31) AND PARITY .. ~ 

1 ..... 
BANK1 

I" ~~ 

-
_J 

...l 
__[ 

.1. 
823 I-' .l 
x4 I- .1. 

Eiii OE I-' 823 t-,. ,. ..... x4 t-' 
... Eiii OE t-

j ,. 

240799-9 

Figure 12. Data Path Logic 

5-223 

I 



intJ AP-447 

4.4 Second Level Cache Support 

Second level cache strategies for the i486 CPU are di­
verse and application dependent. The example de­
scribed illustrates a second level cache strategy that is 
ideal for single CPU systems. 

The 485Turbocache second level cache used in this ex­
ample is optional and is used to complement the i486 
internal cache to improve the performance when run­
ning complex applications and operating systems. Some 
users will not require the extra performance. Since the 
cache is optional, 0.E.M.'s or end-users can decide 
whether it should be included. System board design and 
manufacturing costs are thus eased since one system 
board supports multiple performance requirements. 

The 485Turbocache is a completely self contained 
cache module. Optionality is accomplished by includ­
ing control logic, tag ram and data ram in one package. 
A socket is added to the system board in much the 
same manner as a math coprocessor socket. In systems 
which, for example, run UNIX, the cache module is 
simply plugged in. 

This option must; of course, be supported by the system 
logic. Specifically, the memory control logic is directly 
interfaced to the cache module. The DRAM controller 
example described here is particularly well- suited for 
this cache configurations. 

The support included in the 485Turbocache module's 
memory control logic for the 485Turbocache module is 
illustrated in Figure 13. Since the 485Turbocache is a 
write-through cache, provision must be made for read 
cycles. When read data is found in the second level 
cache, the cycle is called a cache hit. At the time this 
cycle is determined to be a cache hit, it has already been 
started in the DRAM controller. This cycle must be 
aborted by the DRAM controller. 

The BRDYO# signal from the 485Turbocache module 
provides a convenient cache hit indication. This signal 
is included in the decoder function. When a cache hit 
occurs, the DRAM controller aborts the cycle. The 
memory chip select signal is not activated and the first 
level control logic is reset aborting the cycle. The con­
trol logic then waits for another cycle to start. This 
function is very similar to the back-off function. 

SYNCHRONIZE 

' MEMCS TO MEMORY CONTROL .... 
DECODE 

CKEN KEN 

BRDYO CS KEN 

" ~ KEN .~ 

.....-

80486 

ROY BROY 

PKEN 

CS KEN 

J 
CONTROL 

DATA ~ __... 

ADDRESS (2:29) "' 485Turbocache __... 
Module 

"' 
""""i BROY 

r- MBRDY READY I... 
LOGIC MRDY 

1/0 ROY 

ROY 
BRDYD CKEN 

TOM 
L--+ CONT 

LOGIC 

EMORY 
ROL 

Figure 13. Logic Required for Optional 485Turbocache Module 

5-224 

240799-10 



intef AP-447 

Like the i486 internal cache, the 485Turbocache mod­
ule supports non-cacheable memory by decoding. The 
SKEN # input is analogous to the i486 CPU's KEN# 
input. This function is also supported by the decode 
logic. Note that, as with the KEN# signal, SKEN # 
must be synchronized to the CPU clock. 

Separate cache enable inputs also allow areas of memo­
ry to be noncacheable in the i486 CPU internal cache 
yet cachable in the second level cache. This feature is 
convienient for BIOS. 

4.5 Control Logic 

Memory control logic generates the signals that control 
the memory devices, multiplexors, and registers de­
scribed earlier. These control signals can be generated 
in a variety of ways. This example employs a distribut­
ed state machine. 

Since this example is a prototype, PLDs were the logi­
cal choice for the controller implementation. Because 
the number of terms in a PLD is limited, the state ma­
chine implementation must be distributed. Function 
distribution was determined based on this constraint. 
Figure 14 shows a block diagram of the controller, with 
each block made up of one or two PLDs. 

MEMCS# ...... 
BOFF# ...... 

CPU CONTROL _.. .. 
RESET ..._ DRAM 

BUS 
CONTROL_.. 

BRDYO# 
--..- CYCLE .. 

TRACK 

There are two levels of logic in the controller shown in 
Figure 14. The first is made up of two PLDs, one which 
tracks bus cycles and another which generates the 
MRDY # signal. The first level signals to PLDs in the 
second level that a cycle has started. The second level is 
made up of several PLDs which generate the actual 
control signals such as RAS# and CAS#. 

Implementing the controller in this manner has two 
important advantages. First, more decode time is al­
lowed. The cycle start signal, CIP #, is used by the 
second level logic to sample the decode output. CIP# 
is valid in the first T2 of any bus cycle. As a result, 
decode does not need to be valid until the end of this T2 
bus state. Without this function, the decode output 
must be valid at the end of every Tl bus state. In this 
case, the time allowed for decode at 33 MHz is very 
short. With 7-ns PLDs, the time allowed for decode 
would be 7ns. With 5-ns PLDs, this time is still only 
9ns. The advantage of the extra clock period is clear. 

The second advantage of the two level approach is simi­
larly clear. The AQO signal indicates the start of a bus 
cycle to all second-level PLDs. Without this signal 
ADS# would have to be connected to these devices, 
and the resulting load on ADS# would be prohibitive. 

BRDYO# 
( 485Turbocache Module)_.. 

OTHER SYSTEM RDY 
~ COMB. 

MRDY# LOGIC 
~ READY 

LOGIC MBRDY# 

TO CPU 

RAS RAS#(2) 

CAS 0 CAS0#(2) 
BANK 0 

CAS 1 CAS1#(2) 
BANK 1 

DAT ASEL TO DRAM 

DATASEL RALE 

B1AO 

BURST B2AO 
ADDRESS WIP# 

WEO# WE0(0-3) 
WE 

WE1# WE1 (0-3) COMB. 
LOGIC 

BE(0-3)#_.. 

I 
240799-11 

Figure 14. Control Logic Overview 

5-225 

El 



intef AP-447 

Invalidation within bus cycles is another case that 
makes decode design difficult. The AHOLD signal 
must be used to implement this function. As its name 
implies, AHOLD can be active in any clock. If 
AHOLD is active in the first clock (Tl) of a bus cycle, 
the CPU address lines are tristated in T2. Unless de­
code is latched at the begining of T2, it will not be valid 
for the DRAM cycle. 

The two-level approach allows decode to be a transpar­
ent function. The decode circuit is shown in Figure 15. 
The 85C508 shown here includes a flow-through latch 
function. Using this function, the decode outputs can 
be latched. The DALE signal is generated at the beg­
gining of the first T2 of any bus cycle. This signal acti­
vates the latch input of the 85C508. In this manner, 
decode is held during T2. If AHOLD is active in Tl, 
the decode outputs may not be valid in T2. In this case, 
the cycle must not be started until the CPU address is 
redriven. Cycle-tracking PLD handles this function. By 
delaying the cycle start signal, the DRAM cycle is de­
layed. When AHOLD is deasserted, the CPU redrives 
the address again. At that time, CIP # is activated and 
the cycle begins. If AHOLD is active in any other 
clock, the bus cycle can continue normally. 

The first level of interface with the memory subsystem, 
the cycle tracking PLD handles many other functions, 
most of which relate to synchronization. Refresh syn­
chronization is one example, as is determining the 

CLK 

A14-A23/10 EPH# IOCS# 

M/10 85C508 EPL# MEMCS# 

10# COMB. 

MEMO# LOGIC PKEN# 

MEM# C6KEN# 

PKEN# 

DALE CKEN# 

BRDYO# 

RAS# precharge duration. AQO# is not the only sig­
nal which supports the AHOLD function. Address reg­
isters, controlled by the PLD, generate the ALD signal 
to disable the registers during bus cycles. These and 
other functions of the control logic are described com­
pletely in Section 5.11. 

The PLDs in the next level of logic perform more spe­
cific functions. RAS# and CAS# are generated at this 
level, and the PLDs that generate these signals are de­
voted solely to this function. The RAS# PLD gener­
ates four RAS# signals, RASO#-RAS3#. These sig­
nals are identical but drive different DRAM modules to 
reduce the load on the RAS# signal. 

The RAS# function is designed to support page or 
static column mode memory devices. To support these 
devices, RAS# must be left active between accesses to 
the same row. The RAS# state machine is designed so 
that RAS is deactivated only for a refresh or page miss 
cycle. This module generates RAS# for both DRAM 
banks. 

For the CAS# function, the PLD's are respqnsible for 
implementing burst accesses. During write cycles, the 
CAS# signals determine which DRAM bank is written 
to. All even doublewords (A2 = 0) are stored in bank 0 
while odd doublewords (A2 = 1) are stored in bank 1. 
When data is retrieved from memory, cycles can be 
overlapped. to allows zero wait state burst accesses. 

SYNCHRONIZATION 

TO 80486 

KEN# 

TO 485Turbocache 

SKEN# 

------------------------~ 240799-12 

Figure 15. Decode Logic 

5-226 



intJ AP-447 

Address generation is another important consideration 
in burst accesses. The address for the last three access 
of a burst must be generated by logic because the CPU 
cannot generate these addresses in time to allow zero­
wait state accesses. The burst address logic shown in 
Figure 14 is actually two PLDs which generate the 
burst address for bank 0 and bank l, respectively. The 
burst address consists of two signals- -the lowest order 
DRAM addresses from each PLD. 

Because of timing constraints, these signals are con­
nected directly to the DRAM devices. The burst ad­
dress PLD must generate the burst address, provide the 
multiplexer function for row and column addresses and 
generate the write address. The burst address signals 
must, therefore, reflect the value of A13 during miss 
cycles. These reflect during burst read and write cycles. 
These signals reflect A3. 

BOOMAO and BOlMAO are the burst address signals for 
bank 0. Two identical signals are used to divide load­
ing. BlOMAO and BllMAO are the burst address sig­
nals for bank 1. A detailed description of the burst ad­
dress function is given in Sections 5.6 and 5.16. 

The DSEL PLD main function is to generate the data 
select signal. As described above, this signal is used 
during a burst to switch the data path multiplexer. It 
reflects the value of A2 during burst read cycles only 
and is one component of the burst address. The DSEL 
PLD also generates the RALE signal to control the row 
address register described above. 

BRDY # terminates all read cycles. MBRDY # is gen­
erated by the MRDY PLD and is separated from the 
RDY # signal to facilitate posted writes by preventing 
data bus contention. When a write cycle is immediately 
followed by a read, the read cycle must be delayed. This 
delay is implemented by delaying MBRDY # until the 
previous write cycle is complete. MBRDY # is com­
bined with other burst ready inputs using combinatorial 
logic. 

WIP# (write in progress) indicates to the MRDY PLD 
that a write is taking place, and MBRDY # is not gen­
erated unless this signal is inactive. WIP# tracks the 
state of the CAS # state machines. · 

The WE PLD generates WIP # and other signals asso­
ciated with the write function. The MUXEN # signals 
control the address multiplexors and activate the write 
address path during write cycles. The WE# signals are 
used to create the DRAM W inputs and to implement 
byte steering. They are combined with latched CPU 
byte enables using combinatorial logic. In this way, 
DRAM W inputs are not active for unselected bytes. 
Data bus contention on unselected bytes iS prevented 
by controling the write data register output enables. 

By implementing byte steering in this way the CAS # 
logic is. simplified. The CAS # timing path is critical 
during burst read cycles, and by placing the byte steer­
ing logic in the write enable path, CAS # timing restric­
tions are eased. 

The MRDY # signal terminates all write cycles. The 
logic used to generate this signal is unusual because it 
uses the ADS# input and is therefore at the first level. 
This configuration is needed to implement zero wait 
state write cycles. 

MRDY # must be active by the end of the first T2 to 
terminate a write cycle and maintain zero wait-state 
performance. To meet this restriction, it must be active 
during any write cycle, or before decode is available 
because the CPU RDY # signal must not be activated 
during non-memory write cycles, MRDY # is inhibited 
by the decode output, MEMCS #, in combinatorial log­
ic. 

5.0 MEMORY SUBSYSTEM FUNCTION 

In this section we will explore the function of the mem­
ory subsystem in detail. Each of the signals will be de­
scribed, and bus cycles will be illustrated to show the 
memory logic function. 

The bus cycle description in this section is specific to 
this example. Signals such as KEN# and RDY #, for I 
example, are shown as they are driven by this particular 
control logic. The signals are not restricted to the tim-
ing shown here. 

A list of the memory control signals follows. 

Memory Interface Signals 

5.1 CPU Interface Signals 

KEN# 

PBRDY# 

KEN# is an input to the proc­
essor, indicating whether the 
next bus cycle is cacheable or 
not. This signal is a logical 
AND of SKEN # and CKEN # 
signals. 

PBRDY # is the burst ready in­
put to the processor. This is a 
logical AND of the BRDY # 
signal from the system and the 
BRDYO# from the second lev­
el cache. 

5-227 



intef AP-447 

5.2 Data Path Control 

DAT ASEL DATASEL reflects the value of 
A2 during burst accesses. It is 
used to control the data multi­
plexor for bank 0 and bank l 
data paths. 

MRDY # MRDY # enables the write data 
registers that are used to sup­
port write posting and termi­
nates memory write cycles. 

MBRDY# MBRDY# is used for read cy­
cles and enables the output of 
the data path multiplexor. 

WEO#/WEl# WEO# and WEI# signals en­
able the outputs of data write 
registers used for write posting. 
Both the signals are active dur­
ing a write and CAS # deter­
mines the correct bank to which 
the data is written. 

WBEOO#-WBE03# WBEOO#-WBE03# are a 
combination of write enable and 
byte enable signals. They con­
trol which byte is written into 
bank 0 during a write cycle. 

WBE!O#-WBEl3# WBE!O#-WBE13# control 
which byte is written into bank 
l during write cycles. 

5.3 Address Path Control 

ALD ALD disables the clock input to 
the registers that hold the row 
and column addresses corre­
sponding to. the current bus cy­
cle. 

MUXENO#,l# MUXENO#, MUXENl# con­
trol signals are inputs to the ad­
dress multiplexors and are used 
in selecting the read or write 
paths to the respective banks. 

RALE# RALE# enables the row ad­
dress latch, allowing a new row 
address to be latched for succes­
sive bus cycles. 

DALE# DALE# activates the latch in­
puts of the decode logic in the 
first T2 of a bus cycle and holds 
the decode during the bus cycle. 

BOOMAO/BOlMAO BOOMAO and BOlMAO are the 
burst address signals for bank 0. 
They correspond to the value of 
A3 during burst read cycles. 

BlOMAO/BllMAO B!OMAO and BllMAO are the 
burst address signals for bank l. 
They correspond to the value of 
A3 during burst read cycles. 

5.4 DRAM Interface 

HIT# 

WIP# 

CIP# 

RAS0-3# 

ORAS# 

RFRQ 

RF ACK 

PCHG 

CASO#/CASl# 

MEMCS# 

HIT# is active if the row ad­
dress for the current memory 
cycle is the same as the previous 
memory cycle. 

WIP# indicates that a write cy­
cle is in progress and a read to 
the DRAM needs to be delayed 
till WIP# becomes inactive. 

CIP#indicates a memory cycle 
is in progress. If the current cy­
cle is not to DRAM, CIP# is 
deactivated else it remains ac­
tive till the end of the bus cycle. 

RAS0-3# go active for a valid 
row address. It remains active 
between accesses to the same 
row and is de-activated only for 
page miss and refresh cycles. 

ORAS# is the delayed RAS# 
signal to accomodate the RAS# 
hold time requirements. 

RFRQ indicates that a refresh 
of the DRAM is required. This 
signal is activated every 15.6 us. 

RFACK is asserted as a re­
sponse to RFRQ and indicates 
that the DRAM controller is 
ready to perform the refresh cy­
cle. It is active during idle cy­
cles or after the current cycle is 
complete. 

PCHG determines the timing of 
refresh cycles and RAS# pre­
charge count. 

CASO# and CASI# signals are 
active when a valid column ad­
dress is present on the bus and 
control the bank to which the 
data is written into. 

MEMCS# is active when a 
read or a write is performed to 
the DRAM. It is the synchro­
nized. output of the address de­
coder. 

5-228 



intJ AP-447 

5.5 Controller Signals M# M # indicates the occurrance of 
a write miss. 

CT CT indicates that a new cycle 
had started while a cycle was in 
progress or the refresh cycle 
was taking place. It is de-acti­
vated when the pending cycle is 
recognized. 

BRDYO# BRDYO# is a burst ready sig­
nal driven by the second level 
cache. It is activated when a 
read hit occurs in this cache. 

SKEN# SKEN # indicates if any of the 
caches is enabled. It is an input 
to the second level cache and is 
similar to the KEN# signal in­
put to the processor. 

5.6 Read Cycles 

CKEN# 

LA2, LA313 

CLK 

CKEN # is the output of the 
second level cache. It is activat­
ed twice for a valid line fill -
first to enable a 485Turbocache 
cache line fill and the second 
time to validate it. 

LA2 and LA313 are latched 
versions of address lines A2 and 
Al3. LA313 is the lowest order 
DRAM address line. The multi­
plexor output reflects A3 when 
RAS# is loand Al3 when 
RAS# is high. 

Timing Diagram 16 shows a burst read cycle. At the 
start of the bus cycle, RAS# is inactive. This case is a 
rare occurence because RAS# is normally active. Un­
less a cycle is the first bus cycle after a reset or refresh 
cycle, RAS# will be active in Tl. 

It is useful to examine this case because it demonstrates 
a complete DRAM cycle. The basic function of most of 
the control logic is illustrated. 

The cycle begins with the activation of ADS#. The 
controller samples this signal and activates both ALO 
and CIP#. The CPU address registers are disabled by 
ALO. Therefore, the previously latched address is held 
throughout the bus cycle. The latched address is valid 
in the first T2 of the bus cycle. 

TI n n n n n n n TI 

ADS# '- ./ "'-.., 
CIP# '- ~ 

ALO ------_,...-./ 
A2·A31 BEX# VALID 1 

HIT#/MISS """"'"'-"-""'-'{.L. ..... ......_ ... {.L.'"'"'t"'{.L.'"'"(.b. ...... _-t-----t----r----t---""""t----r----r-----i 
BLAST# ./ 

RAS# " 
DADDRO ------4--..x .... '-=R"'ow""AD~DR"'ES~s::..x::::i:=:;;co;,:L;;;UM;;;N~A:;;;DDR;;;E;;;;S;;:S ;:1 =~:::==+===+::::;;:;;;::;:+==~ 

CASO# "'---+----+' 
CAS1# "'---!----+----+' 

DDATAO - - - - - - - - - - • - - - - - - - - - - - - - - - - - - - - - -(f"-+--:,..--~v----t---;--'!-----t 
DADDR1 ------..;..-.)(."--+---'.)(,"---l--"'CO~W=M~N~A=DDR~ES=S~2"'--+----+-""--t--"""""""'-1----t 

DDATA1 - - - - - - - - - - - - - - - - - - - - -i- - - - - - - - - <<:::t=J2c=1===:>¢c==::t:!'==::::i 
PDATA - - - - - - - - - - - - - -.- - - - - - -i- - - - - - - - - <<!1 :C:::>c:x:=w2::::>.0<~::Ji:·3)~(J<.C3,::t:::>cyo<>-y-t 

BROY# ''---+----1----------.r-, 
DATASSEL / 

, ____ ./,~ 
0 

240799-13 

Figure 16. Burst Read Cycle 

5-229 

I 



intef AP-~47 

The row address comparison is made with this address. 
As a result, the HIT# signal is not valid until the rising 
edge of the second T2. At this rising clock edge, the 
CIP#, MEMCS# and HIT# signals are sampled. If 
MEMCS# is sampled active, the RAS# signal is acti­
vated. 

The delay line holds the DRAS# signal high for 20 ns 
after RAS# is activated. In this way the row address is 
maintained to meet tRAH, the row address hold time. 
When DRAS# is activated, the address multiplexers 
switch to the column address path. The MUXEN # sig­
nals are not active, and the read path is selected. 

In the third T2 of the bus cycle CAS # is asserted. This 
cycle begins with A2 low and the first access is to bank 
0. Due to the access time of the DRAM two clocks are 
required to retrieve data from memory. MBRDY# is 
asserted in the fourth T2 of the bus cycle, .and this 
action completes the first access of the burst read. The 
access is completed in five clocks. The minimum time 
for this access is two clocks indicating that three wait­
states were added to the first cycle. 

The timing diagram reveals two important points about 
burst cycle implementation. First DRAM access re­
quires two clocks. Second, the burst address from the 
CPU is not available until the clock after MBRDY # is 
sampled active. These circumstances make implement­
ing zero-wait-state burst cycles difficult. The DRAM 
bank interleaving alleviates this difficulty. 

T1 T2 T2 
CLK 

ADS# 

CST# 

ALO 

The first advantage of interleaving is revealed in the 
second and third T2 states. Access to both the first and 
s~ond · memory doublewords can be made simulta­
neously. This function requires that the burst address 
be predicted. As mentioned above, the burst address 
from the CPU is not available until several clocks later. 
The burst address for both the first and second accesses 
is generated in the second T2. Therefore, CAS # for 
both banks can be asserted in the next T2 state. 

The second advantage of interleaving is seen in fifth T2 
of the burst cycles in which DAT ASEL switches the 
data multiplexer. The second doubleword is driven on 
the CPU data bus. In this CLK, the burst address for 
the third access of the cycle is generated. CASOO# and 
CASO!# are also deasserted to begin the third access. 
Note that this access is started before the second access 
is completed. The cycle overlap shown allows new data 
to be driven on the CPU data bus every clock. This way 
zero-wait-state access is achieved. 

Timing is even more critical during page hit cycles. Fig. 
17 shows the timing of this cycle. Because of the func­
tion of RAS#, this cycle is more common than the 
cycle discussed above. The row address is the same as 
in the previous cycle. Therefore, the RAS# signal is 
left active. 

T2 T2 T2 

ADDRESS ____ _,x"' .... !----...--'v ... AL .. 10-......1....., __ _,x : VALID2 x ! VALID3 x'-..-="'"-"--
BLAST# 7 : I \...___J 

' 
RAS# 

DADD RO ----,fiJ'x __ ,._,x:::::x VALID 2 x:::::x...,.._v_A_u_o_4_....-___ _ 

CASO# 

' ' 
CAS1# 

DDATAO 

-----..------,~I\'----~:__,/ I \___:.__) 

-----....-----!~· __ __.l¢®<::::::0:2:::::::::~-04 __ _.. ___ ~ 
DADDR1 ____ __.__.ic:x _ _,:_...;Y;.;;AL""ID~1._.,f _.ic:x_~f _..V;.;;AL""ID~3;;...._,: ____ _._ ___ _ 

' ' 
DDATA1 ---------~ 01 , ~"'"""--=0""3--.i----..-----

PDATA ::::::::JOOOO~----~-~<::::::loIT1::::xxxxZ!lEXJ0~2::::Jxxxx~(.]0_3:r_ti:.:.1xxxxz.~.C...E:o_4[,tj.:.:..zZ!lll.Zi.r:::_ 

KEN# 

BROY# __} 

DATASEL 

: ~ MUST BE SAMPLED ACTIVE HERE ' r--. ' 

' ''-----i----..;.----...... ----.....,r-­
' ''---...... · _,/ 

Figure 17. Burst Read DRAM Page Hit 

5-230 

'~---· ~r--
240799-14 



inter AP-447 

When a burst read starts with RAS# active, fewer 
clock, are required to complete the first access. This 
reduction improves performance. As a result, however, 
some timings become more critical. One of these is the 
time allowed to generate the burst address. 

The CAS # signals are asserted in the second T2 of the 
bus cycle. MBRDY # is also asserted at this time. To 
meet the address access time of the DRAMS, the burst 
address must be generated in the second T2. The rest of 
the read column address must also be available at this 
time. Two logic functions are needed to meet this tim­
ing requirement. First, read and write address paths 
must be separate to allow the read address to be avail­
able in the first T2. Second, the burst address path logic 
must latch the CPU A3 signal directly. In this way, the 
logic can generate the necessary address in time. The 
burst address state machine must track the state of A3 
at the begining of every cycle. The state machine func­
tion is described in Section 5.11. 

The timing of KEN# must also be considered in this 
example. KEN# must be valid at the begining of the 
second T2 of the cycle. If it is not, the cycle will not be 
cached, and a 16-byte access can not be generated. If 
KEN# is active, a 16-byte burst access will be generat­
ed, and the cycle will be cached as long as KEN# is 
active in the second to last T2. 

T1 T2 T2 

At first glance this timing may not appear critical. 
KEN# is a decode function, and decode is valid at the 
clock edge called for. The KEN# input to the CPU 
must be synchronized to clock, however. Since decode 
is not synchronous, a two-clock synchronizer delay is 
required, and this delay is the reason that KEN# is 
normally active in this example. 

From the time CAS # is activated, this cycle is exactly 
the same as in the previously described burst cycle. It is 
terminated when BLAST# is asserted, and MBRDY # 
is deasserted when BLAST# is sampled active. 

5. 7 Write Cycles 

As described in Section 4.1, a posted or delayed write' 
function is employed in this example to reduce write 
cycle latency. Latency is reduced since write cyles are 
overlapped with other cycles including other Write cy­
cles or reads from the second level cache. Write cycles 
normally make up 70 percent of all cycles, and overlap­
ping can increase performance accordingly. 

Figure 18 illustrates the posted write implementation. 
In this example cycles begin when RAS# is inactive. 
As with read cycles, this case is rare in practice. 

T2 T2 

ROY RETURNED TO 
PROCESSOR HERE 

240799-15 

Figure 18. Basic Write Cycle 

5-231 



intJ AP-447 

The cycle begins like a read. The CPU drives ADS# 
active, and the decode is sampled. RAS# is activated if 
the cycle is in DRAM space. In the second T2 of the 
cycle, however, the latched version of W/R# (LW/ 
R #) is sampled active at the rising edge of the second 
T2. In re8ponse, the control logic begins several write 
cycle functions at this clock edge. 

The CAS # state machine for the appropriate bank en­
ters the write sequence. The MUXEN# and WE# sig­
nals are asserted. MRDY # is also asserted, terminating 
the cycle at the CPU. The MUXEN # signals activate 
the write address path. This address is not present at 
the multiplexor outputs, however, until the next clock 
at which the write pipeline register latches the write 
address. 

The write data is latched at the same clock edge. The 
write data registers are enabled by MRDY # which 
simultaneously terminates the CPU cycle. Note that 
data is latched in both the bank 0 and bank 1 registers. 

The WEO# and WEl # signals are also both active. 
The CAS # signals determine which bank is written to. 
These signals are asserted within two clocks after 
MRDY #. This action completes the write cycle. Note 
that, while five clocks are required clocks are required 
to complete the cycle, the CPU cycle is terminated in 
three CLKs. The wait state is only required if RAS# is 
inactive at the start of the cycle. 

CLK 

ADS# 

CIP# 

PADDR 

T1 T2 T2 T1 

In Figure 18 the next bus cycle starts immediately after 
RDY# is sampled. In this case, CAS# is activated 
during the second clock of the next bus cycle. This 
overlap of cycles is similar to the pipelining feature 
used by many processors except that the i486 processor 
bus is not involved in the posting function. All logic for 
this function is implemented in the memory controller. 

Figure 19 is a more typical i486 processor bus sequence 
which clearly illustrates the advantages of the posting 
technique. Four write cycles have occurred together 
without idle bus clocks occurring between cycles. Since 
all writes access the same DRAM row, RAS# is active 
throughout the sequence. 

Without the extra clock to activate RAS#, MRDY # 
can be asserted in the clock after ADS# is asserted. 
These cycles, therefore, have no wait-states. As before, 
the write cycle is not complete when MRDY # is as­
serted but instead when CAS# is asserted two clocks 
after MRDY # to terminate the CPU bus cycle. 

At zero wait-states, each write cycle still requires four 
clock cycles. The last two clocks of each write cycle 
overlap with the next cycle. The net effect on the CPU 
bus is the same as a string of two-clock write cycles, as 
illustrated in Figure 19. 

The first write in this figure is to bank 0. The falling 
edge of CASO# clocks the data into the bank 0 
DRAM. This edge is denoted by Wl in the diagram. 

T2 T1 T2 T1 T2 T1 

RASO# 

DADDRO + DADDR 1 -----~--Jx-~....._~XX ....... ~~--~~ ....... '~X ............... ~~-;--x•~---~~-;-X::: 
CASO# 

WEO# 

WE1# 

WIP# 

DDATAO + DDATA1 

CAS1# 

PDATA 

MRDY# 

~ 

I VALID 1 I 

W1 i,..----. 

240799-16 

Figure 19. Back to Back Write Cycles 

5-232 



intJ AP-447 

CASO# is asserted in the same clock that MRDY # 
terminates the second write (W2), which accesses bank 
I. CASI# is activated in the same clock as MRDY # 
for the third write (W3). 

The second and third writes happen to be to the same 
DRAM bank. As we see, no timing modification is re­
quired in this case. Write cycles can be completed with 
zero wait states in either case. This is important since 
writes often occur in sequence on the i486 bus, but not 
necessarily to sequential addresses. Write posting sup­
ports zero wait-state write cycles to sequential and non­
sequential addresses. 

This fact is also important if the design is to be modi­
fied. For example while, interleaved DRAMs may not 
be required in systems with a permanent second level­
cache, the write posting technique may still be used in 
the system. The benefits of this technique still apply 
since write cycles may still be overlapped as described. 

T1 T2 T1 T2 

5.8 Consecutive Bus Cycles 

The DRAM control logic is optimized for write cycles, 
·as warranted by the i486 processor's bus characteris­
tics. Over 70 percent of all cycles are writes. By em­
ploying the posted write technique, system performance 
is increased. 

The posted write technique poses some special prob­
lems, however. Page miss, refresh and consecutive 
write-read cycles require special consideration. We will 
begin by discussing the consecutive write-read case. 
Page miss and refresh cycles will be discussed in sec­
tions 5.9 and 5.10. 

When a read cycle immediately follows a write, the 
read cycle must be delayed as illustrated in Figure 20. 
The read cycle is delayed to allow the write to com­
plete. Only read cycles to DRAM, i.e. (cache misses) 
need be delayed. Cache hits and write cycles overlap 
easily because the cache is on the CPU side of the 
DRAM controller. 

T2 T2 T2 T2 

CLK !l--rUL-IL-11-.fLILfl--fl-
ADS# n W ~ 

ADDRESS 

RAS# 

DADDR1 x VALIDW .x. VALID R x 
CASO# \PW J 
MEN1# J 

WE1# J 
DDATAO _x :x \. 

J 

CAS1# I\ w J \'--+---+--+-
PDATA 

DDATA1 

KEN# \ 
BROY# \'---+--+--'!---
MRDY# ~ W j 

WIP# 

DAT ASEL 

_/ 

Figure 20. Consecutive Write-Read Cycle 

5-233 

240799-17 

I 



intef AP-447 

Write cycles cannot overlap DRAM read. cycles, how­
ever, primarily because of data bus .contention. The 
DRAMs used here have common data I/O pins. In this 
case read and write data paths cannot be active at the 
same time. 

To prevent data bus contention, the first data access of 
the read is delayed. In Figure 20 the first read access is 
to the same bank as the write. In addition, the read 
cycle accesses the same DRAM row. Two functions are 
required to ensure that the write is completed. First, the 
write address must be held until CAS# is asserted. Sec­
ond, the data mux outputs must not be enabled until 
the CPU ,tristates the bus. 

The first function is accomplished by the MUXEN # 
signals. The MUXEN # state machine tracks the 
CAS # function for the appropriate bank. When the 
write for that bank is complete,. MUXEN # is deacti­
vated. In this way, the read address path is not enabled 
until the CLK after CAS# becomes active. Normally, 
the read address would be valid in the first T2 of the 
read cycle; however it must be delayed one clock to 
allow the write complete. Note that if one or more idle 
CLKs intervenes between these cycles, no delay occurs. 

The second function is accomplished with the WIP # 
signal which is active until all write cycles are com-

plete. A read cycle to either bank will be delayed if it 
immediately follows a write. The first access of the read 
is delayed by MBRDY #, which is not asserted until 
the WIP # signal is deasserted. 

WIP# is deasserted once all pending writes are com­
plete. In Figure 20 the read cycle is delayed l CLKs by 
this signal; in other words, three additional wait-states 
are added. If a read does occur immediately after a 
write, the number of wait-states added will decrease by 
the number'ofidle CLKs between cycles. For example, 
if ADS# for. the read is asserted three clocks after 
MRDY # for the write, MBRDY # will not be delayed. 

5.9 Page Miss Cycles 

As described previously, page miss cycles occur when 
the CPU generates a cycle which changes the DRAM 
row address. The RAS# signal must be deasserted to 
change the ROW address in the DRAMS. Any time 
RAS# is deasserted, it must remain high for the pre­
charge time (tRP). A delay is added to every page miss 
cycle to satisfy this requirement. · 

For read cycles this function simply requires extra wait 
states as illustrated in Figure 21. 

I I ~' ...... ...,.. ...... .,... ...... ,.... ... _,. ................ ,.... ... ...;. ...... ..;... ...... .;...,. 

ADS :\.1_/: : \_ 
I I I 

PADDR I 

HIT# 

BLAST 

I I 

'i / 
1; I 

\i \ I 

., 

RAS#1 I !\ 
,.... ... ....,............. I ._....,. ............................... ,, ...... ..,.. ......................... ~ 

DADDRO .__ _ _.._! _.x:::t)(X ROW ADDRESS x! COLUMN ADDRESS 1 

I 

CASO+ 1 1 
I 

DDATAO >:----~----------------..1. I I 'V'lf\....&. ... -1 

DDATAl 

PDATA 

I 

:::::·:::::::::::>~·;----...... ---
I 

I· ' 

4 

:, I I 
BROY# ...J '~----------.__.__,! I 

Figure 21. DRAM Page Miss-Read Cycle 
5-234 

240799-18 



intJ AP-447 

The bus cycle starts with RAS# low or active. The row 
address generated by the CPU is different than in the 
previous cycle, and the row address comparator deas­
serts HIT#. This signal is valid in the first T2. HIT# 
is sampled at the RAS# PLD at the rising edge of the 
second T2. In response, RAS# is immediately deassert­
ed and held inactive for two clocks. This time satisfies 
the RAS# precharge requirement. 

Four wait states are added to process the miss cycle. 
These clocks are added to every read cycle which ac­
cesses a new DRAM row. The delay is accomplished, 
again, with the MBRDY # signal. MBRDY # will not 
be asserted when RAS# is inactive. Once RAS# is 
sampled active, MBRDY # is asserted. From here, the 
cycle proceeds as described in section 5.7. 

Write miss cycles are more complex than read miss 
cycles, due mainly to the write posting technique. The 
added complexity results in lower latency than in a 
non-posted memory system, however. Figure 22 illus­
trates how this improvement is achieved. 

CLK 

ADS# 

PADDR AOOR 4 

I I 

HIT# Ii 7: ~ 
RAS# 1 :1 !\ 

I ' ' 

The write cycle in Figure 22 also begins with RAS# 
active. The HIT# signal is deasserted in the first T2 at 
the same time that MRDY # is asserted. MRDY # 
could be inhibited at this point to prevent write cycle 
termination .. The wait-states added to meet RAS# pre­
charge time would then be added to this cycle. Five 
wait states are required to meet the precharge time. 

The average number of write cycle clocks can be re­
duced, however, if another method is used. MRDY # 
can be allowed to terminate the cycle. In this case, any 
necesary wait-states will be added to the next cycle. 

This method improves the average in two ways. First, 
some write miss cycles will not require wait- states. 
This is the case when the next cycle occurs four or 
more clocks after a write miss. In addition, wait states 
will be reduced when the next cycle occurs in two or 
three clocks. Second, three wait-states are required to 
complete the next cycle when it follows immediately as 
illustrated in Figure 22. 

' I 

DADDRO + 1 µ iXl : 
ROW ADDRESS 

: ~ :AOOR3:x : ADDR4: ( 
I 

I ,.,..__.....__ 

I~: CASO# 1 

WEO# 1 

I I 1 

OOATAO + 1 tx .......... ! v_A_u_o_2 ... !_,X,._ .. !_v_AL-\0-3-: __ ..... __ ..__ ...... l,..v_A_u_o_4: ... ' __ ..... : ( 
I I ! I 

CAS1# I 

ROY# 

240799-19 

Figure 22. DRAM Page Miss-Write Cycle 

5-235 

I 



intef AP-447 

The first cycle in this figure is a page miss. It is termi­
nated at the CPU without wait-states. Because HIT# is 
not active in the first T2, RAS# is deasserted. At this 
point, additional clocks are added to perform the miss 
function. Part of the time required for RAS# pre­
charge is overlapped with the next cycle. The two clock 
overlap reduces the number of wait-states required in 
the next cycle. Therefore, the average write cycle laten­
cy is reduced. 

5.10 Refresh Cycles 

The CAS# before RAS# refresh function is used in 
this example. This function uses internal counters in 
the DRAM devices to generate the refresh address. 
When the CAS # input is activated prior to RAS#, the 
internal counter is incremented. The output of the 
counter is then used as the address of the row to be 
refreshed. 

ADS# 
I 

CST# '/ 
I I I 

PADDR 
i Xi x 

RAS# I :1 
I I I 

DADDRO + 1 i iX i i COLUMN ~ 
CASO# J 

WE# 1 

I I 

~ CS1# 

DDATAO + 1 

ROY# 

Each refresh cycle refreshes one row of the DRAM 
array. The refresh cycles are distributed such that one 
occurs every 15.6 µ.s, with every row being refreshed in 
8 ms. Refresh cycles are initiated by the RFRQ signal. 
This signal is activated every 15.6 µ.s by a counter. 

RFACK is asserted in response to RFRQ. This signal 
indicates that the DRAM controller is ready to per­
form the refresh cycle. It also signals the counter circuit 
that RFRQ can be deasserted. 

The function of RFRQ and RF ACK is very similar to 
that of the CPU's HOLD and HLDA signals. RFRQ is 
sampled at the end of each cycle and during idle cycles. 
RF ACK is activated in the clock after RFRQ is sam­
pled, except immediately after write cycles. 

Again, the posted write function must complete before 
the refresh cycle begins. IfWIP# is active when RFRQ 
is sampled, RFACK will not be immediately asserted. 
RFACK will be asserted after WIP# is deactivated as 
illustrated in Fignre 23. 

\ 
I I 

i x; 
I \ 1/ \ I 

I I I 

D i ii ROW iX COLUMN :x 
\ I 

'/ 
/' 

:x :x 
, _______ ,_____,. _______ .,.__ _______ _ 

RF ACK 
____________ / , ____________ .......__ ....... ___. _ __, 

WIP# 1/ 
240799-20 

Figure 23. Refresh Timing Concurrent with Write 

5-236 



intef AP-447 

Another cycle can start between RFRQ and RFACK. 
The cycle start PLD tracks this case. GP#~ will not 
be asserted for any cycle that starts during this interval. 
Once the refresh cycle is complete, this cycle can be 
started. 

6.0 CONTROLLER IMPLEMENTATION 

The functions described in the previous section are gen­
erated by the control logic. The controller, as outlined 
in Section 4.0, is made up of several PLDs. These devic­
es enerate the control signals described in Section 5.0. 
The function of the logic is determined by the state 
machine definition. These state machines are distribut­
ed in the different PLDs of the controller. 

In this section, we will explore the implementation of 
the control logic. The discussion will focus on the state 
machine definition. Certain conventions are followed 
throughout the discussion. These conventions are based 
on the state machine compiler used to generate the 
PLD equations. This compiler uses the exclamation 
point (!) to indicate the low or "O" condition of a signal. 
It uses the number symbols ( #) to indicate that the 

signal is active low. For example, !ADS# indicates that 
the ADS signal is both low and active. The # symbol 
indicates that a signal is active when low. So symbol 
!ALD means that the ALD signal is not active. These 
symbols are used to indicate state transitions as shown 
in Figure 24. The state transition in Figure 24 depends 
on three signals: ADS#, ALD, and RAS#. The equa­
tion indicates that if both ADS# and ALD are active 
or if RAS# is not ctive at the next clock edge. the 
transition from SO to SI takes place. In the transition 
between SO and SI, the Y# signal is activated. The 
definition of states indicates which outputs are changed 
in the transition. These conventions are used to de­
scribe the control state machines in the next section. 

240799-21 

Figure 24. State Transition Example 

5-237 

I 



intJ AP-447 

6.1 Cycle Trackjng Logic 

The cycle tracking logic is contained in one PLD. The 
five state machines implemented in this PLD start and 
end DRAM cycles, control refresh timing and control 
the address registers. These state machines, along with 
the MRDY # state machine comprise the first level of 
control logic. All other control state machines depend 
on this first level to generate signals at the proper time. 

The signals generated by this PLO are the following: 

CIP # - Cycle in Progress 
ALD - Address Latch Disable 

CT - Cycle Track 
RFACK - Refresh Acknowledge 
PCHG- RAS Precharge Count 

The primary cycle tracking state machine is shown in 
Figure 25. This state machine generates the CIP# and 
M # signals. CIP # indicates that the CPU has started a 
cycle. When it is active, the rest of the logic samples the 
CPU control and MEMCS# signals. If the current cy­
cle is not to DRAM, it will be ignored and CIP# will 
be deactivated. 

RESET 

MEMCS#+ 
!BRDY#+IBLAST#+ 
!MRDY#+ 
IBOFF# 

!PCHG*CT 

Figure 25. Cycle in Progress State Diagram 

5-238 

PCHG 

240799-22 



intJ AP-447 

This function is defined by the SO and SI states in Fig­
ure 25. As shown, CIP# is activated when either 
ADS# or CT are sampled active. If the cycle is not to a 
DRAM address, the MEMCS# signal will not be ac­
tive in the next clock. In this case, CIP # is deactivated 
to wait for the next ADS#. If the cycle is to DRAM, 
CIP # stays active until the end of the bus cycle. The 
bus cycle is terminated by one of three circumstances. 
All write cycles are terminated with the MRDY # sig­
nal. Read cycles are terminated by BROY# and by 
BLAST#. The cycle can be aborted by BOFF#. Any 
of these three events causes CIP# to be deactivated (SI 
to SO). 

Two special cases are also handled by this state ma­
chine. When AHOLD is active in the same clock as 
ADS#, MEMCS# is not valid. In this case, the CIP# 
signal is not activated until AHOLD is deasserted. The 
state machine remains in SO when AHOLD is active. 

The second case is a write miss cycle. During a write 
miss, CIP # must be active for the cycle to complete. 
CIP# is active in this case after MRDY# is returned 
to the CPU. Cycles that start during the time CIP# is 
active must be tracked by the CT state machine. The 
M # signal indicates to the CT state machine that the 
cycles must be tracked. 

The state in which M # and CIP # are both active is S2. 
This state is entered when MRDY# and RAS# are 
active and HIT# is inactive. By using MRDY # to 
qualify this transition, S2 is entered only during write 
cycles. Therefore, M # is only activated during write 
miss cycles. Note that any cycle will be recognized by 
the CT state machine when M # is active. 

!CIP#•M# 

240799-23 
!ADS# *(AHOLD+ FACK+ !M# + EP) 

Figure 26. Cycle Tracking State Machine 

The CT state machine is shown in Figure 26. This state 
machine tracks cycles that start while the CIP # state 
machine is busy. It tracks CPU cycles that start during 
refresh cycles as well as to the two cases mentioned 
above. 

This state machine tracks one cycle. Any cycle that 
starts while CIP # is busy is not terminated immediate­
ly. The MRDY# and MBRDY# signals are delayed 
until the previous cycle is finished. Therefore, anytime 
CT is active, there is only one cycle pending. 

CT is deactivated when the pending cycle is recognized 
by the CIP # state machine. This event is indicated by 
CIP# active and M# inactive. When this event occurs, 
the CT state machine transitions to SO deactivating CT. 

The ALO signal is also active only during DRAM cy­
cles. Therefore, its state machine is very similar to that 
of CIP#. As with CIP#, ALO is asserted when 
ADS# is sampled active. If the cycle is not to a 
DRAM address, ALO is deasserted. When a DRAM 
cycle is terminated, ALD is also deasserted. The SO- to­
S I transition is quite similar to that of CIP #. 

The difference between the two state machines is· re­
vealed during write miss cycles. The Sl-to-S2 transition 
is made if a write miss occurs. ALD must be held active 
during a write miss until RAS# is active. In this way 
the row address is held even if another cycle occurs. 
The combination ofCIP# being active while PCHG is 
inactive indicates that RAS# will be active in this 
clock. ALO must be deactivated in this clock to allow 
the next address to be latched. ALO is re-activated if 

RAS Precharge and Refresh Counter 

240799-24 

Figure 27. Precharge State Machine 

5-239 

I 



intef AP·447 

·another cycle has started during the write miss process. 
CIP# and MEMCS# are sampled diiring SO for this 
purpose. 

The PCHG state machine provides two functions. It 
determines the time RAS# is inactive during a miss or 
refresh cycle, and it determines the timing of refresh 
cycles. Figure 27 shows the state transitions of the 
PCHG state machine. Because the timing of this signal 
is not obvious, Figure 28 has been included. It shows a 
refresh cycle which occurs following a write cycle. 

After RAS# is active the PCHG signal is activated. 
State SI is maintained then until RAS# is deactivated. 
RAS# is only deactivated during a miss or refresh cy­
cle or, of course, if RESET is asserted. During a miss 
cycle the transition to SO is made deactivating PCHG. 

RAS# is then activated, resulting in two CPU clocks 
of RAS# precharge time. 

States S2 and S3 define the timing of refresh cycles. The 
transition to this sequence is made when RAS# is sam­
pled inactive while EP active. EP indicates that the 
RAS# state machine has entered the refresh sequence. 

RF ACK# initiates the refresh sequence. It indicates 
that the control logic is ready to accept a refresh re­
quest. The RFRQ signal is sampled at the end of a 
DRAM cycle or diiring idle clocks. Note that RFRQ 
cannot be recognized during a write miss. 

RFACK# is deactivated after RAS# is deactivated at 
the beginning of the refresh sequence (See Figure 27 
and Figure 28). 

RAS# STATE S2 S2 S2 S2 S3 S3 S4 S4 S3 S3 S1 S1 S2 S2 

PCHG STATE S1 S1 S1 S1 S1 S1 S1 S2 S2 S3 SO SO SO S1 

U TI U U U U U U U U U U U U 

CLK~ 
ADS#~ 

CST# ~---------k\.--t--t 
PADDR 

RAS# 

DADDRO + 1 

CASO# ~ 

WE# 

CS1# 

DDATAO + 1 

JC .x 

x IcoLUMN-i 

.x x' 

l/ 

.x 

][ ][ ROW XCOLUMNl( 

'-'-+--+-1-"J 
J 

ROY# ~ 
Hllllh I \."-11---t---il---t---il---t---i~-t----t~~ RFRQ 

RF ACK J 
WIP# J 

Figure 28. Refresh State· Timing Example 

5-240 

240799-25 



intef AP-447 

6.2 RAS# Logic 

The RAS# logic for both memory banks occupies one 
PLD. Four RAS# signals are generated: RASO#­
RAS3 #. These signals are generated to divide loading. 
Their timing is identical. The state machine for RAS is 
relatively simple and is shown in Figure 29. 

States SO and S 1 are used to implement RAS# function 
for normal cycles. After RESET, the state machine 
waits for the first bus cycle. The first bus cycle is sig­
naled by the CIP# signal. When CIP#, MEMCS# 
and PCHG are sampled active, RAS# is asserted. 
RAS# stays active until a miss or refresh cycle occurs. 

A miss cycle is indicated when the HIT# signal is driv­
en inactive. It is qualified by CIP# and MEMCS# 
being active. In this way, RAS# is only deactivated 
during DRAM cycles. 

Once RAS# is deasserted during a miss cycle, it stays 
high until PCHG is sampled active. This function im­
plements the RAS# precharge time. CIP # and 
MEMCS# will still be active during read miss cycles. 
Therefore, RAS# will be asserted in the next clock. 
For write miss cycles the WIP# signal must be used to 
restart RAS#. With a write miss, a non-DRAM cycle 
can occur before RAS# is asserted. WIP # is the only 
valid indication that a DRAM cycle has occurred in 
this case. WIP# is combined with MEMCS# to create 
the CSWIP # term which indicates a valid RAS# cy­
cle. 

When a refresh cycle occurs, the RAS# state machine 
transitions to S2. S2 and S3 are devoted to the refresh 
function. When RFACK is sampled active, the tran­
sition occurs. The refresh sequence shown in Figure 28 
illustrates the function of these two states. Note that 
after a refresh cycle, RAS# is left inactive. The tran­
sition from SO to S4 allows for refresh cycles that start 
when RAS# is inactive. 

RESET RAS EP 
S1 1 0 
S2 0 0 
S3 0 1 
S4 1 1 

240799-26 

Figure 29. RAS State Machine 

5-241 



intef AP-447 

6.3 CAS # Logic 

Two separate PLDs implement the CAS # function. 
These PLDs generate the CAS # signals for bank 0 an\} 
bank l, respectively. The state machines which gener­
ate these signals are separate and independent. Each 
generates two CAS# signals. CASOO# and CASOl# 
for bank 0, and CASIO# and CASll # for bankl. 
These signals drive separate DRAM modules due to 
drive requirements. 

!AQO#*LA2* 
LW/R* 
IMEMCS# 

Fignre 30 shows the state diagram for the bank 0 
CAS # function. The states on the left side of the dia­
gram implement the write function. The states on the 
right implement the read function. As with RAS#, the 
state machine waits until CIP # indicates that a cycle 
has started. When CIP # is active, the state of the 
latched version of W /R # determines which sequence is 
started. 

!BRDY#*BLAST #*LA2+ 
RF ACK 

CASO 

so 1 
81 1 
82 0 
83 1 
84 0 
85 1 
86 0 

C1 C2 

1 1 
0 1 
0 0 
0 0 
1 1 
1 0 
1 0 

240799-27 

Figure 30. CAS State Machine 

5-242 



intef AP-447 

If the cycle is a read, S4 is entered. If the cycle is a 
write, LA2 is sampled to determine if the cycle is to 
bank 0. If LA2 is low, Sl is entered. Note that this 
function is the same for the bank 1 state machine. The 
only difference is the state of LA2, which starts the 
write sequence. 

During a write cycle, CAS # is held inactive until the 
clock after RDY # is asserted. The state machine also 
waits in SI during a write miss cycle. CAS# is asserted 
during S2. In this state, several events can occur. First, 
the CPU may not start another bus cycle. Second, it 
may start a bus cycle other than a DRAM cycle. Third, 
it may initiate a read cycle, and fourth, it may begin a 
write cycle to bank 1. If any of these events occur, S 1 is 
entered. If another write cycle starts to the same bank, 
however, S3 is entered. 

The case of sequential writes to the same bank involves 
S2 and S3 only. An unlimited number of write cycles 
can occur in the same bank. If the DRAM row is same, 
they will occur without wait-states. If a write miss oc­
curs, RAS# will be deasserted, and the transition from 
S3 to S 1 takes place. 

IAQO#*LA2* 
LW/R 

During read cycles, the CAS # signals for bank 0 and 
bank I are activated at the same time. Therefore, the 
state machines enter S4 at the same clock. At this 
point, however, the state of LA2 determines which 
state machine enters SS. In SS, CAS# is deasserted to 
prepare that bank for the next access. If S6 is entered, 
the data from that bank has not yet been accessed. 
CAS# must be held active, in this case, until the data is 
sampled by the CPU. From S6, the next transition will 
be to SS to continue the cycle, or SO to terminate the 
cycle. If this bank was accessed first, the cycle will ter­
minate from this state. 

The read sequence is much simpler if static column 
mode DRAMs are used. The state sequence for static 
column mode is shown in Figure 31. The write se­
quence in this diagram is exactly the same as for the 
page mode CAS# control logic. The read function, 
however, requires only two states. From SO, the tran­
sition is made to SS any time that a DRAM read cycle 
starts. Note that LA2 is not used to qualify this tran­
sition. Therefore, the CAS # signals for bank 0 and 
bank 1 are active at the same time. 

CASO C1 C2 

so 1 1 1 
81 1 0 1 
82 0 0 0 
83 1 0 0 
84 0 1 1 

240799-28 

Figure 31. Static Column CAS State Machine 

5-243 

I 



intJ AP-447 

6.4 Write 'control Logic 

The posted write implementation requires logic support 
for a few key functions. These functions are required 
mainly to support posting with interleaved memory. 
Three types of signals are generated to implement these 
functions: 

Multiplexer Select - These signals control the address 
multiplexers when RAS# is active. During write cy­
cles, they must be active to select the write address 
path. These signals stay active during read cycles which 
are immediately preceded by a write. They are deacti­
vated, when the write cycle is complete. Once they are 
deactivated the read cycle may proceed as the read path 
is selected. 

Write Enable - These signals are combined with the 
byte enable CPU outputs (BEO # - BE3 #) to create the 
WBE# signals. The WBEOO#-WBE03# signals con­
trol which byte is written in bank 0 during a write cy­
cle. The WBE 10 # - WBE 13 # signals perform the same 
function for bank 1. 

Write In Progress - This signal is active when a write 
cycle has been started by either DRAM bank. It is ac­
tive when either COl # or Cl 1 # is active. COl # and 
Cl1# are state outputs from the CAS# state machine 
which indicates that a write cycle is being performed. 
COl # is generated for bank 0 and Cl1 # for bank 1. 
WIP # is only required for interleaved memory sys­
tems. The COl# (or Cl1#) output would be sufficient 
for a non-interleaved (single bank) system. 

The state machines which generate these signals are 
shown in figure 32. The state diagram for the MENO# 
signal is shown. This signal enables the address multi­
plexer for bank 0. MENO# is activated whenever a 
write cycle occurs to an address with A2 low (0). The 
MENl # function is the same except that it is activated 
when A2 is high(!). The AQO#, MEMCS# and LW/ 
R # signals an; used to indicate a valid write cycle. 

The MEN# signals are deactivated when the write cy­
cle is complete. The cycle is complete when CAS # for 
that bank is sampled active. For bank 0, COi # is used 
to indicate that a write is in progress. MENO# is held 
active when COl # is active. When CASOO# is sampled 
active, CIP # is checked to determine if another valid 
write to the same bank has occured. If so, MENO# 
stays active until CASOO# is sampled active. This func­
tion keeps the write address path open during consecu­
tive writes to the same bank. 

The WE# state machine is very similar to that of the 
MEN# state machine. When a write cycle starts, 
WEO# is activated in the same manner as MENO#. 

The write enable signals, however, must stay active one 
clock longer than the MEN# signals. Therefore, the 
WE# signal is not deactivated until COl # is sampled 
inactive. 

WIP # is generated in part by combinatorial logic so 
that it can be active in the same clock as the COl # and 
C11 # signals. WIP# must be active in this clock to 
ensure that a write miss is completed before a refresh 
cycle takes place. WIP # must also be held active one 
clock after COl # and C02# are sampled inactive. This 
timing ensures the proper sequence for subsequent read 
cycles. The logic equation and state machine for WIP# 
are shown in Figure 32. 

6.5 Burst Address Logic 

The burst address logic generates the BlMAO and 
BOMAO signals. These signals are connected directly to 
the low order address inputs of the DRAMs. Because 
of the direct connection, these signals must perform 
several different functions. They must multiplex the 
low order row and column addresses, multiplex the 
write and read addresses and generate the burst address 
during read cycles. 

These functions are performed separately for each bank 
by two PLDs. Each PLD generates two identical sig­
nals to reduce the drive requirements. These signals are 
connected directly to two bytes of the DRAM array. 
The signals are generated partly by combinatorial logic 
and partly by the state machine. 

The logic equations and state diagram for this function 
are shown in Figure 33. The state machine generates 
the burst address for read cycles. The logic equations 
handle the multiplexing functions. 

The burst address is generated after a burst read cycle 
has started. Note that the i486 CPU cache need not be 
enabled for burst cycles to occur. Cycles such as 64-bit 
floating-point operand reads will burst if BRDY is re­
turned to the processor. SO and S3 track the state of the 
A3 CPU address output. When a burst read cycle 
starts, S 1 or S2 is entered. The BOMAO address output 
will then change its state when MBRDY # and DAT A­
SEL are both low. This function is the burst address for 
bank 0. The BlMAO address output changes its state 
when MBRDY# is low and DATASEL is high. This 
function is the burst address for bankl. The only differ­
ence in the two PLDs is the value of DATASEL used 
to determine the time of which the burst address chang­
es its state. 

5-244 



intJ 

LWIP# 

soli 
s1 I o 

IC01#1C11 

IWIP#=ILWIP# + IC01 + IC11 

AP-447 

ICAS01# 

WEO# SO ii 
s1 I o 

1co1•CAso1#• 

ICIP#•LW/R•!MEMCS#•LA2•!CAS01 # 

COi 

IC01 

Figure 32. State Machines for MENO#, WIP#, and WEO# 

RESET 

!BOOMAO = !WEO# • !LA313 + WEO# •RAS# • !LA313 • WEO# *.!RAS# • IBOA 

RAS Precharge and Refresh Counter 

Figure 33. Burst Address Generation 

5-245 

WEO# 

soli 
s1 I o 

240799-30 

240799-29 

II 



intef AP-447 

The SO and S3 states are required only to ensure that 
the burst address outputs are valid during the T2 of any 
read cycle. Figure 17 shows the timing of a burst read 
hit cycle. In the first access of this cycle, the burst ad­
dress must be valid in the first T2 to satisfy the address 
access time requirements of the DRAM. The value of 
A3 is sampled with ALO to statisfy this requirement. 
In this way, the burst address state machine always 
starts from the correct value of A3. If another wait 
state is added to this access, this function is not re­
quired. 

The logic equations which provide the multiplexor 
function are very simple. The first term of the equations 
shown in Figure 33 enables the write path. The write 
enable signals are used to enable this path. When WEO 
is active, for example, the value of the multiplexor out­
put is passed through to the DRAM. The second term 
allows the row address AJ3 to be passed to the DRAM 
during a read page miss. This term is also qualified by 
the write enable signals. In this way, the write address 
is not disabled early during a read miss. The third term 
enables the burst address output from the state machine 
onto the address pins. 

7.0 SUMMARY 

We have discussed an example memory subsystem for 
the i486TM CPU. The material has been presented as a 
design guide for systems under development or as an 
optimization for existing systems. We have discussed 
several key functions which will be summarized in this 
section. We will also discuss some important timing 
restrictions. The key functions discussed include an ex­
ternal or second level cache, posted write cycles, and 
interleaved DRAM banks. 

The interleaving technique is used to support the burst 
bus feature of the i486 CPU. The use of this technique 
allows the DRAM to supply a DWORD every clock 
during burst cycles. Interleaving proves to be very use­
ful in i486 CPU memory designs. Without its use 
DRAM timings such as tPC (Page Mode Cycle time) 

and tCP (CAS Precharge time) would prevent zero 
wait state access at 33 MHz. 

Data registers are also used to improve average write 
cycle latency. These registers hold write data during 
posted write cycles. Write posting can improve average 
write latency to under 3 clocks for many applications. 
This improvement is important in i486 CPU based sys­
tems because 65% to 70% of all bus cycles are writes. 
Without using a latency improvement technique such 
as write posting average write latency will be above 5 
clocks. 

The write posting technique also improves memory per­
formance in other ways. Write cycles, particularly 
DRAM page misses, can be overlapped with read hit 
cycles in the second level cache. This fact greatly reduc­
es the delay caused by read cycles which immediatly 
follow write cycles. 

Analysis of this memory subsystem design has shown 
that use of these features has resulted in a low latency 
response to the CPU. Over several important applica­
tions the following characteristics have been recorded. 
The average clock cycles required to complete the first 
read is 3.5 clocks. Subsequent cycles of a burst are al­
ways processed in one clock. Write cycles average 2.5 
clocks. These average counts result from the following 
DRAM access rates. Read accesses from the cache al­
ways occur in zero wait states. 

Table 3. Dram Function Latencies 

DRAM 
First Subsequent 

Write 
Function Access Burst Cycles 

Burst Accesses 

Page Hit 3 1 2 

Page Miss 7 1 5* 

NOTE: 
•write miss latencies occur only during cycles subsequent 
to a write miss cycle. 

5-246 



intJ AP-447 

7 .1 Timing Restrictions 

A few DRAM timing restrictions must be mentioned. 
These timings become critical at 33 MHz. These tim­
ings are critical due primarily to the latency of the first 
cycle of a read page hit. Since three clocks are used the 
following timing restrictions exist. 

tRAC = Data access time from RAS# active 

tCAA = Data access time from column address valid 

tCAC = Data access time from CAS# active 

tRP = RAS# precharge time 

At 33 MHz 

tRAC = 71.5 ns 

tCAA = 37.5 ns 

tCAC = 34 ns 

tRP = 60.6 ns 

At 25 MHz 

tRAC = 101.5 ns 

tCAA = 51 ns 

tCAC = 61.5 ns 

tRP = 80 ns 

5-247 

I 



intef AP-447 

APPENDIX A 
PLO CODES AND SCHEMATICS 

A.1 PLO DEVICES 

Many design examples in this manual use PLDs (Pro­
grammable Logic Devices) which can be programmed 
by the user to implement random logic. A PLD device 
can be used as a state machine or a signal decoder, for 
example. The advantages of PLDs include the follow­
ing: 

1. PLD pinout is determined by the designer, which 
can simplify board layout by moving signals as re­
quired.' 

2. PLDs are inexpensive as compared to dedicated bus 
controllers. 

Intel EPLDs (Erasable Programmable Logic Devices) 
have the following additional advantages: 

1. Programmability/erasability allows EPLD func­
tions to be changed easily, simplifying prototype de­
velopment. 

2. Since EPLDs are implemented in CMOS technolo­
gy, they can consume an order of magnitude less 
power than bipolar PLDs. Power-conscious applica­
tions can benefit greatly from using EPLDs. 

3. Since the EPROM cell size is an order of magnitude 
smaller than an equivalent bipolar fuse, EPLDs can 
implement more functions in the same package. 
This higher integration can result in a lower overall 
component count for a design. The added flexibility 
can also mean that an extremely low number of 
"raw" (unprogrammed) devices need to be stocked 
versus bipolar PLDs. 

4. Once an EPLD design has been tested, plastic OTP 
(One-Time Programmable) versions of the device 
can be used in a production environment. 

PLDs have the following tradeoffs: 

1. Most PLDs do not have buried (not connected to 
outputs) registers. For some state machine applica­
tions; this means using an otherwise available output 
pin to store the current state. 

2. The drive capability of CMOS EPLDs may be insuf­
ficient for some applications. While the trend is 
towards use of CMOS throughout a system, in cases 

where high current levels are required, some addi­
tional buffering may be required with EPLDs. 

A PLD consists logically of a programmable AND ar­
ray whole output terms feed a fixed OR array. Any 
sum-of-products equations, within the limits of the 
number of PLD inputs, outputs, and equation terms, 
can be realized by specifying the correct AND array 
connections. Figure B-1 shows an example of two PLD 
equations and the corresponding logic array. Note that 
every horizontal line in the AND array represents a 
multi-input AND gate; every vertical line represents a 
possible input to the AND gate. An X at the intersec­
tion of a horizontal line and a vertical line represents a 
connection from the input to the AND gate. 

The sum-of-products is then routed to a configurable 
macrocell. The macrocell in Figure B-2 can be config­
ured as a combinational output or registered output. 
The output can be active high or active low. A separate 
AND term controls the output buffer. 

Designing with PLDs consists of determining where Xs 
must be placed in the AND array and how to configure 
the macrocell. This task is simplified by logic compil­
ers, such as iPLS II (Intel's Programmable Logic Soft­
ware II) or ABEL. Logic compilers accept input in the 
form of sum-of-product equations and translate the in­
put into a JEDEC programming file that can be used 
by programming hardware/software. 

Intel PLDs are described in the Programmable Logic 
Handbook. Three Intel PLDs have been used in this 
manual to implement state machine and decode func­
tions. These PLDs include: 

• 85C220--fast 20-pin superset of 16 x 8 type bipolar 
and CMOS PLDs. 

• 85C224-fast 24-pin superset of 20 x 8 type bipolar 
and CMOS PLDs. 

• 85C508-fast address decode PLD with integral 
transparent latches. 

The 85C220 and 85C224 PLDs are both available at 
clock speeds to support fast state-machines in i486 sys­
tems. The 85C508 provides a fast Enable-to-Output 
time with a minimal system setup time. 

5-248 



i 
;; I 

~ 
~ .,, 
r-c 
m 
.a c 

i 
UI :I 

"' DI 
~ :I co a. 

c 
CD :s. 
n 
CD 

3 
"!!. 
CD 
3 
CD 
;a.1 

i 
:I 

CU< 

BOOLEAN EQUATION: 

D = A*S*/8 

+/A• IS• B 

EPLD IMPLEMENTATION: 

.... .... 
/A 

A s 

INPUT 

·C>- > A 

/S /B 
B 

FROMB 
INPUT 

• 

l 

CLOCK 

OE 

~ 
-0- ,. 
~rct< • .!2. 
-[)-- ~~ 

~ COMBINATIONAL 
OR REGISTERED 0--- (SELECTABLE) 

~ .... 

FEEDBACK 
< s 

240799-31 



intef 

OE 

INVERT 
CONTROL 

AP-447 

r----------------, 
I I 
I I 
I I 
I I 

>--1-----1 D Q 

I 
I CLK 

I 
I 
I 

MA CROCE LL 
REGISTER 

I I 
I I 

FEEDBACK I I 
------cl-...:-:-----_J II SELECT ! 

L----------------~ 

Figure A-2. 85C220/85C224 EPLD Macrocell Architecture 

5-250 

l/OPIN 

240799-32 



intJ AP-447 

module SC_MODE_DRAM_CTRL4 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 4, INTEL CORPORATION' 
" This pld generates MRDY and MBRDY 
" Implemented with Intel 85C224 EPLD. 

SCk device 'E224'; 

x 
c 

"Inputs 

CLK pin 1; 
M-
CIP­
MEMCS­
HIT­
RFACK 
ADS­
W_R 
RESET 
dum1 
BOFF­
WIP­
CAS­
BLAST­
RAS-

"Output 

dumO 
MT 
MRDY­
DALE­
LWR 
BROY-

.X.; 

.C.; 

"P4 input CLK" 
pin 2; "Miss Indicator 
pin 3; "Cycle OK 
pin 4; "Latched A2. 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

pin 5; "DRAM Page Hit Signal 
pin 6; "Refresh acknowledge" 
pin 7; ''CPU ADS-
pin 8; "CPU W/R 
pin 9; "System Reset 
pin 1 O; "Write in progress 
pin 11 ; "CPU Backoff input 
pin 14; "CPU Burst Last output 
pin 15; "Row Address strobe 
pin 22; 
pin 23; "Any CAS# signal 

pin 16; 
pin 17; " BROY state miss tracking 
pin 18; " Memory ROY (modified with other RDYs) 
pin 19; " Decode Latch enable 
pin 20; "Internally latched W/R# for rdy 
pin 21; " Processor BROY -

state~diagram [MRDY - ] 

state (1): if (IRFACK & !ADS- & W_R & !RAS- & M-) # (!CIP- & LWR & 
IMEMCS- & !RFACK & M-) then [O] else [1); 

state (0): goto [1); 

state_diagram [BROY - , MT] 

state (1, 1): if !CIP- & !HIT- & IMEMCS- & !LWR & !RFACK & WIP- & IRAS­
then (0, 1) else if ICIP- & IMEMCS- & HIT- & ILWR # 
!CIP- & !MEMCS- & RAS- & ILWR then (1, OJ; 

5-251 

240799-33 

II 



intJ AP-447 

state [1, OJ: if RESET then [1, 1 J else 
If WIP- & !RFACK & !CAS- then [O, 1J; 

state [O, 1J: if RESET# !BOFF- #!BL.AST - then [1, 1J else [O, 1J; 

state_diagram [DALE- J 

state [OJ: if RESET then [OJ else 
if !ADS- then [1J else [OJ; 

state [1J: if RESET# !BOFF- then [OJ else 
if !CIP- then [OJ else [1J; 

state_diagram [LWRJ 

state [OJ: if RESET then [OJ else 
if !ADS- & W_R then [1J else [OJ; 

state [1J: if RESET# !BOFF- then [OJ else 
if !ADS- & !W_R then [OJ else [1J; 

tesLvectors 

([CLK,M-,CIP-,MEMCS-,HIT-,RFACK,ADS-,W_R,RESET,WIP-,BOFF-,BLAST-J 
- > [RAS-,MRDY-,DALE-,LWR,BRDY-]) 

"CMAMHRAWRWBBR MDLB 
"L-QEIFD_EIOLA RAWR 
"K OMTASRSPFAS DLRD 
" -C-F- E FS- YE Y 

S K T - T 

[c, X, X, x, X, X, 1, X, 1, X, X, X, xJ - > [x, X, x, xJ; 
[c, X, 1, 1, X, X, 1, X, 1, X, X, X, xJ - > [1, 0, 0, 1J; 
[C, 1, 1, 1, X, 0, 1, X, 0, 0, 1, 1, 1J - > [1, 0, 0, 1J; 
[C, 1, 1, 1, X, 0, 1, X, 0, 0, 1, 1, 1J - > [1, 0, 0, 1J; 
[C, 1, 1, 1, X, 0, 0, 1, 0, 0, 1, 1, 1J - > [1, 1, 1, 1J; 
[c, 1, 0, 0, 0, 0, 1, X, 0, 0, 1, 1, 1J - > [0, 0, X, 1J; 
[c, 1, 0, 0, 0, 0, 1, X, 0, 1, 1, 1, OJ - > [1, 0, 1, 1J; 
[c, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, OJ - > [O, 1, 1, 1J; 
[c, 1, 0, 0, 0, 0, 1, X, 0, 1, 1, 1, OJ - > [1, 0, X, 1J; 
[C, 1, 1, X, 0, 0, 0, 1, 0, 1, 1, 1, OJ - > [0, 1, 1, 1J; 
[c, 1, 0, 0, 0, 0, 1, x, 0, 1, 1, 1, OJ - > [1, 0, X, 1J; 
[c, 1, 1, X, 0, 0, 1, X, 0, 1, 1, 1, OJ - > [1, 0, X, 1J; 
[ C, 1, 1, 1, X, 0, 1, X, 0, 1, 1, 1, OJ - > [1, 0, X, 1 J; 

end SC_MQDE_DRAM_CTRL4; 

5-252 

240799-34 



intef AP-447 

module SC_MODE_DRAM_CTRL3 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 3, INTEL CORPORATION' 
" This PLO generates RAS 
"Implemented with the Intel 85C220 EPLD. 

SC3 device 'E0320'; 

x 
c 

"Inputs 

CLK pin 
M-
CIP­
MEMCS­
HIT­
RFACK 
PCHG 
WIP­
RESET 
01 

"Output 

.X.; 

.C.; 

1; "P4 input CLK" 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

pin 2; "Refresh Acknowledge 
pin 3; "Cycle OK 
pin 4; "Latched A2. 
pin 5; "DRAM Page Hit Signal 
pin 6; "Backoff input to P4" 
pin 7; "RAS precharge count 
pin 8; "Write in Progress 
pin 9; "System Reset 
pin 12; "RAS refresh count 

RAS2- pin 13; " 
RAS1 - pin 14; " RAS byte 0,2 
EP pin 15; " state variable 
EP1 pin 16; " state variable 
RASO- pin 17; "RAS byte 1,3 
RAS3- pin 18; " 
CSWIP- pin 19; " 

state_diagram [RASO-,RAS1-,EPJ 

state (1, 1, OJ: if RESET then (1, 1, OJ else 
if !CIP- & !CSWIP- & !PCHG then [O, 0, OJ else 
if RFACK & WIP- then (1, 1, 1 J else 
(1, 1, OJ; 

state (0, 0, OJ: if RESET then (1, 1, OJ else 
if RFACK then (0, O, 1J else 
if !CIP- & HIT - & !MEMCS- then (1, 1, OJ 
else (0, O, OJ; 

state (0, O, 1 J: if RESET then (1, 1, OJ else 
if !RFACK & !PCHG then (1, 1, OJ else 
if RFACK & !WIP- # IRFACK & PCHG then 
(0, 0, 1J else if RFACK & WIP- & !01 then [1, 1, 1J; 

state (1, 1, 1 J: if RESET then (1, 1, OJ else 
if !PCHG then (0, 0, 1J else (1, 1, 1J; 

5-253 

240799-35 

I 



intJ 

state (0, 1, OJ: 
state [O, 1, 1): 
state (1, 0, OJ: 
state (1, O, 1J: 

goto [1, 1, OJ; 
goto (1, 1, OJ; 
goto [1, 1, OJ; 
goto (1, 1, OJ; 

AP-447 

state_diagram [RAS2- ,RAS3- ,EP1 J 

state (1, 1, OJ: 

state (0, 0, O]: 

state [O, O, 1]: 

state (1, 1, 1]: 

state (0, 1, O]: 
state (0, 1, 1J: 
state [1, o, OJ: 
state (1, 0, 1]: 

equations 

if RESET then [1, 1, OJ else 
if !CIP- & !CSWIP- & !PCHG then (0, 0, OJ else 
if RFACK & WIP- then [1, 1, 1J else 
(1, 1, OJ; 

if RESET then (1, 1, OJ else 
if RFACK then [O, 0, 1J else 
if !CIP- & HIT - & !MEMCS- then (1, 1, OJ 
else (0, 0, OJ; 

if RESET then [1, 1, OJ else 
if !RFACK & !PCHG then [1, 1, OJ else 
if RFACK & !WIP- # !RFACK & PCHG then 
[O, 0, 1J else if RFACK & WIP- & !01 then [1, 1, 1J; 

if RESET then [1, 1, OJ else 
if !PCHG then [O, o, 1] else [1, 1, 1J; 

goto (1, 1, OJ; 
goto (1, 1, OJ; 
goto [1, 1, OJ; 
goto [1, 1, OJ; 

!CSWIP- = (!MEMCS- # !WIP-)& !RESET; 

tesL vectors 

([CLK,M- ,CIP- ,MEMCS- ,HIT - ,RFACK,PCHG, WIP- ,01 ,RESET] - > 
[RASO-,RAS1-,EP,RAS2-,RAS3-,EP1]) 

" CMAMHRPWOR RRERRE 
"L-OEIFCl1E AAPAAP 
" K OMTAHP S SS SS1 

-C-CG- E 01 23 
S K T 

[c, x, X, x, X, x, 1, X, X, 1) - > [x, X, x, x, x, x]; 
[c, x, x, x, x, x, 1, x, x, 1J - > [1, 1, 0, 1, 1, OJ; 
[c, x, x, x, x, x, 1, x, x, 1] - > (1, 1, 0, 1, 1, O]; 
(c, X, X, X, X, X, 1, X, X, 1] - > (1, 1, 0, 1, 1, 0]; 

5-254 

240799-36 



intJ AP·447 

(C, X, X, X, X, X, 1, X, X, 1) - > (1, 1., 0, 1, 1, 0); 
(C, X, X, X, X, X, 1, X, X, 1) - > (1, 1, 0, 1, 1, 0); 
(C, X, X, X, X, X, 1, X, X, 1) - > (1, 1, 0, 1, 1, 0); 
(C, 1, 1, X, X, 0, 0, 0, 0, 0) - > (1, 1, 0, 1, 1, 0); 
(c, 1, 1, X, X, 0, 0, 0, 0, 0) - > (1, 1, 0, 1, 1, 0); 
[c, 1, 0, 0, 0, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, O]; 
[c, 1, 0, 0, 0, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, O]; 
(C, 1, 1, X, X, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, 0); 
[c, 1, 0, 0, 0, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, O]; 
(c, 1, 1, X, X, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, 0); 
[c, 1, 0, 0, 0, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, O); 
(C, 1, 1, X, X, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, 0); 
[c, 1, 1, x, x, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, O]; 
(c, 1, 1, X, X, 0, 0, 0, 0, 0) - > (0, 0, 0, 0, 0, 0); 

end SC_MQDE_DRAM_CTRL3; 

5-255 

240799-37 

El 



intJ AP-447 

module SC_MODE_DRAM_CTRL 1 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLD 1, INTEL CORPORATION 
" Cycle Tracking Logic 
" Implemented with Intel 85C224 EPLD. 

SCy device 'E224'; 

x 
c 

"Inputs 

.X.; 

.C.; 
" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

CLK pin 1; "P4 input CLK" 
BLAST­
MEMCS­
AHOLD 
HIT­
BOFF­
ADS­
RFRQ 
RESET 
BRDY­
MRDY­
RAS-
EP 

"Output 

pin 2; "P4 BLAST output 
pin 3; "Memory Chip Select 
pin 4; "Address HOLD input to P4" 
pin 5; "DRAM Page Hit Signal 
pin s:Backoff input to P4" 
pin 7; "Address Status output of P4" 
pin 8; "Refresh Request Signal 
pin 9; "System Reset 
pin 10; "Processor burst ready pin. 
pin 11 ; "Memory ready 
pin 14; "Row Address Strobe 
pin 23; "Refresh indicator - count on RAS- low 

RFACK- pin 15; "Refresh acknowledge 
CIP- pin 16; "ADS- active indicator 
M - pin 17; " AQO- Miss state indicator 
CT pin 18; " AHOLD with ADS- indicator 
PCHG pin 19; " Precharge state indicator 
01 pin 20; "Precharge state indicator 
ALD pin 21 ; " Address Latch Disable 
adlst- pin 22; "ADL state variable 

state_diagram [CIP-, M - J 

state [1, 1]: if RESET then [1, 1] else 

state [O, 1]: 

state [O, OJ: 

if AHOLD# !RFACK- # EP then [1, 1] else 
if !ADS- #CT then [0, 1] else [1, 1]; 

if RESET# !BOFF- # MEMCS­
then [1, 1] else 
if HIT - & !RAS- & !MADY- then [0, O] else 
If (!MRDY- #(!BROY- & !BLAST-)) then [1, 1] 
else [O, 1]; 

if RESET # !BOFF- then [1, 1] else 
if !PCHG & (CT# !ADS-) then [O, 1] else 
if !PCHG & !CT then [1, 1] else 
[O, O]; 

5-256 

240799-38 



intJ AP-447 

state [1, O): goto (1, 1); 

state_diagram [PCHG, 01 J 

state (0, OJ: if RESET then [O, OJ else 
if !RAS- then (1, OJ else 
if RAS- & !RFACK- then (0, 1J else [O, OJ; 

state [1, OJ: if RESET then [O, OJ else 
if RAS- & !EP then (0, OJ else 
if RFACK- & EP & !RAS- then (1, 1J else 
if RAS- & EP then (0, 1J else [1, OJ; 

state (0, 1J: goto [1, OJ; 

state [1, 1 J: goto [O, OJ; 

state_diagram [CT] 

state [OJ: 

state [1J: 

if RESET then [OJ else 
if !ADS- & (AHOLD# !RFACK- # !M- # EP) then (1J else [OJ; 

if RESET# !BOFF- then [OJ else 
if !CIP- & M- then (OJ else [1J; 

state_diagram [RFACK-J 

state[1J: 

state[OJ: 

if RESET then [1J else 
if !GIP- & RFRQ & !MRDY - & !HIT - then [OJ else 
if !GIP- & RFRQ & (!BROY- & !BLAST-)# 
RFRQ & GIP- & ADS- then [OJ else [1J; 

if RESET# !BOFF- then [1J else 
if RAS- then [1J else [OJ; 

state_diagram [ALO, adlst-J 

state [O, 1]: 

state [1, OJ: 

state [1, 1 J: 

if RESET then [O, 1 J else 
if !ADS-# !CIP- & !MEMCS- then [1, OJ else (0, 1J; 

if RESET then [O, 1 J else 
if !CIP- & MEMCS- then (0, 1J else 
if HIT - & !MRDY - then (1, 1 J else 
if !HIT- & !MRDY- then (0, 1J else 
if !BROY- & !BLAST- then [O, 1J else [1, OJ; 

if RESET then (0, 1 J else 
if !CIP- & (!PCHG # MEMCS-) then (0, 1J else [1, 1J; 

state (0, OJ: goto [O, 1J; 

tesLvectors 

5-257 

I 

240799-39 



inter- AP·447 

([CLK,BLAST - ,MEMCS- ,AHOLD,HIT...: ,BOFF- ,ADS- ,RFRQ,RESET] - > 
[BROY- ,MADY- ,RAS- ,EP,RFACK- ,CIP- ,M- ,CT,PCHG,01 ,ALD,adlst-]) 

CBMAHBARRBRRE RAMCPOAa 
I I c u I n. n c c D n A D c " - T ,... ~ I .... 
_.__'''"""'' .._,,...,,,, t \,IC-- IVIL.U 

KAMOTFSRSDYS - AO H DI 
SCL-F-QEY-- C- G s 
TSO - T- K t 

[c, X, X, x, X, X, 1, X, 1, X, X, X, x] - > [1, 1, 1, 0, 0, 0, 0, 1]; 
[c, X, X, X, x, X, 1, X, 1, X, X, X, x] - > [1, 1, 1, 0, 0, 0, 0, 1]; 
(C, 1, X, 0, X, 1, 1, 0, 1, 0, 1, 1, 0) - > (1, 1, 1, 0, 0, 0, 0, 1); 
[c, 1, x, o, x, 1, 0, 0, 0, 0, 1, 1, OJ - > [1, 0, 1, 0, o, o, 1, O]; 
[c, 1, x, o, x, 1, 1, o, 1, o, 1, 1, O] - > [1, O, 1, o, o, o, 1, OJ; 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0) - > [1, 0, 1, 0, 0, 0, 1, O]; 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, O; O] - > [1, 0, 1, 0, 1, 0, 1, O); 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0) - > [1, 0, 1, 0, 1, 0, 1, O); 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0) - > [1, 0, 1, 0, 1, 0, 1, O]; 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0) - > [1, 0, 1, 0, 1, 0, 1, O]; 
[c, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0) - > [1, 0, 1, 0, 1, 0, 1, O]; 
[c, 0, 0, 0, O, 1, 1, 0, 1, o, 1, 0, OJ - > [1, 1, 1, O, 1, 0, o, 1]; 
(C, X, X, 0, X, 1, 1, 0, 1, 0, 1, 0, 0) - > (1, 1, 1, 0, 1, 0, 0, 1); 

end sc_MQDE_DRAM_CTRL 1; 

5-258 

240799-40 



intJ AP-447 

module SC_MODE_DRAMCTRL7 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 7, INTEL CORPORATION' 
"This PLO generates DATASL and WE 
" Implemented with the Intel 85C220 EPLD. 

SC7 device 'E0320'; 

x 
c 

.X.; 

.C.; 
" ABEL 'don't care' symbol 
"ABEL 'clocking input' symbol 

"Inputs 

CLK pin 1; "P4 input CLK" 
BROY - pin 2; "Burst Ready 
CIP- pin 3; "Cycle OK 
MEMCS- pin 4; "memory select 
LA2 pin 5; "Latched A2. 
CASOO- pin 6; "CAS output Bank1 
CAS10- pin 7; "CAS output Bank1 
LW_R pin 8; "CPU W/R latched-
RESET pin 9; "System Reset 
BLAST - pin 12; "CPU BLAST - output 
BOFF - pin 13; "CPU Backoff input 
HIT- pin 19; 

"Output 

DAT ASEL 
RS­
RALE­
WE­
SSEL 

pin 14; " Bank select for reads 
pin 15; " state variable 
pin 16; " state variable 
pin 17; " Write Enable posted writes 
pin 18; " Selects read or write data path 

state_diagram [DATASEL, RS-] 

state [1, 1]: if RESET then [1, 1) else 
if !CIP- & !LA2 & !LW_R & !MEMCS- then [O, OJ else 
if !CIP- & LA2 & !LW_R & !MEMCS- then [1, OJ else [1, 1]; 

state [1, OJ: if RESET# !BOFF- #(!BROY- & !BLAST-) then [1, 1J else 
if !BROY - & BLAST - then [O, OJ else [1, OJ; 

state [O, OJ: if RESET # !BOFF- # (!BROY- & !BLAST-) then [1, 1 J else 
if !BROY - & BLAST - then [1, OJ else [O, OJ; 

state [O, 1): goto [1, 1]; 

state_diagram [WE - ] 

state [1): if RESET then [1] else 
if LW_R & !CIP- & !MEMCS- then [OJ else [1]; 

5-259 

El 

240799-41 



intJ AP-447 

state [O]: if RESET# !BOFF- then [1] else 
if LW_R & !CIP- & !MEMOS- then [OJ else 
if CASOO- + CAS10- then [1]; 

state_diagram [RALE- J 

state [OJ: if RESET then [OJ else 
if !CIP- & HIT- & !MEMCS- then [1J else [OJ; 

state [1J: if RESET# !BOFF- then [OJ else 
if !HIT - then [OJ else [1 J; 

end SC_MODE_DRAM_CTRL7; 

5-260 

240799-42 



intJ AP-447 

module SC_MODE_DRAM CTRL 11 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 11, INTEL CORPORATION' 
" This PLO generates the mux enables write enables and WIP# 
" Implemented with the Intel 85C220 EPLD. 

sew device 'E0320'; 

x 
c 

.X.; 

.C.; 
" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

"Inputs 

CLK pin 1; "P4 input CLK" 
LA2 pin 2; "Latched A2. 
CIP- pin 3; "Cycle OK 
MEMCS- pin 4; "Memory Chip select. 
RESET pin 5; "DRAM Page Hit Signal 
LW_R pin 6; "latched CPU W/R# 
C01 pin 7; "Write indication Banko 
CAS01 - pin 8; " 
C11 pin 9; "Write indication Bank1 
CAS11- pin 19;" 

"Output 

WIP­
MENO­
WEO­
LWIP­
dum 
WE1-
MEN1-

pin 12; "New Wip signal comb 
pin 13; "Mux enables 
pin 14;" 
pin 15; "Latched WIP­
pin 16;" 
pin 17;" 
pin 18; " Mux enable Bank1 

state_diagram [WEO -1 

state [1]: if RESET then [1J else 
if !CIP- & LW_R & !MEMCS- & !LA2 then [OJ; 

state [OJ: if RESET then [1 J else 
if !C01 then [OJ else 
if C01 then [1 J; 

state_diagram [WE1 - J 

state [1J: if RESET then [1] else 
if !CIP- & LW_R & !MEMCS- & LA2 then [O]; 

state [OJ: if RESET then [1J else 
if !C11 then [O] else 
if C11 then [1 J; 

state_diagram [LWIP- J 

5-261 

El 

240799-43 



intJ AP-447 

state [1]: if IC01 # !C11 then [OJ else [1]; 

state [OJ: if RESET then [1]' else . 
if IC01 # IC11 then [OJ else [1 ]; 

state_diagram [MENO-] 

state [1J: if RESET then [1J else . 
if ICIP- & LW_R& !MEMCS- & !LA2 then [OJ; 

state [OJ: if RESET then [1 J else 
if !C01 & CAS01 - then [OJ else 
if ICIP- & LW_R & !MEMCS- & !LA2 & !CAS01- then [OJ else 
if ICAS01- then [1J; 

state_diagram [MEN1 - J 

state [1J: if RESET then [1J else 
if ICIP- & LW_R & !MEMCS- & LA2 then [OJ; 

State [OJ: if RESET then [1J else 

equations 

"test.vectors 

if IC11 & CAS11 - then [OJ else 
if !CIP- & LW_R & IMEMCS- & ILA2 & !CAS11- then [OJ else 
if !CAS11- then [1J; 

!WIP- = !LWIP- # IC01 # IC11; 

"([CLK,M 10- ,CIP- ,MEMCS- ,HIT - ,RFACK,ADS- ,W_R,RESET,CASO- ,BOFF- ,BLAST - J 
"- > [RAS-,MRDY-,DALE-,LWR,BRDY.,-]) 

"CMAMHRAWRCBBR MDLB 
"L_QEIFD_EAOLA RAWR 
"K.1 OM TA SR SS FAS DLR D 
" 0-C-F- EOFS- YE Y 

SK T--T 

"[c, x, x, x, x, x, 1, x, 1, x, x, x, xJ - > [x, x, x, xJ; 
"[c,.x, 1, 1, x, x, 1, x, 1, x, x, x, xJ - > [1, 0, O; 1J; 
"[c, 1, 1, 1, x, 1, 1, x, O, 1, 0, 1, 1) - > [1, o, 0,,1J; 
"[c, 1, 1, 1, x, 1, 1, x, o, 1; o, .1, 1J - > [1, o, o, 1J; 
" [c, 1, 1, 1, x, 1, o, 1, o, 1, o, 1, 1 J - > [1, 1, 1, 1 J; 
" [c, 1, 0, 0, 0, 1, 1, x, 0, 1, 0, 1, 1 J - > [O, 0, x, 1]; 
" [c, 1, 0, 0, 0, 1, 1, x, 0, 1, 0, 1, OJ - > [1, 0, x, 1 J; 
" [c, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, OJ - > [0, 1, 1, 1 J; 
"[c, 1, 0, 0, 0, 1, 1, x, 0, 0, 0, 1, OJ.-> (1, 0, x, 1J; 

5-262 

240799-44 



intef AP-447 

" [c, 1, 1, x, 0, 1, 0, 1, 0, 1, 0, 1, O] - > [0, 1, 1, 1]; 
" (C, 1, 0, 0, 0, 1, 1, X, 0, 1, 0, 1, 0] - > (1, 0, X, 1 ]; 
"(C, 1, 1, X, 0, 1, 1, X, 0, 1, 0, 1, 0] - > (1, 0, X, 1]; 
" [c, 1, 1, 1, x, 1, 1, X, 0, 1, 0, 1, 0] - > [1, 0, X, 1 ]; 
" 
end SC_MQDE_DRAM_CTRL 11 ; 

5-263 

240799-45 



intef AP-447 

module SC_MODE_DRAM_CTRL 11 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 11, INTEL CORPORATION' 
" This PLO generates the mux enables write enables and WIP# 
" 1...,....,.f,.....,..,...,.. ... ,,......,a .... :+a.. ..,..,_,., 1-. ... -1 OC'f"'\f"\1''111\ r-n1 I""\ 

.. ,,,.,,...i:JlllWllLVU YYllll un:::• lllL'O'I U\.IV,.c;..v L.rLLJ. 

SCw device 'E0320'; 

x 
c 

"Inputs 

.X.; 

.C.; 

CLK pin 1 ; "P4 input CLK" 
LA2 pin 2; "Latched A2. 
CIP- pin 3; "Cycle OK 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

MEMCS- pin 4; "Memory Chip select. 
RESET pin 5; "DRAM Page Hit Signal 
LW_R pin 6; "latched CPU W/R# 
C01 pin 7; "Write indication Banko 
CAS01 - pin 8; " 
C11 pin 9; "Write indication Bank1 
CAS11- pin 19;" 

"Output 

WIP­
MENO­
WEO­
LWIP­
dum 
WE1-
MEN1-

pin 12; "New Wip signal comb 
pin 13; " Mux enables 
pin 14;" 
pin 15; "Latched WIP­
pin 16;" 
pin 17;" 
pin 18; " Mux enable Bank1 

state_diagram [WEO-J 

state [1]: if RESET then [1J else 
if !CIP- & LW_R & !MEMCS- & !LA2 then [OJ; 

state [OJ: if RESET then [1 J else 
if !C01 then [OJ else 
if C01 then [1J; 

state_diagram [WE1 - J 

state [1J: if RESET then [1J else 
if !CIP- & LW_R & !MEMCS- & LA2 then [OJ; 

state [OJ: if RESET then [1 J else 
if !C11 then [OJ else 
if C11 then [1 J; 

state_diagram [LWIP-] 

5-264 

240799-46 



infef AP-447 

state [1]: if !C01 # !C11 then [OJ else [1]; 

state [OJ: if RESET then [1] else 
if !C01 # !C11 then [OJ else [1 ]; 

state_diagram [MENO-] 

state [1]: if RESET then [1] else 
if !CIP- & LW_R & !MEMCS- & !LA2 then [O]; 

state [OJ: if RESET then (1] else 
if !C01 & CAS01 - then [OJ else 
if !CIP- & LW_R & !MEMCS- & !LA2 & !CAS01 - then [O] else 
if !CAS01 - then [1]; 

state_diagram [MEN1 - ] 

state [1]: if RESET then [1] else 
if !CIP- & LW_R & !MEMCS- & LA2 then (O]; 

state [OJ: if RESET then (1] else 
if !C11 & CAS11 - then [OJ else 
if !CIP- & LW_R & !MEMCS- & !LA2 & !CAS11- then [OJ else 
if !CAS11-then (1]; 

equations 

!WIP- = !LWIP- # !C01 # !C11; 

"tesLvectors 

"([CLK,MJO-,CIP-,MEMCS-,HIT-,RFACK,ADS-,W_R,RESET,CASO-,BOFF-] 
" - > [BLAST-,RAS-,MRDY-,DALE-,LWR,BRDY-]) 

CMAMHRAWRCBBR MDLB 
"L_QEIFD_EAOLA RAWR 
"KIOMTASRSSFAS DLRD 
"0-C-F- EOFS- YE Y 

S K T - -T 

"[c, X, X, x, x, x, 1, x, 1, X, X, X, x] -.> [x, x, X, x]; 
.. [c, x, 1, 1, X, X, 1, X, 1, X, x, X, x] - > (1, 0, 0, 1 ]; 
" (C, 1, 1, 1, X, 1, 1, X, 0, 1, 0, 1, 1) - > (1, 0, 0, 1 ); 
" (C, 1, 1, 1, X, 1, 1, X, 0, 1, 0, 1, 1] - > (1, 0, 0, 1 ]; 
" (C, 1, 1, 1, X, 1, 0, 1, 0, 1, 0, 1, 1] - > (1, 1, 1, 1); 
"[C, 1, 0, 0, 0, 1, 1, X, 0, 1, 0, 1, 1) - > (0, 0, X, 1); 
" (c, 1, 0, 0, 0, 1, 1, x, 0, 1, 0, 1, 0] - > (1, 0, x, 1 ); 
" [c, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, OJ - > (0, 1, 1, 1); 
"(c, 1, 0, 0, 0, 1, 1, X, 0, 0, 0, 1, 0] - > (1, 0, X, 1]; 

5-265 

240799-47 



intef AP-447 

" [c, 1, 1, x, 0, 1, 0, 1, 0, 1, 0, 1, OJ - > [0, 1, 1, 1 J; 
" (c, 1, 0, 0, 0, 1, 1, X, 0, 1, 0, 1, OJ - > (1, 0, X, 1 J; 
" [c, 1, 1, x, O, 1, 1, x, 0, 1, O, 1, OJ - > [1, O, x, 1 J; 
" (c, 1, 1, 1, X, 1, 1, X, 0, 1, 0, 1, OJ -'- > (1, 0, X, 1 ); 
" 

I end SC_MQDE_ORAM_CTRL 11; 

5-266 

240799-48 



inter AP-447 

module SC_MODEDRAM CTRL8 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 8, INTEL CORPORATION' 
"This PLO generates CAS1 {GAS for bank 1) 
"Implemented with the Intel 85C220 EPLD. 

SGS device 'E0320'; 

x 
c 

"Inputs 

.X.; 

.C.; 

CLK pin 1; "P4 input CLK" 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

RFACK pin 2; "Refresh Acknowledge 
CIP- pin 3; "Cycle OK 
LA2 pin 4; "Latched A2. 
HIT - pin 5; "DRAM Page Hit Signal 
BOFF- pin 6; "Backoff input to P4" 
LW_R- pin 7; " 
RAS- pin 8;" 
RESET pin 9; "System Reset 
ADY- pin 12; "Processor ADY# 
MEMCS - pin 13; " Memory Chip Select 
BADY- pin 18;" Processor BREADY# 
BLAST - pin 19; " Processor BLAST# 

"Output 

CAS10-
C1 
C2 
CAS11-

pin 14; "CAS1 byte 0,2 
pin 15; " state variable 
pin 16; " state variable 
pin 17; "CAS1 byte 1,3 

state_diagram [CAS10- ,CAS11- ,C1 ,C2] 

state [1, 1, 1, 1): if RESET# !BOFF- then [1, 1, 1, 1) else 
if !RFACK & !GIP- & LA2 & LW_R- & !MEMCS- then 
(1, 1, 0, 1) else if !RFACK & !GIP- & !LW R- & !RAS­
& !HIT- & !MEMCS- # {RFACK & RAS-) then 
[O, 0, 1, 1) else (1, 1, 1 , 1); 

state [1, 1, 0, 1): if RESET# !BOFF- then [1, 1, 1, 1] else 
if !RAS- & ADY - then [O, 0, 0, OJ else 
(1, 1, o. 1); 

. state [O, 0, 0, OJ: if RESET # !BOFF- then [1, 1, 1, 1 J else 
if !GIP- & LA2 & LW_R- & !MEMCS- then (1, 1, 0, OJ else 
if GIP-# {!GIP- & {MEMCS- # !LW_R-)) #{!GIP- & LW_R-& 
!LA2) then [1, 1, 1, 1) else [O, 0, 0, OJ; 

state [1, 1, 0, OJ: if !RAS- then [O, 0, 0, OJ else [1, 1, 0, OJ; 
240799-49 

5-267 



intef AP-447 

state (0, 0, 1, 1J: if RESET# !BOFF- then (1, 1, 1, 1J else 
if !BROY - & !BLAST - & !RFACK then 
(1, 1, 1, 1 J else 

if !BROY- & BLAST - & LA2 then (1, 1, 1, OJ else 
if !BRDY - & BLAST - & !LA2 then [O, 0, 1, OJ else 
if RFACK then [O, 0, 1, OJ else 
if BROY- & !RFACK then (0, 0, 1, 1J; 

state [1, 1, 1, OJ: if RESET then [1, 1, 1, 1J else 
if !BOFF- then [1, 1, 1, OJ else 
if !BROY- & BLAST - then (0, 0, 1, 1 J else 
if !BROY- & !BLAST - then [1, 1, 1, 1 J else 
[1, 1, 1, OJ; 

state [O, 0, 1, OJ: if RESET# !BOFF- then (1, 1, 1, 1J else 
if !BROY - & BLAST - then [1, 1, 1, OJ else 
if !BROY- & !BLAST-# BROY- then [1, 1, 1, 1]; 

tesL vectors 

([CLK,RFACK,CIP- ,LA2,HIT, - BOFF- ,LW_R- ,RAS- ,RESET.ROY- ,MEMCS- ,BROY - J 
- > [BLAST-,CAS10-,C1 ,C2,CAS11-]) 

"CRALHBLRRRMBB 
"LFQAIOWAEOERL 
"KA02TFRSSYMOA 
"C--F--E-CYS 
" K T S T 0 

cc cc 
A12A 
s s 
0 0 
1 

[c, X, X, X, X, X, 1, X, 1, X, X, X, xJ - > [x, x, x, xJ; 
[c, X, 1, 1, X, X, 1, x, 1, X, X, X, xJ - > (1, 1, 1, x]; 
(C, X, 1, 1, X, 1, 1, 0, 0, 1, 0, 1, 1J - > [1, 1, 1, 1]; 
[c, 0, 1, 1, x, 1, 1, 0, o, 1, 0, 1, 1 J - > [1, 1, 1, 1 J; 
[C, 0, 1, 1, X, 1, 1, 0, 0, 1, 0, 1, 1 J - > [1, 1, 1, 1 J; 
[c, O, O, 1, O, 1, 1, 0, o, 1, o, 1, 1J - > [1, O, 1, 1J; 
[c, o, o, 1, O, 1, 1, O, o, o, o, 1, 1J - > [1, 0, 1, 1J; 
[c, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1 J - > [O, 0, 0, OJ; 
[c, 0, 0, 1, O, 1, 1, O, 0, 0, O, 1, 1J - > [1, 0, 0, 1J; 
[c, 0, 1, x, 0, 1, 1, 0, 0, 1, 0, 1, 1J - > [O, 0, 0, OJ; 
[c, O, O, 1, o, 1, 1, 0, 0, O, 0, 1, 1J - > [1, O, o, 1J; 
[c, 0, 1, x, 0, 1, 1, 0, 0, 1, 0, 1, 1J - > [0, 0, 0, OJ; 
[C, 0, 1, 0, X, 1, 1, 0, 0, 1, 0, 1, 1J - > [1, 1, 1, 1J; 

end SC_MOOE_ORAM_CTRL8; 

5-268 

240799-50 



intJ AP-447 

module PG_MODE_DRAM_CTRL2 flag '-r4' 

title 'PAGE MODE DRAM CONTROLLER - PLO 2, INTEL CORPORATION' 
" This PLO generates CASO 
" Implemented with the Intel 85C220 EPLD. 

SC2 device 'E0320'; 

x 
c 

"Inputs 

.X.; 

.C.; 

CU< pin 1; "P4 input CLK" 

"ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

RFACK pin 2; "Refresh Acknowledge 
CIP- pin 3; "Cycle OK 
LA2 pin 4; "Latched A2. 
HIT - pin 5; "DRAM Page Hit Signal 
BOFF- pin 6; "Backoff input to P4" 
LW_R- pin 7; " 
RAS- pin 8;" 
RESET pin 9; "System Reset 
ROY- pin 12; "Processor ROY# 
MEMCS- pin 13; "Memory Chip Select 
BROY- pin 18; "Processor BREADY# 
BLAST - pin 19; "Processor BLAST# 

"Output 

CAS10-
C1 
C2 

. CAS11-

pin 14; "CAS1 byte 0,2 
pin 15; " state variable 
pin 16; " state variable 
pin 17; " CAS1 byte 1,3 

state_diagram [CAS10-, CAS11-, C1, C2] 

state [1, 1, 1, 1]: if RESET# !BOFF- then [1, 1, 1, 1] else 
if !RFACK & !CIP- & !LA2 & LW R- & !MEMCS- then 
[1, 1, 0, 1] else if !RFACK & !CIP- & !LW_R- & !RAS­
& !HIT- & IMEMCS- # (RFACK & RAS-) then 
[O, O, 1, 1] else [1, 1, 1, 1]; 

state [1, 1, 0, 1J: if RESET# !BOFF- then [1, 1, 1, 1J else 
if !RAS- & ROY- then [O, 0, 0, OJ else 
[1, 1, 0, 1 ]; 

state [O, 0, 0, O]: if RESET # !BOFF - then [1, 1, 1, 1] else 
if !CIP- & !LA2 & LW_R- & !MEMCS- then [1, 1, 0, OJ else 
if CIP- # (!CIP- & (MEMCS- # !LW_R)) # (!CIP- & LW_R- & 
LA2) then [1, 1, 1, 1J else [O, 0, 0, OJ; 

state [1, 1, o, OJ: if !RAS- then [O, 0, 0, OJ else [1, 1, 0, O]; 

5-269 

I 

240799-51 



·'intJ AP·447 

state [O, 0, 1, 1J: if RESET# IBOFF- then [1, 1, 1, 1) else 
if !BROY- & !BLAST - & IRFACK then 
[1, 1, 1, 1] else 

if !BROY - & BLAST - & ILA2 then [1, 1, 1, OJ else 
If !BADY - & BLAST - & LA2 then [O, 0, 1, O] else 
if RFACK then [O, 0, 1, OJ else 
if BROY- & IRFACK then [O, 0, 1, 1J; 

state [1, 1, 1, OJ: ifRESETthen [1, 1, 1, 1J else 
if IBOFF - then [1, 1, 1, OJ else 
if !BROY - & BLAST - then [O, 0, 1, 1 J else 
if !BROY- & !BLAST- then [1, 1, 1, 1J else 
[1, 1, 1, OJ; 

state [O, 0, 1, OJ: if RESET# IBOFF- then [1,-1, 1, 1J else 
if !BROY- & BLAST - then [1, 1, 1, OJ else 
if !BROY- & !BLAST-# BROY- then [1, 1, 1, 1J; 

tesLvectors 

([CLK,RFACK,CIP- ,LA2,HIT-:-- ,BOFF- ,LW_R- ,RAS- ,RESET.ROY- ,MEMCS- ,BROY- J 
- > [BLAST - ,CAS10- ,C1 ,C2,CAS11 - ]) 

"CRALHBLRRRMBB CCCC 
"LFQAIOWAEOERL A12A 
"KA02TFRSSYMOA S S 
"C- -F--E-CYS 0 0 
"K T sT'o1 

" 

[c, X, X, X, X, X, 1, X, 1, X, X, X, xJ - > [x, X, X, xJ; 
(c, X, 1, 0; X, X, 1, x, 1, X, X, X, xJ - > [1, 1, 1, 1); 
(C, 0, 1, 0, X, 1, 1, 0, 0, 1, 0, 1, 1J - > (1, 1, 1, 1); 
(C, 0, 1, 0, X, 1, 1, 0, 0, 1, 0, 1, 1) - > (1, 1, 1, 1J; 
(C, 0, 1, 0, X, 1, 1, Q, 0, 1, 0, 1, 1J ..- > (1, 1, 1, 1J; 
[c, 0, 0, 0, 0, 1, 1, 0, o, 1, 0, 1, 1J - > [1, 0, 1, .1); 
[c, O, O, o, O, 1, 1, O, o, o, o, 1, 1J - > [1, o, 1, 1J; 
[c, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1) - > [O, 0, 0, OJ; 
[c, 0, o, o, O, 1, 1, o, 0, o, o, 1, 1J - > [1, 0, o, 1); 
[c, o, 1, x, o, 1, 1, o, o, 1, o, 1, 1) - > [O, o, o, OJ; 
[c, o, o, o, o, 1, 1, o, o, o, o, 1, 1J - > [1, o, o, 1]; 
[c, o, 1, x, o, 1, 1, o, o, 1, o, 1, 1J - > [O, o, o, OJ; 
(C, 0, 1, 1, X, 1, 1, 0, 0, 1, 0, 1,, 1J - > (1, 1, 1, 1J; 

end PG_MQOE_ORAM_CTRL2; 

5-270 

240799-52 



intJ AP-447 

module SC_MODE_DRAM_CTRL15 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 15, INTEL CORPORATION' 
" This PLO combines ready signals 
" Implemented with the Intel 85C220 EPLD. 

SC15K device 'E0320'; 

x 
c 

"Inputs 

.X.; 

.C.; 

MEMCS- pin 1; " 
JRDY - pin 2; " 
MADY - pin 3; " 
BROY - pin 4; " 
ALO pin 5;" 
CKEN- pin 6; " 
SKEN- pin 7; " 
BRDYO- pin 8; " 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

M- pin 9; "miss indicator for CIP-
CIP- pin 11 ; " Cycle indicator 

"Output 

WEN- pin 12; "Write enable for write latches 
ROY - pin 13; "to 486 
MRDYCS- pin 14; " 
MALO- pin 15; "Modified ALO for FF's 
dum10 pin 16; " 
PBRDY- pin 17; " 
KEN- pin 18;" 
DROY- pin 19;" 

equations 

!MALO- = (!MEMCS- & !ALO); 

!ROY- = (!MADY- & M- & !MEMCS-) # !JRDY-; 

!MRDYCS- =(!MADY- & M- & !MEMCS-); 

!WEN- = !CIP- & M-; 

!DROY- =!BADY-# !MRDYCS-; 

KEN- = SKEN- & CKEN-; 

PBRDY- = BADY- & BRDYO-; 
"tesLvectors 

5-271 

240799-53 

I 



" ([CLK,RESET] ....., > 
"[RESETO]) 

"CR R 
"LE E 
"KS S 
" E E 

T T 
0 

" [c, OJ - > [xJ; 
"[c, O] - > [O]; 
" [c, OJ - > {O]; 
" [c, O] - > [O}; 
" (c, O] - > [O]; 
"[c, OJ - > [O]; 

[c, O] - > [O]; 
[c,1] -> [1]; 
[c, 1] - > [1J; 
[c, 1] - > [1]; 
[c, 1} - > [1J; 
[c, 1J - > [1J; 
[c, 1] - > [1}; 
[c, 1] - > [1); 
[c, 1] - > [1]; . 

' (c, O] - > [OJ; 
" [c, OJ - > {OJ; 
" [ c, OJ - > [OJ; 

end SC_MODEDFIAM_CTRL 15; 

AP-447 

240799-54 

5-272 



intef AP-447 

module SC_MODE_DRAM_CTRL 17 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 17, INTEL CORPORATION' 
" This PLO generates the AO signal for bank 1 
"Implemented with the Intel 85C224 EPLD. 

SC17 device 'E224'; 

x 
c 

.X.; 

.C.; 
" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

"Inputs 

CLK pin 1; "P4 input CLK" 
BADY - pin 2; "Burst Ready 
CIP- pin 3; "Cycle OK 
MEMCS- pin 4; "memory select 
LA313 pin 5; "Latched A2. 
DATASEL pin 6; "Refresh acknowledge" 
RAS- pin 7; "Row address strobe 
LW_R pin 8; "CPU W/R latched-
RESET pin 9; "System Reset 
BLAST - pin 1 O; "CPU BLAST - output 
A3 pin 11; "CPU Backoff input 
ALO pin 14; "Address Latch disable 
dum1 pin 15; 
WE1 - pin 22; "Write enable 
dum2 pin 23; "Address Latch disable 

"Output 

B10MAO pin 21; "Bank 1 AO 
B1A pin 20; "Burst A3 bankO 
CSO- pin 19; "state variable 
dun pin 18; " state variable 
dum pin 17; " Burst A3 bank1 
B11 MAO pin 16; "Bank 1 AO 

state_diagram [B 1 A, CSO- J 

state [1, 1]: if RESET then [1, 1J else 
if CIP- & !ALO & !A3 then [O, 1] else 
if !CIP- & !ALO & !A3 then [O, 1] else 
if !CIP- & !LW_R & !MEMCS- & WE1- then [1, OJ else [1, 1]; 

state [0, 1]: if RESET then [1, 1] else 
if CIP- & !ALO & A3 then [1, 1] else 
if !CIP- & !ALO & A3 then [1, 1] else 
if !CIP- & !LW_R & !MEMCS- & WE1 - then [O, OJ else [O, 1]; 

state [1, O]: if RESET# (!BADY- & !BLAST-) then [1, 1] else 
if !BROY- & DATASEL then [O, O] else [1, OJ; 

5-273 

240799-55 

I 



intef AP-447 

state (0, O]: if RESET # (!BROY- & !BLAST-) then (1, 1] else 
if !BROY- & OATASEL then (1, OJ else [O, O]; 

equations 

!B10MAO = !WE1- & !LA313 # WE1- & RAS- & !LA313 # WE1 - & !RAS- & !B1A; 

!B11MAO = !WE1 - & !LA313 # WE1 - & RAS- & !LA313 # WE1 - & !RAS- & !B1A; 

end SC_MOOE_ORAM_CTRL 17; 
240799-56 

5-274 



intef AP-447 

module SC_MODE_DRAM_CTRL6 flag '-r4' 

title 'STATIC COLUMN MODE DRAM CONTROLLER - PLO 6, INTEL CORPORATION' 
" This PLO generates AO for bank 0 
" Implemented with the Intel 85C224 EPLD. 

SC6 device 'E224'; 

x 
c 

"Inputs 

.X.; 

.C.; 

CLK pin 1; "P4 input CLK" 
BADY - pin 2; "Burst Ready 
CIP- pin 3; "Cycle OK 
MEMCS- pin 4; "memory select 
LA313 pin 5; "Latched A2. 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

DATASEL pin 6; "Refresh acknowledge" 
RAS-c pin 7; "Row address strobe 
LW_R pin 8; "CPU W/R latched-
RESET pin 9; "System Reset 
BLAST- pin 10; "CPU BLAST- output 
A3 pin 11 ; "CPU Backoff input 
ALO pin 14; "Address Latch disable 
dum1 pin 15; 
WEO- pin 22; "Write enable 
dum2 pin 23; "Address Latch disable 

"Output 

BOOMAO pin 21; "Bank 0 AO 
BOA pin 20; " Burst A3 bank O 
CSO- pin 19; "state variable 
dun pin 18; " state variable 
dum pin 17; " Burst A3 bank1 
B01MAO pin 16; "Bank 0 AO 

state_diagram [BOA, CSO-] 

state [1, 1]: if RESET then [1, 1] else 
if CIP- & !ALO & !A3 then (0, 1] else 
if !CIP- & !ALO & !A3 then (0, 1] else 
if !CIP- & !LW_R & !MEMCS- & WEO- then [1, O] else [1, 1]; 

state [0, 1]: if RESET then [1, 1] else 
ifCIP- & !ALO &A3then [1, 1] else 
if ICIP- & !ALO & A3 then (1, 1] else 
if !CIP- & !LW_R & !MEMCS- & WEO- then (0, O] else (0, 1]; 

state (1, O]: if RESET# (!BADY- & !BLAST-) then [1, 1] else 
if !BROY- & !DATASEL then (0, O] else (1, O]; 

5-275 

II 

240799-57 



intJ AP-447 

state [O, 0): if RESET# (!BROY- & !BLAST-) then [1, 1] else 
if !BROY- & !OATASEL then [1, O] else [O, O]; 

equations 

!BOOMAO = !WEO- & !LA313 # WEO- & RAS- & !LA313 # WEO- & !RAS- & !BOA; 

!B01MAO = !WEO- & !LA313 # WEO- & RAS- & !LA313 # WEO- & !RAS- & !BOA; 

end SC_MOOE_ORAM_CTRL6; 
240799-58 

5-276 



intJ AP-447 

U>ID<O<.llU)IDUllD 

U'llnlnll>•••• ,, ' , , , ,, ,, 
-- ---- --

0 
~ 

~~ ~~I ~~ ~~ 
;i: -- -o~ 

EH 

~ ::;l'.'. ~· 

>>> >> >>> 
0 

::~~~:~~~ E 
:::::::::::::::: . 

5-277 

, 
u u 

m 

.____. 

' ;t;>. 
u 

u 

• :: 

, 
' 

m . 

.l::l 
;1~ 

~ ~ ~ 

• 

0 .,... -0 .,... -QI 
QI 

.s;; 
CJ) 



intJ 

p 

1;~ 
li §:::::: :J 

, 't· i-1 ~. 

'}: 
~= 
~j 

AP-447 

5-278 

0 ... -0 
N 

ii 
~ Cll 

.J::. 
!/) 



intef AP-447 

;1 ··-·· l - -- . -
'"'H 

:::11=1x:ax:11::~ rr r= 1=1~~ 1m r= 

4 .. 
1::1 

;I----· . . . -. 
, •• ,:1.1. 

::::::::::===~==: 

~ f;f=r-f=r=lqq~ r:r=r:f~{i 

............................. __________ .._ ......... ______ _ 
~;i~ 

' 5-279 

" .. 
~ u 
~ 
u ...... 



intJ 

~li ~J: :·:·:·_ ..... 

~ L-J±jfil 

!l 
j l'3'3'3 

: : ,.;,.,= : l 
; ::S LI ............. . 

AP-447 

~r ~ fllll0ATA[l•1!J] 
CD ..., m m 

-< • IOOATA[0•7) .. " 
" 
m : 11~ ~ 

If ••••••••• 

~ ]_ ~.!_ :·:·~·- ••• '..Z. 

I[ 

J···-· J . . . . -
7H7l1 

.. .. = :a .................. . 

5-280 

0 --0 
'It' 

i 
.s::. 
Cf) 



intJ AP-447 

__; : i 110ATA(11•Z31) 

IOOATA[ U • ZJ] 

: Llil :·~·:·_. -. -. 
i"I~~ 

- - . - . 
1•r11s. 

. - . - . J 
: J!: u···..au·· 
~ 71~ L:lj 

I~ ~ 
~ 1 ~; 

5-281 

~ 
: 

0 .... 
0 
in .... 
Cll 
Cll 
.c 
(/) 

El 



intJ 

0 

c 

0 

0 

L . 

AP-447 

L . 
~ ' 

................................................ --1i----~ .................... --.................. 
cc c 

:::::1:: . - !i!!il:: : : 
11!300ZS 11!1100ZS 

·• 1 ~~ 1-J~: 
~~~:::1s:§"'1:1 ; 

)"l"l":;:i-t+·~ !~
a "
0 .

a

"

.
m

!::::::: . -
llSJOOZS

=~:- CC<C..C

CC-c<

Eimia4~·=1-i:

:::::::: ..
tlS100ZS

-L ------.... """' ------~ --------........... ~
c
a .

C -C<CC<C~C O

CCC<CCC Q..

:: 0

• l.ill:l:I~ i.
:::::::: ..

M'100ZS

: :.:
::::::::~====~=

.
=

~
0 ~
0
m cc c

~

I •
"

:::::::: ..
llUOOZS

cc

~
~
~

.
"

c

c

:::::::: : :
M9100ZS

c c . ..

3 . ~I :
"!

0

~
..

c ~I : .. II
m

5-282

§[:!~=:~ ~
C <CC-C:C<CC D..

:: 0

m ~~ _h
.... N

:::::::: 0.
llS100ZS

.
~
0

-

l: :;:

0 ... -0
<O ...
CD
CD

.s::.
(/)

intef

N

"

AP-447

~L----_..,~~-.----.... ---
0

0
L

...
m
m

.
......

PLUI• P- IU
LHUp--nr

••••• p--n....
.::::F::
1:::::~

•ct ~.tu
Pl1 t-

:

PA(:14• Z'I J

5-283

llCSOI

IC11

::::::::::

l.:l!ltt
:

.
w .

0
0
.....

i
ii

•

intef AP-447

5-284

0 ...
0
CIO -GI
GI
s=
I/)

intef

OS?

YCC

OS?

NOTE I

CLK1 .1

CLK 1. Z
CLK 1.)

CLk 1. 4
CLK 1. !I

CLK l. 6

CLK 1. 7

AP-447

ICLU.I

240799-67

Sheet 9 of 10

•

-> U10 PIN13, U1l PIU3, U:IZ PIN13, J:L JZ, Jl PIN1

-> SC4 PIMl. sea PIN1, SC11 P1N1. SC2 PIM1

-> PROC. PINC3. SC1 PIN1, UI PUl13. U87 PINH. Ull PlN3111

-> SC17 PIN1. SC7 PIM1, SC& PINL 5Cl PlN1
-> UlO PlN1J. UZ5 PlN1l, UZ9 PllUl, UZ1Pl1Ul, UH PIIUJ

-> UZO PINU.U21PI!Ul,UH P1N1l, U8!1 PIN3111. U86 PUl1

-> UHi PU:I. UU PlN18. UH PHU. U.U PlNZ. US& PIN&, U!l7 PIMZl
240799-68

5-285

intJ AP-447

PULLUP1

PULLUP2

PILLIJPl,1

;;.--:1""1tl:~--T;{1--::--I m
:.===...ll~u..~t:::::1..u1.~:q m

?
"'

M 3 . .
LJ~

:

5-286

PULLIPlt.U

PILLIPl.SI

-~ c .. :.

240799-69

Sheet 10 of 10

PA[Z •l:I]

..
D

D

240799-70

386™ DX MICROPROCESSOR
HIGH PERFORMANCE 32-BIT CHMOS MICROPROCESSOR

WITH INTEGRATED MEMORY MANAGEMENT
• Flexible 32-Bit Microprocessor

- 8, 16, 32-Bit Data Types
- 8 General Purpose 32-Bit Registers

• Very Large Address Space
- 4 Gigabyte Physical
- 64 Terabyte Virtual
- 4 Gigabyte Maximum Segment Size

• Integrated Memory Management Unit
- Virtual Memory Support
- Optional On-Chip Paging
- 4 Levels of Protection
- Fully Compatible with 80286

• Object Code Compatible with All 8086
Family Microprocessors

• Virtual 8086 Mode Allows Running of
8086 Software in a Protected and
Paged System

• Hardware Debugging Support

• Optimized for System Performance
- Pipelined Instruction Execution
- On-Chip Address Translation Caches
- 20, 25 and 33 MHz Clock
- 40, 50 and 66 Megabytes/Sec Bus

Bandwidth

• High Speed Numerics Support via 387
DX™ Coprocessor

• Complete System Development
Support
- Software: C, PL/M, Assembler

System Generation Tools
- Debuggers: PSCOPE, ICE™-386

• High Speed CHMOS Ill and CHMOS IV
Technology

• 132 Pin Grid Array Package
'(See Packaging Specification, Order #231369)

The 386™ DX Microprocessor is an advanced 32-bit microprocessor designed for applications needing very
high performance and optimized for multitasking operating systems. The 32-bit registers and data paths
support 32-bit addresses and data types. The processor addresses up to four gigabytes of physical memory
and 64 terabytes (2**46) of virtual memory. The integrated memory management and protection architecture
includes address translation registers, advanced multitasking hardware and a protection mechanism to sup-
port operating systems. In addition, the 386 DX allows the simultaneous running of multiple operating systems. 5 Instruction pipelining, on-chip address translation, and high bus bandwidth ensure short average instruction
execution times and high system throughput.

The 386 DX offers new testability and debugging features. Testability features include a self-test and direct
access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code execu­
tion or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the 386 DX
offers immediate access to the world's largest microprocessor software base.

386™ DX Pipelined 32-Bit Microarchitecture
386™ DX and 387™ DX are Trademarks of Intel Corporation.
UNIXTM is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of MICROSOFT Corporation.

5-287

HOLD,INTR,NMI
ERROR, BUSY
RESET,HLDA

BEO,f-BE3#,
A2-A31

hl/IOf,O/Cf,
W/Rf,LOCK#,
ADS#, NA#.
8516#.REA.DYf

231630-49

October 1990
Order Number: 231630-008

TABLE OF CONTENTS
CONTENTS PAGE

1. PIN ASSIGNMENT · .. 5-290
1.1 Pin Description Table .. 5-291

2. BASE ARCHITECTURE ... 5-293
2.1 Introduction .. 5-293
2.2 Register Overview ... 5-293
2.3 Register Descriptions ... , 5-294
2.4 Instruction Set ... 5-300
2.5 Addressing Modes ... 5-303
2.6 Data Types .. 5-305
2.7 Memory Organization .. 5-307
2.8 1/0 Space ... 5-308
2.9 Interrupts .. : 5-309
2.10 Reset and Initialization .. 5-312
2.11 Testability .. 5-313
2.12 Debugging Support ... 5-313

3. REAL MODE ARCHITECTURE .. 5-317
3.1 Real Mode Introduction .. 5-317
3.2 Memory Addressing .. 5-318
3.3 Reserved Locations .. 5-319
3.4. Interrupts .. 5-319
3.5 Shutdown and Halt ... 5-319

4. PROTECTED MODE ARCHITECTURE .. 5-319
4.1 Introduction .. 5-319
4.2 Addressing Mechanism .. 5-320
4.3 Segmentation .. 5-321
4.4 Protection ... 5-331
4.5 Paging ... 5-337
4.6 Virtual 8086 Environment .. 5-341

5. FUNCTIONAL DATA .. 5-346
5.1 Introduction .. 5-346
5.2 Signal Description .. 5-346

5.2.1 Introduction .. 5-346
5.2.2 Clock (CLK2) ... 5-347
5.2.3 Data Bus (DO through D31) .. 5-347
5.2.4 Address Bus (BEO# through BE3#, A2 through A31) 5-347
5.2.5 Bus Cycle Definition Signals (W /R #, DIC#, M/10, LOCK#) 5-348
5.2.6 BusControlSignals(ADS#, READY#, NA#, BS16#) 5-349
5.2.7 Bus Arbitration Signals (HOLD, HLDA) .. 5-350
5.2.8 Coprocessor Interface Signals (PEREQ, BUSY#, ERROR#) 5-350
5.2.9 Interrupt Signals (INTR, NMI, RESET) ... 5-351
5.2.1 O Signal Summary ... 5-352

5.3. Bus Transfer Mechanism .. 5-352
5.3.1 Introduction .. 5-352
5.3.2 Memory and 1/0 Spaces .. 5-353
5.3.3 Memory and 1/0 Organization .. 5-354
5.3.4 Dynamic Data Bus Sizing ... 5-354
5.3.5 Interfacing with 32- and 16-bit Memories 5-355
5.3.6 Operand Alignment ... 5-356

5-288

CONTENTS PAGE

5. FUNCTIONAL DAT A (Continued)
5.4 Bus Functional Description ... 5-356

5.4.1 Introduction .. 5-356
5.4.2 Address Pipelining .. 5-359
5.4.3 Read and Write Cycles ... 5-361
5.4.4 Interrupt Acknowledge (INTA) Cycles ... 5-372
5.4.5 Halt Indication Cycle .. 5-373
5.4.6 Shutdown Indication Cycle .. 5-374

5.5 Other Functional Descriptions .. 5-375
5.5.1 Entering and Exiting Hold Acknowledge 5-375
5.5.2 Reset during Hold Acknowledge .. 5-375
5.5.3 Bus Activity During and Following Reset 5-375

5.6 Self-test Signature ... 5-377
5. 7 Component and Revision Identifiers .. 5-377
5.8 Coprocessor Interface ... 5-379

5.8.1 Software Testing for Coprocessor Presence 5-379

6. INSTRUCTION SET ... 5-380
6.1 Instruction Encoding and Clock Count Summary 5-380
6.2 Instruction Encoding Details .. 5-395

7. DESIGNING FOR ICETM-386 DX EMULATOR USE 5-402

8. MECHANICAL DATA .. 5-404
8.1 Introduction .. 5-404
8.2 Package Dimensions and Mounting .. 5-404
8.3 Package Thermal Specification ... 5-407

9. ELECTRICAL DATA ... 5-408 El
9.1 Introduction .. 5-408
9.2 Power and Grounding .. 5-408
9.3 Maximum Ratings .. 5-409
9.4 D.C. Specifications ... 5-409
9.5 A.G. Specifications ... 5-41 o

10. REVISION HISTORY ... 5-422

NOTE:
This is revision 008; This supercedes all previous revisions.

5-289

intef 386™ DX MICROPROCESSOR

1. PIN ASSIGNMENT

The 386 DX pinout as viewed from the top side of
the component is shown by Figure 1-1. Its pinout as
viewed from the Pin side of the component is Figure
1-2.

p " M L K J H G F E D c B A

/
.1.'i'o .1.'21 A26 ;:;, A21 A20 "' .1.'i's A75 "'

.,, A8 vSs vCC

vCc .1."31 A29 A24 ;:;, vss ,,.'j's VCc vSs .,, A10 ;; vss

'" vss ""' '"" A20 '"" A.79 vCc vs,
"' " .. ;; "

029 vCc vss A2 NC NC

026 0'21 03' vcc vss VCc

vss o2s o2a NC NC vss

024 vCc VCc NC ml. VCc

vCc 023 vSs PEREQ NM. ERROR,

02'2 021 02'0 KS'n eu'Sv1 v'Ss
10

ol9 ol1 vss ~1<1w/R1
10

VCG

11
o'l"a o'i"& o'i"s o/Cf

11
vss vss

12 - - - - 12
o'i'"' 0'12 o'i"o vCc ;;; vss 00 VCc Cl'Ki aEO, YCc vcc NC w,IK,1

13
013 vss ;;; R£AOy, NC aE1'1 a01 eO,

13
011 YCC D8 D5 NC NA#

14 - - - - - 14 ,¥;", D9 HLDA 03 ;;; VCc VSs ADS, HOl.o ss'1s1 vSs vCc _./
p N M L K J H G F E D c B A

231630-33

Vee and GND connections must be made to multi­
ple Vee and Vss (GND) pins. Each Vee and Vss
must be connected to the appropriate voltage level.
The circuit board should include Vee and GND
planes for power distribution and all Vee and Vss
pins must be connected to the appropriate plane.

NOTE:
Pins identified as "N.C." should remain completely
unconnected.

A B c D E F G H J K L M N p

" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
VCG vss " '" AU "' "' "' 420 .,,

"' "' "' "'
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

vss " " "' A13 vss vcc '" vss A22 A24 A29 '" YCC

3 0 0 0 0 0 0 0 0 0 0 0 0 0 :?o 3

" " " " "' vss YCC A16 vss .,,
'"" vcc YSS

4 0 0 0 0 0 0 ' NC NC A2 vss vcc 029

5 0 0 0 0 0 0 5
vcc vss vcc

METAL LID
031 "'" 026

• 0 0 0 0 0 0 • vss NC NC 028 020 vss
7 0 0 0 0 0 0 7

vcc INTR NC vcc YCC 024

• 0 0 0 0 0 0 •
ERRORI NMI P£R£Q vss 023 vcc

• 0 0 0 0 0 0 •
VSS BUSYfRESET 020 021 022

10 0 0 0 0 0 0 10
VCC W/RI LOCK# vss 0'7 019

11 0 0 0 0 0 0 11
D/C# VS$ vss 010 016 018

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
W/IO# NC YCC VCC 8£0# CLK2 VCC DO vss 07 vcc 010 012 014

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13
8£31 BE2.jl8£1# NA# NC NC R£ADY# DI VS5 .. D8 vcc 011 013

14 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 ,.
'-""' VSS BS16# HOLD ADS# VSS vcc 02 D3 .. 06 HLOA D9 vss_/

A • c D E F G H J K L II " p

231630-34

Figure 1-1. 386™ DX PGA Figure 1-2. 386™ DX PGA
Pinout-View from Top Side Pinout-View from Pin Side

Table 1-1. 386™ DX PGA Pinout-Functional Grouping

Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin

A2 C4 A24 L2 D6 L14 D2B M6 Vee C12 Vss F2
A3 A3 A2S K3 D7 K12 D29 P4 D12 F3
A4 83 A26 M1 DB L13 D30 P3 G2 F14
AS 82 A27 N1 D9 N14 D31 MS G3 J2
A6 C3 A2B L3 D10 M12 DIC# A11 G12 J3
A7 C2 A29 M2 D11 N13 ERROR# AB G14 J12
AB C1 A30 P1 D12 N12 HLDA M14 L12 J13
A9 D3 A31 N2 D13 P13 HOLD D14 M3 M4
A10 D2 ADS# E14 D14 P12 INTR 87 M7 MB
A11 D1 SEO# E12 D1S M11 LOCK# C10 M13 M10
A12 E3 BE1# C13 D16 N11 M/10# A12 N4 N3
A13 E2 BE2# 813 D17 N10 NA# D13 N7 P6
A14 E1 BE3# A13 D1B P11 NMI BB P2 P14
A15 F1 BS16# C14 D19 P10 PEREQ CB PB W/R# 810
A16 G1 BUSY# 89 D20 M9 READY# G13 Vgs A2 N.C. A4
A17 H1 CLK2 F12 D21 N9 RESET C9 A6 84
A18 H2 DO H12 D22 P9 Vee A1 A9 86
A19 H3 D1 H13 D23 NB A5 81 812
A20 J1 D2 H14 D24 P7 A7 85 C6
A21 K1 D3 J14 D25 N6 A10 811 C7
A22 K2 D4 K14 D26 P5 A14 814 E13
A23 L1 D5 K13 D27 N5 .cs C11 F13

5-290

intJ 386™ DX MICROPROCESSOR

1.1 PIN DESCRIPTION TABLE

The following table lists a brief description of each pin on the 386 DX. The following definitions are used in
these descriptions:

The named signal is active LOW.
I Input signal.
0 Output signal.
110 Input and Output signal.

No electrical connection.

For a more complete description refer to Section 5.2 Signal Description.

Symbol Type Name and Function

CLK2 I CLK2 provides the fundamental timing for the 386 DX.

Da1-Do 1/0 DATA BUS inputs data during memory, 110 and interrupt acknowledge
read cycles and outputs data during memory and 110 write cycles.

Aa1-A2 0 ADDRESS BUS outputs physical memory or port 110 addresses.

BEO#-BE3# 0 BYTE ENABLES indicate which data bytes of the data bus take part in
a bus cycle.

WIR# 0 WRITE/READ is a bus cycle definition pin that distinguishes write
cycles from read cycles.

DIC# 0 DATA/CONTROL is a bus cycle definition pin that distinguishes data
cycles, either memory or 110, from control cycles which are: interrupt
acknowledge, halt, and instruction fetching.

MllO# 0 MEMORY 1/0 is a bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

LOCK# 0 BUS LOCK is a bus cycle definition pin that indicates that other
system bus masters are denied access to the system bus while it is
active.

ADS# 0 ADDRESS STATUS indicates that a valid bus cycle definition and
address rNIR#, DIC#, MllO#, BEO#, BE1#, BE2#, BE3# and
Aa1-A2) are being driven at the 386 DX pins.

NA# I NEXT ADDRESS is used to request address pipelining.

READY# I BUS READY terminates the bus cycle.

BS16# I BUS SIZE 16 input allows direct connection of 32-bit and 16-bit data
buses.

HOLD I BUS HOLD REQUEST input allows another bus master to request
control of the local bus.

5-291

I

intef 386™ DX MICROPROCESSOR

1.1 PIN DESCRIPTION TABLE (Continued)

Symbol Type
-'-

Name and Function

HLDA 0 BUS HOLD ACKNOWLEDGE output indicates that the 386 DX has
surrendered control of its local bus to another bus master.

DI ICIV..11. ' BUSY signais a busy condition irom a processor extension.
···""''""' 7r

I

ERROR# I ERROR signals an error condition from a processor extension.

PEREQ I PROCESSOR EXTENSION REQUEST indicates that the processor
extension has data .to be transferred by the 386 DX.

INTR I INTERRUPT REQUEST is a maskable input that signals the 386 DX to
suspend execution of the current program and execute an interrupt
acknowledge function.

NMI I NON·MASKABLE INTERRUPT REQUEST is a non-maskable input
that signals the 386 DX to suspend execution of the current program
and execute an interrupt acknowledge function.

RESET I RESET suspends any operation in progress and places the 386 DX in
a known reset state·. See Interrupt Signals for additional information.

N/C - NO CONNECT should always remain unconnected. Connection of a
N/C pin may cause the processor to malfunction or be incompatible
with future steppings of the 386 DX.

Vee I SYSTEM POWER provides the + 5V nominal D.C. supply input.

Vss I SYSTEM GROUND provides OV connection from which all inputs and
outputs are measured.

5-292

intef 386™ DX MICROPROCESSOR

2. BASE ARCHITECTURE

2.1 INTRODUCTION

The 386 DX consists of a central processing unit, a
memory management unit and a bus interface.

The central processing unit consists of the execu­
tion unit and instruction unit. The execution unit con­
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo­
rithm. The multiply algorithm stops the iteration
when the most significant bits of the multiplier are all
zero. This allows typical 32-bit multiplies to be exe­
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement a virtual memory system,
the 386 DX supports full restartability for all page
and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri­
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an 386 DX can have a maximum of 16,381 seg­
ments of up to four gigabytes each, thus providing
64 terabytes (trillion bytes) of virtual memory to each
task.

The segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The 386 DX has two modes of operation: Real Ad­
dress Mode (Real Mode), and Protected Virtual Ad­
dress Mode (Protected Mode). In Real Mode the

386 DX operates as a very fast 8086, but with 32-bit
extensions if desired. Real Mode is required primari­
ly to setup the processor for Protected Mode opera­
tion. Protected Mode provides access to the sophis­
ticated memory management, paging and privilege
capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se­
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect­
ed from one another and the host 386 DX operating
system, by the use of paging, and the 1/0 Permis­
sion Bitmap.

Finally, to facilitate high performance system hard­
ware designs, the 386 DX bus interface offers ad­
dress pipelining, dynamic data bus sizing, and direct
Byte Enable signals for each byte of the data bus.
These hardware features are described fully begin­
ning in Section 5.

2.2 REGISTER OVERVIEW

The 386 DX has 32 register resources in the follow­
ing categories:

• General Purpose Registers

• Segment Registers

• Instruction Pointer and Flags

• Control Registers

• System Address Registers

• Debug Registers

• Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit 386
DX.

Figure 2-1 shows all of 386 DX base architecture
registers, which include the general address and
data registers, the instruction pointer, and the flags
register. The contents of these registers are task­
specific, so these registers are automatically loaded
with a new context upon a task switch operation.

The base architecture also includes six directly ac­
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in 386 DX segment registers of Figure 2-1.
Various selector values can be loaded as a program
executes, if desired.

5-293

I

intJ 386TM DX MICROPROCESSOR

GENERAL DATA AND ADDRESS REGISTERS
31 16 15 . 0

AX I EAX
BX EBX

ex
DX

SI

DI

BP

SP

ECX

EDX

ESI

EDI

EBP

ESP

Figure 2-1. 386™ DX Base
Archltect.ure Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad­
dress, Debug, and Test, are primarily used by sys­
tem software.

2.3 REGISTER DESCRIPTIONS

2.3.1 .. General Purpose Registers

General Purpose Registers: The eight general pur­
PQse registers of 32 bits hold data or address quanti­
ties. The general registers, Figure 2~2, support data
operands of 1, 8, 16, 32 and 64 bits, and .bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, ex, DX, SI, DI,

BP, and SP. When.accessed as a 16-bit operand;
the upper 16 bits of the register are neither used nor
changed.

Finally 8-bit operations can individually access the
lowest bvte (bits 0-7\ and thA hinhAr hvtA thitco A-
15) of ge-rieral purpose registeis AX,. 8£ ex ~-;.;d-DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces­
sibility offers additional flexibility for data operations,
but is not used -for effective address calculation.

31

31

16 15 8 7 0

AH AX AL

BH BX BL

CH ex CL

DH DX DL

SI

DI

BP

SP

16 15 o.

\--------~)

IP

Figure 2-2. General Registers
and Instruction Pointer

2.3.2 Instruction Pointer

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

The instructio_n pointer, Figure 2-2, is a 32-bit regis­
ter named EIP. EIP holds the offset of the next in­
struction to be executed. The offset. is always rela­
tive to the.base of the code segment (CS). The low­
er 16 bits (bits 0-15) of EIP contain the 16-bit in­
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera­
tions and indicate status of the 386 DX. The lower
16 bits (bit 0-15) of EFLAGS contain the 16-bit flag
register named FLAGS, which is most useful when
executing 8086 and 80286 code.

5-294

intef 386™ DX MICROPROCESSOR

FLAGS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 O 9 B 7 6 5 4 3 2 1 0 9 B 7 6 5 4 3 2 0 9 B 7 6 5 4 3 2 1 0

EFLAGS

VIRTUAL MODE----------'
RESUME FLAG----------'
NESTED TASK FLAG---------
1/0 PRIVILEGE LEVEL----------

CARRY FLAG
.._ __ PARITY FLAG

OVERFLOW---------------'

._----AUXILIARY CARRY
'--------ZERO FLAG

'---------SIGN FLAG
'---------TRAP FLAG DIRECTION FLAG--------------'

INTERRUPT ENABLE--------------

231630-50

NOTE:
~#indicates Intel reserved: do not define; see section 2.3.10.

Figure 2-3. Flags Register

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the 386 DX is in
Protected Mode, the 386 DX will switch to Vir­
tual 8086 operation, handling segment loads
as the 8086 does, but generating exception
13 faults on privileged opcodes. The VM bit
can be set only in Protected Mode, by the
IRET instruction (if current privilege level =
O) and by task switches at any privilege level.
The VM bit is unaffected by POPF. PUSHF
always pushes a 0 in this bit, even if execut­
ing in virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved
during task switches will contain a 1 in this bit
if the interrupted code was executing as a Vir­
tual 8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in­
structions set RF to the value specified by the
memory image. For example, at the end of
the breakpoint service routine, the IRET

instruction can pop an EFLAG image having
the RF bit set and resume the program's exe­
cution at the breakpoint address without gen­
erating another breakpoint fault on the same
location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates El
that the current nested task's Task State
Segment (TSS) has a valid back link to the
previous task's TSS. This.bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

IOPL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex­
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per­
mission Bitmap. It also indicates the maxi­
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAG register. POPF and
IRET instruction can alter the IOPL field when
executed at CPL = 0. Task switches can al­
ways alter the IOPL field, when the new flag
image is loaded from the incoming task's
TSS.

5-295

intef 386™ DX MICROPROCESSOR

OF (Overflow Flag, bit 11) ZF (Zero Flag, bit 6)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did
not resuii in a carry/borrow oui oj ihe high­
order bit, or vice-versa. For 8/16/32 bit oper­
ations, OF is set according to overflow at bit
7 /15/31, respectively.

ZF is set if all bits of the result are 0. Other­
wise it is reset. ·

AF (Auxiliary Carry Flag, bit 4)
Th.a. A11viliaru i::l~n iC" 11oorl + oirnnlilu +h,.,.1...1: • ''""' • u,,.,,.,,, ,, I l'l.'I~ l>J "°""'""'""' "'-' -.Jlllll 1111 II.II !;4\,ol 1-

DF (Direction Flag, bit 10)

tion and subtraction of packed BCD quanti­
ties. AF is set if the operation resulted in a
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset. AF is
affected by carry out of, or borrow into bit 3
only, regardless of overall operand length: 8,
16 or 32 bits.

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if
DF is reset. Postdecrement occurs if DF is
set.

PF (Parity Flags, bit 2)

IF (INTR Enable Flag, bit 9)

PF is set if the low-order eight bits of the op­
eration contains an even number of "1 's"
(even parity). PF is reset if the low-order eight
bits have odd parity. PF is a function of only
the low-order eight bits, regardless of oper­
and size.

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi­
cates the maximum CPL value allowing alter­
ation of the IF bit when new values are
popped into EFLAGS or FLAGS.

CF (Carry Flag, bit 0)

TF (Trap Enable Flag, bit 8)

CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtraction)
the high-order bit. Otherwise CF is reset. For
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7, 15 or 31, respec­
tively.

TF controls the generation of exception 1
trap when single-stepping through code.
When TF is set, the 386 DX generates an ex­
ception 1 trap after the next instruction is exe­
cuted. When TF is reset, exception 1 traps
occur only as a function of the breakpoint ad­
dresses loaded into debug registers DRO­
DR3.

Note in these descriptions, "set" means "set to 1,"
and "reset" means "reset to O."

2.3.4 Segment Registers
SF (Sign Flag, bit 7)

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 2-
4. In Protected Mode, each segment may range in
size from one byte up to the entire linear and physi-

15

SF is set if the high-order bit of the result is
set, it is reset otherwise. For 8-, 16-, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

SEGMENT
REGISTERS

Selector

Selector

Selector

Selector

Selector

Selector

DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)

Other

O Physical Base Address Segment Limit
Segment

Attributes from Descriptor

CS-
1--~~~~~~~-t-~~~~-+-~t---+---t~-t--1-~+--+---1r------i

SS-
1--~~~~~~~-+-~~~~-t-~1---1---1~-+--+-~-t--+-~~

DS-
1--~~~~~~~-t-~~~~-+-~t---+---t~-t--1-~+--+-~r------i

ES-
1--~~~~~~~-r--~~~~-1-~1---t----1~-+--+-~-t--+-~1--~

FS-
1--~~~~~~~-t-~~~~-+-~t---+---t~-t--+~+--+-~1--,

GS-

Figure 2-4. 386™ DX Segment Registers, and Associated Descriptor Registers

5-296

intef 386™ DX MICROPROCESSOR

cal space of the machine, 4 Gbytes (232 bytes). If a
maximum sized segment is used (limit
FFFFFFFFH) it should be Dword aligned (i.e., the
least two significant bits of the segment base should
be zero). This will avoid a segment limit violation (ex­
ception 13) caused by the wrap around. In Real Ad­
dress Mode, the maximum segment size is fixed at
64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the segment registers CS, SS, DS,
ES, FS and GS. The selector in CS indicates the
current code segment; the selector in SS indicates
the current stack segment; the selectors in DS, ES,
FS and GS indicate the current data segments.

2.3.5 Segment Descriptor Registers

The segment descriptor registers are not program­
mer visible, yet it is very useful to understand their
content. Inside the 386 DX, a descriptor register
(programmer invisible) is associated with each pro­
grammer-visible segment register, as shown by Fig­
ure 2-4. Each descriptor register holds a 32-bit seg­
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment reg­
ister, the associated descriptor register is automati­
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be­
ing used is automatically involved with the memory
reference. The 32-bit segment base address be­
comes a component of the linear address calcula-

tion, the 32-bit limit is used for the limit-check opera­
tion, and the attributes are checked against the type
of memory reference requested.

2.3.6 Control Registers

The 386 DX has three control registers of 32 bits,
CAO, CR2 and CR3, to hold machine state of a glob­
al nature (not specific to an individual task). These
registers, along with System Address Registers de­
scribed in the next section, hold machine state that
affects all tasks in the system. To access the Con­
trol Registers, load and store instructions are de­
fined.

CRO: Machine Control Register (includes 80286
Machine Status Word)

CAO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CAO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special
aliases of the load and store CAO operations, where
only the low-order 16 bits of CAO are involved. For
compatibility with 80286 operating systems the 386
DX LMSW instructions work in an identical fashion
to the LMSW instruction on the 80286. (i.e. It only
operates on the low-order 16-bits of CAO and it ig­
nores the new bits in CAO.) New 386 DX operating
systems should use the MOV CAO, Reg instruction.

The defined CAO bits are described below.

PG (Paging Enable, bit 31)

the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

R (reserved, bit 4)

This bit is reserved by Intel. When loading CAO
care should be taken to not alter the value of
this bit.

0

R T E M p CAO
S M P E

MSW

NOTE: llllindicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2·5. Control Register 0

5-297

intJ 386™ DX MICROPROCESSOR

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces­
sor ESCape opcode will cause a Coprocessor
Not Available trap (exception 7). The trap han­
dler typically saves the ::lR7 nx coprocessor
context belonging to a previous task, loads the
387 DX coprocessor state belonging to the cur­
rent task, and clears the TS bit before returning
to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces­
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual 387 DX coprocessor (this is the
default case after reset). Note that the WAIT
opcode is not affected by the EM bit setting.

MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener­
ate a Coprocessor Not Available fault (excep­
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener­
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit O)

The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CAO. PE can be reset only by a load into CAO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tran­
sition from Protected Mode to Real Mode. Note
that for strict 80286 compatibility, PE cannot be
reset by the LMSW instruction.

CR1: reserved

CR1 is reserved for use in future Intel processors.

CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The

error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The 386
DX page directory table is always page-aligned
(4 Kbyte-aligned). Therefore the lowest twelve bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does not change during the task switch, the cached
page table entries are not flushed.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU
and 386 DX protection model. These tables or seg­
ments are:

GOT (Global Descriptor Table),

IDT (Interrupt Descriptor Table),

LDT (Local Descriptor Table),

TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respectively. Section 4 Protected Mode Archi­
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GDT and IDT, respectively.

The GOT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 24 23 16 15 8 7 0

NOTE: indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2 and 3

5-298

386TM DX MICROPROCESSOR

SYSTEM ADDRESS REGISTERS
47 32-BITLINEARBASEADDRESS 16 15 LIMIT 0

SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

~ (32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES\

11 11

TR SELECTOR

LDTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task­
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

. 2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug­
ging. Debug Registers DR0-3 specify the four linear
breakpoints. The Debug Control Register DR7 is
used to set the breakpoints and the Debug Status
Register DR6, , displays the current state of the
breakpoints. The use of the debug registers is de­
scribed in section 2.12 Debugging support.

DEBUG REGISTERS
31 0

LINEAR BREAKPOINT ADDRESS 0

LINEAR BREAKPOINT ADDRESS 1

LINEAR BREAKPOINT ADDRESS 2

LINEAR BREAKPOINT ADDRESS 3

Intel reserved. Do not define.

Intel reserved. Do not define.

BREAKPOINT STATUS

BREAKPOINT CONTROL

TEST REGISTERS (FOR PAGE CACHE)
31 0

I TEST CONTROL
TEST STATUS

DAO

DR1

DR2

DR3

DR4

DR5

DR6

DR7

TR6

TR7

Figure 2-8. Debug and Test Registers

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por­
tion of the 386 DX. TR6 is the command test regis­
ter, and TR7 is the data register which contains the
data of the Translation Lookaside buffer test. Their
use is discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.9 Register Accessibility

There are a few differences regarding the accessibil- •
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.1 o Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer­
tain 386. DX register bits are Intel reserved.
When reserved bits are called out, treat them as
fully undefined. This is essential for your soft­
ware compatibility with future processors! Fol­
low the guidelines below:
1) Do not depend on the states of any unde­

fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde­
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain Infor­
mation written into any undefined bits.

4) When loading registers always load the unde­
fined bits as zeros.

5-299

intJ 386™ DX MICROPROCESSOR

Table 2·1. Register Usage

Use in Use in Use in

Register
Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store

Gtmerai Registers Yes Yes Yes Yes Yes Yes

Segment Registers Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL* IOPL*

Control Registers Yes Yes PL= 0 PL= 0 No Yes

GDTR Yes Yes PL= 0 Yes No Yes

IDTR Yes Yes PL= 0 Yes No Yes

LDTR No No PL= 0 Yes No No

TR No No PL= 0 Yes No No

Debug Control Yes Yes PL= 0 PL= 0 No No

Test Registers Yes Yes PL= 0 PL= 0 No No

NOTES:
PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 8086 Mode.

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing.

Depending upon the values of undefined regis­
ter bits will make your software dependent upon
the un$pecifled 386 DX handling of these bits.
Depending on undefined values risks making
your software incompatible with future proces­
sors that define usages for the 386 DX-unde­
fined bits. AVOID ANY SOFTWARE DEPEN·
DENCE UPON THE STATE OF UNDEFINED 386
DX REGISTER BITS.

2.4 INSTRUCTION SET

2.4.1 Instruction Set Overview

The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation
Control Transfer

High Level Language Support

Operating System Support

Processor Control

These 386 DX instructions are listed in Table 2-2.

All 386 DX instructions operate on either O, 1, 2, or 3
operands; where an operand resides in a register, in
the instruction itself, or in memory. Most zero oper­
and instructions (e.g. CU, STI) take only one byte.
One operand instructions generally are two bytes
long. The average instruction is 3.2 bytes long.
Since the 386 DX has a 16-byte instruction queue,
an average of 5 instructions will be prefetched. The
use of two operands permits the following types of
common instructions:

Register to Register .

Memory to Register
Immediate to Register

Register to Memory

Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
386 DX (32-bit code), operands are 8 or 32 bits;
when executing existing 80286 or 8086 code (16-bit
code), operands are 8 or 16 bits. Prefixes can be
added to all instructions which override the default
length of the operands, (i.e. use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

For a more elaborate description of the instruction
set, refer to the "386 DX Programmer's Reference
Manual."

5-300

inter 386™ DX MICROPROCESSOR

2.4.2 386™ DX Instructions Table 2-2b. Arithmetic Instructions

Table 2-2a. Data Transfer ADDITION

GENERAL PURPOSE ADD Add operands

MOV Move operand ADC Add with carry

PUSH Push operand onto stack INC Increment operand by 1

POP Pop operand off stack AAA ASCII adjust for addition

PUSHA Push all registers on stack DAA Decimal adjust for addition

POPA Pop all registers off stack SUBTRACTION

XCHG Exchange Operand, Register SUB Subtract operands

XLAT Translate SBB Subtract with borrow

CONVERSION DEC Decrement operand by 1

MOVZX Move byte or Word, Dword, with zero NEG Negate operand

extension CMP Compare operands

MOVSX Move byte or Word, Dword, sign DAS Decimal adjust for subtraction
extended AAS ASCII Adjust for subtraction

CBW Convert byte to Word, or Word to Dword MUL Tl PLICATION
CWD Convert Word to DWORD MUL Multiply Double/Single Precision
CWDE Convert Word to DWORD extended IMUL Integer multiply
CDQ Convert DWORD to QWORD AAM ASCII adjust after multiply

INPUT /OUTPUT DIVISION
IN Input operand from 1/0 space DIV Divide unsigned
OUT Output operand to 1/0 space IDIV Integer Divide

ADDRESS OBJECT AAD ASCII adjust before division
LEA Load effective address

LOS Load pointer into D segment register

LES Load pointer into E segment register

LFS Load pointer into F segment register

LGS Load pointer into G segment register

LSS Load pointer into S (Stack} segment
register

I Table 2-2c. String Instructions

MOVS Move byte or Word, Dword string

INS Input string from 1/0 space

OUTS Output string to 1/0 space

CMPS Compare byte or Word, Dword string

SCAS Scan Byte or Word, Dword string

FLAG MANIPULATION LOOS Load byte or Word, Dword string

LAHF Load A register from Flags STOS Store byte or Word, Dword string

SAHF Store A register in Flags REP Repeat

PUSHF Push flags onto stack

POPF Pop flags off stack

PUSH FD Push EFlags onto stack

REPEi
REPZ Repeat while equal/zero

RENE/
REPNZ Repeat while not equal/not zero

POPFD Pop EFlags off stack

CLC Clear Carry Flag
Table 2·2d. Logical Instructions

LOGICALS
CLO Clear Direction Flag

CMG Complement Carry Flag

STC Set Carry Flag

STD Set Direction Flag

NOT "NOT" operands

AND "AND" operands

OR "Inclusive OR" operands

XOR "Exclusive OR" operands

TEST "Test" operands

5-301

intef 386™ DX MICROPROCESSOR

Table 2·2d Logical Instructions {Continued) Table 2·2f. Program Control Instructions

SHIFTS {Continued)

SHL/SHR Shift logical left or right UNCONDITIONAL TRANSFERS

SAL/SAR Shift arithmetic left or right CALL Call procedure/task

SHLD/ RET Return from procedure

SHAD 1 Double shift left or right JMP Jump
ROTATES ITERATION CONTROLS

AOL/ROA Rotate left/right LOOP Loop
RCL/RCR Rotate through carry left/right LOOPE/

Table 2-2e. Bit Manipulation Instructions LOOPZ Loop if equal/zero

SINGLE BIT INSTRUCTIONS

BT Bit Test

BTS Bit Test and Set

BTR Bit Test and Reset

BTC Bit Test and Complement

BSF Bit Scan Forward

BSA Bit Scan Reverse

Table 2·2f Program Control Instructions

CONDITIONAL TRANSFERS

SETCC Set byte equal to condition code

JA/JNBE Jump if above/not below nor equal

JAE/JNB Jump if above or equal/not below

LOOPNE/
LOOP NZ Loop if not equal/not zero

JCXZ JUMP if register CX=O

INTERRUPTS

INT Interrupt

INTO Interrupt if overflow

IRET Return from Interrupt/Task

cu Clear interrupt Enable

STI Set Interrupt Enable

Table 2·2g High Level Language Instructions

BOUND Check Array Bounds

ENTER Setup Parameter Block for Entering
Procedure

JB/JNAE Jump if below/not above nor equal LEAVE Leave Procedure
JBE/JNA Jump if below or equal/not above Table 2·2h. Protection Model
JC Jump if carry SGDT Store Global Descriptor Table
JE/JZ Jump if equal/zero SIDT Store Interrupt Descriptor Table
JG/JNLE Jump if greater/not less nor equal STA Store Task Register
JGE/JNL Jump if greater or equal/not less SLOT Store Local Descriptor Table
JL/JNGE Jump if less/not greater nor equal LGDT Load Global Descriptor Table
JLE/JNG Jump if less or equal/not greater LIDT Load Interrupt Descriptor Table
JNC Jump if not carry LTR Load Task Register
JNE/JNZ Jump if not equal/not 'zero LLDT Load Local Descriptor Table
JNO Jump if not overflow ARPL Adjust Requested Privilege Level
JNP/JPO Jump if not parity/parity odd

r:JNS Jump if not sign
LAA Load Access Rights

LSL Load Segment Limit
JO Jump if overflow VEAR/
JP/JPE Jump if parity/parity even VERW Verify Segment for Reading or Writing

JS Jump if Sign LMSW Load Machine Status Word {lower
16 bits of CAO)

SMSW Store Machine Status Word

Table 2·2i Processor Control Instructions

HLT Halt l
WAIT Wait until BUSY# negated

ESC Escape

LOCK Lock Bus

5-302

intef 386™ DX MICROPROCESSOR

2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview

The 386 DX provides a total of 11 addressing modes
for instructions to specify operands. The addressing
modes are optimized to allow the efficient execution
of high level languages such as C and FORTRAN,
and they cover the vast majority of data references
needed by high-level languages.

2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands:

Register Operand Mode: The operand is located
in one of the 8-, 16- or 32~bit general registers.

Immediate Operand Mode: The operand is in­
cluded in the instruction as part of the opcode.

2.5.3 32-Bit Memory Addressing
Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg­
ment base address and an effective address. The
effective address is calculated by using combina­
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char­
acters.

SCALE: The index register's value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is
pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base
and Index components which requires one addition­
al clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA= Base Reg+ (Index Reg • Scaling)+ Displacement

Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis­
placement.
EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOY [ECX], EDX

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESl*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOY EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis­
ter to obtain the operands offset.
EXAMPLE: MOY ECX, [EDX*8] [EAX]

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset.
EXAMPLE: ADD EDX, [ESI] [EBP + OOFFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand's offset.
EXAMPLE: MOY EAX, LOCALTABLE[ED1•4]
[EBP+SO]

5-303

I

intJ 3$6™ DX MICROPROCESSOR

SEGMENT REGISTER ...--------1 BASE REGISTER

s~~s ~ ..
ES~

OS
-cs

EFFECTIVE
ADDRESS

LINEAR

/
SEGMENT
LIMIT

DESCRIPTOR .REGl.STERS ADDRESS
~

ACCESS RIGHTS

LIMIT

TARGET ADDRESS

I

SELECTED
SEGMENT

BASE ADDRESS ------~
./

SEGMENT BASE ADDRESS

231630-51

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the 386 DX can execute 16-bit
instructions in Real and Protected Modes. The proc­
essor determines the size of the instructions it is ex­
ecuting by examining the D bit in the CS segment
Descriptor. If the D bit is 0 then all operand lengths
and effective addresses are assumed to be 16 bits
long. If the D bit is 1 then the default length for oper­
ands and addresses is 32 bits. In Real Mode the
default size. for operands and addresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the 386 DX is able to execute either
16 or 32-bit instructions. This is specified via the use
of override prefixes. Two prefixes, the Operand Size
Prefix and the Address Length Prefix, override the
value of the D bit on an individual instruction basis.
These prefixes are automatically added by Intel as­
semblers.

Example: The processor is executing in. Real Mode
and the programmer needs to access the EAX regis·
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM386 Macro Assem­
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESl*2]. The assembler uses an
Address Length Prefix since, with D = 0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

5-304

intJ 386TM DX MICROPROCESSOR

Table 2-3. BASE and INDEX Registers for 16- and 32-Blt Addresses

16-Blt Addressing 32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER Sl,DI

SCALE FACTOR none
DISPLACEMENT O, 8, 16 bits

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad­
ditional 386 DX addressing modes.

When executing 32-bit code, the 386 DX uses either
8-, or 32-bit displacements, and any register can be
used as base or index registers. When executing 16-
bit code, the displacements are either 8, or 16 bits,
and the base and index register conform to the
80286 model. Table 2-3 illustrates the differences.

2.6 DATA TYPES

The 386 DX supports all of the data types commonly
used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the 386 DX
bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan­
tity. All operations assume a 2's complement rep­
resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP
1, 2, 4, 8
0, 8, 32 bits

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quanti­
ty.

Offset: A 16- or 32-bit offset only quantity which
indirectly references another memory location.

Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu­
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal I
digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one digit in each
nibble.

When the 386 DX is coupled with a 387 DX Numeri­
cs Coprocessor then the following common Floating
Point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real
number representation. Floating point numbers
are supported by the 387 DX numerics coproces­
sor.

Figure 2-10 illustrates the data types supported by
the 386 DX and the 387 DX numerics coprocessor.

5-305

intef 386™ DX MICROPROCESSOR

+N +1 0
7 0 7 0 7 07 0

SIGNED~
BYTE BINARY~ l'''l'''l'''l'''I CODED e e e

SIGN BIT .JL,__J DECIMAL BCD BCD BCD
(BCD) Dir.IT N DIGIT 1 DIGIT 0

MAGNITUDE

+N +1 0
7 0 7 0 7 07 0

UNSIGNED~
BYTE ASCII~ •• • l'"'"'l'"l"'I

L__J ASCII ASCII ASCII

MAGNITUDE CHARACTERN CHARACTER1 CHARACTERo

+1 0 +N +1 0
1514 87 0 7 0 7 07 0

s~~~g 11 1 1 j 1 1 1 I 1 1 1 j 1 1 1 I PAC~~g~ ••• l'''l'''l'''l'''I
SIGN BIT.JILMSB I LJ LJ

MOST LEAST
MAGNITUDE SIGNIFICANT DIGIT SIGNIFICANT DIGIT

+1 0 +N +1 0
15 0 7/15 0 7/15 07/15 0

UNS~~~g I' I I I I I I I I I I I I I 'I ST~~~~ •• • l"'l"'l'"l"'I
[J

MAGNITUDE

+3 +2 +1 0 +2 GIGABITS
-2 GIGABITS

31 1615 0 210

SIGNED oo~g~~ 11 1 1 j I I 1 I 1 1 1 j 1 1 1 I I 1 1 I I I I I 1 I 1 j 1 I 1 I STRl~I~ 11111 II \\ 11111
SIGN BIT.J1LMSB I BITO

MAGNITUDE

+3 +2 +1 0 +3 +2 +1 0
31 0 31 0

UNSIGNED oo~g~~ I 1 1 1 j 1 1 1 I 1 1 1 j 1 1 1 I 1 1 1 j 1 1 1 11 1 1 j 1 1 1 I ;~~B~~ I
l J

POINTER l J

MAGNITUDE OFFSET

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 0
63 4847 3231 1615 0 47 0

SIGNED ~~~g 11 I I I I I I I I 4i~~I~ I I I I I I I I I' I' I' I I I I I I I
SIGN BIT .JIL MSB I

POINTER l i J

MAGNITUDE SELECTOR OFFSET

+9 +8 +7 +6 +5 +4 +3 +2 +1 0
79 0

FLOATING II
POINT• I I I I I I I I I I

SIGN BIT.Jl J_ J
EXPONENT MAGNITUDE

+5 +4 +3 +2 +1 0

BIT3~~~~1 I
•SUPPORTED BY 80387

~ BIT FIELD ·I NUMERIC DATA

1 TO 32 BITS
COPROCESSOR

231630-52

Figure 2-10. 386™ DX Supported Data Types

5-306

intef 386™ DX MICROPROCESSOR

2.7 MEMORY ORGANIZATION

2.7.1 Introduction
Memory on the 386 DX is divided up into 8-bit quan­
tities (bytes), 16-bit quantities (words), and 32-bit
quantities (dwords). Words are stored in two consec­
utive bytes in memory with the low-order byte at the
lowest address, the high order byte at the high ad­
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad­
dress, the high-order byte at the highest address.
The address of a word or dword is the byte address
of the low-order byte.

In addition to these basic data types, the 386 DX
supports two larger units of memory: pages and seg­
ments. Memory can be divided up into one or more
variable length segments, which can be swapped to
disk or shared between programs. Memory can also
be organized into one or more 4K byte pages. Final­
ly, both segmentation and paging can be combined
gaining the advantages of both systems. The 38S
DX supports both pages and segments in order to
provide maximum flexibility to the system designer.
Segmentation and paging are complementary. Seg­
mentation is useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful for the system
programmer for managing the physical memory of a
system.

2 .. 7 .2 Address Spaces
The 386 DX has three distinct address spaces:
logical, linear, and physical. A logical address

EffECTIVE ADDRESS CALCULATION

BASE

(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS­
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on 386 DX has a maximum of 16K (214
-1) selectors, and offsets can be 4 gigabytes, (232
bits) this gives a total of 246 bits or 64 terabytes of
logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari­
ous address spaces.

BE3-BEO
A31 -A2

32 0

PHYSICAL
MEMORY

ADDRESS
15 2 0 LOGICAL OR SEGMENTATION 1--3;;;241 PAGING UNIT

R 14 VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE)

32

SELECTOR P f-;1-::::==:::--+L----.....J ADDRESS
L DESCRIPTOR

SEGMENT
REGISTER

INDEX

Figure 2-11. Address Translation

5-307

PHYSICAL
ADDRESS_ __ _.

231630-53

I

inter 386™ DX MICROPROCESSOR

2. 7 .3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the 386. DX, segments are variable
sized blocks of linear addresses Which have certain
attributes associated with them. There are two main
types oi segments: code and data, the segments are
of variable size and can be as small as 1 byte or as
large as 4 gigabytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according. to the rules of Table 2-4
-(Segment Register Selection Rules). In general, data
references use the selector contained in the OS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents
of the Instruction Pointer provides the offset. Special
segment override prefixes allow the explicit use of a
given -segment register, and override the implicit
rules listed in Table 2-4. The override prefixes also
allow the use ofthe ES, FS and GS segment regis­
ters.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further detaiis oi segil1entatloil are dis­
cussed in section 4.1.

2.8 1/0 SPACE

The 386 DX has two distinct physical address
spaces: Memory and 110. Generally, peripherals are
placed in 1/0 space although the 386 DX also sup­
ports memory-mapped peripherals. The 1/0 space
consists of 64K bytes, it can be divided into 64K
8-bit ports, 32K 16-bit ports, or 16K 32-bit ports, or
any combination of ports which add up to less than
64K bytes. The 64K 1/0 address space -refers to
physical memory rather than linear address since I/
0 instructions do .not go through the segmentation
or paging hardware .. The M/10# pin acts as an addi­
tional address line thus allowing the system designer
to easily determine which address space the proces­
sor is accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch cs None __

Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions

Source of POP, POPA, POPF, SS None
IRET, RET instructions

Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(DI is Base Register)

Other Data References, with
Effective Address Using Base
Register of:

' [EAX] OS DS,CS,SS,ES,FS,GS
[EBX] OS DS,CS,SS,ES,FS,GS
[ECX] OS DS,CS,SS,ES,FS,GS
[EDX] OS DS,CS,SS,ES,FS,GS
[ESI] OS DS,CS,SS,ES,FS,GS
[EDI] OS DS,CS,SS,ES,FS,GS
[EBP] SS DS,CS,SS,ES,FS,GS
[ESP] SS DS,CS,SS,ES,FS,GS

5-308

intef 386™ DX MICROPROCESSOR

The 1/0 ports are accessed via the IN and OUT 1/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in­
structions cause the M/10# pin to be driven low.

1/0 port addresses OOF8H through OOFFH are re­
served for use by Intel.

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately
after the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper­
ating system would fetch the page or segment from
disk, and then the 386 DX would restart the instruc­
tion. Traps are exceptions that are reported immedi­
ately after the execution of the instruction which
caused the problem. User defined interrupts are ex­
amples of traps. Aborts are exceptions which do
not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report sever.e errors, such as a hardware
error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction

immediately following the interrupted instruction. On
the other hand, the return address from an excep­
tion fault routine will always point at the instruction
causing the exception and include any leading in­
struction prefixes. Table 2-5 summarizes the possi­
ble interrupts for the 386 DX and shows where the
return address points.

The 386 DX has the ability to handle up to 256 differ­
ent interrupts/ exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine.
In Real Mode (see section 3.1), the vectors are 4
byte quantities, a Code Segment plus a 16-bit offset;
in Protected Mode, the interrupt vectors are 8 byte
quantities, which are put in an Interrupt Descriptor
Table (see section 4.1). Of the 256 possible inter­
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing

When an interrupt occurs the following actions hap­
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup­
plied to the 386 DX which identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine. I
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-
gram execution resumes at the appropriate instruc-
tion.

The 8-bit interrupt vector is supplied to the 386 DX in
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the 386 DX to respond to asynchronous external
hardware events. A hardware interrupt occurs when
the INTR is pulled high and the Interrupt Flag bit (IF)
is enabled. The processor only responds to inter­
rupts between instructions, (REPeat String instruc­
tions, have an "interrupt window", between memory
moves, which allows interrupts during long

5-309

intJ 386™ DX MICROPROCESSOR

Table 2·5. Interrupt Vector Assignments

Instruction Which Return Address
Interrupt Points to Function Can Cause Type
Number Faulting

Exception
Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 any instruction YES TRAP*

NMI Interrupt 2 INT2orNMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any Illegal Instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Coprocessor Segment Overrun 9 ESC NO ABORT

lnvalidTSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack-References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Intel Reserved 15

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Coprocessor Error 16 ESC,WAIT YES FAULT

Intel Reserved 17-31

Two Byte Interrupt 0-255 INTn NO TRAP
• Some debug exceptions may report both traps on the previous instruction,' and faults on the next instruction.

string moves). When an interrupt occurs the proces­
sor reads an 8-bit vector supplied by the hardware
which identifies the source of the interrupt, (one of
224 user defined interrupts). The exact nature of the
interrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.9.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI

input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI.

While executing the NMI servicing procedure, the
386 DX will not service further NMI requests, until an
interrupt return (IRET) instruction is executed or the
processor is reset. If NMI occurs while currently
servicing an NMI, its presence will be saved for serv­
icing after executing the first IRET instruction. The IF
bit is cleared at the beginning of an NMI interrupt to
inhibit further I NTR interrupts.

2.9.5 Software Interrupts

A third type of interrupt/ exception for the 386 DX is
the software interrupt. An INT n instruction causes
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt ta­
ble.

5-310

386™ DX MICROPROCESSOR

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug­
ging tool.

A final type of software interrupt, is the single step
interrupt. It is discussed in section 2.12.

2.9.6 Interrupt and Exception
Priorities

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the 386 DX invokes the NMI service rou­
tine first. If, after the NMI service routine has been
invoked, maskable interrupts are still enabled, then
the 386 DX will invoke the appropriate interrupt serv­
ice routine.

Table 2·6a. 386™ DX Priority for
Invoking Service Routines In Case of

Simultaneous External Interrupts

1. NMI

2. INTR

Exceptions are internally-generated events. Excep­
tions are detected by the 386 DX if, in the course of
executing an instruction, the 386 DX detects a prob­
lematic condition. The 386 DX then immediately in­
vokes the appropriate exception service routine. The
state of the 386 DX is such that the instruction caus­
ing the exception can be restarted. If the exception
service routine has taken care of the problematic
condition, the instruction will execute without caus­
ing the same exception.

It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper­
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-

. caption, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe­
cutes successfully.

As the 386 DX executes instructions, it follows a
consistent cycle in checking for exceptions, as
shown in Table 2-6b. This cycle is repeated

as each instruction is executed, and occurs in paral­
lel with instruction decoding and execution.

Table 2·6b. Sequence of Exception Checking

Consider the case of the 386 DX having just
completed an instruction. It then performs the
following checks before reaching the point where
the next instruction is completed:

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis­
ters).

2. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc­
tion).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11or13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see 4.6.4); or exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e. not at IOPL or
at CPL=O).

7. If WAIT opcode, check if TS= 1 and MP= 1
(exception 7 if both are 1).

8. If ESCAPE opcode for numeric coprocessor,
check if EM= 1 or TS= 1 (exception 7 if either
are 1).

9. If WAIT opcode or ESCAPE opcode for nu­
meric coprocessor, check ERROR# input sig­
nal (exception 16 if ERROR# input is assert­
ed).

10. Check in the following order for each memo­
ry reference required by the instruction:

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti­
ty (exceptions 11, 12, 13)._

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14).

Note that the order stated supports the concept
of the paging mechanism being "underneath"
the segmentation mechanism. Therefore, for any
given code or data reference in memory, seg­
mentation exceptions are generated before pag­
ing exceptions are generated.

5-311

I

intef 386™ DX MICROPROCESSOR

2.9.7 Instruction Restart

The 386 DX fully supports restarting all instructions
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through
10 in Table 2-6b), the 386 DX invokes the appropri­
ate exception service routine. The 386 OX is in a
state that permits restart of the instruction, for all
cases but those in Table 2-6c. Note that all such
cases are easily avoided by proper design of the
operating system.

Table 2-6c. Conditions Preventing
Instruction Restart

A. An instruction causes a task switch to a task
whose Task State Segment is partially "not
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be
avoided either by keeping the TSS's of such
tasks present in memory, or by aligning TSS
segments to reside entirely within a single 4K
page (for TSS segments of 4K bytes or less).

B. A coprocessor operand wraps around the top
of a 64K-byte segment or a 4G-byte segment,
and spans three pages, and the page holding
the middle portion of the operand is "not pres­
ent." This condition can be avoided by starting
at a page boundary any segments containing
coprocessor operands if the segments are ap­
proximately 64K-200 bytes or larger (i.e. large
enough for wraparound of the coprocessor
operand to possibly occur).

Note that these conditions are avoided by using
the operating system designs mentioned in this
table.

2.9.8 Double Fault

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (1 O, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page F.ault. In any
functional system, the entire Page Fault service rou­
tine must remain "present" in memory.

Double page faults however do not raise the double
fault exception. If a second page fault occurs while
the processor is attempting to enter the service rou­
tine for the first time, then the processor will invoke

the page fault (exception 14) handler a second time,
rather than the double fault (exception 8) handler. A
subsequent fault, though, will lead to shutdown.

When a Double Fault occurs, the 386 DX invokes
the exception service routine for exception 8.

2.10 RESET AND INITIALIZATION

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2-7. The 386
DX will then start executing instructions near the top
of physical memory, at location FFFFFFFOH. When
the first lnterSegment Jump or Call is executed, ad­
dress lines A20-31 will drop low for CS-relative
memory cycles, and the 386 DX will only execute
instructions in the lower one megabyte of physical
memory. This allows the system designer to use a
ROM at the top of physical memory to initialize. the
system and take care of Resets.

RESET forces the 386 DX to terminate all execution
and local bus activity. No instruction execution or
bus activity will occur as long as Reset is active.
Between 350 and 450 CLK2 periods after Reset be­
comes inactive the 386 DX will start executing in­
structions at the top of physical memory.

Table 2-7. Register Values after Reset

Flag Word
Machine Status Word (CAO)
Instruction Pointer
Code Segment
Data Segment
Stack Segment
Extra Segment (ES)
Extra Segment (FS)
Extra Segment (GS)
DX register

All other registers

NOTES:

UUUU0002H Note 1
UUUUUUUOH Note 2

OOOOFFFOH
FOOOH Note3
OOOOH
OOOOH
OOOOH
OOOOH
OOOOH

component and
stepping ID Note 5

undefined Note 4

1. EFLAG Register. The upper 14 bits of the EFLAGS reg­
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.
2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE BitO).
3. The Code Segment Register (CS) will have its Base Ad­
dress set to FFFFOOOOH and Limit set to OFFFFH.
4. All undefined bits are Intel Reserved and should not be
used.
5. DX register always holds component and stepping iden­
tifier (see 5.7). EAX register holds self-test signature if self­
test was requested (see 5.6).

5-312

intJ 386™ DX MICROPROCESSOR

2.11 TESTABILITY

2.11.1 Self-Test

The 386 DX has the capability to perform a self-test.
The self-test checks the function of all of the Control
ROM and most of the non-random logic of the part.
Approximately one-half of the 386 DX can be tested
during self-test.

Self-Test is initiated on the 386 DX when the RESET
pin transitions from HIGH to LOW, and the BUSY#
pin is low. The self-test takes about 2**19 clocks, or
approximately 26 milliseconds with a 20 MHz 386
DX. At the completion of self-test the processor per­
forms reset and begins normal operation. The part
has successfully passed self-test if the contents of
the EAX register are zero (0). If the results of EAX
are not zero then the self-test has detected a flaw in
the part.

2.11.2 TLB Testing

The 386 DX provides a mechanism for testing the
Translation Lookaside Buffer (TLB) if desired. This
particular mechanism is unique to the 386 DX and
may not be continued in the same way in future
processors. When testing the TLB paging must be
turned off (PG = O in CRO) to enable the TLB test­
ing hardware and avoid interference with the test
data being written to the TLB.

There are two TLB testing operations: 1) write en­
tries into the TLB, and, 2) perform TLB lookups. Two
Test Registers, shown in Figure 2-12, are provided
for the purpose of testing. TR6 is the "test command
register", and TR7 is the "test data register". The
fields within these registers are defined below.

C: This is the command bit. For a write into TR6 to
cause an immediate write into the TLB entry, write a
0 to this bit. For a write into TR6 to cause an immedi­
ate TLB lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB. On
a TLB write, a TLB entry is allocated to this linear
address and the rest of that TLB entry is set per the
value of TR7 and the value just written into TR6. On
a TLB lookup, the TLB is interrogated per this value
and if one and only one TLB entry matches, the rest
of the fields of TR6 and TR7 are set from the match­
ing TLB entry.

Physical Address: This is the data field of the TLB.
On a write to the TLB, the TLB entry allocated to the
linear address in TR6 is set to this value. On a TLB
lookup, the data field (physical address) from the
TLB is read out to here.

PL: On a TLB write, PL= 1 causes the REP field of
TR7 to select which of four associative blocks of the
TLB is to be written, but PL= O allows the internal
pointer in the paging unit to select which TLB block
is written. On a TLB lookup, the PL bit indicates
whether the lookup was a hit (PL gets set to 1) or a
miss (PL gets reset to 0).

V: The valid bit for this TLB entry. All valid bits can
also be cleared by writing to CR3.

D, 0#: The dirty bit for/from the TLB entry.

U, U #:The user bit for/from the TLB entry.

W, W#: The writable bit for/from the TLB entry.

For D, U and W, both the attribute and its comple­
ment are provided as tag bits, to permit the option of
a "don't care" on TLB lookups. The meaning of
these pairs of bits is given in the following table:

x X#
Effect During Value of Bit
TLB Lookup X after TLB Write

0 0 Miss All Bit X Becomes Undefined
0 1 Match if X = 0 Bit X Becomes O
1 0 Match if X = 1 Bit X Becomes 1
1 1 Match all Bit X Becomes Undefined

For writing a TLB entry:

1. Write TR7 for the desired physical address, PL
and REP values.

2. Write TR6 with the appropriate linear address,
etc. (be sure to write C = O for "write" com­
mand).

For looking up (reading) a TLB entry:

1. Write TR6 with the appropriate linear address (be
sure to write C= 1 for "lookup" command).

2. Read TR7 and TR6. If the PL bit in TR7 indicates
a hit, then the other values reveal the TLB con­
tents. If PL indicates a miss, then the other values
in TR7 and TR6 are indeterminate.

2.12 DEBUGGING SUPPORT

The 386 DX provides several features which simplify
the debugging process. The three categories of on­
chip debugging aids are:

1) the code execution breakpoint opcode (OCCH),

2) the single-step capability provided by the TF bit in
the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0-3, DR6, and DR7.

5-313

I

intJ 386™ DX MICROPROCESSOR

31

LINEAR ADDRESS

DUV~l,...AI Annoc:c:!o~
I I lltoJIVl"'\l-l"'\L.IL.1111-\J'-I

12 11 0

TR6

T"'"7
I I H

NOTE:. indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2·12. Test Registers

2.12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint
opcode is OCCh, and generates an exception 3 trap
when executed. In typical use, a debugger program
can "plant" the breakpoint instruction at all desired
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n = 3.
The only difference between INT 3 (OCCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

2. 12.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger's stack. It then typically
transfers control' to the user program and loads the
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one
instruction. of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger's stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram.

2.12.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the 386 DX. They allow data access
breakpoints as well as code execution breakpoints.
Since the breakpoints are indicated by on-chip regis­
ters, an instruction execution breakpoint can be

placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT3
breakpoint opcode.

The 386 DX contains six Debug Registers, providing
the ability to specify up to four distinct breakpoints
addresses, breakpoint control options, and read
breakpoint status. Initially after reset, breakpoints
are in the disabled state. Therefore, no breakpoints
will occur unless the debug registers are pro­
grammed. Breakpoints set up in the Debug Regis­
ters are autovectored to exception number 1.

2.12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DRO-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 2-13. The breakpoint addresses specified are
32-bit linear addresses. 386 DX hardware continu­
ously compares the linear. breakpoint addresses in
DRO-DR3 with the linear addresses. generated by
executing software (a linear address is the result of
computing the effective address and adding the
32-bit segment base address). Note that if paging is
not enabled the linear address equals the physical
address. If paging is enabled, the linear address is
translated to a physical 32-bit address by the on­
chip paging unit. Regardless of whether paging is
enabled or not, however, the breakpoint registers
hold linear addresses.

2.12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure
2-13, allows several debug control functions such as
enabling the breakpoints and setting up other con-,
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated
breakpoint field. T~e choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-

5-314

intef 386™ DX MICROPROCESSOR

31

BREAKPOINT 0 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 3 LINEAR ADDRESS

Intel reserved. Do not define.

Intel reserved. Do not define.

R W LEN
2 2 1

31

16 15 0

0

16 15 0

ORO

DR1

DR2

DR3

DR4

DR5

DR6

DR?

NOTE: t ':~ I indicates Intel reserved: Do not define; SEE SECTION 2.3.1 O

Figure 2-13. Debug Registers

tion breakpoints must have a length of 1 (LENi
00). Encoding of the LENi field is as follows:

Usage of Least
LE Ni Breakpoint Significant Bits in

Encoding Field Width Breakpoint Address
Register i, (i = 0- 3)

00 1 byte All 32-bits used to
specify a single-byte
breakpoint field.

01 2 bytes A1-A31 used to
specify a two-byte,
word-aligned
breakpoint field. AO in
Breakpoint Address
Register is not used.

10 Undefined-
do not use

this encoding

11 4 bytes A2-A31 used to
specify a four-byte,
dword-aligned
breakpoint field. AO
and A 1 in Breakpoint
Address Register are
not used.

The LENi field controls the size of breakpoint field i
by controlling whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2-byte breakpoint fields be­
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

The following is an example of various size break­
point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the following
illustration indicates the region of the breakpoint
field for lengths of 1, 2, or 4 bytes.

DR2 = 00000005H; LEN2 = OOB

=I~ ,=_1=_ -==--==~I=_-==--==_ ... :lb=_kp=_t=_fld=-2=~1 =_ -==--=o=~I:~~::
DR2 = 00000005H;
31

LEN2 = 01B

l
l

0

OOOOOOOSH

+-- bkpt fld2 ~ 00000004H

~--~--~--1~-~00000000H

DR2 = 00000005H; LEN2 = 11B
31

l l l
0

l l OOOOOOOSH

+-- bkptfld2 ~ 00000004H

l l OOOOOOOOH

5-315

intef 386™ DX MICROPROCESSOR

RWi (memory access qualifier bits)

A 2-bit AW field exists for each of the four break­
points. The 2-bit AW field specifies the type of usage
which must occur in order to activate the associated

RW Usage
Encoding Causing Breakpoint

00 Instruction execution only
01 Data writes only
10 Undefined-do not use this encoding
11 Data reads and writes only

AW encoding 00 is used to set up an instruction
execution breakpoint. AW encodings 01 or 11 are
used to set up write-only or read/write data break­
points.

Note that instruction execution breakpoints are
taken as faults (i.e. before the instruction exe­
cutes), but data breakpoints are taken as traps
(i.e. after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can= 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed.

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level O in Protected Mode. The

GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger (or ICE™-386) can have full con-
... __ • -· ·-- .a.Lo.... n a.... I""),...,..: ... + h,..,.,, ,,.,..
l.IVI VVVI 1.110 l..IVUU~ I IV~l.;;JLOI IV"VUl'"'V" YYllVll 1'-'-

quired. The GD bit, when set, causes an exception 1
fault if an instruction attempts to read or write any
Debug Register. The GD bit is then automatically
cleared when the exception 1 handler is invoked,
allowing the exception 1 handler free access to the
debug registers.

GE and LE (Exact data breakpoint match, global and
local)

If either GE or LE is set, any data breakpoint trap will
be reported exactly after completion of the instruc­
tion that caused the operand transfer. Exact report­
ing is provided by forcing the 386 DX execution unit
to wait for completion of data operand transfers be­
fore beginning execution of the next instruction.

If exact data breakpoint match is not selected, data
breakpoints may not be reported until several in­
structions later or may not be reported at all. When
enabling a data breakpoint, it is therefore recom­
mended to enable the exact data breakpoint match.

When the 386 DX performs a task switch, the LE bit
is cleared. Thus, the LE bit supports fast task switch­
ing out of tasks, that have enabled the exact data
breakpoint match for their task-local breakpoints.
The LE bit is cleared by the processor during a task
switch, to avoid having exact data breakpoint match
enabled in the new task. Note that exact data break­
point match must be re-enabled under software con­
trol.

The 386 DX GE bit is unaffected during a task
switch. The GE bit supports exact data breakpoint
match that is to remain enabled during all tasks exe­
cuting in the system.

Note that instruction execution breakpoints are al­
ways reported exactly, whether or not exact data
breakpoint match is selected.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length
in LENi and the usage criteria in RWi) is enabled. If
either Gi or Li is set, and the 386 DX detects the ith
breakpoint condition, then the exception 1 handler is
invoked.

When the 386 DX performs a task switch to a new
Task State Segment (TSS), all Li bits are cleared.
Thus, the Li bits support fast task switching out of
tasks that use some task-local breakpoint

5-316

intJ 386™ DX MICROPROCESSOR

registers. The Li bits are cleared by the processor
during a task switch, to avoid spurious exceptions in
the new task. Note that the breakpoints must be re­
enabled under software control.

All 386 DX Gi bits are unaffected during a task
switch. The Gi bits support breakpoints that are ac­
tive in all tasks executing in the system.

2.12.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 2-13,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.

2) DR1 Breakpoint fault/trap.

3) DR2 Breakpoint fault/trap.

4) DR3 Breakpoint fault/trap.

5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex­
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro­
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO­
DR3. A flag Bi is set when the condition described
by DRi, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handled as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-

diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping). See section 2.12.2.

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a 386
DX TSS with the T bit set. (See Figure 4-15a). Note
the task switch into the new task occurs normally,
but before the first instruction of the task is execut­
ed, the exception 1 handler is invoked. With respect
to the task switch operation, the operation is consid­
ered to be a trap.

2.12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup­
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint. See section 2.3.3.

3. REAL MODE ARCHITECTURE

3.1 REAL MODE INTRODUCTION

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the 386 DX. The addressing
mechanism, memory size, interrupt handling, are all
identical to the Real Mode on the 80286.

5-317

I

intef 386TM DX MICROPROCESSOR

MAX LIMIT.
'tlXt.U Al ~4K IN
REAL MODE

MEMORY OPERAND

S.ELECTED
SEGMENT

SEGMENT BASE

231630-54

Figure 3-1. Real Address Mode Addressing

All of the 386 DX instructions are available in Real
Mode (except those instructions listed in 4.6:4). The
default operand size in Real Mode is 16-bits, just like
'the 8086. In order. to use the 32-bit registers and
addressing modes, override prefixes must be used.
In addition, the segment size on the 386 DX in Real
Mode is 64K bytes so 32-bit effective addresses
must have a value less the OOOOFFFFH. The primary
purpose of Real Mode is to set up the processor for
Protected Mode Operation.

The LOCK prefix on the 386 DX, even in Real Mode,
is more restrictive than on the 80286. This is due to
the. addition of paging on the 386 DX in Protected
Mode and Virtual 8086 Mode. Paging makes it im­
possible to guarantee that repeated string instruc·
tions can be LOCKed. The 386 DX can't require that
all pages holding the string be physically present in
memory. Hence, a Page Fault (exception 14) might
have to be taken during the repeated string instruc·
tion. Therefore the LOCK prefix can't be.supported
during repeated string instructions.

These are the only instruction forms where the
LOCK prefix is legal on the 386 DX:

Opcode Operands
(Dest, Source)

BIT Test and
Mem, Reg/immed

SET /RESET /COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB, Mem, Reg/immed

AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix ·allows indivisible

read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the 386 DX, repeated string instructions
are not LOCKable, it is not possible to LOCK the bus
for a long period of time. Therefore, the LOCK prefix
is not IOPL-sensitive on the 386 DX. The LOCK pre·
fix can be used at any privilege level, but only on the
instruction forms listed above.

3.2 MEMORY ADDRESSING

In Real Mode the maximum memory size is'limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, the high address lines A20-A31
are high during CS-relative memory cycles until ·an
intersegment jump or call is executed (see section
2.10)).

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg·
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from OOOOOOOOH to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits this implies that Real Mode seg·
ments always start on .16 byte boundaries.

All segments in Real Mode are exaptly 64K bytes .
long, and may be read, written, or executed. The 386
DX will generate an exception 13 if a data operand
or instruction fetch occurs past the end of a seg·
ment. (i.e. if an operand has an offset greater than
FFFFH, for example a word with a low byte at
FFFFH and the high byte at OOOOH.)

5·318

intef 386™ DX MICROPROCESSOR

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64K bytes an­
other segment can be overlayed on top of the un­
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 RESERVED LOCATIONS

There are two fixed areas in memory which are re­
served in Real address mode: system initialization
area and the interrupt table area. Locations OOOOOH
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali­
zation.

3.4 INTERRUPTS

Many of the exceptions shown in Table 2-5 and dis­
cussed in section 2.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3-1 identifies these exceptions.

3.5 SHUTDOWN AND HALT

The HL T instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF= 1), or RESET will force the 386 DX out of halt. If
interrupted, the saved CS:IP will point to the next
instruction after the HL T.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the

Interrupt Descriptor Table (i.e. There is not an in­
terrupt handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting in a stack segment greater than
FFFFH)

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
001 ?H) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater
than 0005H). Otherwise shutdown can only be exit­
ed via the RESET input.

4. PROTECTED MODE
ARCHITECTURE

4.1 INTRODUCTION

The complete capabilities of the 386 DX are un­
locked when the processor operates in Protected
Virtual Address Mode (Protected Mode). Protected
Mode vastly increases the linear address space to
four gigabytes (232 bytes) and allows the running of
virtual memory programs of almost unlimited size
(64 terabytes or 246 bytes). In addition Protected I
Mode allows the 386 DX to run all of the existing
8086 and 80286 software, while providing a sophisti-
cated memory management and a hardware-assist-
ed protection mechanism. Protected Mode allows
the use of additional instructions especially opti-
mized for supporting multitasking operating systems.
The base architecture of the 386 DX remains the
same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer's view is
the increased address space, and a different ad­
dressing mechanism.

Table 3-1

Interrupt Related Return
Function

Number Instructions Address Location

Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction

CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction

An attempt to execute
past the end of CS segment.

SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

5-319

intJ 386™ DX MICROPROCESSOR

4.2 ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg­
ment, the be.se a.ddress is added to a 32-b!t effecth.te
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating

48/32 BIT POINTER

SELECTOR OFFSET

47/31 31/15

system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Pi:ininn nrnvirlA~ i:in i:irlrlitinn<1l mAmnrv mi:in<1nAmAnt

m-~~ti~~;s;;.; ~liicti op~~at~s o~iy-i~ "P(ot~~t;d<>M~ci~:
Paging provides a means of managing the very large
segments of the 386 DX. As such, paging operates
beneath segmentation. The paging mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure 4-2 shows the complete 386 DX addressing
mechanism with paging enabled.

SEGMENT LIMIT

~ MEMORY OPERAND

ACCESS RIGHTS

LIMIT

BASE ADDRESS

SEGMENT
DESCRIPTOR

SEGMENT BASE
ADDRESS

SELECTED
SEGMENT

231630-55

Figure 4-1. Protected Mode Addressing

48 BIT POINTER

ACCESS RIGHTS

LIMIT

BASE ADDRESS

SEGMENT
DESCRIPTOR

386™ DX CPU
PAGING

MECHANISM PHYSICAL
ADDRESS

PAGE FRAME

ADDRESS

PHYSICAL ADDRESS

l 4K BYTES
1---------t

1---------1 l 4K BYTES

t 4K BYTES

l=M=E=M=o=RY=o=PE=R=A=ND:::t ! PHYSICAL PAGE:
4KBYTES

t 4KBYTES

! 4K BYTES

t 4K BYTES

231630-56

Figure 4-2. Paging and Segmentation

5-320

intJ 386™ DX MICROPROCESSOR

4.3 SEGMENTATION

4.3.1 Segmentation Introduction

Segmentation is one method of memory manage­
~ent. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.~ Terminology

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection:

PL: Privilege Level-One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller tl:lan less privileged
levels.

RPL: Requestor Privilege Level-The privilege level
of the original supplier of the selector. APL is deter­
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level-This is the least
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
s~tiptor): Descriptor Privilege Level is determined by
bits 6:5 1n the Access Right Byte of a descriptor.

CPL: Current Privilege Level-The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the APL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of APL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 Descriptor Tables

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION

The descriptor tables define all of the segments
which are used in an 386 DX system. There are
three types of tables on the 386 DX which hold de­
scriptors: the Global Descriptor Table, Local De­
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays.
They can range in size between 8 bytes and 64K
bytes. Each table can hold up to 8192 8 byte de­
scriptors. The upper 13 bits of a selector are used as
an index into the descriptor table. The tables have
registers associated with them which hold the 32-bit
linear base address, and the 16-bit limit of each ta­
ble.

Each of the tables has a register associated with it
the GDTR, LOTA, and the IOTA (see Figure 4-3).
The LGDT, LLDT, and LIDT instructions, load the
ba~e and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLOT, and SIDT instructions
store the base and limit values. These tables are
manipulated by the operating system. Therefore, the
load descriptor table instructions are privileged in­
structions.

4.3.3.2 GLOBAL DESCRIPTOR TABLE

The Global Descriptor Table (GOT) contains de­
scriptors which are possibly available to all of the
tasks in a system. The GOT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e. interrupt and trap
descriptors). Every 386 DX system contains a

15

LDTR
LDT DESCR
SELECTOR

15

IDT LIMIT

IDTR IDT BASE
LINEAR ADDRESS

31

15

GOT LIMIT

GDTR

0

0

0

.. 15 ___ ..;,o :
I
I
I
I
I
I
I
I

LDT LIMIT

32 I
PROGRAM INVISIBLE I
AUTOMATICALLY LOADED I
FROM LDT DESCRIPTOR :

231630-57

Figure 4-3. Descriptor Table Registers

5-321

I

intef 386™ DX MICROPROCESSOR

GOT. Generally the GOT contains code and data
segments used by the operating systems and task
state segments, and descriptors for the LDTs in a
system.

The first s!ot of the Global Descriptor Tab!e corre­
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 LOCAL DESCRIPTOR TABLE

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while
the GOT contains descriptors for segments which
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GOT. This pro­
vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GOT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in
the GOT.

4.3.3.4 INTERRUPT DESCRIPTOR TABLE

The third table needed for 386 DX systems is the
Interrupt Descriptor Table. (See Figure 4-4.) The IDT
contains the descriptors which point to the location
of up to 256 interrupt service routines. The IDT

31

may contain only task gates, interrupt gates, and
trap gates. The IDT should be at least 256 bytes in
size in order to hold the descriptors for the 32 Intel
Reserved Interrupts. Every interrupt used by a sys­
tem must have an entry in the IDT. The IDT entries
::irA referenced via INT instructions, external inter­
rupt vectors, and exceptions. (See 2.9 Interrupts).

"- MEMORY 'V

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n-1

GATE FOR
INTERRUPT #1

INTERRUPT
DESCRIPTOR
TABLE
(IDT)

"" 231630-58

Figure 4-4. Interrupt Descriptor
Table Register Use

4.3.4 Descriptors

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re­
gion of linear address space (i.e. a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or

0 BYTE
ADDRESS

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0
0

BASE 31 ... 24 G D 0 AVL
LIMIT p DPL s TYPE A

BASE

19 ... 16
l l l

23 ... 16
+4

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1 = Present O = Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor O = System Descriptor 1 = Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1 =Segment length is page granular O =Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) 1 = 32·bit segment 0 = 16-bit segment
O Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS

NOTE:
In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000 = OOOH).

Figure 4-5. Segment Descriptors

5-322

386™ DX MICROPROCESSOR

32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen­
eral format of a descriptor. All segments on the 386
DX have three attribute fields in common: the P bit,
the DPL bit, and the S bit. The Present P bit is 1 if
the segment is loaded in physical memory, if P=O
then any attempt to access this segment causes a
not present exception (exception 11). The Descrip­
tor Privilege Level DPL is a two-bit field which speci­
fies the protection level 0-3 associated with a seg­
ment.

code and data). The segment S bit in the segment
descriptor determines if a given segment is a system
segment or a code or data segment. If the S bit is 1
then the segment is either a code or data segment, if
it is O then the segment is a system segment.

4.3.4.2 386™ DX CODE, DATA DESCRIPTORS
(S= 1)

Figure 4-6 shows the general format of a code and
data descriptor and Table 4-1 illustrates how the bits
in the Access Rights Byte are interpreted.

The 386 DX has two main categories of segments
system segments and non-system segments (for

31 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0

BASE 31 ... 24 G D/B 0 AVL

D/B 1 =Default Instructions Attributes are 32·Bits
0 =Default Instruction Attributes are 16-Bits

AVL Available field for user or OS

NOTE:

LIMIT
19 ... 16

G

0

ACCESS BASE
RIGHTS

23 ... 16
BYTE

Granularity Bit 1 =Segment length 1s page granular
O = Segment length is byte granular

+4

Bit must be zero (0) for compatibility with future processors

In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11 ... 000 = OOOH).

Type
Field
Definition

Figure 4-6. Segment Descriptors

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions

Bit
Name Function

Position

7 Present (P) p = 1 Segment is mapped into physical memory.
P=O No mapping to physical memory exits, base and limit are

not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip- s = 1 Code or Data (includes stacks) segment descriptor

tor (S) S=O System Segment Descriptor or Gate Descriptor

3 Executable (E) E ~ o Deoc<;pto< type ;, data '6gmoot } II
2 Expansion Direc- ED = O Expand up segment, offsets must be :s: limit. Data

tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W = O Data segment may not be written into. (S = 1 ,

W = 1 Data segment may be written into. E = 0)

3 Executable (E) E = 1 Descriptor type is code segment:

r 2 Conforming (C) c = 1 Code segment may only be executed Code
when CPL 2 DPL and CPL Sagmoot
remains unchanged. (S = 1,

1 Readable (R) R=O Code segment may not be read. E = 1)
R = 1 Code segment may be read.

0 Accessed (A) A=O Segment has not been accessed.
A= 1 Segment selector has been loaded into segment register

or used by selector test instructions.

5-323

I

intJ 386™ DX MICROPROCESSOR

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. 386 DX segments can be one mega­
byte long with byte granularity (G = 0) or four giga­
bytes with page granularity (G = 1), (i.e., 220 pages
each page is 4K bytes in length). The granularity is
totally unrelated to paging. A 386 DX system can
consist of segments with byte granularity, and page
granularity, whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E = 1, S = 1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R = 0, and execute/read if R = 1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

The D bit indicates the default length for operands
and effective addresses. If D= 1 then 32-bit oper­
ands and 32-bit addressing modes are assumed. If
D = 0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the 386 DX assum­
ing the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C = 1,
can be executed and shared by programs at differ­
ent privilege levels. (See section 4.4 Protection.)

31

SEGMENT BASE 15 ... 0

BASE 31 ... 24 G O 0 O

Type Defines

O Invalid
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 80286 Call Gate

16

LIMIT
19 ... 16

5 Task Gate (for 80286 or 386™ DX Task)
6 80286 Interrupt Gate
7 80286 Trap Gate

NOTE:

Segments identified as data segments (E = 0, S = 1)
are used for two types of 386 DX segments: stack
and data segments. The expansion direction (ED) bit
specifies if a segment expands downward (stack) or
upward (data). If a segment is a stack segment all
offsets must be areater than the seament limit On a
data segment all offsets must be less than or equal
to the limit.· In other words, stack segments start at
the base linear address plus the maximum segment
limit and grow down to the base linear address plus
the limit. On the other hand, data segments start at
the base linear address and expand to the base lin­
ear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W = 0. The
stack segment must have W = 1.

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLS all use
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B = 0, stack
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH.

4.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper­
ating system tables, tasks,. and gates. Figure 4-7
shows the general format of system segment de­
scriptors, and the various types of system segments.
386 DX system descriptors contain a 32-bit base lin­
ear address and a 20-bit segment limit. 80286 sys­
tem descriptors have a 24-bit base address and a
16-bit segment limit.. 80286 system descriptors are
identified by the upper 16 bits being all zero.

0

SEGMENT LIMIT 15 ... 0 0

p DPL

Type

8
9
A
B
c
D
E
F

0 TYPE

Defines
Invalid
Available 386TM DX TSS
Undefined (Intel Reserved)
Busy 386™ DX TSS
386™ DX Call Gate
Undefined (Intel Reserved)
386TM DX Interrupt Gate
386TM DX Trap Gate

BASE
23 ... 16

+4

In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11 ... 000 = OOOH).

Figure 4-7. System Segments Descriptors

5-324

intef 386™ DX MICROPROCESSOR

4.3.4.4 LDT DESCRIPTORS (S = 0, TYPE= 2)

LDT descriptors (S = O TYPE = 2) contain informa­
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De­
scriptor Table (GOT).

4.3.4.5 TSS DESCRIPTORS (S = 0,
TYPE= 1, 3, 9, 8)

A Task State Segment (TSS) descriptor contains in­
formation about the location, size, and privilege level

' of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or a 386 DX TSS. The Task Register (TR)
contains the selector which points to the current
Task State Segment.

4.3.4.6 GATE DESCRIPTORS (S=O,
TYPE=4-7, C, F)

Gates are used to control access to entry points
within the target code segment. The various types of

31 24 16

gate descriptors are call gates, task gates,
interrupt gates, and trap gates. Gates provide a
level of indirection between the source and destina­
tion of the control transfer. This indirection allows
the processor to automatically perform protection
checks. It also allows system designers to control
entry points to the operating system. Call gates are
used to change privilege levels (see section 4.4
Protection), task gates are used to perform a task
switch, and interrupt and trap gates are used to
specify interrupt service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not.

8 5 0

SELECTOR OFFSET 15 ... 0 0

OFFSET 31 ... 16

Name
Type

p

Value
4
5
6
7
c
E
F
0
1

p DPL 0

...!..
Gate Descriptor Fields

Description
80286 call gate
Task gate (for 80286 or 386™ DX task)
80286 interrupt gate
80286 trap gate
386™ DX call gate
386™ DX interrupt gate
386™ DX trap gate
Descriptor contents are not valid
Descriptor contents are valid

WORD
TYPE 0 0 0 COUNT +4

...!.. j_ ...!..
4 ... 0

DPL-least privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack
to the called procedure's stack. The parameters are 32-bit quantities for 386™ DX gates, and 16-bit quantities for 80286 gates.

DESTINATION
SELECTOR

DESTINATION
OFFSET

16-bit
selector

offset
16-bit 80286
32-bit 386TM DX

Selector to the target code segment
or
Selector to the target task state segment for task gate

Entry point within the target code segment

Figure 4-8. Gate Descriptor Formats

5-325

386™ DX MICROPROCESSOR

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see section
4.4.6 Task Switching) therefore only the destination
selector portion· of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are
valid. P = 0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see section 4.4
Protection). The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as
indicated in Figure 4-8.

4.3.4.7 DIFFERENCES BETWEEN 386™ DX AND
80286 DESCRIPTORS

In order to provide operating system compatibility
between the 80286 and 386 DX, the 386 DX sup­
ports all of the . 80286 segment descriptors. Figure
4~9 shows the general format of an 80286 system
segment descriptor. The only differences between
80286 and 386 DX descriptor formats are that the
values of the type fields, and the limit and base ad­
dress fields have been expanded for the 386 DX.
The 80286 system segment descriptors contained a
24-bit base address and 16-bit limit, while the 386
DX system segment descriptors have a 32-bit base
address, a 20-bit limit field, and a granularity bit.

By supporting 80286 system segments the 386 DX
is able to execute 80286 application programs on a
386 DX operating system. This is possible because
the processor automatically understands which de­
scriptors are 80286-style descriptors and which de-

31

SEGMENT BASE 15 ... 0

Intel Reserved
SettoO

BASE
LIMIT
p

Base Address of the segment
The length of the segment
Present Bit 1 = Present 0 = Not Present

scriptors are 386 DX-style descriptors. In particular,
if the upper word of a descriptor is zero, then that
descriptor is a 80286-style descriptor.

The only other differences between 80286-style de­
scriptors and 386 DX descriptors is thA inti::irpretatkm
of the word count field of call gates and lhe B ·bit.
The word count field specifies the number of 16-bit
quantities to copy for 80286 call gates and 32-bit
quantities for 386 DX call gates. The B bit controls
the size of PUSHes when using a call gate; if B = 0
PUSHes are 16 bits, if B = 1 PUSHes are 32 bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or· Global Descriptor Table Indicator (Tl), Descriptor
Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4-10. The
Tl bits select one of two memory-based tables of
descriptors (the Global DescriptorTable or the Local
Descriptor Table). The Index selects one of SK de­
scriptors in the. appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

4.3.4.9 SEGMENT DESCRIPTOR CACHE '

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg­
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's
value.

SEGMENT LIMIT 15 ... 0

PI DPL

DPL
s
TYPE

.l Isl TYPE I BASE
...L .l ...L

·. 23 ... 1.6
Descriptor Privilege Level 0-3
System Descriptor O =System 1 =User
Type of Segment

0

0

+4

Figure 4-9. 80286 Code and Data Segment Descriptors

5-326

intJ

SEGMENT
REGISTER

386™ DX MICROPROCESSOR

SELECTOR

15 4 3 2 1 0

,_._ __ __.
INDEX

N

TABLE
INDICATOR

Tl=1

6 ____ _

5 -----4
3 t>E$~P'ro~
2

0

-----____ __.

LOCAL
DESCRIPTOR

TABLE

N

DESCRIPTOR
NUMBER

6

5

4

3

2

0

Tl=O

NULL

GLOBAL
DESCRIPTOR

TABLE

Figure 4·10. Example Descriptor Selection

5-327

231630-59

I

intef 386™ DX MICROPROCESSOR

4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the 386 DX is operating in.
When operating in Real Address Mode, the segme!"!t
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-11.

For compatiblity with the 8086 architecture, the base
is set to sixteen times the current selector value, the
limit is fixed at OOOOFFFFH, and the attributes are
fixed so as to indicate the segment is present and
fully usable. In Real Address Mode, the internal
"r1ri\1ilt:t.no ltn1ol" ie: ~hA/!2\1~ fivorl tn tha hinhor:'.'t l.o."o.I
i-••~•·-~- •-v-• '""" -•~w..,.., ,.,~_.,...,HI '":::J''""'""" ""''

level 0, so 110 and other privileged opcodes may be
executed.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32- BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

32 - BIT LIMIT

(FIXED)

OTHER ATTRIBUTES

{FIXED)

CONFORMING PRIVILEGE----------------------.
STACK SIZE------------------------..
EXECUTABLE------------------------.
WRITEABLE-----------------------,
READABLE----------------------..
EXPANSION DIRECTION

GRANULARITY l
ACCESSED l
PRIVILEGE LEVEL l
~R~~E~~ - - - - - - - ~A~~ - - - - - - - - - - - ~l~I! - - - t _ i _ - - _.._, j_ .. - ,
cs 16X CURRENT CS SELECTOR• OOOOFFFFH y 0 y B u y y y - N

SS 16X CURRENT SS SELECTOR OOOOFFFFH y 0 y B u y y N w -
OS 1 6X CURRENT OS SELECTOR OOOOFFFFH y 0 y B u y y N - -
ES 1 6X CURRENT ES SELECTOR OOOOFFFFH y 0 y B u y y N - -
FS 1 6X CURRENT FS SELECTOR OOOOFFFFH y 0 y B u y y N
GS 16X CURRENT GS SELECTOR OOOOFFFFH y 0 y B u y y N

231630-60

'Except the 32-bit CS base is initialized to FFFFFOOOH after reset untir first intersegment control transfer (e.g. intersegment CALL, or
intersegment JMP, or INT). (See Figure 4-13 Example.)

Key: Y = yes
N =no
O = privilege level O
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

D = expand down
B = byte granularity
P = page granularity
W = push/pop 16-bit words
F = push/pop 32-bit dwords
- = does not apply to that segment cache register

Figure 4-11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

5-328

386™ DX MICROPROCESSOR

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg­
ment register.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32- BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

32 - BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

CONFORMING PRIVILEGE----------------------.
STACK SIZE--------------------------.
EXECUTABLE~------------------------.

WRITEABLE ------------------------.
READABLE----------------------,
EXPANSION DIRECTION

GRANULARITY l
ACCESSED l
PRIVILEGE LEVEL l
~R~~E~~ - - - - ~~S_E - - - - - - - - - - - :1~~ ------t _ i _ - - --
cs BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d N y -

SS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d r w N d

d

-
DS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N - -
ES

FS

GS

Key: Y = fixed yes
N = fixed no

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

d = per segment descriptor

LIMIT PER SEG DESCR p d d

LIMIT PER SEG DESCR p d d

LIMIT PER SEG DESCR p d d

p = per segment descriptor; descriptor must indicate "present" to avoid exception 11
(exception 12 in case of SS)

d

d

d

r = per segment descriptor, but descriptor must indicate "readable" to avoid exception 13
(special case for SS)

w = per segment descriptor, but descriptor must indicate "writable'r to avoid exception 13
(special case for SS)

- = does not apply to that segment cache register

d d d N - -
d d d N - -
d d d N - -

231630-61

Figure 4·12. Segment Descriptor Caches for Protected Mode {Loaded per Descriptor)

5-329

I

inter 386TM DX MICROPROCESSOR

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de­
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-0-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32- BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

32 - BIT LIMIT

{FIXED)

OTHER ATIRIBUTES

(FIXED)

CONFORMING PRIVILEGE--------------------..
STACK SIZE----------------------....,
EXECUTABLE------..---------------­
WRITEABLE----------------------.
READABLE---------------------.
EXPANSION DIRECTION

GRANULARITY l
ACCESSED l
PRIVILEGE LEVEL !
~R~~E~~ - - - - - - _B~:E_ - - - - - - - - - - - ~l~I! - - - i. _ i _ - - j _

cs
SS
DS

ES

Key: Y =yes
N =no

FS

GS

1 6X CURRENT CS SELECTOR

1 6X CURRENT SS SELECTOR
1 6X CURRENT DS SELECTOR

1 6X CURRENT ES SELECTOR
16X CURRENT FS SELECTOR

16X CURRENT GS SELECTOR

OOOOFFFFH y 3 y B u y y

OOOOFFFFH y 3 y B u y y

OOOOFFFFH y 3 y

OOOOFFFFH y 3 y

OOOOFFFFH y 3 y

OOOOFFFFH y 3 y

D = expand down
B = byte granularity
P = page granularity

B u
B u
B u
B u

W = push/ pop 16-bit words
F = push/pop 32-tiit dwords

y y
y y
y y

y y

- - .. _
y - N

N W -
N - -
N - -
N - -
N - -

231630-62

0 = privilege level O
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

- = does not apply to that segment cache register

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

5-330

intJ 386TM DX MICROPROCESSOR

4.4 PROTECTION

4.4. 1 Protection Concepts

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

231630-63

Figure 4-14. Four-Level Hierachical Protection

The 386 DX has four levels of protection which are
optimized to support the needs of a multi-tasking op­
erating system to isolate and protect user programs
from each other and the operating system. The privi­
lege levels control the use of privileged instructions,
1/0 instructions, and access to segments and seg­
ment descriptors. Unlike traditional microprocessor­
based systems where this protection is achieved
only through the use of complex external hardware
and software the 386 DX provides the protection as
part of its integrated Memory Management Unit. The
386 DX offers an additional type of protection on a
page basis, when paging is enabled (See section
4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini­
computers and, in fact, the user/supervisor mode is
fully supported by the 386 DX paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level O is the most privileged or trusted level.

4.4.2 Rules of Privilege
The 386 DX controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules.

• Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

• A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 Privilege Levels

4.4.3.1 TASK PRIVILEGE
I

At any point in time, a task on the 386 DX always
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies the task's privi­
lege level. A task's CPL may only be changed by
control transfers through gate descriptors to a code
segment with a different privilege level. (See section
4.4.4 Privilege Level Transfers) Thus, an applica­
tion program running at PL = 3 may call an operat­
ing system routine at PL = 1 (via a gate) which
would cause the task's CPL to be set to 1 until the
operating system routine was finished.

4.4.3.2 SELECTOR PRIVILEGE (APL)

The privilege level of a selector is specified by the
APL field. The APL is the two least significant bits of
the selector. The selector's APL is only used to es­
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task's effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu­
merically larger) level of a task's CPL and a selec­
tor's APL. Thus, if selector's APL = O then the CPL
always specifies the privilege level for making an ac­
cess using the selector. On the other hand if APL =
3 then a selector can only access segments at level
3 regardless of the task's CPL. The APL is most I
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any APL value, the Adjust APL (ARPL)
instruction is provided to force the APL bits to the
originator's CPL.

4.4.3.3 1/0 PRIVILEGE AND 1/0 PERMISSION
BITMAP

The 1/0 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per­
formed. 1/0 instructions can be unconditionally per­
formed when CPL ,,; IOPL. (The 1/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > IOPL, and the current task is associat­
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with a 386 DX TSS, the
1/0 Permission Bitmap (part of a 386 DX TSS) is
consulted on whether 1/0 to the port is allowed, or
an exception 13 fault is to be generated instead. For

5-331

intef 386™ DX MICROPROCESSOR

diagrams of the 1/0 Permission Bitmap, refer to Fig­
ures 4-15a and 4-15b. For further information on
how the 1/0 Permission Bitmap is used in Protected
Mode or in Virtual 8086 Mode, refer to section 4.6.4
Protection and 1/0 Permission Bitmap.

Tlie i/O priviiege ievei (iOPL) aiso affeci~ wheiher
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called "IOPL-sensitive" instructions and they are
CU and STI. (Note that the LOCK prefix is not IOPL­
sensitive on the. 386 DX.)

The IOPL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL ~ IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP'ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

Table 4-2. Pointer Test Instructions ·

Instruction Operands Function

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the

RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector VERify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERW Selector VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

LSL Register, Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access

rights byte into the register
if privilege rules allow. Set
zero flag if successful.

4.4.3.4 PRIVILEGE VALIDATION

The 386 DX provides several instructions to speed
pointer testing and help maintain system integrity by
verifying that the. selector value refers to an appro­
priate segment. Table 4-2 summarizes the selector
vaiidation procedures avaiiabie for the 386 DX.

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating
systems routine at PL = O and passing the operat­
ing system routine a "bad" pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc­
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(OS, ES, FS, GS) the 386 DX makes protection vali­
dation checks. Selectors loaded in the OS, ES, FS,
GS registers must refer only to data segments or
readable code segments. The data access rules are
specified in section 4.2.2 Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privi­
lege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen­
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In­
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

.,
4.4.4 Privilege Level Transfers

Inter-segment control transfers occur when a selec­
tor is loaded in the .CS register. For a typical system
most of these transfers are simply the result of a call

5-332

386™ DX MICROPROCESSOR

Table 4-3. Descriptor Types Used for Control Transfer

Control Transfer Types

lntersegment within the same privilege level

lntersegment to the same or higher privilege level
Interrupt within task may change CPL

lntersegment to a lower privilege level
(changes task CPL)

Task Switch

'NT (Nested Task bit of flag register) ~ O
"NT (Nested Task bit of !lag register) ~ 1

or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

- Privilege level transitions can only occur via
gates.

- JMPs can be made to a non-conforming code
segment with the same privilege or to a conform­
ing code segment with greater or equal privilege.

- CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

- Interrupts handled within the task obey the same
privilege rules as CALLs.

- Conforming Code segments are accessible by
privilege levels which are the same or less privi­
leged than the conforming-code segment's DPL.

- Both the requested privilege level (APL) in the
selector pointing to the gate and the task's CPL

Operation Types
Descriptor Descriptor

Referenced Table

JMP, CALL, RET, IRET* Code Segment GDT/LDT

CALL Call Gate GDT/LDT

Interrupt Instruction, Trap or IDT
Exception, External Interrupt
Interrupt Gate

RET, IRET* Code Segment GDT/LDT

CALL, JMP Task State GDT
Segment

CALL, JMP Task Gate GOT/LDT

IRET** Task Gate IDT
Interrupt Instruction,
Exception, External
Interrupt

must be of equal or greater privilege than the
gate's DPL.

- The code segment selected in the gate must be
the same or more privileged than the task's CPL.

- Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

- Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi­
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack
pointer upon return.

5-333

I

intef

NOTE:
AP_OFFSET BIT_M

mustb es: DFFFH

.. ------------- ..
I

ACCESS I TSS
I

I 1-H . RIGHTS LIMIT
I I
I I

' BASE tf1 I
I .
I 31
I PROGRAM 0 I

I
I INVISIBLE I

~-------------·
TASK REGISTER

TR SELECTOR ~
15 0

Type~ 9: Available 386TM DX TSS,
Type ~ B: Busy 386™ DX TSS

1-i

31

386™ DX MICROPROCESSOR

31 16 15
TSS BASE

0000000000000000 BACK LINK
0 0 .J

ESPO

0000000000000000 sso
ESPf

0000000000000000 SS1

ESP2

0000000000000000 SS2

CR3

EIP

EFLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

0000000000000000 ES

0000000000000000 cs

0000000000000000 SS

0000000000000000 OS

0000000000000000 FS

0000000000000000 GS

0000000000000000 LDT

4

8

r:
10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

l
J

STACKS
FOR
CPL 0, 1,2

CURRENT
TASK
STATE

BILMAP _OFFSET(15:0) 0000000000000000 Lr ~ AVAILABLE -----.... SYSTEM STATUS, ETC.
'(' IN 386 DX CPU TSS

31 24 23 16 15 8 7

63 56 55 48 47 40 39

95 88 87 80 79 72 71

....
'(' 1/0 PERMISSION BITMAP

65407 (ONE BIT PER BYTE 1/0
PORT. BITMAP MAY BE 65439

TRUNCATED USING TSS LIMIT.)
65471 ...l
65503

65535

"' 'I'

0

32

64

96

" r

65472

65504

"FFH"

8 DEBUG
TRAP BIT

BILM AP_OFFSET

OFFSE T + C

T + 10 OFFSE

OFFS ET+ 1FEC

OFFSE T + 1FFO

OFFS ET+ 1FF4

OFFS ET+ 1FF8

OFFS ET+ 1FFC

OFFSE

_j TSS LIMIT=O

T + 2000

FFSET + 2000H
386 DX CPU TSS DESCRIPTOR (IN GOT) 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .. 0

BASE 31 .. 24}}}o}ol 1l~~~~ PI~~0I_i rr~ I BASE
23 .. 16

231630-64

Figure 4·15a. 386™ DX TSS and TSS Registers

5-334

386™ DX MICROPROCESSOR

31

63

95

127

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1

1

0

1 1 1 1 1 1 1 1

t etc. ~
1/0 Ports Accessible: 2--+ 9, 12, 13, 15, 20--+ 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58--+ 60, 62, 63, 96--+ 127 231630-71

Figure 4-15b. Sample 1/0 Permission Bit Map

4.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo­
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv­
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou­
tine. When an inter-level 386 DX call gate is activat­
ed, the following actions occur.

1. Load CS:EIP from gate check for validity

2. SS is pushed zero-extended to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex­
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 Task Switching
A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch
between tasks or processes. The 386 DX directly
supports this operation by providing a task switch
instruction in hardware. The 386 DX task switch op-

eration saves the entire state of the machine (all of
the registers, address space, and a link to the previ­
ous task), loads a new execution state, performs
protection checks, and commences execution in the
new task, in about 17 microseconds. Like transfer of
control via gates, the task switch operation is in­
voked by executing an inter-segment JMP or CALL
instruction which refers to a Task State Segment
(TSS), or a task gate descriptor in the GOT or LDT.
An INT n instruction, exception, trap, or external in­
terrupt may also invoke the task switch operation if
there is a task gate descriptor in the associated IDT
descriptor slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire 386 DX execution state
while a task gate descriptor contains a TSS selector.
The 386 DX supports both 80286 and 386 DX style
TSSs. Figure 4-16 shows a 80286 TSS. The limit of
a 386 DX TSS must be greater than 0064H (002BH
for a 80286 TSS), and can be as large as 4 Giga-1
bytes. In the additional TSS space, the operating
system is free to store additional information such as
the reason the task is inactive, time the task has
spent running, and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
386 DX called the Task State Segment Register
(TR). This register contains a selector referring to
the task state segment descriptor that defines the
current TSS. A hidden base and limit register associ-
ated with TR are loaded whenever TR is loaded with
a new selector. Returning from a task is accom-
plished by the IRET instruction. When IRET is exe-
cuted, control is returned to the task which was in­
terrupted. The current executing task's state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CAO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow­
ing fashion:

5-335

intJ 386™ DX MICROPROCESSOR

15 0

BACK LINK SELECTOR TO TSS 0

SP FOR CPL 0 2

SS roR CPL 0 4

SP FOR CPL 1 6 INmAL

SS FOR CPL 1 8
STACKS
FOR CPL 0, 1,2

SP FOR CPL 2 A

SS FOR CPL 2 c
IP (ENTRY POINT)

FLAGS 10

AX 12

ex 14

DX 16

BX 18
CURRENT

SP 1A TASK

BP IC STATE

SI IE

DI 20

ES SELECTOR 22

CS SELECTOR 24

SS SELECTOR 26

OS SELECTOR 28

TASK'S LDT SELECTOR 2A

,,AVAILABLE ...
231630-65

Figure 4·16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
Nl may also be· set or cleared by. POPF or IRET
instructions. ·

The 386 DX task state segment is marked busy by
changing the descriptor type field from TYPE 9H to
TYPE BH. An 80286 TSS is marked busy by chang­
ing the descriptor type field from TYPE 1 to TYPE 3.
Use of a selector that references a busy task state
segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

The coprocessor's state is not automatically saved
when a task switch occurs, because the incoming
task may not use· the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CAO) helps deal with
the coprocessor's state in a multi-tasking environ-

ment. Whenever the 386 DX switches tasks, it sets
the TS bit. The 386 DX dete.cts the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception hand.ler for exception 7
may then decide whether to save the state of the
coprocessor. A processor extension not present ex­
ception (7) will occur when attempting to execute an
ESC or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = 1 and MP = 1).

The T bit in the 386 DX T$S indicates that the proc­
essor should generate a debug exception when
switching to a task. If T = 1 then upon entry to a
new task a debug exception 1 will be generated.

4.4.7 Initialization and Transition to
Protected Mode

Since the 386 DX begins executing in Real Mode
immediately after RESET it is necessary to initialize
the system tables and registers with the appropriate
values.

The GOT and IDT registers must refer to a valid GOT
and IDT. The IDT should be at least 256 bytes long,
and GOT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode 386 DX system. It has a sin­
gle code and single data/stack segment each four
gigabytes long and a single privilege level PL = O.

The actual method of enabling Protected Mode is to .
load CAO with the PE bit set, via the MOV CAO, R/M
instruction. This puts the 386 DX in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue,. The
final step is to load all Of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GOT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

5-336

intef 386™ DX MICROPROCESSOR

31 O FFFFFFFF
15 0 RESET ROUTINES

ssloo10I
FFFFFFFO

INITIALIZATION
ROUTINES

GS 10010 I

FS I 0010 I

ESS

os8

cs

GDTR

~'"] BASE ADDRESS
00000110

NULL SELECTOR
00000108 GOT

IDTR OOFF LIMIT 00000100

00000000 INTERRUPT t
DESCRIPTORS (32) IDT

BASE ADDRESS t
00000000

231630-66

Figure 4-17. Simple Protected System

DATA
DESCRIPTOR

CODE
DESCRIPTOR

SEGMENT BASE 15 ... 0
0118 (H)

BASE31 ... 24 G D 0
00 (H) 1

0
1

SEGMENT BASE 15 ... 0
0118 (H)

BASE 31 ... 24 G D
00 (H) 1 1

0 0

31 24

SEGMENT LIMIT 15 ... 0
FFFF (H)

LIMIT
O BASE23 ... 16

19.16 1 0 0 1 0 0 1
F(H)

OO(H)
_l

SEGMENT LIMIT 15 ... 0
FFFF(H)

LIMIT
BASE23 ... 16

19.16 1 0 0 1 1 0 1 0
OO(H)

F (H)
l __]_ ..l

NULL DESCRIPTOR

16 15 8 0

Figure 4·18. GOT Descriptors for Simple System

4.4.8 Tools for Building Protected
Systems

In order to simplify the design of a protected multi­
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
386 DX system. This tool is the builder BLD-386™.
BLD-386 lets the operating system writer specify all
of the segment descriptors discussed in the previous
sections (LDTs, IDTs, GDTs, Gates, and TSSs) in a
high-level language.

4.5 PAGING

4.5. 1 Paging Concepts

Paging is another type of memory management use­
ful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
grams and data into variable length segments,
paging divides programs into multiple. uniform size
pages. Pages bear no direct relation to the logical

5-337

intJ 386™ DX MICROPROCESSOR

structure of a program. While segment selectors can
be considered the logical "name" of a program
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture.

By taking advantage of the locality of reference dis­
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 Paging Organization

4.5.2.1 PAGE MECHANISM

The 386 DX uses two levels of tables to translate
the linear address (from the segmentation unit) into
a physical address. There are three components to
the paging mechanism of the 386 DX: the page di­
rectory, the page tables, and the page itself (page
frame). All memory-resident elements of the 386 DX
paging mechanism are the same size, namely, 4K
bytes. A uniform size for all of the elements simpli­
fies memory allocation and reallocation schemes,
since there is no problem with memory fragmenta­
tion. Figure 4-19 shows how the paging mechanism
works.

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al­
ways page aligned. loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CAO. (See 4.5.4 Translation
Lookaside Buffer).

4.5.2.3 PAGE DIRECTORY

The Page Directory is 4K bytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

CRO

CR1

CR2

31 22 12 0

DIRECTORY TABLE OFFSET
LINEAR

ADDRESS
10 10

386™ DX CPU
31

31 0

-----t
-----.1
1-----1

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

12

31

PAGE TABLE

Figure 4·19. Paging Mechanism

31 12 11 10 9 8 7 6

OS
PAGE TABLE ADDRESS 31 .. 12 RESERVED 0 0 D

5

A

USER
MEMORY

ADDRESS

4 3 2

u
0 0 -

s

Figure 4-20. Page Directory Entry (Points to Page Table)

5-338

231630-67

0

R
- p
w

intJ 386™ DX MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 1 0

OS u R
PAGE FRAME ADDRESS 31 .. 12 RESERVED 0 0 D A 0 0 - - p

s w

Figure 4·21. Page Table Entry (Points to Page)

4.5.2.4 PAGE TABLES

Each Page Table is 4K bytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad­
dress bits A12-A21 are used as an index to select
o~e of the 1024 Page Table Entries. The 20 upper­
b1t page frame address is concatenated with the
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
~ = 1 the entry can be used for address translation;
1f P = 0 the entry can not be used for translation.
Note that the present bit of the page table entry that
points to the page where code is currently being ex­
ecuted should always be set. Code that marks its
own page not present should not be written. All of
the other bits are available for use by the software.
For example the remaining 31 bits could be used to
indicate where on the disk the page is stored.

The A (Accessed) bit 5, is set by the 386 DX for both
types of entries before a read or write access occurs
to an address covered by the entry. The D (Dirty) bit
6 is set to 1 before a write to an address covered by
that page table entry occurs. The D bit is undefined
for Page Directory Entries. When the P, A and D bits
are updated by the 386 DX, the processor generates
a Read-Modify-Write cycle which locks the bus and
prevents conflicts with other processors or perpheri­
als. Software which modifies these bits should use
the LOCK prefix to ensure the integrity of the page
tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4-20 and
Figure 4-21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
woul? be to store information about page aging. By
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages.

4.5.3 Page Level Protection
(R/W, U/S Bits)

The 386 DX provides a set of protection attributes
for paging systems. The paging mechanism distin­
guishes between two levels of protection: User
which corresponds to level 3 of the segmentation
based protection, and supervisor which encompass­
es all of the other protection levels (0, 1, 2). Pro­
grams ~xecuting at Level o, 1 or 2 bypass the page
protection, although segmentation based protection
is still enforced by the hardware.

The U/S and R/W bits are used to provide Us­
er/Supervisor and Read/Write protection for individ­
ual pages or for all pages covered by a Page Table
Directory Entry. The U/S and R/W bits in the first
level Page Directory Table apply to all pages de­
scribed by the page table pointed to by that directory
entry. The U/S and R/W bits in the second level
Page Table Entry apply only to the page described
by that entry. The UIS and R/W bits for a given
page are obtained by taking the most restrictive of
the U/S and R/W from the Page Directory Table
Entries and the Page Table Entries and using these
bits to address the page.

Example: If the UIS and R/W bits for the Page Di­
rectory entry were 10 and the U/S and R/W bits for
the Page Table Entry were 01, the access rights for
the page would be 01, the numerically smaller of the
two. Table 4-4 shows the affect of the UIS and R/W
bits on accessing memory.

Table 4-4. Protection Provided by R/W and U/S

U/S R/W
Permitted Permitted Access

Level3 Levels 0, 1, or 2

0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However a given segment can be easily made read­
only for level 0, 1, or 2 via the use of segmented
protection mechanisms. (Section 4.4 Protection).

5-339

El

intef 386™ DX MICROPROCESSOR

4.5.4 Translation Lookaside Buffer

The 386 DX paging hardware is designed to support
demand paged virtual memory systems. However,
performance would degrade substantially if the proc­
essor was required to access two levels of tables for
every memory reference. To solve this problem, the
386 DX keeps a cache of the most recently ac­
cessed pages, this cache is called the Translation
Lookaside Buffer (TLB). The TLB is a four-way set
associative 32-entry page table cache. It automati­
cally keeps the most commonly used Page Table
Entries in the processor. The 32-entry TLB coupled
with a 4K page size, results in coverage of 128K
bytes of memory addresses. For many common mul­
ti-tasking systems, the TLB will have a hit rate of
about 98%. This means that the processor will only
have to access the two-level page structure on 2%
of all memory references. Figure 4-22 illustrates how
the TLB complements the 386 DX's paging mecha­
nism.

4.5.5 Paging Operation

32 ENTRIES
PHYSICAL
MEMORY

... ~~~~~s ~
TRANSLATION

LOOKASIDE
BUfFER HIT

MISS

31 0

u I--

4

PAGE PAGE
DIRECTORY TABLE

e 983 HIT RATE

231630-68

Figure 4-22. Translation Lookaside Buffer

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 32-bit phys­
ical address is calculated and will be placed on the
address bus.

However, if the page table entry is not in the TLB,
the 386 DX will read the appropriate Page Directory
Entry. If P = 1 on the Page Directory Entry indicat­
ing that the page table is in memory, then the 386
DX will read the appropriate Page Table Entry

and set the Access bit. If P = 1 on the Page Table
Entry indicating that the page is in memory, the 386
DX will update the Access and Dirty bits as needed
and fetch the operand. The upper 20 bits of the lin­
ear address, read from the page table, will be stored
in the TLB for future accesses. However, if P = O for
either the Page Directory Entry or the Page Table
Entry, then the processor will generate a page fault,
an Exception 14.

The processor will also generate an exception 14,
page fault, if the memory reference violated the
page protection attributes (i.e. UIS or R/W) (e.g. try­
ing to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc­
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault Fig­
ure 4-23A shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (UIS, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4-238 indicates
what type of access caused the page fault.

15 3 2 1 0

lululululululululu!ululululul~l~IPI
Figure 4·23A. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W /R = O) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U: UNDEFINED

5-340

inter 386™ DX MICROPROCESSOR

UIS W/R Access Type

0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

'Descriptor table access will fault with UIS ~ 0, even 1! the program
is executing at level 3.

Figure 4-238. Type of Access
Causing Page Fault

4.5.6 Operating System
Responsibilities

The 386 DX takes care of the page address transla­
tion process, relieving the burden from an operating
system in a demand-paged system. The operating
system is responsible for setting up the initial page
tables, and handling any page faults. The operating
system also is required to invalidate (i.e. flush) the
TLB when any changes are made to any of the page
table entries. The operating system must reload
CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero the TLB must be flushed. Operating systems
may'want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 VIRTUAL 8086 ENVIRONMENT

4.6.1 Executing 8086 Programs

The 386 DX allows the execution of 8086 application
programs in both Real Mode and in the Virtual 8086
Mode (Virtual Mode). Of the two methods, Virtual
8086 Mode offers the system designer the most
flexibility. The Virtual 8086 Mode allows the execu­
tion of 8086 applications, while still allowing the sys­
tem designer to take full advantage of the 386 DX
protection mechanism. In particular, the 386 DX al­
lows the simultaneous execution of 8086 operating
systems and its applications, and a 386 DX opera~­
ing system and both 80286 and 386 DX apph-

cations. Thus, in a multi-user 386 DX computer, one
person could be running an MS-DOS spreadsheet,
another person using MS-DOS, and a third person
could be running multiple Unix utilities and applica­
tions. Each person in this scenario would believe
that he had the computer completely to himself. Fig­
ure 4-24 illustrates this concept.

4.6.2 Virtual 8086 Mode Addressing
Mechanism

One of the major differences between 386 DX Real
and Protected modes is how the segment selectors
are interpreted. When the processor is executing in
Virtual 8086 Mode the segment registers are used in
an identical fashion to Real Mode. The contents of
the segment register is shifted left 4 bits and added
to the offset to form the segment base linear ad­
dress.

The 386 DX allows the operating system to specify
which programs use the 8086 style address mecha-
nism, and which programs use Protected Mode ad­
dressing, on a per task basis. Through the use of
paging, the one megabyte address space of the Vir-
tual Mode task can be mapped to anywhere in the 4
gigabyte linear address space of the 386 DK Like
Real Mode, Virtual Mode effective addresses (i.e.,
segment offsets) that exceed 64K byte will cause an
exception 13. However, these restrictions should not I
prove to be important, because most tasks running
in Virtual 8086 Mode will simply be existing 8086
application programs.

4.6.3 Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 giga­
byte physical address space of the 386 DX. In addi­
tion, since CR3 (the Page Directory Base Register)
is loaded by a task switch, each Virtual Mode task
can use a different mapping scheme to map pages
to different physical locations. Finally, the paging
hardware allows the sharing of the 8086 operating

5-341

intef 386™ DX MICROPROCESSOR

VIRTUAL MODE
8086 TASK

PAGE DIRECTORY
ROOT

VIRTUAL MODE
8086 TASK

PAGE N

8086 OS

EMPTY

TASK 2 PAGE
TABLE

PAGE DIRECTORY
TASK 2

PAGE N

PAGE 1

8086 OS

EMPTY

TASK 1 PAGE
TABLE

PAGE DIRECTORY
TASK 1

PHYSICAL
MEMORY

• TASK 1 1118086 OS
MEMORY MEMORY

l77JJ TASK 2 ~ 386™ DX CPU OS
l{tt.I MEMORY ~ MEMORY

231630-69

Figure 4-24. Virtual 8086 Environment Memory Management

system code between multiple 8086 applications.
Figure 4-24 shows how the 386 DX paging hardware
enables multiple 8086 programs to run under a virtu­
al memory demand paged system.

4.6.4 Protection and 1/0 Permission
Bitmap

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at­
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > O) causes an excep­
tion 13 fault:

LIDT;
LGDT;

MOV DRn,reg;
MOV TRn,reg;

MOV reg,DRn;
MOV reg,TRn;

LMSW;
CLTS;
HLT;

MOV CRn,reg; MOV reg,CRn.

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR;
LLDT;
LAR;
LSL;
ARPL.

STR;
SLDT;
VERR;
VERW;

The instructions which are IOPL-sensitive.in Protect­
ed Mode are:

IN;
OUT;
INS;
OUTS;
REP INS;
REP OUTS;

STI;
CLI

5-342

intef 386™ DX MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in­
structions are made IOPL-sensitive. The following in­
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; ST!;
PUSHF; CL!;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL­
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren't
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be­
come automatically sensitive to the 1/0 Permission
Bitmap contained in the 386 DX Task State Seg­
ment. The 1/0 Permission Bitmap, automatically
used by the 386 DX in Virtual 8086 Mode, is illustrat­
ed by Figures 4.15a and 4-15b.

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
BiLMap_Offset in the current TSS. BiLMap_
Offset must be :>: DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets :>: FFFFH from the TSS base. The 16-bit
pointer Bit_Map_Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4-15a.

Each bit in the 110 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4-15a. If a bit is 0, 1/0 to the corresponding byte­
wide port can occur without generating· an excep­
tion. Otherwise the 1/0 instruction causes an excep­
tion 13 fault. Since every byte-wide 1/0 port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the 1/0
Permission Bitmap, the bitmap may be located any­
where within the TSS, or may be ignored completely
by pointing the Bit_Map_Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of BK of memory when a complete bitmap is not
required, while allowing the fully general case if
desired.

EXAMPLE OF BITMAP FOR 1/0 PORTS 0-255:
Setting the TSS limit to {bit_Map_Offset + 31
+ 1 * •) [* • see note below] will allow a 32-byte bit­
map for the 1/0 ports #0-255, plus a terminator
byte of all 1 's [•• see note below]. This allows the
1/0 bitmap to control 1/0 Permission to 1/0 port 0-
255 while causing an exception 13 fault on attempt­
ed 1/0 to any 1/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the 1/0
Permission Bitmap must be a byte containing all 1 's.
The byte of all 1's must be within the limit of the 386
DX TSS segment (see Figure 4-15a).

4.6.5 Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi­
lege change back to the host 386 DX operating sys­
tem. The 386 DX operating system determines if the
interrupt comes from a Protected Mode application
or from a Virtual Mode program by examining the
VM bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 386 DX operating system in turn handles the
exception or interrupt and then returns control to the
8086 program. The 386 DX operating system may
choose to let the 8086 operating system handle the
interrupt or it may emulate the function of the inter­
rupt handler. For example, many 8086 operating
system calls are accessed by PUSHing parameters
on the stack, and then executing an INT n instruc­
tion. If the IOPL is set to O then all INT n instructions
will be intercepted by the 386 DX Microprocessor
operating system. The 386 DX ope.rating system
could emulate the 8086 operating system's call. Fig­
ure 4~25 shows how the 386 DX operating system
could intercept an 8086 operating system's call to
"Open a File".

A 386 DX operating system can provide a Virtual
8086 Environment which.is'totally transparent to the
application software via intercepting and then emu­
lating 8086 operating system's calls, and intercept­
ing IN and OUT instructions.

5-343

I

intef 386™ DX MICROPROCESSOR

4.6.6 Entering and Leaving Virtual
8086 Mode

Yirtual ~086 mode is entered by executing an IRET
instruction (at CPL=O), or Task Switch (at any CPL)
to a 386 DX task whose 386 DX TSS has a FLAGS
image containing a 1 in the VM bit position while the
processor is executing in Protected Mode. That is,
one way to enter Virtual 8086 mode is to switch to a
task with a 386 DX TSS that has a 1 in the VM bit in
the EFLAGS image. The other way is to execute a
32•bit IRET instruction at privilege level o, where the
stack has a 1 in the VM bit in the EFLAGS image.
POPF does not affect the VM bit, even if the proces­
sor is in Protected Mode or level O, and so cannot be
used to enter Virtual 8086 Mode. PUSHF always
pushes a 0 in the VM bit, even if .the processor is in
Virtual 8086 Mode, so that a program cannot tell if it
is executing in REAL mode, or in Virtual 8086 mode.

The VM bit can be set by executing an IRET instruc­
. tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM = 1 ·in the new FLAGS image), and
c~n be cleared only by an interrupt or exception in
Virtual .8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to 386 DX
protected mode occurs only on receipt of an inter­
rupt or exception (such as due· to a sensitive instruc-

. t!on). In Virtual 8086 mode, all interrupts and excep­
tions vector through the protected mode IDT and
enter an interrupt handler in protected 38S DX
mode. That is, as part of interrupt processing the
VM bit is cleared. '

Because the matching IRET must occur from level o
if an Interrupt or Trap Gate is used to field an inter~
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level O.
Interrupt or Trap Gates through conforming seg­
ments, or through segments with DPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 TASK SWITCHES TO/FROM VIRTUAL
8086 MODE

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new 386 DX format
(TYPE 9 or 11 ·descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with a 386 DX TSS. All of the programmer visi­
ble state, including the FLAGS register with the VM
bit set to 1, is stored in the TSS. The segment

registers in the TSS will contain 8086 segment base
values rather than selectors.

A task switch into a task described by a 386 DX TSS
will have an additional check to determine if the in­
coming task should be resumed in virtual 8086
mode. Tasks described by 80286 format TSSs can­
not ~e resumed in virtual 8086 mode, so no check is
required there (the FLAGS image in 80286 format
TSS_ has only the low orqer ,16 FLAGS bits). Before
loading the segment register images from a 386 DX
TSS, the FLAGS image is loaded, so that the seg­
ment registers are loaded from the TSS image as
8086 segment base values. The task is now ready to
resume in virtual 8086 execution mode.

4.6.6.2 TRANSITIONS THROUGH TRAP AND
INTERRUPT GATES, AND IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a 386 DX Trap Gate
(Type 14~. or 386 DX Interrupt Gate (Type 15), which
must point to a non-conforming level O segment
(DPL = 0) in order to permit the trap handler to IRET

· back to the Virtual 8086 program. The Gate must
point to a non-conforming level 0 segment to per­
form a level switch to level 0 so that the matching
IRET can change the VM bit. 386 DX gates must be
used, since 80286 gates save only the low 16 bits of
the FLAGS register, so that the VM bit will not be
saved on transitions through the 80286 gates. Also,
the 16-bit IRET (presumably) used to terminate the
8~286 interrupt handler will pop only the lower 16
bits from FLAGS, and will not affect the VM bit. The
action taken for a 386 DX Trap or Interrupt gate if an
interrup~ occurs while the task is executing in virtual
8086 mode is given by the following sequence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This pro­
cess involves a stack switch to the stack given in
the TSS for privilege level O. Save the Virtual
8086 Mode SS anp ESP registers to push in a
later step. The segment register load of SS Will
b~ done as a Protected Mode segment load,
since the VM bit was turned off above.

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, OS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

5-344

inter 386™ DX MICROPROCESSOR

VIRTUAL 8086
~ODE MONITOR

#2

386 TM DX CPU OS
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 0

(HIGHEST)

8086 Application makes "Open File Call" --+ causes
General Protection Fault (Arrow # 1)

PRIVILEGE
LEVEL 3

(LOWEST)

Virtual 8086 Monitor intercepts call. Calls 386TM DX OS (Arrow # 2)
386TM DX OS opens file returns control to 8086 OS (Arrow #3)
8086 OS returns control to application. (Arrow # 4)
Transparent to Application

231630-70

Figure 4-25. Virtual 8086 Environment Interrupt and Call Handling

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register {as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg­
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register {as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected 386 DX mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack {behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the OS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don't care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving {i.e. push all registers in
prolog, pop all in epilog) regardless of whether or not
a "native" mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis­
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex­
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto

the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended 386 DXs IRET
instruction {operand size= 32) can be used, and
must be executed at level O to change the VM bit to
1.

(1) If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current · state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following sequence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac­
tive in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM = 0, this CS load is done as a protected
mode segment load. If VM = 1, this will be done
as an 8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was "popped" in step 1.

(5) If VM = 1, load segment registers ES, OS, FS,
and GS from memory locations SS: [ESP+ 8],
SS: [ESP+ 12], SS: [ESP+ 16], and
SS: [ESP+ 20], respectively, where the new val-

5-345

I

intef 386™ DX MICROPROCESSOR

ue of ESP stored in step 4 is used. Since VM = 1,
these are done as 8086 segment register loads.

Else if VM = 0, check that the selectors in ES,
OS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM = 0, SS is loaded as a
protected mode segment register load. If VM = 1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual 8086
mode.

5. FUNCTIONAL DATA

5.1 INTRODUCTION
The 386 DX features a straightforward functional in­
terface to the external hardware. The 386 DX has
separate, parallel buses for data and address. The
data bus is 32-bits in width, and bidirectional. The
address bus outputs 32-bit address values in the
most directly usable form for the high-speed local
bus: 4 individual byte enable signals, and the 30 up­
per-order bits as a binary value. The data and ad­
dress buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the proc­
essor to handle a mix of 32- and 16-bit external bus­
es on a cycle-by-cycle basis (see 5.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the 386 DX
automatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transfer if that is necessary. 8-bit peripheral devices
may be connected to 32-bit or 16-bit buses with no
loss of performance. A new address pipelining op­
tion is provided and applies to 32-bit and 16-bit bus­
es for substantially improved memory utilization, es­
pecially for the most heavily used memory resourc­
es.

The address pipelining option, when selected, typ­
ically allows a given memory interface to operate
with one less wait state than would otherwise be
required (see 5.4.2 Address Pipelining). The pipe­
lined bus is also well suited to interleaved memory
designs. When address pipelining is requested by
the external hardware, the 386 DX will output the
address and bus cycle definition of the next bus cy­
cle (if it is internally available) even while waiting for
the current cycle to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cy­
cles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle
basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc­
essor, or from processor to system. 386 DX bus cy­
cles perform data transfer in a minimum of only two
clock periods. On a 32-bit data bus, the maximum
386 DX transfer bandwidth at 20 MHz is therefore
40 MBytes/sec, at 25 MHz bandwidth, is
50 Mbytes/sec, and at 33 MHz bandwidth, is
66 Mbytes/sec. Any bus cycle will be extended for
more than two clock periods, however, if external
hardware withholds acknowledgement of the cycle.
At the appropriate time, acknowledgement is sig­
nalled by asserting the 386 DX READY# input.

The 386 DX can relinquish control of its local buses
to allow mastership by other devices, such as direct
memory access channels. When relinquished, HLDA
is the only output pin driven by the 386 DX providing
near-complete isolation of the processor from its
system. The near-complete isolation characteristic is
ideal when driving the system from test equipment,
and in fault-tolerant applications.

Functional data covered in this chapter describes
the processor's hardware interface. First, the set of
signals available at the processor pins is described
(see 5.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
5.3 Bus Transfer Mechanism, 5.4 Bus Functional
Description and 5.5 Other Functional Descrip­
tions).

5.2 SIGNAL DESCRIPTION

5.2.1 Introduction

Ahead is a brief description of the 386 DX input and
output signals arranged by functional groups. Note
the # symbol at the end of a signal name indicates
the active, or asserted, state occurs when the signal
is at a low voltage. When no # is present after the
signal name, the signal is asserted when at the high
voltage level.

Example signal: M/10# - High voltage indicates
Memory selected

- Low voltage indicates
1/0 selected

5-346

intef 386™ DX MICROPROCESSOR

2X CLOCK{

32-err{oo-031
DATA

BUS[CONTROL

BUS{
ARBITRATION

INTERRUPTS [

CLK2

A_ -"
(DATA BUS
' v

ADS#

NA# 386™ DX
BS16# Microprocessor

READY#

HOLD

HLDA

INTR

NMI

RESET

ADDRESS Bus-'.>
BE3# v
BE2#

BEi#

BEO#

A2-A31

}
32-BIT

~~LES ADDRESS

W/R#

D/C#

M/IO#
LOCK#

} BUS CYCLE DEFINmON

PEREQ

BUSY#

ERROR#
} COPROCESSOR SIGNALLING

Vee

GND } POWER CONNECTIONS

231630-1

Figure 5-1. Functional Signal Groups

PROCESSOR CLOCK
PERIOD

PROCESSOR CLOCK
PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
11 12 11 12

INTERNAL 386 TM DX
MICROPROCESSOR CLOCK [

(HALF THE FREQUENCY
OF CLK2)

50 ns MIN} 20 MHz
(20 MHz MAX) 386™ DX CPU

231630-2

Figure 5-2. CLK2 Signal and Internal Processor Clock

The signal descriptions sometimes refer to AC tim­
ing parameters, such as "t25 Reset Setup Time" and
"t2a Reset Hold Time." The values of these parame­
ters can be found in Tables 7-4 and 7-5.

5.2.2 Clock (CLK2)

CLK2 provides the fundamental timing for the 386
DX. It is divided by two internally to generate the
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two phases,
"phase one" and "phase two." Each CLK2 period is
a phase of the internal clock. Figure 5-2 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known
phase by ensuring the RESET signal falling edge
meets its applicable setup and hold times, t25 and
t26·

5.2.3 Data Bus (DO through D31)

These three-state bidirectional signals provide the
general purpose data path between the 386 DX and

other devices. Data bus inputs and outputs indicate
"1" when HIGH. The data bus can transfer data on
32- and 16-bit buses using a data bus sizing feature
controlled by the BS16# input. See section 5.2.6
Bus Contol. Data bus reads require that read data
setup and hold times t21 and t22 be met for correct
operation. In addition, the 386 DX requires that all
data bus pins be at a valid logic state (high or low) at
the end of each read cycle, when READY# is as­
serted. During any write operation (and during halt
cycles and shutdown cycles), the 386 DX always
drives all 32 signals of the data bus even if the cur-
rent bus size is 16-bits. ,

5.2.4 Address Bus (BEO # through
BE3#, A2 through A31)

These three-state outputs provide physical memory
addresses or 1/0 port addresses. The address bus
is capable of addressing 4 gigabytes of physical
memory space (OOOOOOOOH through FFFFFFFFH),
and 64 kilobytes of 1/0 address space (OOOOOOOOH
through OOOOFFFFH) for programmed 1/0. 1/0

5-347

I

intef 386TM DX MICROPROCESSOR

transfers automatically generated for 386 DX-to-co­
processor communication use 110 addresses
800000F8H through 800000FFH, so A31 HIGH in
conjunction with MllO# LOW allows simple genera­
tion of the coprocessor select signal.

The Byte Enable outputs, BEO#-BE3#, directly in­
dicate which bytes of the 32-bit data bus are in­
volved with the current transfer. This is most conve­
nient for external hardware.

BEO# applies to DO-D7
BE1 # applies to D8-D15
BE2# applies to D16-D23
BE3# applies to D24-D31

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to section 5.3.6 Operand Align­
ment.

When a memory write cycle or 110 write cycle is in
progress, and the operand being transferred occu­
pies only the upper 16 bits of the data bus (D16-
D31), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(D0-015). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En­
ables asserted during the write cycle. Table 5-1 lists
the write data present on DO-D31, as a function of
the asserted Byte Enable outputs BEO#-BE3#.

5.2.5 Bus Cycle Definition Signals
{W/R#, D/C#, M/10#, LOCK#)

These three-state outputs define the type of bus cy­
cle being performed. W IR# distinguishes between
write and read cycles. DIC# distinguishes between
data and control cycles. MllO# distinguishes be­
tween memory and 110 cycles. LOCK# distin­
guishes between locked and unlocked bus cycles.

The primary bus cycle definition signals are WIR#,
DIC# and MllO#, since these are the signals driv­
en valid as the ADS# (Address Status output) is
driven asserted. The LOCK# is driven valid at the
same time as the first locked bus cycle begins,
which due to address pipelining, could be later than
ADS# is driven asserted. See 5.4.3.4 Pipelined Ad·
dress. The LOCK# is negated when the READY#
input termi.nates the last bus cycle which was
locked.

Exact bus cycle definitions, as a function of W IR#,
DIC#, and MllO #, are given in Table 5-2. Note one
combination of WIR#, DIC# and MllO# is never
given when ADS# is asserted (however, that combi­
nation, which is listed as "does not occur," may oc­
cur during idle bus states when ADS# is not assert­
ed). If MllO#, DIC#, and WIR# are qualified by
ADS# asserted, then a decoding scheme may be
simplified by using this definition of the "does not
occur" combination.

Table 5·1. Write Data Duplication as a Function of BEO#-BE3#

386™ DX Byte Enables 386™ DX Write Data Au'tomatic

BE3# BE2# BE1# BEO# D24-D31 D16-D23 DB-D.15 DO-D7 Duplication?

High High High Low Undef undef undef A No
High High Low High undef undef B undef No
High Low High High undef c undef c Yes
Low High High High D undef D undef Yes

High High Low Low undef undef B A No
High l,.ow Low High undef c B undef No
Low Low High High D c D c Yes

High Low Low Low undef c B A No
Low Low Low High D c B undef No

Low Low Low Low D c B A No

Key:
D = logical write data d24-d31 '
C = logical write data d16-d23
B. = logical write data d8-d15
A' = ·logical write data d0.-d7

5-348

intef 386TM DX MICROPROCESSOR

Table 5-2 Bus Cycle Definition

M/10# D/C# W/R# Bus Cycle Type Locked? -
Low Low Low INTERRUPT ACKNOWLEDGE Yes

Low Low High does not occur

Low High Low 1/0 DATA READ No

Low High High 110 DATA WRITE No

High Low Low MEMORY CODE READ No

High Low High HALT: SHUTDOWN: No
Address= 2 Address= O

(BEO# High (BEO# Low
BE1 # High BE1# High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2 A31 Low)

High High Low MEMORY DATA READ Some Cycles

High High High MEMORY DATA WRITE Some Cycles

5.2.6 Bus Control Signals (ADS#,
READY#, NA#, BS16#)

5.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
h~rdware to control address pipelining, data bus
width and bus cycle termination.

5.2.6.2 ADDRESS STATUS (ADS#)

This three-state output indicates that a valid bus cy­
cle definition, and address (W/R#, DIC#, M/10#,
BEO#-BE3#, and A2-A31) is being driven at the
386 DX pins. It is asserted during T1 and T2P bus
states (see 5.4.3.2 Non-pipelined Address and
5.4.3.4 Pipelined Address for additional information
on bus states).

5.2.6.3 TRANSFER ACKNOWLEDGE (READY#)

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BEO # -
BE3# and 8516# are accepted or provided. When
~EADY# is sampled asserted during a read cycle or
interrupt acknowledge cycle, the 386 DX latches the
input data and terminates the cycle. When READY#
is sampled asserted during a write cycle, the proces­
sor terminates the bus cycle.

READY# is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY# must eventually be asserted to
~cknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY must always meet setup and

I

hold times t19 and t20 for correct operation. See all
sections of 5.4 Bus Functional Description.

5.2.6.4 NEXT ADDRESS REQUEST (NA#)

!hi~ is used to request address pipelining. This input
1nd1cates the system is prepared to accept new val­
ues of BEO#-BE3#, A2-A31, W/R#, DIC# and
M/10# from the 386 DX even if the end of the cur-
rent cycle is not being acknowledged on READY#· I
If this input is asserted when sampled, the next ad-
dress is driven onto the bus, provided the next bus
request is already pending internally. See 5.4.2 Ad-
dress Pipelining and 5.4.3 Read and Write
<?ycles. NA# must always meet setup and hold
times, t15 and t15, for correct operation.

5.2.6.5 BUS SIZE 16 (BS16#)

The BS16# feature allows the 386 DX to directly
connect to 32-bit and 16-bit data buses. Asserting
this input constrains the current bus cycle to use
only the lower-order half (DO-D15) of the data bus
corresponding to BEO# and BE1 #. Asserting
BS16# has no additional effect if only BEO# and/or
BE1 # are asserted in the current cycle. However,
?uring bus cycles asserting BE2# or BE3#, assert­
ing BS16# will automatically cause the 386 DX to
make adjustments for correct transfer of the upper
bytes(s) using only physical data signals DO-D15.

If the operand spans both halves of the data bus
and BS16# is asserted, the 386 DX will automatical­
ly perform another 16-bit bus cycle. BS16# must
always meet setup and hold times t17 and t18 for
correct operation.

5-349

intef 386™ DX MICROPROCESSOR

386 DX 1/0 cycles are automatically generated for
coprocessor communication. Since the 386 DX must
transfer 32-bit quantities between itself and the 387
DX, BS16# must not be asserted during 387 DX
communication cycles.

5.2. 7 Bus Arbitration Signals
(HOLD, HLDA)

5.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control . of its local buses
when requested by another bus master device. See
5.5.1 Entering and Exiting Hold Acknowledge for
additional information.

5.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the 386
DX requires bus mastership.

HOLD must remain asserted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has priority and places
the bus into an idle state, rather than the hold ac­
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must always meet setup and hold
times t23 and t24 for correct operation.

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this output indicates the 386 DX. has
relinquished control of its local bus in response to
HOLD asserted, and is in the bus Hold Acknowledge
state.

The Hold Acknowledge state offers near-complete
signal isolation. In the Hold Acknowledge state,
HLDA is the only signal being driven by the 386 DX.
The other output signals or bidirectional signals
(DO-D31, BEO#-BE3#, A2~A31, W/R#, D/C#,
M/10#, LOCK# and ADS#) are in a high-imped­
ance state so the requesting bus master may control
them. Pullup resistors may be desired on several sig­
nals to avoid spurious activity when no bus master is
driving them. See 7.2.3 Resisfor Recommenda­
tions. Also, one rising edge occuring on the NMI
input during Hold Acknowledge is remembered, for
processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers ·or master peripherals,

the near-complete isolation has particular attractive­
ness during system test when test equipment drives
the system, and in hardware•fault-tolerant applica­
tions.

5.2.8· Coprocessor Interface Signals
(PEREQ, BUSY#, ERROR#)

5.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the 386 DX and its 387 DX
processor extension.

5.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc­
essor request for a data operand to be transferred
to/from memory by the 386 DX. In response, the
386 DX transfers information between the coproces­
sor and memory. Because the 386 DX has internally
stored the coprocessor opcode being executed, it
performs the requested data transfer with the cor­
rect direction and memory address.

PEREQ is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal.

5.2.8.3 COPROCESSOR BUSY (BUSY#)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the 386 DX encounters any
coprocessor instruction which operates on the nu­
meric stack (e.g. load, pop, or arithmetic operation),
or the WAIT instruction, this input is first automatical­
ly sampled untll it is seen to be negated. This sam­
pling of the BUSY# input prevents overrunning the
execution of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY# is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY# is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal.

BUSY# serves an additional· function. If BUSY# is
sampled LOW at the falling edge of RESET, the 386
DX performs an internal self-test (see 5.5.3 Bus Ac­
tivity During . and Following Reset). If BUSY# is
sampled HIGH, no self-test is performed.

5-350

intJ 386™ DX MICROPROCESSOR

5.2.8.4 COPROCESSOR ERROR (ERROR#)

This input signal indicates that the previous coproc­
essor instruction generated a coprocessor error of a
type not masked by the coprocessor's control regis­
ter. This input is automatically sampled by the 386
DX when a coprocessor instruction is encountered,
and if asserted, the 386 DX generates exception 16
to access the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without
the 386 DX generating exception 16 even if ER­
ROR# is asserted. These instructions are FNINIT,
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENV,
FSAVE, FESTENV and FESAVE.

ERROR# is level-sensitive and is allowed to be
asynchronous to the CLK2 signal.

5.2.9 Interrupt Signals (INTR, NMI,
RESET)

5.2.9.1 INTRODUCTION

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream.

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR)

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 386 DX
Flag Register IF bit. When the 386 DX responds to
the INTR input, it performs two interrupt acknowl­
edge bus cycles, and at the end of the second,
latches an 8-bit interrupt vector on DO-D7 to identify
the source of the interrupt.

INTR is level-sensitive. and is allowed to be asyn­
chronous to the CLK2 signal. To assure recognition
of an INTR request, INTR should remain asserted
until the first interrupt acknowledge bus cycle be­
gins.

5.2.9.3 NON·MASKABLE INTERRUPT REQUEST
(NMI)

This input indicates a request for interrupt service,
which cannot be masked by software. The non-

maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog­
nition of NMI, it must be negated for at least eight
CLK2 periods, and then be asserted for at least
eight CLK2 periods.

Once NMI processing has begun, no additional
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET
instruction.

5.2.9.4 RESET (RESET)

This input signal suspends any operation in progress
and places the 386 DX in a known reset state. The
386 DX is reset by asserting RESET for 15 or more
CLK2 periods (80 or more CLK2 periods before re­
questing self test). When RESET is asserted, all oth­
er input pins are ignored, and all other bus pins are
driven to an idle bus state as shown in Table 5-3. If
RESET and HOLD are both asserted at a point in
time, RESET takes priority even if the 386 DX was in
a Hold Acknowledge state prior to RESET asserted.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. If desired, the phase of the inter­
nal processor clock, and the entire 386 DX state can
be completely synchronized to external circuitry by
ensuring the RESET signal falling edge meets its ap­
plicable setup and hold times, t25 and t25.

Table 5-3. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS# High
DO-D31 High Impedance
BEO#-BE3# Low
A2-A31 High
W/R# Low
DIC# High
M/10# Low
LOCK# High
HLDA Low

5-351

I

inter 386™ DX MICROPROCESSOR

5.2.10 Signal Summary

Table 5-4 summarizes the characteristics of all 386 DX signals.

Table 5-4. 386™ DX Signal Summary

Signal Name Signal Function

CLK2 Clock

DO-D31 Data Bus

BEO#-BE3# Byte Enables

A2-A31 Address Bus

W/R# Write-Read Indication

DIC# Data-Control Indication

M/10# Memory-110 Indication

LOCK# Bus Lock Indication

ADS# Address Status

NA# Next Address Request

BS16# Bus Size 16

READY# Transfer Acknowledge

HOLD Bus Hold Request

HLDA Bus Hold Acknowledge

PEREQ Coprocessor Request

BUSY# Coprocessor B~sy

ERROR# Coprocessor Error

INTR Maskable Interrupt Request

NMI Non-Maskable lntrpt Request

RESET Reset

5.3 BUS TRANSFER MECHANISM

5.3.1 Introduction

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re­
strictions on physical address alignment. Any byte
boundary may be used, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 5.3.4 Dynamic
Data Bus Sizing and 5.3.6 Operand Alignment.

Input
Output

Active Input/ Synch or
High Impedance

State Output Asynch
toCLK2

During HLDA?

- I - -
High 1/0 s Yes

Low 0 - Yes

High 0 - Yes

High 0 - Yes

High 0 - Yes

High 0 - Yes

Low 0 - Yes

Low 0 - Yes

Low I s -
Low I s -
Low I s -
High I s -
High 0 - No

High I A -
Low I A -
Low I A -
High I A -

High I A -

High I s -

The 386 DX address signals are designed to simplify
external system hardware. Higher-order address bits
are provided by A2-A31. Lower-order address in the
form of BEO#-BE3# directly provides linear selects
for the four bytes of the 32-bit data bus. Physical
operand size information is thereby implicitly provid­
ed each bus cycle in the most usable form.

Byte Enable outputs SEO #-BE3 # are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5-5.
During a bus cycle, any possible pattern of contigu­
ous, asserted Byte Enable outputs can occur, but
never patterns having a negated Byte Enable sepa­
rating two or three asserted Enables.

5-352

intef 386™ DX MICROPROCESSOR

Address bits AO and A 1 of the physical operand's
base address can be created when necessary (for
instance, for MULTIBUS® I or MULTIBUS® II inter­
face), as a function of the lowest-order asserted
Byte Enable. This is shown by Table 5-6. Logic to
generate AO and A 1 is given by Figure 5-3.

Table 5-5. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Slgnal Assoclate.d Data Bus Signals

BEO# 00-07 (byte 0-least significant)

BE1# 08-015 (byte 1)

BE2# 016-023 (byte 2)

BE3# 024-031 (byte 3-most significant)

BEO#
L H

L x fl: L L
L

L x H L
BE2# H

L L x L
H

8 x x x L

L H L

BE1#

K - Map for A 1 Signal

BEO#

A31

A31

A31

A31

A31

A31

Table 5-6. Generating AO-A31 from
BEO#-BE3# and A2-A31

386™ DX Address Signals

......... A2 BE3# BE2# BE1#

Physical Base
Address

......... A2 A1 AO

......... A2 0 0 x x x

......... A2 0 1 x x Low

......... A2 1 0 x Low High

......... A2 1 1 Low High High

231630-3

BEO#

Low

High

High

High

L H ~BE~O~#~~--ir-""
L L x L # L ~~~--..

L x L H
BE2# -r--r-:-""17"~~ H BE3#

L L :ii. fl
H x x H ::;.: L

L H L

BE1#

K - Map for AO Signal
231630-4

Figure 5-3. Logic to Generate AO, A1 from BEO#-BE3#

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 5.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods); data
can be transferred between external devices and
the 386 DX at a maximum rate of one 4-byte Dword
every two processor clock periods, for a maximum
bus bandwidth of 66 megabytes/second (386 DX
operating at 33 MHz processor clock rate).

5.3.2 Memory and 1/0 Spaces

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or 1/0-mapped, or both.
As shown in Figure 5-4, physical memory addresses
range from OOOOOOOOH to FFFFFFFFH (4 gigabytes)
and 1/0 addresses from OOOOOOOOH to OOOOFFFFH
(64 kilobytes) for programmed 1/0. Note the 1/0 ad­
dresses used by the automatic 1/0 cycles for co­
processor communication are 800000F8H to
800000FFH, beyond the address range of pro­
grammed 1/0, to allow easy generation of a coproc­
essor chip select signal using the A31 and M/10#
signals.

5-353

I

intJ 386™ DX MICROPROCESSOR

FFFFFFFFH ----

~ ~o(~

~ PHYSICAL
MEMORY ~ggggg~~~ I +3- COPROCESSOR

'~" ~ '"'™""'
/Nor/).

4GBYTE

w .//A
OOOOFFFFH E1} ACCESSIBLE

64 kBYTE PROGRAMMED
OOOOOOOOH .__ __ _, OOOOOOOOH 1/0 SPACE

231630-5
Physical Memory Space 110 Space

NOTE:
Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/10# LOW can be used to
easily generate a coprocessor select signal.

Figure 5-4. Physical Memory and 1/0 Spaces

5.3.3 Memory and 1/0 Organization

The 386 DX datapath to memory and 1/0 spaces
can be 32 bits wide or 16 bits wide. When 32-bits
wide, memory and 1/0 spaces are organized natural­
ly as arrays of physical 32-bit Dwords. Each memory
or 1/0 Dword has four individually addressable bytes
at consecutive byte addresses. The lowest-ad­
dressed byte is associated with data signals DO-D?;
the highest-addressed byte with D24-D31.

The 386 DX includes a bus control input, BS16#,
that also allows direct connection to 16-bit memory
or 1/0 spaces organized as a sequence of 16-bit
words. Cycles to 32-bit and 16-bit memory or 1/0
devices may occur in any sequence, since the
BS16# control is sampled during each bus cycle.
See 5.3.4 Dynamic Data Bus Sizing. The Byte En­
able signals, BEO#-BE3#, allow byte granularity
when addressing any memory or 1/0 structure,
whether 32 or 16 bits wide.

5.3.4 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
for memory or 1/0. A single processor may connect
to both size buses. Transfers to or from 32- or 16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. During each bus
cycle an address decoding circuit or the slave de-

vice itself may assert BS16# for 16-bit ports, or ne­
gate BS16# for 32-bit ports.

With BS 16 # asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans­
fers as required. All operand transfers physically oc­
cur on D0-015 when BS16# is asserted. There­
fore, 16-bit memories or 1/0 devices only connect
on data signals DO-D15. No extra transceivers are
required.

Asserting BS16# only affects the processor when
BE2# and/or BE3# are asserted during the current
cycle. If only DO-D15 are involved with the transfer,
asserting BS16# has no affect since the transfer
can proceed normally over a 16-bit bus whether
BS16# is asserted or not. In other words, asserting
BS 16 # has no effect when only the lower half of the
bus is involved with the current cycle.

There are two types of situations where the proces­
sor is affected by asserting BS16#, depending on
which Byte Enables are asserted during the current
bus cycle:

Upper Half Only:
Only BE2 # and/ or BE3 # asserted.

Upper and Lower Half:
At least BE1 #, BE2 # asserted (and perhaps
also BEO# and/or BE3#).

5-354

intJ 386™ DX MICROPROCESSOR

Effect of asserting BS16# during "upper half only"
read cycles:

Asserting BS16# during "upper half only" reads
causes the 386 DX to read data on the lower 16
bits of the data bus and ignore data on the upper
16 bits of the data bus. Data that would have been
read from D16-D31 (as indicated by BE2# and
BE3#) will instead be read from DO-D15 respec­
tively.

Effect of asserting BS16# during "upper half only"
write cycles:

Asserting BS16# during "upper half only" writes
does not aftect the 386 DX. When only BE2 #
and/or BE3# are asserted during a write cycle
the 386 DX always duplicates data signals
D16-D31 onto DO-D15 (see Table 5-1). There­
fore, no further 386 DX action is required to per­
form these writes on 32-bit or 16-bit buses.

Effect of asserting BS16# during "upper and lower
half" write cycles:

Asserting BS16# during "upper and lower half"
writes causes the 386 DX to perform two 16-bit
write cycles for complete physical operand trans­
fer. All bytes are available the first write cycle al­
lowing external hardware to receive Bytes 0 and 1
(as indicated by BEO# and BE1 #)using DO-D15.
On the second cycle the 386 DX duplicates Bytes
2 and 3 on DO-D15 and Bytes 2 and 3 (as indicat­
ed by BE2# and BE3#) are written using DO­
D15. BEO# and BE1 #are always negated during
the second 16-bit cycle. BS16# must be asserted
during the second 16-bit cycle. See Figure 5-14,
cycles 1 and 1a.

5.3.5 Interfacing with 32· and 16-Bit
Memories

Effect of asserting BS16# during "upper and lower In 32-bit-wide physical memories such as Figure 5-5,
half" read cycles: each physical Dword begins at a byte address that is

Asserting BS16# during "upper and lower half" a multiple of 4. A2-A31 are directly used as a Dword
reads causes the processor to perform two 16-bit select and BEO#-BE3# as byte selects. BS16# is
read cycles for complete physical operand trans- negated for all bus cycles involving the 32-bit array.
fer. Bytes 0 and 1 (as indicated by BEO# and
BE1 #) are read on the first cycle using DO-D15. When 16-bit-wide physical arrays are included in the
Bytes 2 and 3 (as indicated by BE2 # and BE3 #) system, as in Figure 5-6, each 16-bit physical word
are read during the second cycle, again using begins at a address that is a multiple of 2. Note the
DO-D15. D16-D31 are ignored during both 16-bit address is decoded, to assert BS16# only during
cycles. BEO# and BE1 #are always negated dur- bus cycles involving the 16-bit array. (If desiring to I
ing the second 16-bit cycle (See Figure 5-14, cy-
cles 2 and 2a).

~-----

32 DATA BUS {DO·D31)

386™ DX ~--,- 32-BIT
CPU ADDRESS BUS (BEO#·BE3#,A2-A31) MEMORY

f Bs1su

"HIGH"

Figure 5-5. 386™ DX with 32-Bit Memory

ADDRESS
DECODER

32 DATA BUS (DO·D31)

16 DATA BUS (DO·D15)

Figure 5-6. 386™ DX with 32-Bit and 16-Bit Memory

5-355

231630-6

231630-7

intef 386™ DX MICROPROCESSOR

use pipelined address with 16-bit memories then
BEO#-BE3# and W/R# are also decoded to de­
termine when BS16# should be asserted. See
5.4.3.6 Pipelined Address with Dynamic Data Bus
Sizing.)

A2-A31 are directly usable .. for addressing 32-bit
and 16-bit devices. To address 16-bit devices, A1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig­
nals for 16-bit access, BEO#-BE3# should be de­
coded as in Table 5•7. Note certain combinations of
BEO#-BE3# are never generated bY the 386 DX,
leading to "don't care" conditions .in the decoder.
Any BEO#-BE3# decoder, such as Figure 5-7, may
use the non-occurring BEO#-BE3# combinations
to its best advantage.

5.3.6 Operand Alignment

With the flexibility of memory addressing on tt:ie 386
DX, it is possible to transfer a logical operand that
spans . more than one physical Dword or word of
memory or 1/0. Examples are 32-bit Dwordoperands

beginning at addresses not evenly divisible by 4, or a
16-bit word operand split between two physical
Dwords of.the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz­
ing. When multiple bus cycles are required to trans­
fer a multi-byte logical operand, the highest-order
bytes are transferred first .(but if BS16# asserted
requires two 16-bit cycles be performed, that part of
the transfer is low-order first).

5.4 BUS FUNCTIONAL DESCRIPTION

5.4.1 Introduction

The 386 DX has separate, parallel buses for data
and address. The data bus is 32~bits in width, and
bidirectional. The address bus provides a 32-bit val­
ue using 30 signals for the 30 upper-order address
bits and 4 Byte Enable signals to directly indi,cate the
active bytes. These buses are interpretec:t and con­
trolled via several associated definition or control
signals.

Table 5-7. Generating A1, BHE# and BLE# for Addressing 16-Blt Devices

386™ DX Signals 16-Bit Bus Signals Comments
. BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO)

H" H* H" H* x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H" L* x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x x x x-not contiguous bytes
L* H* L* H* x x x x-not contiguous bytes
L* H* L* L* x x x x-not contiguous bytes
L L H H H L L
L* L* H* L* x x x x-not continguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when 00-07 of 16-bit bus is active.
BHE# asserted when 08-015of16-bit bus is active.
A 1 low for all even words; A 1 high for all odd words.

Key:
x =don't care
H = high voltage level
L = low voltage level
• = a non-occurring pattern of Byte Enables; either none are asserted,

or the pattern has Byte Enables asserted for non-contiguous bytes

5-356

intJ 386™ DX MICROPROCESSOR

BEO#

L H
L x fl L L

L
H L x L

BE2# H
L L l(L

H
x x fl x L

L H L

BE1#
231630-8

K-map for A 1 signal (same as Figure 5-3)

BE2#

BEO#

L H

L x L L L
L BE1#

LlfHL ~
L '.f.j@ L H BE3# ~

H i-;;;.~~+.;;-1--
x x L x L

L H L

BE1#
231630-9

BE2#

K-map for 16-blt SHE# signal

BEO#

L H

LLxlifL

L x L '.ii:
L L :f '.ii H BE3#

H x x :H: ::;c- L ~""----r-,

L H L

BE1#

BLE (OR AO

K-map for 16-bit BLE # signal (same as AO signal in Figure 5-3)

Figure 5-7. Logic to Generate A 1, BHE# and BLE# for 16-Bit Buses

Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

2 4

231630-10

Physical Byte Address xx 00 01 10 11 00 01 10 11
in Memory (low-order bits)

Transfer Cycles over
32-Bit Data Bus

Transfer Cycles over
16-Bit Data Bus

b w

b w

Key: b = byte transfer
w = word transfer

w

I = low-order portion
m = mid-order portion
x = don't care

w

w

hb,* d
lb

hb,

lb

3 = 3-byte transfer
d = Dword transfer
h = high-order portion

•= BS16 # asserted causes second bus cycle
*For this case, 8086, 8088, 80186, 80188, 80286 transfer lb first, then hb.

5-357

hw, h3,
lw lb

hw,

lw

I

intef 386™ DX MICROPROCESSOR

The definition of each bus cycle is given by three
definition signals: M/10#, W/R# and DIC#. At the
same time, a valid address is present on the byte .
enable signals BEO#-BE3# and other address sig­
nals A2-A31. A status signal, ADS#, indicates
when the 386 DX issues a new bus cycle definition
and address.

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the
bus".

When active, the bus performs one of the bus cycles
below:

1) read from memory space

2) locked read from memory space

3) write to memory space

4) locked write to memory space

5) read from 1/0 space (or coprocessor)

6) write to 1/0 space (or coprocessor)

7) interrupt acknowledge

8) indicate halt, or indicate shutdown

CYCLE 1
NON-PIPELINED

(READ)

Table 5-2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See section 5.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support­
ing 32- and 16-bit bus size. Data bus size is indicated
to the 386 DX using its Bus Size 16 (BS16#) input.
All bus functions can be performed with either data
bus size.

When the 386 DX bus is not performing one of the
activities listed above, it is either Idle or in the Hold
Acknowledge state, which may be detected· by ex­
ternal circuitry. The idle state can be identified by the
386 DX giving no further assertions on its address
strobe output (ADS#) since the beginning of its
most recent bus cycle, and the most recent bus cy­
cle has been terminated. The hold acknowledge
state is identified by the 386 DX asserting its hold
acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

CYCLE 2
NON-PIPELINED

{READ)

CYCLE 3
NON-PIPELINED

{READ)

T1 T2 T1 T2 T1 T2

CLK2[
{INPUT)

ADS#['
{OUTPUT)

NA#[
{INPUT)

·READY# [
(INPUT)

LOCK#[
(OUTPUT)

DO-D31 [
(INPUT DURING READ)

</11 1•2 </11 1•2 </111</12 </11 1•2 </11 1•2 </11 1•2 </11

Fastest non-pipelined bus cycles consist of T1 and T2

Figure 5-8. Fastest Read Cycles with Non-Pipelined Address Timing

5-358

231630-11

intJ 386™ DX MICROPROCESSOR

The fastest 386 DX bus cycle requires only two bus
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown
by Figure 5-8. The bus states in each cycle are
named T1 and T2. Any memory or 1/0 address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-band­
width, two-clock bus cycle realizes the full potential
of fast main memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 386 DX
READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY# is not immedi­
ately asserted, however, T2 states are repeated in­
definitely until the READY# input is sampled assert­
ed.

5.4.2 Address Pipelining

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA#) input.

CYCLE 1
PIPELINED

{READ)

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining is selected, the address
(BEO#-BE3#, A2-A31) and definition (W/R#,
DIC# and M/10#) of the next cycle are available
before the end of the current cycle. To signal their
availability, the 386 DX address status output
(ADS#) is also asserted. Figure 5-9 illustrates the
fastest read cycles with pipelined address timing.

Note from Figure 5-9 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe­
lined cycle.

By increasing the address-to-data access time, pipe­
lined address timing reduces wait state require­
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(READ)

TIP UP TIP UP TIP UP

CLK2[
{INPUT)

BEO#-BE3#,A2-A31, [
M/10#, D/C#, W/R#

(OUTPUTS)

ADS#[
(OUTPUT)

NA#[
(INPUT)

READY# [
(INPUT)

LOCK# [
(OUTPUT)

DO-D31 [
(INPUT DURING READ)

., l•z ., l•z ., l•z ., l•z ., 1•2 ., l•z

Fastest pipelined bus cycles consist of T1 P and T2P

Figure 5-9. Fastest Read Cycles with Pipelined Address Timing

5-359

231630-12

I

intef 386™ DX MICROPROCESSOR

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, pipelined availability of
the next address allows decoding circuitry to gener­
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im­
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipelined address
timing potentially allows even more overlap of activi­
ty. This is true when the interleaved memory control­
ler is designed . to allow the next memory operation

TWO-BANK INTERLEAVED MEMORY

a) Address signal A2 selects bank

b) 32-bit datapath to each bank

32 DATA BUS

to begin in one memory bank while the current bus
cycle is still activating another memory bank. Figure
5-10 shows the general structure of the 386 DX with
2-bank and 4-bank interleaved memory. Note each
memory bank of the interleaved memory has full
data bus width (32-bit data width typically, unless 16-
bit bus size is selected).

Further details of pipelined address timing are given
in 5.4.3.4 Pipelined Address, 5.4.3.5 Initiating and
Maintaining Pipelined Address, 5.4.3.6 Pipelined
Address with Dynamic Bus Sizing, and 5.4.3.7
Maximum Pipelined Address Usage with 16-Bit
Bus Size.

355TM DX t-+------~------....
CPU ADDRESS BUS

FOUR-BANK INTERLEAVED MEMORY

a) Address signals A3 and. A2 select bank

b) 32-bit datapath to each bank

386™ DX
CPU

32 DATA BUS

ADDRESS BUS

INTERLEAVE
CONTROLLER

A2

32 32

231630-13

A3 A2

32 32

231630-14

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure

5-360

intef 386™ DX MICROPROCESSOR

5.4.3 Read and Write Cycles

5.4.3.1 INTRODUCTION

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces­
sor. During write cycles data is transferred in the oth­
er direction, from the processor to an external de­
vice.

Two choices of address timing are dynamically se­
lectable: non-pipelined, or pipelined. After a bus idle
state, the processor always uses non-pipelined ~d­
dress timing. However, the NA# (Next Address) in­
put may be asserted to select pipelined address
timing for the next bus cycle. When pipelining is se­
lected and the 386 DX has a bus request pending
internally, the address and definition of the next cy­
cle is made available even before the current bus
cycle is acknowledged by READY#. Generally, the
NA# input is sampled each bus cycle to select the
desired address timing for the next bus cycle.

Two choices of physical data bus width are dynami­
cally selectable: 32 bits, or 16 bits. Generally, the
BS16# (Bus Size 16) input is sampled near the end
of the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16#
indicates a 32-bit size, and assertion indicates a 16-
bit bus size.

If 16-bit bus size is indicated, the 386 DX automati­
cally responds as required to complete the transfer
on a 16-bit data bus. Depending on the size and
alignment of the operand, another _16-bit bus cy?le
may be required. Table 5-7 provides all details.
When necessary, the 386 DX performs an additional
16-bit bus cycle, using DO-D15 in place of D16-
D31.

Terminating a read cycle or write cycle, like any bus
cycle, requires acknowledging the cycle by asserting
the READY# input. Until acknowledged, the proces­
sor inserts wait states into the bus cycle, to allow
adjustment for the speed of any external device. Ex­
ternal hardware, which has decoded the address
and bus cycle type asserts the READY# input at the
appropriate time. ·

IDLE

I CYCLE 1 I
NON-PIPELINED

(WRITE)

CYCLE 2 I
NON-PIPELINED

(READ)

CYCLE 3 I
NON-PIPELINED

(WRITE)

IDLE I

Tl

CYCLE 4 I
NON-PIPELINED

(READ)

IDLE I

Tl Ti T1 T2 T1 T2 T1 T2 T1 T2

CLK2 [

(CLK) [

BEO#-BE3#

A2-A31, [L~t::.l.~~...!:!j!!::..:...~.j0.~~~::.....-l'~~+.::..:..-1CL~~),.._~r-~""1~~, tl./10#, D/C#

W/R# [

ADS# [

NA# [~M*'~~'>¥~6c+~~~~~~~~~fft~~4

BS16# [

DO-D31 [

231630-15
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

Figure 5-11. Various Bus Cycles and Idle States with Non-Pipelined Address {zero wait states)

5-361

I

intef 386™ DX MICROPROCESSOR

At the end of the second bus state within the bus
cycle, READY# is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY#, the bus cycle terminates as shown in Fig­
ure 5-11. If READY# is negated as in Figure 5-12,
the cycle continues another bus state (a wait state)
and READY# is sampled again at the end of that
state. This continues indefinitely until the cycle is ac­
knowledged by READY# asserted.

When the current cycle is acknowledged, the 386
DX terminates it. When a read cycle is acknowl­
edged, the 386 DX latches the information present
at its data pins. When a write cycle is acknowledged,
the 386 DX write data remains valid throughout
phase one of the next bus state, to provide write
data hold time.

5.4.3.2 NON-PIPELINED .ADDRESS

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5-11 shows the fastest possi-

ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to
signal their availability, address status (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 386 DX floats its
data signals to allow driving by the external device
being addressed. The 386 DX requires that all
data bus pins be at a valid logic state (high or
low) at the end of each read cycle, when
READY# is asserted, even if all byte enables are
not asserted. The system MUST be designed to
meet this requirement. If the cycle is a write, data
signals are driven by the 386 DX beginning in phase
two of T1 until phase one of the bus state following
cycle acknowledgment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY# is sam­
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY# is sampled
asserted.

IDLE I CYCLE 1 I
NON-PIPELINED

(READ)

CYCLE 2
NON-PIPELINED

(WRITE)

I IDLE

Ti

CYCLE 3
NON-PIPELINED

(READ)

CLK2 [

(CLK) [

BEO#-BE1 #
A2-A31, [

~/10#,D/C#

Ti Tl T2

W/R# [~.Q.a~~-1--_:f

ADS# [

T1 T2 T2

NA# [~&:.f::.~&:.f::.~C:t.&:.~~O/f

DO-D31[· OUT

T1 T2 T2 Tl

231630-16
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

Figure 5·12. Various Bus Cycles and Idle States with Non-Pipelined Address
(various number of wait states)

5-362

intef 386™ DX MICROPROCESSOR

HOLD ASSERTED

Bus States:

ALWAYS

READY# ASSERTED•
HOLD NEGATED•

REQUEST PENDING

READY# NEGATED•
NA# NEGATED

T1-first clock of a non-pipelined bus cycle (386™ DX drives new address and asserts ADS#)
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle

231630-17

Ti- idle state
Th-hold acknowledge state (386TM DX asserts HLDA}
The fastest bus cycle consists of two states: T1 and T2.
Four basic bus states describe bus operation when not using pipelined address. These states do include 8S16# usage tor 32-bit and 16-bit
bus size. If asserting 8S16# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

Figure 5·13. 386™ DX Bus States (not using pipelined address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces­
sary to negate NA# during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA# is sampled asserted during a T2 other than the
last one, the next state would be T21 (for pipelined
address) or T2P (for pipelined address) instead of
another T2 (for non-pipelined address).

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth­
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state
diagram is as shown in Figure 5-13. When the bus is

idle it is in state Ti. Bus cycles always begin with T1.
T1 always leads to T2. If a bus cycle is not acknowl­
edged during T2 and NA# is negated, T2 is repeat­
ed. When a cycle is acknowledged during T2, the
following state will be T1 of the next bus cycle if a
bus request is pending internally, or Ti if there is no
bus request pending, or Th if the HOLD input is be­
ing asserted.

The bus state diagram in Figure 5-13 also applies to
the use of BS16#. If the 386 DX makes internal ad­
justments for 16-bit bus size, the adjustments do not
affect the external bus states. If an additional 16-bit
bus cycle is required to complete a transfer on a
16-bit bus, it also follows the state transitions shown
in Figure 5-13.

Use of pipelined address allows the 386 DX to enter
three additional bus states not shown in Figure 5-13.
Figure 5-20 in 5.4.3.4 Pipelined Address is the
complete bus state diagram, including pipelined ad­
dress cycles.

5-363

I

intef 386™ DX MICROPROCESSOR

5.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus is 32-bits wide. When the bus cy­
cle is acknowledged, by asserting READY# at the
end of a T2 state, the most recent sampling of
BS16# determines the data bus size for the cycle
being acknowledged. If BS16# was most recently
negated, the physical data bus size is defined as

32 bits. If BS16# was most recently asserted, the
size is defined as 16 bits.

When BS16# is asserted and two 16-bit bus cycles
are required to complete the transfer, BS16# must
be asserted during the second cycle; 16-bit bus size
is not assumed. Like any bus cycle, the second 16-
bit cycle must be acknowledged by asserting
READY#.

When a second 16-bit bus cycle is required to com­
plete the transfer over a 16-bit bus, the addresses

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CLK2 [

(CLK) [

BEO#,BE1 # [

BE2# ,BE3#
A2-A31,

M/10#, D/C#

W/R#

ADS#

[

[

[

NA# [

BS16# [

READY# [
LOCK# [

DO- D15 [

D16-D31 [

-

-
Key: On ~ physical data pin n

dn ~ logical data bit n

IDLE

Ti

CYCLE 1 ~CYCLE 1 A
NON-PIPELINED NON-PIPELINED

(WRITE WRITE)
PART ONE PART TWO

T1 T2 T1 T2

d0-d15

-- OUT

d16-d31

--

CYCLE 2 ~CYCLE 2A
NON-PIPELINED NON-PIPELINED

(READ READ)
PART ONE PART TWO

T1 T2 T1 T2

VALID 2

IDLE

Ti

dO-d 15 d 16-d31

-~0-- ---0---
IGNORED IGNORED

--0-- ---0---
1 I

231630-18

Figure 5·14. Asserting BS16# (zero wait states, non-pipelined address)

5-364

inter

CLK2 [

(CLK) [

IDLE I

Tl

386™ DX MICROPROCESSOR

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE 1 CYCLE 1 A
NON-PIPELINED NON-PIPELINED

(READ ----i---• READ)
PART ONE PART TWO

T1 T T2 T1 T2 T2

BEO #, BE1 # [~.¥.l{.::iJ..:lV"''-------.f

CYCLE 2
NON-PIPELINED

(WRITE)

T1 T2 T2

BEZ#, BE3 #
A2-A31,

M/10#, D/C# [~~~~--+-~-4----,~-+-~-+--J-----~~~

ADS# [

READY# [~~~~~i.:;J.~V

LOCK# [""' "" , . .,,.'--+---+------.---+----' ~------I
d0-d15

DO- 01 5 [• - - - - - - - - - - - - - 0--
D16-D31

[· --------r---

IGNORED

--0--
1

d16-d31 d0-d15 --0 ---OU-T---1

IGNORED d 16-d31 --0 ,_,___OU-T---1

I
Key: On ~ physical data pin n

dn ~ logical data bit n
231630-19

Figure 5-15. Asserting BS16# (one wait state, non-pipelined address)

generated for the two 16-bit bus cycles are closely
related to each other. The addresses are the same
except BEO# and BE1 # are always negated for the
second cycle. This is because data on D0-015 was
already transferred during the first 16-bit cycle.

Figures 5-14 and 5-15 show cases where assertion
of 8516# requires a second 16-bit cycle for com­
plete operand transfer. Figure 5-14 illustrates cycles
without wait states. Figure 5-15 illustrates cycles
with one wait state. In Figure 5-15 cycle 1, the bus

cycle during which 8816# is asserted, note that
NA# must be negated in the T2 state(s) prior to the
last T2 state. This is to allow the recognition of
8816# asserted in the final T2 state. Also note that
during this state 8816# must be stable (defined by
t17 and t18, 8816# setup and hold timings), in order
to prevent potential data corruption during split cycle
reads. The logic state of 8816# during this time is
not important. The relation of NA# and BS 16 # is
given fully in 5.4.3.4 Pipelined Address, but Figure
5-15 illustrates these precautions you need to know
when using 8816# with non-pipelined address.

5-365

I

386TM DX MICROPROCESSOR

5.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting ·the
address and the bus cycle definition of the next, in­
ternally pending bus cycle before the current bus
cycle is acknowledged with READY# asserted.
ADS# is asserted by the 386 DX when the next ad­
dress is issued. The address pipelining option is con­
trolled on a cycle-by-cycle basis with the.NA# input
signal.

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles, therefore, NA# is
sampled at the end of phase one in every T2. An
example is Cycle 2 in Figure 5-16, during which NA#
is sampled at the end of phase one of every T2 (it
was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA# is sampled asserted, the 386 DX is free to
drive the address and bus cycle definition of the next
bus cycle, and assert ADS#, as soon as it has a bus
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the
current bus· cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the 386
DX has the following characteristics:

1) For NA# to be sampled asserted, BS16# must
be negated at that sampling window (see Figure
5-16 Cycles 2 through 4, and Figure 5-17 Cycles 1
through 4). If NA# and BS16# are both sampled
asserted during the last T2 period of a bus cycle,
BS16# asserted has priority. Therefore, if both
are asserted, the current bus size is taken to be
16 bits and the next address is not pipelined.

IDLE CYCLE 1
NON-PIPELINED

CYCLE 2
NON-PIPELINED

CYCLE 3
PIPELINED
(WRITE}

CYCLE 4
PIPELINED

IDLE

CLK2 [

(CLK} [

11

(WRITE}

T1 T2 T1

(READ) (READ}

T2 T2P T1 P T2P T1 P T21 11

BEO # - BE3 # [~~~V-7.7:"'::""."-1\
A2-A31,

M/10#, D/C# ----f Jl"---""'f'J------f')'~~~
w/R# [ww'iR"-t-4 ___ ..,..,,
ADS# [

NA#[~~~~~~~~~~~~~~~~~~

8516# [~:::Wit::J.~~~~~~Y:"J(

READY# [.L:4':¥.l~~i:la~~4-lJil.~~

LOCK# [J:Jl.~aci(\._;=:::..:.,-f\..--I,.::::::.,:__.!(... ___ 'f '-----1'

DO-D31 [

231630-20
Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled during wait states.
Therefore, to begjn address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state
(Cycle 2 above).

Figure 5-16, Transitioning to Pipelined Address During Burst of Bus Cycles

5-366

intef 386™ DX MICROPROCESSOR

IDLE CYCLE 1
NON.;. PIPELINED

(WRITE)

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED
(WRITE)

CYCLE 4
PIPELINED

(READ)

IDLE

Ti T1 T2 T2P T1P T2P T1P T2P T1P T21 T21 Ti

CLK2 [

(CLK) [

BEO #- BE3 #. [
A2-A31,

M/10#. D/C#

W/R# [~,.....,

ADS# [

DO-D31 [

231630-21
Following any idle bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 5·17. Fastest Transition to Pipelined Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA# was sampled asserted (see Fig­
ures 5-16 or 5-17). In that case, state T2P is en­
tered immediately. However, when there is not an
internal bus request already pending, the next ad­
dress will not be available immediately after NA#
is asserted and T21 is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy­
cle isn't yet acknowledged by READY# asserted,
T2P will be entered as soon as the 386 DX does
drive the next address. External hardware should
therefore observe the ADS# output as confirma­
tion the next address is actually being driven on
the bus.

3) Once NA# is sampled asserted, the 386 DX com­
mits itself to the highest priority bus request that
is pending internally. It can no longer perform an­
other 16-bit transfer to the same address should
8S16# be asserted externally, so thereafter

must assume the current bus size is 32 bits.
Therefore if NA# is sampled asserted within a
bus cycle, 8S16# must be negated thereafter in
that bus cycle (see Figures 5-16, 5·17, 5-19).
Consequently, do not assert NA# during bus cy­
cles which must have 8S16# driven asserted.
See 5.4.3.6 Dynamic Bus Sizing with Pipelined
Address.

4) Any address which is validated by a pulse on the
386 DX ADS# output will remain stable on the
address pins for at least two processor clock peri­
ods. The 386 DX cannot produce a new address
more frequently than every two processor clock
periods (see Figures 5-16, 5-17, 5-19).

5) Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle
ahead (see Figure 5-19 Cycle 1).

5-367

I

intef 386™ DX MICROPROCESSOR

The complete bus state transition diagram, including
operation with pipelined address is given by 5-20.
Note it is a superset of the diagram for non-pipelined
address only, and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for
non-pipelined address it is T1 and T2). T1 P is the
first bus state of a pipelined cycle.

5.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1 P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below:

~ \.._T_1 _-T_2~1 _-T_2_P_,'J \ T1 P ~ T2P,1

idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle,
which begins with T1 P. The same is true after a bus
hold state, shown below:

\Th, Th, Th'J\ T1 - T2 - T2P 'J \ T1 P - T2P,1
T T ¥

hold non-pipelined
acknowledge cycle

states

pipelined
cycle

The transition to pipelined address is shown func­
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3
and 4.

Once a bus cycle is in progress and the current ad­
dress has become valid, the NA# input is sampled
at the end of every phase one, beginning with the
next bus state, until the bus cycle is acknowledged.
During Figure 5-17 Cycle 1 therefore, sampling be­
gins in T2. Once NA# is sampled asserted during
the current cycle, the 386 DX is free to drive a new
address and bus cycle definition on the bus as early
as the next bus state. In Figure 5-16 Cycle 1 for
example, the next address is driven during state
T2P. Thus Cycle 1 makes the transition to pipelined
address timing, since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipelined
bus cycle, and it begins with T1 P. Cycle 2 begins as
soon as READY# asserted terminates Cycle 1.

Example transition bus cycles are Figure 5-17 Cycle
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran­
sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5-16 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (you assert
NA# at that time), and T2P (provided the 386 DX
has an internal bus request already pending, which it
almost always has). T2P states are repeated if wait
states are added to the cycle.

Note three states (T1 , T2 and T2P) are only required
in a bus cycle performing a transition from non­
pipelined address into pipelined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA# and detecting that the 386 DX enters T2P dur­
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS#. Figures 5-16 and 5-17 however, each show
pipelining ending after Cycle 4 because Cycle 4
ends in T21. This indicates the 386 DX didn't have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T21, the next
cycle will not be pipelined.

5-368

CLK2 [

(CLK) [

BEO#-BE1#, [
A2-A31,

M/10#, D/C#

W/R# [

ADS# [

BS16 # [

READY# [

LOCK# [

DO-D31 [

T1P

386™ DX MICROPROCESSOR

CYCLE 1
PIPELINED
(WRITE)

T2P T2P T1P

CYCLE 2
PIPELINED

(READ)

T2 T2P

ASSERTING NA# MORE NA# COULD HAVE
THAN ONCE DURING BEEN ASSERTED
ANY CYCLE HAS NO IN T1 P IF DESIRED.
ADDITIONAL EFFECTS ASSERTION NOW IS

I THE LATEST TIME
POSSIBLE TO ALLOW

386 ™ DX CPU TO ENTER T2P
STATE TO MAINTAIN

PIPELINING. IN CYCLE 3

T1P

CYCLE 3
PIPELINED

(WRITE)

CYCLE 4
PIPELINED

(READ)

T21 T2P T1 p

I
ADS# IS ASSERTED AS
SOON AS 3861M DX CPU HAS ANOTHER
BUS CYCLE TO PERFORM,
WHICH IS NOT ALWAYS
IMMEDIATELY AFTER NA#
IS ASSERTED

231630-23

Figure 5·19. Details of Address Pipelining During Cycles with Wait States

5-369

El

intef 386™ DX MICROPROCESSOR

HOLD ASSERTED

Bus States:

READY# ASSERTED•
HOLD NEGATED•
REQUEST PENDING

READY# ASSERTED•
HOLD NEGATED•

NO REQUEST

T1-first clock of a non-pipelined bus cycle (386™ DX drives new address
and asserts ADS#).
T2-subsequent clocks of a bus cycle when NA# has not been sampled
asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA# has been sampled as­
serted in the current bus cycle but there is not yet an internal bus request
pending (386 DX will not drive new address or assert ADS#).
T2P-subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle and there is an internal bus request pend­
ing (386 DX drives new address and asserts ADS#).
T1 P-first clock of a pipelined bus cycle.
Ti-idle state.
Th-hold acknowledge state (386 DX asserts HLDA).
Asserting NA# for pipelined address gives access to three more bus
states: T21, T2P and T1P.
Using pipelined address, the fastest bus cycle consists of T1 P and T2P.

READY# NEGATED

0 .. o
~ocz

smi8 zV>L&to..

~~9E
~~~~ 

Figure 5-20. 386™ DX Complete Bus States (including pipelined address) 

C> 

~ 
~ . ,_ 

~ SI!! 
Ii=> 
~~ ~ .. . .. 
... o ~ .. ~ 
%~ ~ z 

g 
0 x 

231630-24 

Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the absence of any other re­
quest, a code prefetch request is always internally 
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (i.e., HOLD negated) and NA# 
is sampled asserted in each of the bus cycles. 

interface hardware performs appropriate action to 
make the transfer using a 16-bit data bus connected 
on DO-D15. 

5.4.3.6 PIPELINED ADDRESS WITH DYNAMIC 
DATA BUS SIZING 

The BS16# feature allows easy interface to 16-bit 
data buses. When asserted, the 386 DX bus 

There is a degree of interaction, however, between 
the use of Address Pipelining and the use of Bus 
Size 16. The interaction results from the multiple bus 
cycles required when transferring 32-bit operands 
over a 16-bit bus. If the operand requires both 16-bit 
halves of the 32-bit bus, the appropriate 386 DX ac­
tion is a second bus cycle to complete the operand's 
transfer. It is this necessity that conflicts with NA# 
usage. 

When NA# is sampled asserted, the 386 DX 
commits itself to perform the next inter-

5-370 



intef 386TM DX MICROPROCESSOR 

nally pending bus request, and is allowed to drive 
the next internally pending address onto the bus. As­
serting NA# therefore makes it impossible for the 
next bus cycle to again access the current address 
on A2-A31, such as may be required when 8816# 
is asserted by the external hardware. 

To avoid conflict, the 386 DX is designed with follow­
ing two provisions: 

1) To avoid conflict, 8816# must be negated in the 
current bus cycle if NA# has already been 

sampled asserted in the current cycle. If NA# is 
sampled asserted, the current data bus size is as­
sumed to be 32 bits. 

2) To also avoid conflict, if NA# and 8816# are 
both asserted during the same sampling window, 
8816# asserted has priority and the 386 DX acts 
as if NA# was negated at that time. Internal 386 
DX circuitry, shown conceptually in Figure 5-18, 
assures that 8816# is sampled asserted and 
NA# is sampled negated if both inputs are exter­
nally asserted at the same sampling window. 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-BIT BUS 

CLK2[ 

BEO#, BE1# [ 

BE2#, BE3#, [ 
A2, A31, 

M/10#, D/C# 

ADS#[ 

READY# [ 

LOCK# [ 

Do-D1s[ • 

D16-D31[ • 

PREVIOUS 
CYCLE 

T2P T1P 

CYCLE 1~YCLE 1A 
PIPELINED NON-PIPELINED 

{WRITE WRITE) 
PART ONE PART TWO 

U U TI U U 

d0-d15 

OUT OUT 

CYCLE 2 
NON-PIPELINED 

{READ) 

TI T2 T2P 

VALID 2 

d0-d15 

--~ 

-~€r 
Key: On= physical data pin n 231630-25 

dn = logical data bit n 
Cycle 1 is pipelined. Cycle 1 a cannot be pipelined, but its address can be inferred from that of Cycle 1, to externally simulate address pipelining 
during Cycle 1 a. 

Figure 5-21. Using NA# and 8516# 

5-371 



386™ DX MICROPROCESSOR 

Certain types of 16-bit or 8-bit operands require no 
. adjustment for correct. transfer . on a 16-bit bus .. 
Those are read or write operands using only the low­
er half of the data bus, and write . operands using 
only .the upper half of the bus since the 386 DX 
simultaneously duplicat~s the write data on the low­
er half of the data bus. For these patterns of Byte 
Enables and the R/W# signals, BS16# need not be 
assertE;id at the 386. OX allowing NA# to be asserted 
during the bus cycle U desired .. 

5.4.4 Interrupt Acknowledge (INTA) 
Cycles 

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 386 DX per-

CLK2[ 

(CLK)[ 

BE1 #. BE2#, BE3# [ 

BEO#, A3-A31, [ 
M/IO#, D/C#. W/R# 

ADS#[ 

IDLE 

Tl T1 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 1 

T2 

NA#[ -'ljQ.Qa.~~~ 

T2 
I 

Tl 

oo-D7[ • 

D8-D31 [ • --ct>--

forms two interrupt acknowledge cycles. These bus 
cycles are similar to read cycles in that bus definition 
signals define the type of bus activity taking place, 
and each cycle continues until ackno.wledged by 
READY# sampled asserted. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A31-A3 low, A2 high, BE3#-BE1 # high, and 
BEO# low). The address driven during the second 
interrupt acknowledge cycle is 0 (A31-A2 low, 
BE3#-BE1# high, BEO# low). 

IDLE 
(4 BUS STATES) 

I 
Tl T1 Tl Tl 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 2 

T2 T21 

IDLE 

Tl 

-.------:- •.• -. --- --ct>··-
231630-26 

Interrupt Vector (0-255) is read on 00-07 at end of se"conci Interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowtedge·bus cycle is followed by idle bus states,"asserting NA# has no· practical effect. Choose the approach 
which is simplest for your system hardware design. 

Figure 5·22. Interrupt Acknowledge Cycles 

5-372 



intJ 386™ DX MICROPROCESSOR 

I CYCLE 1 I 
NON-PIPELINED 

(WRITE) 

T1 T2 

CYCLE 2 I 
NON-PIPELINED 

(HALT) 

T1 T2 

IDLE 

Tl Tl TI Tl 

CLK2[ 

(CLK)[ 

ADS#[ 

NA#[ 

BS16#[ 

READY#[ 

NOTE: HALT CYCLE MUST BE 
ACKNOWLEDGED BY,READY# 
ASSERTED. WAIT STATES MAY 
BE ADDED TO THE CYCLE IF 
DESIRED. 

•(FLOATING)•••• 
I, I 

231630-27 

Figure 5-23. Halt Indication Cycle 

The LOCK# output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, Ti, are inserted by the 386 DX between 
the two interrupt acknowledge cycles, allowing for 
compatibility with spec TRHRL of the 8259A Inter­
rupt Controller. 

During both interrupt acknowledge cycles, DO-D31 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 386 DX will read an ex­
ternal interrupt vector from DO-D7 of the data bus. 
The vector indicates the specific interrupt number 
(from 0-255) requiring service. 

5.4.5 Halt Indication Cycle 

The 386 DX halts as a result of executing a HALT 
instruction. Signaling its entrance into the halt state, 
a halt indication cycle is performed. The halt indica­
tion cycle is identified by the state of the bus defini­
tion signals shown in 5.2.5 Bus Cycle Definition 
and a byte address of 2. BEO# and BE2# are the 
only signals distinguishing halt indication from shut­
down indication, which drives an address of 0. Dur­
ing the halt cycle undefined data is driven on 
DO-D31. The halt indication cycle must be acknowl­
edged by READY# asserted. 

A halted 386 DX resumes execution when INTR (if 
interrupts are enabled) or NMI or RESET is assert­
ed. 

5-373 

I 



intef 386™ DX MICROPROCESSOR 

5.4.6 Shutdown Indication Cycle 

The 386 DX shuts down as a result of a protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state of the bus 
definition signals shown in 5.2.5 Bus Cycle Defini­
tion and a byte address of 0. SEO# and BE2# 

CLK2[ 

(CLK) [ 

BE1 #, BE2#, BE3#, [ 
M/10#, W/R# 

ADS#[ 

NA#[ 

READY#[ 

LOCK#[ 

CYCLE 1 
PIPELINED 

(READ) 

T1P T2P 

CYCLE 2 
PIPELINED 

(SHUTDOWN) 

T1P T21 

are the only signals distinguishing shutdown indica­
tion from halt indication, which drives an address of 
2. During the shutdown cycle undefined data is driv­
en on DO-D31. The shutdown indication cycle must 
be acknowledged by READY# asserted. 

A shutdown 386 DX resumes execution when NMI 
or RESET is asserted. 

I IDLE 

Ti Ti Ti 

NOTE: SHUTDOWN CYCLE MUST BE 
ACKNOWLEDGED BY READY# 
ASSERTED. WAIT STATES MAY 
BE ADDED TO THE CYCLE if' 
DESIRED. 

Ti 

DO-D31 [ UNDEFINED - •(FLOATING)• - " - -

I I 
231630-28 

Figure 5·24. Shutdown Indication Cycle 

5-374 



intef 386™ DX MICROPROCESSOR 

5.5 OTHER FUNCTIONAL 
DESCRIPTIONS 

5.5.1 Entering and Exiting Hold 
Acknowledge 

The bus hold acknowledge state, Th, is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 386 DX floats all 
output or bidirectional signals, except for HLDA. 
HLDA is asserted as long as the 386 DX remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD, RESET, 
BUSY#, ERROR#, and PEREQ are ignored (also 
up to one rising edge on NMI is remembered for 
processing when HOLD is no longer asserted). 

I IDLE ~ ACK~8~'1.moE~ IDLE 

Tl Th Th Th Tl 

CLK2[ 

DO- D3{ • 

231630-29 
NOTE: 
For maximum design flexibility the 386™ DX has no in­
ternal pullup resistors on its outputs. Your design may 
require an external pullup on ADS# and other 386 DX 
outputs to keep them negated during float periods. 

Figure 5·25. Requesting Hold from Idle Bus 

Th may be entered from a bus idle state as. in Figure 
5-25 or after the acknowledgement of the current 
physical bus cycle if the LOCK# signal is not assert­
ed, as in Figures 5-26 and 5-27. If HOLD is asserted 
during a locked bus cycle, the 386 DX may execute 
one unlocked bus cycle before acknowledging 
HOLD. If asserting 8S16# requires a second 16-bit 

bus cycle to complete a physical operand transfer, it 
is performed before HOLD is acknowledged, al­
though the bus state diagrams in Figures 5-13 and 
5-20 do not indicate that detail. 

Th is exited in response to the HOLD input being 
negated. The following state will be Ti as in Figure 
5-25 if no bus request is pending. The following bus 
state will be T1 if a bus request is internally pending, 
as in Figures 5-26 and 5-27. 

Th is also exited in response to RESET being assert­
ed. 

If a rising edge occurs on the edge-triggered NMI 
input while in Th, the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exit­
ed, unless of course, the 386 DX is reset before Th 
is exited. 

5.5.2 Reset During Hold Acknowledge 

RESET being asserted takes priority over HOLD be­
ing asserted. Therefore, Th is exited in reponse to 
the RESET input being asserted. If RESET is assert­
ed while HOLD remains asserted, the 386 DX driyes 
its pins to defined states during reset, as in Table 
5·3 Pin State During Reset, and performs internal 
reset activity as usual. 

If HOLD .remains asserted when RESET is negated, I 
the 386 DX enters the hold acknowledge state be-
fore performing its first bus cycle, provided HOLD is 
still asserted when the 386 DX would otherwise per-
form its first bus cycle. If HOLD remains asserted 
when RESET is negated, the BUSY# input is still 
sampled as usual to determine whether a self test is 
being requested, and ERROR# is still sampled as 
usual to determine whether a 387 DX coprocessor 
vs. an 80287 (or none) is present. 

5.5.3 Bus Activity During and 
Following Reset 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 386 
DX, and at least 80 CLK2 periods if 386 DX self-test 
is going to be requested at the falling edge. RESET 
asserted pulses less than .15 CLK2 periods may not 
be recognized. RESET pulses less than 80 CLK2 
periods followed by a self-test may cause the self­
test to report a failure when no true failure exists. 

5-375 



386™ DX MICROPROCESSOR 

T1 

CLK2[ 

HOLD[ 

CYCLE 1 
NON-PIPELINED 

{READ) 

T2 T2 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

{WRITE) 

Th Th T1 T2 

HLDA [ --------­
BEO#-BE3!1',A2-A31, [ 

M/1011', D/Ci!', W/Ril' -f '---+-V-AL-ID-1 +--1-f' 

ADS#[ 

NAii' [ ~"\J'V®_.,®'~~~~~iF;1\~~~ 

NOTE: If ASSERTING BS 1 611' 
REQUIRES A SECOND BUS 
CYCLE TO BE PERFORMED, 
THE SECOND CYCLE IS , 
PERFORMED BEFORE 
HOLD ACKNOWLEDGE 

LOCKll'[ 

[ {FLOATING) 
DO-D31 • •••··r···· 

231630-30 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and ~4) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5-26. Requesting Hold from Active Bus (NA# negated) 

The additional RESET pulse width is required to 
clear additional state prior to a valid self-test. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26· the internal processor clock 
phase is defined at that time, as illustrated by Figure 
5-28 and Figure 7-7. 

A 386 DX self-test may be requested at the , time 
RESET is negated by having the BUSY# input at a 
LOW level, as shown in Figure 5-28. The self-test 
requires (220) + approximately 60 CLK2 periods to 
complete. The self-test duration is not affected by 
the test results. Even if the self-test indicates a prob­
lem, the 386 DX attempts to proceed with the reset 
sequence afterwards.,' 

After the RESET falling edge (and after the self-test 
if it was ,requested) the 386 DX performs an internal 
initialization sequence for approximately 350 to 450 
CLK2 periods. 

The 386 DX samples its ERROR# input some time 
after the falling edge of RESET and before execut­
ing the first ESC instruction. During this sampling pe­
riod BUSY# must be HIGH. If ERROR# was sam­
pled active, the 386 DX employs the 32-bit protocol 
of the 387 DX. Even though this protocol was select­
ed, it is still necessary to use a software recognition 
test to determine the presence or identity of the' co­
processor , and to assure compatibility with future 
processors. (See Chapter 11 of the 386™ DX Pro­
grammer's Reference Manual, Order #230985-
002). . 

. 5-376 



intJ 386™ DX MICROPROCESSOR 

TIP 

CLK2[ 

HOLD [ 

ADS# [ 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 T21 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

Th Th T1 T2 

NA# [ .&:Jt.L./t.J:llt.~~~~~~~Oi,Q~Oi,Q~,Q,oj 
BS16#[ 

DO-D31 [ 

231630-31 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require~ 
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5·27. Requesting Hold from Active Bus (NA# asserted) 

5.6 SELF-TEST SIGNATURE 

Upon completion of self-test, (if self-test was re­
quested by holding BUSY# LOW at least eight 
CLK2 periods before and after the falling edge of 
RESET), the EAX register will contain a signature of 
OOOOOOOOh indicating the 386 DX passed its self­
test of microcode and major PLA contents with no 
problems detected. The passing signature in EAX, 
OOOOOOOOh, applies to all 386 DX revision levels. 
Any non-zero signature indicates the 386 DX unit is 
faulty. 

5.7 COMPONENT AND REVISION 
IDENTIFIERS 

To assist 386 DX users, the 386 DX after reset holds 
a component identifier and a revision identifier 

in its DX register. The upper 8 bits of DX hold 03h as 
identification of the 386 DX component. The lower 8 
bits of DX hold an 8-bit unsigned binary number re­
lated to the component revision level. The revision 
identifier begins chronologically with a value zero 
and is subject to change (typically it will be incre­
mented) with component steppings intended to have 
certain improvements or distinctions from previous 
steppings. 

These features are intended to assist 386 DX users 
to a practical extent. However, the revision identifier 
value is not guaranteed to change with every step­
ping revision, or to follow a completely uniform nu­
merical sequence, depending on the type or inten­
tion of revision, or manufacturing materials required 
to be changed. Intel has· sole discretion over these 
characteristics of the component. 

5-377 

I 



intef 

CLK2[ 

RESET [ 

CLK (INTERNAL) [ 

BUSY# [ 

ERROR#[ 

BEO#-BE3#, 
W/R#,M/10#, [ 

HLDA 

A2-A31, [ 
D/C#,LOCK# 

ADS#[ 

BS16#[ 

READY# [ 

386™ DX MICROPROCESSOR 

INTERNAL 
RESET----..--- INITIALIZATION 

;?: 1 S CLK2 DURATION IF 
NOT GOING TO REQUEST 
SELF-TEST. 

CYCLE 1 

NON-PIPELINED 
(READ) 

T1 T2 

DO-D31 # [ xxxxxXX>--- -(FLOATING)-- - -- - -- - -- -- - - - - -- -- -- -

NOTES: 

231630-32 

1. BUSY# should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge 
occurs. 
2. If self-test is requested, the 386™ DX outputs remain in their reset state as shown here and in Table 5-3. 

Figure 5-28. Bus Activity from Reset Until First Code Fetch 

Table 5-10. Component and Revision Identifier History 

386™ DX 
Component Revision 

386™ DX 
Component Revision 

Stepping Stepping 
Name 

Identifier Identifier 
Name 

Identifier Identifier 

BO 03 03 DO 03 05 
81 03 03 01 03 08 

5-378 



inter 386™ DX MICROPROCESSOR 

5.8 COPROCESSOR INTERFACING 

The 386 DX provides an automatic interface for the 
Intel 387 DX numeric floating-point coprocessor. 
The 387 DX coprocessor uses an 110-mapped inter­
face driven automatically by the 386 DX and assist­
ed by three dedicated signals: BUSY#, ERROR#, 
and PEREQ. 

As the 386 DX begins supporting a coprocessor in­
struction, it tests the BUSY# and ERROR# signals 
to determine if the coprocessor can accept its next 
instruction. Thus, the BUSY# and ERROR# inputs 
eliminate the need for any "preamble" bus cycles 
for communication between processor and coproc­
essor. The 387 DX can be given its command op­
code immediately. The dedicated signals provide in­
struction synchronization, and eliminate the need of 
using the 386 DX WAIT opcode (9Bh) for 387 DX 
coprocessor instruction synchronization (the WAIT 
opcode was required when 8086 or 8088 was used 
with the 8087 coprocessor). 

Custom coprocessors can be included in 386 DX­
based systems, via memory-mapped or 1/0-mapped 
interfaces. Such coprocessor interfaces allow a 
completely custom protocol, and are not limited to a 
set of coprocessor protocol "primitives". Instead, 
memory-mapped or 1/0-mapped interfaces may use 
all applicable 386 DX instructions for high-speed co­
processor communication. The BUSY# and 
ERROR# inputs of the 386 DX may also be used for 
the custom coprocessor interface, if such hardware 
assist is desired. These signals can be tested by the 
386 DX WAIT opcode (9Bh). The WAIT instruction 
will wait until the BUSY# input is negated (interrupt­
able by an NMI or enabled INTR input), but gener­
ates an exception 16 fault if the ERROR# pin is in 
the asserted state when the BUSY# goes (or is) 
negated. If the custom coprocessor interface is 
memory-mapped, protection of the addresses used 
for the interface can be provided with the 386 DX 

on-chip paging or segmentation mechanisms. If the 
custom interface is 110-mapped, protection of the 
interface can be provided with the 386 DX IOPL (1/0 
Privilege Level) mechanism. 

The 387 DX numeric coprocessor interface is 110 
mapped as shown in Table 5-11. Note that the 
387 DX coprocessor interface addresses are be­
yond the Oh-FFFFh range for programmed 1/0. 
When the 386 DX supports the 387 DX coprocessor, 
the 386 DX automatically generates bus cycles to 
the coprocessor interface addresses. 

Table 5-11. Numeric Coprocessor 
Port Addresses 

Address in 387TMOX 
386™ DX Coprocessor 
l/OSpace Register 

800000F8h Opcode Register 
(32-bit port) 

800000FCh Operand Register 
(32-bit port) 

To correctly map the 387 DX coprocessor registers 
to the appropriate 1/0 addresses, connect the 
387 DX coprocessor CMDO# pin directly to the A2 
output of the 386 DX. 

5.8.1 Software Testing for I 
Coprocessor Presence 

When software is used to test for coprocessor 
(387 DX) presence, it should use only the following 
coprocessor opcodes: FINIT, FNINIT, FSTCW mem, 
FSTSW mem, FSTSW AX. To use other coproces­
sor opcodes when a coprocessor is known to be not 
present, first set EM = 1 in 386 DX CAO. 

5-379 



intef 386™ DX MICROPROCESSOR 

6. INSTRUCTION SET 

This section describes the 386. DX instruction set. A 
table lists all instructions along with instruction en­
coding diagrams and clock counts. Further details of 
the instruction encoding are then provided in the fol­
lowing sections, which completely describe the en­
coding structure and the definition of all fields occur­
ring within 386 DX instructions. 

6.1 386™ DX INSTRUCTION 
ENCODING AND CLOCK COUNT 
SUMMARY 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 6-1 
below, by the processor clock period (e.g. 50 ns for 
a 20 MHz 386 DX, 40 ns for a 25 MHz 386 DX, and 
30 ns for a 33 MHz 386 DX). 

For more detailed information on the encodings of 
instructions refer to section 6.2 Instruction Encod­
ings. Section 6.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 
1. If two clock counts are given, the smaller refers to 

a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
each of the other bytes of the instruction and pre­
fix( es) each count as one component. 

Wait States 

Add 1 clock per wait state to instruction execution 
for each data access. 

5-380 



386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 

MOV ~Move: 

Register to Register I Memory I 1000100w I mod reg r/ml 2/2 2/2 b h 

Register/Memory to Register I 1000101w J mod reg , r/ml 2/4 2/4 b h 

Immediate to Register/Memory I 1100011 w modOOO r/ml immediate data 2/2 2/2 b h 

Immediate to Register (short form) I 1011 w reg immediate data 2 2 

Memory to Accumulator (short form) I 1010000w full displacement 4 4 b h 

Accumulator to Memory (short form) I 1010001w full displacement 2 2 b h 

Register Memory to Segment Register I 10001110 mod sreg3 r/ml 2/5 18/19 b h, i,j 

Segment Register to Register/Memory I 10001100 I mod sreg3 r/ml 212 2/2 b h 

MOVSX ~ Move With Sign Extension 

Register From Register/Memory I 00001111 I 1011111 w I mod reg r/ml 3/6 3/6 b h 

MOVZX ~ Move With Zero Extension 

Register From Register/Memory I 00001111 I 1 011 011 w I mod reg rim I 3/6 3/6 b h 

PUSH~ Push: 

Register/Memory I 11111111 I mod11 O rim I 5 5 b h 

Register (short form) Io 1o1 o regj 2 2 b h 

Segment Register (ES, CS, SS or OS) I 000sreg211 O I 2 2 b h 

Segment Register (FS or GS) I 00001111 I 1 Osreg3000 I 2 2 b h 

Immediate I 011010s0 J immediate data 2 2 b h I 
PUSHA ~ Push All I 01100000 I 18 18 b h 

POP~ Pop 

Register /Memory I 10001111 I modOOO r/ml 5 5 b h 

Register (short form) I 01011 reg I 4 4 b h 

Segment Register (ES, SS or DS) I 000sreg2111 I 7 21 b h, i,j 

Segment Register (FS or GS) I 00001111 I 1Osreg3001 I 7 21 b h, i,j 

POPA~ Pop All I 01100001 I 24 24 b h 

XCHG ~ Exchange 

Register/Memory With Register I 1000011w j mod reg r/ml 3/5 3/5 b,f f, h 

Register With Accumulator (short form) I 1001 0 reg I ClkCount 3 3 

Virtual 
IN ~ lnpullrom: 8086Mode 

Fixed Port [ 111001owJ port number t26 12 6'/26" m 

Variable Port I 111011 Ow I t27 13 7'/27" m 

OUT ~ Output to: 

Fixed Port [ 1110011w I port number t24 10 4'/24" m 

Variabie Port I 1110111 w I t25 11 5'/25" m 

LEA ~ Load EA to Register I 10001101 j mod reg rim I 2 2 

* If CPL ;;; IOPL ** If CPL > IOPL 

5-381 



intef 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

ilea1 Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Vlrtual 
\ Vlrtual Address Virtual Addreaa 

8086 Mode 8086 _Mode 
Mode Mode 

SEGMENT CONTROL 

LOS = Load PC!lnter to OS I 11000101 mod reg r/ml 7 .22 b h,i,j 

LES = Load Pointer to ES I 11ooofoo mod reg rim I 7 22 b h,i,j 

LFS = Load Pointer to FS I 00001111 10110100 I mod reg rim I 7 25 b h,i,j 

LGS = Load Pointer to GS I 00001111 10110101 I .mod reg r/ml 7 25 b h,i,j 

LSS = Load Pointer to SS I 00001111 10110010 I mod reg rim I 7 22 b h,i,j 

FLAG CONTROL 

CLC = Clear Carry Flag 11111000 I 2 2 

CLO = Clear Direction Flag 11111100 '2 2 

CLI = Clear Interrupt Enable Flag 11111010 a 8 m 

CL TS = Clear Task SWHched Flag 00001111 00000110 I 6 6 c I 

CMC = Complement Carry Flag 11110101 2 2 

LAHF = Load AH Into Flag 10011111 2' 2 

POPF = Pop Flaga 10011101 5 5 b h, n 

PUSHF = Push Flags 10011100 4 4 b h 

SAHF = Store AH Into Flags 10011110 3 3 

STC = Set carry Flag 11111001 2 2 

STD = Set Direction Flag 11111101 2 2 

STI = Set Interrupt Enable Flag I 11111011 I 8 8 m 

ARITHMETIC 
ADD= Add 

Register to Register I OOOOOOdw mod reg rim I 2 2'· 

Register to Memory I OOOOOOOw mod reg r/ml 7 7 b h 

Memory to Register I 0000001w mod reg rim I 6 6 b h 

Immediate to Register/Memory I 100000sw modOOO rim I immediate data 2/.7 217 b h 

Immediate to Accumulator (short form) I 0000010w immediate data 2 2 

ADC = Add With carry 

Register to Register 000100dw mod reg rim I 2 2 

l'!egister to Memory 0001000w mod reg rim I 7 7 b h 

Memory to'Register 0001001w mod reg rim I 6 6 b h 

Immediate to Register/Memory 100000sw mod010 rim I immediate data 217 217 b h 

Immediate to Accumulator (short form) 000101'ow immediate data 2 2 

INC = Increment 

Register/Memory I 1111111w lmodOOO r/ml 216 216 b h 

Register (short form) ' 101000 reg I 2 2 

SUB = Subtract 

Register from Register I 001010dw I mod reg rim I 2 2 

5-382 



intJ 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 

Register from Memory I 00101 OOw lmodreg rim I 7 7 b h 

Memory from Register I 0010101 w I mod reg rim I 6 6 b h 

Immediate from Register/Memory I 1 OOOOOsw lmod101 r/ml immediate data 2i7 2i7 b h 

Immediate from Accumulator (short form) loo1011owl immediate data 2 2 

SBB = Subtract with Borrow 

Register from Register 000110dw lmodreg rim I 2 2 

Register from Memory 00011 OOw !mod reg r/ml 7 7 b h 

Memory from Register 0001101w lmodreg rim I 6 6 b h 

Immediate from Register/Memory 1 OOOOOsw lmod011 r/ml immediate data 2i7 2i7 b h 

Immediate from Accumulator (short form} 000111owl immediate data 2 2 

DEC = Decrement 

Register/Memory I 1111111 w !reg o o 1 rim! 2i6 2i6 b h 

Register (short form) lo 1oo1 reg! 2 2 

CMP ~ Compare 

Register with Register I 00111 Odw lmodreg rim I 2 2 

Memory with Register I 00111 OOw lmodreg rim! 5 5 b h 

Register with Memory I O O 11101 w I mod reg rim! 6 6 b h 

Immediate with Register/Memory I 1 OOOOOsw lmod111 r/ml immediate data 2i5 2i5 b h 

Immediate with Accumulator (short form) I 001111 Ow j immediate data 2 2 

I 
NEG ~ Change Sign I 1111O11 w !mod O 11 rim! 2i6 2i6 b h 

AAA ~ ASCII Adjuslfor Add I oo 11o111 I 4 4 

AAS ~ ASCII Adjust for Subtract [ 00111111 J 4 4 

DAA ~ Decimal Adjust for Add loo100111J 4 4 

DAS ~ Decimal Adjust for Subtract I 001 01111 I 4 4 

MUL ~ Multiply (unsigned) 

Accumulator with Register/Memory I 1111O11 w I mod 1 O O rim I 

Multiplier-Byte 12-17i15-20 12-17 i15-20 b,d d, h 
-Word 12-25i15·28 12-25i15-28 b,d d, h 
-Doubleword 12-41i15-44 12-41 i15-44 b, d d, h 

IMUL ~ Integer Multiply (signed) 

Accumulator with Register/Memory I 1111O11wImod1O1 rim! 

Multiplier-Byte 12-17i15-20 12-17i15-20 b, d d, h 
-Word 12-25i15-28 12-25i15-28 b,d d, h 
-Doubleword 12-41i15-44 12-41 i15-44 b,d d, h 

Register with Register I Memory I 00001111 I 10101111 I mod reg rim I 
' Multiplier-Byte 12-17i15·20 12-17i15-20 b,d d, h 

-Word 12-25i15-28 12-25i15-28 b,d d, h 
-Doubleword 12-41i15-44 12-41i15-44 b,d d, h 

Register/Memory with Immediate to Register I 01101Os1 jmod reg rim/ immediate data 

-Word 13-26i14-27 13-26i14-27 b,d d, h 
-Doubleword 13-42i14·43 13-42i14-43 b, d d, h 

5-383 



386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOC~COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV ~ Divide (Unsigned) 

Accumulator by Register/Memory j 1111O11 w I mod 11 O r/ml 

Divisor-Byte 14/17 14/17 b,e e,h 
-Word 22125 22/25 b,e e,h 
-Ooubleword 38/41 38/41 b,e e,h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register /Memory I 1 11 1 O 11 w I mod 1 1 1 r/ml 

Divisor-Byte 19/22 19/22 b,e e,h 
-Word 27/30 27/30 b,e e,h 
-Doubleword 43/46 43/46 b,e e,h 

AAD ~ ASCII Adjust for Divide I 11010101 I 00001010 I 19 '19 

AAM ~ ASCII Adjust for Multiply I 11o1o1 oo I 00001010 I 17 17 

CBW ~ Convert Byte to Word I 10011000 I 3 3 

CWD ~ Convert Word to Double Word I 10011001 I 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

Register/Memory by 1 I 1101 OOOw lmodTTT r/ml 3/7 3/7 b h 

Register/Memory by CL I 1101001 w lmodTTT r/ml 3/7 3/7 b h 

Register/Memory by Immediate Count I 11 OOOOOw lmodTTT r/mlimmed 8-bit data 3/7 3/7 b h 

Through Carry (RCL and RCR) 

Register/Memory by 1 I 1101 OOOw lmodTTT r/ml 9/10 9/10 b h 

Register/Memory by CL I 1101001w lmodTTT r/ml 9/10 9/10 b h 

Register/Memory by Immediate Count I 11 OOOOOw lmodTTT r/mlimmed 8-bit data 9/10 9/10 b h 

TTT Instruction 
000 ROL 
001 ROA 
01 0 RCL 
011 RCA 
1 00 SHL/SAL 

101 SHA 
111 SAR 

SHLD ~ Shill Left Double 

Register/Memory by Immediate I 00001111 I 10100100 lmodreg r/mlimmed 8-bit data 3/7 317 

Register/Memory by CL I 00001111 I 10100101 jmod reg r/ml 3/7 3/7 

SHRD ~ Shift Right Double 

Register/Memory by Immediate I 00001111 I 101011 00 I mod reg r/mlimmed 8-bit data 3/7 3/7 

Register/Memory by CL I 00001111 I 10101101 I mod reg r/ml 3/7 3/7 

AND~ And 

Register to Register I 001 OOOdw lmodreg r/ml 2 2 

5-384 



intJ 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addreaa Protected Addreaa Protected 

Mode or Virtual Mode or Virtual 
Virtual AddreBB Virtual Addraaa 
8086 Mode 8086 Mode 
Mode Mode 

LOGIC (Continued) 

Register to Memory I 001 oooow jmodreg r/mj 7 7 b h 

Memory to Register I 0010001w jmodreg r/mj 6 6 b h 

Immediate to Register/Memory I 1 OOOOOsw lmod100 r/ml immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) I 001001 Ow I immediatedata 2 2 

TEST = And Function to Flags, No Result 

Register/Memory and Register I 1000010w jmodreg r/ml 2/5 2/5 b h 

Immediate Data and Register /Memory I 1111011w lmodOOO r/ml immediate data 2/5 2/5 b h 

Immediate Data and Accumulator 
(Short Form) I 1 0 1 O 1 O 0 w I immediate data 2 2 

OR= Or 

Register io Register j 000010dw jmodreg r/ml 2 2 

Register to Memory I 00001 oow I mod reg r/ml 7 7 b h 

Memory to Register 0000101w jmodreg r/ml 6 6 b h 

Immediate to Register/Memory 1 OOOOOsw lmod001 rtmJ immediate data 2/7 2/7 b h 

Immediate to Accumulator (Short Form) 000011 Ow I immediate data 2 2 

XOR = Exclusive Or 

Register to Register 001100dw lmodreg rt.ml 2 2 

Register to Memory 0011000w jmodreg r/ml 7 7 b h 

Memory to Register 0011001w lmodreg r/ml 6 6 b h 

Immediate to Register/Memory 1 OOOOOsw I mod 11 0 r/ml immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) 0011O1 Ow I immediate data 2 2 

NOT = Invert Register/Memory 1111011w jmod010 r/ml 
Clk 

2/6 216 b h 

STRING MANIPULATION Count 
Virtual 

CMPS = Compare Byte Word I 1010011 w I 8088 
10 10 b h Mode 

INS = Input Byte/Word from OX Port I 011011 Ow I L t29 15 9•129 .. b h,m 

LOOS = Load Byte/Word to AUAX/EAX I 1 o 1 o 1 1 ow I 5 5 b h 

MOVS = Move Byte Word I 101001ow I 8 8 b h 

OUTS = Output Byte/Word to DX Port I 0110111 w I [ t2B 14 e•12e .. b h,m 

SCAS = Scan Byte Word I 1010111 w I 8 8 b h 

STOS = Stora Byte/Word from 

AU AX/EX I 1010101 w I 5 5 b h 

XLAT ;= Translate Sb1ng I 11010111 I 5 5 h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS = Compare Siring 

(Find Non-Match) I 11110011 I 101oo11 w I 5+9n 5+9n b h 

• If CPL :s:: IOPL • • If CPL > IOPL 

5-385 



intef 386™ DX MICROPROCESSOR 

Table 6•1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Vlrlual Mode or Virtual 
Vlrtual Address Vlrtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS = Compare String ClkCount 

(Find Match) I 1111001ol1010011wl 
Virtual 

5+9n 5+9n b h 8086 Mode 

REP INS = Input String I 1111001OI011011 Ow I [ t28+6n 14+6n B + 6n* /28 + 6n .. b h,m 

REP LOOS = Load String I 1111001 O I 1O1O11 Ow I 5+6n 5+6n b h 

REP MOVS = Move String I 1111001ol101001owl 8+4n 8+4n b h 

REP OUTS = Output String I 1111oo1oIo11o111 w I [ t26+5n 12+5n 6+5n•/26+5n .. b h,m 

REPE SCAS = Scan String 

(Find Non-AL/ AX/EAX) I 11110011 I 1o10111 w I 5+8n 5+8n b h 

REPNE SCAS = Scan String 

(Find Al/ AX/EAX) I 1111001ol1010111wl 5+8n 5+8n b h 

REP STOS = Store String I 1111001ol1010101wl 5+5n 5+5n b h 

BIT MANIPULATION 

BSF = Scan Bit Forward I 00001111 I 1 O 1 1 1 1 O O lmod reg r/ml 11+3n 11+3n b h 

BSR = Scan Bit Reverse I 00001111 I 1 0 1 1 1 1 O 1 lmod reg r/ml 9+3n 9+3n b h 

BT= Test Bit 

Register/Memory, immediate I o o o o 1 111 I 1 o 11 1 o 1 o lmod 1 o o r/mlimmed 8-blt dat~ 3/6 3/6 b h 

Register/Memory, Register I 00001111 I 10100011 lmodreg r/ml 3/12 3/12 b h 

BTC = Test Bit and Complement 

Register/Memory, Immediate [ o o o o 11 1 1 I 1 o 111 o 1 o Imod 111 r/~mmed 8-bit data 618 6/8 b h 

Register/Memory, Register I 00001111 I 1 O 1 1 1 0 1 1 lmod reg r/ml 6/13 6/13 b h 

BTR e. Test Bit and Reset 

Register/Memory, Immediate I 00001111 I 1 O 11 1 O 1 O I mod 1 1 0 r/mlimmed 8-blt da;;j 618 6/8 b h 

Register/Memory, Register I 00001111I10110011 lmodreg r/ml 6/13 6/13 b h 

BTS = Test Bit and Set 

Register/Memory, Immediate [00001.111J1011101o]mod101 rt.,;ilmmed 8-bit data 618 618 b h 

Register/Memory, Register 100001111! 10101011 lmod reg r/ml 6/13 6/13 b h 

CONTROL TRANSFER 

CALL= Cail 

Direct Within Segment I 1 1 1 0 1 0 0 0 I full displacement 7+m 7+m b r 

Register/Memory 

Indirect Within Segment I 11111111 lmod01 O r/ml 
?+ml ?+ml b h, r 10+m 10+m 

Direct lntersegment I 1 O 0 1 1 O 1 O !unsigned full offset, selector 17+m 34+m b j,k,r 

NOTES: 
t Clock count shown applies if 1/0 permission allows 110 to the port in virtual 8086 mode. If 1/0 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction. 
* If CPL ,,; IOPL • * If CPL > IOPL 

5-386 



intef 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

Protected Mode Only (Direct lntersegment) 

Via Call Gate to Same Privilege Level 52+m h,j,k,r 
Via Call G.ate to Different Privilege Level, 

(No Parameters) 86+m h,j,k,r 
Via Call Gate to Different Privilege Level, 

(x Parameters) 94+4x+m h,j,k,r 
From 80286 Task to 80286 TSS 273 h,j,k,r 
From 80286 Task to 386TM DX TSS 298 h,j,k,r 
From 80286 Task to Virtual 8086 Task (386™ DX TSS) 218 h,j,k,r 
From 386™ DX Task to 80286 TSS 273 h,j,k,r 
From 386™ DX Task to 386TM DX TSS 300 h,j,k,r 

From 386TM DX Task to Virtual 8086 Task (386™ DX TSS) 218 h,j,k,r 

Indirect lntersegment j 11111111 jmod011 r/mj 22+m 38+m b h,j,k,r 

Protected Mode Only (Indirect lntersegment) 

Via Call Gate to Same Privilege Level 56+m h,j,k,r 
Via Call Gate to Different Privilege Level, 

(No Parameters) 90+m h,j,k,r 
Via Gall Gate to Different Privilege Level, 

(x Parameters) 98+4x+m h,j,k,r 

From 80286 Task to 80286 TSS 278 h,j,k,r 

From 80286 Task to 386™ DX TSS 303 h,j,k,r 
From 80286 Task to Virtual 8086 Task (386TM DX TSS) 222 h,j,k,r 
From 386TM DX Task to 80286 TSS 278 h,j,k,r 

From 386™ DX Task to 386™ DX TSS 305 h,j,k,r 

From 386™ DX Task to Virtual 8086 Task (386™ DX TSS) 222 h,j,k,r 
JMP ~ Unconditional Jump 

Short I 11101011 I a-bit displacement! 7+m 7+m r 

Direct within Segment I 11101001 I full di$placement 7+m 7+m r 

Register/Memory Indirect within Segment I 11111111 I mod 1 oo r/ml 
7+ml 7+ml b h,r 
10+m 10+m 

Direct lntersegment I 1110101 0 j unsigned full offset, selector 12+m 27+m j,k,r 

Protected Mode Only (Direct lntersegment) 

Via Call Gate to Same Privilege Level 45+m h,j,k,r 
From 80286 Task to 80286 TSS 274 h,j,k,r 

From 80286 Task to 386™ DX TSS 301 h,j,k,r 

From 80286 Task to Virtual 8086 Task (386™ DX TSS) 219 h,j,k,r 

From 386™ DX Task to 80286 TSS 270 h,j,k,r 
From 386™ DX Task to 386TM DX TSS 303 h,j,k,r 

From 386™ DX Task to Virtual 8086 Task (386™ DX TSS) 221 h,j,k,r 

Indirect lntersegment I 11 11 11 1 1 jmod1O1 rtml 17+m 31+m b h,j,k,r 

Protected Mode Only (Indirect lntersegment) 

Via Call Gate to Same Privilege Level 49+m h,j,k,r 

From 80286 Task to 80286 TSS 279 h,j,k,r 

From 80286 Task to 386™ DX TSS 306 h,j,k,r 

From 80286 Task to Virtual 8086 Task (386™ DX TSS) 223 h,j,k,r 

From 386™ DX Task to 80286 TSS 275 h,j,k,r 

From 386™ DX Task to 386™ DX TSS 308 h,j,k,r 

From 386™ DX Task to Virtual 8086 Task (386™ DX TSS) 225 h,j,k,r 

5-387 



386™ DX M'ICROPROCESSOR 

Table 6·1. 386™ DX Instruction Set Clock Count Summar)' (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addrfts Protected Addreea 

.....,_ 
Mode or Virtual Mode or Virtual 
Vlrtual Addrfts Virtual Addresa 
8088 Mode 8088 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 
RET = Retum from CALL: 

Within Segment I 11000011 I 10+m 10+ m b g,h,r 

_Within Segment Adding Immediate to SP I 11000010 I 16-bit displ I 10+m 10+ m b g,h,r 

lntersegment I 11001011 I 18+ m 32+m b g, h,j, k,r 

lntersegment Adding Immediate to SP I 11001010 I 16-bltdispl I 18+ m 32+m b g, h,j,k,r 

Protected Mode Only (RET): 
to Differen1 Privilege Level 

lntersegment 8Q h,J,k,r 
lntersegment Adding Immediate to SP 69 h,J,k,r 

CONDmONAL JUMPS 
NOTE: Times Are Jump ''Taken or Not Taken" 
JO·= Jump on Over!-

8-Bit Displacement I 01110000 I 8-bltdiapl I 7 + m or3 7 + mor3 r 

Full Displacement I 00001111 I 10000000 j 1u11 displacement 7 + mor3 7 + mor3 r 

JNO = Jump on Not Overflow 

8-Blt Displacement I 01110001 I 8-bitdlspl I 7 + mor3 7 + mor3 ' 
Full Displacement I 00001111 I 10000001 j 1u11 displacement 7 + mor3 7 + mor3 r 

JB/JNAE = Jump on Below/Not Above or Equal 

8-Blt Displacement Lo111001ol 8-bitdispl J 7 + mor3 7 + mor3 r 

Full Displacement L 00001111 l 1000001 OJ full displacement :7+mor3 7 + mor3 r 

JNB/JAE =Jump on Not Below/Above or Equal 

8-Blt Displacement I 01110011 I 8-bit displ I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000011 j 1u11 displacement 7 + mor3 7 + mor3 r 

JE/JZ = Jump on Equal/Zero 

8-Blt Displacement I 01110100 I 8-bitdlspl I 7 + mor3 7 + !110r3 r 

Full Displacement I 00001111 I 10000100 j full diapleoement 7 + mor3 7 + mor3 r 

JNE/JNZ = Jump on Not Equal/Not Zero 

8-Blt D'ISplacement I 01110101 I 8-bltdiapl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000101 j 1u11 dlspleoement 7 +·mor3 7 + mor3 r 

JBE/JNA = Jump on Below or Equal/Not Above 

8-Btt Displacement I 01110110 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000110 I run displacement 7 + mor3 .7 + mor3 r 

JNBE/JA = Jump on Not Below or Equal/ Above 

8-Bit Diaplacement I 01110111 I 8-bitdispl I 7 + mor3 7 +·nior3 r 

Full Displacement I 00001111 I 10000111 j 1u11 displacement 7 + mor3 7 + mor3 r 

JS = Jump on Sign 

8-Bit Diaplacement I 0111.1000 I 8-bltdispl I 7 + mor3 7+mor3 r 

Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 7 + mor3 r 

5-388 



intJ 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary {Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addre .. Protected 

Mode or Virtual Mode or Virtual 
Virtual Addra .. Virtual Address 
8086 Mode 8066 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) 

JNS = Jump on Not Sign 

8-Bit Displacement I 01111001 I 8-bit displ I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001001 I full displacement 7+mor3 7 + mor3 r 

JP/JPE = Jump on Parity/Parity Even 

8-Blt Displacement I 01111010 I 8-bil displ I 7 + mor3 7+mor3 r 

Full Displacement I 00001111. I 10001010 I full displacement 7+mor3 7 + mor3 r 

JNP/JPO = Jump on Not Parity/Parity Odd 

8-Bit Displacement I 01111011 I 8-bildispl I 7+mor3 7 + mor3 r 

Full olsplacement I 00001111 I 10001011 I 1u11 displacement 7 + mor3 7 + moi3 r 

JL/JNGE = Jump on Leu/Not Greater or Equal 

8-Bit Displacement I 01111 foo I 8-bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001100 I 1u11 displacement 7 + mor3 7 + mor3 r 

JNL/JGE = Jump on Not Leu/Greater or Equal 

8-Blt Displacement I 01111101 I 8-bltdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001101 l 1u11 displacement 7 + mor3 7 + mor3 r 

JLE/JNG = Jump on La .. or Equal/Not Greater 

8-Blt Displacement I 0111111 o I 8-bltdispl I 7 f mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001110 I full displacement 7 + mor3 7+mor3 r 

JNLE/JG = Jump on Nol Less or Equal/Graater I 
8·Bit Displacement I 01111111 I 8-bitdispl I 7+nior3 7 + mor3 r 

Full Displacement I 00001111 I 10001111 I full displacement 7 + mor3 7 + mor3 r 

JCXZ = Jump on CX Zero I 11100011 I 8-bildispl I 9+mor5 9+mor5 r 

JECXZ = Jump on ECX zero I 11100011 I 8-bildispl I 9+mor5 9+mor5 r 

(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP = Loop ex Times I 11100010 I 8-bildispl I 11 + m 11 + m r 

LOOPZ/LOOPE = Loop with 
Zero/Equal I 11100001 I 8-bitdispl I · 11 + m 11 + m r 

LOOPNZ/LOOPNE = Loop While 
Not Zero I 11100000 I 8-bitdispl I 11 + m 11 + m r 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO = Set Byte on Overtlow 

To Register/Memory I 00001111 I 10010000 I modOOO r/mj 4/5 4/5 h 

SETNO = Set Byte on Not Overflow 

To Register/Memory I 00001111 I 10010001 I modOOO r/mj 4/5 4/5 h 

SETB/SETNAE = Set Byte on Below/Not Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO r/mj 4/5 4/5 h 

!;i-389 



386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary· (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addreas Protected Address Protacted 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Addreaa 

' 
8086 Mode 8088 Mode 
Mode Mode 

CONDmONAL BYTE SET (Continued) 
I 

SETNB = Sat Byte on Not Balow/ Above or Equal 

To Register/Memory I 00001111 I 10010011 lmodOOO. rim I 415 4/5 h 

SETE/SETZ = Sat Byte on Equal/Zaro 

To Register/Memory I 00001111 I 10010100 I modOOO r/ml 4/5 4/5 h 

SETNEISETNZ = Sat Byte on Not Equal/Not Zaro 

To Register/Memory I 0 O O 0 1111 I 10010101 I modOOO rim I 4/5 4/5 ·h 

SETBEISETNA = Sat Byte on Balow or Equal/Not Above 

To Register/Memory 1. o o o o 1 1 1 1 I 10010110 I modOOO rtmj 4/5 4/5 h 

SETNBE/SETA = SatllytaonNotBatoworEiiual/Above 

To Register/Memory· I 00001111 I 10010111 I modOOO rim I 4/5 4/5 h 

SETS = Sat Byte on Sign 

To Register/Memory I 00001111' I 10011000 I modooo' r/mj 4/5 4/5 h 

SETNS = Sat Byte on Not Sign 

To Reglsier/Memory, I ,00001111 I 10011001 lmodOOO rim I 4/5 4/5 h 

SETP/SETPE = Sat Byte on Parity/Parity Even 

To Register/Memory I 00001111 I 10011010 I modOOO r/ml 4/5 4/5 h 

SETNP/SETPO = Sat Byte on Not Parity/Parity Odd 

To Register/Memory I O O O (f1 1 1 1 I 10011011 I modOOO r/ml 4/5 4/5 h 

SETL/SETNGE = Sat Byte on Leas/Not Greater or Equal 

To Register/Memory I o O O o 1 11 1 I 10011100 I modOOO rim I 415 415 h 

SETNL/SETGE = Sat Byte on Not Leas/Greater or Equal 

' To Register/Memory I 0 0 0 0 1111 I 01111101 I modOOO r/ml 4/5 415 h 

SE.TLE/SETNG = Sat Byte on Leas or EqUal/Not Greater 

To Register/Memory I . O O O O 1 1 1 1 I 10011110 I modOOO rim I 4/5 4/5 h 

SETNLE/SETG = Sat Byte on Not Leas or Equal/Gre-

To Register/Memory I 00001111 I 10011111 I mocjOOO rtml 415 4/5 h 

ENTER = Enter Procedure I 11001000 j 16-bit displacement, 8-bit level I 
' L=O 10· 10 b h 

L=1 12 12 b h 
L > 1 15+ 15+ b h 

4(n -1) 4(n -1). 

LEAVE = Leave Procedure I 11001001 I 4 4 b h 

5-390 



intef 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS 

INT = Interrupt: 

Type Specified I 11001101 I type I 37 b 

Type3 I 11001100 I 33 b 

INTO = Interrupt 4 If Overflow Flag Set l 11001110 I 
If OF= 1 35 b,e 
llOF= 0 3 3 b,e 

Bound = Interrupt 5 If Oetect Value I 01100010 I mod reg r/ml 
Outol"ange 

If qut of Range 44 b,e e,g, h,j, k, r 
If In Range 10 10 b,e e,g, h,j, k, r 

Protected Mode Only (INT) 
INT: Type Specified 

Via Interrupt or Trap Gate 

to same PriVilege Level 59 g,j, k, r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,j,k,r 
From 80286 Task to 80286 TSS via Task Gate 282 g,j, k, r 
From 80286 Task to 386™ DX TSS via Task Gate 309 g,j, k, r 
From 80286 Task to virt 8086 md via Task Gate 226 g,j, k, r 
From 386TM DX Task to 80286 TSS via Task Gate 284 g,j,k,r 
From 386TM DX Task to 386™ DX TSS via Task Gate 311 g,j,k,r 
From 386™ DX Task to virt 8086 md via Task Gate 228 g,j,k,r 
From virt 8086 md to 80286 TSS via Task Gate 289 g,j,k,r 
From virt 8086 md to 386™ DX TSS via Task Gate 316 g,j,k, r I 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INT:TYPE3 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g,j,k,r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,j,k, r 
From 80286 Task to 80286 TSS via Task Gate 278 g,j,k,r 
From 80286 Task to 386TM DX TSS via Task Gate 305 g,j, k, r 
From 80286 Task to Virt 8086 md via Task Gate 222 .g,j, k, r 
From 386TM DX Task to 80286 TSS via Task Gate 280 g,j, k, r 
From 386™ DX Task to 386TM DX TSS via Task Gate 307 g,j,k, r 
From 386™ DX Task to Virt 8066 md via Task Gate 224 g,j,k,r 
From virt 8086 md to 80286 TSS via Task Gate 285 g,j,k, r 
From virt 8086 md to 386™ DX TSS via Task Gate 312 g,j,k,r 
From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 119 

INTO: 

Via Interrupt or Trap Grate 

to same Privilege Level 59 g,j,k,r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,j, k, r 
From 80286 Task to 80286 TSS via Task Gate 280 g,j, k, r 
From 80286 Task to 386TM DX TSS via Task Gate 307 g,j,k,r 
From 80286 Task to virt 8086 md via Task Gate 224 g,j, k, r 
From 386TM DX Task to 80286 TSS via Task Gate 282 g,j, k,r 
From 386TM DX Task to 386™ DX TSS via Task Gate 309 g,j, k, r 
From 386™ DX Gate 225 g,j,k, r 
From virt 8086 md to 80286 TSS via Task Gate 287 g,j, k,r 
From virt 8086 md to 386™ DX TSS via Task Gate 314 g,j, k, r 
From virt 6086 md to priv level O via Trap Gate or Interrupt Gate 119 

5-391 



intef 386™ DX MICROPROCESSOR 

Table 6·1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g, j, k, r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,j, k, r 

From 80286 Task to 80286 TSS via Task Gate 254 g,j, k, r 

From 80286 Task to 386TM DX TSS via Task Gate 284 g,j, k, r 
From 80268 Task to virt 8086 Mode via Task Gate 231 g,j, k,r 
From 386™ DX Task to 60286 TSS via Task Gate 264 g,j, k,r 
From 386™ DX Task to 386™ DX TSS via Task Gate 294 g,j, k,r 
From 80368 Task to virt 8086 Mode via Task Gate 243 g,j, k, r, 
From virt 8086 Mode to 80286 TSS via Task Gate 284 g,j, k,r 

From virt 8086 Mode to 386™ DX TSS via Task Gate 294 g,j,k,r 

From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 119 

INTERRUPT RETURN 

IRET ~ Interrupt Return I 11001111 I 22 g, h,j, k, r 

Protected Mode Only (IRET) 
To the Same Privilege Level (within task) 38 g, h,j, k, r 

To Different Privilege Level (within task) 82 g, h,j, k, r 

From 80286Task to 80286 TSS 232 h, j, k, r 
From 80286 Task to 386TM DX TSS 265 h,j,k,r 

From 80286 Task to Virtual 8086 Task 213 h,j,k,r 

From 80286 Task to Virtual 8086 Mode (within task) 60 
From 386TM DX Task to 80286 TSS 271 h, j, k, r 

From 386™ DX Task to 386™ DX TSS 275 h,j,k, r 
From 386TM DX Task to Virtual 8086 Task 223 h, j, k, r 

From 386™ DX Task to Virtual 8086 Mode (within task) 60 

PROCESSOR CONTROL 

HLT ~HALT I 11110100 I 5 5 I 

MOV ~ Move to and From Control/Debug/Test Registers 

CRO/CR2/CR3 from register I 00001111 00100010 11 eeereg I 11/4/5 11/4/5 I 

Register From CR0-3 I 00001111 00100000 11 eeereg I 6 6 I 

DR0-3 From Register I 00001111 00100011 11 eeereg I 22 22 I 

DR6-7 From Register I 00001111 00100011 11 eee reg I 16 16 I 

Register from DR6-7 I 00001111 00100001 11 eeereg I 14 14 I 

Register from DR0-3 I 00001111 00100001 11 eee reg I 22 22 I 

TR6-7 from Register [ 00001111 00100110 11 eeereg I 12 12 I 

Register from TR6-7 I 00001111 00100100 11 eee reg I 12 12 I 

NOP ~ No Operation I 10010000 3 3 

WAIT= Walt until BUSY# pin Is negated I 10011011 7 7 

5·392 



intef 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape I 11011 TTT lmodLLL rim I See h 

TTT and LLL bits are opcode 80287180387 

information for coprocessor. data sheets for 

clock counts 

PREFIX BYTES 

Address Size Prefix I 01100111 I 0 0 

LOCK = Bus Lock Preilx I 11110000 I 0 0 m 

Operand Size Prefix I 0110011 0 I 0 0 

Segment Override Prefix 

CS: I 0010111 0 I 0 0 

OS: I 0011111 0 I 0 0 

ES: I 00100110 I 0 0 

FS: I 01100100 I 0 0 

GS: I 01100101 I 0 0 

SS: I 0011011 0 I 0 0 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From Register/Memory I 01100011 I mod reg rtmJ N/A 20/21 a h 

LAA = Load Access Rights 

From Register /Memory I 00001111 I 00000010 I mod reg r/m I NIA 15/16 a g,h,j,p 
I 

LGDT = Load Global Descriptor 

Table Register I 00001111 I 00000001 Jmod010 r/m I 11 11 b,c h, I 

LIDT = Load Interrupt Descriptor 

Table Register I 00001111 I 00000001 I modO 11 rim J 11 11 b,c h, I 

LLDT = Load Local Descriptor 

Table Register to 

I I Jmod010 rim I Register/Memory 00001111 00000000 NIA 20124 a g, h,j, I 

LMSW = Load Machine Status Word 

From Register/Memory I 00001111 I 00000001 I mod11 O r/m J 11/14 11/14 b,c h, I 

LSL = Load Segment Limit 

From Register/Memory I 00001111 I 00000011 I mod reg r/m J 

Byte-Granular Limit NIA 21/22 a g, h,j, p 
Page-Granular Limit NIA 25/26 a g,h,j,p 

LTR = Load Task Register 

Fr_om Register /Memory I 00001111 I 00000000 I mod011 r/m J N/A 23/27 a g, h,j, I 

SGDT = Store Global Descriptor 

Table Register I 00001111 I 00000001 lmodOOO r/m J 9 9 b,c h 

SIDT = Store Interrupt Descriptor 

Table Register I 00001111 I 00000001 Jmod001 r/m J 9 9 b,c h 

SLOT = Store Local Descriptor Table Register 

To Register/Memory I 00001111 I 00000000 I modOOO r/m I N/A 212 a h 

5-393 



intJ 386™ DX MICROPROCESSOR 

Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SMSW ~Store Machine 
Status Word I 00001111 I 00000001 lmod100 rim! 2/2 2/2 b,c h, I 

STA ~Store Task Register 

To Register/Memory I 00001111 I 00000000 lmod001 r/ml N/A 2/2 a h 

VERA ~Verify Read Accesss 

Register/Memory I 00001111 I 00000000 lmod100 r/ml NIA 10/11 a g,h,j, p 

VERW ~ Verify Write Accesss I 00001111 I 00000000 I mod101 r/ml NIA 15/16 a g, h,j,p 

INSTRUCTION NOTES FOR TABLE 6·1 

Notes a through c apply to 386 DX Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to 386 DX Real Address Mode and 386 DX Protected Virtual Address Mode: 
d. The 386 DX uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > O then max ([log2 lmll. 3) + b clocks: 

if m = o then 3+b clocks 
In this formula, m is the multiplier, and 
b = 9 for register to register, 
b = 12 for memory to register, 
b = 10 for register with immediate to register, 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix. 
g. LOCK# is asserted during descriptor table accesses. 

Notes h through r apply to 386 DX Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than O (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = 0. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. · 

5-394 



intef 386™ DX MICROPROCESSOR 

6.2 INSTRUCTION ENCODING 

6.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 6-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte{s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 6-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 6-2 is a complete list of all fields ap­
pearing in the 386 DX instruction set. Further ahead, 
following Table 6-2, are detailed tables for each 
field. 

I T T T T T T T T I T T T T T T T T I mod T T T r Im I ss index base I d32 I 16 I 8 I none data32 I 16 I 8 I none 

7 0 7 0 \7 6 5 3 2 0 )\7 6 5 3 2 0) 
T T '--~~.......-~~ 

opcode 
{one or two bytes) 
(T represents an 

opcode bit.) 

"mod rim'' 
byte 

"s-i-b" 
byte 

register and address 
mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 6-1. General Instruction Format 

Table 6-2. Fields within 386™ DX Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size {Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier {Effective Address can be a General Register) 

SS Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Note: Table 6-1 shows encoding of individual instructions. 

5-395 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 

4 

I 



intef 386™ DX MICROPROCESSOR 

6.2.2 32-Bit Extensions of the 
Instruction Set 

With the 386 DX, the 8086180186180286 instruction 
set is extended in two orthogonal directions: 32-bit 
forms of all 16-bit instructions are added to support 
the 32-bit data t}tpes, and 32-bit addressing modes 
are made available for all instructions referencing 
memory. This orthogonal instruction set extension is 
accomplished having a Default (D) bit in the code 
segment d\;!scriptor, and by having 2 prefixes to the 
instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the D bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
bi.it a D value of 0 is assumed internally by the 386 
DX when operating in those modes (for 16-bit de­
fault sizes compatible with the 8086180186180286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all 386 DX 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses. For instructions with 
more than one prefix, the order of prefixes is unim­
portant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

6.2.3 Encoding of Instruction Fields 
Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

6.2.3.1 ENCODING OF OPERAND LENGTH {w) 
FIELD 

For any given instruction performing . a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Bit During 32-Blt 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

6.2.3.2 ENCODING OF THE GENERAL 
REGISTER {reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present In Instruction 

Register S.elected Register Selected 
reg Field During 16-Bit During 32-Bit 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
ex ECX 
DX EDX 
BX EBX 
SP ESP 
BP ESP 
SI ESI 
DI EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-Blt Data Operations: 

Function of w Field 

{whenw = 0) {whenw = 1) 

AL AX 
CL ex 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 

5-396 



intef 386TM DX MICROPROCESSOR 

Register Specified by reg Field 
During 32-Bit Data Operations 

Function of w Field 
reg 

(whenw = 0) (when w = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH ESP 
110 DH ESI 
111 BH EDI 

6.2.3.3 ENCODING OF THE SEGMENT 
REGISTER {sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 386 DX FS and GS segment 
registers to be specified. 

2-Bit sreg2 Field 

2·Blt 
Segment 

sreg2Field 
Register 
Selected 

00 ES 
01 cs 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 cs 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

6.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00, 01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 6-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 

5-397 

I 



intef' 386™ DX MICROPROCESSOR 

Encoding of 16•bit Address Mode with "mod r/m" Byte 

modr/m Effective Address modr/m Effective Address 

00 000 DS:[BX+SI] 10000 DS:[BX+SI +d16] 
00 001 DS:[BX+DI] 10 001 DS:[BX +DI+ d16] 
00010 SS:[BP+SI] 10 010 SS:[BP+Sl+d16] 
00 011 SS:[BP+DI] 10 011 SS:[BP+ Dl+d16] 
00100 DS:[SI] 10100 DS:[Sl+d16] 
00101 DS:[DI] 10 101 DS:[DI + d16] 
00110 DS:d16 10 110 SS:[BP+d16] 
00 111 DS:[BX] 10 111 DS:[BX+d16] 

'01 000 OS: [BX+ SI+ dB] 11 000 register-see below 
01 001 OS: [BX+ DI+ dB] 11 001 register-see below 
01 010 SS:[BP+Sl+dB] 11 010 register-see below 
01 011 SS:[BP+ DI+ dB] 11 011 register-see below 
01100 DS:[Sl+dB] 11100 register-see below 
01 101 DS:[Dl+dB] 11 101 register-see below 
01110 SS:[BP+dB] 11 110 register-see below 
01 111 DS:[BX+dB] 11 111 register-see below 

Register Specified by r/m 
During 16-Bit Data Operations 

modr/m 
Function of w Field 

(whenw=O) (whenw =1) 

11 000 AL AX 
11 001 CL ex 
11 010 DL DX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by r/m 
During 32-Bit Data Operations 

modr/m 
Function of w Field 

(whenw=O) (whenw =1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 

5-39B 



386™ DX MICROPROCESSOR 

Encoding of 32-bit Address Mode with "mod r/m" byte (no "s-i-b" byte present): 

modr/m Effective Address mod r/m Effective Address 

00000 DS:[EAX] 10 000 OS: [EAX + d32] 
00 001 DS:[ECX] 10 001 OS: [ECX + d32] 
00010 DS:[EDX] 10 010 OS: [EDX + d32] 
00 011 DS:[EBX] 10 011 OS: [EBX + d32] 
00 100 s-i-b is present 10100 s-i-b is present 
00 101 DS:d32 10 101 SS: [EBP + d32] 
00 110 DS:[ESI] 10 110 OS: [ESI + d32] 
00 111 DS:[EDI] 10 111 OS: [EDI+ d32] 

01 000 DS:[EAX+d8] 11 000 register-see below 
01 001 DS:[ECX+d8] 11 001 register-see below 
01 010 DS:[EDX+d8] 11 010 register-see below 
01 011 DS:[EBX+d8] 11 011 register-see below 
01100 s-i-b is present 11 100 register-see below 
01101 SS:[EBP+d8] 11 101 register-see below 
01110 OS: [ESI + d8] 11 110 register-see below 
01 111 OS: [EDI+ d8] 11 111 register-see below 

Register Specified by reg or r/m 
during 16-Bit Data Operations: 

modr/m 
function of w field 

(whenw=O) (whenw= 1) 

11 000 AL AX 
11 001 CL ex 
11 010 DL DX I 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or r/m 
during 32-Bit Data Operations: 

modr/m 
function of w field 

(whenw=O) (whenw= 1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 

5-399 



386™ DX MICROPROCESSOR 

Encoding of 32·bit Address Mode ("mod rim" byte and "s·i·b" byte present): 

mod base Effective Address 

00 000 DS:[EAX + (scaled index}] 
00001 DS:[ECX + (scaled index)} 
00010 DS:[EDX + (scaled index)} 
00 011 DS:[EBX + (scaled index)] 
00100 SS:[ESP + (scaled index)] 
00 101 DS:[d32 + (scaled index)] 
00 110 DS:[ESI + (scaled index)} 
00 111 DS:[EDI + (scaled index)} 

01 000 DS:[EAX + (scaled index) + d8] 
01 001 DS:[ECX + (scaled index) + d8] 
01 010 DS:[EDX + (scaled index) + d8] 
01 011 DS:[EBX + (scaled index) + d8] 
01 100 SS:[ESP + (scaled index) + d8] 
01 101 SS:[EBP + (scaled index) + d8] 
01 110 DS:[ESI + (scaled index) + d8] 
01 111 DS:[EDI + (scaled index) + d8) 

10000 DS:[EAX + (scaled index) + d32] 
10 001 DS:[ECX + (scaled index) + d32] 
10 010 DS:[EDX + (scaled index) + d32] 
10 011 DS:[EBX + (scaled index) + d32] 
10100 SS:[ESP + (scaled index) + d32] 
10 101 SS: [ESP + (scaled index) + d32] 
10 110 DS:[ESI + (scaled index) + d32] 
10 111 DS:[EDI + (scaled index) + d32) 

NOTE: 
Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 

SS Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 EBX 
100 no index reg•• 
101 EBP 
110 ESI 
111 EDI 

**IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

5-400 



intJ 386™ DX MICROPROCESSOR 

6.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod rim" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod rim" or "mod ss index base" Indicates 
Source Operand 

6.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Data& Immediate Data 16132 

!<>None None 

1 Sign-Extend Data8 to Fill None 
16-Bit or 32-Bit Destination 

6.2.3.7 ENCODING OF CONDITIONAL TEST 
(tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), mn is encoded with n indicat­
ing to use the condition (n = O) or its negation (n = 1 ), 
and m giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/ Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/ Above 0111 
s Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

6.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode RegName 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode RegName 

110 TR6 
111 TR7 

Do not use any other encoding 

5-401 

I 



386TM DX MICROPROCESSOR 

1+---4.5"·-----

--·------- -====-=-....:..==--

Js.. .· j l-o.2s" 
l ·--- . 

I -q I I 

: ' 11-.PIN 1 4.0" 
I I . ____ .. 

231630-84 

Figure 7·1. Processor Module Dlrnenslons 

7. DESIGNING FOR ICE™-386 DX 
'EMULATOR USE 

The 386 DX in-circuit emulator products are ICE-386 
DX 25 MHz or. 33 MHz (both referred to as ICE-386 
DX emulator). The ICE-386 DX emulator probe mod-

: ule has.several electrical and mechanical character­
istics that should be taken into consideration when 
designing the hardware. · 

Capacitive loading: The ICE-386 DX emulator adds 
up to 25 pF to each line. 

Drive requirement: The ICE-386 DX emulator adds 
one standard TTL load on the CLK2 line, up to one 
advanced low-power Schottky TTL load per control 
signal line, and one advanced low-power Schottky 
TTL load per address, byte enable, and data line. 
These loads are within the probe module and are 
driven by the probe's 386 DX component, which has 
standard drive and loading capability listed in the 
A.C. and D.C. Specification Tables in Sections 9.4 
and 9.5. 

Power requirement: For noise immunity the ICE-
386 DX emulator. probe is powered by the user sys­
tem. This high-speed probe circuitry draws up to 
1.5A plus the maximum Ice from the user 386 DX 
component socket. 

386 DX location and orientation: The ICE-386 DX 
processor 'module, target-ildaptor cable (which does 
not exist for the ICE-386 DX 33 MHz emulator), and 
the isolation board used for extra electrical buffering 
of the emulator initially, require clearance as illustrat­
ed in Figures 7-1 and 7-2. 

Interface Board and CLK2 speed reduction: 
When the ICE-386 DX emulator probe Is firsf at­
tached to an unverified user system, the interface 
board helps the ICE-386 DX emulator function in 
user systems with bus faults (shorted signals, etc.). 
After electrical verification it ri'uiy be removed. Only 
when the interface board is installed, the user sys­
tem must have a reduced CLK2 frequency .of 25 
MHz maximum. · 

Cache coherence: The ICE-386 DX emulator loads 
user memory by performing 386 DX component 
write cycles. Note that if the user system is not de­
signed to update or invalidate its cache (if it has a 
cache) upon processor writes to memory, the cache 
could contain stale instruction code and/or data. For 
best use of the ICE-386 DX emulator, the user 
should consider designing the cache (if any) to up­
date itself automatically when processor writes oc­
cur, or find another method of maintaining cache 
data coherence with main user memory. 

5-402 



intef 386™ DX MICROPROCESSOR 

PIN 1 
--------17.5" ------------4.5"---+fo>---3.6" 

------------~----27.1" -----------------+! 

~Beg~~======~S~S========~L----£.+-.-eEH~~1:3--eE 
1.25" 

--------12.75"--------+i 

D....=.---=---------~-==--=----.---~--- ---- ----

u==a------23.4"-----·1 

Cc:::t ~ fii B ......... 1 

231630-85 

Figure 7-2. Processor Module, Target-Adapter Cable, and Isolation Board Dimensions 

5-403 



intJ 386™ DX MICROPROCESSOR 

8. MECHANICAL DATA 8.2 PACKAGE DIMENSIONS AND 
MOUNTING 

8.1 INTRODUCTION 

In this section, the physical packaging and its con­
nections are described in detail. 

The initial 386 DX package is a 132-pin ceramic pin 
grid array (PGA). Pins of this package are arranged 
0.100 inch (2.54mm) center-to-center, in a 14 x 14 
matrix, three rows around. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a 
choice of terminals such as soldertail, surface 
mount, or wire wrap. Several applicable sockets are 
listed in Table 8.1. 

2 

3 

~ ~ ~ 
~ '"" ~ '"" ;::; "' ..... 
"' ..... "' IO "' ID 0 co "': "' .... 
~ co "' co ,,; .0 
~ c e. ~ ~ ~ ~ 

00 0 0 0 0 0 0 
I IO IO IO IO IO IO IO 

C! ~ "? "': "! "! 

• @@@@@@'!@®@@@@@ 
@@@@@@@@@@@@@@ 
@@®@@@@·@@@@®@@ 

4 @@@ @@@ 
5 @@@ ' @@@ 
6 @®® I @®® 

7 @@@ + @@@ 
8 -@@@ -- -- ®@@ 

9 @@@ @@@ 
10 @@@ @@@ 
11 @@@ @@@ 
12 @@®@@@@,@@@@ @@ 
13 @@@@@@®I®@@@@@@ 
14 @@@@@@@,@@@@@@@ 

0 .... 
oO 
~ 
IO 

"' ": 

C D E F G H J K L M N P 11 
.020(0 .. 508) .020 -
MIN TYP (0.508) 
.070 ( 1. 777) DIA 
TYP BRAZE PAD 

1------1.450(36.802)-------1 

.725 (18.401) 

.650 ( 1 6.497) 

.550 ( 13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 (1.269) 
0 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057(1.269) l '­MAX TYP 

.001 (0.025) R 
MIN TYP 

.018 (0.47) l 
DIA TYP _ ==4:Hf' 

.165(4.189~1 ~ 
.110(2::u 

231630-35 

Figure 8.1. 132-Pin Ceramic PGA Package Dimensions 

5-404 



inter 386™ DX MICROPROCESSOR 

Table 8.1. Several Socket Options for 132-Pin PGA 

• Low insertion force (LIF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in insertion 
force compared to machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 

55583-1 
• Zero insertion force (ZIF) Burn-in version 

55573-2 

Amp Incorporated 
(Harrisburg, PA 17105 U.S.A. 
Phone 717-564-0100) 

231630-45 
Cam handle locks in low profile position when substrate is installed (handle UP for 
open and DOWN for closed positions) 

Peel-A-WayrM Mylar and Kapton 
Socket Terminal Carriers 

* Low insertion force surface 
mount CS132-37TG 

Low 'insertion force soldertail 
CS132-01TG 

* Low insertion force wire-wrap 
CS132-02TG (two level) 
CS 132-03TG (three-level) 

• Low insertion force press-fit · 
CS132-05TG 

Advanced Interconnections 
(5 Division Street 
Warwick, RI 02818 U.S.A. 
Phone 401-885-0485) 

Peel-A-Way Carrier No. 132: 
Kapton Carrier is KS132 
Mylar Carrier is MS132 

Molded Plastic Body KS 132 
is shown below: 

FOOT PRINT NO. 132 

14 x 14x 3 ROWS 

231630-46 

5-405 

courtesy Amp Incorporated 

SOLDER TAIL -en LOW PROFILE -04 PRESS FIT -05 ,, 1-i rT .... .... 
--f ~ 

.. .. 
--+ Ft 2.11 

. 1u -:n:DIA 
:tti 

~--'- btM .. ~-~::.EMA. . .... -- . 
""="" 

llTG.MOL.al'.T.H. ---~ ... !..• 
WIRE WRAP ..02/-03 SOLDER TAIL -33 SURFACE MOUNTING -37 

~~~ 
PEEL-A-WAY

!~

~-..
1.14 -02

f_f!_J :iii 2LEVEL -2.
12.79 -03

..
__l

-- 3LEVEL -~-I~ '.__j OIA.

231630-47
courtesy Advanced Interconnections

(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

El

intef 386™ DX MICROPROCESSOR

Table 8.1. Several Socket Options for 132-Pin PGA (Continued)

PIN GRID ARRAY
DECOUPLING SOCKETS

• Low insertion force soldertail
0.125 length PGD-005-1A1
Finish: Term/Contact Tin­
Lead/Gold

* Low insertion force soldertail
0.180 length PGD-005-161
Finish: Term/Contact: Tin­
Lead/Gold

• Low insertion 3 level Wire/
Wrap PGD-005-1 C1 Finish:
Term/Contact Tin-Lead/Gold

Includes 0.10 µF & 1.0 µF
Decoupling Capacitors

AUGAT INC.

VisinPak Kapton Carrier

PKG Series

Pin Grid Array

PGM (Plastic) or PPS
(Glass Epoxy) Series

33 Perry Ave., P.O. Box 779 Attleboro, MA 02703
TECHNICAL INFORMATION: (508) 222-2202
CUSTOMER SERVICE: (508) 699-9800

• Low insertion force socket soldertail
(for production use)
2XX-6576-00-3308 (new style)
2XX-6003-00-3302 (older style)

• Zero insertion force soldertail
(for test and burn-in use)
2XX-6568-00-3302

Textool Products
Electronic Products Division/3M

(1410 West Pioneer Drive
Irving, Texas 75601 U.S.A.
Phone 214-259-2676)

l-0.020

C: Soldertall

I
0.193

r
0.510

~ ~,,.~
··--------·· 0 rr·--··----~~ ~
:: I I tn
11 : :
:: !i~
11 ''U D _. __________ .u

Ii_-. .. -------··

I
"I I._ _________ I I

1----1.450:1:0.020 ---I
I (SQUARE) I

" oo~INC. 888

·~~~~~88888§§1~
231630-86

I

~
'i.

courtesy Textool Products/3~ 231630-48

5-406

intJ 386™ DX MICROPROCESSOR

8.3 PACKAGE THERMAL
SPECIFICATION

The PGA case temperature should be measured at
the center of the top surface opposite the pins, as in
Figure 8.2.

The 386 DX is specified for operation when case
temperature is within the range of 0°C-85°C. The
case temperature may be measured in any environ­
ment, to determine whether the 386 DX is within
specified operating range.

231630-36

Figure 8.2. Measuring 386™ DX PGA Case Temperature

Table 8.2. 386™ DX PGA Package Thermal Characteristics

Thermal Resistance - •ctwatt

Parameter 0 50
(0) (0.25)

B Junction-to-Case 2 2
(case measured
as Fig. 8·2)

B Case-to-Ambient 19 18
(no heatsink)

B Case-to-Ambient 16 15
(with omnidirectional
heatsink)

B Case-to-Ambient 15 14
(with unidirectional
heatsink)

NOTES:
1. Table 8.2 applies to 386TM DX PGA
plugged into socket or soldered directly
into board.
2. BJA = BJc + BcA·

Alrflow - ft./mln (m/sec)

100 200 400 600 800
(0.50) (1.01) (2.03) (3.04) (4.06)

2 2 2 2 2

17 15 12 10 9

14 12 9 7 6

13 11 8 6 5

3. BJ.CAP = 4°C/w (approx.)
BJ-PIN = 4°C/w (inner pins) (approx.)
BJ.PIN = 8°C/w (outer pins) (approx.)

4. TA = Tc - P • BCA (ambient temperature)

5-407

231630-72

II

intef 386™ DX MICROPROCESSOR

9. ELECTRICAL DATA

9.1 INTRODUCTION

The following sections describe recommended elec­
trical connections for the 386 DX, and its electrical
specifications.

9.2 POWER AND GROUNDING

9.2. 1 Power Connections

The 386 DX is implemented in CHMOS Ill and
CHMOS IV technology and has modest power re­
quirements. However, its high clock frequency and
72 output buffers (address, data, control, and HLDA)
can cause power surges as multiple output buffers
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 20 Vee
and 21 Vss pins separately feed functional units of
the 386 DX.

Power and ground connections must be made to all
external Vee and GND pins of the 386 DX. On the
circuit board, all Vee pins must be connected on a
Vee plane. All Vss pins must be likewise connected
on a GND plane.

9.2.2 Power Decoupling
Recommendations

Liberal decoupling capacitance should be placed
near the 386 DX. The 386 DX driving its 32-bit paral­
lel address and data buses at high frequencies can
cause transient power surges, particularly when driv­
ing large capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening
circuit board traces between the 386 DX and

decoupling capacitors as much as possible. Capaci­
tors specifically for PGA packages are also commer­
cially available, for the lowest possible inductance.

9.2.3 Resistor Recommendations

The ERROR# and BUSY# inputs have resistor pull­
ups of approximately 20 Kn built-in to the 386 DX to
keep these signals negated when no 387 DX co­
processor is present in the system (or temporarily
removed from its socket). The BS16# input also has
an internal pullup resistor of approximately 20 Kn,
and the PEREQ input has an internal pulldown resis­
tor of approximately 20 Kn.

In typical designs, the external pullup resistors
shown in Table 9-1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pullup resistors in other ways.

9.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in­
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, perhaps) prevent any
chance of spurious activity by connecting these as­
sociated inputs to GND:

Pin Signal

87 INTR
88 NMI
D14 HOLD

If not using address pipelining, pullup D13 NA# to
Vee.

If not using 16-bit bus size, pullup C14 BS16# to
Vee-

Pullups in the range of 20 Kn are recommended.

Table 9-1. Recommended Resistor Pullups to Vee

Pin and Signal PullupValue Purpose

E14 ADS# 20 Kn ±10% Lightly Pull ADS# Negated
During 386™ DX Hold
Acknowledge States

C10 LOCK# 20Kn ±10% Lightly Pull LOCK# Negated
During 386™ DX Hold
Acknowledge States

5-408

intef 386™ DX MICROPROCESSOR

9.3 MAXIMUM RATINGS

Table 9-2. Maximum Ratings

386TM DX
Parameter 20, 25, 33 MHz

. Maximum Rating

Storage Temperature -65'C to + 150'C
Case Temperature Under Bias - 65'C to + 110'C
Supply Voltage with Respect to Vss -0.5Vto +6.5V
Voltage on Other Pins -0.5V to Vee + 0.5V

9.4 D.C. SPECIFICATIONS

' Table 9-2 is a stress rating only, and functional oper­
ation at the maximums is not guaranteed. Functional
operating conditions are given in 9.4 D.C. Specifica­
tions and 9.5 A.C. Specifications.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 386
DX contains protective circuitry to resist damage
from static electric discharge, always take precau­
tions to avoid high static voltages or electric fields.

Functional Operating Range: Vee = 5V ± 5%; T CASE = 0°C to 85°C

Table 9-3. 386™ DX D.C. Characteristics

386™ DX

Symbol Parameter
20 MHz, 25 MHz,

Unit Test
33MHz Conditions

Min Max

V1L input Low Voltage -0.3 0.8 v (Note 1)

V1H Input High Voltage 2.0 Vee+ 0.3 v
V1LC CLK2 Input Low Voltage -0.3 0.8 v (Note 1)

V1HC CLK2 Input High Voltage
20MHz Vee - 0.8 Vee+ 0.3 v
25 MHz and 33 MHz 3.7 Vee+ 0.3 v

VoL Output Low Voltage
loL = 4 mA: A2-A31, DO-D31 0.45 v
loL = 5 mA: BEO#-BE3#, WIR#, 0.45 v

DIC#, M/10#, LOCK#, ADS#, HLDA

VoH Output High Voltage
loH = 1 mA: A2-A31, DO-D31 2.4 v
loH = 0.9 mA: BEO#-BE3#, WIR#, 2.4 v

DIC#, MllO#, LOCK#, ADS#, HLDA

lu Input Leakage Current ± 15 µA ov ~ V1N ~Vee
(For Ali Pins except BS16#, PEREQ,
BUSY#, and ERROR#)

l1H Input Leakage Current 200 µA V1H = 2.4V (Note 2)
(PEREQ Pin)

l1L Input Leakage Current -400 µA V1L = 0.45 (Note 3)
(BS16#, BUSY#, and ERROR# Pins)

ILO Output Leakage Current ±15 µA 0.45V ~ VouT ~ Vee

Ice Supply Current
CLK2 = 40 MHz: with 20 MHz 386™ DX 500 mA Ice Typ. = 460 mA
CLK2 = 50 MHz: with 25 MHz 386™ DX 550 mA Ice Typ. = 500 mA
CLK2 = 66 MHz: with 33 MHz 386™ DX 550 mA Ice Typ. = 400 mA

C1N Input or 110 Capacitance 10 pF Fe = 1 MHz (Note 4)

CouT Output Capacitance 12 pF Fe = 1 MHz (Note 4)

CcLK CLK2 Capacitance 20 pF Fe = 1 MHz (Note 4)

NOTES:
1. The min value, -0.3, is not 100% tested.
2. PEREQ input has an internal pulldown resistor.
3. BS16#, BUSY# and ERROR# inputs each have an internal pullup resistor.
4. Not 100% tested.

5-409

I

intJ 386™ DX MICROPROCESSOR

9.5 A.C. SPECIFICATIONS

9.5.1 A.C. Spec Definitions

The A.G. specifications, given in Tables 9-4, 9-5, and
9-6, consist of output delays, input setup require­
ments and input hold requirements. All A.G. specifi­
cations are relative to the CLK2 rising edge crossing
the 2.0V level.

A.G. spec measurement is defined by Figure 9-1. In­
puts must be driven to the voltage levels indicated
by Figure 9-1 when A.G. specifications are mea­
sured. 386 DX output delays are specified with mini­
mum and maximum limits, measured as shown. The
minimum 386 DX delay times are hold times

CLK2 [2V

OUTPUTS [
(DO-D31)

provided to external circuitry. 386 DX input setup
and hold times are specified as minimums, defining
the smallest acceptable sampling window. Within
the sampling window, a synchronous input signal
must be stable for correct 386 DX operation.

Outputs NA#, W/R#, D/C#, M/10#, LOCK#,
BEO#-BE3#, A2-A31 and HLDA only change at
the beginning of phase one. DO-D31 (write cycles)
only change at the beginning of phase two. The
READY#, HOLD, BUSY#, ERROR#, PEREQ and
DO-D31 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, BS16#, INTR and
NMI inputs are sampled at the beginning of phase
two.

Tx

2V '-----"I

INPUTS
(NA#. BS 16#, [

INTR,NMI)

3.0V $\\'0.'\"Di'CVALID INPUT 1.SV}\~'\\~'\
OV I

INPUTS
(READY#, HOLD, BUSY#, [

ERROR#. PEREQ, DO-D31)

LEGEND:

NOTES:

@-MAXIMUM OUTPUT DELAY SPEC.

@-MINIMUM OUTPUT DELAY SPEC.

©-MINIMUM INPUT SETUP SPEC.

@-MINIMUM INPUT HOLD SPEC.

1. Input waveforms have tr s 2.0 ns from 0.8V to 2.0V.
2. See section 9.5.8 for typical output rise time versus load capacitance.

c

Figure 9-1. Drive Levels and Measurement Points for A.C. Specifications

5-410

231630-37

infef 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables
Functional Operating Range: Vee = 5V ± 5%; T CASE = 0°C to + 85°C

Table 9-4. 33 MHz 386™ DX A.C. Characteristics

33MHz
Ref.

Symbol Parameter 386™ DX Unit
Fig.

Notes

Min Max

Operating Frequency 8 33.3 MHz Half of CLK2 Frequency

t1 CLK2 Period 15.0 62.5 ns 9-3

t2a CLK2 High Time 6.25 ns 9-3 at2V

t2b CLK2 High Time 4.5 ns 9-3 at 3.7V

t3a CLK2 Low Time 6.25 ns 9-3 at2V

t3b CLK2 Low Time 4.5 ns 9-3 at 0.8V

t4 CLK2 Fall Time 4 ns 9-3 3.7V to O.SV (Note 3)

t5 CLK2 Rise Time 4 ns 9-3 0.8V to 3.7V (Note 3)

t6 A2-A31 Valid Delay 4 15 ns 9-5 CL·= 50 pF

t7 A2-A31 Float Delay 4 20 ns 9-6 (Note 1)

t8 BEO#-BE3#, LOCK# Valid Delay 4 15 ns 9-5 CL= 50 pF

t9 BEO#-BE3#, LOCK# Float Delay 4 20 ns 9-6 (Note 1)

t10 WIR#, MllO#, DIC#, Valid Delay 4 15 ns 9-5 CL= 50 pF

t10a ADS# Valid Delay 4 14.5 ns 9-5 CL= 50 pF

t11 WIR#, MllO#, DIC#, ADS# Float Delay 4 20 ns 9-6 (Note 1)

t12 DO-D31 Write Data Valid Delay 7 24 ns 9-5a CL = 50 pF, (Note 4) I
t12a DO-D31 Write Data Hold Time 2 9-5b CL= 50 pF

t13 DO-D31 Float Delay 4 17 ns 9-6 (Note 1)

t14 HLDA Valid Delay 4 20 ns 9-6 CL= 50 pF

t15 NA# Setup Time 5 ns 9-4

t16 NA# Hold Time 2 ns 9-4

t17 BS16# Setup Time 5 ns 9-4

t18 BS16# Hold Time 2 ns 9-4

t19 READY# Setup Time 7 ns 9-4

t20 READY# Hold Time 4 ns 9-4

5-411

intJ 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee = 5V ±5%; TeASE = 0°C to +85°C

Table 9-4. 33 MHz 386™ DX A.C. Characteristics {Continued)

33MHz
Ref.

Symbol Parameter 386™ DX Unit
Fig.

Notes

Min Max

t21 DO-D31 Read Setup Time 5 ns 9.4

t22 DO-D31 Read Hold Time 3 ns 9.4

t23 HOLD Setup Time 11 ns 9.4

t24 HOLD Hold Time 2 ns 9.4

t25 RESET Setup Time 5 ns 9.7

t26 RESET Hold Time 2 ns 9.7

t27 NMI, INTR Setup Time 5 ns 9-4 (Note 2)

t28 NMI, INTR Hold Time 5 ns 9-4 (Note 2)

t29 PEREQ, ERROR#, BUSY# Setup Time 5 ns 9-4 (Note 2)

t30 PEREQ, ERROR#, BUSY# Hold Time 4 ns 9-4 (Note 2)

NOTES:

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to eLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific eLK2 period.
3. Rise and fall times are not tested.
4. Min. time not 100% tested.

5-412

intJ 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee = 5V ±5%; TeASE = 0°C to +85°C

Table 9-5. 25 MHz 386™ DX A.C. Characteristics

25MHz
Ref.

Symbol Parameter 386TM DX Unit
Fig.

Notes

Min Max

Operating Frequency 4 25 MHz Half of CLK2 Frequency

t1 CLK2 Period 20 125 ns 9-3

t2a CLK2 High Time 7 ns 9-3 at2V

t2b CLK2 High Time 4 ns 9-3 at 3.?V

t3a CLK2 Low Time 7 ns 9-3 at2V

t3b CLK2 Low Time 5 ns 9-3 at o.av

t4 CLK2 Fall Time 7 ns 9-3 3.?Vto o.av

t5 CLK2 Rise Time 7 ns 9-3 o.av to 3.?V

t6 A2-A31 Valid Delay 4 21 ns 9-5 CL= 50 pF

t? A2-A31 Float Delay 4 30 ns 9-6 (Note 1)

ta BEO#-BE3# Valid Delay 4 24 ns 9-5 CL= 50 pF

t8a LOCK# Valid Delay 4 21 ns 9-5 CL= 50 pF

t9 BEO#-BE3#, LOCK# Float Delay 4 30 ns 9-6 (Note 1)

t10 WIR#, MllO#, DIC#, ADS# Valid Delay 4 21 ns 9-5 CL= 50 pF

t11 WIR#, MllO#, DIC#, ADS# Float Delay 4 30 ns 9-6 (Note 1)

t12 DO-D31 Write Data Valid Delay 7 27 ns 9-5a CL= 50 pF El
t12a DO-D31 Write Data Hold Time 2 9-5b CL= 50 pF

t13 D0-031 Float Delay 4 22 ns 9-6 (Note 1)

t14 HLDA Valid Delay 4 22 ns 9-6 CL= 50 pF

t15 NA# Setup Time 7 ns 9-4

t16 NA# Hold Time 3 ns 9-4

t17 BS16# Setup Time 7 ns 9-4

t18 BS16# Hold Time 3 ns 9-4

t19 READY# Setup Time 9 ns 9-4

t20 READY# Hold Time 4 ns 9-4

5-413

intef 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee = 5V ±5%; TeASE = o·c to +85°C

Table 9-5. 25 MHz 386™ DX A.C. Characteristics (Continued)

25MHz
Ref.

Symbol Parameter 386™ DX Unit
Fig.

Notes

Min Max

t21 DO-D31 Read Setup Time 7 ns 9-4

t22 DO-D31 Read Hold Time 5 ns 9-4

t23 HOLD Setup Time 15 ns 9-4

t24 HOLD Hold Time 3 ns 9-4

t25 RESET Setup Time 10 ns 9-7

t26 RESET Hold Time 3 ns 9-7

t27 NMI, INTR Setup Time 6 ns 9-4 (Note 2)

t28 NMI, INTR Hold Time 6 ns 9-4 (Note 2)

t29 PEREQ, ERROR#, BUSY# Setup Time 6 ns 9-4 (Note 2).

t30 PEREQ, ERROR#, BUSY# Hold Time 5 ns 9-4 (Notes2, 3)

NOTES:

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to eLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a speC:ific eLK2 period.
3. Symbol Parameter Min

Tc= o·e t30 PEREQ, ERROR#, BUSY# Hold Time 4
Tc + 85°e t30 PEREQ, ERROR#' BUSY# Hold Time 5

5-414

intJ 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee= 5V ±5%; TeASE = 0°C to +85°C

Table 9.6. 20 MHz 386TM DX A.C. Characteristics

20MHz Ref.
Symbol Parameter 386™ DX Unit Fig. Notes

Min Max

Operating Frequency 4 20 MHz Half of CLK2
Frequency

t1 CLK2 Period 25 125 ns 9-3

t2a CLK2 High Time 8 ns 9-3 at2V

t2b CLK2 High Time 5 ns 9-3 at <Vee - 0.8V)

taa CLK2 Low Time 8 ns 9-3 at2V

tab CLK2 Low Time 6 ns 9-3 ato.0v

~ CLK2 Fall Time 8 ns 9-3 <Vee - o.8V) to o.8V

ts CLK2 Rise Time 8 ns 9-3 o.8V to (Vee - o.8V)

ts A2.,-A31 Valid Delay 4 30 ns 9-5 CL= 120pF

t1 A2-A31 Float Delay 4 32 . ns 9-6 (Note 1)

ta BEO#-BE3#, LOCK# 4 30 ns 9-5 CL= 75 pF
Valid Delay

tg BEO#-BE3#, LOCK# 4 32 ns 9-6 (Note 1)
Float Delay

t10 WIR#, MllO#, DIC#, 6 28 ns 9-5 CL= 75pF
ADS# Valid Delay

t11 WIR#, M/10#, DIC#, 6 30 ns 9-6 (Note 1) I
ADS# Float Delay

t12 DO-D31 Write Data 4 38 ns 9-5c CL= 120pF
Valid Delay

t13 DO-D31 Float Delay 4 27 ns 9-6 (Note 1)

t14 HLDA Valid Delay 6 28 ns 9-6 CL= 75 pF

t15 NA# Setup Time 9 ns 9-4

t15 NA# Hold Time 14 ns 9-4

t11 BS 16 # Setup Time 13 ns 9-4

t1a BS16# Hold Time 21 ns 9-4

t19 READY# Setup Time 12 ns 9-4

t20 READY# Hold Time 4 ns 9-4

t21 DO-D31 Read 11 ns 9-4
Setup Time

t22 DO-D31 Read 6 ns 9-4
Hold Time

t23 HOLD Setup Time 17 ns 9-4

t24 HOLD Hold Time 5 ns 9-4

t25 RESET Setup Time 12 ns 9-7'

5-415

intef 386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee = 5V ± 5%; T CASE = 0°C to + 85°C

Table 9·6. 20 MHz 386™ DX A.C. Characteristics (Continued)

20MHz
Ref.

Symbol Parameter 386™ DX Unit
Fig.

Notes

Min Max

t26 RESET Hold Time 4 ns 9-7

t27 NMI, INTR Setup Time 16 ns 9-4 (Note 2)

t2s NMI, INTR Hold Time 16 ns 9-4 (Note 2)

t29 PEREQ,ERROR#,BUSY# 14 ns 9-4 (Note 2)
Setup Time

t3o PEREQ,ERROR#,BUSY# 5 ns 9-4 (Note 2)
Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

5-416

infef 386™ DX MICROPROCESSOR

9.5.3 A.C. Test Loads

386 DX CPU 0----,
OUTPUT _l_

"JCL

231630-38

CL = 120 pF on A2-A31, DO-D31
CL= 75 pF on BEO#-BE3#, W/R#, M/10#, DIC#, ADS#,
LOCK#, HLDA
CL includes all parasitic capacitances.

Figure 9-2. A.C. Test Load

Tx
•2

CLK2 [

READY# [

HOLD [

D0-031 [(INPUT)

BUSY#,
[ERROR#

PEREQ

NA# [

BS16# [

INTR, [NMI

9.5.4 A.C. Timing Waveforms

Figure 9-3. CLK2 Timing

Tx Tx

231630-39

231630-40

Figure 9-4. Input Setup and Hold Timing

5-417

I

intef 386TM DX MICROPROCESSOR

Tx

CLK2 [

BEO#-BE3#, [LOCK#

W/R#, M/10#, [D/C#.ADS#

A2-A31 [

HLDA [
231630-41

Figure 9-5. Output Valid Delay Timing

CLK2 [CLK2 [

W/R#[_J

D0-031[VALID n+1

231630-79 231630-80

Figure 9-5a. Write Data Valid Delay Timing
(25 MHz, 33 MHz)

Figure 9·5b. Write Data Hold Timing
(25 MHz, 33 MHz)

CLK2 [

VALID n+1

231630-81

Figure 9·5c. Write Data Valid Delay Timing (20 MHz)

5-418

386™ DX MICROPROCESSOR

9.5.5 Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL= 120 pf)

nom+6

... nom+3

5
j ...
0

nom

0
::::;
~ nom-3
::>
I!:
::>
0 nom-6

nom-9 .__ _ _.._ _ __..__..._.. _ ____.

50 75 100 25 150

CL (picofarads)

NOTE:
This graph will not be linear outside of the CL range shown.

9.5.6 Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL = 75 pf)

nom+9

... nom+6
5
j ...

nom+3 0
0
::::;
~
.... nom
::>
0..

,
::>
0

nom-3

nom-6 75 100 125 150

CL (picofarods)

NOTE:
This graph will not be linear outside of the CL range shown.

5-419

231630-77

I

231630-82

intJ 386™ DX MICROPROCESSOR

9.5.7 Typical Output Valld Delay Versus Load Capacitance
at Maximum Operating Temperature (CL = 50 pf)

nom+9
....
..$

~ noni+6
c
c :::;

nom+3 ~
....
~

I!:
~
0

nom

nom-3

50 75 100 125 150

CL (picofarads)

NOTE:
This graph will not be linear outside of the CL range shown.

9.5.8 Typical Output Rise Time Versus. Load Capacitance
at Maximum Operating Temperature

8

> q

"' 6 I

~
0 4
,$

"' ::E
;: 2
"' U)

ii:

8~~~~~~~~

50 75 100 125 150

231630-83

CL (picofarads)
231630-78

NOTE:
This graph will not be linear outside of the CL range shown.

5•420

intef 386TM DX MICROPROCESSOR

Th Tl OR T1

CLK2 [
MAX

BEO#-BE3#, [LOCK#

MAX
W/R#, M/10#, [D/C#,ADS#

A2-A31 [

DO-D31 [

HLDA [

MAX

MIN

(HIGHZ)

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

Figure 9·6. Output Float Delay and HLl)A Valid Delay Timing

-RESET-----INITIALIZATION SEQUENCE----

CLK2 [

RESET [

The second_ internal processor phase following RESET high-to-low transition (provided 125 and 126 are met) is <j>2.

Figure 9-7. RESET Setup and Hold Timing, and Internal Phase

5-421

MAX

231630-42

I
231630-43

386TM DX MICROPROCESSOR

10.0 Revision History

This 386 DX data sheet, version -005, contains updates and improvements to previous versions. A revision
summary is listed here for your convenience.

The sections significantly revised since version -001 are:

2.9.6 Sequence of exception checking table added.

2.9.7 Instruction restart revised.

2.11.2

2.12

3.1

4.4.3.3

Figures 4-15a, 4-15b

4.6.4

4.6.6

5.6

5.8

5.8.1

Table 6-3

7.

Figures 7-8, 7-9, 7-10

6.2.3.4

TLB testing revised.

Debugging support revised.

LOCK prefix restricted to certain instructions.

1/0 privilege level and 110 permission bitmap added.

110 permission bitmap added.

Protection and 1/0 permission bitmap revised.

Entering and leaving virtual 8086 mode through task switches, trap and interrupt
gates, and IRET explained.

Self-test signature stored in EAX.

Coprocessor interface description added.

Software testing for coprocessor presence added.

PGA package thermal characteristics added.

Designing for ICE-386 revised.

ICE-386 clearance requirements added.

Encoding of 32-bit address mode with no "sib" byte corrected.

The sections significantly revised since version ·002 are:

Table 2-5 Interrupt vector assignments updated.

Figure 4-15a BiLmap_offset must be less than or equal to DFFFH.

Figure 5-28

5.7

9.4

9.5

Table6-1

386 DX outputs remain in their reset state during self-test.

Component and revision identifier history updated.

20 MHz D.C. specifications added.

16 MHz A.C. specifications updated. 20 MHz A.C. specifications added.

Clock counts updated.

The sections significantly revised since version -003 are:

Table 2-6b Interrupt priorities 2 and 3 interchanged.

2.9.8 Double page faults do not raise double fault exception.

Figure 4-5

5.4.3.4

Figures 5-16, 5-17,

5-19, 5-22

9.5

Maximum-sized segments must have segments Base11 .. o = 0.
BS16# timing corrected.

BS16# timing corrected. BS16# must not be asserted once NA# has been

sampled asserted in the current bus cycle.

16 MHz and 20 MHz A.C. specifications revised. All timing parameters are now
guaranteed at 1.5V test levels. The timing parameters have been adjusted to
remain compatible with previous 0.8V/2.0V specifications.

5-422

intJ 386™ DX MICROPROCESSOR

The sections significantly revised since version -004 are:
Chapter 4 25 MHz Clock data included.

Table 2-4

5.4.4

Table 5-10

Table 9-3

9.5.2

Figure 9-5

Table 6-1

Segment Register Selection Rules updated.

Interrupt Acknowledge Cycles discussion corrected.

Additional Stepping Information added.

Ice values updated.

Table for 25 MHz A.G. Characteristics added. A.G. Characteristics tables reor•
dered.

Output Valid Delay Timing Figure reconfigured. Partial data now provided in addi­
tional Figures 9-5a and 9-5b.

Clock counts updated and formats corrected.

The sections significantly revised since version -005 are:
Table of Contents Simplified.

Chapter 1

2.3.6

Table 2-4

Figure 4-6

Figure 4-7

5.2.3

5.2.8.4

5.5.3

Figure5-28

.Chapters

Chapter?

Chapters

Table 9-3

Table 9-3

Table 9-4

Figure 9-5

Figure 9-5c

9.5.6

9.5.7

Figure 9.6

Pin Assignment.

Control Register 0.

Segment override prefixes possible.

Note added.

Note added.

Data bus state at end of cycle.

Coprocessor error.

Bus activity during and following reset.

ERROR#.

Moved forward in datasheet.

Moved forward in datasheet.

Upgraded to chapter.

25 MHz Ice Typ. value corrected.

33 MHz D.C. Specifications added.

33 MHz A.G. Specifications added.

t8a and t1 Oa added.

Added.

Added derating for CL = 75 pF.

Added derating for CL = 50 pF.

t8a and t1 Oa added.

The sections significantly revised since version -006 are:
2.3.4 Alignment of maximum sized segments.

2.9.8 Double page faults do not raise double fault exception.

5.5.3 ERROR# and BUSY# sampling after RESET.

Figure 5-21

Figure 5-26

Figure 5-28

6.2.3.1

Chapter?

9.5.2

9.5.2

BS16# timing altered.

READY# timing altered.

ERROR# timing corrected.

Corrected Encoding of Register Field Chart.

Updated ICE-386 DX information.

Remove preliminary stamp on 25 MHz A.C. Specifications.

Remove preliminary stamp on 33 MHz A.C. Specifications.

5-423

I

intef 386T.M DX MICROPROCESSOR

The sections significantly revised since version -007 are:
Table of Contents Page numbers revised.

Figure 5-15 8816# timing altered.

Figure 5-22 Previous cycle, T2 changed to Idle cycle, Ti.

6.1 Note about wait states added.

Table 6-1

Table 6-1

Table 8-2

Table 8-2

Opcodes for AND, OR, and XOR instructions corrected.

Bits 3, 4, and 5 of the "mod rim" byte corrected for the L TR instruction.

Reference to Figure 6-4 should be reference Figure 8-2.

Note # 4 added.

5-424

387™ DX
MATH COPROCESSOR

• High Performance 80-Bit Internal • Upward Object-Code· Compatible from
Architecture 8087 and 80287

• Implements ANSI/IEEE Standard 754- • Full-Range Transcendental Operations
1985 for Binary Floating-Point for SINE, COSINE, TANGENT,
Arithmetic ARCTANGENT and LOGARITHM

• Six to Eleven Times 8087180287 • Built-In Exception Handling
Performance • Operates Independently of Real,

• Expands 386™ DX CPU Data Types to Protected and Vlrtual-8086 Modes of
Include 32-, 64-, 80-Bit Floating Point, the 386™ DX Microprocessor
32-, 64-Bit Integers and 18-Digit BCD • Eight 80-Bit Numeric Registers, Usable
Operands as Individually Addressable General

• Directly Extends 386™ DX CPU Registers or as a Register Stack
lnstructlon·Set to Include • Available in 68-Pin PGA Package
Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions

(See Packaging Spec: Order #231369)

. for All Data Types

The Intel 387™ DX Math CoProcessor (MCP) is an extension to the Intel 386™ microprocessor architecture.
The combination of the 387 DX with the 386™ DX Microprocessor dramatically increases the processing
speed of computer application software which utilize mathmatical operations. This makes an ideal computer
workstation platform for applications such as financial modeling and spreadsheets, CAD/CAM, or graphics.

The 387 .DX Math CoProcessor adds over seventy mnemonics to the 386 DX Microprocessor instruction set.
Specific 387 DX math operations include logarithmic, arithmetic, exponentional, and triginometric functions.
The 387 DX supports integer, extended integer, floating point and BCD data formats, and fully conforms to the
ANSI/IEEE floating point standard.

The 387 DX Math CoProcessor is object code compatible with the 80387SX, and upward object code compati­
ble from the 80287 and 8087 math coprocessors. Object code for 386 DX/387 DX is also compatible with the
Intel 486™ microprocessor. The 387 DX is manufactured on 1 micron, CHMOS IV technology and packaged
in a 68-pin PGA package.

BUS CONTROL LOGIC

""'"

I DATA IN'ltRFACE AND CONTROL UNIT I .. FLOATIHG l'Olllr UNlr

Figure 0.1. 387™ DX Math Coprocessor Block Diagram

5-425

240448-1

September 1990
Order Number: 240448-003

I

intef 387™ DX MATH COPROCESSOR

CONTENTS PAGE

1.0 FUNCTIONAL DESCRIPTION , , 5-429

2.0 PROGRAMMING INTERFACE . 5-430

2.1 Data Types .•... ~ · 5-430

2.2 Numeric Operands . 5-430

2.3 Register Set. .. • 5-432

2.3.1 Data Registers • 5-432

2.3.2 Tag Word • . • . 5-432

2.3.3 Status Word.· ; ; . . . 5-433

2.3.4 Instruction and Data Pointers ·. 5-436

2.3.5 Control Word . 5-438

2.4 Interrupt Description... 5-438

2.5 Exception Handling. • . 5-439

2.6 Initialization ... ~.................. 5-439

2. 7 8087 and 80287 Compatibility . 5-440

2.7.1 General Differences'................................... 5-440

2. 7 .2 Exceptions .. ·. 5-441

3.0 HARDWARE INTERFACE .. .' 5-441

3.1 Signal Description 5-441

3.1.1 386™ DX CPU Clock 2 (CPUCLK2) . 5-444

3.1.2 387™ DX MCP Clock 2 (NUMCLK2),. . . 5-444

3.1.3 387™ DX MCP Clocklng Mode (CKM) . 5-444

3.1.4 System Reset (RESETIN) . 5-445

3.1.5 Processor Extension Request (PEREQ) . 5-445

3.1.6 Busy Status (BUSY#) . 5-445

3.1. 7. Error Status (ERROR#) .. , .. , • . • 5-445

3.1.8 Data Pins (D31-DO) ... ·. 5-445

3.1.9 Write/Read Bus Cycle (W /R #) . 5-445

3.1.1 O Address Strobe (ADS#) 7 • • • • • • • • • • • • • • , 5-445

3.1.11 Bus Ready Input (READY#) . 5-446

3.1.12 ReadyOutput(READYO#) .. 5-446

3.1.13 Status Enable (STEN) . , : • 5-446

3.1.14 MCPSelect#1 (NPS1#) .. 5-446

3.1.15 MCP Select #2 (NPS2) ... 5-446

3.1.16 Command (CMDO#) 5-446

3.2 Processor Architecture ... : . . . 5-446

3.2.1 Bus Control Logic .. , . . . 5-447

3.2.2 Data Interface and Control Unit . 5-447

3.2.3 Floating Point Unit . 5-447

5-426

intef 387™ DX MATH COPROCESSOR

CONTENTS PAGE

3.3 System Configuration .. . 5-447

3.3.1 Bus Cycle Tracking .. . 5-448

3.3.2 MCP Addressing 5-448

3.3.3 Function Select .. . 5-448

3.3.4 CPU/t,ACP Synchronization .. . 5-448

3.3.5 Synchronous or Asynchronous Modes 5-449

3.3.6 Automatic Bus Cycle Termination .. . 5-449

3.4 Bus Operation 5-449

3.4.1 Nonpipelined Bus Cycles .. . 5-450

3.4.1.1 Write Cycle .. . 5-450

3.4.1.2 Read Cycle .. . 5-450

3.4.2 Pipelined Bus Cycles .. . 5-451

3.4.3 Bus Cycles of Mixed Type .. . 5-452

3.4.4 BUSY# and PEREQ Timing Relationship 5-452

4.0 ELECTRICAL DATA .. . 5-454

4.1 Absolute Maximum Ratings .. . 5-454

4.2 DC Characteristics .. . 5-454

4.3 AC Characteristics .. . 5-455

5.0 387™ DX MCP EXTENSIONS TO THE 386™ DX CPU INSTRUCTION SET 5-460

APPENDIX A-COMPATIBILITY BETWEEN THE 80287 MCP AND THE 8087 5-464

FIGURES PAGE

Figure 0.1 387™ DX Math Coprocessor Block Diagram . 5-425

Figure 1.1 386TM DX Microprocessor and 387TM DX Math Coprocessor Register Set 5-429

Figure 2.1 387™ DX MCP Tag Word . 5-432

Figure 2.2 MCP Status Word . • 5-433

Figure 2.3 Protected Mode 387™ DX MCP Instruction and Data Pointer Image in Memory,
32-Bit Format . 5-436

Figure 2.4 Real Mode 387™ DX MCP Instruction and Data Pointer Image in Memory, 32-Bit
Format. 5-437

Figure 2.5 Protected Mode 387™ DX MCP Instruction and Data Pointer Image in Memory,
16-Bit Format . 5-437

Figure 2.6 Real Mode 387™ DX MCP Instruction and Data Pointer Image in Memory, 16-Bit
Format . 5-437

Figure 2.7 387™ DX MCP Control Word .. 5-438

Figure 3.1 387™ DX MCP Pin Configuration .. 5-443

Figure 3.2 Asynchronous Operation . 5-444

Figure 3.3 386™ DX Microprocessor and 387™ DX MCP Coprocessor System
Configuration . 5-44 7

Figure 3.4 Bus State Diagram . 5-449

Figure 3.5 Nonpipelined Read and Write Cycles .. 5-451

5-427

I

intJ 387™ DX MATH COPROCESSOR

FIGURES PAGE

Figure 3.6 Fastest Transitions to and from Pipelined Cycles . 5-452

Figure 3. 7 Pipelined Cycles with Wait States . 5-453

Figure 3.8 STEN, BUSY# and PEREQ Timing Relationship 5-453

Figure 4.0a Typical Output Valid Delay vs Load Capacitance at Max Operating Temperature 5-456

Figure 4.0b Typical Output Rise Time vs Load Capacitance at Max Operating Temperature . 5-456

Figure 4.1 CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output A.C.
Specifications . 5-457

Figure 4.2 Output Signals . 5-457

Figure 4.3 Input and 110 Signals · 5-458

Figure 4.4 RESET Signal . 5-458

Figure 4.5 Float from STEN .. · 5-458

Figure 4.6 Other Parameters . 5-459

TABLES PAGE

Table 2.1 387™ DX MCP Data Type Representation in Memory 5-431

Table 2.2 Condition Code Interpretation•...................... 5-434

Table 2.3 Condition Code Interpretation after FPREM and FPREM1 Instructions 5-435

Table 2.4 Condition Code Resulting from Comparison 5-435

Table 2.5 Condition Code Defining Operand Class . 5-435

Table 2.6 386TM DX Microprocessor Interrupt Vectors Reserved for MCP 5-439

Table 2. 7 Exceptions . 5-440

Table 3.1 387™ DX MCP Pin Summary .. 5-442

Table 3.2 387™ DX MCP Pin Cross-Reference .. 5-442

Table 3.3 Output Pin Status after Reset .. 5-445

Table 3.4 Bus Cycles Definition .. : 5-448

Table 4.1 DC Specifications : 5-454

Table 4.2 Timing Requirements ~ 5-455

Table 4.2a Combinations of Bus Interface and Execution Speeds 5-455

Table 4.2b Timing Requirements of the Execution Unit 5-455

Table 4.2c Timing Requirements of the Bus Interface Unit 5-455

Table 4.3 Other Parameters ... 5-459

5-428

intJ 387™ DX MATH COPROCESSOR

386™ DX Microprocessor Registers

GENERAL REGISTERS SEGMENT REGISTERS
31 15 0 15 0

EAX
AX cs

AH AL SS

OS EBX
BX

BH BL
ES

ECX
ex

CH CL FS

EDX
DX GS

DH DL

ESI SI 31 0

EDI DI

I : EFLAGS
E~P

: I
ESP BP

ESP SP

387™ DX MCP Data Registers

79 78 64 63 0

RO Sign Exponent

R1

Significand

1--~+-~~--+~~~~~~--1

R2
1--~+-~~--+~~~~~~--1

R3
t--~+-~~--+~~~~~~--1

R4
1--~+-~~--1~~~~~~--1

R5
l--~+-~~--+~~~~~~--1

R6
1--~+-~~--+~~~~~~--1

R7

15 0 47

Tag
Field
1 0

0

Control Register

Status Register

Tag Word

Instruction Pointer (in 386™ DX CPU)

Data Pointer (in 386™ DX CPU)

Figure 1.1. 386™ DX Microprocessor and 387™ DX Math Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The 387™ DX Math Coprocessor provides arithme­
tic instructions for a variety of numeric data types in
386™ DX Microprocessor systems. It also executes
numerous built-in transcendental functions (e.g. tan­
gent, sine, cosine, and log functions). The 387 DX
MCP effectively extends the register and instruction
set of a 386 DX Microprocessor system for existing
data types and adds several new data types as well.
Figure 1.1 shows the model of registers visible to
programs. Essentially, the 387 DX MCP can be treat­
ed as an additional resource or an extension to the
386 DX Microprocessor. The 386 DX Microproces­
sor together with a 387 DX MCP can be used as a
single unified system.

The 387 DX MCP works the same whether the 386
DX Microprocessor is executing in real-address
mode, protected mode, or virtual-8086 mode. All
memory access is handled by the 386 DX Micro­
processor; the 387 DX MCP merely operates on in­
structions and values passed to it by the 386 DX
Microprocessor. Therefore, the 387 DX MCP is not
sensitive to the processing mode of the 386 DX Mi­
croprocessor.

In real-address mode and virtual-8086 mode, the
386 DX Microprocessor and 387 DX MCP are com­
pletely upward compatible with software for
8086/8087, 80286/80287 real-address mode, and
386 DX Microprocessor and 80287 Coprocessor
real-address mode systems.

In protected mode, the 386 DX Microprocessor and
387 DX MCP are completely upward compatible with
software for 80286/80287 protected mode, and 386
DX Microprocessor and 80287 Coprocessor protect­
ed mode systems.

The only differences of operation that may appear
when 8086/8087 programs are ported to a protect­
ed-mode 386 DX Microprocessor and 387 DX MCP
system (not using virtual-8086 mode), is in the for­
mat of operands for the administrative instructions
FLDENV, FSTENV, FRSTOR and FSAVE. These in­
structions are normally used only by exception han­
dlers and operating systems, not by applications
programs.

The 387 DX MCP contains three functional units that
can operate in parallel to increase system perform­
ance. The 386 DX Microprocessor can be transfer­
ring commands and data to the MCP bus control
logic for the next instruction while the MCP floating­
point unit is performing the current numeric instruc­
tion.

5-429

El

intef 387™ DX MATH COPROCESSOR

2.0 PROGRAMMING INTERFACE

The MCP adds to the 386 DX Microprocessor sys­
tem additional data types, registers, instructions, and
interrupts specifically designed to facilitate high­
speed numerics processing. To use the MCP re­
quires no special programming tools, because all
new instructions and data types are directly support­
ed by the 386 DX CPU assembler and compilers for
high-level languages. All 8086/8088 development
tools that support the 8087 can also be used to de­
velop software for the 386 DX Microprocessor and
387 DX Math Coprocessor in real-address mode or
virtual-8086 mode. All 80286 development tools that
support the 80287 can also be used to develop soft­
ware for the 386 DX Microprocessor and 387 DX
Math Coprocessor.

All communication between the 386 DX Microproc­
essor and the MCP is transparent to applications
software. The CPU automatically controls the MCP
whenever a numerics instruction is executed. All
physical memory and virtual memory of the CPU are
available for storage of the instructions and oper­
ands of programs that use the MCP. All memory ad­
dressing modes, including use of displacement,
base register, index register, and scaling, are avail­
able for addressing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the MCP adds to the instruction
set of the 386 DX Microprocessor system.

2.1 Data Types

Table 2.1 lists the seven data types that the 387 DX
MCP supports and presents the format for each
type. Operands are stored in memory with the least
significant digit at the lowest memory address. Pro­
grams retrieve these values by generating the low­
est address. For maximum system performance, all
operands should start at physical-memory address­
es evenly divisible by four (doubleword boundaries);
operands may begin at any other addresses, but will
require extra memory cycles to access the entire op­
erand.

Internally, the 387 DX MCP holds all numbers in the
extended-precision real format. Instructions that
load operands from memory automatically convert
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating-point numbers, or
18-digit packed BCD numbers into extended-preci­
sion real format. Instructions that store operands in
memory perform the inverse type conversion.

2.2 Numeric Operands

A typical MCP instruction accepts one or two oper­
ands and produces a single result. In two-operand
instructions, one operand is the contents of an MCP
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.

5-430

inter 387™ DX MATH COPROCESSOR

Table 2.1. 387™ DX MCP Data Type Representation in Memory

Del•
Most Significant Byte = Highest Addreaed Byte

Range Preclelon oj1 oj1 0J1 0J1 oJ 1 0J1 oj1 Formate 7

Word Integer ±104 16 Bits J \TWOS
COMPLEMENT I

15 0

Short Integer ±109 32 Bits] nwo·s
COMPLEMENT)

31 0

Long Integer ±1018 64 Bits
63

1 x Jd11 MAGNITUDE
Packed BCD ±10±18 18 Digits d 10 d1!:i d1.i du di1 d11 d1u dt •• ., •• . ..

79 72

Single Preclllion · ±10±38 24 Bits 1 BIASED 1 S EXPONENT SIGNIFICANO]
31 23'L_ 0 ..

Double Predslon ±10±308 53 Bits 1 BIASED l SIGNIFICAND EXPONENT

183 s2\:" ..
Extandad tt= 10±4932 64 Bits 1 BIASED lrr SIGNIFICAND EXPONENT PreclsiOn

119
64 &3£

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)
(3) X = Bits have no significance; 387™ DX MCP ignores when loading, zeros when storing
(4)• = Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)

(7) Packed BCD: (-1)S (D17 ... Do)
(8) Real: (-1)S (2E-BIAS) (Fo F1···>

5-431

oj1 0]1 o]

J 1rwo·s
COMPLEMENTf

0

d.1 d, . , .. .J
0

J
0

I J
0

240448-2

intef 387™ DX MATH COPROCESSOR

15 0

TAG(?) TAG (6) TAG (5) TAG (4) TAG (3) TAG(2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 =Valid
01 =Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty

Figure 2.1. 387™ DX MCP Tag Word

2.3 Register Set

Figure 1.1 shows the 387 DX MCP register set.
When an MCP is present in a system, programmers
may use these registers in addition to the registers
normally available on the 386 DX CPU.

2.3.1 DATA REGISTERS

387 DX MCP computations use the MCP's data reg­
isters. These eight 80-bit registers provide the equiv­
alent capacity of twenty 32-bit registers. Each of the
eight data registers in the MCP is 80 bits wide and is
divided into "fields" corresponding to the MCPs ex­
tended-precision real data type.

The 387 DX MCP register set can be accessed ei­
ther as a stack, with instructions operating on the
top one or two stack elements, or as a fixed register
set, with instructions operating on explicitly designat­
ed registers. The TOP field in the status word identi­
fies the current top-of-stack register. A "push" oper­
ation decrements TOP by on·e and loads a value into
the new top register. A "pop" operation stores the
value from the current top register and then incre-

ments TOP by one. Like the 386 DX Microprocessor
stacks in memory, the MCP register stack grows
"down" toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one of the eight numerics registers. The
principal function of the tag word is to optimize the
MCPs performance and stack handling by making it
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the
actual data.

intef 387™ DX MATH COPROCESSOR

.-------------------MCPBUSY

,---,--,-------------- TOP OF STACK POINTER

.--+-+---+-~~-.------------ CONDITION CODE

15 0

TOP
S P U 0 Z D

F E E E E E E

ERROR SUMMARY STATUS-----~
STACK FLAG-------~

EXCEPTION FLAGS :
PRECISION--------~

UNDERFLOW-----------'
OVERFLOW----------~

ZERO DIVIDE----------'------'
DENORMALIZED OPERAND-----------------'

INVALID OPERATION--------------~
240448-3

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.
TOP values:

000 = Register O is Top of Stack
001 = Register 1 is Top of Stack .
111 = Register 7 is Top of Stack

For definitions of exceptions, refer to the section entitled
"Exception Handling"

Figure 2.2. MCP Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the MCP. It
may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSY# output of the 387 DX MCP.

Bits 13-11 (TOP) point to the 387 DX MCP register
that is the current top-of-stack.

The four numeric condition code bits (Cs-Co) are
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0).

Figure 2.2 shows the six exception flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the MCP has detected an exception while executing
an instruction. A later section entitled "Exception
Handling" explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or· FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR# output of the
MCP is activated immediately.

5-433

intef 387™ DX MATH COPROCESSOR

Table 2.2. Condition Code Interpretation

Instruction CO (S) l C3(Z) C1 (A) C2(C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0 =complete

02 00 01
orO/U# 1 = incomplete

FCOM, FCOMP,
FCOMPP, FTST, Result of comparison

Zero
Operand is not

FUCOM, FUCOMP, (see Table 2.4)
orO/U#

comparable
FUCOMPP, FICOM, (Table 2.4)
Fl COMP

FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)

FCHS, FASS, FXCH,
FINCSTP, FDECSTP,

Zero
Constant loads, UNDEFINED

orO/U#
UNDEFINED

FXTRACT, FLO,
FILO, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,

Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, orO/U#

FSCALE, FSORT,
FPATAN, F2XM1,
FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0 =complete

undefined 1 = incomplete
ifC2 = 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the·. stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

intef 387™ DX MATH COPROCESSOR

Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 co
Incomplete Reduction:

1 x x x further interation required
for complete reduction

01 00 02 OMOD8

0 0 0 0
0 1 0 1

Complete Reduction:
1 0 0 2

0
1 1 0 3

CO, C3, C1 contain three least

0 0 1 4
significant bits of quotient

0 1 1 5
1 0 1 6
1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class I C3 C2 C1 co ValueatTOP

0 0 0 0 + Unsupported
0 0 0 1 +NaN
0 0 1 0 - Unsupported
0 0 1 1 - NaN
0 1 0 0 +Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +o
1 0 0 1 +Empty
1 0 1 0 -0
1 0 1 1 - Empty
1 1 0 0 + Denormal
1 1 1 0 - Denormal

5-435

intef 387TM DX MATH COPROCESSOR

2.3.4 INSTRUCTION AND DATA POINTERS

Because the MCP operates in parallel with the CPU,
any errors detected by the MCP may be reported
after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the 386 DX Microprocessor and
387 DX Math Coprocessor contains two pointer reg­
isters that supply the address of the failing numeric
instruction and the address of its. numeric memory
operand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac­
tually located in the 386 DX CPU, but appear to be
located in the MCP because they are accessed by
the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the MCP.) Whenever

the 386 DX CPU decodes a new ESC instruction, it
saves the address of t~e instruction (including any
prefixes that may be present), the address of the
operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the 386 DX Microprocessor (protected mode or real­
address mode) and depending on the operand-size
attribute in effect (32-bit operand or 16-bit operand).
When the 386 DX Microprocessor is in virtual-8086
mode, the real-address mode formats are used.
(See Figures 2.3 through 2.6.) The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used
to transfer these values between the 386 DX Micro­
processor registers and memory. Note that the value
of the data pointer is undefined if the prior ESC in­
struction did not have a memory operand.

32-BIT PROTECTED MODE FORMAT
31

00000 I

23 15 7

RESERVED CONTROL WORD
.l. .l.

RESERVED STATUS WORD
.l.. .l.

RESERVED TAG WORD
.l.. .l.

IP OFFSET
..!.

OPCODE 10 .. 0 CS SELECTOR
.l.

DATA OPERAND OFFSET
.l.. .l.

RESERVED OPERAND SELECTOR
..l. ..l.

Figure 2.3. Protected Mode 387™ DX MCP Instruction and
Data Pointer Image in Memory, 32-Bit Format

5-436

0

0

4

8

c

10

14

18

intef

31

0000 I
0000 I

387™ DX MATH COPROCESSOR

23
32-BIT REAL-ADDRESS MODE FORMAT

15 7

RES~RVED CONTR~L WORD

RES':i_RVED STATU~WORD

RESERVED TAG WORD

RES~RVED INSTRUCTl0N_1'01NTER 15 .. 0

INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0

RES~RVED OPERAND PJINTER 15 .. 0

OPE1j_AND POINTER 31 .. 16
..L

I 0000 ..L 00000000

0

0

4

8

c
10

14

18

Figure 2.4. Real Mode 387™ DX MCP Instruction and Data Pointer Image in Memory, 32-Bit Format

16-BIT PROTECTED MODE FORMAT
15 7 0

..L

CONTROL WORD 0

STATUS WORD 2
/

TAG WORD 4
...L

IP OFFSET 6
...L

CS SELECTOR 8
..L

OPERAND OFFSET A

OPERAND SELECTOR c

Figure 2.5. Protected Mode 387™ DX MCP
Instruction and Data Pointer

Image in Memory, 16-Bit Format

5-437

16-BIT REAL-ADDRESS MODE AND
VIRTUAL-8086 MODE FORMAT

15 7 0
..1

CONTROL WORD
..L

STATUS WORD
..L

TAG WORD

INSTRUCTION POINTER 15 .. 0
..L

1P19.16 IoI OPCODE 10 .. 0
..L

OPERAND POINTER 15 .. 0

DP19.16lolo o o..Lo o o o o o o 0

Figure 2.6. Real Mode 387TM DX MCP
Instruction and Data Pointer

Image in Memory, 16-Bit Format

0

2

4

6

8

A

c

I

intef 387™ DX MATH COPROCESSOR

,....--...,..---,------------------ RESERVED

,....---------------- RESERVED•
,....--~------------ ROUNDING CONTROL

,....---.-------------- PRECISION CONTROL

15 0

x x x x P U 0 Z D x x
M M M M M M

RESERVED------~~

EXCEPTION MASKS :
PRECISION--------~

UNDERFLOW---------~

OVERFLOW----------~

• "O" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

ZERO DIVIDE-----------~
DENORMALIZED OPERAND-------------~

INVALID OPERATION--------------~

Precision Control
00-24 bits (single precision)
01-(reserved)
10-53 bits (double precision)
11-64 bits (extended precision)

Rounding Control
DO-Round to nearest or even
01-Round down (toward - ao)
10-Round up (toward + ao)
11-Chop (truncate toward zero)

240448-4

Figure 2.7. 387™ DX MCP Control Word

2.3.5 CONTROL WORD

The MCP provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
the MCP error and exception masking. Bits 5-0 of
the control word contain individual masks for each of
the six exceptions that the MCP recognizes.

The high-order byte of the control word configures
the MCP operating mode, including precision and
rounding.

• Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CW. Programs must ignore this bit.

• The rounding control (RC) bits (bits 11-10) pro­
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control

affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT, FASS, and
FCHS), and all transcendental instructions.

• The precision control (PC) bits (bits 9-8) can be
used to set the MCP internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci­
sion is· determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the 386 DX CPU are used to
report exceptional conditions while executing nu­
meric programs in either real or protected mode. Ta­
ble 2.6 shows these interrupts and their causes.

5-438

intef 387™ DX MATH COPROCESSOR

Table 2.6. 386™ DX Microprocessor Interrupt Vectors Reserved for MCP

Interrupt
Cause of Interrupt Number

7 An ESC instruction was encountered when EM or TS of the 386™ DX CPU control register
zero (CRO) was set. EM = 1 indicates that software emulation of the instruction is
required. When TS is set, either an ESC or WAIT instruction causes interrupt 7. This
indicates that the current MCP context may not belong to the current task.

9 An operand of a coprocessor instruction wrapped around an addressing limit (OFFFFH for
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be avoided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The 387TM DX MCP has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The 386™
DX CPU return address pushed onto the stack of the exception handler points to a WAIT
or ESC instruction (including prefixes). This instruction can be restarted after clearing the
exception condition in the MCP. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE
cannot cause this interrupt.

a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is near the largest valid I
address in the segment. Because of the wrap-around, the beginning and ending addresses of such an operand will be at opposite ends of the
segment. There are two ways that such an operand may also span inaccessible addresses: 1) ii the segment limit is not equal to the addressing
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte
operand that starts at valid offset FFFC will span addresses FFFC-FFFF and 0000-0003; however addresses FFFE and FFFF are not valid,
because they exceed the limit); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a
not-present page or a page to which the procedure does not have access rights.

2.5 Exception Handling

The 387 DX MCP detects six different exception
conditions that can occur during instruction execu­
tion. Table 2.7 lists the exception conditions in order
of precedence, showing for each the cause and the
default action taken by the MCP if the exception is
masked by its corresponding mask bit in the control
word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU at­
tempts to execute another ESC instruction or WAIT,
exception 7 occurs. The exception condition must
be resolved via an interrupt service routine. The 386
DX Microprocessor saves the address of the float­
ing-point instruction that caused the exception and
the address of any memory operand required by that
instruction.

2.6 Initialization

387 DX MCP initialization software must execute an
FNINIT instruction (i.e. an FINIT without a preceding
WAIT) to clear ERROR#. After a hardware RESET,
the ERROR# output is asserted to indicate that a
387 DX MCP is present. To accomplish this, the IE
and ES bits of the status word are set, and the IM bit
in the control word is reset. After FNINIT, the status
word and the control word have the same values as
in an 80287 after RESET.

5-439

intJ 387™ DX MATH COPROCESSOR

2. 7 8087 and 80287 Compatibility

This section summarizes the differences between
the 387 DX MCP and the 80287. Any migration from
the 8087 directly to the 387 DX MCP must also take
into account the differences between the 8087 and
the 80287 as listed in Appendix A.

Many changes have been designed into the 387 DX
MCP to directly support the IEEE standard in hard­
ware. These changes result in increased perform­
ance by eliminating the need for software that sup­
ports the standard.

2.7.1 GENERAL DIFFERENCES

The 387 DX MCP supports only affine closure for
infinity arithmetic, not projective closure. Bit 12 of
the Control Word (CW) no longer defines infinity
control. It is a reserved bit; but it is initialized to zero
after RESET or FINIT and is changeable upon load­
ing the CW. Programs must ignore this bit.

Operands for FSCALE and. FPATAN are no longer
restricted in range (except for ± oo); F2XM1 and
FPT AN accept a wider range of operands.

The results of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the 387 DX MCP supplies a
true tangent result in ST(1), and (always) a floating
point 1 in ST.

Rounding control is in effect for FLO constant.

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac­
tual register contents.

After reset, FINIT, and incomplete FPREM, the 387
DX MCP. resets to zero the condition code bits C3-
Co of the status word.

In conformance with the IEEE standard, the 387 DX
MCP does not support the special data formats:
pseudozero, pseudo-NaN, pseudoinfinity, and un­
normal.

Table 2.7. Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (O* oo, 010, (+ oo) + (- oo), etc.), or indefinite, or BCD indefinite

stack overflow/underflow (SF is also set).

Denormalized At least one of the operands is denormalized, i.e. it has Normal processing
Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is oo
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or oo

Underflow The true result is nonzero but too small to be Result is denormalized 'Or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing
Result specified format (e.g. 1 /3); the result is rounded continues
(Precision) according to the rounding mode.

5-440

intef 387™ DX MATH COPROCESSOR

2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 387 DX MCP:

1. When the overflow or underflow exception is
masked, the 387 DX MCP differs from the 80287
in rounding when overflow or underflow occurs.
The 387 DX MCP produces results that are con­
sistent with the rounding mode.

2. When the underflow exception is masked, the
387 DX MCP sets its underflow flag only if there
is also a loss of accuracy during denormaliza­
tion.

3. Fewer invalid-operation exceptions due to de­
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be­
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de­
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece­
dence over all other exceptions.

7. When the denormal exception is masked, the
387 DX MCP automatically normalizes denormal
operands. The 8087 /80287 performs unnormal
arithmetic, which might produce an unnormal re­
sult.

8. When the operand is zero, the FXTRACT in­
struction reports a zero-divide exception and
leaves - oo in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLO extended precision no longer reports denor­
mal exceptions, because the instruction is not
numeric.

11. FLO single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a signaling NaN, FLO
single/double precision signals an invalid-oper­
and exception.

12. The 387 DX MCP only generates quiet NaNs (as
on the 80287); however, the 387 DX MCP distin­
guishes between quiet NaNs and signaling
NaNs. Signaling NaNs trigger exceptions when
they are used as operands; quiet NaNs do not
(except for FCOM, FIST, and FBSTP which also
raise IE for quiet NaNs).

13. When stack overflow occurs during FPT AN and
overflow is masked, both ST(O) and ST(1) con­
tain quiet NaNs. The 80287 /8087 leaves the
original operand in ST(1) intact.

14. When the scaling factor is ± oo, the FSCALE
(ST(O), ST(1)) instruction behaves as follows
(ST(O) and ST(1) contain the scaled and scaling
operands respectively):

• FSCALE(O, oo) generates the invalid operation
exception.

• FSCALE(finite, - oo) generates zero with the
same sign as the scaled operand.

• FSCALE(finite, + oo) generates oo with the
same sign as the scaled operand.

The 8087 /80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The 387 DX MCP returns signed infinity/zero as
the unmasked response to massive overflow I
underflow. The 8087 and 80287 support a limit­
ed range for the scaling factor; within this range
either massive overflow/underflow do not occur
or undefined results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the 387 DX Math
Coprocessor pins are grouped by function as fol­
lows:

1. Execution control-CPUCLK2, NUMCLK2, CKM,
RESETIN

2. MCP handshake-PEREQ, BUSY#, ERROR#

3. Bus interface pins-031-00, W/R#, ADS#,
READY#, READYO#

4. Chip/Port Select-STEN, NPS1 #, NPS2,
CMDO#

5. Power supplies-Vee. Vss

Table. 3.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char­
acteristics. All output signals are tristate; they leave
floating state only when STEN is active. The output
buffers of the bidirectional data pins 031-00 are
also tristate; they leave floating state only in read
cycles when the MCP is selected (i.e. when STEN,
NPS1 #,and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.

5-441

intJ 387™ DX MATH COPROCESSOR

Table 3.1. 387™ DX MCP Pin Summary

Pin
Function

Active Input/ Referenced
Name State Output To

CPUCLK2 3S6™ DX CPU CLocK 2 I
NUMCLK2 3S7™ DX MCP CLocK 2 I
CKM 3S7™ DX MCP CLocKing Mode I
RESETIN System reset High I CPUCLK2

PEREQ Processor Extension High 0 CPUCLK2/STEN
REQuest

BUSY# Busy status Low 0 CPUCLK2/STEN
ERROR# Error status Low 0 NUMCLK2/STEN

D31-DO Data pins High 1/0 CPUCLK2
W/R# Write/Read bus cycle Hi/Lo I CPUCLK2
ADS# ADdress Strobe Low I CPUCLK2
READY# Bus ready input Low I CPUCLK2
READYO# Ready output Low 0 CPUCLK2/STEN

STEN STatus ENable High I CPUCLK2
NPS1# MCP select # 1 Low I CPUCLK2
NPS2 MCP select # 2 High I CPUCLK2
CMDO# CoMmanD Low I CPUCLK2

Vee I
Vss I

NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.

Table 3.2. 387™ DX MCP Pin Cross-Reference

ADS# - K7 D1S - AS STEN - L4
BUSY# - K2 019 - B9 W/R# - K4

CKM - J11 D20 - B10
CPUCLK24 - K10 D21 - A10 Vee - A6,A9, B4,

CMDO# - LS 022 - B11 E1, F1, F10,
DO - H2 023 - C10 J2, K5,
D1 - H1 024 - D10 L7
D2 - G2 025 - D11
D3 - G1 026 - E10 Vss - B2, B7, C11,
D4 - D2 D27 - E11 E2, F2, F11,
D5 - D1 D2S - G10 J1, J10, L5
D6 - C2 029 - G11
D7 - C1 D30 - H10 NO CONNECT - K9
DS - B1 031 - H11 TIE HIGH - K3,L9*
D9 - A2 ERROR# - L2

D10 - B3 NPS1# - L6
D11 - A3 NPS2 - K6
D12 - A4 NUMCLK2 - K11
013 - B5 PEREQ - K1
D14 - A5 READY# - KS
D15 - B6 READYO# - L3
D16 - A7 RESETIN - L10
D17 - BB

'Tie high pins may either be tied high with a pullup resistor or connected to Vee-

5-442

intef 387™ DX MATH COPROCESSOR

A B c D E F G H K L

D8 D1 D5 Vee Vee D3 D1 Vss PEREQ

*
D9 Vss D6 D4 Vss Vss D2 DO Vee BUSY# ERROR#

2

D11 D1D TIE HIGH READYO#
3

D12 Vee W/R# STEN
4

D14 D13 Vee Vss
5

Vee D15
PIN SIDE VIEW

NPS2 NPS1#
6 (BOTTOM)

D16 Vss ADS# Vee
7

D18 D17 READY# CMDO#
8

Vee D19 N/C TIE HIGH
9

021 D20 D23 D24 D26 Vee D28 D30 Vss CPUCLK2 RESETIN
10

022 Vss D25 D27 Vss D29 031 eKM NUMCLK2
11

240448-5
*Pin 1

L K H G F E D c B A

PEREQ Vss 01 D3 Vee Vee D5 07 DB

* ERROR# BUSY# Vee DO 02 Vss Vss 04 D6 Vss 09
2

READYO# TIE HIGH D10 011
3

STEN W/R# Vee D12
4

Vss Vee D13 D14
5

NPS1# NPS2 TOP VIEW D15 Vee
6

Vee ADS# Vss D16
7

CMDO# READY# D17 018
8

TIE HIGH N/C 019 Vee
9

RESETIN CPUCLK2 Vss 030 028 Vee D26 024 023 020 D21
10

NUMCLK2 CKM D31 029 Vss 027 025 Vss D22
11

240448-6
*Pin 1

Figure 3.1. 387™ DX MCP Pin Configuration

5-443

intef 387™ DX MATH COPROCESSOR

3.1.1 386™ DX CPU CLOCK 2 (CPUCLK2)

This input uses the 386 DX CPU CLK2 signal to time
the bus control logic. Several other MCP signals are
referenced to the rising. edge of this signal. When
CKM = 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating­
point unit of the MCP. This pin requires MOS-level
input. The signal on this pin is divided by two to pro­
duce the internal clock signal CLK.

3.1.2 387™ DX MCP CLOCK 2 (NUMCLK2)

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit
and the floating-point unit of the MCP. In this case,
the ratio of the frequency of NUMCLK2 to the fre-

CPUCLK2

386™ox CPU

quency of CPUCLK2 must lie within the range 10:16
to 14:10. When CKM = 1 (synchronous mode) this
pin is ignored; CPUCLK2 is used instead for the data
interface and control unit and the floating-point unit.
This pin requires TTL-level input.

3.1.3 387™ DX MCP CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
Vee. the MCP operates in synchronous mode; when
strapped to Vss. the MCP opE1rates in asynchronous
mode. These modes relate to clocking of the data
interface and control unit and the floating-point unit
only; the bus control logic always operates synchro­
nously with respect to the 386 DX Microprocessor. ·

-----CKM=ll

INTERFACE

NUMERIC
CORE

387™ox MCP

SYNCHRONOUS

ASYNCHRONOUS

NUMCLK2
240448-7

Figure 3.2. Asynchronous Operation

5-444

intef 387™ DX MATH COPROCESSOR

3.1.4 SYSTEM RESET {RESETIN)

A LOW to HIGH transition on this pin causes the
MCP to terminate its present activity and to enter a
dormant state. RESETIN must remain HIGH for at
least 40 NUMCLK2 periods. The HIGH to LOW tran­
sitions of RESETIN must be synchronous with

, CPUCLK2, so that the phase of the internal clock of
the bus control logic (which is the CPUCLK2 divided
by 2) is the same as the phase of the internal clock
of the 386 DX CPU. After RESETIN goes LOW, at
least 50 NUMCLK2 periods must pass before the
first MCP instruction is written into the 387 DX MCP.
This pin should be connected to the 386 DX CPU
RESET pin. Table 3.3 shows the status of other pins
after a reset.

Table 3.3. Output Pin Status During Reset

Pin Value Pin Name

HIGH READYO#, BUSY#

LOW PEREQ, ERROR#

Tri-State OFF D31-DO

3.1.5 PROCESSOR EXTENSION REQUEST
{PEREQ)

When active, this pin signals to the 386 DX CPU that
the MCP is ready for data transfer to/from its data
FIFO. When all data is written to or read from the
data FIFO, PEREQ is deactivated. This signal al­
ways goes inactive before BUSY# goes inactive.
This signal is referenced to CPUCLK2, It should be
connected to the 386 DX CPU PEREQ input. Refer
to Figure 3.8 for the timing relationships between
this and the BUSY# and ERROR# pins.

3.1.6 BUSY STATUS {BUSY#)

When active, this pin signals to the 386 DX CPU that
the MCP is currently executing an instruction. This
signal is referenced to CPUCLK2. It should be con­
nected to the 386 DX CPU BUSY# pin. Refer to
Figure 3.8 for the timing relationships between this
and the PEREQ and ERROR# pins.

3.1.7 ERROR STATUS {ERROR#)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep­
tion has occurred (except that, immediately after a
reset, it indicates to the 386 DX Microprocessor that
a 387 DX MCP is present in the system). This signal
can be changed to inactive state only by the follow­
ing instructions (without a preceding WAIT): FNINIT,
FNCLEX, FNSTENV, and FNSAVE. This signal is
referenced to NUMCLK2. It should be connected to
the 386 DX CPU ERROR# pin. Refer to Figure 3.8
for the timing relationships between this and the
PEREQ and BUSY# pins.

3.1.8 DATA PINS {D31-DO)

These bidirectional pins are used to transfer ·data
and opcodes between the 386 DX CPU and 387 DX
MCP. They are normally connected directly to the
corresponding 386 DX CPU data pins. HIGH state
indicates a value of one. DO is the least significant
data bit. Timings are referenced to CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE {W/R#)

This signal indicates to the MCP whether the 386 DX
CPU bus cycle in progress is a read or a write cycle.
This pin should be connected directly to the 386 DX
CPU W/R# pin. HIGH indicates a write cycle; LOW, I
a read cycle. This input is ignored if any of the sig-
nals STEN, NPS1 #, or NPS2 is inactive. Setup and
hold times are referenced to CPUCLK2.

3.1.10 ADDRESS STROBE {ADS#)

This input, in conjunction with the READY# input
indicates when the MCP bus-control logic may sam­
ple W/R# and the chip-select signals. Setup and
hold times are referenced to CPUCLK2. This pin
should be connected to the 386 DX CPU ADS# pin.

5-445

intJ 387™ DX MATH COPROCESSOR

3.1.11 BUS READY INPUT (READY#)

This input indicates to the MCP when a 386 DX CPU
bus cycle is to be terminated. It is used by the bus­
control logic to trace bus activities. Bus cycles can
be extended indefinitely until terminated by
READY#. This input should be connected to the
same signal that drives the 386 DX CPU READY#
input. Setup and hold times are referenced to
CPUCLK2.

3.1.12 READY OUTPUT (READYO#)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re­
quired, this pin must directly or indirectly drive the
386 DX CPU READY# input. Refer to section 3.4
"Bus Operation" for details. This pin is activated
only during bus cycles that select the MCP. This sig­
nal is referenced to CPUCLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the MCP. When
inactive, this pin forces BUSY#, PEREQ, ERROR#,
and READYO# outputs into floating state. D31-DO
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on­
board testing (using the overdrive method) of other
chips in systems containing the MCP. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on­
board testing, STEN should be connected to Vee.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1 #, NPS2, and CMDO# (i.e. if STEN
changes state during a 387 DX MCP bus cycle, it
should change state during the same CLK period as
the NPS1 #, NPS2, and CMDO# signals).

3.1.14 MCP Select #1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of a 386 DX CPU bus cycle, this signal indi­
cates that the purpose of the bus cycle is to commu-

nicate with the MCP. This pin should be connected
directly to the 386 DX CPU M/10# pin, so that the
MCP is selected only when the 386 DX CPU per­
forms 1/0 cycles. Setup and hold times are refer­
enced to CPUCLK2.

3.1.15 MCP SELECT #2 (NPS2)

When active (along with STEN and NPS1 #) in the
first period of an 386 DX CPU bus cycle, this signal
indicates thatthe purpose of the bus cycle is to com­
municate with the MCP. This pin should be connect­
ed directly to the 386 DX CPU A31 pin, so that the
MCP is selected only when the 386 DX CPU uses
one of the 1/0 addresses reserved for the MCP
(800000F8 or 800000FC). Setup and hold times are
referenced to CPUCLK2.

3.1.16 COMMAND (CMDO#)

During a write cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the MCP. During a read cycle, it
indicates whether the control or status register
(CMDO# active) or a data register (CMDO# inactive)
is being read. CMDO# should be connected directly
to the A2 output of the 386 DX Microprocessor. Set­
up and hold times are referenced to CPUCLK2.

3.2 Processor Architecture

As shown by the block diagram on the front page,
the MCP is internally divided into three sections: the
bus control logic (BCL), the data interface and con­
trol unit, and the floating point unit (FPU). The FPU
(with the support of the control unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the. control registers, for receiving the in­
structions, decoding them, and sequencing the mi­
croinstructions, and for handling some of the admin­
istrative instructions. The BCL is responsible for the
386 DX CPU bus tracking and interface. The BCL is
the only unit in the 387 DX MCP that must run syn­
chronously with the 386 DX CPU; the rest of the
MCP can run asynchronously with respect to the
386 DX Microprocessor.

5-446

intJ 387™ DX MATH COPROCESSOR

3.2.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
1/0 bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re­
spects: the CPU initiates 1/0 automatically when it
encounters ESC instructions, and the CPU uses re­
served 1/0 addresses to communicate with the BCL.
The BCL does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the MCP and
transferring outputs from the MCP to memory.

3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, or FSTCW, the control executes it inde-

pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSY#, PEREQ and ERROR# signals that syn­
chronize 387 DX MCP activities with the 386 DX
CPU. It also supports the FPU in all operations that it
cannot perform alone (e.g. exceptions handling,
transcendental operations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen­
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration

As an extension to the 386 DX Microprocessor, the
387 DX Math Coprocessor can be connected to the
CPU as shown by Figure 3.3. A dedicated communi-

FROM OTHER PERIPHERALS
'T ::--+ CKM

CLOCK l 3B7™ox MCP CLOCK L • GENERATOR NUMCLK2
GENERATOR (OPTIONAL) J

CLK2 1 CLK r+ CPUCLK2

RESET _... RESETIN

i
READY#

l WAIT STATE~
GENERATOR READYO#

j_ {OPTIONAL) J
HLDA 387™DX MCP

~ RESET D/C# I-+
~ READY# LOCK# r-.

CLK2 BE3#-BEO# f-+
--.i BS16# M/10# NPS1#

--.i NA# A31 NPS2

--.i HOLD A30-A3 r-.

IT --.i INT# 355TMDx A2 CMDO#

--.i NMI CPU W/R# W/R#

ADS# ADS# STEN

D31-DO 32.L. 031-DO /

BUSY# BUSY#

ERROR# ERROR#

PEREQ PEREQ

240448-8

Figure 3.3. 386™ DX Microprocessor and 387TM DX Math Coprocessor System Configuration

5-447

I

intef 387™ DX MATH COPROCESSOR

Table 3.4. Bus Cycles Definition

STEN NPS1# NPS2 CMDO#

0 x x x

1 1 x x
1 x 0 x
1 0 1 0
1 0 1 0
1 0 1 1
1 0 1 1

cation protocol makes possible high-speed transfer
of opcodes and operands between the 386 DX CPU
and 387 DX MCP. The 387 DX MCP is designed so
that no additional components are required for inter­
face with the 386 DX CPU. The 387 DX MCP shares
the 32-bit wide local bus of the 386 DX CPU and
most control pins of the 387 DX MCP are connected
directly to pins of the 386 DX Microprocessor.

3.3.1 BUS CYCLE TRACKING

The ADS# and READY# signals allow the MCP to
track the beginning and end of the 386 DX CPU bus
cycles, respectively. When ADS# is asserted at the
same time as the MCP chip-select inputs, the bus
cycle is intended for the MCP. To signal the end of a
bus cycle for the MCP, READY# may be asserted
directly or indirectly by the MCP or by other bus-con­
trol logic. Refer to Table 3.4 for definition of the
types of MCP bus cycles.

3.3.2 MCP ADDRESSING

The NPS1 #, NPS2 and STEN signals allow the
MCP to identify which bus cycles are intended for
the MCP. The MCP responds only to 1/0 cycles
when bit 31 of the 1/0 address is set. In other words,
the MCP acts as an 1/0 device in a reserved 1/0
address space.

Because A31 is used to select the MCP for data
transfers, it is not possible for a program running on
the 386 DX CPU to address the MCP with an 1/0
instruction. Only ESC instructions cause the 386 DX
Microprocessor to communicate with the MCP. The
386 DX CPU BS16# input must be inactive during
1/0 cycles when A31 is active.

3.3.3 FUNCTION SELECT

The CMDO# and W/R# signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data write.

W/R# Bus Cycle Type

x MCP not selected and all
outputs in floating state

x MCP not selected
x MCP not selected
0 CW or SW read from MCP
1 Opcode write to MCP
0 Data read from MCP
1 Data write to MCP

3.3.4 CPU/MCP Synchronization

The pin pairs BUSY#, PEREQ, and ERROR# are
used for various aspects of synchronization between
the CPU and the MCP.

BUSY# is used to synchronize instruction transfer
from the 386 DX CPU to the MCP. When the MCP
recognizes an ESC instruction, it asserts BUSY#.
For most ESC instructions, the 386 DX CPU waits
for the MCP to deassert BUSY# before sending the
new opcode.

The MCP uses the PEREQ pin of the 386 DX CPU to
signal that the MCP is ready for data transfer to or
from its data FIFO. The MCP does not directly ac­
cess memory; rather, the 386 DX Microprocessor
provides memory access services for the MCP.
Thus, memory access on behalf of the MCP always
obeys the rules applicable to the mode of the 386
DX CPU, whether the 386 DX CPU be in real-ad­
dress mode or protected mode.

Once the 386 DX CPU initiates an MCP instruction
that has operands, the 386 DX CPU waits for
PEREQ signals that indicate when the MCP is ready
for operand transfer. Once all operands have been
transferred (or if the instruction has no operands)
the 386 DX CPU continues program execution while
the MCP executes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com­
mands and operands. In 80286/80287, 386 DX Mi­
croprocessor and 387 DX Math Coprocessor sys­
tems, WAIT instructions are required only for oper­
and synchronization; namely, after MCP stores to
memory (except FSTSW and FSTCW) or loads from
memory. Used this way, WAIT ensures that the val­
ue has already been written or read by the MCP be­
fore the CPU reads or changes the value.

5-448

intef 387™ DX MATH COPROCESSOR

Once it has started to execute a numerics instruction
and has transferred the operands from the 386 DX
CPU, the MCP can process the instruction in parallel
with and independent of the host CPU. When the
MCP detects an exception, it asserts the ERROR#
signal, which causes a 386 DX CPU interrupt.

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the 387 DX MCP (the FPU) can
either operate directly from the CPU clock (synchro­
nous mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the MCP is synchronized with the CPU
clock. Use of asynchronous mode allows the 386
DX CPU and the FPU section of the MCP to run at
different speeds. In this case, the ratio of the fre­
quency of NUMCLK2 to the frequency of CPUCLK2
must lie within the range 10:16 to 14:10. Use of syn­
chronous mode eliminates one clock generator from
the board design.

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re­
quired, READYO# can be used to drive the 386 DX
CPU. READY# input. If this pin is used, it should be
connected to the logic that ORs all READY outputs
from peripherals on the 386 DX CPU bus.
READYO# is asserted by the MCP only during 1/0
cycles that select the MCP. Refer to section 3.4
"Bus Operation" for details.

3.4 Bus Operation

With respect to the bus interface, the 387 DX MCP is
fully synchronous with the 386 DX Microprocessor.
Both operate at the same rate, because each gener­
ates its internal CLK signal by dividing CPUCLK2 by
two.

The 386 DX CPU initiates a new bus cycle by acti­
vating ADS#. The MCP recognizes a bus cycle, if,
during the cycle in which ADS# is activated, STEN,
NPS1 #, and NPS2 are all activated. Proper opera­
tion is achieved if NPS1 # is connected to the
M/10# output of the 386 DX CPU, and NPS2 to the
A31 output. The 386 DX CPU's A31 output is guar­
anteed to be inactive in all bus cycles that do not
address the MCP (i.e. 1/0 cycles to other devices,
interrupt acknowledge, and reserved types of bus
cycles). System logic must not signal a 16-bit bus
cycle via the 386 DX CPU BS16# input during 1/0
cycles when A31 is active.

During the CLK period in which ADS# is activated,
the MCP also examines the W/R# input signal to
determine whether the cycle is a read or a write cy­
cle and examines the CMDO# input to determine
whether an opcode, operand, or control/status reg­
ister transfer is to occur.

The 387 DX MCP supports both pipelined and non­
pipelined bus cycles. A nonpipelined cycle is one for
which the 386 DX CPU asserts ADS# when no oth­
er MCP bus cycle is in progress; A pipelined bus
cycle is one for which the 386 DX CPU asserts
ADS# and provides valid next-address and control
signals as soon as in the second CLK period after
the ADS# assertion for the previous 386 DX CPU
bus cycle. Pipelining increases the availability of the
bus by at least one CLK period. The MCP supports
pipelined bus cycles in order to optimize address
pipelining by the 386 DX CPU for memory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 3.4 illustrates the states and
state transitions for MCP bus cycles:

• T1 is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

• T RS is the READY# sensitive state. Different
types of bus cycle may require a minimum of one
or two successive T RS states. The bus logic re-1
mains in T RS state until READY# is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY#, thereby causing additional successive
TRs states.

• T p is the first state for every pipelined bus cycle.

ADS#

READY#

240448-9

Figure 3.4. Bus State Diagram

5-449

387™ DX MATH COPROCESSOR

The READYO# output of the 387 DX MCP indicates
when a bus cycle for the MCP may be terminated if
no extra wait states are required. For all write cycles
(except those for the instructions FLDENV and
FRSTOR), READYO# is always asserted in the first
T RS state, regardless of the number of wait states.
For all read cycles and write. cycles for FLDENV and
FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait
states. These rules apply to both pipelined and non­
pipelined cycles. Systems designers must use
READYO# in one of the following ways:

1. Connect it (directly or through logic that ORs
READY signals from other devices) to • the
READY# inputs of the 386 DX CPU and 387 DX
MCP.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
MCP bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op­
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes­
sive operand transfer cycles. The following bus-cy­
cle diagrams show memory cycles between MCP
operand-transfer cycles. Note however that, during
the instructions FLDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the MCP
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities, see
Figure 3.8.

3.4.1 NONPIPELINED BUS CYCLES

Figure 3.5 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the 387 DX
MCP enters the T RS (READY #-sensitive) state. Dur­
ing this state, the 387 DX MCP samples the
READY# input and stays in this state as long as
READY# is inactive.

In write cycles, the MCP drives the READYO# sig­
nal for one CLK period beginning with the second
CLK of the bus cycle; therefore, the fastest write
cycle takes two CLK cycles (see cycle 2 of Figure
3.5). For the instructions FLDENV and FRSTOR,
however, the MCP forces a wait state by delaying
the activation of READYO# to the second TRs cy­
cle (not shown in Figure 3.5).

When READY# is asserted the MCP returns to the
idle state, in which ADS# could be asserted again
by the 386 DX Microprocessor for the next cycle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the MCP en­
ters the T RS state. See Figure 3.5. In this state, the
MCP samples the READY# input and stays in this
state as long as READY# is inactive.

At the rising edge of CLK in the second clock period
of the cycle, the MCP starts to drive the D31-DO
outputs and continues to drive them as long as it
stays in T RS state.

In read cycles that address the MCP, at least one
wait state must be inserted to insure that the 386 DX
CPU latches the correct data. Since the MCP starts
driving the system data bus only at the rising edge of
CLK in the second clock period of the bus cycle, not
enough time is left for the data signals to propagate
and be latched by the 386 DX CPU at the falling edge
of the same clock period. The MCP drives the
READYO# signal for one CLK period in the. third
CLK of the bus cycle. Therefore, if the READYO#
output is used to drive the 386 DX CPU READY#
input, one wait state is inserted automatically.

Because one wait state is required for MCP reads,
the minimum is three CLK cycles per read, as cycle
3 of Figure 3.5 shows.

When READY# is asserted the MCP returns to the
idle state, in which ADS# could be asserted again
by the 386 DX CPU for the next cycle. The transition
from T RS state to idle state causes the MCP to put
the tristate D31-DO outputs into the floating state,
allowing another device to drive the system data
bus.

5-450

intef 387™ DX MATH COPROCESSOR

CPUCLK2

(CLK)

CYCLE 1
NON-PIPELINED
MEMORY READ

CYCLE2
NON-PIPELINED

MCP WRITE

CYCLE3
NON-PIPELINED

MCP READ

CYCLE4
NON-PIPELINED
MEMORY WRITE

NPS2, ~-~--i..-~-+~~-tr.-~~...,,....~,.._~~+-~~ ... ~__,~~-+~~-1
NPSI#,
CMD0# flooA.~.....,..,_~....., ~-+~~-+.._~~-f-'.._~+-~~+-~~~~ ~~-+~~-1

W/R#

ADS#

READYO#

DO-D31 •••• •• CPU

240448-10

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or T1 states for various non-operand transfer cycles and overhead.

Figure 3.5. Nonplpelined Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the 387 DX MCP bus
interface occur either during the T RS state or during
the transitions to or from that state, the only differ­
ence between a pipelined and a nonpipelined cycle
is the manner of changing from one state to another.
The exact activities in each state are detailed in the
previous section "Nonpipelined Bus Cycles".

When the 386 DX CPU asserts ADS# before the
end of a bus cycle, both ADS# and READY# are
active during a T RS state. This condition causes the
MCP to change to a different state named T p. The
MCP activities in the transition from a T RS state to a
T p state are exactly the same as those in the tran­
sition from a T RS state to a T1 state in nonpipelined
cycles.

T p state is metastable; therefore, one clock period
later the MCP returns to T RS state. In consecutive
pipelined cycles, the MCP bus logic uses only T RS
and T p states.

Figure 3.6 shows the fastest transition into and out
of the pipelined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one T RS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY# is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 3. 7 shows the pipelined write and read cycles
with one additional T RS states beyond the minimum
required. To delay the assertion of READY# re­
quires external logic.

5-451

I

387™ DX MATH COPROCESSOR

3.4.3 BUS CYCLES OF MIXED TYPE

When the 387 DX MCP bus logic is in the T As state,
it distinguishes between nonpipelined and pipelined
cycles according to the behavior of ADS# and
READY#. In a nonpipelined cycle, only READY# is
activated, and the transition is from T RS to idle state.
In.a pipelined cycle, both READY# and ADS# are
active and the transition is first from T RS state to T p
state then, after one clock period, back to T RS state.

3.4.4 BUSY# AND PEREQ TIMING
RELATIONSHIP

Figure 3.8 shows the activation of BUSY# at the
beginning of instruction execution and its deactiva-

CPUCLK2

(CLK)

CYCLE1
NON-PIPELINED
MEMORY READ

CYCLE2
PIPELINED

MCP WRITE

tion after execution of the . instruction is complete.
When possible, the 387 DX MCP may deactivate
BUSY# prior to the completion of the current in­
struction allowing the CPU to transfer the next in­
struction's opcode and operands. PEREQ is activat­
ed in. this interval. If ERROR# (not shown in the
diagram) is ever asserted, it would occur at least six
CPUCLK2 periods after the deactivation of PEREQ
and at least six CPUCLK2 periods before the deacti­
vation of BUSY#. Figure 3.8 shows also that STEN
is activated at the beginning of a bus cycle.

CYCLE3
PIPELINED

MEMORY READ

CYCLE4
NON-PIPELINED

MCP WRITE

NPS2, i.....-'"""4----11 --1----P..---+---+---.... --1-----+--~
NPS1#,
C.MDl!J# iw--'"""4--"""""----+----+----+---+---...... --1-----+--~

W/R#

ADS#

READ YO#

00-~1 ---- ----- -- CPU CPU

240448-11

Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY# and ADS# are sampled active at the end of a TRs
state of the current cycle. ·

Figure 3.6; Fastest Transitions to and from Pipelined Cycles

5-452

intef

NOTE:

CPUCLK2

(CLK)

387™ DX MATH COPROCESSOR

CYCLE 1
PIPELINED WRITE

NOTE 1 CYCLE2
PIPELINED READ

Tos Tp

NPS2,i..---+---.... --P.--+-~l-P.--+---+--+---P.--+---4
NPS1#,

M/10# ----------+-~1---+-------------4

W/R#

ADS#

READYO#

OO-D31

1. Cycles between operand write to the MCP and storing result.

CPUCLK2

(CLK)

STEN

ADS#

READY#

BUSY#

NOTES:

OPCODE
WRITE

1. Instruction dependent.

Figure 3.7. Pipelined Cycles with Wait States

NOTE 4

NOTE 1 NOTE 2

1ST OPERAND
WRITE

NOTE 3 NOTE 1

240448-12

240448-13

2. PEREQ is an asynchronous input to the 386TM DX Microprocessor; it may not be asserted (instruction dependent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 3.8. STEN, BUSY# and PEREQ Timing Relationship

5-453

I

intJ 387™ DX MATH COPROCESSOR

4.0 ELECTRICAL DATA

4.1 Absolute Maximum Ratings*

Case Temperature Tc
Under Bias - 65°C to + 110°C

Storage Temperature -65°C to + 150°C

Voltage on Any Pin with
Respect to Ground -0.5 to Vee + 0.5V

Power Dissipation 1.5W

4.2 DC Characteristics

NOTICE: This is a production data sheet. The specifi­
cations are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions"
may affect device reliability.

Table 4.1. DC Specifications Tc = 0° to 85°C, V cc = 5V ± 5%

Symbol Parameter Min Max

V1L Input LO Voltage -0.3 +0.8
V1H Input HI Voltage 2.0 Vee+ 0.3
VcL CPUCLK2 Input LO Voltage -0.3 +0.8

VcH CPUCLK2 Input HI Voltage 3.7 Vee +0.3
VoL Output LO Voltage 0.45

VoH Output HI Voltage 2.4

Ice Supply Current
NUMCLK2 = 32 MHz(4) 160
NUMCLK2 = 40 MHz(4) 180
NUMCLK2 = 50 MHz(4) 210
NUMCLK2 = 66.6 MHz(4) 250

lu Input Leakage Current ±15
ILQ 1/0 Leakage Current ±15

C1N Input Capacitance 10

Co 1/0 or Output Capacitance 12

CcLK Clock Capacitance 15

NOTES:
1. This parameter is for all inputs, including NUMCLK2 but excluding CPUCLK2.
2. This parameter is measured at loL as follows:

data= 4.0 mA
READYO# = 2.5 mA
ERROR#, BUSY#, PEREQ = 2.5 mA

3. This parameter is measured at loH as follows:
data= 1.0 mA
READYO# = 0.6 mA
ERROR#, BUSY#, PEREQ = 0.6 mA

Units Test Conditions

v (N9te 1)
v (Note 1)
v
v
v (Note 2)
v (Note 3)

mA Ice typ. = 95 mA
mA Ice typ. = 105 mA
mA Ice typ. = 125 mA
mA Ice typ. = 150 mA
µA ov s V1N s Vee
µA 0.45V s Vo s Vee
pF fc = 1 MHz
pF fc = 1 MHz
pF fc = 1 MHz

4. Ice is measured at steady state, maximum capacitive loading on the outputs, CPUCLK2 at the same frequency as
NUMCLK2.

5-454

intJ 387™ DX MATH COPROCESSOR

4.3 AC Characteristics

Pin

Table 4.2a. Combinations of Bus Interface and Execution Speeds

Functional Block 80387DX-16 80387DX-20 80387DX-25 80387DX-33

Bus Interface Unit (MHz) 16 20 25
Execution Unit (MHz) 16 20 25

Table 4.2b. Timing Requirements of the Execution Unit
Tc= o•cto +85°C, Vee= 5V ±5%

16 MHz 20MHz 25MHz 33MHz
Symbol Parameter

33
33

Test Figure
Min Max Min Max Min Max Min Max
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)

Conditions Reference

NUMCLK2
NUMCLK2
NUMCLK2
NUMCLK2
NUMCLK2
NUMCLK2
NUMCLK2

Pin

CPUCLK2
CPUCLK2
CPUCLK2
CPUCLK2
CPUCLK2
CPUCLK2
CPUCLK2

CPUCLK2/
NUMCLK2

READYO#
READYO# (1)
PEREQ
BUSY#
BUSY# (1)
ERROR#

D31-DO
D31-DO
D31-DO
D31-DO (2)

PEREQ(2)
BUSY# (2)
ERROR# (2)
READYO# (2)

t1
t2a
t2b
t3a
t3b
t4
t5

Period 31.25 125 25 125 20 125 15 125 2.0V
High Time 9 8 7 6.25 2.0V
High Time 5 5 4 4.5 3.7V
Low Time 9 8 7 6.25 2.0V
Low Time 7 6 5 4.5 o.av
Fall Time 8 8 7 6 3.7Vto 0.8V
Rise Time 8 8 7 6 0.8Vto 3.7V

Table 4.2c. Timing Requirements of the Bus Interface Unit
Tc= o·c to +85°C, Vee= 5V ±5%

(All measurements made at 1.5Vand CL= 50 pf unless otherwise specified)

16 MHz 20MHz 25MHz 33MHz
Test

Symbol Parameter Min Max Min Max Min Max Min Max
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)

Conditions

t1 Period 31.25 125 25 125 20 125 15 125 2.0V
t2a High Time 9 8 7 6.25 2.0V
t2b High Time 5 5 4 4.5 3.7V
t3a Low Time 9 8 7 6.25 2.0V
t3b Low Time 7 6 5 4.5 0.8V
t4 Fall Time 8 8 7 4 3.7Vto0.8V
t5 Rise Time 8 8 7 4 0.8Vto3.7V

Ratio 10/16 14/10 10/16 14/10 10/16 14/10 10/16 14/10

t7 Out Delay 3 34 3 31 3 24 3 17 CL= 75 pFt
t7 Out Delay 3 31 3 27 3 21 3 15 CL= 25 pF
t7 Out Delay 5 34 5 34 4 33 4 25 CL= 75 pFt
t7 Out Delay 5 34 5 29 4 29 4 21 CL= 75 pFt
t7 Out Delay N/A N/A NIA N/A 4 27 4 19 CL= 25 pF
t7 Out Delay 5 34 5 34 4 33 4 25 CL= 75 pFt

ta Out Delay 1 54 1 54 0 50 0 37 CL= 120 pFt
t10 Setup Time 11 11 11 8
t11 Hold Time 11 11 11 8
t12* Float Time 6 33 6 27 5 24 3 19 CL= 120 pFt

t13* Float Time 1 60 1 50 1 40 1 30 CL= 75 pFt
t13* Float Time 1 60 1 50 1 40 1 30 CL= 75 pFt
t13* Float Time 1 60 1 50 1 40 1 30 CL= 75 pFt
t13* Float Time 1 60 1 50 1 40 1 30 CL= 75pFt

4.1

Figure

Reference

4.1

4.2

4.3

4.5

*Float condition occurs when maximum output current becomes less than ILQ in magnitude. Float delay is not tested.
tFor 25 MHz and 33 MHz, CL = 50 pF

5-455

I

intef 387™ DX MATH COPROCESSOR

Table 4.2c. Timing Requirements of the Bus Interface Unit (Continued)
Tc= o·c to +85°C, Vee= 5V ±5%

(All measurements made at 1.5V and CL = 50 pF unless otherwise specified)

16MHz 20MHz 25MHz 33MHz Figure
Pin Symbol Parameter Min Max Min Max Min Max Max Min

(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
Reference

ADS# t14 Setup Time 25 20 15 13 4.3·
ADS# t15 Hold Time 5 5 4 4
W/R# t14 Setup Time 25 20 15 13
W/R# t15 Hold Time 5 5 4 4

READY# t16 Setup Time 20 11 8 7
READY# t17 Hold Time 4 4 4 4
CMDO# t16 Setup Time 20 18 15 13
CMDO# t17 Hold Time 2 2 4 4
NPS1# t16 Setup Time 20 18 15 13
NPS2
NPS1 # t17 Hold Time 2 2 4 4
NPS2
STEN t16 Setup Time 20 20 14 13
STEN t17 Hold Time 2 2 2 2

RESETIN t18 Setup Time 13 12 10 5 4.4
RESETIN t19 Hold Time 4 4 3 3

NOTES:
1 . Not tested at 25 pF.
2. Float delay is not tested. Float condition occurs when maximum output current becomes less than ILo in magnitude.

so 75

* nom w nominal value

NOTE:

100

pr

125 150

240448-14

This graph will not be linear outside of the CL range
shown.

Figure 4.0a. Typical Output Valid Delay vs Load
Capacitance at Max Operating Temperature

5-456

50

NOTE:

75 100

pF

125 150

240448-15

This graph will not be linear outside of the CL range
shown.

Figure 4.0b. Typical Output Rise Time vs Load
Capacitance at Max Operating Temperature

387™ DX MATH COPROCESSOR

CPUCLK2/NUMCLK2

OUTPUTS

~-----t1------i

MIN DELAY
TIME TIME rSETUP r HOLD

1.~3.0V

INPU~OV
I

Figure 4.1. CPUCLK2/NUMCLK2 Waveform and Measurement Points for
Input/Output A.C. Specifications

(CLK) (PH2) \,,_ __ (-PH_1_) _ __,/ ''"')

CPUCLK2

(OUTPUTS) jail

(ERROR# REFERENCED TO NUMCLK2)
240448-17

Figure 4.2. Output Signals

5-457

240448-16

El

intef

NOTE:

(CLK)

CPUCLK2

ADS#

W/R#

NPS1 #. NPS2,
STEN,

CMDO#

READY#

DO-D31
(INPUT)

DO-D31
(OUTPUT)

(CLK)

CPUCLK2

RESET

387™ DX MATH COPROCESSOR

(PH1) (PH2) (PH1) (PH2)

t1s={f t14 \151~114
~ vi rl-\14~

rl-116~ I

Figure 4.3. Input and 1/0 Signals

(PH1 or PH2) (PH1 or PH2)

The second internal processor phase following RESET high to low transition is PH2.

STEN

D0-031, PEREO
BUSY#, ERROR#. READYO#

Figure 4.4. RESET Signal

Figure 4.5. Float from STEN

5-458

2.0V

~t1s-1
l--\17-1

240446-16

240446-19

240446-20

intef

Pin

RESET IN

RESETIN

BUSY#

BUSY#, ERROR#

PEREQ, ERROR#

READY#, BUSY#

READY#

READY#

ERROR#

• In NUMCLK2's
• • or last operand

NOTE:

387™ DX MATH COPROCESSOR

Table 4.3. Other Parameters

Symbol Parameter Min Max

t30 Duration 40

t31 RESETIN Inactive to 1st Opcode Write 50

t32 Duration 6

t33 ERROR# (In) Active to BUSY# Inactive 6

t34 PEREQ Inactive to ERROR# Active 6

t35 READY# Active to BUSY# Active 4 4

t36 Minimum Time from Opcode Write to 6
Opcode/Operand Write

t37 Minimum Time from Operand Write to 8
Operand Write

..
1ST OPCODE

WRITE NOTE 1
1 ST OPERAND zND OPERAND

WRITE WRITE (NOTE 1)

t3s-----+---<----+-

I

1. Memory read (operand) cycle is not shown.

Figure 4.6. Other Parameters

5-459

Units

NUMCLK2

NUMCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

240448-21

inter 387™ DX MATH COPROCESSOR

Instruction

1

2

3

4

5

11011

11011

11011

11011

11011

15-11

First Byte

OPA

MF

d p

0 0

0 1

10 9

1

OPA

OPA 1

1 1

1 1

8 7

5.0 387™ DX MCP EXTENSIONS TO
THE 386™ DX CPU
INSTRUCTION SET

MOD

MOD

Instructions for the 387 DX MCP assume one of the
five forms shown in the following table. In all cases,
instructions are at least two bytes long and begin
with the bit pattern 11011 B, which identifies the
ESCAPE class of instruction. Instructions that refer
to memory operands specify addresses using the
386 DX CPU addressing modes.

OP = Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00-32-bit real
01-32-bit integer
10-64-bit real
11-16-bit integer

P = Pop
0-Do not pop stack
1-Pop stack after operation

ESC = 11011

d = Destination
0-Destination is ST(O)
1-Destination is ST(i)

R XOR d = 0-Destination (op) Source
R XOR d = 1-Source (op) Destination

Optional

Second Byte Fields

1] OPB R/M SIB] DISP

OPB R/M SIB 1 DISP

1 OPB ST(i)

1 1 1 OP

1 1] OP

6 5 4 3 2 1 0

ST(i) = Register stack element i
000 = Stack top
001 = Second stack element

•
•
•

111 = Eighth stack element .

MOD (Mode field) and R/M (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of the 386 DX Microprocessor in­
structions (refer to 3BfiTM DX Microprocessor Pro­
grammer's Reference Manual).

SIB (Scale Index Base) byte and DISP (displace­
ment) are optionally present in instructions that have
MOD and RIM fields. Their presence depends on
the values of MOD and R/M, as for 386 DX Micro­
processor instructions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re­
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and RIM fields
that call for both base and index registers, add one
clock.

5-460

intef 387™ DX MATH COPROCESSOR

387™ DX MCP Extensions to the 386™ DX CPU Instruction Set
Encoding

Instruction Byte Byte Optional
0 1 Bytes 2-6

DATA TRANSFER

FLO= Load•
Integer/real memory to ST(O) ESC MF 1 MODOOOR/M SIB/DISP

Long integer memory to ST(O) ESC 111 MOD101 R/M SIB/DISP

Extended real memory to ST(O) ESC011 MOD 101 R/M SIB/DISP

BCD memory to ST(O) ESC111 MOD 100 R/M SIB/DISP

ST(i) to ST(O) ESC001 11000 ST(i)

FST =Store

ST(O) to integer/real memory ESCMF 1 MOD 010 R/M SIB/DISP

ST(O) to ST(i) ESC101 1101.0ST(i)

FSTP = Store and Pop

ST(O) to integer/real memory ESC MF 1 MOD011 R/M SIB/DISP

ST(O) to long integer memory ESC111 MOD111R/M SIB/DISP

ST(O) to extended real ESC011 MOD111 RIM SIB/DISP

ST(O) to BCD memory ESC111 MOD110R/M SIB/DISP

ST(O) to ST(i) ESC 101 11011 ST(i)

FXCH = Exchange

ST(i) and ST(O) ESC001 11001 ST(i)

COMPARISON

FCOM = Compare

Integer/real memory to ST(O) ESCMFO MOD 010 R/M SIB/DISP

ST(i) to ST(O) ESCOOO 11010 ST(i)

FCOMP = Compare and pop

Integer/real memory to ST ESCMFO MOD011 RIM SIB/DISP

ST(i) to ST(O) ESC 000 11011 ST(i)

FCOMPP = Compare and pop twice

ST(1) to ST(O) ESC110 11011001

FTST = Test ST(O) ESC001 1110 0100

FXAM = Examine ST(O) ESC001 11100101

CONSTANTS

FLDZ = Load + 0.0 into ST(O) ESC 001 11101110

FLD1 = Load + 1.0 into ST(O) ESC 001 11101000

FLDPI = Load pi into ST(O) ESC001 11101011

FLDL2T = Load log2(10) into ST(O) ESC 001 11101001

Shaded areas indicate instructions not available in 8087 /80287.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.

5-461

32-Blt
Real

9-18

25-43

25-43

13-25

13-25

Clock Count Range'
32-Bit 64·Bit

Integer Real

26-42 16-23

26-54

12-43

45-97

7-12

57-76 32-44

7-11

57-76 32-44

60-82

46-52

112-190

7-11

10-17

34-52 14-27

13-21

34-52 14-27

13-21

13-21

17-25

10-17

15-22

26-36

26-36

16-Bit
Integer

42-53

58-76

58-76

39-62

39-62 I

387™ DX MATH COPROCESSOR

387™ DX MCP Extensions to the 386™ DX CPU Instruction Set (Continued)
Encoding

Instruction Byte Byte
0 1

CONSTANTS (Continued)

FLDL2E = Load log2(e) into ST(O) ESC001 11101010

FLDLG2 = Load log10(2) into ST(O) ESC001 11101100

FLDLN2 = Load log0 (2) into ST(O) ESC001 11101101

ARITHMETIC

FADD =Add

Integer/real memory with ST(O) ESCMFO MODOOOR/M

ST(i) and ST(O) ESCdPO 11000 ST(i)

FSUB = Subtract

Integer/real memory with ST(O) ESCMFO MOD10RR/M

ST(i) .and ST(O) ESCdPO 1110RR/M

FMUL = Multiply

Integer/real memory with ST(O) ESCMFO MOD001 R/M

ST(i) and ST(O) ESCdPO 11001 R/M

FDIV = Divide

Integer/real memory with ST(O) ESCMFO MOD11 RR/M

ST(i) and ST(O) ESCd PO 1111 RR/M

FSQRTI = Square root ESC001 11111010

FSCALE = Scale ST(O) by ST(1) ESC001 11111101

FPREM = Partial remainder ESC001 11111000

FRNDINT = Round ST(O) ESC001 11111100
to integer

FXTRACT = Extract components
ofST(O) ESC001 1111 0100

FABS = Absolute value of ST(O) ESC001 11100001

FCHS = Change sign of ST(O) ESC001 1110 0000

Shaded areas indicate instructions riot available in 8087180287.

NOTES:
b. Add 3 clocks to the range when d = 1.
c. Add 1 clock to each range when R = 1.
d. Add 3 clocks to the range when d = 0.
e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.
g. 135-141 when R = 1.
h. Add 3 clocks to the range when d = 1.
i. -0:;; ST(O) :;; + oo.

5-462

Optional 32·Bit
Bytes2-6 Real

SIB/DISP 12-29

SIB/DISP 12-29

SIB/DISP 19-32

SIB/DISP 77-85

Clock Count Range

32·Bit 64-Blt
Integer Real

26-36

25-35

26-38

34-56 15-34

12-26b

34-56 15-34

12-26d

43-71 23-53

17-50•

101-1141 81-91

77-8Qh

97-111

44-82

56-140

41-62

42-63

14-21

17-24

16-Blt
Integer

38-64

38-64C

46-74

105-1249

intJ 387™ DX MATH COPROCESSOR

387™ DX MCP Extensions to the 386™ DX CPU Instruction Set (Continued)

Instruction

TRANSCENDENTAL

F2XM11 = 2ST(O) - 1

FYL2xm = ST(1) • IOQ2(ST(O))

FYL2XP1" = ST(1) • log2(ST(O) + 1.0)

PROCESSOR CONTROL

FINIT = Initialize MCP

FSTSW AX = Store status word

FLDCW = Load control word

FSTCW = Store control word

FSTSW = Store status word

FCLEX = Clear exceptions

FSTENV = Store environment

FLDENV = Load environment

FSAVE = Save state

FRSTOR = Restore state

FINCSTP = Increment stack pointer

FDECSTP = Decrement stack pointer

FFREE = Free ST(i)

FNOP = No operations

Byte
0

ESC001

ESC001

ESC001

ESC011

ESC111

ESC001

ESC101

ESC101

ESC011

ESC001

ESC001

ESC 101

ESC101

ESC001

ESC001

ESC 101

ESC001

Encoding

Byte
1

1111 0000

1111 0001

11111001

11100011

11100000

MOD 101 R/M

MOD 111 R/M

MOD 111 RIM

11100010

MOD110R/M

MOD 100R/M

MOD110R/M

MOD 100R/M

1111 0111

1111 0110

11000 ST(i)

1101 0000

Shaded areas indicate instructions not available in 8087 /80287.

NOTES:

Optional
Bytes 2-6

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

Clock Count Range

167-410

99-436

210-447

33

13

19

15

15

11

103-104

71

375-376

308

21

22

18

12

j. These timings hold for operands in the range [xi < Tr I 4. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 ,;; I ST(O) I < 263.
I. -1.0 ,;; ST(O) ,;; 1.0.
m. 0,;; ST(O) < oo, - oo < ST(1) < + oo.
n. 0 ,;; [ST(O)[< (2 - SQRT(2))/2, - oo < ST(1) < + oo.

5-463

I

intJ 387™ DX MATH COPROCESSOR

APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will ·execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 MCP
and the 8087 MCP, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 MCP and the 8087 MCP, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1 . The MCP signals exceptions through a dedicated
ERROR# line to the 80286. The MCP error signal
does not pass through an interrupt controller {the
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet­
ed.

2. The 8087 instructions FENl/FNENI and FDISI/
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignored-none of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception­
handling routines containing these instructions
will be completely portable, to the 80287.

3. Interrupt vector 16 must point to the numeric ex­
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op­
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287's saved instruction and address pointers is
different than for the 8087. The instruction op­
code is not saved in Protected mode-exception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS {task switched) or
EM (emulation) of the 80286 MSW set {TS = 1 or
EM = 1). lfTS is set, then a WAIT instruction will

also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han­
dle these situations,

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a
segment's size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286
automatically tests the BUSY# line from the
80287 to ensure that the 80287 has completed its
previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are
required to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in­
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in­
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the
ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, hOwever, automatically precedes every ESC
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86.

5-464

intef 387™ DX MATH COPROCESSOR

DATA SHEET REVISION REVIEW

The following list represents the key differences be­
tween this and the -002 versions of the 387™ Math
Coprocessor Data Sheet. Please review this summa­
ry carefully.

1. Updated Ice max and typical specs to reflect
CHMOS IV process.

2. Updated instruction clock counts.

3. Change pins K3, L9 back to tie high insted of Vcc-

4. Corrected typographical errors in A.C. Character­
istics table. Affected pins were NUMCLK2 Rise
Time test conditions, READYO# Min Out Delay at
16 MHz, and Max Data Out Delay at 25 MHz.

5-465

El

82395DX
HIGH PERFORMANCE 386™ SMART CACHE

• Optimized 386 DX Microprocessor • Concurrent Line Buffer Cacheing
Companion • Multiprocessor Support

• Integrated 16KB Data RAM • Expandable • up to 64KB

• 4 Way SET Associative with Pseudo • Supports i486™ Microprocessor-like
LAU Algorithm Burst

• Write Buffer Architecture • Dual Bus Architecture

• Integrated 4 Double Word Write Buffer - Snooping Maintains Cache

• 16 Byte Line Size Coherency

• Integrated 387™ Math Coprocessor • 20, 25 and 33MHz Clock

and Weitek 3167 Floating Point • 196 lead PQFP package
Coprocessor Decode Logic

The 82395DX High Performance 386 Smart Cache is a low cost, high integration, 32-Bit peripheral for Intel's
386™ DX Microprocessor. It stores a copy of frequently accessed code or data from main memory to on chip
data RAM that can be accessed in zero wait states. The 82395DX enables the 386 DX Microprocessor to run
at near its full potential by reducing the average number of wait states seen by the CPU to nearly zero. The
dual bus architecture allows another bus master to access the System Bus while the 386 DX Microprocessor
can operate out of the 82395DX's cache on the Local Bus. The 82395DX has a snooping mechanism which
maintains cache coherency during these cycles.

The 82395DX is completely software transparent, protecting the integrity of system software. High perform­
ance, low cost and board space saving are achieved due to the high integration and new write buffer architec­
ture.

386™ Smart Cache

387™ DX, 386™ DX, and i486™ are trademarks of Intel Corporation

5-466

+-- SAHOLD, SEADS#

290382-1

October 1990
Order Number: 290382-001

82395DX

82395DX
HIGH PERFORMANCE 386™ SMART CACHE

CONTENTS PAGE CONTENTS PAGE

0.0 DESIGNER SUMMARY 5-471

0.1 Pin Out 5-471

0.2 Quick Pin Reference 5-473

1.0 82395DX Functional Overview 5-478

1.1 Introduction 5-478

1.2 Features 5-479

1.2.1 82385-Like Features 5-479

1.2.2 New Features 5-479

2.0 82395DX CACHE SYSTEM
DESCRIPTION 5-480

2.1 82395DX Cache Organization 5-480

2.1.1 82395DX Cache Structure and
Terminology 5-482

2.2 Pseudo LRU Algorithm 5-484

2.3 Four Way Set Associative Cache
Organization 5-486

2.3.1 Cache Read Hits 5-486

2.3.2 Cache Read Misses 5-486

2.3.3 Other Operations That Affect
the Cache and Cache
Directory 5-486

2.4 Concurrent Line Buffer
Cacheing 5-486

2.5 Cache Control 5-487

2.6 Cache Invalidation 5-487

2. 7 Cache Flushing 5-487

2.8 Cache Directory Accesses and
Arbitration 5-487

2.9 Cache Memory Description 5-489

3.0 PIN DESCRIPTION 5-491

3.1 Local Bus Interface Pins 5-491

3.1.1 386 DX Microprocessor/
82395DX Clock (CLK2 I) 5-491

3.1.2 Local Address Bus 5-491

3.1.2.1 Local Bus Address Lines
(A2-A31 I) 5-491

3.1.2.2 Local Bus Byte Enables
(BE3#-BEO# I) 5-491

3.1.3 Local Bus Cycle Definition .. 5-491

5-467

3.1.3.1 Local Bus Cycle
Definition Signals (W /R #,
D/C#, M/10# I) 5-491

3.1.3.2 Local Bus Lock
(LOCK# I) 5-491

3.1.4 Local Bus Control 5-491

3.1.4.1 Address Status
(ADS# I) 5-491

3.1.4.2 Local Bus Ready
(READYI.# I) 5-492

3.1.4.3 Local Bus Ready Output
(READYO# 1/0) 5-492

3.1.5 Reset (RESET I) 5-492

3.1.6 Configuration (CONF # I) 5-492

3.1. 7 Local Data Bus 5-492

3.1. 7 .1 Local Bus Data Lines
(DO-D31 1/0) 5-492

3.1.8 Local Bus Decode Pins 5-492

3.1.8.1 Local Bus Access
Indication (LBA# I) 5-4921

3. ~)·~ .. ~ .~~. ~~~t· I·~~~~ .<~~.I~ 5-493

3.1.9 Address Mask 5-494

3.1.9.1 Address Bit 20 Mask
(A20M #I) 5-494

3.2 System Bus Interface Pins 5-494

3.2.1 System Address Bus 5-494

3.2.1 .1 System Bus Address
Lines (SA2-SA31 1/0) 5-494

3.2.1.2 System Bus Byte
Enables
(SBE3#-SBEO# 0) 5-494

3.2.2 System Bus Cycle
Definition 5-494

3.2.2.1 System Bus Cycle
Definition (SW/R#, SD/C# 0,
SM/10#) 5-494

3.2.2.2 System Bus Lock
(SLOCK # 0) 5-494

3.2.3 System Bus Control 5-494

3.2.3.1 System Bus Address
Status (SADS # 0) 5-494

3.2.3.2 System Bus Ready
(SRDY # I) 5-494

82395DX

CONTENTS PAGE

3.2.3.3 System Bus Next
Address (SNA # I) 5-495

3.2.4 Bus Arbitration 5-495

3.2.4.1 System Bus Request
(SBREQ 0) 5-495

3.2.4.2 System Bus Hold
Request (SHOLD I) 5-495

3.2.4.3 System Bus Hold
Acknowledge (SHLDA 0) 5-495

3.2.4.4.System Bus Fast Hold
Request (SFHOLD # I) 5-495

3.2.5 Burst Control 5-495

3.2.5.1 System B,us Burst Ready
(SBRDY # I) 5-495

3.2.5.2 System Bus Burst Last
Cycle Indicator
(SB LAST# 0) 5-495

3.2.6 Cache Invalidation 5-496

3.2.6.1 System Bus Address
Hold (SAHOLD I) 5-496

3.2.6.2 System Bus External
Address. Strobe
(SEADS# I) 5-496

3.2.7 Cache Control 5-496

3.2.7.1 Flush (FLUSH# I) 5-496

3.2.8 System Data Bus 5-496

3.2.8.1 System Bus Data Lines
(SDO-SD31 1/0) 5-496

3.2.9 System Bus Decode Pins ... 5-496

3.2.9.1 System Cacheability
Indication (SKEN # I) 5-496

3.2.9.2 System Write Protect
Indication (SWP# I) 5-496

3.2.10 Design Aides 5-496

3.2.10.1 System Bus Next Near
Indication (SNENE# 0) 5-496

3.3 Pinout Summary Tables 5-497

4.0 BASIC FUNCTIONAL
DESCRIPTION 5-498

4.1 Cacheable Accesses 5-499

4.1.1 Cacheable Read Hit
Accesses 5-499

4.1.2 Cacheable Read Miss
Accesses 5-499

4.1.2.1 Burst Bus 5-500

4.1.3 Cache WriteAccesses 5-500

CONTENTS PAGE

4.2 Noncacheable System Bus
· Accesses ...•..................... 5-500

4.3 Local and System Bus
Concµrrency 5-501

4.4 Disabling the 82395DX 5-504

4.5 System Description and Device
Selection 5-504

4.6 Auto Configuration 5-504

4. 7 Address Mapping 5-506

4.8 Multi 82395DX Operation
Description , 5-506

4.9 Signal Driving in M~lti 82395DX
Environment : 5-506

4.9.1 Local Bus Signals 5-506

4.9.2 System Bus Signals 5-506

4.10 SHOLD/SHLDA/SBREQ
Arbitration Mechanism 5-507

4.11 System Description 5-507

5.0 PROCESSOR INTERFACE 5-509

5.1 Hardware Interface .. : 5-509

5.2 Nonpipelined Local Bus 5-509

5.3 Local Bus Response to Hit
Cycles , 5-509

5.4 Local Bus Response to Miss
Cycles 5-509

5.5 Local Bus Control Signals-ADS#,
READY I# 5-509

5.6 82395's Response to the 386 DX
Microprocessor Cycles 5-510

5.6.1 Locked Cycles 5-510

5.6.21/0, HALT/SHUTDOWN 5-510

5.6.3 LBA# Cycles 5-510

5.6.4 NPI# Cycles 5-510

5.6.5 LBA#/NPI# Timing 5-510

5.7 82395DX READYO#
· Generation : 5-511

5.8 A20 Mask Signal 5-512

5.9 82395DX Cycle 0verview 5-512

6.0 SYSTEM BUS INTERFACE 5-515

6.1 System Bus Cycle Types 5-517

6.1.1 Buffered Write Cycle 5-517

6.1.2 Non Buffered Write Cycle ... 5-518

6.1.3 Write Protected Cycles ...•.. 5-519

5-468

intef 82395DX

CONTENTS PAGE

6.1.4 Non Cacheable Read
Cycle 5-519

6.1.5 Cacheable Read Miss
Cycles 5-520

6.1.5.1 Aborted Line Fill (ALF)
Cycles 5-520

6.1.5.2 Line Fill Cycles 5-522

6.2 82395DX Latency in System Bus
Accesses 5-526

6.3 SHLDA Latency 5-526

6.4 Cache Consistency Support 5-526

6.5 Bus Deadlock Resolution
Support 5-528

6.6 Arbitration Mechanism 5-528

6.7 Next Near Cycles 5-529

6.8 Write Buffer 5-530

7.0 TESTABILITY FEATURES 5-530

7.1 SRAM Test Mode 5-530

7.2 Tristate Output Test Mode 5-533

8.0 MECHANICAL DATA 5-534

8.1 Introduction 5-534

8.2 Pin Assignment 5-534

8.3 Package Dimensions and
Mounting 5-534

8.4 Package Thermal Specification .. 5-534

9.0 ELECTRICAL DATA 5-538

9.1 Power and Grounding 5-538

9.1 .1 Power Decoupling
Recommendations 5-538

9.1.2 Resistor
Recommendations 5-538

9.2 Absolute Maximum Ratings 5-539

9.3 DC Specifications 5-539

9.4 AC Characteristics 5-540

9.4.1 Timing Considerations for
Cache Extensions 5-540

9.4.2 AC Characteristic Tables 5-541

APPENDIX A
TERMS 5-546

TABLES

Table 0.1 82395DX 196-Lead PQFP
Package Pin Description 5-472

CONTENTS PAGE

Table 2.1 82395DX Cache
Organization 5-481

Table 3.1 Input Pins 5-497

Table 3.2 Output Pins 5-498

Table 3.3 Input-Output Pins 5-498

Table 4.1 386 DX Microprocessor Bus
Cycle Definition with
Cacheability 5-500

Table 4.2 Address Mapping for 1-4
82395DX Systems 5-506

Table 4.3 Local Bus Signal Connections
in Multi-82395DX Systems 5-507

Table 4.4 System Bus Signal Connections
in Multi-82395DX Systems 5-508

Table 5.1 386 DX Microprocessor Bus
Cycle Definition 5-512

Table 5.2 Activity by Functional
Groupings 5-513

Table 5.3 Activity in Line Buffer Hit
Cycles 5-514

Table 5.4 Activity in the Line Buffer During
ALF Cycles 5-514

Table 5.5 Activity in Test Cycles 5-515

Table 6.1 Line Fill Address Order 5-523

Table 7.1 SRAM Memory Map 5-531

Table 7.2 Cache Address Allocation 5-532

Table 7.3 TAGRAM Address
Allocation 5-532

Table 8.1 Symbol List and Dimensions for
196 Lead Plastic Quad Flat
Pack Package 5-536

Table 9.1 Pullup Resistor
Recommendations 5-539

Table 9.2 DC Specifications 5-539

Table 9.3 Local Bus Signal AC
Parameters 5-541

Table 9.4 System Bus Signal AC

FIGURES

Figure 0.1

Figure 1.1

Figure 2.1

Figure 2.2

Parameters 5-542

82395DX 196 Lead PQFP
Package.Pin Orientation .. 5-471

System Block Diagram 5-478

82395DX Cache
Organization 5-481

82395DX Cache Directory
Organization 5-482

5-469

I

intJ 8239SDX

CONTENTS PAGE

Figure 2.3 82395DX Cache Hit Logic ... 5-483

Figure 2.4 Pseudo LAU Decision Tree .. 5-484

Figure 2.5 .Four Way SET Associative
Cache Organization 5-485

Figure 2.6 Interposing in the Cache
l?irectory 5-488

Figure 2. 7 Cache Directory and Cache
Accesses 5-490

Figure 3.1 CLK2 and Internal Clock 5-493

Figure 3.2 RESET /Internal Phase
.Relationship 5-493

Figure 3.3 Sampling LBA# During
RESET 5-493

Figure 4.1 Read Hit Cycles During a Line
Fill 5-501

Figure 4.2 Cache Read Hit Cycles while
Executing a Buffered Write on
the System Bus 5-502

Figure 4.3 Buffered Write Cycles During a
Line Fill 5-502

Figure 4.4 SWP# and SKEN# Timing .. 5-503

Figure 4.5 Self-Configuration of Four
82395DXs 5-505

Figure 4.6 System Description 5-508

Figure 5.1 Valid Time of LBA# and
NPI# 5-511

Figure 5.2 Externally Delayed READY .. 5-511

Figure 5.3 A20 Mask Logic 5-512

Figure 5.4 Valid Time of A20M # 5-512

Figure 6.1 SB State Machine 5-516

Figure 6.2 Single Buffered Write
Cycle 5-5.17

Figure 6.3 Multiple Buffered Write Cycles
During System Bus HOLD ... 5-517

Figure 6.4 1/0 Write Cycle 5-518

Figure 6.5 LOCK #ed Read Modify Write
Cycle 5-518

Figure 6.6 1/0 Read Cycle 5-519

Figure 6.7 LOCK#ed INTA Cycle 5-519

Figure 6.8 Aborted Line Fill Cycle 5-520

Figure 6.9 Line Fill Without Burst or
Pipeline 5-521

Figure 6.9A Burst Mode Line Fill
Followed by a Line Buffer Hit
Cycle 5-521

CONTENTS PAGE

Figure 6.1 O Pipelined Line Fill 5-523

Figure 6.11 Fastest Burst Cycle
(one clock burst) 5-524

Figure 6.12 Burst Read
· (two clock burst) 5-524

Figure 6.13 Interrupted Burst.Read
(two clock burst) 5-525

Figure 6.14 SAHOLD Behavior in
Pipelined Cycles 5-527:

Figure 6.15 Multiple 82395DX Bus
Arbitration Scheme 5-528

Figure 6.16 SHOLD/SHLDA/SBREQ
Mechanism 5-529

Figure 7.1 SAAM Mode Read Cycle ... 5-532

Figure 7 .2 SAAM Mode Write Cycle ... 5-532

Figure 7.3 Entering the Tristate Test
Mode 5-533

Figure 8.1 Principal Dimensions and
Datums 5-535

Figure 8.2 Typical Lead 5-536

Figure 8.3 Detail C 5-536

Figure BA Junction to Ambient Thermal
Resistance vs Power 5-537

Figure 8.5

Figure 8.6

Figure 9.1

Figure 9.2

Figure 9.3

Junction to Case Thermal
Resistance vs Power 5-537

Junction to Ambient Thermal
Resistance vs Air Flow
Rate 5-538

Drive Levels and
Measurement Points for AC
Specifications 5-540

AC Timing Waveforms -
Local Bus Input Setup and
Hold Timing 5-543

AC Timing Waveforms -
System Bus Input Setup and
Hold Timing ... , 5-543

Figure 9.4 AC Timing Waveforms -

Figure 9.5

Figure 9.6

Output Valid Delays 5-544

AC Timing Waveforms -
Output Float Delays 5-544

Typical Output Valid Delay vs
Load Capacitance at
Maximum Operating
Temperature
(CL = 50 pF) 5-545

5-470

intJ

0.0 DESIGNER SUMMARY

0.1 Pin Out

82395DX

82395DX
TOP VIEW

Figure 0.1 - 82385DX 196 Lead PQFP Package Pin Orientation

5-471

I

290382C...2

82395DX

Pin Signal Pin Signal Pin Slgnal Pin Signal

1 vcc 50 vcc 99 vcc 14S vcc
2 D19 51 SA24 100 A2S 149 SD1S
3 D20 52 SA25 101 A27 150 SD17
4 D21 53 SA2S 102 A2S 151 SD1S
5 D22 54 SA27 103 A25 152 SD15
s D23 .55 SA2S 104 A24 153 SD14
7 D24 5S SA29 105 A23 154 SD13
s D25 57 SA30 10S A22 155 SD12
9 D2S 5S SA31 107 A21 15S SD11

10 D27 59 SBEO# 10S A20M# 157 SD10
11 D2S so SBE1# 109 A20 15S SD9
12 vss S1 SBE2# 110 A19. 159 vss
13 vss S2 SBE3# 111 A1S 160 vtc
14 vcc S3 SLOCK# 112 A17 1S1 sos
15 D29 S4 vcc 113 A1S 1S2 SD7
1S D30 S5 vss 114 A15 1S3 SDS
17 D31 SS SB LAST# 115 vss 164 SD5
1S RESET S7 SBREQ 11S A14 1S5 SD4
19 CLK2 SS SHLDA 117 A13 1SS SD3
20 SA2 S9 SM/10# 11S A12 1S7 SD2
21 SA3 70 SNENE# 119 A11 1SS SD1
22 SA4 71 SD/C# 120 A10 1S9 SDO
23 vss 72 SW/A# 121 A9 170 READYO#
24 .vcc 73 SFHOLD# 122 AS 171 vss
25 SA5 74 BEO# 123 A7 172 vcc
2S vcc 75 BE1# 124 AS 173 DO
27 SAS 7S BE2# 125 A5 174 D1
2S SA7 77 BE3# 12S A4 175 D2
29 SAS 7S LOCK# 127 A3 17S D3
30 SA9 79 M/10# 12S A2 177 D4
31 SA10 so W/R# 129 ADS# 17S vss
32 SA11 S1 DIC# 130 SADS# 179 vcc
33 SA12 S2 SKEN# 131 vcc 1SO D5
34 vss S3 NPI# 132 SD31 1S1 DS

' 35 vcc S4 LBA# 133 SD30 1S2 D7
3S SA13 S5 SWP# 134 SD29 1S3 DS
37 SA14 SS SNA# 135 SD2S 1S4 D9
3S SA15 S7 SBRDY# 13S S027 1S5 010
39 vss SS SRDY# 137 SD2S 1SS vss
40 SA16 S9 SAHOLO 13S S025 1S7 vcc
41 SA17 90 SHOLD 139 SD24 1SS D11
42 SA1S 91 READYI# 140 vcc 1S9 D12
43 SA19 92 -SEAOS# 141 vss 190 013
44 SA20 93 FLUSH# 142 SD23 191 D14
45 vss 94 CONF# 143 S022 192 015
4S SA21 95 A31 144 S021 193 D1S
47 SA22 9S A30 145 SD20 194 D17
4S SA23 97 A29 14S SD19 195 D1S
49 vss 9S vss 147 vss 19S vss

Table 0.1 - 82395DX 196-Pin PQFP Pin Description

5-472

intef 82395DX

0.2 Quick Pin Reference

What follows is a brief pin description. For more details refer to chapter 3.

Symbol Type Function

CLK2 I This signal provides the fundamental timing for the 82395DX. All external timing
parameters are specified with respect to the rising edge of CLK2.

Local Address Bus

A2-31 I A2-31 are the Local Bus address lines. These signals along with the byte enable
signals, define the physical area of memory or input/output space accessed.

BE0-3# I The byte enable signals are used to determine which bytes are accessed in partial
cache write cycles. These signals are ignored for Cache Read Hit cycles. For all
System Bus memory read cycles (except the last three cycle of a Line Fill), these
signals are mirrored by the SBE0-3 # signals.

Local Bus Cyele Definition

W/R# I The write/read, data/code and memory/input-output signals are the primary bus
DIC# I definition signals directly connected to the 386 DX Microprocessor. They become
M/10# I valid as the ADS# signal is sampled active. The bus definition signals are not driven

by the 386 DX Microprocessor during bus hold and follow the timing of the address
bus.

LOCK# I The Local Bus LOCK# signal indicates that the current bus cycle is LOCK#ed.
LOCK#ed cycles are treated as non-cacheabl.e cycles, except that LOCK#ed write
hit cycles update the cache.

Local Bus Control

ADS# I The address status pin, an output of the 386 DX Microprocessor, indicates that new
and valid information is currently available on the Local Bus. The signals that are valid
when ADS# is activated are:
A2-31, BE0-3#, W/R#, DIC#, M/10#, LOCK#, NPI# and LBA# I

READYI# I This is the READY input signal seen by the Local Bus master. Typically it is a logical
OR between the 823_95DX generated READYO# and READY# signals generated by
other Local Bus masters (optional). It is used by the 82395DX, along with the ADS#
signal, to keep track of the 386 DX Microprocessor bus state.

READYO# 1/0 This is the Local Bus READY output that is used to terminate all types of 386 DX
Microprocessor bus cycles, except for 386 DX Microprocessor Local Bus cycles which
must be terminated by the Local Bus device being accessed. This signal is wired-OR
with parallel 82395DX READYO# signals in a multi-82395DX system.
The READYO# pin may serve as READY# for the 387 DX Math Cop~ocessor.

RESET

RESET I The RESET signal forces the 82395DX to begin execution at a known state. The
RESET falling edge is used by the 82395DX to set the phase of its internal clock
identical. to the 386 DX Microprocessors internal clock. RESET falling edge must
satisfy the appropriate setup and hold times (T14, T1 Sb) for proper chip operation.
RESET must remain active for at least 1 ms after the power supply and CLK2 input
have reached their proper DC and AC specifications.

Configuration

CONF# I The activity on the CONF # input during and after RESET allows the 82395DX to
configure itself to operate in the specified address range. Refer to chapter 4 for 1 , 2 or
4 82395DXs operation.

5-473

intJ 82395DX

0.2 Quick Pin Reference (Continued)

Symbol Type Function

Local Data Bus

D0-31 l/Q These are the Local Bus data lines of the 82395DX. They must be connected to the DO-
31 pins of the 386 DX Microprocessor.

Local Bus Decode Pins

LBA# I This is the Local Bus Access indication. It instructs the 82395DX that the cycle currently
in progress is targeted to a Local Bus device. This results in the cycle being ignored by
the 82395DX. The 387 DX Math Coprocessor is considered a Local Bus devcie but
LBA# need not be generated, If LBA# is asserted at the falling edge of RESET
accesses to Weitek 3167 Floating-Point Coprocessor address space are decoded as
Local Bus cycles. Note that LBA # cycles have priority over all other cycle types.

NPI# I The No Post Input signal instructs the 82395DX that the write cycle currently in progress
must not be posted in the write buffer. NPI # is sampled at the falling edge of CLK at the
end of T1 (see figure 5.1).

Address Mask

A20M# I Adclress bit 20 Mask when active, forces the A20 input as seen by the 82395DX to logic
"O", regardless of the actual value on the A20 input pin. A20M # emulates the address
wraparound at 1 MByte which occurs on the 8086. This pin is asynchronous but must
meet setup and hold times (t47 and t48) to guarantee recognition in a specific clock. It
must be asserted two clock cycles before ADS# is sampled active (see figure 5.3). It
must be stable throughout Local Bus memory cycles.

System Address Bus

SA2-3 0 These are the System Bus address lines of the 82395DX. When driven by the 82395DX,
SA4-31 1/0 these signals, along with the System Bus byte enables define the physical area of

memory or input/output space being accessed.
During bus, HOLD or address HOLD, the 110 signals serve as inputs for the cache
invalidation cycle.

SB0-.3# 0 These are the Byte Enable signals for the System Bus. The 82395DX drives these pins
identically to BE0-3# in all System Bus cycles except Line Fills. In Line Fills these
signals are driven identically to BE0-3# for the first read cycle of the Line Fill. They are
all driven active in the remaining cycles of the Line Fill.

System Bus Cycle Definition

SW/A# 0 The System Bus write/read, data/code and memory/input-output signals are the
SD/C# 0 System Bus cycle definition pins. When the 82395DX is the System Bus master, it drives
SM/IQ# 0 these signals identically to the 386 DX Microprocessor cycle definition encoding.

SLOCK# 0 The System Bus LOCK# signal indicates that the current cycle is LOCK# ed. The
82395DX has exclusive access to the System Bus across bus cycle boundries until this
signal is negated. The 82395DX does not acknowledge a bus HOLD request while this
signal is asserted. The 82395DX asserts SLOCK # when the System Bus is available
and a LOCK# ed cycle was started on the, Local Bus that requires System Bus service.
SLOCK # is negated only after completion of all LOCK #ed System Bus cycles and
negation of the LOCK# signal.

5-474

infef 82395DX

0.2 Quick Pin Reference (Continued)

Symbol Type Function

System Bus Control

SADS# 0 The System Bus ADdress Status signal is used to indicate that new and valid information
is currently being driven onto the System Bus. The signals that are valid when SADS# is
driven low are:
SA2-31, SBE0-3#, SW/R#, SD/C#, SM/IQ# and SLOCK#

SRDY# I The System Bus ReaDY # signal indicates that the current System Bus cycle is complete.
When SRDY # is sampled asserted it indicates one of two things. In response to a read
request it indicates that the external system has presented valid data on the system data
bus. In response to a write request it indicates that the external system has accepted the
82395DX's data. This signal is ignored when the System Bus is in STi, STH, ST1 or ST1 P
states.
At the first read cycle of a Line Fill SRDY #, SBRDY # and SNA # determine if the Line Fill
will proceed as a burst/non-burst, pipelined/non-pipelined Line Fill.
Once a burst Line Fill has started, if SRDY # is returned in the 2nd or 3rd DW, the burst
Line Fill will be interrupted and the cache will not be updated. The 1st DW will already
have been transferred to the CPU. In the 4th OW of a Line Fill both SRDY # and
SBRDY # have the same affect. They indicate the end of the Line Fill.

SNA# I The System Bus Next Address signal, when active, indicates that a pipelined address
cycle will be executed. It is sampled by the 82395DX at the rising edge of CLK in ST2 and
ST1 P cycles. If this signal is sampled active then burst Line Fills are disabled. This signal
is ignored once a burst Line Fill begins.

Bus Arbitration

SBREQ 0 The System Bus REQuest signal is the internal cycle pending signal. This indicates to the
outside world that internally the 82395DX has generated a bus request (due to the CPU's
request that requires access to the System Bus). It is generated whether the 82395DX
owns the bus or not and can be used to arbitrate among the various masters on the El
System Bus. If the bus is available and the cycle starts immediately this signal will not be
activated for cache read miss cycles.

SHOLD I The System Bus HOLD request indicates that another master must have complete
control of the entire System Bus. When SHOLD is sampled asserted the 82395DX
completes the current System Bus cycle or sequence of LOCK# ed cycles, before driving
SHLDA active. In the same clock that SHLDA went active all the System Bus outpus and
1/0 pins are floated (with the exception of SHLDA and SBREQ). The 82395DX stays in
this state until SHOLD is negated. SHOLD is recognized during RESET.

SHLDA 0 The System Bus HOLD Acknowledge signal is driven active by the 82395DX in response
to a hold request. It indicates that the 82395DX has given the bus to another System Bus
master. It is driven active in the same clock that the 82395DX floats it's System Bus.
When leaving a bus HOLD, SHLDA is driven inactive and the 82395DX resumes driving
the bus in the same clock. The 82395DX is able to support CPU Local Bus activities
during System Bus HOLD.

5-475

intJ 82395DX

0.2 Quick Pin Reference (Continued)

Symbol Type Function

Bus Arbitration (Continued)

SFHOLD# I The System Bus Fast HOLD Request signal indicates that another master needs
immediate access to the System Bus. In response to SFHOLD# being sampled active,
the 82395DX stops driving (in the next clock) the System Bus output and 1/0 pins
(except SHLDA and SBREQ). Because the 82395DX always stops driving the System
Bus in response to SFHOLD# active, no acknowledge is required. The System Bus
output and 1/0 pins remain in the high impedance state until SFHOLD# is negated.
It is the responsibility of the system designer to guarantee that bus cycles that are in
progress when SFHOLD# is asserted are terminated correctly. This pin is recognized
during RESET.

Burst Control

SBRDY# I The System Bus Burst ReaDY signal performs the same function during a burst cycle
that SRDY # does in a non-burst cycle. SBRDY # asserted indicates that the external
system has presented valid data on the data pins in response to a burst Line Fill cycle.
This signal is ignored when the System Bus is at STi, STH, ST1 or ST1 P states.
Note that in the fourth bus cycle of a Line Fill, SBRDY # and SRDY # have the same
effect on the 82395DX. They indicate the end of the Line Fill. For all cycles other than
burst Line Fills, SBRDY # and SRDY # have the same effect on the 82395DX.

SBLAST# 0 The System Bus Burst LAST cycle indicator signal indicates that the next time
SBRDY # is returned the burst cycle is complete. It indicates to the external system
that the next SBRDY # returned is treated as a normal SRDY # by the 82395DX.
Another set of addresses will be driven with SADS # or the System Bus will go idle.
SB LAST# is normally active. In a cache read miss cycle, which may proceed as a Line
Fill, SB LAST# starts active. After determining whether or not the cycle is cacheable
via SKEN #, SB LAST# is driven inactive. If it is a cacheable cycle, and SBRDY #
terminates the first DW of the Line Fill, a burst Line Fill, SB LAST# will be driven active
when the data is valid for the fourth DW of the Line Fill. If SRDY # terminates the first
DW of the Line Fill, a non-burst Line Fill, SB LAST# is driven active in the cycle where
SRDY # was sampled active.

Cache Invalidation

SAHOLD I The System Bus Address HOLD request allows another bus master access to the
address bus of the 82395DX. This is to indicate the address of an external cycle for
performing an internal cache directory lookup and invalidation cycle. In response to
this signal the 82395DX stops driving the System Bus address pins in the next cycle.
No HOLD Acknowledge is required. Other System Bus signals can remain active
during address hold. The 82395DX does not initiate another bus cycle during address
hold. This pin is recognized during RESET.

SEADS# I The System Bus External ADress Strobe signal indicates that a valid external address
has been driven onto the 82395DX System Bus address pins. This address will be
used to perform an internal cache invalidation cycle. The maximum invalidation cycle
rate is one every two clock cycles.

5-476

intef 82395DX

0.2 Quick Pin Reference (Continued)

Symbol Type Function

Cache Control

FLUSH# I The FLUSH# pin, when sampled active for four clock cycles or more, causes the
82395DX to invalidate its entire TAG array. In addition, it is used to configure the
82395DX to enter various test modes. For details refer to chapter 7. This signal is
asynchronous but must meet setup and hold times to guarantee recognition in any
specific clock.

System Data Bus

SD0-31 110 The System Bus Data lines of the 82395DX must be driven with appropriate setup and
hold times for proper operation. These signals are driven by the 82395DX only during
write cycles.

System Bus Decode Pins

SKEN# I The System Cacheability ENable signal is used to determine if the current cycle running
on the System Bus is cacheable or not. When the 82395DX generates a read cycle,
SKEN # is sampled one clock before the first SBRDY # or SRDY # or one cycle before
the first SNA# is sampled active (see chapter 6): If SKEN# is sampled active the cycle
will be transformed into a Line Fill. Otherwise, the cache and cache directory will be
unaffected. Note that SKEN # is ignored after the first cycle in a Line Fill. SKEN # is
ignored for all System Bus cycles except for cache read miss cycles.

SWP# I The System Write Protect indicator signal is used to determine whether the current
System Bus Line Fill cycle is write protected or not. In non-pipelined cycles, SWP# is
sampled with the first SRDY # or SBRDY # of the Line Fill. In pipelined cycles, SWP# is
sampled one clock phase after the first SNA # is sampled active (see figures 6.9-10).
The Write Protect bit is sampled together with the TAG of each line in the 82395DX
Cache Directory. In every cacheable write cycle the Write Protect bit is read. If active,
the cycle will be a write protected cycle which is treated like a cacheable write miss
cycle. It is buffered and it does not update the cache even if the addressed location is
present in the cache.

Design Aides

SNENE# 0 The System NExt NEar indicator signal indicates that the current System Bus memory
cycle is to the same 2048 byte area as the previous memory cycle. Address lines A 11 -
31 of the current System Bus memory cycle are identical to address lines A 11-31 of the
previous memory cycle.
SNENE# can be used in an external DRAM system to run CAS# only cycles, thereby
increasing the throughput of the memory system. SN ENE# is valid for all memory
cycles, and indicates that the current memory cycle is to the same 2048 byte area, even
if there were idle or non-memory bus cycles since the last System Bus memory cycle.
For the first cycle after the 82395DX has exited the HOLD state, or after SAHOLD was
deactivated, this pin will be inactive.

5-477

intef 82395DX

1.0 82395DX FUNCTIONAL
OVERVIEW

1.1 Introduction

The primary function of a cache is to provide local
storage for frequently accessed memory locations.
The cache intercepts memory references and han­
dles them directly without transferring the request to
the System Bus. This results in lower traffic on the
System Bus and decreases latency on the local bus.
This leads to improved performance for a processor
on the Local Bus. By providing fast access to fre­
quently used code and data, the cache is able to
reduce the average memory access time of the 386
DX Microprocessor based system.

The 82395DX is a single chip cache subsystem spe­
cifically designed for use with the 386 DX Microproc­
essor. The 82395DX integrates 16KB cache, the
Cache Directory and the Cache Control Logic onto
one chip.

The 82395DX is expandable such that larger cache
sizes are supported by cascading 82395DXs. In a
single 82395DX system, the 82395DX can map 4
Giga bytes of main memory into a 16KB cache. In
the maximum configuration of a four 82395DX sys.
tem, the 4 Giga bytes of main memory are mapped
into a 64KB cache. The cache is unified for code
and data and is transparent to application software.
The 82395DX provides a cache consistency mecha-

386TM OX
Microprocessor

0 =Optional

nism which guarantees that the cache has the most
recently updated version of the main memory. Con­
sistency support has no performance impact on the
386 DX Microprocessor. Section 1.2 covers all the
82395DX features.

The 82395DX cache architecture is similar to the
i486 Microprocessor's on-chip cache. The cache is
four Way set associative with Pseudo LRU replace­
ment algorithm. The line size is 16B and a full line is
retrieved from the memory every cache miss. A TAG
is associated with every 16B line.

The 82395DX architecture allows for cache read hit
cycles to run on the Local Bus even when the Sys­
tem Bus is not available. 82395DX incorporates a
new write buffer cache architecture, which allows
the 386 DX Microprocessor to continue operation
without waiting for write cycles to actually update the
main memory.

A detailed description of the cache operation and
parameters is included in chapter 2.

The 82395DX has an interface to two electrically
isolated busses. The interface to the 386 DX Micro­
processor bus is referred to as the Local Bus (LB)
interface. The interface to the main memory and oth­
er system devices is referred to as the 82395DX
System Bus (SB) interface. The SB interface emu­
lates the 386 DX Microprocessor. The SB interface,
as does the 386 DX Microprocessor, can be pipe­
lined.

290382-3

Figure 1.1 - System Block Diagram

5-478

inter 82395DX

In addition, it is enhanced by an optional burst mode
for Line Fills. The burst mode provides faster line fills
by allowing consecutive read cycles to be executed
at a rate of up to one OW per clock cycle. Several
bus masters (or several 823950Xs) can share the
same System Bus and the arbitration is done via the
SHOLD/SHLDA/SBREQ mechanism (similar to the
i486 Microprocessor) along with SFHOLD#. Using
these arbitration mechanisms, the 82395DX is able
to support a multiprocessor system (multi 386 DX
Microprocessor/82395DX systems sharing the
same memory).

Cache consistency is maintained by the SAHOLD/
SEADS # snooping mechanism, similar to the i486
microprocessor. The 82395DX is able to run a zero
wait state 386 DX Microprocessor non-pipelined
read cycle if the data exists in the cache. Memory
write cycles can run with zero wait states if the write
buffer is not full.

The 82395DX cache organization provides a higher
hit rate than other standard configurations. The
82395DX, featuring the new high performance write
buffer cache architecture, provides full concurrency
between the electrically isolated Local Bus and Sys­
tem Bus. This allows the 82395DX to service read
hit cycles on the Local Bus while running line fills or
buffered write cycles on the System Bus. Moreover,
the user has the option to expand his cache system
up to 64KB.

1.2 Features

1.2.1 82385-LIKE FEATURES

• The 82395DX maps the entire physical address
range of the 386 DX Microprocessor (4GB) into
16KB, 32KB, or 64KB cache (with one, two, or
four 823950Xs respectively).

• Unified code and data cache.

• Cache attributes are handled by hardware. Thus
the 82395DX is transparent to application soft­
ware. This preserves the integrity of system soft­
ware and protects the users software investment.

• Double Word, Word and Byte writes, Double
Word reads.

• Zero wait states in read hits and in buffered write
cycles. All 386 DX Microprocessor cycles are
non- pipelined. (Note: The 386 DX Microproces­
sor must never be pipelined when used with the
82395DX - NA# must be tied to Vee).

• A hardware cache FLUSH# option. The
82395DX will invalidate all the Tag Valid bits in
the Cache Directory and clear the System Bus
line buffer when FLUSH# is activated for a mini­
mum of four CLK's. The line buffer is also
FLUSH#ed.

• The 82395DX supports non-cacheable accesses.
The 82395DX internally decodes the 387 DX
Math Coprocessor accesses as Local Bus cy­
cles.

• The system bus interface emulates a 386 DX Mi­
croprocessor interface.

• The 82395DX supports pipelined and non-pipe­
lined system interface.

• Provides cache consistency (snooping): The
82395DX monitors the System Bus address via
SEADS# and invalidates the cache address if
the System Bus address matches a cached loca­
tion.

1.2.2 NEW FEATURES

• 16KB on chip cache arranged in four banks, one
bank for each way. In Read hit cycles, one OW is
read. In a write hit cycle, any byte within the OW
can be written. In cache fill cycle, the whole line
(16B) is written. This large line size increases the
hit rate over smaller line size caches.

• Cache architecture similar to the i486 Microproc­
essor cache: Four Way SET associative with
Pseudo LRU replacement algorithm. Line size is
16B and a full line is retrieved from memory for
every cache miss. Tag, Tag Valid Bit and Write
Protect Bit are associated with every Line.

• New write buffer architecture with four OW deep
write buffer provides zero wait state memory write
cycles. 1/0, Halt/Shutdown and LOCK#ed writes
are not buffered.

• Concurrent Line Buffer Cacheing: The 82395DX
has a line buffer that is used as additional memo­
ry. Before data gets written to the cache memory
at the completion of a Line Fill it is stored in this
buffer. Cache hit cycles to the line buffer can oc­
cur before the line is written to the cache.

• Expandable: two 82395DXs support 32KB cache
memory, four 823950Xs support 64KB cache
memory. This gives the user the option of config­
uring a system to meet their own performance
requirements.

• In 387 DX Math Coprocessor accesses, the
82395DX drives the READYO# in one wait state
if the READYI # was not driven in the previous
clock.

Note that the timing of the 82395's READYO#
generation for 387 DX Math Coprocessor cycles
is incompatible with 80287 timing.

• The 82395DX optionally decodes CPU accesses
to Weitek 3167 Floating-Point Coprocessor ad­
dress space (COOOOOOOH-C1 FFFFFFH) as Lo­
cal Bus cycles. This option is enabled or disabled
according to the LBA# pin value at the falling
edge of RESET.

5-479

I

intef 82395DX

• An enhanced System Bus interface:

a) Burst option is supported in line-fills similar to
the i486 Microprocessor. SBRDY# (System
Burst READY) is provided in addition to
SRDY #. A burst is always a 16 byte cache
update which is equivalent to four OW cycles.
The i486 Microprocessor burst order is sup­
ported.

b) System cacheability attribute is provided
(SKEN#). SKEN# is used to determine
whether the current cycle is cacheable. It is
used to qualify Line Fill requests.

c) SHOLD/SHLDA/SBREQ system bus arbitra- ·
tion mechanism is supported, the same as in
the i486 Microprocessor. A Multi 386 DX/
82395DX cluster can share the same System
Bus via this mechanism.

d) SNENE# output (Next Near) is provided to
simplify the interface to DRAM controllers.
DRAM page size of 2K is supported.

e) Fast HOLD function (SFHOLD#) is provided.
This function allows for multiprocessor sup­
port.

f) Cache invalidation cycles supported via
SEADS#. This is the mechanism used to pro­
vide cache coherency.

• Full Local Bus/System Bus concurrency is at­
tained by:

a) Servicing cache read hit cycles on the Local
Bus while completing a Line Fill on the System
Bus. The data requested by the 386 DX Micro­
processor was provided over the local bus as
the first part of the Line Fill.

b) Servicing cache read hit cycles on the Local
Bus while executing buffered write cycles on
the system bus.

c) Servicing cache read hit cycles on the Local
Bus while another bus master is running (OMA,
other 386 DX Microprocessor, 82395DX, i486
Microprocessor, etc ...) on the System Bus.

d) Buffering write cycles on the Local Bus while
the system bus is executing other cycles.

• Write protected areas are supported by the
SWP# input. This enables caching of ROM
space or shadowed ROM space.

• No Post Input (NP!#) provided for disabling of
write buffers per cycle. This option supports
memory mapped 1/0 designs.

• A20M # input provided for emulation of 8086 ad-
dress wrap-around. ·

• SAAM test mode, in which the TAGRAM and the
cache RAM are treated as standard SAAM, is
provided. A Tristate Output test mode is also pro­
vided for system debugging. In this mode the
82395DX is isolated from the other devices in the
board by floating all its outputs.

• Single chip, 196 lead PQFP package, 1 micron
CHMOS-IV technology.

2.0 82395DX CACHE SYSTEM
DESCRIPTION

2.1 82395DX Cache Organization

The on chip cache memory is a unified code and
data cache. The cache organization is 4 Way SET
Associative and each Line is 16 bytes wide (see Fig­
ure 2.1). The 16K bytes of cache memory are logi­
cally organized as 4 4KB banks (4: 1 bank for each
Way). Each bank contains 256 16B lines (256: 1 line
for each SET).

The Cache Directory is used to determine whether
the data in the cache memory is valid for the ad­
dress being accessed. The Cache Directory con­
tains 256 TAG's (each TAG is 22-bits wide) for each
Way, for a total of 1K TAG's (See Figure 2.2). With
each 20 bit TAG Address there is a TAG Valid Bit
and a Write Protect bit. The Cache Directory also
contains the LAU bits. The LAU bits are used to
determine which Way to replace whenever the
cache needs to be updated with a new lin.e and all
four ways contain data.

Table 2.1 lists the 82395DX cache organization.

5-480

intef 82395DX

Table 2.1 - 82395DX Cache Organization

Cache Element
82395DX

Comments
Size/Qty

TAG 1K Total number of TAGs

SET 256 Cache Directory Offset

LRU 256 3 bits per SET address

Way 4 4 T AG's per SET address

Line Size 16B 4DW's

Sector Size 16B 4 DW's, one line per sector

Cache Size 16KB Expandable to 64KB

Cache Directory - TAG address, TAG Valid Bit, and Write Protect Bit for each Way for each
SET address (256 SET's x 4 Ways), and LRU bits.

TAG Valid Bit 1K 1 for each TAG in the cache directory, indicates valid data is in the cache
memory.

Write Protect Bit 1K 1 for each TAG in the cache directory, indicates that the address is write
protected.

A11 A4 A31 A12 A3 A2

11111111111111111111nmuuu Ulntl11Utlllllllfl 1111111111 Ill I l 1111 l I I l ll II l l I II I I lll,.,.,_I HI

SET 255

SET ADDRESS

1
1

l
1 bit
1 bit =-i

r-2ob1ts~ I

0

~
"O

TAG ~ ADDRESS 0..

" " ~ ~

TAG ADDRESS

[-----16 byte line--1

: ow iow iow i owl

l l l

Figure 2.1 - 82395DX Cache Organization

5-481

DW SELECT

i3bltsj

LRU

290382-4

I

intef 82395DX

SET 0
SET 1

SET 254
SET 255

WAY 0

TAG
ADDRESS

20 bits

I- 0 u ::::;
"" I- <(
0 >
"' (!) "- <(

"" I-
!::
"' :;=

1 1

WAY 1

I- 0 u ::::;
"" TAG I- <(
0 >

ADDRESS "' (!) "- ~ "" !::
"' :;=

20 bits 1 1

WAY 2 WAY 3 LRU

I- 0 u ::::;
"" TAG I- <(
0 >

t; 0

""
::::;

TAG I- ~ 0
ADDRESS "' (!) "- ~ !:!

ADDRESS "' (!) "- ~ "" !::

"' "' :;= :;=

20 bits 1 1 20 bits 1 1 3

290382-5

Figure 2.2 - 82395DX Cache Directory Organization

2.1.1 82395DX CACHE STRUCTURE AND
TERMINOLOGY

A detailed description of the 82395DX cache param­
eters are defined here.

A Line is the basic unit of data transferred between
the cache and main memory. In the 82395DX each
Line is 168. A Line is also known as a transfer block.
The decision of a cache "hit or miss" is determined
on a per Line basis. A cache hit results when the
TAG address of the current address being accessed
matches the TAG address in the Cache Directory
(see Figure 2.3) and the TAG Valid bit is set. The
82395DX has 1 K Lines.

A TAG is a storage element of the Cache Directory
with which the hit/miss decision is made. The TAG
consists of the TAG address (A31-A12), the TAG
Valid bit and the Write Protect bit. Since many ad­
dresses map to a single line, the TAG is used to
determine whether the data associated with the cur­
rent address is present in the cache memory (a
cache hit). This is done through a comparison of the
TAG address bits of the current address and the
contents of the Cache Directory, along with the TAG
Valid bit. Each line in the cache memory has a TAG
associated with it.

5-482

intef 82395DX

386 DX Microprocessor Address A2-A31

·------ ------- ------------------------· I ··------ ------- ----------------------' . ------- --------.:
DW Select SET Address
A2-A3 A4-A 11

A0-07

SRAM
256x20

D0-019

TAG Address
A12-A31

Hit/Miss

20 bits

A0-07
>.
g

SRAM ..:
0 256x128
15
0

D0-0127

128 bits

Data
32 bits

'!---+
DW 3

,21-•

'u·•
. Way 0 r-•

---------------------------------------· 290382-6

Figure 2.3 - 82395DX Cache Hit Logic

A TAG Valid Bit is associated with each TAG ad­
dress in the Cache Directory. It determines if the
data held in the cache memory for the particular
TAG address is valid. It is used to determine whether
the data in the cache is a match to data in main
memory.

A Write Protect Bit is also associated with each
TAG address in the Cache Directory. This field de­
termines if the cache memory can be written to. It is
set by the SWP# pin during Line Fill cycles (see
chapter 6).

A SET address is a decoded portion of the Local
Bus address that maps to 1 TAG address per Way in

the Cache Directory. All the TAG's associated with a
particular SET are simultaneously compared with
the TAG field of the bus address to make the hit/
miss decision. The 82395DX provides 256 SET ad­
dresses, each SET maps to four lines in the cache
memory.

The term Way as in 4 Way SET Associative de­
scribes the degree of associativity of the cache sys­
tem. Each Way provides TAG Address, TAG Valid
bit, and Write Protect bit storage, 1 entry for each
SET address. A simultaneous comparison of one
TAG address from each Way with the bus address is
done in order to make the hit/miss decision. The
82395DX is 4 Way SET Associative.

5-483

El

inter 82395DX

Other key 82395DX features include:

Cache Size· The 823950Xcontains 16KB of cache
memory. This can be expanded by connecting two
or four 82395DX's in parallel to get up to 64KB of
cache memory. Expanding the cache in this way re­
sults in an increased number of Tags with a constant
number of lines per Tag. The cache is organized as
four banks of 4KB. Each of the four banks corre­
sponds to a particular Way.

Update Policy • The update policy deals with how
main memory is updated when a cacheable write
cycle is issued on the Local Bus. The 82395DX sup­
ports the write buffer policy, similar to the write
through policy, which means that main memory is
always updated in every write cycle. However, the
cache is updated only when the write cycle hits the
cache. Also, the 82395DX is able to cache write pro­
tected areas, e.g. ROMs, by preventing the cache
update if the write cycle hits a write protected line. A
write cycle to main memory is buffered as explained
in chapter 6,

Replacement • When a new line is needed to up­
date the cache, the Tag Valid bits are checked to
see if any of the four ways are.available. If they are
all valid it is necessary to replace an old line that is
already in the cache. In the 82395DX, the Pseudo
LRU (least recently used) algorithm is adopted. The
Pseudo LRU algorithm targets the least recently
used line associated with the SET for replacement.
(Pseudo LRU is described in section 2.2.).

Consistency • The 82395DX implements hooks for
a consistency mechanism. This is to guarantee that

Are all four lines in the set valid?

in systems with multiple caches (and/or with multi­
ple bus masters) all processor requests result in re­
turning correct and consistent data. Whe.never a
system bus master performs memory accesses to
data which also exists in the cache, the System Bus
master can invalidate that entry in the 82395DX.
This invalidation is done by using SEADS# (descrip­
tion in chapter 6).

The invalidation is performed by marking the TAG as
invalid (the TAG Valid bit is cleared). Thus, the next
time a Local Bus request is made to that location,
the 82395DX accesses the main memory to get the
most recent copy of the data.

2.2 Pseudo LRU Algorithm

When a line needs to be placed in the internal cache
the 82395DX first checks to see if there is a non­
valid line in the SET that can be replaced. The validi­
ty is checked by looking at the TAG Valid bit. The
order that is used for this check is Way 0, Way 1,
Way 2, and Way 3. If all four lines associated with
the SET are valid, a pseudo Least Recently Used
algorithm is used to determine which line will be re­
placed. If a non-valid line is found, that line is
marked for replacement. All the TAG Valid bits are
cleared when the 82395DX is RESET or when the
cache is FLUSH#ed. Three bits, BO, B1, and B2, are
defined for each of the 256 SETs. These bits are
called the LRU bits and are stored in the cache di­
rectory. The LRU bits are updated for every access
to the cache.

If the most recent access to the cache was to Way O
or Way 1 then BO is set to 1.

~ Replace non-valid line

80=0?

Way 0 or Way 1 least recently used

81 =O? 82=0?

A A
Replace Way 0 Replace Way 1 Replace Way 2 Replace Way 3

Figure 2.4 • Pseudo LAU Decision Tree

5-484

290382-7 /.

intef 82395DX

A11 A4 A31 A12 A3 A2

1111111 Ill I II I I I Ill lllnrnll II uuu IUHIHIHUll 1111111111 1111111111111111111111111111111
SET ADDRESS TAG ADDRESS OW SELECT

Way 3

00001h 000, h 0002h 0003h 0004h

SET 0

lc!!P·tj

SET 255

Way 2

Way01blt

1blt~ I
t-20bits-I I

OOA8Ch 0 1

1'
TAG ~

ADDRESS 0.. i . " 'E ~
;i:o

Cache
Directory

i--- 16 byte line -----!
'owl owiow low i

4k Bytes Data SRAM

Cache Memory

L l
fEOCh SA98_hl 7&SAbl3Wlh ·

L1 0001h 0002h 0003h 0004h

L 220_1

0123h ABC1h 1DFfil!] 3579h t7 z20_2

0011h 55AAh 8876 h DF78h

~w«•
1 Pages

page O ti
Main Memory

290382-8

Figure 2.5 - Four Way Set Associative Cache Organization

5-485

I

intJ 82395DX

BO is set to 0 if the most recent access was to Way 2
or Way 3. If the most recent access to Way o or Way
1 was to Way 0, B1 is set to 1. Else B1 is set to 0. If
the most recent access to Way 2 or Way 3 was to
Way 2, B2 is set to 1. Else B2 is set to 0. See Table
2.2.

The Pseudo LRU algorithm works in the following
manner. When a line must be replaced, the cache
will first select which of Way 0 and Way 1 or Way 2
and Way 3 was least recently used. Then the cache
will select which of the two lines was least recently
used and mark it for replacement. The decision tree
is shown in Figure 2.4. When the 82395DX is RESET
or the cache is FLUSH#ed all the LRU bits are
cleared along with' the TAG Valid bits.

2.3 Four Way Set Associative Cache
Organization

The 82395DX is a four Way SET Associative cache.
Figure 2.5 shows the 82395DX's cache organiza­
tion. For each of the 256 SET's there are four
TAG's, one for each Way. The address currently be­
ing accessed is decoded into the SET and TAG ad­
dresses. If the access was to address 00555004h
(SET=001,TAG=00555h), the four TAG's in the
Cache Directory associated with SET 001 are simul­
taneously compared with the TAG of the address
being accessed. The TAG Valid bits are also
checked. If the TAG's match and the TAG Valid bit is
set, the access is a hit to the Way where the hit was
detected, in this example the hit occurred in Way 1.
The data would be retrieved from Way 1 of the
cache memory. If the next access was to address
OAAA4007h (SET= 001, TAG= OAAA4h), the com­
parison would be done and a TAG match would be
found in Way 2. However in this case the TAG Valid
bit is cleared so the access is a miss and the data
will be retrieved from main memory. The cache
memory will also be updated. It is helpful to notice
that the main memory is broken into pages by the
TAG size. In this case with a 20-bit TAG address
there are 220 pages. The smaller the TAG size the
fewer pages main memory is broken into. The SET
breaks down these memory pages. The larger the
SET size the more lines per page.

The following is a description of the interaction be­
tween the 386DX Microprocessor, the 823950Xs
cache and Cache Directory.

2.3.1 CACHE READ HITS

When the 386 DX Microprocessor initiates a memo­
ry read cycle, the 82395DX uses the 8 bit SET ad­
dress to select 1 of the 256 SET's in the Cache
Directory. The four TAG's of this SET are simulta-

neously compared with address bits A12-A31. The
four TAG Valid bits are checked. If any comparison
produces a hit the corresponding bank of internal
SRAM supplies the 32 bits of data to the 386 DX
Microprocessor data bus based on the OW Select
bits A2 and A3. The LRU bits are then updated ac­
cording to the Pseudo LRU algorithm.

2.3.2 CACHE READ MISSES

Like' the cache read hit the 82395DX uses the 8 bit
SET address to select the 4 TAG's for comparison.
If none of these match or if the TAG Valid bit associ­
ated with a matching TAG address is cleared the
cycle is a miss and the 82395DX retrieves the re­
quested data from main memory. A Line Fill is simul­
taneously started to read the line of data from sys­
tem memory and write the line of data into the cache
in the. Way designated by the LRU bits. ·

2.3.3 OTHER OPERATIONS THAT AFFECT THE
CACHE AND CACHE DIRECTORY

Other operations that affect the cache and Cache
Directory include write hits, snoop hits, cache
FLUSH#es and 82395DX RESETs. In write hits, the
cache is updated along with main memory. The bank
that detected the hit is the one that data is written to.
The LRU bits are then adjusted according to the
Pseudo LRU algorithm. When a cache invalidation
cycle occurs (Snoop hit) the tag valid bit is cleared.
RESETs and cache FLUSH#es clear all the TAG
Valid bits.

2.4 Concurrent Line Buffer Cacheing

This feature of the 82395DX can be broken into two
components, Concurrent Line Buffer. and Line Buffer
Cacheing.

A Concuurent Line Buffer indicates that the OW re­
quested is returned to the 386 DX Microprocessor in
the first cycle of a Line Fill. The Local Bus is then
free to execute other cycles while the Line Fill is
being completed on the System Bus.

Line Buffer Cacheing indicates that the 82395DX
serves 386 DX Microprocessor cycles before it up­
dates its Cache Directory. If the 386 DX Microproc­
essor cycle is to a line which resides in the cache
memory, the 82395DX will serve that cycle as a reg­
ular cache hit cycle. The cache memory and cache
directory are not updated until after the Line Fill is
complete (see sections 2.8 and 2.9). The 82395DX
keeps the address and data of the retrieved line in
an internal buffer, the System Bus line buffer. Any
386 DX Microprocessor read cycle to the same line
will be serviced from the line buffer. Until the cache
memory and cache directory are updated, any

5-486

intef 82395DX

386 DX Microprocessor read cycle to a Double­
word, which has already been retrieved, will be serv­
iced from the System Bus line buffer. On the other
hand, any 386 DX Microprocessor write cycle to the
same line will be done to the cache memory after
updating the line in the cache. In this case, the write
cycle is buffered and the READYO# is activated af­
ter updating the line in the cache. However, if the
line is Write Protected, the write cycle will be han­
dled as if it is a miss cycle. ·

A snooping cycle to a line which has not been updat­
ed in the cache will invalidate the SB Line Buffer and
will prevent the cache update. Also, cache FLUSH
will invalidate the buffer. More details about invalida­
tion cycles can be found in chapter 6.

2.5 Cache Control

The cache can be controlled via the SWP # pin. By
asserting this pin during the first DW in a Line Fill the
82395DX sets the write protect bit in the Cache Di­
rectory making the entry protected from writes.

2.6 Cache Invalidation

Cache invalidation cycles are activated using the
SEADS# pin. SAHOLD or SHLDA asserted condi­
tions the 82395DX's system address bus (SA4-
SA31) to accept an input. The 82395DX floats its
system address bus in the clock immediately after
SAHOLD was asserted, or in the clock SHLDA is
activated. No address hold acknowledge is required
for SAHOLD. SEADS# asserted and the rising edge
of CLK2 indicate that the address on the System
Bus is valid. SEADS# is not conditioned by
SAHOLD or SHLDA being asserted. The 82395DX
will read the address and perform an internal cache
invalidation cycle to the address indicated. The inter­
nal cache invalidation cycle is serviced 1 cycle after
SEADS# was sampled active (or 2 cycles after
SEADS# was sampled active if there is contention
between the Cache Directory Snoop (CDS) cycle
and a Cache Directory Lookup (CDL) cycle, see 2.8
and Figure 2.6). To actually invalidate the address
the 82395DX clears the tag valid bit.

2.7 Cache Flushing

The user has an option of clearing the cache by acti­
vating the FLUSH# input. When sampling the
FLUSH# input low for four clocks, the 82395DX re­
sets all the tag valid bits and the LRU bits of the
Cache Directory. Thus, all the banks of the cache
are invalidated. Also, the SB Line Buffer is invalidat­
ed. The FLUSH# input must have at least eight CLK
periods in order to be recognized. If FLUSH is acti-

vated for longer than four CLKs, the 82395DX will
handle all accesses as misses and it will not update
the Cache Directory (the Cache Directory will be
FLUSH#ed as long as the FLUSH# input is low).
The cache is also FLUSH#ed during RESET.

2.8 Cache Directory Accesses and
Arbitration

There are five types of accesses to the cache direc­
tory. Each access is a one clock cycle:

1) Cache Directory Look-Up

2) Cache Directory Update

3) Cache Directory Snoop

4) Testability Accesses

5) Cache Directory FLUSH#

A description of each of these accesses follows:

1) Cache Directory Look-up cycle (COL): A 386
DX Microprocessor access in which the hit/miss
decision is made. The Cache Directory is ac­
cessed by the 386 DX Microprocessor address
bus directly from the pins. COL is executed when­
ever ADS# is activated, in both read and write
cycles. The LRU bits are updated in every CDL hit
cycle so the accessed "Way" becomes the most
recently used. The LRU bits are read in every
CDL miss cycle to indicate the "Way" to be up­
dated in the Cache Directory Update cycle. Also,
the WP bit is read.

2) Cache Directory Update cycle (CDU): A write
cycle to the cache directory due to a previous
miss. The COU cycle can be caused by a TAG
mismatch (either a Tag Address mismatch or a
cleared TAG Valid bit). In both cases, the new
TAG is written to the "Way" indicated by the LRU
bits read by the previous COL miss cycle. Also,
the TAG Valid bit is turned on and the LRU algo­
rithm is updated so the accessed "Way" be­
comes the most recently used. The WP bit is writ­
ten according to the sampled SWP # input. The
Cache Directory is accessed by the internally
latched 386 DX Microprocessor address bus.
Simultaneously with the CDU cycle, the cache
memory is updated.

3) Cache Directory Snooping cycle (CDS): A
Cache Directory look-up cycle initiated by the
System Bus, in response to an access to a mem­
ory location that is shared with another system
master, followed by a conditional invalidation of
the TAG Valid bit. If the look-up .cycle results in a
hit, the corresponding TAG Valid bit in the Way
which detected the HIT will be cleared. CDS cy­
cles do not affect the LRU bits. The Cache Direc­
tory is accessed by the internally latched System
Bus address.

5-487

82395DX

4) Testability accesses (CDT): Cache Directory
read and write cycles performed in SAAM test
mode. During the TEST accesses, 25 bits of each
entry (20 for the TAG, one for the TAG Valid BIT,
one for the WP bit and 3 for the LAU bits) are
read or written. No comparison is done. CDT cy­
cles are used for debugging purposes so CDT cy­
cles do not contend with other cycles.

5) Cache Directory FLU.SH cycle {CDF): During
RESET or as a result of a FLUSH# request gen­
erated by activating the FLUSH# input, all the
TAG Valid bits and the LAU bits are cleared as
well as the Line Buffer. CDF is a one clock cycle if
FLUSH# is active for four clocks. If FLUSH# is
activated longer, the CDF cycle is N-3 clocks,
where N is the number of clocks FLUSH# is acti­
vated for. The actual clearing of the valid bits oc­
curs seven clocks after the activation of
FLUSH#. Two clocks are for internal synchroni­
zation and four for recognizing FLUSH# assert­
ed. It has higher priority than all other cycles. CDF
cycle may occur simultaneously with any other cy­
cle but the result is always a FLUSH#ed Cache
Directory.

The 82395DX performs the COL cycle in T1 state.
The CDU cycle, in general, is performed in the clock
after the last SRDY # or SBRDY # of the Line Fill
cycle and the CDS cycle one clock after sampling
the SEADS# active (see more details on snooping
cycles in chapter 6). Supporting concurrent activities
on local and system busses causes COL cycles to
be requel;\ted in any clock during the execution with
a maximum rate of a COL cycle every other clock.

The following arbitration mechanism guarantees res­
olution of any possible contention between COL,
CDU and CDS cycles:

CLK2

CLK

ADS#

CACHE DIR
ACCESS

T1 T2 T1

1. The priority order is COL, CDS and CDU. COL has
the highest priority, CDU has the lowest.

2. In case of simultaneous COL and CDS cycles, the
CDS will be delayed by one clock. So, the maxi­
mum latency in executing the invalidation cycle is
two clocks after sampling the SEADS# active.
Since the maximum rate of each of the COL and
the CDS cycles is one every other clock, the
82395DX is able to interpose the COL and CDS
cycles such that both are serviced. Figure 2.6
clarifies the interposing in the Cache Directory be­
tween the 386 DX Microprocessor and the Sys­
tem Bus.

3. CDU cycle is executed in any clock after the last
SRDY # or SBRDY # in which neither COL nor
CDS cycles are requested. The worst case is the
case where immediately after the read miss, the
386 DX Microprocessor runs consecutive read
hits while the System Bus is running invalidation
cycles every other clock. In this case, the CDU
cycle is postponed until a free clock is inserted,
which may occur due to slower look-up rate (in
case of read miss, non-cacheable read, etc ...), or
due to slower SEADS # rate.

T2

Since every CDU cycle is synchronized with the
cache update (CU - writing the retrieved line into
the cache), a possible contention on the cache
can occur between a cache update cycle and a
cache write cycle (CW - cache is written due to a
write hit cycle). In this case, the CW cycle is exe­
cuted, and the CDU and CU cycles are delayed.

Tl Tt T2

290382-9

Figure 2.6 - Interposing in the Cache Directory

5-488

intef 82395DX

2.9 Cache Memory Description

The 82395DX cache memory is constructed of four
banks, each bank is 1 K double words (4KB) and rep­
resents a "Way". For example, if the read cycle is to
Way 0, bank O will be read. The basic cache element
is a Line. The cache is able to write a full line or any
byte within the line. Reads are done by OW only.

There are four types of accesses to the cache data
memory. Each access is a one clock cycle:

1) Cache Read cycle

2) Cache Write cycle

3) Cache Update cycle

4) Testability Access

A description of each type of access follows:

1) Cache Read cycle (CR): CR cycle occurs simul­
taneously with Cache Directory look-up (COL) cy­
cle if the cycle is a read. In case of a hit, the
cache bank in which the hit was detected is read.
In CR cycle, the A2-3 address lines select the
requested OW within the line.

2) Cache Write cycle (CW): CW cycle occurs one
clock after the Cache Directory look-up cycle
(COL) if the cycle is a write hit and the WP bit is

not set. The cache bank in which the hit was de­
tected is updated. In CW cycle, the A2-3 address
lines and the four BE# lines select the required
bytes within the line to be written. For all write hit
cycles, READYO# is returned simultaneously
with the CW cycle unless the write buffer is full.
When the write buffer is full the first cycle buff­
ered must be completed on the system bus be­
fore READYO# can be asserted.

3) Cache Update cycle (CU): CU cycle occurs
simultaneously with every Cache Directory update
cycle (CDU). The full line is written.

4) Testability accesses (CT): cache read and write
cycles performed by the 82395DX TEST ma­
chine. During the TEST accesses, the cache
memory acts as a standard RAM. CT cycles are
used for debugging purposes so CT cycles do not
contend with other cycles.

The Cache Directory arbitration rules guarantee that
contention will not occur in the cache accesses.
This is since CR is synchronized with the COL cycle,
CU is synchronized with CDU cycle, CW cannot oc­
cur simultaneously with CR cycles (ADS# not acti­
vated while READYO# is returned since 386 DX Mi­
croprocessor is not pipelined) and finally the possi­
ble contention of CW and CU is resolved. See figure
2. 7 for an example of Cache Directory and cache
memory accesses during a typical cycle execution.

5-489

I

intef 82395DX

CROH CROM CROH

T1 T2 T1 T2 T2 T2 T1 T2 TI
STI STI STI ST1 ST2 ST2 ST2 ST2 STi

CLK2

CLK

ADS#

386 ADDR

READYO#

SADS#

SBRDY#

SKEN#

SBLAST#

SAHOLO

SEA OS#

SA2-31

CACHE DIR COL

CACHE CR CR
ACCESSES

290382-10

Figure 2.7- Cache Directory and Cache Accesses

5-490

inter 82395DX

3.0 PIN DESCRIPTION

The 82395DX pins may be divided into 4 groups:

1. Local Bus interface pins

2. System Bus interface pins

3. Local Bus decode pins

4. System Bus decode pins

Some notes regarding these groups of pins follow:

1. All Pins - All input and 1/0 pins (when used as
inputs) must be synchronous to CLK2, to guaran­
tee proper operation. Exceptions are the RESET
pin, where only the falling edge needs to be syn­
chronous to CLK2, and A20M # and FLUSH# pin,
which are asynchronous.

2. Local Bus Interface Pins - All Local Bus interface
pins that have a corresponding 386DX Microproc­
essor signal (A2-31, W/R#, DIC#, M/10#,
LOCK#, and D0-31) must be connected directly
to the corresponding 386 DX Microprocessor
pins.

3. System Bus Interface Pins - In multi-82395DX
mode, all System Bus output and 1/0 pins are
driven by the primary 82395DX, with the excep­
tion of SADS#. See chapter 4 for more details.

4. Local I System Bus Decode Pins - These signals
are generated by proper decoding of the Local
and System Bus addresses. The decoding for the
Local Bus decode pins, LBA # and NPI #, must be
static. The decoding for the System Bus decode
pins, SKEN # and SWP #, must be static over the
line boundary. They must not change during a
Line Fill. If a change in the decoding of these sig­
nals is made, the 82395DX must be FLUSH#ed
or RESET.

3.1 Local Bus Interface Pins

3.1.1 386 DX MICROPROCESSOR/82395DX
CLOCK (CLK2 I}

This signal provides the fundamental timing for the
82395DX. The 82395DX, like the 386 DX Microproc­
essor, divides CLK2 by two to generate the internal
clock. The phase of the internal 82395DX clock is
synchronized to the internal CPU clock phase by the
RESET signal. All external timing parameters are
specified with respect to CLK2.

3.1.2 LOCAL ADDRESS BUS

3.1.2.1 Local Bus Address Lines (A2-A31 I)

These signals, along with the byte enable signals,
define the physical area of memory or 1/0 accessed.

3.1.2.2 Local Bus Byte Enables (BE3#-BEO# I)

These pins are used to determine which bytes are
accessed in partial write cycles. On read-hit cycles
these lines are ignored by the 82395DX. On write hit
cycles they determine which bytes in the internal
Cache SAAM must be updated, and passed to the
System Bus along with the System Bus write cycle.
In all system bus cycles (non-cacheable reads, read
misses and all writes) these signals are mirrored by
the SBE0-3 # signals. These signals are active
LOW.

3.1.3 LOCAL BUS CYCLE DEFINITION

3.1.3.1 Local Bus Cycle Definition Signals
(W/R#,D/C#,M/10# I)

The memory/input-output, data/code, write/read
lines are the primary bus definition signals directly
connected to the 386 DX Microprocessor. These
signals become valid as the ADS# signal is sampled
asserted. The bus cycle type encoding is identical to
that of the 386 DX Microprocessor. The 386 DX Mi­
croprocessor encoding is shown in table 5.1. The
bus definition signals are not driven by the 386 DX
Microprocessor during bus hold and follow the tim­
ing of the address bus.

3.1.3.2 Local Bus Lock (LOCK# I)

This signal indicates a LOCK#ed cycle. LOCK#ed
cycles are treated as non-cacheable cycles, except
that LOCK#ed write hit cycles update the cache as
well. LOCK#ed write cycles are not buffered.

The 82395DX asserts SLOCK # when the first
LOCK# ed cycle is initiated on the System Bus.
SLOCK# is deactivated only after all LOCK#ed
System Bus cycles were executed, and LOCK# was
deactivated.

3.1.4 LOCAL BUS CONTROL

3.1.4.1 Address Status (ADS# I)

The address status pin, an output of the 386 DX
Microprocessor, indicates that new, valid address
and cycle definition information is currently available
on the Local Bus. The signals that are valid when
ADS# is activated are:

A(2-31), BE(0-3)#, W/R#, DIC#, M/10#, LOCK#,
NPI# and LBA#

5-491

I

intef 82395DX

3.1.4.2 Local Bus Ready (READYI # I)

This is the ready input signal seen by the local bus
master. Typically it is a logical OR between the
82395DX generated READYO# signal and other
(optional) READY# signals generated by other Lo­
cal Bus masters. It is used by the 82395DX, along
with the ADS# signal, to keep track of the 386 DX
Microprocessor b1.1s state.

3.1.4.3 Local Bus Ready Output (READVO# 1/0)

This output is returned to the 386 DX Microproces­
sor to terminate all types of 386 DX Microprocessor
bus cycles, except for Local Bus cycles. This signal
is wire-ORed with parallel 82395DX READYO# sig­
nals (if more than one 82395DX is used on a 386 DX
Microprocessor bus). For more details on READ­
YO # functionality in a multi-82395DX system, refer
to Chapter 4. ·

The READYO# may serve as READY# signal for
the 387 DX Math Coprocessor. For details, refer to
Chapter 5.

This pin is used during the self configuration se­
quence, after RESET. For details, refer to Chapter 4.

3.1.5 RESET (RESET I)

This signal forces the 82395DX to begin execution
at a known state. RESET falling edge is used by the
82395DX to set the phase of its internal clock identi­
cal to the 386 DX Microprocessor internal clock. The
RESET falling edge must satisfy the appropriate set­
up and hold times for proper chip operation. RESET
must remain active for at least 1 ms after power sup­
ply and CLK2 input have reached their proper DC
and AC specifications.

The RESET input is used for three purposes: first, it
RESETs the 82395DX and brings it to a known
state. Second, it is used to synchronize the internal
82395DX clock phase to that of the 386 DX Micro­
processor. Third, it initiates a self-configuration se­
quence in which the 82395DX determines the num­
ber of parallel 82395DX devices in the system and
it's own configuration (Primary I Secondary and ad­
dress space).

On power up, RESET must be active for at least 1
millisecond after power has stabilized to a voltage
within spec, and after CLK2 input has stabilized to
voltage and frequency within spec. This is to allow
the internal circuitry to stabilize. Otherwise, RESET
must be activ~ for at least 10 clock cycles.

No access to the 82395DX is allowed for 128 clock
cycles after the RESET falling edge. During RESET,
all other input pins are ignored, except SHOLD,

SAHOLD and SFHOLD#. Unlike the 386 DX Micro­
processor, the 82395DX can respond to a System
Bus HOLD request by floating its bus and asserting
SHLDA even while RESET is asserted. Also the
82395DX can respond to a System Bus address
HOLD request by floating its address bus. The
status of the 82395DX outputs during RESET is
shown in Table 3.2.

The 82395DX samples the LBA#pin during RESET
and enables the decoding of Weitek 3167 Floating­
Point Coprocessor address space if it is sampled
low (active).

The user must make sure SAHOLD and FLUSH#
are not asserted at the falling edge of RESET. If
they are the Tristate Test Mode will be entered.
The user must also insure that FLUSH# does not
get asserted for one clock cycle while SAHOLD
is negated for the same CLK cycle prior to
RESET falling. If this condition exists a reserved
mode will be entered.

3.1.6 CONFIGURATION (COf!,IF# I)

The activity on this input during and after RESET
allows the 82395DX to configure itself to operate in
the specified address range.

Refer to Chapter 4 for more details. This pin is active
LOW.

3.1.7 LOCAL DATA BUS

3.1.7.1 Local Bus Data Lines (DO-D31 1/0)

These are the Local Bus data lines of the 82395DX
and must be connected to the DO-D31 signals of
the Local Bus.

3.1.8 LOCAL BUS DECODE PINS

These signals are generated by proper decoding of
the local bus address. The decoding of these signals
must be static, the decoding must not change during
normal operation of the 82395DX. If a change in the
decoding of these signals is made, the 82395DX
must be FLUSH#ed or RESET. These signals must
be stable throughout the local bus cycle (refer to
Figure 5.1).

3.1.8.1 Local Bus Access Indication (LBA# I)

This signal instructs the 82395DX that the cycle cur­
rently in progress is targeted to a Local Bus device,
and must therefore be ignored by the 82395DX. The
387 DX Math Coprocessor is considered a Local

5-492

82395DX

Bus Device, but LBA# need not be generated for
387 DX Math Coprocessor accesses. Weitek 3167
Floating-Point Coprocessor address space may also
be decoded internally as Local Bus cycles. Note that
LBA # has priority over all other types of cycles. This
signal is active LOW.

3.1.8.2 No Post Input (NPI# I)

This signal instructs the 82395DX that the write cy­
cle currently in progress must not be posted (buff­
ered) in the write buffer. NPI # is sampled on the
falling edge of CLK following the address change,
see figure 5.1. NPI # is ignored during read cycles.
This signal is active LOW.

'~~
Internal Clock~

I- T-State --- T-State -----1
290382-11

Figure 3.1 - CLK2 and Internal Clock

CLK2

Internal Clock

RESET

290382-12

Figure 3.2 - RESET /Internal Phase Relationship

CLK2

Internal Clock

LBA# +--' ''--t---VA_,.L_ID---t--' "'--!----+
290382-13

Figure 3.3 • Sampling LBA # During RESET

5-493

I

intJ 82395DX

3.1.9 ADDRESS MASK

3.1.9.1 Address Bit 20 Mask (A20M# I)

This pin, when active (low), forces the A20 input as
seen by the 82395DX to logic 'O', regardless of the
actual value on the A20 input pin. It must be assert­
ed two clock cycles before ADS# for proper opera­
tion. A20M # emulates the address wraparound at 1
MByte which occurs on the 8086. This pin is asyn­
chronous but must meet setup and hold times to
guarantee recognition in a specific clock. It must be
stable throughout Local Bus memory cycles.

3.2 System Bus Interface Pins

3.2.1 SYSTEM ADDRESS BUS

3.2.1.1 Sys~em Bus Address Lines
(SA2-SA31 1/0 *)

• SA2-3 are outputs only.

These are the SYSTEM BUS address lines of the
82395DX. When driven by the 82395DX, these sig­
nals, along with the System Bus byte enables define
the physical area of memory or 1/0 accessed.

Activation of SEADS# conditions these signals to
serve as inputs for the snooping cycle.

3.2.1.2 System Bus Byte Enables
(SBO#-SB3# 0)

· These are the byte enable signals for the System
Bus. The 82395DX drives these pins identically to
BEO#-BE3# in all System Bus cycles except Line
Fills. In Line Fills these signals are driven identically
to BEO#-BE3# in the first read cycle of the Line
Fill. They are all driven active in the remaining cycles
of the Line Fill.

T~e s~stem memory must ignore these pins during
Line Fill, and return all four bytes. These signals are
active low.

3.2.2 SYSTEM BUS CYCLE DEFINITION

3.2.2.1 System Bus Cycle Definition
(SW/R#,SD/C#,SM/10# 0)

These are the System Bus cycle definition pins.
When the 82395DX is the SYSTEM BUS master, it
drives these signals identically to the 386 DX Micro­
processor encoding.

3.2.2.2 System Bus Lock (SLOCK # 0)

The SYSTEM BUS LOCK pin is one of the bus cycle
definition pins. It indicates that the current bus cycle
is LOCK#ed: that the 82395DX (on behalf of the
CPU) must be allowed exclusive access to the Sys­
tem Bus across bus cycle boundaries until this signal
is de-asserted. The 82395DX does not acknowledge
a bus hold request when this signal is asserted. The
82395DX asserts SLOCK# when the first LOCK#ed
cycle is initiated on the System Bus; SLOCK # is de­
activated only after all LOCK#ed System Bus cycles
were executed, and LOCK# was deactivated.
SLOCK# is active LOW.

3.2.3 SYSTEM BUS CONTROL

3.2.3.1 System Bus Address Status (SADS# 0)

The address status pin is used to indicate that new
valid address and cycle definition information is cur~
rently being driven onto the address, byte enables
and cycle definition lines of the System Bus. SADS #
can be used as an indication of a new cycle start.
SADS# is driven active in the same clock as the
addresses are driven. SADS # is not valid until a
specified setup time before the CLK falling edge,
and must be sampled by CLK falling edge before it is
used by the system. This signal is active LOW.

. 3.2.3.2 System Bus Ready (SRDY # I)

The SRDY # signal indicates that the current bus
cycle is complete. When SRDY # is sampled assert­
ed it indicates that the external system has present­
ed valid data on the data pins in response to a read
cycle or that the external system has accepted the
82395DX data in response to a write request. This
signal is ignored when the SYSTEM BUS is at STi,
STH, ST1 or ST1 P states.

'

At the first read cycle of a Line Fill, if S~RDY # is
returned active and both SRDY # and SNA# are re­
turned inactive, a burst Line Fill will be executed. If
SRDY # is returned active and SNA # is returned
inactive, a non-burst non-pipelined Line Fill . will be
executed. If SNA# is returned active and SRDY# is
inactive, a non-burst pipelined line fill will be execut­
ed.

Once a burst Line Fill has started, if SRDY # is re­
turned in the second or third DW of the transfer, the
burst Line Fill will be interrupted and the cache will
not be updated. The first DW will already have been
transferred to the CPU. Note that in the last (fourth)
bus cycle in a Line Fill, SBRDY # and SRDY # have
the same effect on the 82395DX. They indicate the
~nd of the Line Fill. This signal is active LOW.

5-494

intef 82395DX

3.2.3.3 System Bus Next Address (SNA # I)

This input, when active, indicates that a pipelined
address cycle can be executed. It is sampled by the
82395DX in the same timing as the 386 DX Micro­
processor samples NA#. If this signal is sampled
active, then SBRDY # is treated as SRDY #, i.e.
burst Line Fill is disabled. This signal is ignored once
a burst Line Fill has started, as well as during the
fourth DW of a Line Fill.

3.2.4 BUS ARBITRATION

3.2.4.1 System Bus Request (SBREQ 0)

SBREQ is the internal cycle pending signal. This in­
dicates to the outside world that internally the
82395DX has generated a bus request (due to a
CPU's request that requires access to the System
Bus). It is generated whether the 82395DX owns the
bus or not and can be used to arbitrate among the
various masters on the system bus. In read misses,
if the bus is available and the cycle starts immediate­
ly, this signal will not be activated at all. This signal is
active HIGH.

3.2.4.2 System Bus Hold Request (SHOLD I)

This signal allows another bus master complete con­
trol of the entire System Bus. In response to this pin,
the 82395DX floats all its system bus interface out­
put and input/output pins (With the exception of
SHLDA and SBREQ) and asserts SHLDA after com­
pleting its current bus cycle or sequence of
LOCK#ed cycles. The 82395DX maintains its bus in
this state until SHOLD is deasserted. SHOLD is ac­
tive HIGH. SHOLD is recognized during reset.

3.2.4.3 System Bus Hold Acknowledge
(SHLDA 0)

This signal goes active in response to a hold request
presented on the SHOLD pin and indicates that the
82395DX has given the bus to another System Bus
master. It is driven active in the same clock that the
82395DX floats its bus. When leaving a bus hold,
SHLDA is driven inactive in one clock and the
82395DX resumes driving the bus. Depending on in­
ternal requests the 82395DX may, or may not begin
a System Bus cycle in the clock where SHLDA is
driven inactive. The 82395DX is able to support CPU
Local Bus activities during System Bus hold, since
the internal cache is able to satisfy the majority of
those requests. This signal is active HIGH.

3.2.4.4 System Bus Fast Hold Request
(SFHOLD# I)

This input allows another bus master immediate ac­
cess to the System Bus. In response to this signal,
the 82395DX stops driving the System Bus output
and input/output pins (with the exception of SHLDA
and SBREQ) in the next CLK cycle. Note that the
same signals are tristated in response to a SHOLD
request. Because the 82395DX always stops driving
the System Bus in response to SFHOLD# active, no
acknowledge is needed.

The bus remains in the high impedance state until
SFHOLD# is negated.

Note that SRDY # is internally inactivated during
SFHOLD# cycles. The only affect of SFHOLD# be­
ing asserted is forcing the System Bus output and
110 buffers into their high impedance state. It is the
responsibility of the system designer to guarantee
that bus cycles which are in progress when
SFHOLD# is asserted are terminated correctly.

This pin is recognized during RESET and is active
low.

3.2.5 BURST CONTROL

3.2 .. 5.1 System Bus Burst Ready (SBRDY # I)

This signal performs the same function during a
burst cycle that SRDY # does in a non-burst cycle.
SBRDY # asserted indicates that the external sys­
tem has presented valid data on the data pins in
response to a burst Line Fill cycle. This signal is ig­
nored when the SYSTEM BUS is at STi, STH, ST1 or
ST1 P states.

Note that in the last (fourth) bus cycle in a Line Fill,
SBRDY # and SRDY # have the same effect on the
82395DX. They indicate the end of the Line Fill. For
all cycles that cannot run in burst, e.g. noncacheable
cycles, non Line Fill cycles (or pipelined Line Fill),
SBRDY # has the same effect on the 82395DX as
the normal SRDY # pin. This signal is active LOW.

3.2.5.2 System Bus Burst Last Cycle Indicator
(SBLASl' # 0)

The system burst last cycle signal indicates that the
next time SBRDY # is returned the burst transfer is
complete. In other words, it indicates to the external
system that the next SBRDY # returned is treated as
a normai SRDY # by the 82395DX, i.e., another set
of addresses will be driven with SADS # or the Sys­
tem Bus will go idle. SB LAST# is normally active.

5-495

I

intJ 82395DX

In a cache read miss cycle, which may proceed as a
Line Fill, SBLAST # starts active and later follows
SKEN# by one clock. SBLAST# is active during
non-burst Line Fill cycles. Refer to Chapter 6 for
more details. This signal is active LOW.

3.2.6 CACHE INVALIDATION

3.2.6.1 System Bus Address Hold (SAHOLD I)

This is the Address Hold request. It allows another
bus master access to the address bus of the
82395DX in order to indicate the address of an ex­
ternal cycle for performing an internal Cache Direc­
tory lookup and invalidation cycle. In response to
this signal, the 82395DX immediately (in the next cy­
cle) stops driving the entire system address bus
(SA2-SA31). Because the 82395DX always stops
driving the address bus, in response to system bus
address hold request, no hold acknowledge is re­
quired. Only the address bus will be floated during
address hold, other signals can remain active. For
example, data can be returned for a previously spec­
ified bus cycle during address hold. The 82395DX
does not initiate another bus cycle during address
hold.

This pin is recognized during RESET. However,
since the entire cache is invalidated by reset, any
invalidation cycles run will be superfluous. This sig­
nal is active high.

3.2.6.2 System Bus External Address Strobe
(SEADS# I)

This signal indicates that a valid external address
has been driven onto the 82395DX pins and that this
address must be used to perform an internal cache
invalidation cycle. Maximum allowed invalidation cy­
cle rate is one every two clock cycles. This signal is
active low.

3.2.7 CACHE CONTROL

3.2.7.1 Flush (FLUSH# I)

This pin, when sampled active for four clock cycles
or more, causes the 82395DX to invalidate its entire
Tag Array. In addition, it is used to configure t~e
82395DX to enter various test modes. For details
refer to Chapter 7. This pin is asynchronous but
must meet setup and hold times to guarantee recog­
nition in any specific clock. This signal is active
LOW.

3.2.8 SYSTEM DATA BUS

3.2.8.1 System Bus Data lines (SDO-SD31 1/0)

These are the System Bus data lines of the
82395DX. The lines must be driven with appropriate
setup and hold times for proper operatio~. The~e
signals are driven by the 82395DX only during write
cycles.

3.2.9 SYSTEM BUS DECODE PINS

3.2.9.1 System Cacheability Enable (SKEN # I)

This is the cache enable pin. It is used to determine
whether the current cycle running on the System
Bus is cacheable or not. When the 82395DX gener­
ates a read cycle that may be cached, this pin is
sampled 1 CLK before the first SBRDY #, SRDY #
or SNA# is sampled active (for detailed timing de­
scription, refer to Chapter 6). If sampled active, the
cycle will be transformed into a Line Fill. Otherwise,
the Cache and Cache Directory will be unaffected.
Note that SKEN # is ignored after the first cycle in a
Line Fill. SKEN # is ignored during all System Bus
cycles except for cacheable read miss cycles. This
signal is active LOW.

3.2.9.2 System Write Protect Indication
(SWP# I)

This is the write protect indicator pin. It is used to
determine whether the address of the current sys­
tem bus Line Fill cycle is write protected or not.

In non-pipelined cycles, the SWP# is sampled with
the first SRDY # or SBRDY # of a system Line Fill
cycle. In pipelined cycles, SWP# is sampled at the
last ST2 stage, or at ST1 P; in other words, one clock
phase after SNA # is sampled active.

The write protect indicator is sampled together with
the TAG address of each line in the 82395DX Cache
Directory. In every cacheable write cycle, the write
protect indicator is read. If active, the cycle will be a
Write Protected cycle which is treated like a cache­
able write miss cycle. It is buffered and it does not
update the cache even if the addressed location is
present in the cache. The signal is active LOW.

3.2.10 DESIGN AIDES

3.2.10.1 System Next Near Indication
(SNENE# 0)

This signal indicates that the current System Bus
memory cycle is to the same 2048 Byte area as the

5-496

inter 82395DX

previous memory cycle. Address lines A11-A31 of
the current System Bus memory cycle are identical
to the address lines A 11-A31 of the previous mem­
ory cycle.

This signal can be used in an external DRAM system
to run CAS# only cycles, therefore increasing the
throughput of the memory system. SNENE# is valid

3.3 Pinout Summary Tables

for all memory cycles, and indicates that the current
memory cycle is to the same 2048 Byte area, even if
there were idle or non-memory bus cycles since the
last System Bus memory cycle.

For the first memory cycle after the 82395DX has
exited the HOLD state, or after SAHOLD was deacti­
vated, this pin will be inactive. This signal is active
low.

Table 3.1 • Input Pins

Name Function
Synchronous/ Active
Asynchronous Level

CLK2 Clock
RESET Reset Asynchronous* High
BE0-3# Local Bus Byte Enables Synchronous Low
A2-31 Local Bus Address Lines Synchronous -
W/R# Local Bus Write/Read Synchronous -
DIC# Local Bus Data/Control Synchronous -
M/10# Local Bus Memory/Input-Output Synchronous -
LOCK# Local Bus LOCK Synchronous Low
ADS# Local Bus Address Strobe Synchronous Low
READY!# Local Bus READY Synchronous Low
LBA# Local Bus Access Indication Synchronous Low
NPI# No Post Input Synchronous Low
FLUSH# FLUSH the 82395DX Cache Asynchronous Low
A20M# Address Bit 20 Mask Asynchronous Low
CONF# Configuration Synchronous Low
SH OLD System Bus Hold Request Synchronous High
SRDY# System Bus READY Synchronous Low
SNA# System Bus Next Address Indication Synchronous Low
SBRDY# System Bus Burst Ready Synchronous Low
SKEN# System Cacheability Indication Synchronous Low
SWP# System Write Protect Indication Synchronous Low
SA HOLD System Bus Address HOLD Synchronous High
SEADS# System Bus External Address Strobe Synchronous Low
SFHOLD# System Bus Fast HOLD Request Synchronous Low

• The falling edge of RESET needs to be synchronous to CLK2 but the rising edge is asynchronous.

5-497

I

intJ 82395DX

Table 3.2 • Output Pins

Name Function
When State Active

Floated at RESET Level

SBE0-3# System Bus Byte Enables SHLDA/SFHOLD# Low Low
SADS# System Bus Address Strobe (1) SHLDA/SFHOLD# High Low
SD/C# System Bus Data/Control SHLDA/SFHOLD# High -
SM/10# System Bus Memory/Input-Output SHLDA/SFHOLD# Low -
SW/A# System Bus Write/Read SHLDA/SFHOLD# Low -
SHLDA System Bus HOLD Acknowledge - Low (2) High
SBREQ System Bus Request .. - Low High
SLOCK# System Bus LOCK SHLDA/SFHOLD# High Low
SBLAST# System Bus Burst Last Cycle Indication SHLDA/SFHOLD# Low Low
SA2-3 System Bus Address SHLDA/SAHOLD/ High -

(2 lowest order bits) SFHOLD#
SNENE# System Bus Next Near Indication SHLDA/SFHOLD# High Low

NOTES:
1. SADS# is driven active in ST1/ST2P and inactive for one phase in the first ST2/ST1P following the activation. SADS# is
driven high before it is floated.
2. Unless SHOLD is asserted

Table 3.3 • Input-Output Pins

Name Function

D0-31 Local Data Bus (2)
SD0-31 System Data Bus
SA4-31 System Bus Address

(except the 2 lowest order bits)
READYO# Local Bus READY

(1) Provided SHOLD, SAHOLD, and SFHOLD# are inactive
(2) Local Data is driven only in TZ.

4.0 BASIC FUNCTIONAL
DESCRIPTION

The 82395DX has an interface to the 386 DX Micro­
processor (Local Bus) and to the System Bus. The
System Bus·interface emulates the 386 DX Micro­
processor bus such that the system will view the
82395DX as the front end of a 386 DX Microproces­
sor. Some optional enhancements, like burst sup­
port, are provided to maximize the performance.

When ADS# is sampled active, the 82395DX de­
codes the 386 DX Microprocessor cycle definition
signals (M/10#, DIC#, W/R# and LOCK#), as
well as two Local Bus decode signals (LBA # and
NPI#), to determine how to respond. LBA# indi­
cates that the current cycle is addressed to a Local
Bus device; NPI # indicates that the current memory
write cycle must not be buffered. In addition, the
82395DX internally decodes the 386 DX Microproc­
essor accesses to the 387 DX Math Coprocessor I
Weitek 3167 Floating-Point Coprocessor as Local
Bus accesses. The result of the address, cycle defi­
nition and cycle qualification decoding is two catego-

When State(1) Active
Floated at RESET Level

Always Except READs z -
Always Except WRITES z -
SHLDA/SAHOLD/ High -
SFHOLD#
SeeSec4.6 High Low

ries of accesses, the Local Bus accesses (LBA #
active or 387 DX Math Coprocessor I Weitek 3167
Floating-Point Coprocessor accesses) and 82395DX
accesses. In 387 DX Math Coprocessor accesses,
the 82395DX drives the READYO# signal active af­
ter one wait state, if the READYI# was not sampled
active. Local Bus accesses are ignored by the
82395DX.

Any 82395DX access can be either to a cacheable
address or to a non-cacheable address. Non-cache­
able addresses are all 1/0 and system accesses
with SKEN # returned inactive. Non-cacheable cy­
cles are all cycles to non-cacheable addresses,
LOCK#ed read cycles and Halt/Shutdown cycles.
All other cycles are cacheable. For more details
about non-cacheable cycles, refer to section 4.2.
Non-cacheable cycles pass through the cache. They
are always forwarded to the System Bus.

Cacheable read cycles can be either hit or miss.
Cacheable read hit cycles are serviced by the inter­
nal cache and they don't require System Bus serv­
ice. A cacheable read miss cycle generates a series
of four System Bus read cycles, called a Line Fill. Of

5-498

intJ 82395DX

the four cycles, the first cycle is for reading the re­
quested data while all four are for filling the cache
line. The System Bus has the ability to provide the
system cacheability attribute to the 82395DX Line
Fill request, via the SKEN # input, and the system
write protection indicator, via the SWP# input. Refer
to chapter 6 for more information about Line Fill cy­
cles.

Cacheable write cycles, as any write cycles, are for­
warded to the system bus. The write buffer algorithm
terminates the write cycle on the Local Bus, allowing
the 386 DX Microprocessor to continue processing
in 0 wait states, while the 82395DX executes the
write cycles on the System Bus. All cacheable write
hit cycles, except protected writes, update the cache
in a byte basis i.e. only the selected bytes are updat­
ed. Cacheable write misses do not update the cache
(the 82395DX does not allocate on writes). All
cacheable write cycles, except LOCK#ed writes,
are buffered (unless NPI # pin is sampled active).

Cache consistency is provided by the SAHOLD,
SEADS# mechanism. If any bus master performs a
memory cycle which disturbs the data consistency,
the address of this cycle must be provided to the
82395DX using the SAHOLD, SEADS# mechanism.
Then, the 82395DX checks if that memory location
resides in the cache. If it does, the 82395DX invali­
dates that line in the cache by marking it as invalid in
the Cache Directory. The 82395DX interposes the
Cache Directory between the 386DX Microproces­
sor and the System Bus such that the 386 DX Micro­
processor is not forced to wait due to snooping and
none of the snooping cycles are missed due to 386
DX Microprocessor accesses (see figure 2.6).
Cacheability is resolved on the system side using
the SKEN # input. SKEN # is sampled one clock be­
fore the first SRDY #/SBA DY# in nonpipelined Line
Fill cycles. In pipelined Line Fill cycles, SKEN # is
sampled one clock phase before sampling SNA #
active. SKEN# is always sampled at PHl1.

Note that the 82395DX does not support pipelining
of the 386DX Microprocessor Local Bus. The NA#
input on the 386 DX Microprocessor must be tied to
Vee.

4.1 Cacheable Accesses

In a cacheable access, the 82395DX performs a
cache directory look-up cycle. This is to determine if
ttie requested data exists in the cache and to read
the write protection bit. In parallel, the 82395DX per­
forms a cache read cycle if the access is a read, or
prepares the cache for a write cycle if the access is
a write.

4.1.1 CACHEABLE READ HIT ACCESSES

If the Cache Directory look-up for a cacheable read
access results in a hit (the requested data exists in
the cache), the 82395DX drives the local data bus
by the data provided from the internal cache. It also
drives the 386DX Microprocessor READY# (by acti­
vating the 82395DX READYO#), so that the 386 DX
Microprocessor gets the required data directly from
the cache without any wait states.

The 82395DX is a four Way SET associative cache,
so only one of the four ways (four banks) is selected
to supply data to the 386 DX Microprocessor. The
Way in which the hit occurred will provide the data.
Also, the replacement algorithm (LAU) is updated
such that the Way in which the hit occurred is
marked as the most recently used.

4.1.2 CACHEABLE READ MISS ACCESSES

If the Cache Directory look-up results in a miss, the
82395DX transfers the request to the System Bus in
order to read the data from the main memory and for
updating the cache. A full line is updated in cache
update cycle. As a result of a cache miss, the
82395DX performs four System Bus accesses to
read four DWs from the DRAM, and write the four
DWs to the cache. This is called a Line Fill cycle.
The first OW accessed in a Line Fill cycle is for the
OW which the 386 DX Microprocessor requested El
and the 82395DX provides the data and drives the
READYO# one clock after it gets the first OW from
the SB.

The 82395DX provides the option of supporting
burst bus in order to minimize the latency of a line
fill. Also, the 82395DX provides the SKEN # input,
which, if inactive, converts a Line Fill cycle to a non­
cacheable cycle. Write protection is also provided.
The write protection indicator is stored together with
the TAG Valid bit and the TAG field of every line in
the Cache Directory. For more details refer to chap­
ter 6.

The 82395DX features Line Buffer cacheing. In a
Line Fill the data for the four DWs is stored in a
buffer, the Line Buffer, as it is accumulated. After
filling the Line Buffer, the 82395DX performs the
Cache Update and the Cache Directory Update. The
updated Way is the least recently used Way flagged
by the Pseudo LAU algorithm during the Cache Di­
rectory Lookup cycle, if all the Ways are valid. If
there is a non-valid Way it will be updated.

The SRDY# (System Bus READY#) active indi­
cates the completion of the system bus cycle and
SBRDY# (System Bus Burst READY#) active indi­
cates the completion of a burst System Bus cycle. In
a 386 DXMicroprocessor-like system, the 82395DX

5-499

intef 82395DX

drives the 386 DX Microprocessor READY# one
clock after the first SRDY # and, in a burst system,
one clock after the first SBRDY #. This frees up the
Local Bus, allowing the 386 DX Microprocessor to
execute the next instruction, while filling the cache.

So, during Line Fills, there is no advantage in driving
the 386 DX Microprocessor into the pipelined mode.
Therefore, the 82395DX does not drive the 386
DX Microprocessor's NA# at all. NA# must be
tied to VCC.

4.1.2.1 Burst Bus

The 82395DX offers an option to minimize the laten­
cy in Line Fills. This option is the burst bus and is
only applicable to Line Fill cycles. By generation of a
burst bus compatible DRAM controller, one which
generates SBRDY # and SB LAST# to take advan­
tage of the 82395DX's burst feature, the number of
cycles required for a Line Fill to be completed is
significantly reduced. Details of burst Line Fills can
be found in chapter 6. The burst feature uses the
i486 Microprocessor burst order to fill the 16 byte
cache line (see Table 6.1).

4.1.3 CACHE WRITE ACCESSES

The 82395DX supports the write buffer policy, which
means that main memory is always updated in any
write cycle. However, the cache is updated only
when the write cycle hits the cache and the ac­
cessed address is not write protected. In cache write
misses, the cache is not updated (allocation in
writes is not supported).

The 82395DX has a write buffer of four DWs. Only
the cacheable write cycles, except LOCKed writes,
are buffered so, if the write buffer is not full, the
82395DX buffers the cycle. This means that the
data, address and cycle definition signals are written
in one entry of the write buffer and the 82395DX
drives the READYO# in the first T2 so all the buff-

ered write cycles run without wait states. If the write
buffer is full, the 82395DX delays the READYO#
until the completion of the execution of the first buff­
ered write cycle. The execution of the buffered write
cycles depends on the availability of the System
Bus. In non-buffered write cycles, e.g. 1/0 writes, the
386 DX Microprocessor is forced to wait until the
execution of all the buffered writes and the non-buff­
ered write (READYO# is driven one clock after the
SRDY # of the non-buffered write). More details
about the write buffer can be found in chapter 6,

In cacheable non-write protected write hit cycles,
only the appropriate bytes within the line are updat­
ed. The updated bytes are selected by decoding the
A2, A3 and the four BE# lines. The LRU is updated
so that the hit Way is the most recently used, as in
cache read hit cycles.

All cacheable writes, whether hits or misses, are ex­
ecuted on the system bus. The System Bus write
cycle address, data and cycle definition signals are
the same as the 386 DX Microprocessor signals. All
buffered writes run with zero wait states if the write
buffer is not full.

4.2 Noncacheable System Bus
Accesses

Non-cacheable cycles are any of the following
82395DX cycles:

1) All 1/0 cycles.

2) All LOCKed read cycles.

3) Halt/Shutdown cycles.

4) SAAM mode cycles not addressing the internal
cache or Tagram.

All the above cycles are defined as non-cacheable
by the Local Bus interface controller. In addition,
Line Fill cycles in which the SKEN # signal was re­
turned inactive are aborted. They are called Aborted
Line Fills (ALF).

Table 4.1 - 386 DX Microprocessor Bus Cycle Definition with Cacheability

M/10# D/C# W/R# 386 DX Microprocessor Cacheable/ Writes
Cycle Definition Non-cacheable Posted

0 0 0 Interrupt Acknowledge Non-cacheable -
0 0 1 Undefined - -
0 1 0 1/0 Read Non-cacheable -
0 1 1 1/0 Write Non-cacheable No

1 0 0 Memory Code Read Cacheable -
1 0 1 Halt/Shutdown Non-cacheable -
1 1 0 Memory Data Read Cacheable -
1 1 1 Memory Data Write Cacheable Yes

5-500

intef 82395DX

Non-cacheable cycles are never serviced from the
cache and they don't update the cache. They are
always referred to the System Bus. In non-cache­
able cycles, the 82395DX transfers to the System
Bus the exact 386 DX Microprocessor bus cycle. All
non-cacheable write cycles are not buffered.

Description of LOCKed cycles can be found in chap­
ter 5.

4.3 Local and System Bus
Concurrency

Concurrency between local and System Susses is
supported in several cases:

1. Read hit cycles can run while executing a Line Fill
on the System Bus. Refer to timing diagram 4.1.

2. Read hit cycles can run while executing buffered
write cycles on System Bus. Refer to timing dia­
gram 4.2.

3. Write cycles are buffered while the System Bus is
running other cycles, including other buffered
writes. They are also buffered when another bus
master is using the System Bus (e.g. OMA, other
CPU). Refer to timing diagram 4.3.

4. Read hit cycles can run while another System Bus
master is using the System Bus.

The first case is established by providing the data
which the 386 DX Microprocessor requested first
and later the 82395DX continues filling its line while
it is servicing new cache read hit cycles. The
82395DX updates its cache and cache directory af­
ter completing the System Bus Line Fill cycle. Mean­
while, any 386 DX Microprocessor read cycles will
be serviced from the cache if they hit the cache. In
case the 386 DX Microprocessor read cycles are
consecutive such that the 386 DX Microprocessor is
requesting a double-word which belongs to the
same line currently retrieved by the System Bus Line
Fill cycle and the requested DW was already re­
trieved, the 82395DX provides the requested DW in
zero wait states (a Line Buffer hit). If the requested
OW wasn't already retrieved, it will be read after
completing the Line Fill.

The second and third cases are attained by having
the Four OW write buffer which is described in chap­
ter 6. The READYO# signal is driven active after
latching the write cycle, so all buffered cycles will
run without wait states. This releases the 386 DX
Microprocessor to issue a new cycle, which can also
run without wait states if it does not require system
bus service. Two examples are in the case of a
cache read hit cycle, or another buffered write cycle,
which does not require immediate System Bus serv­
ice. In the case of a write cycle to the same line
currently retrieved, the write cycle will wait until the
Line Fill is complete and then the selected bytes
within the line are written in the cache. READYO# is
returned after the cache is written.

line line

I c~cheable read I cache I cache I buffer I buffer I
miss read hit read hit read hit read hit

NOTE:

CLK

ADS#

ADDRESS

READYO#

SADS#

SYSTEM
ADDRESS

SNA#

SRDY#

SKEN#

T1 T2 T2 T2 T2 T1 T2 T1 T2 T1 T2 T1 T2 Ti Ti
STi ST1 ST2 ST2 ST1 ST2 ST2 ST1 ST2 ST2 ST1 ST2 ST2 STi STi

290382-14

The second and third reads are to a different line and are serviced from the cache while the fourth and filth reads are to
the same line and are serviced from the line buffer.

Figure 4.1 • Read Hit Cycles During a Line Fill

5-501

I

intef 82395DX

Whenever the System Bus is released to any bus
master; the 82395DX activates the snooping func­
tion. The maximum rate of snooping cycles is a cycle
every other clock. Although the snooping support re­
quires accessing the 82395DX cache directory, the
82395DX is able to interpose the cache directory

accesses between the 386 DX Microprocessor cy­
cles and the snooping device such that zero wait
state cache read hit cycles are supported. All the
snooping cycles are also serviced. This is how the
fourth case is provided. For more details, refer to
chapter 6.

Buffered Write Read Hit
T1 T2 T1 T2

STi 'ST1 ST2 ST2

CLK

CLK2

ADS#

READYO#

SADS#

SROY#

Read Hit
T1 T2

ST2 ST2
T1
5~2

'

Read Hit

290382-16

. Figure 4.2 - Cache Read Hit Cycles while Executing a Buffered Write on the System Bus

CLK

ADs#

j ~==•able read I write I write I write j write I
TI ll ll ll ll TI ll TI ll TI ll TI ll TI TI TI
STI STI Sll ST2 ST1 ST2 Sll STI Sll Sll ST1 ST2 Sll STI Sll STI

A(2-31) 1-A-+--+-""""'.._._""'°_"1-"'-""""'"'"'-+"""l-"--l"""+"'-1--+--I

READYO#

S"DS#

5"(2-31) 1--+""'+-""+''-+..n..t--"+"-+'"'+-""'"T'""'-i-"-t--T"'-+'"-r'=+""'-I

SNA#

SRDY#

SKEN#

Figure 4.3 - Buffered Write Cycles During a Line Fill

5-502

290382-15

intJ 82395DX

ST1 ST2 ST1 ST2 ST1 ST2 ST1 ST2

CLK

CLK2

SADS#

SA(Z-31)

SKEN#

SWP#

SRDY#

290382-17

(A)- SWP# and SKEN# in Non-Pipelined Cycles

STZP ST1P STZP ST1P STZP ST1 p STZP ST1P

CLK

CLK2

SADS#

SAD(Z-31)

SKEN#

SWP#

SRDY#

SNA#

290382-18

(B)- SWP# and SKEN# in Pipelined Cycles

Figure 4.4 - SWP # and SKEN # Timing

5-503

intef 82395DX

4.4 Disabling the 82395DX

Cacheability is resolved by the SKEN # input from
the system side. In order to disable the cache it is
recommended to deactivate SKEN # and FLUSH
the cache. This would cause all memory reads to be
detected as misses and to be transferred to the Sys­
tem Bus. In order to disable the write buffer, NPI#
must be asserted.

4.5 System Description and Device
Selection

The expandability feature provides the following
three configurations:

1) 16KB cache with one 82395DX device.

2) 32KB cache with two 82395DX devices.

3) 64KB cache with Four 82395DX devices.

In multi 82395DX configurations, the total Cache Di­
rectory and cache is partitioned between the various
82395DXs. For example, in the second configura­
tion, the first 82395DX includes the first 16KB cache
and the first 1 K tags while the second 82395DX in­
cludes the second 16KB cache and the second 1 K
tags. Every 82395DX is programmed to handle a
portion of the cache and the Cache Directory. The
82395DX selection is based on decoding the ad­
dress of the cacheable cycle.

In multi 82395DX system, one device must be pro­
grammed as the Primary 82395DX to drive the sys­
tem bus in System Bus cycles (non-cacheable cy­
cles, write cycles and also in Line Fills). All other
82395DXs must be programmed as Secondary
82395DXs. They drive only the SADS# signal in
Line Fill cycles. All other System Bus signals are
driven by the Primary 82395DX. System diagram 4.6
describes the 64KB cache system. In the Local Bus,
each 82395DX gets the 386 DX Microprocessor ad­
dress, control and data signals. l'n cacheable reads,
hits or misses, the selected 82395DX drives the
READYO# and the local data bus. In all other cy­
cles, the Primary drives these signals. The
READYO#s of all the 82395DXs are wire-ORed to- ·
gether and they can be logically ORed with the
READYO#s of local bus devices. An External pull­
up must exist on the 82395DX READYO# to sustain
it high. The selected 82395DX drives the READYO#
low and keeps it low while the READY!# is not sam­
pled active. Immediately with sampling the
READYI# active, the selected 82395DX drives the
READYO# high for one phase and floats it in the
next phase. Therefore, zero wait state cycles are
supported.

In the System Bus, the Primary 82395DX drives all
the system bus outputs except SADS #. SADS # is a
wire-ORed signal which is driven by the Primary
82395DX in non-cacheable reads and in write cy­
cles. SADS# is driven by the selected 82395DX
which requires a Line Fill cycle. A pull-up is required
to sustain the SADS# high while not driven.

4.6 Auto Configuration

The 82395DX configures itself automatically during
the first ten clocks after the falling edge of RESET.
Information on the system configuration is passed to
the 82395DXs through their configuration pin
(CONF#); by connecting them as follows:

1. The configuration pin of first 82395DX (primary)
must be connected to GND.

2. The configuration pin of second 82395DX (option­
al) must be connected to RESET signal.

3. The configuration pin of third 82395DX (optional)
must be connected to READYO# signal.

4. The configuration pin of fourth 82395DX (option­
al) must be connected to VCC.

Auto configuration process works as follows:

1. If the 82395DX senses the configuration pin low
during RESET, the device is configured as device
1 (primary).

2. Otherwise, if the 82395DX senses the configura­
tion pin low one clock cycle after reset, the device
is configured as device # 2, and issues a READ­
YO# pulse for one clock period.

3. Otherwise, if 82395DX senses the configuration
pin low three clock cycles after RESET is sensed
low, the device is configured as device #3.

4. Otherwise, the device is configured as device #4,
and issues READYO# pulse for one clo~k period.

All the 82395DXs in the system monitor the number
of pulses on READYO# during the first 4 clocks af­
ter RESET, to determine how many 82395DXs are
present.

1. If no pulse was sensed, there is only one
82395DX.

2. If one pulse is sensed, there are two 82395DXs in
the system.

3. If two pulses were sensed, there are 4 82395DXs
in the system.

5-504

intef

CLK2

CLK

RESET

CONF# #1
(Yss)

CONF# #2
(RESET)

CONF# #3
(READYD#)

CONF# #4
(Yccl

READYO#

82395DX

290382-19

Figure 4.5 - Self Configuration of Four 823950Xs

I

5-505

intJ 82395DX

4. 7 Address Mapping

Table 4.2 shows the cache address configurations
for 16K, 32K, and 64K cache sizes.

4.8 Multi 82395DX Operation
Description

The following is a description of each cyCle in a mul­
ti-82395DX environment:

Local Bus CYCLES: Cycles to any local bus device
(e.g. 387 DX Math Coprocessor). The Primary
82395DX drives the READYO# in 387 DX Math Co­
processor accesses after one wait state, unless
READY I# was sampled active one clock earlier. All
the secondary 82395DXs are idle.

CACHEABLE READ HIT: this is the only 82395DX
cycle which does not require system bus service. In
this cycle, the selected 82395DX drives the local
data bus and the READYO# in T2. Also, it updates
its LRU bits.

CACHEABLE READ MISS: As soon as the system
bus is available, the selected 82395DX, which de­
tected the miss, drives the SADS #. In parallel, the
Primary 82395DX drives the system bus address
and control signals. After receiving the first SRDY #
or SBRDY # and after sampling the SKEN # active,
the selected 82395DX samples the system data and
one clock later it provides it to the 386 DX Micro­
processor and drives the READYO# active. Then, it
continues in filling the line and, after collecting the
four DWs, it updates its cache and Cache Directory.

CACHEABLE WRITE HITS: the selected 82395DX
updates its cache, except for write protected cycles.
The Primary 82395DX, however, executes the write

cycle on the system bus. Notice that both the Pri­
mary and Secondary 82395DXs have the same write
buffer and both handle the cycle in the same way,
but the Primary 82395DX is the one which drives the
system bus signals, including SADS# and
READYO#. All other cycles i.e. cacheable write
misses and non-cacheable cycles are handled only
by the Primary 82395DX.

4.9 Signal Driving in Multi 82395DX
Environment

4.9. 1 Local Bus Signals

In the Local Bus, the data bus and the READYO#
signals are the only signals driven by more than one
82395DX.

1. READ YO#: normally not driven (floated), and
must be sustained by an external pullup. In cache­
able reads, the selected 82395DX drives
READYO# active until READY!# is sensed ac­
tive, than it drives READYO# inactive for one
clock phase and then floats it. In other cycles, the
primary 82395DX drives READYO# in the same
manner.

2. Data Bus: The selected (or primary) 82395DX
drives the data bus in the T2 state of read cycles,
which ensures no contention with the 386 DX Mi­
croprocessor when a write cycle follows a read
cycle.

4.9.2 SYSTEM BUS SIGNALS

In the System Bus, the Primary 82395DX drives all
the System Bus signals except SADS #. So, the
jeopardy of contention exists on the SADS # signal

Table 4.2 - Address Mapping for 1-4 82395DX Systems

Total
Device Devices Address Primary/ Cache Data Cache Directory

No. in System Decoding Secondary Mapping SETs

1 1 -- p OKB-16KB 0-255

1 2 A12# p OKB-16KB 0-255
2 2 A12 s 16KB-32KB 256-511

1 4 A13#*A12# p OKB-16KB 0-255
2 4 A13#*A12 s 16KB-32KB 256-511
3 4 A13 *A12# s 32KB-48KB 512-767
4 4 A13 *A12 s 48KB-64KB 768-1023

intef 82395DX

only. SADS# is normally not driven (floated), and
must be sustained by an external pullup. Every
82395DX, Primary or Secondary, after driving the
SADS# active in ST1 or ST2P, will drive it inactive
for one clock phase in ST2 or ST1 P, and float it
afterwards.

In Line Fills, the SADS# is driven by the selected
82395DX which detected the miss. In all other cy­
cles e.g. write cycles, the SADS# is driven by the
Primary 82395DX.

4.10 SHOLD/SHLDA/SBREQ
Arbitration Mechanism

The Primary 82395DX is responsible for handling the
SHOLD/SHLDA/SBREQ mechanism. Assuming
that the SHOLD is acknowledged, the Primary
82395DX floats all its outputs immediately after
completing the system bus cycle in which SHOLD
was activated and it drives SHLDA active. This en­
ables the bus master to get control of the bus. When
the bus master completes its cycles, it drives the
SHOLD signal inactive. Then the Primary 82395DX
gets the bus back by driving the SHLDA inactive.

The Secondary 82395DXs get the SHOLD input in
order to monitor the bus activity but they don't drive
the SHLDA. Secondary 82395DXs do not drive the
SADS# in Hold states. The Primary 82395DX drives
the SBREQ signal in all System Bus cycles. In Line
Fill cycles, the SBREQ signal is driven active one
clock later than in other cycles. Of course, this is
applicable for the case the System Bus is not avail­
able. If the System Bus is available, the SBREQ will
not be driven in Line fill cycles. For more details
about system arbitration, refer to Chapter 6.

4. 11 System Description

A 386 DX Microprocessor/ 82395DX-based system
includes the processor, optional Local bus devices
(e.g. 387 DX Math Coprocessor), cache system (one
82395DX or more) and System Bus devices (memo­
ry, 1/0 devices and other non-cacheable devices).
The 82395DX is the interface between the Local
Bus and the System Bus.

A Local Bus address decoder must be used to gen­
erate LBA# and NPI# signals, and a System Bus
address decoder must be used to generate SKEN #
and SWP# signals.

The 82395DX READYO# may be logically ORed
with READYO#s of other Local Bus devices. How­
ever, this is not required unless a Local Bus device,

Table 4.3 - Local Bus Signal Connections
in Multi-82395DX Systems

Primary Each 82395DX
82395DX Only in the System

Signal Type Signal Type

CLK2 I
D0-031 1/0
A2-A31
RESET
BE0-3#
W/R#
DIC#
M/10#
LOCK#
ADS#
READYI#
LBA#
NPI#
PLUSH#
A20M#
CONF#
READYO# 1/0

other than 387 DX Math Coprocessor, exists on the
local bus (82395DX generates a READY signal for
the 387 DX Math Coprocessor). The 386 DX Micro­
processor READY# input signal must also be driven I
to the 82395DX READYI # pin, so that the 82395DX
will be able to track the Local Bus cycles correctly.

To allow for expanding the cache system beyond
16KB, up to four 82395DX devices may be connect­
ed in parallel. Two 82395DX outputs are Wire-ORed
between the parallel 82395DXs: READYO# and
SADS #. Each of the 82395DXs' CONF # input must
be tied to a different signal, to program each one of
them to a distinct address decoding.

Figure 4.6 describes a maximum 386 DX Microproc­
essor /82395DX system, with 387 DX Math Coproc­
essor, four 82395DX devices, READY# generation
logic and Local Bus/System Bus address decoders.

Note that optional elements in Figure 4.6 are drawn
with dotted line. The Local Bus includes CLK2, RE­
SET, BE3#-BEO#, A2-A31, DO-D31, W/R#,
DIC#, M/10#, LOCK# and ADS#. The System
Bus can be broken into two groups. Those pins con­
nected only to the primary 82395DX (82395DX # 1)
and those connected to each 82395DX in the sys­
tem (82395DX #1-#4). See Table 4.4.

5-507

intef 82395DX

Table 4.4 • System Bus Signal Connections
in Multi·82395DX Systems

Primary Each 82395DX
82395DX Only in the System

Signal Type Signal Type

SA2-3 0 SD0-31 1/0
SW/R# 0 SA4-31* 1/0
SD/C# 0 SADS# 0
SM/10# 0 SRDY# I
SLOCK# 0 SBRDY# I
SBREQ 0 SNA# I
SHLDA 0 SHOLD I
SBLAST# 0 SAHOLD I
SNENE# 0 SEADS# I

SFHOLD# I
SKEN# I
SWP# I

*SA4-31 are connected to each 82395DX in the system
for snooping purposes but are driven only by the primary
82395DX.

TI:D{ [;;;!~~~} READYI# j l • Indicates
~l READY# : optional

386TM DX ~ _d!'!!~·- -
.Ill~ Al~

8~DX
.

n·c-~-n __._..~ ilecoite ~ .. - _og~-! .. ·-----·
Locol Bus ...

... " l - ... " j _j .EET
~ " I~ -

;o r ;o () V~s ·----------,, ·----------· I ::::a r- ::::a (') I ::::a,... ::::a (')

~ 'il! ~ 0 ~ "' ~ 0 ~ 'il! ~ 0
ti) z '"')> z I ti) z
"' ~~ ~

.., •i:\ " "" ~
.., •" """ " ..,

"' "" ~ ' "" 112! -<' ::S "" .-. z ""~ "" .-. IZ z "" r--+ 0 z "" ~ ~ .~ "" .,,
·~

"".,,
ti)

iii;

'"'
iii;

I ti)
iii;

::e ·~ ,::e .,, ,,;:;:
"" ""' I I

82395DX #1 ~ ~:-::~~:-~~ ~~:;?~9:A~
.i11ri. ~pt. .111p..

...._ System Bus =c ...

Figure 4.6 - System Description

5-508

~ Ir 11
·----------I ::::a r- ::::a ("')

~ "' ~ 0
I ti))> z
I:>< ~~ ~

..,
112! "" 0 z "" ·~

"".,,
I"'

iii;
,::e
.,;:;:
I

~ ~:;?~9:. ~~
.111ri.

.... ...
290382-20

82395DX

5.0 PROCESSOR INTERFACE

The 82395DX runs synchronously with the 386 DX
Microprocessor. It is a slave on the Local Bus, and it
buffers between the Local Bus and the System Bus.
Most of the 82395DX cycles are serviced from the
internal cache, and some (82395DX cache misses,
non cacheable accesses, etc.) require an access to
the System Bus to complete the transaction.

To achieve maximum performance, the 82395DX
serves cache hits and buffered write cycles in zero
wait- state, non-pipelined cycles. The 82395DX re­
quires that the CPU is never driven to pipelined cy­
cles, i.e. the 386 DX Microprocessor NA# input
must be strapped to inactive (high) state.

The 82395DX is directly connected to all local bus
address and data lines, byte enable lines, and bus
cycle definition signals. The 82395DX returns
READYO# to the 386 DX Microprocessor, and
keeps track of the 386 DX Microprocessor cycle
status by receiving READY I# (which is the 386 DX
Microprocessor READY#).

A multi 82395DX system description was presented
in chapter 4.

5.1 Hardware Interface

The 82395DX requires minimal hardware on the Lo­
cal Bus. Other than the 386 DX Microprocessor and
other Local Bus resources (i.e. 387 DX Math Co­
processor) and the 82395DX(s) (1-4 depending on
the system). Ready logic and a Local Bus decoder
are optional since the user can wire OR the READ­
YO# sand tie LBA# and NPI# high if no addresses
are to be local or non-buffered. The SAAM and buff­
ers have been integrated on chip to simplify the de­
sign. Refer to Figure 4.6.

5.2 Nonpipelined Local Bus

The 82395DX does not pipeline the Local Bus.
READYO# gets returned to the 386 DX Microproc­
essor one cycle after SRDY # or SBRDY # are driv­
en into the 82395DX after the first OW of a Line Fill.
This allows the Local Bus to be free to execute 386
DX Microprocessor cycles while the System Bus fills
the cache line (see chapter 6).This takes away the
advantage gained by pipelining the Local Bus.

5.3 Local Bus Response Hit Cycles

The 82395DX's Local Bus response to hit cycles are
described here:

1) Cache Read Hit (CRDH) Cycle - READYO#
gets returned in T2. The Data is valid to the
386 DX Microprocessor on the rising edge of
CLK2.

2) Cache Write Hit (CWTH), Buffered - Like in
CRDH cycles the 82395DX returns READYO# in
T2 so that the cycle runs with zero wait states on
the Local Bus. The write cycle is placed in the
write buffer and will be performed when the Sys­
tem Bus is available. If the System Bus is on
HOLD up to four write cycles can be buffered be­
fore introducing any wait states on the Local Bus.

3) CWTH, Non-Buffered - In the case of a non-buff­
ered write hit cycle the write buffers can not be
used so the 386 DX Microprocessor must wait un­
til the System Bus is free to do the write.
READYO# is returned to the cycle after SRDY#
is driven to the 82395DX.

5.4 Local Bus Response to Miss
Cycles

In a Cache Read Miss (CROM) cycle a Line Fill is
performed on the System Bus. READYO# is re­
turned to the 386 DX Microprocessor one cycle after
SRDY # or SBRDY # for the first OW of the Line Fill
is driven into the 82395DX.

5.5 Local Bus Control Signals -
ADS#, READYI#

ADS# and READYI# are the two bus control inputs
used by the 82395DX to determine the status of the
Local Bus cycle. ADS# denotes the beginning of a
386 DX Microprocessor cycle and READY I# is the
386 DX Microprocessor cycle terminator.

ADS# active and M/10# = 1 invokes a look-up
request to the 82395DX's cache directory; the look­
up is performed in T1 state. The Cache Directory
access is simultaneous with all other cycle qualifica­
tion activities, this Way the hit/miss decision be­
comes the last in the cycle qualification process.
This parallelism enhances performance, and en­
ables the 82395DX to respond to ADS# within one
clock period. If the cycle is to a Local Bus device
(LBA# asserted) or is non-cacheable, the hit/miss
decision is ignored.

5-509

El

intJ 82395DX

5.6 82395's Response to the 386 DX
Microprocessor Cycles

Tables 5.2 - 5.4 show the 82395DX's response to
the various 386 DX Microprocessor cycles. They de­
pict the activity in the internal cache, cache directo­
ry, the System Bus and write buffers in response to
various cycle definition signals. Special cycles such
as: LOCK, HALT /SHUTDOWN, WP, LBA, NPI are
discussed separately below.

5.6.1 LOCKED CYCLES

The 386 DX Microprocessor LOCK#ed cycles are
all those cycles in which LOCK# is active. The
82395DX forces all LOCK#ed cycles to run on the
System Bus. The 82395DX starts the LOCK#ed cy­
cle after it has emptied its write buffers.

If the LOCK#ed cycle is cacheable the 82395DX
will respond as follows (see table 5.2):

Cache Read Miss (CROM) - handled similar to a
non cacheable cycle.

Cache Read Hit (CRDH) - handled similar to a non
cacheable cycle (LRU bits are not updated).

Cache Write Miss (CWTM) - the cache is not up­
dated, the write is not buffered.

Cache Write Hit (CWTH) - the cache is updated if
the line is not write protected. The write is not buff­
ered. Note that this write is not buffered even though
it is cacheable. The LRU mechanism is updated.

If the LOCK#ed cycle is non-cacheable (e.g. 10 cy­
cle, INTA cycle) then it will be performed as a com­
mon non-cacheable cycle with the addition of as­
serting SLOCK # on the System Bus.

Conceptually, a LOCK# cycle on the Local Bus is
reflected into an SLOCK# cycle on the System Bus.
Detailed timing considerations were presented in
chapter 3. SLOCK # becomes inactive only after
LOCK# has become inactive. If there are idle clocks
in between the LOCK# ed cycles but LOCK# is still
active - SLOCK # will remain active as well. A con­
sequence of this is that SLOCK # is negated one
clock after LOCK# is negated.

During LOCK#ed cycles on System Bus (i.e. when
SLOCK # signal is active), the 82395DX does not
acknowledge hold requests so the whole sequence
of LOCK#ed cycles will run without interruption by
another master.

Note that when a LOCK#ed .LBA# cycle runs on
the Local Bus, and the System Bus is idle and not at
HLDA state, SLOCK# will be asserted even though
the LBA # cycle will not be transferred to the system
bus.

5.6.2 1/0, HALT /SHUTDOWN

1/0 and HALT /SHUTDOWN cycles are handled as
non-cacheable cycles. They are neither cached nor
kept in the write buffer. The 386 DX Microprocessor
HALT /SHUTDOWN cycles are memory write cycles
to code area (i.e. M/10# = 1, D/C# = 0). The
82395DX completes 1/0 and HALT I SHUTDOWN
cycles by returning READYO #, after receiving the
SRDY#.

5.6.3 LBA# CYCLES

LBA# cycles are all the 386 DX Microprocessor cy­
cles in which LBA # is active, or all cycles in which
the 387 DX Math Coprocessor or Weitek 3167 Float­
ing-Point Coprocessor is addressed. A CPU access
to 1/0 space with A31=1 is qecoded as a 387 DX
Math Coprocessor access. A CPU access to memo­
ry space COOOOOOOH through C1 FFFFFFH is decod­
ed as a Weitek 3167 Floating-Point Coprocessor ac­
cess, provided that the Weitek decoding is enabled.

When an LBA # cycle is detected all other attributes
are ignored. If a 387 DX Math Coprocessor access is
decoded, READYO# is activated as described in
section 5.6. No other activity takes place.

5.6.4 NPI # CYCLES

NPI # cycles are all the 386 DX Microprocessor
memory write cycles in which NPI # is active. In re­
sponse to a cycle with NPI # active, the 82395DX
first executes all pending write cycles in the write
buffer (if any), and then executes the current write
cycle on the System Bus. READYO# is returned to
the CPU only after SRDY # for the current write ·cy­
cle is returned to the 82395DX.

All NPI # cycles must have at least one wait state on
the System Bus or be done to non-cacheable mem­
ory.

NPI# is ignored for read cycles, as well as all write
cycles that cannot be buffered.

5.6.5 LBA#/NPI# TIMING

These inputs must be valid throughout the 386 DX
Microprocessor bus cycle, namely in T1 and all T2
states (See Figure 5.1).

5-510

intef 82395DX

CLK

ADS#

A2-31

LBA#

NPI#

READYI#

T1 T2 T2 TI

290382-21

Figure 5.1 ·Valid Time of LBA # and NPI #

5.7 82395DX READYO# Generation

The 82395DX READYO# generation rules are listed
below:

GROH cycles (non-LOCK#ed), READYO# is acti­
vated during the first T2 state, so the cycle runs with
zero wait states.

CROM cycles - READYO# is returned one clock af­
ter the first SRDY # or SBRDY #.

Non cacheable reads - READYO# is returned one
clock after SRDY # or SBRDY #.

All cacheable writes (with the exception of
LOCK#ed writes) are buffered. These cycles may
be divided into two categories:

(a) The first four write cycles - while the write buffer
is not fully exploited. READYO# is returned in
zero wait states. The address and the data are
registered in the write buffer.

(b) When the write buffer is full - READYO # is de­
layed until one clock after the SRDY # or
SBRDY # of the first write cycle in the buffer. In
other words the fifth write waits until there is one
vacant entry in the write buffer.

5-511

Non cacheable writes (plus LOCK#ed writes) -
these writes are not buffered. READYO# is returned
one clock after SRDY # or SBRDY # of the same
cycle.

READYO# activation during SRAM mode is de­
scribed in Chapter 7. READYO# activation during
self configuration is listed in Chapter 4.

In all 387 DX Math Coprocessor accesses, the
82395DX monitors the READYI #. If it wasn't activat­
ed immediately after ADS#, READYO# will be acti­
vated in the next clock i.e. a one wait state cycle. So,
the 82395DX READYO# can be used to terminate
any 387 DX Math Coprocessor access.

Note that the timing of the 82395's READYO# gen­
eration for 387 DX Math Coprocessor cycles is in­
compatible with 80287 timing. When activated,
READYO# remains active until READYI# is sam­
pled active. This procedure enables adding control
logic to control the 386 DX Microprocessor REA­
DYi # generation (see Figure 5.2).

ADS#

READYO#

READYI#

290382-22

Figure 5.2 ~ Externally Delayed READY

In a multi-82395DX system, each device on the Lo­
cal Bus must be able to return READYO#. There­
fore, READYO# is wired OR on the Local Bus.
READYO# is normally floated, and it is connected
to the positive power supply by a pull-up resistor. An
external OR gate ORs the 823950Xs' READYO#s
with the READYO# of all other Local Bus devices.

intef 82395DX

5.8 A20 Mask Signal

The A20M # signal is provided to allow for emulation
of the address wraparound at 1 MByte which occurs
on the 8086. A20M # pin is synchronized internally
by the 82395DX, then ANDed with the A20 input pin.
The product of synchronized A20M # and A20 is

presented to the rest of the 82395DX logic, as
shown in Figure 5.3 ..

A20M # must be valid two clock cycles before
ADS# is sampled active by the 82395DX, and must
remain valid until after READY!# is sampled active
(see Figure 5.4).

82395 DX

290382-23

Figure 5.3 - A20 MAsk Logic

CLK

ADS#

A(2-31) 1----1---...._.J .._..,.__-+---+-'

A20M# l=~t:=:!==:::t:=:::t~--r~
READ YI#

290382-24

Figure 5.4 - Valid Time of A20M #

5.9 82395DX Cycle Overview

Table 5.1 - 386 DX Microprocessor Bus Cycle Definition

M/10# DIC# W/R# 386 DX Microprocessor Cycle Definition

0 0 0 Interrupt Acknowledge

0 0 1 Undefined

0 1 0 1/0 Read

0 1 1 l/OWrite

1 0 0 Memor¥ Code Read

1 0 1 Haiti Shutdown

1 1 0 Memory Data Read

1 1 1 Memory Data Write

5-512

intJ 82395DX

Table 5.2 describes the activity in the cache, in the Tagram, on the System Bus and in the write buffers. The
cycles are defined in table 5.1. Table 5.2 is sorted in a descending order. The more dominant the attribute the
higher it is located. For example, if the cycle is both LBA# and 110 it is considered an LBA# cycle. Table 5.2 is
for non test modes.

Table 5.2 - Activity by Functional Groupings

TAGRAM Posted
Cycle Type WP Cache System Bus

Write
Comm.

LAU TAG

1. LBA & 387 IWeitek Cycles NIA - - - - NIA

2. 110 Write, NIA - - - Non Cacheable Cycle No 2
110 Read,
Halt/Shutdown,
INTA, LOCK#ed Read

3. LOCK#ed Write Hit Yes Update - Memory Write No 2

4. LOCK#ed Write Hit No Cache Update - Memory Write No 2
Write

5. LOCK#ed Write Miss NIA - - - Memory Write No 2

6. Other Read Hit NIA Cache Update - - NIA 1
Read

7. Other Read Miss NIA Cache Update Update Line Fill NIA 2
SKEN # Active Write

8. Other Read Miss NIA - - - Noncacheable Read NIA 2
SKEN# Inactive No Line Fill

9. Other Write Hit Yes - Update - Memory Write Yes 1
NPI # Inactive

10. Other Write Hit Yes - Update - Memory Write No 2
NPI# Active

11. Other Write Hit No Cache Update - Memory Write Yes 1
NPI # Inactive Write

12. Other Write Hit No Cache Update - Memory Write No 2
NPI# Active Write

13. Other Write Miss NIA - - - Memory Write Yes 1
NPI # Inactive

14. Other Write Miss NIA - - - Memory Write No 2
NPI# Active

5-513

intef 82395DX

Table 5.3 describes line buffer hit cycles. Hit/miss here means to the specific OW in the line buffer.

Table 5.3. Activity in Line Buffer Hit Cycles

TAGRAM Posted
Cycle Type WP Cache System Bus

Write
Comm.

LRU TAG

15. LOCK# ed Write Yes - - - Memory Write No 2

16. LOCK# ed Write No Cache - - Memory Write No 4
Write

17. Read Hit NIA LB - - - NIA 1
Read

18. Read Miss NIA LB - - - NIA 3
Read

19. Other Write Yes - - - Memory Write Yes 6
NPI# Inactive

20. Other Write Yes - - - Memory Write No 2
NPI# Active

21. Other Write No Cache - - Memory Write Yes 5
NPI # Inactive Write

22. Other Write No Cache - - Memory Write No 4
NPI # Inactive Write

Table 5.4 describes the line buffer hit cycles, when the Line Fill is interrupted (by: FLUSH#, snoop hit to the
line buffer or interrupted burst, even if the Line Fill continues on the System Bus in the first two cases). The
table includes only the cycles which wait to the end of the Line Fill or to the CPU cache update. Hit/Miss here
means to the right OW in the line buffer.

Table 5.4. Activity in the Line Buffer During ALF Cycles

TAG RAM Posted
Cycle Type WP Cache System Bus

Write
Comm.

LRU TAG

23. LOCK#ed Write N/A - - - Memory Write No 2

24. Read Miss NIA Cache Update Replace Line Fill NIA 2
(Restart) Write

25. Other Write NIA - - - Memory Write Yes 5
NPI# Inactive

26. Other Write NIA - - - Memory Write No 2
NPI# Active

5-514

intef 82395DX

Table 5.5 depicts the 82395DX Test Cycles.

Table 5.5. Activity in Test Cycles

Cycle Type WP A16 Cache
TAGRAM

System Bus
Posted
Write

Comm.
LRU TAG

27. High Impedance NIA NIA - - - - NIA

28. SAAM Mode Read NIA 0 - LRURD TAG RD - NIA
Add 256K-512K

29. SAAM Mode Read NIA 1 Cache - - - NIA
Add 256K-512K

30. SAAM Mode Write NIA 0 - LRUWR TAG WR - NIA
Add 256K-512K

31. SAAM Mode Write NIA 1 Cache
Add 256K-512K Write

32. SAAM Mode Read NIA NIA -
Add <>256K-512K

33. SAAM Mode Write NIA NIA -
Add< >256K-512K

Remarks for Tables 5"2 through 5~5:

1. READYO# is active in the first T2. (In read cy­
cles, in write it depends if the write buffer is full).

2. READYO # is active one clock cycle after
SRDY # ISBRDY # of this cycle is asserted. In
case of Line Fill, READYO# is active one clock
cycle after first SRDY # ISBRDY # of this cycle is
asserted.

3. READYO# is active immediately after the current
line fill is finished.

4: READYO# is active after the previous line fill and
the write cycle are terminated by SRDY # or
SBRDY #, and the cache is updated.

· 5. READYO # is active after the cache is updated for
the previous Line Fill, or after the Line Fill is abort­
ed.

6. READYO# is active on the third T2 (2 wait states)
if the write buffer is not full.

7. "OTHER" means the cycle does not fall within
the first five categories.

6.0 SYSTEM BUS INTERFACE

The System Bus (SB) interface is similar to the 386
DX Microprocessor interface. It runs synchronously
to the 386 DX Microprocessor clock. In general, the
interface is similar to the 82385 in terms of: System
Bus pipelining, snooping support and write cycle
buffering. In addition, the following enhancements
are provided:

1) Line Fill buffer.

2) Optional burst Line Fill.

- - - NIA

- - Noncacheable No 2
Cycle

- - Noncacheable NIA
Cycle

3) System cacheability attribute, SKEN #.

4) System Write Protection attribute, SWP#.

5) The SBREQISHOLDISHLDA arbitration mecha­
nism to support multi master systems.

6) The SEADS# snooping mechanism to support
concurrency on the System Bus and on the gen­
eral purpose bus.

7) SFHOLD# mechanism to resolve deadlocks in
multiprocessing systems.

8) Four Double-Word write buffer (16 bytes).

9) SNENE# (System NExt NEar) function to simplify
the design of page mode DRAM system, and
save wait states.

The 82395DX System Bus interface has identical
bus signals to the 386 DX Microprocessor bus. It has
the bus control signals (SADS #, SRDY # and
SNA#), the cycle definition signals (SLOCK#,
SWIR#, SDIC# and SM/10#), the address and
byte enable signals (SA2-SA31 and SBEO#­
SBE3#) and the data signals (SDO-SD31). In addi­
tion, the 82395DX has the SBRDY # signal for burst
support. The SKEN # signal for the system cachea­
bility attribute. The SWP # signal for the system
Write Protection attribute. The SAHOLD and
SEADS# signals for snooping support. The SBREQ,
SHOLD and SHLDA signals for system arbitration.
And SNENE# for DRAM hook-up. Also, the
82395DX provides a signal, SBLAST#, which when
asserted, indicates that the current cycle is the last
cycle in a burst transfer.

5-515

inter 82395DX

The 82395DX System Bus interface can support any
device, non cacheable, 1/0 or cacheable memory
with any number of wait states~ The 82395DX is able
to support one clock burst cycles. The 82395's Sys­
tem Bus state machine is similar to the 386 DX Mi­
croprocessor bus state machine (refer to the

"386 DX Microprocessor .,data sheet"). Note that
during burst Line Fill, the 82395DX remains is ST2

RESET
Asserted

:I ,z
<ro
• ...J
"'0
0 :c z U>

SHOLO Negated •
Request Pending

ROY Assorted·
SHOLO Negated •
No Request

ROY=SROY#+SBROY#

· state until SRDY # or SBRDY # is asserted for the
fourth cycle of the burst transfer. Figure 6.1 de­
scribes the 82395's System Bus state machine.

SHOLD Assorted

"' ii
z"S;
0.
...J.
0"" :c •
UI"'

ROY Asserted·
SHOLD Asoorted

ROY Aasortod •
SHOLO Neg\rtod •
No Request

ROY A-rted •
SHOLO Negated •
Request Pending

·~
l :
'Ii~
J Cl
,_...J
0 :c
C< UI

ROY Negated •
SNA# Negated

ROY Negated •
(No Request +
SHOLO Asserted)

ROY Negated

Figure 6.1 - SB State Machine

5-516

SNA Negat~d

+ .
i.-:;-
0 • ,,
i't:·.
z It:
-i;·d
•o<
• ...J ...
""o<
!~~

290382-25

6.1 System Bus Cycle Types

Following five types of SB cycles are supported:

1) Buffered write cycle

2) Non buffered write cycle

3) Buffered/ non-buffered write protected cycles.

4) Non cacheable read cycle

5) Cacheable read cycle

CLK

ADS#

READYO#

SADS#

SRDY#

SKEN#

T1
STi

82395DX

T2
ST1

6.1.1 BUFFERED WRITE CYCLE

All the cacheable write cycles, except LOCK# ed
write cycles or non-buffered write cycles (as indicat­
ed by NPI # pin sampled active), are buffered. These
cycles are terminated on the Local Bus before they
are terminated on the System Bus.

The following Figures (6.2 - 6.3) include waveforms
of several cases of buffered write cycles:

The 82395DX has a four OW deep write buffer but
five writes cycles can be buffered if one of the buff­
ered writes is being executed.

Ti
ST2

Ti
ST2

Ti
STi

290382-26

Figure 6.2 ·Single Buffered Write Cycle

NOTE:

CLK

ADS#

READYO#

SADS#

SRDY#

SKEN#

SH OLD

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T2 T2 T2 Ti
STH STH STH STH STH STH STH STH STH STH STH ST1 ST2 ST1 ST2 STi

READYO# #6 waits until SRDY# #1 is sampled

Figure 6.3 • Multiple Buffered Write Cycles During System Bus HOLD

5-517

290382-27

I

82395DX

6.1.2 NON-BUFFERED WRITE.CYCLE The following Figures (6.4 - 6.5) include waveforms
of several cases of non buffered write cycles.

These cycles are terminated on the System Bus one
clock before they are terminated on the Local Bus.

CLK

ADS#

READYD#

SADS#

SRDY#

SKEN#

TI D D D D TI
STI STI ST2 ST2 STI STI

290382-28

NOTE:

Figure 6.4 • 1/0 Write Cycle

J tocked read J tocked write

TI D D D D TI D D D D Tl Tl TI
STI STI ST2 ST2 STI STI ST1 ST2 ST2 STI STI STI STH

CLK~
ADS#~ \...l.J

LOCK# t"\ f

READYO# \...l.f \...V
SADS# ~ \...l.f
SRDY# \...l.f _j./

SKEN#

SBLAST#

SLOCK# i---t\ ~
SH OLD IF

SHLDA ~

While SLOCK# is active SHOLD input is ignored

Figure 6.5- LOCK#ed "Ready Modify Write" cycle

5-518

290382-29

intef 82395DX

6.1.3 WRITE PROTECTED CYCLES
T1 T2 T2 T2 T2 Tl

The Write Protection attribute is provided by the sys­
tem bus SWP # input. The SWP # is sampled with
the first SRDY # or SBRDY # in every Line Fill cycle.
The write protection indicator is registered in the
Cache Directory together with the TAG address and
TAG Valid bit of every line. In every cacheable write
cycle, the write protection indicator is read simulta­
neously with the Hit/Miss decision. If the write cycle
is a hit and the write protection indicator is set, the
cache will not be updated. In all other cases, the
write protection indicator is ignored.

STI ST1 ST2 ST2 STI STI

6.1.4 NON·CACHEABLE READ CYCLE

CLK

ADS#

READYO#

SADS#

SRDY#

SKEN#

SBLAST#

290382-30

Non cacheable read cycles are terminated on the
System Bus one clock before they are terminated on
the Local Bus.

Figure 6.6 - 1/0 Read Cycle

The following Figures (6.6 - 6.7) include waveforms
of several cases of non cacheable read cycles.

NOTE:

INTA
1st READ 4 locked idles 2nd READ

n n n n n TI TI TI TI n n u u u n n
STI ST1 ST2 ST2 STI STI STI STI STI STI ST1 ST2 ST2 STI STI STI

CLK~
ADS# N.J V"

LOCK# K ~

READYO# '+f ~
SADS# ~
SRDY# '+f

SLOCK# t----t°\'+--t-+--+--+--t-+--+--+--+-+--t--+-1-'.r1
SH OLD

SHLDA

While SLOCK# is active SHOLD input is ignored
Even if the System Bus is in its idle state, SLOCK# is active because LOCK# is active.

Figure 6.7 • INTA LOCK#ed Cycle

5-519

290382-31

intef 82395DX

6.1.5 CACHEABLE READ MISS CYCLES

The 82395DX attempts to start a Line Fill for non
LOCK#ed CROM cycles. However, a Line Fill will be
converted into a single read cycle if the access is
indicated as non-cacheable by the SKEN # signal.

CROM cycles start as a System Bus read cycle.
READYO# is returned to the 386 DX Microproces­
sor one clock cycle after the System Bus read cycle
is terminated.

One CLK cycle before the first SNA#, SRDY# or
SBRDY# of the system read cycle, the SKEN# in­
put is sampled. If active, the read miss cycle contin­
ues as a Line Fill cycle, and three additional DWs
are. read from the memory into the 82395DX. Also,
the SWP# input will be sampled with the first
SNA#, SRDY# or SBRDY# so the WP flag of the
line will be updated in the Cache Directory.

6.1.5.1 Aborted Line Fill (ALF) Cycles

The System Bus can respond that the area of mem­
ory included in a particular request is non-cacheable,
by returning SKEN # inactive. As soon as the
82395DX samples SKEN # inactive, it converts the
cycle from a cache Line Fill, which requires addition­
al read cycles to be completed, to a single cycle.

In this case SBLAST# will stay active. Also, the
82395DX will not generate another system cycle for
the same Line Fill, because the cycle has already
been finished by the first SBRDY # or SRDY # after
SKEN # was sampled inactive.

The following Figure 6.8 includes waveforms of an
ALF cycle.

n n n n n n
STi ST1 ST2 ST2 STI STi

CLK

ADS#

READYO#

SADS#

SRDY#

SKEN#

SBLAST#

SBRDY#

Figure 6.8 - Aborted Line Fill cycle

5-520

290382-32

intef 82395DX

CROM Idles

T1 T2 T2 T2 T2 Tl Tl Ti Ti Ti Tl Ti Tl
~ m m m m m m m m m m m m

CLK.

ADS#~
READYO#

SADS#

SA (2-31)

SBE(0-3)#

SNA#

SRDY#

SBRDY#

SKEN#

SWP#

SBLAST#

S0(0-31)

\...µ
y_rr-+---+-..y_rr-+---+-..~

_x _x

Figure 6.9 - Line Fill Without Burst or Pipeline

CROM I LINE BUFFER HIT

T1 T2 T2 T2 T1 T2 T2 Tl Tl
~ m m m m m ~ ~ ~

CLK~
ADS# 1\..-i-J \....j._/

A(2-31) - 100h 10Ch

READYO#

SADS#

SBRDY# J
SRDY#

SKEN#

SBLAST# J
SWP#

SD0-31 x x x
SA2-31

I 1 I

290382-33

290382-34

Figure 6.9A - Burst Mode Line Fill followed by a Line Buffer Hit Cycle

5-521

I

intef 82395DX

6.1.5.2 Line Fill Cycles

A Line Fill transfer consists of four back to back read
cycles. Three types of Line Fill cycles are supported:

1. Non pipeline, Non burst, SNA # inactive.

2. Pipelined, non burst, SNA # active.

3. Burst, non pipelined, SNA# inactive, SRDY# in­
active, SBRDY # active.

Note that a pipelined burst cycle is not supported.
When SNA# is sampled active, SBRDY# is treated
as SRDY#.

The 82395DX supports burst cycles in system Line
Fills only. Burst cycles are designed to allow fast line
fills by allowing consecutive read cycles to be exe­
cuted at a rate of one DW per clock cycle. In burst
cycles SADS# is pulsed for one clock cycle while
the address and control lines are valid until the
transfer is completed. SA2-3 are updated every bus
cycle during the burst transfer.

The 82395DX starts the Line Fill as a normal read
cycle, and waits for SBRDY # or SRDY # to be re­
turned active. If SNA # is sampled active at least
one clock cycle before either SBRDY # or SRDY #,
the Line Fill will be non burst pipelined. (See Figure
6.10). If SNA # is sampled active at the same clock
cycle as SBRDY # or SRDY #, the line fill will be
non-burst, non-pipelined.

If SKEN# is sampled inactive one clock before ei­
ther SNA#, SBRDY# or SRDY#, then the access
is considered non-cacheable and Line Fill will not be
executed. (See Figure 6.8) Otherwise, if SRDY # is
sampled active, the line fill cycle resumes as a non­
burst sequence of three more cycles (see Figure
6.9). Finally, if SBRDY# and SKEN# are sampled
active (and SNA# and SRDY# are sampled inac­
tive), then the Line Fill cycle will be a burst cycle
(see Figures 6.11 - 6.12). ·

If a system cannot support burst cycles, a non burst
line fill must be requested by merely returning
SRDY # instead ef SBRDY #, in the first read cycle
(see Figure 6.9). Once a burst cycle started, it will
not be aborted until it's completed, regardless if
SKEN # is sampled inactive or SHOLD is sampled
active, i.e. all four DWs will be read from memory.

However, the system may abort a burst Line Fill
transfer before it's completed, by returning SRDY #
active (instead of SBRDY #) for the second or third
DW in a Line Fill transaction (see Figure 6.13). In this
case the cache will not be updated. The first DW will
already have been transferred to the CPU.

Note that in the last (fourth) bus cycle in a line fill
transfer, SBRDY # or SRDY # has the same effect
on the 82395DX. That is to indicate the end of the
Line Fill. For all cycles that cannot run in burst mode
(non-Line Fill cycles or pipelined Line Fill cycles)
SBRDY # has the same effect on the 82395DX as
the normal SRDY # pin. SRDY # and SBRDY # are
the same apart from their function during burst cy­
cles.

The fastest burst cycle possible requires two clocks
for the first data item to be returned to the 82395DX
with subsequent data items returned every clock.
Such a bus cycle is shown in Figure 6.11. An exam­
ple of a burst cycle where two clocks are required
for every burst item is shown in Figure 6.12. When
initiating any read, the 82395DX presents the ad­
dress for the data item requested. When the
82395DX converts this cycle into a cache Line Fill,
the first data item returned must correspond to the
address sent out by the 82395DX. This address is
the original address that is requested by the 386 DX
Microprocessor. The 82395DX updates this address
after each SBRDY # according to table 6.1 (SA2 and
SA3 are updated). This is also true for non-burst
Line Fill cycles. The 82395DX presents each re­
quest for data in an order determined by the first
address in the transfer. For example, if the first ad­
dress was 104, the next three addresses in the burst
will be 100, 10C, and 108. The burst order used by
the 82395DX is shown in Table 6.1. This remains
true whether the external system responds with a
sequence of normal bus cycles or with a burst cycle.
An example of the sequencing of burst addresses is
shown in Figure 6.12.

This order was designed to optimize the perform­
ance of 64- bit memory systems. The second cycle
of a burst reads the DW that forms the other half of
an aligned 64-bit block, no matter whether that DW
is at a higher or lower address. The third and fourth
cycles then read the two DWs which form the other
half of an aligned 128-bit block. The order in which
the third and fourth DWs are accessed corresponds
to the order used for the first and second DWs.

5-522

82395DX

Table 6.1 - Line Fill Address Order

First Address Second Address Third Address Fourth Address

0 4 8 c
4 0 c 8

8 c 0 4

c 8 4 0

In the following cases, a Line Fill cycle will not up­
date the cache:

1. Aborted burst: burst cycle will be aborted if
SRDY # is returned active in the second or third
bus cycle. The Line Fill will not resume, and the
cache will not be updated.

3. FLUSH during Line Fill cycle: the Line Fill cycle
will continue as usual, but the cache will not be
updated.

Figures (6.9 - 6.13) include waveforms of several
cases of Line Fill cycles.

2. Snoop hit to line buffer: If, during a Line Fill trans­
fer, a snoop cycle is initiated after the first
SRDY # or SBRDY #, and the address matches
the address of the line being retrieved, the Line
Fill cycle will continue as usual but the cache will
not be updated.

CROM Idles

TI TI TI TI TI Ti Ti Ti Ti Ti
STI STI ST2 ST2P STI P ST2P ST1 P ST2P ST1 P ST2

CLK~
ADS# 1\..-+-t

READYO#

SADS#

SA(2-31)

SNA#

SRDY#

SBRDY#

SKEN#

SWP#

SBLAST#

Figure 6.10 - Pipelined Line Fill

5-523

290382-35

intJ 82395DX

CROM Idles

TI n n n TI TI TI
STi STI ST2 ST2 ST2 ST2 STi

CLK~
ADS#~

READYO#

SADS#

SNA#

SBRDY#

SRDY#

SKEN#

SBLAST#

SWP#

SD0-31

SA4-31

SA2-3

\..._.... _____ _,Fl

J \.

Jt JtJt -

t--~:!::::t==t=::t:::::t:>~
:x x :x ~

Figure 6.11 - Fastest Burst cycle (one clock burst)

CROM Idles

290382-36

TI n n n n TI TI TI TI TI
~ m m m m m m m m m

CLK~
ADS#~

READYO#

SADS#

SA(2-31)

SNA#

SRDY#

SBRDY#

SKEN#

SWP#

SBLAST#

SDO-SD31

J(J(Jt

______ J \._

~

Figure 6.12 - Burst Read (2 clock burst)

5-524

290382-37

82395DX

CROM Idles

T1 T2 T2 T2 T2 Ti Ti Ti Ti Ti
STi ST1 ST2 ST2 ST2 ST2 ST2 ST2 STi STi

CLK~
ADS# N-1"

READYO#

SADS#

sA <2-31 l ~~~:t:=:c=t:xx::::~::::i:::xx::i:::::t:.::1~~~
SNA# 11-1-11~~~~~~~-11

SRDY#

SBRDY#

SKEN#

SWP# ~~~m~~u.....13.~~~~~~~m~
SBLAST#

SDO-SD31

______ _,./ '-'-+--t

1---+--+--+~~>-+--i

Figure 6.13- Interrupted Burst Read (2 clock burst)

5-525

290382-38

I

intef 82395DX

6.2 82395DX Latency in System Bus
Accesses

The 82395DX acts as a buffer between the 386 DX
Microprocessor and the main memory causing some
latency in initiating the System Bus cycle (SADS#
delay from ADS#) and in completing the cycle (386
READYO# delay from SRDY# or SBRDY#). The
82395DX drives the SADS# one clock after the
ADS#. In cacheable cycles, the 82395DX starts
driving the SADS# before it decides whether the
cycle is a cache hit or miss since the hit/miss deci­
sion is valid in the second clock (the first T2 cycle).
In case the cycle is a hit, the 82395DX deactivates
SADS#. This causes an undesirable glitch on the
SADS# signal, and also it causes an SADS# timing
incompatibility with the 386 DX Microprocessor i.e.
SADS# delay is slightly longer than the ADS# de­
lay. For proper system functionality, SADS# must
be sampled by the next clock edge.

At the end of System Bus non- cacheable read cy­
cle, or non- buffered write cycle, the 82395DX drives
READYO# active one clock after SRDY#. In a Line
Fill cycle, READYO# is activated one clock after the
first SB ADY# or SRDY # is sampled active. The set­
up timing requirements of SRDY # and system data
force one wait state at the end of the cycle.

6.3 SHLDA Latency

For non-LOCK# ed cycles the worst case delay be­
tween SHOLD and SHLDA would be when SHOLD
is activated during ST2P state, followed by a Line
Fill. In this case, the HOLD request will be acknowl­
edged only after the Line Fill is completed. In
LOCKed cycles SHLDA will not be asserted until af­
ter SLOCK # is negated. The latency would be:

Latency = (Number of ST2Pcycles) + (Number of
Line Fill cycles) OR (Number of LOCK#ed cycles)

6.4 Cache Consistency Support

The 82395DX supports snooping using the
SEADS# mechanism. Besides insuring the consist­
ency, this mechanism provides multi processing sup­
port by having the 82395DX System Bus and the
Local Bus running concurrently.

The 82395DX will always float its address bus in the
clock immediately following the one in which SA­
HOLD is received. Thus, no address hold acknowl­
edge is required. When the address bus is floated,
the rest of the 82395DX's System Bus will remain
active, . so that data can be received from a bus

cycle that was already underway. Another bus cycle
will not begin, and the SADS# signal will not be gen­
erated. However, multiple data transfers for burst cy­
cles can occur during address holds.

A companion input to SAHOLD, SEADS# indicates
that an external address is actually valid on the ad­
dress inputs of the 82395DX. When this signal is
activated, the 82395DX will read the external ad­
dress and perform an internal cache invalidation cy­
cle to the address indicated. The internal invalidation
cycle occurs one clock after SEADS # is sampled
active. In case of contention with 386 DX Microproc­
essor look up, the invalidation is serviced two clocks
after SEADS# was activated. The maximum rate of
invalidation cycles is one every other clock. Multiple
cache invalidations can occur in a single address
hold transfer. SEADS# is not masked by SAHOLD
inactive, so cache invalidations can occur during a
normal bus cycle .. This also means that if SEADS #
is driven active when the 82395DX is driving the ad­
dress bus, the values that are being driven by the
82395DX will be used for a cache invalidation cycle.

If the 82395DX is running a line fill cycle and an
invalidation is driven into the 82395DX in the same
clock the first data is returned, or in any subsequent
clock, the 82395DX will invalidate that line even if it
is the same cache line that the 82395DX is currently
filling.

SAHOLD in pipelined cycles: The activation of SA­
HOLD only causes the system address to be floated
in the next clock without changing the behavior of
pipelined cycles. If SAHOLD is activated before en­
tering the ST2P state, the 82395DX will move into
non-pipeline and drive the SADS# only after the de­
activation of SAHOLD. However, if SAHOLD is as­
serted in the ST2P state and the Nth cycle has al­
ready started, the system address is floated but
SADS# is kept active until SRDY# (for the N-1 th
cycle) is returned. It is the system designers' respon­
sibility to latch the address bus. Note that the ad­
dress driven on the System Bus after SAHOLD is
deasserted (in pipelined cycles) depends on wheth­
er SNA # has been sampled active during the
SAHOLD state and another cycle is pending. As
seen from Figure 6.14, the (N + 1)th address will be
driven by the 82395DX once SAHOLD was deacti·
vated and SNA # was sampled active, provided
there is a cycle pending in the 82395DX. The follow­
ing figures describe the 82395DX behavior in two
cases. First, when SNA# is sampled active and sec­
ond, in the case of SNA# sampled inactive.

Note that the maximum rate of snooping cycles is
every other clock. The first clock edge in which
SEADS# is sampled active causes the 82395DX to

5-526

inter

CLK

SA HOLD

SADS#

SA(2-31)

SRDY#

SNA#

CLK

SAHOLD

SADS#

SA(2-31)

SRDY#

SNA#

82395DX

ST2P ST2P ST1 P ST21 ST2P ST1 P

(A) - SNA # sampled active

ST2P ST2P ST1 P ST2 ST2 ST2

(B) - SNA # sampled inactive

290382-39

290382-40

Figure 6.14 • SAHOLD Behavior in Pipelined Cycles

5-527

I

intef 82395DX

latch the system address bus and initiate a cache
invalidation cycle. If SEADS# is driven active for
more than one clock, only one snooping cycle will be
initiated on the first clock edge at which SEADS # is
sampled active. The SA2-31 setup and hold timings
are specified to the same clock edge in which
SEADS # is sampled active.

6.5 Bus Deadlock Resolution Support

In a multi-master system another bus master may
require the use of the bus to enable the 82395DX to
complete it's current bus request. In this situation,
the 82395DX will float it's entire System Bus until the
other bus master has completed it's bus transaction.

The 82395DX will float it's System Bus immediately
in response to the external system asserting the
Fast HOLD (SFHOLD#) signal. The only effect of
this signal being sampled active is forcing the
82395DX System Bus pins to float. It is the system
designer's responsibility to ensure that no 82395DX
cycle is prematurely terminated, and that no new
82395DX cycle is generated during Fast HOLD.
When SFHOLD # is deasserted the System Bus ad­
dress, cycle definition and data are redriven by the
82395DX and the cycle is not restarted. SRDY # and
SBRDY # are not recognized during SFHOLD#
states. SFHOLD# asserted internally disables
SRDY # and SBA DY#.

386 DX
Microprocessor

SH OLD

6.6 Arbitration Mechanism

As more than one device may be connected to the
shared system bus, there is a need for arbitration
between the devices that wish to utilize the shared
resource. The 82395DX supplies the interface sig­
nals to an external arbiter (either centralized or dis­
tributed) to enable it to perform the task.

The 82395DX provides a normal bus SHOLD/
SHLDA handshake protocol, exactly as the 386 DX
Microprocessor does on the Local Bus. SHOLD is
used to indicate to the 82395DX that another bus
master desires control of the 82395DX System Bus.
Whenever the 82395DX completes its current bus
cycle (a full line transfer if the cycle is a Line Fill), or
sequence of LOCK#ed bus cycles, it will grant its
external bus to the requesting device by floating it
and by driving SHLDA active. The 82395DX will re­
linquish its System Bus at the end of a bus cycle,
even if it has other cycles internally pending. As
soon as the 82395DX responds with SHLDA, it tri­
states all bus control and address outputs. Now, if
the System Bus is required by the 82395DX (on be­
half of a 386 DX Microprocessor request on the Lo­
cal Bus) but is not available, processing will cease.
Then the 82395DX will have to re-arbitrate on the
System Bus by driving SBAEQ active.

SH OLD

386 DX
Microprocessor

82395DX SH LOA Asynchronous SHLDA
_ _... _.,.. Arbiter ~----. 82395DX

SBREO . SBREO

System Bus
290382-41

Figure 6.15 - Multiple 82395DX Bus Arbitration Scheme

5-528

intJ 82395DX

The SBREQ output is activated whenever the
82395DX has internally generated a bus cycle re­
quest. It is inactivated immediately after the
82395DX asserts SADS# of the cycle. By examining
this signal, external logic can determine when the
82395DX requires the use of the System Bus and
intelligently arbitrate the System Bus among multiple
processors. This pin is always driven, regardless of
the state of bus hold (See Figure 6.16).

The SHOLD input has higher priority than the pend­
ing request. In the case of LOCK#ed System Bus
cycles, SHOLD requests will not be acknowledged.
Another case is a non-burst Line Fill, where SHOLD
is acknowledged after reading the fourth OW, even
though SHOLD was activated before.

6.7 Next Near Cycles

For all System Bus cycles, the 82395DX generates a
signal, SN ENE#, to indicate that the current cycle is
in the same 2048 Byte area as the previous memory
cycle. Namely, it indicates that address lines A 11 -
A31 of the current System Bus memory cycle are
identical to address lines A 11-A31 of the previous
memory cycle. This signal can be used by an exter­
nal DRAM system to run CAS# only cycles, there­
fore increasing the throughput of the memory sys­
tem. SN ENE# timing is identical to system address
timing, namely it is valid from SADS # active until
SRDY # or SBRDY # is sampled active (non-pipe­
lined cycles) or until SNA# is sampled active (pipe­
lined cycles). SN ENE# is valid for all memory cy­
cles, and must be ignored in 1/0 and idle cycles.

82395DX # 1 ST1 ST2 ST2 ST2 STH STH STH STH
~~~P ~ ~ ~ ~ ~ ~ m ~ 

CLK 

SADS1# 

SRDY1# 

SBREQ1 

SHOLD1 

SHLDA 

SADS2# 

SRDY2# 

SBREQ2 

SHOLD2 

SHLDA2 

float 

Figure 6.16 • SHOLD/SHLDA/SBREQ Mechanism 

5-529 

290362-42 

El 



intef 82395DX 

After the 82395DX exits the SHOLD state, SN ENE# 
is always inactive. SN ENE# is always inactive in the 
first memory cycle after a Halt/Shutdown cycle. 

If SAHOLD is sampled active while the System Bus 
is idle, the next 82395DX cycle will have SNENE# 
inactive. If SAHOLD is sampled active while the 
82395DX is running a System Bus cycle, SN ENE# 
will not change until the next SADS# is issued. Dur­
ing SHLDA, SNENE# is floated and the first cycle 
after SHLDA is deactivated will have SNENE# inac­
tive. SNENE# can run in the pipeline, the same as 
the system address. 

6.8 Write Buffer 

The 82395DX is able to internally store up to four 
write cycles (address, data and status information). 
All those write cycles will run without wait states on 
the Local Bus. They will run on the System Bus as 
soon as the bus is available. In case of a write cycle 
which cannot be stored since the buffer is full, the 
386 DX Microprocessor will be forced to wait until 
one of the buffered write cycles is completed. 
READYO# is returned two CLK's after SRDY# or 
SBRDY # is asserted if the write buffer is full. If the 
write buffer is not full READYO# is returned one 
clock after SRDY # or SBRDY # is asserted. 

All non cacheable write cycles and LOCK#ed writes 
are not buffered. In this case, the 82395DX will acti­
vate READYO# after getting the SRDY# for the 
non buffered cycle. 

The write buffer maintains the exact original order of 
appearance of the Local Bus requests. It allows no 
reordering and no bypassing of any sort. 

7.0 TESTABILITY FEATURES 

This chapter discusses the requirements for properly 
testing an 82395DX based system after power up 
and during normal system operation. 

7.1 SRAM Test Mode 

This mode is invoked by driving the FLUSH# pin 
active for less than four clocks during normal opera-

tion. SRAM test mode may only be invoked when 
the 82395DX is in idle state, namely there is no cycle 
in progress, and no cycle is pending in the 82395DX. 
The 82395DX exits this mode with subsequent acti­
vation of the FLUSH# pin for minimum of 1 clock 
cycle. If FLUSH# is activated for at least eight clock 
cycles during SRAM test mode, the 82395DX will 
FLUSH# its cacl<le directory in addition to terminat­
ing the SRAM test mode. 

SRAM test mode is provided for system diagnostics 
purposes. In this mode, the 82395DX cache and 
cache directory are treated as a standard SRAM. 
The 82395DXs in the system are mapped into ad­
dress space 256K-512K of the 386 DX Microproces­
sor memory space, and allows the CPU non-cache­
able, non-buffered access to the rest of the memory 
and address space. Each 82395DX occupies 32KB 
of address space: 16KB for the cache and 16KB 
(not fully utilized) for the TAGRAM. The 82395DX, in 
SRAM mode, will recognize 387 DX Math Coproces­
sor /Weitek 3167 Floating-Point Coprocessor cycles 
and Local Bus cycles and handle them the same as 
it does in its normal mode. This way, the CPU may 
execute code that tests the 82395DX as a regular 
memory component, with the only limitation that no 
code or data may reside in the memory space 256K-
512K during this mode. During SRAM test mode, all 
accesses to memory space other than 256K-512K 
are handled exactly as in normal mode with the fol­
lowing exceptions: 

1. All read cycles are non-cacheable - read hits are 
not serviced from the cache and read misses 
don't cause Line Fills. 

2. All write cycles are not buffered. 

3. All write cycles do not update the cache. 

4. Snooping is disabled. 

The local address pins indicate the 82395DX inter­
nal addresses. The partitioning is as follows: 

• A 16 = O selects the cache directory. A 16 = 1 se­
lect the cache. 

• A15-14 select the "way". 

• A 12 and A 13 select one 82395DX in a multi 
82395DX system. 

• A 11-A4 are the set !:!ddress. 

• A3-2 select a DW in the line. Applicable in cache 
accesses (A16= 1). 

5-530 



intJ 82395DX 

The user can write to any byte in any line in case of 
a cache write cycle and write to all the Tagram fields 
(25 bits) in one Way in one Tagram write cycle. The 
memory mapping of the SRAM mode is the de­
scribed in Table 7.1. 

As can be seen from table 7.1, the address space 
allocated for either Tagram or Cache is 4096 (4K) 
addresses per way, per 82395DX. The address allo­
cation within each 4K segment is shown in tables · 
7.2 and 7.3. 

The data presented on the 82395DX local data pins 
is the SRAM data input. The SRAM data output is 

also driven on the local data pins. The 8E(0-3)# 
pins indicate the bytes which must be written. During 
SRAM test mode, all the AC specifications are met. 
Figures 7.1 and 7.2 depict the SRAM mode read and 
write cycles respectively. Note that two wait states 
are inserted during SRAM test mode read cycles 
and one wait state is inserted in write cycles. The 
system may extend the number of wait states by 
gating READYO# for any number of clock cycles (1 
clock cycle in Figure 7.1, O clock cycles in .Figure 
7.2). 

The user can write to any byte in any line in case of 
a cache write cycle and write to all the Tagram fields 
(25 bits) in one way in one Tagram write cycle. The 
memory mapping of the SRAM test mode described 
in table 7.1. 

Table 7.1 - SAAM Memory Map 

Cache/Tagram Way 82395DX Start Address 

Cache 3 4 0005FOOO h 
Cache 3 3 0005EOOO h 
Cache 3 2 00050000 h 
Cache 3 1 0005COOO h 

Cache 2 4 00058000 h 
Cache 2 3 0005AOOO h 
Cache 2 2 00059000 h 
Cache 2 1 00058000 h 

Cache 1 4 00057000 h 
Cache 1 3 00056000 h 
Cache 1 2 00055000 h 
Cache 1 1 00054000 h 

Cache 0 4 00053000 h 
Cache 0 3 00052000 h 
Cache 0 2 00051000 h 
Cache 0 1 00050000 h 

Tagram 3 4 0004FOOO h 
Tagram 3 3 0004EOOOh 
Tagram 3 2 0004D000h 
Tagram 3 1 0004COOO h 

Tagram 2 4 00048000 h 
Tagram 2 3 0004AOOO h 
Tagram 2 2 00049000 h 
Tagram 2 1 00048000 h 

Tagram 1 4 00047000 h 
Tagram 1 3 00046000 h 
Tagram 1 2 00045000 h 
Tagram 1 1 00044000 h 

Tagram 0 4 00043000 h 
Tagram 0 3 00042000 h 
Tagram 0 2 00041000 h 
Tagram 0 1 00040000 h 

5-531 

I 



intef 82395DX 

As can be seen from Tables 7.2 and 7.3, the ad­
dress space allocated for either Tagram or Cache is 
4096 (4K) addresses per way, per 82395DX. The 
address allocation within each 4K segment is shown 
in table 7.2 for the Cache and table 7.3 for the Ta­
gram. 

Table 7.2 ·Cache Address Allocation 

SET ow Start Address 

255 3 FFCh 
255 2 FF8 h 
255 1 FF4h 
255 0 FFO h 

1 3 01Ch 
1 2 018 h 
1 1 014 h 
1 0 010 h 

0 3 OOCh 
0 2 008 h 
0 1 004 h 
0 0 000 h 

Table 7.3 • TAGRAM Address Allocation 

SET Start Address 

255 FFCh 
255 FF8h 
255 FF4h 
255 FFOh 

1 01C h 
1 018 h 
1 014 h 
1 010 h 

0 OOCh 
0 008 h 
0 004 h 
0 000 h 

Double Word format in Tagram read/write: 
31 25 24 22 21 20 1 0 

lo o o o o o ol LAU H TAG I wPI 
V = TAG Valid bit 
WP = Write Protect bit 
"O" = Indicates don't care bits. Writing to these bits will 
have no effect. When reading the Tagram these bits will 
have a value of 0. 

NOTE: 
In Tagram accesses, BEO#-BE3# are ignored in 
both read and write cycles. 

The data presented on the 82395DX DO-D31 pins is 
the SAAM data input for write cycles and is also the 
SAAM data output for read cycles during the SAAM 
test mode. The BE3#-BEO# pins indicate the bytes 
which will be written to. During SAAM test mode all 
the AC specifications are met. Figures 7.1 and 7.2 
depict the SAAM test mode read and write cycles 
respectively. The system may extend the number of 
wait states by gating READYO# for any number of 
clock cycles (one clock cycle in Figure 7.1, zero in 
Figure 7.2). 

T1 T2 T2 T2 T2 T1 

CLK 

ADS# 

W/R# 

A(2-31) 

D(0-31) 

READYO# 

READYI# 

290382-43 

Figure 7.1 ·SAAM Mode Read Cycle 

T1 T2 T2 T1 T2 

CLK 

ADS# 

W/R# 

A(2-31) 

D(0-31) 

READYO# 

290382-44 

Figure 7.2 ·SAAM Mode Write Cycle 

5-532 



82395DX 

7.2 Tristate Output Test Mode 

The 82395DX provides the option of isolating itself 
from other devices on the board for system debug­
ging, by floating all it's outputs. Output tristate mode 
is invoked by driving the SAHOLD and FLUSH# 

CLK2 

RESET 

SAHOLD 

FLUSH# 

pins active during RESET. The 82395DX will remain 
in this mode after RESET is deactivated, if SAHOLD 
and FLUSH# pins are sampled active in the CLK2 
prior to RESET going low (See Figure 7.3). The 
82395DX exits this mode with the next activation of 
RESET with SAHOLD or FLUSH# driven inactive. 

i----+---1---.i.----1- float 
OUTPUTS 

290382-45 

Figure 7.3 ·Entering the Tristate Test Mode 

5-533 

I 



82395DX 

8.0 MECHANICAL DATA 

8.1 Introduction 

This chapter discusses the physical package and its 
connections. 

8.2 Pin Assignment 

The 82395DX pinout as viewed from the top side of 
the component is shown in figure 0.1. Vee and Vss 
connections must be made to multiple V cc and V ss 
(GND) planes. Each Vee and Vss pin must be con­
nected to the appropriate voltage level. The circuit 
board must contain Vee and Vss (GND) planes for 
power distribution and all Vee and Vss pins must be 
connected to the appropriate planes. 

8.3 Package Dimensions and 
Mounting 

The 82395DX package is a 196 lead plastic quad flat 
pack (PQFP). For information on dimensions refer to 
Table 8.1 and Figures 8.1-8.3. 

8.4 Package Thermal Specification 

The 82395DX is specified for operation when the 
case temperature is within. the range of 0-85 ~C. 
The case temperature may be measured in any envi­
ronment, to determine whether the 82395DX is with­
in the specified operating range. The case tempera­
ture must be measured at the center of the top sur­
face opposite the pins. 

196 Pin PQFP Package Key Attributes: 

Electrical: 
L 6-20 nH (lead) 
L 3-6 nH (VcclVss> 
c <2.3 pF (Loading) 
c <1.6 pF (Id/Id) 
c 130-200 nH CVcclVss> 

Thermal: 
0ja 24 ·c1w ®2W 
0jc 5 ·c1w ®2W 

Lead Stiffness: 
In-Plane 17 gm/mil 
Transverse 18 gm/mil 

Thermal characterization of the 196 lead PQFP 
package yielded the information contained in Fig­
ures 8.4-8.6. 

5-534 



82395DX 

l~I "'"®le I•®- •®lo®I 
' 111'"3 

~-~~~\JlllllDIDllllllllllllllllllllllllllllllllllllDIVJ~ 

0 0 

290382-56 

NOTES: 
1. Interpret dimensions and tolerances in accordance with ANSI Y14.5M-1982. 

I 
2. Data enclosed in parentheses is for reference only. 

Figure 8. 1 - Principal Dimensions and Data 

5-535 



intef 

+ 

R g:g~~ 
6.5° 
3.5° 

82395DX 

R 0.011 
0.005 

·--r-(0.006) l 

1 

0.026 
0.020 

(0.095) 

lm 

2X 0.024 
0.016 

0.009 
0.016 

l-$-I 0.001 ©I c I A@- e® I o@j 

__ill 

0.009 --11-
0.012 

---+t----t--(0.058) l-$-I o.oo5@jcj A@- e@jo®j 

VIEW A-A DETAIL 8 
290382-57 

Figure 8.2 • Typical Lead 

Table 8.1 ~ Symbol List and Dimensions for 
196 Lead Plastic Quad Flat Pack Package 

Symbol Description of Dimensions Min Max 

A Package Height: Distance 0.160 0.175 
from the seating plane to 
the highest point of body. 

A1 Standoff: The distance 0.020 0.035 
'--+--"-- 2° ANGLE ON from the seating plane to 

DETAIL C 

3 SURFACE or THE 
BUMPER BOTTOM HALF 

290382-58 

Figure 8.3 • Detail C 

the base plane. 

D,E Overall Package 1.470 1.485 
Dimension: Lead tip to lead 
tip. 

01, E1 Plastic Body Dimension 1.347 1.353 

D2,E2 Bumper Distance 
Without FLASH 1.497 1.503 
With FLASH 1.497 1.510 

CP Seating Plane Coplanarity 0.000 0.004 

NOTES: 
1. All dimensions and tolerances conform to ANSI 
Y14.5M-1982. 
2. Dimensions are in inches. 
3. Data enclosed in parenthesis is for reference only. 

5-536 



intef 82395DX 

40 

36 

32 

28 
Bja 

(C/w) 
24 

20 

16 

12 
0 2 3 

Power {Watts) 

Figure 8.4 - Junction to Ambient Thermal Resistance vs Power 

24 

20 

16 
Bjc 

{C/W)12 
12 

8 

4 

0 ~~~~~~~~~~~~~~~~~~~~ 
0 2 3 4 

Power {Watts) 

Figure 8.5 - Junction to Case Thermal Resistance vs Power 

5-537 

290382-46 

I 

290382-47 



intJ 82395DX 

28 

24 

20 

16 

Bjo 
(C/W) 

12 

8 

4 

0 
0 200 400 600 800 1000 

Air Flow Rote (LfM) 
290382-48 

Figure 8.6 - Junction to Ambient Thermal Resistance vs Air Flow Rate 

9.0 ELECTRICAL DATA 

This chapter presents the A.C. and D.C. specifica­
tions for the 82395DX. 

9.1 Power and Grounding 

The 82395DX has a high clock frequency and 108 
output buffers which can cause power surges as 
multiple output buffers drive new signal levels simul­
taneously. For clean on-chip power distribution at 
high frequency, 15 V cc and 17 V ss pins separately 
feed power to the functional units of the 82395DX. 

Power and ground connections must be made to all 
external V cc and V ss pins of the 82395DX. On the 
circuit board, all V cc pins must be connected on a 
V cc plane and all V ss pins must be connected on a 
GND plane. 

9.1.1 POWER DECOUPLING 
RECOMMENDATIONS 

Liberal decoupling capacitors must be placed near 
the 82395DX. The 82395DX driving it's 32 bit data 
buses and 30 bit system address bus at high fre­
quency can cause transient power surges, particu­
larly when driving large capacitive loads. Low indµc­
tance capacitors and interconnects are recommend­
ed for the best high frequency electrical perform­
ance. Inductance can be reduced by shortening cir­
cuit board traces between the 82395DX and the de­
coupling capacitors as much as possible. 

9.1.2 RESISTOR RECOMMENDATIONS 

The 82395DX does not have any internal pullup re­
sistors. All unused inputs must be tied externally to a 
solid logic level. The outputs that require external 
pullup resistors are listed in table 9.1. A particular 
designer may have reason to adjust the resistor val­
ues recommended here, or alter the use of pull-up 
resistors in other ways. 

5-538 



intJ 82395DX 

9.2 Absolute Maximum Ratings 

Storage Temperature ........... - 65 ° C to 150 ° C 

Case Temperature 
under Bias .................. -65 ° C to 11 O ° C 

Supply voltage with 
Respect to Vss ................. -0.5V to 6.5V 

Voltage on Other Pins ....... -0.5V to Vee + 0.5V 

NOTICE: This data sheet contains information on 
products in the sampling and initial production phases 
of development. The specifications are subject to 
change without notice. 

•WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

Table 9.1 - Pullup Resistor Recommendations 

Signal Pullup Value Purpose 

READYO# 20KOhms Lightly pull READYO # inactive in multi-82395DX systems. Allows the selected 
±10% 82395DX to drive READYO# while it is inactive for the others. 

SADS# 20K0hms Lightly pull SADS# inactive in multi-82395DX systems. Allows the selected 82395DX 
±10% to drive SADS # while it is inactive for the others. 

SLOCK# 20K0hms Lightly pull SLOCK # inactive for 82395DX SHOLD states. 
±10% 

9.3 DC SPECIFICATIONS Tease = o·c to + 85°C, Vee = 5V ± 5% 

Table 9.2 - DC Specifications 

Limits Test Symbol Parameter 
Min Max 

Units Conditions 

VIL Input Low Voltage -0.3 0.8 v 
VIH Input High Voltage 2.0 Vcc+0.3 v 
VCIL CMOS Input Low -0-.3 0.8 v See Note6 

VCIH CMOS Input High Vcc-0.8 Vcc+0.3 v See Note6 

VOL Output Low Voltage 0.45 v See Note 1 

VOH Output High Voltage 2.4 v See Note2 

VCOL CMOS Output Low Voltage 0.45 v See Notes 1,7 

VCOH CMOS Output High Voltage Vcc-0.45 v See Notes 2, 7 

Ill Input Leakage ±15 uA OV<Vin<Vcc 

ILO Output Leakage ±15 uA 0.45V<Vout<Vcc 

Gin Cap. Input 10 pF See Note4 

ICC Power Supply Cur See Note3 

33MHz 550 mA 

25MHz 470 mA 

20MHz 430 mA 

NOTES: 
1. This parameter is measured at IOL = 4mA for all the outputs. 
2. This parameter is measured at IOH = 1 mA for all the outputs. 
3. Measured with inputs driven to CMOS levels, Vee = 5.25 V, TA = o•c, using a typical pattern consisting of 33% read, 
write and idle cycles. 
4. CLK2 input capacitance is 20pF. 
5. No activity on the Local/System Bus. 
6. Applies to CLK2, READYO# inputs. 
7. Applies to READYO# output. 

5-539 



intef 82395DX 

9.4 AC Characteristics 

Some of the 82395DX AC parameters are clock-fre­
quency dependent. Thus, while the part ·functions 
properly at the entire frequency range specified by 
the t1 spec, the AC parameters are guaranteed at 
three distinct frequencies only: 20MHz, 25MHz and 
33MHz. t:Jote that, for example, when a 33MHz part 
operates at 25Mhz CLK frequency, the AC parame­
ters under "25MHz" column must be used. 

• Functional operating range: VCC = 5V ± 5%, 
Tease = o·c to + 85°C. 

• All AC parameters are measured relative to 1.5V 
for falling and rising, CLK2 is at 2V. 

• All outputs tested at a 50pF load. In case of over­
loaded signals, the derating factor is 1 ns for ev­
ery extra 25pF load. 

• All parameters are referred to PHl1 unless other­
wise noted. 

• The reference Figure of CLK2 parameters and 
AC measurements level is Figure 9.1 and RESET 

four 82395DXs to extend the cache size. to 64KB, 
some timing adjustments must be made due to the 
increased capacitive load on the signal traces. The 
capacitive derating curve (see Figure 9.6) must be 
used to accurately determine the impact on AC tim­
ings. 

and internal phase is Figure 3.2. 3.ov 

9.4.1 TIMING CONSIDERATIONS FOR CACHE 
EXTENSIONS 

The values listed in Tables 9.3 and 9.4 for the AC 
parameters are valid for a design using one 
82395DX with its 16KB cache or two 823950Xs to 
extend the cache size to 32KB. For a design using 

5-540 

o.ov 

Legend: 
A - Maximum Output Delay 
B - Minimum Output Delay 
C • Minimum Input Setup Time 
D • Minimum Input Hold Time 

290382-50 

Figure 9.1 - Drive Levels and Measurement 
Points for AC Specifications 



intef 82395DX 

9.4.2 AC CHARACTERISTICS TABLES Tease = 0°C to 85°C, Vee = 5V ± 5% 

Table 9.3 - Local Bus Signal AC Parameters 

20MHz 25MHz 33MHz 
Symbol Parameter Units Notes 

Min Max Min Max Min Max 

t1 Operating Frequency 15.4 20 15.4 25 15.4 33 MHz Internal CLK 

t2 CLK2 Period 25 32.5 20 32.5 15 32.5 ns 

t3a CLK2 High Time 8 7 6.25 ns Measured at 2V 

t3b CLK2 High Time 5 5 4.5 ns Measured at 3.7V 

t4a CLK2 Low Time 8 7 6.25 ns Measured at 2V 

t4b CLK2 Low Time 6 5 4.5 ns Measured at O.BV 

t5 CLK2 Fall Time 7 7 4 ns Note 1 

t6 CLK2 Rise Time 7 7 4 ns Note 2 

t7a A2-A31 Setup Time 24 17 13 ns 

t7b LOCK# Setup Time 12 11 9 ns 

t7c BE0-3 # Setup Time 18 14 13 ns 

tB A2-A31, BE0-3#, LOCK# Hold Time 3 3 3 ns 

t9a M/10#, DIC#, W/R# Setup Time 20 17 13 ns 

t9b ADS# Setup Time 23 17 13.5 ns 

t10 M/10#, DIC#, W/R#, ADS# Hold Time 3 3 3 ns 

t11 READYI # Setup Time 12 9 7 ns 

t12 READY!# Hold Time 4 4 4 ns 

t13 LBA#, NPI# Setup Time 10 9 5.5 ns Note 7 

t14 RESET Setup Time 12 10 5 ns 

t15a LBA #, NPI # Hold Time 3 3 3 ns 

t15b RESET Hold Time 4 3 2 ns 

t16 D0-31 Setup Time 10 11 4 ns Note3 

t17 D0-31 Hold Time 2 2 2 ns Note3 

t18 D0-31 Valid Delay 3 38 3 32 3 24 ns 

t19 D0-31 Float Delay 25 20 17 ns Note 5 

t20 READYO# Valid Delay 4 32 4 25 4 17.5 ns 

t21 READYO# Float Delay 25 20 15 ns Notes 4,5 

t22 READYO# Setup Time 16 13 11 ns 

t23 READYO# Hold Time 4 4 4 ns 

t24a CONF # Setup Time 12 10 5 ns Note B 

t24b CONF # Setup Time 16 13 11 ns Note9 

t25a CONF # Hold Time 4 3 2 ns Notes 

t25b CONF# Hold Time 4 4 4 ns Note 9 

5-541 



intef 82395DX 

Table 9.4 - System Bus Signal AC Parameters 

20MHz 25MHz 33MHz 
Symbol Parameter Units Notes 

Min Max Min Max Min Max 

t31 SA2-31, SBE0-3#, SLQCK#, SD/C#, 3 28 3 21 3 15 ns 
SW/R#, SM/IQ# Valid Delay 

t32 SA2-31, SBE0-3#, SLOCK#, SD/C#, 3 30 3 30 3 20 ns Note 5 
SW/R#, SM/IQ# Float Delay 

t33 SBLAST#,SHLDA,SBREQ,SNENE# 3 28 3 22 3 20 ns 
Valid Delay 

t34 SBLAST #, SN ENE# Float Delay 3 30 3 25 3 20 ns Note5 

t35 SD0-31 Write Data Valid Delay 3 38 3 27 3 24 ns Note4 

t36 SD0-31 Float Delay 27 22 3 17 ns Notes 4,5 

t37 SA4-31 Setup Time 10 9 7 ns 

t38 SA4-31 Hold Time 3 3 3 ns 

t39 SD0-31 Read Setup Time 11 7 5 ns 

t40 SD0-31 Read Hold Time 3 3 3 ns 

t41 SNA # Setup Time 18 13 7 ns Note3 

t42 SNA # Hold Time 3 3 3 ns Note3 

t43a SKEN # Setup Time 17 12 6.5 ns 

t43b SHOLD, SAHOLD, SFHOLD# Setup Time 18 15 12 ns 

t43c SWP # Setup Time 17 12 10 ns 

t44 SHOLD, SKEN#, SWP#, SFHQLD#, 3 3 3 ns 
SAHOLD Hold Time 

t45a SEADS# Setup Time 14 11 7 ns 

t45b SRDY #, SBRDY # Setup Time 14 11 9 ns 

t46 SEADS#, SRDY#, SBRDY# Hold Time 4 4 4 ns 

t47 FLUSH#, A20M # Setup Time 18 13 8 ns Note6 

t48 FLUSH#, A20M # Hold Time 3 3 3 ns Note6 

t49 SADS# Valid Delay 3 28 3 22 3 16 ns 

t50 SADS# Float Delay 25 20 15 ns Notes4,5 

NOTES: 
1. Tf is Measured at 3.7V to 0.8V. Tf is not 100% tested. 
2. Tr is Measured at o.av to 3.7V. Tr is not 100% tested. 
3. The specification is relative to PHl2 i.e. signal sampled by PHl2. 
4. The specification is relative to PHl2 i.e. signal driven by PHl2. 
5. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
6. The signal is allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to 
assure recognition within a specific CLK2 period. 
7. The signal is not sampled. It must be valid through the entire cycle (as the Address lines). 
8. When tested as the second 82395DX. 
9. When tested as the third 82395DX. 

5-542 



intef 82395DX 

CLK2 

A2-A31, 
LOCK#, 
BE0-3# 

W/R#, 
D/C#, 
M/10# 

ADS# 

READY!# 

LBA#, 
NPI# 

RESET 

DO-D31 

READYO# 

CONF# 

FLUSH#, 
A20'M# 

PHI 1 PHI 2 PHI 1 PHI 2 PHI 1 PHI 2 

290362-51 

Figure 9.2 - AC Timing Waveforms - Local Bus 
Input Setup and Hold Timing 

5-543 

CLK2 

SA2-31 

SD0-31 

SNA# 

SKEN# 

SWP# 

SHOLD, 
SAHOLD, 
SFHOLD# 

SEADS# 

SRDY#, 
SBRDY# 

290362-52 

Figure 9.3 - AC Timing Waveforms - System Bus 
Input Setup and Hold Timing 



intJ 

CLK2 

00-31 

REAOYO# 

SAE-31, SBE0-3#, 
SLOCK#, SW/R#, 
SO/C#, SM/10# 

S00-31 

SAOS# 

SBLAST#, SHLOA, 
SBREQ,SNENE# 

82395DX 

290382-53 

Figure 9.4 - AC Timing Waveforms - Output Valid Delay 

CLK2 

00-31 

REAOYO# 

SA3-31,SBE0-3#, 
SLOCK#,SO/C# 
SM/10#, SW/R# 

S00-31 

SAOS# 

SBLAST#, 
SN ENE# 

High Z ----T----- ----1---

t20 
I 

Hl9h Z min 1 

-----1----- --------
\31 

' Hl9h Z min 
-----T----- ----9---

136 max 

min 

max 

1 tSO max 

~-~~~----~~~h_~--- --------

t34 IMOX 

min 1 

' 

High Z -----+-----

' •max 

Figure 9.5 - AC Timing Waveforms • Output Float Delays 

5-544 

290382-55 



intef 

~ ., 
5 
>. 
.2 ., 
0 

32 
~ -::J .e-
::J 
0 

82395DX 

nom+4 

nom+3 

nom+2 

nom+1 

nom 

50 75 100 125 150 

CL Picofarads 

Figure 9.6 - Typical Output Valid Delay vs Load Capacitance 
at Maximum Operating Temperature (CL = 50pF) 

5.545 

290382-54 

El 



intef 82395DX 

APPENDIX A 

Term Definition Term Definition 
AC Alternating Current RAM Random Access Memory 
ALF Aborted Line Fill SB System Bus 
CDF Cache Directory FLUSH TV Tag Valid 
COL Cache Directory Lookup WP Write Protect 
CDS Cache Directory SNOOP xxK xx thousand 
CDT Testability Access xxKB xx K Bytes 
CDU Cache Directory Update xxGB xx Giga Bytes 
CR Cache Read xWS xx Wait States 
cw Cache Write T1 Local Bus State 
cu Cache Update T2 Local Bus State 
CT Testability Access Tl Local Bus State 
CPU Central Processing Unit TH Local Bus State 
CH MOS Complimentary High Performance ST1 System Bus State 

Metal Oxide Semiconductor ST1P System Bus State 
CRDH Cache Read Hit ST2 System Bus State 
CROM Cache Read Miss ST2P System Bus State 
CWTH Cache Write Hit STI System Bus State 
DC Direct Current STH System Bus State 
DRAM Dynamic Random Access Memory PHl1 1st CLK2 cycle in a 2 CLK2 CLK cycle 
OMA Direct Memory Access PHl2 2nd CLK2 cycle in a 2 CLK2 CLK cycle 
OW Double Word c Celsius 
GND Ground v Volts 
1/0 Input/Output µA 10-6 Amps 
LB Local Bus mA 10-3 Amps 
LBA Local Bus Access pF 10-12 Farads 
LAU Least Recently Used MHz 106 Hertz 
PQFP Plastic Quad Flat Pack ns 10-s seconds 

5-546 



• 

• 
• 

• 

82385 
HIGH PERFORMANCE 

32-BIT CACHE CONTROLLER 
Improves 386™ DX System • Synchronous Dual Bus Architecture 
Performance - Bus Watching Maintains Cache 
- Reduces Average CPU Wait States to Coherency 

Nearly Zero • Maps Full 386 DX Address Space 
- Zero Wait State Read Hit (4 Gigabytes) 
- Zero Wait State Posted Memory 

Writes • Flexible Cache Mapping Policies 
- Allows Other Masters to Access the - Direct Mapped or 2-Way Set 

System Bus More Readily Associative Cache Organization 

Hit Rates up to 99% 
- Supports Non-Cacheable Memory 

Space 
Optimized as 386 DX Companion - Unified Cache for Code and Data 
- Simple 386 DX Interface • Integrates Cache Directory and Cache 
- Part of 386 DX-Based Compute Management Logic 

Engine Including 387™ DX Math 
Coprocessor and 82380 Integrated • High Speed CHMOS* IV Technology 
System Peripheral • 132-Pin PGA Package 

- 20 MHz, 25 MHz, and 33 MHz • 132-Lead Plastic Quad Flat Pack (PQFP) Operation 

Software Transparent 

The 82385 Cache Controller is a high performance 32-bit peripheral for the lntel386 Microprocessor. It stores 
a copy of frequently accessed code and data from main memory in a zero wait state local cache memory. The 
82385 enables the 386 DX to run at its full potential by reducing the average number of CPU wait states to 
nearly zero. The dual bus architecture of the 82385 allows other masters to access system resources while the 
386 DX operates locally out of its cache. In this situation, the 82385's "bus watching" mechanism preserves II 
cache coherency by monitoring the system bus address lines at no cost to system or local throughput. Iii 
The 82385 is completely software transparent, protecting the integrity of system software. High performance 
and board savings are achieved because the 82385 integrates a cache directory and all cache management 
logic on one chip. 

82385 LOCAL 
BUS CONTROL 

BUS 
ARBITRATION 

386 TM DX LOCAL 
BUS CONTROL 
386 DX LOCAL 
BUS DECODES 

...... ....-
..... 
....-

..... 

....-

..... -,. 82385 l...t LOCAL BUS ...... INTERFACE "" -,. 

...... 
-,.. PROCESSOR i...ol 
...... INTERFACE "" 
.JI" 

t 
82385 CONFIGURATION 

..... CACHE .. "' .... 
DIRECTORY 

VI 
__,:::> 
<"' 
Z--' o::o 
WO:: ,_ ,_ 
zz -o 

u 

""'' .... 
CACHE 

.... CONTROL 

82385 Internal Block Diagram 

*CHMOS is a patented process of Intel Corporation. 
lntel386™, 386™ DX, 387™ DX are trademarks of Intel Corporation. 

5-547 

..... 
....-
..... 
....-

..... 
.... 

386 DX 
ADDRESS BUS 

SNOOP BUS 

CACHE 
CONTROL BUS 

290143-1 

October 1990 
Order Number: 290143-006 



intef 82385 

CONTENTS PAGE 

1.0 82385 FUNCTIONAL OVERVIEW.................................................... 5-552 

1 .1 82385 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-552 

1.2 System Overview I: Bus Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-552 

1.2.1 386™DX Local Bus/82385 Local Bus/System Bus ......................... · 5-553 

1.2.2 Bus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-553 

1.2.3 Master/Slave Operation.................................................... 5-553 

1.2.4 Cache Coherency . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-554 

1.3 System Overview II: Basic Operation. . . . . .. .. . . . . . . . . . . . . . . . . .. . . . . . .. . .. . . . .. . . . . . 5-555 

1.3.1 386 DX Memory Code and Data Read Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-555 

1.3.1.1 Read Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-555 

1.3.1.2 Read Misses .................................................... , . . 5-555 

1.3.2 386 DX Memory Write Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-555 

1.3.3 Non-Cacheable Cycles . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-555 

1 .3.3.1 16-Bit Memory Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-556 

1.3.4 386 DX Local Bus Cycles ...... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-556 

1.3.5 Summary of 82385 Response to All 386 DX Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . 5-556 

1.3.6 Bus Watching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-558 

1.3. 7 Cache Flush.. . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . .. . . . . . . . . . . . . .. . . .. 5-558 

2.0 82385 CACHE ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-558 

2.1 Direct Mapped Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-558 

2.1.1 Direct Mapped Cache Structure and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-558 

2.1.2 Direct Mapped Cache Operation . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . 5-559 

2.1.2.1 Reac:f Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-559 

2.1.2.2 Read Misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-559 

2.1.2.3 Other Operations That Affect the Cache and Cache Directory. . . . . . . . 5-560 

2.2 Two Way Set Associative Cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . 5-560 

2.2.1 Two Way Set Associative Cache Structure and Terminology................. 5-560 

2.2.2 LAU Replacement Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-561 

2.2.3 Two Way Set Associative Cache Operation . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 5-561 

2.2.3.1 Read Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-561 

2.2.3.2 Read Misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-561 

2.2.3.3 Other Operations That Affect the Cache and Cache Directory. . . . . . . . 5-561 

3.0 82385 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-562 

3.1 386 DX CPU/82385 Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-562 

3.1.1 386 DX CPU/82385 Clock (CLK2) , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-562 

3.1.2 386 DX CPU/82385 Reset (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 5-562 

3.1.3 386 DX CPU/82385 Address Bus (A2-A31), Byte Enables (BEO#-BE3#) and 
Cycle Definition Signals (M/10#, D/C#,W/R#, LOCK#)................... 5-562 

3.1.4 386 DX CPU/82385 Address Status (ADS#) and Ready Input (READYI#)... 5-563 

3.1.5 386 DX Next Address Request (NA#) .................................. ; . . . . 5-563 

3.1.6 Ready Output (READ YO#) and Bus Ready Enable (BRDYEN #) . . . . . . . . . . . . 5-563 



intef 82385 

CONTENTS PAGE 

3.2 Cache Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-563 

3.2.1 Cache Address Latch Enable (GALEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-563 

3.2.2 Cache Transmit/Receive (CT /R #). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-563 

3.2.3 Cache Chip Selects (CSO #-CS3 #). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-563 

3.2.4 Cache Output Enables (COEA #, COEB #) and Write Enables 
(CWEA#, CWEB#)......................................................... 5-563 

3.3 386 DX Local Bus Decode Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-564 

3.3.1 386 DX Local Bus Access (LBA#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-564 

3.3.2 Non-Cacheable Access (NCA#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-564 

3.3.3 16-BitAccess(X16#) ....................................................... 5-564 

3.4 82385 Bus Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-564 

3.4.1 82385 Bus Byte Enables (BBEO#-BBE3#)................................. 5-564 

3.4.2 82385 Bus Lock (BLOCK#)................................................. 5-564 

3.4.3 82385 Bus Address Status (BADS#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-565 

3.4.4 82385 Bus Ready Input (BREADY#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-565 

3.4.5 82385 Bus Next Address Request (BNA#).................................. 5-565 

3.5 82385 Bus Data Transceiver and Address Latch Control Signals ......... , . . . . . . . . . 5-565 

3.5.1 Local Data Strobe (LDSTB), Data Output Enable (DOE#), and Bus 
Transmit/Receive (BT/A#)................................................. 5-565 

3.5.2 Bus Address Clock Pulse (BACP) and Bus Address Output Enable (BAOE #) . 5-565 

3.6 Status and Control Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-565 ft 
3.6.1 Cache Mis.s Indication (MISS#)............................................. 5-565 Iii 
3.6.2 Write Buffer Status (WBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-565 

3.6.3 Cache Flush (FLUSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-566 

3. 7 Bus Arbitration Signals (BHOLD and BHLDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-566 

3.8 Coherency (Bus Watching) Support Signals (SA2-SA31, SSTB#, SEN) . . . . . . . . . . . 5-566 

3.9 Configuration Inputs (2W/D#, M/S#, DEFOE#).................................. 5-566 

4.0 386 DX LOCAL BUS INTERFACE.................................................... 5-566 

4.1 Processor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-567 

4.1.1 Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-567 

4.1.2 Ready Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-569 

4.1 .3 NA# and 386 DX Local Bus Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-570 

4.1.4 LBA#, NCA#, arid X16# Generation ....................................... 5-571 

4.1 .5 82385 Handling of 16-Bit Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-572 

4.2 Cache Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-572 

4.2.1 Cache Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-572 

4.2.2 Cache Control ... Direct Mapped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-575 

4.2.3 Cache Control ... Two Way Set Associative................................. 5-577 

4.3 387™ DX Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-577 

5-549 



82385 

CONTENTS PAGE 

5.0 82385 LOCAL BUS AND SYSTEM INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·578 

5.1 The 82385 Bus State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-578 

5.1.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-578 

5.1.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-581 

5.2 The 82385 Local Bus. . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-582 

5.2.1 82385 Bus Counterparts to 386 DX Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-582 

5.2.1.1 Address Bus (BA2-BA31) and Cycle Definition Signals 
(BM/10#, BD/C#, BW/R#) .......................... , ............. , 5-582 

5.2.1.2 Data Bus (BDO-BD31) .. . . . . . . .. .. .. . .. .. . .. .. .. . .. .. .. .. .. . .. .. . . . 5-582 

5.2.1.3 Byte Enables (BBEO#-BBE3#) .................................... 5-583 

5.2.1 .4 Address Status (BADS#) . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 5-583 

5.2.1.5 Ready (BREADY#). . .. . .. .. .. .. .. .. . .. . . .. . . . . . . . . . . .. .. . . .. . . . . .. . 5-583 

5.2.1.6 Next Address (BNA#) .............................................. 5-583 

5.2.1. 7 Bus Lock (BLOCK#) . .. . .. .. .. .. . . .. . .. .. .. . . . .. .. . . .. .. .. .. .. .. . . . 5-583 

5.2.2 Additional 82385 Bus Signals ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-584 

5.2.2.1 Cache Read/Write Miss Indication (MISS#) ......................... 5-584 

5.2.2.2 Write Buffer Status (WBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-584 

5.2.2.3 Cache Flush (FLUSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-591 

5.3 Bus Watching (Snoop) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-591 

5.4 Reset Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-591 

6.0 SYSTEM DESIGN GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-594 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-594 

6.2 Power and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-594 

6.2.1 Power Connections.. .. . .. . .. .. . .. .. .. . . .. .. .. . .. . . . .. .. . .. .. . .. .. .. .. . . .. .. 5-594 

6.2.2 Power Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-594 

6.2.3 Resistor Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-595 

6.2.3.1 386 DX Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-595 

6.2.3.2 82385 Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-595 

6.3 82385 Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-595 

6.3.1 Configuration Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-595 

6.3.2 CLK2 and RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-596 

6.4 Unused Pin Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-596 

6.5 Cache SAAM Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-596 

6.5.1 Cache Memory without Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-596 

6.5.2 Cache Memory with Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-596 

5-550 



intef 82385 

CONTENTS PAGE 

7.0 SYSTEM TEST CONSIDERATIONS ................................................. . 5-597 

7.1 Introduction ..................................................................... . 5-597 

7.2 Main Memory (DRAM) Testing ................................................... . 5-597 

7 .2.1 Memory Testing Routine ................................................... . 5-597 

7.3 82385 Cache Memory Testing ................................................... . 5-597 

7.3.1 Test Routine in the NCA# or LBA# Memory Map .......................... . 5-597 

7.3.2 Test Routine in Cacheable Memory ........................................ . 5-598 

7.4 82385 Cache Directory Testing .................................................. . 5-598 

7.5 Special Function Pins ........................................................... . 5-598 

8.0 MECHANICAL DATA ............................................................... . 5-598 

8.1 Introduction ..................................................................... . 5-598 

8.2 Pin Assignment ................................................................. . 5-598 

8.3 Package Dimensions and Mounting .............................................. . 5-603 

8.4 Package Thermal Specification .................................................. . 5-603 

9.0 ELECTRICAL DATA ................................................................ . 5-608 

9.1 Introduction ..................................................................... . 5-608 

9.2 Maximum Ratings ... : ........................................................... . 5-608 

9.3 D.C. Specifications, ............................ · .................................. . 5-608 

9.4 A.C. Specifications ........... · ................................................... . 

9.4.1 Frequency Dependent Signals ........ '. .................................... . 

10.0 REVISION HISTORY ........................................................... , .. . 

5-609 

5-609 I 5-619 

5-551 



inter 82385 

1.0 82385 FUNCTIONAL OVERVIEW 

The 82385 Cache Controller is a high performance 
32-bit peripheral for the lntel386 microprocessor. 
This chapter provides ari overview of the 82385, and 
of the basic architecture and operation of an 386 DX 
CPU/82385 system. 

1.1 82385 OVERVIEW 

The main function of a cache memory system is to 
provide fast local storage for frequently accessed 
code and data. The cache system intercepts 386 DX 
memory references to see if the required data re­
sides in the cache. If the data resides in the cache (a 
hit), it is returned to the 386 DX'without incurring wait 
states. If the data is not cached (a miss), the refer­
ence is forwarded to the system and the data re­
trieved from main memory. An efficient cache will 
yield a high "hit rate" (the ratio of cache hits to total 
386 DX accesses), such that the majority of access­
es are serviced with zero wait states. The net effect 
is that· the wait states incurred in a relatively infre­
quent miss are averaged over a large number of ac­
cesses, resulting in an average of nearly zero wait 

3ss™'ox 

.... 
0 

~ I!: z <I 0 
0 

states per access. Since cache hits are serviced lo­
cally, a processor operating out of its local cache 
has a much lower "bus utilization" which reduces 
system bus bandwidth requirements, making more 
bandwidth available to other bus masters. 

The 82385 Cache Controller integrates a cache di­
rectory and all cache management logic required to 
support an external 32 Kbyte cache. The cache di­
rectory structure is such that the entire physical ad­
dress range of the 386 DX (4 Gigabytes) is mapped 
into the cache. Provision is made to allow areas of 
memory to be set aside as non-cacheable. The user 
has two cache organization options: direct mapped 
and 2-way set associative. Both provide the high hit 
rates necessary to make a large, relatively slow 
main memory array look like a fast; zero wait state 
memory to the 386 DX. 

1.2 SYSTEM OVERVIEW I: 
BUS STRUCTURE 

A good grasp of the bus structure of a 386 DX CPU/ 
82385 system is essential in understanding both the 
82385 and its role in an 386 DX system. The follow­
ing is a pescription of this structure. 

"' I l:l 
"' 

386 DX 
0 LOCAL BUS 0 
<( _l 

SYSTEM BUS 

SYSTEM 
MEMORY SYSTEM 1/0 

Figure 1-1. 386 DX System Bus Structure 

5-552 

290143-2 



intef 82385 

1.2.1 386 DX Local Bus/82385 Local 
Bus/System Bus 

Figure 1-1 depicts the bus structure of a typical 386 
DX system. The "386 DX Local Bus" consists of the 
physical 386 DX address, data, and control busses. 
The local address and data busses are buffered 
and/or latched to become the "system" address 
and data busses. The local control bus is decoded 
by bus control logic to generate the various system 
bus read and write commands. 

The addition of an 82385 Cache Controller causes a 
separation of the 386 DX bus into two distinct bus­
ses: the actual 386 DX local bus and the "82385 
Local Bus" (Figure 1-2). The 82385 local bus is de­
signed to look like the front end of an 386 DX by 
providing 82385 local bus equivalents to all appropri­
ate 386 DX signals. The system ties to this "386 DX­
like" front end just as it would to an actual 386 DX. 
The 386 DX simply sees a fast system bus, and the 
system sees a 386 DX front end with low bus band­
width requirements. The cache subsystem is trans­
parent to both. Note that the 82385 local bus is not 
simply a buffered version of the 386 DX bus, but 
rather is distinct from, and able to operate in parallel 
with the 386 DX bus. Other masters residing on ei­
ther the 82385 local bus or system bus are free to 
manage system resources while the 386 DX oper­
ates out of its cache. 

1.2.2 Bus Arbitration 

The 82385 presents the "386 DX-like" interface 
which is called the 82385 local bus. Whereas the 
386 DX provides a Hold Request/Hold Acknowl­
edge bus arbitration mechanism via its HOLD and 
HLDA pins, the 82385 provides an equivalent mech­
anism via its BHOLD and BHLDA pins. (These sig­
nals are described in Section 3.7.) When another 
master requests the 82385 local bus, it issues the 
request to the 82385 via BHOLD. Typically, at the 
end of the current 82385 local bus cycle, the 82385 
will release the 82385 local bus and acknowledge 
the request via BHLDA. The 386 DX is of course free 
to continue operating on the 386 DX local bus while 
another master owns the 82385 local bus. 

1.2.3 Master/Slave Operation 

The above 82385 local bus arbitration discussion is 
true when the 82385 is programmed for "Master" 
mode operation. The user can, however, configure 
the 82385 for "Slave" mode operation. (Program­
ming is done via a hardware strap option.) The roles 
of BHOLD and BHLDA are reversed for an 82385 in 
slave mode; BHOLD is now an output indicating a 
request to control the bus, and BHLDA is an input 
indicating that a request has been granted. An 
82385 programmed in slave mode drives the 82385 
local bus only when it has requested and subse- • 
quently been granted bus control. This allows multi-
ple 386 DX CPU/82385 subsystems to reside on the 
same 82385 local bus (Figure 1-3). 

386™ ox 

82385 
LOCAL BUS 

__J_ 

290143-3 

Figure 1-2. 386™ DX CPU/82385 System Bus Structure 

5-553 



intef 82385 

r-------~----------------•••••••••••••••r-~----------------------• 

82380 

SYSTEM BUS 

I 
I 
I 
I 
I 

290143-4 

Figure 1-3. Multi-Master/Multi-Cache Environment 

1.2.4 Cache Coherency 

Ideally, a cache contains a copy of the most heavily 
used portions of main memory. To maintain cache 
"coherency" is to make sure that this local copy is 
identical to main memory. In a system where multi­
ple masters can access the same memory, there is 
always a risk that one master will alter the contents 
of a memory location that is duplicated in the local 
cache of another master. (The cache is said to con­
tain "stale" data.) One rather restrictive solution is to 
not allow cache subsystems to cache shared memo­
ry. Another simple solution is to flush the cache any­
time another master writes to system memory. How­
ever, this can seriously degrade system perform­
ance as excessive cache flushing will reduce the hit 

SNOOP BUS -- _,, 
-SYSTEM ADDRESS BUS 
•WRITE CYCLE INDICATOR 

rate of what may otherwise be a highly efficient 
cache. 

The 82385 preserves cache coherency via "bus 
watching" (also called snooping), a technique that 
neither impacts performance nor restricts memory 
mapping. An 82385 that is not currently bus master 
monitors system bus cycles, and when a write cycle 
by another master is detected (a snoop), the system 
address is sampled and used to see if the refer­
enced location is duplicated in the cache. If so (a 
snoop hit), the corresponding cache entry is invali­
dated, which will force the 386 DX to fetch the up-to­
date data from main memory the next time it access­
es this modified location. Figure 1-4 depicts the gen­
eral form of bus watching. 

SYSTEM BUS 

290143-5 

Figure 1-4. 82385 Bus Watching-Monitor System Bus Write Cycles 

5-554 



intJ 82385 

1.3 SYSTEM OVERVIEW II: 
BASIC OPERATION 

This discussion is an overview of the basic operation 
of an 386 DX CPU/82385 system. Items discussed 
include the 82385's response to all 386 DX cycles, 
including interrupt acknowledges, halts, and shut­
downs. Also discussed are non-cacheable and local 
accesses. 

1.3.1 386 DX Memory Code and Data 
Read Cycles 

1.3.1.1 READ HITS 

When the 386 DX initiates a memory code or data 
read cycle, the 82385 compares the high order bits 
of the 386 DX address bus with the appropriate ad­
dresses (tags) stored in its on-chip directory. (The 
directory structure is described in Chapter 2.) If the 
82385 determines that the requested data is in the 
cache, it issues the appropriate control signals that 
direct the cache to drive the requested data onto the 
386 DX data bus, where it is read by the 386 DX. 
The 82385 terminates the 386 DX cycle without in­
serting any wait states. 

1.3.1.2 READ MISSES 

If the 82385 determines that the requested data is 
not .in the cache, the request is forwarded to the 
82385 local bus and the data retrieved from main 
memory. As the data returns from main memory, it is 
directed to the 386 DX and also written into the 
cache. Concurrently, the 82385 updates the cache 
directory such that the next time this particular piece 
of information is requested by the 386 DX, the 
82385 will find it in the cache and return it with zero 
wait states. 

The basic unit of transfer between main memory and 
cache memory in a cache subsystem is called the 
line size. In an 82385 system, thEI line size is one 32-
bit aligned doubleword. During a read miss, all four 
82385 local bus byte enables are active. This en­
sures that a full 32-bit entry is written into the cache. 
(The 386 DX simply ignores what it did not request.) 
In any other type of 386 DX cycle that is forwarded 
to the 82385 local bus, the logic levels of the 386 DX 
byte enables are duplicated on the 82385 local bus. 

The 82385 does not actively fetch main memory 
data independently of the 386 DX. The 82385 is es­
sentially a passive device which only monitors the 
address bus and activates control signals. The read 
miss is the only mechanism by which main memory 
data is copied into the cache and validated in the 
cache directory. 

In· an isolated read miss, the number of wait states 
seen by the 386 DX is that required by the system 
memory to respond with data plus the cache com­
parison cycle (hit/miss decision). The cache system 
must determine that the cycle is a miss before it can 
begin the system memory access. However, since 
misses most often occur consecutively, the 82385 
will begin 386 DX address pipelined cycles to effec­
tively "hide" the comparison cycle beyond the first 
miss (refer to Section 4.1.3). 

The 82385 can execute a main memory access on 
the 82385 local bus only if it currently owns the bus. 
If not, an 82385 in master mode will run the cycle 
after the current master releases the bus. An 82385 
in slave mode will issue a hold request, and will run 
the cycle as soon as the request is acknowledged. 
(This is true for any read or write cycle that needs to 
run on the 82385 local bus.) 

1.3.2 386 DX Memory Write Cycles 

The 82385's "posted write" capability allows the 
majority of 386 DX memory write cycles to run with 
zero wait states. The primary memory update policy 
implemented in a posted write is the traditional 
cache "write through" technique, which implies that 
main memory is always updated in any memory write 
cycle. If the referenced location also happens to re­
side in the cache (a write hit), the cache is updated 
as well. 

Beyond this, a posted write latches the 386 DX ad­
dress, data, and cycle definition signals, and the 386 
DX local bus cycle is terminated without any wait 
states, even though the corresponding 82385 local 
bus cycle is not yet completed, or perhaps not even 
started. A posted write is possible because the 
82385's bus state machine, which is almost identical 
to the 386 DX bus state machine, is able to run 
82385 local bus cycles independently of the 386 DX. 
The only time the 386 DX sees write cycle wait 
states is when a previously latched (posted) write 
has not yet been completed on the 82385 local bus 
or during an 1/0 write (which is not posted). A 386 
DX write can be posted even if the 82385 does not 
currently own the 82385 local bus. In this case, an 
82385 in master mode will run the cycle as soon as 
the current master releases the bus, and an 82385 
in slave mode will request the bus and run the cycle 
when the request is acknowledged. The 386 DX is 
free to continue operating out of its cache (on the 
386 DX local bus) during this time. 

1.3.3 Non-Cacheable Cycles 

Non-cacheable 'Cycles fall into one of two catego­
ries: cycles decoded as non-cacheable, and cycles 

I 



intef 82385 

that are by default non-cacheable according . to the 
82385's design. All non-cacheable cycles are for­
warded to the 82385 local bus. Non-cacheable cy­
cles have no effect on the cache or cache directory. 

The 82385 allows the system designer to define ar­
eas of main memory as non-cacheable. The 386 DX 
address bus is decoded and the decode output is 
connected to the 82385's non-cacheable access 
(NCA #) input. This decoding is done in the first 386 
DX bus state in which the non-cacheable cycle ad­
dress becomes available. Non-cacheable read cy­
cles resemble cacheable read miss cycles, except 
that the cache and cache directory are unaffected. 
NCA defined non-cacheable writes, like most writes, 

· are posted. 

The 82385 defines certain cycles as non-cacheable 
without using its non-cacheable access input. These 

· include 110 cycles, interrupt acknowledge cycles, 
and halt/shutdown cycles. 1/0 reads and interrupt 
acknowledge cycles execute as any other non­
cacheable read. 1/0 write cycles are not posted. The 
386 DX is not allowed to continue until a ready signal 
is returned from the system. Halt/Shutdown cycles 
are posted. During a halt/shutdown condition, the 
82385 local bus duplicates the behavior of the 386 
DX, including the abilitY to recognize and respond to 
a BHOLD request.· (The 82385's bus watching 
mechanism is functional. in this condition.) 

1.3.3.1 16-BIT MEMORY SPACE 

The 82385 does not cache .16-bit memory space (as 
decoded by the 386 DX 8516# input), but does 
make provisions to handle 16-bit space as non­
cacheable. (There is no 82385 equivalent to the 386 
DX 8$16# input.) In a system without an 82385, the 
386 DX 8516# input need not be asserted until the 
last state of a 16-bit cycle for the 386 DX to recog­
nize it as such (unless NA# is sampled active earlier 
in the cycle.) The 82385, however, needs this infor­
mation earlier, specifically at the end of the first 386 
DX bus state in which the address of the 16-bit cycle 
becomes available. The result is that in a system 
without an 82385, 16-bit devices can inform ttie 386 
DX that they are 16-bit devices "on the fly," while in 

a system with an 82385, devices decoded as 16-bit 
(using the 386 DX 8516#) must be located in ad­
dress space set aside for 16-bit devices. If 16-bit 
space is decoded according to 82385 guidelines (as 
described later in the data sheet), then the 82385 
will handle 16-bit cycles just like the 386 DX does, 
including effectively locking the two halves of a non­
aligned 16-bit transfer from interruption by another 
master. 

1.3.4 386 DX Local Bus.Cycles 

386 DX Local Bus Cycles are accesses to resources 
on the 386 DX local bus other than to the 82385 
itself. The 82385 simply ignores these accesses: 
they are neither forwarded to the system nor do they 
affect the cache. The designer sets aside memory 
and/or 1/0 space for local resources by decoding 
the 386 DX address bus and feeding the decode to 
the 82385's local bus access (LBA#) input. l:_he de­
signer can also decode the 386 DX cycle definition 
signals to keep specific 386 DX cycles from being 
forwarded to the system. For' example, a multi-proc­
essor design may wish to capture and remedy a 386 
DX shutdown locally without having it detected by 
the rest of the system. Note that in such a design, 
the local shutdown cycle must be terminated by lo­
cal bus control logic. The 387 Math Coprocessor is 
considered a 386 DX local bus resource, but it need 
not be decoded as such by the user since the 82385 
is able to internally recognize 387 accesses via the 
M/10# and A31 pins. 

1.3.5 Summary of 82385 Response to 
All 386 DX Cycles 

Table 1-1. summarizes the 82385 response to all 386 
DX bus cycles, as conditioned by whether or not the 
cycle is decoded as local or non-cacheable. The ta­
ble describes the impact of each cycle on the cache 
and on the cache directory, and whether or not the 
cycle is forwarded to the 82385 local bus. Whenever 
the 82385 local bus is marked "IDLE", it implies that 
this bus is available to other masters. 

5-556 



(J1 

c], 
(J1 
-.J 

Table 1-1. 82385 Response to 386 DX Cycles 

M/10# 

0 

0 

0 

0 

1 

1 

1 

1 

NOTES: 

386 DX Bus Cycle 
Definition 

DIC# W/R# 
386DX 
Cycle 

0 0 INT ACK 

0 1 UNDEFINED 

1 0 · l/OREAD 

1 1 l/OWRITE 

MEMCODE 
0 0 

READ 

0 1 
HALT/ 

SHUTDOWN 

MEM DATA 
1 0 

READ 

MEMDATA 
1 1 

WRITE 

Cache 

N/A -
NIA 

N/A -

N/A -

HIT 
CACHE 
READ 

MISS 
CACHE 
WRITE 

N/A -

HIT 
CACHE 
READ 

CACHE 
MISS 

WRITE 

HIT 
CACHE 
WRITE 

MISS -

82385 Response 
when Decoded 
as Cacheable 

Cache 82385 
Directory Local Bus 

- INT ACK 

UNDEFINED 

- 1/0 READ 

- l/OWRITE 

- IDLE 

DATA MEMCODE 
VALIDATION READ 

HALT/ -
SHUTDOWN 

- IDLE 

DATA MEM DATA 
VALIDATION READ 

MEM DATA -
WRITE 

MEMDATA -
WRITE 

Cache 

-

-
-

-

-

-

-

82385 Response 
when Decoded 

as Non-Cacheable 

Cache 82385 
Directory Local Bus 

- INT ACK 

UNDEFINED 

- l/OREAD 

- l/OWRITE 

MEM 
- CODE 

READ 

HALT/ -
SHUTDOWN 

MEM 
- DATA 

READ 

MEM 
- DATA 

WRITE 

• A dash (-) indicates that the cache and cache directory are unaffected. This table does not reflect how an access affects the LRU bit. 
• An "IDLE" 82385 Local Bus implies that this bus is available to other masters. 
• The 82385's response to 80387 accesses is the same as when decoded as an 386 DX Local Bus access. 
• The only other operations that affect the cache directory are: 

1. RESET or Cache Flush-all tag valid bits cleared. 
2. Snoop Hit-corresponding line valid bit cleared . 

• 

82385 Response when 
Decoded as an 386 DX 

Local Bus Access 

Cache 
Cache 82385 

Directory Local Bus 

- - IDLE 

IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

l 

co 
N 
(,) 
co 
C11 



intJ 82385 

1.3.6 Bus Watching 

As previously discussed, the 82385 "qualifies" an 
386 DX bus cycle in the first bus state in which the 
address and cycle definition signals of the cycle be­
come available. The cycle is qualified as read or 
write, cacheable or non-cacheable, etc. Cacheable 
cycles are further classified as hit or miss according 
to the results .of the cache comparison, which ac­
cesses the 82385 directory and compares. the ap­
propriate directory location (tag) to the current 386 
DX address. If the cycle turns out to be non-cache­
able or a 386 DX local bus access, the hit/miss deci­
sion is ignored. The cycle qualification requires one 
386 DX state. Since the fastest 386 DX access is 
two states, the second state can be used. for bus 
watching. 

When the 82385 does not own the system bus, it 
monitors system bus cycles. If another master writes 
into main memory, the 82385 latches the system ad­
dress and executes a cache look-up to see if the 
altered main memory location resides in the cache. 
If so (a snoop hit), the cache entry is marked invalid 
in the cache directory. Since the directory is at most 
only being used every other state to qualify 386 DX 
accesses, snoop look-ups are interleaved between 
386 DX local bus look-ups. The cache directory is 
time multiplexed between the 386 DX address and 
the latched system address. The. result is that all 
snoops are caught and serviced without slowing 
down the 386 DX, even when running zero wait state 
hits on the 386 DX local bus. 

1.3.7 Cache Flush 

The 82385 offers a cache flush input. When activat­
ed, this signal causes the 82385 to invalidate all 
data which had previously been cached. Specifically, 

INTERNAL EXTERNAL 
CA.CHE DIRECTORY DATA CA.CHE 

all tag valid bits are cleared. (Refer to the 82385 
directory structure in Chapter, 2.) Therefore, the 
cache is empty and subsequent cycles are misses 
until the 386 DX begins repeating the new accesses 
(hits). The primary use of the FLUSH input is for di­
agnostics and multi-processor support. 

NOTE: 
The use of this pin as a coherency mechanism may 
impact software transparency. 

2.0 82385 CACHE ORGANIZATION 

The 82385 supports two cache organizations: a sim­
ple direct mapped organization and a slightly more 
complex, higher performance two way set associa­
tive organization. The choice is made by strapping 
an 82385 input (2W/D#) either high or low. This 
chapter describes the structure and operation of 
both organizations. 

2.1 DIRECT MAPPED CACHE 

2.1.1 Direct Mapped Cache Structure 
and Terminology 

Figure 2-1 depicts the relationship between the 
82385's internal cache directory, the external cac.he 
memory, and the 386 DX's 4 Gigabyte physical ad­
dress space. The 4 Gigabytes can conceptually be 
thought of as cache "pages" each being SK double­
words (32 Kbytes) deep. The page size matches the 
cache size. The cache can be further divided into 
1024 (0 thru 1023) sets of eight doublewords (8 x 32 
bits). Each 32-bit doubleword is called a "line." The 
unit of transfer between the main memory and 
cache is one line. 

e:;;;;;liilii! PAGE SIZE 

4 GIGABm:s MAIN MEMORY 

=32KB 
(BK DOUBLE 

WORDS) 

290143-6 

Figure 2-1. Direct Mapped Cache Organization 

5-558 



intef 82385 

Each block in the external cache has an associated 
26-bit entry in the 82385's internal cache directory. 
This entry has three components: a 17-bit "tag," a 
"tag valid" bit, and eight "line valid" bits. Tt:ie tag 
acts as a main memory page number (17 tag bits 
support 211 pages). For example, if line 9 of page 2 
currently resides in the cache, then a binary 2 is 
stored in the Set 1 tag field. (For any 82385 direct 
mapped cache page in main memory, Set O consists 
of lines 0-7, Set 1 consists of lines 8-15, etc. Line 9 
is shaded in Figure 2-1.) An important characteristic 
of a direct mapped cache is that line 9 of any page 
can only reside in line 9 of the cache. All identical 
page offsets map to a single cache location. 

The data in a cache set is considered valid or invalid 
depending on the status of its tag valid bit. If clear, 
the entire set is considered invalid. If true, an individ­
ual line within the set is considered valid or invalid 
depending on the status of its line valid bit. 

The 82385 sees the 386 DX address bus (A2-A31) 
as partitioned into three fields: a 17-bit "tag" field 
(A15-A31), a 10-bit "set-address" field (A5-A14), 
and a 3-bit "line select" field (A2-A4). (See Figure 
2-2.) The lower 13 address bits (A2-A14) also serve 
as the "cache address" which directly selects one 
of BK doublewords in the external cache. 

2.1.2 Direct Mapped Cache Operation 

The following is a description of the interaction be­
tween the 386 DX, cache, and cache directory. 

2.1.2.1 READ HITS 

When the 386 DX initiates a memory read cycle, the 
82385 uses the 10-bit set address to select one of 

1024 directory entries, and the 3-bit line select field 
to select one of eight line valid bits within the entry. 
The 13-bit cache address selects the corresponding 
doubleword in the cache. The B.2385 compares the 
17-bit tag field (A 15-A31 of the 386 DX access) with 
the tag stored in the selected directory entry. If the 
tag and upper address bits match, and if both the 
tag and appropriate line valid bits are set, the result 
is a hit, and the 82385 directs the cache to drive the 
selected doubleword onto the 386 DX data bus. A 
read hit does not alter the contents of the cache or 
directory. 

2.1.2.2 READ MISSES 

A read miss can occur in two ways. The first is 
known as a "line" miss, and occurs when the tag 
and upper address bits match and the tag valid bit is 
set, but the line valid bit is clear. The second is 
called a "tag" miss, and occurs when either the tag 
and upper address bits do not match, or the tag valid 
bit is clear. (The line valid bit is a "don't care" in a 
tag miss.) In both cases, the 82385 forwards the 386 
DX reference to the system, and as the returning 
data is fed to the 386 DX, it is written into the cache 
and validated in the cache directory. 

In a line miss, the incoming data is validated simply 
by setting the previously clear line valid bit. In a tag 
miss, the upper address bits overwrite the previously 
stored tag, the tag valid bit is set, the appropriate S 
line valid bit is set, and the other seven line valid bits 
are cleared. Subsequent tag hits with line misses will 
only set the appropriate line valid bit. (Any data as­
sociated with the previous tag is no longer consid-
ered resident in the cache.) 

CACHE ADDRESS r (1 OF BK DOUBLE WORDS) ~ 
A31 A15 A14 AS A4 A2 

~111111111111111111111111 

17-BIT TAG ~ SET ADDRESS A LINE) 
(1 OF z17 PAGES (1 OF 1024 SETS) SELECT 

( 1 OF 8 LINES) 

290143-7 

Figure 2-2. 386 DX Address Bus Bit Fields-Direct Mapped Organization 

5-559 



intef 82385 

2.1.2.3 OTHER OPERATIONS THAT AFFECT 
THE CACHE AND CACHE DIRECTORY 

The other operations that affect the cache and/or 
directory are write hits, snoop hits, cache flushes, 
and 82385 resets. In awrite hit, the cache is updat­
ed along with main memory, but the directory is un~ 
affected. In a snoop hit, the cache is unaffected, but 
the affected line is invalidated by clearing its line 
valid bit in the directory. Both an 82385 reset· and 
cache flush clear all tag valid bits. 

When an 386 DX CPU/82385 system "wakes up" 
upon reset, all tag valid bits are clear. At this point, a 
read miss is the only mechanism by which main 
memory data is copied into the cache and validated 
in the cache directory. Assume an early 386 DX 
code access seeks (for the first time) line 9 of page 
2. Since the tag valid bit is clear, the access is a tag 
miss, and the data is fetched from main memory. 
Upon return, the data is fed to the 386 DX and simul­
taneously written into line 9 ·of the cache. The set 
directory entry is updated to show this line as valid. 
Specifically, the tag and appropriate line valid bits 
are set, the remaining seven line valid bits cleared, 
and a binary 2 written into the tag. Since code is 
sequential in nature, the 386 DX will likely next want 
line 10 of page 2, then line 11, and so on. If the 386 
DX sequentially fetches the next six lines, these 
fetches will be line misses, and as each is fetched 
from main memory and written into the cache, its 
corresponding line valid bit is set. This is the basic 

BANK A 

flow of events that fills the cache with valid data. 
Only after a piece of data has been copied into the 
cache and validated can it be accessed in a zero 
wait state read hit. Also, a cache entry must have 
been validated before it can be subsequently altered 
by a write hit, or invalidated by a snoop hit. 

An extreme example of "thrashing" is if line 9 of 
page two is an instruction to jump to line 9 of page 
one, which is an instruction to jump back to line 9 of 
page two. Thrashing resl!lts from the direct mapped 
cache characteristic thaf all identical page offsets 
map to a single cache location. In this example, the 
page one access overwrites the cached page two 
data, and the page two access overwrites the cach­
ed page one data. As long as the code jumps back 
and forth the hit rate is zero. This is of course an 
extreme case. The effect of thrashing is that a direct 
mapped cache exhibits a slightly reduced overall hit 
rate as compared to a set associative cache of the 
same size. 

2.2 TWO WAY SET ASSOCIATIVE 
CACHE 

2.2.1 Two Way Set Associative Cache 
Structure and Terminology 

Figure 2-3 illustrates the relationship between the 
directory, cache, and 4 Gigabyte address space. 

BANK B 

l;;;;;;;;;;;;;jamj PAGE SIZE 

S~1 q~......., E3 qhm~-t;;;;;;.t-::t;;;;;;;t-t~~ 

=16KB 
(4K DOUBLE 

WORDS) 

' 
' 

' 
SETS11 ql-l _.... .............. 

INTERNAL 
CACHE DIRECTORY 

EXTERNAL 
DATA CACHE 

4 GIGABYTES MAIN MEMORY 

Figure 2-3. Two-Way Set Associative Cache Organization 

5-560 

290143-8 



intJ 82385 

Whereas the direct mapped cache is organized as 
one bank of BK doublewords, the two way set asso­
ciative cache is organized as two banks (A and B) of 
4K doublewords each. The page size is halved, and 
t~e number of pages doubled~ (Note the extra tag 
bit.) The cache now has 512 sets in each bank. (Two 
banks times 512 sets gives a total of 1024. The 
structure can be thought of as two half-sized direct 
mapped caches in parallel.) The performance ad­
vantage over a direct mapped cache is that all iden­
tical page offsets map to two cache locations in­
stead of one, reducing the potential for thrashing. 
The 82385's partitioning of the 386 DX address bus 
is depicted in Figure 2-4. 

2.2.2 LRU Replacement Algorithm 

The two way set associative directory has an addi­
tional feature: the "least recently used" or LAU bit. 
In the event of a read miss, either bank A or bank B 
will b~ updated with new data. The LAU bit flags the 
candidate for replacement. Statistically, of two 
blocks of data, the block most recently used is the 
block most likely to be needed again in the near 
future. By flagging the least recently used block, the 
82385 ensures that the cache block replaced is the 
least likely to have data needed by the CPU. 

2.2.3 Two Way Set Associative 
Cache Operation 

2.2.3.1 READ HITS 

When the 386 DX initiates a memory read cycle, the 
82385 uses the 9-bit set address to select one of 
512 sets. The two tags of this set are simultaneously 
compared with A14-A31, both tag valid bits 
checked, and both appropriate line valid bits 
checked. If either comparison produces a hit the 
corresponding cache bank is directed to driv~ the 
selected doubleword onto the 386 DX data bus. 
(Note that both banks will never concurrently cache 
the same main memory location.) If the requested 
data resides in bank A, the LAU bit is pointed toward 

A31 

8. If B produces the hit, the LAU bit is pointed 
toward A. 

2.2.3.2 READ MISSES 

As in direct mapped operation, a read miss can be 
either a line or tag miss. Let's start with a tag miss 
example. A~sume the 386 DX seeks line 9 of page 2, 
and that neither the A or B directory produces a tag 
match. Assume also, as indicated in Figure 2-3, that 
the LAU bit points to A. As the data returns from 
main memory, it is loaded into offset 9 of bank A. 
Concur;ently, this data is validated by updating the 
set 1 directory entry for bank A. Specifically, the up­
pe~ ad~r~ss bits overwrite the previous tag, the tag 
vahd bit 1s set, the appropriate line valid bit is set 
and the other seven line valid bits cleared. Since thi~ 
data is the most recently used, the LAU bit is turned 
toward B. No change to bank B occurs. 

If the next 386 DX request is line 10 of page two, the 
result will be a line miss. As the data returns from 
main memory, it will be written into offset 1 O of bank 
~ (tag ~itll!ne .miss in bank A), and the appropriate 
hne valid bit will be set. A line miss in one bank wiil 
cause the LAU bit to point to the other bank. In this 
example, however, the LAU bit has already been 
turned toward 8. 

2.2.3.3 OTHER OPERATIONS THAT AFFECT 
THE CACHE AND CACHE DIRECTORY 

Other operations that affect the cache and cache 
directory are write hits, snoop hits, cache flushes, 
and 82385 resets. A write hit updates the cache 
along with main memory. If directory A detects the 
hit, bank A is updated. If directory B detects the hit 
bank B is updated. If one bank is updated, the LAU 
bit is pointed toward the other. 

If a snoop hit invalidates an entry, for example, in 
cache bank A, the corresponding LAU bit is pointed 
towa~d A. This ensures that invalid data is the prime 
candidate .for replacement in a read miss. Finally, 
resets and flushes behave just as they do in a direct 
mapped cache, clearing all tag valid bits. 

CACHE ADDRESS 
~ (1 or 4K DOUBLE WORDS) l 

A14 A13 AS A4 A2 

~I 11111111111111111111 
18-BIT TAG ~SET ADDRESS ALINE) 

(1 or 218 PAyES) (1 or 512 SETS) SELECT 
( 1 or 8 LINES) 

290143-9 

Figure 2-4. 386 DX Address Bus Bit Fields-Two-Way Set Associative Organization 

5-561 

I 



82385 

3.0 82385 PIN DESCRIPTION 

The 82385 creates the 82385 local bus, which is a 
functional 386 DX interface. To facilitate under­
standing, 82385 local bus signals go by the same 
name as their 386 DX equivalents, except that they 
are preceded by the letter "B". The 82385 local bus 
equivalent to ADS# is BADS#, the eql,!ivalent to 
NA# is BNA#, etc. This convention applies to bus 
states as well.· For example, BT1 P is the 82385 local 
bus state equivalent to the 386 DX T1 P state. 

3.1 386 DX CPU/82385 .INTERFACE 
SIGNALS 

These signals form the direct interface between the 
386 DX and 82385. 

3.1.1 386 OX CPU/82385 Clock (CLK2) 

CLK2 proVides the fundamental timing for an 386 DX 
CPU/82385 system, and is driven by the same 
sourc~ that drives . the 386 DX CLK2 input. The 
82385, like the 386 DX, divides CLK2 by two to gen­
erate an internal "phase indication" clock. (See Fig­
ure 3-1.) The CLK2 period whose rising edge drives 
the internal clock low is called PHl1, and the CLK2 
period that drives the internal clock high is called 
PHl2. A PHl1-PHJ2 combination (in that order) is 

CLK2 

INTERNAL CLOCK 

known as a "T" state, and is the basis for 386 DX 
bus cycles. 

3.1.2 386 DX CPU/82385 Reset 
(RESET) 

This input resets the 82385, bringing it to an initial 
known state, and is driven by the same source that 
drives the 386 DX RESET input. A reset effectively 
flushes the cache by clearing all cache directory tag 
valid bits._The falling edge of RESET is synchronized 
to CLKf. and used by the 82385 to properly estab­
lish the phase of its internal clock. (See Figure 3-2.) 
Specifically, the second internal phase following the 
falling edge of RESET is PHl2. 

3.1.3 386 DX CPU/82385 Address Bus 
(A2-A31), Byte Enables 

· (BEO # .;..BE3 # ), and Cycle 
Definition Signals (M/10 #, 
D/C#, W/R#, LOCK#) 

The 82385 directly connects to .these 386 DX out­
puts. The 386 DX address bus is used ill the cache 
directory comparison to see if data referenced by 
386 DX resides in the cache, and the byte enables 
inform the 82385 as to which portions of the data 
bus are invplved in an 386 DX cycle. The cycle defi­
nition signals are decoded by the 82385 to deter" 
mine the type of cycle the 386 DX is executing. 

290143-10 

Figure 3-1. CLK2 and Internal Clock 

Figure 3·2. Reset/Internal Phase Relationship 
5-562 

290143-11 



intJ 82385 

3.1.4 386 DX CPU/82385 Address 
Status (ADS#) and Ready Input 
(READVI#) 

ADS#, a 386 DX output, tells the 82385 that new 
address and cycle definition information is available. 
READY!#, an input to both the 386 DX (via the 386 
DX READY# input pin) and 82385, indicates the 
completion of an 386 DX bus cycle. ADS# and 
READY!# are used to keep track of the 386 DX bus 
state. 

3.1.5 386 DX Next Address Request 
(NA#) 

This 82385 output controls 386 DX pipelining. It can 
be tied directly to the 386 DX NA# input, or it can be 
logically "AND"ed with other 386 DX local bus next 
address requests. 

3.1.6 Ready Output (READYO #) and 
Bus Ready Enable (BRDYEN #) 

The 82385 directly terminates all but two types of 
386 DX bus cycles with its READYO# output. 386 
DX local bus cycles must be terminated by the local 
device being accessed. This includes devices de­
coded using the 82385 LBA # signal and 80387 ac­
cesses. The other cycles not directly terminated by 
the 82385 are 82385 local bus reads, specifically 
cache read misses and non-cacheable reads. (Re­
call that the 82385 forwards and runs such cycles on 
the 82385 bus.) In these cycles the signal that termi­
nates the 82385 local bus access is BREADY#, 
which is gated through to the 386 DX local bus such 
that the 386 DX and 82385 local bus cycles are con­
currently terminated. BR DYEN# is used to gate the 
BREADY# signal to the 386 DX. 

3.2 CACHE CONTROL SIGNALS 

These 82385 outputs control the external 32 KB 
cache data memory. 

3.2.1 Cache Address Latch Enable 
(CA LEN) 

This signal controls the latch (typically an F or AS 
series 74373) that resides between the low order 
386 DX address bits and the cache SAAM address 
inputs. (The outputs of this latch are the "cache ad­
dress" described in the previous chapter.) When 
GALEN is high the latch is transparent. The falling 
edge of GALEN latches the current inputs which re­
main applied to the cache data memory until GALEN 
returns to an active high state. 

3.2.2 Cache Transmit/Receive 
(CT/R#) 

This signal defines the direction of an optional data 
transceiver (typically an F or AS series 7 4245) be­
tween the cache and 386 DX data bus. When high, 
the transceiver is pointed towards the 386 DX local 
data bus (the SRAMs are output enabled). When 
low, the transceiver points towards the cache data 
memory. A transceiver is required if the cache is de­
signed with SRAMs that lack an output enable con­
trol. A transceiver may also be desirable in a system 
that has a heavily loaded 386 DX local data bus. 
These devices are not necessary when using 
SRAMs which incorporate an output enable. 

3.2.3 Cache Chip Selects 
(CSO#-CS3#) 

These active low signals tie to the cache SAAM chip 
selects, and individually enable the four bytes of the 
32-bit wide cache. GSO# enables DO-D7, GS1 # 
enables D8-D15, GS2# enables D16-D23, and 
GS3# enables D24-D31. During read hits, all four 
bytes are enabled regardless of whether or not all 
four 386 DX byte enables are active. (The 386 DX 
ignores what it did not request.) Also, all four cache 
bytes are enabled in a read miss so as to update the 
cache with a complete line (double word). In a write 
hit, only those cache bytes that correspond to active El 
byte enables are selected. This prevents cache data 
from being corrupted in a partial doubleword write. 

3.2.4 Cache Output Enables 
(COEA #, COEB #) and Write 
Enables (CWEA #, CWEB #) 

GOEA# and GOEB# are active low signals which 
tie to the cache SAAM or Transceiver output en­
ables and respectively enable cache bank A or B. 
The state of DEFOE# (define cache output enable), 
an 82385 configuration input, determines the func­
tional definition of GOEA# and COEB#. 

If DEFOE# = v1L, in a two-way set associative 
cache, either GOEA# or GOEB# is active during 
read hit cycles only, depending on which bank is 
selected. In a direct mapped cache, both are activat­
ed during read hits, so the designer is free to use 
either one. This GOEx # definition best suites cache 
SRAMs with output enables. 

If DEFOE# = VtH· GOEx# is active during read hit, 
read miss (cache update) and write hit cycles only. 
This GOEx # definition suites cache SRAMs without 
output enables. In such systems, transceivers are 
needed and their output enables must be active for 
writing, as well as reading, the cache SRAMs. 

5-563 



intef 82385 

CWEA# and CWEB# are active low signals which 
tie to the cache SRAM write enables, and respec­
tively enable cache bank A or B to receive data from 
the 386 DX data bus (386 DX write hit or read miss 
update). In a two-way set associative cache, one or 
the other is enabled in a read miss or write hit. In a 
direct mapped cache, both are activated, so the de­
signer is free to use either one. 

The various cache configurations supported by the 
82385 are described in Chapter 4. 

3.3 386 DX LOCAL BUS DECODE 
INPUTS 

These 82385 inputs are generated by decoding the 
386 DX address and cycle definition lines. These ac­
tive low inputs are sampled at the end of the first 
state in which the address of a new 386 DX cycle 
becomes available (T1 or first T2P). 

3.3.1 386 DX Local Bus Access 
(LBA#) 

This input identifies an 386 DX access as directed to 
a resource (other than the cache) on the 386 DX 
local bus. (The 387 Numerics Coprocessor is con­
sidered a 386 DX local bus resource, but LBA# 
need not be generated as the 82385 internally de­
codes 387 accesses.) The 82385 simply ignores 
these cycles. They are neither forwarded to the sys­
tem nor do they affect the cache or cache directory. 
Note that LBA # has priority over all other types of 
cycles. If LBA # is asserted, the cycle is interpreted 
as an 386 DX local bus access, regardless of the 
cycle type or status of NGA# or X16 #. This allows 
any 386 DX cycle (memory, 1/0, interrupt acknowl­
edge, etc.) to be kept on the 386 local bus if desired. 

3.3.2 Non·Cacheable Access (NCA #) 

This active low input identifies a 386 DX cycle as 
non-cacheable. The 82385 forwards non-cacheable 
cycles to the 82385 local bus and runs them. The 
cache and cache directory are unaffected. 

NGA# allows a designer to set aside a portion of 
main memory as non-cacheable. Potential applica­
tions include memory-mapped 1/0 and systems 
where multiple masters access dual ported memory 
via different busses. Another possibility makes use 
of the 386 DX D/C# output. The 82385 by default 
implements a unified code and data cache, but driv­
ing NCA# directly by DIC# creates a data only 
cache. If DIC# is inverted first, the result is a code 
only cache. 

3.3.3 16-Bit Access (X16#) 

X16# is an active low input which identifies 16-bit 
memory and/or 1/0 space, and the decoded signal 
that drives X16# should also drive the 386 DX 
BS16# input. 16-bit accesses are treated like non­
cacheable accesses: they are forwarded to and exe­
cuted on the 82385 local bus with no impact on the 
cache or cache directory. In addition, the 82385 
locks the two halves of a non-aligned 16-bit transfer 
from interruption by another master, as does the 386 
DX. 

3.4 82385 LOCAL BUS INTERFACE 
SIGNALS 

The 82385 presents a "386 DX-like" front end to the 
system, and the signals discussed in this section are 
82385 local bus equivalents to actual 386 DX sig­
nals. These signals are named with respect to their 
386 DX counterparts, but with the letter "B" append­
ed to the front. 

Note that the 82385 itself does not have equivalent 
output signals to the 386 DX data bus (DO-D31 ), 
address bus (A2-A31), and cycle definition signals 
(M/10#, DIC#, W/R#). The 82385data bus (BDO­
BD31) is actually the system side of a latching trans­
ceiver, and the 82385 address bus and cycle defini­
tion signals (BA2-BA31, BM/10#, BD/C#, 
BW/R#) are the outputs of an edge-triggered latch. 
The signals that control this data transceiver and ad­
dress latch are discussed in Section 3.5. 

3.4. 1 82385 Bus Byte Enables 
(BBEO # -BBE3 #) 

BBEO#-BBE3# are the 82385 local bus equiva­
lents to the 386 DX byte enables. In a cache read 
miss, the 82385 drives all four signals low, regard­
less of whether or not all four 386 DX byte enables 
are active. This ensures that a complete line (dou­
bleword) is fetched from main memory for the cache 
update. In all other 82385 local bus cycles, the 
82385 duplicates the logic levels of the 386 DX byte 
enables. The 82385 tri-states these outputs when it 
is not the current bus master. 

3.4.2 82385 Bus Lock (BLOCK#) 

BLOCK# is the 82385 local bus equivalent to the 
386 DX LOCK# output, and distinguishes between 
locked and unlocked cycles. When the 386 DX runs 
a locked sequence of cycles (and LBA# is negated), 
the 82385 forwards and runs the sequence on the 
82385 local bus, regardless of whether any locations 

5-564 



infef 82385 

referenced in the sequence reside in the cache. A 
read hit will be run as if it is a read miss, but a write 
hit will update the cache as well as being completed 
to system memory. In keeping with 386 DX behavior, 
the 82385 does not allow another master to interrupt 
the sequence. BLOCK# is tri-stated when the 
82385 is not the current bus master. 

3.4.3 82385 Bus Address Status 
(BADS#) 

BADS# is the 82385 local bus equivalent of ADS#, 
and indicates that a valid address (BA2-BA31, 
BBEO#-BBE3#) and cycle definition (BM/10#, 
BW/R#, BD/C#) is available. It is asserted in BT1 
and BT2P states, and is tri-stated when the 82385 
does not own the bus. 

3.4.4 82385 Bus Ready Input 
(BREADY#) 

82385 local bus cycles are terminated by 
BREADY#, just as 386 DX cycles are terminated by 
the 386 DX READY# input. In 82385 local bus read 
cycles, BREADY# is gated by BRDYEN# onto the 
386 DX local bus, such that it terminates both the 
386 DX and 82385 local bus cycles. 

3.4.5 82385 Bus Next Address 
Request (BNA #) 

BNA# is the 82385 local bus equivalent to the 386 
DX NA# input, and indicates that the system is pre­
pared to accept a pipelined address and cycle defi­
nition. If BNA# is asserted and the new cycle infor­
mation is available, the 82385 begins a pipelined cy­
cle on the 82385 local bus. 

3.5 82385 BUS DATA TRANSCEIVER 
AND ADDRESS LATCH CONTROL 
SIGNALS 

The 82385 data bus is the system side of a latching 
transceiver (typically an For AS series 74646), and 
the 82385 address bus and cycle definition signals 
are the outputs of an edge-triggered latch (F or AS 
series 74374). The following is a discussion of the 
82385 outputs that control these devices. An impor­
tant characteristic of these signals and the devices 
they control is that they ensure that BDO-BD31, 
BA2-BA31, BM/10#, BD/y#, and BW/R# repro­
duce the functionality and timing behavior of their 
386 DX equivalents. 

3.5.1 Local Data Strobe (LDSTB), Data 
Output Enable (DOE#), and Bus 
Transmit/Receive (BT /R #) 

These signals control the latching data transceiver. 
BT /R # defines the transceiver direction. When 
high, the transceiver drives the 82385 data bus in 
write cycles. When low, the transceiver drives the 
386 DX data bus in 82385 local bus read cycles. 
DOE# enables the transceiver outputs. 

The rising edge of LDSTB latches the 386 DX data 
bus in all write cycles. The interaction of this signal 
and the latching transceiver is used to perform the 
82385's posted write capability. 

3.5.2 Bus Address Clock Pulse 
(BACP) and Bus Address 
Output Enable (BAOE #) 

These signals control the latch that drives BA2-
BA31; BM/10#, BW/R#, and BD/C#. In any 386 
DX cycle that is forwarded to the 82385 local bus, 
the rising edge of BACP latches the 386 DX address 
and cycle definition signals. BAOE # enables the 
latch outputs when the 82385 is the current bus 
master and disables them otherwise. 

3.6 STATUS AND CONTROL 
SIGNALS 

3.6.1 Cache Miss Indication (MISS#) 

This output accompanies cacheable read and write 
miss cycles. This signal transitions to its active low 
state when the 82385 determines that a cacheable 
386 DX access is a miss. Its timing behavior follows 
that of the 82385 local bus cycle definition signals 
(BM/IQ#, BD/C#, BW/R#) so that it becomes 
available with BADS# in BT1 or the first BT2P. 
MISS# is floated when the 82385 does not own the 
bus, such that multiple 82385's can share the same 
node in multi-cache systems. (As discussed in Chap­
ter 7, this signal also serves a reserved function in 
testing the 82385.) 

3.6.2 Write Buffer Status (WBS) 

The latching data transceiver is also known as the 
"posted write buffer." WBS indicates that this buffer 
contains data that has not yet been written to the 
system even though the 386 DX may have begun its 
next cycle. It is activated when 386 DX data is 
latched, and deactivated when the corresponding 

5-565 

I 



intef 82385 

82385 local bus write cycle is completed 
(BREADY#). (As discussed in Chapter 7, this signal 
also serves a reserved fµnction in testing the 
82385.) 

WBS can serve several functions. In multi-prc;>cessor 
applications, it can act as a coherency mechanism 
by informing a bus arbiter that it should let a write 
cycle run on the system bus so that main memory 
has the latest data. If any other 82385 cache sub­
systems are on the bus, they will monitor the cycle 
via their bus watching mechanisms. Any 82385 that 
detects a snoop hit will invalidate the corresponding 
entry in its local cache. 

3.6.3 Cache Flush {FLUSH) 

When activated, this signal causes the 82385 to 
clear all of its directory tag valid bits, effectively 
flushing the cache. (As discussed in Chapter 7, this 
signal also serves a reserved function in testing the 
82385.) The primary use of the FLUSH input is for 
diagnostics and multi-processor support. The use of 
this pin as a coherency mechanism may impact soft­
ware transparency. 

The FLUSH input must be held active for at least 4 
CLK (8 CLK2) cycles to complete the flush se­
quence. If FLUSH is still active after 4 CLK cycles, 
any accesses to the cache will be misses and the 
cache will not be updated (since FLUSH is active). 

3.7 BUS ARBITRATION SIGNALS 
{BHOLD AND BHLDA) 

In master mode, BHOLD is an input that indicates a 
request by a slave device for bus ownership. The 
82385 acknowledges this request via its BHLDA out­
put. (These signals function identically to the 386 DX 
HOLD and HLDA signals.) 

The roles of BHOLD and BHLDA are reversed for an 
82385 in slave mode. BHOLD is now an output indi­
cating a request for bus ownership, and BHLDA an 
input indicating that the request has been granted. 

3.8 COHERENCY {BUS WATCHING) 
SUPPORT SIGNALS {SA2-SA31, 
SSTB#, SEN) 

These signals form the 82385's bus watching inter­
face. The Snoop Address Bus (SA2-SA31) con­
nects to the system address lines if masters reside 
at both the system and 82385 local bus levels, or 
the 82385 local bus address lines if masters reside 
only at the 82385 local bus level. Snoop Strobe 
(SSTB #) indicates that a valid address is on the 

snoop address inputs. Snoop Enable (SEN) indi­
cates that the cycle is a write. In a system with mas­
ters only at the 82385 local bus level, SA2-SA31, 
SSTB #, and SEN can be driven respectively by 
BA2-BA31, BADS#, and BW/R# without any sup­
port circuitry. 

3.9 CONFIGURATION INPUTS 
{2W/D#, M/S#, DEFOE#) 

These signals select the configurations supported 
by the 82385. They are hardware strap options and 
must not be changed dynamically. 2W/D# (2-Way/ 
Direct Mapped Select) selects a two-way set asso­
ciative cache when tied high, or a direct mapped 
cache when tied low. M/S# (Master/Slave Select) 
chooses between master mode (M/S# high) and 
slave mode (M/S# low). DEFOE# defines the func­
tionality of the 82385 cache output enables 
(COEA# and COEB#). DEFOE# allows the 82385 
to interface to SRAMs with output enables 
(DEFOE# low) or to SRAMs requiring transceivers 
(DEFOE# high). 

4.0 386 DX LOCAL BUS INTERFACE 

The following is a detailed description of how the 
82385 interfaces to the 386 DX and to 386 DX local 
bus resources. Items specifically addressed are the 
interfaces to the 386 DX, the cache SRAMs, and the 
387 Numerics Coprocessor. 

The many timing diagrams in this and the next chap­
ter provide insight into the dual pipelined bus struc­
ture of a 386 DX CPU/82385 system. It's important 
to realize, however, that one need not know every 
possible cycle combination to use the 82385. The 
interface is simple, and the dual bus operation invisi­
ble to the 386 DX and system. To facilitate discus­
sion of the timing diagrams, several conventions 
have been adopted. Refer to Figure 4-2A, and note 
that 386 DX bus cycles, 386 DX bus states, and 
82385 bus states are identified along the top. All 
states can be identified by the "frame numbers" 
along the bottom. The cycles in Figure 4-2A include 
a cache read hit (CRDH), a cache read miss 
(CROM), and a write (WT). WT represents any write, 
cacheable or not. When necessary to distinguish 
cacheable writes, a write hit goes by CWTH and a 
write miss by CWTM. Non-cacheable system reads 
go by SBRD. Also, it is assumed that system bus 
pipelining occurs even though the BNA# signal is 
not shown. When the system pipeline begins is a 
function of the system bus controller. 

386 DX bus cycles can be tracked by ADS# and 
READY!#, and 82385 cycles by BADS# and 
BREADY#. These four signals are thus a natural 

5-566 



inter 82385 

choice to help track parallel bus activity. Note in the 
timing diagrams that 386 DX cycles are numbered 
using ADS# and READYI #, and 82385 cycles using 
BADS# and BREADY#. For example, when the ad­
dress of the first 386 DX cycle becomes available, 
the corresponding assertion of ADS# is marked 
"1 ",and the READY!# pulse that terminates the cy­
cle is marked "1" as well. Whenever a 386 DX cycle 
is forwarded to the system, its number is forwarded 
as well so that the corresponding 82385 bus cycle 
can be tracked by BADS# and BREADY#. 

The "N" value in the timing diagrams is the assumed 
number of main memory wait states inserted in a 
non-pipelined 82385 bus cycle. For example, a non­
pipelined access to N = 2 memory requires a total of 
four bus states, while a pipelined access requires 
three. (The pipeline advantage effectively hides one 
main memory wait state.) 

4.1 PROCESSOR INTERFACE 

This section presents the 386 DX CPU /82385 hard­
ware interface and discusses the interaction and 
timing of this interface. Also addressed is how to 
decode the 386 DX address bus to generate the 

82385 inputs LBA#, NCA#, and X16#. (Recall that 
LBA# allows memory and/or 1/0 space to be set 
aside for 386 DX local bus resources; NCA# allows 
system memory to be set aside as non-cacheable; 
and X16# allows system memory and/or 1/0 space 
to be reserved for 16-bit resources.) Finally, the 
82385's handling of 16-bit space is discussed. 

4.1.1 Hardware Interface 

Figure 4-1 is a diagram of an 386 DX CPU/82385 
system, which can be thought of as three distinct 
interfaces. The first is the 386 DX CPU/82385 inter­
face (including the Ready Logic). The second is the 
cache interface, as depicted by the cache control 
bus in the upper left corner of Figure 4-1. The third is 
the 82385 bus interface, which includes both direct 
connects and signals that control the 74374 ad­
dress/cycle definition latch and 74646 latching data 
transceiver. (The 82385 bus interface is the subject 
of the next chapter.) 

As seen in Figure 4-1, the 386 DX CPU/82385 inter­
face is a straightforward connection. The only nec­
essary support logic is that required to sum all ready 
sources. 

5-567 

El 



.,, 
~· 

.c 
al ,. 
::"'" 

i 
c 

U1 >< 
(n 0 
Ol ,, 
OD C 

O; 

i 
~ 
f 

TO 
CACHE 

+ + _l .. 

12 or 13 -- --

_L32 
-, 

CAL EN 82385 CLK2 

CT/R# RESET 
.1 4 

2 
CSO-CS3# ADS# 

_L 2 
COEA#, COEB# NA# 

-, CWEA#. CWEB# LOCK# 

M/10#, D/C#, W/R# 

8EO#~BE3# 

A2-A31 

BHOLO READYl# 

BHLOA READYO# 

WBS BROYEN# 

...,.. FLUSH BREADY# 

MISS# BACP 

BLOCK# BAOE# 

-"' BltA# LDSTB 

...-- BADS# DOE# 
,..... BBEO#- BBE3# BT/R# 

' 4 

.._ 

; 

I ' 
CLK2 386™ DX 

..... RESET 

ADS# 

NA# 

_L 3 
LOCK# 

4 
M/10#, D/C#, W/R# 

30 
BEO#-BE3# 

I.... A2-A31 
.... 32 

.... D0-031 

l 
READY# 

~ ...... 

~: 1---

I-
I- )~ I 

~) 
~ 

_..::r 

~CAB A !B+~CP 0 lhcP 0 
OE# OE# OE# 

'-+ DIR 4x646 4x374 374 f SBA CBA B Q Q 

_ 32 BDO-BD31 30 BA2-BA31 3 BM/10#, 
BD/C#, - BW/R# BREAD' 

82385 LOCAL BUS 

}
f"ROM 
OSC/RESET 
CIRCUIT 

ER 
OX LB 

DY 

290143-12 

l 

CD 
N 

I en 



intJ 82385 

4.1.2 Ready Generation 

Note in Figure 4· 1 that the ready logic consists of 
two gates. The upper three-input AND gate (shown 
as a negative logic OR) sums all 386 DX local bus 
ready sources. One such source is the 82385 
READYO# output, which terminates read hits and 
posted writes. The output of this gate drives the 386 
DX READY# input and is monitored by the 82385 
(via READY!#) to track the 386 DX bus state. 

When the 82385 forwards a 386 DX read cycle to 
the 82385 bus (cache read miss or non-cacheable 
read), it does not directly terminate the cycle via 
READYO#. Instead, the 386 DX and 82385 bus cy­
cles are concurrently terminated by a system ready 

CROM 

source. This is the purpose of the additional two-in­
put OR gate (negative logic AND) in Figure 4-1. 
When the 82385 forwards a read to the 82385 bus, it 
asserts BR DYEN# which enables the system ready 
signal (BREADY#) to directly terminate the 386 DX 
bus cycle. 

Figures 4-2A and 4-2B illustrate the behavior of the 
signals involved in ready generation. Note in cycle 1 
of Figure 4-2A that the 82385 READYO# directly 
terminates the hit cycle. In cycle 2, READYO# is not 
activated. Instead the 82385 BRDYEN# is activated 
in BT2, BT2P, or BT21 states such that BREADY# 
can concurrently terminate the 386 DX and 82385 
bus cycles (frame 6). Cycle 3 is a posted write. The 
write data becomes available in T1 P (frame 7), and 

WT 386 TM DX CYCLE I CRDH 

386 DX BUS STATE T1 I T2 
82385 BUS STATE BTI BTI 

T1 
BTI 

T2 I T2P 
BT1 BT2 

T1P I T2 
BTI BT1 

T1 
BT2 

CLK2 

CLK 

ADS# 

BR DYEN# 

READYO# 

READ)'I# 

NA# 

BADS# 

BREADY# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-13 

Figure 4-2A. READYO #, BRDYEN #, and NA# (N = 1) 

5-569 

I 



intef 82385 

the address, data, and cycle definition of the write 
are latched in T2 (frame 8). The 386 DX cycle is 
terminated by READYO # in frame 8 with no wait 
states. The 82385, however, sees the write cycle 
through to completion on the 82385 bus where it is 
terminated in frame 10 by BREADY#. In this case, 
the BREADY# signal is not gated through to the 
386 DX . Refer to Figures 4-2A and 4-2B for clarifi­
cation. 

4.1.3. NA# and 386 DX Local Bus 
Pipelining 

Cycle 1 of Figure 4-2A is a typical cache read hit. 
The 386 DX address becomes available in T1, and 
the 82385 uses this address to determine if the ref­
erenced data resides in the cache. The cache look­
up is completed and the cycle qualified as a hit or 
miss in T1. If the data resides in the cache, the 
cache is directed to drive the 386 DX data bus, and 
the 82385 drives its READYO# output so the cycle 
can be terminated at the end of the first T2 with no 
wait states. 

Although cycle 2 starts out like cycle 1, at the end of 
T1 (frame 3), it is qualified as a miss and forwarded 
to the 82385 bus. The 82385 bus cycle begins one 
state after the 386 DX bus cycle, implying a one wait 
state overhead associated with cycle 2 due to the 
look-up. When the 82385 encounters the miss, it im­
mediately asserts NA#, which puts the 386 DX into 
pipelined mode. Once in pipelined mode, the 82385 
is able to qualify an 386 DX cycle using the 386 DX 
pipelined address and control signals. The result is 
that the cache look-up state is hidden in all but the 
first of a contiguous sequence of read misses. This 
is shown in the first two cycles, both read misses, of 
Figure 4-2B. The CPU sees the look-up state in the 
first cycle, but not in the second. In fact, the second 
miss requires a total of only two states, as not only 
does 386 DX pipelining hide the look-up state, but 
system pipelining hides one of the main memory 
wait states. (System level pipelining via BNA# is dis­
cussed in the next chapter.) Several characteristics 
of the 82385's pipelining of the 386 DX are as fol­
lows: 

- The above discussion applies to all system 
reads, not just cache read misses. 

386 TM DX CYCLE I CROM I CROM I CRDH I CRDH 

386 DX BUS STATE T1 I T2 I T2P I T2P T1P I T2P T1P I T2P T1P I T2 
82385 BUS STATE BTI BT1 BT2 BT2P BT1 P BT21 BTI BTI BT! BTI 

CLK2 

CLK 

ADS# 

BRDYEN# 

READYO# 

READYI# 

NA# 

BADS# 

BREADY# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-14 

Figure 4-28. READVO#, BRDYEN#, and NA# (N= 1) 

5-570 



82385 

- The 82385 provides the fastest possible switch 
to pipelining, T1-T2-T2P. The exception to this is 
when a system read follows a posted write. In 
this case, the sequence is T1-T2-T2-T2P. (Refer 
to cycle 4 of Figure 4-2A.) The number of T2 
states is dependent on the number of main 
memory wait states. 

- Refer to the read hit in Figure 4-2A (cycle 1), and 
note that NA# is actually asserted before the 
end of T1, before the hit/miss decision is made. 
This is of no consequence since even though 
NA# is sampled active in T2, the activation of 
READYO# in the same T2 renders NA# a 
"don't care". NA# is asserted in this manner to 
meet 386 DX timing requirements and to ensure 
the fastest possible switch to pipelined mode. 

- All read hits and the majority of writes can be 
serviced by the 82385 with zero wait states in 
non-pipelined mode, and the 82385 accordingly 
attempts to run all such cycles in non-pipelined 
mode. An exception is seen in the hit cycles (cy­
cles 3 and 4) of Figure 4-28. The 82385 does not 
know soon enough that cycle 3 is a hit, and thus 
sustains the pipeline. The result is that three se­
quential hits are required before the 386 DX is 
totally out of pipelined mode. (The three hits look 
like T1 P-T2P, T1 P-T2, T1-T2.) Note that this 

386TM DX 

does not occur if the number of main memory 
wait states is equal to or greater than two. 

As far as the design is concerned, NA# is generally 
tied directly to the 386 DX NA# input. However, oth­
er local NA# sources may be logically "AND"ed 
with the 82385 NA# output if desired. It is essential, 
however, that no device other than the 82385 drive 
the 386 DX NA# input unless that device resides on 
the 386 DX local bus in space decoded via L8A #. If 
desired, the 82385 NA# output can be ignored and 
the 386 DX NA# input tied high. The 386 DX NA# 
input should never be tied low, which would always 
keep it active. 

4.1.4 LBA#, NCA#, and X16# 
Generation 

The 82385 input signals L8A#, NGA# and X16# 
are generated by decoding the 386 DX address 
(A2-A31) and cycle definition (W/R#, DIC#, 
M/10#) lines. The 82385 samples them at the end 
of the first state in which they become available, 
which is either T1 or the first T2P cycle. The decode 
configuration and timings are illustrated respectively 
in Figures 4-3A and 4-38. 

82385 

ADDRESS AND -" 386 DX LOCAL _.. 
CYCLE DEFINITION NCA#, LBA#, X16# 

SIGNALS II BUS DECODE ,.. 

290143-15 

A. Decode Configuration 

386™ DX BUS STATE T1 T2 T2 T1 T2 T2P T1P T2 -~ v ~ v f\ v ADS# 

-P< -ADDRESS & CYCLE DEF. 

-~ - t---' 
LBA#,X16# x 

NCA# x xxxxx D()( 

290143-16 

B. Decode Timing 

Figure 4-3. NCA#, LBA#, X16# Generation 

5-571 

I 



ill'IE!f 82385 

4.1.5 82385 Handling of 16-Bit Space 4.2 CACHE INTERFACE 

As discussed previously, the S23S5 does not cache 
devices decoded as 16~bit. Instead it makes provi­
sion to accommodate 16-bit space as non-cache­
able via the X16# input. X16# is generated when 
the user decodes the 3S6 DX address and cycle def­
inition lines for the BS16# input of the 3S6 DX (Fig­
ure 4-3). The decode output now drives both the 3S6 
DX 8S16# input and the S23S5 X16# input. Cycles 
decoded this way are treated as non-cacheable. 
They are forwarded to and executed on the S23S5 
bus, but have no impact on the cache or cache di­
rectory. The S23S5 also monitors the 3S6 DX byte 
enables in a 16-bit cycle to see if an additional cycle 
is required to complete the transfer. Specifically, a 
second cycle is required if (SEO# OR BE1 #)AND 
(8E2# OR BE3#) is asserted in the current cycle. 
The S23S5, like the 3S6 DX , will not allow the two 
halves of a 16-bit transfer to be interrupted by anoth­
er master. There is an important distinction between 
the handling of 16-bit space in a 3S6 DX system with 
an S23S5 as compared to a system without an 
S23S5. The 3S6 DX BS16# input need not be as­
serted until the last state of a 16-bit cycle for the 3S6 
DX to recognize it as such. The S23S5, however, 
needs the information earlier, specifically at the end 
of the first 3S6 DX bus state (T1 or first T2P) in 
which the address of the 16-bit cycle becomes avail­
able. The result is that in a system without an S23S5, 
16-bit devices can define themselves as 16-bit de­
vices "on the fly", while in a system with an S23S5, 
16-bit devices should be located in space set aside 
for 16-bit devices via the X16# decode. 

The following is a description of the external data 
cache and S23S5 cache interface. 

4.2.1 Cache Configurations 

The S23S5 controls the cache memory via the con­
trol signals shown in Figure 4-1 . These signals drive 
one of four possible cache configurations, as depict­
ed in Figures 4-4A through 4-4D. Figure 4-4A shows 
a direct mapped cache organized as SK double­
words. The likely design choice is four SK x S 
SRAMs. Figure 4-48 depicts the same cache memo­
ry but with a data transceiver between the cache 
and 3S6 DX data bus. In this configuration, CT/R # 
controls the transceiver direction, COEA # drives the 
transceiver output enable. (COEB # could also be 
used, and DEFOE# is strapped high.) A data buffer 
is required if the chosen SAAM does not have a 
separate output enable. Additionally, buffers may be 
used to ease SAAM timing requirements or in a sys­
tem with a heavily loaded data bus. (Guidelines for 
SAAM &election are included in Chapter 6.) 

Figure 4-4C depicts a two-way set associative cache 
organized as two banks (A and B) of 4K double­
words each. The likely design choice is sixteen 
4K x 4 SRAM's. Finally, Figure 4-4D depicts the two­
way organization with data buffers between the 
cache memory and data bus. 

5-572 



intJ 

8Kx8 
8Kx8 

8Kx8 

CACHE 
SRAM 

(8Kx 8) 

CACHE 
SRAM 

(8Kx8) 

CSO#­
CS3# 

82385 

2x373 

l"\.o....----110 Dl"\.,.-+----1. 

4 

E A2-A14 
...,~P""' 

CAL EN 

82385 
CACHE 
CONTROL 

290143-17 

Figure 4-4A. Direct Mapped Cache without Data Buffers 

CAL EN 

CT/R# 
COEA# 
CWEA# 

CSO#-CS3# 

Figure 4-4B. Direct Mapped Cache with Data Buffers 

5-573 

82385 
CACHE 
CONTROL 

DEFOE#=V1H 

290143-18 

I 



intJ 

4Kx4 

CACHE SRAM 
BANK A 
{4Kx4) 

4 

4 

cso11- OE# WE# 
CS3fl 

CACHE SRAM 
BANK·B 

{4Kx32) 

DATA 

82385 

A2-A13 

''·-----------+~,, 

DO-D31 

CAL EN 

CWEAll 
COEAfl . 

CSOfl-CS3fl 

COEBll 

CWEBll 

82385 
CACHE 
CONTROL 

DEFOEll=V1L 

Figure 4-4C. Two-Way Set Associative Cache without Data Buffers 

4Kx4 

CACHE SRAM 
BANK A 
{4Kx4) 

cso11-
CS311 

4 

4 

cso11- WEii 
CS3fl 

CACHt~:~ssl'-r---' 
BANK B 

(4Kx32) 

4x245 00-031 

82385 
CACHE 
CONTROL 

DEFOE# =V1H 

Figure 4-4D. Two-Way Set Associative Cache with Data Buffers 

5-574 

290143-19 

290143-20 



intef 82385 

4.2.2 Cache Control-Direct Mapped 

Figure 4-5A illustrates the timing of cache read and 
write hits, while Figure 4-58 illustrates cache up­
dates. In a read hit, the cache output enables are 
driven from the beginning of T2 (cycle 1 of Figure 
4-5A). If at the end of T1 the cycle is qualified as a 
cacheable read, the output enables are asserted on 
the assumption that the cycle will be a hit. (Driving 
the output enables before the actual hit/miss deci­
sion is made eases SAAM timing requirements.) 

Cycle 1 of Figure 4-58 illustrates what happens 
when the assumption of a hit turns out to be wrong. 

CRDH 
(BYTESO, 1) 

Note that the output enables are asserted at the be­
ginning of T2, but then disabled at the end of T2. 
Once the output enables are inactive, the 82385 
turns the transceiver around (via CT /R #) and drives 
the write enables to begin the cache update cycle. 
Note in Figure 4-58 that once the 386 DX is in pipe­
lined mode, the output enables need not be driven 
prior to a hit/miss decision, since the decision is 
made earlier via the pipelined address information. 

One consequence of driving the output enables low 
in a miss before the hit/miss decision is made is that 
since the cache starts driving the 386 DX data bus, 

CWTH 
(BYTES2, 3) 

CRDH 
386™ DX CYCLE I CRDH 

386 DX BUS STATE T1 I T2 
82385 BUS STATE BTI BTI 

T1 I T2 
BTI BTI 

I CWTH I 
T1 I T2 
BTI BT1 

T11T21T2 
BT2 BT2 BTf 

T1 I T2 
BT2 BT2 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

CAL EN 

CSO#, CS1# 1---1-------------' 
CS2#, CS3# l--+---1--•--+----' 

CWEA#. CWEB# 

COEA#, COEB# 

CT/R# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-21 
N ~ Number of Non-Pipelined, main memory wait states. Must be greater than zero. 

NOTES: 
CRDH = Cache Read Hit 
CWTH = Cache Write Hit 

Figure 4-SA. Cache Read and Write Cycles-Direct Mapped (N = 1) 

5-575 



intJ 82385 

the 82385 cannot enable the 7 4646 transceiver (Fig­
ure 4-1) until after the cache outputs are disabled. 
(The timing of the 7 4646 control signals is described 
in the next chapter.) The result is that the 74646 
cannot be enabled soon enough to support N = 0 
main memory ("N" was defined in section 4.0 as the 
number of non-pipelined main memory wait states). 
This means that memory which can run with zero 
wait states in a non-pipelined cycle sh9uld not be 
mapped into cacheable memory. This should not 
present a problem, however, as a main memory sys­
tem built with N = O memory has no need of a cache. 
(The main memory is as fast as the cache.) Zero 
wait state memory can be supported if it is decoded 
as non-cacheable. The 82385 knows that a cycle is 

non-cacheable in time not to drive the cache output 
enables, and can thus enable the 74646 sooner. 

In a write hit, the 82385 only updates the cache 
bytes that are meant to be updated as directed by 
the 386 DX byte enables. This prevents corrupting 
cache data in partial doubleword writes. Note in Fig­
ure 4-5A that the appropriate bytes are selected via 
the cache byte select lines CSO#-CS3#. In a read 
hit, all four select lines are driven as the 386 DX will 
simply ignore data it does not need. Also, in a cache 
update (read miss), all four selects are active in or­
der to update the cache with a complete line (dou­
bleword). 

386 TM DX CYCLE I 
386 DX BUS STATE T1 
82385 BUS STATE BTI 

T2 CRID~2P I T2P I T1 ;Rlo~2P I n P I c;;; I T2P I T1 :RIDH T2 
BT1 BT2 BT2P BT1 P BT21 BT1 BT2 BT21 BTI BTI 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

CAL EN 

CSO#, CS3# 

CWEA#, CWEB# 

COEA#. COEB# 

NOTE: 

CT/R# 

FRAME 
NUMBER 

-----
2 3 4 5 6 7 8 9 10 11 12 13 14 

N = Number of Non-Pipelined, main memory wait states. Must be greater than zero. 

CRDM = Cache Read Miss 

Figure 4-58. Cache Update Cycles-Direct Mapped (N = 1) 

5-576 

15 16 

290143-22 



i~ 82385 

4.2.3 Cache Control-Two-Way Set 4.3 387™ DX INTERFACE 
Associative 

Figures 4-6A and 4-68 illustrate the timing of cache 
read hits, write hits, and updates for a two-way set 
associative cache. (Note that the cycle sequences 
are the same as those in Figures 4-5A and 4-58.) In 
a cache read hit, only one bank on the other is en­
abled to drive the 386 DX data bus, so unlike the 
control of a direct mapped cache, the appropriate 
cache output enable cannot be driven until the out­
come of the hit/miss decision is known. (This im­
plies stricter SRAM timing requirements for a two­
way set associative cache.) In write hits and read 
misses, only one bank or the other is updated. 

(BYTES D, 1} 

The 387 DX Math Coprocessor interfaces to the 386 
DX just as it would in a system without an 82385. 
The 387 DX READYO# output is logically "AND"ed 
along with all other 386 DX local bus ready sources 
(Figure 4-1 ), and the output is fed to the 387 DX 
READY#, 82385 READY I#, and 386 DX READY# 
inputs. 

The 386 DX uniquely addresses the 387 DX by driv­
ing M/10# low and A31 high. The 82385 decodes 
this internally and treats 387 DX accesses in the 
same way it treats 386 DX cycles in which L8A# is 
asserted, it ignores them. 

CWTH,B 
(BYTES 2, 3} 386 TM DX CYCLE I CRDH,A 

386 DX BUS STATE T1 I T2 
82385 BUS STATE BT\ BT\ 

CRDH,B 

T1 I T2 
BT\ BT! 

I 
CWTH,A I 

T1 I T2 
BT\ BT1 

T1 I T2 I T2 
BT2 BT2 BT1 

CRDH,A 

T1 I T2 
BT2 BT2 

CLK2 

CLK 

ADS# 

READY!# 

BADS# 

BREADY# 

CAL EN 

CSO#, CS1# t---------__, 
CS2#, CS3# l--+---1---+---+---' 

CWEA# 

CWEB# 

COEA# 

COEB# 

CT/R 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 

N ~ Number of Non-Pipelined, main memory wait states. Must be greater than zero. 

13 14 

Figure 4·6A. Cache Read and Write Cycles-Two Way Set Associative (N = 1) 

5-577 

15 16 

290143-23 

I 



inter 82385 

386™ DX CYCLE I CROM I CROM I CROM I CRDH,A I (UPDATE A) (UPDATE B) (UPDATE A) 
386 DX BUS STATE T1 I T2 I T2P I T2P T1 p · 1 T2P T1 p I T2P I T2P T1 p I T2 
82385 BUS STATE BTI BT1 BT2 BT2P BT1P BT21 BT1 BT2 BT21 BTI BTI 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

CAL EN 

CWEA# 

CWEB# 

COEA# 

COEB# 

CT/R 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-24 
N ~ Number of Non-Pipelined, main memory wai1 states. Must be greater than zero. 

Figure 4-68. Cache Update Cycles-Two Way Set Associative (N = 1) 

5.0 82385 LOCAL BUS AND SYSTEM 
INTERFACE 

The 82385 system interface is the 82385 Local Bus, 
which presents a "386 DX -like" front end to the 
system. The system ties to it just as it would to a 386 
DX . Although this 386 DX -like front end is function­
ally equivalent to a 386 DX , there are timing differ­
ences which can easily be accounted for in a system 
design. 

The following is a description of the 82385 system 
interface. After presenting the 82385 bus state ma­
chine, the 82385 bus signals are described, as are 
techniques for accommodating any differences be­
tween the 82385 bus and 386 DX bus. Following this 
is a discussion of the 82385's condition upon reset. 

5.1 THE 82385 BUS STATE MACHINE 

5.1.1 Master Mode 

Figure 5-1 A illustrates the 82385 bus state machine 
when the 82385 is programmed in master mode. 
Note that it is almost identical to the 386 DX bus 
state machine, only the bus states are 82385 bus 
states (BT1 P, BTH, etc.) and the state transitions 
are conditioned by 82385 bus inputs (BNA #, 
BHOLD, etc.). Whereas a "pending request" to the 
386 DX state machine indicates that the 386 DX ex­
ecution or prefetch unit needs bus access, a pend­
ing request to the 82385 state machine indicates 
that a 386 DX bus cycle needs to be forwarded to 
the system (read miss, non-cacheabie read, write, 

5-578 



intef 

RESET ASSERTED 

f;3 t; 
~~ 
LU 0 
Z LU 

"" 9o 
oz 
:c • 
m 

82385 

BHOLD ASSERTED 

BHOLD NEGATED 
• REQUEST PENDING 

BREADY# ASSERTED• 
{BLOCK# ASSERTED+ BHOLD NEGATED)• 

•NO REQUEST 

ALWAYS 

REQUEST PENDING • 
BHOLD NEGATED BREADY# ASSERTED• 

{BLOCK# ASSERTED+ BHOLD NEGATED) 
• REQUEST PENDING 

BREADY# ASSERTED 
• BHOLD NEGATED 

• REQUEST PENDING 

BNA NEGATED 

BREADY# NEGATED 
• BNA # NEGATED 

BREADY# NEGATED 

Figure 5-1A. 82385-Local Bus State Machine-Master Mode 

5-579 

I 
290143-25 



. 
C>O 
zi.i 
-~ 
Oc( 
Ze> ...... 
a..z 
~c( 

~9 
~:>: Sm 
"' 

82385 

NO REQUEST + BHLDA ASSERTED 

RESET ASSERTED 

BREADY# ASSERTEQ • 
(NO REQUEST+ BHLDA NEGATED)• 

BLOCK# ASSERTED 

ALWAYS 

BHLDA ASSERTED 
BREADY# ASSERTED 

•BHLDA ASSERTED 
•REQUEST PENDING 

BREADY# ASSERTED 
• BHLDA ASSERTED 
• REQUEST PENDING 

BNA# NEGATED 

,..... • 0 

.!§e~ 
~a:~(!) i.ia:i.i 
=>V>Ll.lz 

BREADY# NEGATED S~tl ::a: 
• BNA# NEGATED ~~~~ 

z .... c( i:5 
-:J:zet:: 

mmm 

oe>o 
... z ... 
!;(Qt; 
e>zi.i 
...... Ill 
za..111 

BREADY# NEGATED ,t;-c 
(NO REQUEST+ ~!:lg 

BHLDA NEGATED) ~S:i:: 
a:a:m 
m • • 

BREADY# NEGATED 

Figure 5·1B. 82385 Local Bus State Machln&-slave Mode 

5-580 

0 ... 
IX ... 
Ill 
Ill 
c( ,.., 
c( 

0 z ... m ~ 

"' ... 
Ill 

sea~ 
Ill 
c( 

!;(1-t-O "" >-e>Cl~~ 0 
L&.l(/)LaJQ.. c( 

!!!l:t; ... 
"' m >- :::tt.::::c kl 

0<...J::J 
~z:>:O mmi.i 
8i •• -== 

290143-26 



intJ 82385 

etc.). The only difference between the state ma­
chines is that the 82385 does not implement a direct 
BT1 P-BT2P transition. If BNA # is asserted in 
BT1 P, the resulting state sequence is BT1 P-BT21-
BT2P. The 82385's ability to sustain a pipeline is not 
affected by the lack of this state transition. 

5. 1.2 Slave Mode 

The 82385's slave mode state machine (Figure 
5-1 B) is similar to the master mode machine except 
that now transitions are conditioned by BHLDA rath­
er than BHOLD. (Recall that in slave mode, the roles 
of BHOLD and BHLDA are reversed from their mas­
ter mode roles.) Figure 5-2 clarifies slave mode state 
machine operation. Upon reset, a slave mode 82385 
enters the BTH state. When the 386 DX of the slave 
82385 subsystem has a cycle that needs to be for­
warded to the system, the 82385 moves to BTI and 
issues a hold request via BHOLD. It is important to 
note that a slave mode 82385 does not drive the bus 
in a BTI state. When the master or bus arbiter re­
turns BHLDA, the slave 82385 enters BT1 and runs 

the cycle. When the cycle is completed, and if no 
additional requests are pending, the 82385 moves 
back to BTH and disables BHOLD. 

If, while a slave 82385 is running a cycle, the master 
or arbiter drops BHLDA (Figure 5-28), the 82385 will 
complete the current cycle, move to BTH and re­
move the BHOLD request. If the 82385 still had cy­
cles to run when it was kicked off the bus, it will 
immediately assert a new BHOLD and move to BTI 
to await bus acknowledgement. Note, however, that 
it will only move to BTI if BHLDA is negated, ensur­
ing that the handshake sequence is completed. 

There are several cases in which a slave 82385 will 
not immediately release the bus if BHLDA is 
dropped. For example, if BHLDA is dropped during a 
BT2P state, the 82385 has already committed to the 
next system bus pipelined cycle and will execute it 
before releasing the bus. Also, the 82385 will com­
plete the second half of a two-cycle 16-bit transfer, 
or will complete a sequence of locked cycles before 
releasing the bus. This should not present any prob­
lems, as a properly designed arbiter will not assume 
that the 82385 has released the bus until it sees 
BHOLD become inactive. 

BTH BTI BTI BT1 BT2 BT2 BTH BTH 

BHOLD 

BHLDA 

BHOLD 

BHLDA 

290143-27 

A. Normal Slave Mode Sequence 

BTH BTI BTI BT1 BT2 BT2 BT1 BT2 BT2 BTH BTI BTI BTI BTI BT1 

t 
ARBITER 

DROPS BHLDA 

B. Sequence of Events if Master or Arbiter Drops BHLDA 

Figure 5-2. BHOLD/BHLDA-Slave Mode 

5-581 

290143-28 

I 



inter 82385 

5.2 The 82385 Local Bus 

The 82385 bus cart be broken up into two groups of 
signals: those which have direct 386 DX counter­
parts, and additional status and control signals pro­
vided by the 82385. The operation and interaction of 
all 82385 bus signals are depicted in Figures 5-3A 
through 5-3L for a wide variety of cycle sequences. 
These diagrams serve as a reference for the 82385 
bus discussion and provide insight into the dual bus 
operation of the 82385. 

5.2.1 82385 Bus Counterparts to 
386 DX Signals 

The following sections discuss the signals presented 
on the 82385 local bus which are functional equiva­
lents to the signals present at the 386 DX local bus. 

5.2.1.1 ADDRESS BUS (BA2-BA31) AND 
CYCLE DEFINITION SIGNALS 
(BM/10#, BD/C#, BW/R#) 

These signals are not driven directly by the 82385, 
but rather are the outputs of the 74374 address/cy­
cle definition latch. (Refer to Figure 4-1 for the hard­
ware interface.) This latch is controlled by the 82385 
8ACP and 8AOE # outputs. The behavior and timing 
of these outputs and the latch they control (typically 
F or AS series TIL) ensure that 8A2-8A31, 
8M/IO#, 8W/R#, and 8D/C# are compatible in 
timing and function to their 386 DX counterparts. 

The behavior of 8ACP can be seen in Figure 5-38, 
where the rising edge of 8ACP latches and forwards 
the 386 DX address and cycle definition signals in a 
8T1 or first BT2P state. However, the 82385 need 
not be the current bus master to latch the 386 DX 
address, as evidenced by cycle 4 of Figure 5-3A. In 
this case, the address is latched in frame 8, but not 
forwarded to the system (via BAOE #) until frame 
10. (The latch and output enable functions of the 
74374 are independent and invisible to one 
another.) 

Note that in frames 2 and 6 the BACP pulses are 
marked "False." The reason is that BACP is issued 
and the address latched before the hit/miss deter­
mination is made. This ensures that should the cycle 
be a miss, the 82385 bus can move directly into BT1 
without delay. In the case of a hit, the latched ad­
dress is simply never qualified by the assertion of 
BADS#. The 82385 bus stays in BTI if there is no 
access pending (new cycle is a hit) and no bus activ­
ity. It will move to and stay in BT21 if the system has 
requested a pipelined cycle and the 82385 does not 
h.ave a pending bus access (new cycle is a hit). 

5.2.1.2 DATA BUS (BDO-BD31) 

The 82385 data bus is the system side of the 7 4646 
latching transceiver. (See Figure 4-1.) This device is 
controlled by the 82385 outputs LDSTB, DOE#, and 
BT/R#. LDSTB latches data in write cycles, DOE# 
enables the transceiver outputs, and BT /R # con­
trols the transceiver direction. The interaction of 
these signals and the transceiver is such that BD0-
8D31 behave just like their 386 DX counterparts. 
The transceiver is configured' such that data flow in 
write cycles (A to B) is latched, and data flow in read 
cycles (B to A) is flow-through. 

Although BDO-BD31 function just like their 386 DX 
counterparts, there is a timing difference that must 
be accommodated for in a system design. As men­
tioned above, the transceiver is transparent during 
read cycles, so the transceiver propagation delay 
must be added to the 386 DX data setup. In addition, 
the cache SRAM setup must be accommodated for 
in cache read miss cycles. 

For non-cacheable reads the data setup is given by: 

5-582 

Min BDO-BD31 
Read Data Setup 

386 DX Min + 74646 8-to-A 
Data Setup Max Propagation 

Delay 



inter 82385 

The required BDO-BD31 setup in a cache read miss 
is given by: 

Min BDO-BD31 
Read Data 
Setup 

+ 

7 4646 B-to-A 
Max Propagation 
Delay 

One CLK2 
Period 

+ ~~~~r~:AM 
Setup 

82385 CWEA # or 
CWEB# Min Delay 

If a data buffer is located between the 386 DX data 
bus and the cache SRAMs, then its maximum propa­
gation delay must be added to the above formula as 
well. A design analysis should be completed for ev­
ery new design to determine actual margins. 

A design can accommodate the increased data set­
up by choosing appropriately fast main memory 
DRAMs and data buffers. Alternatively, a designer 
may deal with the longer setup by inserting an extra 
wait state into cache read miss cycles. If an addition­
al state is to be inserted, the system bus controller 
should sample the 82385 MISS# output to distin­
guish read misses from cycles that do not require 
the longer setup. Tips on using the 82385 MISS# 
signal are presented later in this chapter. 

The behavior of LDSTB, DOE#, and BT /R # can be 
understood via Figures 5-3A through 5-3L. Note that 
in cycle 1 of Figure 5-3A (a non-cacheable system 
read), DOE# is activated midway through BT1, but 
in cycle 1 of Figure 5-3B (a cache read miss), DOE# 
is not activated until midway through BT2. The rea­
son is that in a cacheable read cycle, the cache 
SRAMs are enabled to drive the 386 DX data bus 
before the outcome of the hit/miss decision (in an­
ticipation of a hit). In cycle 1 of Figure·5-3B, the as­
sertion of DOE# must be delayed until after the 
82385 has disabled the cache output buffers. The 
result is that N = 0 main memory should not be 
mapped into the cache. 

5.2.1.3 BYTE ENABLES (BBEO#-BBE3#) 

These outputs are driven directly by the 82385, and 
are completely compatible in timing and function 
with their 386 DX counterparts. When a 386 DX cy­
cle is forwarded to the 82385 bus, the 386 DX byte 
enables are duplicated on BBEO#-BBE3#. The 
one exception is a cache read miss, during which 
BBEO#-BBE3# are all active regardless of the 
status of the 386 DX byte enables. This ensures that 
the cache is updated with a valid 32-bit entry. 

5.2.1.4 ADDRESS STATUS (BADS#) 

BADS# is identical in function and timing to its 386 
DX counterpart. It is asserted in BT1 and BT2P 
states, and indicates that valid address and cycle 
definition (BA2-BA31, BBEO#-BBE3#, BM/10#, 
BW/R#, BD/C#) information is available on the 
82385 bus. 

5.2.1.5 READY (BREADY#) 

The 82385 BREADY# input terminates 82385 bus 
cycles just as the 386 DX READY# input terminates 
386 DX bus cycles. The behavior of BREADY# is 
the same as that of READY#, but note in the A.C. 
timing specifications that a cache read miss requires 
a longer BREADY# setup than do other cycles. This 
must be accommodated for in ready logic design. 

5.2.1.6 NEXT ADDRESS (BNA#) 

BNA# is identical in function and timing to its 386 
DX counterpart. Note that in Figures 5-3A through 5-
3L, BNA # is assumed asserted in every BT1 P or 
first BT2 state. Along with the 82385's pipelining of 
the 386 DX , this ensures that the timing diagrams 
accurately reflect the full pipelined nature of the dual 
bus structure. 

5.2.1.7 BUS LOCK (BLOCK#) 

The 386 DX flags a locked sequence of cycles by 
asserting LOCK#. During a locked sequence, the 
386 DX does not acknowledge hold requests, so the 
sequence executes without interruption by another 
master. The 82385 forces all locked 386 DX cycles 
to run on the 82385 bus (unless LBA# is active), 
regardless of whether or not the referenced location 
resides in the cache. In addition, a locked sequence 
of 386 DX cycles is run as a locked sequence on the 
82385 bus; BLOCK# is asserted and the 82385 
does not allow the sequence to be interrupted. 
Locked writes (hit or miss) and locked read misses 
affect the cache and cache directory just as their 
unlocked counterparts do. A locked read hit, howev­
er, is handled differently. The read is necessarily 

5-583 

El 



intJ 82385 

forced to run on the 82385 local bus, and as the 
data returns from main memory, it is "re-copied" into 
the cache. (See Figure 5-3L.) The directory is not 
changed as it already indicates that this location ex­
ists in the cache. This activity is invisible to the sys­
tem and ensures that semaphores are properly han­
dled. 

BLOCK# is asserted during locked 82385 bus cy­
cles just as LOCK# is asserted during locked 386 
DX cycles. The BLOCK# maximum valid delay, 
however, differs from that of LOCK#, and this must 
be accounted for in any circuitry that makes use of 
BLOCK#. The difference is due to the fact that 
LOCK#, unlike the other 386 DX cycle definition sig­
nals, is not pipelined. The situation is clarified in Fig­
ure 5-3K. In cycle 2 the state of LOCK# is not 
known before the corresponding system read starts 
(Frames 4 and 5). In this case, LOCK# is asserted 
at the beginning of T1 P, and the delay for BLOCK# 
to become active is the delay of LOCK# from the 
386 DX plus the propagation delay through the 
82385. This occurs because T1 P and the corre­
sponding BT1 Pare concurrent (Frame 5). The result 
is that BLOCK# should not be sampled at the end 
of BT1 P. The first appropriate sampling point is mid­
way through the next state, as shown in Frame 6. In 
Figure 5-3L, the maximum delay for BLOCK# to be­
come valid in Frame 4 is the sarne as the maximum 
delay for LOCK# to become valid from the 386 DX . 
This is true since the pipelining issue discussed 
above does not occur. 

The 82385 should negate BLOCK# after 
BREADY# of the last 82385 Locked Cycle was as­
serted and Lock turns inactive. This means that in a 
sequence of cycles which begins with a 82385 
Locked Cycle and goes on with all the possible 
Locked Cycles (other 82385 cycles, idles, and local 
cycles), while LOCK# is continuously active, the 
82385 will maintain BLOCK# active continuously. 
Another implication is that in a Locked Posted Write 
Cycle followed by non-locked sequence, BLOCK# 
is negated one CLK after BREADY# of the write 
cycle. In other 82385 Locked Cycles, followed by 
non-locked sequences, BLOCK# is negated one 
CLK after LOCK# is negated, which occurs two 
CLKs after BREADY# is asserted. In the last case 
BLOCK# active moves by one CLK to the non­
locked sequence. 

The arbitration rules of Locked Cycles are: 

MASTER MODE: 

BHOLD input signal is ignored when BLOCK# or 
internal lock (16-bit non-aligned cycle) are active. 
BHLDA output signal remains inactive, and BAOE# 
output signal remains active at that time interval. 

SLAVE MODE: 

The 82385 does not relinquish the system bus if 
BLOCK# or internal lock are active. The BHOLD 
output signal remains active when BLOCK# or inter­
nal lock is active plus one CLK. The BHLDA input 
signal is ignored when BLOCK# or the internal lock 
is active plus one CLK. This means the 82385 slave 
does not respond to BHLDA inactivation. The 
BAOE # output signal remains active during the 
same time interval. 

5.2.2 Additional 82385 Bus Signals 

The 82385 bus provides two status outputs and one 
control input that are unique to cache operation and 
thus have no 386 DX counterparts. The outputs are 
MISS#, and WBS, and the input is FLUSH. 

5.2.2.1 CACHE READ/WRITE MISS 
INDICATION (MISS#) 

MISS# can be thought of as an extra 82385 bus 
cycle definition signal similar to BM/10#, BW/R#, 
and BD/C#, that distinguishes cacheable read and 
write misses from other cycles. MISS#, like the oth­
er definition signals, becomes valid with BADS# 
(BT1 or first BT2P). The behavior of MISS# is illus­
trated in Figures 5-3B, 5-3C, and 5-3J. The 82385 
floats MISS# when another master owns the bus, 
allowing multiple 82385s to share the same node in 
multi-cache systems. MISS# should thus be lightly 
pulled up ( ~ 20 KO) to keep it negated during hold 
(BTH) states. 

MISS# can serve several purposes. As discussed 
previously, the BDO-BD31 and BREADY# setup 
times in a cache read miss are longer than in other 
cycles. A bus controller can distinguish these cycles 
by gating MISS# with BW/R#. MISS# may also 
prove useful in gathering 82385 system perform­
ance data. 

5.2.2.2 WRITE BUFFER STATUS (WBS) 

WBS is activated when 386 DX write cycle data is 
latched into the 74646 latching transceiver (via 
LDSTB). It is deactivated upon completion of the 
write cycle on the 82385 bus when the 82385 sees 
the BREADY# signal. WBS behavior is illustrated in 
Figures 5-3F through 5-3J, and potential applica­
tions are discussed in Chapter 3. 

5-584 



intef 82385 

386 TM DX CYCLE I SBRD SBRD SBRD SBRD 

I I 
386 DX BUS STATE T1 I ~11 T2P T1P I T2P T1P I T2P T1 p T2P I T2P T2P 
82385 BUS STATE BTI BT2 BT1 BT2 en eT2 BTH BTH en BT2 

CLK2 

CLK 

ADS# 

READ YI# 

BADS# 

BREADY# 

NA# 

BACP 

BADE# 

DOE# 

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-29 

Figure 5-3A. Consecutive SBRD Cycles-(N = 0) 

386™ DX CYCLE I CROM I CROM I CROM I CROM I I 386 DX BUS STATE T1 T2 I T2P T2P TIP T2P TIP T2P T2P T1 P T2P 
82385 BUS STATE BTI en BT2 I BT2P BT1 p I BT21 en I BT2 I BT2P BT1 p I BT21 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

NA# 

BACP 

DOE# 

MISS# 

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-30 

Figure 5-38. Consecutive CRDM Cycles-(N = 1) 

5-585 



intJ 82385 

386 TM DX CYCLE I SBRD I CROM I SBRD I 
386 DX BUS STATE T1 -T2 T2P T2P T2P T1 P T2P T2P n P T2P T2P 
82385 BUS STATE BTI en I BT2 I BT2P I BT2P en P I er21 I BT2P er1 P I ar21 I BT2P 

CLK2 

CLK 

ADS/I 

READY!# 

BADS/I 

BREADY/I 

NA# 

BACP 

ODE/I 

MISS# 

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-31 

· Figure 5-3C. SBRD, CROM, SBRD-(N = 2) 

386™ DX CYCLE I SBRD I SBR.D I SBRD 
386 DX BUS STATE T1 T2 T2P I T2P T2P I T2P nP I T2P . T1P I T2P l~I T2P I T2P I 82385 BUS STATE BTH BTH BTH BT1 BT2 BT2P BT1 P BT21 BTH BTH BT2 BT2P 

CLK2 

CLK 

ADS# 

READY!# 

BADS# 

BREADY# 

BACP 

BADE# 

DOE# 

BHOLD 

BHLDA 

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-32 

Figure 5-30. SBRD Cycles Interleaved with BTH State~N = 1) 

5-586 



intef 82385 

386 TW DX CYCLE I CRDH SBRD CRDH SBRD 
386 DX BUS STAlE T1 I T2 T1 T2 I T2P I T2P I T1P I T2 T1 T2 I T2P I T2P I 82385 BUS STATE BTI BTI BTI BT1 BT2 BT21 BTI BTI BTI BT1 BT2 BT2P 

CLK2 

CLK 

ADS# 

READY!# 

BADS# 

BREADY# 

BACP 

DOE# 

FRAME 2 3 4 5 6 7 8 9 10 11 12 NUMBER 

Figure 5·3E .. Interleaved SBRD/CRDH Cycles-(N = 1) 

386 TM DX CYCLE I SBRD I WT 
386 DX BUS STATE T1 T2 T2P T2P T1P I T2 
82385 BUS STATE BTI I BT1 I BT2 .I BT21 BTI BT1 

CLK2 

CLK 

READY!# 

BADS# 

BREADY# 

NA# 

BACP 

BT/R#i--1--1--1--1-~ 

WBS 
1--1--1--1--1--1--~ 

FRAME 
NUMBER 

2 3 4 5 6 

SBRD I CRDH 

T1 T2 T2 T2P TIP I T2P 
BT2 I BT2P I BT1 p I BT21 BTI BTI 

7 8 9 10 11 12 

Figure 5-3F. SBRD, WT, SBRD, CRDH-(N= 1) 

5-587 

13 14 15 16 

290143-33 

I 

13 14 15 16 

290143-34 



intef 

386 TM DX CYCLE I 
386 DX BUS STATE 
82385 BUS STATE 

CLK2 

CLK 

ADS# 

READ YI# 

BADS# 

BREADY# 

BACP 

DOE# 

BT/R# 

WBS 

WT 

n I T2 
BTI en 

I CRDH I 
n T2 

BT2 I BT2J 

WT 

T1 I T2 
'BTI en 

82385 

CRDH 

n I T2 
BT2 8T21 

Tl 
BTI 

__ ,__,, 
FRAME 

NUMBER 

386 TM DX CYCLE I 
386 DX BUS STATE 
82385 BUS STATE 

CLK2 

CLK 

ADS# 

READY!# 

BADS# 

BACP 

BAOE# 

DOE# 

BHOLD 

BHLDA 

FRAME 
NUMBER 

10 11 12 

Figure 5·3G. Interleaved WT /CRDH Cycles-(N = 1) 

WT 

n 'I T2 BTH BTH 
n 

BTH 
T2 
en 

;; I T2 I T2 I nCRIDHT2 I 
BT2 BT2P en p BT21 BTI 

10 11 

Figure 5·3H. WT, WT, CRDH-(N= 1) 

5-588 

12 

13 14 15 16 

290143-35 

13 14 15 16 

290143-36 



intJ 82385 

386 TM DX CYCLE I WT WT SBRD 

I I 386 DX BUS STATE T1 I T2 T1 T2 T2 I T2 I T2 I T1 T2 I T2 T2P 
82385 BUS STATE BTH BTH BTH BT1 BT2 BT2P BT1 P BT21 BT1 BT2 BT21 

CLK2 

CLK 

ADS# 

READY!# 

BADS# 

BREADY# 

NA# 

BACP 

BADE# 

DOE# 

BT/R# 

LDSTB 

WBS 

F"RAt.tE 7 I 8 I 10 11 12 13 u 15 16 NUMBER 

290143-37 

Figure 5-31. WT, WT, SBRD-(N= 1) 

El 386 TM DX CYCLE I CWTH 
CWTM I CWTM 

CWTH I CWTM 
386 DX BUS STATE T1 I T2 T1 T2 T2 T1 I T2 T1 T2 T2 T1 I T2 
82385 BUS STATE BTI BT1 BT2 I BT2P I BT1P BT21 BT1 BT2 I BT2P I BT1P BT2t BT1 

CLK 

ADS# 

READY!# 

BADS# 

BREADY# 

BACP 

DOE# 

BT/R# 

LDSTB 

WBS 

MISS 

FRAME 1D 11 12 13 14 15 16 NUMBER 

290143-38 

Figure 5-3J. Consecutive Write Cycles-(N = 1) 

5-589 



intJ 82385 

386 TM DX CYCLE I SBRD I CROM I WT I CRDH I 
386DXBUSSTATE T1 I T2 I T2P I T2P T1P I T2P TIP I T2' T1 I T2 
82385 BUS STATE BTI BT1 BT2 BT2P BT1 P BT21 BTI BT1 BT2 BT21 

CLK2 

ADS# 

READYI# 

BADS# 

BREADY# 

LOCK# 

BLOCK# 

MISS# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 5-3K. LOCK# /BLOCK# In Non-Cacheable or Miss Cycles-{N = 1) 

386™ ox cYcLE j cuNr~g~Eo> j 
386 DX BUS STATE T1 I T2 T1 
82385 BUS STATE BTI BTI BTI 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

LOCK# 

BLOCK# 

CWEA# 

CWEB# 

BHOLD 

____ ., 

cE88~t~> 
T2 I T2P 
BT1 BT2 I T2P I 

BT21 

BHLDA 
+--+---+---+---+---+--+--+-.,.-+--+--~ 

290143-39 

FRAME 
NUMBER 

2 3 5 6 7 8 10 11 12 13 14 15 16 

Figure 5-3L. LOCK# /BLOCK# In Cache Read Hit Cycle-(N = 1) 

5-590 

290143-40 



infef 82385 

5.2.2.3 CACHE FLUSH (FLUSH) 

FLUSH is an 82385 input which is used to reset all 
tag valid bits within the cache directory. The FLUSH 
input must be kept active for at least 4 CLK (8 CLK2) 
periods to complete the directory flush. Flush is gen­
erally used in diagnostics but can also be used in 
applications where snooping cannot guarantee co­
herency. 

5.3 BUS WATCHING (SNOOP) 
INTERFACE 

The 82385's bus watching interface consists of the 
snoop address (SA2-SA31), snoop strobe 
(SSTB#), and snoop enable (SEN) inputs. If mas­
ters reside at the system bus level, then the SA2-
SA31 inputs are connected to the system address 
lines and SEN the system bus memory write com­
mand. SSTB # indicates that a valid address is pres­
ent on the system bus. Note that the snoop bus in­
puts are synchronous, so care must be taken to en­
sure that they are stable during their sample win­
dows. If no master resides beyond the 82385 bus 
level, then the 82385 inputs SA2-SA31, SEN, and 
SSTB# can respectively tie directly to BA2-BA31, 
BW/R#, and BADS# of the other system bus mas­
ter (see Figure 5.5). However, it is recommended 
that SEN be driven by the logical "AND" of BW/R# 
and BM/10# so as to prevent 1/0 writes from un­
necessarily invalidating cache data. 

When the 82385 detects a system write by another 
master and the conditions in Figure 5.4 are met: 
CLK2 PHl1 rising (CLK falling), BHLDA asserted, 
SEN asserted, SSTB# asserted, it internally latches 
SA2-SA31 and runs a cache look-up to see if the 
altered main memory location is duplicated in the 
cache. If yes (a snoop hit), the line valid bit associat­
ed with that cache entry is cleared. An important 
feature of the 82385 is that even if the 386 DX is 
running zero wait state hits out of the cache, all 
snoops are serviced. This is accomplished by time 
multiplexing the cache directory between the 386 
DX address and the latched system address. If the 
SSTB# signal occurs during an 82385 comparison 
cycle (for the 386 DX), the 386 DX cycle has the 
highest priority in accessing the cache directory. 
This takes the first of the two 386 DX states. The 
other state is then used for the snoop comparison. 
This worst case example, depicted in Figure 5-4, 
shows the 386 DX running zero wait state hits on the 
386 DX local bus, and another master running zero 
wait state writes on the 82385 bus. No snoops are 
missed, and no performance penalty incurred. 

5.4 RESET DEFINITION 

Table 5-1 summarizes the states of all 82385 out­
puts during reset and initialization. A slave mode 
82385 tri-states its "386 DX-like" front end. A mas-
ter mode 82385 emits a pulse stream on its BACP I 
output. As the 386 DX address and cycle definition 
lines reach their reset values, this stream will latch 
the reset values through to the 82385 bus. 

5-591 



intef 

NOTES: 

CLK2 

ADS# 

386™ DX 

Address 

•2 
SSTB# 

385 LB 

Address 

BHOLD 

BHLDA 

•3 
SEN 

Cache Dir 

Address 

82385 

T1 T2 ., •2 
BT1 BT2 

386 DX #1 

385 #1 

386 DX #2 385 #1 

*1. These states are induced by another System Bus master. 

T1 T2 ., •2 
BT1 BT2 

386 DX #2 

385 #2 

386 DX #2 

*2. SSTB# on the 82385 is tied directly to BADS# of the System Bus master. 
*3. SEN on the 82385 is tied directly to BW/R# of the System Bus master. 

T1 ., 
BT1 

385 #2 

Figure 5.4. Interleaved Snoop and 386 DX Accesses to the Cache Directory 

5-592 

290143-63 



inter 82385 

r------------------------------~ 

80386 

Control 

Address 

Data I+-

...__ 
Address 
Buffer 

82385 

SEN ,.-

SSTB# I+-

_!_ SRAM 

~ 
Buffer 

_J_ 

T 

_J_ 

~----------------------------­r------------------------------

BADS# 1----' 

BW/R#t----------...l;--__. 

BM/IO#t------..L----' 

Other System 
Master 

Figure 5.5. Snooping Connections in a Multi Master Environment 

5-593 

" " "' 

290143-64 

I 



82385 

Table 5-1. Pin State During RESET and Initialization 

Output Name 
Signal Level During RESET and Initialization 

Master Mode Slave Mode 

NA# High High 

AEADYO# High High 

BADYEN# High High 

CA LEN High High 

CWEA#-CWEB# High High 

CSO#-CS3# Low Low 

CT/A# High High 

COEA#-COEB# High High 

BADS# High HighZ 

BBEO#-BBE3# 386 DX BE# HighZ 

BLOCK# High HighZ 

MISS# High HighZ 

BACP Pulse(1) Pulse 

BAOE# Low High 

BT/A# Low Low 

DOE# High High 

LDSTB Low Low 

BHOLD - Low 

BHLDA Low -
WBS Low Low 

NOTE: 
1. In Master Mode, BAOE# is low and BACP emits a pulse stream during reset. As the 386 DX address and cycle definition 
signals reach their reset values, the pulse stream on BACP will latch these values through to the 82385 local bus. 

6.0 82385 SYSTEM DESIGN 
CONSIDERATIONS 

6.1 INTRODUCTION 

This chapter discusses techniques which should be 
implemented in an 82385 system. Because of the 
high frequencies and high performance nature of the 
386 DX CPU/82385 system, good design and layout 
techniques are necessary. It is always recommend­
ed to perform a complete design analysis on new 
system designs. 

6.2 POWER AND GROUNDING 

6.2.1 Power Connections 

The PGA 82385 utilizes 8 power (V cc> and 10 
ground (Vss) pins. The PQFP 82385 has 9 power 
and 9 ground pins. All Vee and Vss pins must be 
connected to their appropriate plane. On a printed 
circuit board, all Vee pins must be connected to the 
power plane and all Vss pins must be connected to 
the ground plane. 

6.2.2 Power Decoupling 

Although the 82385 itself is generally a "passive" 
device in that it has few output signals, the cache 

5-594 



intJ 82385 

subsystem as a whole is quite active. Therefore, 
many decoupling capacitors should be placed 
around the 82385 cache subsystem. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the decoupling capaci­
tors and their respective devices as much as possi­
ble. Capacitors specifically for PGA packages are 
also commercially available, for the lowest possible 
inductance. 

6.2.3 Resistor Recommendations 

Because of the dual bus structure of the 82385 sub­
system (386 DX Local Bus and 82385 Local Bus), 
any signals which are recommended to be pulled up 
will be respective to one of the busses. The follow­
ing sections will discuss signals for both busses. 

6.2.3.1 386 DX LOCAL BUS 

For typical designs, the pullup resistors shown in Ta­
ble 6-1 are recommended. This table correlates to 
Chapter 7 of the 386 DX Data Sheet. However, par­
ticular designs may have a need to differ from the 
listed values. Design analysis is recommended to 
determine specific requirements. 

6.2.3.2 82385 LOCAL BUS 

Pullup resistor recommendations for the 82385 Lo­
cal Bus signals are shown in Table 6-2. Design anal­
ysis is necessary to determine if deviations to the 
typical values given is needed. 

Table 6-1. Recommended Resistor Pullups to 
Vee (386 DX Local Bus) 

Pin and Pull up 
Purpose Signal Value 

ADS# 20Kn ±10% Lightly Pull ADS# 
PGA E13 Negated for 386 DX 
PQFP 123 Hold States 

LOCK# 20Kn ±10% Lightly Pull LOCK# 
PGA F13 Negated for 386 DX 
PQFP 118 Hold States 

Table 6·2. Recommended Resistor Pullups to 
Vee (82385 Local Bus) 

Signal and Pull up 
Purpose 

Pin Value 

BADS# 20 Kn ±10% Lightly Pull BADS# 
PGAN9 Negated for 82385 
PQFP89 Hold States 

BLOCK# 20 Kn ±10% Lightly Pull BLOCK# 
PGAP9 Negated for 82385 
PQFP86 Hold States 

MISS# 20 Kn ±10% Lightly Pull MISS# 
PGAN8 Negated for 82385 
PQFP85 Hold States 

6.3 82385 SIGNAL CONNECTIONS 

6.3.1 Configuration Inputs 

The 82385 configuration signals (M/S#, 2W/D#, 
DEFOE#) must be connected (pulled up) to the ap­
propriate logic level for the system design. There is 
also a reserved 82385 input which must be tied to 
the appropriate level. Refer to Table 6-3 for the sig­
nals and their required logic level. 

Table 6-3. 82385 Configuration I 
Inputs Logic Levels 

Pin and Logic 
Signal Level 

Purpose 

M/S# High Master Mode Operation 
PGA B13 Low Slave Mode Operation 
PQFP 129 

2W/D# High 2-Way Set Associative 
PGA D12 Low Direct Mapped 
PQFP 127 

Resrved High Must be tied to Vee via 
PGA L14 a pull-up for proper 
PQFP 102 functionality 

DEFOE# N/A Define Cache Output 
PGAA14 Enables. Allows use of 
PQFP 128 any SAAM. 

NOTE: 
The listed 82385 pins which need to be tied high should 
use a pull-up resistor in the range of 5 KO to 20 KO. 

5-595 



intJ. 82385 

6.3.2 CLK2 and RESET 

The 82385 has two inputs to which the 386 DX 
CLK2 signal must be connected. One is labeled 
CLK2 (82385 PGA pin C13, PQFP lead 126) and the 
other is labeled BCLK2 (82385 PGA pin L 13, PQFP 
lead 103). These two inputs must be tied together on 
the printed circuit board. 

The 82385 also has two reset inputs. RESET (82385 
PGA pin D13, PQFP lead 125) and BRESET (82385 
PGA pin K12, -PQFP lead 104) must be connected 
on the printed circuit board. 

6.4 UNUSED PIN REQUIREMENTS 

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most 
other CMOS processes, a floating input will increase 
the current consumption of the component and give 
an indeterminate state to the component. 

6.S CACHE SRAM REQUIREMENTS 

The 82385 offers the option of using SAAMs with or 
without an output enable pin. This is possible by in­
serting a transceiver between the SAAMs and the 
386 DX local data bu.s and strapping DEFOE# to 
the appropriate logic level for a given system config­
uration. This transceiver may also be desirable in a 
system which has a very heavily loaded 386 DX lo-
cal data bus. The following sections discuss the 
SAAM requirements for all cache configurations. 

6.5.1 Cache Memory without 
Transceivers 

As discussed in Section 3.2, the 82385 presents all 
of the control signals necessary to access the cache 
memory. The SAAM chip selects, write enables, and 
output enables are driven directly by the 82385. Ta­
ble 6-4 lis.ts the required · SAAM specifications. 
These specifications allow for zero margins. They 
should be used as guides for the actual system de­
sign. 

6.5.2 Cache Memory With 
Transceivers 

To implement an 82385 subsystem using cache 
memory transceivers, COEA # or COEB # must be 
used as output enable signals for the transceivers 
and DEFOE# must be appropriately strapped for 
proper COEx# functionality (since the cache SAAM 
transceivers must be enabled for writes as well as 
reads ). DEFOE# must be tied high when using 
cache SAAM transceivers. In a 2-way set associa­
tive organization, .COEA# enables the transceiver 
for bank A and COEB # enables the bank B trans­
ceiver. A direct mapped cache may use either 
COEA# or COEB# to enable the transceiver. Table 
6-5 lists the required SAAM specifications. These 
specifications allow for zero margin. They should be 
used as guides for the actual system design. 

Table 6·4. SRAM Specs for Non-Buffered Cache Memory 

SRAM Spec Requirements 

Direct Mapped 2-Way Set Associative 
20 25 33 20 25 33 

Read Cycle Requirements 
Address Access (MAX) . 44 36 27 42 34 '27 
Chip Select Acqess (MAX) 56 44 35 56 41 35 
OE# to Data Valid (MAX) 19 13 10 14 13 10 
OE# to Data Float (MAX) 20 15 10 20 15 10 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 30 25 20 30 25 20 
Address Valid to End of Write (MIN) 42 37 29 40 37 29 
Write Pulse Width (MIN) 30 25 20 30 25 20 
Data Setup (MAX) - - - - - -
Data Hold (MIN) 4 4 2 4 4 2 

5-596 



intJ 82385 

Table 6-5. SAAM Specs for Buffered Cache Memory 

SAAM Spec Requirements 

Direct Mapped 2-Way Set Associative 
20 

Read Cycle Requirements 
Address Access (MAX) 37 
Chip Select Access (MAX) 48 
OE# to Data Valid (MAX) N/A 
OE# to Data Float (MAX) NIA 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 30 
Address Valid to End of Write (MIN) 42 
Write Pulse Width (MIN) 30 
Data Setup (MAX) 15 
Data Hold (MIN) 3 

7.0 SYSTEM TEST CONSIDERATIONS 

7.1 INTRODUCTION 

Power On Self Testing (POST) is performed by most 
systems after a reset. This chapter discusses the 
requirements for properly testing an 82385 based 
system after power up. 

7.2 MAIN MEMORY (DRAM) TESTING 

Most systems perform a memory test by writing a 
data pattern and then reading and comparing the 
data. This test may also be used to determine the 
total available memory within the system. Without 
properly taking into account the 82385 cache mem­
ory, the memory test can give erroneous results. 
This will occur if the cache responds with read hits 
during the memory test routine. 

7.2.1 Memory Testing Routine 

In order to properly test main memory, the test rou­
tine must not read from the same block consecutive­
ly. For instance, if the test routine writes a data pat­
tern to the first 32 kbytes of memory (0000-7FFFH), 
reads from the same block, writes a new pattern to 
the same locations (0000-7FFFH), and reads the 
new pattern, the second pattern tested would have 
had data returned from the 82385 cache memory. 
Therefore, it is recommended that the test routine 
work with a memory block of at least 64 kbytes. This 
will guarantee that no 32 kbyte block will be read 
twice consecutively. 

25 33 20 25 33 

29 20 35 29 20 
36 27 48 36 27 

N/A NIA NIA NIA NIA 
NIA NIA NIA NIA NIA 

25 20 30 23 20 
37 29 40 36 27 
25 20 30 25 20 
10 10 15 10 10 
3 3 3 3 3 

7.3 82385 CACHE MEMORY TESTING 

With the addition of SRAMs for the cache memory, it 
may be desirable for the system to be able to test 
the cache SRAMs during system diagnostics. This 
requires the test routine to access only the cache 
memory. The requirements for this routine are based 
on where it resides within the memory map. This can 
be broken into two areas: the routine residing in 
cacheable memory space or the routine residing in 
either non-cacheable memory or on the 386 DX lo­
cal bus (using the LBA# input). 

7.3.1 Test Routine in the NCA# or 
LBA # Memory Map 

In this configuration, the test routine will never be 
cached. The recommended method is code which 
will access a single 32 ~byte block during the test. 
Initially, a 32 kbyte read (assume 0000-7FFFH) 
must be executed. This will fill the cache directory 
with the address information which will be used in 
the diagnostic procedure. Then, a 32 kbyte write to 
the same address locations (0000-7FFFH) will load 
the cache with the desired test pattern (due to write 
hits). The comparison can be made by completing 
another 32 kbyte read (same locations, 0000-
7FFFH), which will be cache read hits. Subsequent 
writes and reads to the same addresses will enable 
various patterns to be tested. 

5-597 

I 



inter 82385 

7.3.2 Test Routine in Cacheable 
Memory 

In this case, it must be understood that the diagnos­
tic routine must reside in the cache memory before 
the actual data testing can begin. Otherwise, when 
the 386 DX performs a code fetch, a location within 
the cache memory which is to be tested will be al­
tered due to the read miss (code fetch) update. 

The first task is to load the diagnostic routine into 
the top of the cache memory. It must be known how 
much memory is required for the code as the rest of 
the cache memory will be tested as in the earlier 
method. Once the diagnostics have been cached 
(via read updates), the code will perform the same 
type of read/write/read/compare as in the routine 
explained in the above section. The difference is 
that now the amount of cache memory to be tested 
is 32 kbytes minus the length of the test routine. 

7.4 82385 CACHE DIRECTORY 
TESTING 

Since the 82385 does not directly access the data 
bus, it is not possible to easily complete a compari­
son of the cache directory. (The 82385 can serially 
transmit its directory contents. See Section 7.5.) 
However, the cache memory tests described in Sec­
tion 7.3 will indicate if the directory is working prop­
erly. Otherwise, the data comparison within the diag­
nostics will show locations which fail. 

There is a slight possibility that the cache memory 
comparison could pass even if locations within the 
directory gave false hit/miss results. This could 
cause the comparison to always be performed to 
main memory instead of the cache and give a proper 
comparison to the 386 DX . The solution here is to 
use the MISS# output of the 82385 as an indicator 
to a diagnostic port which can be read by the 386 
DX . It could also be used to flag an interrupt if a 
failure occurs. 

The implementation of these techniques in the diag­
nostics will assure proper functionality of the 82385 
subsystem. 

7.5 SPECIAL FUNCTION PINS 

As mentioned in Chapter 3, there are three 82385 
pins which have reserved functions in addition to 
their normal operational functions. These pins are 
MISS#, WBS, and FLUSH. 

As discussed previously, the 82385 performs a di­
rectory flush when the FLUSH input is held active for 
at least 4 CLK (8 CLK2) cycles. However, the 
FLUSH pin also serves as a diagnostic input to the 
82385. The 82385 will enter a reserved mode if the 
FLUSH pin is high at the falling edge of RESET. 

If, during normal operation, the FLUSH input is ac­
tive for only one CLK (2 CLK2) cycle/s, the 82385 
will enter another reserved mode. Therefore it must 
be guaranteed that FLUSH is active for at least the 4 
CLK (8 CLK2) cycle specification. 

WBS and MISS# serve as outputs in the 82385 re­
served modes. 

8.0 MECHANICAL DATA 

8.1 INTRODUCTION 

This chapter discusses the physical package and its 
- connections in detail. 

8.2 PIN ASSIGNMENT 

The 82385 pinout as viewed from the top side of the 
component is shown by Figure 8-1. Its pinout as 
viewed from the Pin side of the component is shown 
in Figure 8-2. 

Vee and Vss connections must be made to multiple 
Vee and Vss (GND) pins. Each Vee and Vss must 
be connected to the appropriate voltage level. The 
circuit board should include Vee and GND planes for 
power distribution and all Vee and Vss pins must be 
connected to the appropriate plane. 

5-598 



82385 

p N K H 

0 0 0 0 0 0 0 
vcc vss vcc A27 A24 AZZ A19 

2 0 0 0 0 0 0 0 
vss vss A31 A29 A25 AZ3 A21 

3 0 0 0 0 0 0 0 
vcc NA# READYO# A30 A28 AZS AZO 

4 0 0 0 
VSS CALEN LDSTB 

5 0 0 0 
CS3# CT /R# CSO# 

6 0 0 0 
CWEB# CS2# CS1 # 

7 0 0 0 
COEA# CWEA#- COEB# 

8 0 0 0 
BRDYEN# MISS# WBS 

9 0 0 0 
BLOCK# BADS# BAOE# 

10 0 0 0 
BACP BT /R# DOE# 

11 0 0 0 
VCC BHOLD BHLDA 

12 0 0 0 0 0 0 0 
VSS BBE1 # BBEO# BBE2# BRESET SEN BEZ# 

13 0 0 0 0 0 0 0 
vcc vcc BBE3# BCLKZ BREADY# SSTB# BE1# 

14 0 0 0 0 0 0 0 
vss vss VSS RESERVED BNA# BE3# LBA# 

G F E D c B A 

0 0 0 0 0 0 o' 
A18 A15 A1Z A9 vcc vss AS 

0 0 0 0 0 0 0 
A17 A14 A11 AB A7 A3 SA2 

0 0 0 0 0 0 0 
A16 A13 A10 AS A4 AZ SA3 

0 0 0 
SA4 SAS SA7 

0 0 0 
SAS SA10 SA9 

0 0 0 
SAB SA11 SA13 

0 0 0 
SA1Z SA15 SA14 

0 0 0 
SA18 SA16 SA17 

0 0 0 
SAZZ SA 19 SA20 

0 0 0 
SAZS SA24 SAZ 1 

0 0 0 
SAZ7 SA26 SAZ3 

0 0 0 0 0 0 0 
NCA# D/C# FLUSH ZW/D# SA31 SA29 SAZB 

0 0 0 0 0 
X16# LOCK# ADS# RESET CLKZ 

0 0 0 0 0 
BEO# W/R# M/10# READYI# VCC 

0 
M/S# 

0 

0 
SA30 

0 
VSS DEFOE# 

290143-42 

Figure 8·1. 82385 PGA Pinout-View from TOP Side 

5-599 



intef 82385 

A B c D E G H K N p 

0 0 0 0 0 0 0 0 0 0 0 0 0 
vss vcc A9 A12 AlS Al8 Al9 A22 A24 A27 vcc VSS VCC 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SA2 A3 A7 AB All Al4 A17 A21 A23 A2S A29 A31 vss vss 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SA3 A2 A4 AS AIO A13 Al6 A20 A26 A28 A30 READYO# NA# vcc 

0 0 0 0 0 0 
SA7 SAS SA4 LDSTB CALEN VSS 

METAL LID 
s 0 0 0 0 0 0 

SA9 SA10 SA6 CSO# CT/ /R# CS3# 

6 0 0 0 0 0 0 
SA13 SA11 SAS CS I# CS2# CWEB# 

7 0 0 0 0 0 0 
SA14 SAIS SA12 COEB# CWEA# COEA# 

8 0 0 0 0 0 0 
SA17 SA16 SAIS WBS MISS# BROY.EN# 

9 0 0 0 0 0 0 
SA20 SA 19 SA22 BADE# BADS# BLOCK# 

10 0 0 0 0 0 0 
SA21 SA24 SA2S DOE# BT /R# BACP 

11 0 0 0 0 0 0 
SA23 SA26 SA27 '---------------------~ BHLDA BHOLD VCC 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SA28 SA29 SA31 2W/D# FLUSH D/C# NCA# llE2# SEN BRESET BBE2# BBEO# BBEI# VSS 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SA30 M/S# CLK2 RESET ADS# LOCK# XI 6# BEi# SSTB# BREADY# BCLK2 BBE3# vcc VCC 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
DEFOE# VSS VCC READYI# M/10# W /R# BEO# LBA# BE3# BNA# RESERVED VSS vss vss 

290143-43 

Figure 8·2. 82385 PGA Pinout-View from PIN Side 

5-600 



82385 

82385 

132-LEAD 

PLASTIC QUAD FLAT PACK (POFP) 

(TOP VIEW) 

Figure 8-3. 82385 PQFP Pinout-View from TOP Side 

5-601 

I 

290143-57 



inter 82385 

Table 8-1. 82385 Pinout-Functional. Grouping 

PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal 

M2 65 A31 C12 130 SA31 - 116 Vee 81 5 Vss 
L3 64 A30 A13 131 SA30 C1 6 Vee B14 16 Vss 
L2 63 A29 B12 132 SA29 C14 17 Vee M14 27 Vss 
K3 62 A2S A12 1 SA2S M1 2S Vee N1 50 Vss 
L1 61 A27 C11 2 SA27 N13 51 Vee N2 71 Vss 
J3 60 A26 B11 3 SA26 P1 72 Vee N14 79 Vss 
K2 59 A25 C10 4 SA25 P3 so Vee P2 S7 Vss 
K1 5S A24 B10 7 SA24 P11 SS Vee P4 95 Vss 
J2 57 A23 A11 s SA23 P13 96 Vee P12 115 Vss 
J1 56 A22 C9 9 SA22 E13 123 ADS# P14 - Vss 
H2 55 A21 A10 10 SA21 
H3 54 A20 A9 11 SA20 F14 119 WIR# N9 S9 BADS# 
H1 53 A19 B9 12 SA19 F12 120 DIC# M12 9S BBEO#. 
G1 52 A1S cs 13 SA1S E14 121 MllO# N12 99 BBE1# 
G2 49 A17 AS 14 SA17 F13 11S LOCK# L12 100 BBE2# 
G3 4S A16 BS 15 SA16 M13 101 BBE3# 
F1 47 A15 B7 1S SA15 N3 67 NA# pg S6 BLOCK# 
F2 46 A14 A? 19 SA14 
F3 45 A13 A6 20 SA13 G13 117 X16# K14 106 BNA# 
E1 44 A12 C7 21 SA12 G12 114 NGA# 
E2 43 A11 B6 22 SA11 H14 113 LBA# N4 69 CA LEN 
E3 42 A10 B5 23 SA10 D14 122 READYI# P7 S1 COEA# 
D1 41 A9 A5 24 SA9 M3 66 READYO# M7 S2 COEB# 
D2 40 AS C6 25 SAS N7 77 CWEA# 
C2 39 A? A4 26 SA? E12 124 FLUSH P6 7S CWEB# 
A1 3S A6 C5 29 SA6 MS S4 WBS M5 73 CSO# 
D3 37 A5 B4 30 SA5 NS S5 MISS# M6 74 CS1# 
C3 36 A4 C4 31 SA4 N6 75 CS2# 
B2 35 A3 A3 32 SA3 A14 12S DEFOE# P5 76 CS3# 
B3 34 A2 A2 33 SA2 D12 127 2W/D# 
G14 112 BEO# J12 107 SEN B13 129 MIS# N5 70 CT/R# 
H13 111 BE1# J13 10S SSTB# M10 92 DOE# 
H12 110 BE2# M4 6S LDSTB PS S3 BRDYEN# 
J14 109 BE3# K13 105 BREADY# 

L14 102 RESERVED N11 97 BHOLD P10 91 BACP 
C13 126 CLK2 M11 94 BHLDA M9 90 BAOE# 
D13 125 RESET N10 93 BTIR# 
K12 104 BRESET 
L13 103 BCLK2 

5-602 



infef 82385 

8.3 PACKAGE DIMENSIONS AND 
MOUNTING 

8.4 PACKAGE THERMAL 
SPECIFICATION 

The 82385 package is a 132-pin ceramic Pin Grid 
Array (PGA). The pins are arranged 0.100 inch 
(2.5 mm) center-to-center, in a 14 x 14 matrix, three 
rows around (Figure 8-3). 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 8-4. The case temperature may be measured 
in any environment to determine whether or not the 
82385 is within the specified operating range. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mounting. These 
come in a choice of terminals such as soldertail, sur­
face mount, or wire wrap. 

~ ~ 

"" -;;;- ;::; "' .... 
<D a ... 00 "': "! 00 "' 00 

.::::, e e e .::::, 

~ -;::-"' "' "' "' ... ...; .,; 
.::::, .::::, 

00 0 0 0 0 0 0 IO 

CIN #1 POSITION I~ "' ~ :q ~ ~ ~ ~ 

• @@@@@@'I@@@@@@@ 
2 @@@@@@@@@@@@@@ 
3 @@®@@@@·@@@@®@@ 
4 @@@ @@@ 
5 @@@ @@@ 
6 @@@ I @@@ 

7 @@@ + @@@ 
8 -@ @ @ -- - - @ @ C!5 
9 @@@ @@@ 

10 @@@ @@@ 
11 @@@ @@@ 
12 @@®@@@@,@@@@ @@ 
13 @@@@@®®!®®@@@@@ 
14 @(!)@@@@@,@@@@@@@ 

c D E F G H J K L M N p II 
.020 (0.508) .020 --! 
MIN TYP (0.508) 
.070 ( 1. 777) DIA 
TYP BRAZE PAD 

1------1.450(36.802) -------1 

.725 (18.401) 

.650 ( 16.497) 

.550 (13.959) 

.450 ( 11 .421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 ( 1.269) 
0 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057(1.269) -11-
MAX TYP 

.001 (0.025) R 
MIN TYP 

.018 (0.47) l 
DIA TYP -=~:1:11.' 

.165(4.189), I ~ 
.110(211 

290143-44 

Figure 8·3.1. 132-Pin PGA Package Dimensions 

5-603 

I 



inter 

mm (inch) 

mm (inch) 

mm (inch) 

82385 

D2 

----D-~~...._~~=---'-"=-"-'-'"'-'-''-'-'-'"""--=->"--L"-""~ 

Dl PLANE 

Figure 8-3.2. Principal Dimensions and Datums 

3 .81 ( .150) MAX TYP 

SEE DETAIL M 

Figure 8-3.3. Molded Details 

-u-10 .635 rn. 025) I 

SEE DETAIL L 

'-+--+<--SEE DETAIL J 

.....___ 03/F3 ___. 

IL-D4/~4 • 

I---- DIE ------t 

290143-58 

290143-59 

290143-60 

Figure 8-3.4. Terminal Details 

5-604 



intef 

mm (inch) 

mm (inch) 

AA0.41 

l{µ." 
0.31 ( .012) -l 1-
0.20 (.008) 

82385 

( .0lbl 
( .008) 

-04/E4 

14110.20 c.008>@lc!A®-B®ID®ki 

0.20 (.008) 
0.14 (.005) 

8 DEG. 
0 DEG. 

Figure 8-3.5. Typical Lead 

1.32 ( .052) 1-
1.22 c.048) I 

1.32 ( .052) 
1.22 ( .048) ~ 

0. 90 < .035l MIN. 1-
2.03 ( .080) 
1.93 (.07b) 

----02-----i 

Figure 8-3.6. Detail M 

E2 

2.03 (.080) 
1. 93 ( .07bl 

290143-62 

290143-61 

PLASTIC QUAD FLAT PACK 

Letter or 
Symbol 

A 

A1 

D/E 

01/E1 

D2/E2 

D3/E3 

L1 

N 

Table 8-2. Symbol List for Plastic Quad Flat Pack 

Description 
of Dimensions 

Package height: distance 
from seating plane to 
highest point of body 

Standoff: Distance from 
seating plane to base plane 

Overall package dimension: 
lead tip to lead tip 

Plastic body dimension 

Bumper Distance 

Footprint 

Foot length 

Total number of leads 

NOTES: 
1. All dimensions and tolerances conform to ANSI Y14.5M-
1982. 
2. Datum plane -H- located at the mold parting line and 
coincident with the bottom of the lead where lead exits 
plastic body. 
3. Datums A-B and -D- to be determined where center 
leads exit plastic body at datum plane -H-. 
4. Controlling Dimension, Inch. 
5. Dimensions D1, D2, E1 and E2 are measured at the 
mold parting line and do not include mode protrusion. Al­
lowable mold protrusion of 0.18mm (0.007 in.) per side. 
6. Pin 1 identifier is located within one of the two zones 
indicated. 
7. Measured at datum plane -H-. 
8. Measured at seating plane datum -C-. 

5-605 

I 



intef 82385 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

290143-45 

Figure 8-4. Measuring 82385 PGA Case Temperature 

Table 8-3. 82385 PGA Package Typical Thermal Characteristics. 

Thermal Resistance-°C/Watt 

Airflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) 

0 Junction-to-Case 2 2 2 2 2 2 
(Case Measured 
as Figure 8.4) 

0 Case-to-Ambient 19 18 17 15 12 10 
(No Heatsink) 

O Case-to-Ambient 16 15 14 12 9 7 
(with Omnidirectional 
Heatsink) 

O Case-to-Ambient 15 . 14 13 11 8 6 
(with Unidirectional 
Heatsink) 

NOTES: 
1. Table 8-3 applies to 82385 PGA plugged into socket or soldered directly onto board. 
2. IJJA = IJJc + IJcA· 
3. IJJ-CAP = 4°C/W (approx.) 

IJJ-PIN = 4°C/W (inner pins) (approx.) 
IJJ-PIN = 8°C/W (outer pins) (approx.) 

290143-46 

5-606 

800 
(4.06) 

2 

9 

6 

5 



intef 82385 

Table 8-4. 82385 132-Lead PQFP Package Typical Thermal Characteristics 

Thermal Resistance-°C/Watt 

Airflow-lfm 
Parameter 

0 50 100 200 400 600 

8 Junction-to-Case 
(Case Measured 5 5 5 5 5 5 
as Figure 8.4) 

(} Case-to-Ambient 
23.5 22.0 20.5 17.5 14.0 11.5 

(No Heatsink) 

(} Case-to-Ambient 
(with Omnidirectional 
Heatsink) 

TO BE DEFINED 
8 Case-to-Ambient 
(with Unidirectional 
Heatsink) 

NOTES: 
1. Table 8-4 applies to 82385 PQFP plugged into socket or soldered directly onto board. 
2. OJA = OJc + OcA· 
3. OJ.CAP = 4°C/W (approx.) 

OJ.PIN = 4°C/W (inner pins) (approx.) 
OJ.PIN = 8°C/W (outer pins) (approx.) 

5-607 

800 

5 

9.5 



intef 82385 

9.0 ELECTRICAL DATA 

9.1 INTRODUCTION 

This chapter presents the A.G. and D.C. specifica­
tions for the 82385. 

9.2 MAXIMUM RATINGS 

Storage Temperature .......... -65°C to + 150°C 

Case Temperature under Bias ... - 65°C to + 110°C 

Supply Voltage with Respect 
to Vss ....................... -0.5V to +6.5V 

Voltage on Any Other Pin .... -0.5V to Vee + 0.5V 

NOTE: 
Stress above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation at these or any other con­
ditions above those listed in the operational sec­
tions of this specification is not implied. 

Exposure to absolute· maximum rating conditions 
for extended periods may affect device reliability. 
Although the 82385 contains protective circuitry to 
resist damage from static electrical discharges, al­
ways take precautions against high static voltages 
or electric fields. 

9.3 D.C. SPECIFICATIONS Vee= 5V ±5%; Vss = ov 

Table 9-1. D.C. Specifications 

Symbol Parameter Min Max Unit 

V1L Input Low Voltage -0.3 0.8 v 

V1H Input High Voltage 2.0 Vee+ o.3 v 

VeL CLK2,BCLK21nputLow -0.3 0.8 v 

VeH CLK2, BCLK2 Input High 3.7 Vee+ 0.3 v 

Vol Output Low Voltage 0.45 v 

VoH Output High Voltage 2.4 v 

Ice Supply Current 300 mA 

lu Input Leakage Current ±15 µA 

ILO Output Leakage Current ±15 µA 

C1N Input Capacitance 10 pF 

Gour Output Capacitance 10 pF 

CcLK CLK2 Input Capacitance 15 pF 

NOTES: 
1. Minimum value is not 100% tested. 
2. Ice is specified with inputs driven to CMO$ levels. Ice may be higher if driven to TTL levels. 
3. Not 100% tested. Test conditions le= 1 MHz, Inputs= OV, TcASE = Room. 
4. 300 mA is the maximum Ice at 33 MHz. 

275 mA is the maximum Ice at 25 MHz. 
250 mA is the maximum Ice at 20 MHz. 

5-608 

Test Condition 

(Note 1) 

(Note 1) 

loL = 4mA 

loH = -1 mA 

(Note 2) 
(Note 4) 

ov < V1N,,; Vee 

0.45 < Vour < Vee 

(Note 3) 

(Note 3) 

(Note 3) 



intJ 82385 

9.4 A.C. SPECIFICATIONS 

The A.G. specifications given in the following tables 
consist of output delays and input setup require­
ments. The A.G. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to 
the appropriate functional section. 

A.G. spec measurement is defined in Figure 9-1. In­
puts must be driven to the levels shown when A.G. 
specifications are measured. 82385 output delays 

CLK2 [ 2V 

3.0V 
VALID 

OUTPUT n 
ov 

LEGEND: 
A-Maximum output delay specification 
B-Minimum output delay specification 
C-Minimum input setup specification 
8-Minimum input hold specification 

NOTES: 

--e 

1.sv 

are specified with mm1mum and maximum limits, 
which are measured as shown. 82385 input setup 
and hold times are specified as minimums and de­
fine the smallest acceptable sampling window. With­
in the sampling window, a synchronous input signal 
must be stable for correct 82385 operation. 

9.4.1 Frequency Dependent Signals 

The 82385 has signals whose output valid delays 
are dependent on the clock frequency. These sig­
nals are marked in the A.G. Specification Tables with 
a Note 1. 

2V 

1 SV VALID NOTE 1 
' OUTPUT n+1 

NOTE 2 

290143-47 

1. Under rated loading 82385 output (tr and tf) is typically ,,;; 4.0 ns from 0.8V to 2.0V. 
2. Input waveforms have tr ,,;; 2.0 ns from 0.8V to 2.0V. 

Figure 9·1. Drive Levels and Measurement Points for A.C. Specification 

5-609 

I 



inter 82385 

A.C. SPECIFICATION TABLES 
Many of the A.C. Timing parameters are frequency dependent. The frequency dependent A.C. Timing parame­
ters are guaranteed only at the maximum specified operating frequency. 

Symbol 

TeASE 

t1 

t2 

t3a 

t3b 

t4a 

t4b 

t5 

t6 

t7a 

t7b 

t7c 

t7d 

ta 

t9a 

t9b 

t9c 

t10 

t11 

t12 

t13a1 

t13a2 

t13b 

t13c 

t14a 

t14b 

t15 

t16 

t'i7 

t18 

t19 

Table 9•2. 82385 A.C. Timing Specifications 
Vee= 5.0 ±5% 

Parameter 
20MHz 25MHz 

Min Max Min Max 

Case Temperature 0 85 0 75 

Operating Frequency 15.40 20.00 15.40 25.00 

CLK2, BCLK2 Clock Period 25.00 32.50 20.00 32.50 

CLK2, BCLK2 High Time @ 2.0V 10 8 

CLK2, BCLK2 High Time@ 3.7V 7 5 

CLK2, BCLK2 Low Time @ 2.0V 10 8 

CLK2, BCLK2 Low Time @ 0.8V 8 6 

CLK2, BCLK2 Fall Time 8 7 

CLK2, BCLK2 Rise Time 8 7 

A2-A 19, A21-A31 Setup Time 19 18 

LOCK# Setup Time 16 14 

BE(0-3) # Setup Time rn 14 

A20 Setup Time 13 13 

A2-A31, BE(0-3)# LOCK# Hold Time 3 3 

M/10#, DIC# Setup Time 22 17 

W/R# Setup Time 22 18 

ADS# Setup Time 22 18 

ADS#, DIC#, M/10#, W/R# Hold Time 5 3 

READY I# Setup Time 12 8 

READY!# Hold Time 4 4 

NCA # Setup Time (See t55b2) 21 18 

NCA # Setup Time (See t55b3) 16 13 

LBA# Setup Time 10 8 

X16# Setup Time 10 7 

NCA # Hold Time 4 3 

LBA #, X16 # Hold Time 4 3 

RESET, BRESET Setup Time 12 10 

RESET, BRESET Hold Time 4 3 

NA# Valid Deiay 15 34 4 27 

READYO# Valid Delay 4 28 4 22 

BR DYEN# Valid Delay 4 28 4 21 

5-610 

33MHz 
Units Notes 

Min Max 

0 75 ·c 
15.40 33.33 MHz 

15.00 32.50 ns 

6.25 ns 

4.5 ns (Note 8) 

6.25 ns 

4.5 ns (Note 8) 

4 ns (Notes 8, 9) 

4 ns (Notes 8, 9) 

13 ns (Note 1) 

9.5 ns (Note 1) 

10 ns (Note 1) 

9 ns (Note 1) 

3 ns 

13 ns (Note 1) 

13 ns (Note 1) 

13.5 ns (Note 1) 

3 ns 

7 ns (Note 1) 

3 ns 

13 ns (Note 6) 

9 ns (Note 6) 

5.75 ns 

5.5 ns 

3 ns 

3 ns 

8 ns 

2 ns 

4 19.2 ns (25 pF Load) 
(Note 1) 

3 15 ns (25 pF Load) 
(Note 1) 

3 13 ns 



intef 82385 

Symbol 

t21a1 

t21a2 

t21a3 

t21b 

t21c 

t21d 

t22a1 

t22a2 

t22b 

t22c1 

t22c2 

t23a 

t23b 

t24 

t25a 

t25b 

t25c1 

t25c2 

t25d 

t26 

t27 

t28a 

t28b 

t31 

t32 

t33 

t34 

t35 

t36 

t37 

t38 

t40a 

t40b 

Table 9·2. 82385 A.C. Timing Specifications (Continued) 
Vee= 5.0 ±5% 

Parameter 
20MHz 25MHz 33MHz 

Units 
Min Max Min Max Min Max 

GALEN Rising, PH11 3 24 4 21 3 15 ns 

GALEN Falling, PHl1 3 24 4 21 3 15 ns 

GALEN Falling in T1 P, PHl2 3 24 4 21 3 15 ns 

GALEN Rising Following CWTH Cycle 3 34 4 27 3 20 ns 

GALEN Pulse Width 10 10 10 ns 

GALEN Rising to CS# Falling 13 13 13 ns 

CWEx# Falling, PHl1 (CWTH) 4 25 4 23 3 18 ns 

CWEx# Falling, PHl2 (CROM) 4 25 4 23 3 18 ns 

CWEx # Pulse Width 30 25 20 ns 

CWEx# Rising, PH11 (CWTH) 4 25 4 21 3 16 ns 

CWEx# Rising, PHl2 (CROM) 12 25 8 21 6 16 ns 

CS(0-3) # Rising 12 37 9 29 3 25 ns 

COEx # Falling to CS(0-3) # Falling 0 0 0 ns 

CT /R # Valid Delay 12 38 9 30 3 22 ns 

COEx# Falling (Direct) 1 22 4 19.5 3 15 ns 

COEx# Falling (2-Way) 1 24.5 4 19.5 3 15 ns 

COEx # Rising Delay @ T CASE = Min 5 17 4 17.5 3 12 ns 

COEx # Rising Delay @ T CASE = Max 5 19 4 19.5 3 12 ns 

CWEx# Falling to COEx# Falling or 0 5 0 5 0 5 ns 
CWEx# Rising to COEX# 
Rising when DEFOE# =Vee 

CS(0-3)# Falling to CWEx# Rising 30 25 20 ns 

CWEx# Falling to CS(0-3)# Falling 0 0 0 ns 

CWEx # Rising to GALEN Rising 0 0 2 ns 

CWEx# Rising to CS(0-3)# Falling 0 0 2 ns 

SA(2-31) Setup Time 19 10 8 ns 

SA(2-31) Hold Time 3 3 3 ns 

BADS# Valid Delay 6 28 4 21 3 16 ns 

BADS# Float Delay 6 30 4 30 4 25 ns 

BNA # Setup Time 9 7 7 ns 

BNA# Hold Time 15 4 2 ns 

BREADY# Setup Time 26 18 13 ns 

BREADY# Hold Time 4 3 2 ns 

BACP Rising Delay 4 20 4 16 2 12 ns 

BACP Falling Delay 4 22 4 20 2 18 ns 

5-611 

Notes 

(Note 1) 

(Note 1) 

(Note 1) 

(Notes 1, 2) 

(Note 1) 

(Note 1) 

(Note 1) 

(Note 1) 

(Note 1) 

(25 pF Load) 

(25 pF Load) (Note 1) 

(25 pF Load) 

(25 pF Load) 

(25 pF Load) 

(Notes 1, 2) 

(Note 1) 

(Note 3) 

(Note 1) 



intef 82385 

Table 9·2. 82385 A.C. Timing Specifications (Continued) 
Vee= 5.0 ±5% 

Symbol Parameter 
20MHz 25MHz 33MHz 

Min Max Min Max Min Max 

t41 BAOE # Valid Delay 4 18 4 15 2 12 

t43a BT IR# Valid Delay 2 19 4 16 2 14 

t43b1 DOE# Falling Delay 2 23 4 20 2 16 

t43b2 DOE# Rising Delay @ T CASE = Min 4 17 4 17 2 12 

t43b3 DOE# Rising Delay @ T CASE = Max 4 19 4 19 2 14 

t43c LDSTB Valid Delay 2 26 2 21 2 16 

t44a SEN Setup Time 11 9 7 

t44b SSTB # Setup Time 11 5 5 

t45 SEN, SSTB # Hold Time 5 5 2 

MIS# = Vee (Master Mode) 

t46 BHOLD Setup Time 17 15 11 

t47 BHOLD Hold Time 5 3 2 

t48 BHLDA Valid Delay 5 28 4 23 3 16 

MIS# = Vss (Slave Mode) 

t49 BHLDA Setup Time 17 15 11 

t50 BHLDA Hold Delay 5 3 2 

t51 BHOLD Valid Delay 5 28 4 23 3 18 

t55a BLOCK# Valid Delay 4 30 4 26 3 20 

t55b1 BBE(0-3) # Valid Delay 4 30 4 26 3 20 

t55b2 BBE(0-3#) Valid Delay 4 30 4 26 3 20 

t55b3 BBE(0-3)# Valid Delay 4 36 4 32 3 23 

t55c LOCK# Valid to BLOCK# Valid 0 30 0 26 0 20 

t56 MISS# Valid Delay 4 35 4 30 3 22 

t57 MISS#, BBE(0-3)#, BLOCK# Float Delay 4 32 4 30 4 25 

t58 WBS Valid Delay 4 37 4 25 3 16 

t59 FLUSH Setup Time 16 12 10 

t60 FLUSH Hold Time 5 5 3 

t61 FLUSH Setup to RESET Falling 26 21 16 

t62 FLUSH Hold to RESET Falling 26 21 16 

NOTES: 
1. Frequency dependent specification. 
2. Used for cache data memory (SRAM) specifications. 
3. Float times not 100% tested. 
4. This feature is tested only at 16 MHz. 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns (Notes 1,5) 

ns (Notes 1, 7) 

ns (Notes 1, 7) 

ns (Notes 1, 7) 

ns (Notes 1, 5) 

ns (Note 1) 

ns (Note 3) 

ns (Note 1) 

ns 

ns 

ns (Note 4) 

ns (Note 4) 

5. BLOCK# delay is either from BPHl1 or from 386 LOCK#. Refer to Figure 5-3K and 5-3L in the 82385 data sheet. 
6. NGA# setup time is now specified to the rising edge of PHl2 in the state after 386 DX addresses become valid (either the 

first T2 or the state after the first T2P). 
7. BBE# Valid delay is a function of NGA# setup. 
8. Not 100% tested. 
9. t5 is measured from 0.8V to 3.7V. 

t6 is measured from 3.7V too.av 
This parameter is not 100.% tested and is guaranteed by Intel's test methodology. 

5-612 



intJ 

PHl2 

CLK2 

CLK 

82385 

\5 \6 

\3--->-----\4 

------\2 

Figure 9-2. CLK2, BCLK2 Timing 

82385 
OUTPUT~ 

~CL 
290143-49 

CL indicates all parasitic capacitances. 

Figure 9-3. A.C. Test Load 

386 DX Interface Parameters 

PHI! PHl2 

290143-48 

PHI! 

A2-31~""'!""t'-l:""'!""'r7!~~~-t-~~~~~-+~~~~~~t--~....,1nt""'!""~~:-

BE0#-3# ~~~~u+-~~~l--~~~~~l--~~~~~l--~....jjU...~.i....l~ LOCK# -

W/R# """"-r-l~'t""'f"Jl-~~--1"~~~~~-t-~~~~~'l-~--t.~"""""""""T"" 
M/10# 
D/C# _.,~~-.Ko.JI-~~-+-~~~~~+-~~~~~+--~~.,.~~~ 

LBA#~""'""To-r""'""T"Jl~~~-1-~~+-~~-;-~~~~~~t--~....,~""'"""""'"""""~ 

X16# ...,~~~~~~~-1-~~ .... ~~..o1-~~~~~--1,__~--1ro.a.~..._i...• 

READYI# 

290143-50 

5-613 



intef 

CLK2 

CALEN 

CS# 

CWE# 

CT/R# 

OUTPUT DELAYS 

PH12 

T1, 1 p 

PHl1 : PHl2 

82385 

PHl1 PHl2 

Cache Write Hit Cycle 

T2 

I PHl1 : PHl2. 

<D*. This would be 218 if previous bus cycle was CacheWrite Hit cycle. 

5-614 

PHl1 

290143-51 

I PHl1 : PHl2 

290143-52 



intJ 82385 

Cache Read Miss (Cache Update Cycle) 

T1P T2P 

PH11 : PHl2 PHl1 : PHl2 

* <D. This would be 21 B if previous bus cycle was Cache Write Hit cycle. 

CLK2 

CS# 

COE# 
(DIRECT MAPPED) 

COE# 
(2WAY) 

CAL EN 

PHl1 

(T1P) ___ _ 

Cache Read Cycle 

T1, T1 P 
PHl2 PH11 

* <D. This would be 21 B if previous bus cycle was Cache Write Hit cycle. 

5-615 

I PHl1 

T2, T2P 
PHl2 

T1P 

: PHl2 

290143-53 

PHl1 

I 

290143-54 



intJ 

BCLK2 

BCLK 

BNA# 

BREADY# 

SEN 
SSTB# 

BHOLD 
(t.4ASTER CONFIG.) 

BHLDA 
(SLAVE CONFIG.) 

82385 

System Bus Interface Parameters 

BPHl2 BPH11 BPHl2 

'This would be 21 B if previous cycle was Cache Write Hit. 

5-616 

BPHl1 

290143-55 



infef 82385 

System Bus Interface Parameters (Continued) 

OUTPUT DELAYS 

BCLK2 

BCLK 

BADS#.BBE# 
BLOCK# 

MISS# 

(VALID DELAY) 

BADS#, BBE# 
BLOCK# 

MISS# 

FLOAT DELAY 

BHOLD 
(SLAVE CONFIG.) 

BHLDA,WBS 
(MASTER CONFIG.) 

BACP,BAOE# 

BT/R#.DOE# 

LDSTB 

BACP I 

DOE# 

BPHl2 BPH11 BPHl2 

5-617 

I 

290143-56 



inter 82385 

APPENDIX A 
82385 Signal Summary 

Signal Signal Function Active Input/ Tri-State 
Group/Name State Output Output? 

386 DX INTERFACE 

RESET 386 DX Reset High I -
A2-A31 386 DX Address Bus High I -
BEO#-BE3# 386 DX Byte Enables Low I -
CLK2 386DXClock - I -
READYO# Ready Output Low 0 No 

BRDYEN# Bus Ready Enable Low 0 No 

READYI# 386 DX Ready Input Low I -
ADS# 386 DX Address Status Low I -
M/10# 386 DX Memory I 110 Indication - I -
W/R# 386 DX Write/Read Indication - I -
DIC# 386 DX Data/Control Indication - I -
LOCK# 386 DX Lock Indication Low I -
NA# 386 DX Next Address Request Low 0 No 

CACHE CONTROL 

GALEN Cache Address La.tch Enable High 0 No 

CT/R# Cache Transmit/Receive - 0 No 

CSO#-CS3# Cache Chip Selects Low 0 No 

COEA#, COEB# Cache Output Enables Low 0 No 

CWEA#, CWEB# Cache Write Enables Low 0 No 

LOCAL DECODE 

LBA# 386 DX Local Bus Access Low I -
NGA# Non-Cacheable Access Low I -
X16# 16-Bit Access Low I -
STATUS AND CONTROL 

MISS# Cache Miss Indication Low 0 Yes 

WBS Write Buffer Status High 0 No 

FLUSH Cache Flush High I -
82385 INTERFACE 

BREADY# 385 Ready Input Low I -
BNA# 385 Next Address Request Low I -
BLOCK# 385 Lock Indication Low 0 Yes 

BADS# 385 Address Status Low 0 Yes 

BBEO#-BBE3# 385 Byte Enables Low 0 Yes 

5-618 



intJ 82385 

82385 Signal Summary (Continued) 

Signal 
Signal Function 

Active Input/ Tri-State 
Group/Name State Output Output? 

DATA/ADDR CONTROL 

LDSTB Local Data Strobe Pos. Edge 0 No 

DOE# Data Output Enable Low 0 No 

BT/R# Bus Transmit/Receive - 0 No 

BACP Bus Address Clock Pulse Pos.Edge 0 No 

BAOE# Bus Address Output Enable Low 0 No 

CONFIGURATION 

2W/D# 2-Way/Direct Map Select - I -
M/S# Master/Slave Select - I -
DEFOE# Define Cache Output Enable - 1 -
COHERENCY 

SA2-SA31 Snoop Address Bus High I -

SSTB# Snoop Strobe Low I -
SEN Snoop Enable High I -
ARBITRATION 

BHOLD Hold High 1/0 No 

BHLDA Hold Acknowledge High 1/0 No 

10.0 REVISION HISTORY 
DOCUMENT: ADVANCE INFORMATION DATA SHEET 
PRIOR REV: 290143·003 September 1988 
NEW REV: 290143-004 September 1989 

Change# Page# Para.# Change 

1. Throughout Fig. 8-3 PQFP Package added 
2. Throughout Tables PQFP Info 

8-2, 8-3 
3. Throughout Table8-4 PQFP Thermal Resistance 
4. Throughout A.C. Specifications Unified (20 MHz, 25 MHz, 33 MHz) 
5. Throughout DEFOE# Specifications added to device 

5-619 



APPLICATION 
NOTE 

33 MHz 386™ System 
Design Considerations 

SHAHZAD BAQAI 

KIYOSHI NISHIDE 

AP-442 

June 1990 

Order Number: 240725-001 
5-620 



33 MHz 386™ SYSTEM 
DESIGN CONSIDERATIONS 

CONTENTS PAGE CONTENTS PAGE 

1.0 INTRODUCTION .................. 5-622 3.0 DESIGN EXAMPLE ............... 5-637 

2.0 HIGH SPEED SYSTEM DESIGN 
CONSIDERATIONS ............. 5-624 

3.1 System Architecture for High 
Speeds ..................... 5-637 

2.1 Overview of high speed 
effects ...................... 5-624 

3.2 CPU Subsystem ............... 5-637 

3.3 DRAM Subsystem ............. 5-637 

2.2 Transmission Line Effects ..... 5-627 3.4 Cache Subsystem ............. 5-639 

2.3 Reflection ..................... 5-628 3.5 1/0, EPROM Subsystem ....... 5-645 

2.4 Cosstalk ....................... 5-633 APPENDIX A 
2.5 Skew .......................... 5-633 Schematics ........................... 5-649 

2.6 D.C. Loading .................. 5-634 APPENDIX B 
2.7 A.C. (Capacitive) Loading ...... 5-634 State Diagrams and Palcodes ........ 5-660 
2.8 Derating Curve ................ 5-634 

2.9 High Speed Clock Circuits ..... 5-635 
APPENDIXC 
Timing Diagrams ...................... 5-707 

APPENDIX D 
Timing Equations ..................... 5-720 

APPENDIX E 
References ........................... 5-730 

5-621 

El 



AP-442 

RELATED DOCUMENTATION 

This Application Note should be used in conjunction 
with the 386™ DX microprocessor Data Sheet (Order 
Number 231630-007) and the 386™ DX Hardware 
Reference Manual (Order Number 231732-004). A list 
of related references is provided in the appendix for 
getting more information on high speed design issues. 

INTRODUCTION 

The 386™ DX Microprocessor is an advanced 32-bit 
microprocessor designed using Intel's CHMOS IV pro­
cess for applications which require very high perform­
ance. It is optimized for multitasking operating sys­
tems. The 32-bit register and data paths support 32-bit 
address and data types allowing up to four gigabytes of 
physical memory and 64 terabytes of virtual memory to 
be addressed. The integrated memory management and 
protection architecture includes address translation 
registers, advanced multitasking hardware and a pro­
tection mechanism to support operating systems. In ad­
dition, the 386 DX microprocessor allows the simulta­
neous running of DOS with other operating systems. 

Instruction pipelining, on chip address translation and 
high bus bandwidth ensure short average instruction 
execution times and high system throughput. To facili­
tate high performance system hardware designs, the 
386 DX microprocessor bus interface offers address 
pipelining, dynamic data bus sizing and direct byte en­
able signals for each byte of the data bus. 

This Application Note is intended to show how to com­
plete a successful design of a 'Core' system using the 
386 DX-33, the 33 MHz clock version. A Core system 
is a minimum system configuration, in this case com­
prising the CPU, the 82385 32-bit Cache controller, 
Dynamic and Static RAM and an 1/0 mechanism with 
which to communicate with the CPU. 

The Application Note examines the design techniques 
necessary when executing a design at this frequency. 
Many of the methods used at lower frequencies, such as 
16 MHz and 20 MHz, are no longer valid at this higher 
frequency. Phenomena, whose effects are negligible at 
the lower frequencies, m\lst be taken into account in the 
design. The physical positioning of components relative 
to each other plays a significant part in the success of 
the design, since transmission line effects (reflection, 
radiation) are no longer negligible. 

5-622 



intJ 

2X CLOCK { 

32-BIT {DO-D31 
DATA 

BUS l CONTROL 

BUS { 
ARBITRATION 

INTERRUPTS { 

AP-442 

CLK2 

A ...I\ < DATA BUS :~ 
\f -v 

AD~ 

NM_ 386TM DX 

BS1~,... Microprocessor 

READ!fi.. 

HOLD 

HLDA ..-

INTR 

NMI 

RESET 

...I\ 
ADDRESS BUS 

BE~ ~ 
BE~ 

BE1, 
,... 
_a;_ 

BEQ! 

A2-A31 I 
32-BIT 

) 
BYTE ADDRESS 

ENABLES 

w..&L ...... 
w 
MLIQfi_ 

LOC15fi_ 

_2EREO 

4 BUSY! 

4ERRORt 
} COPROCESSOR SIGNALLING 

Vee 

::.:GND } POWER CONNECTIONS 

Figure 1-1. Functional Signal Groups 

CLK2 [ 

INTERNAL 386™ 
t.llCROPROCESSOR CLOCK [ 

(HALF THE FREQUENCY 
OF CLK2) 

PROCESSOR CLOCK 
PERIOD 

PROCESSOR CLOCK 
PERIOD 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
.P1 .P2 .P1 .P2 

15ns t.llN133t.lH~ 
(33 t.lHz t.lAX) J 386DX CPU 

Figure 1-2. CLK2 Signal and Internal Processor Clock 

5-623 

240725-1 

El 

240725-2 



intef AP-442 

SECTION II. HIGH SPEED SYSTEM 
DESIGN CONSIDERATIONS 

2. 1 Overview Of High Speed Effects 

This section is included as a brief overview of general 
issues that are applicable to both higher and lower fre­
quencies of circuit design. 

The CHMOS IV 386 DX CPU differs from previous 
HMOS microprocessors in that its power dissipation is 
primarily capacitive; there is almost no DC power dissi­
pation. Power dissipation depends mostly on frequency. 
This fact is used in designs where power consumption is 
critical. 

Power dissipation can be distinguished as either inter­
nal (logic) power or I/0 (bus) power. Internal power 
varies with operating frequency and to some extent 
with wait states and software. Internal power increases 
with supply voltage also. Process variations in manu­
facturing affect internal power, although to a lesser ex­
tent than with NMOS processes. 

I/O power, which accounts for roughly one-fifth of the 
total power dissipation, varies with frequency and volt­
age. It also depends on capacitive bus load. Capacitive 
bus loadings for all output pins are specified in the 386 
DX CPU data sheet. The 386 DX CPU output valid 
delays will increase if these loadings are exceeded. The 
addressing pattern of the software can affect I/0 power 
by changing the effective frequency at the address pins. 
The variation in frequency at the data pins tends to be 
smaller; thus varying data patterns should not cause a 
significant change in power dissipation. 

POWER AND GROUND PLANES 

Power and ground planes must be used in 386 DX CPU 
systems to minimize noise. Power and ground lines 
have inherent inductance and capacitance, therefore an 
impedance z = (L/C)*'/2 • The total characteristic im­
pedance for the power supply can be reduced by adding 
more lines. This effect is illustrated in 2.1 which shows 
that two lines in parallel have half the impedance of 
one. To reduce the impedance even further, the user 
should add more lines. In the limit, an infinite number 
of parallel lines, or a plane, results in the lowest imped­
ance. Planes also provide the best distribution of power 
and ground. 

240725-3 

Figure 2-1. Reducing Characteristic Impedance 

The 386 DX CPU has 20 Vee pins and 21 Vss 
(ground) pins. All power and ground pins must be con­
nected to a plane. Ideally, the 386 DX CPU is located 
at the center of the board, to take full advantage of 
these planes. Although the 386 DX CPU generally de­
mands less power than the 80286, the possibility of 
power surges is increased due to higher frequency and 
pin count. Peak-to-peak noise on Vee relative to Vss 
should be maintained at no more than 400 mV, and 
preferably to no more than 200 mV. 

DECOUPLING CAPACITORS 

The switching activity of one device can propagate to 
other devices through the power supply. For example, 
in the TTL NANO gate of Figure 2.2, both Q3 and Q4 
transistors are on for a short time when the output is 
switching. This increased load causes a negative spike 
on V cc and a positive spike on ground. 

5-624 



intJ AP-442 

s--+---

04 

R4 

240725-4 

Figure 2·2. Circuit without Decoupling 

In synchronous systems in which many gates switch 
simultaneously, the result is signifcant noise on the 
power and ground lines. 

Decoupling capacitors placed across the device between 
V cc and ground reduce Voltage spikes by supplying the 
extra current needed during switching. These capaci­
tors should be placed close to their devices because the 
inductance or connection lines negates their effect. 

When selecting decoupling capacitors, the user should 
provide 0.01 microfarads for each device and 0. l mi­
crofarads for every 20 gates. Radio-frequency capaci­
tors must be used; they should be distributed evenly 
over the board to be most effective. In addition, the 
board should be decoupled from the external supply 
line with a 2.2 microfarad capacitor. 

Chip capacitors (surface-mount) are preferable because 
they exhibit lower inductance and require less total 
board space. They should be connected as in Figure 2.3. 
Leaded capacitors can also be used if the leads are kept 
as short as possible. Six leaded capacitors are required 
to match the effectiveness of one chip capacitor, but 
because only a limited number can fit around the 386 
DX, the configuration in Figure 2.4 results. 

5-625 

D =0.1µ.F 

Ii) =1.0 ,F 

240725-5 

Figure 2·3. Decoupling Chip Capacitors 

0 =0.1 ,F 

240725-6 

Figure 2·4. Decouplihg Leaded Capacitors 



intef AP-442 

HIGH FREQUENCY DESIGN CONSIDERATIONS-

At high signal frequencies, the transmission line prop­
erties of signal paths in a circuit must be considered. 
Reflections, interference, and noise become significant 
in comparison to the high-frequency signals. They can 
cause false signal transitions, data errors, and input 
voltage level violations. These errors can be transient 
and therefore difficult to debug. In this section, some 
high-frequency design issues are discussed. Their effects 
and ways to minimize will be introduced in the next 
section. 

REFLECTION AND LINE TERMINATION 

Input voltage level violations are usually due to voltage 
spikes that raise input voltage levels above the maxi­
mum limit (overshoot) and below the minimum limit 
(undershoot). These voltage levels can cause excess cur­
rent on input gates that results in permanent damage to 
the device. Even if no damage occurs, most devices are 
not guaranteed to function as specified if input voltage 
levels are exceeded. 

Signal lines are terminated to minimize signal reflec­
tions and prevent overshoot and undershoot. If the 
round-trip signal path delay is greater than the rise time 
or fall time of the signal, terminate the line. If the line is 
not terminated, the signal reaches its high or low level 
before reflections have time to dissipate,· and overshoot 
and undershoot occur. There are a few termination 
techniques that are used in different applications, these 
will be discussed in the next section. 

INTERFERENCE 

Interference is the result of electrical activity in one 
conductor causing transient voltages to appear in an­
other conductor. It increases with frequency and close­
ness of the two conductors. 

There are two types of interference to consider in high 
frequency circuits: electromagnetic interference (EMI) 
and electrostatic interference (ESI). 

EMI (also called crosstalk) is caused by the magnetic 
field that exists around any current carrying conductor. 
The magnetic flux from one conductor can induce cur­
rent in another conductor, resulting in transient volt­
age. Several precautions can minimize EMI. 

Running a ground line between two adjacent lines 
wherever they traverse a long section of the circuit 
board. The ground line should be grounded at both 
ends. 

Running ground line between the lines of an address 
bus or a data bus if either of the following conditions 
exist. 

- The bus is on an external layer of the board. 

- The bus is on an internal layer but not sandwiched 
between power and ground planes that are at most 
10 mils away. 

Avoiding closed loops in signal paths (see Figure 2.5). 
Closed loops cause excessive current and create induc­
tive noi~~.especially in the circuitry enclosed by a loop. 

240725-7 

Figure 2-5. Avoid Closed-Loop Signal Paths 

ESI is caused by the capacitive coupling of two adjacent 
conductors. The conductors act as the plates of a capac­
itor; a charge built up on one induces the opposite 
charge on the other. 

The following steps reduce ESI: 

Separating signal lines so that capacitive coupling be­
comes negligible. 

Running a ground line between two lines to cancel the 
electrostatic fields. 

LATCH UP 

Latchup is a condition in a CMOS circuit in which 
Vee becomes shorted to Vss. Intel's CHMOS IV pro­
cess is immune to latchup under normal operating con­
ditions. Latchup can be triggered when the voltage lim­
its on I/0 pins are exceeded, causing internal PN junc­
tions to become forward biased. The following guide­
lines help prevent latchup: 

Observing the maximum rating for input voltage on 
1/0 pins. 

Never applying power to an 386 DX CPU pin or a 
device connected to an 386 DX CPU pin before apply­
ing power to the 386 DX CPU itself. 

Preventing overshoot and undershoot on 1/0 pins by 
adding line termination and by designing to reduce 
noise and reflection on signal lines. 

5-626 



intef AP-442 

THERMAL CHARACTERISTICS 

The thermal specification for the 386 DX CPU defines 
the maximum case temperature. This section describes 
how to ensure that an 386 DX CPU system meets this 
specification. 

Thermal specifications for the 386 DX CPU are de­
signed to guarantee a tolerable temperature at the sur­
face of the 386 DX CPU chip. This temperature (called 
the junction temperature) can be determined from ex­
ternal measurements using the known thermal charact­
eristics of the package. Two equations for calculating 
junction temperature are as follows: 

Tj = Ta+ (®ia •PD) and 

Ti =Tc+ (®ic *PD) 

where: 

Tj = Junction Temperature 

@ja = Junction to ambient temperature coeff. 

Tc= Case Temperature 

Ta= Ambient Temperature 

@jc = Junction to Case 

PD = Power Dissapation temperature coeff. 

Case temperature calculations offer several advantages 
over ambient temperature calculations. 

Case temperature is easier to measure accurately than 
ambient temperature because the measurement is local­
ized to a single point (top center of the package). 

The worst-case junction temperature (Tj) is lower when 
calculated with case temperature for the following rea­
sons: 

The junction-to-case thermal coefficient ( ®jc) is 
lower than the junction-to-ambient thermal coeffi­
cient (®ja); therefore, calculated junction tempera­
ture varies less with power dissipation (PD). 

®jc is not affected by airflow in the system; @ja 
varies with air flow. 

With the case-temperature specification, the designer 
can either set the ambient temperature or use fans to 
control case temperature. Finned heat sinks or conduc­
tive cooling may also be used in environments where 
the use of fans is precluded. To approximate the case 
temperature for various environments, the two equa-

tions above should be combined by setting the junction 
temperature equal for both, resulting in this equation: 

Ta= Tc - ((®ia - @jc)' PD) 

The current data sheet should be consulted to deter­
mine the values of @ja (for the system's air flow) and 
ambient temperature that will yield the desired case 
temperature. Whatever the conditions are, the case 
temperature is easy to verify. 

2.2 Transmission Line Effects 

As a general rule, any interconnection is considered a 
transmission line when the' time required for the signal 
to travel the length of the interconnection is greater 
than one-eighth of the signal rise time. (True K. M. , 
"Reflection: Computations and Waveforms, The Inter­
face Handbook", Fairchild Corp, Mountain View, CA, 
1975, Ch. 3). As frequencies increase, designers must 
account for the negative effects associated with trans­
mission lines. The section that follows will attempt to 
describe these effects and provide some suggestions for 
minimizing their negative effect on the system. 

Before describing each effect, it is important to know 
how to characterize a trace on different types of trans-
mision lines. This includes knowing the characteristic 
impedance of a trace, Z0 , and the propagation delay for 
a given trace, tpd· These parameters will be used in 
determining what effects must be accounted for and to • 
select component values used in minimizing the effects. Iii 
TRANSMISSION LINES TYPES 

Although many types of transmission lines (conduc­
tors) exist, those most commonly used on the printed 
circuit boards are microstrip lines, strip lines, printed 
circuit traces, side-by-side conductors and flat conduc­
tors. 

MICRO STRIP LINES 

The micro strip trace consists of a signal plane that is 
seperated from a ground plane by a dielectric as shown 
in Figure 2.6. G-10 fiber-glass epoxy, which is most 
common, has an er = 5 where, er is the dielctric con­
stant of the insulation. Let: 

w = the width of the signal line (inches) 

t = the thickness of copper 

h = the height of dielectric for controlled imped­
ance (inches) 

5-627 



intJ AP-442 

The characteristic impedance Z0 , is a function of dielec­
tric constant and the geometry of the board. This is 
given by: 

Z0 = (87/(er + 1.41)% In (5.98/0.8 w + t) 0 

where er is the relative dielectric constant of the board 
material. 

The propagation delay (t~ associated with the trace is 
a function of the dielectnc only. 

tpd = 1.017 (0.475er + 0.67) Y. ns/ft 

STRIP LINES 

A strip line is a strip conductor centered in a dielectric 
medium between two voltage planes. The characteristic 
impedance is given by: 

Z0 = 60/(er)Y. In (5.98b/(0.8W + t)) 0 

where b = distance between tbe planes for the con­
trolled impedance as shown in Figure 2.10 

The propagation delay is given by: 

tpd = 1.017 (er) V. ns/ft 

Typical values of the characteristic impedance and 
propagation delay of these types of lines are: 

Zo = 500 

!pd = 2 ns/ft (or 6 in/ns) 

2.3 Reflection 

The first effect is reflection. As the name indicates it is 
the reflection of a signal as it propagates down the 
trace. The reflection results from a mismatch in imped­
ance. The impedance of a transmission line is a function 
of the geometry of the line, its distance from the ground 
plane, and the loads long the line. Any discontinuity in 
the impedance will cause reflections. 

MicroStrip'--~•""l<r---- W ~1 ____________ _l 
~ I I 

~> ____ _......._4-:-h ~-- ___ Dielectric _ _L 

I :> 

Ground 
Planes 

Ground . 
Plane 

Figure 2·6. Micro Strip Lines 

Slrlp Line 

1--_ - _-__ -_ - -=~'-----_-_ -_--t_ - TI 
,.__-,_;;;.._-_'ali_.;;_-_-_-_-;_-_-_-_-:_-_-_-i+---D-le_le_ct_ric _ __,_;_; 

1<-w-+1 I 

Figure 2·7. Strip Lines 

5-628 

240725-8 

240725-9 



intef AP-442 

Impedance mismatch occurs between the transmission 
line characteristic impedance and the input or output 
impedance of the devices that are connected to the line. 
The result is that the signals are reflected back and 
forth on the line. These reflections can attentuate or 
reinforce the signal depending upon the phase relation­
ships. The results of these reflections include overshoot, 
undershoot, ringing and other undesirable effects. 

At lower edge rates, the effects of these reflections are 
not severe. However at higher rates, the rise time of the 
signal is short with respect to the propagation delay. 
Thus it can cause problems as shown in Figure 2-8. 

Overshoot occurs when the voltage level exceeds the 
maximum (upper) limit of the output voltage, while un­
dershoot occurs when the level passes below the mini­
mum (lower) limit. These conditions can cause excess 
current on the input gates which results in permanent 
damage to the device. 

The amount of reflection voltage can be easily calculat­
ed. Figure 2-9 shows a system exhibiting reflections. 

i 

The magnitude of a reflection is usually represented in 
terms of a reflection coefficient. This is illustrated in 
the following equations: 

T = v,lv; = Reflected voltage/Incident voltage 

T1oad = (Z1oad - Zo)/(Z1oad + Zo) 

Tsource = (Zsource - Zo)/(Zsource + Zo) 

Reflections voltage Vr is given by Vi, the voltage inci­
dent at the point of the reflections, and the reflection 
coefficient. 

The model transmission line can now be completed. In 
Figure 2-9, the voltage seen at point A is given by the 
following equation: 

Va = Vs• Zol(Zo + Zs) 

This voltage Va enters the transmission line at "A" and 
appears at "B" delayed by tpd· 

Expected Output 
Signal 

Time~ 

240725-10 

Figure 2-8. Overshoot and Undershoot Effects 

B 

240725-11 

Figure 2-9. Loaded Transmission Line 

5-629 



intJ AP-442 

Vb(t - x/t) H(t - xiv) 

where x = distance along the transmission line from 
point "A" and H(t) is the unit step function. The wave­
form encounters the loads ZL, and this may cause re­
flection. The reflected wave enters the transmission line 
at "B" and appears at point "A" after time delay (tpdJ: 

This phenomenon continues infinitely, but it is negligi­
ble after 3 or 4 reflections. Hence: 

Vr2 = Tsource • Vr1 

Each reflected waveform is treated as a seperate source 
that is independent of the reflection coefficient at that 
point and the incident waveform. Thus the waveform 
from any point and on the transmission line and at any 
given time is as follows: 

V(x,t) = (Zo/(Zo+Z8)) {V8(t-(x/v)) H(t-(x/v)) + 
T1 [V8 (t-((2L-x)/v) H(t-(t-((2L-x)/v)))l + 
T1Ts [V8 (t-((2L+x)/v) H(t-(t-((2L+x)/v)))) + 
T12 T8 [V8 (t-((4L-x)/v) H(t-(t-((4L-x)/v)))) + 
T12T82 [V8(t-((4L +x)/v) H(t-(t-((4L+x)/v)))) 
+ ... ) 

Each reflection is added to the total voltage through the 
unit step function H(t). The above equation can be re­
written as follows: 

V(x,t) = (Zo/(Zo+Z8 )) {V8 (t-(t-tpdX) H(t-tpdX) + 
T1 [V8(t-tpd(2L-x)) H(t-tpd(2L-x))] + 
T 1 Ts [V 8 (t-tpd(2L + x)) H(t-tpd(2L + x))) + ... ) 

Impedance discontinuity problems are managed by im­
posing limits and control during the routing phase of 
the design. Design rules must be· observed to control 
trace geometry, including specification of the trace 
width and spacing for each layer. This is very impor­
tant because it ensures the traces are smooth and con­
stant without sharp turns. 

HOW TO MINIMIZE 

There are several techniques which can be employed to 
further minimize the effects caused by an impedance 
mismatch during the layout process: 

1. Impedance Matching 

2. Daisy Chaining 

3. Avoid 90° Corner~ 

4. Minimize the Number of Vias 

IMPEDANCE MATCHING 

Impedance matching is the process of matching the im­
pedance of the the source or load to the impedance of 
the trace. This matching is accomplished using a tech­
nique called termination. Termination makes the effec­
tive source or load impedance, seen by the trace, to be 
approximately equal to the characteristic impedance of 
the trace. Before terminating a line one must determine 
if termination is required. This is done by a simple cal­
culation. If the propagation delay down a trace from 
source to destination is greater than or equal to one­
third the signals rise time, termination is needed. (i. e. 
Tpd ::?: '/3 tr)· The rise time is the 0%-100% rise time 
specified for the source. If this value is specified for 
10%-90% or 20%-80%, it must be scaled by multiply­
ing the specified value by 1.25 or 1.67, respectively. The 
propagation delay is caculated by multiplying the trace 
propagation delay, tpd• descibed earlier by the trace 
length. 

Once it is determined that termination is needed, use 
the equation described earlier to calculate the trace's 
characteristic impedance. The specification sheets for 
the load can be consulted to determine the load imped­
ance, ZL· These values are needed to select the.compo­
nent values used to terminate. 

The next chore is selecting the type of termination to 
use. In this section we will examine 4 different tech­
niques and point out the advantages and disadvantages. 
Figure 2.10 shows the four types of termination and the 
corresponding component values. 

Parallel termination, shown in Figure 2-lO(a), is a good 
technique to maintain the waveform. The waveform at 
the load is a perfect image of the waveform at the 
source. In addition there is no added propagation delay 
associated with this technique. The disadvantage of this 
technique is that it requires a fair amount of additional 
power and it is not suggested for characteristic imped­
ances of less than 100 ohms because of the large d.c. 
current required. 

Thevenin termination, shown in Figure 2-lO(b), is an­
other option. This technique also requires a large 
amount of power, but does not have the restrictions for 
characteristic impedance. This technique is very good 
at removing overshoot and undershoot while not add­
ing any additional delay. Another advantage is that the 
trace can be biased toward Vee or GND by simpling 
selecting the appropriate resistor values. This can help 
maintain fast edges on important signal transitions. 

5-630 



intJ 

Name 

Parallel 

Thevenin 

Name 

Series 

A.C. 

Circuitry 

R = Zo 

R = 2Zo 

AP-442 

Advantages 

Waveform at receiver is almost 
perfect image of input 

Bipolar I Advanced CMOS 

No addedTpo 

Good overshoot and undershoot 
suppression 

Bipolar or Bipolar/CMOS systems 

No addedTpo 

Figure 2-10(a). Termination Techniques 

Circuitry Advantages 

Low power consumption 

[>-4{> CMOS-CMOS Systems 

Easy to adjust signal 
amplitude to match 

R = Zo - ZouT. switching threshold 

Low-medium power 

"' C> dissipation (capacitor 

v blocks D.C. coupling of 

~R 
signal) 

1 No added delays 

Ic High-speed CMOS families 

--
R = Zo, C = 200 pF-500 pF 

Figure 2-10(b). Termination Techniques 

5-631 

Disadvantages 

High power dissipation 

Zo::: 100.0., else D.C. 
current limit 

High power dissipation 

Disadvantages 

AddedTpo 

Two added components 
I 



intef AP-442 

Series termination, shown in Figure 2-lO(b), is a very 
easy technique of matching impedance. It only requires 
on resistor and very little additional power is required. 
In addition the resistor value can be selected to provide 
constructive or destructive reflections and thus alter the 
signal amplitude to match the switching threshold. The 
major disadvantage of this technique is the added delay 
it introduces. 

The fourth technique is A.C. termination, shown in 
Figure 2-1 O(b ). It requires a small amount of additional 
power, this is decreased over parallel termination by the 
introduction of the capacitor, and adds no extra delay 
to the path. The major disadvantage is that it requires 
two extra components. 

After examing the systems needs and selecting a termi­
nation technique, the impedance values determined ear­
lier, Zo and ZL, can be used to determine the compo­
nent values to implement the termination. These values 
should be seen as a starting point and may be altered to 
remove a specific problem experienced on a signal or to 
bias signals in an appropriate fashion. 

Source 

DAISY CHAINING 

Another technique of minimizing reflections is to daisy­
chain signals, shown in Figure 2-11. This means to run 
a single trace from a source and to distribute the loads 
along this trace. The alternative is to run multiple 
traces from the source to each load. Each trace will 
have reflections of its own and these will be transmitted 
down the other traces once they have returned to the 
source. To manage such a system separate termination 
would be required for each branch. To eliminate these 
multiple terminators from T-connections, high frequen­
cy designs are routed as daisy chains. 

Because each gate provides its own impedance load 
along the chain, it is necessary to distribute these loads 
evenly along the length of the chain. Hence, the imped­
ance along the chain will change in a series of steps and 
is easier to match. The overall speed of this line is faster 
and predictable. Also all loads should be placed at 
equal distances (regular intervals). 

90 DEGREE ANGLES 

Eliminating 90° angles also minimizes reflections. It is 
much more desirable to use 45° or 13S0 angles as shown 
in Figure 2-12. 

240725-16 

Figure 2-11. Daisy Chaining 

Receiver 

Driver 
240725-17 Driver 

240725-18 

Figure 2-12. Avoiding 90 Degree Angles 

5-632 



intef AP-442 

VIAS (FEED THROUGH CONNECTIONS) 

Another impedance source that degrades high frequen­
cy circuit performance is the via. Expert layout tech­
niques can reduce vias to avoid reflection sites on 
PCBs. 

Following these guidelines will not guarantee elimina­
tion of all reflections, but they will minimize the num­
ber and size. 

2.4 Cross Talk 

Cross talk is another negative effect of transmission 
lines. It is a problem at high frequencies because, as 
operating frequency increase, the signal wavelength be­
come comparable to the length of the interconnections 
on the PC board. In general, interference such as cross 
talk, occurs when electrical activity in one conductor 
causes a transient voltage to appear in another conduc­
tor. Main factors that increase interference in any cir­
cuit are: 

I. Variation of current and voltage in the lines causes 
frequency interference. This interence increases with 
increase in frequency. 

2. Coupling occurs when conductors are in close prox­
imity. 

Cross talk is the phenomenom of a signal in one trace 
producing a similar signal in an adjacent trace. It may 
not be a carbon copy of the original signal. It may only 
be occasional noise that corrupts the integrity of the 
second signal. The easiest way to minimize crosstalk is 
to eliminate or at least minimize the number of parallel 
traces. Parallel traces can be on a single layer or on 
adjacent signal layers. 

There are three ways that parallel traces can couple and 
thereby produce a signal or at least influence the signal 
on a second trace. These methods of coupling are in­
ductive, radiative, and capacitive. Inductive coupling is 
where the two traces act as inductors. The field pro­
duced by a signal in one trace induces a current in the 
second trace. Radiative coupling occurs when the two 
parallel traces act as a dipole, an antenna. One radiates 
a signal and the other receives it, thus corupting the 
signal already present on the trace. The final method is 
capacitive coupling. Two parallel traces separated by a 
dielectric act as a capacitor. If both traces are in a high 
state and one transitions to a low. The capacitor will try 
to maintain the high and thus cause a slow transition 
time on the second trace. These effects can be mini­
mized by reducing the number of parallel traces. 

HOW TO MINIMIZE 

When laying out a board for an high speed 386 DX 
based system, several guidelines should be followed to 
minimize crosstalk. Some of them are as follows: 

I. To reduce crosstalk, it is necesary to minimize the 
common impedance paths. 

2. Run a ground line between two adjacent lines. The 
lines should be grounded at both ends. 

3. Seperate the address and data busses by a ground 
line. This technique may however be expensive due 
to large number of address and data lines. 

4. Remove closed loop signal paths which create induc­
tive noise. 

5. Capacitive coupling can be reduced by reducing the 
number of parellel traces. Parallel traces can be mini­
mized by insuring that signals on adjacent signal lay­
ers run orthogonal, perpendicular. Ground planes or 
traces can be inserted to provide shielding. A ground 
plane between signal layers eliminates any coupling 
that could occur. On a single trace, a ground trace 
can be run between traces to prevent coupling. 

In some instances it is necessary to run traces parallel 
to each other. In these cases try to make the distance as 
short as possible and choose signals in which the tran­
sition time is not as critical so that the coupling effects 
do not produce problems. In addition the coupling can 
be minimized by increasing the spacing between paral­
lel traces. 

2.5 Skew 

Skew is another effect of transmission lines. This is very 
important in a synchronous system. Long traces add 
propagation delay. A longer trace or a load placed fur­
ther down a trace will experience more delay than a 
short trace or loads very close to the source. This must 
be taken into account when doing the worst case timing 
analysis. In a system where events must occur synchro­
nous to a clock signal, it is important to make sure the 
signal is available to all input a sufficient amount of 
time prior to the corresponding clock edge. When per­
forming the component placement this is one of the 
considerations that must be accounted for. 

These guidelines have always been recommended for 
board design; however, they are much more important 
at higher frequencies. At the slower frequencies design­
ers could ignore these practices occassionally and not 
experience difficulties. This is not the case at higher 
frequencies. 

5-633 

I 



intef AP-442 

2.6 DC Loading 

To maintain proper logic levels, all digital signal out­
puts have a maximum load, they are capable of driving. 
DC loading is the constant current required by an input 
in either the high or the low state. It limits the ability of 
a device driving the bus to maintain proper logic levels. 
For a 386 DX based system, a careful analysis must be 
performed to ensure that in a worst case situation no 
loading limits are exceeded. Even if a bus is loaded 
slightly beyond its worst case limit, it might cause prob­
lems if a batch of parts whose input loading is close to 
maximum is encountered. Proper logic level will then 
fail to be maintained and unreliable operation may re­
sult. Marginal loading problems are particularly insidi­
ous, since the effect is often erratic operation and non 
repetitive errors that are extremely difficult to track 
down. For both the high and low logic levels, the sum 
of the currents required by all the inputs and the leak­
age currents of all outputs (drivers) on the bus must be 
added together. This sum must be less than the output 
capability of the weakest driver. Since the 386 DX is a 
CHMOS device having negligible de loading, the main 
contributors to de loading will be the TTL devices. 

2. 7 AC Loading 

The AC or capacitive loading is caused by the input 
capacitance of each device and limits the speed at 
which a device driving a bus signal can change the state 
from high to low or low to high. Designers of micro­
processor systems have traditionally calculated load ca­
pacitance of their systems by determining the number 
of devices and their individual capacitance loading at­
tached to a signal plus the amount of trace capacitance. 
Typically, the trace capacitance was a set "lumped" 
number of pf (i.e. 2 pf to 3 pf per inch) when it is 
thought of at all. This lumped method is a general rule­
of-thumb which generates a good first pass approxima­
tion. For low frequency designs, the lumped method 
works since system and component margins are large 
enough to cover any minor differences due to the ap­
proximation. 

For high frequency designs, the component and system 
margins are no longer available to the designer. With 
less than I ns of margin, even the amount of trace ca­
pacitance can make a circuit path critical. 

A more accurate calculation of capacitive loading can 
be derived by modeling the device loads and system 
traces as a series of Transmission Lines Theory. Trans­
mission Line Theory provides a more accurate picture 
of system loading in high frequency systems. In addi­
tion, it allows new factors such as inductance and the 
effect of reflections upon the quality of the signal wave­
form to be factored into consideration. 

2.8 Derating Curve and Its Effects: 

A derating curve is a graph that plots the output buffer 
against the capacitive load. The curve is used to analyze 
a signal delay without necessitating a simulation every 
time the processor's loading changes. This graph as­
sumes the lumped capacitance model to calculate the 
total capacitance. The delay in the graph should be 
added to the specified AC timing value for the device 
that is driving the load. The derating curve is different 
for different devices because each device has different 
output buffers. 

A derating curve is generated by tying the chip's output 
buffers to a range of capacitors. The voltage and resist­
ance values chosen for the output buffers are at the 
highest specified temperature and are rising (worst 
case) values. The value of the capacitors centres around 
the AC timing values for the chip. For 33 MHz and 
above, this is 50 pF. Since the AC timing specifications 
are measured for a signal reaching 1.5 V. A curve is 
then drawn from kthe range of time and capacitance 
values, with 50 pF representing the average and with 
nominal or zero derating. These curves are valid only 
for 50 pF-150 pF load range. Beyond this range the 
output buffers are not characterized. The the derating 
curve for the 386 DX are shown in 2-13. These curves 
use the lumped capacitance model for circuit capaci­
tance measurements and must be modified slightly 
when doing worst-case calculations that involve trans-
mission line effects. · 

nom+6 

"iii' nom+3 

..s. 
>-< 
..J 
LU 
0 

nom 

0 
::::; 

~ nom-3 
I-
=> 
0.. 
I-
=> 
0 nom-6 

nom-9~~~~~~~---~~~ 

50 .75 100 25 150 

CL(picoforads) 

240725-19 

NOTE: 
This graph will not be linear outside of the CL range 
shown. 

Figure 2-13. Typical Output Valid Delay 
Versus Load Capacitance at Maximum 
Operating Temperature (CL= 120 pf) 

5-634 



intef AP-442 

2.9 High Speed Clock Circuits the loads via a single trace as shown in Figure 2-14, 
thus avoiding the extra stubs associated with each 
load. The loads should be as close to one another as 
possible. Multiple clock sources should be for dis­
tributed loads. 

' 

For performance at high frequencies, the clock signal 
(CLK2) for the 386 DX CPU must be free of noise and 
within the specifcations listed in the 386 DX CPU data 
sheet. Achieving the proper clock routing around a 
33 MHz printed circuit board is delicate because a myr­
iad of problems, some of them subtle, can arise design 
guidelines are not followed. For example, fast clock 
edges cause reflections from high impedance termina­
tions. These reflections can cause significant signal deg­
radation in systems operating at 33 MHz clock rates. 
This section covers some design guidelines which 
should be observed to properly lay out. the clock lines 
for efficient 386 DX operation. 

• A less desirable method is the star connection layout 

• Since the rise/fall time of the clock signal is typical­
ly in the range of 2-4 ns, the reflections at this speed 
could result in undesirable noise and unacceptable 
signal degradation. The degree of reflections de­
pends on the impedance of the traces of the clock 
connections. These reflections can be optimized by 
terminating the CLK2 output with proper termina­
tions and by keeping length of the traces as short as 
possible. The preferred method is to connect all of 

Clock 
Source 

in which the clock traces branch to the load as close­
ly as posssible (Figure 2-15). In this layout, the stubs 
should be kept as short as possible. The maximum 
allowable length of the traces depends upon the fre­
quency and the total fanout, but the length of all the 
traces in the star connection should be equal. 
Lengths of less than one inch are recommended. In 
this method the CLK2 signal is terminated by a se­
ries resistor. The resistor value is calculated by mea­
suring the total capacitive load on the CLK2 signal 
and referring to Figure 2-16. If the total capacitive 
load is less than 80 pF, the user should add capaci­
tors to make up the diference. Because of the high 
frequency of CLK2, the terminating resistor must 
have low inductance; carbon resistors are recom­
mended. 

• Use an oscilloscope to compare the CLK2 waveform 
with those in Figure 2-17. 

Thevenin's 
Termination 

240725-20 

Figure 2-14. Clock Routing 

Clock 
Source 

Series 
Termination 

Figure 2-15. Star Connection 

5-635 

240725-21 

I 



intef AP-442 

0 10 20 30 40 

TERMINATION RESISTOR (OHMS) 
240725-22 

• CL = C1N (386) + C1N (387) + CIN (PALs) + ... + CBOARD· 

CBQARD is calculated from layout and board parameters; thickness, dielectric constant, distance to ground/V cc planes. 

• Termination resistor must be low inductance type. Recommend carbon filled type. 

Figure 2·16. CLK2 Series Termination 

Good 
5V 

ov 
240725-23 

240725-24 

Figure 2-17. CLK2 Waveforms 

5-636 



intef AP-442 

SECTION Ill. DESIGN EXAMPLE 

At higher processor speeds the window of time avail­
able to perform specific tasks become very small. This 
window can be equated to multiples of the CLK2 peri­
od. Within this time signals must be supplied from a 
source and reach a destination in time to meet any set­
up requirements. At 16 MHz the CLK2 period is 31 ns. 
At 33 MHz it shrinks to half this value, 15 ns. The 
longer time allowed the use of slower logic families and 
the delays associated with longer traces. As the window 
decreases system designers have to practice more care 
in the selection of logic families and in the choices 
made for component placement and signal routing on 
PCBs. This section attempts to list the signal paths 
whose worst case timing analysis results in very small 
margins and therefore require closer attention from de­
signers to guarantee that all a. c. timing specifications 
are met. 

This section also includes a sample design based on 
33 MHz version of the 386 DX. It should not be taken 
as a recommended design. The circuit is used only to 
highlight the design considerations for high speed sys­
tems. 

3. 1 System Architecture 

Figure 3.1 shows the system block diagram. It has four 
major subsystems. 

1) CPU subsystem 

2) DRAM subsystem 

3) Cache subsystem 

4) ROM and I/0 subsystem 

The system has 1 megabytes of Page-Mode DRAMS 
(60 ns RAS access time), 128 kilobytes of EPROMS 
(200 ns access time), an 8259A-2, and an 82510. The 
cache subsystem is optional. Schematics and PAL 
codes are given in appendix A and B respectively. 

3.2 CPU Subsystem 

The CPU subsystem consists of the 386 DX microproc­
essor, a clock and reset circuitry, and bus control logic. 
Clean and proper clock is very important in the designs 
at high frequencies. 

RESET STATE MACHINE 

This state machine is used to generate three control 
signals, namely RESET, REFREQ and CLK. The 
CLK signal is half of the CPU clock, CLK2 and is used 
mainly in 1/0 and EPROM subsystem. 

RESET is generated through the input from RESET 
triggering circuitry (as shown in the CPU schematic). 
The min RESET Setup and Hold time for operation at 
33 MHz are 5 ns and 2 ns respectively. 

A 61.44 KHz clock is used to produce a synchronous 
refresh request (REFREQ) signal for the DRAM con­
troller, which employ a transparent, distributed, 
DRAM refresh technique that allows the processor and 
cache to run while the refresh cycle is in progress. 

3.3 DRAM Subsystem 

An non-interleaved DRAM system is used in the sam­
ple board, which simplifies the design. Since the board 
provide caching, the performance of DRAM subsystem 
is outweighed by the simplicity and economy of the 
design. It employs a transparent, distributed, DRAM 
refresh technique which allows the processor and cache 
to run while the refresh cycle is in progress. It uses the 
3-state capability of the 16R8-7 and the 74ACT258 to 
multiplex the refresh address. A further consideration 
is the choice of DRAM devices. If one uses a memory 
device such as the AAA2801 (which supports a CAS# 
before RAS# refresh and provides an internal refresh 
counter) further simplifications can be made in both the 
circuitry and the control logic. 

DRAM CONTROL STATE MACHINE 

The state machine is implemented with three l 6R8- I 
type E-speed PALs (see page 4 of the schematics). 
E-speed PALs must be used since the CLK2 frequency, 
66.67 MHz, is higher than the maximum clock frequen-
cy of the D-speed P ALs. 

In order to generate DRAM control signals with small­
est delay from the CLK2 edges, all state machines are 
implemented as Moore machines. The state machines 
flip-flops generate most of the DRAM control signals 
directly. This is an expensive design approach in terms 
of hardware but allows signal timings and skews to be 
fine tuned. 

DRAM CYCLES-NO CACHE CONFIGURATION 

Pages C-1 through C-4 show examples of DRAM cy­
cles. In order to hide the DRAM page hit-or-miss deci­
sion time, the DRAM controller always tries to put the 
386 DX in pipelined mode. The first read cycle requires 
only two wait states since RAS# has been precharged 
(see page C-1). The second cycle takes only two clock 
cycles. The second \:Ycle is a pipelined, page-hit read 
cycle, which is the best case. The third cycle is a pipe­
lined, page-hit write cycle. This cycle requires one wait 
state. DRAMs capture data at the falling edge of 
CAS# during Early Write cycles. The 386 DX drives 

5-637 



~I : I CACHE 
c ... 
CD 
Cf ... 

01 <O 

&i ID 
00 .., 

(,) 0 
CX> n 

I II! ~ 1:1 
ADDRESS/CONTROL 

c REGISTER 
iii" 
IC ... 
DI 
3 

82380 

-------------------------------· 
ROW ADDR 

COMPARATOR 

I V........, "I 

DRAM 
CONTROL 

PAGE 
MODE 
DRAM 

! TRANSCEIVER DRAM SUBSYSTEM 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

·----------------------------· 
·---------------------------· L=:. ~I 

·• I 
I 
I 

I ·-· I 
1 TRANSCEIVER ROM .!c 1/0 SUBSYSTEM I 

·---------------------------· 240725-25 

cl 

)> 
"ti 
J,.. 

""' N 



infer AP-442 

valid write data at the rising edge in the middle of Tip 
(edge C) with a max prop delay of 24 ns (T12 max). 
This means that the CAS # is generated after the rising 
edge in the middle of the second T2p (edge A). CAS# 
is, therefore, generated at the end of RAS# hold time 
with respect to CAS # (if the next cycle is a page miss, 
RAS# will go inactive at the end of the current write 
cycle), and so on. 

The fifth cycle is a page miss, which is actually detected 
at the end of the fourth cycle (page C-2). Since the 
DRAM controller must wait for minimum RAS# pre­
charge time, the fifth cycle requires three wait states. 
The sixth cycle is also a page miss. This cycle, however, 
requires only two wait states because the miss was de­
tected early enough in the previous cycle to have 
RAS# precharged by the end of the Tip. If the seventh 
cycle is another page miss, it will require three wait 
states. 

The eighth cycle is ended with T2i. Consequently, the 
ninth cycle must wait for minimum RAS# precharge 
time and requires three wait states. 

A DRAM refresh cycle is shown on page C-4. The 
DRAM address multiplexer output is disabled, and the 
refresh address counter output is enabled. The cycle 
does a RAS# only refresh cycle where only RAS# is 
asserted with a proper refresh address. After the refresh 
cycle is completed, a read cycle which has been sus­
pended due to the refresh is resumed. 

STATE DIAGRAMS 

Pages B-1 through B-11 show state diagrams of the 
DRAM controller. The precharge state machine on 

page B-2 measures the required RAS# precharge time 
and CAS#-to-RAS# precharge time. The CAS#­
READY # state machine on page B-2 implements a pin 
strap option of having or not having the 82385. For no 
cache configuration, the Cache variable must be forced 
low. 

TIMING CALCULATIONS 

Timing equations are described on pages D-1 and D-2. 
Their corresponding results are given on pages D-3 
through D-7. 

Capacitive load on the 386 DX address bus was as­
sumed to be less than 85 pF. Capacitive load on the 
DRAM address bus was calculated to be less than 
22 pF. 

3.4 CACHE Subsystem 

At 33 MHz DRAM speeds are not fast enough to de­
sign zero wait state memory. systems. A cache can be 
used to take advantage of the higher performance avail­
able from the higher speed 386 DX microprocessors. 
The cache takes advantage of the faster SRAM while 
keeping system costs down by using the cheaper but 
slower DRAMs. 

Details of the cache subsystem are shown on Figure 3.2 
and 3.3. The 82385 address and data busses are inter-1 
faced to the 386 DX address and data busses via 
74AS574s and 74AS646s. Static RAMs (20 ns access 
time) are used for the cache memory. 

5-639 



intJ AP·442 

240725-26 

Figure 3-2. Block Diagram of Cache Subsystem 

5-640 



intef AP-442 

I_ T2,BT1 r- 15 ns ----j 
T2, BT1 

I ---. .----. 
CLK2 __ _, 

-1 3-6.5 ns f-
CLK \ ~ L. I \ ~ L. I \_ 

!-- 4·15ns ::j 
L. 7 '\ ~ ADS# 

ALE 
1
,3.8-7.B ns, 1 

L. I '\ ~ 
j--4-9 ns --1 

BAddress -------------< 
240725-27 

Figure 3-3. Address Valid Delay for Cache Subsystem 

I 

5-641 



intef AP-442 

In selecting SRAM there are several types one can 
choose to use. Some SRAM require a latch for the ad­
dress and a transceiver for the data. Others have an 
OE#, output enable, signal and incorporate the trans­
ceiver on chip. The third type is called integrated 
SRAM and these contain both the latch and the trans­
ceiver on chip. However, there are two timing paths 
that dictate the speed selection within each type. Figure 
3.4 shows a typical system configuration using each 
type. 

Address Bus 

~---------tEn F373 

CA LEN CS#t-----t CE# 

82385 
CINE# WE# 

SRAM 

CT R# COE# 

CE# 
~------tDlr 

Data Bus 

240725-28 

Figure 3.4(a) SRAM w/o OE# 

Address Bus 

En F373 J 

CA LEN CS# CE# 

82385 
CWE# WE# 

SRAM 

~ cY/J COEN_ 

l CONNECTION 

Data Bus 

240725-29 

Figure 3.4(b) SRAM with OE# Control 

Address Bus 

82385 SRAM 

NO CONNECTION 

Data Bus 

240725-30 

Figure 3-4. (c) Integrated SRAM 

The critical times for the SRAM are the SRAM OE# 
to data delay and the SRAM address to data delay. The 
following analysis applies to SRAMs with an OE# sig­
nal as shown in Figure 3.4b. First examine the path of 
OE# to data. This path must be completed within 2 
CLK periods. The COE# signal from the 385 Cache 
Controller must be valid and the SRAM must drive 
data onto the data bus so that the data setup time of the 
386 DX CPU is met. 

2 X CLK2 period - t1sb 82385 COE# valid delay 
(max) - SRAM access time (OE# to data) - t11 386 DX 
data setup 2 0 

Using the specified values from the data sheets reveals 
that the SRAM must have an OE# to data delay of 
lOns or less. The other path is for the address to be­
come available and data to reach the 386 DX CPU. 
This path has 4 CLK2 periods. The 385 Cache Control­
ler must supply the CALEN signal to pass the address 
to the SRAM and then the SRAM must drive the data 
on the data bus so that the data setup time is met on the 
386 DX CPU. 

4 X CLK2 period - t11b 82385 CALEN valid delay 
(max) - tpd (x373 latch) - SRAM access time (address 
to data) - t11 386 DX data setup 2 0 

Once again using the data sheet the access time can be 
determined. Depending on the type of transparent latch 
the SRAM needs an address to data access time of 20ns 
or 25ns. If an F series 373 is used the faster 20ns 
SRAM must be used, but ifan FCT373a or PCT373a is 
used the 25ns SRAM is sufficient. 

The A20 path is another path with a small margin. The 
reason is the AND gate that many designers insert to 
provide lMB wraparound of address in real mode. Fig­
ure 3.5 shows the circuit block diagram. A20 must leave 
the 386 DX and reach the 385 Cache Controller within 
2 CLK2 periods. 

5-642 



intef AP-442 

386DX 82385 
74AS08 

1/0 Port 
240725-31 

2 X CLK2 period - t6 386 DX address valid delay (max) - t1p AND prop. delay - t7d 82385 address setup ;,, O 

Figure 3-5. Critical Timing A20 

To meet this timing the propagation delay of the AND 
gate must be less than 6ns. This dictates the use of a 
74AS08 gate or faster device. 

Analysis of the LOCK# path also shows a small mar­
gin. The reason is the OR gate that many designers 

386 DX 

insert to disable the LOCK# signal to the 385 Cache 
Controller. This allows locked accesses to be cached. 
Figure 3.6 shows the circuit block diagram. LOCK# 
must leave the 386 DX and reach the 385 Cache Con­
troller within 2 CLK2 periods. 

82385 

74AS32 

)11-----·LOCK• 

1/0 Port 

240725-32 
2 X CLK2 period - ta 386 DX LOCK# valid delay (max) - t1p OR prop. delay - t1b 82385 LOCK# setup ;,, 0 

Figure 3-6. Critical Timing Lock# 

5-643 

I 



intef AP-442 

To meet this timing the propagation delay of the OR 
gate must be less than 6ns. This dictates the use of a 
74AS32 gate or faster device. 

The final path examined here is the NA# · path. Re­
cently designers have selected to use an 1/0 port and 
an OR gate to disable pipelining selectively. Figure 3.7 
shows the circuit block diagram. NA# must leave the 
386 DX and reach the 385 Cache Controller within 2 
CLK2 periods. 

Using the specified values in the appropriate data sheets 
results in the need for the propagation delay of the OR 
gate must' be no greater than 5.Sns. This dictates the 
use of a 74AS32 gate or faster device. 

82385 

This list is not meant to be exhaustive. It is merely 
meant to highlight a few of the critical timings. Each 
designer should perform a thorough timing analysis of 
the system they are designip.g to verify that all timing 
requirements are met. 

In addition to the specified timing parameters in the 
. data sheets, de8igners should account for propagation 
delays introduced by the trace and by capacitive load­
ing. The propagation delay added by the trace is ex­
plained in the section ·on transmission line effects and 
supplies an equation to determine the amount of delay. 

386DX 
74AS32 

240725-33 
2 X CLK2 period - t11 .386 DX NA# valid delay (max) - ttp OR prop. delay - t15 82385 NA# setup ;;,, O 

Figure 3-7. Critical Timing NA# 

5-644 



intef AP-442 

Another factor that becomes more important at higher 
frequencies is loading. DC loading and especially ca­
pacitive loading must be considered during the design 
stage. If the board is to be assembled and tcited in 
stages, then the DC loads should be considered for all 
configurations of the board. Most termination tech­
niques require additional current. If a board has a mar­
ginal loading situation, one is limited in one's choices of 
termination techniques. If a capacitive loading problem 
exists, the timing situations can become extremely diffi­
cult at higher frequencies. If timing is critical, do not 
overload the capacitance at which a device was tested. 
If a device is overloaded, derating must be taken into 
consideration. 

Capacitive loading also introduces a delay on signals. 
Many components including the 386 DX include a ca­
pacitive derating curve in the data sheet. To use the 
curve in the 386 DX data sheet, the capacitive load 
must be calculated. This is done by summing the input 
capacitances of all devices driven by a given output 
from the 386 Microprocessor. Find this value on the X­
axis of the derating curve in the data sheet and move up 
till the derating curve is intersected. Then move at a 
right angle to the left until intersecting the Y-axis. A 
value of nom + or nom - something is found: This is 
the nominal value plus or minus some amount. The 
nominal value is the value found in the data sheet. Add 
the offset from the curve to this nominal value to get 
the resulting delay corresponding to the capacitive 
loading in the system. Note: The trace capacitance was 
not included in this calculation. It is accounted for in 
the trace propagation delay mentioned earlier. 

DRAM CYCLES WITH 82385 ENABLED 

When the 82385 is enabled (the CACHE variable of the 
state machine on page B-2 is forced High), the DRAM 
controller inserts one extra wait state in all read cycles. 
This extra time is needed to allow a cache update cycle 
to occur after each cache read miss cycle. During a 
cache update cycle, the read data from DRAMs must 
propagate through the 74AS646 and the 74F245 (op­
tional) and must be ready for a SRAM write cycle with 
enough setup time. 

Timing diagrams on pages C-5 through C-9 show cache 
and DRAM cycles. 

TIMING CALCULATIONS 

Timing equations are found on pages D-8 and D-9. 
Only tCAS, tRAC, tCAC, tAA, tPC, and tCAP are 
different in this configuration. Actual values for 
DRAM timings are found on page D-10. 

3.5 1/0 • EPROM Subsystem 

A block diagram of the I/0-EPROM subsystem is 
shown on Figure 3.8. This subsystem has separate ad­
dress and data busses. The address bus is 14 bits wide, 
and the data bus is 16 bits wide. 

The bus controller is designed with B-speed P ALs 
which are clocked by .the CLK # signal (Figure 3.8). 
There are a few unique design issues in this scheme. 

As shown on Figure 3.10, ADS# is now an asynchro­
nous signal for the state machine. It is impossible for 
the state machine to capture va,lid ADS# without re~ 
synchronization of the signal. To guarantee recognition 
of valid ADS#, two D flip-flop is clocked by CLK# 
and provides a synchronous ADS# (or Latched 
ADS#) which is in phase with the state machine. 

The second issue is its asynchronous nature of the state 5 machine output signal. With the state machine running 
almost asynchronously to CLK2 (B P ALs also have a 
long clock-to-output propagation delay), signals gener-
ated by the state machine must be re-synchronized be-
fore they are returned to the 386 DX. Signals that go to 
I/O devices and EPROMs need no re-synchronization 
since these devices are asynchronous. Signals which re-
quire re-synchronization are BS16 # and DEN#. Each 
rising edge of DEN# is synchronized to CLK2 by a 
J-K flip-flop as shown on Figure 3.9. This is important 
to avoid bus contention after an I/0 or EPROM read-
cycle. BS16# is synchronized to CLK2 by D flip-flops. 

EPROM and I/0 cycle timings are shown on pages C-
10 through C-13. The worst case is a write cycle to the 
82510 and may require as many as 14 wait states. 

5-645 



intef 

BEO# 
BE1# 
ALE 

A2-A15 

Decoder 
EPROM# 

510CS# 
59CS# 

D/C# 
W/R# 
M/10# 

ALE 

DEN#------+t 
DT/R#------+t 

Data 

Latch 

Doto 

AP·442 

LEPROM# 

L510CS# 
L59CS# 

LD/C# 
LW/R# 
LM/10# 

LEPROM# 
MRDC# 

14 
A1-A15 

EPROM 
27128A 

(tAcc :S 200 ns) 

16 

L59CS# 
IORC# 
IOWC# 
INTA# 

A2 

8259A-2 

8 

Figure 3-8. Block Diagram of 110, EPROM Subsystem 

5-646 

3 
A2-A4 

82510 

8 

240725-34 



infef 

ADS# 

CLK 

CLK#------' 

NOTE: 

ALE 

LD/C# 
LW/R# 
LM/10# 

LEPROM# 
L510CS# 

L59CS# 

CLK# 

AP-442 

STATE MACHINE (B PALS) 

1-----------l>DT/R# 

----------... IORDY# 

CLK 

CLK2 

+5V 

CLK 

CLK2 

+5V 

CLK 

CLK2 

+5V 

+5V 

MRDC# 

+5V 

IORCH# 

1-----------l>INTA# 
EN#------. 

CLK 

CLK2 

+5V 

+5V 

----DEN# 

Create BS16# for 386 Using DEN# and EPROM# (Synch to CLK) 

Figure 3-9. Control Logic for 1/0, EPROM Subsystem 

5-647 

240725-35 I 



l-:-15 ns---1 

CLK2 

it"6.5n~I 

CLK~ .... ---­
l-4-15n~ 

ADS# \..__\_._ ___ _./ _ ___,I 

CLK#~ \\ II 
I ~.8-7 .Bn' I 

ALE II 

AP-442 

\\ II 
I f.4-9.2n, I 

\\ 
1,e.5-11.5ns, 1 

Latch Addr. -------------•~-----­
Chip Selects------------·-------

---+t12ns max 

\\ 

BPAL Output s x...-~~~~-s 

~-3.-5--1-0-.5-n-.----
DEN# 

II 

rr 

Qualify latched 
Chip Select Signals 
w /LALE, sc the 
Chip Select Signals 
satisfy the setup 
time before CLK# 

240725-36 

Figure 3-10. ADS# Should Be Synchronized to Guarantee Recognition 

5-648 



(11 

~ 
<O 

PUUUP 

R7 

l.';:15 I I It 
PWR 

'0-31 

ssgggggggg_ggs&:!:3i8~esgs ~~i5l·•--l-----·"•,..•"•1 D22-0~-~~~·~N-O ~.,.... P&:U. - - • 
023 .. 
1024 M 
025 A5 
D28 A6 
D27 A7 
028 .. 
029 /8 
030 A10 

1 .4.11 

PULLUP 

3ss™ox 
UW63 

A12 
A13 .,. ... ... 
A17 ... ... 
A2D 
A21 
A22 
A23 
A24 
A25 

~ 

, .. , ... 01~·· 

'2 

_ .. , 
OUT 8S!fiUi::~Si~ 

•1 1111 1 11 1 ~m: o~ 
74LS1.( 

I I 'l-ll:>o' 
'1 :R31 ~UM8 
2 1 C18 1v1DDµF 

_61.~ 

:RDY387 

ii 
:~!i •a:~···· 

-= 

1111 

RES£TIN 011 
W/Rf 012 
MYS# 013 

~# 387TM g~~ 
:s~# UM62 g~; 
TH1 018 
READY I 019 
R£ADYO# D20 
PEREQ 021 
BUSY# D22 
ERROR# D23 

TH2 ~~=~~H;;~au 
:clilSR>IAAGi 

240725-37 

(/) )> 
0 "'O :::c "'O 
rnrn 
i:Z 
l>C .... -->< 
~)> 

cl 

)> 
"D 
I .... .... 

N 



'{' 
<» 1.a•""""""' 1~!'? I 
g: 

1 PD(O-lt) 111 +H5HiGL5.i 111 ~iSH+i+H 111 +IYl:;Jifil~iifilifil 111 &HH~iiil~i 
~1u:1:1-:1o:1;1g1;; 1 UM98 

0-31 6,7,9 

240'725-38 

cl 

J> 
'P • • N 



CA[2'1.Q 

-b ~ 1 oc 
~ CALEM 11 G IQ -1_ pA[2·14J AO PA2 3 10 20 5 ., = 7 2D 30I A2 , .. 

-1!5 _!_ 30 .. ..ll. • A3 

•• ~ 
.. 50 15 7 00 •oH 

PA7 l-4 SD 60 :If AS DI , .. 17 60 ~ 19 • •• 02 ~ ... !L ~~ 0 A7 
D3 .. I :l! Ml .. 1 

H ,__ ::n: D3 A10 

~ • 06 -= A11 

·~ 1 DC 
_a 

A12 D7 

11 G 
PUllUP 

10~ w: 1:!1-' PAI 
3 10 20 
• 20 3Q • 

~ _!_~ .. 1 2 

PA.!.{: 13 SD :g...it-- ~ =il6Q ~Pl:= 18 70 
~·o 

t.n 
a, 
~ 

cwq 
,__ 

cwq 

P16LB-7 

UM35 

P16l8-7 

'All 

SPM1 

~ ~ CA2 ~ 2 .. _1_ AO 
~ I., ~ I., 

CM ..!. A2 CA4 • A2 
i A3 i A3 
i .. ... 

7 AS 00 1~ ~ AS 00 'HI!~ 

~ = i A.6 g~ PD 

.. D3 A.7 03 7 

I:: D4 1 ~ ~o : ' H I A.10 D5 
.,, D6 A.11 D6 

CA14 A12 07 1 a.., 1 5 A12 07tJ.!-

PUUUP PULLUP wm il:t- T;[f1: I~ 2 

~ ~ 

II 

~ CA2 2 AO 
~ I., 

CA4 
' A2 

• A3 .. 
CA 

~tft; ~ AS 

•• ~m~ I A7 .. 1 .. 041 ~ 
12 2 D5 7 • 

A10 

~5E ~ 2 
A11 .,, 

PULLUP Tuill: ~~ 
~ 

PA£0·31l 

Bl!EADYI 

XI 

240725-39 

1·2 

l 

)> 
"'IJ 
I 
~ 
~ 
I\) 



(11 

o, 
(11 
I\) 

1,2 
8, 

1.---.. -

, - REFREO ,. 
,~AD~ 
;::t.Wc5H 
,_.A31 
':-A30 
;:A2g ·-

A8 , .. 
·- EPROM/I 
::.s1oc~ 
,_.5gcSii , .. 
- HIT# 
,_ 

RESET 
, ... 

CLK -1,8 

2,g 
1,3 

3 

- WiJYL 
:. READYf. 

_CACHE 

MS-S03 

··[DELAY~ 
UM44 

U45 
1 P1 p1g ~ 

MEMCS/I 
2 P2 P18 8 r LMEMCS# 
3 ~ 4 

P3 P17 

~ 5 
P4 P1S 

ir,.15 

4 
P5 P15 

~ PS P14 
.J. P7 P13 3 

~ P8 P12 2 
g ~11 pg P11 I'"'" 
JEDEC·ADOR_PAL 

PU.!;b.UP 

~R2 
OUT 
OUT 

PU.bf.UP ~ R1 

~R2g ....L-
OUT PULLDOWN 

JM1C: 1 

l! 

P1SR8-7 REFRESH. 
1 P1 p1g~ 

~ 

2 P2 P18 18 
3 P3 P17 17 CAL-ti 
4 p4op1s~ 
5 P5 ~ P15PB 
6 PS~ P14 14 PRECHARGE~ 
7 P7 P13 13 NM.... 
8 P8 P12 12 RA~ 

5 

2 
S,6, 7 

UM12 IV [:l.._ 13 >t" 12 lf'!f DELAY ,OUT 
g pg P11C::11 "l' ~ 

JEOEC•PAGE1 - ~ il r 3 
MUXSEI,,_,. 

5 

P1SR8-7 
1 P1 p1g ~ 2 P2 P18 8 

~ P3 P17 c:: 17 

H--t P4 !iij P1S ~ 
~ s PS~ P15 4 

I rt P6 "'P14 13 P7 P13 
P8 P12 

1V12 
~11 pg P11 

1-b UM11 
JEDEC·PAGE2 

P1SR8-7 ~ 
1 P1 P1 g lc>{i 
2 P2 P18 18 

_1 P3 P17~ 
~ p4op1s 1S 

S PS~ P15~15 
S PS iS P14 14 

~ P7 P13~ 4 P8 P12~ 
g pg P11 iv11 

UM13 ""=1--JEDEC•PAGE3 

74AS04 UM27 

RE.Ell... 
MUXDE#"" --

DRAMRDY_. 
CASifW --

RAMD!LBIL-
RAMDEt!f... 

WE#"" --

5 
5 

3 
5 

6,7 
6, 7 
6,, 7 

240"125-40 

cl 

> 
"P 
~ 
~ 
N 



U1 a, 
U1 
(.) 

~ ;.F UM34 14 OUT 

DC PRE 11 r-

§JI_ G CLR 23 ~ ~ 19 RA7 .,.AA ... , .. .. ll ~ L:r ,--ll ....... -
' A12 

3 
2D 20 21 2 AO ~ P2 P18 17 RAS 

A13 
4 

3D 3Q 20 ~ 4 A1 4 P3 P17 16 RM 
A14 S 4D 40~ .4 A2 -{ P4 P16 15 RA3 
A1S 

6 
SD SQ 18 ~ A3 {PS P15 14 RA2 

A16 
7 

6D 60 17 .,1,). A4 6 P6 P14 13 RA1 

A17 
8 

7D 7~ -il AS t P7 P13~12 RAO A18 ~ 8D SQ 15 1S A6 {PB P12 11 

A19 ~ 17A7 --19 J ~] 
74fCT8438 ~ ~ BO OAEQB t=- P16 RB-7 

A11 7 :~ [__ RA(0-7) ~~ 1~ :! 
A14 ~BS 
A1S 16 86 
A16 18 B7 

A17 ~~IAEQB 
AlB A19 ~J ~M32 ~ - ~ 

f 2 l'l.,-j G R17 DAO r"" ....... .. ' ', ~ " . ~ "' ~· 1,9 MUXDrli 3 18 7 RA1 -""'-! 

••w=• !!'!"--, "' : • "P" "" = <O ~ • "'AA• 1 

DC :s- A13 11 3A 3Y R20 DA3 ,--l1?J C 19 10 38 12 RA3 Af: 0) -= I ~ 10 10 18 -' A14 14 4A 4Yp 2-10 ---4 2D 20117 13~ 
l,

9 -=i. ~g ~gm ~ 74ASS73 
-4 so SQ!ji- ~ 
~ 6D 60 13 ~ G R21 DA4 ~ 7D 70 12 ~AB 4 RA4 ~ A15 -4 1A 1Yp- R22 DAS ~ 74ASS73 ~ 18 7 RA6 ~h ~ ~H2A 2Yp R23 DA6 ~ -,l1, 2B 9 RA7 - ! 11 DC ~ A17 1J 3A 3Yp R24 DA7 - c 19 I 1 3B 12 RAB C A10 

2 
10 1Qlf,} A18 14 4A 4Yp=""" •- -4 2D 2011-f- L 13 •B 

~ ~g ~g flt ~ '74i:Ss13 
-"tsD sol1t ~ 
--t 6D 6Qltt 1S G AB ::4 7D 70lft '---1,,J AB 

4 
R30 D ~ A19 ~ 1A 1Yp-74ASs73 L -4 ~~ 

2
ypL-roc---, 1 3 CA!li.O ~ 2B 9 

l,;qoc w. ~ R26 ,J,l 3A 3YpiL 11
2 f D 1QIJ:i::-r """'-1 4- 6 CA§j!_1 ~ ~~ 4Yt=>11 BEOH 3 2D 20~ R27 ~ 

I 
"'"' : ~ ~~. =-" '~" ~!:~jf i" ~g ~g~ 10 R28 

2.. ::t 6D so,ltt ~11 CA§Jl.3 

:f ~g ~~ J 13 ---"74As57, 
, .. cA~ 

PULLU 

• 

H!It... 

~. 

DA(O-'!l,. 

CAS#(0-3) 

240725-41 

cf 

l> 
"C 
I 

"" "" I\) 



01 a, 
01 

""" 

NMB2S01-06 NMB2S01-0S NMB2S01-0S NMB2S01-0S 

DIN 2 DIN 2 DIN DIN 2 

OOUT 14 OOUT 14 OOUT 1 OOUT 14 

UM73 UM74 UM7S 

0031 

WE 4 15 4 15 
4 AS 

4•5·~~ DD 1S-23 

4.5.7,.!!A§L 
5 CAS#3 

4.5. ~ : g1;:2 

4.5.7.flAli 
5~ 

D_&0-8} 

NMB280t-06 

DA1 A1 
DA2 12 A2 
DA3 ff A3 

g:; \ !~ 

D024 

DINjL-. 

oourjli-

DAOIAO 

DA6 g A6 
DA7 1 A7 UM77 
DAS AS 

WE moo 
32 49159 

D025 

DINjL-. 

oourjli-

UM78 

4 15 

NMB2S01-D6 

AO 
A1 

D02S 

D1Nf-­

OOUTJ.li_ 

4 15 

~2 : ~2 ~2 
1 A4 

OOUT 14 1 AS OOUT 14 OOUT 14 
13 AS 

!~ UMS9 UM90 

WE RAS as 0022 
4 15 4 15 4 15 

NMB2S01-0S 

7 :~ 0016 :~ 0017 0018 

f ~ DIN 2 1 ~~ DIN 2 DIN 2 
1 A4 1 A4 

A5 DOUT 14 f AS OOUT 14 . OOUT 14 

A6 g AS 

1 !~ UM92 !~ UM93 

WE RAS as WE RAS as 

D027 

DINI&--

oour!li--

DINIZ-

Dourlli 

0019 

DIN!L-

oour!li--

4 15 4 15 4 15 4 15 

l 

D23 
D22 
D21 
D20 
D19 
D1S 
D17 
D1S 

D23 
D22 
021 
D20 
D19 
01S 
D17 
D1S 

D(1S-23) 

RAMDJLRL 

~ 

D(1S-23) 

240725-42 

( 

J> 
'a 
I 
~ 
~ ..., 



O'I 
a, 
O'I 
O'I 

~01-06 NMB2801-06 

~2 ~2 ~ DIN!L 

DOUT 14 DOUT 14 DOUT 14 oourtll 

Ul.450 UM51 UM52 

oo 12 WE RAS 00 0030 D031 

4 WE 4 15 3 4 15 4 15 

4.5.61t'!'RA?!!",--+-.. --4-l--1r-------... +-+--.. --4-t--1r--.... ----' 
5 c 1 

~01-06 

D08 D09 D010 

DIN 2 DIN 2 OIN 2 

DOUT 14 OOUT 14 DOUT 14 oourlli--

4.5.6oRASt 
5 CAS#1 

UM54 UM56 Ut.457 

4 15 4 15 4 15 4 15 

NMB2BD1-06 

DINJL 

DOUTµ 

DIN!L 

Dour Ill< 

NMB2B01-06 

DINµ.. 

oourtll 

DIN 

DOUT 14 

004 DOS 006 007 

3 • 15 4 15 4 15 

D15 
D14 
D13 
D12 
D11 
010 
D9 
na 

19 1 D(8-15) 

RAMDT R 
RAM OEN 

4 5 6 RA 
. "6 CA DO 16-23 

19 1 
D 0-7 2_9 

4.5.6~ 
5~ 

OA(0-8) 

000 001 002 

DIN 2 DIN 2 DIN 2 

OOUT 14 DOUT 14 DOUT 14 

UM71 

003 

OIN!L-

oourP-!-

4 15 3 4 15 4 15 4 15 

II 
240725-43 

( 

:J> .,, 
I 
~ 
~ 
I\) 



01 
<» 
01 
O'l 

1 
1,2,.(,9 

9 
9 
9 

2:• 

1:4 

2:9 

1,2 

~ 

L!!l!1l 

!l!Z!l: 
PULLUP 

R7 PU.J,LUP 

~ Rt2 PRE UM30 

~ 
OUT 

12 D Qjl- .,...___ 
CU< 11 CU<_ ij 

...-pfr-UMt9 

~o Qs 

~ 3 
4:-CL~ij~ 

t_ 

ALE 

l510CSI 

\!!:!l 

CUCl! 

~ +--1- Pt Pt9 tS 
-1--+ P2 PtS tS +--+ P3 Pt7 l7 1 P4 Pt6 :~ 

LALE 6 ~~ ~::~ 
7 P7 Pt3 t>H 
8 P8 P12 12 
8 P9 P11 11 

P1~0 -= 

~ 
t Pt Pt9 la 

.i---4- P2 P1S E:H_ +--+ P3 Pt7 
~ P4 P16 ~:~ 
~ ~ ;:~~ 
8 ~~ ~~~ 1 
9 P9 P11~ 
P1~9 ":" 

,......!!-4 P1 P19~ 1....4-+ P2 P1S ~ L..--..f-f P3 Pl7 ld.i 
5 P-' P16 IS 
6 PS PtS 

q P6 P14 13 
8 P7 P13~ T PS P12 11 

...!..p9 P11~ 

P16H6A UM8 ":" 

PULLUP 

~ 
v .. •~ 

2 J Q 6 ~. --.s 
~ l>CLJ( 

i..J. R_oJ>L 

To 
,......2!.... PULLUP 

~Pt P19~ 
~P2 PtS~ 

RS 

4 P3 P17 f OUT 

0 P4 Pt6~ 11 UM19 

~ PS PtS t 4 ~J 
PR£ 

Q to IOI 
7 P6 P14 1l 

r-f-+ P7 Pt3~ +-+-13. l>CU< 
g P8 P12~ 

P9 Ptl 

'~i~ Pt6H6A UM21 ":" 

,....::.....9 

IN1 ........ 
IOI 
~9 

PU.J,LUP 

R7 

~UM17 L OUT 

IOI l.Ji J PRE 0 10 -~ l>CU< ~UMt7 

.E,R_iit>L ...l.JPREQs IOV/Cf 

Ts j-tCU< -1. ii_ aJ>L 
Ti IOI __...,. 

PU'#'P 

~ c ~UM1S 
2~ OUT PRE 
~ _/1 120 Q~ i--i D PRE Q S Bl 

,--::......1 

J; 
J 

11 CUC ij~ ~~ij~ 
R11 :J Ti 3 OUT 

240725-44 

cl 

]> 

'P • • N 



<.n 
Cn 
<.n 
-...J 

2.7 

- COB 7 
UMS ~ i::::::..:J ~·· .A """-""""""• 

CLR OC • '~"'-" 

cl 

)> 
"O 
I 
~ 
~ ..., 



intef AP-442 

P 2 TXD 

P 3 RXD 

RS232 

PWR 

240725-46 

5-658 



intef AP-442 

c::::::JC59 0 -c:::rR30 C63 C64 C65 C66 
C51 C52 C53 C54 C55 C56 C57 C58 n "'n ao TP3 RP1 c::::::J c::::J c::::::J c::::::J 

~c;D;i:~;;:~ c;:~;:c~;;:~ c;:~;:c~;;:~ c;:~;cD;;:i•lf.. u • ~ ~·= ~ '"'""'""" "'~ '""'""'"'"' "i 
'!JCD71 c~:2 c~:3 c~:4 c~:s c~~6 c8:7 CD78~~~~~~~ 062 aOaDri 
:::> :::> :::> ::> :::> :::> :::> :::> :::> ::> m en 14 El 

c::::J c::::J t; c::::J c::::::J ~ c::::::J c::::J 

':!.cDs
1 g g g g g ~ CD88~n~~0 to cgsJUB2 1c92 cgg~u83 ~i§4 ~C95 ~ 

, IHI l'HI El El 0 U0 l "§ i "" :i!EJ n n C103C.'~"M"00<""'~"00"'° no• m= "oo="·oo" u u 
{] ~ ~ 8 ~ ~ ~ ~ lf • , .. ,~:: '"'~"" D T.?.1 

INTEL C113c::::J f114E3RP2 
25 /33 MHZ 80386 SYSTEMS REV 001 

240725-47 

5-659 



intef AP-442 

APPENDIX B 
STATE DIAGRAMS AND PALCODES 

RAS# Generator 

MEMCS# = M/10# •ADS#• [A31-0E(1FFFFFFF .. OOOOOOOOl] 
LMEMCS# = MEMCS# + mreq 

5-660 

CAS# 

ELSE 

DRAMl-ABL 

240725-51 



intJ 

RESET 

CLK • MEMCS# ·HIT#+ 
CLK · MEMCS# + 

CLK • refresh 

CLK 

AP-442 

Precharge 

240725-52 

CAS #, READY# 

CLK · RAS# · lwr 
240725-53 

5-661 



intef AP·442 

CAL Generator Refresh 

240725-54 

240725-55 

MUXOE#, REF# Generator 

RESET 

CLK • refreq · RAS# • MEMCS# 
+ CLK · refresh • RAS# · DRAM ROY# 

240725-57 
(DRAM3) 

240725-56 
(DRAM2) 

5-662 



intJ AP-442 

DT/R # 

240725-58 
(DRAM3) 

WE# LWR 

CLK MEMCS#·W/R# El 
240725-59 

(DRAM3) 

240725-60 
(DRAM3) 

5-663 



inter AP-442 

MREQ 

I I 

MEMCS#·RAEADY# CLK·MEMCS# 

240725-61 
(DRAM3) 

5-664 

(DRAM3) 

DEN# 

CLK MEMCS# · W /R# • T2X# + 
CLK • mreq ·TIP#+ 

mreq ·T2X# 

240725-62 



intef AP·442 

module RESET_GEN flag '-r3' 

title 'RESET_GENERATION_LOGIC - INTEL CORPORATION' 

RESET_PAL 

x = .x.; 
c = .c.; 

Inputs 

device 'Pl6RB'; 

"ABEL don't care symbol 
"ABEL clocking input sybol 

CLK2 pin I; "CLK2 
RESTRIG pin 2; "signal from reset circuitry 
CLK_61 pin 9; "61.44KHz clock 

" Outputs 

"REFREQ, sync 6!.44KHz clock REFREQ 
RFQTMP 
CLK­
CLK 
RESTMP 
RESET 

pin 12i 
pin 13; 
pin 16; 
pin 17; 
pin 18; 
pin 19; 

"temporary stage in sync of 6!.44MHz elk 
"CLK# 
"CLK = CLK2 I 2 
"temporary stage in generating RESET 
"RESET 

equations 

CLK :• ( !CLK # ( !RESTMP & RESET)); 
CLK- :• CLK; 
RESTMP := RESTRIG; 
RESET := RESTMP; 
RFQTMP :- CLK 61; 
REFREQ := RFQTMP; 

test_ vectors 

([CLK2, CLK 61, RESTRIG, CLK, CLK-, RESTMP, RESET, RFQTMP, REFREQ) -> 
[CLK, CLK-~ RESTMP, RESET, RFQTMP, REFREQ]) 

c R c c R R R R c c R R R R 
L E L L E E F E L L E E F E 
K s K K s s Q F K K s s Q F 
2 T T E T R T E T R 

6 R M T H E M T M E 
I 1 p p Q p p Q 

G 

[c, x, I, x, x, x, x, x, xr. -> [x, x, 1, x, x, x); 
[c, x, 1, x, x, 1, x, x, x -> [x, x, I, 1, x, x]; 
[c, x, 0, x, x, 1, x, x, x] -> [x, x, 0, I• x, x]; 

[c, x, x, x, x, o. I, x, x] -> [l, x, x, x, x, x]; 11 elk generation 
[c, x, x, 1, x, x, O, x, x] -> [O, 1, x, x, x, x]; 
[c, x, x, 0, x, x, x, x, X) -> [I, 0, x, x, x, xl; 

PAL Codes: RESET 

5-665 

240725-48 



intef 

[c, x, x, I, x, !, x, x, x] -> [O, I, x, 

[c, x, 0, x, x, x, x, x, x] -> [x, x, 0, 
[ct x, x, x, x, 0 y x~ x] -'> [x, y x, 
[c, x, I, x, x, x, x, x, x] -> [x, x, !, 

[c, x, x, x, x, I, x, x, x] -> [x, x, x, 

[c, 0, x, x, x, x, x, x, x] -> [x, x, x, 
[c, x, x, x, x, x, x, 0, x] -> [x, x, x, 
[c, !, x, x, x, x, x, x, X] -> [x, x, x, 
[c, x, x, x, x, x, x, I, x] -> [x, x, x, 

end RESET_GEN; 

ABEL(tm) 3.10 - Document Generator 
RESET GENERATION LOGIC - INTEL CORPORATION 
Equations for Module RESET_GEN 

Device RESET_PAL 

Reduced Equations: 

!CLK := (CLK & !RESET # CLK & RESTMP); 

!CLK- :• (!CLK); 

!RESTMP :• ( !RESTRIG); 

!RESET :• ( !RESTMP); 

!RFQTMP :• ( !CLK_61); 

!REFREQ :• (!RFQTMP); 

AP-442 

x, x, x]; 

x, x, x]; restmp gen 
0, " x]; res2t gen 
x, x, x]; 

!, x, x]; 

x, 0, x]; " 61.44KHz cl k 
x, x. OJ; 
x, !, x]; 
x, x, I); 

14-Feb-90 09:53 AM 

PAL Codes: RESET (Continued) 

5-666 

240725-49 

240725-04 



inter AP-442 

ABELTM 3.l~Document Generator 
RESET_GENERATION_LOGIC-INTEL CORPORATION 
Chip diagram for Module RESET_GEN 

Device RESET _PAL 
P16R8 

CLK2 20 

RESTRIG 2 19 RESET 

3 18 RESTMP 

4 17 CLK 

5 16 CLK-

6 15 

7 14 

8 13 RFQTMP 

CLK_61 9 12 REFREQ 

10 11 _REFREQ_E 

PAL Codes: RESET (Continued) 

5-667 

14-Feb-90 09:53 AM 

240725-63 

I 



intJ 

module ADDR_DEC flag '-r3' 

title 'ADDRESS_DECODE_LOGIC - INTEL CORPORATION' 

ADDR_PAL 

x •. x.; 
c "' .c.; 

Inputs 

ADS­
M IO­
AJl 
A30 
A29 
A6 
mreq 

" Outputs 

davice 'Pl6L8'; 

pin 1; 
pin 2; 
pin 3; 

pin 
pin S; 
pin 9; 
pin 11; 

"ABEL don't care symbo 1 
"ABEL clocking input sybol 

'ADS# 
'M/10# 
"Addr bit 31 
4; 'Addr bit 30 

"Addr bit 29 
"Addr bit 6 
'Latched memory chip select 

"Memory chip select 
"8259A chip select 
"82510 chip select 
'EPROM chip select 

AP-442 

MEMCS- pin 18; 
59CS- pin 15; 

-510CS- pin 14; 
£PROM- pin 13; 
LMEMCS- pin 12; "Latched/unlatched memory chip se)ect 

equations 

IMEMCS- = !ADS- & M 10- & !All & IA30 & IA29; 
!LMEMCS- • (!ADS- &-M 10- & !All & !A30 & !A29) # mreq; 
! 59CS- • !M 10- & !AS; , 
i-s1ocs- • IM 10- & A6; 
![PROM- • M_IO- & All & A30 & A29; 

test_vectors 

([ADS-, M_IO-, All, A30, A29, A&, mreq, MEMCS-) -> 
[MEMCS-, LMEMCS-, _59CS-, _510CS-, EPRDM-)) 

A M A A A A 
D 3 3 2 6 
s T I D 9 

0 

(1, x, x, x, x, x, 

[I, x, x, x, x, x. 
[O, 1, 0, o, 0, x, 

m M 
E 
M 
c 
s 

O, 1) 

1, IJ 
x, XJ 

M L 5 5 E 
E M 9 I P 
H E C 0 R 
C M S C D 
S C S M 

s 

-> (1, I, x, x, xJ; 

-> (1, 0, x, x, xJ; 
-> (0, x, 1, 1, lJ; 

'LMEMCS-

240725-92 

io, I, 0, 0, O, 
[O, J, 0, 0, o; 
[I, j<, x:, x, x, 

[I, x, x, x, x, 
[x, I, x, x, x, 
[x, 0, x, x, x, 
[x, I, 0, x, x, 
[x, I, x, 0, x, 
[x, I, x, x, 0, 
[x; I, I, o,· 0, 
[x, 1, 0, 1, o, 
[x, 1, 0, 0, 1, 
[x, O, x, x, x, 
[x, O, x, x, x, 

[x, I, I, I, I, 
(0, I, o, 0, 0, 
[I, I, 0, O, 0, 
[O, 0, x, x, x, 
[O, 0, x, x, x, 

end .ADDR_DEC; 

PAL Codes: Address Decoder 

5-668 

x, 0, OJ ->·co, 0, I, I, I] 
x, x, x]' ->' [O, x, 1, I, lJ 
x, I, OJ -> [I, 0, x, x, ·•J 

x, x, xJ -> [I, x, x, x, xJ; . ---cs-
x, x, xJ -> [x, x, I, I, xJ; 
x, x, xJ -> [I, x, x, x, IJ; 
x, x, xJ -> [x, x, I, I, IJ; 
x, x, XJ -> [x, x, I, I, l]; 
x, x, xJ ·> [x, x, 1, I, IJ; 
x, x, xJ -> [I, x, I, I, I]; 
x, x, xJ ·> [I, x, I, I, IJ; 
x, x, x] -> [I, x, I, I, IJ; 
0, x, xJ -> [I, x, x, I, lJ; 
I, x, xJ -> [I, x, I, x, IJ; 

x, x, x) -> [I, x, I, I, OJ; 
x, x, xJ -> (0, x, ,1, I, I]; 
x, x, xJ ·> [I, x, 1, I, lJ; 
0, x, xJ -> [I, x, O, 1, IJ; 
1, x, xJ ·> [I, x, I, 0, lJ; 

240725-93 



intef 

ABEL(tm) 3 .10 - Document Generator 
ADDRESS DECODE LOGIC - INTEL CORPORATION 
Equat;oiis for llodule ADDR_DEC 

Device ADDR_PAL 

- Reduced Equations: 

AP-442 

14-Feb,90 09:50 AM 

IMEMCS- = ( !A29 & !A30 & !A31 & !ADS- & H_IO-); 

! LMEMCS- • (mreq # !A29 & !A30 & IA31 & !ADS- & M_IO-); 

!_59CS- • ( !A6 & IM_IO-); 

!_SIOCS- • (A6 & !M_IO-); 

!EPROH- = (A29 & A30 & A31 & H_IO-); 

PAL Codes: Address Decoder (Continued) 

5-669 

240725-05 

II 



intef AP-442 

ABEL™ 3.10-Document Generator 
ADDRESS_DECODE_LOGIC-INTEL CORPORATION 
Chip diagram for Module ADDR_DEC 

Device ADDR_PAL 

ADSN 

M_IQN 

A31 

A30 

A29 

A6 

P16L8 

20 

19 
18 
17 

MEMCSN 

_59CSN 

_510CSN 
EPRDMN 
LMEMCSN 

mreq 

240725-64 

PAL Codes: Address Decoder (Continued) 

5-670 

14-Feb-90 09:50 AM 



inl:ef AP-442 

module PAGE_MODE_DRAM_CTRL_l flag '-r3' 

title 'PAGE MODE DRAM CONTROLLER - PAL 1, INTEL CORPORATION' 

PAGEi device 'Pl6R8'; 

.X.; " ABEL 1 don 1 t care' symbol 

.C.; ' ABEL 'clocking input' symbol 

Inputs 

CLK2 pin I; '80386 CLK2 
CLK pin 2; "Processor Clock 
MEMCS- pin 3; "Memory Chip Select 
LMEMCS- pin 4; 'Latched/Unlatched Memory Chip Select 
HIT- pin 5; 'DRAM Page Hit Signal 
CAS- pin 6; 'Column Address Strobe 
DRAMRDV- pin 7; 'DRAM Ready Signal 
re freq pin 8; 11 Refresh Request Sign a 1 
RESET pin 9; "System Reset 

" Outputs 

RAS- pin 12; "Row Address Strobe 
NA- pin 13; 11 Next Address Signal 
precharge pin 14; "RAS Precharge Signal 
a pin 15; 
wait- pin 16; 11 delays RAS- until refresh adress is val id 
CAL pin 17; .. Column Address Latch 
refresh pin 18; "Refresh Signa 1 (active once refresh is acknowledged.) 

unused pin 19; 

state_diagram [RAS-, NA-] 

state [l, lJ: if precharge then (1, lJ else 
if (CLK & refresh & wait-) then [O, lJ else 
if ((~K & !LMEMCS-& !refresh) then (0, OJ else (1, IJ; 

state [O, O]: if RESET then (1, l] else 
if CAS- then (0, O] else 
if (CLK & !MEMCS- & HIT- # 

CLK & MEMCS- & !DRAMROV- # 
CLK & refresh & !DRAMROV-) then (1, lJ else [O, O]; 

state (0, l]: if RESET then (1, lJ else 
if (CLK & !refresh) then (1, lJ else [O, lJ; 

state (1, O]: goto (1, lJ; 

state_diagram [precharge, aJ 

state [O, OJ: if (!RAS-) then [O, lJ else [O, OJ; 
state [O, lJ: if (RESET) then [O, OJ else 

if (RAS-) then [I, l] else (0, lJ; 
state [I, l]: goto [I, O]; 
state [I, OJ: if (CAS-) then [O, OJ else[!, OJ; 

PAL Codes: DRAM 1 

5-671 

I 
240725-94 



intef AP•442 

state_diagram [CAL) 

state (I]: if (!NA- & CAS-) then [OJ else [I); 
state [OJ: if (RESET) then [I) else 

if (!CAS-) then [I) else [OJ; 

state_diagram [refresh, wait-) 

state[O, OJ: if (CLK & refreq) then [I, OJ else [O, OJ; 
state[!, OJ: if (RESET) then [O,O) else 

if (CLK & MEMCS-) then [I, I) else (1, OJ; 
state[ I, I): if (RESET) then [O,O) else 

if (CLK & NA- & !RAS-) then [O, I) else [l, 1); 
state[O, 1): if (RESET) then [O,OJ else 

if (CLK & !refreq) then [O, OJ else [O, I); 

test_ vectors 

( [CLK2 ,CLK,MEMCS-,LMEMCS-,HJT-,CAS-,DRAMRDY-, refreq,RESET) -> 
[RAS-, NA-, precharge, CAL, refresh)) 

c M L c D R N c r 
L E M A R A A A e 
K M E s A s - e L f 
2 c M M r 

s c R 
s D 

y r 
g 
e 

[c, x, x, x, x, x, I, x, lJ -> (1, 1, x, 1, OJ; 
[c, x, x, X, X, x, l, x, lJ -> [1, 1, x, 1, OJ; 
(c, I, I, I, x, I, 1, 0, OJ -> [1, I, x, 1, OJ; :n' phase I 
[c, O, I, !, x, I, I, 0, OJ -> [!, I, x, I, OJ; phase 2 
[c, I, l, I, x, I, I, O, OJ -> [1, 1, x, I, OJ; "Tl' Read, Non-Pipelined 
[c, 0, 0, 0, x, I, I, 0, OJ -> [!, I, 0, I, OJ; 
[c, I, 0, 0, x, I, I, 0, OJ -> [O, 0, 0, I, OJ; "T2 
[c, o, 1, 0, x, I, I, 0, OJ -> (0, 0, o, 0, OJ; 
[c, I, 1, 0, x, I, I, 0, OJ -> [0, 0, 0, O, OJ; "T2P 
[c, 0, 0, 0, x, 0, I, 0, OJ -> [O, 0, O, I, OJ; Page Hit 
[c, I, 0, 0, 0, 0, I, 0, OJ -> [O, 0, O, I, OJ; "T2P 
[c, O, 0, 0, 0, 0, O, 0, OJ -> [O, 0, 0, l, OJ; 
[c, I, 0, 0, O, 0, 0, 0, OJ -> [O, 0, O, I, OJ; "TIP, Read, Pipelined 
[c, 0, I, 0, 0, I, I, 0, OJ -> [O, 0, O, 0, OJ; 
[c, l, I, 0, 0, 0, l, 0, OJ -> (0, O, 0, I, OJ; "T2P 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, I, OJ; 
[c, l, 0, 0, 0, O, O, 0, OJ -> (0, 0, O, I, OJ; "TIP, Write 
[c, 0, I, 0, 0, 1, I, 0, OJ -> [O, 0, 0, 0, OJ; 
[c, I, I, 0, 0, I, I, 0, OJ -> [O, 0, 0, O, OJ; "T2P 
[c, O, 0, 0, 0, l, l, 0, OJ -> [O, 0, O, 0, OJ; 
[c, I, 0, 0, 0, I, I, O, OJ -> [0, 0, 0, 0, OJ; "T2P 
[c, 0, 0, O, 0, 0, 0, 0, OJ -> [O, 0, O, !, OJ; 

PAL Codes: DRAM 1 (Continued) 

5-672 

240725-95 



intef 

[c, I, O, 0, O, 0, 0, 0, OJ 
[c, 0, I, 0, O, I, I, 0, OJ 
[c, I, I, 0, 0, 0, I, 0, OJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ 
[c, I, 0, 0, I, 0, 0, 0, OJ 
[c, 0, I, 0, I, I, I, 0, OJ 
[c, I, I, 0, I, I, I, 0, OJ 
[c, 0, I, 0, I, I, I, 0, OJ 
[c, I, I, 0, I, I, I, 0, OJ 
[c, 0, I, 0, I, I, I, O, OJ 
[c, I, I, 0, I, I, I, 0, OJ 
[c, 0, 0, 0, x, 0, I, 0, OJ 
[c, I, 0, 0, I, 0, I, 0, OJ 
[c, 0, 0, 0, I, 0, 0, 0, OJ 
[c, I, 0, 0, I, 0, 0, 0, OJ 
[c, 0, I, 0, I, I, !, 0, OJ 
[c, I, I, 0, I, I, I, 0, OJ 
[c, 0, I, 0, I, I, I, 0, OJ 
[c, I, I, 0, I, I, I, 0, OJ 
[c, 0, 0, 0, I, 0, I, 0, OJ 
[c, I, 0, 0, 0, 0, I, 0, OJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ 
[c, I, 0, 0, 0, 0, 0, 0, OJ 
[c, 0, I, 0, 0, I, I, 0, OJ 
[c, I, I, 0, 0, 0, I, 0, OJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ 
[c, I, 0, 0, 0, 0, 0, 0, OJ 
[c, 0, ], 0, 0, I, ], 0, OJ 
[c, I, I, 0, 0, 0, I, 0, OJ 
[c, 0, I, 0, 0, 0, 0, 0, OJ 
[c, I, I, I, 0, 0, 0, O, OJ 
[c, 0, 0, 0, x, J, I, 0, OJ 
[c, I, 0, 0, x, I, I, 0, OJ 
[c, 0, I, 0, x, I, I, 0, OJ 
[c, I, I, 0, x, I, I, 0, OJ 
[c, 0, I, 0, x, I, I, 0, OJ 
[c, I, I, 0, x, I, J, 0, OJ 
[c, O, o, o, x, o, J, 0, OJ 
[c, I, 0, 0, 0, 0, I, 0, OJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ 
[c, I, 0, 0, 0, 0, 0, 0, OJ 
[c, 0, I, 0, 0, I, I, 0, OJ 
[c, I, I, 0, 0, 0, I, 0, OJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ 
[c, I, 0, 0, 0, 0, 0, 0, OJ 
[c, 0, I, 0, 0, I, I, I, OJ 
[c, I, I, 0, 0, 0, I, I, OJ 
[c, 0, 0, 0, 0, 0, 0, I, OJ 
[c, I, 0, 0, 0, 0, 0, I, OJ 
[c, 0, I, 0, 0, I, I, I, OJ 
[c, I, I, 0, 0, I, I, I, OJ 
[c, 0, I, 0, 0, I, I, I, OJ 
[c, I, I, 0, 0, I, I, I, OJ 
[c, O, I, 0, 0, I, I, 0, OJ 

AP·442 

-> [O, 0, 0, I, OJ "TIP 
-> [O, 0, 0, 0, OJ 
-> [O, 0, 0, I, OJ "l2P 
-> (0, 0, O, 1, OJ 
-> [I, I, 0, I, OJ 

Page Miss 
"TIP 

-> [I, I, I, I, OJ 
-> [I, I, I, I, OJ "T2 
-> [I, I, 0, I, OJ 
-> [O, 0, 0, I, OJ "T2 
-> [O, 0, 0, 0, OJ 
-> [O, 0, 0, 0, OJ "T2P 
-> (0, 0, 0, I, OJ 
-> [I, I, 0, I, OJ "T2P 
-> [I, I, I, I, OJ 
-> [], I, I, I, OJ "TIP 
-> [I, I, 0, I, OJ 
-> [O, 0, 0, I, OJ "T2 
-> [O, 0, 0, 0, OJ 
-> [O, 0, 0, 0, OJ "T2P 
-> [O, 0, 0, I, OJ 
-> [O, 0, 0, I, OJ "T2P 
-> [O, 0, 0, I, OJ 
-> [O, 0, 0, I, OJ "TIP 
-> [O, 0, 0, 0, OJ 
-> [O, 0, 0, I, OJ "T2P 
-> [O, 0, 0, I, OJ 
-> [O, 0, 0, I, OJ "TIP 
-> [O, 0, O, 0, OJ 
-> [O, 0, 0, I, OJ "T2i 
-> [0, 0, 0, J, OJ 
-> [!, J, 0, I, OJ "Tl 
·> [I, J, I, J, OJ 
-> [!, I, I, J, OJ "T2 
-> [I, I, 0, I, OJ 
-> [O, 0, 0, I, OJ "T2 
-> [O, 0, O, 0, OJ 
-> [O, 0, 0, 0, OJ "T2P 
-> [O, 0, 0, I, OJ 
-> [0, 0, 0, I, OJ "T2P 
-> [O, 0, O, I, OJ 
-> [O, 0, 0, I, OJ 'TIP 
-> [0, 0, 0, 0, OJ 
-> [O, 0, 0, I, OJ "T2P 
-> [O, 0, 0, I, OJ 
-> [O, 0, O, I, OJ "TlP 
-> [O, O, 0, 0, OJ 
-> [O, 0, 0, I, IJ "T2P 
-> [O, 0, 0, I, JJ 
-> [!, !, 0, I, IJ 'TIP, Refresh 
-> [I, I, I, 1., JJ 
->[I, I, I, ], IJ "T2 
-> [I, I, 0, I, JJ 
-> [O, I, 0, I, IJ "T2 
-> [O, I, 0, I, IJ 

[c, I, I, 0, 0, I, I, 0, OJ -> [O, I, 0, I, OJ; "T2 
[c, 0, 1, 0, 0, I, I, 0, OJ -> [O, I, 0, I, OJ; 
[c, I, 1, 0, 0, I, I, 0, OJ -> [I, 1, O, I, OJ; "T2, Pending Read 
[c, 0, 1, 0, 0, I, I, 0, OJ -> [J, ], 1, J, OJ; 
[c, I, 1, 0, 0, I, I, 0, OJ -> [I, 1, 1, I, OJ; "T2 
[c, 0, I, O, 0, I, I, 0, OJ -> [I, 1, 0, I, OJ; 
[c, I, I, 0, 0, I, I, 0, OJ -> [O, 0, 0, I, OJ; "T2 
[c, 0, I, 0, 0, I, I, 0, OJ -> [O, 0, O, 0, OJ; 
[c, 1, 1, 0, O, I, I, 0, OJ -> [O, 0, 0, 0, OJ; "T2P 
[c, O, O, o, O, o, I, 0, OJ -> [O, O, O, I, OJ; 
[c, 1, 0, 0, 0, 0, I, 0, O] -> [O, 0, O, I, OJ; "T2P 
[c, 0, 0, O, 0, 0, 0, 0, OJ -> [O, O, O, I, OJ; 
[c, I, 0, 0, 0, 0, 0, 0, OJ -> [O, O, 0, I, OJ; "TIP 

end PAGE_MOOE_DRAM_CTRL_l; 

PAL Codes: DRAM 1 (Continued) 

5-673 

I 
240725-96 

240725-97 



intef AP-442 

ABEL(tm) 3.10 - Document Generator 15-Feb-90 05:47 PM 
PAGE MODE DRAM CONTROLLER - PAL I, INTEL CORPORATION 
Equations for Module PAGE_MOOE_DRAM_CTRL_l 

Device PAGEi 

Reduced Equations: 

!RAS- := (NA- & !RAS- & !RESET & refresh 
# ORAMROY- & !HIT- & !NA- & !RAS- & !RESET 
# ORAMRDY- & MEMCS- & !NA- & !RAS- & !RESET 
# !HIT~ & !MEMCS- & !NA- & !RAS- & !RESET & !refresh 
# !CLK & !RAS- & !RESET 
# CAS- & !NA- & !RAS- & !RESET 
# CLK & !LMEMCS- & NA- & RAS- & !precharge & !refresh 
# CLK & NA- & RAS- & !precharge & refresh & wait-); 

!NA- := (DRAMROY- & !HIT- & !NA- & !RAS- & !RESET 
# ORAMROY- & MEMCS- & ! NA- & ! RAS- & ! RESET 
# !HIT- & !MEMCS- & !NA- & !RAS- & !RESET & !refresh 
! !CLK & !NA- & !RAS- & !RESET 
# CAS- & ! NA- & ! RAS- & ! RESET 
! CLK & !LMEMCS- & NA- & RAS- & !precharge & !refresh); 

!precharge := (CAS- & !a 
# !RAS- & !precharge 
I RESET & ! precharge 
# !a & !precharge) i 

!a := (precharge #RESET & a# RAS- & !a); 

! CAL : = (!CAL & CAS- & ! RESET # CAL & CAS- & ! NA-) ; 

! refresh : = (!refresh & wait-

! wait-

# CLK & NA- & !RAS- & wait­
# RESET & refresh 
# ! refreq & ! refresh 
# !CLK & ! refresh); 

(CLK & !refreq & !refresh 
# !MEMCS- & !wait-
1 !CLK & !wait-
! RESET 
# !refresh & !wait-); 

PAL Codes: DRAM 1 (Continued) 

5-674 

240725-50 



intef AP-442 

ABEL™ 3.10-Document Generator 
PAGE MODE DRAM CONTROLLER-PAL l, INTEL CORPORATION 
Chip diagram for Module PAGE_MODE_CTRL_l 

Device PAGEl 
P16R8 

CLK2 1 20 

CLK 2 19 unused 

MEMCS- 3 18 refresh 

LMEMCS- 4 17 CAL 

HIT- 5 16 wait ..... 

CAS- 6 15 0 

DRAMRDY- 7 14 prechorge 

refreq 8 13 

RESET 9 12 RAS-

10 _RAS-_E 

240725-65 

PAL Codes: DRAM 1 (Continued) 

5-675 

15-Feb-90 05:47 PM 

I 



AP·442 

ABEL(tm) 3.10 - Document Generator 15-Feb-90 06: 16 PM 
PAGE MODE DRAM CONTROLLER - PAL 2, INTEL CORPORATION 
Equations for Module PAGE_MOOE_ORAM_CTRL_2 

Device ?AG E2 

- Reduced Equations: 

!CAS- := (CAS- & CLK & ORAMROY- & !RESET & !a & !b 
# !CACHE & ORAMROY- & !RESET & a & !b & !lwr 
# ORAMROY- & !RAS- & !RESET & a & !b & !lwr 
# !CAS- & !CLK & !RESET & a & b 
# !CAS- & DRAMRDY- & !RESET & a 
# CAS- & CLK & ORAMRDY- & !MUXOE- & !RAS- & a & b); 

!ORAMROY- :• (CAS- & CLK & ORAMROY- & !RESET & !a & !b 
# !CAS- & !CLK & !ORAMROY- & !RESET & a & b 
# !CAS- & CLK & ORAMRDY- & !RESET & a & !b 
# !CAS- & CLK & ORAMROY- & !RESET & a & lwr 
# !CACHE & !CAS- & CLK & ORAMROY- & !RESET & a); 

! a := {CAS- & !CLK & ORAMRDY- & !RESET & !a & !b 
# CAS- & CLK & DRAMRDY- & IRAS- & !RESET & a & !b & lwr); 

!b :• (CAS- & !CLK & ORAMROY- & !RESET & !a & !b 
# CAS- & ORAMROY- & RAS- & ! RESET & a & ! b 
# !CACHE & CAS- & ORAMROY- & !RESET & a & !b 
# CAS- & ORAMROY- & !RESET & a & !b & lwr 
# !CAS- & CLK & !DRAMRDY- & !MEMCS- & !RAS- & !RESET & a & b & 

! refresh 
# !CAS- & !CLK & ORAMROY- & !RESET & a & !b 
#CACHE & !CAS- & CLK & ORAHROY- & !RESET & a & b & !lwr); 

!MUXOE- :• ( !MUXOE- & !REF­
# REF- & ! r 
# MUXOE- & RESET 
# ORAMROY- & ! MUXOE- & ! RAS­
# !MEMCS- & !MUXOE- & RAS-
# !MUXOE- & !refresh 
# !CLK & !MUXOE-); 

!REF- := {MUXOE- & !RESET & r); 

!r := (MUXOE- & !REF- & !RESET & !r 
# CLK & MUXOE- & !RAS- & !REF- & !RESET); 

PAL Codes: DRAM 2 

5-676 

240725-98 



intJ AP-442 

ABEL™ 3.10-Document Generator 
PAGE MODE DRAM CONTROLLER-PAL 2, INTEL CORPORATION 
Chip diagram for Module PAGE_MODE_DRAM_CTRL_2 

Device PAGE2 
P16R8 

CLK2 1 20 
CLK 2 19 

RAS- 3 18 REF-
MEMCS- 4 17 MUXOE-

HIT- 5 16 unused 

CACHE 6 15 b 

lwr 7 14 a 

refresh 8 13 ORAMRDY-
RESET 9 12 CAS-

10 _CAS-_E 

240725-66 

PAL Codes: DRAM 2 (Continued) 

5-677 

15-Feb-90 06:16 PM 

I 



intef AP•442 

module PAGE_MODE_DRAM_CTRL.;.2 · flag·' -r3' 

title 'PAGE MODE DRAM CONTROLLER • PAL 2, INTEL CORPORATION' 

PAGEZ device 'Pl6R8'; 

.x.; • ABEL 'don't care'. symbol 

.c.; ' ABEL 'clocking Input' symbol 

Inputs 

CLK2 pin I; 
CLK pin 2; 
RAS- pin 3; 
MEMCS- pin 4; 
HIT- pin 5; 
CACHE P1n 6; 
lwr p1n 7; 
refresh pin 8; 
RESET pin 9; 

" Outputs 

CAS- pin 12; 
DRAMRDY- pin 
a 
b 
unused 
MUXOE­
REF-

pin 14; 
pin 15; 
P1n 16; 
p1n 17; 
pin , 18; 
pin 19; 

estate • [CAS-, 
idle • [ 1 , 
start • [ O , 
wait • [ 0, 
active • [ 0 
inactive I • ' [ 

Inactive -

"803B6 CLK2 
'Processor Clock 
"Row Address Strobe 
"Memory Chip Select 
"DRAM Page Htt Signal (unused) 
'Hi when 385 is used; otherwise, Low 
"Latched Write/Read 
"Refresh Signal 
"System Reset 

"Column Address Strobe· 
1~; "DRAM Ready 

"DRAM Address Multiplexer Output Enable 
"Enables refresh counter instead of ,MUX 

DRAMRDY-,a, b); 
1 ,!, JJ; 'Idle 
1 ,1, lJ; "CAS- Active 
1 ,1, OJ; "CAS- Active, Watt State 
0 ,1, lJ; "CAS- and DRAMRDY- Active 
1, 1 ,!, OJ; "Page Hit, CAS- and DRAMRDY-

• [ 1 ' ,o, 0]; "Page Htt, CAS- and DRAMRDY-inactive 2 
Inactive -

tllegal_a 
illegal_b 
illegal_c 
tllegal_d 
tllegal_e 
illegal_f 
illegal_g 
tllegal_h 
tllegal_i 
tllegal_j 

muxstate 
enabled • 

• [D,D,D,D); 
• [D,O,D,1]; 
• [D,0,1,0); 
• [0,1,0,0); 
• [0,1,0,lJ; 
• [1,0,0,1); 
• [J,0,1,0]; 
• [1,0,1,1); 
• [1,1,0,1); 
- [1,0,0,0); 

• [MUXOE-, REF-, rJ; 
0 , 1 , 1); "Multiplexer Outputs Enabled 

PAL Codes: DRAM 2 (Continued) 

5-678 

240725-99 



intef AP-442 

disabled I 
dlsabled-2 
disabled-3 
dlsabled-4 
Illegal z 
1llegaly 
illegal_x 

. [ . [ . [ 

I] "Multiplexer Outputs Disabled 
I] "Refresh Address Enabled 
O] "Wait for RAS# 

• [ I • OJ "Refresh Address Disabled 
• [O,O,O]; 
• [O,O,J]; 
• [O,J ,O]; 

state_diagram estate 

state Idle: If (CLK & !RAS- & !MUXOE-) then start else idle; 
state start: If RESET then idle else 

If (CLK & !CACHE # CLK & lwr) then active else 
if CLK then wait else start; 

state wait: if RESET then idle else 
if CLK then active else wait; 

state active: if RESET then idle else 
if (CLK & !MEMCS- & RAS- # 

CLK & MEMCS- # 
CLK & refresh) then idle else 

if (CLK & IMEMCS- & IRAS-) then inactive_! 
else act 1ve; 

state inactive I: if RESET then idle else 
Tf (CLK & IRAS- & lwr) then inactive_2 else 
if (!RAS- & llwr & CACHE) then start else 
if ( ! lwr & !CACHE) then wait else 
Inactive I; 

state Inactive 2: if RESET then idle else 
Tf CLK then active else inactive 2; 

state illegal_a: goto idle; -
state illegal b: goto idle; 
state illegal=c: goto idle; 
state illegal_d: goto idle; 
state illegal_e: goto Idle; 
state illegal_f: goto idle; 
state illegal_g: goto idle; 
state illegal h: goto Idle; 
state illegal=i: goto Idle; 
state illegal_j: goto Idle; 

state_diagram muxstate 

state enabled: if (CLK & refresh & RAS- & MEMCS- # 
CLK & refresh & ! RAS- & !DRAMRDY-) then 
disabled I else enabled; 

state disabled I: if (RESET) then enabled else disabled 2; 
state dlsabled=2: If (RESET) then enabled else -

If (CLK & !RAS-) then disabled 3 else disabled 2; 
state disabled 3: If (RESET) then enabled else disabled 4; -
state disabled=4: goto enabled; -
state lllegal_z: goto enabled; 
state lllegaly: goto enabled; 
state illegal_x: goto enabled; 

PAL Codes: DRAM 2 (Continued) 

5-679 

II 
240725-AO 



intJ AP-442 

test_vectors 

{ [CLK2,CLK,MEMCS-, lwr,HIT-,RAS-, refresh,RESET ,CACHE) -> 
[CAS-, DRAMRDY- .MUXOE-, REF-] l 

H H R r R c D M R 
E w I A E A R u E 
M r T s s c A x F 
c - - r E H - M 0 -
s e T E R E 

D 
y 

[c, x, x, 0, x, x, x, I, OJ -> [I, I, 0, I); "Cache disabled 
[c, x, x, 0, x, x, x, I, OJ -> [!, I, 0, I); 
[c, 0, I, O, x, I, 0, 0, OJ -> [I, I, 0, JJ; "Ti 
[c, I, I, 0, x, I, 0, 0, OJ -> [I, I, 0, I); 
[c, 0, 0, 0, x, I, 0, 0, OJ -> [I, I, 0, IJ; "Tl 
[c, !, 0, 0, x, I, O, 0, OJ -> [I, I, 0, I); 
[c, 0, I, 0, x, 0, 0, 0, OJ -> [I, I, 0, IJ; "T2 
[c, I, I, 0, x, 0, 0, 0, OJ -> [O, I, 0, IJ; 
[c, 0, 0, 0, x, 0, 0, 0, OJ -> [O, I, O, I); "T2P 
[c, I, 0, O, 0, O, 0, 0, OJ -> [O, O, 0, I); 
[c, 0, 0, O, 0, O, 0, 0, OJ -> [O, 0, 0, I); "T2P 
[c, I, 0, 0, O, 0, O, 0, OJ -> [I, I, O, IJ; 
[c, 0, I, 0, O, 0, 0, 0, OJ -> [O, I, 0, JJ; "TIP 
[c, I, I, 0, 0, 0, 0, 0, OJ -> [0, O, 0, IJ; 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, IJ; "T2P 
[c, I, O, 0, 0, 0, 0, 0, OJ -> [I, I, 0, IJ; 
[c, 0, I, I, O, 0, 0, 0, OJ -> [!, I, 0, IJ; "TIP 
[c, I, I, I, 0, 0, 0, 0, OJ-> [I, I, 0, I); 
[c, 0, 0, I, 0, 0, O, 0, OJ -> [I, I, 0, IJ; 'T2P 
[c, I, 0, I, 0, 0, 0, 0, OJ -> [O, 0, 0, IJ; 
[c, 0, 0, I, O, 0, 0, 0, OJ -> [O, O, O, IJ; "T2p 
[c, I, 0, 0, 0, 0, 0, 0, OJ -> [!, I, 0, IJ; 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [O, I, 0, IJ; "TIP 
[c, I, I, O, 0, 0, 0, 0, OJ -> [O, 0, 0, I); 
[Cy 0, 0, O, 0, 0, 0, 0, OJ -> [O, 0, 0, I); "T2P 
[c, I, 0, 0, I, I, 0, 0, OJ -> [I, I, 0, IJ; 
[c, O, I, 0, I, I, 0, 0, OJ-> [I, I, 0, I); "TIP 
[c, I, I, 0, I, I, 0, 0, OJ -> [I, I, 0, IJ; 
[c, 0, I, 0, I, I, 0, 0, OJ -> [I, I, 0, I]; "T2 
[c, I, I, 0, I, 1, O, 0, OJ -> [I, I, O, I]; 
[c, 0, I, 0, I, 0, 0, 0, OJ -> [l, I, O, IJ; 'T2 
[c, 1, I, 0, I, 0, 0, 0, OJ -> [O, I, 0, IJ; 
[c, 0, 0, 0, x, 0, 0, 0, OJ -> [O, I, 0, I]; 'T2P 
[c, 1, O, 0, I, O, O, 0, OJ -> [O, 0, 0, I]; 
[c, 0, 0, I, I, I, 0, 0, OJ-> [0, 0, 0, !); "T2P 
[c, I, 0, O, I, I, 0, O, OJ -> [I, I, 0, !]; 
[c, O, I, I, I, I, 0, 0, OJ -> [I, I, 0, I]; "TIP 
[c, !, I, I, I, I, 0, 0, OJ -> [I, !, 0, I); 

PAL Codes: DRAM 2 (Continued) 

5-680 

240725-A1 



intJ 

[c, 0, I, I, I, 0, 0, 0, OJ -> [!, I, 0, IJ 'T2 
[c, I, I, I, I, 0, 0, 0, OJ -> [O, I, 0, !J 
(c, 0, 0, I, I, 0, 0, 0, OJ -> [O, I, 0, !J 'T2P 
[c, I, 0, I, O, 0, 0, 0, OJ -> [O, O, 0, !J 
[c, 0, 0, I, 0, 0, 0, 0, OJ -> [O, 0, 0, !J "T2P 
[c, I, 0, 0, 0, 0, 0, 0, OJ -> [!, I, 0, !J 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [O, I, 0, !J "TIP 
[c, I, I, 0, 0, 0, 0, O, OJ -> [O, 0, 0, IJ 
[c, O, O, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, !J "T2P 
[c, I, 0, 0, O, 0, O, O, OJ -> [!, I, 0, IJ 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [O, I, 0, IJ "TIP 
[c, I, I, O, O, O, 0, 0, OJ -> [O, 0, 0, !J 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, IJ "T2i 
[c, I, !, 0, 0, 0, 0, 0, OJ -> [!, I, 0, !J 
[c, 0, 0, 0, x, !, 0, 0, OJ -> [!, I, 0, IJ "Tl 
[c, I, 0, 0, x, I, 0, 0, OJ -> [!, I, O, IJ 
[c, 0, I, I, x, I, 0, 0, OJ -> [!, I, 0, IJ "T2 
[c, I, I, I, x, I, 0, 0, OJ -> [I, I, 0, IJ 
[c, 0, I, I, x, 0, 0, 0, OJ -> [I, !, 0, IJ "T2 
[c, I, I, I, x, 0, 0, 0, OJ -> [O, I, O, IJ 
[c, 0 1 0, l, x, 0, 0, 0, OJ -> [O, 1. 0, 1] "T2P 
[c, I, 0, I, 0, 0, 0, 0, OJ -> (0, 0, 0, !J 
[c, 0, O, I, 0, 0, 0, 0, OJ -> [O, 0, 0, !J "T2P 
[c, I, 0, 0, 0, 0, 0, O, OJ -> [I, I, 0, !J 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [O, I, 0, IJ "TIP 
[c, I, I, 0, 0, O, O, 0, OJ -> [O, 0, 0, IJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, O, !J "T2P 
[c, I, O, 0, 0, O, 0, 0, OJ -> [!, I, 0, !J 
[c, O, I, 0, 0, 0, 0, 0, OJ -> [O, l, 0, !J "TIP 
[c, I, I, 0, 0, O, 0, 0, OJ -> [O, 0, 0, !J 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, !J "T2P 
[c, I, O, 0, 0, O, I, 0, OJ -> [!, l, !, !J 
[c, 0, !, O, 0, !, !, O, OJ -> [I, I, I, OJ "TIP 
[c, I, I, O, O, I, I, 0, OJ -> [I, !, !, OJ 
[c, 0, I, 0, 0, I, l, 0, OJ -> [!, I, I, OJ 'T2 
[c, I, I, 0, 0, I, I, 0, OJ -> [!, !, I, OJ 
[c, 0, I, 0, 0, 0, I, 0, OJ -> [!, I, I, OJ "T2 
[c, I, I, 0, 0, 0, I, 0, OJ -> [!, I, I, OJ 
[c, 0, I, 0, 0, 0, !, 0, OJ -> [I, I, I, I] "T2 
[c, I, I, 0, 0, 0, 0, 0, OJ -> [!, I, 0, IJ 
[c, 0, I, 0, 0, I, 0, 0, OJ -> [I, I, O, !J "T2 
[c, I, I, 0, 0, I, 0, 0, OJ -> [I, I, 0, IJ 
[c, O, I, 0, 0, I, O, 0, OJ -> [!, I, O, !J 'T2 
[c, I, I, 0, 0, I, 0, 0, OJ -> [!, I, 0, IJ 
[c, 0, I, 0, 0, 0, 0, 0, OJ -> [!, I, 0, I] "T2 
[c, I, I, 0, 0, 0, 0, 0, OJ -> (0, I, O, IJ 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> (0, !, 0, !J "T2P 
[c, I, 0, 0, O, O, 0, O, OJ -> [0, 0, 0, !J 
[c, 0, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, !J "T2P 
[c, I, 0, 0, 0, 0, 0, 0, OJ -> [I, I, 0, !) 
[c, 0, I, 0, O, O, 0, 0, OJ -> [O, I, 0, !J "TIP 
[c, I, !, 0, 0, 0, O, 0, OJ -> [O, 0, O, IJ 
[c, O, 0, 0, 0, 0, 0, 0, OJ -> [O, 0, 0, !] "T2P 

AP-442 

[c, x, x, 0, x, x, x, I, !J -> [!, I, 0, IJ "Cache eanbled 

PAL Codes: DRAM 2 (Continued) 

5-681 

I 
240725-A2 



l.n+_r 
1 ''el AP-442 

[c, x, x, O, x, x, x, L l] -> [l, 1, o, lJ 
[c, 0, I, 0, x, I, 0, 0, I] -> [!, I, O, I] "Ti 
[c, I, I, 0, x, I, 0, 0, I] -> [I, I, 0, I] 
[c, O. 0, O, x. I. O, 0, I] -> [!, !, 0, !] "Tl, Read 
[c, I, 0, 0, x, I, 0, 0, I] -> [I, I, 0, I] 
[c, 0, !, O, x, 0, 0, 0, I] -> [I, I, O, I] "T2 
[c, I, I, 0, x, 0, 0, 0, I] -> [O, I, 0, I] 
[c, 0, 0, 0, x, 0, 0, 0, !] -> (0, I, 0, I] "T2P 
[c, I, 0, 0, 0, 0, 0, 0, I] -> [O, I, 0, I] 
[c, 0, 0, 0, 0, 0, 0, 0, I] -> (0, I, 0, I] "T2P 
[c, I, 0, 0, 0, 0, 0, 0, !] -> (0, 0, 0, I] 
[c, 0, 0, 0, 0, 0, 0, O, I] -> [O, 0, 0, I] "T2P 
[c, !, O, 0, 0, 0, 0, 0, I] -> [I, I, 0, I] 
[c, 0, l, O, O, 0, 0, 0, l] -> [O, 1, O, 1] "TJP, Read 
[c, I, I, 0, 0, 0, 0, 0, I] -> (0, I, 0, I] 
[c, 0, 0, 0, 0, 0, 0, 0, I] -> (0, I, O, I] "T2P 
[c, I, 0, 0, 0, 0, 0, 0, I] -> [O, 0, 0, I] 
[c, 0, 0, 0, O, 0, 0, 0, I] -> (0, 0, 0, I] "T2P 
[c, 1, O, O, O, O, O, O, I] -> [l, I, o, 1) 
[c, 0, I, I, 0, 0, 0, 0, I] -> [I, I, 0, I] "TIP, Write 
[c, I, I, I, 0, 0, 0, 0, I] -> [I, I, 0, I) 
[c, 0, 0, I, 0, 0, 0, 0, I] -> [I, I, O, I] "T2P 
[c, I, 0, I, 0, 0, 0, 0, !] -> [O, 0, 0, I) 
[c, 0, 0, 1. 0, O, 0, 0, I] -> [O, 0, 0, I) "T2p 
[c, 1. 0, 0, 0, 0, 0, 0, I) -> [!, !, 0, I) 

end PAGE MODE DRAM CTRL 2; 
"Z - - - -

PAL Codes: DRAM 2 (Continued) 

5-682 

240725-A3 



intef AP-442 

module PAGE_MODE_DRAM_CTRL_3 flag '-r3' 

title 'PAGE MODE DRAM CONTROLLER - PAL 3, INTEL CORPORATION' 

PAGE3 device 'P16R8'; 

.X.; " ABEL 1 don't care' symbol 

.C.; "ABEL 'clocking input' symbol 

Inputs 

CLK2 pin 
CLK pin 
ADS- pin 
MEMCS- pin 
WR 
READY- pin 
DRMRDY- pin 
unused! pin 
RESET pin 

" Outputs 

I; "80386 CLK2 
2; "Processor Clock 
3; 11 Address Strobe 
4; "Memory Chip Select 
pin 5; "Write/Read 
6; "System Ready 
7; "DRAM Ready 
8; 
9; "System Reset 

T2X- pin 12; "active during 12, T2p, and T2i 
"active during Tlp TIP- pin 13; 

WE- pin 14; 11 DRAM Write Enable 
DEN- pin 15; 11 DRAM Data Bus Transceiver Enable 
DTR pin 16; 
lwr pin 17; 

"DRAM Data Bus Transceiver R/W# Direction signal 
"Latched Write/Read 

mreq pin 18; 
unused2 pin 19; 

::Latched Memory Chip Select 

state_diagram [T2X-, TIP-] 

state (1, lJ: if (CLK & !ADS-) then [O, !J else [I, IJ; 
state [O, IJ: if RESET then [1, IJ else 

if (CLK & !.ADS- & !READY-) then [1, OJ else 
if (CLK & ADS- & !READY-) then (1, I] else [O, JJ; 

state (1, OJ: if RESET then (1, lJ else 
if (CLK) then (0, 1] else (1, O]; 

state [O, OJ: goto (1, 1]; 

state_diagram [WE-] 

state [1]: if (CLK & !MEMCS- & WR & T2X- # 
lwr & !TIP-) then (OJ else [1]; 

state (O]: if (RESET) then (1] else 
if (CLK & !READY-) then [1] else [OJ; 

state_ diagram [DEN-] 

state (I]: if (CLK & !MEMCS- & !WR & T2X- # 
mreq & !T2X- # 
CLK & mreq & !TIP-) then (O] else (I]; 

PAL Codes: DRAM 3 

5-683 

I 
240725-A4 



intJ AP-442 

state [OJ: if RESET then [IJ else 
if (CLK & !READY-) then [I] else [OJ; 

state_diagram [OTR] 

state [I]: if (CLK & !MEMCS- & WR & T2X- # 
lwr & !TIP-) then [OJ else (IJ; 

state [OJ: if (RESET) then [I] else 
if (!CLK & DEN- & !lwr) then [IJ else [OJ; 

state_diagram [lwrJ 

state (O]: if (CLK & !MEMCS- & WR) then [IJ else [OJ; 
state [1]: if (RESET) then [OJ else 

if (!READY- & HEMCS- # 
!READY- & !WR) then [OJ else [IJ; 

state_diagram [mreqJ 

state (OJ: if (CLK & !MEMCS-) then [IJ else [OJ; 
state [IJ: if RESET then [OJ else 

if (!READY- & MEMCS-) then [OJ else [IJ; 

test_vectors 

( [CLK2,CLK,ADS-,WR,MEMCS-,READY-, RESET] -> 
[T2X-, TIP-,DEN-, lwr,WE-,DTR, mreqJ) 

W M R 
R E E 

M A 
C D 
s y 

T 
2 
x 

D D m 
E w T 
N r - R 

[c, x, x, x, x, x, IJ -> [!, I, I, 0, I, I, xJ; 
[c, x, x, x, x, x, I] -> [l, 1, 1, O, 1, 1, 0]; 
[c, I, I, x, I, I, OJ -> [I, I, I, 0, I, I, O]; 
[c, 0, I, x, I, I, OJ -> [I, I, I, 0, I, I, OJ; "Ti 
[c, I, I, x, I, I, OJ -> [I, I, I, 0, I, 1, OJ; 
[c, 0, 0, O, 0, I, OJ -> [I, I, 1, 0, I, I, OJ; 'Tl 
[c, I, 0, 0, 0, 1, OJ -> [O, 1, 0, O, J, I, IJ; 
[c, 0, !, 0, I, I, OJ -> [O, J, O, O, I, I, IJ; 'T2 
[c, I, I, 0, I, I, OJ -> (0, I, 0, 0, I, 1, lJ; 
[c, 0, O, 0, 0, 1, OJ -> [O, I, 0, 0, !, !, lJ; "T2 
[c, 1, 0, 0, 0, I, OJ -> [O, I, O, O, 1, 1, IJ; 
[c, 0, 0, 0, 0, 0, O] -> [O, 1, O, 0, 1, 1, 1]; 0 T2P 
[c, I, 0, 0, 0, 0, OJ -> [!, 0, !, 0, I, 1, lJ; 
[c, 0, !, 0, 1, I, OJ ->[I, 0, 1, 0, I, 1, !J; "TIP 
[c, 1., 1, 0, 1, I, OJ -> [O, J, O, 0, 1, 1, !J; 
[c, 0, 0, I, 0, 0, OJ -> [O, !, 0, 0, 1, !, IJ; "T2P 
[c, I, 0, !, 0, O, OJ -> [!, O, !, I, I, 1, !J; 
[c, 0, 1, !, I, I, OJ -> [I, 0, 1, J, 0, 0, JJ; "TIP 
[c, I, I, I, !, I, OJ -> (0, 1, 0, I, 0, 0, !J; 

PAL Codes: DRAM 3 (Continued) 

5•684 

240725-A5 



intJ AP-442 

[c, O, 0, 0, 0, l, OJ -> [O, l, 0, I, 0, 0, lJ "T2P 
[c, l, 0, 0, 0, l, OJ -> [O, I, 0, I, 0, 0, lJ 
[c, 0, 0, 0, 0, 0, OJ -> [O, I, 0, 0, 0, 0, JJ 'T2P 
[c, I, 0, 0, 0, 0, OJ -> [I' 0, ), 0, 1, 0, JJ 
[c, 0, 1, 0, 1, 1, OJ -> [I, 0, I, 0, 1, 1, lJ "TlP 
[c, 1, l, 0, l, 1, OJ -> [O, I, 0, 0, I, 1, lJ 
[c, 0, 0, 0, 0, 0, OJ -> [O, I, 0, 0, I, I, lJ "T2P 
[c, I, 0, 0, 0, 0, OJ -> [I, 0, I, 0, 1, 1, lJ 
[c, 0, I, 0, 1, 1, OJ -> [I, 0, I, 0, 1, 1, lJ "Tlp 
[c, I, I, 0, ), I, OJ -> [O, I, 0, 0, I, I, lJ 
[c, 0, I, 0, I, I, OJ -> [O, I, 0, 0, I, 1, lJ "T2 
[c, I, I, 0, I, I, OJ -> [O, I, 0, 0, I, 1, lJ 
[c, 0, !, 0, 1, I, OJ -> [O, I, 0, 0, I, 1, lJ "T2 
[c, l, 1, 0, I, I, OJ -> [O, I, 0, 0, l, l, lJ 
[c, 0, 0, 1, O, I, OJ -> [O, I, 0, 0, I, 1, lJ "T2P 
[c, ), 0, I, 0, I, OJ -> [O, I, 0, I, I, 1, lJ 
[c, 0, 0, I, 0, 0, OJ -> [O, I, 0, I, I, I, JJ "T2p 
[c, I, 0, I, 0, O, OJ -> [I, 0, J, I, ), I, lJ 
[c, 0, I, I, I, I, OJ -> [I, 0, J, I, 0, 0, IJ 'TlP 
[c, I, I, I, I, 1, OJ -> [O, I, O, I, 0, 0, JJ 
[c, 0, I, I, I, I, OJ -> [O, I, 0, I, 0, 0, JJ "T2 
[c, !, I, I, 1, I, OJ -> [O, I, 0, I, 0, 0, lJ 
[c, 0, 0, 0, 0, I, OJ -> [O, I, 0, 1, 0, 0, lJ "T2P 
[c, I, 0, 0, 0, I, OJ -> [O, I, 0, 1, 0, 0, JJ 
[c, o, o, 0, 0, 0, OJ -> [O, I, 0, 0, 0, 0, lJ "T2P 
[c, I, 0, 0, 0, 0, OJ -> [I, 0, I, 0, I, 0, JJ 
[c, 0, I, 0, I, I, OJ -> [l, 0, I, 0, I, I, IJ "TlP 
[c, 1, I, o, I, I, OJ -> [O, I, 0, 0, I, I, IJ 
[c, 0, 0, 0, 0, 0, OJ -> [O, I, 0, 0, I, I, JJ "T2P 
[c, I, 0, 0, 0, 0, OJ -> [I, O, J, 0, I, I, JJ 
[c, 0, I, 0, I, 1, OJ ·> [I, O, I, O, 1, I, JJ "TlP 
[c, I, I, 0, I, I, OJ -> [O, 1, 0, 0, 1, l, IJ 
[c, O, I, 0, I, 0, OJ -> [O, J, 0, 0, I, I, OJ "T2i 
[c, I, I, 0, I, 0, OJ -> [I, I, I, 0, 1, I, OJ 
[c, 0, 0, I, 0, I, OJ -> [!, I, I, 0, I, I, OJ "Tl 
[c, I, 0, I, 0, I, OJ -> [O, J, 1, 1, 0, 0, lJ 
[c, 0, I, 1, I, I, OJ ·> [0, I, 0, I, O, 0, IJ "T2 
[c, I, J, I, J, I, OJ -> [O, I, 0, I, 0, 0, IJ 
[c, 0, I, I, I, I, OJ ·> [O, 1, 0, 1, 0, 0, IJ "T2 
[c, 1, 1, 1, I, I, OJ -> [O, 1, O, 1, O, O, IJ 
[c, 0, 0, 0, 0, I, OJ ·> [O, I, 0, I, 0, 0, IJ "T2P 
[c, 1, 0, O, 0, I, OJ -> [O, I, 0, I, 0, 0, IJ 
[c, O, o, O, 0, 0, OJ -> [O, I, O, 0, 0, 0, IJ "T2P 
[c, I, 0, 0, 0, 0, OJ -> [I, 0, I, 0, I, 0, IJ 

I [c, 0, I, 0, I, I, OJ -> [I, 0, I, 0, I, I, IJ "TlP 
[c, I, I, 0, I, I, OJ -> [O, I, 0, 0, I, I, IJ 
[c, 0, 0, 0, 0, 0, OJ -> [O, 1, 0, 0, l, I, lJ "T2P 
[c, 1, 0, 0, 0, 0, OJ -> [!, 0, 1, 0, I, I, lJ 
[c, 0, 1, 0, l, 1, OJ -> [I, O, I, 0, 1, 1, IJ "TlP 
[c, I, I, 0, I, I, OJ ·> [O, I, 0, 0, I, ), IJ 
[c, O, 0, 0, O, O, OJ ·> [O, I, 0, O, 1, 1, IJ "T2P 
[c, I, 0, 0, 0, 0, OJ -> [l, 0, I, 0, l, I, I] 
[c, 0, 1, 0, I, I, OJ ·> [I, 0, I, 0, I, I, IJ "TlP 
[c, I, I, 0, I, I, OJ -> [O, I, 0, 0, I, I, JJ 

240725-A6 

[c, 0, I, 0, I, I, OJ -> [O, I, 0, 0, I, 1, IJ; "T2 
[c, I, I, 0, I, I, OJ ·> [O, l, 0, 0, I, 1, JJ; 
[c, 0, I, 0, I, ), OJ ·> [O, I, 0, 0, 1, I, JJ; "T2 
[c, 1, 1, 0, 1, I, OJ -> [O, I, 0, 0, I, I, JJ; 
[c, 0, 1, 0, I, I, OJ ·> [O, I, 0, 0, I, l, JJ; "T2 
[c, I, I, 0, I, I, OJ ·> (0, I, 0, 0, I, I, JJ; 
[c, 0, I, 0, I, I, OJ ·> (0, 1, 0, 0, I, I, JJ; "T2 
[c, I, I, 0, I, I, OJ ·> (0, I, 0, 0, I, 1, JJ; 
[c, 0, I, 0, I, I, OJ -> [O, ), 0, O, ), ), lJ; "T2 
[c, 1, I, 0, I, I, OJ ·> [O, 1, 0, 0, 1, I, IJ; 
[c, 0, I, 0, I, I, OJ ·> [O, I, 0, 0, I, I, JJ; "T2 
[c, I, I, 0, I, I, OJ ·> [O, 1, 0, 0, I, I, JJ; 
[c, 0, 0, 0, 0, J, OJ ·> (0, I, 0, 0, 1, I, JJ; "T2P 
[c, I, 0, 0, 0, 1, OJ ·> [O, I, O, 0, I, I, JJ; 
[c, 0, 0, 0, 0, 0, OJ -> [O, I, 0, O, I, 1, !J; "T2P 
[c, I, O, 0, 0, 0, OJ -> [I' 0, I, 0, I, 1, JJ; 
[c, 0, I, 0, J, I, OJ ·> [!, 0, I, 0, I, I, IJ; "TIP 
[c, I, I, 0, I, I, OJ -> [O, I, 0, 0, I, I, JJ; 
[c, 0, 0, 0, 0, 0, OJ ·> (0, I, 0, 0, I, I, JJ; "T2P 

end PAGE_MOOE_DRAM_CTRL_3; 
240725-A? 

PAL Codes: DRAM 3 (Continued) 

5-685 



intJ AP-442 

ABEL(tm) 3.10 • Document Generator 14-Feb-90 09:54 AM 
PAGE MODE DRAM CONTROLLER - PAL 3, INTEL CORPORATION 
Equations for Module PAGE_MODE_DRAM_CTRL_3 

Device PAGE3 

Reduced Equations: 

!T2X- := (CLK & !RESET & !TIP- & T2X-
# READY- & ! RESET & TIP- & !T2X­
# !CLK & !RESET & TIP- & !T2X-
# !ADS- & CLK & TIP- & T2X-); 

!TIP- := (!CLK & !RESET & !TIP- & T2X-
# !ADS- & CLK & !READY- & !RESET & TIP- & !T2X-); 

!WE- :• (READY- & !RESET & !WE­
# !CLK & !RESET & !WE­
# !TIP- & WE- & lwr 
# CLK & !MEMCS- & T2X- & WE- & WR); 

!OEN- :• (!OEN- & READY- & !RESET 
# !CLK & !DEN- & !RESET 
# CLK & OEN- & !TIP- & mreq 
# OEN- & ! T2X- & mreq 
# CLK & OEN- & !HEMCS- & T2X- & !WR); 

!OTR :• ( !OTR & !RESET & lwr 
# !OEN- & !OTR & !RESET 
# CLK & !OTR & ! RESET 
# OTR & !TIP- & lwr 
# CLK & OTR & !MEMCS- & T2X- & WR); 

!lwr :• (!READY- & !WR 
# MEMCS- & !READY­
# RESET & lwr 
# !WR & !lwr 
# MEMCS- & ! lwr 
# !CLK & !lwr); 

! mreq : = ( MEMCS- & ! READY­
# RESET & mreq 
# MEMCS- & ! mreq 
# !CLK & !mreq); 

PAL Codes: DRAM 3 (Continued) 

5-686 

240725-AB 



AP-442 

ABEL™ 3.l~Document Generator 
PAGE MODE DRAM CONTROLLER-PAL 3, INTEL CORPORATION 
Chip diagram for Module PAGE_MODE_DRAM_CTRL_3 

Device P AGE3 
P16R8 

CLK2 20 

CLK 2 19 unused2 

ADS- 3 18 mreq 

MEMCS- 4 17 lwr 

WR 5 16 DTR 

READY- 6 15 DEN-

DRMRDY- 7 14 WE-

unused1 B 13 T1P-

RESET 9 12 T2X-

10 11 _T2X-_E 

240725-67 

PAL Codes: DRAM 3 (Continued) 

5-687 

14-Feb-90 09:54 AM 

II 



l·n+_r 
1 ''e' AP•442 

module PAGE_MODE_DRAM_CTRL_4 flag '-r3' 

title 'PAGE MODE DRAM CONTROLLER - PAL 4, INTEL CORPORATION' 

PAGE4 device 'Pl6R8'; 

.X.; " ABEL 'don't care' symbol 

.C.; 'ABEL 'clocking input' symbol 

11 Inputs 

CLOCK pin !; 
DO pin 2; 
DI pin 3; 
D2 pin 4; 
D3 pin 5; 
04 pin 6; 
05 pin 7; 
D6 pin 8; 
D7 pin 9; 
OE pin II; 

" Outputs 

AO pin 12; 
Al pin 13; 
A2 pin 14; 
A3 pin 15; 
A4 pin 16; 
AS pin 17; 
A6 pin 18; 
A7 pin 19; 

addr • [A7 •• AO]; 

equations 

addr :• addr + I; 

end PAGE_MOOE_ORAH_CTRL_4; 
240725-A9 

PAL Codes: DRAM 4 

5-688 



intef AP-442 

ABEL(tm) 3.10 - Document Generator 14-Feb-90 09:S4 AM 
PAGE MOOE ORAM CONTROLLER - PAL 4, INTEL CORPORATION 
Equations for Module PAGE_HOOE_ORAM_CTRL_4 

Device PAGE4 

- Reduced Equations: 

!A7 :• (AO & Al & A2 & A3 & A4 & AS & A6 & A7 
# !AO & !A7 
# !Al & !A7 
# IA2 & !A7 
# !A3 & IA7 
# !A4 & !A7 
# !AS l !A7 
# !A6 & !A7); 

!A6 :• (AO & Al & A2 & A3 & A4 & AS & A6 
# !AO & !A6 
# !Al & !A6 
# !A2 & !A6 
# !A3 & !A6 
# !A4 & !A6 
# !AS & !A6); 

!AS :• (AO & Al & A2 & A3 & A4 & AS 
# !AO & !AS 
# !Al & !AS 
# IA2 & !AS 
# !A3 & !AS 
# !A4 & !AS); 

!A4 :• (AO & Al & A2 & A3 & A4 
# !AO & !A4 
# !Al & !A4 
# !A2 & IA4 
#!A3&!A4); 

!A3 :• (AO & Al & A2 & A3 # !AO & !A3 # !Al & !A3 # !A2 & !A3); 

IA2 :=(AO & Al & A2 # !AO & !A2 #!Al & IA2); 

!Al :• (AO & Al # !AO l !Al); 

!AO :· (AO); 

PAL Codes: DRAM 4 (Continued) 

5-689 

I 
240725-BO 



AP-442 

ABEL™ 3.l~DocumentGenerator 
PAGE MODE DRAM CONTROLLER-PAL 4, INTEL CORPORATION 
Chip diagram for Module PAGE_MODE_DRAM_CTRL_4 

Device PAGE4 
P16R8 

CLOCK 
DO A7 

01 A6 

02 

03 A4 

04 A3 

05 A2 

06 Al 

07 9 AO 

10 OE 

240725-68 

end of module PAGE_MODE_DRAM_CTRL_4 

PAL Codes: DRAM 4 (Continued) 

5-690 

14-Feb-90 09:54 AM 



intJ AP-442 

module IO_CTRL_l flag '-r3' 

title 'IO BUS CONTROLLER - PAL I, INTEL CORPORATION' 

IOI device 'Pl6R4'; 

.x.; 
,C.; 

" ABEL 'don't care' symbol 
"ABEL 'clocking input' symbol 

Inputs 

CLK pin I; "Processor Clock 
RESET pin 2; 11 System Reset 
MRDC- pin 3; "Memory (EPROM) Read Command 
IORC- pin 4; '1/0 Read Command 
IOWC- pin 5; "I/0 Wr1 te Command 
INTA- pin 6; "Interrupt Acknowledge 
DEN- pin 7; "1/0 Bus Data Transceiver Enable 
IORDY- pin 8; "I/0-EPROM Ready 
LSIOCS- pin 9; "82510 Chip Select 
OEN- pin II; "PAL output Enable 
L59CS- pin 12; "8259A-2 Chip Select 
LEPROM- pin 13; ::EPROM Chip Select 
unused 0 pin 18; 
unused:! pin 19; 

Outputs 

delay pin 14; 
s2 pin 15; 
sl pin 16; 
so pin 17; 

dstate [delay, s2, sl, sO]; 
idle [ I I' I I]; 
start . [ I I' I 0 l; 
wait 14 . [ I • 0 • I 0 ]; 
waiC13 . [ I 0 • I I]; 
waiCl2 . [ I 0 • 0 0 l; 
waiCll . [ I I • 0 • 0 l; 
waiCJO - [ I I' 0 • I]; 
actiVe . [ 0 I, I, I]; 

state_diagram dstate 

state idle: if (!DEN- & !MRDC- # !DEN- & ! IORC- # 
!DEN- & !IOWC- # !DEN- & !INTA-) then start 

else idle; 
state start: if (!L510CS- & !IOWC-) then wait_14 else 

if (!L510CS- & !IORC-) then wait 13 else 
if (!L59CS- & !IOWC-) then wait II else 
if (!LEPROM- # !L59CS- & !IORC--# !INTA-) then wait_IO; 

state wait_l4: goto wait_13; 

state wait 13 goto wait 12; 
state wait-12 goto waiCll; 
state wait-II goto waiCIO; 
state wait-JO goto actiVe; 
state active: if !IORDY- then idle else active; 

end IO_CTRL_l; 
'Z 

PAL Codes: 10-1 

5-691 

I 
240725-81 

240725-82 



intJ AP-442 

ABEL(tm) 3.10 - Document Generator 15-Feb-90 06:40 PM 
IO BUS CONTROLLER - PAL I, INTEL CORPORATION 
Equations for Module IO_CTRL_l 

Device IOI 

- Reduced Equations: 

!delay:• (IORDY- &_!delay & sO & sl & s2 #delay & so & !sl & s2); 

!s2 :• (delay & sl & ls2 
# !lORC- & lLSlOCS- & delay & lsO & sl 
# !IOWC- & !L510CS- & delay & !sO & sl); 

Isl := (delay & !sO & !sl 
I delay & sO & sl & ls2 
# I INTA- & IORC- & IOllC- & delay & ! sO & s2 
# IORC- & IOllC- & ILEPROll- & delay & !SO & s2 
# ! IORC- & L510CS- & !L59CS- & delay & lsO & s2 
I !INTA- l l510CS- l delay & !sO & s2 
# LSIOCS- & ILEPROll- & delay & !sO & s2 
I !IOWC- & LSIOCS- l ll59CS- & delay & lsO & s2); 

!sO := (delay & !sO & Isl & !s2 
# delay & so & sl & !s2 
# IIOllC- & I l59CS- & delay & I sO & sl & s2 
# !IOllC- & ILSIOCS- & delay & lsO & sl & s2 
I !DEN- & INTA- & delay & so & sl 
I !DEN- & IOllC- & delay & sO & sl 
I !DEN- & IORC- & delay & sO & sl 
# !DEN- l MROC- & delay & sO & sl); 

PAL Codes: 10·1 (Continued) 

5-692 

240725-83 



intef AP·442 

ABEL TM 3.10---Document Generator 
IO BUS CONTROLLER--PAL I, INTEL CORPORATION 
Chip diagram for Module IO_CTRL __ l 

Device IOI 

CLK 20 

RESET 2 19 

MRDC- 3 18 

IORC- 4 17 

IOWC- 5 16 

INTA- 6 15 

DEN- 7 14 

IORDY- 8 13 

L510CS- 9 

10 

end of module IO_CTRL_l 

unused_ 1 

unused_O 

so 

s1 

s2 

delay 

LEPROM-

L59CS-

OEN-

PAL Codes: 10·1 (Continued) 

5-693 

15-Feb-90 06:40 PM 

240725-69 

I 



intJ AP-442 

module 10_CTRL_2 flag '-r3' 

title '10 BUS CONTROLLER - PAL 2, INTEL CORPORATION' 

102 device 

Inputs 

CLK pin 
RESET pin 
LMlO pin 
LDC pin 
LWR pin 
LALE pin 
L510CS- pin 
L59CS- pin 
LE PROM- pin 
OEN- pin 
rdy- pin 
rdy510- pin 

'PI6R6'; 

.x.; 

.C.; 

I; 
2; 
3; 
4; 
5; 
6; 
7; 
8; 
9; 

II; 
12; 
19; 

" ABEL 'don't care' symbol 
11 ABEL 'clocking input' symbol 

"Processor Clock 
"System Reset 
"Latched M/IO#. 
'Latched 0/C# 
"Latched W/R# 
'Latched ALE 
"82510 Chip Select 
"8259A-2 Chip Select 
'EPROM Chip Select 
'PAL Output Enable 
"I/0-EPROM Ready (n-1) 
"I/0-EPROM Ready (n-2) 

" Outputs 

recovery pin I3; :l/O Recovery Time 
sI pin I4; 
so pin IS; 
!ORC- pin 16; "1/0 Read Command 
!OWC- pin 17; "I/0 Write Command 
MRDC- pin I8; "Memory (EPROM) Read Command 

rstate = [recovery, sl, sOJ; 
I 0 J; 

'l' 1 ]; 
I 1 1} ]j 
, 0 , I ] ; 
I Q J 0 )j 

idle [ o 
active • [ O 
inactive 0 = [ I 
inactive-I • [ 1 
inactive-2 • [ I 
inactive-3 = [ I 
illegal a • [ 0 
illega{) • [ O 

I , 0 J; 
0 ' 0 J; 

' 0 ' 1 ] j 

state_di agram rstate 

state idle: if (!IORC- # !IOWC-) then active else idle; 
state active: 
state inactive O: 
state inactive-I: 
state inactive-2: 
state inactive -3: 
state illegal_a: 
state illegal_b: 

if (IORC- # IOWC-) then inactive_O else active; 
goto inactive_]; 
goto inactive_2; 
goto inactive_l; 
goto idle; 
goto idle; 
goto idle; 

state_diagram [IOWC-J 

state [I J: if (!recovery & ! LMIO & LDC & LWR & ( ! LSIOCS- I ! L59CS-)) 
then [OJ else [IJ; 

state [OJ: if RESET then [IJ else 
if ( !LSIOCS- & !rdy510- I !rdy-) then [IJ else [OJ; 

state_diagram [IORC-J 

state [IJ: if (!recovery & !LMIO & LDC & ILWR & (!LSIOCS- # !L59CS-)) 
then [OJ else [I]; 

state [OJ: if RESET then [IJ else 
if !rdy- then [IJ else [OJ; 

state_di agram [MROC-J 

state [IJ: if (LALE & LMIO & !LWR & !LEPROM-) then [OJ else [IJ; 
state [O]: if RESET then [I] else 

if !rdy- then [IJ else [OJ; 

end IO_CTRL_2; 

'Z 

PAL Codes: 10-2 

5-694 

240725-84 

24D725-85 



intef AP-442 

ABEL(tm) 3.10 - Document Generator !4-Feb-90 09:34 AM 
IO BUS CONTROLLER - PAL 2, INTEL CORPORATION 
Equations for Module IO~CTRL~2 

Device I02 

Reduced Equations: 

! recovery : • (!recovery & ! s I # ! IORC- & ! IOWC- & ! recovery # ! so & s 1) ; 

!sl := (recovery & sO); 

!sO := (recovery & ! so # ! sl # IORC- & IOWC- & ! sO); 

!IOWC- :• (!IOWC- & !RESET & rdy510- & rdy-
# ! IOWC- & LSIOCS- & ! RESET & rdy-
# IOWC- & ! L59CS- & LDC & ! LHIO & LWR & ! recovery 
# IOWC- & !LSIOCS- & LDC & !LMIO & LWR & !recovery); 

! IORC- : = ( ! IORC- & ! RESET & rdy-
# IORC- & ! L59CS- & LDC & ! LMIO & ! LWR & ! recovery 
# IORC- & !LSIOCS- & LDC & !LMIO & !LWR & !recovery); 

!MRDC- := (!MRDC- & !RESET & rdy-
# LALE & ! LEPROM- & LMIO & ! LWR & MRDC-) ; 

PAL Codes: 10·2 (Continued) 

5-695 

240725-86 

I 



intef AP-442 

ABEL TM 3.10-Document Generator 
IO BUS CONTROLLER-PAL 2, INTEL CORPORATION 
Chip diagram for Module IO_CTRL_2 

Device 102 

end of module IO_CTRL_2 

CLK 

RESET 

LMIO 

LDC 
LWR 

LALE 

L510CS­

L59CS­

LEPROM-

P16R6 

rdy510-

MRDC-

1owc-
10Rc­
so 
s1 

recovery 

rdy­

OEN-

PAL Codes: 10-2 (Continued) 

5-696 

14-Feb-90 09:34 AM 

240725-70 



intef AP-442 

module IO_CTRL_3 flag '-r3' 

title 'IO BUS CONTROLLER - PAL 2, INTEL CORPORATION' 

I03 device 'Pl6R6'; 

.x.; 11 ABEL 'don't care' symbol 

.c.; " ABEL 'clocking input' symbol 

Inputs 

CLK pin I; "Processor Clock 
RESET pin 2; "System Reset 
LMIO pin 3; "Latched M/10# 
LDC pin 4; "Latched D/C# 
LWR pin 5; "Latched W/R# 
LALE pin 6; "Latched ALE 
L510CS- pin 7; "82510 Chip Select 
L59CS- pin 8; "8259A-2 Chip Select 
LE PROM- pin 9; "EPROM Chip Select 
OEN- pin 11; "PAL Output Enable 
rdy- pin 12; "I/0-EPROM Ready (n-1) 
IORDY- pin I9; "I/0-EPROM Ready 

" Outputs 

INTA- pin I3; :interrupt Acknowledge 
stO pin 14; 
DEN- pin 15; :110 Bus Transceiver Enable 
stl pin 16; 
DTR pin 17; ;; 1/0 Bus Transceiver Direct ion 
st2 pin 18; 

state_diagram [ INTA-, stOJ 

state [l, lJ: if (!LMIO & !LDC & !LWR & LALE) then [l, OJ else [l, lJ; 
state [l, OJ: if RESET then [l, IJ else 

if !LALE then [O, OJ else [l, OJ; 
state (0, OJ: if RESET then (1, IJ else 

if !rdy- then [I, I] else [O, OJ; 
state (0, IJ: goto [I, IJ; 

state_diagram [DEN-, stlJ 

state[!, !]: if LALE & (!LEPROM- # !L5!0CS- # !L59CS-) then[!, OJ else 

if !INTA- then [O, OJ else[!, !J; 
state [I, OJ: if RESET then [!, I] else 

if !LALE then [O, OJ else [!, OJ; 
state [O, OJ: if RESET then [l, IJ else 

if !rdy- then [l, IJ else [O, OJ; 
state [O, lJ: goto [l, l]; 

state_diagram [DTR, st2] 

state [I, !]: if LALE & (!LEPROM- # !LSIOCS- # !L59CS-) & LWR then [O, lJ 

else (1, IJ; 
state [O, lJ: if RESET then (!, lJ else 

if !IORDY- then (0, OJ else (0, !]; 
state (0, OJ: goto (1, lJ; 
state [I, OJ: goto (1, IJ; 

end IO_CTRL_3; 
'Z 

PAL Codes: 10-3 

5-697 

I 
240725-87 

240725-88 



inter 
ABEL(tm) 3.10 - Document Generator 
JO BUS CONTROLLER - PAL 2, INTEL CORPORATION 
Equations for Module IO_CTRL_3 

Device !03 

Reduced Equations: 

!INTA- :• (!INTA- & !RESET & rdy- & !stO 
# INTA- & !LALE & !RESET & !stO); 

!stO :• (!RESET & rdy- & !stO 
# JNTA- & !RESET & !stO 

AP-442 

15-Feb-90 06:45 PM 

# JNTA- & LALE & !LDC & !LMJO & !LWR & stO); 

!DEN- := (!OEN- & !RESET & rdy- & !st! 
# OEN- & !LALE & !RESET & !st! 
# DEN- & ! JNTA- & L5JOCS- & L59CS- & LE PROM- & st! 
#DEN- & !INTA- & !LALE & st!); 

!st! := (!RESET & rdy- & !st! 
# DEN- & ! RESET & ! st! 
# DEN- & ! INTA- & st! 
# DEN- & ! L59CS- & LALE & st! 
# DEN- & !L510CS- & LALE & stl 
# DEN- & LALE & ! LE PROM- & stl); 

!DTR :• (IDTR & !RESET & st2 
# DTR & ! L59CS- & LALE & LWR & st2 
# DTR & ! L510CS- & LALE & LWR & st2 
# OTR & LALE & ! LEPROM- & LWR & st2); 

!st2 :• (!OTR & !IOROY- & !RESET & st2); 

PAL Codes: 10·3 (Continued) 

5-698 

240725-89 



intJ AP-442 

ABEL™ 3.10---Docurnent Generator 
IO BUS CONTROLLER-PAL 2, INTEL CORPORATION 
Chip diagram for Module IO_CTRL_3 

Device 103 

end of module IO_CTRL_3 

CLK 
RESET 

LMIO 

LDC 
LWR 

LALE 

L510CS­
L59CS­

LEPROM-

P16R6 

IORDY­

st2 

DTR 

st1 

DEN­

stO 

INTA­

rdy­

OEN-

PAL Codes: 10·3 (Continued) 

5-699 

15-Feb-90 06:45 PM 

240725-71 

I 



intef AP-442 

module IO_CTRL_4 flag '-r3' 

title '10 BUS CONTROLLER· PAL 2, INTEL CORPORATION' 

104 device 'Pl6R6'; 

x 
c 

.X.; 

.C.; 
• ABEL 'don't care' symbol 
• ABEL 'clocking input·' symbol 

11 Inputs 

CLK 
RESET 
UllO 
LDC 
LWR 

pin I; 
pin 2; 
pin 3; 
pin 4; 
pin 5; 
pin 6; 

'Processor Clock 
'System Reset· 
'Latched M/10# 
'Latched D/C# 
"Latched W/Rf 
"Latched ALE LALE 

delay 
unused 0 
unused-I 
OEN- -
unused 3 
unused::4 

pin 7i 
pin 8; 

:oelay Signal ·for Walt State Generation 

• Outputs 

IORDY­
rdy­
rdySIO­
nc O 
nc-1 
nc::2 

rstate 
Idle 
rdy2 
rdyl 
rdyO 
ille9al_a 
illegal_b 
illegal_c 
lllegal_d 

pin 9; 
pin II; 
pin 12; 
pin 19; 

:PAL Output Enable 

pin 13; 
pin 14; 
pin 15; 
pin 16; 
pin 17; 

'1/0-EPROM Ready 
"1/0-EPROM Ready (n-1) 
: 1/0-EPROM Ready (n-2) 

pin 18; 

• [IORDY-, rdy-; 
• [ 1 1 , 
• [ I , 1 , 
• . [ I , 0 , 
• [ 0 , I , 
• [ 1 , 0 , 
• [ 0 ' 0 • 
• [ 0 ' 0 ' 
• [ 0 , 1 ' 

rdySIO-]; 
I ]; 
0 ]; 
1 ]; 
I ); 
0 ]; 
0 ]; 
I ]; 
0 ); 

state_dlagram rstate 

state idle: 

state rdy2: 
state rdyl: 

If (LMIO l !LDC & LWR & LALE) then rdyl else 
if !delay then rdy2. else idle; 

state rdyO: 
state illegal a: 
state lllegaCb: 
state illegal_c: 

If RESET then idle else rdyl; 
if RESET then idle else 
if !LALE then rdyO else rdyl; 
goto Idle; 
goto Idle; 
goto. idle; 
goto Idle; 

PAL Codes: 10-4 

5-700 

240725-CO 



intef 

state illegal_d: 

end IO CTRL 4; 
'Z - -

goto idle; 

ABEL(tm) 3.10 - Document Generator 
IO BUS CONTROLLER - PAL Z, INTEL CORPORATION 
Equations for Module IO_CTRL_ 4 

Device !04 

Reduced Equations: 

AP-442 

!5-Feb-90 06:55 PM 

!IORDY- := (IORDY- & !LALE & !RESET & rdySIO- & !rdy-); 

!rdy- := (!ORDY- & LALE & !RESET & rdySIO- & !rdy-
# IORDY- & !RESET & !rdyS!O- & rdy-
# !ORDY- & LALE & ! LDC & LMIO & LWR & rdy5!0- & rdy-); 

!rdySIO- :• (IOROY- & !LALE & !delay & rdySIO- & rdy­
# IORDY- & !LWR & !delay & rdySIO- & rdy­
# IORDY- & LDC & !delay & rdy510- & rdy-
# IORDY- & !LH!O & !delay & rdy510- & rdy-J; 

PAL Codes: 10·4 (Continued) 

5-701 

240725-C1 

240725-C2 

El 



intef AP-442 

ABEL™ 3.10-Document Generator 
IO BUS CONTROLLER-PAL 2, INTEL CORPORATION 
Chip diagram for Module IO_CTRL_4 

Device 104 
P16R6 

CLK 20 

RESET 2 19 

LMIO 3 18 

LDC 4 17 

LWR 5 16 

LALE 6 15 

deloy 7 14 

unused_O 8 13 

unused_1 9 12 

10 

end of module IO_CTRL_ 4 

unused_-4 

nc_2 

nc_1 

nc_O 

rdy510~ 

rdy~ 

IORDY~ 

unused_3 

OEN~ 

PAL Codes: 10-4 (Continued) 

5-702 

15-Feb-90 06:55 PM 

240725-72 



intJ AP-442 

module LADDR_DEC flag '·r3' 

title 'LOCAL_DECODE_LOGIC - INTEL CORPORATION' 

LADDR_PAL 

x = .x.; 
c = .c.; 
h = I; 
1 • O; 

Inputs 

ADS- pin 
M IO- pin 
AJI pin 
A30 
A29 pin 

" Outputs 

Xl6- pin 
LBA- pin 
NCA- pin 

equations 

device 'Pl6L8'; 

J; 
2; 
3; 
pin 
5; 

18; 
17; 
16; 

"ABEL don't care symbol 
"ABEL clocking input symbol 
"logic I 
"logic 0 

"ADS# 
"M/10# 
"Addr bit 31 
4; "Addr bit 30 

"Addr bit 29 

"indicates a 16-bit access 
"local bus access 
"non-cache access 

!Xl6- = !ADS- & H IO- & A31 & A30 & A29; 
LBA- • h; -
NCA- • h; 

end LADOR _DEC; 

ABEL(tm) 3.10 - Document Generator 
LOCAL DECODE LOGIC - INTEL CORPORATION 
Equations for Module LADDR_DEC 

14-Feb-90 09:51 AM 

Device LADDR_PAL 

- Reduced Equations: 

IX16- • (A29 & A30 & A31 & !ADS- l M_IO-J; 

ILBA- • (O); 

!NCA- • (OJ; 

PAL Codes: Local Decoder 

5-703 

240725-C3 

I 
240725-C4 



intef AP-442 

ABELTM 3.10-Document Generator 
LOCAL_DECODE_LOGIC-INTEL CORPORATION 
Chip diagram for Module LADDR_DEC 

Device LADDR_PAL 
P16L8 

ADS~ 20 

1.uo~ 2 19 

A31 3 18 

A30 4 17 

A29 5 16 

15 

7 14 

8 13 

9 12 

10 11 

end of module LADDR_DEC 

X16~ 

LBA-

NCA-

240725-73 

PAL Codes: Local Decoder (Continued) 

5-704 

14-Feb-9009:51 AM 



intef AP-442 

module READY flag '-r3' 

title 'READY_LOGIC INTEL CORPORATION' 

ROY device 'P16L8'; 

Inputs 

DRAMRDY- P n 1; "DRAM READY# 
IORDY- pin 2 "IO/EPROM READY# 
RD YEN- pin 3 "RDYEN# of 82385 
RDY385- pin 4 "READYO# OF 82385 
RDY387- pin 5 "READYO# OF 82387 
CACHE pin 6 "High if cache exits; otherwise, Low 

" Outputs 

READY- pin 12; "READY# for 80386 
8READY- pin 13; "BREADY# for 82385 

equations 

!BREADY·• !DRAMRDY- # !IORDY-; 
!READY-· (CACHE & !RDY38S-) # !RDY387- # 

(CACHE & ! RDYEN- & { !DRAMRDY- # ! IORDY-) 
!CACHE & ( !DRAMRDY· # ! IORDY-)); 

end READY; 

ABEL{tm) 3.10 - Document Generator 
READY LOGIC - INTEL CORPORATION 
Equations for Module READY 

Device ROY 

Reduced Equations: 

! BREADY- • { ! JORDY- # !DRAMRDY-) ; 

! READY- = { ! CACHE & ! JORDY-
# !CACHE & IDRAMRDY­
# !IORDY- & ! RDYEN-
# ! DRAMRDY- & ! RDYEN­
# ! RDY387-
# CACHE & !RDY385-); 

15-Feb-90 07:02 PM 

PAL Codes: Ready 

5-705 

240725-CS 

I 
240725-CS 



inter AP-442 

ABEL™ 3.l~Document Generator 15-Feb-90 07:02 PM 
READY_LOGIC-INTEL CORPORATION 
Chip diagram for Module READY 

Device ROY 

end of module READY 

DRAMRDY~ 

IORDY~ 

RDYEN~ 

RDY385~ 

RDY387~ 

CACHE 

P16L8 

BREADY~ 

READY~ 

PAL Codes: Ready (Continued) 

5-706 

240725-74 



~ 
I 0 

""" 

386 

Read Cycle, Pipelined 
DRAM Page Miss 

Road Cycle, Pipelined 
DRAM Page Hit 

Write Cycle, Pipelined 
DRAM Page Hit 

cw - - - - - - - - - - - - - - - - - - - -
CLK 

ADS/I 

Addr. - ---- -x:-- -- --- --x: --- - ---- - -- -- -- -- -,-- - - -- - - - X 

W/R# 

HIT# :+:+:+)'.+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:\ 

T2X# 

T1P# 

RAS# \ 

CAS# 

DRAMRDY# I \ I 

NA# \ 

CAL 

DEN# 

Data ~~~~~~~~~~~~~~~~~~~~~-<<::) c:::>---<~~~~~~~~~~~ 

WE# 

DT/R# \ 

DRAM Cycle (R/W Hit/Miss) 

• 

Cache= Low 

240725-75 

-f -s: -,.. z.,, 
Q.,, 

'"'" oz 
c:C 
~>< 
50 
z en 

l 

~ ,,. ,,. 
N 



386 

CLK2 

CLK 

ADS# 

Addr. 

W/R# 

HIT# 

T2X# 
01 

I .!..i T1P# 
0 
(X) 

RAS# 

CAS# 

DRAMRDY# 

NA# 

CAL 

DEN# 

Doto 

WE# 

DT/R# 

Read Cycle, Pipelined 
DRAM Page Hit 

T1p Tzp 

Read Cycle, Pipelined 
DRAM Page Miss 

T1p T2 T2 Tzp T2p 

-·····-··-

Write Cycle, Pipelined 
DRAM Page Miss 

T1p Tz Tzp Tl'.P 

\._/ 

~ 

\ I \ ~ 
- ---------- ---

_/ 
--

_______ ,_/ 

=::::) C) c::>--< _______ _ 

\ _J 

240725-76 

DRAM Cycle {Page Miss) 

cl 

)lo .,, 
I 

-!loo 
-!loo ..., 



386 

CLK2 

CLK 

ADS# 

Addr. 

W/R# 

HIT# 

T2X# 
<{' 

I "-I TIP# 
0 
U> 

RAS# 

CAS# 

DRAMRDY# 

NA# 

CAL 

DEN# 

Data 

WEfl 

DT/R# 

Read Cycle, Pipelined 
DRAM Page Hit 

T1p T2p 

Read Cycle, Pipelined 
DRAM Page Hit 

T1p T21 

Write Cycle, Non-Pipelined 
DRAM Page Miss 

r, T2 T2 T2p 

IXXXXXXXXXXXXXX 

-

T2p 

--- -- --- - ···----- -

Read Cycle, Pipelined 
DRAM Page Hit 

T1p T2p 

I' f' I \ I' I 

~-----------

~ \_} \ I \_} 

~ 0 o-< ) c 

240725-77 

DRAM Cycle 

• 

l 

J> 

l • I'\) 



386 

CLK2 

CLK 

ADS# 

Addr. 

W/R# 

HIT# 

T2X# 

T1P# 
U'I 

I ~ RAS# 
0 

CAS# 

DRAMRDY# 

NA# 

CAL 

DEN# 

Doto 

WE# 

DT/R# 

MUXOE# 

REF# 

Read Cycle, Pipelined 
DRAM Page Hit 

T1p Tzp 

-- --· ·-

Read Cycle, Pipelined 
DRAM Refresh 

T1p Tz Tz Tz Tz Tz Tz Tzp Tz1• 

."\_/ 

·~ 

\ I \ _J --:'"\ 
--------- -- -- ---····-· --

_______; 
_J 

~~~~~~~~~~~~~~~~~~~-_/ 
>-~~-"--~~~~~~~~~~~~~~~~~~c:

240725-78

DRAM Refresh Cycle

cf

)> .,,
I

.1:11.
.1:11.
N

infef AP-442

5-711

AP-442

I Read, Cache Miss I Read, Cache Hit I Read, Cache Hit

386 l1p I T2p T2p T2p l2p l2p T1p j 1, , T, ! T2

I DRAM Read, Page Miss

I
Cache Write

385 BT1p I Bl21 BT21 BT21 BT21 BT21 BT, BT1 BT, BT1

CLK2

CLK

ADS#

Addr.

W/R#

NA# Cache Hit Detected

CALEN

CS#

CWE# ;3 f \ 6 COE# \ c Doto
Cache Write Doto Cache Read Doto Cache Read Doto

CT/R#

BADS#

BACP

BAOE#

BAddr.

BW/R#

HIT#

RAS#

CAS#

ti
~

; \ : BNA# \
BREADY# \
RDY387# \ I \ I

DEN# \
Doto

DRAM Read Doto

WE#

DT/R#

LDSTB

DOE#

BT/R#

240725-80

Cache Cycle (Continued)

5-712

intef

386

385

CLK2

CLK

ADS#

Addr.

W/R#

NA#

CAL EN

Write, Cache Hit

r,
DRAM Write
Cache Write

I Write, Cache Hit

r, I r2

er,

I
r,

er, I er2

AP-442

r2

Br2p

I
r

2
I Wrlte~~ochell.tlss r

2

DRAW Write, Page Hit
Cache Write

er,. I BT21 Br2p

I Read, Cache Hit

I
r2

DRAM Write, Page Miss

BT1p I Br2

CS# ~~~~~~-'r--_-~~~~~~~~~~~~~~~~~~~~~~
CWE#

COE#

Doto

CT/R#

BADS#

BACP

BAOE#

BAddr.

BW/R#

HIT#

RAS#

CAS#

BNA#

BREADY#

ROY387#

DEN#

Doto

WE#

Dr/R#

LDSrB

DOE#

Br/R#

~

f

Cache Write Doto

\.

J \.

JI.

J

J
\

1
\.

\.L
7

\

\j :l"
\

~

\

J

JI.

1"

l

\

\.

No Cache Write

JI.
Coche Write Doto Write Doto

../ \ ../

\ J \.

JI.

1 ../ \
_y

J \. J

../

../ \ ../

\ .../ \

J

JI.

11 ~ I'--

", \ y--

240725-81

Cache Cycle (Continued)

5-713

El

<('
-.J
"""'

fJ
()
'::r
ID

0
~
ii

9
;:?.
:r c
<D
&

386
I Read, Cache Hit I Read, Cache Miss

ORAM Write, Page Miss DRAM Read
Cache Write

T2p T2p

Write, Cache Miss

T2p T2p r,.
DRAW Write, Page Hit

385

CLK2

CLK

I ~ ~ I ~ ~ I ~ I ~. I

BT1p I BT2 I BT2 I Br21 I Br21 BT1 I BT2 I BT2p I BT2p I BT2p I er1p I

ADS# ---

Addr.

W/R#

NA#

CALEN

CS#

CWE#

COE# (>-e::
Doto > ~ . Coche Write Doto -Wrtte n...+n

CT/R# ---- --- --
BADS# r ·- --·- Write Dato

Cache Reoo umo

' [',-SACP

BAO£#

BAddr.

BW/R#

HIT#

RAS# f "\.

'

J
"\.

"\.
\,

I
b

\ \
\

\ \

\

..: i-11 -, -----..~\ : '. I b\ '-
RDY387# • •. I . . I \

DEN# I '- J \

;
I \

\ :::::=:===:::::

.: =H I ; > = DRAM Write Doto DRAM Reod Doto

I
I

LDSTB =3 \ =
DOE#

BT/R#

l

I I J> ,,
I I

I
.&:>.
.&:>.
N

I I

240725-8:2

AP-442

Write, Cache Miss

386 r,
DRAM Write, Page Hit

385 BT1p BT21 BT21

CLK2

CLK

ADS#

Addr.

W/R#

NA#__/

CALEN /\..__ _________ _

CS# f'--------­
CWE#

COE#

Data

CT/R#

BADS#

BACP

BAOE#

BAddr.

BW/R#

HIT#

RAS#

CAS#

BNA#

BREADY#

RDY387#

DEN#

Data

WE#

DT/R#

LDSTB

DRAM Write Data

DOE# ~---------
BT/R#

Cache Cycle (Continued)

5-715

I

240725-83

intef AP-442

/ T1 • T2p / T2 • t 1p / T2 / r2 / r2 I r2 / r2 I T2 / T2 / T2 I T1 I r2 /

cLK2 n...n_n_n..n11...n..rul..n..rLn...J1..r1s1s1sLn nJ1 ... n .. r 'L"JU
CLK

ADS#

CLK#

EPROM# ____--------------------------

MRDC# ------....... --------------------
DEN# ,..-----

DT/R#

IORDY#

NA#_..._ _ _,

8516#

I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

240725-84

_______________________ r---\

---~------------------------X::::::

240725-85

EPROM and 1/0 Cycles

5-716

intef

CLK2

CLK

ADS#

CLK#

Addr.

ALE

LAddr.

59CS#

IORC#

IOWC#

INTA#

DEN#

DT/R#

IORDY#

CLK2

CLK

ADS#

CLK#

Addr

ALE

LAddr

59CS#

IORC#

IOWC#

INTA#

DEN#

DT/R#

IORDY#

AP-442

lr1,TzplTz,T1pl Tz I Tz I Tz I Tz I Tz I Tz

240725-86

T1 I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

I

240725-87

EPROM and 1/0 Cycles (Continued)

5-717

intef AP·442

I T2 I I I I I I I I I I I I
cLK2 n..nnn__n_n_n_n._n_n_n_n...n..n..J1.j"J1.J1J'"lJ1.J1J1Jl_r,_n_J

CLK

ADS#

CLK#

ALE -------------

LAddr. -------------

59CS# ----­

IORC#

IOWC#~

INTA#

DEN# __r---
DT/R# ____ ___,

IORDY#~

CLK2

CLK

240725-88

LAddr. -------------------------------

510CS# ___ _,_---------------'------------

IORC# -------'------------------------

IOWC#

DEN#

DT/R#

IORDY#
240725-89

EPROM and 1/0 Cycles (Continued)

5-718

intJ

CLK2

CLK

ADS#

CLK#

Addr.

ALE

LAddr.

510CS#

IORC#

IOWC#

DEN#

DT/R#

IORDY#

AP-442

I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

240725-90

T2 Tz T2 Tz Tz

CLK2

CLK

ADS#

CLK# El
Addr.

ALE

LAddr.

510CS#

IORC#

IOWC#

DEN#

DT/R#

IORDY#
240725-91

EPROM and 1/0 Cycles (Continued}

5-719

intef AP-442

APPENDIX D
TIMING EQUATIONS

EQUATIONS FOR DRAM TIMINGS (NO CACHE
CONFIGURATION):

Read and Write Cycles (Common Parameters):

tRC: Random Read or Write Cycle Time

CLK2 x 10

tRP: RAS# Precharge Time

CLK2 x 4

tRAS: RAS# Pulse Width

CLK2 x 4

A random DRAM cycle may have a RAS# pulse
which is only four CLK2 periods wide. This is the case
if the cycle is followed by Idle cycles (DRAMs not
selected or Ti's) or a DRAM page miss.

tCAS (Read): CAS # Pulse Width

CLK2 x 3

CAS # pulses can be as narrow as three CLK2
cycles during Page Mode read cycles.

tCAS (Write): CAS# Pulse Width

CLK2 X 2

CAS# pulses can be as narrow as two CLK2 cy­
cles during Page Mode write cycles.

tASC: Column Address Setup Time

min (CLK2 x 2 + AS32.lphl.min - Delay.max -
ACT258.SloZ.lpl.max - ACT258.Cap.Deraling, CLK2 x
3 + AS32.tphl.min - 16.max - 386.Cap.Deraling -
AS373.Dto0.tpd.max - ACT258.lloZ.lpl.max -
ACT258.Cap.Derating)

The Column Address becomes valid as RAS#
switches from High to Low or as the 386 address be­
comes valid while RAS# is already Low (i.e., Page
Mode, Pipelined cycles)

tCAH: Column Address Hold Time

CLK2 + AS373.Glo0.lpd.min + ACT258.lloZ.lpl.min -
AS32.lphl.max

The CAL (Column Address Latch) signal is acti­
vated one CLK2 period after the active-going. edge of
CAS#.

tAR: Column Address Hold Time to RAS#

CLK2 x 3 + AS373.Glo0.lpd.min +
ACT258.lloZ.lpl.min - RAS.Delay.max

tRCD: RAS# to CAS# Delay Time

CLK2 x 2 + AS32.lphl.min - RAS.Delay.max

tRAD: RAS# to Column Address Delay Time

(min) ACT258.SloZ.tphl.min + Delay.min -
RAS.Delay.max

(max) ACT258.SloZ.lphl.max + Delay.max +
ACT258.Cap.Deraling - RAS.Delay.min

tRSH: RAS# Hold Time

CLK2 x 2 - AS32.lphl.max + RAS.Delay.min

The worst case occurs when a DRAM Page miss
or Idle is detected at the end of the current DRAM
Page miss cycle.

tCSH: CAS# Hold Time

CLK2 x 6 + AS32.lplh.min - RAS.Delay.max

tCRP: CAS # to RAS# Precharge Time

CLK2 x 2 + RAS.Delay.min - AS32.tplh.max

This is guaranteed by the DRAM control state
machine.

tASR: Row Address Setup Time
CLK2 x 2 - 16.max - 386.Cap.Derating -

ACT258.ltoZ.max - ACT258.Cap.Derating +
H124.tpd.min + H125.tpd.min + PAL.tco.min +
RAS.Delay.min

tRAH: Row Address Hold Time

ACT258.SloZ.lphl.min + Delay.min - RAS.Delay.max

tT: Transition Time (Rise and Fall)

tREF: Refresh Period

tREF2: Refresh Period

5-720

Read Cycles:

tRAC: Access Time

CLK2 x 6 - H124.tpd.max - H125.tpd.max -
PAL.tee.max - 121.min - F245.max - RAS.Delay.max

tCAC: Access Time from CAS#

CLK2 x 3 - H124.tpd.max - H125.tpd.max -
PAL.tee.max - AS32.tphl.max - 121.min - F245.max

tAA: Access Time from Address

CLK2 x 6 - t6.max - 386.Cap.Derating -
AS373.Dto0.max - ACT258.ltoZ.tp.max -
ACT258.Cap.Derating - t21.min - F245.max

tRCS: Read Command Setup Time

CLK2 + AS32.tphl.min

tRCH: Read Command Hold Time to CAS #

CLK2 - AS32.tplh.max

tRRH: Read Command Hold Time to RAS#

CLK2 - RAS.Delay.max

tOFF: Output Buffer Turn-off Time

CLK2 X 2 + F245.tzh.min

Write Cycles:

tWCS: Write Command Setup Time

CLK2 x 3 + AS32.tphl.min

tWCH: Write Command Hold Time

CLK2 x 2 - AS32.tplh.max

tWCR: Write Command Hold Time to RAS#

CLK2 x 6 - RAS.Delay.max

AP·442

tWP: Write Command Pulse Width

CLK2 x 5

tRWL: Write Command to RAS# Lead Time

CLK2 x 5 + RAS.Delay.min

tCWL: Write Command to CAS# Lead Time

CLK2 x 5

tDS: Data-in Setup Time

CLK2 x 3 + H124.tp.min + H125.tp.min +
AS32.tphl.min - T12.max - F245.tp.max

tDH: Data-in Hold Time

CLK2 x 2 + F245.tpz.min - AS32.tphl.max

tDHR: Data-in Hold Time to RAS#

CLK2 x 6 + F245.tpz.max + RAS.Delay.min

Page Mode Cycles:

tPC: Page Mode Cycle Time

CLK2 x 4

tRAPC: Page Mode RAS# Pulse Width

CLK2 x 4

tRSW: RAS# to Second WE# Delay Time

CLK2 x 7 - RAS.Delay.max

5-721

tCP: CAS # Precharge Time

CLK2.

tWI: Write Invalid Time

CLK2

tCAP: Access Time from Column Precharge Time

CLK2 x 4 - H124.tp.max - H125.tp.max -
PAL.tee.max - t21.min - F245.max

I

80.186 J\.C. SPECIFICATIONS

Symbol Parameter

t1
t2a
t2b
t3a
t3b
t4
ts
t6
t7
ts
t9
tlO
tll
tl2
t13
tl4
tlS
tl6
tl 7
tl8
tl9
t20
t2l
t22
t23
t24
t25
t26
t27
t28
t29
t30

Operating Frequency
CLK2 Period
CLK.2 High Time
CLK.2 High Time
CLK.2 Low T !me
CLK2 Low Time
CLK.2 Fall Time
CLK2 Rise Time
A2-A31 Valid Oelay
A2-·A31 Float Delay
BEO#-BE3f, LOCK# Valid Delay
BEO#-BE3f, t.ocK# Float Delay
W/RI, H/IO#, D/C#, ADS# Valid Delay
W/Rf, M/IOI, D/C#, ADS#. Float Delay
D0-031 Write Data Valid Delay
D0-031 Float Delay
HLDA Valid Delay
HAI Setup Time
NA# Hold Time
BS16# Setup Time
BS16# Hold Time
Readyf Setup Time
Ready# Hold Time
D0-031 Read Setup Time
D0-031 Read Hold Uma
BOLD Setup Time
HOLD Hold Time
USET Setup Time
RESET Bold TU.
NMI, INTR Setup Time
NMI, INTR Hold Time
PBREQ, ERROR#, BUSYf Setup Time
PBREQ, B.RROJ\f, BUSY# Rold Time

PAL SPECil'ICATIONS

Symbol Parameter

ta
too

Input or Feedback Setup 'I'ima
Clock tc Output

AP-442

80386-33
Minimum Maximum

8 .00
15 ,00
6.25
4 .50
6.25
4.50

4 .00
4.00
4.00
4. 00
4 .oo
4.00
5.00
4.00
4.00
5.00
3.00
5.00
3 .00
7 .00
4.00
5.00
3.00

11.00
3 .00
8.00
3.00
5.00
5.00
5.00
4.00

33 .33
62 .50

4 .00
4 ,00

15 .00
20.00
15.00
20.00
15 .oo
25.00
24.00
17 .OD
20.00

Minimum Maximum

7 .oo
3.00 6.50

·=====~-=-~~====~-=~===

ROW ADDRESS LATCH SPECIFICATIONS
74FCT843B (IDT)

Symbol Parameter

tplh Dn to On Propaqatiort Delay
tpbl
tplb G to On Propaqation Delay
tphl
ta Setup Time
th Hold Time

SO pF
Hininn.lm Ma.ximwn

3.00 6.50
3.00 6.50
6.00 8.00
4.00 8.00
2.00
3.00

Timings for No Cache Configuration

5-722

240725-C?

inter

ROW ADDRESS COMPARATOR SPECIFICATIONS
74PCT521B (Performance)

Symbol Parameter

tplh
tphl
tplh
tphl

An or Bn to Q Propagation Delay

I to Q Propagation Delay

ORAM ADDRESS MULTIPLEXER SPECIFICATIONS
74ACT258

Symbol Parameter

tplb S to Zn Propagation O.lay
tphl
tplh E.# to Zn Propagation Delay
tphl
tplb In to Zn Propagation Delay
tphl

DATA TRANSCEIVER SPECIFICATIONS
14F245

Symbol Parameter

tplh
tphl
tzh
tzl
tphz
tplz

An to Bn or Bn to An Propa9ation Delay

output Enabl• Tima

output Diaabl• Time

COLUMN ADDRESS LATCH SP&CIFICA'l'IONS
74AS5'73

Symbol Parameter

tplh On to On Propaqation Delay
tpbl
tplh G to On Propagation Delay
tphl
ts Setup !ime
th Bold !rime

AP-442

Minimum Maximum

LSO
1. so
1.50
1. 50

5. so
5 .so
4. 60
4 .fiO

Minimum Maximum

1.00 11.50
1.00 11.00
1.00 9.50
1. 00 9.SO
1.00 9 .50
1.00 8 .00

Minimum Maximum

2.50
2.50
3.00
3.50
3.00
2.00

1.00
1. 00
8.00
9.00
7 .50
7 .50

HinilllUID Maximum.

3.00 6.00
3.00 6.00
6.00 11.50
4.00 1.50
2.00
3.00

'=====----=-==~~~-~~--~==--·

RASI DELAY

Symbol Parameter Minimum. Maximum

tp Propaqation Delay 0.00 0 .oo

Timings for No Cache Configuration (Continued)

5-723

I
240725-CB

intJ

OR SPE\JF'TrATI~NS
14A.'l1?

Sy1nbol Parameter

Propagation Delay

AP-442

Minimum Maximum

1.00
1.00

5 80
5 .BO

:c====::=::=,,..,.,..,,.,...,======::"'••---===================u•-==.,..••r.:=m::'"'"",."""'"'""••""===""!""'•"'======================"'

DRAM TIMING Rl!!QUIREMEN'l'S

Symbol Parameter

Read. and Writa Cyel•• (Co~n Pa.r~ters) :
tRC Random Read or Write cycle Time
tRP RASf Precharqe Time
tRAS RAS# Pulae Width
tCAS CASI PulH Width (had)
tCAS CASI PulH Width (Writ.)
tASC Collll'lln Addre•• Setup Time
tCAH Column AddreH Hold '?ima
tAR Coli.unn Addreo Hold T!JM to RAS#
tRCD RASf to CASI Delay Time
tRAD RASf to ColUMI\ Add.re•• Delay Time
tRSR RA.SI Hold 'l'ime
tCSH CASI Hold Tima
tCRP CASI to RAs:I Prach«rqe '?in.
tASR Row Addre1111 Setup Time
tRAH Row Address Hold 'linle
u 'l'ransition Time (RiH and Fall)
tREF Re!reah Period
UW'2 Refresh Period

Read Cycle•:
tRAC Access 'rime
tCAC AcceH Ume from. CAS t
tAA Access '1'1- from. Address
tacs Read Coanand Setup 'lime
tRCli Read Command. Bold Time to CASI
tRRH Read COllllU.Dd Rold 'lime to RASf
tOFP OQ'tput Buffer Turn-off rima

Write Cycle11:
tWCS Write Coo:nand setup 1'.1.mi
tWCH lfrlte Comand Bold 'lime
tliel\ Mrlte comand Bold Time to RAS#
tWP Write Coanand Pulae lfldtb
tRWL Write Comnand to RASf Le11d l'illle
tCWL Write Command to CASI Lead 1'1.Me
tDS Data-in Setup 'l'ilna
tDH Data-in Bold 'l'ime
tDHR Data-in Hold 'l'l• to RASf

Pa? Mode Cycle a:
tPC Page Mode Cycle 'lime
tRAPC Paga Mode RASI Pullle Width
tRSW RASI to Second WEI Delay Time
tCP CASI Precbarge Time
tWI Write Invalid Time
tCAP AcceH 1'1Jae from Column Precharge Time

For 80386-33
Htnimum Maximum

150.00
60.DO
60.00
45.00
30.00

9. 70
14.20
50.00
31.00
s.oo 21.30

24.20
91.00
24.20

5.45
5.00

68.25
17.45
41.20
16.00

9.20
15.00

33.00

46.00
24..20
90.00
75.00
75.00
75.00
17. 75
26.20
97.50

60.00
60.00

105 .00
15.00
15.00

38.25

Tirninq Margin (NMB 2801-06)
Hini1l'!Wn Maxinium

29.00
5.00
0.00

34.00
25.00

9. 70
8.20

10.00
25.00 Iii.DO
l.00 6. 70
9.20

51.00
21.20

3.45
3.00

8.25
6.4.S
9.20

16.00
1.20

15.00
U.00

46.00
19.20
50.00
10.00
62.00
70.00
11.15
21.20
57 .50

23.00

10.00

4.25

= ________ .. __ ,,, _____ -==="""'"'"'"""'""=_,,,,""""""'========= ... ··=====---======-=•-=-""""""""""=====

Timings for No Cache Configur~tion (Continued)

5-724

240725-C9

intef

ADDRESS DECODER REQUIREMENTS

Symbol Parameter

tpd Available Propagation Delay

ROW ADDRESS COMPARATOR Rl!!QUIREMENTS

Symbol Parameter

tpd Available Propaqation Delay

NAI SETUP TIME

Symbol Parameter

tNAI Available NAt Setup Time

AP-442

For 80386-33
Minittrum Maximum

8.15

For 80386-33
Minimum Maximum

8.15

Minimum Maximum

s .25

~=-----=====~===---=::z=--===--=~-==

QUAD TTL TO lOKH-ECL TRANSLATOR
N:l0Hl24

Symbol Parameter

tpd Propaqation Delay

QUAD lOKB-ECL to TTL !RANSLA.TOR
MC10Bl25

Symbol Parameter

tpd Propaqation Delay

DELAY ELEMENT

Symbol Parameter

tpd Propaqation Delay

Minimum Maximum

2.15 l .25

Minitnu.m Maximum

0.00 0.00

Minimum Maximum

4.00 6.00

Timings for No Cache Configuration (Continued)

5-725

240725-DO I

intef AP-442

DRAM SPF.CTFICATIONS

NMB 2801-06 VITELIC V53C256 (70 ns)
Symbol Minimum Maximum Minimum Maximum
- ---------- ----------------- - ----------------------------------
tRC 121 .. 00 130. 00
tRP 55 .00 50.00
tRAS 60 .00 100000 70.00 75000.00
tCAS 11.00 15, 20 75000 .00
tCAS 5 .00
tASC 0.00 o.oo
tCAH 6 .00 15.00
tAR 40.00 55.00
tRCD 6.00 45.00 25.00 55.00
tRAD 4 .oo 28.00 20.00 35.00
tRSH 15.00 15, 25
tCSH 40 .00 70.00
tCIU' 3.00 15.00
tASR 2 .00 0.00
tRAH 2 .00 15.00
tT 3.00 25.00
tREP
tREF2
tRAC 60.00 70.00
tCAC 11.00 15.00
tll 32.00 35.00
tRCS 0.00 0.00
tRCH o.oo 5.00
tRRH 0.00 5.00
ton 17 .00 0.00 15.00
tWCS 0.00 0.00
tWCH s .. oo 15.00
tWCR 40.00 55.00
tWP 5.00 15.00
tRWL 13.00 20.00
tCWL s.oo 20.0D
tDS 0.00 0.00
tDH 5.00 15.00
tDHR 40.00 55.00
tPC 37 .oo 50.00
tRAPC
tRSW
tCP 5.00 15.00
tWI
tCAP 34.00 45.00

==--------=---·------- ---~- 240725-01

CAPACITIVE LOAD TIMING DERATING FOP. 74ACT258

Load Capacitance (pFJ

60.00
80 .DO

100 .00
120. 00
140. 00
160. 00
180. 00
200 .00
220 .oo
240 .oo
260. 00
280. 00
300.00

Additional Propagation Delay (na)

0.26 (p = 0.02625q - 1.3125)
0. 79
0.89 (p = 0.022q - 1.3125)
1.33
1. '77
2.21
2.65
3 .09
3.83 (p. 0.01666q + 0.1666)
4 .17
4.50
4.83
5.17

------~ -------·----------=·---=-=--=---,-----
DRAM ADDRESS BOS TIMINQ DERA'.r:INQ

ba•on Capacitive Load (pF) Additional Propaqation Delay (n•) ---
DRAM Addr••• rnput•
F258 Output
Micro•trip/Strip Linea

TOTAL

160.00

60.00

220.00 -> 3.80

Timings for No Cache Configuration (Continued)

5-726

240725-02

intef AP-442

EQUATIONS FOR DRAM TIMINGS (82385 Ac­
tive):

Read and Write Cycles (Common Parameters):

tRC: Random Read or Write Cycle Time

CLK2 x 10

tRP: RAS# Precharge Time

CLK2 x 4

tRAS: RAS# Pulse Width

CLK2 x 4

A random DRAM cycle may have a RAS# pulse
which is only four CLK2 periods wide. This is the case
if the cycle is followed by Idle cycles (DRAMs not
selected or Ti's) or a DRAM page miss.

tCAS (Read): CAS # Pulse Width

CLK2 X 5

CAS# pulses can be as narrow as five CLK2 cy­
cles during Page Mode read cycles.

tCAS (Write): CAS# Pulse Width

CLK2 x 2

CAS# pulses can be as narrow as two CLK2 cy­
cles during Page Mode write cycles.

tASC: Column Address Setup Time

min (CLK2 x 2 + AS32.tphl.min - Delay.max -
ACT258.StoZ.tpl.max - ACT258.Cap.Derating, CLK2 x
3 + AS32.tphl.min - t6.max - 386.Cap.Derating -
AS373.Dto0.tpd.max - ACT258.ltoZ.tpl.max -
ACT258.Cap.Derating)

The Column Address becomes valid as RAS#
switches from High to Low or as the 386 address be­
comes valid while RAS# is already Low (i.e., Page
Mode, Pipelined cycles)

tCAH: Column Address Hold Time

CLK2 + AS373.Gto0.tpd.min + ACT258.ltoZ.tpl.min -
AS32.tphl.max

The CAL (Column Address Latch) signal is acti­
vated one CLK2 period after the active-going edge of
CAS#.

tAR: Column Address Hold Time to RAS#

CLK2 x 3 + AS373.Gto0.tpd.min +
ACT258.ltoZ.tpl.min - RAS.Delay.max

tRCD: RAS# to CAS# Delay Time

CLK2 x 2 + AS32.tphl.min - RAS.Delay.max

tRAD: RAS# to Column Address Delay Time

(min) ACT258.StoZ.tphl.min + Delay.min -
RAS.Delay.max

(max) ACT258.StoZ.tphl.max + Delay.max +
ACT258.Cap.Derating - RAS.Delay.min

tRSH: RAS# Hold Time

CLK2 x 2 - AS32.tphl.max + RAS.Delay.min

The worst case occurs when a DRAM Page miss
or Idle is detected at the end of the current DRAM
Page miss cycle.

tCSH: CAS# Hold Time

CLK2 x 6 + AS32.tphl.min - RAS.Delay.max

tCRP: CAS# to RAS# Precharge Time

CLK2 x 2 + RAS.Delay.min - AS32.tplh.max

This is guaranteed by the DRAM control state
machine.

tASR: Row Address Setup Time

CLK2 x 2 - t6.max - 386.Cap.Derating -
ACT258.ltoZ.max - ACT258.Cap.Derating +
H124.tpd.min + H125.tpd.min + PAL.tee.min+
RAS.Delay.min

tRAH: Row Address Hold Time

ACT258.StoZ.tphl.min + Delay.min - RAS.Delay.max

tT: Transition Time (Rise and Fall)

tREF: Refresh Period

tREF2: Refresh Period

5-727

I

intef
Read Cycles:

tRAC: Access Time

CLK2 x 8 - H124.tpd.max - H125.tpd.max -
PAL.tco.max - - F245.max - AS646.tpd.max -
F245.max - RAS.Delay.max - SRAM.tDW - CLK2 +
385.t22a.min

tCAC: Access Time from CAS#

CLK2 x 5 - H124.tpd.max - H125.tpd.max -
PAL.tco.max - AS32.tphl.max - F245.max -
AS646.tpd.max - F245.max - SRAM.tDW CLK2 +
385.t22a.min

tAA: Access Time from Address

CLK2 x 8 - t6.max - 386.Cap.Derating -
AS373.Dto0.max - ACT258.ltoZ.tp.max -
ACT258.Cap.Derating - F245.max - AS646.tpd.max -
F245.max - SRAM.tDW - CLK2 + 385.t22a.min

tRCS: Read Command Setup Time

CLK2 + AS32.tphl.min

tRCH: Read Command Hold Time to CAS#

CLK2 - AS32.tplh.max

tRRH: Read Command Hold Time to RAS#

CLK2 - RAS.Delay.max

tOFF: Output Buffer Turn-off Time

CLK2 x 2 + F245.tzh.min

Write Cycles:

tWCS: Write Command Setup Time

CLK2 x 3 + AS32.tphl.min

tWCH: Write Command Hold Time

CLK2 x 2 AS32.tplh.max

tWCR: Write Command Hold Time to RAS#

CLK2 x 6 RAS.Delay.max

AP-442

tWP: Write Command Pulse Width

CLK2 x 5

tRWL: Write Command to RAS# Lead Time

CLK2 x 5 + RAS.Delay.min

tCWL: Write Command to CAS# Lead Time

CLK2 x 5

tDS: Data-in Setup Time

CLK2 x 3 + H124.tp.min + H125.tp.min +
AS32.tphl.min - - 385.t43c.max -
AS646.Got0.tp.max - F245.tp.max

tDH: Data-in Hold Time

CLK2 x 2 + F245.tpz.min - AS32.tphl.max

tDHR: Data-in Hold Time to RAS#

CLK2 x 6 + F245.tpz.max + RAS.Delay.min

Page Mode Cycles:

tPC: Page Mode Cycle Time

CLK2 X 6

tRAPC: Page Mode RAS# Pulse Width

CLK2 x 4

tRSW: RAS# to Second WE# Delay Time

CLK2 x 7 - RAS.Delay.max

tCP: CAS # Precharge Time

CLK2

tWI: Write Invalid Time

CLK2

tCAP: Access Time from Column Precharge Time

CLK2 x 6 - H124.tp.max - H125.tp.max -
PAL.tco.max - - F245.max - AS646.tpd.max -
F245.max - SRAM.tDW - CLK2 + 385.t22a.min

5-728

intef AP-442

DRAM TIMING REQUIREMENTS

For 80386-33
Symbol Parameter Minimum Maximum

Read and Write Cycles (Common Parameters) :
tRC Random Read or Write Cycle Time 150. 00
tRP RAS# Precharge Time 60 .00
tRAS RAS# Pulse Width 60.00
tCAS CAS# Pulse Width (Read) 75 .00
tCAS CAS# Pulse Width (Write) 30 .00
tASC Column Address Setup Time 9.10
tCAH Column Address Hold Tima 14 .20
tAR Column Addraaa Hold Time to RASI 50 .oo
tRCD RASJ to CAS# Delay Time 31.00
tRAD RAS# to Column Addreu Delay Tima s .oo 21.30
tRSB RAS# Bold TilM 24.20
tCSH CAS# Rold Time 91. 00 "
tCRP CASI to BAS# Precharqe Time 24 .20
tASR Row Address Setup Time 6.20
tRAH Row Address Hold Time 5.00 .. Transition Tima (Rise and Fall)
tREF Refresh Period
tREF2 Refresh Period

Read Cycles:
tRAC Access Time 61.50
tCAC Acceaa 'lime from CASI 16. 70
tAA Access Time from Addreaa 31. 70
tRCS Read Co1t1D&nd Setup Time 20.80
tRCB Read Command Rold Time to CASI 9.20
tRRB Read Command Bold Tima to RASt 15.00
tOFF OUtput Buffer Turn-off Time 33.00

Writ• Cycle•:
tWCS Writ• Command Setup Ti.ma 46.00
twee Writ• Command Hold Time 24.20
tWCR Write Command Hold Time to RASf 90.00
tWP Write Comia.nd Puba Width 7S.OO
tRWL Write Conmand to RASI Lead Time 7S.OO
tCllL Write Comand to CASI Lead Time 75.00
tDS Data-in Setup Time 9.00
tDB Data-in Bold Time 31. 70
tDllll Data-in Bold U.ma to RASI 97.SO

P aqe Mode Cycle• :
tPC Page Hod• cycle Time: 90.00
tRAPC Paqe Mode RAS# Pulse Width 60.00
tRSW RAS# to Second WE# Delay Time 105 .00
tCP CASI Precharqe TirM 15.00
twr Write Invalid Time 15.00
tCAP Acceaa Tiana from Column Precharge Time 37 .so

Timings with Cache Active

5-729

Timing Margin (NMB 2801-06)
Minimum Maximum

29.00
5 .00
0.00

64 .00
25 .00

9.1'0
8.20

10.00
25.00 14.00
1.00 6.70
!J.20

51.00
21.20

4 .20
3.00

7 .so
s.10
5. 70

20.80
9.20

15.00

46.00
19.20
50.00
70.00
62.00
70.00

9.00
26. 70
S1 .so

S3.00

10.00

16.00

3.50

240725-03 I

intJ AP-442

APPENDIX E
REFERENCES

REFERENCES
Advanced CMOS Logic Designer's Handbook, Texas In­
struments Inc., 1988.

Blood W., MECL System Design Handbook, Motorola
Corp., 1983.

Keeler R., . "High Speed Digital Printed Circuit
Boards," Electronic Packaging & Production, pp. 140-
145, Jan. 1986.

Tomlinson J., "Avoid The Pitfalls of High Speed Logic
Design," Electronic Design, pp. 75-84, Nov. 9, 1989.

Pace C., "Terminate Bus Lines to Avoid Overshoot and
Ringing," EDN, pp. 227-234, Sept. 17, 1987.

Royle D., "Rules Tell Whether Interconnections Act
Like Transmission Lines," EDN, pp. 131-136, June 23,
1988.

Royle D., "Correct Signal Faults by Implementing
Line-Analysis Theory," EDN, pp. 143-148, June 23,
1988.

Winchester E., "Guidelines Help You Design High­
Speed PC Boards," EDN, pp. 221-226, Nov. 28, 1985.

Yeargan J. R., Day R. L., and Nguyen T., "Effects of
Printed Circuit Board Transmission Lines an Loading
on Gate Performance," IEEE Transactions on Industri­
al Electronics, Vol. IE-34, no. 3, pp. 399-405, Aug.
1987.

5-730

386™ SL MICROPROCESSOR Superset
Highly-Integrated Static 386™ Microprocessor

Complete ISA Peripheral Subsystem
System-Wide Power Management

• Static 386™ CPU Core
- Runs MS·DOS*, WINDOWS*, OS/2*

and UNIX*
- Object Code Compatible with Intel

8086, 80286 and 386™
Microprocessors

• Architecture Extension for Power
Management Transparent to Operating
Systems and Applications

• Complete ISA System, with Extended
Support
- Full ISA Bus Control, Status and

Address and Data Interface Logic,
with Full 24 mA Drive

- Compatible ISA Bus Peripherals

- System 1/0 Decoding, Programmable
Chip Selects and Support Interfaces

- High-Speed Peripheral Interface Bus
(Pl-Bus Support)

- New ideaPort Interface for Hardware
Expansion

• Integrated Cache Controller and Tag
RAM
- No-Glue Cache SAAM Interface
-16k, 32k, or 64 kByte Cache Size
- Direct, 2-Way or 4-Way Set

Associative Organization

• Programmable Memory Control
- No-Glue, Page-Mode DRAM Interface
- SAAM Support for Lowest Power
- 512k to 32 MBytes
- Full Hardware LIM EMS 4.0

The 386™ SL Microprocessor Superset combines an ISA bus compatible personal computer's microproces­
sor, memory controller, cache controller and peripheral subsystems into just two Very Large Scale Integration
(VLSI) devices. The product's high-integration and power conservation features reduce the size and power
consumption typically associated with fully Industry Standard Architecture (ISA) bus compatible systems. In
addition, new expandability and flexibility features offer the capability for continued innovation in battery-oper­
ated, space-constrained systems. The SL Superset brings 100% ISA-Bus compatibility to system designs
ranging from the smallest palm-top and notebook PCs to expandable lap-top systems.
386 is a registered trademark of Intel Corporation.
*MS-DOS and WINDOWS are trademarks of Microsoft Corporation.
UNIX is a trademark of AT&T.
OS/2 is a trademark of International Business Machines Corporation.

240814-1 240814-2

Figure 1-1. Die Photograph of the 386™ SL Microprocessor (left)
and 82360SL ISA Peripheral 1/0 (right)

5-731
October 1990

Order Number: 240814-001

I

intef

386™ SL MICROPROCESSOR
386™ Microprocessor Core, with

integrated Bus Memory, and Cache Controiiers; and
System Power Management

Fully-Static CHMOS IV Technology
• Static 386™ CPU Core

- Optimized and Compatible with
Standard Operating System Software
such as:
MS-DOS*, WINDOWS*, OS/2* and
UNIX*

- Object Code Compatible with Intel
8086, 80286 and 386™
Microprocessors

-Runs All Desk-Top Applications,
16- or 32-Bit

- D.C. to 20 MHz Operation
- 32 Megabytes Physical Memory I

64 Terabytes Virtual Memory
- 4 Gigabyte Maximum Segment Size
- High Integration, Low Power Intel

CHMOS IV Process Technology

• Transparent Power-Management
System Architecture
- System Management Mode

Architecture Extension for Truly
Compatible Systems

- Power Management Transparent to
Operating Systems and Application
Programs

- Programmable Hardware Supports
Custom Power-Control Methods

• Direct Drive Bus Interfaces
- Full ISA Bus Interface, with 24 mA

Drive
- High Speed Peripheral Interface Bus

• Integrated Cache Controller and Tag
RAM
- No-Glue Cache SAAM Interface
-16k, 32k, or 64 kByte Cache Size
- Direct, 2-Way or 4-Way Set

Associative Organization
- Write Posting-Double Posted Writes

in the Bus Controller
- 16-Bit Line Size-Reduces Bus

Utilization for Cache Line Fills
- Write-Thru, with SmartHit Algorithm

for Reduced Main Memory Power
Consumption

• Programmable Memory Control

5-732

- No-Glue, Page-Mode DRAM Interface
- SAAM Support for Lowest Power
-1, 2, or 4 Banks Interleaved, with

Programmable Wait States
-512k to 32 MBytes
- Advanced, Flexible Address-Map

Configuration
- Full Hardware LIM EMS 4.0 Address

Translation to 32 Megabytes without
Waitstate Penalty

intef

82360SL 1/0 Subsystem
Complete ISA Peripheral Subsystem

Integrated System Power Management
Fully-Static CHMOS IV Technology

• Complete ISA System, with Extended
Support
- Full ISA Bus Control, Status and

Address and Data Interface Logic,
with Full 24 mA Drive

- Compatible ISA Bus Peripherals:
Two 8237 Direct Memory Access
Controllers
Two 8254 Programmable Timer
Counters (6 Timer/Counter
Channels)
Two 8259A Programmable
Interrupt Controllers
(15 Channels)
Enhanced LS612 Page Memory
Mapper
One 146818 Real Time Clock
w/256-byte CMOS RAM
One 16450 Dual Serial Port
Controller
One 8-Bit Parallel 1/0 Port
(Centronics or Bi-Directional)

- Additional System 1/0 Decoding,
Programmable Chip Selects and
Support Interfaces:

Full Integrated Drive Electronics
(l.D.E.) Hard Disk Interface
Floppy Disk Controller

• Keyboard Controller Chip Selects and
Support Logic
- External Real Time Clock Support
- PS/2 and EISA Control/Status Ports
- Local Memory and ISA·Bus Memory

Refresh Control
- New ideaPort Interface for Hardware

Expansion

• Transparent Power-Management
System Architecture

5.733

- Architecture Extension for Truly
Compatible Systems

- Transparent to Operating Systems
and Applications Programs

- Programmable Hardware Supports
Custom Power-Control Methods

- Integrated Power Management Unit
Manages Power-Events Safely

II

inter 386™ SL MICROPROCESSOR Superset

386™ SL Microprocessor Superset
386™ SL CPU and 82360SL 1/0

1.0 INTRODUCTION 5-735 7.0 TIMING DIAGRAMS 5-801

2.0 MECHANICAL PACKAGE 8.0 CAPACITIVE DERATING
SPECIFICATIONS, PIN ASSIGNMENT INFORMATION 5-852
AND CHARACTERISTICS 5-742

9.0 DAMPING RESISTOR
3.0 SIGNAL DESCRIPTION 5-758 REQUIREMENTS 5-857

4.0 PACKAGE THERMAL 10.0 MECHANICAL DETAILS OF LGA
SPECIFICATIONS 5-773 AND PQFP PACKAGES 5-858

5.0 D.C. SPECIFICATIONS 5-774 11.0 REVISION HISTORY 5-863

6.0 TIMING SPECIFICATIONS 5-781

5-734

infer 386™ SL MICROPROCESSOR Superset

1.0 INTRODUCTION

This document provides the pinouts, signal descrip­
tions, and D.C./ A.G. electrical characteristics of the
386™ SL CPU and 82360SL ISA 1/0 Peripheral de­
vice. Consult Intel for the most recent design-in in­
formation. For a thorough description of any func­
tional topic, other than the parametric specifications,
please consult the latest 386 SL Microprocessor
Superset System Design Guide (Order No. 240816),
and the 386 SL Microprocessor Superset Program­
mer's Guide (Order No. 240815).

Overview

The 386™ SL Microprocessor Superset is an ex­
tremely flexible pair of components marking a new
milestone in microcomputer technology. Included in
the pair are a 386 Architecture Central Processing
Unit (CPU), several memory subsystem controllers,
address translation and remapping logic, an optional
cache me.mory controller, and an extensive collec­
tion of ISA bus compatible peripheral functions.

The SL Superset allows the personal computer de­
signer to take advantage of the highest level of sys­
tem integration, while preserving complete freedom
in selecting system features, power/performance
trade-offs, and value-added enhancements.

Essentially, all of the components needed to build
an ISA bus compatible personal computer have
been combined within just two components: the
386 SL microprocessor and memory control system,
and the 82360SL ISA peripheral 1/0 and power
management subsystem. The only other compo­
nents needed for a complete personal computer are
the main DRAM or optional static memory subsys­
tem, optional cache SRAM and a graphics control­
ler. A minimal amount of commodity Small Scale In­
tegration (SSI) logic or Medium Scale Integration
(MSI) logic buffers may be required for design-spe­
cific interface to peripheral devices on the ISA bus.

Systems based on the SL Superset typically include
the functional blocks shown in Figure 1-2.

5-735

El

intJ 386™ SL MICROPROCESSOR Superset

Moth
Coprocessor !--'======"; .··.]
(Opllonal)

High­
Speed
Cache

(Opllonal)

IDE Hard
Disk Drive

Floppy

~~ ~~ Disk

Floppy
Disk ISA Backplane

1/0 Expansion Slots

~~~~~~ 
Figure 1-2. 386™ SL Microprocessor-Based System Functional Block Diagram 

5-736 

Powe'r 
Supply 
Control 
Logic 

Parallel 
Printer 

Serial 
Printer 

(Impact or 
Laser) 

Modem or 
Local Area 

Network 

LCD Flat 
Panel 

Display 

Color or 
Mono CRT 
Monitor 

240814-83 



intef 386™ SL MICROPROCESSOR Superset 

Bank 4 Cache 
TAG RAM 

TAG Comparator 
Hit/Miss Logic 

Cacheabillty Map 

Address Bus 
controller /decode 

Doto bus control 
and steering logic 

CPU/ISA bus 
synchronizer 

Buffer control 

Pl bus l/F control 

l.S.A. Bus 
Controller 

Bank 3 Cache Bank 2 Cache Bank 1 Cache 
TAG RAM TAG RAM TAG RAM 

Cache Controller 

TAG Comparator TAG Comparator TAG Comparator 
Hit/Miss Logic Hit/Miss Logic Hit/Miss Logic 

Cacheabillty Map Cacheobillty Mop Cocheobllity Mop 
LRU and Flush logic 

Static 386 TM Microprocessor Core 

Numerics 
Interface 

Logic Clocks, 
Reset, 

CPU/NPX, 
State Machine 

Random 
Logic 

: Programming 
1 Interface 

State ';;a~hi;e-:- - - - - - -
Decode 1 ---- ... ----· 

: Address Mapper 

Write P~;t;; - l ______ _ 
_P_o~e_r _ ~C:"~~e~-e~t_ ___ _ 

Internal Bus 
Controller 

DRAM controller 
SRAM controller and Mux 
EMS address mapper and 

EMS registers 
Shadow and Addr Roll/ 

Compare registers 

Main Memory 
Controller 

240814-84 

Figure 1-3a. 386™ SL Microprocessor Internal Functional Modules 

5-737 

I 



"Tl us· 
c 
Cil .... w 
!=" 
w 
I 
i1 
UI r-
1: c;· 

01 ... 
' 0 ...... "ti 

U) ... 

00 I 
... 
I: c;· 
a 
~ ;: 
2. c 
Cil 

BARREL 
SHIFTER 
ADDER 

MULTIPLY/ 
DIVIDE 

REGISTER 
FILE 

ALU 

32 
FFECTIVE AOQRESS BUS 

LOGICAL ADDRESS 

EF'f'ECTIVE ADDRESS BUS 

I 

SEGMENTATION 
UNIT 

3-INPUT 
ADDER 

DESCRIPTOR 
REGISTERS 

LIMIT ANO 
AITRIBUTE 

PLA 

INTERNAL CONTROL BUS 

DECODE 
AND 

SEQUENCING 

CONTROL 
ROM 

CONTROL 

INSTRUCTION 
DECODER 

3-DECODED 
INSTRUCTION 

QUEUE 

INTRODUCTION 
PREDECODE 

DEDICATED ALU BOS 

Iii 

ADDER 

PAGE 
CACHE 

CONTROL AND 
AITRISUTE 

PLA 

PREmCHED 
LIMIT 

CHECKED 

CACHE 
QUEUE 

INTRODUCTlON 
PREFETCH 

+ I I 

,. I I 

- I I 

- I I 

- I I 

240814-85 I I 

-· cf 
w co 
0) 
-I 
;i:: 

en ,... 
s::: 
0 
:JJ 
0 
'ti 
:JJ 
0 
0 m en en 
0 
:JJ 
en c 

"O 
CD 

en 
CD -
~ 
l§! 

~ 
~ 
© 
!iiiil 
= 
~ 
"iiil 
© 
2§.J 

~ 
~ 
"={I 
= 
© 
~ 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor: Central 
Processing Unit (CPU) and Memory 
Controller Subsystem 

The 386 SL microprocessor is a highly-integrated, 
complete microprocessor and memory controller 
subsystem. At the heart of the 386 SL microproces­
sor is a CHMOS static 386 CPU core. The 386 CPU 
core has been fully optimized to reduce run-time 
power requirements, and includes a key architectur­
al extension required by battery-operated systems. 

The 386 SL processor is the first member of the 386 
microprocessor product line to implement a CPU 
with the System Management Mode extension. The 
System Management Mode is a new CPU operating­
mode which allows system vendors to rid their sys­
tems of the backwards-compatibility problems that 
plague battery-operated PCs. This 386 architecture 
exte~sion eliminates portable-system conflicts by 
prov1d1ng a safe, new operating level for the battery 
manag_ement firmware developed by system design­
ers. With the 386™ SL CPU, firmware will execute 
transparently to every application, operating system 
and CPU mode, thus avoiding the compatibility con­
flicts which were once unavoidable. 

The 386 SL microprocessor retains the paged-mem­
ory-management system, and all other key features 
which are common to the lntel386™ architecture. In 
addition, on-chip hardware implements the Expand­
ed Memory Specification (E.M.S.) address transla­
tion compatible with the current Lotus/Intel/Micro­
soft (L.l.M.) E.M.S. 4.0 standard. Additional address­
mapping and control logic integrated in the 386 SL 
CPU allows BIOS ROMs to be "shadowed" by faster 
memory devices, and supports a variety of common 
memory roll-over and back-fill schemes. The 386 SL 
CPU contains all of the control and interface logic 
needed to directly drive large main memory and an 
optional cache memory subsystem. 

The 386 SL CPU contains bus drivers and control 
circuitry for two expansion interfaces. A Peripheral 
Interface Bus (Pl-Bus) provides high-speed commu­
nication with devices which may reside on the same 
printed circuit board as the processor. The Industry 
Standard Architecture (ISA) bus provides a common 
interface for the wealth of third party ISA bus com­
patible 1/0 peripheral and expansion memory add-in 
boards. On-chip data-byte steering logic, address 
decoding and mapping logic automatically routes 
each memory or 1/0 operation to the appropriate 
local memory, cache, Pl-Bus or !SA expansion bus. 

All system configuration logic in the 386 SL proces­
sor subsystem is initialized under software control. 

The system designer only has to program the proc­
essor in order to support multiple system hardware 
designs where many devices of less flexibility were 
once required. System characteristics such as mem­
ory type, size, speed, organization, and mapping; 
cache size, organization and mapping; and peripher­
al selection, configuration and mapping are config­
ured under software control. Thereafter, all memory 
and 1/0 transfer requests are automatically sent to 
the appropriate memory space or expansion bus, ful­
ly-transparent to existing operating system software 
and application programs. 

Figure 1-3a shows the functional blocks and Figure 
1.3b shows the microarchitecture of the 386 SL 
processor. 

82360SL 1/0: Integrated ISA Peripheral 
and Power Management Device 

The 82360SL ISA Peripheral 1/0 contains dedicated 
logic to perform a number of CPU, memory, and pe­
ripheral support functions. The 82360SL device also 
contains an extensive set of programmable power 
management facilities which allow minimized system 
energy requirements for battery-powered portable 
computers. 

The 82360SL includes a complete set of on-chip pe­
ripheral device functions including two 16450 com­
patible serial ports, one 8-bit Centronics interface or I 
bi-directional parallel port, two 8254 compatible tim-
er counters, two 8259 compatible interrupt control-
lers, two 8237 compatible OMA controllers, one 
74LS612 compatible OMA page register, one 
146818 compatible Real-time clock/calendar with 
256 bytes of battery backed CMOS RAM and an 
integrated drive electronics (I DE) hard-disk-drive in­
terface. The Intel 82360SL also contains highly pro­
grammable chip selects and complete peripheral in­
terface logic for direct keyboard, FLASH memory 
and floppy disk controller support. The peripheral 
registers and functions behave exactly as the dis-
crete components commonly found in industry-stan-
dard personal computers. The peripheral logic is en­
hanced for static operation by supporting write only 
registers as read/write. 

The processor and memory support functions con­
tained in the 82360SL device eliminate most of the 
external random-logic "glue" that might otherwise 
be required. The 82360SL device provides internal 
programmable-frequency clock generators for the 
CPU, backplane, and video subsystems. A program­
mable, low-power DRAM refresh timer is also provid­
ed to maintain system memory integrity during the 
power saving system stand-by and suspend states. 

5-739 



intJ 386™ SL MICROPROCESSOR Superset 

The. 82360SL also contains a flexible set of hard­
ware functions to support the growing sophistication 
in power management schemes required by portable 
systems. Numerous hardware timers, event moni­
tors and i/O interfaces can programmably monitor 
and control system activity. Firmware developed by 
the system designer allocates and directs the hard­
ware to fulfill the unique power management needs 
of a given system configuration. 

Suspend/Resume State Machine 
System Power Management Timers 

All of the standard peripheral registers, clock-gener­
ation logic, and power-management facilities have 
been designed to ensure complete compatibility with 
existing operating systems and applications soft­
ware. 

Figure 1-4 shows the functional blocks and micro­
architecture of the 82360SL 1/0 subsystem. 

System Power Management Control and l/F 
ideaPort Interface CMOS Static RAM 

Power Management 

l.D.E. Hard Disk l/F 

External Chip Selects 
Keyboard Controller 
Floppy Disk Controller 
EPROM/FLASH 

Internal Chip S.elects 

External RTC l/F 
1/0 Decoder 

ISA Bus l/F control logic 

Refresh 
Control 

Con fig. 
Registers 

8237 OMA Controller 

Parallel 
Port 
Controller 

8254 Timer /Counter 

LS612 
OMA Addr 

8254 Timer/Counter 

Mapper 

8237 OMA Controller 

I Real,-time clock 

NMI Logic 

Serial Port 
Controller 

Serial Port 
Controller 

8259 Interrupt 
Controller 

8259 Interrupt 
Controller 

Figure 1-4a. 82360SL ISA Peripheral 1/0 Internal Functional Modules 

5-740 

240814-86 



-· 
POWER MANAGEMENT &: c 

IDEAPORT INTERFACE 

... i-. ... 
""" 

... i-. 
REFRESH# 

MASTER# 

REfREQ 

FLOPPY DISK CONTROLLER 
I 

::!! ca c .. 
~I HARD DISK CONTROLLER 

;... 
!" 
Qt 

~I KEYBOARD CONTROLLER 
OI 

~ .... 
01 "II .:... c 
~ ::I 
.... 2, I SYSTEM ADDR BUS 

cs· 
::I 
!!?. 
!I!! I SYSTEM DATA BUS 0 
() 

ii R/W 

RTCREST 
; 
3 

.. ]_ Arbitration &:: r ] ~ 
Refresh Control Two 8259 • I- Interrupt .. 

Controllers .... 
...... floppy Disk 

Controller Power 
Parellel Port 

,...___. 
+-+ Decode Logic Management 

Embedded 
L.+ 

...... Hard disk 
Controller 
Interface __[ Two 8237 ...... 

]_ .1 OMA Controllers 

...... 
Keyboard 
Controller 0 0 

0 
. . 

Decode Logic Memory m Two m .i:1-- 1--: 
I-~ ~ 

Mapper 
f 

Serial Ports 
... ... 1--8 "' 

Rea.I Time + I- .... 
10 Decoder .l Clock 

t---1 ,,. 
Two H- CMOS RAM 

1--
Configuration 

Registers 

f • NMI Logic l _r::-+-&: t--
Port 61 .... 

Two 8254 Clock 
Programmable Generation 
Interval Timers ' Module 

Co) 

IRQ 0-15 C» 
0) .... 

INTR I: 
tn 

INTA# r-
ii: 

Port Data Bu 0 
Port CTRL 

:a 
0 .,, 

HRQ I I :a 
DACK 0-7 0 

0 
m 

DRQ 0-7 I I tn 
tn 
0 

COM1 I I 
:a 

COM2 
tn c 

"O 
CD 

I I 
... 

RTCX1 tn 
RTCX2 

CD -
CX1 

SYSCLK 

I I 
~ 

Test Pins l§! 
EXTRESET ~ 

zg 
KBDCLX# © 
KBDCLX liiiil 

= CX2 zg 

.... .. ~ .. ~ ,,. .. 
...... 

osc 'iiil 
RES ETD RV 

@ 
::w 

CPU RESET ~ 
240814-87 

~ 
C:(J 
= @ 
zg 

• 



inter · 386™ SL MICROPROCESSOR Superset 

2.0 PIN ASSIGNMENTS AND SIGNAL 
CHARACTERISTICS 

outs in the 227 pin Land Grid Array (LGA). The sec­
ond ·table lists the 82360SL package device pinouts 
in the 196 lead JEDEC· Plastic Quad Flat Package 
(PQFP). Both tables include additional information 
for the signals and associated pin numbers. A brief 
explanation of each column of the table is given in 
Table 2-1. 

Section 2 provides information for the SL Superset 
pin assignment with respect to the signal mnuemon­
.ics. In addition to the package pin out diagrams, two 
tables are provided for easy location of signals. The 
first table lists the 386 SL CPU package device pin-

Table 2-1. Description of the Columns of Tables 2·2 and 2-3 

PQFP ,Th.is column lists the pin numbers of the 82360SL in a Plastic Quad Flat Package. 

LGA This column list11 the pin numbers of the 386 SL CPU in a Land Grid Array. 

Signal Name This column lists the signal name associated with the package pins. 

Type Indicates whether the pin is an Input (I), an Output (0). or an Input-Output (10). 

Term Specifies the internal terminator on the pin. This could be an internal pull-up or pull-
down resistor value or a hold circuit. To find out whether a pull-up or a pull-down is 
provided, use the STPCK (Stop Clock) column. 

-" 
Drive Specifies the drive current loH (Current-Output Logic High) and loL (Current Output 

Logic Low) in milli-Amperes (mA) for output (0), and bi-directional (10), pins. 

Load This column lists the maximum specified capacitive load which the buffer can directly 
drive in pico-Farads (pF) for each signal. This is specified for output and input-output 
pins only. 

Susp. This column specifies the state of the pin during a suspend operation. Input signals 
have the representation Tri/x where x is either a logic 0 or logi~ 1. This· indiqates that 
the input is internally isolatedand that the internal termination on the pin is tri-stated 
or disabled. When in Suspend Mode an external logic value x is forced to the internal 
logic. The input can be driven to the same logic HIGH or LOW state by external logic 
with no current source or sink. The additional output buffer abbreviations are 
explained below. 

Tri -Tristated 
Actv -Active 
0 -held low 
1 -held high 
Hold - held at last state 

, Stpck. This column specifies the state of the pin when the clock signal CPUCLK is internally 
stopped in the 386 SL CPU. 

Pu -Pulled up 
Pd -Pulled down 
Orv - Driven high, low or at the last state 
Actv -.. Active (Signal is driven and continues to operate or change logic states) 

ONCE. This column specifies the state of the pin when the ONCE# (On Circuit Emulator) pin 
is asserted, allowing in-circuit testing while the device is still populated on the logic 
board. 

Tri -Floats 
Actv -Active 
0 -held low 
1 -held high 
Hold - held at last state 

Derating This column specifiei; which derating curve(1) is used for each output buffer 
Curve associated with the pin. 

NOTE: 
1. For more information on derating curves and how to use them, see Section 8 (Capacitive Derating Information). 

5-742 



intJ 386™ SL MICROPROCESSOR Superset 

A 

B 

c 
D 

E 

F 

G 

H 

J 

K 

L 

N 

p 

Q 

R 

s 
T 

u 

v 

w 
x 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

D 0 D D 0 0 D D D D 0 D D 0 0 D 0 0 0 0 D 
STPCll(f CA! CAIS CD14 CD15 CD3 CDS CD7 CAl CA7 CA1 CA9 MPXCLK NPXW/R# NPXRDYf CAIO CA.12 CA3 MA1 MA4 MA8 

D 0 0 D D D D 0 0 a a 0 0 D D a 0 a 0 a D 0 
REFREO Cl'URESET CD12 CDll COi CD10 C011 C013 CD& CA14 CAI CA.13 CWE# COE# NPXRESET NPXADSf PEREO Ell'ROR# MD& W010 MAS WA7 

D 0 D D a D D 0 D 0 D 0 D D D a 0 0 a 0 0 0 
HALT# CM CCSL# Vee CD1 coo CD2 V55 CD4 Vee Vss CAii Vee Vss F;F1 Voe Vss MC NC 11109 MD2 ... , 

D 0 0 
INTA.f CA5 Vee 

D D D 
SMlf "20GATC ROMll/8# 

D D D 
SWRAMCSf CCSHf MC 

0 0 D 
CWOX1.f ROt.ICSO# VSli 

D D D 
NMI OWMl/16# Vee 

D 0 D 
HRO INTR Vee 

D 0 0 
HI.DA Vee Vss 

386TM SL CPU D D D 
SAO ¥55 Vss 

D 0 0 TOP VIEW 

(LAND PATIERN FACE DOWN) 
SA! Yss Vss 

D D D 
SAS Yss Vee 

D D D 
SAi SA9 Yee 

D D D 
SA7 U.17 Vs:; 

D 0 D 
SAi PSTARTf Vee 

0 D D 
SA10 TURBO S8HE# 

D D D 
SA11 PW/Rf NC 

0 D D 
SA12 PCMOf WC 

D D 0 
Vee MD11 111014 

0 0 D 
MOO MQ.J 111015 

D 0 D 
MD1 WD4 MD7 

D 0 0 
MDU MD& M013 

D D D 
Vss t.105 CMUX13 

D 0 0 
Vss CMUX12 MAO 

D D 0 
Vee MA2 WA3 

D D 0 
Vee WHE# MAii 

0 D 0 
V55 Vee CMUX11 

0 D 0 
Vss CMUXll CMUX8 

0 D 0 
Vee CMUX.5 CMUX7 

D D D 
Vee SU5-STATf CMUXG 

0 D 0 
Vss CMUX5 CMUKIO 

D D D 
CWUK2 CIWK4 Wl.Lf 

D D D 
CMUKO CMUK1 MA10 

D D D 
NC s06 soe 

O D 0 D 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SM VGACSf PRDYf Vss L.A1B LA.20 Vee Vss Vee Vee Vss Vee Vss Vee VCJ; SD4 Vee PWROOOO Vss ONCE:f PERRI 502 

O 0 O 0 D 0 D 0 0 0 0 0 0 D D D 0 0 D 0 0 0 
SA3 SAU LA.23 L.A.22 U.19 LA21 SA17 SA18 Vss VCJ; Vss VCJ; Vss Vss SDO SD1 S03 506 SD7 SOii 5010 ISACLK2 

0 0 0 D 0 0 0 D 0 0 0 D 0 0 0 D 0 D 0 0 0 0 
S.U PU/IOI IOW# 10Rf SAU· SAIS SAii SAii ZEROWSf IOCHROY IOCS\6# MEMCS16f BALE SYSCLK $015 SD14 SD13 5012 5011 MDIRf MEMW# IU.STtllf 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

A 

B 

c 
D 

E 

F 

G 

H 

J 

K 

L 

N 

p 

Q 

R 

s 
T 

u 

v 

w 

x 

240814-4 

Figure 2-1. Pin Assignments of the 386™ SL CPU in the 227-Lead LGA Package 
(Top View-Land Pattern Facing Down, Component Marking Facing Up) 

5-743 



intef 386™ SL MICROPROCESSOR Superset 

""O 

82360SL 
(TOP VIEW COMPONENT 

MARKING FACE UP) 

Vss6 

COMAR XO 

Vccs 

240814-3 

Figure 2-2. Pin Assignments for the 82360SL in a 196-Lead Plastic Quad Fiat Package 

5-744 



intef 386™ SL MICROPROCESSOR Superset 

Table 2-2. 386™ SL CPU Pin Characteristics 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

A02 STPCLK# I 60K Tri/1 Pu Tri/1 

A03 CA8 0 Hold 4,2 45 Hold Drv Hold F 

A04 CA15 0 Hold 4,2 45 Hold Drv Hold F 

A05 CD14 10 Hold 4,2 50 Hold Drv Hold I 

A06 CD15 10 Hold 4,2 50 Hold Drv Hold I 

AO? CD3 10 Hold 4,2 50 Hold Drv Hold I 

A08 CD5 10 Hold 4,2 50 Hold Drv Hold I 

A09 CD? 10 Hold 4,2 50 Hold Drv Hold I 

A10 CA2 0 Hold 4,2 60 Hold Drv Hold F 

A11 CA7 0 Hold 4,2 45 Hold Drv Hold F 

A12 CA1 0 Hold 4,2 45 Hold Drv Hold F 

A13 CA9 0 Hold 4,2 45 Hold Drv Hold F 

Al4 NPXCLK 0 Hold 4,2 20 Hold Drv Hold F 

A15 NPXW/R# 0 Hold 4,2 30 Hold Drv Hold F 

A16 NPXRDY# I 60K Tri/1 Pu Tri/1 

A17 CA10 0 Hold 4,2 45 Hold Drv Hold F 

A18 CA12 0 Hold 4,2 45 Hold Drv Hold F 

A19 CA3 0 Hold 4,2 45 Hold Drv Hold F 

A20 MA1 0 Hold 4,2 300 Hold Drv Hold E 

A21 MA4 0 Hold 4,2 300 Hold Drv Hold E 

A22 MA8 0 Hold 4,2 300 Hold Drv Hold E 

801 REFREQ I Hold Actv Actv Tri/O 

802 CPU RESET I 20K Tri/O Pd Tri/O 

803 CD12 10 Hold 4,2 50 Hold Drv Hold I 

804 CDS 10 Hold 4,2 50 Hold Drv Hold I 

805 CD9 10 Hold 4,2 50 Hold Drv Hold I 

806 CD10 10 Hold 4,2 50 Hold Drv Hold I 

807 CD11 10 Hold 4,2 50 Hold Drv Hold I 

808 CD13 10 Hold 4,2 50 Hold Drv Hold I 

809 CD6 10 Hold 4,2 50 Hold Drv Hold I 

810 CA14 0 Hold 4,2 45 Hold Drv Hold F 

811 CA6 0 Hold 4,2 45 Hold Drv Hold F 

812 CA13 0 Hold 4,2 45 Hold Drv Hold F 

NOTES: 
1. Tri/1 indicates a tri-stateable output with pull-up. 
2. Tri/O indicates a tri-stateable output with pull-down. 
3. CMUX 8-11 (RASxx#) are ACTIVE when the 386™ SL CPU Memory Controller is programmed in the DRAM controller 
mode with Suspend Refresh enabled. Otherwise, these signals are HOLD. 

5-745 

El 



intef 386TM SL MICROPROCESSOR Superset 

Table 2·2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

813 CVVE# 0 Ho id 4,2 45 Hoid Drv Ho id i 

814 COE# 0 Hold 4,2 45 Hold Orv Hold F 

815 NPXRESET# 0 Hold 4,2 20 Hold Orv Hold F 

816 NPXAOS# 0 Hold 4,2 30 Hold Orv Hold F 

817 PEREQ I 20K Tri/O Pd Tri/O 

818 ERROR# I 60K Tri/1 Pu Tri/1 

819 M08 10 Hold 4,2 68 Hold Orv Hold H 

820 M010 10 Hold 4,2 68 Hold Orv Hold H 

821 MA5 0 Hold 4,2 300 Hold Orv Hold E 

822 MA? 0 Hold 4,2 300 Hold Orv Hold E 

C01 HALT# 0 Hold 4,2 65 Hold Orv Hold G 

C02 CA4 0 Hold 4,2 45 Hold Orv Hold F 

C03 CCSL# 0 Hold 4,2 35 Hold Orv Hold F 

C04 Vee 
C05 C01 10 Hold 4,2 50 Hold Orv Hold I 

C06 coo 10 Hold 4,2 50 Hold Orv Hold 

CO? C02 10 Hold 4,2 50 Hold Orv Hold I 

C08 Vss ' 

C09 C04 10 Hold 4,2 50 Hold Orv Hold I 

C10 Vee 
C11 Vss 
C12 CA11 0 Hold 4,2 45 Hold Orv Hold F 

C13 Vee 
C14 Vss 

' 
C15 EFI I 

C16 Vee 
C17 Vss 
C18 BUSY# I 60K Tri/1 Pu Tri/1 

C19 nc 

C20 M09 10 Hold 4,2 68 Hold Orv Hold H 

C21 M02 10 Hold 4,2 68 Hold Orv Hold H 

C22 MA6 0 Hold 4,2 300 Hold Orv Hold E 

001 INTA# 0 Hold 4,2 65 Hold Orv Hold G 

5-746 



intJ 386™ SL MICROPROCESSOR Superset 

Table 2·2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

002 CA5 0 Hold 4,2 45 Hold Orv Hold F 

003 Vee 
020 Vee 
021 M011 10 Hold 4,2 68 Hold Orv Hold H 

022 M014 10 Hold 4,2 68 Hold Orv Hold H 

E01 SMI# I 60K Tri/1 Pu Tri/1 

E02 A20GATE I 20K Tri/O Pd Tri/O 

E03 ROM16/8# I 60K Tri/1 Pu Tri/1 

E20 MOO 10 Hold 4,2 68 Hold Orv Hold H 

E21 M03 10 Hold 4;2 68 Hold Orv Hold H 

E22 M015 10 Hold 4,2 68 Hold Orv Hold H 

F01 SMRAMCS# 0 Hold 4,2 65 Orv Orv Hold G 

F02 CCSH# 0 Hold 4,2 35 Hold Orv Hold F 

F03 NC 

F20 M01 10 Hold 4,2 68 Hold Orv Hold H 

F21 M04 10 Hold 4,2 68 Hold Orv Hold H 

F22 M07 10 Hold 4,2 68 Hold Orv Hold H 

G01 CMUX14 0 Hold 4,2 65 Hold Orv Hold G 

G02 ROMCSO# 0 Hold 4,2 65 Hold Orv Hold G 

G03 Vss 
G20 M012 10 Hold 4,2 68 Hold Orv Hold H 

G21 M06 10 Hold 4,2 68 Hold Orv Hold H 

G22 M013 10 Hold 4,2 68 Hold Orv Hold H 

H01 NMI I 20K Tri/O Pd Tri/O 

H02 OMA8/16# I 60K Tri/1 Pu Tri/1 

H03 Vee 
H20 Vss 
H21 M05 10 Hold 4,2 68 Hold Orv Hold H 

H22 CMUX13 10 Hold 4,2 68 Hold Orv Hold H 

J01 HAQ I 20K Tri/O Pd Tri/O 

J02 INTR I 20K Tri/O Pd Tri/O 

J03 Vee 
J20 Vss 

5-747 



infef 386™ SL MICROPROCESSOR Superset 

Table 2-2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

j21 CMUX12 iO Hold 4,2 68 Hold Orv Hold H 

J22 MAO 0 Hold 4,2 300 Hold Orv Hold E 

K01 HLDA 0 Hold 4,2 65 Hold Orv Hold G 

K02 Vee 
K03 Vss 
K20 Vee 
K21 MA2 0 Hold 4,2 300 Hold Orv Hold E 

K22 MA3 0 Hold 4,2 300 Hold Orv Hold E 

L01 SAO 10 Hold 24,4 240 Hold Orv Hold c 
L02 Vss 
L03 Vss 
L20 Vee 
L21 WHE# 0 Hold 4,2 300 Tri/1 Orv Hold 0 

L22 MA9 0 Hold 4,2 300 Hold Orv Hold E 

M01 SA1 10 Hold 24,4 240 Hold Orv Hold c 
M02 Vss 
M03 Vss 
M20 Vss 
M21 Vee 
M22 CMUX11 0 Hold 4,2 144 Actv(3) Orv Hold A 

N01 SA5 10 Hold 24,4 240 Hold Orv Hold c 
N02 Vss 
N03 Vee 
N20 Vss 
N21 CMUX9 0 Hold 4,2 144 Actv(3) Orv Hold A 

N22 CMUX8 0 Hold 4,2 144 Actv(3) Orv Hold A 

P01 SA6 10 Hold 24,4 240 Hold Orv Hold c 
P02 SA9 10 Hold 24,4 240 Hold Orv Hold c 
P03 Vee 
P20 Vee 
P21 CMUX3 0 Hold 4,2 72 Tri/O Orv Hold H 

P22 CMUX7 0 Hold 4,2 72 Hold Orv Hold H 

001 SA? 10 Hold 24,4 240 Hold Orv Hold c 

5-748 



intJ 386™ SL MICROPROCESSOR Superset 

Table 2·2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

002 LA17 10 Hold 24,4 240 Hold Orv Hold c 
003 Vss 

020 Vee 

021 8U8_8TAT# I 60K Actv Actv Tri/1 

022 CMUX6 0 Hold 4,2 72 Tri/0 Orv Hold H 

R01 8A8 10 Hold 24,4 240 Hold Orv Hold c 
R02 P8TART# 0 Hold 4,2 65 Hold Orv Hold G 

R03 Vee 

R20 Vss 

R21 CMUX5 0 Hold 4,2 72 Tri/1 Orv Hold H 

R22 CMUX10 0 Hold 4,2 144 Actv(3) Orv Hold A 

801 8A10 10 Hold 24,4 240 Hold Orv Hold c 
802 TURBO I 60K Tri/1 Pu Tri/1 

803 8BHE# 10 Hold 24,4 240 Hold Orv Hold c 
820 CMUX2 0 Hold 4,2 72 Tri/0 Orv Hold H 

821 CMUX4 0 Hold 4,2 72 Tri/O Orv Hold H 

822 WLE# 0 Hold 4,2 300 Tri/1 Orv Hold 0 

T01 8A11 10 Hold 24,4 240 Hold Orv Hold c 
T02 PW/R# 0 Hold 4,2 65 Hold Orv Hold G 

T03 NC I 
T20 CMUXO 0 Hold 4,2 72 Tri/0 Orv Hold H 

T21 CMUX1 0 Hold 4,2 72 Tri/O Orv Hold H 

T22 MA10 0 Hold 4,2 300 Hold Orv Hold E 

U01 8A12 10 Hold 24,4 240 Hold Orv Hold c 
U02 PCMO# 0 Hold 4,2 65 Hold Orv Hold G 

U03 NC 

U20 NC 

U21 805 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

U22 808 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

V01 8A4 10 Hold 24,4 240 Hold Orv Hold c 
V02 VGAC8# 0 Hold 4,2 65 Hold Orv Hold G 

V03 PROV# I 60K Tri/1 Pu Tri/1 

5-749 



intef 386™ SL MICROPROCESSOR Superset 

Table 2-2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPin# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

V04 Vss 

V05 LA1e 10 Hold 24,4 240 Hold Orv Hold c 
V06 LA20 10 Hold 24,4 240 Hold Orv Hold c 
VO? Vee 

voe Vss 

V09 Vee 

V10 Vee 

V11 Vss 

V12 Vee 

V13 Vss 

V14 Vee 

V15 Vee 

V16 504 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

V17 Vee 

V1e PWRGOOO I Actv Actv Tri/O 

V19 Vss 

V20 ONCE# I 60K Tri/1 Pu Actv 

V21 PERR# 0 Hold 4,2 se Hold Orv Hold H 

V22 502 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W01 SA3 10 Hold 24,4 240 Hold Orv Hold c 
W02 SA13 10 Hold 24,4 240 Hold Orv Hold c 
W03 LA23 10 Hold 24,4 240 Hold Orv Hold c 
W04 LA22 10 Hold 24,4 240 Hold Orv Hold c 
W05 LA19 10 Hold 24,4 240 Hold Orv Hold c 
W06 LA21 10 Hold 24,4 240 Hold Orv Hold c 
WO? SA17 0 Hold 24,4 240 Hold Orv Hold c 
woe SA1e 0 Hold 24,4 240 Hold Orv Hold c 
W09 Vss 

W10 Vee 

W11 Vss 

W12 Vee 

W13 Vss 

W14 Vss 

5-750 



intJ 386™ SL MICROPROCESSOR Superset 

Table 2-2. 386™ SL CPU Pin Characteristics (Continued) 

LGAPln# Signal Name Type Term Drive Load Susp Stpck ONCE Derating Curve 

W15 500 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W16 501 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W17 503 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W18 506 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W19 507 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W20 509 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W21 5010 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

W22 ISACLK2 I 

X01 SA2 10 Hold 24,4 240 Hold Orv Hold c 
X02 PM/IQ# 0 Hold 4,2 65 Hold Orv Hold G 

X03 IOW# 10 60K 24,4 240 Tri/1 Pu Tri/1 8 

X04 IOR# 10 60K 24,4 240 Tri/1 Pu Tri/1 8 

X05 SA14 10 Hold 24,4 240 Hold Orv Hold c 
X06 SA15 10 Hold 24,4 240 Hold Orv Hold c 
XO? 5A16 10 Hold 24,4 240 Hold Orv Hold c 
xoa 5A19 0 Hold 24,4 240 Hold Orv Hold c 
X09 ZEROWS# I 300 Tri/1 Pu Tri/1 

X10 IOCHROY 10 300 24,4 240 Tri/1 Pu Tri/1 0 

X11 IOC516# 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X12 MEMCS16# 10 60K 24,4 240 Tri/1 Pu Tri/1 0 I 
X13 BALE 0 Hold 24,4 240 Hold Orv Hold 0 

X14 5Y5CLK 0 Hold 4,2 120 Hold Orv Hold G 

X15 5015 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X16 5014 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X17 5013 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X18 5012 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X19 5011 10 60K 24,4 240 Tri/1 Pu Tri/1 0 

X20 MEMR# 10 60K 24,4 240 Tri/1 Pu Tri/1 8 

X21 MEMW# 10 60K 24,4 240 Tri/1 Pu Tri/1 8 

X22 MASTER# I 60K Tri/1 Pu Tri/1 

5-751 



intJ 386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics 

PQFPPin# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

81 Vee 
82 TESTO# I 60K Tri Pu 

83 XDEN# 0 12 50 Tri Tri M 

84 XDIR 0 12 50 Tri Tri M 

85 XD7 10 60K 24 100 Tri Tri/1 J 

86 SD? 10 24 240 Tri Tri J 

87 SD6 10 24 240 Tri Tri J 

88 SD5 10 24 240 Tri Tri J 

89 SD4 10 24 240 Tri Tri J 

810 SD3 10 24 240 Tri Tri J 

811 SD2 10 24 240 Tri Tri J 

812 SD1 10 24 240 Tri Tri J 

813 SDO 10 24 240 Tri Tri J 

814 SA16 10 24 240 Tri Tri J 

815 SA15 10 24 240 Tri Tri J 

816 Vss 
817 SA14 10 24 240 Tri Tri J 

818 Vee 
819 SA13 10 24 240 Tri Tri J 

820 SA12 10 24 240 Tri Tri J 

821 SA11 10 24 240 Tri Tri J 

822 SA10 10 24 240 Tri Tri J 

823 SA9 10 24 240 Tri Tri J 

824 SAS 10 24 240 Tri Tri J 

825 SA? 10 24 240 Tri Tri J 

826 SA6 10 24 240 Tri Tri J 

827 SA5 10 24 240 Tri Tri J 

828 SA4 10 24 240 Tri Tri J 

829 SA3 10 24 240 Tri Tri J 

830 SA2 10 24 240 Tri Tri J 

831 SA1 10 24 240 Tri Tri J 

832 Vss 

5-752 



386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics (Continued) 

PQFPPln# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

833 SAO 10 24 240 Tri Tri J 

834 Vee 
835 ZEROWS# OD 24 240 Tri Tri K 

836 IOCHRDY OD 24 240 Tri Tri K 

837 AEN 0 24 240 Tri Tri K 

838 SMEMW# 0 60K 24 240 Tri Tri K 

839 SMEMR# 0 60K 24 240 Tri Tri K 

840 IOW# 10 24 240 Tri Tri K 

841 IOR# 10 24 240 Tri Tri K 

842 DACK3# 0 12 50 Tri Tri M 

843 DRQ3 I 20K Pd Pd 
844 DACK1# 0 12 50 Tri Tri M 

845 DRQ1 I 20K Pd Pd 
846 REFRESH# OD 300 16 240 Tri Pu K 

847 SYSCLK I 100K Pd Pd 
848 IRQ7 I 10K Tri Pu 
849 Vss 
850 Vee 
851 IRQ6 I 10K Tri Pu 
852 IRQ5 I 10K Tri Pu I 
853 IRQ4 I 10K Tri Pu 
854 IRQ3 I 10K Tri Pu 
855 K8DCLK 0 12 50 Tri Tri M 

856 K8DA20 I 20K Pd Pd 
857 C8042CS# 0 12 50 Tri Tri M 

858 RC# I 60K Tri Pu 
859 DACK2# 0 12 50 Tri Tri M 

860 TC 0 24 240 Tri Tri K 

861 IRQ1 I 10K Tri Pu 
862 S8HE# 0 24 240 Tri Tri K 

863 LA23 10 24 240 Tri Tri J 

864 LA22 10 24 240 Tri Tri J 

865 Vss 

5-753 



intef 386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics (Continued) 

PQFPPin# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

866 CXi i Actv 

867 Vee 
868 CX2 0 Actv 

869 LA21 10 24 240 Tri Tri J 

870 LA20 10 24 240 Tri Tri J 

871 LA19 10 24 240 Tri Tri J 

872 LA18 10 24 240 Tri Tri J 

873 LA17 10 24 240 Tri Tri J 

874 IRQ10 I 10K Tri Pu 

875 IRQ11 I 10K Tri Pu 

876 IRQ12 I 10K Tri Pu 

877 IRQ15 I 10K Tri Pu 

878 IRQ14 I 10K Tri Pu 

879 DACKO# 0 12 50 Tri Tri M 

880 MEMR# 10 24 240 Tri Tri K 

881 Vss 
882 COMX1 I Actv 

883 Vee 
884 COMX2 0 Actv 

885 DRQO I 20K Pd Pd 

886 MEMW# 10 24 240 Tri Tri K 

887 DACK5# 0 12 50 Tri Tri M 

888 DRQ5 I 20K Pd Pd 

889 DACK6# 0 12 50 Tri Tri M 

890 DRQ6 I 20K Pd Pd 

891 DACK?# 0 12 50 Tri Tri M 

892 DRQ7 I 20K Pd Pd 

893 SMOUTO 0 12 50 Tri Tri M 

894 SMOUT1 0 12 50 Tri Tri M 

895 MASTER# I Tri Tri 

896 FLPCS# 0 12 50 Tri Tri M 

897 BALE I 100K Pd Pd 

898 Vss 
899 Vee 
8100 IRQ9 I 10K Tri Pu 

5-754 



intef 386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics (Continued) 

PQFPPin# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

8101 HD7 10 60K 24 100 Tri Tri/1 J 

8102 HDCS1# 0 12 50 Tri Tri M 

8103 HDCSO# 0 12 50 Tri Tri M 

8104 SMOUT2 0 12 50 Tri Tri M 

8105 SMOUT3 0 12 50 Tri Tri M 

8106 SMOUT4 0 12 50 Tri Tri M 

8107 RESETDRV 0 24 240 Tri Tri K 

8108 SMOUT5 0 12 50 Tri Tri M 

8109 COMADCD# I 60K Tri Pu 

8110 COMADSR# I 60K Tri Pu 

8111 COMATXD 0 12 50 Tri Tri M 

8112 COMARTS# 0 12 50 Tri Tri M 

8113 COMARXD I 20K Pd Pd 

8114 Vss 

8115 osc 0 24 240 Tri Tri K 

8116 Vee 

8117 COMACTS# I 60K Tri Pu 

8118 COMARI# I 60K Actv Pu 

8119 COMADTR# 0 12 50 Tri Tri M 

8120 COMBDCD# I 60K Tri Pu I 
8121 COMBDSR# I 60K Tri Pu 

8122 COMBTXD 0 12 50 Tri Tri M 

8123 COMBATS# 0 12 50 Tri Tri M 

8124 COMBRXD I 20K Pd Pd 

8125 COMBCTS# I 60K Tri Pu 

8126 COM8RI# I 60K Actv Pu 

8127 COMBDTR# 0 12 50 Tri Tri M 

8128 RE FREQ 0 12 50 Actv(1) Actv M 

8129 SMI# 0 12 50 Tri Tri M 

8130 Vss 

8131 STPCLK# 0 12 50 Tri Tri M 

8132 Vee 

NOTE: 
1. Programmable, active only when suspend refresh is enabled. 

5-755 



inter 386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics (Continued) 

PQFPPin# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

8133 HALT# I 60K Tri Pu 

8134 INTA# I 60K Tri Pu 

8135 A20GATE 0 12 50 Tri Tri M 

8136 DMA8/16# 0 12 50 Tri Tri M 

8137 HLDA I 20K Pd Pd 

8138 HRQ 0 12 50 Tri Tri M 

8139 INTR 0 12 50 Tri Tri M 

8140 NMI 0 12 50 Tri Tri M 

8141 CPU RESET 0 12 50 Tri Tri M 

8142 PERR# I 60K Tri Pu 

8143 LPTSTR08E# OD 4K7 12 100 Tri Tri L 

8144 LPTAFD# OD 4K7 12 100 Tri Tri L 

8145 LPTDO 10 20K 8 100 Pd Tri/O L 

8146 LPTERROR# I 60K Tri Pu 

8147 Vss 
8148 Vee 
8149 ERROR# I 60K Tri Pu 

8150 LPTACK# I 60K Tri Pu 

8151 LPT8USY I 20K Pd Pd 

8152 LPTPE I 20K Pd Pd 

8153 LPTSLCT I 20K Pd Pd 

8154 LPTD1 10 20K 8 100 Pd Tri/O L 

8155 LPTINIT# OD 4K7 12 100 Tri Tri L 

8156 LPTD2 10 20K 8 100 Pd Tri/O L 

8157 LPTSLCTIN# OD 4K7 12 100 Tri Tri L 

8158 LPTD3 10 20K 8 100 Pd Tri/0 L 

8159 LPTD4 10 20K 8 100 Pd Tri/0 L 

8160 LPTD5 10 20K 8 100 Pd Tri/O L 

8161 LPTD6 10 20K 8 100 Pd Tri/O L 

8162 LPTD7 10 20K 8 100 Pd Tri/O L 

8163 Vss 
8164 LPTDIR OD 4K7 12 100 Tri Tri L 

5-756 



386™ SL MICROPROCESSOR Superset 

Table 2-3. 82360SL Pin Characteristics (Continued) 

PQFP Pin# Signal Name Type Term Drive Load Susp ONCE Derating Curve 

8165 Vee 
8166 EXTRTCRW# 0 60K 12 50 Pu Tri/1 M 

8167 EXTRTCDS 0 60K 12 50 Pu Tri/1 M 

8168 EXTRTCAS 0 60K 12 50 Pu Tri/1 M 

8169 RTCRESET# I 60K Pu Pu 

8170 IRQ8 I 60K Pu Pu 

8171 IMUXO I 20K Pd Pd 

8172 TIM2CLK2 I 20K Pd Pd 

8173 Reserved 

8174 TIM20UT2 0 12 50 Tri Tri M 

8175 RTCEN# I 60K Pu Pu 

8176 RTCX2 0 Actv 

8177 RT CV CC 

8178 RTCX1 I Actv 

8179 Vss 
8180 SMRAMCS# I 60K Tri Pu 

8181 Vee 
8182 SPKR 0 12 50 Tri Tri M 

8183 HDENH# 0 12 50 Tri Tri M 

81.84 HDENL# 0 12 50 Tri Tri M El 
8185 SUS_STAT# 0 12 50 Orv Actv M 

8186 EXTSMI# I 60K Tri Pu 

8187 8ATTLOW# I 60K Pu Pu 

8188 8ATTDEAO# I 60K Pu Pu 

8189 8ATTWARN# I 60K Tri Pu 

8190 SR8TN# I 60K Pu Pu 

8191 PWRGOOD I 60K Pu Pu 

8192 IOCS16# I 

8193 IOCHCK# I 

8194 DRQ2 I 20K Pd Pd 

8195 ONCE# I 60K Tri Pu 

8196 Vss 

5-757 



intJ 386™ SL MICROPROCESSOR Superset 

3.0 SIGNAL DESCRIPTIONS 

386TM SL Microprocessor 
The following table provides a brief description of the signals of the 386 SL CPU. Signal names which end with 
the character"#" indicate that the corresponding signal is low when active. 

Symbol Name and Function 

A20GATE A20 Gate: This active HIGH input signal controls the 386 SL CPU A20 address line. When 
HIGH this signal forces the 386 SL CPU to mask off (force LOW) the internal physical address 
signal A20. When this signal is LOW, the internal physical address signal A20 is available on 
the System Address (SA) bus. When A20 gate is inactive this allows emulation of the 8086 
1 Mbyte address "wrap-around". 

BALE Bus Address Latch Enable (ISA bus signal): This active HIGH output signal is used for two 
purposes. BALE is used to latch the address lines on the LA bus (LA 17-LA23) on the falling 
edge of BALE. BALE is also used to qualify ISA bus cycles for signals on the Peripherial 
Interface (Pl) bus (PM/10# and PW/R#). On the falling edge of BALE, PM/10# and PW/R# 
can be sampled to determine the type of ISA bus cycle that is going to occur. BALE may be 
used to qualify and generate buffered control and status signals to the ISA expansion bus. The 
Pl bus signal decoding is as follows: 

Type of Bus Cycle PM/10# PW/R# 

Memory Read 1 0 
Memory Write 1 1 
1/0 Read 0 0 
1/0 Write 0 1 
Interrupt Acknowledge 0 1 
HALT (address = 2)* 1 1 
Shutdown (address = O)* 1 1 

*Note that BALE is not generated for these cycles, however the PM/10# and PW/R# will 
reflect these states during HALT and Shutdown bus cycles where BALE is driven in typical ISA 
bus systems. Memory read/write, 10 read/write and interrupt/interrupt acknowledge cycles 
correspond to the standard ISA bus cycle. 

BUSY# BUSY: This active LOW input signal indicates a busy condition from a math co-processor 
(MCP). 

CA[15:1) Cache Address Bus: This is the address bus output used to select the memory cell in the 
cache memory. The CA2 signal is also connected to the CMDO# input of the MCP indicating 
Opcode (when high) or Data (when low) during a write cycle and control/status register (high) 
or data register (low) during a read. CA2 is used to address the upper or lower DWORD port of 
the MCP. 

CCSH# Cache Chip Select High Byte: This active LOW output is used to enable the upper byte of the 
cache SRAMs. This signal should be connected to the upper byte cache SAAM chip-select 
input. 

CCSL# Cache Chip Select Low Byte: This active LOW output is used to enable the lower byte of the 
cache SRAMs. This signal should be connected to the lower byte cache SAAM chip-select 
input. 

CD[15:0) Cache Data Bus: This is the bi-directional data bus used to transfer data between the cache 
SRAMs and the 386 SL CPU. The Cache Data bus is also used to transfer data between the 
MCP and the 386 SL CPU. 

5-758 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

Symbol Name and Function 

CMUXO CPU Multiplexed Pin Zero: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller then this pin becomes 
"CASL3#" and should be connected to the lower byte of DRAM bank 3 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as an SAAM controller this 
signal becomes the direction control (DIR) and should be connected to the direction 
control input of the SAAM data transceiver. 

CMUX1 CPU Multiplexed Pin One: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller then this pin becomes 
"CASH3#" and should be connected to the upper byte of DRAM l:lank 3 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
signal becomes "LE" and should be connected to the latch enable input of the SAAM 
address latch. This pin is disabled when SUS_ST AT# is active (LOW) and the system is 
not performing a suspend refresh operation. When the pin is disabled the output is 
sustained at the previous state by internal "keepers". 

CMUX2 CPU Multiplexed Pin Two: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "CASL2 #" 
and should be connected to the lower byte of DRAM bank 2 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "DEN3#" and should be connected to the data transceiver enable input for 
bank 3 of the SAAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX3 CPU Multiplexed Pin Three: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "CASH2 #" 
and should be connected to the upper byte of DRAM bank 2 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "DEN2 #" and should be connected to the data transceiver enable input for 
bank 2 of the SAAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX4 CPU Multiplexed Pin Four: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "CASL 1 #" 
and should be connected to the lower byte of DRAM bank 1 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "DEN 1 #" and should be connected to the data transceiver enable input for 
bank 1 of the SAAM memory subsystem. 
This pin is disabled when SUS_ST AT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX5 CPU Multiplexed Pin Five: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "CASH 1 #" 
and should be connected to the upper byte of DRAM bank 1 GAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "DEN1 #"and should be connected to the data transceiver enable input for 
bank 1 of the SAAM memory subsystem. 
This pin is disabled when SUS_ST AT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

5-759 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

I Symbol I Name and Function 

CMUX6 CPU Multiplexed Pin Six: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "CASLO #" 
and should be connected to the lower byte of DRAM bank O CAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SRAM controller this 
pin becomes "DENO#" and should be connected to the data transceiver enable input for 
bank O of the SRAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX7 CPU Multiplexed Pin Seven: This output signal has two functions. When the 386 SL 
CPU Memory Controller Unit is configured as a DRAM controller this pin becomes 
"CASHO#" and should be connected to the upper byte of DRAM bank O CAS# input. 
When the 386 SL CPU Memory Controller Unit is configured as a SRAM controller this 
pin becomes "DENO#" and should be connected to the data transceiver enable input for 
bank O of the SRAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX8 CPU Multiplexed Pin Eight: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "RAS3 #" 
and should be connected to the upper and lower byte of DRAM bank 3 RAS# inputs. 
When the 386 SL CPU Memory Controller Unit is configured as a SRAM controller then 
this pin becomes "CE3 #" and should be connected to the upper and lower byte of the 
SRAM chip-select, or to the chip-select decode logic for bank 3 of the SRAM memory 
subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". ' 

CMUX9 CPU Multiplexed Pin Nine: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "RAS2 #" 
and should be connected to the upper and lower byte of DRAM bank 2 RAS# inputs. 
When the 386 SL CPU Memory Controller Unit is configured as a SRAM controller this 
pin becomes "CE2 #" and should be connected to the upper and lower byte of the 
SRAM chip-select, or to the chip-select decode logic for bank 2 of the SRAM memory 
subsystem. 
This pin is disabled when SUS_ST AT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX10 CPU Multiplexed Pin Ten: This output signal has two functions. When the 386 SL CPU 
Memory Controller Unit is configured as a DRAM controller this pin becomes "RAS1 #" 
and should be connected to the upper and lower byte of DRAM bank 1 RAS# inputs. 
When the 386 SL CPU Memory Controller Unit is configured as a SRAM controller this 
pin becomes "CE 1 #" and should be connected to the upper and lower byte of the 
SRAM chip-select, or to the chip-select decode logic for bank 1 of the SRAM memory 
subsystem. 
This pin is disabled when SUS_STAT # is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

5-760 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

Symbol Name and Function 

CMUX11 CPU Multiplexed Pin Eleven: This output signal has two functions. When the 386 SL 
CPU Memory Controller Unit is configured as a DRAM controller this pin becomes 
"RASO#" and should be connected to the upper and lower byte of DRAM bank ORAS# 
inputs. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "CEO#" and should be connected to the upper and lower byte of the 
SAAM chip-select, or to the chip-select decode logic for bank O of the SAAM memory 
subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX12 CPU Multiplexed Pin Twelve: This output signal has two functions. When the 386 SL 
CPU Memory Controller Unit is configured as a DRAM controller this pin becomes 
"PARL" and should be connected to the lower byte of DRAM bank 0 data parity bit. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "OLE#" and should be connected to the lower byte of the SAAM output 
enable input of the SAAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". 

CMUX13 CPU Multiplexed Pin Thirteen: This output signal has two functions. When the 386 SL 
CPU Memory Controller Unit is configured as a DRAM controller this pin becomes 
"PARH" and should be connected to the upper byte of DRAM bank O data parity bit. 
When the 386 SL CPU Memory Controller Unit is configured as a SAAM controller this 
pin becomes "OHE#" and should be connected to the upper byte of the SAAM output 
enable input of the SAAM memory subsystem. 
This pin is disabled when SUS_STAT# is active (LOW) and the system is not 
performing a suspend refresh operation. When the pin is disabled the output is sustained 
at the previous state by internal "keepers". II 

CMUX14 CPU Multiplexed Pin 14: This output signal has two functions. The 386 SL CPU can be 
configured to use this pin as either a BIOS ROM chip-select (ROMCS1 #),or a FLASH 
disk chip-select signal {FLSHDCS # ). In either case, the signal is driven LOW when an 
access to the selected interface occurs. 

COE# Cache Output Enable: This active LOW output signal is used to indicate a read access 
to the CACHE SRAMs, and is used to enable the cache SRAMs' output buffers. This 
signal should be connected to the output enable signals of the upper and lower byte 
cache SRAMs. 

CPU RESET CPU Reset: This active HIGH input forces the 386 SL CPU to execute a reset to the 
internal CPU core and state machines. The configuration registers are not reset. 

CWE# Cache Write Enable: This active LOW output is used to indicate a read (HIGH) or write 
(LOW) access to the cache SRAMs. This signal should be connected to the write enable 
signal of the upper and lower cache SRAMs. 

DMA8/16# OMA 8-bit or 16-bit Cycle: This input, in conjunction with HRQ, indicates to 386 SL CPU 
if an 8-bit or 16-bit OMA access is occurring. If an 8-bit OMA access is occurring, the 
386 SL CPU will swap the upper byte of data to the lower data byte for upper byte 
accesses. 

EFI External Frequency Input. This is an oscillator input. This clock controls all CPU core 
and memory controller timings and is equal to twice the desired processor frequency 
(CLK2 vs CPUCLK). 

5-761 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

I Symbol I Name and Function 

ERROR# Numerics ERROR: This active LOW input to the 386 SL CPU is generated from a math 
co-processor (MCP). It also indicates to the 82360SL that an unmasked exception has 
occurred in the MCP. ERROR# is provided to allow numerics error handling compatible 
with the ISA bus compatible Personal Computer. 

HALT# HALT: This active LOW output indicates to external devices that the 386 SL CPU has 
executed a HALT instruction (address = 2) or a shutdown condition (address = 0). This 
can be used as an indicator for devices to assert the STPCLK # signal. 

HLDA HoLD Acknowledge: This active HIGH output indicates to external devices that the 
386 SL CPU has relinquished control of the ISA bus. At this time the 386 SL CPU has 
floated the address and control signals of the ISA bus. 

HRQ Hold ReQuest: This active HIGH input indicates to the 386 SL CPU that an external 
device wishes to take control of the ISA bus. 

INTA# INTerrupt Acknowledge: This active LOW output indicates that the 386 SL CPU is 
executing an interrupt acknowledge bus cycle. During this process an external interrupt 
device will pass an interrupt vector to the 386 SL CPU. 

INTR Interrupt Request: This active HIGH input indicates to the 386 SL CPU that an external 
device is requesting the execution of an interrupt service routine. 

IOCHRDY 1/0 CHannel ReaDY: This active HIGH input indicates that the 1/0 Channel, (ISA 
expansion bus), is ready to terminate the bus cycle. The ISA expansion bus is a normally 
ready bus and IOCHRDY is active HIGH. When an ISA bus peripheral needs to extend 
the standard 3 SYSCLK, 16-bit ISA bus cycle the peripheral device asserts IOCHRDY 
LOW. 

IOCS16# 1/0 Chip Select 16: This active LOW input indicates that an ISA bus peripheral wishes to 
execute a 16-bit 1/0 cycle. This signal has an active pull-up, when not driven the default 
1/0 bus cycle is 8 bits. 

IOR# 1/0 Read: This active LOW signal indicates that the ISA bus is executing an 1/0 read 
cycle. 

IOW# 1/0 Write: This active LOW signal indicates that the ISA bus is executing an 1/0 write 
cycle. 

ISACLK2 ISA Clock Two: This is an oscillator input. This clock controls all of the ISA bus timings 
and is equal to twice the SYSCLK frequency. Normally the ISA bus SYSCLK is 8 MHz, 
and the ISACLK2 oscillator is 16 MHz. 

LA[23:17] Latchable local Address bus: This is the unlatched local address of the ISAbus for 
access to memory above 1 megabyte. The LA bus is also used by the Peripherial 
Interface (Pl) Bus. 

MA[10:0] Memory controller Multiplexed Address bus: This is the address bus output for the 
Memory Controller Unit. The 22-bit address is output in a row/column fashion for both 
DRAM and SRAM memory subsystems. The Memory Controller Unit places the ROW 
address out first and qualifies it by the RASx # signal going active in DRAM mode or the 
LE signal going active in the SRAM mode. The column address is then placed on the 
Memory Address bus and is qualified by the CASXx# signals going active for the DRAM 
mode. 
This pin is disabled when SUS_STAT# is active (LOW). When the pin is disabled the 
output is sustained at the previous state by internal "keepers". 

5-762 



int:J 386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

Symbol Name and Function 

MASTER# Master: This active LOW input indicates that an ISA bus peripheral is controlling the bus. 
The peripheral device asserts this signal in conjunction with a DMA request (DAO) line or 
the HAQ (hold request) to gain control of the bus. When the MASTER# signal is 
asserted LOW along with HAQ being asserted HIGH or a DAO line being asserted HIGH, 
the 386 SL CPU will float all address, data and control signals on the ISA bus. 

MD[15:0] Memory controller local Memory Data bus: This is the bi-directional data bus of the 
Memory Controller Unit. All accesses by the Memory Controller Unit that transfer data 
between the 386 SL CPU and SAAM or DRAM use the Memory Data Bus. 
This pin is disabled when SUS_ST AT# is active (low) and the system is not performing 
a suspend refresh operation. When the pin is disabled the output is sustained at the 
previous state by internal "keepers". 

MEMCS16# MEMory Chip Select 16: This active LOW input indicates that an ISA bus peripheral 
wishes to execute a 16-bit memory cycle. This signal has an active pull-up, when not 
driven the default memory bus cycle is 8 bits. 

MEMR# MEMory Read: This bi-directional active LOW signal indicates when a memory read 
access is taking place on the ISA bus. When the 386 SL CPU is performing a memory 
read to the ISA bus it is an output, when the DMA or Bus Master is accessing memory on 
the ISA bus, the DMA device or Master drives MEMR #. 

MEMW# MEMory Write: This bi-directional active LOW signal indicates when a memory write 
access is taking place on the ISA bus. When the 386 SL CPU is performing a memory 
write to the ISA bus it is an output, when the DMA or Bus Master is accessing memory on 
the ISA bus, the DMA controller or Bus Master drives MEMW #. 

N/C No connection: These pins must not be connected to any voltage, but must be left 
floating in order to guarantee proper operation of the 386 SL CPU and to maintain 
compatibility with future Intel Processors. 

NMI Non-Maskable Interrupt: This rising edge sensitive input will latch a request to the 
386 SL CPU for a non-maskable interrupt on a LOW-to-HIGH transition. 

NPXADS# Numerics ADdress Strobe: This active LOW output signal indicates the start of a math 
co-process (MCP or NPX, numerics processor extension) data transfer cycle. 

NPXCLK Numerics Clock: This output signal is used to drive the MCP clock input. 

NPXRDY# Numerics Ready: This active LOW input is used to terminate a MCP (or NPX, numerics 
processor extension) bus cycle. This signal is low for 1/0 and data operand MCP cycles. 

NPXRESET Numerics Reset: This active HIGH output signal is used to reset the MCP. 

NPXW/R# Numerics Write or Read: This output signal indicates the type of data transfer that is 
being performed between the 386 SL CPU and the MCP. When high this signal indicates 
a MCP write, when low this signal indicates a MCP read. 

ONCE# ON-board Circuit Emulation: This active LOW input signal floats the neccessary 
outputs from the 386 SL CPU allowing an in-circuit emulation (ICE™-386™ SL) module 
to drive the 386 SL CPU signals. This allows an emulator to be used for system testing 
and developement while the 386 SL CPU and the 82360SL are still physically populated 
on the system motherboard. The state of all 386 SL CPU and 82360SL signals when 
ONCE# is asserted low is summarized in section 2, (386 SL CPU and 82360SL signal 
characteristics). 

5-763 



intef 386™ SL MICROPROCESSOR SuperSet 

386™ SL Microprocessor Signal Descriptions (Continued) 

I Symbol I Name and Function 

PCMD# Pl-BUS Command; This active LOW output indicates that vaiid write data is on the 
System data bus (SD[ 15:0]) signals, or that the 386 SL CPU is ready to sample valid read 
data from the Pl bus for Peripherial Interface bus cycles. 

PEREQ Processor Extension Request: This active HIGH output signal indicates that the 386 SL 
CPU has data to transfer to or from the MCP data FIFO. 

PERR# Parity ERRor: This active LOW output indicates to an external device that the 386 SL 
CPU Memory Controller Unit has detected a memory parity error. The PERROR # signal 
is used by the 82360SL to generate NMI back to the 386 SL CPU. 

PM/IQ# Pl-BUS Memory or 1/0: This output indicates the type of bus cycle the 386 SL CPU is 
executing on the Peripherial Interface Bus (Pl-bus): Either a Memory (HIGH) or 1/0 
(LOW) cycle. 

PROV# Pl-BUS Ready: This active LOW input is used to terminate Peripherial Interface bus 
cycles. The Peripheral Interface Bus is a normally not-ready bus, and will continue the 
bus cycle until the PRDY # is activated or a Peripherial Interface Time-out occurs. 

PST ART# Pl-BUS START: This active LOW output indicates that the address (SA[ 19:0], LA [23: 17] 
and SBHE#), command signals (PM/10# and PW/A#) and chip-selects (VGACS# or 
FLSHDCS#) are valid for a Peripheral Interface Bus cycle. 

PW/A# Pl-BUS Write or Read: This output indicates the type of bus cycle the 386 SL CPU is 
executing on the Peripheral Interface Bus: Either a Write (HIGH) or Read (LOW) cycle. 

PWRGOOD Power Good: This active HIGH input indicates that power to the system is good. This 
signal is generated by the power supply circuitry, and a LOW level on this signal causes 
the 386 SL to totally reset: The CPU core is reset, internal state machines are reset, all 
configuration registers are reset. 
Power Good should be low for a specified minimum number of CPU clocks for valid 
recognition in order to perform a global 386 SL CPU reset. 

REFREQ REFresh REQuest: This active HIGH input indicates that the 386 SL CPU should 
execute an internal DRAM refresh cycle to the on-board local memory. 

ROM16/8# ROM 16-bits or 8-bits: This input configuration signal pin selects if the BIOSJnterface is 
a 16-bit (when high) or 8-bit interface (when low). This pin has an internal pull-up resistor 
defaulting to a 16-bit wide BIOS EPROM. 

ROMCSO# ROM Chip Select O: This LOW true output provides the chip select for the System BIOS 
EPROM. 

SA[19:0] System Address Bus: This is the bi-directional system address of the ISA bus, as well 
as the Peripheral Interface Bus. SA[16:0] are inputs during OMA and Master operation. 
SA[19:17] are outputs only since a 8237 compatible OMA controller accesses up to 
64 kBytes at a time. The 7 4LS612 module in the 82360SL is used to furnish the OMA 
upper addresses for OMA access to 16 Megabyte. 

SBHE# System Byte High Enable: When this output signal is LOW, it indicates that data is being 
transferred on the upper byte of the 16-bit data bus (SD[15:8]). 

SD[15:0] System Data Bus: This 16-bit bi-directional data bus is used to transfer dat_a between the 
386 SL CPU and the ISA bus. The system data bus is also used to transfer data between 
the 386 SL CPU and the Peripherial Interface (Pl-BUS). 

SMI# System power Management Interrupt: This falling edge sensitive input latches a Power 
Management interrupt request with a High-to-Low edge. The SMI # is the highest priority 
interrupt in the 386 SL processor. 

5-764 



386™ SL MICROPROCESSOR Superset 

386™ SL Microprocessor Signal Descriptions (Continued) 

Symbol Name and Function 

SMRAMCS# System power Management RAM Chip Select: This active LOW output is used to 
select an external system power management SM-RAM, and to indicate to the 82360SL 
device when accesses to the system power management SM-RAM are occurring. 

STPCLK# Stop Clock: This active LOW input stops the clock to the internal 386 CPU core. (This 
signal is functionally tested by the execution of HALT or 1/0 read instructions.) 

SYSCLK System Clock: This is a clock output equal to one half of the ISACLK2 input frequency. 

SUS_STAT# SUSpend STATus: This active LOW input indicates to the 386 SL CPU that system 
power is being turned off. The 386 SL CPU will respond by electrically isolating selected 
pins as indicated in Section 2, (386 SL CPU signal characteristics). 

TURBO Turbo: This active HIGH input signal indicates to 386 SL CPU when to enter "Turbo 
Mode". Turbo Mode is defined as the CPU executing at full speed, the default speed for 
the system. When this signal is forced inactive LOW, the 386 SL CPU executes from a 
divide by two or a divide by four clock as defined by the De-turbo bit in the 
CPUPWRMODE register. When this signal is HIGH, the CPU executes from a clock as 
defined by the Fast CPU clock field in the CPUPWRMODE register. 

Vee System Power: Provides the + 5V nominal D.C. supply inputs. 

VGACS# VGA Chip-select: This active LOW output is asserted anytime an access occurs to the 
user defined VGA address space. 

Vss System Ground: Provides the OV connection from which all inputs and outputs are 
referenced. 

·--------
WHE# Write High Enable: This active LOW output indicates that a write access to the upper 

byte of the 386 SL CPU memory bus is occurring when the Memory Controller Unit is 
configured for SRAM mode. When in DRAM mode, the signal is active anytime a write 
access occurs. This output should be connected to the write enable of the upper byte for 
either DRAM or SRAM memory subsystems. This pin is driven during a suspend 
operation. I 

WLE# Write Low Enable: This active LOW output indicates that a write access to the lower 
byte of the 386 SL CPU memory bus is occurring when the Memory Controller Unit is 
configured for SRAM mode. When in DRAM mode, the signal is active anytime a write 
access occurs. This output should be connected to the write enable of the lower byte for 
either DRAM or SRAM memory subsystems. This pin is driven during a suspend 
operation. 

ZEROWS# ZERO Wait State (ISA bus signal): This active LOW input indicates that an ISA bus 
peripheral wishes to execute a zero wait state bus cycle (the normal default 16-bit ISA 
bus memory or 1/0 cycle is 3 SYSCLKs or one PC/ AT equivalent wait state). When 
ZEROWS# is driven low, a 16-bit bus cycle will occur in two SYSCLKs. When 
ZEROWS# is driven low for an 8-bit memory cycle the default 6 SYSCLK bus cycle is 
shortened to 3 SYSCLKs. 

5-765 



intef 386™ SL MICROPROCESSOR Superset 

3.0 SIGNAL DESCRIPTIONS (Continued) 

82360SL ISA Peripheral l/O 
The following table provides a brief description of the signals of the 82360SL 1/0. Signal names which end 
with the character "#" indicate that the corresponding signal is low true when active. 

Symbol Name and Function 

A20GATE A20 Gate (direct to CPU): This active HIGH output signal forces the 386 SL CPU to 
mask off A20 on the system address bus (internal to the 386 SL CPU), to allow emulation 
of an 8086. 

AEN Address ENabled (ISA-bus signal): This active HIGH output indicates a DMA access, 
refresh or 1/0 access to a non-standard ISA peripheral 1/0 address location. The 
82360SL drives this signal high to signify a valid DMA address. It is used by bus slaves to 
decode 1/0 ports. All ports must be decoded for AEN low. There are no DMA cycles to 
addressed 1/0 ports. 

BALE Buffered Address Latch Enable (ISA-bus signal): This active HIGH input to the 
82360SL is driven by the 386 SL CPU during standard ISA bus cycles. During ISA bus 
memory and 1/0 cycles BALE is used to indicate valid addresses at the start of a bus 
cycle. SA[19:0) are valid on the falling edge and LA[23:17] are valid while BALE is high. 
BALE is is also driven high by the 386 SL CPU and remains high during DMA cycles. 

BATTDEAD# BATTery DEAD: This active LOW input indicates that the battery does not have enough 
power to resume or reset. This signal will prevent a system reset if asserted LOW. 

BATTLOW# BATTery LOW: This active LOW input indicates that the battery power is low. 
BATTLOW # is typically driven by a D.C. to D.C. power converter associated with the 
battery power supply. A thermal power monitor indicates that the main battery power is 
dropping below the adequate charge level to sustain operation. If this signal is asserted 
LOW with BA TTWRN # asserted LOW a SMI request will be generated. The feature is 
enabled via S/W control. The signal will also prevent a resume operation if asserted 
LOW. 

BATTWARN# BATTery WARNing: This active LOW input indicates the battery has minimal charge left 
(eg. one half an hour of full power use remaining). 

C8042CS# Keyboard controller Chip Select: This active LOW output is driven when there is an 1/0 
read or write to the Keyboard Controller Ports 60 or 64 hex. 

COM(A,B)CTS # Clear To Send: This active LOW input indicates to the Serial Port Controller for COMA or 
COMB that a serial device is clear to accept data. This signal is typically used for a 
modem control function. A change in the state of this signal generates a modem status 
interrupt. The modem or data set asserts this signal when it is ready to accept data for 
transmission. 

COM(A,B)DCD# Data Carrier Detect: This active HIGH input indicates that the Serial Port Controller 
COMA or COMB has detected a data carrier from the data set of a serial device. Typically 
this signal is from a modem. 

COM(A,B)DSR # Data Set Ready: This active LOW input signal is used by the modem or data set to 
indicate that the modem or data set is ready to establish the communication link and 
transfer data with the Serial Port Controller. 

COM(A,B)DTR # Data Terminal Ready: This active LOW output signal informs the modem or data set that 
the Serial Port Controller is ready to communicate. 

,~ 

COM(A,B)RXD Serial data Receive: This input signal is used to receive serial data. Each character can 
consist of from five to eight bits of data with one start bit and one, one and a half or two 
stop bits. The least significant bit is re_ceived first. 

5-766 



intJ 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

COM(A,B)RI# Ring Indicator: This active LOW input signal is used for a modem control function. A 
change in the state (either from high to low or from low to high) of this signal generates a 
modem status interrupt. The modem or data set asserts this signal to indicate that it has 
detected a telephone ring. This will cause the 82360SL to wake the 386 SL CPU from a 
suspended state if modem ring is enabled as a wake-up event. 

COM(A,B)RTS# Request To Send: This active LOW output signal informs the modem or data set that the 
Serial Port Controller is ready to send data. 

COM(A,B)TXD Serial data transmission: This output signal is used to transmit data serially between the 
Serial Port Controller and serial device. Each character can consist of five to eight bits of 
data with one start bit and either one, one and a half, or two stop bits. The least 
significant bit is transmitted first. The control of the format of a character is defined under 
S/W control via the Line Control Register. Please consult the 386 SL Microprocessor 
Superset Programmer's Reference Manual for additional information. Information 
regarding the functional timing specifications of transmitted and recieved serial data may 
be found in sections 6 and 7 (A.G. timing specifications and timing diagrams). 

COMX1 ,COMX2 Crystal oscillator input and output pins: The crystal attached to these signals should 
be tuned to 1.8432 Mhz. The on~chip oscillator uses an external crystal and tank circuit to 
generate an internal clock. This clock is used to generate the various baud rates for the 
serial ports. Optionally an external oscillator may be connected to the COMX1 input. 

CPU RESET CPU RESET: This active HIGH output is connected directly to the 386 SL CPU to provide 
a reset of the 386 CPU core. CPU RESET always occurs during a PWRGOOD reset. 
CPURESET may also be generated by RC# from a keyboard controller, Fast Reset from 
1/0 Port 92 or other programmable Reset, or a resume from suspend. 

CX1,CX2 Crystal oscillator input and output pins: The crystal should be tuned to 14.31818 Mhz. 
It is used for the ISA bus signal OSC signal and is internally divided by 12 to clock the 
timer counters. The oscillator input may be directly driven from an external source. 

DACK[7:5], OMA ACKnowledge channel n (ISA bus signal): The 82360SL DMA controller drives I 
[3:0]# the respective DMA acknowledge signal low after a device has requested DMA service. 

The corresponding output signal indicates that the DMA channel transfer may begin. 

DMA8/16# OMA 8-bit or 16-bit cycle: This output signal is directly connected to the 386 SL CPU. 
When the signal is HIGH it indicates that the current DMA cycle is 8-bit. When this signal 
is low it indicates that the DMA cycle is using a 16-bit channel. 

DRQ[7:5], OMA ReQuest channel n (ISA bus signal): These input signals are used to request 
[3:0] DMA service from devices residing on the ISA bus. An ISA bus device drives this signal to 

request service from the appropriate DMA channel by asserting this signal high. 

ERROR# MCP ERROR: This signal is an active LOW input to the 82360SL. The math coprocessor 
error signal generates a IRQ13 through the 82360SL. 

EXTSMI# EXTernal System Management Interrupt request: This active low input will generate a 
SMI request if the function is enabled. 

EXTRTCAS EXTernal RTC Address Strobe: This output signal is active HIGH when there is a write 
access to the RTC 1/0 address port and when an external RTC is selected. 

EXTRTCDS EXTernal RTC read Data Strobe: This output signal is active LOW when there is a read 
access to an external RTC 1/0 data port and when an external RTC is selected. 

EXTRTCRW# EXTernal RTC (Real Time Clock) Read/Write: This low true output signal is active 
when there is a write access to an external RTC 1/0 data port and when an external RTC 
is selected. 

5-767 



inter 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

FLPCS# FLoPpy Chip Select: This LO'l.J tiue output signal is the chip select for the floppy disk 
controller 1/0 ports 03F0-03F5 and 3F7 hex. 

HALT# HALT: This LOW true input signal is driven by the 386 SL CPU and indicates when the 
CPU has executed a HL T instruction (address= 2) or is in a shutdown condition 
(address=O). 

HD? HD-bus Data bit HD?: The bi-directional System Data Bit 7 is controlled separately for 
the Integrated Drive Electronics (l.D.E.) hard disk drive and floppy disk drive. This is 
provided to accommodate the 1/0 address 3F7 hex which is split between the floppy disk 
drive controller and l.D.E. hard disk. Data transfer between storage peripherals 
connected to the l.D.E. Hard Disk and Floppy Disk and the 82360SL are on separate 
busses. Data bit 7 has to be separated from data bits [6:0]. The 82360SL controls and 
buffers data bit 7 seperately. 

HDCS[1:0]# Hard Disk Chip Select: These LOW true output signals are the l.D.E. hard disk drive chip 
selects decoded from the 1/0 address ports 01 F0-01 F7h (HDCSO#) and 03F6-03F7h 
(HOCS1 #). 

HDEN(H,L)# Hard Disk buffer ENable: These LOW true output signals control the 1.0.E. hard disk 
data buffers, high and low bytes. 

HLDA HoLD Acknowledge (direct to CPU): This HIGH true input signal indicates that the 386 
SL CPU has released the ISA bus for refresh, OMA or master cycles. 

HAQ Hold ReQuest (direct to CPU): This active HIGH output signal indicates a request to the 
386 SL CPU to release the ISA bus when the 82360SL requests the bus for ISA bus style 
refresh, OMA or master mode cycles. 

IMUXO This pin is multiplexed. It can be used as Timer 2 gate 2 input or a speaker input from the 
modem. 

INTA# INTerrupt Acknowledge (direct to CPU): This active LOW input to the 82360SL 
indicates that the 386 SL CPU has recognized an interrupt and will initiate an interrupt 
acknowledge bus cycle. The INTA bus cycle is comprised of two eight-bit 1/0 cycles in 
which the interrupt vector transferred on the second eight-bit 1/0 write of the INTA cycle. 

INTR INTerrupt Request (direct to CPU): This active HIGH output requests a standard 
maskable interrupt to the 386 SL CPU. 

IOCHCK# 10 CHannel ChecK (ISA bus signal): This maskable active LOW input is driven by a 
device on the ISA bus typically used to indicate a parity error on the ISA bus. This signal 
is one of the possible sources which may generate an NMI. NMI generation via 10 
Channel Check may be enabled or disabled using PORT 61 (IOCKEN). NMI may be 
masked using the ISA bus compatible NMI control port at 1/0 70 hex bit 7. 

IOCHROY 1/0 CHannel ReaDY (ISA bus signal): This active HIGH input is used by the 82360SL 
OMA controller to extend ISA bus cycles. IOCHROY is also used to extend bus cycles for 
1/0 device trapping. Additional wait states extend the bus cycle, allowing for start up 
during Resume mode. The ISA bus is a normally ready bus, an external device can 
extend a OMA cycle or ISA bus cycle by deasserting this signal (driven low). This signal is 
normally high on the ISA bus. 

5-768 



intJ 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

IOCS16# 16·bit 1/0 Chip Select (ISA bus signal): This active LOW input signal to the 82360SL is 
used to indicate a 16-bit 1/0 bus cycle. The 1.0.E. hard disk high byte buffer enable is 
generated when IOCS16# is driven low during an 1.0.E. 16-bit 1/0 access. IOCS16# is 
also an input to the 386 SL CPU driven by devices residing on the ISA bus to indicate a 
16-bit 110 bus cycle. 

IOR# 1/0 Read (ISA bus signal): This bi-directional active LOW signal is an input during 
normal accesses to 1/0 ports. When low this signal indicates an 1/0 read. This signal is 
an output from the 82360SL during OMA bus cycles for 1/0 to memory transfers. 

IOW# 1/0 Write (ISA bus signal): This bi-directional active LOW signal is an input during 
normal accesses to 1/0 ports. When low this signal indicates and 110 write. This signal is 
an output from the 82360SL during OMA bus cycles for memory to 1/0 transfers. 

IRQ[15, 14, Interrupt ReQuest n (ISA bus signal): These active HIGH input signals are used to 
12-3,1] request interrupt service. The interrupt request lines are driven by devices on the ISA bus 

which have a corresponding interrupt service routine associated with the interrupt vector 
and interrupt request. 

KBOA20 KeyBoarD A20 gate: This active HIGH input is "ORed" with internal bits to produce 
A20GATE which goes to the 386 SL CPU. The bit is connected to port 2, bit 1 of an 8042 
in a standard ISA bus compatible system. 

KBOCLK KeyBoarD CLocK: This output signal is used to drive the clock input to the keyboard 
controller. It is derived from the 8 MHz SYSCLK and can be divided by 1, 2, 4 or stopped. 

LA[23:17] Local Address bus (ISA bus signal): These are input signals to the 82360SL during 
memory transfers (decoding for X-bus buffer controls) and output signals during OMA 
accesses and refresh. The latchable address lines allow access to physical memory on 
the ISA bus to 16 megabytes. 

LPTACK# Line PrinTer ACKnowledge: Active LOW input signal which is part of the parallel port 
data handshake. The line printer asserts this signal to show that data transfer was 
complete and that it is ready for the next transfer. 

LPTAFO# Line Printer Auto llne FeeD: This signal is an active LOW output from 82360SL to a 
printer. When asserted, it instructs the printing device to insert a line feed at the end of 
every line. 

LPTBUSY Line PrinTer BUSY: This signal is an active HIGH input to 82360SL. The printer asserts 
this signal when it is not ready to accept further data from 82360SL. 

LPT0[7:0] Line printer Data bus: These signals are the 8-bit bi-directional data bus for the parallel 
port. In PC/ AT mode these signals are output only. The 82360SL also supports a 
bidirectional mode for the PS/2 style parallel port. 

LPTDIR Line PrinTer DIRection: This active HIGH output signal is only valid in bidirectional 
mode for data transfer using the parallel port. 

LPTERROR# Line PrinTer ERROR: This active LOW input signal is driven by a peripheral device to 
flag an error condition. 

LPTINIT# Line PrinTer lnlTialize: This active LOW output from 82360SL instructs the peripheral to 
initialize itself. 

LPTPE Line PrinTer Paper End: This active HIGH input to 82360SL signals that the printer has 
run out of paper when asserted. 

LPTSLCT Line PrinTer SeLeCTed: This active HIGH input signal is asserted by the printer to 
confirm that it has been selected. 

5-769 



infef 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

LPTSLCTIN# Line Pr!nTer SeLeCT !N: This activB LO'/'-./ output signal is asserted to select the printer 
interfaced to the parallel port. 

LPTSTROBE# Line PrinTer STROBE: This active LOW output signal is used to strobe data into the 
peripheral device. The parallel port controls are read and written through 1/0 registers. 

MASTER# ISA bus MASTER (ISA bus signal): This active LOW input signal is used with a DRQ line 
tC> gain control of the system bus. Upon receiving DACK# the 82360SL may pull 
MASTER# active (low), which will allow the 82360SL control of the system address, data 
and control busses. The 386 SL CPU will have tri-stated these lines one clock after 
receiving the MASTER# signal. 

MEMR# MEMory cycle Read (ISA bus signal): This bi-directional active LOW signal indicates a 
read cycle anywhere in the 16 Mbyte memory address space. During memory read cycles 
to memory on the ISA bus, this signal is an input into the 82360SL. MEMR # is driven by 
the 82360SL during OMA cycles. 

MEMW# MEMory cycle Write (ISA bus signal): This bi-directional active LOW signal indicates a 
write cycle anywhere in the 16 Mbyte memory address space. During memory write 
cycles to memory on the ISA bus, this signal is an input. MEMW # is an output from the 
82360Slduring OMA cycles. 

N/C No Connection: These signals must not be connected to any voltage. The No 
Connection signals must be left floating in order to guarantee proper operation of the 
82360SL and compatibility with future Intel processors. 

NMI Non Maskable Interrupt (direct to CPU): This active HIGH output is directly connected 
to the 386 SL CPU. The 82360SL asserts NMI to request the 386 SL CPU to service a 
high priority non-maskable interrupt. The low to high transition of this signal is recognized 
by the 386 SL CPU. 

ONCE# ON-board Circuit Emulation: This active LOW input pin floats the appropriate outputs of 
the 82360SL as indicated in Section 2 pin assignments. When ONCE# is driven active 
the 82360SL allows an In-Circuit emulator (ICE™-386™ SL) module to drive its signals. 
This allows the system to be tested while the 82360SL is still physically populated on the 
motherboard. 

osc OSCillator (ISA bus signal): This is the 14.31818 Mhz output signal with a 50% duty 
cycle and is asynchronous to SYSCLK. 

PERR# Parity ERRor (direct from CPU): This active LOW input signal is connected to the 
output of the 386 SL CPU. When the 386 SL CPU detects a parity error from the local 
DRAM subsystem it drives this signal to the 82360SL. The system memory parity error 
will generate a NMI via the 82360SL when NMI is enabled via 1/0 port 70 hex bit 7. 

SMI# System Management Interrupt (direct to CPU): This active LOW output is directly 
connected to the 386 SL CPU. When the falling edge of SMI # is detected by the 386 SL 
CPU it generates the highest priority interrupt when enabled. The typical use of SMI # is 
for power management. 

SMRAMCS# System Management RAM Chip Select: This active LOW output is driven whenever the 
386 SL CPU is accessing the System Management SM-RAM. It is active even when SM-
RAM is part of the 386 SL CPU system memory RAM. The 82360SL uses the 
SMRAMCS# to determine when the SMI code is being executed on the ISA bus, and 
enables the X-bus control signals. 

PWRGOOD PoWeR GOOD: This active HIGH input is typically supplied by the power supply. When 
Power good is activated high this indicates that the supply voltage is stable. Power Good 
low is also used to generate System Reset, RESETDRV, and CPURESET. 

5-770 



intef 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

RC# Reset CPU: This active low input is typically driven by the keyboard controller. RC# is 
"ORed" with internal bits to produce a programmable pulse width CPURESET signal. It is 
connected to port 2, bit 0 of an 8042 in a standard ISA bus compatible system. 

REFREQ REFresh REQuest (direct to CPU): This active HIGH output signal is directly connected 
to the 386 SL CPU. When Refresh Request is asserted it indicates that the 386 SL CPU 
should refresh the local DRAM subsystem. 

REFRESH# System REFRESH (ISA bus signal): This active LOW input signal indicates a refresh 
cycle. It is driven for the duration of the cycle. It is an input during master generated 
refresh bus cycles. 

RESETDRV RESET DRIVe (ISA bus signal): This active HIGH output is the main system cold reset, 
generated from the power supply "power good" signal and by system resume. 

RTCEN# RTC ENable: This active LOW input signal should be strapped high or low depending on 
whether an internal (LOW) or external (HIGH) ATC is used in the system. The 82360SL 
on-chip real time clock and CMOS RAM are enabled by this signal when LOW. 

RTCRESET# Internal RTC RESET input: This active LOW input signal is used to reset the internal 
ATC status and flag registers, (typically when the ATC battery has been changed). 

RT CV CC This is a separate power supply input for the internal ATC. It should be connected to a 3V 
battery when the system is fully off and 5V during active operation. 

RTCX1 ,RTCX2 RTC Crystal oscillator input and output pins: The crystal should be tuned to 
32.768 Khz. It is used for the ATC and system power management state machines. The 
oscillator may be driven directly from the input signal. 

SA[16:0] System Address bus (ISA bus signal): The bi-directional system address bus is an 
input for decoding internal 1/0 registers and an output during DMA and refresh cycles. 

SBHE# System Byte High Enable (ISA bus signal): The active LOW output signal indicates 
when there is valid data on the upper data byte of the system data bus. I 

50[7:0] System Data bus {ISA bus signal): This is the bidirectional system data bus. The 
823605L directly drives the ISA bus system data bits [7:0] without external transceivers, 
or buffers. 8-bit data is transferred to and from the 823605L with these signals. 

SMEMR# System MEMory Read (ISA bus signal): This signal is driven by the 823605L to signify 
a memory read cycle to the bottom 1 Mbyte address range. It is used by ISA bus 
compatible slaves which decode SA[ 19:0] during memory cycles. 

SMEMW# System MEMory Write (ISA bus signal): This signal is driven by the 823605L to signify 
memory write cycle to the bottom 1 Mbyte address range. It is used by ISA bus 
compatible slaves which decode SA[19:0] during memory cycles. 

SMOUT[5:0] System Management OUTput control: These six outputs can be connected to control 
the power circuits for various devices in the system. These output pins are directly 
controlled by the SM_OFF _CNTRL register. 

SPKR SPeaKeR output: This is the output of the 8254 megacell, timer I counter # 1, chann~I 2, 
or directly driven through IMUXO, or from the 8254 megacell, timer counter #2, channel 
1. This output signal is typically connected to an external speaker. There is additional 
circuitry to ensure that the signal is low when not being used. 

SRBTN# suspend/Resume BuTtoN: This active LOW input generates a SMI requesting a system 
suspend or resume. 

5-771 



intef 386™ SL MICROPROCESSOR Superset 

82360SL ISA Peripheral 1/0 Signal Descriptions (Continued) 

Symbol Name and Function 

STPCLK# SToP CLocK: This active LO\A/ output signal stops the clock to the 388 CPU core of the 
386 SL Microprocessor. Stop clock is directly connected fo the 386 SL CPU from the 
82360SL. The 82360SL activates this signal upon detection of a halt bus cycle or when 
an 1/0 read to the stop clock register in the 82360SL occurs. 

SYSCLK SYStem CLocK (ISA bus signal): This signal is an output from the 386 SL CPU and an 
input to the 82360SL. The SYSCLK signal is used to clock the ISA bus state machines 
and is also used to derive the internal OMA clock signal in the 82360SL. The SYSCLK is 
the 8 MHz typical clock which is one half of the frequency of ISACLK2. 

SUS_STAT# SUSpend ST ATus: The 82360SL power management controls this active low output 
signal to switch the power off to all non-critical devices during a suspend. 

TC Terminal Count (ISA bus signal): This active HIGH output signal is used to indicate the 
termination of a OMA transfer. 

TIM2CLK2 TIMer 2 CLK: This is the input clock for timer/counter #2 when it is programmed to be 
used in the General Purpose (GP) mode. 

TIM20UT2 Tl Mer 2 OUTput: This signal is the frequency output from timer I counter # 2 and can be 
used as a general purpose timer/counter output. 

Vee System Power: Provides the + 5V nominal D.C. supply inputs for the 82360SL. 

Vss System GrQund: Provides the OV connection from which all inputs and outputs are 
referenced. 

XO? X-bus Data bit XD7: 1/0 port 3F7h is split between the floppy and hard disk and the 
storage peripherals which transfer data reside on separate busses. Data bit XO? is 
separated from bits XD[6:0]. The 82360SL separately controls and buffers bit XO? to 
isolate data bit 7 from the floppy disk and l.D.E. hard disk. 

XDEN# X-bus Data ENable: This active LOW output signal is used to control the X-bus data 
transceiver. It is only activated by the 82360SL on valid accesses to X-bus peripherals. 

XDIR X-bus data DIRection: This active HIGH output signal controls the direction of the X-bus 
and HD-bus data transceivers. XDIR is high for read cycles. 

ZEROWS# ZERO Wait State (ISA-bus signal): This active LOW output signal is driven by the 
82360SL when it can accept a zero wait state write cycle. 

5-772 



inter 386™ SL MICROPROCESSOR Superset 

4.0 PACKAGE THERMAL 
SPECIFICATIONS 

The SL Superset is specified for functional opera­
tion with a temperature range from O to 90 degrees 
Celcius for the 386 SL CPU and the 82360SL. The 
case temperature should be measured in the operat­
ing environment to determine whether the SL Super­
set is within the specified operating temperature 
range. The case temperature should be measured at 
the center of the top surface of the package. When 
the SL Superset devices have a supply voltage ap­
plied the operating temperature range is applicable 
rather than the storage temperature. 

The following definitions and assumptions are used 
to determine the recommended maximum case tem­
perature for the 386 SL CPU and 82360SL: 

TA = Ambient Temperature in degrees Celcius 

Tc = Case temperature in degrees Celcius 

OJC = Package thermal resistance between junc­
tion and case 

OJA = Package thermal resistance between junc­
tion and ambient 

TJ = Junction Temperature 

P = Power Consumption in Watts 

The ambient temperature can be evaluated by using 
the values of thermal resistance between junction 
and case, II JC and the thermal resistance between 
junction and ambient OJA in the following equations: 

TJ =Tc+ P*llJc 

TA= TJ - P*llJA 

Tc= TA+ P*[OJA-llJcl 

Values for llJA and II Jc are given in Table 4-1 for the 
196-lead PQFP 82360SL and the 227-lead LGA 
386™ SL CPU. 

Table 4·1. Thermal Resistances {°C/W) OJc and OJA 

llJA (°C/W) versus Airflow-ft/min (m/sec) 

Package llJc°C/W 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

196L PQFP 
5 21 18 13.5 11.8 10.5 9.5 

227L LGA 

5-773 



intJ 386™ SL MICROPROCESSOR Superset 

ABSOLUTE MAXIMUM RATINGS en to avoid high static voltages and electric fields to 
prevent static electric discharge. 

Table 4.3 provides environmental stress ratings .for 
the packaged SL Superset devices. Functional op­
eration at the storage maximum and minimum rat­
ings is not implied or guaranteed. 

Other system components such as the memory sub­
system (DRAM/SRAM); storage peripherals (hard 
disk/floppy disk), 110 and display subsystem may 
reduce the absolute maximum storage temperature 
conditions due to the inherent physical characteris­
tics of the other components. 

Extended exposure to maximum ratings may affect 
device reliability. Further, precautions should be tak-

Table 4-3. Maximum Ratings 

Parameter Maxim.um Rating 

1. Storage Temperature - 65°C to + 150°C 

2. Case Temperature under Bias 0°C to + 90°C(1) 

3. Supply Voltage with Respect to Vss -0.5Vto +6.5V 

4. Voltage on Other Pins -0.5V to (Vee + 0.5V) 

NOTE: 
1 . Case temperature under Bias maximum rating also includes the case where the 386 SL CPU and 
82360SL are in suspend or standby mode. In standby mode and in specific cases in suspend 
mode, power is applied to the SL Superset for operation of the Real-Time Clock and DRAM re­
fresh. It is assumed in these cases that the SL Superset devices are not in normal or full-speed 
operation. Typically at these extreme minimum and maximum temperature ranges the external os­
cillators are stopped or diasbled with the exception of the 32 kHz Real-Time Clock oscillator. The 
limiting factor for minimum and maximum case temperature under Bias is the operational tempera­
ture range supported by the RTC crystal and 82360SL on-chip oscillator. It is also assumed that 
main system memory is not being accessed (only slow refresh for DRAM) or the SRAM is in stand­
by mode, and all other components used in the system are also capable of operating at these 
maximum and minimum temperature values. 

5.0 D.C. SPECIFICATIONS 

386™ SL CPU D.C. Specifications 
Functional operating range: Vee = 5V ± 10%; T CASE = 0°C to 90°C 

Table 5-1. D.C. Voltage Specifications 

Symbol Parameter Min Max Unit Notes 

V1L lnpt Low Voltage -0.3 v AtB MHz 

V1H Input High Voltage v At8 MHz 

V1LC EFl/ISACLK2 Input Low Voltage v AtB MHz, 
CMOS Logic Levels 

V1HC EFl/ISACLK2 Input High Voltage - 0.3 v AtB MHz, 
CMOS Logic Levels 

Vol Output Low Voltage 
loL = 4mA 0.5 v At8 MHz(1) 

loL = 24mA 0.5 v AtB MHz(2) 

VoH Output High Voltag13 
loH = -2mA ·, 2.4 v At 8 MHz(1) 

loH = -0.2 mA Vee - 0.5 v AtB MHz(2) 

loH = -4 mA 2.4 v At8 MHz(2) 

loH = -0.18 mA Vee - 0.5 v At 8 MHz(1) 

5-774 



intJ 386™ SL MICROPROCESSOR Superset &@W&OO©~ OOOlP©OOliYil&iJ'O©OO 

Table 5-2. Leakage Current and Sustaining Current Specifications 

Symbol Parameter Min Max Unit Notes 

l1L Input Leakage Current 
Condition 1: When SUS_STAT# 
and/or ONCE# not active. 
Pins with internal 60k PU -150 µA V1L = 0.45V 
Pins with internal 20k PD 300 µA V1H = 2.4V 
Pins with internal 300 PU -24 mA V1L = 0.45V 
Other Input Pins ±15 µA ov < V1N <Vee 

Condition 2: When SUS_ST AT# 
and/ or ONCE# active. 
Pins with internal 60k PU ±15 OV < V1N <Vee 
Pins with internal 20k PD ov < V1N <Vee 
Pins with internal 300 PU ov < V1N <Vee 
Other Input Pins ov < V1N <Vee 

loL Output Leakage Current 
Condition 1: When SUS_ST AT# 
and/ or ONCE# not active 
Pins with internal 60k PU VouT = 0.45V 
Pins with internal 300 PU VouT = 0.45V 
Other Output Pins 0.45V < VouT < Vee 

µA 0.45V < VouT < Vee 
±15 µA 0.45V < VouT <Vee 
±15 µA 0.45V < VouT < Vee 

lsHL 38 µA V1N ::;; 0.8V(3,4) 

lsHH -60 µA V1N :2- 3.0V(3,5) 

IBHLO Bus Hold Low Overdrive 300 µA (Notes 3, 6) 

IBHHO Bus Hold High Overdrive -550 µA (Notes 3, 7) 

Table 5-3. Capacitance D.C. Specifications 

Symbol Parameter Min Max Unit Notes 

C1N Input Capacitance 10 pF EFI = 1 MHz(B) 

CouT Output or 1/0 Capacitance 20 pF EFI = 1 MHz(B) 

CcLK EFI Capacitance 15 pF EFI = 1 MHz(B) 

NOTES: 
1. List of pins which have 24 mA/4 mA ioL/loH specification, (reference section 2). 
2. Other output pins which do not belong to list in Note 1, (reference Section 2). 
3. Tested with CPU Clock stopped. 
4. This is the maximum current the bus hold circuit can sink without raising the node above O.BV. lsHL should be measured 
after lowering V1N to Ground (OV) and then raising to O.BV. 
5. This is the maximum current the bus hold circuit can source without lowering the node voltage below 3.0V. lsHH should 
be measured after raising V1N to Vee and then lowering to 3.0V. 
6. An external driver must source at least lsHLO to switch this node from low to high. 
7. An external driver must sink at least lsHHO to switch this node from high to low. 
8. Not tested. Guaranteed by design characterization. 

5-775 

I 



intef 386™ SL MICROPROCESSOR Superset 

Table 5-4. 386™ SL CPU Ice Specific~tions 

Symbol Parameter Unit Notes 

Ice Supply Current (Note 1) 
Minimum Configuration mA (Notes 2, 4) 
Maximum Configuration mA (Notes 3, 4) 

lcc1 Supply Current/Stop Clock 75 mA (Notes 5, 6) 

lcc2 Supply Current/Suspend Mode 10 mA (Notes 5, 7) 
Free Running/Suspend Ref 

lcc3 Supply Current/Suspen 6 mA (Note 8) 
OFF Running/Sus 

lcc4 Supply Current!;:> 5 mA (Note 9) 
OFF Running/Sus 

NOTES: 
1. Tested at EFI and ISACLK2 at maximum frequency, with 50 pF load and no resistive loads on the outputs. 
2. Minimum System Configuration consists of 1 bank of 1 Megabyte x 4 DRAMs (2 Megabyte total memory), cache disabled 
with no cache SRAM, 25 pF capacitive loading on the Pl-bus control/status signals, 100 pF capacitive loading on the ISA­
bus, 100 pF loading on the SYSCLK. 
3. Maximum System Configuration consists of 4 banks of 4 Megabyte x 1 DRAMs (32 Megabytes total), cache enabled with 
2 x (16k x 16) cache SRAMs, 65 pF capacitive loading on the Pl-bus control/status signals, 300 pF capacitive loding (8 
slots) on the ISA-bus and 300 pF capacitive loading on the SYSCLK signal. 
4. Not tested, very conservative e.stimates provided from engineering analysis at worst case temperature and at 5.5V with 
the described system configuration for comparison only. 
5. Characterized with Vee = 5.5V, EFI = 40 MHz, ISACLK2 = 16 MHz 
6. 412.5 mW with 386 SL CPU with Stop Clock, all external oscillators are free running, there are no active bus cycles on the 
Cache, Memory or ISA busses. Internal logic such as the Cache and Memory Controller are unaffected by stopped cir slow 
clock and continue to consume the fixed power represented in lee1. 
7. 55 mW with 386 SL CPU in suspend mode, all external oscillators are free running, there are no active bus cycles on the 
Cache, Memory or ISA busses except suspend refresh. 
8. 33 mW with 386 SL CPU in suspend mode, all external oscillators are off (fixed Logic State), there are no active bus 
cycles on the Cache, Memory or ISA busses except suspend refresh. 
9. 27.5 mW with 386 SL CPU in suspend mode, all external oscillators are off (fixed Logic State), there are no active bus 
cycles on the Cache, Memory or ISA busses including suspend refresh. 

5-776 



intef 386™ SL MICROPROCESSOR Superset 

386™ SL CPU Ice Specifications: 
Special Topics 

DETERMINING Ice WITH SLOW CLOCK 
CONTROL 

The 386 SL CPU supports CPU clock division which 
reduces power consumption of the CPU core logic. 
The EFI clock input is similar to the CLK2 input 
found on the 386 CPU. However, the internal 
CPUCLK signal in the 386 SL CPU is not always one 
half of the frequency of the EFI (CLK2) input. An 
internal clock divider and synchronizer allows the 
CPU core clock to be slowed down and even 
stopped. However, additional internal logic such as 
the memory controller and cache controller continue 
to use half the EFI frequency. Therefore, when cal­
culating the theoretical power consumption with 
CPU clock division it is important to recognize that a 
fixed constant (K) value of power is required by the 
386 SL CPU. 

The value K is constant only if the ISA bus loading is 
constant. Figure 5-1 shows the value of K for diff 
ent values of ISA bus capacitance. 

lcc(divided clock) = llcc(normal clock) * 

lcc(normal clock) = The Ice value 
the following 
ISA bus p 

n = The fractional value t 
(e.g., divide by 2 =:tP· 

K = Is a constant in MilliAm 
reading the value in Fig 

To determine the maximum current for the 386 SL 
CPU with CLK2 divider perform the following steps: 

1. Multiply the Ice of the normal minimum system 
configuration by the fractional value of the clock 
divider. 

2. Sum the total capacitive load of all active ISA bus 
output signals from the 386 SL CPU to all devices. 

3. From Figure 5-1 draw a line from the horizontal 
axis (capacitance) where it intersects the diagonal 
line. 

4. From Figure 5-1 draw a perpendicular line to the 
vertical axis to determine K. 

5. Solve the equation for Ice (divided clock). 

K 
(mA) 

95mA 
91 mA 

90mA 

85mA 

7062.5 9887 .5 
8-475.0 11,300.0 

Total lSA Bus Copacltonce (pr) 

240814-5 

5-1. Variation of the constant current (K) 
respect to the total ISA bus capacitance 

Ice WITH STOPPED CLOCK 

Tahle 5-3. Ice Static 

Symbol Parameter Min Max Unit Notes 

lees Supply Current 0 5 mA (Note 1) 
(static) 

NOTE: 
1 . Tested while clock stopped in PH2 and inputs at V cc or 
Vss with the outputs unloaded. Clock stopped after 10 
Read at address 25H. EFI and ISACLK2 inputs should be 
at Vee or Vss-

5-777 

I 



infef 386™ SL MICROPROCESSOR Superset 

POWER VARIATIONS WITH CAPACITIVE LOADS AT VARIOUS VOLTAGES 

f'ULLY LOADED !SA-BUS SLOTS (1396.25 pF) 

2 
70.00 

3 4 5 

i' 60.00 
5 
z 50.00 
0 
j::: 
a. 40.00 ::e 
::> 
en 30.00 z 
0 
u 

"' 
20.00 

"" 3:: 10.00 0 
a. 

CAPACITIVE LOAD (pF) 

Figure 5-2. ISA Bus 

9 
720.0 r---,---..---,-----,----,-

i' 630.0 1-----+---f----t--__,-~ 
E 
~ 540.0 1--~-t---1----t-----troc­
z 
g 450.0 r-----r---t---+-~ 
a. 
~ 360.0 l----+-----t--+-4111 
Ul 8 270.0 1----+-----t--c 

6 7 

1no 2065 2360 

* 
NUMBER OF DRAM MEMORY DEVICES 

9 18 27 36 
315.0 .----.,.----,..---,...----,--~-~--~-~ 

295 590 885 11 ao 1475 1 no 2oss 2360 

CAPACITIVE LOAD (pF) 

Figure 5-3b. Memory Bus with Cache 

5-778 

8 

240814-6 

240814-7 

240814-8 



intef 386™ SL MICROPROCESSOR Superset 

Calculation of Ice for Various SL Superset 
System Configurations 

A set of three curves with Vee at 4.5V, 5V and 5.5V 
are plotted in Figure 5-2. Figure 5-2 illustrates the 
power consumption in milliWatts with respect to the 
capacitive loading on the ISA bus signals of the 
386 SL CPU. The CPUCLK is assumed to be 
20 MHz and EFI input is 40 MHz. A similar set of 
curves are provided for the memory bus without a 
cache subsystem in Figure 5-3a. The power con­
sumption with respect to load capacitance for the 
memory bus with a cache subsystem is illustrated in 
Figure 5-3b. To find the Power (Pin milliWatts) of the 
386 SL CPU for the configuration of your system, 
use the following method. 

1. Prepare a configuration list for your system includ­
ing how many ISA-bus connectors, how many 
memory chips will be provided and· whether a 
cache will be connected or not. 

2. From the curves in Figure 5-2, use the voltage of 
your system and the total capactive load of all of 
the 386 SL CPU ISA signals to find the power 
consumed by the ISA-bus interface. 

3. If a cache is connected to the 386 SL CPU in your 
system, use Figure 5-3b to find memory bus pow­
er. If cache is not connected, use Figure 5-3a. 

4. Find the internal power consumption of the 
386 SL CPU from Table 5-4 and the cache inter­
nal power and cache bus power from Tables 5-5 
and 5-6. 

5. For a system with no cache, add the ISA-bus in­
terface power, the memory bus interface power 
without cache and the internal power. This gives 
the power consumption of the 386 SL CPU with­
out cache. 

6. For a system with cache, add the ISA bus inter­
face power, the memory interface power with 
cache, the cache internal power, the cache bus 
interface power and the internal power. This gives 
the power consumption of the 386 SL CPU with 
cache. 

Table 5-4. Internal Power 

Frequency Power 
(MHz) (mW) 

20 1758.0 

Table 5-5. Cache Bus Power (mW) 

Freq. 
4.5V 5.0V 5.5V 

(MHz) 

20 24.71 30.5 36.91 

Table 5-6. Cache Internal Power 

Frequency Power 
(MHz) (mW) 

20 650 

As an example, the power consumed by the 386 SL 
CPU when it is used in a 20 MHz system with 8 
memory chips and 2 fully loaded ISA bus expansion 
slots will be calculated. The system voltage is as­
sumed to be 5V. 

From Figure 5-2, the power consumed by the ISA 
expansion bus interface is found to be 15 mW (the 
total capacitance of all the pins of a fully loaded AT­
bus slot is 1396.25 pF). For a system with no cache, 
the power consumed by the memory bus for 8 chips 
is about 140 mW from Figure 5-3a. The internal pow-1 
er at 20 MHz is 1758.0 mW from Table 5-4. The 
power consumed by 386 SL CPU is the sum of the 
power for the internal power (ISA bus and CPU core) 
and memory bus. The total power consumed by the 
386 SL CPU for this system is 1913 mW. 

For a system with cache, the ISA bus interface pow­
er is 15 mW as previously determined. The memory 
bus interface power is determined from Figure 5-3b 
is found to be 60 mW. The internal power remains 
1758.0 mW. The cache bus power is read off from 
Table 5-5 to be 30.5 mW and the cache internal 
power from table 5.6 is 650 mW. Hence, in this 
system, the 386 SL CPU consumes a total of 
2513.5 mW. 

5-779 



intef 386™ SL MICROPROCESSOR Superset 

82360SL D.C. Specifications 
Functional operating range: Vee= 5.0V ±10%, TcASE = o•c to 90°C. 

labie 5-7. 82360SL D.C. Specifications 

Symbol Parameter Min Max Unit Notes 

Vil Input Low Voltage -0.3 0.8 v 
V1H Input High Voltage 2.0 Vee+ 0.3 v 

Vee - 0.3 v (Note 2) 

lu Input Leakage Current ±15 µA (Note 1) 

ILQ Output Leakage Current ±15 

C1N Input Capacitance 

CouT Output or 1/0 Capacitance 

lccs1 Suspend with Slow Refresh (Note 9) 

lccs2 Suspend without Slow Refresh (Note 9) 

Ice Power Supply Current (Note 10) 

D.C. Specifications for Standard ISA Bus Signals 

Vol Output Low Voltage v lol = 24 mA(4) 

VoH Output High Voltage v loH = -3.3 mA(4) 

D.C. Specifications for Parallel Port 

Vol Output Low Voltage v Im= 8 mA(3) 

VoH v loH = - 2 mA(3) 

D.C. Specifications for Open 

Vol Output LowV 0.5 v lol = 24 mA(5) 
Im = 12 mA(6) 

:r; lol = 16 mA(11) 

D.C. Specifications for All 

VOL Output Low Voltage 0.5 v lol = 12 mA(7) 

VoH Output High Voltage 2.4 v loH = - 2 mA(7) 

D.C. Specifications for Power-Down Mode 

VsATT Battery Supply Voltage 3.0 v 
lsATT Battery Supply Current 100 µA VsATT = 5V 

50 µA VBATT = 3.0V(B) 

NOTES: 
1 . No pullup or pulldown. 
2. For inputs-COMX1, CX1, RTCX1 
3. For outputs-lPTD7:0 
4. For outputs---OSC, AEN, SA16:0, lA23:17, MEMR#, MEMW#, IOR#, IOW#, SMEMW#, SMEMR#, SBHE#, TC, 
SD7:0, XD7, HD?, RESETDRV. 
5. OWS#, IOCHRDY, REFRESH#. 
6. lPTSTROBE#, lPTAFD, lPTINIT#, lPTSlCTIN#, lPTDIR. 
7. For all other outputs of the module. 
B. Measured at Vee = OV, VsAn = 3.0V, 32 kHz ATC clock with input rise time and fall time, t, = t1 < 50 ns. 
9. ATC clock at 32 kHz; Timer Clock, Serial clock and SYSClK stopped; Vee = 5.5V and RTCVCC = 5.5V, CL = 50 pF 
with outputs unloaded. 
1 0. Ice tests at maximum frequency with no resisitive loads on the outputs. 
11. REFRESH# 

5-780 



intef 386™ SL MICROPROCESSOR Superset &i@W&iOO~~ OOOlP@OO!MJ&i'iJO@OO 

6.0 SL Superset TIMING SPECIFICATIONS 

386 SL CPU A.C. Specifications 
Symbol Alt Symbol Parameter Min Max Unit Notes 

General: 20 MHz 

Ct 101 Ot1 EFI Period 25 500 ns QNT1 

Ct102a Ot2a EFI High Time at 2V 8 ns 

Ct102b Qt2b EFI High Time at 3.7V 5 ns 

Ct103a Qt3a EFI Low Time at 2V 8 ns 

Ct103b Qt3b EFI Low Time at 0.BV ns 

Ct104 Qt4 EFI Fall Time from 
(Vee - O.BV) to 0.BV ns 

Ct105 Qt5 EFI Rise Time 
O.BV to (Vee - O.BV) 8 ns 

Ct 111 EFI 

Ct 111a Qt21a ns QNT3 

Ct111b Ot21b ns 

Ct 112 EFI 

Ct 112a Ot22a 12 ns QNT3 

Ct 112b Qt22b 4 ns 

Ct 113 2 EFI B Ct113a Qt23a 15 ns QNT3 

Ct 113b Qt23b 20 ns 

Ct 114a Ot24a 20 ns ONT3 

Ct114b Qt24b 15 ns 

Ct115 ONCE# Minimumimum Pulse Width 35 ns 

Ct115a Ot25a ONCE# Setup to EFI 20 ns ONT3 

Ct115b Ot25b ONCE# Hold Time 15 ns 

Ct 116a Nt2a SMI # Setup to EFI 15 ns QNT3 

Ct116b Nt2b SMI # Hold Time 21 ns 

Ct117a Xtla INTR Setup to EFI 15 ns QNT3 

Ct 117b Xtlb INTR Hold Time 45 ns 

Ct 118a Xt2a NMI Setup to EFI 11 ns QNT3 

Ct 118b Xt2b NMI Hold Time 16 ns 

NOTES: 
QNT1. EFI maximum period is specified only for the case where a MeP (Math co-processor) is present in the system. 
NPXeLK period, high and low time are tested at 2V. All other parameters are guaranteed by design characterization. 
QNT3. A20GATE, CPURESET, INTR, NMI, ONCE#, PWRGOOD, SMI#, STPCLK# and SUS_STAT# are asynchronous 
inputs to the 386 SL CPU. Setup and hold times with respect to the EFI input are provided for test purposes only. The 
minimum setup and hold times are specified for valid recognition at a specific clock edge. The minimum valid pulse width 
can be extrapolated from the setup and hold times with respect to EFI. 

5-781 



intef 386™ SL MICROPROCESSOR Superset ~@W&J~l©~ aoo~@OOIMJ~'iJO@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continuedi 

Symbol Alt Symbol Parameter Min Max Unit Notes 

ISA·Bus Clock Timings 

Ct201 Qt31 ISACLK2 Period 62.5 ns QNT4 

Ct202 Qt32 ISACLK2 High Time at 2V 28 32.5 ns QNT4 

Ct203 Qt33 ISACLK2 Low Time at 2V 28 32.5 ns QNT4 

Ct204 Qt34 ISACLK2 Fall Time from 8 ns QNT4 
(Vee - o.aV) too.av * 

Ct205 Qt35 ISACLK2 Rise Time from 8 ns QNT4 
o.av to (Vee - o.av) 

Ct206 Qt36 ISACLK2 to SYSCLK Delay, 32 ns 
Falling to Rising Edge 

Ct 211 Qt41 SYSCLK Period ns QNT5 

Ct 212 Qt42 ns QNT5 

Ct213 Qt43 57 ns QNT5 

Ct214 Qt44 10 ns QNT5 

Ct215 Qt45 10 ns QNT5 

Ct272a Nt1a 11 ns QNT3 

Ct272b Nt1b 21 ns 

ISA·Bus Timings 

Ct221 G7 52 ns Nt1 

Ct222 GB Inactive Delay from Te phi 1 Low 8 47 ns 

Ct223 G9 LA 17-23 Valid Delay from Te or Te phi 2 Low 34 ns 

Ct224 G10 LA 17 -23 Invalid Delay from Te phi 2 Low 0 ns 

NOTES: 
QNT4. ISACLK2 minimum period, high and low times are specified with ISACLK2 input = 16 MHz and SYSCLK output = 
8 MHz. The ISACLK2 input specifications are provided to ensure that the SYSCLK output, period, minimum high and low 
time, rise and fall time and ISACLK2 to SYSCLK skew are met. 
QNT5. SYSCLK capacitive loading is 20 pF minimum and 1_20 pF maximum. SYSCLK period, low and high time are tested at 
1 .5V thresholds. All other parameters are guaranteed by design characterization. 

5-782 



intef 386™ SL MICROPROCESSOR Superset ~@W~OO©~ OOOrP©~~~ii'O©OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

ISA-Bus Timings (Continued) 

Ct225 G13 SA 1-19 Valid Delay from Ts phi 2 Low 56 ns 

Ct226 G13a SA0-19, SBHE#, LA17-23 Valid Setup 18 ns 
to phi 1 Low (External Master) 

Ct227 G14 SA1-19 Invalid Delay from Ts phi 2 Low 0 45 ns 

Ct228 G15 SAO, SBHE # Valid Delay from Ts phi 2 Low ns 

Ct229 G16 SAO, SHBE # Float Delay from Ts phi 1 ns 

Ct230 G17 MEMR #, MEMW # Active from Tc phi 1 L ns 
(16-bit Memory Cycles) 

Ct231 G17a Command Active Setup to phi 1 L ns 
(External Master) 

Ct232 G17b ns NTB 

Ct233 G18 ns 

Ct234 G19 7 45 ns 

Ct235 G20 45 ns NT2 

I Ct238 G23 0 ns NT6, NT12 

Ct239 G24 old from Tc phi 1 Low 10 ns NT6, NT12 

Ct240 G25 Setup to Tc phi 2 Low 2 ns NT? 

Ct241 G26 IOCS16# Hold from Teoc phi 1 Low 0 ns NT? 

Ct242 G27 ZEROWS# Setup to Tc phi 2 Low 0 ns NT?, NT9 

Ct244 G29 ZEROWS # Hold from Tc phi 2 Low 10 ns NT?, NT9 

Ct245 G29a MEMCS16# Active Delay from Valid Address 64 ns 
(External Master Cycles) 

Ct246 G30 SD0-15 Valid Setup to Teoc phi 1 Low 18 ns Ext. Master 

Ct247 G31 SD0-15 Hold from Teoc phi 1 Low 16 ns Read Cycle, NT1 O 

Ct248 G32 SDO-7 Valid Delay from Ts phi 2 Low 30 65 ns Write Cycle 

Ct249 G33 SD8-15Valid Delay from Ts phi 2 Low 37 65 ns Write Cycle 

Ct250 G34 SD0-15 Invalid Delay from Teoc phi 1 Low 4 ns Write Cycle 

5-783 



inter 386™ SL MICROPROCESSOR Superset ~lIDW~OO©f§ OOO!F@OO!Ml~iiO@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

366 SL CPU A.C. Speciiications (Continued; 

Symbol Alt Symbol Parameter Min Max Unit Notes 

ISA·Bus Timings (Continued) 

Ct251 G35 IOCHRDY Setup to Tc phi 2 Low 0 ns 

Ct252 G36 IOCHRDY Hold from Tc phi 2 Low 8 ns NT11 

Ct255 G39 NMl/SMI # Setup to Tx phi 2 Low 16 Asynch 

Ct256 G40 NMl/SMI # Hold from Tx phi 2 Low bs Asynch 

Ct257 G41 INTR Setup to Tx phi 2 Low 45 ns Asynch, NT4 

Ct258 G42 INTR Hold from Tx phi 2 Low ns Asynch 

Ct259 G43 INTA Active DelayJrom Tc phi 2 Low ns NT16 

Ct260 G44 INTA Inactive Delay from Teoc phi 1 Low ns NT17 

Ct261 G45 HAQ Setup to Tc or Ti phi 2 Low ns 

Ct262 HAQ Hold from Th phi 2 Low ns 

Ct263 G48a HLDA Active Delay from Th phi 1 Low ns NT3CL == 65 pF 

Ct264 G48b HLDA Inactive Delay from Th phi 1 · ns CL= 65 pF 

Ct265 G49 DMA8/ 16 # Setup to Th phi 2 ns NT13, NT14, NT15 

Ct266 G50 ns NT15 

Ct267 G51 ns 

Ct268 G53c 35 ns 

Ct269 G53d 35 ns 

Ct270 G54a 48 ns NT18 

Ct271 G54b 48 ns NT18 

Ct272 'G54c 41 ns NT19 

Ct273 G54d ROMCSO#/CMUX14# Inactive Delay 41 ns NT19 
from LA[23:17] 

Ct274 G55a SMRAMCS# Active Delay from Ts phi 2 Low 10 49 ns NT18 

Ct275 G55b SMRAMCS# Inactive Delay 10 49 ns NT18 
from Ts or Ti phi 2 Low 

Ct271 · G56 TURBO Setup 16' ns Asynch 

5-784 



intef 386™ SL MICROPROCESSOR Superset &i@W&iOO©~ OOOIF@!RHMl&itrO@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

ISA-Bus Timings (Continued) 

Ct276 SD15-0 Valid Delay from IOCHRDY Asserted 48 ns 
(External Master) 

Ct277 SD15-0 Data Invalid Delay from MEMR # Inactive 7 ns 
(External Master) 

Ct278 SD15-0 Data Invalid Delay from IOR # Inactive 7 ns 
(External Master) 

Ct279 SD15-0 Data Setup to MEMW # Active 0 ns 
(External Master) 

Ct280 SD15-0 Data Hold from MEMW# Inactive *o ns 
(External Master) 

Ct281 SD15-0 Setup to IOW # Active ns 
(External Master) 

Ct282 BALE Active Delay from Th phi 1 Lo 45 ns 
(External Master) 

Ct283 BALE Inactive from Th phi 1 45 ns 
(External Master) 

Ct284 LA23-17,SA19-0,S 54 ns 
Delay from Th phi 2 (E El Ct285 LA23-17,SA1 HE 54 ns 
DelayfromT 

Ct286 SA19-17 10 45 ns 

Ct287 45 ns 

Ct288 40 ns 

Ct289 SA 15-0 Hold after IOR # or IOW # Inactive 15 ns 
(External Master) 

Ct290 IOCS16# Active Delay from Valid Address 52 ns 
(External Master) 

Ct 291 SD15-0 Delay from IOR # Active 65 ns 
(External Master) Read from CPU 1/0 Ports) 

Ct292 SD15-0 Valid Delay from phi 2 Low 95 ns Test Only 
(External Master) Read from On Board Memory) 

Ct293 SD15-0 Hold from IOW # Inactive 15 ns 
(External Master) 

Ct294 Byte Swap Delay 10 72 ns NT5 
(External Master) 

5-785 



intef 386™ SL MICROPROCESSOR Superset 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

ISA-Bus Timings (Continued) 

Ct295 IOCHRDY Invalid from Command Active 105 ns 
(External Master) 

Ct296 IOCHRDY Active Delay from phi 2 Low 85 ns Test Only 
(External Master) 

Ct297 IOCHRDY Inactive from MEMR# Active 44 ns 
(External Master Accessing ROM) 

NOTES: 
NT1. The ISA bus timings are specified in a synchronous manner with respect to the ISACLK2 input. ISACLK2 input is 

16 MHz, which is twice the frequency of the SYSCLK output. Each SYSCLK perioct.ifepresents one T-state and each T-
state corresponds to either the beginning of a bus cycle (Ts-Send Status iddle of a bus cycle (T c--execute 
command), end of cycle (Te0 c), hold (Th) or idle (T;). T-States, (Ts, Tc, comprised of two ISACLK2 
periods (Phi 1 and Phi 2). The ISACLK2 Periods or Phases, (Phi 1 an r rising edge are used to 
reference the synchronous ISA parameters. ISACLK2 Phi 1 falling e ising edge, ISACLK2 Phi 2 
falling edge leads SYSCLK falling edge. 

NT2. T eoc represents the End of Cycle. The falling edge of ISACLK2 P 
NT3. After HLDA (Hold Acknowledge) is de-asserted, the 386 SL CP 

was latched prior to the beginning of the HLDA cycle. The 
address may or may not be valid for the next CPU bus c 

tes Teoc· 
bus with the previous address that 
this latched address. The latched 

ext CPU bus cycle on an external bus 
a valid address will be placed on the address bus. 

NT4. INTR, NMI, SMI#, and TURBO are asynchronous 
signals to the.386 SL CPU. Setup and hold times 
minimum setup and hold times are specified for 
the EFI clock input. 

NT5. The setup time is required to ensure that 
device on an odd byte address bounda 

NT6. MEMCS16# is sampled on the falli 
NT?. IOCS16# and ZEROWS# are 
NT8. HALT timing is identical to a 1 

ed. 
NT9. ZEROWS# and IOCHRDY 
NT10. SD0-15 read data 

CLK2 and SYSCLK. These are input 
2 input are provided for reference. The 

clock edge in other timing diagrams with 

d when an external master reads from an 8-bit 

SACLK2 Phi 1. 
bus cycle except that no BALE or Status Signal is assert-

OW during the same bus cycle. 
f ISACLK2 Phi 2 at Teoc (End of Cycle). 

NT11. IOCHRDY de-assertg9 
De-asserting IOCHRl3Y 
than 17 SYSCLKs (2.1 µs. 

pied on t e falling edge of ISACLK2 Phi 2 when Command is active (LOW). 
ental wait states (1 SYSCLK long). IOCHRDY should not be held LOW longer 

NT12. ROM read bus cycles are to 8/16 bit ISA bus memory read bus cycles except that MEMCS# is ignored. The 
strapping pin ROM16/8# is sampled to determine if the ROM read is an 8-bit or 16-bit memory read. Additionally 
ROMCSO# and/or ROMCS1 # are asserted during a ROM read. 

NT13. DMA bus cycles are not supported to On-board 1/0 ports. AEN is HIGH during MASTER, DMA and access to the 
configuration registers. 

NT14. Byte swap timing for 8-bit DMA bus cycles is identical to that of an external master. 
NT15. During DMA cycles the 386 SL CPU drives SA17-19 with the value of LA17-19 while HLDA is active. During other 

Slave cycles (i.e., Refresh and External Master) the 386 SL CPU does not drive SA 17 -19. 
NT16. During the INTA# cycle, SD8-15 should not change state. During the first INTA# pulse SD0-15 are ignored. The 

second INTA# pulse in an INTA# bus cycle indicates a bus cycle that is similar to an 8-bit 1/0 read in which the 
interrupt vector is read from SDO-7. 

NT17. The 8259 INTA# minimum pulse width is 160 ns. 
NT18. ROMCSO#, ROMCS1 # and SMRAMCS# are specified with respect to ISACLK2 when the CPU is the bus master. 
NT19. ROMCSO#, ROMCSi #and SMRAMCS# are specified with respect to valid address when an external master con-

trols the bus. 

5-786 



inter 386™ SL MICROPROCESSOR Superset &i@W&iOO©[g OOO!f@OO!MJ&i'U'O@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

Pl-Bus Timings: 20 MHz 

Ct301 Min. Chip Select and Command Setup to 30 ns 
PST ART# Active 

Ct302 Min. Chip Select and Command Hold 50 ns 
from PST ART# Active 

Ct303 Max. PRDY # Hold Time after PCMD# Inactive 72 ns 

Ct304 Min. Read Data Setup Time to PCMD# Inactive 30 ns 

Ct305 Min. Read Data Hold Time from PCMD# Inactive 9 ns 

Ct306 Min. PRDY # Active Delay from PST ART# Active 94 ns 

Ct307 Maximum Write Data Valid Delay from ns 
PST ART# Active 

Ct308 Min. Write Data Invalid Delay from ns 
PCMD# Inactive 

Ct309 ns 

Ct310 ns 

Ct 311 PST ART# Pulse Width ns 

Ct312 Min Delay from PST ART# ns 
PCMD# Active 

Ct313 32 ns I 
Ct314 50 ns 

External Master Timings: S 

Ct321 t1 s p 35 ns ATCLK2 Sync. 

Ct 321 t1s 35 ns ATCLK2 Sync. 

Ct321 t1s 35 ns ATCLK2 Sync. 

Ct325 t3s 24 ns A TCLK2 Sync. 

Ct326 t4s PCMD# Valid Delay 24 ns ATCLK2 Sync. 

Ct327a t5as PRDY # Set-up 5 ns ATCLK2 Sync. 

Ct327b t5bs PRDY# Hold 25 ns ATCLK2 Sync. 

CPU Master 

Ct328 t2s SA[1 :16] Valid Delay Tri-Stated 

Ct328 t2s SA[17:19] Valid Delay Tri-Stated 

Ct328 t2s LA[17:23] Valid Delay Tri-Stated 

Ct328 t2s SBHE #, SAO Valid Delay Tri-Stated 

Ct332 t6s SD[0:15] Valid Delay Tri-Stated 

5-787 



intef 386™ SL MICROPROCESSOR Superset 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

CPU Master (Continued) 

Ct341 PW/A#, PM/10#, VGACS# Valid Delay 53 ns (Note 3) 
from EFI T1 phi 1 High 

Ct342 SA[19:0], LA[23:17], SBHE# Valid Delay 63 ns 
from EFI T1 phi 1 High 

Ct343a PSTAAT# Active (LOW) Delay from EF ns 
T2 phi High 

Ct343b PSTAAT# Inactive (HIGH) Delay 33 ns 
T2 phi 2 Low 

Ct344a PCMD# Active (LOW) Del 33 ns 
T2phi1 High 

Ct344b PCMD# Inactive (H 33 ns 
T2 phi 2 Low 

Ct345a PADY# Setu 0 ns 
(CPU is B 

Ct345b PAD 25 ns 
(GP 

Ct347a phi2 Low 21 ns (Note 7) 
s Slave Device) 

Ct347b :1~ old from EFI T2 phi 2 Low 15 ns 
ad from Pl Bus Slave Device) 

Ct348 5:0] Valid Delay from EPI T2 phi 2 High 62 ns 
(CPU Write to Pl Bus Slave Device) 

NOTES: 
1. VGACS#, FLSHDCS#, PW/R#, PM/10# and Addresses change for each subsequent read or write. 
2. PSTART# indicates a new cycle in which address, status and chip selects are valid before PSTART# is asserted LOW. 
PRDY # terminates each bus cycle and a new PST ART# is driven if a new address and status signals are available. 
3. EFI = 50 MHz, Internal CPU Phase CLK = 25 MHz. 
4. ISACLK2 = 16 MHz. 
5. Maximum parameters are based on worst case condition of Vee = 4.2V, 120'C. 
6. Minimum parameters are based on best case condition of Vee = 5.6V, 10°c. 
7. PRDY # setup worst case condition is -4 ns, 0 ns specified for test purposes. 

5-788 



intJ 386™ SL MICROPROCESSOR Superset 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

Cache Bus Timings: 20 MHz 

Ct 401 t1 CAB US Setup to COE# Active Low -1 ns HNT1 

Ct402 t2 COE# Puslse Width ns HNT2 

Ct403 t3 ns HNT3 

Ct404a t4 CDBUS Setup to COE# Active ns HNT4 

Ct404b ns 

Ct405 t5 ns 

Ct406 t6 CWE # Active Width ns 

Ct407 t7 ns 

Ct408 t8 ns 

Ct409 t9 6 ns 

Math Coprocessor Timings: 20 MHz 

Ct421 Ht11 3 25 ns HNT1 

Ct422 Ht12 5 27 ns HNT5 

Ct423 Ht13 5 27 ns HNT5 

Ct424 Ht14 2 35 ns HNT4 

Ct425a Ht15a 16 ns 

Ct425b Ht15b 3 ns 

Ct426a Ht16a BUSY#, PEREQ, ERROR# Setup 14 ns 

Ct426b Ht16b BUSY#, PEREQ, ERROR# Hold 5 ns 

Ct427a Ht17a CD Setup (NPX Cycle) 12 ns 

Ct427b Ht17b CD Hold (NPX Cycle) 6 ns 

NOTES: 
QNT1. EFI maximum period is specified only for the case where a MCP (Math Co-processor) is present in the system. 
NPXCLK, period, high and low time at 2V are tested. Ail other parameters are guaranteed by design characterization. 
QNT2. NPXCLK, NPXRESET Loading: 30 pF. (Timing specified here is for in-system loading, Timing Spec with Tester Load­
ing is TBD.) 
HNT1. CA Loading: min 1 O pF, max 50 pF. 
HNT4. CD Loading: min 10 pF, max 35 pF. (Timing specified here is for in-system loading, Timing Spec with Tester Load­
ing is TBD.) 
HNT5. NPXADS#, NPXW/R# Loading: 25 pF. (Timing specified here is for in-system loading, Timing Spec with Tester 
Loading is TBD.) 

5-789 

I 



inter 386™ SL MICROPROCESSOR Superset &i@W&iOO©l§ OOO!P@OO~&i'iJO@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

Math Coprocessor Timings: 20 MHz (Continued) 

Ct441 Qt11 NPXCLK Period 25 5aa ns QNT1 

Ct442a Qt12a NPXCLK High Time 2V 6 ns QNT2 

Ct442b Qt12b NPXCLK High Time 3.7V 3 ns 

Ct443a Qt13a NPXCLK Low Time 2V 6 ns 

Ct443b Qt13b NPXCLK Low Time a.av 4 ns 

Ct444 Qt14 NPXCLK Fall Time a ns 
(Vee - a.av) to a.av 

Ct445 Qt15 NPXCLK Rise Time ns 
a.av to (Vee - a.av) 

Ct446 Ot26 ns 

SAAM Mode: 20 MHz Timings 

Ct 5a1 tOAC Access Time from OE# ns 2 Wait State 

Ct5a2 tOAC Access Time from OE# ns 3 Wait State 

Ct5a3 tCSD ns 2 Wait State 

Ct5a4 tCSD ns 3 Wait State 

Ct5a5 tASD ns 2 Wait State 

Ct5a6 tASO 5a ns 3 Wait State 

Ct5a7 tCSW a ns 2Wait State 

Ct5aa tCSW a ns 3 Wait State 

Ct5a9 tASW a ns 2Wait State 

Ct51a tASW a ns 3 Wait State 

Ct 511 tWP 7a ns 2 Wait State 

Ct512 tWP 9a ns 3 Wait State 

Ct513 tWR WE# RecoveryTime 1a ns 2 Wait State 

Ct514 tWR WE# Recovery Time 10 ns 3 Wait State 

Ct515 tbs Write Data Setup to WE# Inactive 35 ns 2 Wait State 

Ct516 tDS Write Data Setup to WE# Inactive 4a ns 3 Wait State 

Ct517 tDH Write Data Hold from WE# Inactive a ns 2 Wait State 

Ct51a tDH Write Data Hold from WE# Inactive a ns 3 Wait State 

5-79a 



intJ 386™ SL MICROPROCESSOR Superset &.@W&.00©~ OOO!f@OO!i'1l&.li'O@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

SRAM Mode: 20 MHz Timings (Continued) 

Ct519 tDSO DIR Setup to OE# Active 0 ns 2 Wait State 

Ct520 tDSO DIR Setup.to OE# Active 0 ns 3 Wait State 

Ct521 tDHO DEN# Hold from OE# Inactive 0 ns 2 Wait State 

Ct522 tDHO DEN# Hold from OE# Inactive 0 ns 3 Wait State 

Ct523 tOSD OE# Inactive Setup to DEN# Active ns 2 Wait State 

Ct524 tOSD OE# Inactive Setup to DEN# Active ns 3 Wait State 

Ct525 tDSW DIR Inactive Setup to WE# Active ns 2 Wait State 

Ct526 tDSW ns 3 Wait State 

Ct527 tDHW ns 2 Wait State 

Ct528 tDHW ns 3 Wait State 

Ct529 tDSD ns 2 Wait State 

Ct530 tDSD DIR Inactive Setup ns 3 Wait State 

Ct531 tDRH DIR Hold from ns 2 Wait State 

Ct532 tDRH DIR Hold fr ns 3 Wait State 

Ct533 tDRS 0 ns 2 Wait State 

I Ct534 tDRS 0 ns 3 Wait State 

Ct535 tASL 8 ns 2 Wait State 

Ct536 tASL 8 ns 3 Wait State 

Ct537 tAHL 0 ns 2 Wait State 

Ct538 tAHL 0 ns 3 Wait State 

Ct539 tLP LE Active Pulse Width 8 ns 2 Wait State 

Ct540 tLP LE Active Pulse Width 8 ns 3 Wait State 

Ct541 tAVL Addr Valid Delay from LE Inactive 50 ns 2 Wait State 

Ct542 tAVL Addr Valid Delay from LE Inactive 70 ns 3 Wait State 

5-791 



intef 386™ SL MICROPROCESSOR Superset &i@W&iOO©~ OOOlr@fru[i"A]&ilJO@OO 

6.0 SL Superset TIMING SPECIFICATIONS {Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

DRAM Mode: 20 MHz Timings 

Ct601 tASR Row Addr Setup to RAS# Active 0 ns F1 Mode 

ctso2 tASR Row Addr Setup to RAS# Active 0 ns F2 Mode 

Ct603 tASR Row Addr Setup to RAS# Active 0 ns P1 Mode 

Ct605 tRAH Row Addr Hold from RAS# Active 12 ns F1 Mode 

Ct606 tRAH Row Addr Hold from RAS# Active 12 ns F2 Mode 

Ct607 tRAH Row Addr Hold from RAS# Active 12 ns P1 Mode 

Ct609 tASC Col Addr Setup to GAS# Active 0 ns F1 Mode 

Ct610 tASC Col Addr Setup to GAS# Active 0 ns F2 Mode 

Ct 611 tASC Col Addr Setup to GAS# Active ns P1 Mode 

Ct613 tCAH Col Addr Hold from GAS# Active ns F1 Mode 

Ct614 tCAH Col Addr Hold from GAS# Active ns F2 Mode 

Ct615 tCAH Col Addr Hold from GAS# Acf ns P1 Mode 

Ct617 tRCD RAS# to GAS# Delay ns F1 Mode 

Ct618 tRCD ns F2 Mode 

Ct619 tRCD ns P1 Mode 

Ct621 tCSH ns F1 Mode 

Ct622 tCSH ns F2 Mode 

Ct623 tCSH 100 ns P1 Mode 

Ct625 tRSH 20 ns F1 Mode 

Ct626 tRSH 20 ns F2 Mode 

Ct627 tRSH 30 ns P1 Mode 

Ct629 tWCS * up to GAS# Active {Write) 0 ns F1 Mode 

Ct630 tWCS Setup to GAS# Active {Write) 0 ns F2 Mode 

Ct631 tWCS WE# Setup to GAS# Active {Write) 0 ns P1 Mode 

Ct633 tWCH WE# Hold from, GAS# Active (Write) 20 ns F1 Mode 

Ct634 tWCH WE# Hold from, GAS# Active (Write) 20 ns F2 Mode 

Ct635 tWCH WE# Hold from, GAS# Active (Write) 20 ns P1 Mode 

Ct637 tRCS WE# Setup to GAS# Active {Read) 0 ns F1 Mode 

Ct638 tRCS WE# Setup to GAS# Active (Read) 0 ns F2 Mode 

Ct639 tRCS WE# Setup to GAS# Active (Read) 0 ns P1 Mode 

Ct641 tRCH WE# Hold from GAS# Inactive {Read) 0 ns F1 Mode 

Ct642 tRCH WE# Hold from GAS# Inactive {Read) 0 ns F2 Mode 

Ct643 tRCH WE# Hold from GAS# Inactive (Read) 0 ns P1 Mode 

Ct645 tWDS Write Data Setup to GAS# Active 0 ns F1 Mode 

5-792 



intef 386™ SL MICROPROCESSOR Superset &@W&OO~~ OOOff©OO~&"iFO©OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

DRAM Mode: 20 MHz Timings (Continued) 

Ct646 tWDS Write Data Setup to GAS# Active 0 ns F2 Mode 

Ct647 tWDS Write Data Setup to GAS# Active 0 ns P1 Mode 

Ct649 tWDH Write Data Hold from GAS# Active 20 ns F1Mode 

Ct650 tWDH Write Data Hold from GAS# Active 20 ns F2 Mode 

Ct651 tWDH Write Data Hold from GAS# Active 20 ns P1 Mode 

Ct653 tRAC Access Time from RAS# Active 80 ns F1 Mode 

Ct654 tRAC Access Time from RAS# Active 100 ns F2 Mode 

Ct655 tRAC Access Time from RAS# Active ns P1 Mode 

Ct657 tCAC Access Time from GAS# Active ns F1 Mode 

Ct658 tCAC Access Time from GAS# Active ns F2 Mode 

Ct659 tCAC ns P1 Mode 

Ct 661 tRDH ns F1 Mode 

Ct662 tRDH ns F2 Mode 

Ct663 tRDH ns P1 Mode 

Ct665 tRAS ns F1 Mode 

I Ct666 tRAS ns F2 Mode 

Ct667 tRAS 100 ns P1 Mode 

Ct669 tCAS 25 ns F1 Mode 

Ct670 tCAS 25 ns F2 Mode 

Ct671 tCAS 35 ns P1 Mode 

Ct673 tRP 70 ns F1 Mode 

Ct674 tRP 90 ns F2 Mode 

Ct675 tRP 110 ns P1 Mode 

Ct677 tCP GAS# Precharge Pulse Width 15 ns F1 Mode 

Ct678 tCP GAS# Precharge Pulse Width 15 ns F2 Mode 

Ct679 tCP GAS# Precharge Pulse Width 15 ns P1 Mode 

Ct681 tPSW PARx# Setup to GAS# Active (Write) ns F1 Mode 

Ct682 tPSW PARx# Setup to GAS# Active (Write) ns F2 Mode 

Ct683 tPSW PARx# Setup to GAS# Active (Write) ns P1 Mode 

Ct685 tPHW PARx# Hold from GAS# Active (Write) 20 ns F1 Mode 

Ct686 tPHW PARx# Hold from GAS# Active (Write) 20 ns F2 Mode 

Ct687 tPHW PARx# Hold from GAS# Active (Write) 20 ns P1 Mode 

Ct689 tPVR PARx# Valid from GAS# Active (Read) 27 ns F1 Mode 

Ct690 tPVR PARx# Valid from GAS# Active (Read) 27 ns F2 Mode 

5-793 



intef 386™ SL MICROPROCESSOR Superset 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

386 SL CPU A.C. Specifications (Continued) 

Symbol Alt Symbol Parameter Unit Notes 

DRAM Mode: 20 MHz Timings (Continued) 

Ct691 tPVA ns P1 Mode 

Ct693 tPHR PARx# Hold from CAS# Inactive (R ns F1 Mode 

Ct694 tPHR ns F2 Mode 

Ct695 tPHR ns P1 Mode 

Parity Error 

Ct 701 tPED 38 ns 

Ct702 tCSR ns 

Ct703 tCHR 30 ns 

Ct704 tWRP 15 ns 

Ct705 tWRP 15 ns 

Ct706 tRDS 
., 

55 ns 

Ct707 tADS Address Valid Delay from SYSCLK 65 ns 
(DRAM OMA/Master) 

5-794 



intef 386™ SL MICROPROCESSOR Superset &.lmW&.OO©l§ OOO~@OOIMJ&.il'O@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

82360SL 110 Timing Specifications Summary 
Symbol Alt Symbol Parameter Min Max Unit Notes 

lt1 SYSCLK Period 125 ns 

lt2 SYSCLK Low Time @V1L = 1.5V 50 ns 

lt3 SYSCLK High Time @V1L = 1.5V 50 ns 

lt4 SYSCLK Rise Time and Fall time 10 ns 

lt5 RESETDRV Inactive (LOW) from PWRGOOD Active (HIGH) 40 ns 

lt5a RESETDRV Active (HIGH) from SYSCLK 125 
(During Resume after Suspend) 

lt6a A20GATE Active (HIGH) Delay from KBDA20 Active (HIGH) 30 ns 

lt6b A20GATE Active (HIGH) Delay from SYSCLK 45 ns 

lt7 SYSCLK to KBDCLK Delay 30 ns 

lt8a RC# /PERR# /IOCHCK # Pulse Width 250 ns 

lt8b RC# /PERR# /IOCHCK # Setup to 12 ns 
SYSCLK Falling Edge 

lt9a 5 50 ns 

lt10a 125 ns 

lt10b 0 

lt11 5 ns 

I lt14 2 45 ns 

lt15 20 ns 

lt15a 90 ns 

lt16 35 ns 

lt16a #Output Inactive from SYSCLK 120 ns 

lt17 ZEROWS# Output Active from SYSCLK 65 ns 

lt18 ZEROWS# Output Inactive from SYSCLK 0 ns 

lt19 BALE Setup to SYSCLK (OMA Cycle) 18 ns 

lt20 IOCHRDY Input Active Setup to SYSCLK 15 ns 

lt20a IOCHRDY Input Inactive Setup to SYSCLK 15 ns 

lt21 DMA8/16# Active Delay from SYSCLK 65 ns 

lt22 DMA8/ 16 # Inactive Delay from SYSCLK 65 ns 
(4 MHz DMACLK) 

lt22a DMA8/ 16 # Inactive Delay from SYSCLK Low 65 ns 
(8 MHz DMACLK) 

lt23 AEN Active from HLDA Active 35 ns 

5-795 



intJ 386™ SL MICROPROCESSOR Superset b:\@Wb:\OO©l§ OOO!P@OOIMJ~if'O@OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

82360SL !/O Timing Specifications Summary (Coiitinued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

lt24 AEN Inactive Delay from HLDA Inactive 35 ns 

lt24f AEN Inactive from SYSCLK 65 ns 

lt25 SA 15:0, SBHE # Valid Delay from SYSCLK 10 100 ns 

lt26 SA16 (Only if DMA8/16# = 0) SA15:0, 6 ns 
SHBE # Valid Output Hold from SYSCLK 

lt26a SA16 (Only ifDMA 8/16# = 1), 10 ns 
LA 17:23 Valid Output Hold from 
IOR # /IOW # /MEMR # /MEMW # Output 

lt26f SA16:0, LA17:23, SBHE# Float Delay 90 ns 
fromSYSCLK 

lt27 DACKx # Active Delay from SYSCLK 75 ns 
(4 MHz DMACLK) 

lt27a DACKx# Active Delay from SYSCLK Low 75 ns 
(8 MHz DMACLK) 

lt28 DACKx# Inactive Delay from SYS 75 ns 
(4 MHz DMACLK) 

lt28a DACKx# Inactive Delay fro 75 ns 
(8 MHz DMACLK) 

lt29 75 ns 

lt30 75 ns 

lt30a 75 ns 

lt31 70 ns 

lt31a 70 ns 

lt32a ut Inactive Delay from SYSCLK 75 ns 

lt33 lay from SYSCLK 85 ns 

lt34 85 ns 

lt35 TIM2CLK2 Period 125 ns 

lt36 TIM2CLK2 Low Time 55 ns 

lt37 TIM2CLK2 High Time 55 ns 

lt38 TIM2CLK2 Rise Time 25 ns 

lt39 TIM2CLK2 Fall Time 25 ns 

lt40 TIM2GAT2 High Pulse Width 45 ns 

5-796 



intJ 386™ SL MICROPROCESSOR Superset &i@W&iOO©~ OOOl?©OO!Ml&ili'O©OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

82360SL 1/0 Timing Specifications Summary (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

lt41 TIM2GAT2 Low Pulse Width 45 ns 

lt42 TIM2GAT2 Setup to TIM2CLK2 45 ns 

lt43 TIM2GAT2 Hold from TIM2CLK2 45 ns 

lt44 TIM20UT2 from TIM2CLK2 High to Low 110 ns 

lt45 TIM20UT2 from TIM2GAT2 High to Low 110 ns 

lt46 SPKR Active Delay from TIM2GAT2 120 ns 
(When EXT AUD is Set) 

lt50 REFRESH# Active to MEMR # Output Active 150 ns 

lt52 Address Valid to MEMR # Active 41? ns 

lt53 MEMR # Output Inactive from IOCHRDY Input ns 
Low to High (During a Master Refresh) 

lt55 IOCHRDY Pulse Width 50 ns 

lt56 MEMR # Output Pulse Width for Refr SYSCLK 

lt59 FLPCS# /C8042CS# /HDCSO# I ns 
Active Setup to Command Acti 

lt60 FLPCS# /C8042CS# /H ns 
Output Hold from Com 

lt60a PMRAMCS# Hold fr ns 

lt69 LK ns 

1179 3 4 SYSCLK 

lt80 10 ns 

lt81 10 ns 

lt82 100 ns 

lt83 100 ns 

lt84 100 ns 

lt85 100 ns 

lt86 IOCHRDY Output from SYSCLK 60 ns 

lt94 Delay from IOW # to Modem Output 200 ns 
(RTS#, DTR#) 

lt109 KBDCLK Period (8 MHz) 125 ns 

KBDCLK Period (4 MHz) 250 ns 

KBDCLK Period (2 MHz) 500 ns 

11110 KBDCLK High Time (8 MHz) 40 ns 

KBDCLK High Time (4 MHz) 95 ns 

KBDCLK High Time (2 MHz) 200 ns 

5-797 



intJ 386™ SL MICROPROCESSOR Superset &.@W&.OO©l§ OOO!r©OO!Ml&.if 0©00 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

82360SL !/O Timing Specifications Summary (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

lt111 KBDCLK Low Time (8 MHz) 40 ns 

KBDCLK Low Time (4 MHz) 95 ns 

KBDCLK Low Time (2 MHz) 200 ns 

lt117 HRQ Inactive to HLDA Inactive 185 ns 

lt118 HLDA Inactive to HRQ Active 0 ns 
(Back to Back Hold Acknowledge Cycles) 

lt120 IRQ1, 6, 10, 11: 12, 14, 15, ERROR# 50 ns 
Pulse Width 

lt121 INTR Output Delay from IRQ1, 6, 10: 11, 12, 14, 15, * 100 ns 
ERROR# ' 

lt122 Data Output Valid from INTA# Active 120 ns 

lt123 Data Output Hold from INTA# Inactive ns 

lt123f Data Float from INT A# Inactive 35 ns 

lt124a 5 ns 

lt124f 35 ns 

lt125 40 ns 

lt125a 45 ns 

lt126 15 ns 

lt126a 5 ns 

lt126f 45 ns 

lt129 30 ns 

lt129a 3 30 ns 

lt200 2 45 ns 

lt201 40 ns 

lt202 Write Data Input Hold from IOW# Inactive 15 ns 

lt203 Read Data Output Setup to IOR # Inactive 62 ns 

lt204 Read Data Output Hold from IOR # Inactive 0 ns 

lt204f Data Bus Float from IOR # /MEMR # 35 ns 

lt205 BALE Active Pulse Width 50 ns 

lt206 Address Input Valid Setup to BALE Inactive 30 ns 

!t207 AEN Active from SYSCLK during 80 ns 
Indexed 1/0 Writes 

lt209 IOW # to EXTRTCAS 100 ns 

lt210 XO? Output Valid from IOW # Active 45 ns 

5-798 



5-799 



intJ 386™ SL MICROPROCESSOR Superset &@W&OO©~ OOO!P©OO!Ml&liO©OO 

6.0 SL Superset TIMING SPECIFICATIONS (Continued) 

82360SL 110 Timing Specifications Summary (Continued) 

Symbol Alt Symbol Parameter Min Max Unit Notes 

lt305 SA 16, LA23: 17 Valid Delay from SYSCLK 10 150 ns 

lt311 HRQ Output Active from SYSCLK 45 ns 

lt312 HLDA Setup to SYSCLK 18 ns 

lt314 HRQ Inactive from SYSCLK 5 ns 

lt317 REFREQ Active from SYSCLK 45 ns 

lt319 45 ns 

lt322 25 ns 
Active Delay 

lt324 REFRESH# Output 35 ns 

lt325 REFRESH# Ou 5 ns 

lt326 30 ns 

lt327 REFRE 5 ns 

lt328 REFR 4 5 SYSC 

lt329 se Width during Master# Cycle 4 5 SYSC 

lt330 DACKx # to MASTER# Delay 0 ns 

lt331 AEN Delay from MASTER# 0 49 ns 

lt332 Alternate Master Drives Address and Data 125 ns 

lt333 MASTER# Delay from DRQx Inactive 100 ns 

lt334 Alternate Master Tri-States Bus Signal 0 ns 

5-800 



inter 386™ SL MICROPROCESSOR Superset 

7.0 SL Superset TIMING DIAGRAMS 

7 .1 386™ SL CPU Timing Diagrams 

(Vee - O.S}V 

ISACLK2 
1.SV 

o.sv 

(Vee - O.S}V 

SYSCLK 
1.5V 

o.sv 

(Vee - 0.S}V 
3.7V 

EFI 
2V 

o.sv 

(Vee - 0.S)V 
3.7V 

' ' ! __ , ___________ , ___ --

------.1:: : 
i i Ct103o i i 
I I I I 

' '' I Ct103b I ' ;+--- Cl105 

':·-----
~ = = = = = ~ = r. I_===========.~=~================ 

NPXCLK 
I I l I 

2V ~----- --:------------:-- -------------- ---

o.sv L ____ ~--:------------:--_! ---------- 1 
I I I : I - - l ~ - - -

~Ct445 ,, ,, 
I : ;._____ Ct443b _: : 

Ct444-: ''- 'i 

:.'.- Ct443a -: 
Cl441 

Figure 7 .1.1. Clocks 

Ct201 

------.1,, ' ' •'------J 
Ct203 ~ : :- Ct205 -:ct204:--

' 
' ' - -1- ,_ - - - - - - - - - - - - - - - - - - - - - - - - - , - -

--~----- ~--:---------------------------~--~ 
1--'--J:: : I 

-: 1 :- Ct21s ct214 -'.' 
Ct212 

' ;+---

ct211 

Figure 7 .1.2. Clocks 

5-801 

240814-9 I 

240814-10 



intJ 386TM SL MICROPROCESSOR Superset 

7 .1 386™ SL CPU Timing Diagrams (Continued) 

T1 T2 T2 T2 T1 

Tl TRS TRS 

NPXW/R# 

NPXAOS# ' 

NPXRDY# '.", --+----t--..;,..-+ _ _;,_4 __ ;_~~-...:..-.J-

240814-11 

Figure 7 .1.3. 386 SL CPU Read from MCP 

T1 T2 T2 T1 

Tl TRS 

NPXRDY# 1 

I 

: Ct42sa 

240814-12 

Figure 7.1.4. 386 SL CPU Write to MCP 

5-802 



386TM SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

NPXCLK 

NPXADS# 

NPXRDY# 

BUSY# 

PEREQ 

NOTES: 

OPCODE 
WRITE 

I I 

I NOTE 4 I 
I I 

15T OPERAND 
WRITE 

MJ1hnhnhnhMMru 
I I I I I I I I 

' z~ :,---i :~z zz 
'.\__J ~\__J 
I I 
I I I I 

z~,':'z 
I I I I 
I I I 

' ' 
\

' Cl42sa : Ct42sb ,,. .. ; ... ,---.---;< · 1 :,---; 

I : - ll1---;.---1,.....--...... ---r---.--11--...... --tlH : 

_. ..... ,::!:,._ ..... ._ ......................... ._~z~,_. ............................................. '"'"""~,_. .......... ..... 
I I I I I 

NOTE 1 : NOTE 2 : : NOTE 3 : NOTE 1 : 

240814-13 

1. Instruction dependent. 
2. PEREQ is an asynchronous input to the 386 SL CPU. Instruction dependent as to when it is asserted. 
3. Additional operand transfers. 
4. Memory read (operand) cycles not shown. 

Figure 7.1.5. MCP BUSY# and PEREQ Timings 

1-- READ HIT -~----WRITE HIT-~---- RE"'D HIT -~----

INTERNAL 
CLK2 

CPUCLK 

CA 

COE# 

CCSH# 

CCSL# 

CWE# 

CD 

! I 

_ ct409H 

V~ID VALID Di<: VALID 

READ 

I I 

Figure 7 .1.6. Cache Read/Write Hit Cycles 

5·803 

READ 

/ 

240814-14 

I 



386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

note 1 
VGA CS# 

FLSHDCS# 
PW/R#,PM/10# ----"l'-------'il..---.lJ....,..--i::J..---~ ., __ vA_L_ID_2 __ 

VALID 1 

SA(16:1) 
LA(23:17) 

SAO, SBHE# 

SA(19:17) 

PSTART# 

PCMD# 

PRDY# 

SD(15:0) 

SD(15:0) 

Cl309 

Cl301 

note 1 

VALID 1 cVALID 2 

ct302 
note 1 note 1 

VALID 1 VALID 2 

ct310 

\ note 2 
'• ............... . 

Cl311 
Cl314 

Cl312 

Cl305 

WRITE DATA 

"240814-15 

Figure 7.1.7. Pl-Bus Timings 

5-804 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

Efl 

PW/R# 
PM/10# 
VGA CS# 

SA(16:1) 
LA(23:17) 

SAO 
SBHE# 

SA(19:17) 

PST ART# 

PCMO# 

PROV# 

S0(15:0) 

40 ns 

Figure 7.1.8a. Pl Bus Synchronous CPU Generated Cycles (Read) 

5-805 

240814-A1 



intJ 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

40ns 

PW/R# 
PM/10# 
VGA CS# 

1 VALID 1 J VALID 2 1 VALID 3 J 

SA(16:1) "1 

LA(23~~J ~===~==~~l~:!:v:A:Ll;D:1:~===~l'~::t:v:A:LltD ~2:j:::1-i~::t:v:A~LID~:3 :j::j 
SBHE# ., 

SA(19:17) :X VALID 1 :.X VALID 2 J VALID 3 
t----1r--+J~-+--r-+--+''"-+--,...;;;.-4---i-./\--l-...;.;.;;;;,:...;__-1----1 

~ ~ 
PSTART# --~-.....,-~ '~·----~~ I/ 

'---+---f 

~~ 
PCMD# t----lr--+--+---+---l lf---~I\ 

'---+---f 

GRDY# 

240B14-A2 

Figure 7.1.8b. Pl-Bus Synchronous CPU Generated Cycles (Write) 

5-806 



01 
Cc 
0 ..... 

:!! a. c 
Ill 
en 
~ 
CD 
0 
0 
:I .. 
2. 
iD ... 
!:) 
CD 
:I 
CD 
ii.1 
; 
c. 
-I 
§' 
s· 
cc 
Ill 

TRISTATED 

SA(19:17) 
TRISTATED 

PSTART# 

~~I : I : I ... Ct325 

Ct327b 

PRDY# 

SD(15:0) 
TRISTATED 

II 

240814-16 

:""' .... 
(,) 
CD 
O> 
-I 
!!:: 

CJ) 
r-
0 
"'C 
c: 
-i 

~: 
:l 
cc 
c 
iii' 
cc 
01 
3 
t/I 

~ 
;::?. 
:;· 
c 
([) 

.9: 

cl 
c.> 
Cl) 
en 
-I 
ll: 
en 
r-
s:: 
0 
lJ 
0 .,, 
lJ 
0 
(') 
rn en en 
0 
lJ 
en 
c 
"C 
CD c;, 
CD -
~ 
@ 

~ 
~ 
© 
l1iiil 

~ 
'lij] 

© 
~ 
~ 
~ 
SI 
© 
~ 



inter 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

SA(16:15), 
LA(23:17) 

ROMCSO#, 
ROMCS1# 

VALID 

VALID 

240814-17 

Figure 7.1.10. ISA Bus Slave Controller Generated Timings (ROMCSO# /CS1 # with respect to 
Address) 

LA(23:17) VALID 

VGA CS# VALID 

240814-18 

Figure 7.1.11. ISA Bus Master Controller Generated Timings (VGACS# with respect to Address) 

Ts Tc Tx 

0z I 

I I ' I I ' ' I I ' ' I ISACLK2"1nnn :nn 
(16MHz) ·~ ~ ~ H~ ~ ~ 

l l I I I I I 

~
lt•l•

1
11 

BALE 
I..;..-~-.....;.-

' Ct270 I ' ' I ' I I Ct2711 ' I 

•ct ~ 1 • 1 ct .~· 

R~~~~~,C~: 1 274 1 xi l I ~~ 
I I I 

240814-19 

Figure 7.1.12. ROMCSO, ROMCS1, SMRAMCS# Propagation Delays 

5-808 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 

LA(23:17) ._' ---..--...;...---..--' 

SA(19:0} 
SBHE# 

MEMW# 
MEMR# 

~'~-~22_• ____ .,... __________ ..,.. ____ _. ____ _, ______ ..._ ____ .,... _____________________ ct_2_2~;::i~Ct221 : 

===:,~>-<= "i : 0C 
: Ct234 : Ct23s 

' 
' 

ct23s : Ct239 

MEMCS16# ,.' __ ...,. _ _, 

ZEROWS# 

Ct2s 1 : ct2s2 

IOCHRDY 

' ' :~a , 
s~~:~~ r11//~r-... !----........ -....--...... --------....----------=t 

: : Ct24s : '. Ct2so 1 

240814-20 

Figure 7.1.13. ISA Bus 8-Bit Memory Read/Write Standard ISA BUS Cycle (6 SYSCLKs) 

5-809 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

Tc 

ISACLK2 

Tc r c 

SYSCLK 1 

BALE 

LA(23:17) 

SA(19:0) 
SBHE# 

MEMW# I 

MEMR# 1 I 

Ct23a:ctz39 , , , , , , , , 
I ~I I I I l I I I y I l I y I I I 

MEMCS16# CZZl~//J : v/~ZZZZ\ZZZ~ZZ/Zj/ZZ4zzzzyzzz41111J. 
: I : : : ct2421Ct244 l I 
I I I I I I I l 

YIZZZZZZZYZZZZZZllYIZZZZZllYZA:ci ZEROWS# 
I I I I I I I I 
I I I I I I 1 I 

IOCHRDY :_j 

SD(7:0) 
WRITE 

: ctz47 I 

......... ~......-__,.~--~.;.-__,..~~i~ ..... ~ 
' Ctzso : 

240814-21 

Figure 7.1.14. ISA Bus 8-Bit Memory Read/Write with ZEROWS# Asserted (3 SYSCLKs) 

5-810 



inter 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

UJ ~ ~,,.,, 

""""" """ -' 
,... 

~~ ~"' "' <( ~~ Vi m ii; -m UJ UJ 

"' ';;{Vl ~~ () 

';;{ ~ 
Vl UJ -' ~ 

""" 
,_ 

9.~ Vl Cl 
~ "' 0 :i:: .!:::,,,, 

"' 
() Cl 

UJ Q Vl 
N 

,... ... 
"' u 

- - - - C\J 

~w 
0 .... 
,:..:a:: 
CS'~ 
Vl 

"' 0 I 
~..,. 

u ~ 

Figure 7.1.15. ISA Bus 8-Bit Memory Read/Write with IOCHRDY De-Asserted (Added Wait States) 

5-811 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

15ACLK2 

BALE ' 
.._ __ .-.1 

5A(15:0) 
SBHE# 

IOCHRDY ' 

50(7:0) 
READ 

' ' 
• C\225• C\228 

Tc Tc 

50(7:0) 
WRITE ;.' :.......t...1...._..'..I ,._; __ ...,; _____ ._;:.---:.---:.---:---:---:---:---:---:-_J 

240814-23 

Figure 7.1.16. ISABus 8·Bit 1/0 Read/Write Standard ISA BUS Cycle (6 SYSCLKs) 

5-812 



386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 1 

BALE I 

SA(15:0) 
SBHE# 

IOCS16# 

ZEROWS# 

IOCHRDY 

SD(7:0) 
WRITE 

I : I : Ct242 I Ct244 : '"".;''"""-*-"'-"i 
t I I I I I I l l I I 

I I I I I I l~I I I 

,zzzzzzzzd1111Zzzzz,zzzzt1111,z~1zz.zzzzzzzzz, 
I I I I I 

I I I 

pzzz21111p1d 
I 

~ .... ~~ .... ~~~--~~~ .... ~~~ .... ~~---~~~--~~---~ 
240814-24 

Figure 7.1.17. ISA Bus 8-Bit 1/0 Read/Write with ZEROWS# Asserted (3 SYSCLKs) 

5-813 

I 



intef 386TM SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

i!:i 
"' :z: 
(.) 

Q 

~ 
I 

;:!: 
"' - - - - 0 

~ 

Figure 7.1.18. ISA Bus 8-Bit 1/0 Read/Write with IOCHRDY De-Asserted (Added Wait States) 

5-814 



intJ 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 

LA{23:17) 
GATEA20 

SA{19:0) 
SBHE# 

MEMW# 
MEMR# 

MEMCS16# 

ZEROWS# 

IOCHRDY 

SD{15:0) 
READ 

: Ct224 I : I I Ct223 
I 1=:1 I I I I : :__, 

::::::::: ::::• ~><YZZ!?Zx,.. .... : ___ ......__"""'xZZYZZZ/m.<:::::::::: 
: :~ Ct~28 ' ' Cl22~;27 : 

uzz~~::::::::::::::::::::x_.! ___ ...__ _______ 0<21 
: Ct230 : Ct235 j I I 

' 
I I I ! I I ! 

: : Ct23s:ct239 1 1 1 1 : 

I I I t I ! I I ' 'Ml! I It 

:zzz11zz2111zzz hl!ZZZZZZZZZIZIX /Z/2/ZZZ2ZZ/2/ZZZ2ZZ/2/ZZZ: 

\hsss!ssy vlh//Zt/J 
' ' ' ' 

: I I : Ct247 : 1 

SD~~:~~ pzzz ~11-... j-...... ,__-;---.;---;--...;,...Jx .... .,....._...,...._-----i--....[t 
I I ct248• I : Ct250 I 

, , Cl249 ' 

240814-26 

Figure 7 .1.19. ISA Bus 16-Bit Memory Read/Write Standard ISA BUS Cycle (3 SYSCLKs) 

5-815 

I 



intef 386™ SL MICROPROCESSOR Superset 

7 .1 386™ SL CPU Timing Diagrams (Continued) 

BALE I 

LA(23:17) 
GATEA20 

SA(19:0) 
SBHE# 

MEMW# 
MEMR# 1 

, Ctz3s : Ctz39 ' 

: : t-'1: : : 
MEMCS16# iSsssKs\L: vz)zzz1zzzz)zi\ 17)zzzz?zzz)zzzz?zzzz 

~ I t I I I 

, , Ctz421 Ctz44 , 

I I I I I I I I ml I I 
ZEROWS# ~ssssssss$\Ll -24..;,., 1 .... 1 ..... z .... z-vz-z-1~4-z-1\ 11Jzzzzvz1zjzzzz1 

1 I I 1 

IOCHROY 1 
I 

sock~~J tzzzz:Zzzzzzzzzk;x:txzpzz14z1zzpx:j:)(lzpzzzzz11zi 
I I I I I I I I I I I I 

so~~;~~ Yzzztzx ! ! ! ! x ! ! ! ! x ! ! 
I I I I I I 1 I I I I 

240814-27 

Figure 7.1.20. ISA Bus 16-Bit Memory Read/Write with ZEROWS# Asserted (2 SYSCLKs) 

5-816 



intef 386™ SL MICROPROCESSOR Superset 

7 .1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

LA(23:17) 
GATE.6.20 

SA(19:0) 
SBHE# 

MEMW# 
MEMR# 

MEMCS16# 

: Ct20& I 

1ct2241 I I I I I I 1ct223 :..--..i I I I I I I I I 

I ~I I I I I I I M 
:::::::; :::•:~xYZZ/2/ZZZY//72//ZZYZ//2/ZZZYZZZ!VZ)<""! --i.· _ _. 
1 1 Ct225• ct22s ' 1 1 1 Ct229:· Ct221 1 

' H· d · PZZZ!7h<Jr..l!--------'----------....._--.... :-....... J<Z1 
: ct230 : Ct235 

I I I I I I I I 
I I I I I I I I l l I I I 1 I 

: : ct239:ct239 t I I I I I I I I I : : . ·m· .......... . 
I I I , I I I I I I I I I 1 I 

Kssssss0 zznzzz:zzzzzzzzzpzzzzzzzzpzzzzzzzzpzzzzzaszzzzzzzz: 
I I I I I I I 

' ' ' 
ZEROWS# 22LJ 

IOCHRDY ' 

240814-28 

Figure 7.1.21. ISA Bus 16·Bit Memory Read/Write with IOCHRDY De-Asserted (Added Walt States) 

5-817 

I 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

BALE 1 

ZEROWS# 

SA{19:0} 
SBHE# 

(I II 1 
;,..J....1-/ 1 Ct22s• Ct227• I 

I 21. ~9•: : bzzz[LX ....... _________ ... ~ --0(zbzzzJzzzz: 
I I Cl234 I Cl235 I 

IOW# 
IOR# I 

M hi.-··----.. ,_._· __ _ 
I 

IOCS16# 

IOCHRDY ?1114111 xz4zzzzezzz4zzzz1 
Cl245 Cl247 I I I I 

SD{15:0} 
READ 

. ~··· I I I I ,___ ..... _....;. _ ___,;.....(czzpzzz4z ;zzzz?zzz4zzzzi 
I 

I I ,_;.--.....;---;....--.;...--..;..--~·---. I I I 

SD~~:~~ tz!ZZf.Z~ i oz4zzzzpzz74 
I I ~-I I I 

: : Ct248' : ! Ct250 : : : 
Cl249 

240814-29 

Figure 7.1.22. ISA Bus 16·Bit 1/0 Read/Write Standard ISA BUS Cycle (3 SYSCLKs) 

5-818 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 

BALE 

SA(19:0) 
SBHE# 

IOW# '-, _____ _.,__ __ .,,--.I 

IOR# ' C\240: 

ZEROWS# ' 

IOCHRDY ' 

' ;ct2s2 C\251 : C\252 

' :~a 

SD~~:~i (zzzel'-.... !---;--,......-.;---.---;.--....... --;.---.--r---... : --Lt 
I ~ Ct248• I : Ct250 I 

C\249 

240814-30 

Figure 7.1.23. ISA Bus 16-Bit 1/0 Read/Write with IOCHRDV De-Asserted (Added Wait States) 

5-819 

I 



intef 386™ SL MICROPROCESSOR Superset 

7.1 3861'M SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 

BALE '-~-r--~~-~----.+-~r..__..__ ........ _ _._ .... _..i._.i.._.._...i:,--: 
I I 
I 

AEN I 
,._..,.......;......,.~i.......;.......;.......;.~;._""""" 

INTA# I 

SA0-16 
BHE# 

IOR# 

ZEROWS# 

IOCHRDY 

U: 

so(o-7} , 

INTR,NMI 

'-.! 
I I 

Ct259: ,_, 
I I 
I I 

Ct2so 
1
1 

,,.,.,.. _____ ,_ I I 

J :\ :,-;--; 
I '-,--j-....j-...;.-..:,1; I I 

I I I 
I I 

>-~~1~1~-.~..-~.;......;~~~..;..~.;..' ~ 
~ 

I I I 

\ 
TEOC1 TEOC 

240814-31 

Figure 7.1.24. ISA Bus Interrupt Acknowledge Bus Cycle 

5-820 



' Ct201 1:; I Th I Th I Th I Th I Th I Th 

="' -· cf ..... 
(,) 
co 
Q) 
-I 
31: 

ISACLK2 

SYSCLK 

HRQ 
I 

"l'I 

cg' I BALE .. 
ID 
..... 
:... I HLDA 
N 
!" 
c;; I DMAB/16# 
> 

U'I ~, SA(16:D), 
a, SBHE# 
~ 0 

0 

~I SA(19-17) 

2. 
!f I LA(23:17) 
c 
ii: 
>1 50(15:0) 
0 
'< 
() 

ii I MEMR# 

MEMW# 

IOR# 

IOW# 

,~ 

t ct' I I I 
I.__ ~06 I I I 

I 
I I 

----: ,.__ Ct2si : : : , Ct2s2 :-: , , , 
I I 1 s I 

____./."' : I ~ I I I 1 

,....; CT 2s2 : ' : Ct2s3 :-: : 
I I I 

' I 
1 I I I I I I 

. Ct . I I l 1 I ct J ' 
~ 263 I I I I I 264 i; I 

I I I I I I I 
----...... ---...-"'' ' Ct2ss 1 ' , Ct2ss ' ' 

: ;.-.-.: : I : •_.---.'-------~ 
:ct224b: I\. 1 s I I 

•....; : : 1 1 : : ---+! ~ Ct284 _ __...._!_' , SI ' ----.-' ---:,...,><: 1 : FLOAT Si : : FLOAT : : : : >c::: 
l I I ( I t I 

I ! I ' ' I SS I I I I 

I : : : * LA(19:17) : SI LA(19:17) : : : >c::: 
I I ~ Ct2as: I : : : l I I I 

-----:---: x: : : FLOAT : : H : FLOAT : : : : : >c::: 
; ; : I I SS : I I I I 

-----;----, ..... , ~ ' 1 F'LOAT I I SS I FLOAT I l : I : >c::: 
1 I+-+-: ct233 1 1 1 , ---' ;-- ct287 
! ! ' I I IS I I I I I 

: I ?<; : FLOAT : 1 §S 1 FLOAT : 1 >:c= 
I I 1 I I I I 

! ! I I I I !! I I 1 I I x: I I FLOAT I I FLOAT I >c::: 
I I I I I 1 

I I I 1 1 I 

: ! x: : I FLOAT ' I SI FLOAT ' I X:::: 
i I I I I I H I I '· 
I I 1 

! ! x; ! ! FLOAT H ! ! FLOAT ! ! ! ! C:: 
I I I I 

CJ) w 
Cl) r-
CJ) 

0 -I 
ii: .,, 
fl) c: r-

::! s:: 
3 0 :;· :JJ ca 0 
c "O 

:JJ iii' 0 ca (") ..,, 
m DI 
fl) 3 fl) 

Ill 0 
0 :JJ 
0 fl) :J c 5· "C c: CD ct> ... .s fl) 

CD -
~ 
l§l 

~ 
~ 
© 
li'iiil 
= 
~ 
'1iil 
© 
2EJ 
~ 

240814-32 

~ 
SJ 
= 
© 
~ • 



intef 386™ SL MICROPROCESSOR Su~erSet 

7.1 386™ SL CPU Timing Diagrams (Continued) 

' T1 TH TH TH TH TH TH 
' ' Ct201 , ----. 

ISACLK2 

SYSCLK ' 
' ' ' ' 

!I i f26![ 
HRQ 

' ' 
I Ct261: 

REFREQ ' 
IS h ' 

: ct2a2 
' 

:1 IS :q 
BALE 

' :~ 
: Ctz53 

n IS ·q 
HLDA ' 

:Ct2as 1Ct2s4 

~ SBHE#, :: t1 SA(16:0) FLOAT FLOAT 

' a ' a ' 
SA(19:17) • FLOAT :: : • FLOAT 

:Ct2as ' ' ,Ct294 

t1 LA(23:17) :: 
' 11 FLOAT : FLOAT 

SD(15:0) . FLOAT I I FLOAT I 

MEMR# 

tJ ' MEMW# FLOAT :: : tJ IOR# 
FLOAT 

IOW# , 
' Cl233 ' : Ct2a1 

240814-33 

Figure 7.1.26. ISA Bus Controller Refresh Cycle 

5-822 



intJ 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 
(16 MHz) 

SYSCLK 
(8 MHz) 

HRQ 

HLOA 

BALE 

MASTER# 

S8HE#, 
SA(16-0) 

LA(23-17) 

SA(19-17) 

S0(15-0) 

CMO# 

Tl or Tc Th Th Th 

_J 
I 

' ' 
' : Ct~63 
~ ~ 

ct2s1: 

' ' 
__ _,:_c_12_._2._....i_. ____ ,:+-: Ct2ss 

' 
: Ct2es :-; 1 1 

' ' Float ' j;--: 
: I >--------:------~ 
:ct2ss:-1 : , : 

' Float ' ~ : i >--------;------ ~ 
ict2ss-\ • i 

' ! ' Float ' ;.,---7-: : )--------:------~ 
I I l I 

' ' 
)--!~~--:...- - - -----..!-__ ..,.. __ ,_.J, l l 

'Ct223~ 
I I I Float 

240814-A3 

Entering External Master Mode 

50(7-0) 
___ x: 

50(15-8) :x ...... __ 
240814-A5 

Byte Swap Delay-External Master Read 
from an 8-Bit Resource 

ISACLK2 
(16 MHz) 

SYSCLK 
(8 MHz) 

HRQ 

HLOA 

BALE 

MASTER# 

SBHE#, 
SA(16-0) 

LA(23-17) 

SA(19-17) 

50(15-0) 

CMO# 

Th Th 

~61° 

' 
Ct2e3 :----: ' 

' 
' 

1 : Ct28-4 :--; 

Tl 

_.;._~"!'I_ ___ - -~-- ~-<--~-----
1 I l , 

: : Ctze• :-1 ....... -----
- ~-~~t_ ___ - -~--~~ ...... -----

1 1Ctze4-\ 
1 Float 1 1 ,,...... ____ _ -:---------:--:-< ...... ____ _ 

: ct2e1; 

Float 1 ~;·.,·-----
- - - - r- -~-

240814-A4 

Exiting External Master Mode 

50(15-8) 
___ x: 

C\294 ... ~----. 

50(7-0) :x ... __ 
240814-AS 

Byte Swap Delay-External Master Write 
to an 8-Blt Resource 

Figure 7.1.27. ISA Bus External Bus Master 

5-823 

I 



intJ 386™ SL MICROPROCESSOR SuperSet 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ts~ 
.a !i _l _ 
~--ON-- - --r 

--- --- _l _ _( ---

~ 
-~--

_l 

r 

-~r- --!c - -
0- - ~ 

.., 
- -~ -

§ 
__ T -

~ 
--- _(_ 

El - - -
~ 

- ~ ----
0 

... _..,_ 
~ 

_:r--~- --- --- ----

Figure 7.1.28. ISA Bus External Bus Master to Off-Board 1/0 Ports (No Byte-Swapping) 

5-824 



intJ 386™ SL MICROPROCESSOR Superset 

7 .1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 
{16 MHz) 

SYSCLK 
(8 MHz) 

MASTER# 

SBHE#. 
SA(19-0) 

LA(23-17) 

IOCS16# 

IOR# 

SD{15-0) 

IOCHRDY 

ISACLK2 
{16 MHz) 

SYSCLK 
{8 MHz) 

MASTER# 

SBHE#. 
SA(16-0) 

LA(23-17) 

IOCS16# 

IOW# 

SD{15-0) 

IOCHRDY 

Th Th Th Th Th 

~""-~:~~~,,_•_an_d~~~.;--~~-JX~-' ~­
' 
1 • Ct2a9 

~~!_..._: __ _.__va_nd _____ ~__.X~----
ct290 :-t-; ' \...____,___, __ __,_ ___ _,r-
C\286 '". ,_. ___ .,:_.: C\231 

\ ........ ' ___ __._--JI 
'C\278 
~ 

---------~--------.---------_,X~-:~j ___ .a_n_d ____ , .. X~-------
Ct291 

External Master Read from On-Board 1/0 Ports 

Th Th Th Th Th 

Ci226 ;..-..: 

~--..... : ______________ •a_n_d ____ _. ________ _,X..._' ____ __ 
' 
' C\289 

~~! ........ : __ ...._ ___ .a,_rd _____ __.X,~----
ct2eo :-t-; 

: t,~ _____ __.;.,_.;...__ ...... r--
Ct2s& ~. ,_. ___ _,· ' _____ _.. ___ ..,,,; C\231 

' ' C\293 
'Ct2s1~ ~ 

' t~_·..., ____ .a_,_,d __ .... _____ , ... x~----

External Master Write to On-Board 1/0 Ports 

240814-36 

240814-AB 

Figure 7.1.29a. ISA Bus External Bus Master to On-Board 1/0 Ports (Read/Write) 

5-825 

I 



intJ 386TM SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 
(16 MHz) 

SYSCLK 
(8 MHz) 

MASTER# 

Th Th Th Th Th 

C\226 ;-+: 
SA(:'::~ ::::::X~:__..: ___ _.__va~ll~d--1:~ 

' 
LA(23-17) ::::::X : valid :~ 

Ct245~ 

MEMCS16# : : \~---,-:;.-----(\!1---..---------',.----
Ct2aa • ........ ~---.-.: Ct231 

MEMR# 

SD(15-0) 

IOCHRDY 

ISACLK2 
(16 MHz) 

SYSCLK 
(8 MHz) 

MASTER# 

' ' :---+; C\277 _____ ....,. ___ .._...,. ___ ~ 
Ct295~ Ct :...._,'..--------.! 
Ct297 I I I 296 I : ct216 I 

: \ ' -' ~1----
External Master Read from On·Board Memory 

Th Th Th Th Th 

C\226 ;..: 

SA(:'::~ ::::::X~i-.!---...--va_u_d--1::1---..---JX._ ___ _ 
' 

LA(23-17) ::::::X: , valid ::-~---~X._ ___ _ 
Ct2"5:~ 

MEMCS16# , '\~---'----....(~ 
ct2ss, ' 1 ' · _____ ....;. ___ ,~ C\231 

MEMW# 

SD(15-0) 

: : Ct279 I 

~ :-..;ct2so 

___ _..., __ ~;_,_; ~.~:-....... _va_1~_~,x:::::::: 
' C\295 ~ :-.; C\296 _____ ....,. _______ · __ ~: \.----.s.1----~'-----------

IOCHRDY 

External Master Write to On-Board Memory 

240814-34 

240814-A? 

Figure 7.1.29b. ISA Bus External Bus Master Accesses to On-Board Memory 

5-826 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

Fl 

CYCLE 0 

T2 

CPU ADDR + CTL CPU ADDRESS 0 

RAS# t-----(" 

CAS# 

Tl 

CYCLE 1 

T2 

CPU ADDRESS 1 

WE#b"~I 
I. C\501 C\501 C\509 

J I I 

T2P 

CYCLE 2 

TlP T2P (T21) 

CPU ADDRESS 2 

C\555 

C\577 

CYCLE 3 

Tl T2 

CPU ADDRESS 3 

} 
'I 

C\5571 C\551.I C\~45 C\549 

C\553 b tJ 
Moo- MDl 5 t----+---+-F==J::=f=i(!R§o]o~A;---~A~ K!!w!R~DA~T!A=*--+---

Ct5a!E93 Ct~a1 ct685 

PARH/PARL -----+---------H--c:~· PARITY 

Figure 7 .1.30. 386™ SL CPU Memory Controller Timings 
(DRAM F1 Mode Timing Parameters) 

5-827 

240814-37 



intef 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

Fl 

CYCLE 0 

T2P T1P T2 T2 T2P TIP T2 T2P (T21) 

CYCLE 3 

TIP 

01 : 02 01 : 02 ' 01 : 02 : 01 : 02 ' 01 ; 02 01 ; 02 ; 01 ' 02 ' 01 ; 02 01 ; 02 

CPU ADDR + CTL i...x CPU ADDRESS 1 X CPU ADDRESS 2 X CPU ADDRESS 3 

Ct539 

E _____ l..lt\. __ ~------~----~ 
M ets41 

Cl535 I ,.._. ____ Ct537 

MA(10:0) l--A.;.(1_1:..,;1)~+---)i('":l;: ........ A(:,;,,19;..:1_2.;.,) ,.K:l"+----1--A.;..(1_1:..,;1)-+--'"l._-+--A.;.(1_1:..,;1)-+----+---')'"ll::'-

CE# --,~1 Ctll .rl 
1--------------Ct---------·Cts13 

~ Cts11 1---+1 
WE# 1----+--/ ctsos 

1-+-i 
OE# 

Cl503 

1----+-----+--~'\.I·\-- H Cts1s 
DIR !lo. 

Ct533 
t--

Ct521 t- -1:=_ J 
Ct531 Ct529 

DEN#" / 

Cl515 Cl517 

I. !... :1 
MD(15:0) l-~W:!!_R_!?;DA~TA!..j. _ _,'r1---r-r--1--.Yfl!R!;!.D ~DA~TA~'--r-1-.,~~-1-..:w~R~D~A,!!TA~I-_)! JT ·1 

RAS# 

CAS# 

WE# 

Cl501 

Figure 7.1.31. 386™ SL CPU Memory Controller Timings 
(SAAM Mode Timing Parameters; 2 Wait States) 

ct555 Ct579 

7 ' 
{ 
l 

Ct702 Ct703 

J. 
ct70J 

Ct705 

Figure 7.1.32. 386™ SL CPU Memory Controller Timings 
(CAS# before RAS# Refresh Timings) 

5-828 

240814-38 

7 

240814-39 



intJ 386™ SL MICROPROCESSOR Superset 

7.1 386™ SL CPU Timing Diagrams (Continued) 

ISACLK2 

SYSCLK 

MEMR# 
MEMW# 

MA{10:0) A{19:12) A(11 :1) 

ISACLK2 

SYSCLK 

MEMR# 
MEMW# 

RAS# 

Figure 7.1.33. REFRESH, OMA/MASTER Timing Diagrams 
(Address Active Delay from SVSCLK) 

Figure 7.1.34. REFRESH, OMA/MASTER Timing Diagrams 
(RAS# Active Delay from SYSCLK) 

ISACLK2 

SYSCLK 

PERR# 

Figure 7.1.35. PERROR Timing Diagram 
(PERR# Active Delay from SVSCLK) 

5-829 

240814-40 

240814-42 

240814-44 

I 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams 

SYSCLK 

RTCRESET# 

RESETDRV 

PWRGOOD 

CPURESET 

RC#, PERR#, 
IOCHCK# 

IOW# 

NMI 

HALT# 

A20GATE 

KBDA20 

SYSCLK 

TIM2CLK2 

KBDCLK 

1----' 

.1t5 :,'---~---+--------...i.--~--~~------­,-. 

1 ltaa 

ltsa 

;---.:·, -------

: lt1oa 
' ' ,--.;.,,,.....,_ ___ ._ ........ 

~:'"'_. __ _, 
: l\222 

,_., 
' lt~b 

240814-46 

Figure 7.2.1. CPURESET, NMI, A20GATE and RC# Timings 

lt2 

l\35 

lt 1 

--; : ;-.. lt4 
l\3 

,,, 
' 
' ' 
l\35 

__.....; : ;-.. lt39 
lt37 

'" 

' ' 
l\109 

1111 t 
l\110 

Figure 7.2.2. Clock Timings 

5-830 

' 
: lt7 
,_._-; 
' 

240814-47 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

l ( 

J 
l fil ~ 

-+--'lr----+----1 ~ t----.--4-----1------" t----+---
~ ~ 
a ~ 

~ ~ 

J 
l 

_.fJ- --il-
- v-

"' UJ O' ""' 9. ""' O' ~ ...J ...J ~ ~ (.) < .;; Q .... ,:.; ~ 

~ CD Q .::. 'O' 
I I 

'O' 
I 

:I: 
(.) 

Cl) < Cl) Cl) Q Cl) 

Figure 7.2.3. ISA Bus 8-Bit 1/0 Read/Write Default Bus Cycle (6 SYSCLKs) 

5-831 

I 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing.Diagrams {Continued) 

TS TCW1 TCW2 TC TS 

SYSCLK 

LIOR# '+-----4------1--": l\204 

READ 

WRITE 

(7:0) 

_, 

[

IOW# 

(7:0) 

,_ ______ .,_ ____ , 
I 

~ 

ZEROWS# 1 

I 
I high 

IOCHRDY 

WRITE DATA 

__ 1t_20_3__,~_.'--; 

,~lt2041 ___ __. __ _ 
READ DATA 

I 

i l\202 
I ' ,---, 

Figure 7.2.4. ISA Bus 8-Bit 1/0 Read/Write Compressed Bus Cycle 

5-832 

240814-49 



intef 386™ SL MICROPROCESSOR Superset 

7 .2 82360SL Timing Diagrams (Continued) 

SYSCLK 

DMACLK 

DR Ox 

HRQ 

HLDA 

SYSCLK 

MASTER# 

HLDA 

REFRESH# 

REF"REQ 

HRQ 

240814-67 

Figure 7.2.5. OMA Controller Timings 

~ 
I I 

I I 

' ~ ......... ~~~ ... ~"'-~~~~--
: lt311 : lt314 I It I It 

i--~~~~....:~~·i....-;.~~~~~~~-:~ ~ ~ 

Figure 7.2.6. Refresh Arbitration Timings 

5-833 

I 
I 

240814-68 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

><: 0 "' d S· ,:: 
0 

~ "' 0: 
0 0 

- J_ -
----T 

.. 
N 

J_ 
r 

.::t:: - - - - -

J_ ____ _ 

T 

0 9 .. 
"' I 

"' 0 

"' .. 
><: 

~ 

J.L --
--t ---------------

"'~ 
___ l 
.,~T 

__ L 

J_ -

_j_ 

f 

_f _______ T 

_J ----

... .. .. ;:\' .. 
I 3' "' ~ ~ 

z 0 '!! 

"' 
3' "' ,:: "' "" a Q a Q "' .. ... ... 

~ ><: 

" " 0 "' 0 

Cl 
Q 

Figure 7.2.7. OMA Memory Write Timings 

5-834 

.. .. 
' .. "' " 0 

~ 

_j_ 

f 

_j_ 

--------r -

O> ::r ~ .. 
"' ~ .. 

"' "' 

i:i 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

----r ------

d '?. '!? 
"' .... 

"' 0 ~ >- 0: 
0 0 "' 

1 ------ f 

0 

"' :J: 

_[ 
-- f 

9 "' I 
0 

:J: "" "' a 
.... 
I ., 
"" "' u 
Cl 

.L 
T 

"" ~ a 
"' 

"" "" "' "' Q a 
"' 

.c 

~ 
"" i5 ~ ~ '?. ., 
~ 0: .. .... ,;; 
Q .. :J: ., :; u "' Q "' 

Figure 7.2.8. OMA Memory Read Timings 

5-835 

"" ~ .. oii 

' 
... :; "' ~ "' " 0 

:! '?. ~ 
:J: .... 

0 .. 
"' "' 



inter 386TM SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

. l\27 !l21a. 

~~ 
SYSCLK ' ' 

I o 

I o 

DRQx '.___/.-----..;..., __ ....;.-------~r---, 
I: ·:"'-----.;....-------

: ll333 I 

DACKx# I 

MASTER# 1 

~ ' 
;~--.;--------4~-----.:..--"')(,. 
: lt330 
<....; ' 

:'"-.... -------41-----..J'. 
.......; 1\331 :1\331 

___ ...;.: _~ tt24f ~ AEN 
1 

/ : " , ,,,_ ________ _ 

i----"' : ·~-----------!;1-------../., 
: ' lt332 ~ lt334 

SD, SA ._' _____ _,>~-------<) :: >----------< 
-----' l\332 ----

IOR#, MEMR#, 
IOW#, MEMW# 1 

' ' 

1-------~11--....,,.,/ 
' ' ~l\322 

'----~ 

RErRESH# ,.., --------.. ,:, ---------1r---i,.-------------
lt326 ___; :- ~ lt327 

RErREQ 

240814-64 

Figure 7.2.9. Bus Master Refresh Cycle Timings 

5-836 



infel" 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

=~ur- --~---- -1~~-- ---- -
----- --- -- - -- --- ---- --- -- --------· 

- - 0 :: : le l- -; -- -------
----- --~ -~J __ -_-_-_-_-_ ----~--- ----- -- ------· 

d "' ~ i:' l; :c 

~ ~ ?. ~ ~ !f 
I:; "' u 

IX j i:' "' 2 

2'l 
"' 

1;l 
I ..­.,, 

0 ..-
"' 

Figure 7.2.10. ISA Bus Master Refresh Cycle with IOCHRDY Timings 

5-837 

B 



inter 386™ SL MICROPROCESSOR SuperSet 

7.2 82360SL Timing Diagrams (Continued) 

.. 
.£ 

---~---- ----- ---
ft 
2 .. 
"' 2 
Q. 

:! -(- - - - j_ - -... ·r- -_::_ - - ~ 

l 
"' Q 
x 

Figure 1.2.11. X·Bus Control Slgnale-Meinory Read Timings 

5-838 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

" ~ .... 

"' ~ u .... 

"' 
~ 

"" "' ...J ...J 
u "' !C Ill 

VI 

VI 
VI "' "' 

.... 
gl--- "' c 

"' "' !::: 
c "' :::; ~ 

"' > 

9.''E 
,...,_,... 
oc 

~~ 
ci:i VJ 

15' ... ~ VI 
VI j 

"" 
,... 

:i3 "" ~ c z ,. x "' "' '.ii ,. c ,. "'0 x 
VI "'"' ,. 

.,; VI 

:;( 
VI 

Figure 7.2.12. X-Bus Control Signals-Memory Write Timings 

5-839 

0 

"' 

"' iS 
x 

'° '° I 
" 
~ 
"' 

I 



intJ 386TM SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

I I I . . 

--------------------'-----
0 ..... ""' ..... .,,., 

""' .;; 0 0:: 0 ~~ z x Q Vl "" .::, (.) N 0 

<( 
~ ... x 

Vl 
i...O 

"' (.) 

Figure 7.2.13. X-Bus Control Signals-110 Read Timings 

5-840 

0 

"' 

0:: 
Ci 
x 

"' "' I 
~ 
"' ~ 



'Tl 

~ .. 
CD 
..... 
i.J :.. 
~ 

~ 
; 
fl 
3. 

<!1 a 
O> -
.j>. en 
..... il 

::J 

i 
...... 
0 
:e 
i 
::! 
3 
S' 
~ 

TS TCW1 TCW2 TCW3 TCW4 TC TS 

"""-' 
1___.. 

I ~ j~~~,~~~~~~~~~~~~~~~~~~[2~!!!!~~::::::::~~~~~~~~~~~~~~ I 1 it205 I BALE I ..._____,_, 

I ' lt206: 
I ' I 

VALID ADDRESS ), 
ll21B _, 

h 
*-'. 
: ll202 

SA(15:0) ,_1 ___ _, 
I 

I ~ I I WRITE,DATA I I : : 
I : : lt201 , 
I 1,~t 

SD7 

IOW# r 1 ' ../ 
I I I 1 

I I I ,.-; lt211 
I t I I 

I lt210-1 '~ ~ ll211f 
' ,,------ 1 

XD7 : I ~ WRITE DATA I I 

I I 
I 

, ltso 
I 
I 

I 

rLPCS#, 
C8042CS# I 

: lt59 
t..--.; 
' I ,______'~..J~~~~~~ I I 

I 

I 

l 
XDEN# I 

I 

I 

I 
I 

lt~14 
~ 

~ I I 

I 

I 
I 
I 

I ll214' L __ 

I I:-;: 
XDIR ~1:1o:w~~--~~~~~~~~~~~~~~~~-1-~~~~~~-+~~~~~~-t~~~~~~-t~~~~~~-t~~~~~~-

240814-66 

II 

:"" l N 

co 
N 
c.> 
O'I 
0 
CJ) 
r- w 

CD 
-I O> 

3· -i 
i: 

s· CJ) 

co r 
c ;:: 
iij' 0 
co ::u ... 0 
D> 'ti 
3 ::u 
en 0 
0 (') 

0 
m 

::> CJ) 

g CJ) 

c: 0 
CD ::u .e, CJ) 

c 
"O 
111 ... 
CJ) 
111 -
~ 
l§ 

~ 
~ 
© 
liiiil 
= 
~ 
"iii] 
@ 
221 
~ 
~ 
SJ = @ 
~ 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

II) 
>-

~ 

,,,. 
== ~ 

"' 
== ~ 

N 

~ 

~ 

!!! 

I I I I I I I 

L ~ ( 
~ 

}J\ - - - -

-A-JI_ 
- - - - - - - - - - -

( II) 

~ II) 

"' "' ~ 

( 
g1-

!:! <( 

0 "' ::; 
== ~ 

O> 

"' ·~ 

- - -

"' 0 

"' ~ 

J T-
- - - - - - - - - - - -~17--

ofJ~ 
~ 

Ln(;p1 -v-- -

rb~- ·[ -

.c .c 
!?! !?! 
.c .c - - ------- - - - - - - - - - - --------

>< "' 9. ....... "" II) ~ "" "" -' -' 0 
0 <( ,;.: == ~ ~ z 
~ "' "' Q 0 "' ~ CS' >- 0 
II) "' "' ~ x 

8 

Figure 7.2.15. 1/0 Port 70 Hex Write-External RTC Timings 

5-842 

1 
- -

"' iS 
x 



inter 386™ SL MICROPROCESSOR SuperSet 

7.2 82360SL Timing Diagrams (Continued) 

[ ( ... 

i \ ""' r:. it 
~-r 

- . f ' :- - ~-
I!! .. ~I~ __ [__ ~ 

.., 
- . .,.r . .... _ - - ~ 

-- - --~~---- - - - -~~L- ~. 
;!: 

Q 

Q 

1 
~ ~ ... Q "' N 

N ~ .. 
~~--r~~~: ~ "' 

---v------

... 
~ 

U) 

l:l 
"' Q 
Q 
<( 

Q 
:::; 

"' ~ ~ 
~ 

N i ~ 
~ 

" "' _-.:. 

) ff-/-· !17-· T' ('II - - - -

i 
~ 

I!! 

"' "' ..J ..J 
0 <( 

~ 
m 

.. . - - - - - - - - - - ---r - - - -- -- - ---l 

.c 
g 1 .c - - - - - - - - - - - - - - - - - - - - - - - - - -

9. E; "" E; "" ~ ~ "' ~ 
"' x Q U) 

"' ~ .:;. ~ "' 8 8 

Figure 7.2.16. 1/0 Port 71 Hex Read-External RTC Timings 

5-843 

- - - - -
"" "' ~ s 
Q x 
x 

- -

El 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

) 
L 

"' --' < m 

I I 

Vl 
~ ~ 

"' ~ g 1--
< !:! 
0 "' ::i 3::: 
~ 

O' " 0 
oii Vl 

.:::. 
< 
Vl 

:f =r"'~=r-:.-= 
iiki--- .f ~~r 
----- - ---~-'--

~ 
!:! 
"' 3::: 

I I 

--- }J_ 

.c "' . . ___ :c ___ -2____ .9 --

"" " "" Vl Vl "" "' 3::: 0 3::: 0 tS z i5 
Q x "' ~ "' ~ 

.... 0 x 

"' "' x 
"' 

.... .... .... x x 
x "' "' "' 

Figure 7.2.17.1/0 Port 71 Hex Write-External RTC Timings 

5-844 



"Tl 
tl!i c 
~ 
..... 
i.> 
:... 
pi 

p 
!'I 
if a. 
c 
j: 

~ ~ 
.j>. :I 

U1 ~ 
!e. 
IC 
:I 

f 
::::: 
0 
::u :: 
CL 
.... 
3 
t 

SA(15:0) 

XD7, HD7 

IOR# 

SD7 

HDCSO#, 
HDCS1# 

HDENL#, 
HDENH# 

XDIR 

OCS16# 
(for 16blt 

transfen1 only) 

TS TCW1 TCW2 TCW3 TCW4 TC TS 

: I I - .,,. I ' .,,, 
I }(I I I I I v.a.1 1n a.nnll~"'-"' 

r 
I 

I 
I 

I I 

I I 

I 

I I 
I 

I I 

I I 

I 
I 
I 

...,. 
../ 

J READ DATA 1 
~ 

I I I I . I 
., : ,/ 
I : lt216 : It 

I , I 217, ,__, ~ 

I I 
I 

I I 
I 

,_ 
I I 

I I I 

I I 
I 

I I 

I I I 

I :1t59 
I 
I 

I :-; I 

I I 

I 
I I 

I 

: lt50 ' 

!.---, --+-----' ,,. I 

I 

~ _,, _> 
READ DATA 

~ 

I 
I I 

I :lt21~ 
I ,__, 

I 

I 
I 
I I 

I 

: lt219a 

~--+-----
I 
I 
I 
I 
I 

R I 
I 
I 
I , I I I I D I 
I 

240814-57 

• 

:""' cl I\) 

CD 
I\) 
Co) 
0) 
0 
en r- w co 
::t 0) 

-I 

3 ii: 

s· en 
ca r-

c s: 
ii' 0 
ca ::D 
; 0 

"ti 
3 ::D 
UI 0 
() 0 
0 

m 
a tJ) 

:;· en 
c: 0 
(1) ::D .s en c 

'ti 
CD ... en 
CD -
~ 
l§! 

~ 
~ 
© 
liW 
c::::I 

~ 
'liil 
© 
:?2J 
~ 
~ 
C::J 
c::> 

© 
~ 



inter 386™ SL MICROPROCESSOR Superset 

7 .2 82360SL Timing Diagrams (Continued) 

" ..J 
u 

~ 

---~J_/--
"" 

~ 
- -- ---~---------- ---------= 

Figure 7.2.19. l.D.E. Hard Disk Control Signals-1/0 Write Timings 

5-846 



intef 386™ SL MICROPROCESSOR Superset 

7 .2 82360SL Timing Diagrams (Continued) 

COt.IXl 

IOW# 

COt.IARTS#, COt.IBRTS#, 
COt.IADTR#. COt.IBDTR# 

,.._ ________ J 

: lt94 

~ 
' 

: lt94 

~ 
··~-------

240814-59 

Figure 7.2.20. Serial Port Controller-Modem Control Signal Timings 

TS TCW1 TCW2 TC TS 

SYSCLK • 

INTA# 
: lt123 

:--' ,---; lt123f 

' ' 
SD(7:0) READ DATA 

Note: Interrupt requests are asynchronous 

IRQl,6, 10:12, 14, 15 1 

INTR 

240814-60 

Figure 7.2.21. Interrupt Controller Timings 

5-847 

I 



386™ SL MICROPROCESSOR SuperSet 

7.2 82360SL Timing Diagrams (Continued) 

SYSCLK 

asynchronous lt36 :-----: 
TIM2CLK2 ---, 1137 

~ 1143 

I ~~·-~~~~~~-

TIMGAT2 ;.-.--.JI ~'------.J 
1141 . ' 

/. 1140 \ 
1145 1144 

' 

>k ' x 
I I TIM20UT2 .... : ---------r------' ____ x 

: 1145 

/ 
<.--..; ___ _ 

SPKR ----.;.l .J/: ""-----..J " 
240814-52 

Figure 7.2.22. Programmable Interval Timer/Counter Timings 

5-848 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

SYSCLK 

RESETDRV 

SYSCLK 

lt1 

DMA8/16# 
1--~~~~~~ ....... 'I 8 MHz OMA CLK 

SYSCLK 

lt1 

IOR#, IOW#, MEMW# - - - - - - - - - - - - - - - - -

SYSCLK I 
IOCHROY (o/p) 

240814-41 

Figure 7.2.23. RESETDRV, DMA8/16#, Command Signals and IOCHRDY with Respect to SYSCLK 

5-849 



intef 386™ SL MICROPROCESSOR Superset 

7.2 82360SL Timing Diagrams (Continued) 

SYSCLK 

REN 

IOR#, IOW# (o/p) 

XDEN#(o/p) 

SYSCLK 

IOR#,IOW# (o/p) -----1 
MEMR#, 
MEMW# 

LA17:23 

SYSCLK 

HALT# (f/p) 

Figure 7.2.24. AEN and HALT with Respect to SYSCLK 
XDEN# and IOR#/IOW# with respect to LA17-23 

5-850 

240814-43 



intJ 386™ SL MICROPROCESSOR Superset 

7 .2 82360SL Timing Diagrams (Continued) 

SYSCLK 

STPCLK# 

SYSCLK 

SMI# 

SYSCLK 

SMOUT0:5 I 
SYSCLK 

SUS_STAT# 

240814-58 

Figure 7.2.25. System Power Management Control Signal Timings 

5-851 



intef 386™ SL MICROPROCESSOR Superset 

8.0 CAPACITIVE DERATING 
INFORMATION 

In the timing diagrams shown in the previous sec­
tion, all maximum timings specified are at a maxi­
mum value of capacitive load tested on the signal 
pin. This maximum value is different for different pins 
and can be obtained for each pin from the pin as­
signment table in section 2. The delay introduced to 
signal transitions at the maximum specified load will 
be called the nominal delay. If, however, either a 
lighter or heavier capacitive load is connected to a 
pin, signal delay will change. To allow the system 
designer to account for such loading differences, ca­
pacitive derating curves have been provided in this 
section. 

The derating curves for different pins depend on the 
internal buffers used. Nine derating curves are pro­
vided to account for the various classes of internal 
buffers used with different delay characteristics. To 
use these derating curves, follow the procedure out­
lined here. 

1. From the Pin assignment chart, find the letter in 
the column "Derating Curve" corresponding to 
the signal under consideration. 

2. In this section, find the derating curve of the cor­
rect type. 

3. Calculate the capacitive loading on the signal un­
der consideration. 

4. Find this load point on the capacitive load axis of 
the derating curve. 

5. Project a vertical line to the derating curve from 
the load point and draw a horizontal line from the 
point the vertical line intersects the curve. 

6. Estimate the amount of time from the nominal 
point to the point where the horizontal line meets 
the delay axis. This is the derating value. 

7. If the point where the horizontal meets the delay 
axis is above the nominal value, then this derating 
value should be added to signal timings shown in 
the timing diagrams. If the horizontal meets the 
delay axis below the nominal value, the derating 
value should be subtracted from the signal tim­
ings. 

8. The derating curves shown can be used in identi­
cal manner for both rising and falling edges of the 
signal. 

5-852 

nom+10 

nom+5 

..... 
5 nom . ..--~~~~"" 

~ nom-5 
~ 

nom-10 

nom-15 

0 load 1 50 load 2 

Capacitive Load (pF) 
240814-69 

Using The Capacitive Derating Curves 



386™ SL MICROPROCESSOR Superset 

nom+10 
'iii' 
5 ,., nom+S 
" Q; 

0 

nom 

nom-5 

0 
0 50 100 150 200 250 300 350 400 450 500 

Capacitive Load (pF) 
240814-70 

Type A 

'iii' 
5 nom+5 ,., 
.2 .. 
0 nom 

nom-5 

0 I 0 50 100 150 200 250 300 350 400 450 500 

Capacitive Load (pF) 
240814-71 

TypeB 

nom+S 

nom 
~ .. 
5 ,., nom-5 
" Q; 

0 

nom-10 

0 
240 

0 so 100 150 200 250 300 350 400 450 500 

Capacitive Load (pF) 
240814-72 

TypeC 

Capacitive Derating Curves 

5-853 



intef 386™ SL MICROPROCESSOR Superset 

nom+5 f 

nom-10 

0+-~+-~+-~+-~........,2~~:!-+~--+-~-+-~-+-~-+-~-< 

0 50 100 150 200 250 300 350 400 450 500 

Capacitive Load (pr) 
240814-73 

TypeD 

nom+5 
";;' 
5 ,., nom 
.!2 .. 
0 

nom-5 

nom-10 
0 

0 50 100 150 200 250 300 350 400 450 500 

Capacitive Load (pr) 
240814-74 

TypeE 

nom+15 

nom+10 
";;' 
5 ,., nom+5 
.!2 .. 
0 

nom 

nom-5 

0 
0 45 50 100 150 200 250 300 350 400 450 500 

Capacitive Load (pr) 
240814-75 

TypeF 

Capacitive Derating Curves (Continued) 

5-854 



intJ 386™ SL MICROPROCESSOR Superset 

'iii' s 
>. 
..2 .. 
c 

'iii' s 
>. 

..2 .. c 

nom+10 

nom+5 

nom 

nom-5 
0-1--~+-!-;--<~-+~-+~-+-~-+-~-+-~-+-~-+---' 

5065 100 150 0 

nom+10 

nom+5 

nom 

nom-5 

0 

25 

20 

15 

10 

5 

200 250 300 350 400 450 500 

Capacitive Load (pf) 

TypeG 

150 200 250 300 350 400 450 500 

Capacitive Load (pf) 

TypeH 

O+-~-+-~+-~+-~+-~+-~+-~+-~+-~+-~ 

0 50 100 150 200 250 300 350 400 450 500 

Capacitive Load {pf) 

Type I 

Capacitive Derating Curves (Continued) 

5-855 

240814-76 

I 
240814-77 

240814-78 



intef 386™ SL MICROPROCESSOR Superset 

,-,urn-2 

nom-4 

] nom-6 

~ 
~ nom-8 

10 60 110 160 210 240 

Capacitive Load (pr) 

240814-79 

TypeJ 

nom 

nom-2 

1 
"' 

nom-4 
.2 . c nom-6 

10 60 110 160 210 240 

Copacltlve Load (pF) 

240814-80 

TypeK 

10 60 100 110 160 210 

Copacltlva Load (pr) 

240814-81 

TypeL 

Capacitive Derating Curves (Continued) 

5-856 



intJ 386™ SL MICROPROCESSOR Superset 

nom+4 

nom+2 

,., 
~ nom-2 
0 

nom-4 

10 so 60 110 160 210 

Capacitive Load (pr) 
240814-82 

TypeM 

Capacitive Derating Curves (Continued) 

9.0 DAMPING RESISTOR 
REQUIREMENTS 

The SL Superset has powerful output buffers capa­
ble of directly driving large loads. These buffers are 
designed for fast signal transition times and hence 
have low output impedence. Due to a mismatch be­
tween the output impedance of the buffers and the 
characteristic impedance of the load (trace capaci­
tance and the total number of devices) voltage over­
shoot and ringing can occur at signal transitions. By 
matching the output impedance with the characteris-

tic input impedance and avoiding long trace lengths, 
the system designer can minimize the transmission 
line reflections and ringing. 

The ringing at signal transitions of address and data 
lines cause long unstable periods. Ringing on con-1 
trol signals can cause false latching. To minimize the 
ringing effect series damping resistors may have to 
be connected. For additional hardware system de-
sign information, consult see the 386™ SL Micro­
processor Superset System Design Guide (Intel Or-
der # 240816). 

5-857 



intJ 386™ SL MICROPROCESSOR Superset 

10.0 MECHANICAL DETAILS OF LGA 
AND PQFP PACKAGES 

This section contains mechanical details of the two 
types of packages used in the SL Superset to help 

design the parts in. For more detailed information on 
packages and package types, please refer to 
"Surface Mount Technology Guide" (Order 
#240585) 

227L CERAMIC LAND GRID ARRAY (CAVITY UP) 

L_ 
r- 7 CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ• tr CJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJ 

45° X F CJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 

l CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 01 0 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 02 
CJ CJ CJ CJ CJ CJ 

J 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 
CJ CJ CJ CJ CJ CJ 

8 SQ._~ CJ CJ CJ CJ CJ CJ 0 CJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJ 

l-tl71 I I I I l'-?CJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJ•• ...... "' . . ... I .• °'" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ".~ ~-,__ I 
G 3l., 01 

0 

8:J 
240814-88 

Family: Ceramic Land Grid Array Package 

Millimeters Inches 
Symbol 

Min Max Notes Min Max Notes 

1 3.56 4.06 0.097 0.120 

A1 0.33 0.43 0.009 0.017 

B 0.69 0.84 0.027 0.033 

0 28.96 29.46 1.140 1.160 

01 26.67 Basic 1.050 Basic 

02 24.13 0.950 

e1 1.27 Basic 0.050 Basic 

F 1.65 2.16 0.065 0.085 

N 227 227 

Issue 4/17/90 

Figure 10·1a. Principal Dimensions of the 386™ SL CPU in a 227-Lead LGA Package 

5-858 



intJ 386™ SL MICROPROCESSOR Superset 

0.650 ----1 
I 0.138 DIA 

/ 4 Places 

0.0625 DIA 

2 Places r 
r 

0.650 
0.500 

1 l + 
0.650 

~ ----~·~·,J4 _ __,__J 

I 1-- 0.5000 --i 

'-- 0.6500 -+j 

Figure 10-b. Recommended LGA Socket Footprint 

/ 000000000000000000000 
0000000000000000000000 
0000000•00•00•00•00000 
ODO DOD 
ODO ODO 
ODO DOD 
DD• DOD 
DOD •oo 
DOD •oo 
O O • TOP VIEW o O O 

0 • • OF 0 0 0 
o•• •oo 
O. O PCB LAND PATIERN • O O 

ODO ODO 
oo• ODO 
DOD •oo 
ODO DOD 
ODO DOD 
ODO ODO 
0000000•00•0•00000•000 
00000000•0•0••00000000 
0000000000000000000000 

240614-90 
• All power pins can be routed towards the middle. 
• Outer two rows route outward 
• Clock pins should have shortest possible traces, then via to shielded inner layer. 

240814-89 

[SJ Vee CONNECTIONS 

• Vss CONNECTIONS 

D NO CONNECTS 

D CLOCK PIN 

240614-91 

Figure 10-1c. Recommended Signal Routing for LGA Package 

5-859 

I 



~\ 

intef 386™ SL MICROPROCESSOR Superset 

.,..._~~~~-~--------i'l~l_-$-'--'-l_o._20_<_0._oo_s>_@_M~lc_l~A-®_-_e@_s~lo_®~I 
----- o, -----~ 

240814-92 

Figure 10-2a. Principle Dimensions of the 82360SL 110 in the 196-Lead PQFP Package 

Family: 196-Lead Plastic Quad Flat Package (PQFP) 0.025 Inch (0.635mm) Pitch 

Millimeters Inches 
Symbol 

Min Max Min Max 

A = Package Height: Distance 
from seating plane to highest 4.06 4.32 0.160 0.170 
point of the body 

A 1 = Standoff: Distance from 
0.51 0.76 0.020 0.030 

Seating Plane to Base Plane 

D/E = Overall Package Dimension: 
37.47 37.72 1.475 1.485 

Lead Tip to Lead Tip 

D1/E1 = Plastic Body Dimension 34.21 34.37 1.347 1.353 

D2/E2 = Bumper Distance 38.02 38.18 1.497 1.503 

D3/E3 =Lead Dimension 30.48 Ref 1.200 Ref 

D4/E4 = Foot Radius Location 36.14 36.49 1.423 1.437 

L 1 = Foot Length 0.51 0.76 0.020 0.030 

NOTES: 
1. All POFP case outlines are being presented as standards to the JEDEC. 
2. Typical board footprint area for the 196-lead POFP is 1.500 inches x 1.5000 inches. 
3. All dimensions and tolerance conform to ANSI Y14.5M-1982. 
4. Datum Plane -H· located at the molding parting line and coincident with the bottom of the lead where the lead exits the 
plastic body. 
5. Datums A·B and -D- to be determined where the center lead exits the plastic body at datum plane -H-. 
6. Controlling dimension in inches. 
7. Dimensions D1, D2, E1, and E2 are measured at the molding parting line and do not include mold protrusions. 
8. Pin 1 identifier is located within one of the two zones indicated. 
9. Measured at datum plane -H·. 
10. Measured at seating plane datum .c .. 

5-860 



intef 386™ SL MICROPROCESSOR Superset 

0.25 (0.010)@ C A@ - B@ 

0.002 MM/MM (IN/IN) A-B 

0.25 (0.010)@ C A@- B@ 
D, _____ _,__,_-<---'--1-----~~-~~-'--"--' 

0.002 MM/MM (IN/IN) A-B 

3.81 (0.150) MAX TYP 

SEE DETAIL M 

1.91 (0.075) MAX TYP 

-$- 0.25 (0.010)@ c D@ 

_j_ 0.002 MM/MM (IN/IN) D 

-$- 0.25 (0.01D)@ C A@-B@ 

_j_ 0.002 MM/MM (IN/IN) D 

240814-93 

Figure 10-2b. Detailed Dimensions of the 82360SL 1/0 in the 196-Lead PQFP-Molded Details 

SEE DETAIL L 

'--"'----I-+--- SEE DETAIL J 

::;:: __ _____, 

D/E -------+! 240814-94 

Figure 10-2c. Detailed Dimensions of the 82360SL 1/0 in the 196-Lead-Terminal Details 

5-861 

El 



intef 386™ SL MICROPROCESSOR Superset 

l-$-I 0.13 (0.005)@ Jc I A@- e® I D@l/6 

0.31 (0.012) --J 1--
0.20 (0.008) 

0.41 (O.o1 O) 
0 .20 ( 0.008) 

DETAIL J DETAIL L 

0.20 (0.008) 
0.14 (0.005) 

Figure 10·2d. 196-Lead PQFP Mechanical Package Detail-Typical Lead 

1.32 (0.052) 
1.22 (0.048) 

1.32 (0.052) r-
1.22 co.o48) I 

0.90 (0.035) t.AIN. j 
2.03 (0.080) 
1.93 (0.076) 

DETAIL t.A 

0.90 (0.035) MIN. 

_L E2 

2.03 (0.080) 
1.93 (0.076) 

240814-96 

Figure 10·2e. 196-Lead PQFP Mechanical Package Detail-Protective Bumper 

5-862 

240814-95 



386™ SL MICROPROCESSOR Superset 

k=DDDDD~ 1 
r c:::J L.-..J 

c:::J c:::J B Note 2 

0.0125x0.070 - c:::J 
c:::J 
c:::J 

~~DD~ 
Note 2 

Figure 10-2f. Recommended PQFP Footprint 

11.0 REVISION HISTORY 

The First Release of the Advanced Information Data 
Sheet reflects information believed to be accurate 
as of September 1990. 

Please Consult your Local Intel Field Sales Office for 
the most current design-in information. 

5-863 

240814-97 

I 



386™ SX MICROPROCESSOR 

• FuH·32·Blt Internal Architecture • Large Uniform Address Space 
- 8·, 16·, 32·Bit Data Types - 16 Megabyte Physical 
- 8 General Purpose 32-Bit Registers - 64 Terabyte Virtual 

• Runs lntel386™ Software in a Cost - 4 Gigabyte Maximum Segment Size 

Effective 16·Bit Hardware Environment • High Speed Numerics Support with the 
- Runs Same Applications and O.S.'s 387™ SX Coprocessor 

as the 386™ DX Processor • On-Chip Debugging Support Including 
- Object Code Compatible with 8086, Breakpoint Registers 

80186, 80286, and 386 Processors 
-Runs MS-DOS*, OS/2* and UNIX** • Complete System Development 

• Very High Performance 16-Bit Data Bus 
Support 
- Software: C, PL/M, Assembler 

-16 MHz and 20 MHz Clock - Debuggers: PMON-386 DX, 
-Two-Clock Bus Cycles ICE™·386 SX 
- 20 Megabytes/Sec Bus Bandwidth - Extensive Third-Party Support: C, 
-Address Pipelining Allows Use of Pascal, FORTRAN, BASIC, Ada*** on 

Slower/Cheaper.Memories· VAX®t, UNIX**, MS·DOS*, and Other 

• Integrated Memory Management Unit Hosts 
- Virtual Memory Support • High Speed CHMOSHI and CHMOS IV 
- Optional On-Chip Paging Technology 
- 4 Levels of Hardware Enforced 

Protection • Operating Frequency: 
- MMU Fully Compatible with Those of ....;. Standard (386TM SX ·20, ·16) 

the 80286 and 386 DX CPUs Min/Max Frequency (4/20, 4/16) MHz 

• Virtual 8086 Mode Allows Execution of 
- Low Power (386™ SX ·20, ·16, ·12) 

Min/Max Frequency (2/20, 2/16, 
8086 Software in a Protected and 2/12) MHz 
Paged System 

• 100-Pin Plastic Quad Flatpack Package 
(See Packaging Outlines and Dimensions #231369) 

The 386™ SX Microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit external address 
bus. The 386 SX CPU brings .the high-performance software of the lntel386™ Architecture to midrange 
systems. It provides the performance benefits of a 32-blt programming architecture with the cost savings 
associated with 16-bit hardware systems. 

386™ SX Pipelined 32-Bit Microarchltecture 
tVAX® is a registered trademark of the Digital Equipment Corporation. 
*MS-DOS and OS/2 are trademarks of Microsoft Corporation. 
**UNIX is a trademark of AT&T. 
•••Ada is a trademark of the Department of Defense. 

5-864 

HOU>,INTR.NMI 
EMOJ11.1usv1 
llESET,lfLDA 

M/IOf,D/Cf, 
W/ff#,LOCK#, 

=tr'· 
00-015 

240187-47 

October 1990 ' 
Order Number: 24018NI06 



intef 386™ SX MICROPROCESSOR 

Chapter 1 PIN DESCRIPTION ................................................................. 5-866 
Chapter 2 BASE ARCHITECTURE ............................................................. 5-870 
2.1 Register Set .............................................................................. 5-870 
2.2 Instruction Set ...........................................................•................ 5-873 
2.3 Memory Organization ...................................................................... 5-874 
2.4 Addressing Modes ........................................................................ 5-875 
2.5 Data Types .............................................................................. 5-878 
2.6 1/0 Space ............................................................................... 5-878 
2.7 Interrupts and Exceptions ................................................................... 5-880 
2.8 Reset and Initialization ..................................................................... 5-883 
2.9 Testability ................................................................. '. ............. 5-883 
2.10 Debugging Support ....................................................................... 5-884 
Chapter 3 REAL MODE ARCHITECTURE ....................................................... 5-885 
3.1 Memory Addressing ....................................................................... 5-885 
3.2 Reserved Locations ....................................................................... 5-886 
3.3 Interrupts ................................................................................ 5-886 
3.4 Shutdown and Halt ........................................................................ 5-886 
3.5 LOCK Operations ......................................................................... 5-886 
Chapter 4 PROTECTED MODE ARCHITECTURE ................................................. 5-887 
4.1 Addressing Mechanism .................................................................... 5-887 
4.2 Segmentation ............................................................................ 5-887 
4.3 Protection ............................................................................... 5-892 
4.4 Paging .................................................................................. 5-896 
4.5 Virtual 8086 Environment ................................................................... 5-899 
Chapter 5 FUNCTIONAL DAT A ................................................................ 5-902 
5.1 Signal Description Overview ................................................................. 5-902 
5.2 Bus Transfer Mechanism ................................................................... 5-908 

5.3 Memory and 1/0 Spaces .......................................... · · · · · · · · · · · · · · · · · · · · · · · · · 5-90811 
5.4 Bus Functional Description .................................................................. 5-908 
5.5 Self-test Signature ........................................................................ 5-926 
5.6 Component and Revision Identifiers .......................................................... 5-926 
5.7 Coprocessor Interfacing .................................................................... 5-926 
Chapter 6 PACKAGE THERMAL SPECIFICATIONS ............................................... 5-927 
Chapter 7 ELECTRICAL SPECIFICATIONS ...................................................... 5-927 
7.1 Power and Grounding ...................................................................... 5-927 
7.2 Maximum Ratings ......................................................................... 5-928 
7.3 D.C. Specifications ............................. : .......................................... 5-929 
7.4 A.C. Specifications ........................................................................ 5-930 
7.5 Designing for ICE™-386 SX Use (Preliminary Data) ............................................. 5-938 
Chapter 8 DIFFERENCES BETWEEN THE 386TM SX Microprocessor and the 386™ DX CPU ........... 5-938 
Chapter 9 INSTRUCTION SET ................................................................. 5-939 
9.1 386™ SX Microprocessor Instruction Encoding and Clock Count Summary .......................... 5-939 
9.2 Instruction Encoding ....................................................................... 5-954 

5-865 



intef 
1.0 PIN DESCRIPTION 

NOTE: 
NC = No Connect 

DO 
Vss 

HLDA 
HOLD 

Vss 
NA# 

READY# 
Vee 
Vee 
Vee 
Vss 
Vss 
Vss 
Vss 

CLK2 
ADS# 
BLE# 

A1 
BHE# 

NC 
Vee 
Vss 

M/IO# 
D/C# 
W/R# 

386™ SX MICROPROCESSOR 

Figure 1.1. 386™ SX Microprocessor Pin out Top View 

Table 1.1. Alphabetical Pin Assignments 

Address Data Control N/C 

A1 18 Do 1 ADS# 16 20 
A2 51 01 100 BHE# 19 27 
As 52 02 99 BLE# 17 29 
~ 53 03 96 BUSY# 34 30 
As 54 04 95 CLK2 15 31 
As 55 Ds 94 DIC# 24 43 
A1 56 Os 93 ERROR# 36 44 
As 58 07 92 FLT# 28 45 
Ag 59 Os 90 HLDA 3 46 
A10 60 09 89 HOLD 4 47 
A11 61 D10 88 INTR 40 
A12 62 D11 87 LOCK# 26 
A13 64 D12 86 M/10# 23 
A14 65 D13 83 NA# 6 
A1s 66 014 82 NMI 38 
Arn 70 015 81 PEREQ 37 
A11 72 READY# 7 
A18 73 RESET 33 
A10 74 W/R# 25 
A20 75 
A21 76 
A22 79 
A23 80 

5-866 

A20 
A19 
A18 
A17 
Vee 
A16 
Vee 
Vss 
Vss 
A15 
A14 
A13 
Vss 
A12 
A11 
A10 
A9 
A8 
Vee 
A7 
A6 
A5 
A4 
A3 
A2 

240187-1 

Vee 
8 
9 
10 
21 
32 
39 
42 
48 
57 
69 
71 
84 
91 
97 

Vss 
2 
5 
11 
12 
13 
14 
22 
35 
41 
49 
50 
63 
67 
68 
77 
78 
85 
98 



intef 386™ SX MICROPROCESSOR 

1.0 PIN DESCRIPTION (Continued) 

The following are the 386™ SX Microprocessor pin descriptions. The following definitions are used in the pin 
descriptions: 

# The named signal is active LOW. 
I Input signal. 
0 Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

Symbol Type Pin Name and Function 

CLK2 I 15 CLK2 provides the fundamental timing for the 386™ SX 
Microprocessor. For additional information see Clock. 

RESET I 33 RESET suspends any operation in progress and places the 
386™ SX Microprocessor in a known reset state. See Interrupt 
Signals for additional information. 

D15-Do 1/0 81-83,86-90, Data Bus inputs data during memory, 1/0 and interrupt 
92-96,99-100, 1 acknowledge read cycles and outputs data during memory and 

1/0 write cycles. See Data Bus for additional information. 

A23-A1 0 80-79,76-72,70, Address Bus outputs physical memory or port 1/0 addresses. 
66-64,62-58, See Address Bus for additional information. 
56-51,18 

W/R# 0 25 Write/Read is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals for 
additional information. 

DIC# 0 24 Data/Control is a bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: 
interrupt acknowledge, halt, and code fetch. See Bus Cycle 
Definition Signals for additional information. 

M/10# 0 23 Memory /10 is a bus cycle definition pin that distinguishes 
memory cycles from input/output cycles. See Bus Cycle 
Definition Signals for additional information. 

LOCK# 0 26 Bus Lock is a bus cycle definition pin that indicates that other 
system bus masters are not to gain control of the system bus 
while it is active. See Bus Cycle Definition Signals for 
additional information. 

ADS# 0 16 Address Status indicates that a valid bus cycle definition and 
address (W/R#, DIC#, M/10#, BHE#, BLE# and A23-A1 are 
being driven at the 386™ SX Microprocessor pins. See Bus 
Control Signals for additional information. 

NA# I 6 Next Address is used to request address pipelining. See Bus 
Control Signals for additional information. 

READY# I 7 Bus Ready terminates the bus cycle. See Bus Control Signals 
for additional information. 

BHE#, BLE# 0 19,17 Byte Enables indicate which data bytes of the data bus take part 
in a bus cycle. See Address Bus for additional information. 

5-867 



38&tM SX MICROPROCESSOR 

1.0 PIN DESCRIPTION (Continued) 

Symbol Type Pin Name and Function 

HOLD I 4 Bus Hold Request input aiiows another bus master to request 
control of the local bus. See .Bus Arbitration Signals for 
additional information. 

HLDA 0 3 Bus Hold Acknowledge output indicates that the 386™ SX 
Microprocessor has surrendered control of its local bus to 
another bus master. See Bus Arbitration Signals for additional 
information. 

INTR I 40 Interrupt Request is a maskable input that signals the 386™ SX 
Microprocessor to suspend execution of the current program and 
execute an interrupt acknowledge function. See Interrupt 
Signals for additional information. 

NMI I 38 Non·Maskable Interrupt Request is a non-maskable input that 
signals the 386™ SX Microprocessor to suspend execution of 
the current program ·and execute an interrupt acknowledge 
function. See. Interrupt Signals for additional information. 

BUSY# I 34 Busy signals a busy condition from a processor extension. See 
Coprocessor Interface Signals for additional information. 

ERROR# I 36 Error signals an error condition from a processor extension. See 
Coprocessor Interface Signals for additional information. 

PEREQ I 37 Processor Extension Request indicates that the processor has 
data to be transferred by the 386™ SX Microprocessor. See 
Coprocessor Interface Signals for additional information. 

FLT# I 28 Float is an input which forces all bidirectional and output signals, 
including HLOA, to the tri-state condition. This allows the 
~lectrically isolated 386SX PQFP to use ONCE (On-Circuit 
Emulation) method without removing it from the PCB. See Float 
for additional Information. · 

N/C - 20, 27, 29-31, 43-47 No Connects should always be left unconnected. Connection of 
a N/C pin 111ay cause the processor to malfunction or be 
incompatible with future steppings of the 386™ SX · 
Microprocessor . 

Vee I 8-10,21,32,39 . System Power provides the + 5V nominal DC supply input. 
42,48,57,69, 
71,84,91,97 

Vss I 2,5, 11-14,22 System Ground·provides the OV connection from which all 
35,41,49-50, inputs and outputs are measured. 
63,67-68, 
77-78,85,98 

~ 

5-868 



intef 386™ SX MICROPROCESSOR 

31 16 15 B 7 

AH * BH ~ 
CH tjx 

DH * SI 

DI 

BP 

SP 

15 

31 

LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

LINEAR BREAKPOINT ADDRESS 3 

31 

TEST CONTROL 

TEST STATUS 

iZ:;J - INTEL RESERVED DO NOT USE 

AL 

BL 

CL 

DL 

EAX 

EBX 

ECX 

EDX 

ESI 

EDI 

EBP 

ESP 

cs 

SS 

OS 

ES 

FS 

GS 

ORO 

DR1 

DR2 

DR3 

DR4 

DRS 

DR6 

DR7 

TR6 

TR7 J 
Figure 2.1. 386™ SX Microprocessor Registers 

5-869 

GENERAL PURPOSE 
REGISTERS 

SEGIAENT 
REGISTERS 

DEBUG 
REGISTERS 

TEST 
REGISTERS 

240187-2 



386™ SX MICROPROCESSOR 

INTRODUCTION 

The 386 SX Microprocessor is 100% object code 
compatible with the 386 DX. 286 and 8086 micro­
processors. System manufacturers can provide 386 
DX CPU based systems optimized tor performance 
and 386 SX CPU based systems optimized tor cost, 
both sharing the same operating systems and appli­
cation software. Systems based on the 386 SX CPU 
can access the world's largest existing microcom­
puter software base, including the growing 32-bit 
software base. Only the lntel386 architecture can 
run UNIX, OS/2 and MS-DOS. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times · and high system 
throughput. The 386 SX CPU is capable of execution 
at sustained rates of 2.5-3.0 million instructions per 
second. 

The integrated memory management unit (MMU) in­
cludes an address translation cache, advanced mul­
ti-tasking hardware, and a tour-level hardware-en­
forced protection mechanism to support operating 
systems. The virtual machine capability of the 
386 SX CPU allows simultaneous execution of appli­
cations from multiple operating systems such as 
MS-DOS and UNIX. 

The 386 SX CPU offers on-chip testability and de­
bugging features. Four breakpoint registers allow 
conditional or unconditional breakpoint · traps on 
code execution or data accesses for powerful de­
bugging of even ROM-based systems. Other testa­
bility features include self-test, tri-state of output 
buffers, and direct access to the page translation 
cache. 

The new Low Power 386 SX CPU brings the benefits 
of Intel's 386 Microprocessor 32-bit architecture to 
the mainstream Laptop and Notebook personal 
computer applications. With its power saving 2 MHz 
sleep-mode and extended functional temperature 

. range of o•c to 1 oo·c T CASE· the Lower Power 386 
SX CPU specifically satisfies the power consumption 
and heat dissipation requirements of today's small 
form factor computers. .~ 

2.0 BASE ARCHITECTURE 

The 386 SX Microprocessor consists of a central 
processing unit, a memory management unit and a 
bus interface. 

The central processing unit consists of the execu­
tion unit and the instruction unit. The execution unit 
contains the eight 32-bit general purpose registers 

which are used for both address calculation and 
data operations and a 64-bit barrel shifter used to 
speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow, management of the physical address. 
space. 

The segmentation unit provides four levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 386 SX Microprocessor has two modes of oper­
ation: Real Address Mode (Real Mode), and Protect­
ed Virtual Address Mode (Protected Mode). In Real 
Mode the 386 SX Microprocessor operates as a very 
fast 8086, but with 32-bit extensions if desired. Real 
Mode is required primarily to set up the processor 
for Protected Mode operation. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual 8086 
Mode tasks. Each such task behaves with. 8086 se­
mantics, thus allowing 8086 software (an application 

· program or an entire operating system) to execute. 
The Virtual 8086 tasks can be isolated and protect­
ed from one another and the host 386 SX Micro­
processor operating system by use of paging. 

Finally, to facilitate high performance· system hard­
ware designs, the 386 SX Microprocessor bus inter­
face otters address pipelining and direct Byte En· 
able signals for each byte of the data bus. 

2.1 Register Set 

The 386 SX Microprocessor has thirty-four registers 
as shown in Figure 2-1. These registers are grouped 
into the following seven categories: 

General Purpose Registers: The eight 32-bit gen­
eral purpose registers are used to contain arithmetic 
and logical operands. Four of these (EAX, EBX, 
ECX, and EDX) can be used either in their entirety as 
32-bit registers, as 16-bit registers, or split into pairs 
of separate 8-bit registers. 

5-870 



intef 386™ SX MICROPROCESSOR 

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer Registers: The two 
32-bit special purpose registers in figure 2.1 record 
or control certain aspects of the 386 SX Microproc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 
some instructions. The Instruction Pointer, called 
EIP, is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments it after executing an instruction. 

Control Registers: The four 32-bit control register 
are used to control the global nature of the 386 SX 
Microprocessor. The CRO register contains bits that 
set the different processor modes (Protected, Real, 
Paging and Coprocessor Emulation). CR2 and CR3 
registers are used in the paging operation. 

System Address Registers: These four special 
registers reference the tables or segments support­
ed by the 80286/386 SX/386 DX CPU's protection 
model. These tables or segments are: 

SPECIAL FIELDS: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register), 
LOTA (Local Descriptor Table Register), 
TR (Task State Segment Register). 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. The use of the debug registers is described in 
Section 2.10 Debugging Support. 

Test Registers: Two registers are used to control 
the testing of the RAM/CAM (Content Addressable 
Memories) in the Translation Lookaside Buffer por­
tion of the 386 SX Microprocessor. Their use is dis­
cussed in Testability. 

EFLAGS REGISTER 

The flag register is a 32-bit register named EFLAGS. 
The defined bits and bit fields within EFLAGS, 
shown in Figure 2.2, control certain operations and 
indicate the status of the 386 SX Microprocessor. 
The lower 16 bits (bits 0-15} of EFLAGS contain the 
16-bit flag register named FLAGS. This is the default 
flag register used when executing 8086, 80286, or 
real mode code. The functions of the flag bits are 
given in Table 2.1. 

STATUS FLAGS: 

1/0 PRIVILEGE LEVEL-----------. 

..--------------OVERFLOW 

..----------SIGN 

,..--------ZERO 

..------AUX CARRY 

..---- PARITY 

NESTED TASK---------. 

...------PAGING ENABLE 

17 16 15 11 10 9 8 7 6 5 4 3 

OF ~ IF IT SF ZF 0 AF 0 

CONTROL FLAGS 

'-----TRAP 

'------INTERRUPT 

'-------DIRECTION 

'--------------RESUME 

'---------------VIRTUAL 8086 MODE 

PROTECTION ENABLE --------. 

MONITOR COPROCESSOR --------, 

EMULATE COPROCESSOR------. 

TASK SWITCHED ---~ 

CARRY 

PG PE CRO 
31 

240187-3 

Figure 2.2. Status and Control Register Bit Functions 

5-871 



intJ 386™ SX MICROPROCESSOR 

Table 2.1. Flag Definitions 

Bit Position Name Function 

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared 
otherwise. 

2 PF Parity Flag-Set if low-order 8 bits of result contain an even 
number of 1 ·bits; cleared otherwise. 

4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low 
order four bits of AL; cleared otherwise. 

6 ZF Zero Flag-Set if result is zero; cleared otherwise. 

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if 
negative). 

8 TF Single Step Flag-Once set, a single step interrupt occurs after 
the next instruction executes. TF is cleared by the single step 
interrupt. 

9 IF Interrupt-Enable Flag-When set, maskable interrupts will cause 
the CPU to transfer control to an interrupt vector specified 
location. 

10 OF Direction Flag-Causes string instructions to auto-increment 
(default) the appropriate index registers when cleared. Setting 
OF causes auto-decrement. 

11 OF Overflow Flag-Set if the operation resulted in a carry/borrow 
into the sign bit (high-order bit) ofthe result but did not result in a 
carry/borrow out of the high-order bit or vice-versa. 

12,13 IOPL 110 Privilege Level-Indicates the maximum Current Privilege 
Level (CPL) permitted to execute 1/0 instructions without 
generating an exception 13 fault or consulting the 1/0 permission 
bit map while executing in protected mode. For virtual 86 mode it 
indicates the maximum CPL allowing alteration of the IF bit. See 
Section 4.2 for a further discussion and definitions on various 
privilege levels. 

14 NT Nested Task-Set if the execution of the current task is nested 
within another task. Cleared qtherwise. 

16 RF Resume Flag-Used in conjunction with debug register 
breakpoints. It is checked at instruction boundaries before 
breakpoint processing. If set, any debug fault is ignored on the 
next instruction. 

17 VM Virtual 8086 Mode-If set while in protected mode, the 386™ SX 
Microprocessor will switch to virtual 8086 operation, handling 
segment loads as the 8086 does, but generating exception 13 
faults on privileged opcodes. 

5-872 



infef 386™ SX MICROPROCESSOR 

CONTROL REGISTERS 

The 386 SX Microprocessor has three control registers of 32 bits, CAO, CR2 and CR3, to hold the machine 
state of a global nature. These registers are shown in Figures 2.1 and 2.2. The defined CRO bits are described 
in Table 2.2. 

Table 2.2. CAO Definitions 

Bit Position Name Function 

0 PE Protection mode enable-places the 386™ SX Microprocessor 
into protected mode. If PE is reset, the processor operates again 
in Real Mode. PE may be set by loading MSW or CAO. PE can be 
reset only by loading CRO, it cannot be reset by the LMSW 
instruction. 

1 MP Monitor coprocessor extension-allows WAIT instructions to 
cause a processor extension not present exception (number 7). 

2 EM Emulate processor extension-causes a processor extension 
not present exception (number 7) on ESC instructions to allow 
emulating a processor extension. 

3 TS Task switched-indicates the next instruction using a processor 
extension will cause exception 7, allowing software to test 
whether the current processor extension context belongs to the 
current task. 

31 PG Paging enable bit-is set to enable the on-chip paging unit. It is 
reset to disable the on-chip paging unit. 

2.2 Instruction Set All 386 SX Microprocessor instructions operate on 

The instruction set is divided into nine categories of 
operations: 

either 0, 1, 2 or 3 operands; an operand resides in a 
register, in the instruction itself, or in memory. Most I 
zero operand instructions (e.g CU, STI) take only 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These instructions are listed in Table 9.1 
Instruction Set Clock Count Summary. 

one byte. One operand instructions generally are 
two bytes long. The average instruction is 3.2 bytes 
long. Since the 386 SX Microprocessor has a 16 
byte prefetch instruction queue, an average of 5 in­
structions will be prefetched. The use of two oper-
ands permits the following types of common instruc-
tions: 

5-873 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory. 



intef 386™ SX MICROPROCESSOR 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
386 SX Microprocessor (32 bit code), operands are 
8 or 32 bits; when executing existing 8086 or 80286 
code (16-bit code), operands are 8 or 16 bits. Prefix­
es can be added to all instructions which override 
the default length of the operands (i.e. use 32-bit 
operands for 16-bit code, or 16-bit operands for 32-
bit code). 

2.3 Memory Organization 

Memory on the 386 SX Microprocessor is divided 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address. Dwords are stored in 
four consecutive bytes in memory with the low-order 
byte at the lowest address. The address of a word or 
dword is the byte address of the low-order byte. 

In. addition to these basic data types, the 386 SX 
Microprocessor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or 
more 4K byte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 386 SX Microprocessor supports 
both pages and segmentation in order to provide 
maximum flexibility to the system designer. Segmen­
tation and paging are complementary. Segmentation 
is useful for organizing memory in logical modules, 
and as such is a tool for the application programmer, 
while pages are useful to the system programmer for 
managing the physical memory of a system. 

ADDRESS SPACES 

The 386 SX Microprocessor has three types of ad­
dress spaces: loglcal, linear, and physical. A 
logical address (also known as a virtual address) 
consists of a selector and an offset. A selector is the 
contents of a segment register. An offset is formed 
by summing all of the addressing components 
(BASE, INDEX, DISPLACEMENT), discussed in sec­
tion 2.4 Addressing Modes, into an effective ad­
dress. This effective address along with the selector 
is known as the logical address. Since each task on 
the 386 SX Microprocessor has a maximum of 16K 
(214 -1) selectors, and offsets can be 4 gigabytes 
(with paging enabled) this gives a total of 246 bits, or 
64 terabytes, of logical address space per task. The 
programmer sees the logical address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress is truncated into a 24-bit physical address. 
The physical address is what appears on the ad­
dress pins. 

The primary differences between Real Mode and 
Protected Mode are how the segmentation unit per­
forms the translation of the logical address into the 
linear address, size of the address space, and pag­
ing capability. In Real Mode, the segmentation unit 
shifts the selector left four bits and adds the result to 
the effective address to form the linear address. 
This linear address is limited to 1 megabyte. In addi­
tion, real mode has no paging capability. 

Protected Mode will. see one of two different ad­
dress spaces, depending on whether or not paging 
is enabled. Every selector has a logical base ad­
dress associated with it that can be up to 32 bits in 
length. This 32-bit logical base address is added to 
the effective address to form a final 32-bit linear 

5-874 



intJ 386™ SX MICROPROCESSOR 

EFFECTIVE ADDRESS CALCULATION 

BASE 

BHE#,BLE# 
A1 -A23 

15 0 

PHYSICAL 
MEMORY 

ADDRESS 
15 2 0 LOGICAL OR SEGMENTATION ___ 3..,2._.1 PAGING UNIT 

R 14 VIRTUAL ADDRESS UNIT LINEAR {OPTIONAL USE) 

24 

SELECTOR p t-"/-::::-:~::-::----i~L..----~ ADDRESS 
L DESCRIPTOR 

PHYSICAL 
ADDRESS 

...._ __ __..__. INDEX 

SEGMENT 
REGISTER 

240187-4 

Figure 2.3. Address Translation 

address. If paging is disabled this final linear ad­
dress reflects physical memory and is truncated so 
that only the lower 24 bits of this address are used 
to address the 16 megabyte memory address space. 
If paging is enabled this final linear address reflects 
a 32-bit address that is translated through the pag­
ing unit to form a 16-megabyte physical address. 
The logical base address is stored in one of two 
operating system tables (i.e. the Local Descriptor 
Table or Global Descriptor Table). 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 386 SX Microprocessor, seg­
ments are variable sized blocks of linear addresses 
which have certain attributes associated with them. 
There are two main types of segments, code and 
data. The segments are of variable size and can be 
as small as 1 byte or as large as 4 gigabytes (232 
bits). 

In order to provide compact instruction encoding 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general, data refer­
ences use the selector contained in the DS register, 
stack references use the SS register and instruction 

fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register, and override the implicit rules list-1 
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in chapter 4 PROTECTED MODE ARCHI­
TECTURE. 

2.4 Addressing Modes 

The 386 SX Microprocessor provides a total of 8 
addressing modes for instructions to specify oper­
ands. The addressing modes are optimized to allow 
the efficient execution of high level languages such 
as C and FORTRAN, and they cover the vast majori­
ty of data references needed by high-level lan­
guages. 

REGISTER AND IMMEDIATE MODES 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

5-875 



intef 386™ SX MICROPROCESSOR 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA lnstructons 

Source of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVE, REP STOS, and 
REP MOVS instructions 

Other data references, 
with effective address 
using base register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[EBP) 
[ESP] 

Register Operand Mode: The operand is located in 
one of the 8, 16 or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

32-BIT MEMORY ADDRESSING MODES 

The remaining 6 modes provide a mechanism for 
specifying the effective address of an operand. The 
·linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see figure 2.3): 

DISPLACEMENT: an 8, 16 or 32-bit immediate val­
ue, following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. 

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

cs None 

SS None 

SS None 

ES None 

DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
SS CS,DS,ES,FS,GS 
SS CS,DS,ES,FS,GS 

Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA ~ BaseRegister + (lndeXRegister 'scaling) + Displacement 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8, 16 or 32-bit 
displacement. 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents are 
added to a DISPLACEMENT to form the oper­
and's offset. 

4. Scaled Index Mode: An INDEX register's con­
tents are multiplied by a SCALING factor, and the 
result is added to a DISPLACEMENT to form the 
operand's offset. 

5-876 



intJ 386™ SX MICROPROCESSOR 

SEGMENT REGISTER 
.---------. BASE REGISTER 

SS 
GS 

rs 
ES 

OS 
-cs 

EFFECTIVE 
ADDRESS 

LINEAR 

/ 
SEGMENT 
LIMIT 

DESCRIPTOR REGISTERS 0 
ADDRESS • TARGET ADDRESS 

SELECTED 
SEGMENT 

______ .,.. ./ 
SEGMENT BASE ADDRESS 

240187-5 

Figure 2.4. Addressing Mode Calculations 

5. Based Scaled Index Mode: The contents of an 
INDEX register are multiplied by a SCALING fac­
tor, and the result is added to the contents of a 
BASE register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

DIFFERENCES BETWEEN 16 AND 32 BIT 
ADDRESSES 

In order to provide software compatibility with the 
8086 and the 80286, the 386 SX Microprocessor 
can execute 16-bit instructions in Real and Protect­
ed Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in a 
Segment Descriptor. If the D bit is 0 then all operand 
lengths and effective addresses are assumed to be 
16 bits long. If the D bit is 1 then the default length 
for operands and addresses is 32 bits. In Real Mode 
the default size for operands and addresses is 16 
bits. 

Regardless of the default precision of the operands 
or addresses, the 386 SX Microprocessor is able to 
execute either 16 or 32-bit instructions. This is speci­
fied through the use of override prefixes. Two prefix­
es, the Operand Length Prefix and the Address 
Length Prefix, override the value of the D bit on an 
individual instruction basis. These prefixes are auto­
matically added by assemblers. 

The Operand Length and Address Length Prefixes 
can be applied separately or in combination to any 
instruction. The Address Length Prefix does not al­
low addresses over 64K bytes to be accessed in 
Real Mode. A memory address which exceeds 
OFFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 386 SX Microprocessor addressing modes. 

When executing 32-bit code, the 386 SX Microproc­
essor uses either 8 or 32-bit displacements, and any 
register can be used as base or index registers. 
When executing 16-bit code, the displacements are 
either 8 or 16-bits, and the base and index register 
conform to the 80286 model. Table 2.4 illustrates 
the differences. · 

5-877 

I 



intef 386TM SX MICROPROCESSOR 

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16-Blt Addressing 32-Bit Addressing 

BASE REGISTER BX,BP 
INDEX REGISTER Sl,DI 

SCALE FACTOR None 
DISPLACEMENT o, 8, 16-bits 

2.5 Data Types 

The 386 SX Microprocessor supports all of the data 
types commonly used in high level languages: 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, which 
spans a maximum of four bytes. · 

Bit String: A set of contiguous bits; on the 386 SX 
Microprocessor, bit strings can be up to 4 gigabits 
long. 

Byte: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): A signed 16-bit quantity. 

Long Integer (Double Word): A signed 32-bit quan­
tity. All operations assume a 2's complement repre­
sentation. 

Unsigned Integer (Word): An unsigned 16-bit 
quantity. · 

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity. 

Signed Quad Word: A signed 64~bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quantity. 

Pointer: A 16 or 32-bit offset-only quantity which in­
directly references another memory location. 

Long Pointer: A full pointer which consists of a 16-
bit segment selector and either a 16 or 32~bit offset. 

Char: A byte representation of an ASCII Alphanu­
meric or control character. 

String: A contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte and 4 
gigabytes 

Any 32~bit GP Register 
Any 32·bit GP Register 
Except ESP 
1, 2, 4, 8 
O, 8, 32-bits 

BCD: A byte (unpack~d) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in each nibble. 

When the 386 SX Microprocessor is coupled with its 
numerics coprocessor, the 387™ SX, then the fol­
lowing common floating point types are supported: 

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. Floating point number!! are sup­
ported by the 387™ SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 
386 SX Microprocessor and the 387 SX. 

2.6 1/0 Space 

The 386 SX Microprocessor has two distinct physi­
cal address spaces: physical memory and 1/0. Gen­
erally, peripherals are placed in 1/0 space although 
the 386 SX Microprocessor also supports memory­
mapped peripherals. The 1/0 space consists of 64K 
bytes which can be divided into 64K 8-bit ports or 
32K 16-bit ports, or any combination of ports which 
add up to no more than 64K bytes. The 64K 1/0 
address space refers to physical addresses rather 
than linear addresses since 1/0 instructions do not 
go through the segmentation or paging hardware. 
The M/10# pin acts as an additional address line, 
thus allowing the system designer to easily .deter­
mine which address space the processor is access­
ing. 

The 1/0 ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the DX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The 1/0 in­
structions cause the M/10# pin to be driven LOW. 
1/0 port addresses OOF8H through OOFFH are re-
served for use by Intel. · 

5-878 



intef 

7 0 
SIGNED IT'"T""l 

BYTEll_:.....J 

SIGN BIT.JL___J 

MAGNITUOE 

7 0 
UNSIGNED fT"TT"1 
BYTE~ 

L____J 

MAGNITUDE 

+1 0 
1514 87 0 

s~~~g 11 1 1 j 1 1 1 I 1 1 1 j 1 1 1 I 

SIGN BIT.J ... 1L_M_s_B ___ _, 

MAGNITUDE 

+1 0 

MAGNITUDE 

386™ SX MICROPROCESSOR 

+N +1 0 
7 0 7 07 0 

BINARY fT"TT"1 I I ii I ii I I I ii I I ii I 
CODED~ e e e ... ---· __ _,_ 

DECIMAL BCD BCD BCD 
(BCD) DIGIT N DIGIT 1 DIGIT 0 

+N +1 0 
7 0 7 07 0 

ASCII ~ ••• I' ii I ' ii I' ii I " I I 
ASCII ASCII ASCII 

CHARACTERN CHARACTER 1 CHARACTERo 

+N 
7 0 

PACKED fT"TT"1 e e e 
BCD~ 

L...J 
MOST 
SIGNIFICANT DIGIT 

+1 0 
7 0 7 0 

lii'l'"lii'l'"I 
L...J 

LEAST 
SIGNIFICANT DIGIT 

+N +1 0 
7/15 0 7/15 07/15 0 

ST~~~~ •• • lii'l'iil" 1l111I 

+3 +2 +1 0 +2 GIGABITS 
-2 GIGABITS 

31 1615 0 210 

SIGNED DO~~~~ 11 I I j I I I I I I I I I I I I I I I I I I I I I I I I I I I I STRl~1~ 11111 II \\ 11111 
SIGN BIT.J ... L_M_S_B _________ _. BITO 

MAGNITUDE 

+3 +2 +1 0 +3 +2 +1 0 
31 0 

UNSIGNED DO~~~~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 31 0 
;~.?:ii I I I I j I I I 11 I I I I I I I I 11 I I I 11 I I I I I 111 

POINTER ... ---·---·---·--""'· 

MAGNITUDE OFFSET 

+7 +6 +5 +5 +3 +2 +1 +5 +4 +3 +2 +1 0 
63 4847 3231 1615 

0 
0 47 0 

SIGNED ~g~g .,.11.,.... ... I _________ _ 4i~~I~ I I I I j I I I I I I I I I I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I 
POINTER 

SIGN BIT.J ... L_M_S_B _________ _. 

MAGNITUDE SELECTOR OFFSET 

+9 +8 +7 +6 +5 +4 +3 +2 +1 0 
79 0 

FLOATING 11 
POINT•.,.._...__ ..... _..._ __ ...__..._...__..._...__, 

SIGN BIT.J .__ ___ ._. _________ _, 

EXPONENT MAGNITUDE 

+5 +4 +3 +2 +1 0 
BIT3~~~~r,,,. 1 ••• , •• , 1 ••• , ••• 1 ••• , ••• 1 ••• , ••• 1 ••• 1 ••• 1 

i------ BIT FIELD ___ ___, .. 

1 TO 32 BITS 

Figure 2.5. 386™ SX Microprocessor Supported Data Types 

5-879 

•SUPPORTED BY 
387™sx 
NUMERIC DATA 
COPROCESSOR 

240187-6 

I 



intef 386™ SX MICROPROCESSOR 

Table 2.5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Interrupt Points to 
Function Number can cause Faulting Type 

Exception Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 any instruction YES TRAP* 

NMI Interrupt 2 INT 2orNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any illegal instruction YES FAULT 

Device Not Available 7 ESC, WAIT YES FAULT 

Double Fault 8 
Any instruction that can 

ABORT 
generate an exception 

Coprocessor Segment Overrun 9 ESC NO ABORT 

lnvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Coprocessor Error 16 ESC, WAIT YES FAULT 

Intel Reserved 17-32 

Two Byte Interrupt 0-255 INTn NO TRAP 

*Some debug exceptions may report both traps on the previous instruction and faults on the next instruction. 

2.7 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditions. The difference between 
interrupts and exceptions is that interrupts are used 
to handle asynchronous external events while ex­
ceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. 

Exceptions are classified as faults, traps, or aborts, 
depending on the way they are reported and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of 
the instruction causing the exception to be deter­
mined. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point to the instruction 
causing the exception and will include any leading 
instruction prefixes. Table 2.5 summarizes the possi­
ble interrupts for the 386 SX Microprocessor and 
shows where the return address points to. 

5-880 



intef 386™ SX MICROPROCESSOR 

The 386 SX Microprocessor has the ability to handle 
up to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are 
simply pointers to the appropriate interrupt service 
routine. In Real Mode, the vectors are 4-byte quanti­
ties, a Code Segment plus a 16-bit offset; in Protect­
ed Mode, the interrupt vectors are 8 byte quantities, 
which are put in an Interrupt Descriptor Table. Of the 
256 possible interrupts, 32 are reserved for use by 
Intel and the remaining 224 are free to be used by 
the system designer. 

INTERRUPT PROCESSING 

When an interrupt occurs, the following actions hap­
pen. First, the current program address and Flags 
are saved on the stack to allow resumption of the 
interrupted program. Next, an 8-bit vector is supplied 
to the 386 SX Microprocessor which identifies the 
appropriate entry in the interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user supplied interrupt service 
routine is executed. Finally, when an IRET instruc­
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 386 SX 
Microprocessor in several different ways: exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maska­
ble hardware interrupts are assigned to interrupt 
vector 2. 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The 
processor only responds to interrupts between in­
structions (string instructions have an 'interrupt win­
dow' between memory moves which allows inter­
rupts during long string moves). When an interrupt 
occurs the processor reads an 8-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user defined interrupts). 

Interrupts through interrupt gates automatically reset 
IF, disabling INTR requests. Interrupts through Trap 
Gates leave the state of the IF bit unchanged. Inter­
rupts through a Task Gate change the IF bit accord­
ing to the image of the EFLAGs register in the task's 
Task State Segment (TSS). When an IRET instruc­
tion is executed, the original state of the IF bit is 
restored. 

Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
386 SX Microprocessor will not service any further 
NMI request or INT requests until an interrupt return 
(IRET) instruction is executed or the processor is 
reset. If NMI occurs while currently servicing an NMI, 
its presence will be saved for servicing after execut­
ing the first IRET instruction. The IF bit is cleared at 
the beginning of an NMI interrupt to inhibit further 
INTR interrupts. 

Software Interrupts 

A third type of interrupt/ exception for the 386 SX I 
Microprocessor is the software interrupt. An INT n 
instruction causes the processor to execute the in-
terrupt service routine pointed to by the nth vector in 
the interrupt table. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt is the single step 
interrupt. It is discussed in Single Step Trap. 

5-881 



intef 386TM SX MICROPROCESSOR 

INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally generated events. Maska­
ble Interrupts (on the iNTR input) and Non-Maskabie 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 386 SX Microprocessor invokes the 
NMI service routine first. If maskable interrupts are 
still enabled after the NMI service routine has been 
invoked, then the 386 SX Microprocessor will invoke 
the appropriate interrupt service routine. 

As the 386 SX Microprocessor executes instruc­
tions, it follows a consistent cycle in checking for 
exceptions, as shown in Table 2.6. This cycle is re-

peated as each instruction is executed, and occurs 
in parallel with instruction decoding and execution. 

INSTRUCTION RESTART 

The 386 SX Microprocessor fully supports restarting 
all instructions after Faults. If an exception is detect­
ed in the instruction to be executed (exception cate­
gories 4 through 10 in Table 2.6), the 386 SX Micro­
processor invokes the appropriate exception service 
routine. The 386 SX Microprocessor is in a state that 
permits restart of the instruction, for all cases but 
those given in Table 2.7. Note that all such cases 
will be avoided by a properly designed operating 
system. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 386™ SX Microprocessor having just completed an instruction. It then performs 
the following checks before reaching the point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data 
Breakpoints set in the Debug Registers). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug 
Registers for the next instruction). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 13). 

5. Check for Page Faults that prevented fetching the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in Real Mode 
or in Virtual 8086 Mode and attempting to execute an instruction for Protected Mode only; or exception 
13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e. not at IOPL or at 
CPL=O). 

7. If WAIT opcode, check if TS= 1 and MP= 1 (exception 7 if both are 1). 

8. If ESCape opcode for numeric coprocessor, check if EM= 1 or TS= 1 (exception 7 if either are 1). 

9. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR# input signal (exception 1.6 
if ERROR# input is asserted). 

10. Check in the following order for each memory reference required by the instruction: 

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 
12, 13). 

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14). 

NOTE: 
Segmentation exceptions are generated before paging exceptions. 

Table 2.7. Conditions Preventing Instruction Restart 

1. An instruction causes a task switch to a task whose Task State Segment is partially 'not present' (An 
entirely 'not present' TSS is restartable). Partially present TSS's can be avoided either by keeping the 
TSS's of such tasks present in memory, or by aligning TSS segments to reside entirely within a single 4K 
page (for TSS segments of 4K bytes or less). 

2. A coprocessor operand wraps around the top of a 64K-byte segment or a 4G-byte segment, and spans 
three pages, and the page holding the middle portion of the operand is 'not present'. This condition can 
be avoided by starting at a page boundary any segments containing coprocessor operands if the 
segments are approximately 64K-200 bytes or larger (i.e. large enough for wraparound of the coproces­
sor operand to possibly occur). 

Note that these conditions are avoided by using the operating system designs mentioned in this table. 

5-882 



infer 386™ SX MICROPROCESSOR 

Table 2.8. Register Values after Reset 

Flag Word (EFLAGS) uuuu0002H Note 1 
Machine Status Word (CAO) uuuuuu10H 
Instruction Pointer (EIP) OOOOFFFOH 
Code Segment (CS) FOOOH Note2 
Data Segment (OS) OOOOH Note 3 
Stack Segment (SS) OOOOH 
Extra Segment (ES) OOOOH Note3 
Extra Segment (FS) OOOOH 
Extra Segment (GS) OOOOH 
EAX register OOOOH Note4 
EDX register component and stepping ID Note 5 
All other registers undefined Note6 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero. 
2. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and Limit set to OFFFFH. 
3. The Data and Extra Segment Registers (DS, ES) will have their Base Address set to OOOOOOOOOH and Limit set to 
OFFFFH. 
4. If self-test is selected, the EAX register should contain a O value. If a value of O is not found then the self-test has 
detected a flaw in the part. 
5. EDX register always holds component and stepping identifier. 
6. All undefined bits are Intel Reserved and should not be used. 

DOUBLE FAULT 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so detects an exception 
other than a Page Fault (exception 14). 

One other cause of generating a Double Fault is the 
386 SX Microprocessor detecting any other excep­
tion when it is attempting to invoke the Page Fault 
(exception 14) service routine (for example, if a Page 
Fault is detected when the 386 SX Microprocessor 
attempts to invoke the Page Fault service routine). 
Of course, in any functional system, not only in 386 
SX Microprocessor-based systems, the entire page 
fault service routine must remain 'present' in memo­
ry. 

2.8 Reset and Initialization 

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2.8. The 386 SX 
Microprocessor will then start executing instructions 
near the top of physical memory, at location 
OFFFFFOH. When the first lntersegment Jump or 
Call is executed, address lines A20-A23 will drop 
LOW for CS-relative memory cycles, and the 386 SX 
Microprocessor will only execute instructions in the 
lower one megabyte of physical memory. This al­
lows the system designer to use a shadow ROM at 
the top of physical memory to initialize the system 
and take care of Resets. 

RESET forces the 386 SX Microprocessor to termi­
nate all execution and local bus activity. No instruc­
tion execution or bus activity will occur as long as 
Reset is active. Between 350 and 450 CLK2 periods 
after Reset becomes inactive, the 386 SX Micro­
processor will start executing instructions at the top 
of physical memory. 

2.9 Testability 
The 386 SX Microprocessor, like the 386 Microproc­
essor, offers testability features which include a self­
test and direct access to the page translation cache. 

SELF· TEST 

The 386 SX Microprocessor has the capability to 
perform a self-test. The self-test checks the function 
of all of the Control ROM and most of the non-ran­
dom logic of the part. Approximately one-half of the 
386 SX Microprocessor can be tested during self­
test. 

Self-Test is initiated on the 386 SX Microprocessor 
when the RESET pin transitions from HIGH to LOW, 
and the BUSY# pin is LOW. The self-test takes 
about 220 clocks, or approximately 33 milliseconds 
with a 16 MHz 386 SX CPU. At the completion of 
self-test the processor performs reset and begins 
normal operation. The part has successfully passed 
self-test if the contents of the EAX are zero. If the 
results of the EAX are not zero then the self-test has 
detected a flaw in the part. 

5-883 

I 



intJ 386™ SX MICROPROCESSOR 

co~~AND 

WRITABLE 

USER 

DIRTY 

VALID 

LINEAR ADDRESS 

31 

PHYSICAL ADDRESS 

31 

~ - INTEL RESERVED DO NOT USE 

l l 
U U# 

10 9 8 7 

l 
W W# 

6 5 

c 

0 

TEST 
CONTROL 

TR6 

TEST 
STATUS 

~PLl+~TR7 
12 4 3 2 

240187-7 

Figure 2.6. Test Registers 

TLB TESTING 

The 386 SX Microprocessor also provides a mecha­
nism for testing the Translation Lookaside Buffer 
(TLB) if desired. This particular mechanism may not 
be continued in the same way in future processors. 

There are two TLB testing operations: 1) writing en­
tries into the TLB, and, 2) performing TLB lookups. 
Two Test Registers, shown in Figure 2.6, are provid­
ed for the purpose of testing. TR6 is the "test com­
mand register", and TR? is the "test data register". 
For a more detailed explanation of testing the TLB, 
see the 386™ SX Microprocessor Programmer's 
Reference Manual. 

2.10 Debugging Support 

The 386 SX Microprocessor provides several fea­
tures which simplify the debugging process. The 
three categories of on-chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH). 

2. The single-step capability provided by the TF bit 
in the flag register. 

3. The code and data breakpoint capability provided 
by the Debug Registers DR0-3, DR6, and DR7. 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 

The breakpoint opcode is OCCh, and generates an 
exception 3 trap when executed. 

SINGLE-STEP TRAP 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. 

DEBOG REGISTERS 

The Debug Registers are an advanced debugging 
feature of the 386 SX Microprocessor. They allow 
data access breakpoints as well as code execution 
breakpoints. Since the breakpoints are indicated by 
on-chip registers, an instruction execution break­
point can be placed in ROM code or in code shared 
by several tasks, neither of which can be supported 
by the INT 3 breakpoint opcode. 

The 386 SX Microprocessor contains six Debug 
Registers, consisting of four breakpoint address reg­
isters and two breakpoint control registers. Initially 
after reset, breakpoints are in the disabled state; 
therefore, no breakpoints will occur unless the de­
bug registers are programmed. Breakpoints set up in 
the Debug Registers are auto-vectored to exception 
1. Figure 2. 7 shows the breakpoint status and con­
trol registers. 

5-884 



intJ 386™ SX MICROPROCESSOR 

BREAKPOINT 0 DEBUG FAULT/TRAP----------------------. 

BREAKPOINT 1 DEBUG FAULT/TRAP-----------------~ 

BREAKPOINT 2 DEBUG FAULT/TRAP------------------, 

BREAKPOINT 3 DEBUG FAULT/TRAP-----------------, 
DEBUG 
STATUS 
REGISTER 

REGISTER ACCESS FAULT----~ 

B3 B2 B1 Bo DR6 
15 14 13 3 2 1 0 

G~i~tg~:~ ==~~~g:~+ ~~:=t~: >-------------~ 
LOCAL EXACT BREAKPOINT MATCH---------, 

GLOBAL EXACT BREAKPOINT MATCH------~ 

GLOBAL DEBUG REGISTER ACCESS DETECT 

29 28 27 26 25 24 23 22 21 20 19 18 

LEN 3 RW3 LEN 2 RW2 LEN 1 RW1 LEN 0 RWO 

.....-----'------. 

L3 G2 L2 G1 L1 GO 

9 8 7 6 5 4 3 2 1 0 

BREAKPOINT 
CONTROL 

DR7 

[ LENI: BREAKPOINT LENGTH I 
~-------------t RWi: MEMORY ACCESS QUALIFIER i 

IZ:J - INTEL RESERVED DO NOT USE 

240187-8 

Figure 2.7. Debug Registers 

3.0 REAL MODE ARCHITECTURE 

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32-bit register set of the 386 SX Microprocessor. 
The addressing mechanism, memory size, and inter­
rupt handling are all identical to the Real Mode on 
the 80286. · 

The default operand size in Real Mode is 16 bits, as 
in the 8086. In order to use the 32-bit registers and 
addressing modes, override prefixes must be used. 
In addition, the segment size on the 386 SX Micro­
processor in Real Mode is 64K bytes so 32-bit ad­
dresses must have a value less then OOOOFFFFH. 
The primary purpose of Real Mode is to set up the 
processor for Protected Mode operation. 

3.1 Memory Addressing 

In Real Mode the linear addresses are the same as 
physical addresses (paging is not allowed). Physical 
addresses are formed in Real Mode by adding the 
contents of the appropriate segment register which 
is shifted left by four bits to an effective address. 
This addition results in a 20-bit physical address or a 
1 megabyte address space. Since segment registers 
are shifted left by 4 bits, Real Mode segments al­
ways start on 16-byte boundaries. 

All segments in Real Mode are exactly 64K bytes 
long, and may be read, written, or executed. The 
386 SX Microprocessor will generate an exception 
13 if a data operand or instruction fetch occurs past 
the end of a segment. 

5-885 

I 



intef 386™ SX MICROPROCESSOR 

Table 3.1. Exceptions in Real Mode 

Function 
Interrupt 
Number 

Interrupt table limit 8 
too small 

CS, OS, ES, FS, GS 13 
Segment overrun exception 

SS Segment overrun 12 
exception 

3.2 Reserved Locations 

There are two fixed areas in memory which are re­
served in Real address mode: the system initializa­
tion area and the interrupt table area. Locations 
OOOOOH through 003FFH are reserved for interrupt 
vectors. Each one of the 256 possible interrupts has 
a 4-byte jump vector reserved for it. Locations 
OFFFFFOH through OFFFFFFH are reserved for sys­
tem initialization. 

3.3 Interrupts 

Many of the exceptions discussed in section 2. 7 are 
not applicable to Real Mode operation; in particular, 
exceptions 10, 11 and 14 do not occur in Real 
Mode. Other exceptions have slightly different 
meanings in Real Mode; Table 3.1 identifies these 
exceptions. 

3.4 Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, FLT#, INTR with interrupts 
enabled (IF= 1 ), or RESET will force the 386 SX Mi­
croprocessor out of halt. If interrupted, the saved 
CS:IP will point to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, 
shutdown can occur under two conditions: 

1. An interrupt or an exception occurs (Exceptions 8 
or 13) and the interrupt vector is larger than the 
Interrupt Descriptor Table. · 

2. A CALL, INT or PUSH instruction attempts to 
wrap around the stack segment when SP is not 
even. 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 

Related Return 
Instructions Address Location 

INT vector is not Before 
within table limit Instruction 

Word memory reference Before 
with offset = OFFFFH. Instruction 
an attempt to execute 
past the end of CS segment. 

Stack Reference Before 
beyond offset = OFFFFH Instruction 

OOOFH) and the stack has enough room to contain 
the vector and flag information (i.e. SP is greater that 
0005H). Otherwise, shutdown can only be exited by 
a processor reset. 

3.5 LOCK operation 

The LOCK prefix on the 386 SX Microprocessor, 
even in Real Mode, is more restrictive than on the 
80286. This is due to the addition of paging on the 
386 SX Microprocessor in Protected Mode and Vir­
tual 8086 Mode. The LOCK prefix is not supported 
during repeat string instructions. 

The only instruction forms where the LOCK prefix is 
legal on the 386 SX Microprocessor are shown in 
Table 3.2. 

Table 3.2. Legal Instructions for the LOCK Prefix 

Opcode 
Operands 

(Dest, Source) 

BIT Test and 
SET/RESET Mem, Reg/Immediate 
/COMPLEMENT 

XCHG Reg, Mem 

XCHG Mem, Reg 

ADD, OR, ADC, SBB, 
AND, SUB, XOR Mem, Reg/Immediate 

NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. 

The LOCK prefix is not IOPL-sensitive on the 386 SX 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed in Table 3.2. 

5-886 



intef 386™ SX MICROPROCESSOR 

4.0 PROTECTED MODE 
ARCHITECTURE 

The complete capabilities of the 386 SX Microproc­
essor are unlocked when the processor operates in 
Protected Virtual Address Mode (Protected Mode). 
Protected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim­
ited size (64 terabytes (246 bytes)). In addition, Pro­
tected Mode allows the 386 SX Microprocessor to 
run all of the existing 386 DX CPU (using only 16 
megabytes of physical memory), 80286 and 8086 
CPU's software, while providing a sophisticated 
memory management and a hardware-assisted pro­
tection mechanism. Protected Mode allows the use 
of additional instructions specially optimized for sup­
porting multitasking operating systems. The base ar­
chitecture of the 386 SX Microprocessor remains 
the same; the registers, instructions, and addressing 
modes described in the previous sections are re­
tained. The main difference between Protected 
Mode and Real Mode from a programmer's view­
point is the increased address space and a different 
addressing mechanism. 

4.1 Addressing Mechanism 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address; a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as a 24-bit physical ad­
dress," or if paging is enabled the paging mechanism 
maps the 32-bit linear address into a 24-bit physical 
address. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode, these­
lector is used to specify an index into an operating 
system defined table (see Figure 4.1 ). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 386 SX Microprocessor, as paging 
operates beneath segmentation. The page mecha­
nism translates the protected linear address which 
comes from the segmentation unit into a physical 
address. Figure 4.2 shows the complete 386 SX Mi­
croprocessor addressing mechanism with paging 
enabled. 

4.2 Segmentation 

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about each 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in descriptor tables which are recognized 
by hardware. 

TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level O is the most privileged 
level and level 3 is the least privileged. 

APL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. APL is 
determined by the least two significant bits of 
a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access 
that descriptor (and the segment associated 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which 
equals the privilege level of the code segment 
being executed. CPL can also be determined 
by examining the lowest 2 bits of the CS regis­
ter, except for conforming code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the APL 
and the DPL. EPL is the numerical maximum 
of APL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in a 386 SX Microprocessor system. 
There are three types of tables which hold descrip­
tors: the Global Descriptor Table, Local Descriptor 
Table, and the Interrupt Descriptor Table. All of the 
tables are variable length memory arrays and can 
vary in size from 8 bytes to 64K bytes. Each table 
can hold up to 8192 8-byte descriptors. The upper 
13 bits of a selector are used as an index into the 
descriptor table. The tables have registers associat­
ed with them which hold the 32-bit linear base ad­
dress and the 16-bit limit of each table. 

5-887 



intJ 

15 

386™ SX MICROPROCESSOR 

48/32 BIT POINTER 

I SELECTOR I OFFSET 

47/31 31/15 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

1----1>1 MEMORY OPERAND 

SEGMENT BASE 
ADDRESS 

SEGMENT LIMIT 

SELECTED 
SEGMENT 

240187-9 

48 BIT POINTER 

OFFSET 

31 0 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

Figure 4.1. Protected Mode Addressing 

PHYSICAL ADDRESS 

14KBYTES 

1--------1 14K BYTES 

4KBYTES 3as™sx 
MICROPROCESSOR 

PAGING 
MECHANISM 

PHYSICAL 
ADDRESS 

PAGE FRAME 
MEMORY OPERAND PHYSICAL PAGE: 

4KBYTES 

ADDRESS 4KBYTES 

14K BYTES 

1--------t 14K BYTES 

Figure 4.2. Paging and Segmentation 

LDTR 

IDTR 

GDTR 

15 

LDT DESCR 
SELECTOR 

15 

IDT LIMIT 

IDT BASE 
LINEAR ADDRESS 

31 

15 

GOT LIMIT 

GOT BASE 

0 

0 

0 

0 

LINEAR ADDRESS 

31 0 

15 0 

LDT LIMIT 

LDT BASE 
LINEAR ADDRESS 

32 
PROGRAM INVISIBLE 
AUTOMATICALLY LOADED 1 
FROM LDT DESCRIPTOR 1 

·--------------· 

Figure 4.3. Descriptor Table Registers 

5-888 

240187-11 

240187-10 



intJ 386™ SX MICROPROCESSOR 

Each of the tables has a register associated with it: 
GDTR, LOTA, and IOTA; see Figure 2.1. The LGDT, 
LLDT, and LIDT instructions load the base and limit 
of the Global, Local, and Interrupt Descriptor Tables 
into the appropriate register. The SGDT, SLOT, and 
SIDT store the base and limit values. These are priv­
ileged instructions. 

Global Descriptor Table 

The Global Descriptor Table (GOT) contains de­
scriptors which are available to all of the tasks in a 
system. The GOT can contain any type of segment 
descriptor except for interrupt and trap descriptors. 
Every 386 SX CPU system contains a GOT. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GOT. This pro­
vides both isolation and protection for a task's seg­
ments while still allowing global data to be shared 
among tasks. 

31 

Unlike the 6-byte GOT or IDT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT (see figure 2.1 ). 

Interrupt Descriptor Table 

The third table needed for 386 SX Microprocessor 
systems is the Interrupt Descriptor Table. The IDT 
contains the descriptors which point to the location 
of the up to 256 interrupt service routines. The IDT 
may contain only task gates, interrupt gates, and 
trap gates. The IDT should be at least 256 bytes in 
size in order to hold the descriptors for the 32 Intel 
Reserved Interrupts. Every interrupt used by a sys­
tem must have an entry in the IDT. The IDT entries 
are referenced by INT instructions, external interrupt 
vectors, and exceptions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space. These attributes in­
clude the 32-bit base linear address of the segment, 
the 20-bit length and granularity of the segment, the 
protection level.. read, write or execute privileges, 
the default size of the operands (16-bit or 32-bit), I 
and the type of segment. All of the attribute informa-
tion about a segment is contained in 12 bits in the 
segment descriptor. Figure 4.4 shows the general 
format of a descriptor. All segments on the 386 SX 
Microprocessor have three attribute fields in com-
mon: the P bit, the DPL bit, and the S bit. The P 

0 BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
0 

BASE31 ... 24 G D 0 AVL 
LIMIT p DPL s TYPE A 

BASE 
19 ... 16 

l l l 
23 ... 16 

+4 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit 1 = Present O = Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor 0 =System Descriptor 1 =Code or Data Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 =Segment length is page granular o =Segment length is byte granular 
D Default Operation Size (recognized in code segment descriptors only) 1 = 32-bit segment O = 16-bit segment 
0 Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

Figure 4.4. Segment Descriptors 

5-889 



intJ 386™ SX MICROPROCESSOR 

(Present) Bit is 1 if the segment is loaded in physical 
memory. If P=O then any attempt to access this 
segment causes a not present exception (exception 
1-1 ). The Descriptor Privilege Level, DPL, is a tvvo bit 
field which specifies the protection level, 0-3, asso­
ciated with a segment. 

or a code or data segment. If the S bit is 1 then the 
segment is either a code or data segment; if it is O 
then the segment is a system segment. 

Code and Data Descriptors (S= 1) 

The 386 SX Microprocessor has two main catego­
ries of segments: system segments and non-system 
segments (for code and data). The segment bit, S, 
determines if a given segment is a system segment 

Figure 4.5 shows the general format of a code and 
data descriptor and Table 4.1 illustrates how the bits 
in the Access Right Byte are interpreted. 

31 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

LIMIT 
ACCESS BASE 

BASE 31 ... 24 G D 0 AVL RIGHTS 
19 ... 16 

BYTE 
23 ... 16 

+4 

D/B 1 =Default Instructions Attributes are 32-Bits 
0 = Default Instruction Attributes are 16-Bits 

AVL Available field for user or OS 

G Granularity Bit 1 =Segment length is page granular 
O = Segment length is byte granular 

O Bit must be zero (0) for compatibility with future processors 

Figure 4.5. Code and Data Descriptors 

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

I· Position 

7 Present (P) p = 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exists, base and limt are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip- s = 1 Code or Data (includes stacks) segment descriptor 

tor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: r 2 Expansion Direc- ED = O Expand up segment, offsets must be s: limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

1 Writeable (W) W = O Data segment may not be written into. (S = 1, 
w = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: If 
2 Conforming (C) C=1 Code segment may only be executed 

}~ when CPL 2 DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R = 1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

5-890 



inter 386™ SX MICROPROCESSOR 

31 

SEGMENT BASE 15 ... 0 

BASE 31 ... 24 G 0 0 0 

Type Defines 

O Invalid 
1 Available 80286 TSS 
2 LDT 
3 Busy 80286 TSS 
4 80286 Call Gate 

16 

LIMIT 
19 ... 16 

5 Task Gate (for 80286 or 386™ SX Microprocessor Task) 
6 80286 Interrupt Gate 
7 80286 Trap Gate 

0 

SEGMENT LIMIT 15 ... 0 

p DPL 0 

Type Defines 

8 Invalid 

TYPE 
BASE 

23 ... 16 

9 Available 386TM SX Microprocessor TSS 
A Undefined (Intel Reserved) 
B Busy 386TM SX Microprocessor TSS 
C 386™ SX Microprocessor Call Gate 
D Undefined (Intel Reserved) 
E 386TM SX Microprocessor Interrupt Gate 
F 386TM SX Microprocessor Trap Gate 

0 

+4 

Figure 4.6. System Descriptors 

Code and data segments have several descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is byte­
granular or page-granular. 

System Descriptor Formats (S = 0) 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4.6 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
386 SX system descriptors (which are the same as 
386 DX CPU system descriptors) contain a 32-bit 
base linear address and a 20-bit segment limit. 
80286 system descriptors have a 24-bit base ad­
dress and a 16-bit segment limit. 80286 system de­
scriptors are identified by the upper 16 bits being all 
zero. 

Differences Between 386™ SX Microprocessor 
and 80286 Descriptors 

In order to provide operating system compatibility 
with the 80286 the 386 SX CPU supports all of the 
80286 segment descriptors. The 80286 system seg­
ment descriptors contain a 24-bit base address and 
16-bit limit, while the 386 SX CPU system segment 
descriptors have a 32-bit base address, a 20-bit limit 
field, and a granularity bit. The word count field 
specifies the number of 16-bit quantities to copy for 
80286 call gates and 32-bit quantities for 386 SX 
CPU call gates. 

Selector Fields 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table indicator (Tl), Descriptor 
Entry Index (Index), and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4.7. The Tl 
bit selects either the Global Descriptor Table or the 
Local Descriptor Table. The Index selects one of 8k 
descriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's val­
ue. 

5-891 

I 



intJ 386™ SX MICROPROCESSOR 

SELECTOR 

15 

SEGMENT 
REGISTER 0 0 ---- 0 0 1 

TABLE INDEX 
INDICATOR 

Tl=1 Tl=O 

N N 

DESCRIPTOR 
NUMBER 

6 

5 

4 

DESCRIPTOR 3 

2 2 

0 0 NULL 

LOCAL GLOBAL 
DESCRIPTOR DESCRIPTOR 

TABLE TABLE 
240187-12 

Figure 4.7. Example Descriptor Selection 

4.3 Protection 
The 386 SX Microprocessor has four levels of pro­
tection which are optimized to support a multi-task­
ing operating system and to isolate and protect user 
programs from each other and the operating system. 
The privilege levels control the use of privileged in­
structions, 110 instructions, and access to segments 
and segment descriptors. The 386 SX Microproces­
sor also offers an additional type of protection on a 
page basis when paging is enabled. 

The four-level hierarchical privilege system is an ex­
tension of the user/supervisor privilege mode com­
monly used by minicomputers. The user/supervisor 
mode is fully supported by the 386 SX Microproces­
sor paging mechanism. The privilege levels (PL) are 
numbered 0 through 3. Level 0 is the most privileged 
level. 

RULES OF PRIVILEGE 

The 386 SX Microprocessor controls access to both 
data and procedures between levels of a task, ac­
cording to the following rules. 

- Data stored in a segment with privilege level p 
can be accessed only by code executing at a 
privilege level at least as privileged as p. 

- A code segment/procedure with privilege level p 
can only be called by a task executing at the 
same or a lesser privilege level than p. 

PRIVILEGE LEVELS 

At any point in time, a task on the 386 SX Microproc­
essor always executes at one of the four privilege 
levels. The Current Privilege Level (CPL) specifies 
what the task's privilege level is. A task's CPL may 
only be changed by control transfers through gate 
descriptors to a code segment with a different privi­
lege level. Thus, an application program running at 
PL= 3 may call an operating system routine at 
PL= 1 (via a gate) which would cause the task's CPL 
to be set to 1 until the operating system routine was 
finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. The selector's APL is only used to estab­
lish a less trusted privilege level than the current 
privilege level of the task for the use of a segment. 
This level is called the task's effective privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's APL. The APL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer. 
Since the originator of a selector can specify any 
APL value, the Adjust APL (ARPL) instruction is pro­
vided to force the APL bits to the originator's CPL. 

5-892 



386™ SX MICROPROCESSOR 

Table 4.2. Descriptor Types Used for Control Transfer 

Control Transfer Types 

lntersegment within the same privilege level 

lntersegment to the same or higher privilege level 
Interrupt within task may change CPL 

lntersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

*NT (Nested Task bit of flag register) = 0 
' 'NT (Nested Task bit of flag register) = 1 

1/0 Privilege 

The 110 privilege level (IOPL) lets the operating sys­
tem code executing at CPL= 0 define the least privi­
leged level at which 1/0 instructions can be used. An 
exception 13 (General Protection Violation) is gener­
ated if an 1/0 instruction is attempted when the CPL 
of the task is less privileged then the IOPL. The 
IOPL is stored in bits 13 and 14 of the EFLAGS reg­
ister. The following instructions cause an exception 
13 if the CPL is greater than IOPL: IN, INS, OUT, 
OUTS, STI, CLI, LOCK prefix. 

Descriptor Access 

There are basically two types of segment accesses: 
those involving code segments such as control 
transfers, and those involving data accesses. Deter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and DPL as described above. 

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 386 SX Microprocessor 
makes protection validation checks. Selectors load­
ed in the DS, ES, FS, GS registers must refer only to 
data segment or readable code segments. 

Operation Types 
Descriptor Descriptor 

Referenced Table 

JMP, CALL RET, IRET* Code Segment GOT/LDT 

CALL Call Gate GOT/LDT 

Interrupt instruction Trap or IDT 
Exception External Interrupt 
Interrupt Gate 

RET, IRET* Code Segment GOT/LDT 

CALL, JMP Task State GOT 
Segment 

CALL, JMP Task Gate GOT/LDT 

IRET** Task Gate IDT 
Interrupt instruction, 
Exception, External 
Interrupt 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

The rules regarding the stack segment are slightly El 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 4.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13. 

5-893 



intef 

·---- ... --------· 
I 

ACCESS l TSS 
I 

I Hi 1-1 I RIGHTS LIMIT 
I I 
I I 
I BASE 1-H I 
I I 

: 31 PROGRAM O' 
I 

' INVISIBLE I ........................................ 
TASK REGISTER 

TR SELECTOR 11 
15 0 

31 

386™ SX MICROPROCESSOR 

3r1 ---0-0-00_0_0_0_00_0 ______ 0---, _.,.1_6...,._1_s ______ • _-.-. -.. -N.-. - ..... 0 j TSS BASE 
v uvu v ...L bA\..r\ LI f\ 

ESPO 

0000000000000000 J_ 
ESP1 

0000000000000000 

ESP2 

0000000000000000 l 
CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

sso 

SS1 

SS2 

ES 

cs 
SS 

OS 

FS 

GS 

LDT 

4 

8 

c 
10 

14 

18 

1C 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

SC 

60 

STACKS 
FOR 
CPL 0, 1,2 

CURRENT 
TASK 
STATE 

BIL MAP _OFFSET( 15:0) 0000000000000000 Jr~ 
AVAILABLE 

-----... SYSTEM STATUS, ETC. 
IN TSS 

31 24 23 16 15 8 

63 56 55 48 47 40 

95 88 87 80 79 72 

~ 1/0 PERMISSION BITMAP 

65407 (ONE BIT PER BYTE 1/0 
PORT. BITMAP MAY BE 65439 

TRUNCATED USING TSS LIMIT.) 
65471 _l 

65503 

65535 

7 

39 

71 

6 DEBUG 
TRAP BIT 

0 

32 

64 

96 

... 
'1' 

65472 

65504 

BIT _MAP _OFFSET 

OFF 

OFF 

SET+ C 

SET+ 10 

OFF 

OFF 

OFF 

OFF 

SET+ 1 FEC 

SET+ 1 FFO 

SET+ 1FF4 

SET+ 1 FF8 

OF FSET + 1 FFC 

"FFH" OF FSET + 2000 

OFFSET + 2000H ~ TSS LIMIT= 

TSS DESCRIPTOR (IN GOT) 0 

SEGMENT BASE 15 .... 0 SEGMENT LIMIT 15 .• 0 

BASE 31..241GJ10Jol 1L~~;~ p lorLI~ _J_nrE_i I 
BASE 

23 .. 16 240187-13 
Type = 9: Available 386™ SX Microprocessor TSS. 
Type ,= B: Busy 386 SX Microprocessor TSS. 

Figure 4.8. 386™ SX Microprocessor TSS and TSS Registers 

5-894 



intef 386™ SX MICROPROCESSOR 

31302928272625242322212019181716151413121110 9 8 7 6 5 4 .3 2 1 0 

" 63 

95 

127 

~ 

1 1 1 

0 0 1 

1 1 1 

0 0 0 

1 0 1 1 

0 0 0 1 

1 1 1 1 

0 0 0 0 

0 0 0 0 0 1 1 1 1 

1 1 1 0 0 1 0 1 0 

1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 

etc. 

0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 
~. 

240187-14 
1/0 Ports Accessible: 2-+ 9, 12, 13, 15, 20-+ 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58-+ 60, 62, 63, 96-+ 127 

Figure 4.9. Sample 1/0 Permission Bit Map 

CALL GATES 

Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 

TASK SWITCHING 

A very important attribute of any multi-tasking/multi­
user operating system is its ability to rapidly switch 
between tasks or processes. The 386 SX Microproc­
essor directly supports this operation by providing a 
task switch instruction in hardware. The task switch 
operation saves the entire state of the machine (all 
of the registers, address space, and a link to the 
previous task), loads a new execution state, per­
forms protection checks, and commences execution 
in the new task. Like transfer of control by gates, the 
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to 
a Task State Segment (TSS), or a task gate descrip­
tor in the GDT or LDT. An INT n instruction, excep­
tion, trap, or external interrupt may also invoke the 
task switch operation if there is a task gate descrip­
tor in the associated IDT descriptor slot. 

The TSS descriptor points to a segment (see Figure 
4.8) containing the entire execution state. A task 
gate descriptor contains a TSS selector. The 386 SX 
Microprocessor supports both 286 and 386 SX CPU 
TSSs. The limit of a 386 SX Microprocessor TSS 
must be greater than 64H (2BH for a 286 TSS), and 
can be as large as 16 megabytes. In the additional 
TSS space, the operating system is free to store ad­
ditional information such as the reason the task is 
inactive, time the task has spent running, or open 
files belonging to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
386 SX Microprocessor called the Task State Seg­
ment Register (TR). This register contains a selector 
referring to the task state segment descriptor that 
defines the current TSS. A hidden base and limit 
register associated with TSS descriptor are loaded 
whenever TR is loaded with a new selector. Return­
ing from a task is accomplished by the IRET instruc­
tion. When IRET is executed, control is returned to 

the task which was interrupted. The currently exe­
cuting task's state is saved in the TSS and the old 
task state is restored from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which is useful to the operating system. The 
Nested Task bit, NT, controls the function of the 
IRET instruction. If NT= O the IRET instruction per­
forms the regular return. If NT= 1 IRET performs a 
task switch operation back to the previous task. The 
NT bit is set or reset in the following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
TSS selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An in­
terrupt that does not cause a task switch will 
clear NT (The NT bit will be restored after exe­
cution of the interrupt handler). NT may also be 
set or cleared by POPF or IRET instructions. 

The 386 SX Microprocessor task state segment is 
marked busy by changing the descriptor type field 
from TYPE 9 to TYPE OBH. A 286 TSS is marked 
busy by changing the descriptor type field from 
TYPE 1 to TYPE 3. Use of a selector that references 
a busy task state segment causes an exception 13. 

The VM (Virtual Mode) bit is used to indicate if a task 
is a Virtual 8086 task. If VM = 1 then the tasks will 
use the Real Mode addressing mechanism. The vir­
tual 8086 environment is only entered and exited by 
a task switch. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Bit, 
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever 
the 386 SX Microprocessor switches task, it sets the 
TS bit. The 386 SX Microprocessor detects the first 
use of a processor extension instruction after a task 
switch and causes the processor extension not 
available exception 7. The exception handler for ex­
ception 7 may then decide whether to save the state 
of the coprocessor. 

The T bit in the 386 SX Microprocessor TSS indi­
cates that the processor should generate a debug 
exception when switching to a task. If T = 1 then 
upon entry to a new task a debug exception 1 will be 
generated. 

5-895 



intef 386™ SX MICROPROCESSOR 

INITIALIZATION AND TRANSITION TO 
PROTECTED MODE 

Since the 386 SX ~v1icroprocassor begins executing 
in Real Mode immediately after RESET it is neces­
sary to initialize the system tables and registers with 
the appropriate values. The GOT and IDT registers 
must refer to a valid GOT and IDT. The IDT should 
be at least 256 bytes long, and the GOT must con­
tain descriptors for the initial code and data seg­
ments. 

Protected Mode is enabled by loading CRO with PE 
bit set. This can be accomplished by using the MOV 
CRO, R/M instruction. After enabling Protected 
Mode, the next instruction should execute an inter­
segment JMP to load the CS register and flush the 
instruction decode queue. The final step is to load all 
of the data segment registers with the initial selector 
values. 

An alternate approach to entering Protected Mode is 
to use the built in task-switch to load all of the regis­
ters. In this case the GOT would contain two TSS 
descriptors in addition to the code and data descrip­
tors needed for the first task. The first JMP instruc­
tion in Protected Mode would jump to the TSS caus­
ing a task switch and loading all of the registers with 
the values stored in the TSS. The Task State Seg­
ment Register should be initialized to point to a valid 
TSS descriptor. 

4.4 Paging 

Paging is another type of memory management use­
ful for virtuai memory muiti-tasking operating sys­
tems. Unlike segmentation, which modularizes pro­
grams and data into variable length segments, pag­
ing divides programs into multiple uniform size 
pages. Pages bear no direct relation to the logical 
structure of a program. While segment selectors can 
be considered the logical 'name' of a program mod­
ule or data structure, a page most likely corresponds 
to only a portion of a module or data structure. 

PAGE ORGANIZATION 

The 386 SX Microprocessor uses two levels of ta­
bles to translate the linear address (from the seg­
mentation unit) into a physical address. There are 
three components to the paging mechanism of the 
386 SX Microprocessor: the page directory, the 
page tables, and the page itself (page frame). All 
memory-resident elements of the 386 SX Microproc­
essor paging mechanism are the same size, namely 
4K bytes. A uniform size for all of the elements sim­
plifies memory allocation and reallocation schemes, 
since there is no problem with memory fragmenta­
tion. Figure 4.10 shows how the paging mechanism 
works. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

DIRECTORY TABLE OFFSET USER 
MEMORY LINEAR 

ADDRESS 12 ...-----. OFFFFFFH 
10 10 

31 
ADDRESS 

31 
31 0 

CRO 0 ...... _..__ .... -----CR1 -----t PAGE TABLE 
CR2 -----t 
CR3 ROOT 

DIRECTORY 
CONTROL REGISTERS 

Figure 4.10. Paging Mechanism 

31 12 11 10 9 8 7 6 5 4 

System 
PAGE TABLE ADDRESS 31..12 Software 0 0 D A 0 

Defineable 

Figure 4.11. Page Directory Entry {Points to Page Table) 

5-896 

3 2 

u 
0 -

s 

240187-15 

0 

R 
- p 
w 



inter 386™ SX MICROPROCESSOR 

31 12 11 10 9 8 7 6 5 4 3 2 1 0 

System u R 
PAGE FRAME ADDRESS 31 .. 12 Software 0 0 D A 0 0 - - p 

Defineable s w 

Figure 4.12. Page Table Entry (Points to Page) 

Page Fault Register 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the last 
Page Fault detected. 

Page Descriptor Base Register 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory (this value is truncated to a 24-bit 
value ass?ciated with the 386 SX CPU's 16 mega­
byte physical memory limitation). The lower 12 bits 
of CR3 ~re always zero to ensure that the Page Di­
rectory 1s always page aligned. Loading it with a 
MOV CR3, reg instruction causes the page table en­
try cache to be flushed, as will a task switch through 
a TSS which changes the value of CAO. 

Page Directory 

The Page Directory is 4k bytes long and allows up to 
1024 page directory entries. Each page directory en­
try contains information about the page table and 
the address of the next level of tables, the Page 
Tables .. T~e contents of a Page Directory Entry are 
shown 1n figure 4.11. The upper 1 O bits of the linear 
address (A31-A22) are used as an index to select 
the correct Page Directory Entry. 

The page table address contains the upper 20 bits 
of a 32-bit physical address that is used as the base 
address for the next set of tables, the page tables. 
The lower 12 bits of the page table address are zero 
so that the page table addresses appear on 4 kbyte 
boundaries. For a 386 DX CPU system the upper 20 
bits will select one of 220 page tables, but for a 
386 SX Microprocessor system the upper 20 bits 
only select one of 212 page tables. Again, this is 
because the 386 SX Microprocessor is limited to a 
24-bit physical address and the upper 8 bits (A24 -
A31) are truncated when the address is output on its 
24 address pins. 

Page Tables 

Each Page Table is 4K bytes long and allows up to 
1~24 ~age ta~le Entries. Each page table entry con­
tains information about the Page Frame and its ad-

dress. The contents of a Page Table Entry are 
shown in figure 4.12. The middle 1 O bits of the linear 
address (A21-A12) are used as an index to select 
the correct Page Table Entry. 

The Page Frame Address contains the upper 20 bits 
of a 32-bit physical address that is used as the base 
address for the Page Frame. The lower 12 bits of the 
Page Frame Address are zero so that the Page 
Frame addresses appear on 4 kbyte boundaries. For 
an 386 DX CPU system the upper 20 bits will select 
one of 220 Page Frames, but for an 386 SX Micro­
processor system the upper 20 bits only select one 
of 212 Page Frames. Again, this is because the 
386 SX Microprocessor is limited to a 24-bit physical 
address space and the upper 8 bits (A24-A31 ) are 
truncated when the address is output on its 24 ad­
dress pins. 

Page Directory/Table Entries 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information I 
about pages and page tables respectively. The P 
(Present) bit indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P = 1, the entry can be used for address translation. 
If P = 0, the entry cannot be used for translation. All 
of the other bits are available for use by the soft-
ware. For example, the remaining 31 bits could be 
used to indicate where on disk the page is stored. 

The A (Accessed) bit is set by the 386 SX CPU for 
both types of entries before a read or write access 
occurs to an address covered by the entry. The D 
(Dirty) bit is set to 1 before a write to an address 
covered by that page table entry occurs. The D bit is 
undefined for Page Directory Entries. When the P, A 
and D bits are updated by the. 386 SX CPU, the proc-
essor generates a Read- Modify-Write cycle which 
locks the bus and prevents conflicts with other proc-
essors or peripherals. Software which modifies 
these bits should use the LOCK prefix to ensure the 
integrity of the page tables in multi-master systems. 

The 3 bits marked system software definable in Fig-
ures 4.11 and Figure 4.12 are software definable. 
System software writers are free to use these bits 
for whatever purpose they wish. 

5-897 



386™ SX MICROPROCESSOR 

PAGE LEVEL PROTECTION {R/W, U/S BITS) 

The 386 SX Microprocessor provides a set of pro­
tection attributes for paging systems. The paging 
mechanism distinguishes between two levels of pro­
tection: User, which corresponds to level 3 of the 
segmentation based protection, and supervisor 
which encompasses all of the other protection levels 
(0, 1, 2). Programs executing at Level O, 1 or 2 by­
pass the page protection, although segmentation­
based protection is still enforced by the hardware. 

The UIS and R/W bits are used to provide User/Su­
pervisor and Read/Write protection for individual 
pages or for all pages covered by a Page Table Di­
rectory Entry. The U/S and R/W bits in the second 
level Page Table Entry apply only to the page de­
scribed by that entry. While the U/S and R/W bits in 
the first level Page Directory Table apply to all pages 
described by the page table pointed to by that direc­
tory entry. The U/S and R/W bits for a given page 
are obtained by taking the most restrictive of the U/ 
S and R/W from the Page Directory Table Entries 
and using these bits to address the page. 

TRANSLATION LOOKASIDE BUFFER 

The 386 SX Microprocessor paging hardware is de­
signed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processor was required to access 
two levels of tables for every memory reference. To 
solve this problem, the 386 SX Microprocessor 
keeps a cache of the most recently accessed pages, 
this cache is called the Translation Lookaside Buffer 
(TLB). The TLB is a four-way set associative 32-enc 
try page table cache. It automatically keeps the most 
commonly used page table entries in the processor. 
The 32-entry TLB coupled with a 4K page size re­
sults in coverage of 128K bytes of memory address­
es. For many common multi-tasking systems, the 
TLB will have a hit rate of greater than 98%. This 
means that the processor will only have to access 
the two-level page structure for less than 2% of all 
memory references. 

PAGING OPERATION 

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (i.e. a TLB hit), then the 24-bit phys­
ical address is calculated and is placed on the ad­
dress bus. 

If the page table entry is not in the TLB, the 386 SX 
Microprocessor will read the appropriate Page Direc­
tory Entry. If P = 1 on the Page Directory Entry, indi­
cating that the page table is in memory, then the 386 
SX Microprocessor will read the appropriate 

Page Table Entry and set the Access bit. If P = 1 on 
the Page Table Entry, indicating that the page is in 
memory, the 386 SX Microprocessor will update the 
Access and Dirty bits as needed and fetch the oper­
and. The upper 20 bits of the linear address, read 
from the. page table, will be stored in the TLB for 
future accesses. If P = O for either the Page Directo­
ry Entry or the Page Table Entry, then the processor 
will generate a page fault Exception 14. 

The processor will also generate a Page Fault (Ex­
ception 14) if the memory reference violated the 
page protection attributes. CR2 will hold the linear 
address which caused the page fault. Since Excep­
tion 14 is classified as a fault, CS:EIP will point to the 
instruction causing the page-fault. The 16-bit error 
code pushed· as part of the page fault handler will 
contain status bits which indicate the cause of the 
page fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the Page Fault. Fig­
ure 4.13 shows the format of the Page Fault error 
code and the interpretation of the bits. Even though 
the bits in the error code (UIS, W/R, and P) have 
similar names as the bits in the Page Directory/Ta­
ble Entries, the interpretation of the error code bits is 
different. Figure 4.14 indicates what type of access 
caused the page fault. 

15 3 2 1 0 

lululululululululu[ulu[ululu[~[~[·I 
Figure 4.13. Page Fault Error Code Format 

U/S: The U/S bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (U/S = 0) 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W /R = O) or a Write 
(W/R = 1) 

P: The P bit indicates whether a page fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1) 

U = Undefined 

UIS W/R Access Type 

0 0 Supervisor• Read 
0 1 Supervisor Write 
1 0 User Read 
1 1 User Write 

*Descriptor table access will fault with U/S = 0, even if 
the program is executing at level 3. 
Figure 4.14. Type of Access Causing Page Fault 

5-898 



intef 386™ SX MICROPROCESSOR 

OPERATING SYSTEM RESPONSIBILITIES 

When the operating system enters or exits paging 
mode (by setting or resetting bit 31 in the CRO regis­
ter) a short JMP must be executed to flush the 
386 SX Microprocessor's prefetch queue. This en­
sures that all instructions executed after the address 
mode change will generate correct addresses. 

The 386 SX Microprocessor takes care of the page 
address translation process, relieving the burden 
from an operating system in a demand-paged sys­
tem. The operating system is responsible for setting 
up the initial page tables and handling any page 
faults. The operating system also is required to inval­
idate (i.e. flush) the TLB when any changes are 
made to any of the page table entries. The operating 
system must reload CR3 to cause the TLB to be 
flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
systems sets the P (Present) bit of page table entry 
to zero.· The TLB must be flushed by reloading CR3. 
Operating systems may want to take advantage of 
the fact that CR3 is stored as part of a TSS, to give 
every task or group of tasks its own set of page 
tables. 

4.5 Virtual 8086 Environment 

The 386 SX Microprocessor allows the execution of 
8086 application programs in both Real Mode and in 
the Virtual 8086 Mode. The Virtual 8086 Mode al­
lows the execution of 8086 applications, while still 
allowing the system designer to take full advantage 
of the 386 SX CPU's protection mechanism. 

VIRTUAL 8086 ADDRESSING MECHANISM 

One of the major differences between 386 SX CPU 
Real and Protected modes is how the segment se­
lectors are interpreted. When the processor is exe­
cuting in Virtual 8086 Mode, the segment registers 
are used in a fashion identical to Real Mode. The 
contents of the segment register are shifted left 4 
bits and added to the offset to form the segment 
base linear address. 

The 386 SX Microprocessor allows the operating 
system to specify which programs use the 8086 ad-

dress mechanism and which programs use Protect­
ed Mode addressing on a per task basis. Through 
the use of paging, the one megabyte address space 
of the Virtual Mode task can be mapped to any­
where in the 4 gigabyte linear address space of the 
386 SX Microprocessor. Like Real Mode, Virtual 
Mode addresses that exceed one megabyte will 
cause an exception.13. However, these restrictions 
should not prove to be important, because most 
tasks running in Virtual 8086 Mode will simply be 
existing 8086 application programs. 

PAGING IN VIRTUAL MODE 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed in 
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be 
divided into as many as 256 pages. Each one of the 
pages can be located anywhere within the maximum 
16 megabyte physical address space of the 386 SX 
Microprocessor. In addition, since CR3 (the Page Di­
rectory Base Register) is loaded by a task switch, 
each Virtual Mode task can use a different mapping 5 scheme to map pages to different physical locations. 
Finally, the paging hardware allows the sharing of 
the 8086 operating system code between multiple 
8086 applications. 

PROTECTION AND 1/0 PERMISSION BIT MAP 

All Virtual Mode programs execute at privilege level 
3. As such, Virtual Mode programs are subject to all 
of the protection checks defined in Protected Mode. 
This is different than Real Mode, which implicitly is 
executing at privilege level 0. Thus, an attempt to 
execute a privileged instruction in Virtual Mode will 
cause an exception 13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level 0. Attempting to 
execute these instructions in Virtual 8086 Mode (or 
anytime CPL~O) causes an exception 13 fault: 

LIDT; MOV DRn,REG; MOV reg,DRn; 
LGDT; MOV TRn,reg; MOV reg,TRn; 
LMSW; MOV CRn,reg; MOV reg,CRn; 

CLTS; 
HLT; 

5-899 



386™ SXMICROPROCESSOR 

Several instructions, particularly those applying to 
the multitasking and the protection model, are avail~ 
able only in Protected Mode. Therefore, attempting 
to execute the following instructions in Real Mode or 
in Virtual 8086 Mode generates an exception 6 fault: 

LTR; 
LLDT; 

·LAA; 
LSL; 
ARPL; 

STA; 
SLOT; 
VEAR; 
VERW; 

The instructions which are IOPL sensitive in Protect­
ed Mode are: 

IN; STI; 
OUT; CU 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

In Virtual 8086 Mode the· following instructions are 
IOPL-sensitive: 

INTn; STI; 
PUSHF; CU; 
POPF; IRET; 

The PUSHF, POPF, and IR!:T instructions are IOPL­
sensitive in Virtual 8086 Mo<:le only. This provision 
allows the IF flag to be virtualized to the virtual 8086 
Mode program. The INT n software interrupt instruc­
tion is also IOPL-sensitive in Virtual 8086 mode. 
Note that the .INT 3, INTO, and BOUND instructions 
are not IOPL-sensitive in Virtual 8086 Mode. 

The 1/0 instructions that directly refer to addresses 
in the processor's 110 space are IN, INS, OUT, and 
OUTS. The 386 SX Microprocessor has the ability to 
selectively trap references to specific 1/0 address­
es. The structure that enables· selective trapping ls 
the J/O Permission Bit Map in the TSS segment (see 
Figures 4.8 and 4.9). The 1/0 permission map is a bit 
vector. The size of the map and its location in the 
TSS segment are variable. The processor locates 
the 1/0 permission map by means of the 1/0 map 
base field in the fixed portion of the TSS. The 1/0 
map base field is 16 bits wide and contains the off­
set of thE;i beginning of the 1/0 permission map. 

In protected mode when an 110 instruction (IN, INS, 
OUT or OUTS) is encountered, the processor first 
checks whether CPL~ IOPL. If this condition is true, 
the 1/0 operation may proceed. If not true, the proc­
essor checks the 1/0 permission map (in Virtual 
8086 Mode, the processor consults the map without 
regard for the IOPL). 

Each bit in the map corresponds to an 1/0 port byte 
address; for example, the bit for port 41 is found at 
1/0 map base·+ 5, bit offset 1. The processor tests 
all the bits that correspond to the 1/0 addresses 
spanned by an 1/0 operation; for example, a double 
word operation tests four bits corresponding to four 
adjacent byte addresses. If any tested bit is set, the 
processor signals a general protection exception. If 
all the tested bits are zero, the 1/0 operations may 
proceed. 

It is not necessary for the· 1/0 permission map to 
represent all the 1/0 addresses. 1/0 addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at 
least one byte less than the TSS limit; the last byte 
beyond the· 1/0 mapping information must contain 
all 1's. 

Because the 1/0 permission map is in the TSS seg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the 110 permission map in the .task's TSS. 

IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of 1/0 mapping information in the 1/.0 
permission bit map must be a byte containing all 1 's. 
The byte of all 1 's must be within the limit of the 
386 SX CPU TSS segment (see Figure 4.8). 

Interrupt .Handling 

In order to fully. support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi­
lege change back to the host 386 SX Microproces­
sor operating system. The 386 SX Microprocessor 
operating system determines if the interrupt comes 
from a Protected Mode application or from a Virtual 
Mode program by examining the VM bit in the 
EFLAGS image stored on the stack. · 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The 386 SX Microprocessor operating system in turn 
handles the exception or interrupt and then returns 
control to the 8086 program. The 386 SX Microproc­
essor operating system may choose to let the 8086 
operating system handle the interrupt or it may emu­
late the function of the interrupt handler. For exam­
ple, many 8086 operating system calls are accessed 
by PUSHing parameters on the stack, and then exe­
cuting an INT n instruction. If the IOPL is setto O 
then all INT n instructions will be intercepted by the 
386 SX Microprocessor operating system. 

5-900 



intef 386TM SX MICROPROCESSOR 

An 386 SX Microprocessor operating system can 
provide a Virtual 8086 Environment which is totally 
transparent to the application software by intercept­
ing and then emulating 8086 op~rating .system's 
calls, and intercepting IN and OUT instructions. 

Entering and Leaving Virtual 8086 Mode 

Virtual 8086 mode is entered by executing a 32-bit 
IRET instruction at CPL=O where the stack has a 1 
in the VM bit of its EFLAGS image, or a Task Switch 
(at any CPL) to a 386 SX Microprocessor task 
whose 386 SX CPU TSS has a EFLAGS image con­
taining a 1 in the VM bit position while the processor 
is executing in the Protected Mode. POPF does not 
affect the VM bit but a PUSHF always pushes a O in 
the VM bit. 

The transition out of Virtual 8086 mode to protected 
mode occurs only on receipt of an interrupt or ex­
ception. In Virtual 8086 mode, all interrupts and ex­
ceptions vector through the protected mode IDT, 
and enter an interrupt handler in protected mode. As 
part of the interrupt processing the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
Interrupt or Trap Gates used to field an interrupt or 
exception out of Virtual 8086 mode must perform an 
inter-level interrupt only to level 0. Interrupt orTrap 
Gates through conforming segments, or through 
segments with DPL> O, will raise a GP fault with the 
CS selector as the error code. 

Task Switches To/From Virtual 8086 Mode 

Tasks which can execute in Virtual 8086 mode must 
be described by a TSS with the 386 SX CPU format 
(type 9 or 11 descriptor). A task switch out of virtual 
8086 mode will operate exactly the same as any oth­
er task switch out of a task with a 386 SX CPU TSS. 
All of the programmer visible state, including the 
EFLAGS register with the VM bit set to 1, is stored in 
the TSS. The segment registers in the TSS will con­
tain 8086 segment base values rather than selec­
tors. 

A task switch into a task described by a 386 SX CPU 
TSS will have an additional check to determine if the 
incoming task should be resumed in Virtual 8086 
mode. Tasks described by 286 format TSSs cannot 
be resumed in Virtual 8086 mode, so no check is 
required there (the FLAGS image in 286 format TSS 
has only the low order 16 FLAGS bits). Before load­
ing the segment register images from a 386 SX CPU 
TSS the FLAGS image is loaded, so that the seg­
ment registers are loaded from the TSS image as 
8086 segment base values. The task is now ready to 
resume in Virtual 8086 mode. · 

Transitions Through Trap and Interrupt Gates, 
and IRET 

A task switch is one way to enter or exit Virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 386 SX CPU Trap 
Gate (Type 14), or 386 SX CPU Interrupt Gate (Type 
15), which must point to a non-conforming level 0 
segment (DPL = O) in order to permit the trap han­
dler to IRET back to the Virtual 8086 program. The 
Gate must point to a non-conforming level 0 seg­
ment to perform a level switch to level 0 so that the 
matching IRET can change the VM bit. 386 SX CPU 
gates must be used since 286 gates save only the 
low 16 bits of the EFLAGS register (the VM bit will 
not be saved). Also, the 16-bit IRET used to termi­
nate the 286 interrupt handler will pop only the lower 
16 bits from FLAGS, and will not affect the VM bit. 
The action taken for a 386 SX CPU Trap or Interrupt 
gate if an interrupt occurs while the task is ex~cuting 
in virtual 8086 mode is given by the following se­
quence: 

1. Save the FLAGS register in a temp to push later. 
Turn off the VM, TF, and IF bits. 

2. Interrupt and Trap gates must perform a level 
switch from 3 (where the Virtual 8086 Mode pro­
gram executes) to level 0 (so IRET can return). 

3. Push the 8086 segment register values onto the I 
new stack, in this order: GS, FS, DS, ES. These 
are pushed as 32-bit quantities. Then load these 4 
registers with null selectors (0). · 

4. Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits), then 
pushing the 32-bit ESP register saved above. 

5. Push the 32-bit EFLAGS register saved in step 1. 

6. Push the old 8086 instruction onto the new stack 
by pushing the CS register (as 32-bits), then push­
ing the 32-bit EIP register. 

7. Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected mode. 

The transition out of V86 mode performs a level 
change and stack switch, in addition to changing 
back to protected mode. Also all of the 8086 seg­
ment register images are stored on the stack (be­
hind the SS:ESP image), and then loaded with null 
(0) selectors before entering the interrupt handler. 
This will permit the handler to safely save and re­
store the OS ES, FS, and GS registers as 286 selec­
tors. This is ~eeded so that interrupt handlers which 
don't care about the mode of the interrupted pro­
gram can use the same prologue and epilogue code 
for state saving regardless of whether or not a 'na­
tive' mode or Virtual 8086 Mode program was inter­
rupted. Restoring null selectors to these registers 

5-901 



386™ SX MICROPROCESSOR 

before executing the IRET will cause a trap in the 
interrupt handler. Interrupt routines which expect or 
return values in the segment registers will have to 
obtain/return values from the 8086 register images 
pushed onto the new stack: They will need to know 
the mode of the· interrupted program in order to 
know where to find/return segment registers, and 
also to know how to interpret segment register val­
ues. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended IRET instruc­
tion (operand size=32) can be used and must be 
executed at level 0 to change the VM bit to 1. 

1. If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the in­
terrupted task which is to be resumed. Otherwise, 
continue with the following sequence: 

2. Read the FLAGS image from SS:8[ESP] into the 
FLAGS register. This will set VM to the value ac~ 
tive in the interrupted routine. 

3. Pop off the instruction pointer .CS:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
VM = 0, this CS load is done as a protected mode 
segment load. If VM = 1, this will be done as an 
8086 segment load. 

4. Increment the. ESP register by 4 to bypass the 
FLAGS image which was 'popped' in step 1. 

5. If VM = 1, load segment registers ES, OS, FS, and 
GS from memory locations SS:[ESP+8]. 
SS:[ESP+ 12), SS:[ESP+ 16), and 
SS:[ESP=20), respectively, where the new value 
of ESP stored in step 4 is used. Since VM = 1, 
these are done as 8086 segment register loads. 

Else if VM = 0, check that the selectors in ES, OS, 
FS, and GS are valid in the interrupted routine. 
Null out invalid selectors to trap if an attempt is 
made to access through them. 

6. If RPL(CS)>CPL, pop the stack pointer SS:ESP 
from the s~ck. The ESP register is popped first, 
followed by 32-bits containing SS in the lower 16 
bits. If VM = 0, SS is loaded as a protected mode 
segment register load. If VM = 1, an 8086 seg­
ment register load is used. 

7. Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode or Virtual 8086 
Mode.' · ·· 

5.0 FUNCTIONAL DATA 

The 386 SX Microprocessor features a straightfor­
ward functional interface to the external hardware. 
The 386 SX Microprocessor has separate parallel 
buses for data and address. The data bus is 16-bits 
in width, and bi-directional. The address bus outputs 
24-bit address values using 23 address lines and 
two byte enable signals. 

The 386 SX Microprocessor.has two selecta.ble ad­
dress bus cycles: address pipelined and non-ad­
dress pipelined. The address pipelining option al­
lows. as much time as possible for data access by 
starting the pending bus cycle before the present 
bus cycle is finished. A non-pipelined bus cycle 
gives the highest bus pei"formance by executing ev­
ery bus cycle in two processor CLK cycles. For maxi­
mum design flexibility, the address pipelining option 
is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system .. 386 SX Micro­
processor bus cycles perform data transfer in a mini­
mum of only two clock periods. The maximum trans­
fer bandwidth at 16 MHz is therefore 16 Mbytes/ 
sec. However, any bus cycle. will be extended for 
more than two clock periods if external hardware 
withholds acknowledgement of the cycle. · 

The 386 SX Microprocessor can relinquish control of 
its local buses to allow mastership by other devices, 
such as direct memory access (OMA) channels. 
When relinquished, HLOA is the only output pin driv­
en by the 386 SX Microprocessor, providing near­
complete isolation of the processor from its system 
(all other output pins are in a float condition). 

5.1 Signal Description Overview 

Ahead is a brief description of the 386 SX · Micro­
processor input and output signals arranged by func­
tional groups. Note the # symbol at the end of a 
signal name indicates the active, or asserted, state 
occurs when the signal is at a LOW voltage. When 
no # is present after the signal name, the signal is 
asserted when at the HIGH voltage level. 

Example signal: M/10# - HIGH voltage indicates 
Memory selected 

- LOW voltage indicates 
110 selected 

The signal descriptions sometimes refer to AC tim­
ing parameters, such as 't2s Reset Setup Time' and , 
't2s Reset Hold Time.' The values of these parame­
ters can be found in Table 7.4. 

5-902 



intJ 386™ SX MICROPROCESSOR 

CLOCK (CLK2) DATA BUS (D15-Do) 

CLK2 provides the fundamental timing for the 
386 SX Microprocessor. It is divided by two internally 
to generate the internal processor clock used for in­
struction execution. The internal clock is comprised 
of two phases, 'phase one' and 'phase two'. Each 
CLK2 period is a phase of the internal clock. Figure 
5.2 illustrates the relationship. If desired, the phase 
of the internal processor clock can be synchronized 
to a known phase by ensuring the falling edge of the 
RESET signal meets the applicable setup and hold 
times t2s and t26· 

These three-state bidirectional signals provide the 
general purpose data path between the 386 SX Mi­
croprocessor and other devices. The data bus out­
puts are active HIGH and will float during bus hold 
acknowledge. Data bus reads require that read-data 
setup and hold times t21 and t22 be met relative to 
CLK2 for correct operation. 

CLK2 
--.-2X CLOCK{ 

16-BIT{oo-D15 
DATA 

A. i( DATA BUS 
'If -y 

Bus( 
CONTROL 

BUS( 
ARBITRATION 

INTERRUPTS [ 

..... ADS# 

NA# 

READY#::: 

HOLD 
HLDA--.-

INTR_.. 

NMI 

RESET 

386™ sx 
MICRO-

PROCESSOR 

..II. 
ADDRESS BUS 
. BHE# :.. 

BLE# 

A 1-A23 ·] 24-BIT 

} 
BYTE ADDRESS 
ENABLES 

W/R# 

D/C# 

M/10# · 
--.-
...... 

LOCK# 
--.-
] '"' """' """""" 

PEREQ 

BUSY# 

ERROR# 
~ 

} COPROCESSOR SIGNALL;NG 

Vee 
~Vss } POWER CONNECTIONS 

Figure 5.1. Functional Signal Groups 

INTERNAL[ 
PROCESSOR CLOCK 

PROCESSOR CLOCK 
PERIOD 

PROCESSOR CLOCK 
PERIOD 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
•1 +2 +1 +2 

62.5 ns MIN. 
(16 MHz MAX) 

Figure 5.2. CLK2 Signal and Internal Processor Clock 

5-903 

240187-16 

240187-17 

II 



intef 386TM SX MICROPROCESSOR 

ADDRESS BUS (A23-A1, BHE#, BLE#) 

These three-state outputs provide physical memory 
addresses or 1/0 port addresses. A23-A15 are LOW 
during 1/0 transfers .except for 1/0 transfers auto­
matically generated by coprocessor . instructions. 
During coprocessor 110 transfers, A22-A15 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the 1/0 address 
driven by the 386 SX Microprocessor for coproces­
sor commands is 8000F8H, the 1/0 addresses driv­
en by the 386. SX Microprocessor for coprocessor 
data are 8000FCH or 8000FEH for cycles to the 
387™ sx. 

The address bus is capable of addressing 16 mega­
bytes of physical memory space (OOOOOOH through 
FFFFFFH), and 64 kilobytes of 110 address space 
(OOOOOOH through OOFFFFH) for programmed 110. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs, BHE # and BLE #, directly 
indicate which bytes of the 16-bit data bus are in­
volved with the current transfer. BHE # applies to 
D15-Ds and BLE# applies to D7-Do. If both BHE# 
and BLE# are asserted, then 16 bits of data are 
being transferred. See Table 5.1 for a complete de­
coding of these signals. The byte enables are active 
LOW and will float during bus hold acknowledge. 

BUS CYCLE DEFINITION SIGNALS (W/R#, D/ 
C#, M/10#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed: W /R # distinguishes between 

write and read cycles, DIC# distinguishes between 
data and control cycles, MllO# distinguishes be­
tween memory and 1/0 cycles, and LOCK# distin­
guishes between locked and unlocked bus cycles. 
All of these signals are active LOW and will float 
during bus acknowledge. 

The primary bus cycle definition signals are WI R #, 
DIC# and MllO#, since these are the signals driv­
en valid as ADS# (Address Status output) becomes 
active. The LOCK# is driven valid at the same time 
the bus cycle begins, which due to address pipelin­
ing, could be after ADS# becomes active. Exact bus 
cycle definitions, as a function of W /R #, DIC#, and 
M/10# are given in Table 5.2. 

LOCK# indicates that other system bus masters are 
not to gain control of the system bus while it is ac­
tive. LOCK# is activated on the CLK2 edge that be­
gins the first locked bus cycle (Le., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned at the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY# 
is returned in a previous bus cycle and another is 
pending (ADS# is active) or by the clock edge in 
which ADS# is driven active if the bus was idle. This 
means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The LOCK# signal 
may be explicitly activated by the LOCK prefix on 
certain instructions. LOCK# is always asserted 
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl­
edge sequence. 

Table 5.1. Byte Enable Definitions 

BHE# BLE# Function 

0 0 Word Transfer 
0 1 Byte transfer on upper byte of the data bus, D15-Ds 
1 0 Byte transfer on lower byte of the data bus, D7-Do 
1 1 Never occurs 

Table 5.2. Bus Cycle Definition 

M/10# D/C# W/R# Bus Cycle Type Locked? 

0 0 0 Interrupt Acknowledge Yes 
0 0 1 does not occur -
0 1 0 110 Data Read No 
0 1 1 1/0 Data Write No 
1 0 0 Memory Code Read No 
1 0 1 Halt: Shutdown: No 

Address= 2 Address= 0 
BHE# = 1 BHE# = 1 
BLE# = 0 BLE# = 0 

1 1 0 Memory Data Read Some Cycles 
1 1 1 Memory Data Write Some Cycles 

5-904 



intef 386™ SX MICROPROCESSOR 

BUS CONTROL SIGNALS (ADS#, READY#, 
NA#) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS#) 

This three-state output indicates that a valid bus cy­
cle definition and address (WIR#, DIC#, MllO#, 
BHE#, BLE# and A23-A1) are being driven at the 
386 SX Microprocessor pins. ADS# is an active 
LOW output. Once ADS# is driven active, valid ad­
dress, byte enables, and definition signals will not 
change. In addition, ADS# will remain active until its 
associated bus cycle begins (when READY# is re­
turned for the previous bus cycle when running pipe­
lined bus cycles). When address pipelining is uti­
lized, maximum throughput is achieved by initiating 
bus cycles when ADS# and READY# are active in 
the same clock cycle. ADS# will float during bus 
hold acknowledge. See sections Non-Pipelined Ad· 
dress and Pipelined Address for additional infor­
mation on how ADS# is asserted for different bus 
states. 

Transfer Acknowledge (READY#) 

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and 
BLE # are accepted or provided. When READY# is 
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 386 SX Microprocessor latch­
es the input data and terminates the cycle. When 
READY# is sampled active during a write cycle, the 
processor terminates the bus cycle. 

READY# is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY# must eventually be asserted to 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY#. must always meet setup and 
hold times t19 and t20 for correct operation. 

Next Address Request (NA#) 

This is used to request address pipelining. This input 
indicates the system is prepared to accept new val­
ues of BHE#, BLE#, A23-A1, WIR#, DIC# and 
MllO# from the 386 SX Microprocessor even if the 
end of the current cycle is not being acknowledged 
on READY#. If this input is active when sampled, 
the next address is driven onto the bus, provided the 
next bus request is already pending internally. NA# 
is ignored in CLK cycles in which ADS# or READY# 

is activated. This signal is active LOW and must sat­
isfy setup and hold times t15 and t16 for correct op­
eration. See Pipelined Address and Read and 
Write Cycles for additional information. 

BUS ARBITRATION SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge for addi­
tional information. 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
386 SX Microprocessor requires bus mastership. 
When control is granted, the 386 SX Microprocessor 
floats A23-A1. BHE#, BLE#, D15-Do. LOCK#, Ml 
10#, DIC#, WIR# and ADS#, and then activates 
HLDA, thus entering the bus hold acknowledge 
state. The local bus will remain granted to the re­
questing master until HOLD becomes inactive. 
When HOLD becomes inactive, the 386 SX Micro­
processor will deactivate HLDA and drive the local 
bus (at the same time), thus terminating the hold 
acknowledge condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resis- D 
tors may be required when in the hold acknowledge 
state since none of the 386 SX Microprocessor float-
ed outputs have internal pull-up resistors. See 
Resi.stor Recommendations for additional informa-
tion. HOLD is not recognized while RESET is active. 
If RESET is asserted while HOLD is asserted, RE-
SET has priority and places the bus into an idle 
state, rather than the hold acknowledge (high-im­
pedance) state. 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always meet setup and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When active (HIGH), this output indicates the 386 
SX Microprocessor has relinquished control of its lo­
cal bus in response to an asserted HOLD signal, and 
is in the bus Hold Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge 
state, HLDA is the only signal being driven by the 
386 SX Microprocessor. The other output signals or 
bidirectional signals (D15-Do, BHE#, BLE#, A23-
A1, WIR#, DIC#, MllO#, LOCK# and ADS#) are 
in a high-impedance state so the requesting bus 

5-905 



intJ 386™ SX MICROPROCESSOR 

master may control them. These pins remain OFF 
throughout the time that HLDA remains active (see 
Table 5.3)). Pull-up resistors may be desired on sev­
e;al signals to avoid spurious activity when no bus 
master is driving them. See Resistor Recommen­
dations for additional information. 

When the HOLD signal is made inactive, the 386 SX 
Microprocessor will deactivate HLDA and drive the 
bus. One rising edge on the NMI input is remem.­
bered for processing after the HOLD input is negat­
ed. 

Table 5.3. Output pin State During HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK#, M/10#, DIC#, W/R#, 

ADS#, A2s-A1, BHE#, BLE#, 0 15-00 

In addition to the normal usage of Hold Acknowl­
edge with OMA controllers or master peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware fault-tolerant applica­
tions. 

HOLD Latencies 

The maximum possible HOLD latency depends on 
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activic 
ty, the state of the LOCK# signal (internal to the 
CPU) activated by the LOCK# prefix, and interrupts. 
The 386 SX Microprocessor will not honor a HOLD 
request until the current bus operation is complete. 

The 386 SX Microprocessor breaks 32-bit data or 
1/0 accesses into 2 internally locked 16-bit bus cy­
cles; the LOCK# signal is not asserted. The 386 SX 
Microprocessor breaks unaligned 16-bit or 32-bit 
data or 1/0 accesses into 2 or 3 internally locked 
16-bit bus cycles. Again, the LOCK# signal is not 
asserted but a HOLD request will not be recognized 
until the end of the entire transfer. 

Wait states affect HOLD latency. The 386 SX Micro­
processor will not honor a HOLD request until the 
end of the current bus operation, no matter how 
many wait states are required. Systems with OMA 
where data transfer is critical must insure that 
READY# returns sufficiently soon. 

COPROCESSOR INTERFACE SIGNALS 
(PEREQ, BUSY#, ERROR#) 

in the foiiowing sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following signals control 
communication between the 386 SX Microprocessor 
and its 387™ SX processor extension. 

Coprocessor Request (PEREQ) 

When asserted (HIGH), this input signal indicates a 
coprocessor request for a data operand to be trans­
ferred to/from memory by the 386 SX Microproces­
sor. In response, the 386 SX Microprocessor trans­
fers information between the coprocessor and 
memory. Because the 386 SX Microprocessor has 
internally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with 
the correct direction and memory address. 

PEREQ is a level-sensitive active HIGH asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This signal is 
provided with a weak internal pull-down resistor of 
around 20 K-ohms to ground so that it will not float 
active when left unconnected. 

Coprocessor Busy (BUSY#) 

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not 
yet able to accept another. When the 386 SX Micro­
processor encounters any coprocessor instruction 
which operates on the numerics stack (e.g. load, 
pop, or arithmetic operation), or the WAIT instruc­
tion, this input is first automatically sampled until it is 
seen to be inactive. This sampling of the BUSY# 
input prevents overrunning the execution of a previ­
ous coprocessor instruction. 

The FNINIT, FNSTENV, FNSAVE, FNSTSW, 
FNSTCW and FNCLEX coprocessor instructions are 
allowed to execute even if BUSY# is active, since 
these instructions are used for coprocessor initializa­
tion and exception-clearing. 

BUSY# is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t29 and t3o, rela-

5-906 



intef 386TM SX MICROPROCESSOR 

tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K-ohms to Vee so that it will not float active when 
left unconnected. 

BUSY# serves an additional function. If BUSY# is 
sampled LOW at the falling edge of RESET, the 386 
SX Microprocessor performs an internal self-test 
(see Bus Activity During and Following Reset. If 
BUSY# is sampled HIGH, no self-test is performed. 

Coprocessor Error (ERROR#) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction generated 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
ically sampled by the 386 SX Microprocessor when 
a coprocessor instruction is encountered, and if ac­
tive, the 386 SX Microprocessor generates excep­
tion 16 to access the error-handling software. 

Several coprocessor instructions, generally those 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 386 SX Microprocessor generating exception 16 
even if ERROR# is active. These instructions are 
FNINIT, FNCLEX, FNSTSW, FNSTSWAX, 
FNSTCW, FNSTENV and FNSAVE. 

ERROR# is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times, t29 and t3o. 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K-ohms to Vee so that it will not float active when 
left unconnected. 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 386 SX 
CPU Flag Register IF bit. When the 386 SX Micro­
processor responds to the INTR input, it performs 
two interrupt acknowledge bus cycles and, at the 
end of the second, latches an 8-bit interrupt vector 
on 07-00 to identify the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t2B· rela­
tive to the CLK2 signal must be met to guarantee 

recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain 
active until the first interrupt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction in the 386 SX Microprocessor's Execu­
tion Unit. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
instruction. If recognized, the 386 SX Microproces­
sor will begin execution of the interrupt. 

Non·Maskable Interrupt Request (NMI)) 

This input indicates a request for interrupt service 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt ackriowledge cycles are performed when 
processing NMI. 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t2B· 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the instruction 
boundary in the 386 SX Microprocessor's Execution 
Unit. 

Once NMI processing has begun, no additional II 
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET 
instruction. 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the interrupt source. Any of the following factors 
can affect interrupt latency: 

1. If interrupts are masked, an INTR request will .not 
be recognized until interrupts are reenabled. 

.2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 
386 SX Microprocessor encounters the IRET in­
struction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 386 SX Microproces­
sor's Execution Unit except for the following cas­
es: 

- Repeat string instructions can be interrupted 
after each iteration. 

5-907 



intJ 386™ SX MICROPROCESSOR 

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after 
the following instruction, which should be an 
ESP. This allows the entire stack pointer to be 
loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives while the 366 SX Microprocessor is 
executing a long instruction such as multiplication, 
division, or a task-switch in the protected mode. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 386 SX Micro­
processor. 

RESET 

This input signal suspends any operation in progress 
and places the 386 SX Microprocessor in a known 
reset state. The 386 SX Microprocessor is reset by 
asserting RESET for 15 or more CLK2 periods (80 or 
more CLK2 periods before requesting self-test). 
When RESET is active, all other input pins, except 
FLT#, are ignored, and all other bus pins are driven 
to an idle bus state as shown in Table 5.5. If RESET 
and HOLD are both active at a point in time, RESET 
takes priority even if the 386 SX Microprocessor was 
in a HoJd Acknowledge .state prior to RESET active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t2s and t26• must 
be met in order to assure proper operation of the 
386 SX Micr()processor. 

Table 5.5. Pin State (Bus Idle) During Reset 

Pin Name Signal Level During Reset 

ADS# 1 
D1s-Do Float 
BHE#, BLE# 0 
A23-A1 1 
W/R# 0 
DIC# 1 
M/10# 0 
LOCK# 1 
HLDA 0 

5.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 

physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers. 

The 386 SX Microprocessor address signals are de­
signed to simplify external system hardware. Higher­
order address bits are provided by A23-A1. BHE# 
and BLE# provide linear selects for the two bytes of 
the 16-bit data bus. 

Byte Enable outputs BHE# and BLE# are asserted 
when their associated data bus bytes are· involved 
with the present bus cycle, as listed in Table 5.6. 

Table 5.6. Byte Enables and Associated Data 
and Operand Bytes 

Byte Enable 
Associated Data Bus Signals 

Signal 

BLE# D1-Do l (byte 0 - least significant) 
BHE# D1s-Da (byte 1 - most significant) 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period.I Additional bus states added to a single bus 
cycle are called wait states. See· section 5.4 Bus 
Functional Description. 

5.3 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or I/ 
0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or 110-mapped, or both. 
As shown in Figure 5.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 megabytes) 
and 1/0 addresses from OOOOOOH to OOFFFFH (64 
kilobytes). Note the 1/0 addresses used by the auto­
matic 110 cycles for coprocessor communication are 
8000F8H to 8000FFH, beyond the address range of 
programmed 1/0, to allow easy generation of a co­
processor chip select signal using the A23 and M/ 
10# signals. 

5.4 Bus Functional Description 

The 386 SX Microprocessor has separate, parallel 
buses for data and address. The data bus is 16-bits 
in width, and bidirectional. The address bus provides 
a 24-bit value using 23 signals for the 23 upper-order 
address bits and 2 Byte Enable signals to directly 
indicate the active bytes. These buses are interpret­
ed and controlled by several definition signals. 

The definition of each bus cycle is given by three 
signals: M/10#, W/R# and DIC#. At the same 
time, a valid address is present on the byte enable 
signals, BHE# and BLE#, and the other address 
signals A23-A1. A status signal, ADS#, indicates 

5-908 



intJ 386™ SX MICROPROCESSOR 

FFFFFFH ..-----. 

PHYSICAL 
MEMORY 

16-MBYTE 

•-.-----· I 
I 
I 
I 

1 NOT : 
ACCESSIBLE 1 

:ggg~~~ ---::+-.. COPROCESSOR 

{NOTE) : 

I 
I 
I 

NOT : 
1ACCESSIBLE1 
I I 
I I 
I I 
I I 
I I 

64 kBYTE PROGRAMMED 
OOFFFFH a' 

1
} ACCESSIBLE 

OOOOOOH OOOOOOH 1/0 SPACE 

NOTE: PHYSICAL MEMORY SPACE 1/0 SPACE 240187_1 8 

Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/10# LOW can be used to 
easily generate a coprocessor select signal. 

Figure 5.3. Physical Memory and 1/0 Spaces 

CLK2[ 
(INPUT) 

BHE#,BLE#,A 1-A23, [ 
M/10#, D/C#, W/R# 

(OUTPUTS) 

ADS#[ 
(OUTPUT) 

NA#[ 
(INPUT). 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

DO-D1s[ 
(INPUT DURING READ) 

CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

T1 T2 T1 T2 T1 T2 

•1 l•2 •1 l•2 •1 1•2 •1 l•2 .1 1•2 •1 l•2 .1 

Fastest non-pipelined bus cycles consist of T1 and T2 

Figure 5.4. Fastest Read Cycles with Non-pipelined Address Timing 

5-909 

240187-19 

I 



intef 386™ SX MICROPROCESSOR 

when the 386 SX Microprocessor issues a new bus 
cycle definition and address. 

Collectively, the address bus, data bus and all asso­
,ciated control signals are referred to simply as 'the 
bus'. When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. Locked read from memory space 

3. Write to memory space 

. 4. Locked write to memory space 

5. Read from 110 space (or coprocessor) 

6. Write to 110 space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown 

Table 5.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See Bus Cycle 
Definition Signals for additional information. · 

CYCLE 1 
PIPELINED 

(READ) 

When the 386 SX Microprocessor bus is not per­
forming one of the activities listed above, it is either 
Idle or in the Hold Acknowledge state, which may be 
detected externally. The idle state can be identified 
by the 386 SX Microprocessor giving no further as­
sertions on its address strobe output (ADS#) since 
the beginning of its most recent bus cycle, and the 
most recent bus cycle having been terminated. The 
hold acknowledge state is identified by the 386 SX 
Microprocessor asserting its hold acknowledge 
(HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

The fastest 386 SX Microprocessor bus cycle re­
quires only two bus states. For example, three con­
secutive bus read cycles, each consisting of two bus 
states, are shown by Figure 5.4. The bus states in 
each cycle are named T1 and T2. Any memory or II 
0 address may be accessed by such a .two-state 
bus cycle, if the external hardware is fast enough. 

CYCLE 2 
PIPELINED 

{READ) 

CYCLE 3 
PIPELINED 

{READ) 

T1P T2P T1P T2P T1P T2P 

CLK2[ 
{INPUT} 

"ADS#[ 
{OUTPUT} 

NA#[ 
{INPUT} 

READY# [ 
(INPUT} 

LOCK# [ 
{OUTPUT} 

DO-D15[ 
(INPUT DURING READ) 

.1 1•2 .1 1•2 •1 1•2 .1 1•2 •1 1•2 •1 1•2 

Fastest pipelined bus cycles consist of T1 P and T2P 

Figure 5.5. Fastest Read Cycles with Pipelined Address Timing 

5-910 

240187-20 



intJ 386™ SX MICROPROCESSOR 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 386 SX 
Microprocessor READY# input. Acknowledging the 
bus cycle at the end of the first T2 results in the 
shortest bus cycle, requiring only T1 and T2. If 
READY# is not immediately asserted however, T2 
states are repeated indefinitely until the READY# 
input is sampled active. 

The address pipelining option provides a choice of 
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis 
with the Next Address (NA#) input. 

When address pipelining is selected the address 
(BHE#, BLE# and A23-A1) and definition (W/R#, 
DIC#, M/10# and LOCK#) of the next cycle are 
available before the end of the current cycle. To sig­
nal their availability, the 386 SX Microprocessor ad-

dress status output (ADS#) is asserted. Figure 5.5 
illustrates the fastest read cycles with pipelined ad­
dress timing. 

Note from Figure 5.5 the fastest bus cycles using 
pipelined address require only two bus states, 
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth 
as non-pipelined cycles, but address-to-data access 
time is increased by one T-state time compared to 
that of a non-pipelined cycle. 

READ AND WRITE CYCLES 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the 
processor to an external device. 

IDLE I CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 I 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(WRITE) 

IDLE I CYCLE 4 
NON-PIPELINED 

(READ) 

IDLE I 
Ti 

CLK2 [ 

PROCESSOR CLK [ 

BHE#,BLE#, [ 
A1-A23, 

M/10#,D/C# 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

Ti T1 T2 T1 T2 T1 T2 TI T1 T2 

240187-21 
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 5.6. Various Bus Cycles with Non-Pipelined At.dress (zero wait states) 

5-911 

El 



intef 386TM SX MICROPROCESSOR 

Two choices of address timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus 
state, the processor always uses non-pipelined ad­
dress timing. HO'l-1ever the NA# {Next Addiess) in­
put may be asserted to select pipelined address tim­
ing for the next bus cycle. When pipelining is select­
ed and the 386 SX Microprocessor has a bus re­
quest pending internally, the address and definition 
of the next cycle is made available even before the 
current bus cycle is acknowledged by READY#. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the cycle by asserting the 
READY# input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjust­
ment for the speed of any external device. External 
hardware, which has decoded the address and bus 
cycle type, asserts the READY# input at the appro­
priate time. 

At the end of the second bus state within the bus 
cycle, READY# is sampled. At that time, if external 
hardware acknowledges the bus cycle by asserting 
READY#, the bus cycie terminates as shown in Fig­
ure 5.6. If READY# is negated as in Figure 5.7, the 
386 SX Microprocessor executes another bus state 
(a wait state) and READY# is sampled again at the 
end of that state. This continues indefinitely until the 
cycle is acknowledged by READY# asserted. 

When the current cycle is acknowledged, the 
386 SX Microprocessor terminates it. When a read 
cycle is acknowledged, the 386 SX Microprocessor 
latches the information present at its data pins. 
When a write cycle is acknowledged, the 386 SX 
CPU's write data remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 

IDLE I CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

IDLE I 
Ti 

CYCLE 3 
NON-PIPELINED 

(READ) 

IDLE I 

CLK2 [ 

PROCESSOR CLK [ 

BHE#,BLE#, [ 
A1-A23, 

M/10#,D/C# 

W/R# [ 

ADS# t 
NA# [ 

READY# [ 

LOCK# [ 

DO-D1s[ 

Ti T1 T2 T1 T2 T2 T1 T2 T2 Ti 

240187-22 
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. _J 

Figure 5.7. Various Bus Cycles with Non-Pipelined Address (various number of wait states) 

5-912 



intef 386™ SX MICROPROCESSOR 

Non·Pipellned Address 

Any bus cycle may be performed with non-pipelined 
address timing. For example, Figure 5.6 shows a 
mixture of read and write cycles with non-pipelined 
address timing. Figure 5.6 shows that the fastest 
possible cycles with non-pipelined address have two 
bus states per bus cycle. The states are named T1 
and T2. In phase one of T1, the address signals and 
bus cycle definition signals are driven valid and, to 
signal their availability, address strobe (ADS#) is 
simultaneously asserted. 

During read or write cycles, the data bus behaves as 
follows. If the cycle is a read, the 386 SX Microproc­
essor floats its data signals to allow driving by the 
external device being addressed. The 386 SX Mi· 
croprocessor requires that all data bus pins be 
at a valid logic state (HIGH or LOW) at the end of 
each read cycle, when READY# is asserted. The 
system MUST be designed to meet this require· 
ment. If the cycle is a write, data: signals are driven 
by the 386 SX Microprocessor beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgment. 

Figure 5. 7 illustrates non-pipelined bus cycles with 
one wait state added to Cycles 2 and 3. READY# is 
sampled inactive at the end of the first T2 in Cycles 
2 and 3. Therefore Cycles 2 and 3 have T2 repeated 
again. At the end of the second T2, READY# is 
sampled active. 

When address pipelining is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and it is desir­
able to maintain non-pipelined address timing, it is 
necessary to negate NA# during each T2 state ex­
cept the last one, as shown in Figure 5.7 Cycles 2 
and 3. If NA# is sampled active during a T2 other 
than the last one, the next state would be T21 or T2P 
instead of another T2. 

When address pipelining is not used, the bus states 
and transitions are completely illustrated by Figure 
5.8. The bus transitions between four possible 
states, T1, T2, Ti, and Th· Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state Th· 

HOLD ASSERTED 

ALWAYS 

READY# ASSERTED• 
HOLO NEGATED• 

REQUEST PENDING 

READY# NEGATED• 
NA# NEGATED 

Bus States: 
T1-first clock of a non-pipelined bus cycle (386™ SX CPU drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (386 SX CPU asserts HLDA). 
The fastest bus cycle consists of two states T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. 

Figure 5.8. Bus States (not using pipelined address) 

5-913 

240187-23 

I 



intef 386TM SX MICROPROCESSOR 

Bus cycles always begin with T1 .. T1 always leads to 
T2. If a bus cycle is not acknowledged during T2 and 
NA# is inactive, T2 is repeated. When a cycle is 
acknowiedged during T2, the foiiowing state will be 
T1 of the next bus cycle if a bus request is pending 
internally, or Ti if there is no bus request pending, or 
Th if the HOLD input is being asserted. 

Use of pipelined. address allows the 386 SX Micro­
processor to enter three additional bus states not 
shown in Figure 5.8. Figure 5.12 is the complete bus 
state diagram, including pipelined address cycles. 

Pipelined Address 

Address pipelining is the option of requesting the 
address and the bus cycle definition of the next in-

ternally pending bus cycle before the current bus 
cycle is acknowledged with READY# asserted. 
ADS# is asserted by the 386 SX Microprocessor 
when the next address is issued. The address pipe­
lining option is controlled on a cycle-by-cycle· basis 
with the NA# input signal. 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA# input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA# is sampled at the 
end of phase one in every T2. An example is Cycle 2 
in Figure 5.9, during which NA# is sampled at the 
end of phase one of every T2 (it was asserted once 
during the first T2 and has no further effect during 
that bus cycle). 

IDLE CYCLE 1 
NON-PIPELINED 

CYCLE 2 
NON-PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

CLK2 [ 

PROCESSOR CLK [ 

BHE #,BLE #. [ 
A1 -A23, 

M/1.0 #. D/C # 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

Tl 

(WRITE) 

T1 T2 T1 

DO-D15 [ • ---- -- ___ o_u_T __ 

(READ) (WRITE) (READ) 

T2 T2P T1P T2P T1P T21 TI 

240187-24 
Following any idle bus state (Ti). addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled 
during wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipe­
lined cycle with at least one wait state (Cycle 2 above). 

Figure 5.9. Transitioning to Pipelined Address During Burst of Bus Cycles 

5-914 



386™ SX MICROPROCESSOR 

If NA# is sampled active, the 386 SX Microproces­
sor is free to drive the address and bus cycle defini­
tion of the next bus cycle, and assert ADS#, as 
soon as it has a bus request internally pending. It 
may drive the next address as early as the next bus 
state, whether the current bus cycle is acknowl­
edged at that time or not. 

Regarding the details of address pipelining, the 
386 SX Microprocessor has the following character­
istics: 

1. The next address may appear as early as the bus 
state after NA# was sampled active (see Figures 
5.9 or 5.10). In that case, state T2P is entered 
immediately. However, when there is not an inter­
nal bus request already pending, the next address 
will not be available immediately after NA# is as­
serted and T21 is entered instead of T2P (see Fig-

IDLE 

Ti T1 

CYCLE 1 
NON-PIPELINED 

(WRITE) 

T2 T2P 

ure 5.11 Cycle 3). Provided the current bus cycle 
isn't yet acknowledged by READY# asserted, 
T2P will be entered as soon as the 386 SX Micro­
processor does drive the next address. External 
hardware should therefore observe the ADS# 
output as confirmation the next address is actual­
ly being driven on the bus. 

2. Any address which is validated by a pulse on the 
ADS# output will remain stable on the address 
pins for at least two processor clock periods. The 
386 SX Microprocessor cannot produce a new 
address more frequently than every two proces­
sor clock periods (see Figures 5.9, 5.10, and 
5.11). 

3. Only the address and bus cycle definition of the 
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 5.11 Cycle 1 ). 

CYCLE 2 
PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

(READ) (WRITE) (READ) 

T1P T2P T1P T2P T1P T21 T21 TI 

CLK2 [ 

PROCESSOR CLK [ 

eHE#,BLE#. [ ~~~r'.':".':":-:-:--to""-:-:7:"::-::-n--:=.~~.,--=:-:::-:---t7'\7'~~~~:7\711 I 
A1-23, 

M/10#, D/C# 

W/R# [ 

ADS# [ 

READY# [ ~:..111...K..l~~~~~ 

LOCK# [ .i::i/.~C:i/.~~__j_;,:.;::::.,.:_~--IO.....:.::.:,::...:.___jO..~:.;:::::...:::......jO..~..j....:.::::..;:~~~~QI 

DO-D15 [ • OUT 

240187-25 
Following any bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start 
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above) 
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states. 

Figure 5.10. Fastest Transition to Pipelined Address Following Idle Bus State 

5-915 



intJ 386™ SX MICROPROCESSOR 

The complete bus state transition diagram, including 
operation with pipelined address is given by Figure 
5.12. Note iris a superset of the diagram for non­
pipelined address on!y, and the three additional bus 
states for pipelined address are drawn in bold. 

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for 
non-pipelined address it is T1 and T2). T1 P is the 
first bus state cf a. pipelined cycle. 

CLK2 [ 

PROCESSOR CLK [ 

BHE#,BLE#, [ 
A1-A23, 

M/10#, D/C# 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

DO- 015 [ 

T1P 

CYCLE 1 
PIPELINED 

(WRITE) 

T2P T2P 

ASSERTING NA# MORE 
THAN ONCE DURING 
ANY CYCLE HAS NO 
ADDITIONAL EFFECTS 

T1 p 

CYCLE 2 
PIPELINED 

(READ) 

T2 T2P 

NA# COULD HAVE 
BEEN ASSERTED 

IN T1 P IF DESIRED. 
ASSERTION NOW IS 

THE LATEST TIME 
POSSIBLE TO ALLOW 

THE CPU TO ENTER T2P 
STATE TO MAINTAIN 

PIPELINING IN CYCLE 3 

T1P 

CYCLE 3 
PIPELINED 

(WRITE) 

T21 T2P T1P 

CYCLE 4 
PIPELINED 

(READ) 

240187-26 
-------·----------------------------------' 

Figure 5.11. Details of Address Pipelining During Cycles with Wait States 

5-916 



intJ 386™ SX MICROPROCESSOR 

Bus States: 

HOLD ASSERTED 

READY# ASSERTED• 
HOLD NEGATED• 
REQUEST PENDING 

READY# ASSERTED• 
HOLD NEGATED• 

NO REQUEST 

T1-first clock of a non-pipelined bus cycle (386™ SX CPU 
drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been 
sampled asserted in the current bus cycle. 
T21-subsequent clocks of a bus cycle when NA# has been 
sampled asserted in the current bus cycle but there is not yet 
an internal bus request pending (386 SX CPU will not drive new 
address or assert ADS#). 
T2P-subsequent clocks of a bus cycle when NA# has been 
sampled asserted in the current bus cycle and there is an inter­
nal bus request pending (386 SX CPU drives new address and 
asserts ADS#). 
T1 P-first clock of a pipelined bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (386 SX CPU asserts HLDA). 
Asserting NA# for pipelined address gives access to three 
more bus states: T21, T2P and T1 P. 
Using pipelined address, the fastest bus cycle consists of T1 P 
and T2P. 

READY# NEGATED 

Figure 5.12. Complete Bus States (including pipelined address) 

5-917 

I 

240187-27 



inter 386™ SX MICROPROCESSOR 

Initiating and Maintaining Pipelined Address 

Using the state diagram Figure 5.12, observe the 
transitions from an idle state, T 11 to the beginning of 
a pipelined bus cycle T1 P. From an idle state, Ti, the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA# is asserted and 
the first bus cycle ends in a T2P state (the address 
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below: 

Tb Tb Tb T1 -T2-T2P, T1P-T2P, 
idle non-pipelined pipelined 
states cycle cycle 

T1-T2-T2P are the states of the bus cycle that es­
tablish address pipelining for the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

Th, Th, Th, T1 -T2-T2P, T1P-T2P, 
hold acknowledge non-pipelined pipelined 

states cycle cycle 

The transition to pipelined address is shown func­
tionally by Figure 5.10 Cycle 1 . Note that Cycle 1 is 
used to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 and 
4. 

Once a bus cycle is in progress and the current ad­
dress has been valid for one entire bus state, the 
NA# input is sampled at the end of every phase one 
until the bus cycle is acknowledged. Sampling be­
gins in T2 during Cycle 1 in Figure 5.10. Once NA# 
is sampled active during the current cycle, the 
386 SX Microprocessor is free to drive a new ad­
dress and bus cycle definition on the bus as early as 
the next bus state. In Figure 5.1 O Cycle 1 for exam­
ple, the next address is driven during state T2P. 
Thus Cycle 1 makes the transition to pipelined ad­
dress timing, since it begins with T1 but ends with 
T2P. Because the address for Cycle 2 is available 
before Cycle 2 begins, Cycle 2 is called a pipelined 

bus cycle, and it begins with T1 P. Cycle 2 begins as 
soon as READY# asserted terminates Cycle 1. 

Examples of transition bus cycles are Figure 5.1 O 
Cycle 1 and Figure 5.9 Cycle 2. Figure 5.10 shows 
transition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5.9 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (NA# is assert­
ed at that time), and T2P (provided the 386 SX Mi­
croprocessor has an internal bus. request already 
pending, which it almost always has). T2P states are 
repeated if wait states are added to the cycle. 

Note that only three states (T1, T2 and T2P) are 
required in a bus cycle performing a transition from 
non-pipelined address into pipelined address timing, 
for example Figure 5.1 O Cycle 1 . Figure 5.1 O Cycles 
2, 3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of 
T1P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA# and detecting that the 386 SX Microprocessor 
enters T2P during the current bus cycle. The current 
bus cycle must end in state T2P for pipelining to be 
maintained in the next cycle. T2P is identified by the 
assertion of ADS#. Figures 5.9 and 5.1 O however, 
each show pipelining ending after Cycle 4 because 
Cycle 4 ends in T21. This indicates the 386 SX Micro­
processor didn't have an internal bus request prior 
to the acknowledgement of Cycle 4. If a cycle ends 
with a T2 or T21, the next cycle will not be pipelined. 

Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the absence of any other re­
quest, a code prefetch request is always internally 
pending .until the instruction decoder and code pre­
fetch queue are completely full. Therefore, address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (i.e., HOLD inactive) and NA# 
is sampled active in each of the bus cycles. 

5-918 



intJ 386™ SX MICROPROCESSOR 

INTERRUPT ACKNOWLEDGE (INTA) CYCLES 

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 386 SX Micro­
processor performs two interrupt acknowledge cy­
cles. These bus cycles are similar to read cycles in 
that bus definition signals define the type of bus ac­
tivity taking place, and each cycle continues until ac­
knowledged by READY# sampled active. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowled.ge cycle is 
4 (A23-A3, A1, BLE# LOW, A2 and BHE# HIGH). 
The byte address driven during the second interrupt 
acknowledge cycle is O (A23-A1, BLE# LOW, and 
SHE# HIGH). 

CLK2[ 

PROCESSOR CLK [ 

BHE#[ 

BLE#,A 1,A3-A23, [ 
M/10#, D/C#, W/R# 

LOCK#[ 

ADS#[ 

PREVIOUS I 
CYCLE 

T2 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 1 

T1 T2 T2 Ti 

IGNOREO 

DO-D7[ • ---------- --<:!:>--
Da-D1s[ • ---- ----- --~--

The LOCK# output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, T;, are inserted by the 386 SX Microproc­
essor between the two interrupt acknowledge cycles 
for compatibility with spec TRHRL of the 8259A In­
terrupt Controller. 

During both interrupt acknowledge cycles, D15-D0 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 386 SX Microprocessor 
will read an external interrupt vector from Dr Do of 
the data bus. The vector indicates the specific inter­
rupt number (from 0-255) requiring service. 

IDLE 
(4 BUS STATES) 

Tl Ti Ti 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 2 

T1 T2 T21 

!OLE 

Ti 

VECTOR 

--@·--

·-<+>---
240187-28 

Interrupt Vector (0-255) is read on D0-07 at end of second interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA# has no practical effect. 
Choose the approach which is simplest for your system hardware design. 

Figure 5.13. Interrupt Acknowledge Cycles 

5-919 

I 



intJ 386™ SX MICROPROCESSOR 

HALT INDICATION CYCLE 

The execution unit halts as a result of executing a 
HL T instruction. Signaling its entrance into the halt 
state, a halt indication cycle is performed. The halt 
indication cycle is identified by the state of the bus 

definition signals shown on page 40, Bus Cycle 
Definition Signals, and an address of 2. The halt 
indication cycle must be acknowledged by READY# 
asserted. A halted 386 SX Microprocessor resumes 
execution when INTR (if interrupts are enabled), NMI 
or RESET is asserted. 

I 
CYCLE 1 I CYCLE 2 I 

NON-PIPELINED NON-PIPELINED 
(WRITE) {HALT) 

T1 T2 T1 T2 

IDLE 

Tl Ti Ti Ti 

CLK2[ 

PROCESSOR CLK [ 

BHE#. A1,[ 
M/10#, W/R# 

A2-A23,[ 
BLE#, D/C# 

ADS#[ 

NA#[ 

READY#[ 

LOCK#[ 

DO-D [ 

NOTE: HALT CYCLE MUST BE 
ACKNOWLEDGED BY READY# 
ASSERTED. WAIT STATES MAY 
BE ADDED TO THE CYCLE IF 
DESIRED. 

Figure 5.14. Example Halt Indication Cycle from Non-Pipelined Cycle 

5-920 

240187-29 



infef 386™ SX MICROPROCESSOR 

SHUTDOWN INDICATION CYCLE ENTERING AND EXITING HOLD 
ACKNOWLEDGE 

The 386 SX Microprocessor shuts down as a result 
of a protection fault while attempting to process a 
double fault. Signaling its entrance into the shut­
down state, a shutdown indication cycle is per­
formed. The shutdown indication cycle is identified 
by the state of the bus definition signals shown in 
Bus Cycle Definition Signals and an address of 0. 
The shutdown indication cycle must be acknowl­
edged by READY# asserted. A shutdown 386 SX 
Microprocessor resumes execution when NMI or 
RESET is asserted. 

CYCLE 1 
PIPELINED 

{READ) 

CYCLE 2 
PIPELINED 

{SHUTDOWN) 

The bus hold acknowledge state, Th· is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 386 SX Microproc­
essor floats all outputs or bidirectional signals, ex­
cept for HLDA. HLDA is asserted as long as the 
386 SX Microprocessor remains in the bus hold ac­
knowledge state. In the bus hold acknowledge state, 
all inputs except HOLD, FLT# and RESET are ig­
nored. 

TlP T2P TlP 

I IDLE 

T21 Ti Ti Ti Ti 

CLK2[ 

PROCESSOR CLK [ 

BHE#.[ 
M/10#, W/R# 

BLE#,A 1-A23 [ 
D/C# 

ADS#[ 

NA#[ 

READY# [ 

LOCK#[ 

DD-D1s[ 

VALID 2 

NOTE: SHUTDOWN CYCLE MUST BE 
ACKNOWLEDGED BY READY# 
ASSERTED. WAIT STATES MAY 
BE ADDED TO THE CYCLE IF 
DESIRED. 

UNDEFINED ••{FLOATING)••• - • 

I I 

Figure 5.15. Example Shutdown Indication Cycle from Non-Pipelined Cycle 

5-921 

240187-30 

I 



inter 386™ SX MICROPROCESSOR 

Th may be entered from a bus idle state as in Figure 
5.16 or after the acknowledgement of the current 
physical bus cycle if the LOCK# signal is not assert­
ed, as in Figures 5.17 and 5.18. 

Th is exited in response to the HOLD input being 
negated. The following state will be Ti as in Figure 
5.16 if no bus request is pending. The following bus 
state will be T1 if a bus request is internally pending, 
as in Figures 5.17 and 5.18. Th is exited in response 
to RESET being asserted. 

If a rising edge occurs on the edge-triggered NMI 
input while in Th• the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exit­
ed unless the 386 SX Microprocessor is reset before 
Th is exited. 

RESET DURING HOLD ACKNOWLEDGE 

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re­
mains asserted, the 386 SX Microprocessor drives 
its pins to defined states during reset, as in Table 
5.5 Pin State During Reset, and performs internal 
reset activity as usual. 

If HOLD remains asserted when RESET is inactive, 
the 386 SX Microprocessor enters the hold acknowl­
edge state before performing its first bus cycle, pro­
vided HOLD is still asserted when the 386 SX Micro­
processor would otherwise perform its first bus cy­
cle. 

IDLE 

Ti 

I-- HOLD --l I - ACKNOWLEDGE - I 
Th Th Th 

IDLE 

Ti 

CLK2[ 

PROCESSOR CLK [ 

(FLOATING)••••~""'·'"' 

I 
{FLOATING)•••• 

LOCK#[ ,.~~~'ilf •••• {FLOATING)•••• - I I~~ 

DO-D15 [ • 
(FLOATING) 

---------------~---- -..:--
240187-31 

NOTE: 
For maximum design flexibility the 386™ SX CPU has no internal pullup resistors on its outputs. Your design may require 
an external pullup on ADS# and other outputs to keep them negated during float periods. 

Figure 5.16. Requesting Hold from Idle Bus 

5-922 



intJ 386™ SX MICROPROCESSOR 

FLOAT 

Activating the FLT# input floats all 386 SX bidirec­
tional and output signals, including HLDA. Asserting 
FLT# isolates the 386 SX from the surrounding cir­
cuitry. 

As the 386 SX is packaged in a surface mount 
PQFP, it cannot be removed from the motherboard 
when In-Circuit Emulation (ICE) is needed. The 
FLT# input allows the 386 SX to be electrically iso­
lated from the surrounding circuitry. This allows con­
nection of an emulator to the 386 SX PQFP without 
removing it from the PCB. This method of emulation 
is referred to as ON-Circuit Emulation (ONCE). 

ENTERING AND EXITING FLOAT 

FLT# is an asynchronous, active-low input. It is rec­
ognized on the rising edge of CLK2. When recog­
nized, it aborts the current bus cycle and floats the 
outputs of the 386 SX (Figure 5.20). FLT# must be 
held low for a minimum of 16 CLK2 cycles. Reset 
should be asserted and held asserted until after 
FLT# is deasserted. This will ensure that the 386 
SX will exit float in a valid state. 

NOTE: 

CLK2 [ 

PROCESSOR CLK[ 

HOLD [ 

BHE#,BLE#,A1-A23, [ 
M/10#, D/C#, W/R# 

T1 

CYCLE 1 
NON-PIPELINED 

(READ) 

T2 

Asserting the FLT# input unconditionally aborts the 
current bus cycle and forces the 386 SX into the 
FLOAT mode. Since activating FLT# unconditional­
ly forces the 386 SX into FLOAT mode, the 386 SX 
is not guaranteed to enter FLOAT in a valid state. 
After deactivating FLT#, the 386 SX is not guaran­
teed to exit FLOAT mode in a valid state. This is not 
a problem as the FLT# pin is meant to be used only 
during ONCE. After exiting FLOAT, the 386 SX must 
be reset to return it to a valid state. Reset should be 
asserted before FLT# is deasserted. This will en­
sure that the 386 SX will exit float in a valid state. 

FLT# has an internal pull-up resistor, and if it is not 
used it should be unconnected. 

BUS ACTIVITY DURING AND FOLLOWING 
RESET 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(WRITE) 

T2 Th Th Tl T2 

240187-32 

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (!23 and 124) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5.17. Requesting Hold from Active Bus {NA# inactive) 

5-923 

I 



intef 386™ SX MICROPROCESSOR 

RESET should remain asserted for atleast 15 CLK2 
periods to ensure it is recognized throughout the 
386 SX Microprocessor, and at least 80 ClK2 peri­
ods if self-test is going to be requested at the falling 
edge. RESET asserted pulses less than 15 CLK2 
periods may not be recognized. RESET pulses less 
than 80 CLK2 periods followed by a self-test may 
cause the self-test to report a failure when no true 
failure exists. 

Provided the RESET falling edge meets setup and 
hold times t25 and t2s. the internal processor clock 
phase is defined at that time as illustrated by Figure 
5.19 and Figure 7.7. 

CLK2[ 

PROCESSOR CLK[ 

HOLD [ 

BHE#,BLE#,A 1-A23, [ 
M/10#, D/C#, W/R# 

ADS#[ 

T1P 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 

A self-test may be requested at the time RESET 
goes inactive by having the BUSY# input at a LOW 
level as shown in Figure 5.19. The self.test requires 
approximately (220 + 60) CLK2 periods to com­
plete. The self-test duration is not affected by the 
test results. Even if the self-test indicates a problem, 
the 386 SX Microprocessor attempts to proceed 
with the reset sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested) the 386 SX Microprocessor per­
forms an internal initialization sequence for approxi­
mately 350 to 450 CLK2 periods. 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

T21 Th T!I T1 T2 

NA# [ ~L.,e..Q/.~~~~~~~~~~~~ 

240187-33 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining. Hold Acknowledge latency. 

Figure 5.18. Requesting Hold from Idle Bus (NA# active} 

5-924 



intef 

NOTES: 

CLK2[ 

RESET [ 

CLK(INTERNAL) [ 

PROCESSOR CLK [ 

BUSY# [ 

ERROR# [ 

BHE#,BLE#. 
W/R#, tA/10#, [ 

HLDA 

A1-A23, [ 
D/C#,LOCK# 

ADS# [ 

READY# [ 

386™ SX MICROPROCESSOR 

~---RESET------INl~!~~~~~N-----o-J 
;>: 15 CLK2 DURATION IF 
NOT GOING TO REQUEST 
SELF-TEST. 

CYCLE 1 

NON-PIPELINED 
(READ) 

T1 T2 

DO-D15#[ XXXXXX)(}--- -(FLOATING)----------- --- -- - ---- ---

240187-34 

1. BUSY# should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge 
occurs. 
2. If self-test is requested the outputs remain in their reset state as shown here. 

Figure 5.19. Bus Activity from Reset Until First Code Fetch 

CK2 

FLT# 

CTRL ~----•••••••••••••••··-----------·- '--------'"-----

DATA •••Q·-<~---V-AL-ID~-->·••••••••••--•••-••••-•••·--------c::==:::x::::: 

AOOR :::::X VALID >•••••••••••••-••••••••-••••-•••••-c::=:::x:=::=: 

RESET 

240187-51 

Figure 5.20. Entering and Exiting, FLT# 

5-925 

I 



intef 386™ SX MICROPROCESSOR 

5.5 Self-test Signature 

Upon completion of self-test (if self-test was re­
quested by driving BUSY# LOW at the falling edge 
of RESET) the EAX register will contain a signature 
of OOOOOOOOH indicating the 386 SX Microprocessor 
passed its self-test of microcode and major PLA 
contents with no problems detected. The passing 
signature in EAX, OOOOOOOOH, applies to all revision 
levels. Any non-zero signature indicates the unit is 
~~ ' 

5.6 Component and Revision 
Identifiers 

To assist users, the 386 SX Microprocessor after 
reset holds a component identifier and revision iden­
tifier in its DX register. The upper 8 bits of DX hold 
23H as identification of the 386 SX Microprocessor 
(the lower nibble, 03H, refers to the lntel386 DX Ar­
chitecture. The upper nibble, 02H, refers to the sec­
ond member of the lntel386 DX Family). The lower 8 
bits of DX hold an 8-bit unsigned binary number re­
lated to the component revision level. The revision 
identifier will, in general, chronologically track those 
component steppings which are intended to have 
certain improvements or distinction from previous 
steppings. The 386 SX Microprocessor revision 
identifier will track that of the 386 DX CPU where 
possible. 

The revision identifier is intended to assist users to a 
practical extent. However, the revision identifier val­
ue is not guaranteed to change with every stepping 
revision, or to follow a completely uniform numerical 
sequence, depending on the type or intention of re­
vision, or manufacturing materials required to be 
changed. Intel has sole discretion over these char­
acteristics of the component. 

Table 5.7. Component and 
Revision Identifier History 

Stepping Revision Identifier 

AO 04H 
B 05H 
c 08H 

5. 7 Coprocessor Interfacing 

The 386 SX Microprocessor provides an automatic 
interface for the Intel 387 SX numeric floating-point 
coprocessor. The 387 SX coprocessor uses an 1/0 
mapped interface driven automatically by the 386 
SX Microprocessor and assisted by three dedicated 
signals: BUSY#, ERROR# and PEREQ. 

As the 386 SX Microprocessor begins supporting a 
coprocessor instruction, it tests the BUSY# and ER­
ROR# signals to determine if the coprocessor can 
accept its next instruction. Thus, the BUSY# and 
ERROR# inputs eliminate the need for any 

'preamble' bus cycles for communication between 
processor and coprocessor. The 387™ SX can be 
given its command opcode immediately. The dedi­
cated signals provide instruction synchronization, 
and eliminate the need of using the WAIT opcode 
(9BH) for 387™ SX instruction synchronization (the 
WAIT opcode was required when the 8086 or 8088 
was used with the 8087 coprocessor). 

Custom coprocessors can be included in 386 SX Mi­
croprocessor based systems by memory-mapped or 
1/0-mapped interfaces. Such coprocessor interfac­
es allow a completely custom protocol, and are not 
limited to a set of coprocessor protocol 'primitives'. 
Instead, memory-mapped or 110-mapped interfaces 
may use all applicable instructions for high-speed 
coprocessor communication. The BUSY# and ER­
ROR# inputs of the 386 SX Microprocessor may 
also be used for the custom coprocessor interface, if 
such hardware assist is desired. These signals can 
be tested by the WAIT opcode (9BH). The WAIT in­
struction will wait until the BUSY# input is inactive 
(interruptable by an NMI or enabled INTR input), but 
generates an exception 16 fault if the ERROR# pin 
is active when the BUSY# goes (or is) inactive. If 
the custom coprocessor interface is memory­
mapped, protection of the addresses used for the 
interface can be provided with the 386 SX CPU's on­
chip paging or segmentation mechanisms. If the 
custom interface is 1/0-mapped, protection of the 

·interface can be provided with the IOPL (1/0 Privi­
lege Level) mechanism. 

The 387™ SX numeric coprocessor interface is 110 
mapped as shown in Table 5.8. Note that the 
387TM SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed 1/0. 
When the 386 SX Microprocessor supports the 
387™ SX coprocessor, the 386 SX Microprocessor 
automatically generates bus cycles to the coproces­
sor interface addresses. 
Table 5.8. Numeric Coprocessor Port Addresses 

Address in 386™ SX 387™ SX Coprocessor 
CPU 1/0 Space Register 

8000F8H Opcode Register 
8000FCH/8000FEH* Operand Register 

'Generated as 2nd bus cycle during Dword transfer. 

To correctly map the 387™ SX registers to the ap­
propriate 1/0 addresses, connect the CMDO and 
CMD1 lines of the 387™ SX as listed in Table 5.9. 

Table 5.9. Connections for CMDO 
and CMD1 Inputs for the 387™ SX 

Signal Connection 

CMDO Connect directly 
to 386™ SX CPU A2 signal 

CMD1 Connect to ground. 

5-926 



intef 386™ SX MICROPROCESSOR 

Software Testing for Coprocessor Presence 

When software is used to test for coprocessor 
(387 SX) presence, it should use only the following 
coprocessor opcodes: FINIT, FNINIT, FSTCW mem, 
FSTSW mem and FSTSW AX. To use other coproc­
essor opcodes when a coprocessor is known to be 
not present, first set EM = 1 in the 386 SX CPU's 
CRO register. 

6.0 PACKAGE THERMAL 
SPECIFICATIONS 

The 386 SX Microprocessor is specified for opera­
tion when case temperature is within the range of 
0°C-100°C. The case temperature may be mea­
sured in any environment, to determine whether the 
386 SX Microprocessor is within specified operating 
range. The case temperature should be measured at 
the center of the top surface opposite the pins. 

The ambient temperature is guaranteed as long as 
Tc is not violated. The ambient temperature can be 
calculated from the Ojc and Oja from the following 
equations: 

Tj = Tc + P*Ojc 

Ta= Tj - P*Oja 

Tc= Ta+ P*[Oja - Ojcl 

Values for Oja and Ojc are given in table 6.1 for the 
100 lead fine pitch. Oja is given at various airflows. 
Table 6.2 shows the maximum Ta allowable (without 
exceeding Tc) at various airflows. Note that Ta can 
be improved further by attaching 'fins' or a 'heat 
sink' to the package. 

7.0 ELECTRICAL SPECIFICATIONS 

The following sections describe recommended elec­
trical connections for the 386 SX Microprocessor, 
and its electrical specifications. 

7 .1 Power and Grounding 

The 386 SX Microprocessor is implemented in 
CHMOS IV technology and has modest power re­
quirements. However, its high clock frequency and 
47 output buffers (address, data, control, and HLDA) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 14 Vee 
and 18 Vss pins separately feed functional units of 
the 386 SX Microprocessor. 

Power and ground connections must be made to all 
external Vee and Vss pins of the 386 SX Microproc­
essor. On the circuit board, all Vee pins should be 
connected on a Vee plane and all Vss pins should 
be connected on a GND plane. 

POWER DECOUPLING RECOMMENDATIONS 

Liberal decoupling capacitors should be placed near 
the 386 SX Microprocessor. The 386 SX Microproc­
essor driving its 24-bit address bus and 16-bit data 
bus at high frequencies can cause transient power I 
surges, particularly when driving large capacitive 
loads. Low inductance capacitors and interconnects 
are recommended for best high frequency electrical 
performance. Inductance can be reduced by short-
ening· circuit board traces between the 386 SX Mi­
croprocessor and decoupling capacitors as much as 
possible. 

Table 6.1. Thermal Resistances (°C/Watt) Ojc and Oja· 

Oja versus Airflow - ft/min (m/sec) 
Package Ojc 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100 Lead 
7.5 34.5 29.5 25.5 22.5 21.5 21 

Fine Pitch 

Table 6.2. Maximum Ta at various airflows. 

T A(°C) versus Airflow - ft/min (m/sec) 
Package Frequency 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100L PQFP 16 MHz 74 80 83 86 B9 90 
Fine Pitch 20MHz 70 77 BO B4 B7 BB 

NOTE: 
The numbers in Table 6.2 were calculated using an Ice of 200 mA at 16 MHz and 230 mA at 20 MHz, which is representa­
tive of the worst case Ice at Tc = 1 OO'C with the outputs unloaded. 

5-927 



intJ 386™ SX MICROPROCESSOR 

Table 7.1. Recommended Resistor Pull-ups to Vee 

Pin Signal Pull-up Value I Purpose 

16 ADS#. 20 K-Ohm ± i 0% Lightly puii ADS# inactive during 

26 LOCK# 20 K-Ohm ± 10% 

RESISTOR RECOMMENDATIONS 

The ERROR#, FLT# and BUSY# inputs have inter­
nal pull-up resistors of approximately 20 K-Ohms 
and the PEREQ ihput has an internal pull-down re­
sistor of approximately 20 K-Ohms built into the 386 
SX Microprocessor to keep these signals inactive 
when the 387 SX is not present in the system (or 
temporarily removed from its socket). 

In typical designs, the external pull-up resistors 
shown in Table 7.1 are recommended. However, a 
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of 
pull-up resistors in other ways. 

OTHER CONNECTION RECOMMENDATIONS 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should 
always remain unconnected. Connection of N/C 
pins to Vee or Vss will result in component mal­
function or incompatibility with future steppings 
of the 386 SX Microprocessor. 

Particularly when not using interrupts or bus hold (as 
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to 
GND: 

Pin 
40 
38 
4 

Signal 
INTR 
NMI. 
HOLD 

386™ SX CPU hold acknowledge 
states 

Lightly pull LOCK# inactive during 
386™ SX CPU hold acknowledge 
states 

If not using address pipelining, connect pin 6, NA#, 
through a pull-up in the range of 20 K-Ohms to Vee. 

7 .2 Maximum Ratings 

Table 7.2. Maximum Ratings 

Parameter Maximum Rating 

Storage temperature - 65 °C to 150 °C 
Case temperature under bias - 65 °C to 11 o °C 
Supply voltage with respect 

to Vs.s -.5Vto6.5V 
Voltage on other pins - .5V to (Vee+ .5)V 

Table 7.2 gives stress ratings only, and functional 
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in section 7.3, 
D.C. Specifications, and section 7.4, A.C. Specifi· 
cations. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 
386 SX Microprocessor contains protective circuitry 
to resist damage from static electric discharge, al­
ways take precautions to avoid high static voltages 
or electric fields. 

5-928 



intJ 386™ SX MICROPROCESSOR 

7.3 D.C. Specifications 
Functional operating range: Vee = 5V ± 10%; T CASE= 0°C to 100°c 

Table 7.3. 386™ SX D.C. Characteristics 

386™SX 
Test 

Symbol Parameter 20 MHz, 16 MHz, Unit 
Condition 

12 MHz (LP Only) 

V1L Input LOW Voltage -0.3 +0.8 v 
V1H Input HIGH Voltage 2.0 Vcc+0.3 v 
V1LC CLK2 Input LOW Voltage -0.3 +0.8 v 
V1HC CLK2 Input HIGH Voltage Vcc-0.8 Vcc+0.3 v 
VoL Output LOW Voltage 

loL =4mA: A23-A1,D15-Do 0.45 v 
IOL =5mA: BHE#,BLE#,W/R#, 0.45 v 

DIC# ,M/10# ,LOCK#, 
ADS#,HLDA 

VoH Output high voltage 
loH= -1mA: A23-A1,D15-Do 2.4 v 
loH = -0.2 mA: A23-A1,D15-Do Vcc-0.5 v 
loH= -0.9mA: BHE#,BLE#,W/R#, 2.4 v 

D/C#,M/10#,LOCK#, 
ADS#,HLDA 

loH= -0.18 mA: BHE#,BLE#,W/R#, Vcc-0.5 
D/C#,M/10#,LOCK#, 

ADS#,HLDA 

lu Input leakage current ±15 µA OVsV1NsVcc 
(for all pins except PEREQ, BUSY#, 
FLT# and ERROR#) 

I 
l1H Input Leakage Current 200 µA V1H = 2.4V, Note 1 

(PEREQ pin) 

l1L Input Leakage Current -400 µA V1L = 0.45V, Note 2 
(BUSY#, ERROR# and FLT# Pins) 

ILO Output leakage current ±15 µA 0.45VsVouTsVcc 

Ice Supply Current 
CLK2 = 4 MHz: with 20, 16, 

or 12 MHz 386 SX (LP) 140 mA Ice typ = 70 mA, Note 3 
CLK2 = 24 MHz: with 12 MHz 386 SX 245 mA Ice typ = 140 mA, Note 3 
CLK2 = 32 MHz: with 16 MHz 386 SX 275 mA Ice typ = 175 mA, Note 3 
CLK2 = 40 MHz: with 20 MHz 386 SX 305 mA Ice Typ = 20 mA, Note 3 

C1N Input capacitance 10 pF Fe= 1 MHz, Note 4 

CouT Output or 1/0 capacitance 12 pF Fe= 1 MHz, Note 4 

CcLK CLK2 Capacitance 20 pF Fe= 1 MHz, Note 4 

Tested at the minimum operating frequency of the part. 

NOTES: 
1. PEREQ input has an internal pull-down resistor. 
2. BUSY#, FLT# and ERROR# inputs each have an internal pull-up resistor. 
3. Ice max measurement at worst case load, frequency, Vee and temperature. 
4. Not 100% tested. 

5-929 



intef 386™ SX MICROPROCESSOR 

7.4 A.C. Specifications 

The A.G. specifications given in Table 7.4 consist of 
output delays, input setup requirements and input 
hold requirements. All A.G. specifications are rela­
tive to the CLK2 rising edge crossing the 2.0V level. 

A.G. spec measurement is defined by Figure 7.1. In­
puts must be driven to the voltage levels indicated 
by Figure 7.1 when A.G. specifications are mea­
sured. Output delays are specified with minimum 
and maximum limits measured as shown. The mini­
mum delay times are hold times provided to external 
circuitry. Input setup and hold times are specified 

CLK2[ 

as minimums, defining the smallest acceptable sam­
pling window. Within the sampling window, a syn­
chronous input signal must be stable for correct op­
eration. 

Outputs NA#, W/R#, DIC#, M/10#, LOCK#, 
SHE#, BLE#, A2a-A1 and HLDA only change at 
the beginning of phase one. D15-D0 (write cycles) 
only change at the beginning of phase two. The 
READY#, HOLD, BUSY#, ERROR#, PEREQ, 
FLT# and D15-Do (read cycles) inputs are sampled 
at the beginning of phase one. The NA#, INTR and 
NMI inputs are sampled at the beginning of phase 
two. 

•2 

MAX 

OUTPUTS [ 
(D0-015) 

INPUTS[ 
(N/ A#,INTR,NMI) 

INPUTS 
(REAOY#,HOLO, [ 

Fl T #.ERROR#,BUSY#, 
PEREQ,D0-015) 

LEGEND 
A - Maximum Output Delay Spec 
B - Minimum Output Delay Spec 
C - Minimum Input Setup Spec 
D - Minimum Input Hold Spec 

l .SV OUT~~~On+l 

Figure 7 .1. Drive Levels and Measurement Points for A.C. Specifications 

5-930 

240187-35 



386™ SX MICROPROCESSOR 

A.C. SPECIFICATONS TABLES 
Functional operating range: Vee= 5V ±10%; TeASE = o•c to 1oo·c 

Table 7.4. 386™ SX A.C. Characteristics 

20MHz 16MHz 

Symbol Parameter 386SX 386SX Unit Figure Notes 

Min Max Min Max 

Operating Frequency 4 20 4 16 MHz Half CLK2 Frequency 

t1 CLK2 Period 25 125 31 125 ns 7.3 

t2a CLK2 HIGH Time 8 9 ns 7.3 at2V(3) 

t2b CLK2 HIGH Time 5 5 ns 7.3 at (Vee-0.8)V(3) 

taa CLK2 LOW Time 8 9 ns 7.3 at2V(3) 

tab CLK2 LOW Time 6 7 ns 7.3 at0.8V(3) 

ti CLK2 Fall Time 8 8 ns 7.3 (Vce-0.8)V to 0.8V(3) 

ts CLK2 Rise Time 8 8 ns 7.3 O.BV to (Vee-O.B)V(3) 

~ A23-A1 Valid Delay 4 30 4 36 ns 7.5 CL = 120 pF(4) 

t1 A2a-A1 Float Delay 4 32 4 40 ns 7.6 (Note 1) 

ta BHE#, BLE#, LOCK# 4 30 4 36 ns 7.5 CL= 75 pF(4) 
Valid Delay 

tg BHE#, BLE#, LOCK# 4 32 4 40 ns 7.6 (Note 1) 
Float Delay 

t10a M/10# DIC# Valid Delay 6 28 6 33 ns 7.5 CL= 75pF(4) 
I----

t10b WIR#, ADS# Valid Delay 26 

t11 WIR#, M/10#, DIC#, 6 30 6 35 ns 7.6 (Note 1) 
ADS# Float Delay 

t12 D1s-Do Write Data 4 38 4 40 ns 7.5 CL = 120 pF(4) 
Valid Delay 

t13 D15-Do Write Data 4 27 4 35 ns 7.6 (Note 1) 
Float Delay 

t14 HLDA Valid Delay 4 28 4 33 ns 7.5 CL= 75 pF(4) 

t15 NA# Setup Time 5 5 ns 7.4 

t16 NA# Hold Time 12 21 ns 7.4 

t19 READY# Setup Time 12 19 ns 7.4 

t2o READY# Hold Time 4 4 ns 7.4 

t21 D1s-Do Read Data 9 9 ns 7.4 
Setup Time 

t22 D1s~Do Read Data 6 6 ns 7.4 
Hold Time 

t23 HOLD Setup Time 17 26 ns 7.4 

t24 HOLD Hold Time 5 5 ns 7.4 

t25 RESET Setup Time 12 13 ns 7.7 

t2s RESET Hold Time 4 4 ns 7.7 

5-931 



intef 386™ SX MICROPROCESSOR 

Functional operating range: Vee= 5V ±10%; TeASE = o·c to 1oo·c 
) 

Table 7.4. 386™ SX A.C. Characteristics (Continued) 

20MHz 16MHz 
Symbol Parameter 386SX 386SX Unit 

Min Max Min Max 

t27 NMI, INTR Setup Time 16 .16 ns 

l2a NMI, INTRHoldT.ime 16 16 ns 

129 PEREQ, ERROR#, BUSY#, 14 16 ns 
FLT# Setup Time 

130 PEREQ, ERROR#, BUSY#, 5 5 n$ 
FLT# Hold Time 

Table 7.5. Low Power (LP) 386™ SX A.C. Characteristics 

20MHz 16MHz 12MHz 
Symbol Parameter 386SX 386SX 386SX Unit Figure 

Min Max Min .Max Min Max 

Operating Frequency 2 20 2 16 2 12.5 MHz 

t1 CLK2 Period 25 250 31 250 40 250 ns 7.3 

t2a CLK2 HIGH Time 8 9 11 ns 7.3 

t2b CLK2 HIGH Time 5 5 7 ns 7.3 

laa CLK2 LOW Time 8 9 11 ns 7.3 

lab CLK2 LOW Time 6 .7 9 ns 7.3 

4 CLK2 Fall Time 8 8 8 ns 7.3 

ts CLK2 Rise Time 8 8 8 ns 7'.3 

ts A23-A1 Valid Delay 4 30 4 36 4 42 ns 7.5 

t1 A23-A1 Float Delay 4 32 4 40 4 45 ns 7.6 

ta BHE#, BLE#, LOCK# 4 30 4 36 4 36 ns 7.5 
Valid Delay 

tg BHE#, BLE#, LOCK# 4 32 4 40 4 40 ns 7.6 
Float Delay 

t10 M/10#, DIC#, WIR#, 6 28 6 33 4 33 ns 7.5 
ADS# Valid Delay 

t11 M/10#, DIC#, WIR#, 6 30 6 35 4 35 ns 7.6 
ADS# Float Delay 

t12 D15-DO Write 4 38 4 40 4 50 ns 7.5 
Data Valid Delay 

tf3 D15-DO Write 4 27 4 35 4 40 ns 7.6 
Data Float Delay 

t14 HLDA Valid Delay 4 28 6 33 4 33 ns 7.5 

t15 NA# Setup Time 5 5 7 ns 7.4 

t1e NA# Hold Time 12 21 21 ns 7.4 

5-932 

Figure Notes 

7.4 (Note 2) 

7.4 . (Note2) 

7.4 (Note 2) 

7.4 (Note 2) 

Notes 

Half CLK2 Frequency 

at 2V (Note 3) 

at (Vee - 0.8V)C3) 

at2V(3) 

at0.SV(3) 

(Vee - 0.8V) to 0.8V(3) 

.0.8V to (Vee - o.8V)(3) 

CL = 120 pF(4) 

(Note 1) 

CL= 75 pF 

(Note 1) 

CL= 75 pF 

(Note 1) 

CL = 120 pF(4) 

(Note 1) 

CL= 75pF(4) 



intef 386™ SX MICROPROCESSOR 

Functional operating range: Vee = 5V ± 10%; TcASE = o•c to 100°c 

Table 7.5. Low Power (LP) 386™ SX A.C. Characteristics (Continued) 

20MHz 16MHz 12MHz 

Symbol Parameter 386SX 386SX 386SX Unit Figure Notes 

Min Max Min Max Min Max 

t19 READY# Setup Time 12 19 19 ns 7.4 

t2o READY# Hold Time 4 4 4 ns 7.4 

t21 D15-DO Read Data 9 9 9 ns 7.4 
Setup Time 

t22 D15-DO Read Data 6 6 6 ns 7.4 
Hold Time 

t23 HOLD Setup Time 17 26 26 ns 7.4 

t24 HOLD Hold Time 5 5 7 ns 7.4 

t25 RESET Setup Time 12 13 15 ns 7.7 

t26 RESET Hold Time 4 4 6 ns 7.7 

t27 NMI, INTR Setup Time 16 16 16 ns 7.4 (Note 2) 

t2a NMI, INTR Hold Time 16 16 16 ns 7.4 (Note 2) 

t29 PEREQ, ERROR#, BUSY#, 14 16 16 ns 7.4 (Note 2) 
FLT# Setup Time 

tao PEREQ,ERROR#,BUSY#, 5 5 5 ns 7.4 (Note 2) 
FLT# Hold Time 

NOTES: II 
1. Float condition occurs when. maximum output current becomes less than ILO in magnitude. Float delay is not 100% II 
tested. 
2: These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes. 
to assure recognition within a specific CLK2 period. 
3: These are not tested. They are guaranteed by design characterization. 
4: Tested with CL set at 50 pf and derated to support the indicated distributed capacitive load. See Figures 7.8 though 7.10 
for the capacitive derating curve. 

A.C. TEST LOADS A.C. TIMING WAVEFORMS 

386 TM SX CPU 0----, 
OUTPUT ..L 

~CL 

240187-36 

240187-37 

Figure 7.2. A.C. Test Loads Figure 7.3. CLK2 Waveform 

5-933 



intef 386™ SX MICROPROCESSOR 

CLK2 [ 

NA# [ 

INTR, [ 
NMI 

Tx Tx 

Figure 7.4. A.C. Timing Waveform.-;..lnput Setup and Hold Ti,ming 

CLK2 [ 

BHE#,BLE#, [ 
LOCK# 

W/R#,M/10#, [ 
D/C#,ADS# 

A1-A23 [ 

D0-015 [ 
(OUTPUT) 

HLDA [ 

Tx 

Figure 7.5. A.C. Timing Waveforms-Output Valid Delay Timing 

5-934 

240187-38 

240187-39 



CLK2 [ 

BHE#,BLE#, [ 
LOCK# 

W/R#. M/10#, [ 
D/C#,ADS# 

A1-A23 [ 

DO-D15 [ 

HLDA [ 

.;2 

386™ SX MICROPROCESSOR 

.;1 
Th Ti OR T1 

MAX 

MAX 

MAX 

MIN 

(HIGH Z) 

@ALSO APPLIES TO DATA FLOAT WHEN WRITE 
CYCLE IS FOLLOWED BY READ OR IDLE 

MAX 

240187-40 

Figure 7.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing 

-RESET-1----INITIALIZATION SEQUENCE----

.;2 OR .;1 .;2 OR .;1 .;2 .;1 

CLK2 [ 

RESET [ 

240187-41 

Figure 7.7. A.C. Timing Waveforms-RESET Setup and Hold Timing and Internal Phase 

5-935 

I 



386™ SX MICROPROCESSOR 

norn+& I I i1oi'n+9 

,.. norn+3 
,s 
>-
:5 
"' norn 
Q 

,.. norn+6 c 

~ 
~ norn+3 

3 
~ nom-3 ... 

Q 

~ ... nom 
:::> 
I!: 
:::> 
0 nom•6 

:::> 
"-... 
:::> 
0 

norn-3 

nom-6 75 100 125 150 
nom-9~~~~~~--~~~ 

50 75 100 125 150 

CL (picofarads) CL (picofarads) 

240187-42 240187-43 

Figure 7.8. Typical Output Valld Delay versus 
Load Capacitance at Maximum Operating 

Temperature (CL = 120 pf) 

Figure 7.9. Typical Output Valid Delay versus 
Load Capacitance at Maximum Operating 

Temperature (CL = 75 pf) 

6 

2 

8'--~--'-~-'-~~'--~~ 

50 75 100 125 150 

CL (picofarads) 

240187-50 

Figure 7.10. Typical Output Rise Time versus 
Load Capacitance at Maximum Operating 

Temperature 

300 

250 

200 

Jl 
. 150 

100 

TypJcal Ice 

2 4 6 8 10 12 14 16 18 20 

Clock Speed (MHz) 

Figure 7 .11. Typical Ice vs Frequency 

5-936 

240187-45 



infef 386™ SX MICROPROCESSOR 

---------17.5" --------- r--3.5" 
.--....... -----... 13.0" 

o __ -_·-~=~::=-~=-----F=--~--~==·-X=~~~B-_=L=--~=-----=~--- ----
4.0" FLEXIBLE 

----
t 

PIN 1 

---------------- 26.75" ----------------

-Bg~-~======~SF~ =======bb~~±~w----.JI 
1.25" 

240187-48 

Figure 7 .12. Preliminary ICE™-386 SX Emulator User Cable with PQFP Adapter 

---------12.75"---------

D ..... :_-~=~==::_-___ r=--L_-~=-=x=~:--B-_=L:-~--=-----=~--- ----
FLEXIBLE ---------- El 

bd~----22.0"------·1 

.I.§ ii 
240187-49 

Figure 7.13. Preliminary ICE™-386 SX Emulator User Cable with OIB and PQFP Adapter 

5-937 



intJ 386™ SX MICROPROCESSOR 

7.5 Designing for ICE™-386 SX 
Emulator (Advanced Data) 

The 386 SX CPU's in-circuit emulator product is the 
ICE™-386 SX emulator. If your ICE™ system is not 
equipped to use on circuit emulation use of the emu­
lator requires the target system to provide a socket 
that is compatible with the ICE-386 SX emulator. 
The ICE-386 SX offers a 100-pin fine pitch flat-pack 
probe for emulating user systems. The 100-pin fine 
pitch flat-pack probe requires a socket, called the 
100-pin PQFP, which is available from 3M text-tool 
(part number 2-0100-07243-000). The ICE-386 SX 
emulator probe attaches to the target system via an 
adapter which replaces the 386 SX CPU component 
in the target system. Because of the high operating 
frequency of 386 SX CPU systems and of the ICE-
386 SX emulator, there is no buffering between the 
386 SX CPU emulation processor in the ICE-386 SX 
emulator probe and the target system. A direct result 
of the non-buffered interconnect is that the ICE-386 
SX emulator shares the address and data bus with 
the user's system, and the RESET signal is inter­
cepted by the ICE emulator hardware. In order for 
the ICE-386 SX emulator to be functional in the us­
er's system without the Optional Isolation Board 
(OIB) the designer must be aware of the following 
conditions: 

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the 386 SX CPU; other local devices or other 
bus masters. 

2. Before another bus master drives the local proc­
essor address bus, the other master must gain 
control of the address bus by asserting HOLD and 
receiving the HLDA response. 

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 386 SX CPU 
would, and responds to RESET later. Correct 
phase of the response is guaranteed. 

In addition to the above considerations, the 
ICE-386 SX emulator processor module has several 
electrical and mechanical characteristics that should 
be taken into consideration when designing the 386 
SX CPU system. 

Capacitive Loading: ICE-386 SX adds up to 27 pF 
to each 386 SX CPU signal. 

Drive Requirements: ICE-386 SX adds one FAST 
TTL load on the CLK2, control, address, and data 
lines. These loads are within the processor module 
and are driven by the 386 SX CPU emulation proces­
sor, which has standard drive and loading capability 
listed in Tables 7.3 and 7.4. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICE-386 SX emulator 
processor module is powered by the user system. 

The circuitry on the processor module draws up to 
1.4A including the maximum 386 SX CPU Ice from 
the user 386 SX CPU socket. 

386 SX CPU Location and Orientation: The 
ICE-386 SX emulator processor module may require 
lateral clearance. Figure 7 .12 shows the clearance 
requirements of the iMP adapter. The optional isola­
tion board (OIB), which provides extra electrical buff­
ering and has the same lateral clearance require­
ments as Figure 7.12, adds an additional 0.5 inches 
to the vertical clearance requirement. This is illus­
trated in Figure 7.13. 

Optional Isolation Board (018) and the CLK2 
speed reduction: Due to the unbuffered probe de­
sign, the ICE-386 SX emulator is susceptible to er­
rors on the user's bus. The OIB allows the ICE-386 
SX emulator to function in user systems with faults 
(shorted signals, etc.). After electrical verification the 
OIB may be removed. When the OIB is installed, the 
user system must have a maximum CLK2 frequency 
of 20 MHz. 

8.0 DIFFERENCES BETWEEN THE 
386 SX CPU AND THE 386 DX 
CPU 

The following are the major differences between the 
386 SX CPU and the 386 DX CPU: 

1. The 386 SX CPU generates byte selects on 
BHE# and BLE# (like the 8086 and 80286) to 
distinguish the upper and lower bytes on its 16-bit 
data bus. The 386 DX CPU uses four byte selects, 
BEO#-BE3#, to distinguish between the different 
bytes on its 32-bit bus. 

2. The 386 SX CPU has no bus sizing option. The 
386 DX CPU can select between either a 32-bit 
bus or a 16-bit bus by use of the BS16# input. 
The 386 SX CPU has a 16-bit bus size. 

3. The NA# pin operation in the 386 SX CPU is 
identical to that of the NA# pin on the 386 DX 
CPU with one exception: the 386 DX CPU NA# 
pin cannot be activated on 16-bit bus cycles 
(where BS16# is LOW in the 386 DX CPU case), 
whereas NA# can be activated on any 386 SX 
CPU bus cycle. 

4. The contents of all 386 SX CPU registers at reset 
are identical to the contents of the 386 DX CPU 
registers at reset, except the DX register. The DX 
register contains a component-stepping identifier 
at reset, i.e. 

in 386 DX CPU, DH = 3 indicates 386 DX CPU 
after reset 

DL = revision number; 

in 386 SX CPU, DH = 23H indicates 386 SX 
after reset CPU 

DL = revision number. 

5-938 



intJ 386™ SX MICROPROCESSOR 

5. The 386 DX CPU uses A31 and M/10# as selects 
for the numerics coprocessor. The 386 SX CPU 
uses A23 and M/10# as selects. 

6. The 386 DX CPU prefetch unit fetches code in 
four-byte units. The 386 SX CPU prefetch unit 
reads two bytes as one unit (like the 80286). In 
BS16 mode, the 386 DX CPU takes two consecu­
tive bus cycles to complete a prefetch request. If 
there is a data read or write request after the pre­
fetch starts, the 386 DX CPU will fetch all four 
bytes before addressing the new request. 

7. Both 386 DX CPU and 386 SX CPU have the 
same logical address space. T.he only difference 
is that the 386 DX CPU has a 32-bit physical ad­
dress space and the 386 SX CPU has a 24-bit 
physical address space. The 386 SX CPU has a 
physical memory address space of up to 16 
megabytes instead of the 4 gigabytes available to 
the 386 DX CPU. Therefore, in 386 SX CPU sys­
tems, the operating system must be aware of this 
physical memory limit and should allocate memo­
ry for applications programs within this limit. If a 
386 DX CPU system uses only the lower 16 
megabytes of physical address, then there will be 
no extra effort required to migrate 386 DX CPU 
software to the 386 SX CPU. Any application 
which uses more than 16 megabytes of memory 
can run on the 386 SX CPU if the operating sys­
tem utilizes the 386 SX CPU's paging mechanism. 
In spite of this difference in physical address 
space, the 386 SX CPU and 386 DX CPU can run 
the same operating systems and applications 
within their respective physical memory con­
straints. 

8. The 386 SX has an input called FLT# which tri­
states all bidirectional and output pins, including 
HLDA#, when asserted. It is used with ON Circuit 
Emulation (ONCE). 

9.0 INSTRUCTION SET 

This section describes the instruction set. Table 9.1 
lists all instructions along with instruction encoding 
diagrams and clock counts. Further details of the 
instruction encoding are then provided in the follow­
ing sections, which completely describe the encod­
ing structure and the definition of all fields occurring 
within instructions. 

9.1 386 SX CPU Instruction Encoding 
and Clock Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 9.1 be-

low, by the processor clock period (e.g. 62.5 ns for 
an 386 SX Microprocessor operating at 16 MHz). 
The actual clock count of an 386 SX Microprocessor 
program will average 5% more than the calculated 
clock count due to instruction sequences which exe­
cute faster than they can be fetched from memory. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc-1 
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme-
diate data (if any) counts as one component, and 
all other bytes of the instruction and prefix(es) 
each count as one component. 

Misaligned or 32-Bit Operand Accesses 

- If instructions accesses a misaligned 16-bit oper­
and or 32-bit operand on even address add: 
2* clocks for read or write 
4 • • clocks for read and write 

- If instructions accesses a 32-bit operand on odd 
address add: 
4 * clocks for read or. write 
8** clocks for read and write 

Wait States 

Wait states add 1 clock per wait state to instruction 
execution for each data access. 

5-939 



intef 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

!!lode or Vlrtua~ Mode or \l!r!ua! 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOY~ Move: 

Register to Register/Memory I 1000100w mod reg rlmj 212 212• b h 

Register/Memory to Register I 1000101w mod reg rlmj 214 214' b h 

Immediate to Register/Memory I 1100011 w modOOO rim I immediate data 212 212• b h 

Immediate to Register (short form) I 1011 w reg immediate data 2 2 

Memory to Accumulator (short form) I 1010000w full displacement 4• 4• b h 

Accumulator to Memory (short form} I 1010001w I full displacement 2· 2· b h 

Register Memory to Segment Register I 1000111 0 l·modsreg3 rlmj 215 22123 b h,i,j 

Segment Register to Register/Memory I 10001100 j modsreg3 rim j 212 212 b h 

MOVSX ~ Move With Sign Extension 

Register From Register/Memory I 00001111 I 101111 lw J mod reg rim j 315• 315• b h 

MOVZX ~ Move With Zero Extension 

Register From Register/Memory I 00001111 1011011 w j mod reg rim j 316• 315• b h 

PUSH~ Push: 

Register/Memory I 11111111 mod11 O rim j 517• 719• b h 

Register (short form) I 0101 o reg 2 4 b h 

Segment Register (ES, CS, SS or OS) I 000sreg211 o 2 4 b h (short form) 
Segment Register (ES, CS, SS, OS, 

I 00001111 1 Osreg3000 I 2 4 b h FSorGS) 

Immediate I 011010s0 immediate data 2 4 b h 

PUSHA ~ Push All I 01100000 18 34 b h 

POP~ Pop 

Register/Memory I 10001111 J modOOO rim I 517 719 b h 

Register (short form) Io 1o11 reg I 6 6 b h 

Segment Register (ES, CS, SS or OS) 
I OOOsreg2111 I 7 25 b h,i,j (short form) 

Segment Register (ES, CS, SS or OS), I 00001111 I 10sreg3001 I 7 25 b h,i,j FSorGS 

POPA~ Pop All I 01100001 I 24 40 b h 

XCHG ~ Exchange 

Register /Memory With Register I 1000011w I mod reg rim I 3/5** 3/5** b,f f, h 

Register With Accumulator (short form) I 1001 0 reg j ClkCount 3 3 
' 

IN ~ Input from: 
Virtual 

8086Mode 

Fixed Port [ 111001owJ port number t26 12• 6*/26* slt,m 

Variable Port I 111011 ow I t27 13• 7*/27* s/t,m 

OUT ~ Outputto: 

Fixed Port L 111001 lw l port number t24 10• 4*/24* slt,m 

Variable Port I 1110111W I t25 11' 5*/25* s/t,m 

LEA ~ Load EA to Register I 10001101 I mod reg rlml 2 2 

5-940 



intef 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addreaa Protected Addreaa Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LOS = Load Pointer to OS I 11000101 j mod reg rim 7' 2e•12s• b h,i,j 

LES = Load Pointer to ES I 11000100 I mod reg rim 7' 2s•12e• b h, i, j 

LFS = Load Pointer to FS I 00001111 I 101101 00 mod reg rim I 7' 29'/31' b h,i,j 

LGS = Load Pointer to GS I 00001111 I 10110101 mod reg rim I 7' 26'/28' b h,i,j 

LSS = Load Pointer to SS I 00001111 I 1011001 0 mod reg rim I 7' 26'128. b h,i,j 

FLAG CONTROL 

CLC = Clear Carry Flag 11111 000 2 2 

CLO = Clear Direction Flag 111111 00 2 2 

CLI = Clear Interrupt Enable Flag 1111101 0 8 8 m 

CL TS = Clear Task Switched Flag 00001111 00000110 I 5 5 c I 

CMC = Complement Carry Flag 11110101 2 2 

LAHF = Load AH Into Flag 10011111 2 2 

POPF = Pop Flags 100111 01 5 5 b h, n 

PUSHF = Push Flags 10011100 4 4 b h 

SAHF = Store AH Into Flags 10011110 I 3 3 

STC = Set Carry Flag I 11111001 I 2 2 

STD = Set Direction Flag I 11111101 I 
STI = Set Interrupt Enable Flag I 11111011 I 8 8 m 

I 
ARITHMETIC 
ADD= Add 

Register to Register I OOOOOOdw I mod reg rim I 2 2 

Register to Memory I ooooooow I mod reg rim I 7" 7" b h 

Memory to Register I 0000001w j mod reg rim I 6' 6' b h 

Immediate to Register/Memory I 100000sw I modOOO rim j immediate data 217" 217" b h 

Immediate to Accumula1or (short form) I 0000010w I immediate data 2 2 

ADC = Add With Carry 

Register to Register I 000100dw mod reg rim j 2 2 

Register to Memory I 0001000w mod reg rim j 7" 7" b h 

Memory to Register I 000100,1w mod reg rim j 6' 6' b h 

Immediate to Register/Memory I 100000sw mod010 rim I immediate data 2/7" 217" b h 

Immediate to Accumulator (short form) I 0001010w immediate data 2 2 

INC = Increment 

Register/Memory I 1111111w I modOOO rim j 216** 216** b h 

Register (short form) 101000 reg I 2 2 

SUB = Subtract 

Register from Register I 001010dw I mod reg rim I 2 2 

5-941 



intJ 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtuai Address v1nua1 Address 
8086 Mode 8086 Mode 
Mode Mode 

jARITHMETIC (Continued) 

~egister from Memory I 0 0 i O i O ow lmod reg r/ml 7 .. 7 .. b h 

tv1emory from Register I 0 0 i O i O i w lmod reg r/ml 6' 6' b h 

mmediate from Register /Memory I i 0 o 0 0 0 s w lmod i O 1 r iml immediate data 211•• 217** b h 

mmediate from Accumulator (short form) I ooioi iowl immediate data 2 2 

jsee ~ Subtract with Borrow 

Fegister from Register I 000 ii Odw lmodreg r/ml 2 2 

Fegister from Memory I 00011 OOw Jmodreg r/ml 7•• 7•• b h 

jMemory from Register I 0 0 O i i O i w lmod reg r/ml 6' 6' b h 

Immediate from Register/Memory Ii OOOOOsw lmodoi i rtml immediate data 2/7 .. 2/7" b h 

mmediate from Accumulator (short form) loooiiiowl immediate data 2 2 

pee = Decrement 

Register/Memory I i1iiiiiwjregooi r/ml 2/6 2/6 b h 

fegister (short form) lo i oo i regl 2 2 

MP~ Compare 

jRegister with Register I 00111 Odw lmodreg r/ml 2 2 

jMemory with Register I ooi i 1 OOw lmodreg r/ml 5' 5' b h 

\Register with Memory I 0 0 i 1 i O i w jmod reg r/ml 6' 6' b h 

mmediate with Register/Memory Ii OOOOOsw lmod iii rtml immediate data 2/5' 2/5' b h 

Immediate with Accumulator (short form) I ooi 1 ii Ow I immediate data 2 2 

~EG ~ Change Sign I i 1 1 1 O 1 1 w lmod o 1 i r/ml 216* 2/6• b h 

jAAA ~ ASCII Adjust for Add I oo ii o i 1 i I 4 4 

jAAS ~ ASCII Adjust for Subtract [ 001ii1 ii] 4 4 

\oAA ~ Decimal Adjust for Add Loo1ooii1J 4 4 

\DAS ~ Decimal Adjust for Subtract I ooi oi 1i1 I 4 4 

jMUL ~ Multiply (unsigned) 

!Accumulator with Register/Memory I iii i O ii w lmod i oo r/ml 

Multiplier-Byte i2-17/i5-20• i2-17/15-20' b,d d, h 
-Word i2-25/i5-28' i2-25/15-28' b,d d, h 
-Doubleword i2-4i/17-46' i2-4iti7-46' b,d d, h 

~MUL ~,Integer Multiply (signed) 

jAccumulator with Register/Memory I i i i i O i i w lmod 1 O i rid 
Multiplier-Byte i2-17/15-20' 12-i7/15-20' b,d d, h 

-Word i2-25/i5-28' 12-25/15-28' b,d d, h 

·Doubleword i2-4i/17-46' i2-4iti7-46' b,d d, h 

f egister with Register /Memory I 0000 iii 1 I 10101111 jmod reg rtm\ 
Multiplier-Byte i2-17/i5-20' i 2-17 /i 5-20' b,d d,h 

-Word i2-25/i5-28· i2-25/i5-28' b,d d,h 
·Doubleword i2-4i/17-46' i2-4iti7-46' b,d d, h 

~egister/Memory with Immediate to Register! O i i O 1 0 s 1 lmodreg r/ml immediate data 

-Word 13-26 13-26/14-27 b,d d, h 

·Doubleword i3-42 i3-42/i6-45 b,d_ d, h 

5-942 



intef 386TM SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV ~ Divide (Unsigned) 

Accumulator by Register/Memory I 111 1O11 w I mod 11 o r/ml 

Divisor-Byte 14/17 14/17 b,e e,h 
-Word 22/25 22/25 b,e e,h 
-Doubleword 38/43 38/43 b,e e,h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register/Memory I 1111O11 w I mod 111 r/ml 

Divisor-Byte 19/22 19/22 b,e e,h 
-Word 27/30 27/30 b,e e,h 
-Doubleword 43/48 43/48 b,e e,h 

AAD ~ ASCII Adjustfor Divide I 11010101 I 00001010 I 19 19 

AAM ~ ASCII Adjust for Multiply I 11010100 I 00001010 I 17 17 

CBW ~ Convert Byte to Word I 10011000 I 3 3 

CWD ~ Convert Word to Double Word I 10011001 I 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR} 

Register/Memory by 1 I 1101ooow!modTIT r/ml 3/7 .. 317 .. b h 

Register/Memory by CL I 11 O 1 O O 1 w I mod TIT r/ml 3/7' 3/7' b h 

Register/Memory by Immediate Count I 11 OOOOOw !mod TIT r/mJimmed 8-bit data 317• 317' b h El 
Through Carry (RCL and RCR} 

Register/Memory by 1 I 1101 OOOw !mod TIT r/ml 9/10' 9/10' b h 

Register/Memory by CL I 1101001wlmodTIT r/ml 9/10' 9/10' b h 

Register/Memory by Immediate Count I 11 OOOOOw lmodTIT r/mlimmed 8-bit data 9/10' 9/10' b h 

TTT Instruction 
000 AOL 
001 ROA 
010 RCL 
011 RCA 

100 SHL/SAL 
101 SHA 
111 SAR 

SHLD ~ Shift Left Double 

Register/Memory by Immediate I 00001111 I 10100100 lmodreg r/mlimmed 8-bit data 3/7" 3/7 .. 

Register/Memory by CL I 00001111 I 1 O 1 O O 1 O 1 !mod reg r/ml 3/7" 3/7 .. 

SHRD ~ Shift Right Double 

Register/Memory by Immediate I 00001111 I 10101100 lmodreg r/mlimmed 8-bit data 3/7 .. 317** 

Register/Memory by CL I 00001111 I 10101101 !mod reg r/ml 3/7** 3/7 .. 

AND~ And 

Register to Register I 001 OOOdw lmodreg r/ml 2 2 

5-943 



386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION fORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

LOGIC (Continued) 

Register to Memory I 0010000w lmodreg r/ml 7" 7" b h 

Memory to Register I 0010001w lmodreg r/ml 5• 6' b h 

Immediate to Register/Memory I 1000000w lmod100 r/ml immediate data 217' 2/7** b h 

Immediate to Accumulator (Short Form) I 0010010w limmediatedata 2 2 

TEST = And Function to Flags, No Result 

Register/Memory and Register I 1000010w lmodreg r/ml 2/5' 215' b h 

Immediate Data and Register/Memory I 1111011w lmodOOO rtml immediate data 2/5' 2/5' b h 

Immediate Data and Accumulator 
(Short Form) I 1 O 1 O 1 O 0 w I immediate data 2 2 

OR=Or 

Register to Register I 00001 Odw I mod reg r/ml 2 2 

Register to Memory I 0000100w lmodreg r/ml 7" 7" b h 

Memory to Register I 0000101w lmodreg r/ml 5• 5• b h 

Immediate to Register/Memory I 1000000w lmod001 r/ml immediate data 217** 217*"" b h 

Immediate to Accumulator (Short Form) I 000011 Ow I immediate data 2 2 

XOR = Exclusive Or 

Register to Register I 0011 OOdw I mod reg r/ml 2 2 

Register to Memory I 0011 OOOw I mod reg r/ml 7•• 7" b h 

Memory to Register I 0011001w lmodreg r/ml 6' 6' b h 

Immediate to Register/Memory I 1 OOOOOOw lmod11 O rtml immediate data 217** 211•• b h 

Immediate to Accumulator (Short Form) I 0011O1 Ow I immediate data 2 2 

NOT = Invert Register/Memory I 1111011w lmod010 r/ml 
Clk 

216** 21e•• b h 

STRING MANIPULATION Count 
Virtual 

CMPS = Compare Byte Word I 1010011 w 
8086 

10' 10' b h Mode 

INS = Input Byte/Word from DX Port I 0110110w l t29 15 9'/29" b sit, h, m 

LODS = Load Byte/Word to ALI AXIEAX J 101011 Ow 5 5' b h 

MOVS = Move Byte Word I 1010010w 7 7" b h 

OUTS = Output Byte!Word to DX Port I 0110111 w [ t28 14 a•12a• b s/t,h,m 

SCAS = Scan Byte Word I 1010111 w 7' r b h 

STOS = Store Byte!Word from 

AL/AX/EX I 1o1o101 w I 4• 4' b h 

XLA T = Translate String I 11010111 I 5' 5' h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS = Compare String 

(Find Non-Match) I 11110011 I 1010011 w I 5 + 9n""' 5 + 9n""' b h 

5-944 



intef 386TM SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addreas Protected 

Mode or Virtual Mode or Virtual 
Virtual Addreaa Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS ~ Compare String ClkCount 

(Find Match) I 1111001oI1010011 w I 
Virtual 5+9n•• 5+9n** b h 8086Mode 

REP INS ~ Input String I 1111001olo11011owl L t 13+sn• 7+6n•/ b s/t,h,m 
27+6n* 

REP LOOS ~ Load String I 1111001OI1O1O11 Ow I 5+6n"' 5+6n"' b h 

REP MOVS ~ Move String I 1111001OI1O1001 Ow I 7+4n"' 7+4n"""' b h 

REP OUTS ~ Output String I 1111oo1oIo11o111 w I [ t 12+5n"' 6+5n'/ b sit, h, m 
26+5n"' 

REPE SCAS ~ Scan String 

(Find Non-AL/ AX/EAX) I 11110011 l1010111wl 5+8n"' s+sn• b h 

REPNE SCAS ~ Scan String 

(Find ALI AX/EAX) I 1111oo1 o I 1o1o111 w I s+sn• s+an• b h 

REP STOS ~ Store String I 1111001ol1010101wl 5+5n"' s+sn• b h 

BIT MANIPULATION 

BSF ~ Scan Bit Forward I 00001111 I 1 O 1 1 1 1 O O lmod reg r/ml 10+3n"' 10+3n** b h 

BSR ~ Scan Bit Reverse I 00001111 I 1 O 1 1 1 1 O 1 lmod reg r/~ 10+3n"' 10+3n ... b h 

BT~ Test Bit 

Register/Memory, Immediate I o O o O 11 11 I 1 o 111 o 1 O lmod 1 o O r /mlimmed 8-bit da1~ 3/6' 3/6' b h 

Register/Memory, Register J 00001111I10100011 lmodreg r/ml 3/12' 3/12' b h 

BTC ~ Test Bit and Complement 

Register/Memory, Immediate L 0 0 O O 11 11 l 1 0 111 O 1 O Jmod 1 1 1 r/~mmed 8-bit da~ 618' 618' b h 

Register/Memory, Register I 0 O 0 O 11 11 I 1 O 111 O 1 1 lmod reg r/ml 6/13' 6/13' b h 

BTR ~ Test Bit and Reset 

Register/Memory, Immediate L 000O1111l1O111O1Olmod11 O r/~mmed 8-bit da~ 618' 6/8' b h 

Register /Memory, Register I O O O O 1 1 11 I 1 O 11 O o 1 1 lmod reg r/ml 6/13' 6/13' b h 

BTS ~ Test Bit and Set 

Register/Memory, Immediate [ oo oo 1111I1o111o1oJmod1o1 rt,;[immed 8-bit d~ 618' 6/8' b h 

Register/Memory, Register I 00001111 I 10101011 lmodreg r/ml 6/13' 6/13' b h 

CONTROL TRANSFER 

CALL~ Call 

Direct Within Segment I 1 1 1 0 1 0 0 0 I full displacement 7+m• 9+m• b r 

Register/Memory 

Indirect Within Segment I 1111.1111 lmod010 r/ml 7+m•11o+m• 9+m/ b h, r 
12+m• 

Direct lntersegment I 1 O O 1 1 0 1 O !unsigned full offset, selector 17+m• 42+m• b j,k,r 

NOTE: 
t Clock count shown applies if 110 permission allows 110 to the port in virtual 8086 mode. If 110 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction. 

5-945 

I 



intJ 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protecieci Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Addre98 
8086 Mode 8086 Mode 
Mode Mode 

JcoNTROL TRANSFER (Continued) 

Protected Mode Only (Direct lntersegment) 

Via Call Gate to Same Privilege Level 64+m h,j,k,r 

Via Call Gate to Different Privilege Level, 

(No Parameters) 98+m h,j,k,r 

Via Call Gate to Different Privilege Level, 

(x Parameters) 106+8x+m h,j,k,r 

From 286 Task to 286 TSS 285 h,j,k,r 

From 286 Task to 386™ SX CPU TSS 310 h,j,k,r 

From 286 Task to Virtual 8086 Task (386 SX CPU TSS) 229 h,j,k,r 

From 386 SX CPU Task to 286 TSS 285 h,j,k,r 

From 386 SX CPU Task to 386 SX CPU TSS 392 h,j,k,r 

From 386 SX CPU Task to Virtual 8086 Task (386 SX CPU TSS) 309 h,j,k,r 

ndirect lntersegment j 11111111 jmod011 rlml 30+m 46+m b h,j,k,r 

Protected Mode Only (Indirect lntersegment) 

Via Call Gate to Same Privilege Level 68+m h,j,k,r 

Via Gall Gate to Different Privilege Level, 

(No Parameters) 102+m h,j,k,r 

Via Gall Gate to Different Privilege Level, 

(x Parameters) 110+8x+m h,j,k,r 

From 286 Task to 286 TSS h,j,k,r 

From 286 Task to 386 SX CPU TSS h,j,k,r 

From 286 Task to Virtual 8086 Task (386 SX CPU TSS) h,j,k,r 

From 386 SX CPU Task to 286 TSS h,j,k,r 

From 386 SX CPU Task to 386 SX CPU TSS 399 h,j,k,r 

From 386 SX CPU Task to Virtual 8086 Task (386 SX CPU TSS) h,j,k,r 

~MP ~ Unconditional Jump 

jshort j 1 1 1 O 1 o 1 1 la-bit displacemen~ 7+m 7+m r 

jc>irect within Segment j 1 1 1 O 1 o o 1 I full displacement 7+m 7+m r 

jRegister /Memory Indirect 
j11111111 jmod100 r/ml 9+m/14+m 9+ml14+m b h,r 

tfflthin Segment 

j 1 1 1 O 1 O 1 0 !unsigned full offset, selector !Direct lntersegment 16+m 31+m j,k,r 

!Protected Mode Only (Direct lntersegment) 

Via Call Gate to Same Privilege Level 53+m h,j,k,r 

From 286 Task to 286 TSS h,j,k,r 

From 286 Task to 386 SX CPU TSS h,j,k,r 

From 286 Task to Virtual 8086 Task (386 SX CPU TSS) h,j,k,r 

From 386 SX CPU Task to 286 TSS h,j,k,r 

From 386 SX CPU Task to 386 SX CPU TSS h,j,k,r 

From 386 SX CPU Task to Virtual 8086 Task (386 SX CPU TSS) 395 h,j,k,r 

Indirect lntersegment I 11111111 jmod101 r/ml 17+m 31+m b h,j,k,r 

Protected Mode Only (Indirect lntersegment) 

Via Gall Gate to Same Privilege Level 49+m h,j,k,r 

From 286 Task to 286 TSS h,j,k,r 

From 286 Task to 386 SX CPU TSS h,j,k,r 

From 286 Task to Virtual 8086 Task (386 SXCPU TSS) h,j,k,r 

From 386 SX CPU Task to 286 TSS h,j,k,r 

From 386 SX CPU Task to 386 SX CPU TSS 328 h,j,k,r 

From 386 SX CPU Task to Virtual 8086 Task (386 SX CPU TSS) h,j,k,r 

5-946 



intJ 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued} 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addresa Protected Addresa Protected 

M!>deor Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 
RET = Return from CALL: 

Within Segment I 11000011 I 12+m b g,h,r 

Within Segment Adding immediate to SP I 11000010 I 16-bit displ I 12+m b g,h,r 

lntersegment I 11001011 I 36+m b g,h,j,k, r 

lntersegment Adding Immediate to SP I 11001010 I 16-bit displ I 36+m b g,h,j, k, r 

Protected Mode Only (RET): 
to Different Privilege Level 

lntersegment 72 h, j, k,r 
lntersegment Adding Immediate to SP 72 h, j, k, r 

CONDITIONAL JUMPS 

NOTE: Times Are Jump "Taken or Not Taken" 
JO = Jump on overflow 

8-Blt Displacement I 01110000 I B-blt displ I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000000 I full displacement 7+mor3 7+mor3 r 

JNO = Jump on Not overnow 

8-Blt Displacement I 01110001 I 8-bltdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000001 I full displacement 7+mor3 7+mor3 r 

JB/JNAE = Jump on Below/Not Above or Equal 

8-Blt Displacement Lo1110010J 8-bitdispl J 7+mor3 7+mor3 r 

Full Displacement L 00 O O 1 111 11 0 0 0 0 0 1 0 J full displacement 7+mor3 7+mor3 r I 
JNB/JAE =Jump on Not Below/Above or Equal 

8-Bit Displacement I 01110011 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000011 I full displacement 7+mor3 7+mor3 r 

JE/JZ = Jump on Equal/Zero 

8-Blt Displacement I 01110100 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000100 I full displacement 7+mor3 7+mor3 r 

JNE/JNZ = Jump on Not Equal/Not Zero 

8-Bit Displacement I 01110101 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000101 I full displacement 7+mor3 7+mor3 r 

JBE/JNA = Jump on Below or Equal/Not Above 

8-Bit Displacement I 01110110 I 8-bltdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000110 I full displacement 7+mor3 7+mor3 r 

JNBE/JA = Jump on Not Below or Equal/Above 

8-Bit Displacement I 01110111 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10000111 I full displacement 7+mor3 7+mor3 r 

JS = Jump on Sign 

8-Bit Displacement I 01111000 I 8-bltdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001000 I full displacement 7+m<ir3 7+mor3 r 

5-947 



intJ 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

iNSTMi.iCTiON FORMAT 
Real I 

Address Protec1ed 
Real I 

Address Protected 
Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Not Sign 

8-Bit Displacement I 01111001 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001001 I full displacement 7+mor3 7+mor3 r 

JP/JPE ~ Jump on Parity/Parity Even 

8-Bit Displacement I 0111101 0 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001010 J full displacement 7+mor3 7+mor3 r 

JNP/JPO ~ Jump on Not Parity/Parity Odd 

B-Bit Displacement I 01111011 I 8-bit displ I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001011 I full displacement 7+mor3 7+mor3 r 

JL/JNGE ~ Jump on Less/Not Greater or Equal 

8-Bit Displacement I 01111100 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001100 I full displacement 7+mor3 7+mor3 r 

JNL/ JGE ~ Jump on Not Less/Greater or Equal 

8-Bit Displacement I 01111101 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 100011 01 I full displacement 7+mor3 7+mor3 r 

JLE/ JNG ~ Jump on Less or Equal/Not Greater 

8-Bit Displacement I 01111'110 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 1000111 0 I full displacement 7+mor3 7+mor3 r 

JNLE/JG ~ Jump on Not Less or Equal/Greater 

8-Bit Displacement I 01111111 I 8-bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 I 10001111 I full displacement 7+mor3 7+mor3 r 

JCXZ ~ Jump on CX Zero I 11100011 I 8-bitdispl I 9+mor5 9+mor5 r 

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bitdispl I 9+mor5 9+mor5 r 

(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP ~ Loop CX Times I 11100010 I 8-bitdispl I 11+m 11+m r 

LOOPZ/LOOPE ~ Loop with 
Zero/Equal I 11100001 I 8-bitdispl I 11+m 11+m r 

LOOPNZ/LOOPNE ~ Loop While 
Not Zero I 11100000 I 8-bitdispl I 11+m 11+m r 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO ~ Set Byte on Overflow 

To Register I Memory I 00001111 I 10010000 I modOOO rim I 4/5' 4/5' h 

SETNO ~ Set Byte on Not Overflow 

To Register/Memory I 00001111 I 10010001 I modOOO rim I 4/5" 4/5' h 

SETB/SETNAE ~ Set Byte on Below /Not Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO r/ml 4/5' 415' h 

5-948 



intJ 386TM SX MICROPROCESSOR 

Table 9·1. Instruction Set Clock Count Summary (Continued} 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual AddreBB Virtual AddreBB 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB = Set Byte on Not Below/Above or Equal 

To Register/Memory I 00001111 I 10010011 I modOOO rim I 4/5' 4/5' h 

SETE/SETZ = Set Byte on Equal/Zero 

To Register/Memory I 00001111 I 10010100 I modOOO r/m I 4/5' 4/5' h 

SETNE/SETNZ = Set Byte on Not Equal/Not Zero 

To Register/Memory J O O O O 1 1 1 1 I 10010101 I modOOO rim I 4/5' 4/5' h 

SETBE/SETNA = Set Byte on Below or Equal/Not Above 

To Register/Memory J O 0 O O 1 1 1 1 I 1001011 0 I modOOO rim I 4/5' 4/5' h 

SETNBE/SETA = Set Byte on Not Below or Equal/ Above 

To Register/Memory J O O O O 1 1 1 1 I 10010111 I modOOO r/m I 4/5' 4/5' h 

SETS = Set Byte on Sign 

To Register/Memory I 00001111 I 10011000 I modOOO rim I 4/5' 4/5' h 

SETNS = Set Byte on Not Sign 

To Register/Memory I 00001111 I 10011001 I modOOO rim I 4/5' 4/5' h 

SETP/SETPE = Set Byte on Parlty/ParHy Even 

To Register/Memory I 00001111 I 10011010 I modOOO rim I 4/5' 4/5' h 

SETNP/SETPO = Set Byte on Not Parlty/ParHy Odd 

ToRegister/Memory I 00001111 I 10011011 I modOOO rim I 4/5' 4/5' h 

SETL/SETNGE = Set Byte on Leas/Not Greater or Equal 

To Register/Memory I O 0 O O 111 1 I 10011100 lmodOOO rim I 4/5' 4/5' h 
II 

SETNUSETGE = Set Byte on Not Less/Greater or Equal 

To Register/Memory I 0 O 0 0 1111 I 01111101 I modOOO rim I 4/5' 4/5' h 

SETLE/SETNG = Set Byte on LeSB or Equal/Not Greater 

To Register/Memory I O O O O 1 1 1 1 I 10011110 I modOOO rim I 4/5' 4/5' h 

SETNLE/SETG = Set Byte on Not leSB or Equal/Greater 

To Register/Memory I O O O O 1 1 1 1 I 10011111 I modOOO rim I 4/5' 4/5' h 

ENTER = Enter Procedure l 1 1 O O 1 O O O l 1 e-bit displacement, 8-blt level J 
L=O 10 10 b h 
L = 1 14 14 b h 
L > 1 17+ 17 + b h 

B(n -1) B(n-1) 

LEAVE = Leave Procedure I 11001001 I 4 4 b h 

5-949 



intef 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

'NSTRUCTION 

I CLOCK COUNT NOTES 

·- -· . •v• 9V 

Real j 
Addra:- p--"'Get--' 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS 

INT = Interrupt: 

Type Specified I 11001101 I type I 37 b 

Type3 I 11001100 I 33 b 

INTO = Interrupt 411 Overflow Flag Set I 1100111 0 I 
If OF= 1 35 b,e 
If OF= 0 3 3 b,e 

Bound = Interrupt 5 II Detect Value I 01100010 J mod reg rim I 
Out of Range 

If Out of Range 44 b,e e,g, h,j, k,r 
If In Range 10 10 b,e e, g, h,j, k, r 

Protected Mode Only (INT) 

INT: Type Specified 

Via Interrupt or Trap Gate 

Via Interrupt or Trap Gate 
to Same Privilege Level 71 g, j, k, r 
to Different Privilege Level 111 g,j, k, r 

From 286 Task to 286 TSS via Task Gate 438 g, j, k, r 
From 286 Task to 386™ SX CPU TSS via Task Gate 465 g,j, k, r 
From 286 Task to virt 8086 md via Task Gate 382 g,j, k, r 
From 386TM SX CPU Task to 286 TSS via Task Gate 440 g, j, k, r 
From 386™ SX CPU Task to 386TM SX CPU TSS via Task Gate 467 g,j, k, r 
From 386™ SX CPU Task to virt 8086 md via Task Gate 384 g, j, k, r 
From virt 8086 md to 286 TSS via Task Gate 445 g,j, k, r 
From virt 8086 md to 386™ SX CPU TSS via Task Gate 472 g, j, k, r 
From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 275 

INT:TYPE3 

Via Interrupt or Trap Gate 
to Same Privilege Level 71 g,j, k, r 

Via Interrupt or Trap Gate 

to Different Privilege Level 111 g,j, k, r 
From 286 Task to 286 TSS via Task Gate 382 g,j, k,r 
From 286 Task to 386™ SX CPU TSS via Task Gate 409 g,j, k, r 
From 286 Task to Virt 8086 md via Task Gate 326 g,j, k, r 
From 386™ SX CPU Task to 286 TSS via Task Gate 384 g,j, k,r 
From 386TM SX CPU Task to 386™ SX CPU TSS via Task Gate 411 g,j, k, r 
From 386™ SX CPU Task to Virt 8086 md via Task Gate 328 g,j, k, r 
From virt 8086 md to 286 TSS via Task Gate 389 g,j, k, r 
From virt 8086 md to 386TM SX CPU TSS via Task Gate 416 g, j, k, r 
From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 223 

INTO: 

Via Interrupt or Trap Grate 

to Same Privilege Level 71 g,j, k,r 
Via Interrupt or Trap Gate 

to Different Privilege Level 11t g, j, k, r 
From 286 Task to 286 TSS via Task Gate 384 g, j, k, r 
From 286 Task to 386™ SX CPU TSS via Task Gate 411 g,j, k,r 
From 286 Task to virt 8086 md via Task Gate 328 g, j, k, r 
From 386TM SX CPU Task to 286 TSS via Task Gate 386DX g,j, k, r 
From 386TM SX CPU Task to 386TM SX CPU TSS via Task Gate 413 g,j, k,r 
From 386™ SX CPU Task to virt 8086 md via Task Gate 329 g,j, k,r 
From virt 8086 md to 286 TSS via Task Gate 391 g,j, k, r 
From virt 8086 md to 386TM SX CPU TSS via Task Gate 418 g, j, k, r 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223 

5-950 



386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 
to Same Privilege Level 71 g,j, k, r 

Via Interrupt or Trap Gate 
to Different Privilege Level 111 g,j, k, r 

From 286 Task to 286 TSS via Task Gate 358 g,j, k, r 
From 286 Task to 386™ SX CPU TSS via Task Gate 388 g, j, k, r 

From 268 Task to virt 8086 Mode via Task Gate 335 g, j, k, r 
From 386 SX CPU Task to 286 TSS via Task Gate 368 g,j, k,r 
From 386 SX CPU Task to 386 SX CPU TSS via Task Gate 398 g,j, k, r 
From 386 SX CPU Task to virt 8086 Mode via Task Gate 347 g, j, k, r, 

From virt 8086 Mode to 286 TSS via Task Gate 368 g,j, k, r 

From virt 8086 Mode to 386 SX CPU TSS via Task Gate 398 g,j, k, r 

From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 223 

INTERRUPT RETURN 

IRET ~ Interrupt Return I 11001111 I 24 g, h, j, k, r 

Protected Mode Only (IRET) 
To the Same Privilege Level (within task) 42 g, h,j,k,r 

To Different Privilege Level (within task) 86 g, h, j, k, r 

From 286 Task to 286 TSS 285 h,j, k, r 
From 286 Task to 386 sx CPU TSS 318 h,j, k, r 
From 286 Task to Virtual 8086 Task 267 h,j, k,r 

From 286 Task to Virtual 8086 Mode (within task) 113 

From 386 SX CPU Task to 286 TSS 324 h,j, k, r 

From 386 SX CPU Task to 386 SX CPU TSS 328 h,j, k, r 
From 386 SX CPU Task to Virtual 8086 Task 377 h, j, k, r El 
From 386 SX CPU Task to Virtual 8086 Mode (within task) 113 

PROCESSOR CONTROL 

HLT ~HALT I 111101 00 I 5 5 I 

MOV ~ Move to and From Control/Debug/Test Register 

CRO/CR2/CR3 from register I 00001111 00100010 I 11 eee reg I 10/4/5 10/4/5 I 

Register From CR0-3 I 00001111 00100000 I 11 eee reg I 6 6 I 

DR0-3 From Register I 00001111 00100011 I 11 eee reg I 22 22 I 

DR6-7 From Register I 00001111 00100011 11 eeereg I 16 16 I 

Register from DR6-7 I 00001111 I 00100001 11 eeereg I 14 14 I 

Register from DR0-3 I 00001111 I 00100001 1 1 eee reg I 22 22 I 

TR6-7 from Register I 00001111 I 00100110 11 eeereg I 12 12 I 

Register from TR6-7 I 00001111 I 00100100 11 eee reg I 12 12 I 

NOP ~ No Operation I 10010000 I 3 3 

WAIT~ Walt until BUSY# pin Is negated I 10011011 I 6 6 

5-951 



inter 386™ SX MICROPROCESSOR 

Table 9-1 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode:>r Vlrtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape I 11011 TTT lmodLLL rim J See h 

TTT and LLL bits are opcode 387SX 

information for coprocessor. data sheet for 

clock counts 

PREFIX BYTES 

Address Size Prefix I 01100111 I 0 0 

LOCK = Bus Lock Prefix I 11110000 I 0 0 m 

Operand Size Prefix I 01100110 I 0 0 

Segment Override Prefix 

CS: I 00101110 I 0 0 

OS: I 00111110 I 0 0 

ES: I 00100110 I 0 0 

FS: I 01100100 I 0 0 

GS: I 01100101 I 0 0 

SS: I 00110110 I 0 0 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From Register/Memory I 01100011 j mod reg r/mj NIA 20121•• a h 

LAR = Load Access Rights 

From Register/Memory I 00001111 I 00000010 j mod reg rim I NIA 15/16' a g, h,j, p 

LGDT = Load Global Descriptor 

Table Register I 00001111 I 00000001 j mod01 o rtmj 11' 11• b, c h, I 

LIDT = Load Interrupt Descriptor 

Table Register I 00001111 I 00000001 j mod011 rim j 11' 11' b, c h, I 

LLDT = Load Local Descriptor 

Table Register to 
Register/Memory I 00001111 I 00000000 jmod010 rtmj N/A 20/24' a g, h, j, I 

LMSW = Load Machine Status Word 

From Register/Memory I 00001111 I 00000001 j mod 11 O r/mj 10/13 10/13' b, c h, I 

LSL = Load Segment Limit 

From Register/Memory I 00001111 I 00000011 I mod reg rim I 
Byte-Granular Limit N/A 20/21' a g, h,j,p 
Page-Granular Limit NIA 25/26' a g, h,j,p 

LTR = Load Task Register 

From Register/Memory I 00001111 I 00000000 j mod001 r/m j N/A 23/27' a g, h, j, I 

SGDT = Store Global Descriptor 

Table Register I 00001111 I 00000001 j modOOO rtmj 9' 9' b,c h 

SIDT = Store Interrupt Descriptor 

Table Register I 00001111 I 00000001 jmod001 r/mj 9' 9' b, c h 

SLOT = Store Local Descriptor Table Register 

To Regis1er /Memory I 00001111 I 00000000 j modOOO r/mj N/A 2/2' a h 

5-952 



intef 386TM SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

PROTECTION CONTROL (Continued) 

SMSW = Store Machine 
Status Word I 00001111 I 00000001 lmod100 rim I 212' 212• b, c h, I 

STR ~ Store Task Register 

To Register/Memory I 00001111 I 00000000 jmod001 rlml NIA 212• a h 

VEAR ~Verify Read Access 

Register/Memory I 00001111 I 00000000 jmod100 rlml NIA 10111• a g,h,i,p 

VERW ~ Verify Write Access I 00001111 I 00000000 I mod101 rlml NIA 15116' a g, h,i, p 

INSTRUCTION NOTES FOR TABLE 9·1 

Notes a through c apply to Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode: 
d. The 386 SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([log2 !mil. 3) + b clocks: El 

if m = 0 then 3+b clocks 
In this formula, m is the multiplier, and 
b = 9 for register to register, 
b = 12 for memory to register, 
b = 1 O for register with immediate to register, 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix. 
g. LOCK# is asserted during descriptor table accesses. 

Notes h through r apply to Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = 0. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. 
sit. The il'.lstruction will execute in s clocks if CPL ,;; IOPL. If CPL > IOPL, the instruction will take t clocks. 

5-953 



intef 386™ SX MICROPROCESSOR 

9.2 INSTRUCTION ENCODING 

9.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 8-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode t:iyte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 9-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 9-2 is a complete list of all fields ap­
pearing in the instruction set. Further ahead, follow­
ing Table 9-2, are detailed tables for each field. 

ITT TT TT TT I TT TT TT TT I mod TT Trim I ss index base ld32 I 16 I 8 I none data32 I 16 I 8 I none 

1 01 o,,765320;\765320; 
T ¥ '--~-v~~-

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

"mod rim" 
byte 

''s-i-b'' 
byte 

register and address 
mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 9-1. General Instruction Format 

Table 9-2. Fields within Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier (Effective Address can be a General Register) 

SS Scale Factor for Scaled Index Address Mode 
index GeneralRegister to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Note: Table 9-1 shows encoding of individual instructions. 

5-954 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 

4 



intef 386™ SX MICROPROCESSOR 

9.2.2 32-Bit Extensions of the 
Instruction Set 

With the 386 SX CPU, the 8086180186180286 in­
struction set is extended in two orthogonal direc­
tions: 32-bit forms of all 16-bit instructions are added 
to support the 32-bit data types, and 32-bit address­
ing modes are made available for all instructions ref­
erencing memory. This orthogonal instruction set ex­
tension is accomplished having a Default (D) bit in 
the code segment descriptor, and by having 2 prefix­
es to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the D bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a D value of 0 is assumed internally by the 
386 SX CPU when operating in those modes (for 16-
bit default sizes compatible with the 80861801861 
80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all modes, 
including the Real Address Mode or the Virtual 8086 
Mode. In these modes the default is always 16 bits, 
so prefixes are needed to specify 32-bit operands or 
addresses. For instructions with more than one pre­
fix, the order of prefixes is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. -

9.2.3 Encoding of Instruction Fields 
Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

9.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Bit During 32-Bit 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

9.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16-Bit During 32-Bit 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
ex ECX 
DX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
DI EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-Bit Data Operations: 

Function of w Field 

(when w = 0) (whenw = 1) 

AL AX 
CL ex 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 

5-955 

I 



intJ 386™ SX MICROPROCESSOR 

Register Specified by reg Field 
During 32·Bit Data Operations 

reg 
Function of w Field 

(whenw = O) (whenw = 1) 

000 ' AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

9.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions· is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 386 SX CPU FS and GS seg­
ment registers to be specified. 

2·Blt sreg2 Field 

2·Blt 
Segment 

sreg2Field 
Register 
Selected 

00 ES 
01 cs 
10 SS 
11 OS 

3-Blt sreg3 Fleld 

3-Blt 
Segment 

sreg3Fleld 
Register 
Selected 

000 ES 
001 cs 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

9.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

· The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00, 01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

· The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension .of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. · 

5-956 



intef 386™ SX MICROPROCESSOR 

Encoding of 16-bit Address Mode with "mod r/m" Byte 

mod r/m Effective Address mod r/m Effective Address 

00 000 DS:[BX+SI] 10000 DS: [BX+ SI+ d16] 
00001 DS:[BX+DI] 10 001 DS:[BX+Dl+d16] 
00010 SS:[BP+SI] 10010 SS:[BP+Sl+d16] 
00 011 SS:[BP+DI] 10 011 SS:[BP+ Dl+d16] 
00100 DS:[SI] 10 100 DS: [SI+ d16] 
00101 DS:[DI] 10 101 DS: [DI+ d16] 
00 110 DS:d16 10 110 SS:[BP+d16] 
00 111 DS:[BX] 10 111 DS: [BX+ d16] 

01 000 DS: [BX+ SI+ dB] 11 000 register-see below 
01 001 DS: [BX+ DI+ dB] 11 001 register-see below 
01 010 SS: [BP+ SI+ dB] 11 010 register-see below 
01 011 SS: [BP+ DI+ dB] 11 011 register-see below 
01 100 DS:[Sl+dB] 11 100 register-see below 
01101 DS:[Dl+dB] 11 101 register-see below 
01 110 SS:[BP+dB] 11 110 register-see below 
01 111 DS:[BX+dB] 11 111 register-see below 

Register Specified by r/m 
During 16-Bit Data Operations 

modr/m 
Function of w Field 

(when w=O) (whenw =1) 

11 000 AL AX 
11 001 CL ex 
11 010 DL DX I 
11 011 BL BX 
11 100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by r/m 
During 32-Bit Data Operations 

modr/m 
Function of w Field 

(whenw=O) (whenw =1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 

5-957 



intJ 386™ SX MICROPROCESSOR 

Encoding of 32-bit Address Mode with "mod r/m" byte (no "s-i-b" byte present): 

modr/m Effective Address modr/m Effective Address 

00000 DS:[EAX] 10000 DS: [EAX + d32] 
00001 DS:[ECX] 10 001 DS: [ECX + d32] 
00 010 DS:[EDX] 10010 DS: [EDX + d32] 
00 011 DS:[EBX] 10 011 DS: [EBX + .d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10 101 SS: [EBP + d32] 
00110 DS:[ESI] 10 110 DS: [ESI + d32] 
00 111 DS:[EDI] 10 111 DS: [EDI+ d32] 

01 000 DS: [EAX +dB] 11 000 register-see below 
01 001 DS: [ECX +dB] 11 001 register-see below 
01 010 DS:[EDX+dB] 11 010 register-see below 
01 011 DS: [EBX +dB] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS: [EBP +dB] 11101 register-see below 
01110 DS: [ESI +dB] 11110 register-see below 
01 111 DS: [EDI+ dB] 11 111 register-see below 

Register Specified by reg or r/m 
during 16-Bit Data Operations: 

modr/m 
function of w field 

(when w=O) (whenw= 1) 

11 000 AL AX 
11 001 CL ex 
11 010 DL DX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or r/m 
during 32-Bit Data Operations: 

modr/m 
function of w field 

(when w=O) (whenw=1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 

5-95B 



intef 

mod base 

00 000 
00001 
00 010 
00 011 
00100 
00 101 
00 110 
00 111 

01 000 
01 001 
01 010 
01 011 
01100 
01 101 
01110 
01 111 

10000 
10001 
10010 
10 011 
10100 
10 101 
10 110 
10 111 

NOTE: 

386™ SX MICROPROCESSOR 

Encoding of 32-bit Address Mode ("mod r/m" byte and "s·i·b" byte present): 

Effective Address 

OS: [EAX +(scaled index)] 
OS: [ECX +(scaled index)] 
OS: [EDX +(scaled index)] 
OS: [ESX +(scaled index)] 
SS: [ESP+ (scaled index)] 
OS: [d32 +(scaled index)] 
OS: [ESI +(scaled index)] 
DS: [EDI+ (scaled index)] 

OS: [EAX + (scaled index)+ d8] 
OS: [ECX +(scaled index)+ d8] 
DS: [EDX +(scaled index)+ d8] 
DS: [ESX +(scaled index)+ d8] 
SS: [ESP+ (scaled index)+ d8] 
SS: [ESP+ (scaled index)+ d8] 
DS: [ESI +(scaled index)+ d8] 
OS: [EDI+ (scaled index)+ d8] 

DS: [EAX +(scaled index)+ d32] 
DS: [ECX +(scaled index)+ d32] 
DS: [EDX +(scaled index)+ d32] 
OS: [ESX +(scaled index)+ d32] 
SS: [ESP+ (scaled index)+ d32] 
SS: [ESP+ (scaled index)+ d32] 
OS: [ESI + (scaled index)+ d32] 
DS: [EDI+ (scaled index)+ d32] 

SS Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 ESX 
100 no index reg•• 
101 ESP 
110 ESI 
111 EDI 

*'*IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 

5-959 

El 



intef 386™ SX MICROPROCESSOR 

9.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

in many two-operand instructions the d fieid is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod rim" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod rim" or "mod ss index base" Indicates 
Source Operand 

9.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Data& Immediate Data 16132 

ONone None 

1 Sign-Extend Data8 to Fill None 
16-Bit or 32-Bit Destination 

9.2.3.7 ENCODING OF CONDITIONAL TEST 
{tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1 ), 
and ttt giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow OOOi 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/ Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/ Above 0111 
s Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

9.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER {eee) FIELD 

For .the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CAO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DAO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

110 TR6 
111 TR7 

Do not use any other encoding 

5-960 



386™ SX MICROPROCESSOR 

DAT A SHEET REVISION REVIEW 

The following list represents key differences between this and the -001 version of the 386™ SX microproces­
sor data sheet. Please review this summary carefully. 

The section significantly revised since version -002 is: 

Section 1.0 Figure 1.1 was modified to also give pin names. Table 1.1 was modified to list pin names 
in alphabetical order. 

The sections significantly revised since version ·003 are: 

Section 7.3 Table 7.3 modified to show new Ice values at 16 MHz and 20 MHz. 

Section 7.4 Add 20 MHz A.G. Specifications in Table 7.5. Modified capacitive derating information in 
Tables 7.8 through 7.11. Modified typical Ice vs. frequency in Table 7.12. 

The sections significantly revised since version ·004 are: 

Section 5.4 Added Section on FLT#. 

Section 7.3 

Section 7.4 

Table 7.3 modified to show the FLT# function and TcASE at 100°C. 

Changed T14 to 4 ns. Deleted Figure 7.10. 

The section significantly revised since version ·005 are: 

Section 1.0 Pin Description was modified to add ONCE description in Symbol FLT# section. 

Section 7.3 

Section 7.4 

Table 7.3 modified to show Low Power 386 SX Ice Max value and typical value at 
different frequency. 

Merge 20 MHz and 16 MHz standard 386 SX A.G. specification in Table 7.4. 

Add Low Power 386 SX 20 MHz, 16 MHz and 12 MHz A.G. Specification as Table 7.5. 

5-961 

I 



387™ sx 
MATH COPROCESSOR 

!! Interfaces with 38STM SX II Upward Object-Code Compatible from 
Microprocessor 8087 and 80287 

• Expands 386 SX CPU Data Types to • Directly Extends 386 SX CPU 
Include 32-, 64-, 80-Bit Floating Point, Instruction Set to Trigonometric, 
32-, 64-Bit Integers and 18-Digit BCD Logarithmic, Exponential, and 
Operands Arithmetic Instructions for All Data 

• High Performance 80-Bit Internal Types 

Architecture • Full-Range Transcendental Operations 

• Two to Three Times 8087180287 for SINE, COSINE, TANGENT, 

Performance at Equivalent Clock Speed ARCTANGENT, and LOGARITHM. 

• Implements ANSI/IEEE Standard 754- • Operates Independently of Real, 

1985 for Binary Floating-Point Protected, and Virtual-8086 Modes of 

Arithmetic the 386 SX Microprocessor 

• Fully compatible with the 387™ Math • Eight 80-Bit Numeric Registers, Usable 

Coprocessor. Implements all 387 NPX as Individually Addressable General 

architectural enhancements over 8087 Registers or as a Register Stack 

and 80287. • Available in a 68-pin PLCC Package 
(see Packaging Specs: Order #231369) 

The Intel 387™ SX Math CoProcessor is an extension to the Intel 386™ microprocessor architecture. The 
combination of the 387 SX with the 386™ SX Microprocessor dramatically increases the processing speed of 
computer application software which utilizes mathematical operations. This makes an ideal computer worksta­
tion platform for applications such as financial modeling and spreadsheets, CAD/CAM, or graphics. 

The 387 SX Math CoProcessor adds over seventy mnemonics to the 386 SX Microprocessor instruction set. 
Specific 387 SX math operations include logarithmic, arithmetic, exponentional, and triginometric functions. 
The 387 SX supports integer, extended integer, floating point and BCD data formats, and fully conforms to the 
ANSI/IEEE floating point standard. 

The 387 SX Math CoProcessor is object code compatible with the 387™ DX and upward object code compati­
ble from the 80287 and 8087 Math CoProcessors. The 387 SX is manufactured with Intel's CHMOS Ill 
technology and packaged in a 68-pin PLCC package. A low power consumption option allows use in laptop or 
portable applications. 

BUS CONTROL LOGIC I DATA INTERF'ACE AND CONTROL UNIT I FLOATING POINT UNIT 

Figure 0-1. Block Diagram 

5-962 

OPERANDREGISTCR 
(A~DB) 

MANTISSAADDEll 

s5:;~~R 

~~~:..~=: 
68-SITREGISTU

240225-1

September 1990
Order Number: 240225-005

intef 387™ SX MATH COPROCESSOR

TABLE OF CONTENTS
CONTENTS PAGE

1.0 Functional Description ... 5-965
2.0 Programming Interface .. 5-966

2.1 Data Types ... 5-966
2.2 Numeric Operands ... 5-966
2.3 Register Set .. 5-968

2.3.1 Data Registers ... 5-968
2.3.2 Tag Word .. 5-968
2.3.3 Status Word .. 5-968
2.3.4 Control Word ... 5-972
2.3.5 Instruction and Data Pointers ... 5-973

2.4 Interrupt Description .. 5-975
2.5 Exception Handling ... 5-975
2.6 Initialization .. 5-975
2. 7 8087 and 80287 Compatibility ... 5-976

2.7.1 General Differences .. 5-976
2.7.2 Exceptions ... 5-977

3.0 Hardware Interface .. 5-977
3.1 Signal Description .. 5-977

3.1.1 386™ SX CPU Clock 2 (CPUCLK2) ... 5-978
3.1.2 387™ SX NPX Clock 2 (NUMCLK2) ... 5-978
3.1.3 Clocking Mode (CKM) ... : .. 5-978
3.1.4 System Reset (RESETIN) ... 5-978
3.1.5 Processor Extension Request (PEREQ) 5-979
3.1.6 Busy Status (BUSY#) .. 5-979
3. 1. 7 Error Status (ERROR#) .. 5-979
3.1.8 Data Pins (D15-DO) .. 5-979
3.1.9 Write/Read Bus Cycle (W/R#) ... 5-979
3.1.1 O Address Strobe (ADS#) .. 5-979
3.1.11 Bus Ready Input (READY#) .. 5-979
3.1.12 Ready Output (READYO #) ... 5-979 El
3.1.13 Status Enable (STEN) .. 5-979
3.1.14 NPX Select 1 (NPS1 #) ... 5-979
3.1.15 NPX Select 2 (NPS2) ... 5-980
3.1.16 Command (CMDO #) ... 5-980
3.1 .17 System Power (V cc) .. 5-980
3.1.18 System Ground (V ss) ... 5-980

3.2 System Configuration ... 5-980
3.3 Processor Architecture ... 5-981

3.3.1 Bus Control Logic .. 5-981
3.3.2 Data Interface and Control Unit ... 5-981
3.3.3 Floating-Point Unit•..................... 5-981

3.4 Bus Cycles ... 5-981
3.4.1 387™ SX NPX Addressing .. 5-981
3.4.2 CPU/NPX Synchronization ... 5-982
3.4.3 Synchronous or Asynchronous Modes .. 5-982
3.4.4 Automatic Bus Cycle Termination ... 5-982

4.0 Bus Operation .. 5-982
4.1 Nonpipelined Busy Cycles .. 5-983

4.1.1 Write Cycle ... 5-983
4.1.2 Read Cycle ... 5-984

4.2 Pipelined Bus Cycles ... 5-984
4.3 Bus Cycles of Mixed Type .. 5-985
4.4 BUSY# and PEREQ Timing Relationship ... 5-986

5.0 Package Thermal Specifications ... 5-987

5-963

387™ SX MATH COPROCESSOR

CONTENTS PAGE

6.0 Electrical Data- .. 5-989
6.1 Absolute Maximum Ratings ... 5-989
6.2 D.C. Characteristics : ; 5-989
6;3 A.C. Characteristics .. 5-989

7.0 387™ SX NPX Extensions to the CPU's Instruction Set 5-995
Appendix A-Compatibility between the 80287 and the 8087 NPX 5-1000

FIGURES
Figure 0-1. Block Diagram .. ·'- 5-962
Figure 1-1. 386™ SX Microprocessor and 387™ SX Math Coprocessor Register Set ...•... 5-965
Figure 2-1. Tag Word .. 5-968
Figure 2-2. Status Word ... 5-969
Figure 2-3. Control Word .. 5-972
Figure 2-4. Instruction and Data Pointer Image in Memory, 32-bit Protected-Mode Format ... 5-973
Figure 2-5. Instruction and Data Pointer Image in Memory, 16-bit Protected-Mode Format ... 5-974
Figure 2-6. Instruction and Data Pointer Image in Memory, 32-bit Real-Mode Format ; 5-974
Figure 2-7. Instruction and Data Pointer Image in Memory, 16-bit Real-Mode Format 5-974
Figure 3-1 . Asynchronous Operation ... 5-977
Figure 3-2. 386™ SX Microprocessor and 387™ SX Math Coprocessor System
. Configuration ... 5-980
Figure 4-1 . Bus State Diagram ... 5-983
Figure 4-2. Nonpipelined Read and Write Cycles ... 5-984
Figure 4-3. Fastest Transitions to and from Pipelined Cycles 5-985
Figure 4-4. Pipelined Cycles with Wait States ... 5-986
Figure 4-5. STEN, BUSY# and PEREQ Timing Relationships 5-987
Figure 5-1. PLCC Pin Configuration _ 5-988
Figure 6-1a. Typical Output Valid Delay vs. Load Capacitance at Max Operating

Temperature .. ·5-991
Figure 6-1 b. Typical Output Slew Times vs. Load Capacitance at Max Operating

Temperature ~ .. 5-991
Figure 6-1 c. Maximum Ice vs. Frequency .. 5-992
Figure 6-2. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output 5-992
Figure 6-3. Output Signals ... : . 5-993
Figure 6-4. Input and 1/0 Signals .. '. 5-993
Figure 6-5. RESET Signal ... 5-994
Figure 6-6. Float from STEN ... 5-994
Figure 6-7. Other Parameters , .. 5-995

TABLES
Table 2-1. 387™ SX NPX Data Type Representation in Memory ; ...•............... 5-967
Table 2-2. Condition Code Interpretation ... 5-970
Table 2-3. Condition Code Interpretation after FPREM and FPREM1 Instructions 5-971
Table 2-4. Condition Code Resulting from Comparison 5-971
Table 2-5. Condition Code Defining Operand Class ... 5-971
Table 2-6. CPU Interrupt Vectors Reserved for NPX .. 5-975
Table 2-7. Exceptions .. 5-976
Table 3-1. Pin Summary ... , 5-978
Table 3-2. Output Pin Status during Reset .. 5-979 .
Table 3-3. Bus Cycles Definition ... 5-981
Table 5-1. The~mal Resistanc~s (°C~Watt) Ojc and Oja 5-987
Table 5.2. Maximum TA at Vanous Airflows .. 5-988
Table 5-3. Pin Cross-Reference ... , 5-988
Table 6-1. D.C. Specifications ... 5-989
Table 6-2a. Combinations of Bus Interface and Execution Speeds 5-989
Table 6-2b. Timing Requirements of Execution Unit .. 5-990
Table 6-2c. Timing Requirements of Bus Interface Unit 5-990
Table 6-3. Other Parameters .. 5-994
Table 7-1. Instruction Fotmats : 5-996

5-964

intef 387™ SX MATH COPROCESSOR

386™ SX Microprocessor Registers I 387™ SX NPX Data Registers
I Tag.

GENERAL REGISTERS SEGMENT REGISTERS I Field
31 16 15 0 15 0 I 79 78 64 63 0 1 0

cs
SS

EAX
AX

AH AL

I RO Sign Exponent Significand
I R1
I

OS EBX
BX

BH BL
I R2

I R3
ES

FS
ECX

ex
CH CL

I. R4
I
I R5

GS
EDX

DX
DH DL

I RS
I R7
I

ESI SI

EDI DI

31 0

I : E~GS: I

I
I 15 0 47 0
I Control Register Instruction Pointer (in CPU)
I
I Status Register Data Pointer (in CPU)

ESP BP I
I

Tag Word

I
ESP SP I

I
I
I
I
I
I

Figure 1-1. 386™ SX Microprocessor and 387™ SX Math Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The 387TM SX Math Coprocessor Extension (NPX)
provides arithmetic instructions for a variety of nu­
meric data types. It also executes numerous built-in
transcendental functions (e.g. tangent, sine, cosine,
and log functions). The 387 SX NPX effectively ex­
tends the register and instruction set of its CPU for
existing data types and adds several new data types
as well. Figure 1-1 shows the model of registers visi­
ble to 386™ SX Microprocessor and 387 SX Math
Coprocessor applications programs. Essentially, the
387 SX Math Coprocessor can be treated as an ad­
ditional resource or an extension to the 386 SX Mi­
croprocessor. The 386 SX Microprocessor together
with a 387 SX NPX can be used as a single unified
system, the 386 SX Microprocessor and 387 SX
Math Coprocessor.

The 387 SX Numerics Coprocessor Extension works
the. same whether the CPU is executing in real-ad­
dress mode, protected mode, or virtual-8086 mode.
All references to memory for numerics data or status
information are performed by the CPU, and there­
fore obey the memory-management and protection
rules of the CPU mode currently in effect. The 387
sx Numerics Coprocessor Extension merely oper­
ates on instructions and values passed to it by the

CPU.and therefore is not sensitive to the processing
mode of the CPU.

In real-address mode and virtual-8086 mode, the
386 SX Microprocessor and 387 SX Math Coproces­
sor is completely upward compatible with software
for the 8086/8087 and 80286/80287 real-address
mode systems.

In protected mode, the 386 SX Microprocessor and
387 SX Math Coprocessor is completely upward
compatible with software for the 80286/80287 pro­
tected mode system.

In all modes, the 386 SX Microprocessor and 387
SX Math Coprocessor is completely compatible with
software for the 386™ Microprocessor/387TM Math
Coprocessor system. ·

The only differences of operation that may appear
when 8086/8087 programs are ported to the pro­
tected-mode 386 SX Microprocessor and 387 SX
Math Coprocessor system (not using virtual-8086
mode) is in the format of operands for the adminis­
trative instructions FLDENV, FSTENV, FRSTOR,
and FSAVE. These instruction are normally used
only by exception handlers and operating systems,
not by applications programs.

5-965

El

intef 387™ SX MATH COPROCESSOR

2.0 PROGRAMMING INTERFACE

The 387 SX NPX adds to an 386 SX Microprocessor
system additional. data types, registers, instructions,
and interrupts specifically designed to facilitate high­
speed numerics processing. To use the 387 SX NPX
requires no special programming tools, because all
new instructions and data types are directly support­
ed by the assembler and compilers for high-level
languages. All 386 Microprocessor development
tools that support 387 NPX programs can also be
used to develop software for the 386 SX Microproc­
essor and 387 SX Math Coprocessor. All 8086/8088
development tools that support the 8087 can also
be used to develop software for the 386 SX Micro­
processor and 387 SX Math Coprocessor in real-ad­
dress mode or virtual-8086 mode. All 80286 devel­
opment tools that support the 80287 can also be
used to develop software for the 386 SX Microproc­
essor and 387 SX Math Coprocessor.

The 387 SX NPX supports all 387 NPX instruction,s.
The 386 SX Microprocessor and 387 SX Math Co­
processor supports all the same programs and gives
the same results as an 386 Microprocessor and 387
Math Coprocessor.

All communication between the CPU and the NPX is
transparent to applications software. The CPU auto­
matically controls the NPX whenever a numerics in­
struction is.executed. All physical memory and virtu­
al memory of the CPU are available for storage of
the instructions and operands of programs that use
the NPX. All memory addressing modes, including
use of displacement, base register, index register,
and scaling, are available for addressing numerics
operands.

Section 7 at the end of this data sheet lists by class
the instructions that the 387 SX NPX adds to the
instruction set of an 386 SX Microprocessor system.

2.1 Data Types

Table 2-1 lists the seven data types that the NPX
supports and presents the format for each type. Op­
erands are stored in memory with the least signifi­
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
ands should start at physical-memory addresses
that correspond to the word size of the CPU; oper­
ands may begin at any other addresses, but will re­
quire extra memory cycles to access the entire oper­
and.

Internally, the NPX holds all numbers in the extend­
ed-precision real format. Instructions that load oper­
ands from memory automatically convert operands
represented in memory as 16-, 32-, or 64-bit inte­
gers, 32- or 64-bit floating-point numbers, or 18-digit
packed BCD numbers into extended-precision real
format. Instructions that store operands in memory
perform the inverse type conversion.

2.2 Numeric Operands

A typical NPX instruction accepts one or two oper­
ands and produces one (or sometimes two) results.
In two-operand instructions, one operand is the con­
tents of an NPX register, while the other may be a
memory location. The operands of some instructions
are predefined; for example, FSQRT always takes
the square root of the number in the top stack ele-
ment. ·

5-966

intJ 387™ SX MATH COPROCESSOR

Table 2-1. 387™ SX NPX Data Type Representation in Memory

Data
Most Significant Byte = HIGHEST ADDRESSED BYTE

Range Precision ol1 ol1 oj1 oj 1 oj1 oj1 ol1 Formats 7

Word Integer ±104 16 Bits J 1TWO'S
COMPLEMENT!

15 0

Short Integer ±109 32 Bits J •Two·s
COMPLEMENT I

31 0

Long Integer ±1018 64 Bits

63

±1018 ~ x J.,, MAGNITUDE
Packed BCD 18 Digits d,b d,s du d13 011 d11 d, 0 dg d1 d, •• ·-79 72

Single Precision ± 10±38 24 Bits ~ BIASED I EXPONENT SIGNIFICAND J
31 23_ 0

I &

Double Precision ±10±308 53 Bits ~ BIASED] SIGNIFICAND EXPONENT

63 52\.._

"
Extended ±10±4932 64 Bits ~ BIASED ti SIGNIFICAND
Precision EXPONENT

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)

79 64 63··-

(3) X = Bits have no significance; NPX ignores when loading, zeros when storing
(4) • = Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended REal: 16383 (3FFFH)

(7) Packed BCD: (-1)S (D17 .. Do)
(8) Real: (-1)S (2E-BIAS) (Fo F1···>

5-967

ol1 ol1 oJ

J nwo·s
COMPLEMENT)

0

d1 d~ d, ., •. J
0

J
0

J
0

240225-2

I

387™ SX MATH COPROCESSOR

2.3 Register Set

Figure 1-1 shows the 387 SX NPX register set.
When an NPX is present in a system, programmers
may use these registers in addition to the registers
normally available on the CPU.

2.3.1 DATA REGISTERS

387 SX NPX computations use the NPX's data regis­
ters. These eight 80-bit registers provide the equiva­
lent capacity of 20 32-bit registers. Each of the eight
data registers in the NPX is 80 bits wide and is divid­
ed into "fields" corresponding to the NPX's extend­
ed-precision real data type.

The NPX register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as individually addressable
registers. The TOP field in the status word identifies
the current top-of-stack register. A "push" operation
decrements TOP by one and loads a value into the
new top register. A "pop" operation stores the value
from the current top register and then increments
TOP by one. The NPX register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

15

TAG (7) TAG (6) TAG (5) TAG (4)

NOTE:

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2-1 shows. Each two-bit tag
represents one of the eight data registers. The prin­
cipal function of the tag word is to optimize the
NPX's performance and stack handling by making it
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to identify special values (e.g. NaNs or denor­
mals) in the contents of a stack location without the
need to perform complex decoding of the actual
data.

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2~2 reflects the overall state of the NPX. It
may be read and inspected by programs.

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It always has the same value as the
ES bit (bit 7 of the status word); it does not indicate
the status of the BUSY# output of NPX.

Bits 13-11 (TOP) point to the NPX register that is
the current top-of-stack.

The four numeric condition code bits (C3-C0) are
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2-2
through 2-5.

0

TAG (3) TAG (2) TAG (1) TAG (0)

The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 =Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty

Figure 2·1. Tag Word
'

5-968

intef 387™ SX MATH COPROCESSOR

.-----------------~BUSY

.--~------------- TOP OF STACK POINTER

r-+--+--+--.--,--,---------- CONDITION CODE

15

B TOP

ERROR SUMMARY STATUS------~
STACK FLAG---------'

EXCEPTION FLAGS:

0

PRECISION---------~

UNDERFLOW----------~

OVERFLOW------------'
ZERO DIVIDE------------~

DENORMALIZED OPERAND-------------~
INVALID OPERATION--------------~

240225-3
ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code.
TOP values:

000 = Register bis Top of Stack
001 = Register 1 is Top of Stack

111 = Register 7 is Top of Stack

~F-or_d_e_fi-ni-tio_n_s_o_f_ex_c_e_~_io_n_s._r_~_e_rt_o_t_he_sect_io_n_e_n_ti-tled--"E_x_c_ep_ti_·o_n_H_a_nd-li-ng_·_·------------~ ~
Figure 2·2. Status Word II

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1=1) and underflow (C1 =O).

Figure 2-2 shows the six exception flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the NPX has detected an exception while executing
an instruction. A later section entitled "Exception
Handling" explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR# output of the
NPX is activated immediately.

5-969

intef 387™ SX MATH COPROCESSOR

Table 2-2. Condition Code Interpretation

Instruction CO(S) C3(Z) C1 (A) C2(C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0 =complete

02 00 01
orO/U# 1 = incomplete

FCOM, FCOMP,
FCOMPP,. FTST, Result of comparison

Zero
Operand is not

FUCOM, FUCOMP, (see Table 2.4)
orO/U#

comparable
FUCOMPP, FICOM, (Table 2.4)
FICOMP

FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)

FCHS, FASS, FXCH,
FINCSTP, FDECSTP,

Zero
Constant loads, UNDEFINED

orO/U#
UNDEFINED

FXTRACT, FLO,
FILO, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,

Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, orO/U#

FSCALE, FSORT,
FPATAN, F2XM1,
FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0 =complete

undefined 1 = incomplete
ifC2 = 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1=1) and underflow (C1 =O).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial remain-
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS,and FSIN-
COS, the reudction bit is set if the oeprand at the top of the stack is too large. In this case
the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

5-970

intef 387™ SX MATH COPROCESSOR

Table 2-3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 co
Incomplete Reduction:

1 x x x further interation required
for complete reduction

01 00 02 OMOD8

0 0 0 0
0 1 0 1

Complete Reduction:
1 0 0 2

0
1 1 0 3

CO, C3, C1 contain three least

0 0 1 4
significant bits of quotient

0 1 1 5
1 0 1 6
1 1 1 7

Table 2-4. Condition Code Resulting from Comparison

Order C3 C2 co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class I C3 C2 C1 co Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 +NaN
0 0 1 0 - Unsupported
0 0 1 1 - NaN
0 1 0 0 +Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +o
1 0 0 1 +Empty
1 0 1 0 -0
1 0 1 1 - Empty
1 1 0 0 + Denormal
1 1 1 0 - Denormal

5-971

intef 387™ SX MATH COPROCESSOR

rl-.l _,1--------------- RESERVED
,--------------- RESERVED•

. ROUNDING CONTROL

r---r---------- PRECISION CONTROL

7

RC x x

RESERVED ------L_J

EXCEPTION MASKS:
PRECISION _______ __1

UNDERFLOW _________ _J

0

• "0" AFTER RESET OR FINIT·
CHANGEABLE UPON LOADING THE
CONTROL WORD(CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW ----------.J
ZERO DIVIDE ___________ _J

DENORMALIZED OPERAND ------------....J
INVALID OPERATION--------------

Precision Control
OD-24 bits (single precision)
01-(reserved)
10-53 bits (double precision)
11-64 bits (extended precision)

Rounding Control
00-Round to nearest or even
01-Round down (toward - oo)
10-Round up (toward + oo)
11-Chop (truncate toward zero)

240225-4

Figure 2-3. Control Word
2.3.4 CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2-3 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
exception masking. Bits 5-0 of the control word
contain individual masks for each of the six excep­
tions that the NPX recognizes.

The high-order byte of the control word configures
the NPX operating mode, including precision, round­
ing, and infinity control.

• The "infinity control bit" (bit 12) is not meaningful
to the 387 SX NPX, and programs must ignore its
value. To maintain compatibility with the 8087
and 80287, this bit can be programmed; however,
regardless of its value, the 387 SX NPX always
treats infinity in the affine sense (- oo < + oo).
This bit is initialized to zero both after a hardware
reset and after the FINIT instruction. ·

5-972

• The rounding control (RC) bits (bits 11 -1 O) pro­
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT, FASS, and
FCHS), and all transcendental instructions.

• The precision control (PC) bits (bits 9-8) can be
used to set the NPX internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci­
sion is determined by the opcode or extended
precision is used.

intef 387™ SX MATH COPROCESSOR

2.3.5 INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any exceptions detected by the NPX may be report·
ed after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the 386 SX Microprocessor and
387 SX Math Coprocessor contains registers that
aid in diagnosis. These registers supply the address
of the failing instruction and the address of its nu­
meric memory operand (if appropriate).

The instruction and data pointers are provided for
user-written exception handlers. These registers are
actually located in the CPU, but appear to be located
in the NPX because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and

FRSTOR. Whenever the CPU executes a new ESC
instruction, it saves the address of the instruction
(including any prefixes that may be present), the ad­
dress of the operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the CPU (protected mode or real-address mode)
and depending on the operand-size attribute in ef­
fect (32-bit operand or 16-bit operand). (See Figures
2-4, 2-5, 2-6, and 2-7.) The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used
to transfer these values between the registers and
memory. Note that the value of the data pointer is
undefined if the prior ESC instruction did not have a
memory operand.

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0
...L .l.

RESERVED CONTROL WORD 0
.l.

RESERVED STATUS WORD 4

RESERVED TAG WORD 8
...L .l.

IP OFFSET c

00000 I .l.

OPCODE 10 .. 0 CS SELECTOR
.l.

10

DATA OPERAND OFFSET 14
...L .l.

RESERVED OPERAND SELECTOR 18
.l.

Figure 2-4.lnstruction and Data Pointer Image in Memory, 32-bit Protected-Mode Format

5-973

I

intef 387™ SX MATH COPROCESSOR

31

15
16-BIT PROTECTED MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

IP OFFSET

CS SELECTOR

OPERAND OFFSET

OPERAND SELECTOR

0

0

2

4

6

8

A

c

Figure 2-5. Instruction and Data Pointer Image in Memory, 16-bit Protected-Mode Format

0000 l
0000 l

23

RESERVED

RESERVED

RESERVED

32-BIT REAL-ADDRESS MODE FORMAT
15 7

CONTROL WORD

STATUS WORD

TAG WORD

RESERVED INSTRUCTION POINTER 15 .. 0

INSTRUCTION POINTER 31..16 l 0 l OPCODE 10 .. 0

RESERVED OPERAND POINTER 15 .. 0

OPERAND POINTER 31 .. 16 l 0000 00000000

Figure 2-6 . . Instruction and Data Pointer Image in Memory, 32-bit Real~Mode Format

16-BIT REAL-ADDRESS MODE AND VIRTUAL 8086 MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

INSTRUCTION POINTER 15 .. 0 6

1P1s.16 J o1 OPCODE10 .. 0 8

OPERAND POINTER 15 .. 0 A

DP 19.16 l ol 0 0 0 0 0 0 0 0 0 0 0 c

Figure 2-7. Instruction and Data Pointer Image in Memory, 16-bit Real-Mode Format

5-974

0

0

4

8

c
10

14

18

intef 387™ SX MATH COPROCESSOR

Table 2-6. CPU Interrupt Vectors Reserved for NPX

Interrupt
Cause of Interrupt

Number

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CAO) was
set. EM = 1 indicates that software emulation of the instruction is required. When TS is set,
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current NPX
context may not belong to the current task.

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an
addressing limit (OFFFFH for expand-up segments, zero for expand-down segments) and
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does not
return reliable addresses. The segment overrun exception should be handled by executing an
FNINIT instruction (i.e. an FINIT without a preceding WAIT). The exception can be avoided by
never allowing numerics operands to cross the end of a segment.

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit
of its segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The NPX has not executed
this instruction; the instruction pointer and data pointer register refer to a previous, correctly
executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data pointer
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including
prefixes). This instruction can be restarted after clearing the exception condition in the NPX.
FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt.

a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible I
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is
FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte operand that starts at valid offset
FFFCH will span addresses FFFC-FFFFH and 0000-0003H; however addresses FFFEH and FFFFH are not valid, because
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights.

2.4 Interrupt Description

CPU interrupts are used to report exceptional condi­
tions while executing numeric programs in either real
or protected mode. Table 2-6 shows these interrupts
and their functions.

2.5 Exception Handling

The NPX detects six different exception conditions
that can occur during instruction execution. Table 2-
7 lists the exception conditions in order of prece­
dence, showing for each the cause and the default
action taken by the NPX if the exception is masked
by its corresponding mask bit in the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU at­
tempts to execute another ESC instruction or WAIT,
exception 16 occurs. The exception condition must
be resolved via an interrupt service routine. The re-
turn address pushed onto the CPU stack upon entry

to the service routine does not necessarily point to
the failing instruction nor to the following instruction.
The CPU saves the address of the floating-point in­
struction that caused the exception and the address
of any memory operand required by that instruction.

2.6 Initialization

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an 80287 after RESET. For compatibility with
the 8087 and 80287, the bit that used to indicate
infinity control (bit 12) is set to zero; however, re­
gardless of its setting, infinity is treated in the affine
sense. After FNINIT or RESET, the status word is
initialized as follows:

• All exceptions are set to zero.

• Stack TOP is zero, so that after the first push the
stack top will be register seven (111 B).

• The condition code C3-C0 is undefined.

• The B-bit is zero.

5-975

intef 387™ SX MATH COPROCESSOR

Table 2-7. Exceptions

Exception Cause
Default Action

(if oxcoption is masked\ - - I

Invalid Operation on a signalling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate for (0- oo, 010, (+ oo) + (- oo), etc.), or indefinite, or BCD indefinte

stack overflow/underflow (SF is also set)

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing
Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is oo
nonzero. number

Overflow The result is too large in magnitude to fit in the specified Result is largest finite
format value or oo

Underflow The true result is nonzero but too small to be Result is denormalized
represented in the specified format, and, if underflow or zero
exception is masked, denormalization causes the loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing
Result specified format (e.g. 1 /3); the result is rounded continues
(Precision according to the rounding mode.

The tag word contains FFFFH (all stack locations
are empty).

The 386 SX Microprocessor and 387 SX Math Co­
processor initialization software must execute an
FNINIT instruction (i.e an FINIT without a preceding
WAIT) after RESET. The FNINIT is not strictly re­
quired for the 80287 software, but Intel recommends
its use to help ensure upward compatibility with oth­
er processors. After a hardware RESET, the ER­
ROR# output is asserted to indicate that a 387 SX
NPX is present. To accomplish this, the IE and ES
bits of the status word are set, and the IM bit in the
control word· is cleared. After FNINIT, the status
word andthe control word have the same values as
in an 80287 after RESET.

2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the 387 SX NPX and the 80287. Any migration from
the 8087 directly to the 387 SX NPX must also take
into account the differences between the 8087 and
the 80287 as listed in Appendix A.

Many changes have been designed into the 387 SX
NPX to directly support the IEEE standard in hard­
ware. These changes result in increased perform­
ance by eliminating the need for software that sup­
ports the standard.

2.7.1 GENERAL DIFFERENCES

The 387 SX NPX supports only affine closure for
infinity arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for ± oo); F2XM1 and
FPT AN accept a wider range of operands.

Rounding control is in effect for FLO constant.

Software cannot change entries of the tag word to
values (other than empty) that differ from actual reg­
ister contents.

After reset, FINIT, and incomplete FPREM, the 387
SX NPX resets to zero the condition code bits C3-
Co of the status word.

In conformance with the IEEE standard, the 387 SX
NPX does not support the special data formats
pseudozero, pseudo-NaN, pseudoinfinity, and un­
normal.

The denormal exception has a different purpose on
the 387 SX NPX. A system that.uses the denormal­
exception handler solely to normalize the denormal
operands, would better mask the denormal excep­
tion on the 387 SX NPX. The 387 SX NPX automati­
cally normalizes denormal operands when the de­
normal exception is masked.

5-976

intJ 387™ SX MATH COPROCESSOR

2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 387 SX NPX:

1. When the overflow or underflow exception is
masked, the 387 SX NPX differs from the 80287
in rounding when overflow or underflow occurs.
The 387 SX NPX produces results that are con­
sistent with the rounding mode.

2. When the underflow exception is masked, the
387 SX NPX sets its underflow flag only if there
is also a loss of accuracy during denormaliza­
tion.

3. Fewer invalid-operation exceptions due to de­
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be­
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de­
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece­
dence over all other exceptions.

7. When the denormal exception is masked, the
387 SX NPX automatically normalizes denormal
operands. The 8087 /80287 performs unnormal
arithmetic, which might produce an unnormal re­
sult.

8. When the operand is zero, the FXTRACT in­
struction reports a zero-divide exception and
leaves - oo in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

1 O. FLO extended precision no longer reports denor­
mal exceptions, because the instruction is not
numeric.

11. FLO single/double precision when the operand
is denormal converts the .number to extended
precision and signals the denormalized operand
exception. When loading a signalling NaN, FLO
single/double precision signals an invalid-oper­
and exception.

12. The 387 SX NPX only generates quiet NaNs (as
on the 80287); however, the 387 SX NPX distin­
guishes between quiet NaNs and signaling
NaNs. Signaling NaNs trigger exceptions when
they are used as operands; quiet NaNs do not
(except for FCOM, FIST, and FBSTP which also
raise IE for quiet NaNs).

13. When stack overflow occurs during FPT AN and
overflow is masked, both ST(O) and ST(1) con-

tain quiet NaNs. The 80287 /8087 leaves the
original operand in ST(1) intact.

14. When the scaling factor is ± oo, the FSCALE
(ST(O), ST(1)) instruction behaves as follows
(ST(O) and ST(1) contain the scaled and scaling
operands respectively):

• FSCALE(O, oo) generates the invalid operation
exception.

• FSCALE(finite, - oo) generates zero with the
same sign as the scaled operand.

• FSCALE(finite, + oo) generates oo with the
same sign as the scaled operand.

The 8087 /80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The 387 SX NPX returns signed infinity/zero as
the unmasked response to massive overflow/
underflow. The 8087 and 80287 support a limit­
ed range for the scaling factor; within this range
either massive overflow/underflow do not occur
or undefined results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after I
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the 387 SX NPX
pins are grouped by function as shown by Table 3-1.
Table 3-1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char­
acteristics (Refer to Figure 5-1 and Table 5-1 for pin
configuration).

CPUCLK2

386™sx CPU
NUMCLK2

---CKM=B

JNTERrACE

NUMERIC
CORE

3a7Tt.l5x NPX

SYNCHRONOUS

ASYNCHRONOUS

240225-21

Figure 3.1. Asynchronous Operation

5-977

intJ 387™ SX MATH COPROCESSOR

Table 3-1. Pin Summary

Pin I Function Active Input/ Referenced
Name State Output To ...

~~ ~

Execution Control

CPUCLK2 386™ SX Microprocessor CLocK 2 I
NUMCLK2 NPXCLocK2 I
CKM NPX ClocKing Mode I
RESETIN System reset High I CPUCLK2

NPX Handshake

PEREQ Processor Extension REQuest High 0 STEN/CPUCLK2
BUSY# Busy status Low 0 STEN/CPUCLK2
ERROR# Error status Low 0 STEN/NUMCLK2

Bus Interface

D15-DO Data pins High 1/0 CPUCLK2
W/R# Write/Read bus cycle Hi/Lo I CPUCLK2
ADS# ADdress Strobe Low I CPUCLK2
READY# Bus ready input Low I CPUCLK2
REAOYO# Ready output Low 0 STEN/CPUCLK2

Chip/Port Select
STEN STatus ENable High I CPUCLK2
NPS1# NPX select # 1 Low I CPUCLK2
NPS2 NPX select #2 High I CPUCLK2
CMOO# CoMmanO Low I CPUCLK2

Power and Ground

Vee System power
Vss System ground

All output signals are tristate; they leave floating
state only when STEN is active. The output buffers
of the bidirectional data pins 015-00 are also tri­
state; they leave floating state only during cycles
when the NPX is selected (i.e. when STEN, NPS1 #,
and NPS2 are all active).

3.1.1 386™ SX CPU CLOCK 2 (CPUCLK2)

This input uses the CLK2 signal of the CPU to time
the bus control logic. Several other NPX signals are
referenced to the rising edge of this signal. When
CKM = 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating­
point unit of the NPX. This pin requires MOS-level
input. The signal on this pin is divided by two to pro­
duce the internal clock signal CLK.

3.1.2 387™ SX NPX CLOCK 2 (NUMCLK2)

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit
and the floating-point unit of the NPX. In this case,
the ratio of the frequency of NUMCLK2 to the fre­
quency of CPUCLK2 must lie within the range 10:16
to 14:10. When CKM = 1 (synchronous mode) sig­
nals on this pin are ignored; CPUCLK2 is used in­
stead for the data interface and control unit and the
floating-point unit. This pin requires MOS-level input.

3.1.3 CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
Vee (HIGH), the NPX operates in synchronous
mode; when strapped to Vss (LOW), the NPX oper­
ates in asynchronous mode. These modes relate to
clocking of the data interface and control unit and
the floating-point unit only; the bus control logic al­
ways operates synchronously with respect to the
CPU.

3.1.4 SYSTEM RESET {RESETIN)

A LOW to HIGH transition on this pin causes the
NPX to terminate its present activity and to enter a
dormant state. RESETIN must remain active (HIGH)
for at least 40 NUMCLK2 periods.

The HIGH to LOW transitions of RESETIN must be
synchronous with CPUCLK2, so that the phase of
the internal clock of the bus control logic (which is
the CPUCLK2 divided by two) is the same as the
phase of the internal clock of the CPU. After RESE­
TIN goes LOW, at least 50 NUMCLK2 periods must
pass before the first NPX instruction is written into
the NPX. This pin should be connected to the CPU
RESET pin. Table 3-1 shows the status of the output
pins during the reset sequence. After a reset, all out­
put pins return to their inactive states.

5-978

intef 387™ SX MATH COPROCESSOR

Table 3-2. Output Pin Status during Reset

Pin Value Pin Name

HIGH READYO#, BUSY#
LOW PEREQ, ERROR#
Tri-State OFF D15-DO

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the CPU that the
NPX is ready for data transfer to/from its data FIFO.
When all data is written to or read from the data
FIFO, PEREQ is deactivated. This signal always
goes inactive before BUSY# goes inactive. This sig·
nal is referenced to CPUCLK2. It should be connect·
ed to the CPU PEREQ input.

3.1.6 BUSY STATUS (BUSY#)

When active, this pin signals to the CPU that the
NPX is currently executing an instruction. This signal
is referenced to CPUCLK2. It should be connected
to the CPU BUSY# pin.

3.1.7 ERROR STATUS (ERROR#)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep·
tion has occurred. This signal can be changed to
inactive state only by the following instructions (with­
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. This pin is referenced to CPUCLK2. It
should be connected to the ERROR# pin of the
CPU.

3.1.8 DATA PINS (D15-DO)

These bidirectional pins are used to transfer data
and opcodes between the CPU and NPX. They are
normally connected directly to the corresponding
CPU data pins. HIGH state indicates a value of one.
DO is the least significant data bit. Timings are refer·
enced to CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the NPX whether the CPU
bus cycle in progress is a read or a write cycle. This
pin should be connected directly to the CPU's
W/R# pin. HIGH indicates a write cycle; LOW a
read cycle. This input is ignored if any of the signals
STEN, NPS1 #, or NPS2 is inactive. Setup and hold
times are referenced to CPUCLK2.

3.1.10 ADDRESS STROBE (ADS#)

This input, in conjunction with the READY# input,
indicates when the NPX bus-control logic may sam­
ple W/R# and the chip-select signals. Setup and
hold times are referenced to CPUCLK2. This pin
should be connected to the ADS# pin of the CPU.

3.1.11 BUS READY INPUT (READY#)

This input indicates to the NPX when a CPU bus
cycle is to be terminated. It is used by the bus-con­
trol logic to trace bus activities. Bus cycles can be
extended indefinitely until terminated by READY#.
This input should be connected to the same signal
that drives the CPU's READY# input. Setup and
hold times are referenced to CPUCLK2.

3.1.12 READY OUTPUT (READYO#)

This pin is activated .at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re­
quired, this pin must directly or indirectly drive the
READY# input of the CPU. Refer to the section enti·
tied "Bus Operation" for details. This pin is activated
only during bus cycles that select the NPX. This sig·
nal is referenced to CPUCLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the NPX. When
inactive, this pin forces, BUSY#, PEREQ#, ER­
ROR#, and READYO# outputs into floating state.
D15-DO are normally floating; they leave floating
state only if STEN is active and additional conditions
are met. STEN also causes the chip to recognize its
other chip-select inputs. STEN makes it easier to do
on-board testing (using the overdrive method) of
other chips in systems containing the NPX. STEN
should be pulled up with a resistor so that it can be
pulled down when testing. In boards that do not use
on-board testing. STEN should be connected to
Vee- Setup and hold times are relative to CPUCLK2. ·
Note that STEN must maintain the same setup and
hold times as NPS1 #, NPS2, and CMDO# (i.e. if
STEN changes state during an NPX bus cycle, it
must change state during the same CLK period as
the NPS1#, NPS2, and CMDO# signals).

3.1.14 NPX SELECT 1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of a CPU bus cycle, this signal indicates that
the purpose of the bus cycle is to communicate with
the NPX. This pin should be connected directly to
the M/10# pin of the CPU, so that the NPX is select­
ed only when the CPU performs 110 cycles. Setup
and hold times are referenced to CPUCLK2.

5-979

II

inter 387™ SX MATH COPROCESSOR

3.1.15 NPX SELECT 2 (NPS2) 3.1.17 SYSTEM POWER (VcC)

When active (along with STEN and NPS1 #) in the
first period of a CPU bus cycle,· this signal indicates
tha:t the purpose of the bus cycle is to communicate
with the NPX. This pin should be connected directly
to the A23 pin of the CPU, so that the NPX is select­
ed only when the CPU issues one of the 1/0 ad­
dresses reserved for the NPX (8000F8H, 8000FCH
or 8000FEH which is treated as 8000FCH by the
NPX). Setup and hold times are referenced to
CPUCLK2.

3.1.16 COMMAND (CMDO#)

During a write-cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the NPX. During a read cycle, it indi­
cates whether the control or status register (CMDO#
active) or a data register (CMDO# inactive) is being
read. CMDO# should be connected directly to the
A2 output of the CPU. Setup and hold times are ref­
erenced to CPUCLK2.

System power provides the + 5V DC supply input.
All Vee pins should be tied together on the circuit
board and local decoupling capacitors should be
used between V cc and. V SS·

3.1.18 SYSTEM GROUND (Vss)

All Vss pins should be tied together on the circuit
board and local decoupling capacitors should be
used between V cc and V SS·

3.2 System Configuration

The 387 SX Math Coprocessor is designed to inter­
face with the 386 SX Microprocessor as shown by
Figure 3-1. A dedicated communication protocol
makes possible high-speed transfer of opcodes and
operands between the CPU and NPX. The 387 SX
NPX is designed so that no additional components
are required for interface with the CPU; Most control
pins of the NPX are connected directly to pins of the
CPU.

FROM OTHER PERIPHERALS

""':
' CKt.l .

CLOCK 387™sx NPX CLOCK ~
GENERATOR GENERATOR NUt.lCLK2

CLK2 (OPTIONAL)

CLK CPUCLK2

RESET RESETIN

READY#

WAIT STATE
GENERATOR

READYO# (OPTIONAL)

HLDA
387™sx NPX

386™sx CPU
RESET D/C#

READY# LOCK#

CLK2 BHE#, BLE#

t.l/10#

NA# NPS2

HOLD

INT# A2 Ct.100#

Nt.11 W/R# W/R#

ADS# ADS#

D15-DO 16
D15-DO

BUSY# BUSY#

ERROR# ERROR#

PEREQ PEREQ

Figure 3·2. 386™ SX CPU and 387™ SX NPX System Configuration
5-980

240225-5

intef 387™ SX MATH COPROCESSOR

The interface between the NPX and the CPU has
these characteristics:

• The NPX shares the local bus of the 386 SX Mi­
croprocessor.

• The CPU and NPX share the same reset signals.
They may also share the same clock input; how­
ever, for greatest performance, an external oscil­
lator may be needed.

• The corresponding BUSY#, ERROR#, and PER­
EQ pins are connected together.

• The NPX NPS1 # and NPS2 inputs are connect­
ed to the latched CPU M/10# and A23 outputs
respectively. For coprocessor cycles, M/10# is
always LOW and A23 always HIGH.

• The NPX input CMDO is connected to the latched
A2 output. The 386 SX Microprocessor generates
address 8000F8H when writing a command and
address 8000FCH or 8000FEH (treated as
8000FCH by. the 387 SX NPX) when writing or
reading data. It does not generate any other ad­
dresses during NPX bus cycles.

3.3 Processor Architecture

As shown by the block diagram on the front page,
the 387 SX NPX is internally divided into three sec­
tions: the bus control logic (BCL), the data interface
and control unit, and the floating point unit (FPU).
The FPU (with the support of the control unit which
contains the sequencer and other support units) ex­
ecutes all numerics instructions. The data interface
and control unit is responsible for the data flow to
and from the FPU and the control registers, for re­
ceiving the instructions, decoding them, and se­
quencing the microinstructions, and for handling
some of the administrative instructions. The BCL is
responsible for CPU bus tracking and interface. The
BCL is the only unit in the NPX that must run syn­
chronously with the CPU; the rest of the NPX can
run asynchronously with respect to the CPU.

3.3.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
1/0 bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-

spects: the CPU initiates 1/0 automatically when it
encounters ESC instructions, and the CPU uses re­
served 1/0 addresses to communicate with the BCL.
The BCL does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the NPX and
transferring outputs from the NPX to memory.

3.3.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control executes it independently of the FPU and the
sequencer. The data interface and control unit is the
one that generates the BUSY#, PEREQ, and ER­
ROR# signals that synchronize NPX activities with
the CPU.

3.3.3 FLOATING·POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The I
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.4 Bus Cycles

The pins STEN, NPS1#, NPS2, CMDO, and W/R#
identify bus cycles for the NPX. Table 3-3 defines
the types of NPX bus cycles.

3.4.1 387™ SX NPX ADDRESSING

The NP51 #, NP52, and CMDO signals allow the
NPX to identify which bus cycles are intended for the
NPX. The NPX responds to 1/0 cycles when the 110
address is 8000F8H, 8000FCH or 8000FEH (treated

Table 3-3. Bus Cycle Definition

STEN NPS1# NPS2 CMDO# W/R# Bus Cycle Type

0 x x x x NPX not selected and all outputs in floating state
1 1 x x x NPX not selected
1 x 0 x x NPX not selected
1 0 1 0 0 CW or SW read from NPX
1 0 1 0 1 Opcode write to NPX
1 0 1 1 0 Data read from NPX
1 0 1 1 1 Data write to NPX

5-981

intJ 387™ SX MATH COPROCESSOR

as 8000FCH by the 387 SX NPX). The NPX re­
sponds to 1/0 cycles when bit 23 of the 1/0 address
is set. In other words, the NPX acts as an 1/0 device
in a reserved 1/0 address space.

Because A23 is used to select the 387 SX Numerics
Coprocessor Extension for data transfers, it is not
possible for a program running on the CPU to ad­
dress the NPX with an 1/0 instruction. Only ESC in­
structions cause the CPU to communicate with the
NPX.

3.4.2 CPU/NPX SYNCHRONIZATION

The pins BUSY#, PEREQ, and ERROR# are used
for various aspects of synchronization between the
CPU and the NPX.

BUSY# is used to synchronize instruction transfer
from the CPU to the NPX. When the NPX recognize~
an ESC instruction, it asserts BUSY#. For most ESC
instructions, the CPU waits for the NPX to deassert
BUSY# before sending the' new opcode.

The NPX uses the PEREQ pin of the CPU to signal
that the NPX is ready for data transfer to or from its
data FIFO. The NPX does not directly access mem­
ory; rather, the CPU provides memory access serv­
ices for the NPX. (For this reason, memory access
on behalf of the NPX always obeys the protection
rules applicable to the current CPU mode.) Once the
PPU initiates an NPX instruction that has operands,
the CPU waits for PEREQ.signals that indicate when
the NPX is ready for operand transfer. Once all oper­
ands have been transferred (or if the instruction has
no operands) the CPU continues program execution
while the NPX executes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com­
mands and operands. In the 386 SX Microprocessor
and 387 SX Math Coprocessor systems, however,
WAIT instructions are required only for operand syn­
chronization; namely, after NPX stores to memory
(except FSTSW and FSTCW) or load from memory.
(In 80286/80287 systems, WAIT is required before
FLDENV and FRSTOR; with the 386 SX Microproc­
essor and 387 SX Math Coprocessor, WAIT is not
required in these cases.) Used this way, WAIT en­
sures that the value has already been written or read
by the NPX before the CPU reads or changes the
value.

Once it has started to execute a numerics instruction
and has transferred the operands from the CPU, the
NPX can process the instruction in parallel with and
independent of the host CPU. When the NPX de­
tects an exception, it asserts the ERROR# signal,
which causes a CPU interrupt.

3.4.3 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the NPX (the FPU) can operate
either directly from the CPU clock (synchronous
mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the NPX is synchronized with the CPU
clock. Use of asynchronous mode allows the CPU
and the FPU section of the NPX to run at different
speeds. In this case, the ratio of the frequency of
NUMCLK2 to the frequency of CPUCLK2 must lie
within the range 10:16 to 14:10. Use of synchronous
mode eliminates one clock generator from the board ·
design. ·

3.4.4 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re­
quired, READYO# can drive the CPU's READY#
input. If this pin is used, it should be connected to
the logic that ORs all READY outputs from peripher­
als on the CPU bus. READYO# is asserted by the
NPX only during 1/0 cycles that select the NPX. Re­
fer to Section 4.0 "Bus Operation" for details.

4.0 BUS OPERATION

With respect to bus interface, the 387 SX NPX is
fully synchronous with the CPU. Both operate at the
same rate, because each generates its internal CLK
signal by dividing CPUCLK2 by two. Furthermore,
both internal CLK signals are in phase, because they
are synchronized by the same RESETIN signal.

A bus cycle for the NPX starts when the CPU acti­
vates ADS# and drives .new values on the address
and cycle-definition lines. The NPX examines the ad­
dress and cycle-definition lines in the same CLK pe­
riod during which ADS# is activated. This CLK peri­
od is considered the first CLK of the bus cycle.
During this first CLK period, the NPX also examines
the R/W # input signal to determine whether the cy­
cle is a read or a write cycle and examines the
CMDO input to determine whether an opcode, oper­
and, or control/status register transfer is to occur.

The 387 SX NPX supports both pipelined (i.e. over­
lapped) and nonpipelined bus cycles. A nonpipelined
cycle is one for which the CPU asserts ADS# when
no other NPX bus cycle is in progress. A pipelined
bus cycle is one for which the CPU asserts ADS#
and provides valid next-address and control signals
before the prior NPX cycle terminates. The CPU may
do this as early as the second CLK period after as­
serting ADS# for the prior cycle. Pipelining increas,

5-982

intef 387™ SX MATH COPROCESSOR

es the availability of the bus by at least one CLK
period. The 387 SX NPX supports pipelined bus cy­
cles in order to optimize address pipelining by the
CPU for memory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 4-1 illustrates the states and
state transitions for NPX bus cycles:

• T1 is the idle state. This is the state of ·the bus
logic after RESET, the state to which bus logic
returns after every nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

• TRs is the READY#-sensitive state. Different
types of bus cycles may require a minimum of
one or two successive T RS states. The bus logic
remains in TRs state until READY#is sensed, at
which point tt:ie bus cycle terminates. Any number
of wait states may be implemented by delaying
READY#, thereby causing additional successive
TRs states.

• T p is the first state for every pipelined bus cycle.
This state is not used by nonpipelined cycles.

Note that the bus logic tracks bus state regardless
of the values on the chip/port select pins.

The READYO# output of the NPX indicates when
an NPX bus cycle may be terminated if no extra wait
states are required. For all write cycles (except
those for the instructions FLDENV and FRSTOR),
READYO# is always asserted during the first T RS
state, regardless of the number of wait states. For all
read cycles and write cycles for FLDENV and

ADS#

. READY#
240225-6

Figure 4-1. Bus State Diagram

FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait
states. These rules apply to both pipelined and non­
pipelined cycles. Systems designers may use
READYO# in one of the following ways:

1. Connect it (directly or through logic that ORs
READY# signals from other devices) to the
READY# inputs of the CPU and NPX.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
387 SX NPX bus cycles. Because different instruc­
tions have different amounts of overhead before, be­
tween, and after operand transfer cycles, it is not
possible to represent in a few diagrams all of the
combinations of successive operand transfer cycles.
The following bus-cycle diagrams show memory cy­
cles between NPX operand-transfer cycles. Note
however that, during FRSTOR, some consecutive
accesses to the NPX do not have intervening memo­
ry accesses. For the timing relationship between op­
erand transfer cycles and opcode write or other
overhead activities, see the figure "Other Parame­
ters" in section 6.

4.1 Nonpipelined Bus Cycles

Figure 4-2 illustrates bus activity for consecutive
nonpipelined bus cycles.

At the second clock of the bus cycle, the NPX enters
the T RS state. During this state, it samples the
READY# input and stays in this state as long as
READY# is inactive.

4.1.1 WRITE CYCLE

In write cycles, the NPX drives the READYO# signal
for one CLK period during the second CLK period of
the cycle (i.e. the first T RS state); therefore, the fast­
est write cycle takes two CLK periods (see cycle 2 of
Figure 4-2). For the instructions FLDENV and
FRSTOR, however, the NPX forces a wait state by
delaying the activation of READYO# to the second
T RS state (not shown in Figure 4-2).

The NPX samples the D15-DO inputs into data
latches at the falling edge of CLK as long as it stays
in T RS state.

When READY# is asserted, the NPX returns to the
idle state. Simultaneously with the NPX's entering
the idle state, the CPU may assert ADS# again, sig­
naling the beginning of yet another cycle.

5-983

I

inter 387™ SX MATH COPROCESSOR

CYCLE 1 CYCLE2

I I

CYCLE3 CYCLE4 I
NON-PIPELINED NON-PIPELINED NON-PIPELINED NON-PIPELINED
MEMORY READ NPX WRITE NPX READ MEMORY WRITE

i1 TRS i1 TRs r,e i1 TRs TRs 'I 'RS T1

CPUCLK2

(CLK)

NPS2, i....----1~~--11..----+-~~-•~....,,_.._,._~~+-----.._~--+----...;.~~-1
NPS1#,
CMD0#

W/R#

ADS#

READYO#

D15-DO ---- -- CPU CPU

240225-7
Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or T1 states for various non-operand transfer cycles and overhead.

Figure 4-2. Nonpipelined Read and Write Cycles

4.1.2 READ CYCLE

At the risi11g edge of CLK in the second CLK period
of the cycle (i.e. the first T RS state), the NPX starts
to drive the D15-DO outputs and continues to drive
them as long as it stays in T RS state.

At least one wait state must be inserted to ensure
that the CPU latches the correct data. Because the
NPX starts driving the data bus only at the rising
edge of CLK in the second clock period of the bus
cycle, not enough time is left for the data signals to
propagate and be latched by the CPU before the
next falling edge of CLK. Therefore, the NPX does
not drive the READYO# signal until the third CLK
period of the cycle. Thus, if the READYO# output
drives the CPU's READY# input, one wait state is
automatically inserted.

Because one wait state is required for NPX reads,
the minimum length of an NPX read cycle is three
CLK periods, as cycle 3 of Figure 4-2 shows.

When READY# is asserted, the NPX returns to the
idle state. Simultaneously with the NPX's entering
the idle state, the CPU may assert ADS# again, sig­
naling the beginning of yet another cycle. The tran­
sition from T RS state to idle state causes the NPX to
put the tristate D15-DO outputs into the floating
state, allowing another device to drive the data bus.

4.2 Pipelined Bus Cycles

Because all the activities of the NPX bus interface
occur either during the T RS state or during the tran­
sitions to or from that state, the only difference be­
tween a pipelined and a nonpipelined cycle is the
manner of changing from one state to another- The
exact activities during each state are detailed in the
previous section "Nonpipelined Bus Cycles".

When the CPU asserts ADS# before the end of a
bus cycle, both ADS# and READY# are active dur-

5-984

387™ SX MATH COPROCESSOR

CPUCLK2

(CLK)

CYCLE 1
NON-PIPELINED
MEMORY READ

CYCLE 2
PIPELINED

NPX WRITE

CYCLE3
PIPELINED

MEMORY READ

CYCLE4
NON-PIPELINED

NPX WRITE

NPS2, ~~i--~~-i.-~~i--~~-i.-~~..,_~~i--~~ ~~._~~..,_~_....

NPS1#,
CMD0# 11-o1-~~+--~~~~~+--~~~~~ ~~+--~~~~~ ~~ ~--1

W/R#

ADS#

READYO#

D15-DO

240225-8 I
Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY# and ADS# are sampled active at the end of a TRs
state of the current cycle.

Figure 4-3. Fastest Transitions to and from Pipelined Cycles

ing a T RS state. This condition causes the NPX to
change to a different state named T p. One clock
period after a T p state, the NPX always returns to
T RS state. In consecutive pipelined cycles, the NPX
bus logic uses only the T RS and T p states.

Figure 4-3 shows the fastest transitions into and out
of the pipelined bus cycles. Cycle 1 in the figure rep­
resents a nonpipelined cycle. (Nonpipelined write
cycles with only one T RS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY# is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 4-4 shows pipelined write and read cycles
with one additional T RS state beyond the minimum
required. To delay the assertion of READY# re­
quires external logic.

4.3 Bus Cycles of Mixed Type

When the NPX bus logic is in the T RS state, it distin­
guishes between nonpipelined and pipelined cycles
according to the behavior of ADS# and READY#.
In a nonpipelined cycle, only REAOY # is activated,
and the transition is from T RS state to idle state. In a

5-985

intef 387™ SX MATH COPROCESSOR

TRs

CPUCLK2

(CLK)

NPS2,
NPS1#,
CMDlil#

W/R#

ADS#

READYO#

READY#

NOTE:

CYCLE 1
PIPELINED WRITE

CPU

Tp

NOTE 1 CYCLE2
PIPELINED READ

·U· ---- ---- -- NPX

Tp

240225-9

1. Cycles between operand write to the NPX and storing result.

Figure 4-4. Pipelined Cycles with Wait States

pipelined cycle, both READY# and ADS# are ac­
tive, and the transition is first from T RS state to T p
state, then, after one clock period, back to T RS
state.

4.4 BUSY# and PEREQ Timing
Relationship

Figure 4-5 shows the activation of BUSY# at the
beginning of instruction execution and its deactiva-

tion upon completion of the instruction. PEREQ is
activated within this interval. If ERROR# (not shown
in the figure) is ever asserted, it would be asserted at
least six CPUCLK2 periods after the deactivation of
PEREQ and would be deasserted at least six
CPUCLK2 periods before the deactivation of
BUSY#. Figure 4-5 also shows that STEN is activat­
ed at the beginning of an NPX bus cycle.

5-986

intef 387™ SX MATH COPROCESSOR

NOTES:

OPCODE
WRITE NOTE 4

NOTE 1 NOTE 2

1ST OPERAND
WRITE

NOTE 3 NOTE 1

240225-10

1. Instruction dependent. . . .
2. PEREQ is an asynchronous input to the 386™ Microprocessor; it may not be asserted (instruction dependent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 4-5. STEN, BUSY#, and PEREQ Timing Relationships

5.0 PACKAGE THERMAL
SPECIFICATIONS

The 387 SX Math Coprocessor is specified for oper­
ation when case temperature is within the range of
0°c-100°c. The case temperature may be mea­
sured in any environment, to determine whether the
387 SX Math Coprocessor is within specified operat­
ing range. The case temperature should be mea­
sured at the center of the top surface opposite the
pins.

The ambient temperature is guaranteed as long as
Tc is not violated. The ambient temperature can be
calculated from the Ojc and Oja from the following
equations:

Tj = Tc + P * lljc

Ta = Tj - P * llja

Tc = Ta + P • [llja - llicl

Values for O·a and Ojc are given in Table 5-1 for the
68-pin PLC2. Oja is given at various airflows. Table
5-2 shows the maximum Ta allowable (without ex­
ceeding Tc) at various airflows. Note that Ta can be
improved further by attaching 'fins' or a 'heat sink' to
the package. P is calculated by using the maximum
hot Ice.

Table 5-1. Thermal Resistances (°C/Watt) Ojc and Oja

Oja versus Airflow - ft/min (m/sec)

Package Ojc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

68-Pin PLCC 8 30 25 20 15.5 13 12

5-987

387™ SX MATH COPROCESSOR

Table 5-2. Maximum TA at Various Airflows

T A(°C) versus Airflow - ft/min (m/sec)

Package 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

68-Pin PLCC 54.7 61.6 68.5 74.6 78.1 79.5

Max. TA calculated at Max Vee and Max Ice-

Figure 5-1 shows the locations of pins on the chip package. Table 5-3 helps to locate pin identifiers in
Figure 5-1.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

387 n.tsx Math Coprocessor

top view

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

The term "top view" means "as viewed when mounted in a printed-circuit board".

Figure 5-1. PLCC Pin Configuration

Table 5-3. Pin Cross-Reference

1-n.c. 18-n.c. 35-ERAOR#
2-007 19-000 36-BUSY#
3-006 20-001 37-Vcc
4-Vcc 21-Vss 38-Vss
5-Vss 22-Vcc 39-Vcc
6-005 23-002 40-STEN
7-004 24,-008 41-W/R#
8-003 25-Vss 42-Vss
9-Vcc 26-Vcc 43-Vcc

10-n.c. 27-Vss 44-NPS1#
11-015 28-009 45-NPS2
12-014 29-010 46-Vcc
13-Vcc 30-011 47-AOS#
14-Vss 31-Vcc 48-CMOO#
15-013 32-Vss 49-REAOY#
16-012 33-Vcc 50-Vcc
17-n.c. 34-Vss 51-RESETIN

n.c.-The corresponding pins of the 387TM SX NPX are left unconnected.

5-988

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

240225-11

52-n.c. '
53-NUMCLK2
54-CPUCLK2
55-Vss
56-PEREQ
57-REAOYO#
58-Vcc
59-CKM
60-Vss
61-Vss
62-Vcc
63-Vss
64-Vcc
65-n.c.
66-Vss
67-n.c.
68-n.c.

intef 387™ SX MATH COPROCESSOR

6.0 ELECTRICAL DAT A

6.1 Absolute Maximum Ratings

NOTE:
Stresses above those listed may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the

6.2 D.C. Characteristics

operational sections of this specification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device reliabili­
ty.

Case temperature Tc under bias 0°C to 100°C
Storage temperature - 65°C to + 150°C
Voltage on any pin with respect to ground-0.5 to
Vcc+0.5V
Power dissipation 1.5 Watt

Table 6-1. D.C. Specifications Tc= 0°to100°C, Vee= 5V ± 10%

Symbol Parameter Min

V1L Input LO Voltage -0.3
V1H Input HI Voltage 2.0
VcL CPUCLK2 and NUMCLK2 -0.3

Input LO Voltage
VcH CPUCLK2 and NUMCLK2 Vcc-0.8

Input HI Voltage
Vol Output LO Voltage

VoH Output HI Voltage 2.4
VoH Output HI Voltage Vcc-0.8
Ice Power Supply Current

NUMCLK2 = 40 MHz(5)
NUMCLK2 = 32 MHz(5)
NUMCLK2 = 2 MHz(5)

lu Input Leakage Current
ILO 1/0 Leakage Current
C1N Input Capacitance
Co 1/0 or Output Capacitance

CcLK Clock Capacitance

NOTES:
1. This parameter is for all inputs, excluding the clock inputs.
2. This parameter is measured at loL as follows:

data= 4.0mA
READYO#, ERROR#, BUSY#, PEREQ = 2.5mA

3. This parameter is measured at loH as follows:
data= 1.0mA
READYO#, ERROR#, BUSY#, PEREQ = 0.6mA

4. This parameter is measured at loH as follows:
data= 0.2mA
READYO#, ERROR#, BUSY#, PEREQ = 0.12mA

Max Units Test Conditions

+0.8 v See note 1
Vcc+0.3 v See note 1

+0.8 v

Vcc+0.3 v

0.45 v See note 2
v See note 3
v See note 4

300 mA Ice typ. = 200 mA
250 mA Ice typ. = 150 mA
100 mA
±15 µA ov :".'. V1N :".'.Vee
±15 µA 0.45V s Vos Vee
10 pF le= 1MHz
12 pF fc = 1MHz
20 pF fc = 1MHz

5. Ice is measured at steady state, maximum capacitive loading on the outputs, and worst-case D.C. level at the inputs;
CPUCLK2 at the same frequency as NUMCLK2.

6.3 A.C. Characteristics

Table 6-2a. Combinations of Bus Interface and Execution Speeds

Functional Block 80387SX-16 80387SX-20

Bus Interface Unit (MHz) 16 20
Execution Unit (MHz) 16 20

5-989

I

intef 387™ SX MATH COPROCESSOR

Table 6·2b. Timing Requirements of Execution Unit Tc = 0° to 100° C, Vee = 5V ± 10%

p· I ~ b 1 I 0 I 16 ~Hz I 20 ~Hz I Test I Refer to I m -Ym o . arame .. er Min Max Min Max Conditions Figure
(ns) (ns) (ns) (ns)

NUMCLK2 t1 Period 31.25 500 25 500 2.0V 6.2
NUMCLK2 t2a High Time 7 6 2.0V
NUMCLK2 t2b High Time 3 3 Vcc-0.SV
NUMCLK2 t3a Low Time 7 6 2.0V
NUMCLK2 t3b Low Time 5 4 o.sv
NUMCLK2 t4 Fall Time 8 8 From Vcc-0.8 to o.sv (Note 1)
NUMCLK2 t5 Rise Time 8 8 From 0.8 to Vcc-0.SV

NOTE:
1. If not used (CKM = 1), tie LOW.

Table 6·2c. Timing Requirements of Bus Interface Unit Tc = 0° to 100° C, Vee = 5V ± 10%

16 MHz (1.5V) 20 MHz (1.SV)
Test Refer to Pin Symbol Parameter Min Max Min Max Conditions Figure

(ns) (ns) (ns) (ns)

CPUCLK2 t1 Period 31.25 500 25 500 2.0V 6.2
CPUCLK2 t2a High Time 7 6 2.0V
CPUCLK2 t2b High Time 3 3 Vcc-0.SV
CPUCLK2 t3a Low Time 7 6 2.0V
CPUCLK2 t3b Low Time 5 4 o.sv
CPUCLK2 t4 Fall Time 8 8 From Vcc-0.8 to O.SV
CPUCLK2 t5 Rise Time 8 8 From 0.8 to Vcc-0.SV

CPUCLK2/ Ratio 10/16 14/10 10/16 14/10
NUMCLK2

READYO# t7 Out Delay 4 34 3 31 CL= 75pf 6.3
READYO# t7 Out Delay 4 31 3 27 CL= 25pf**
PEREQ t7 Out Delay 5 34 5 34 CL= 75pf
BUSY# t7 Out Delay 5 34 5 29 CL= 75pf
ERROR# t7 Out Delay 5 34 5 34 CL= 75pf

D15-DO ts Out Delay 1 54 1 54 CL= 120pf 6.4
D15-DO t10 Setup Time 11 11
D15-DO t11 Hold Time 11 11
D15-DO t12* Float Time 6 33 6 27 CL= 120pf

PEREQ t13* Float Time 1 60 1 50 CL= 75pf 6.6
BUSY# t13* Float Time 1 60 1 50 CL= 75pf
ERROR# t13* Float Time 1 60 1 50 CL= 75pf
READYO# t13* Float Time 1 60 1 50 CL= 75pf

ADS# t14 Setup Time 26 21 6.4
ADS# t15 Hold Time 4 4
W/R# t14 Setup Time 26 21
W/R# t15 Hold Time 4 4

READY# t16 Setup Time 19 12 6.4
READY# t17 Hold Time 4 4
CMDO# t16 Setup Time 21 19
CMDO# t17 Hold Time 2 2
NPS1#, t16 Setup Time 21 19
NPS2

NPS1 #, t17 Hold Time 2 2
NPS2

STEN t16 Setup Time 21 21
STEN t17 Hold Time 2 2

5-990

inter 387™ SX MATH COPROCESSOR

Table 6-2c. Timing Requirements of Bus Interface Unit Tc = 0° to 100° C, V cc = 5V ± 10% (Continued)

16 MHz (1.SV) 20 MHz (1.SV)
Test Refer to Pin Symbol Parameter Min Max Min Max Conditions Figure

(ns) (ns) (ns) (ns)

RESETIN t18 Setup Time 13 11 6.5
RESETIN t19 Hold Time 3 3

NOTES:
*Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested.

**Not tested at 25 pf.

nom+8

nom+6

nom+4

Typical• Output nom+2

Delay(ns) nom
@1.5V nom-2

nom-4

nom-6

nom-8

50 75 100 125 150

NOTES:
Load Capacitance, CL (pf)

240225-12
Graphs are not linear outside the CL range shown. I
nom = nominal value given in the AC timing table
*Typical part under worst-case conditions

~----~

Figure 6-1a. Typical Output Valld Delay vs. Load Capacitance at Max Operating Temperature

10

8

T yplcal • Output 6

Slew Time (ns)

(0.8<->2.0V) 4

2

0

50 75 100 125

Load Capacitance, CL (pf)

NOTES:
Graphs are not linear· outside the CL range shown.
•Typical part under worst-case conditions

150

Typical• Output 18 1---1-----+~------1

Slew Time {ns)

(0.4<->3.5V) 14 t---1-7oe-,......---+---1

50 75 100 125 150

Load Capacitance, CL (pf)

240225-13

Figure 6·1b. Typical Output Slew Time vs. Load Capacitance at Max Operating Temperature

5-991

intef 387™ SX MATH COPROCESSOR

50'---'---'---'----''----''----'---'---'---'-~
0 2 4 6 8 10 12 14 16 18 20

FREQUENCY (MHz)

NOTES:
Graphs are not linear outside the frequency range shown.

Figure 6-1c. Maximum Ice vs. Frequency

CffUCLK2/NUMCLK2

OUTPUTS

------t1------i

MIN DELAY TIME TIME rSETUP r HOLD

1.~3.0V

INPU~ov
I

240225-14

240225-15

Figure 6-2. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output

5-992

intef 387™ SX MATH COPROCESSOR

(CLK) (PH2) \,_ __ (P_H_1) __ / (e"'J

CPUCLK2

(OUTPUTS) 8888

(ERROR# REFERENCED TO NUMCLK2}
240225-16

W/R#

NPS 1 #. NPS2,
STEN,

CMDO#

READY#

D15-DO
(INPUT}

D15-DO
(OUTPUT}

Figure 6-3. Output Signals

(PH1} (PH2) (PH1) (PH2)

»--'*
~t16~ ~t11-1

t8 MAxL
t8 M1NH

I J-

Figure 6-4. Input and 1/0 Signals

5-993

I

240225-17

intef 387™ SX MATH COPROCESSOR

(CL<) I ("" ~ '"') \ ('HI~'"''

CPUCLK2

RESET

NOTE:
The second internal processor phase following RESET high to low transition is PH2.

Figure 6·5. RESET Signal

STEN

015-00, PEREQ
BUSY#,ERROR#,READYO#

Pin Symbol

RESETIN t30

RESETIN t31

BUSY# t32

BUSY#, ERROR# t33

PEREQ, ERROR# t34
-'--

READY#, BUSY# t35

READY# t36

READY# t37

Figure 6·6. Float from STEN

Table 6·3. Other Parameters

Parameter

Duration

RESETIN inactive to 1st opcode write

Duration

. ERROR# (in)active to BUSY# inactive

PEREQ inactive to ERROR# active

READY# active to BUSY# active

Minimum time from opcode write to
opcode/operand write

Minimum time from operand write to
operand write

5-994

240225-18

240225-19

Min Max Units

40 NUMCLK2

50 NUMCLK2

6 CPUCLK2

6 CPUCLK2

6 CPUCLK2

4 4 CPUCLK2

4 CPUCLK2

4 CPUCLK2

intJ 387™ SX MATH COPROCESSOR

ERROR#

1 ST OPCODE
WRITE NOTE 1

..
1 ST OPERAND zND OPERAND

WRITE WRITE (NOTE 1)

l35 --i.---+--+----i-l3z-;.-..--1----.1--_..J

I
240225-20

* In NUMCLK2's
* * or last operand

NOTE:
1. Memory read (operand) cycle is not shown.

Figure 6-7. Other Parameters

7 .0 387™ SX NPX EXTENSIONS TO
THE CPU'S INSTRUCTION SET

Instructions for the 387 SX NPX assume one of the
five forms shown in Table 7-1. In all cases, instruc­
tions are at least two bytes long and begin with the
bit pattern 11011 B, which identifies the ESCAPE
class of instruction. Instructions that refer to memory
operands specify addresses using the CPU's ad­
dressing modes.

MOD (Mode field) and R/M (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of CPU instructions (refer to Pro­
grammer's Reference Manual for the CPU). SIB

(Scale Index Base) byte and DISP (displacement)
are optionally present in instructions that have MOD
and R/M fields. Their presence depends on the val­
ues of MOD and R/M, as for instructions of the CPU.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re­
quests delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and RIM fields
that call for both base and index registers, add one
clock.

5-995

intJ

2

3

4

5

11011

11011

11011

11011

11011

First Byte

OPA

MF

d p

0 0

0 1

387™ SX MATH COPROCESSOR

Table 7-1. Instruction Formats

Instruction

Second Byte

1 MOD 1 I OPB R/M

OPA MOD OPB* R/M

OPA 1 1 OPB* ST(i)
1 1 1 1 I OP
1 1 1 1 l OP

15-11 10 9 8 7 6 5 4 3 2 1 0
OP = Instruction opcode, possibly split into two fields OPA and OPB
MF = Memory Format

00-32-bit real
01-32-bit integer
1 0-64-bit real
11-16-bit integer

d = Destination
0-Destination is ST(O)
1-Destination is ST(i)

R XOR d = 0-Destination (op) Source
R XOR d = 1-Source (op) Destination
*In FSUB and FDIV, the low-order bit of OPS is the R (reversed) bit
P =POP

0-Do not pop stack
1-Pop stack after operation

ESC = 11011
ST(i) = Register stack element i

000 = Stack top
001 = Second stack element

111 = Eighth stack element

5-99.6

Optional
Fields

SIB I DISP

SIB l DISP

intef 387™ SX MATH COPROCESSOR

387™ SX NPX Extension to the 386™ SX Microprocessor Instruction Set
Encoding

Instruction Byte Byte Optional
0 1 Bytes2-6

DATA TRANSFER

FLO= Load•
Integer/real memory to ST(O) ESCMF1 MODGOOR/M SIB/DISP

Long integer memory to ST(O) ESC111 MOD101 R/M SIB/DISP

Extended real memory to ST(O) ESC011 MOD101 RIM SIB/DI SP

BCD memory to ST(O) ESC111 MOD100R/M SIB/DISP

ST(i) to ST(O) ESC001 11000 ST(i)

FST =Store

ST(O) to integer/real memory ESCMF1 MOD010R/M SIB/DISP

ST(O) to ST(i) ESC101 11010ST(i)

FSTP = Store and Pop

ST(O) to integer/real memory ESCMF1 MOD011 R/M SIB/DISP

ST(O) to long integer memory ESC111 MOD111 RIM SIB/DISP

ST(O) to extended real ESC011 MOD111 R/M SIB/DISP

ST(O) to BCD memory ESC111 MOD110R/M SIB/DISP

ST(O) to ST(i) ESC 101 11011 ST(i)

FXCH = Exchange

ST(i) and ST(O) ESC001 11001 ST(i)

COMPARISON

FCOM = Compare

Integer/real memory to ST(O) ESCMFO MOD010R/M SIB/DISP

ST(i) to ST(O) ESCOOO 11010ST(0

FCOMP = Compare and pop

Integer /real memory to ST ESCMFO MOD011 R/M SIB/DISP

ST(i) to ST(O) ESCOOO 11011 ST(i)

FCOMPP = Compare and pop twice

ST(1) to ST(O) ESC110 11011001

FTST = Test ST(O) ESC001 11100100

FXAM = Examine ST(O) ESC001 11100101

CONSTANTS

FLDZ = Load + 0.0 into ST(O) ESC001 11101110

FLD1 =Load +1.0intoST(O) ESC001 11101000

FLDPI = Load pi into ST(O) ESC001 11101011

FLDL2T = Load log2(10) into ST(O) ESC001 11101001

Shaded areas indicate instructions not available in 8087 /80287.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.

5-997

32-Blt
Real

24

49

49

30

30

Clock Count Range
32-Blt 64·Bit

Integer Real

49-56 33

64-75

52

274-283

14

84-98 55

11

84-98 55

90-107

63

522-544

60-67

60-67

12

18

24

26

26

28

20

24

40

40

39

39

16·Bit
Integer

61-65

82-95

82-95

71-75

71-75 I

intJ 387™ SX MATH COPROCESSOR

387™ SX NPX Extension to the 386TM SX Mlcroprocesaor Instruction Set (Continued)
Encoding

lnetrucUon Byte Byte
0 1

CONSTANTS (Continued)

FLDL2E = Load log2(e) Into ST(O) ESC001 11101010

FLDLG2 = Load log1o(2) into ST(O) ESC001 11101100

FLDLN2 = Load log8(2) into ST(O) ESC001 11101101

ARITHMETIC

FADD =Add

lrrteger/real memory with ST(O) ESCMFO MODOOOR/M

STQ) and ST(O) ESCdPO 11000ST(i)

FSUB = Subtract

Integer/real memory with ST(O) ESCMFO MOD10RR/M

ST(i) and ST(O) ESCdPO 1110 R R/M

FMUL = Multiply

Integer/real memory' with ST(O) ESCMFO MOD001 RIM

ST(i) and ST(O) ESCdPO 11001 RIM

FDIV = Divide

Integer/real memory with ST(O) ESCMFO MOD11 RR/M

ST(Q and ST(O) ESCdPO 1111 R RIM

FSQR'f1 = Square root ESC001 11111010

FSCALE = Scale ST(O) by ST(i) ESC001 11111101

FRNDINT = Round ST(O) ESC001 11111100
to integer

FXTRACT = Extract components
of ST(O) ESC001 1111 0100

FABS = Absolute value of ST(O) ESC001 11100001

FCHS = Change sign of ST(O) ESC001 11100000

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d = 1.
c. Add 1 clock to each range when R = 1.
d. Add 3 clocks to the range when d = o.
e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.
g. 135-141 when R = 1.
h. Add 3 clocks to the range when d = 1.
i. -0 :s; ST(O) :s; + oo.

5-998

()ptlonal 32·Blt
Bytes2-6 Real

SIB/DISP 28-36

SIB/DISP 28-36

SIB/DISP 31-39

SIB/DISP 93

Clock Count Range

32-Blt 64-l'llt
Integer Real

40

41

41

61-76 37-45

23-31b

61-76 36-44

26-34d

65-86 40-65

29-578

124-1311 102

88h

122-129

67-86

70-76

22

24-25

16-B!t
Integer

71-85

71-83C

76-87

136-1409

intef 387™ SX MATH COPROCESSOR

387TM SX NPX Extension to the 386™ SX Microprocessor Instruction Set (Continued)

Instruction

TRANSCENDENTAL

FPT ANk = Partial tangent of ST(O)

F2XM11 = 2ST(O) - 1

FYL2Xm = ST(1)' log2(ST(O))

FYL2XP1• = ST(1)' IOQ2(ST(O) + 1.0)

PROCESSOR CONTROL

FINIT = Initialize NPX

FSTSW AX = Store status word

FLDCW = Load control word

FSTCW = Store control word

FSTSW = Store status word

FCLEX = Clear exceptions

FSTENV = Store environment

FLDENV = Load environment

FSA VE = Save state

FRSTOR = Restore state

FINCSTP = Increment stack pointer

FDECSTP = Decrement stack pointer

FFREE = Free ST(i)

FNOP = No operations

Byte
0

ESC001

ESC001

ESC001

ESC001

ESC011

ESC111

ESC001

ESC101

ESC101

ESC011

ESC001

ESC001

EsC101

ESC101

ESC001

ESC001

ESC101

ESC001

Encoding

Byte
1

1111 0010

1111 0000

11110001

11111001

11100011

11100000

MOD101 RIM

MOD111 RIM

MOD111 RIM

11100010

MOD110RIM

MOD100RIM

MOD110R/M

MOD100RIM

11110111

1111 0110

11000ST(i)

1101 0000

Shaded areas indicate instructions not available in 8087180287.

NOTES:

Optional
Bytes 2-6

Sl81DISP

Sl81DISP

Sl81DISP

Sl81DISP

Sl81DISP

Sl81DISP

Sl8/DISP

Clock Count Range

211-476

120-538

257-5:47

33

13

19

15

15

11

103-104

71

475-476

388

21

22

18

12

j. These timings hold for operands in the range \xi < TT/4. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 :s: I ST(O) I < 2&3,
I. -1.0 :s: ST(O) :s: 1.0.
m. 0 :s: ST(O) < oo, - oo < ST(1) < + oo,
n. 0 :s: \ST(O)\ < (2 - SQRT(2))/2, - oo < ST(1) < + oo.

5-999

El

intJ 387TM SX MATH COPROCESSOR

...... ~N " •
Al""l""C UIA A.

COMPATIBILITY BETWEEN
THE 180287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 NPX
and the 8087 NPX, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 NPX and the 8087 NPX, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287. ·

1. The NPX signals exceptions through a dedicated
ERROR# line to the 80286. The NPX error signal
does not pass through an interrupt'controller (the
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet-
ed. · ·

2. The 8087 instructions FENl/FNENI and FDISI/
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will' effectively
be ignored-none of the 80287 internal states. will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception­
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex­
ception handling routine.,

4. The ESC instruction address saved in the 80287
includes any leSding prefixes before the ESC op­
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287's saved instruction and address pointers is
different than for the 8087. The instruction op­
code is not saved in Protected mode-exception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either, TS (task switched) or
EM (emulation) of.the 80286 MSW set (TS= 1 or
EM = 1). If TS is set, then a WAIT instruction will

also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han­
dle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a
segment's size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286
automatically tests the BUSY# line from the
80287 to ensure that the 80287 has completed its
previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are
required to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in­
structions will execute perfectly on ttie
80286/80287 withoutreassembly, these WAIT in­
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the
ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image.

The processor control instructions for the 80287
may be code.d using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86.

5-1000

intJ 387™ SX MATH COPROCESSOR

DATA SHEET REVISION REVIEW

The following list represents the key differences be­
tween this and the -004 versions of the 387 SX Math
CoProcessor Data Sheet. Please review this sum­
mary carefully.

1. Added 20 MHz timing specs. Improved HOLD
times for ADS#, W/A#, RESETIN.

5-1001

I

!!

•
•
•
•
•
•

~[Q)W~IM©~ OOOlP©ffii~~'iI'O@OO
386™ SX SMART CACHE

82395SX
nntimi7Arl "2A~ ~y Ui,...,..,.;;._.,..,..,~~~-•
-r-..,•••••--- --- -- •••·-·-,...·-V-'ia~VI Ii Cuncuiient Lhie Buffef Caeheing
Companion • Supports i486™ Microprocessor-like
Integrated SKB Data RAM Burst

4 Way SET Associative with Pseudo • Dual Bus Architecture
LRU Algorithm - Snooping Maintains Cache

Write Buffer Architecture Coherency

Integrated 4 Word Write Buffer • 20 MHz Clock

8 Byte Line Size • 132 Lead PQFP Package

Integrated 387™ Math Coprocessor • 1K Tag Entries

Decode Logic • Non-Sectored Architecture

The 386 SX Smart Cache (part number 82395SX) is a low cost, single chip, 16-bit peripheral for Intel's 386 SX
Microprocessor. By storing frequently accessed codes or data from main memory, the 386 SX Smart Cache
enables the 386 SX Microprocessor to run at near zero wait states. The dual bus architecture allows another
bus master to access the System Bus while the 386 SX Microprocessor operates out of the 386 SX Smart
Cache on the Local Bus. The 386 SX Smart Cache has a snooping mechanism which maintains cache
coherency with main memory during these cycles.

The 386 SX Smart Cache is completely software transparent, protecting the integrity of system software. The
advanced architectural features of the 386 SX Smart Cache offer high performance with a cache data RAM
size that can be integrated on a single chip, offering the board space and cost savings needed in 386 SX
Microprocessor based systems.

CLK2

A23-A1, BHE#, BLE#

M/10#.D/C#.W/R#.
LOCK#

ADS#,READYI#.
READYO#

NPI#

RESET

D0-015

A20~#

82395SX

I Dato Bus Control I

Loco! Data 'BUS,

Address ~aSk

l--'---'"-.....:.-1 -+ St.4/10#, SD/C#, SW/R#. SLOCK#

- SADS#. SRDY#. SNA# ---------1 .,.__ SKEN#, SWP# -----.... SBREQ, SHOLD, SHLOA -----""' --""-"-' c_o_ntr_ol_, --I ..,_..... SBRDY#, SBLAST#

, , Coch, ,
lnvoll~otlon,

+---SAHOLO, SEAOS#

---c~._ch_•_ec_n• ... ro_I --1 .,__FLUSH#

System ~o\o Bus , +----t1J> SDO-SD15

386™ SX Smart Cache
387™ SX, 386™ SX, and i486™ are trademarks of Intel Corporation.

290396-1

5-1002
October 1990

Order Number: 290396-001

82385SX
HIGH PERFORMANCE CACHE CONTROLLER

• Improves 386™ SX System • Software Transparent
Performance • Synchronous Dual Bus Architecture
- Reduces Average CPU Wait States to - Bus Watching Maintains Cache

Nearly Zero Coherency
- Zero Wait State Read Hit
- Zero Wait State Posted Memory • Maps Full 386 SX Address Space

Writes • Flexible Cache Mapping Policies
-Allows Other Masters to Access the - Direct Mapped or 2-Way Set

System Bus More Readily Associative Cache Organization

• Hit Rates up to 99% - Supports Non-Cacheable Memory

• Optimized as 386 SX Companion
Space

- Simple 386 SX Interface
- Unified Cache for Code and Data

- Part of lntel386™-Based Compute • Integrates Cache Directory and Cache
Engine Including 387™ SX Math Management Logic
Coprocessor and 82370 Integrated • High Speed CHMOS Technology
System Peripheral - 132-Pin PGA and 132-Lead PQFP

- 16 MHz and 20 MHz Operation

The 82385SX Cache Controller is a high performance peripheral for Intel's 386™ SX Microprocessor. It stores
a copy of frequently accessed code and data from main memory in a zero wait state local cache memory. The
82385SX allows the 386 SX Microprocessor to run near its full potential by reducing the average number of
CPU wait states to nearly zero. The dual bus architecture of the 82385SX allows other masters to access
system resources while the 386 SX CPU operates locally out of its cache. In this situation, the 82385SX's "bus
watching" mechanism preserves cache coherency by monitoring the system bus address lines at no cost to
system or local throughput.

The 82385SX is completely software transparent, protecting the integrity of system software. High perform­
ance and board space savings are achieved because the 82385SX integrates a cache directory and all cache
management logic on one chip.

82385SX LOCAL
BUS CONTROL

BUS
ARBITRATION

386™ .SX LOCAL
BUS CONTROL

386™ SX LOCAL
BUS DECODES

INTERNAL CONTROL BUS

82385SX CACHE LOCAL BUS DIRECTORY
INTERFACE

PROCESSOR I+
, CACHE

INTERFACE CONTROL ,...

t 82385SX CONFIGURATION

82385SX Internal Block Diagram

lntel386TM, 386TM, 386™ SX, and 387™ SX are trademarks of Intel Corporation.

5-1003

rr

......

386TM SX
ADDRESS BUS

SNOOP BUS

CACHE
CONTROL BUS

290222-1

October 1990
Order Number: 290222-003

I

82385SX

CONTENTS PAGE

1.0 82385SX FUNCTIONAL OVERVIEW. 5-1 ooa
1. 1 82385SX Overview . 5-1008

1.2 System Overview I: BusStructure .. 5-1008

1.2.1 386™ SX Local Bus/82358SX Local Bus/System Bus . 5-1008

1.2.2 Bus Arbitration 5-1008

1.2.3 Master /Slave Operation 5-1011

1.2.4 Cache Coherency . 5-1011

1.3 System Overview II: Basic Operation... 5-1012

1.3.1 386 SX Memory Code and Data Read Cycles 5-1012

1.3.1.1 Read Hits ... 5-1012

1.3.1.2 Read Misses .. 5-1012

1.3.2 386 SX Memory Write Cycles 5-1012

1.3.3 Non-Cacheable Cycles . 5-1012

1.3.4 386 SX Local Bus Cycles.. 5-1013

1.3.5 Summary of 82385SX Response to All 386 SX Cycles...................... 5-1013

1.3.6 Bus Watching . 5-1013

1.3.7 Cache Flush . 5-1013

2.0 82385SX CACHE ORGANIZATION... 5-1015

2.1 Direct Mapped Cache ... 5-1015

2.1.1 Direct Mapped Cache Structure and Terminology ·. 5-1015

2.1.2 Direct Mapped Cache Operation 5-1016

2.1.2.1 Read Hits ... ,. 5-1016

2.1.2.2 Read Misses .. 5-1016

2.1.2.3 Other Operations That Affect the Cache and Cache Directory 5-1016

2.2 Two Way Set Associative Cache... 5-1017

2.2.1 Two Way Set Associative Cache Structure and Terminology. 5-1017

2.2.2 LRU Replacement Algorithm 5-1017

2.2.3 Two Way Set Associative Cache Operation . 5-1017

2.2.3.1 Read Hits ... 5-1017

2.2.3.2 Read Misses . 5-1017

2.2.3.3 Other Operations That Affect the Cache and Cache Directory 5-1017

3.0 82835SX PIN DESCRIPTION .. 5-1017

3.1 386 SX Interface Signals . 5-1019

3.1.1 386 SX Clock (CLK2) 5-1019

3.1.2 386 SX RESET (RESET) 5-1019

3.1.3 386 SX Address Bus (A 1-A23), Byte Enables (BHE #, BLE #), and Cycle
Definition Signals (M/10#, DIC#, W/R#, LOCK#)........................ 5-1020

3.1.4 386 SX Address Status (ADS#) and Ready Input (READ YI#) 5-1020

3.1.5 386 SX Next Address Request (NA#). 5-1020

3.1.6 Ready Output (READ YO#) and Bus Ready Enable (BR DYEN#) 5-1020

5-1004

intef 82385SX

CONTENTS PAGE

3.2 Cache Control Signals... 5-1020
3.2.1 Cache Address Latch Enable (GALEN)..................................... 5-1020

3.2.2 Cache Transmit/Receive (CT/R#) 5-1020

3.2.3 Cache Chip Selects (CSO # -CS1 #). 5-1021

3.2.4 Cache Output Enables (COEA #, COEB #) and Write Enables
(CWEA#, CWEB#) . 5-1021

3.3 386 SX Local Bus Decode Inputs .. 5-1021

3.3.1 386 SX Local Bus Access (LBA#) . 5-1021
3.3.2 Non-Cacheable Access (NCA#) , 5-1021

3.4 82385SX Bus Interface Signals 5-1021

3.4.1 82385SX Bus Byte Enables (BBHE#, BBLE#) 5-1022

3.4.2 82385SX Bus Lock (BLOCK#)... 5-1022

3.4.3 82385SX Bus Address Status (BADS#).................................... 5-1022

3.4.4 82385SX Bus Ready Input (BREADY#).................................... 5-1022
3.4.5 82385SX Bus Next Address Request (BNA#).............................. 5-1022

3.5 82385SX Bus Data Transceiver and Address Latch Control....................... 5-1022

3.5.1 Local Data Strobe (LDSTB), Data Output Enable (DOE#), and Bus Transmit/
Receive (BT/R#) ... 5-1022

3.5.2 Bus Address Clock Pulse (BACP) and Bus Address Output Enable (BAOE#) 5-1022
3.6 Status and Control Signals .. . 5-1022

3.6.1 Cache Miss Indication (MISS#) 5-1022

3.6.2 Write Buffer Status (WBS) .. . 5-1023

3.6.3 Cache Flush (FLUSH) .. . 5-1023

3.7 Bus Arbitration Signals (BHOLD and BHLDA) 5-1023

3.8 Coherency (Bus Watching) Support Signals (SA 1-SA23, SSTB #, SEN) 5-1023

3.9 Configuration Inputs (2W/D#, M/S#, DEFOE#) 5-1023

3.1 O Reserved Pins (RES) .. . 5-1023

4.0 386 SX LOCAL BUS INTERFACE 5-1024

4.1 .Processor Interface .. . 5-1024

4.1.1 Hardware Interface 5-1024

4.1.2 Ready Generation .. . 5-1026

4.1.3 NA# and 386SX Local Bus Pipelining 5-1026
4.1.4 LBA # and NCA # Generation .. . 5-1029

4.2 Cache Interface .. . 5-1029

4.2.1 Cache Configurations .. . 5-1029

4.2.2 Cache Control ... Direct Mapped 5-1032
4.2.3 Cache Control ... Two Way Set Associative 5-1035

4.3 387 Interface 5-1035

5-1005

I

82385SX

CONTENTS PAGE

5.0 82385SX LOCAL BUS AND SYSTEM INTERFACE.................................. 5-1035

5.1 The 823885SX Bus State Machine ~ 5 .. 1035

5.1.1 Master Mode : ·..................................... 5-1035

5.1.2 Slave Mode ... 5-1035

5.2 The 82385SX Local Bus. 5-1040

5.2.1 82385SX Bus Counterparts to 386 SX Signals. 5-1048

5.2.1.1 Address Bus (BA 1-BA23) and Cycle Definition Signals
(BM/10#, BD/C#, BW/R~) .. 5-1048

5.2.1.2 Data Bus (BDO-BD15) . 5-1049

5.2.1.3 Byte Enables (BBHE#, BBLE#) 5-1049

5.2.1.4 Address Status (BADS#) . 5-1049

5.2.1.5 Ready (BREADY#) . • 5-1049

5.2.1.6 Next Address Request (BNA#) 5-1049

5.2.1. 7 Bus Lock (BLOCK#) 5-1049

5.2.2 Additional 82385SX Bus Signals... 5-1050

5.2.2.1 Cache Read/Write Miss Indication (MISS#) . 5-1050

5.2.2.2 Write Buffer Status (WBS) 5-1051

5.2.2.3 Cache Flush (FLUSH) '........................... 5-1051

5.~ Bus Watching (Snoop) Interface... 5-1051

5.4 Reset Definition 5-1052

6.0 SYSTEM DESIGN GUIDELINES .. 5-1053

6.1 Introduction... 5-1053

. 6.2 Power and Grounding . 5-1053

6.2.1 Power Connections , : 5-1053

6.2.2 Power Decoupling . 5-1053

6.2.3 Resistor Recommendations . 5-1053

6.2.3.1 386 SX Local Bus . 5-1053

6.2.3.2 82385SX Local Bus 5-1053

6.3 82385SX Signal Connections 5-1053

6.3.1 Configuration Inputs... 5-1053

6.3.2 CLK2 and RESET . 5-1054

6.4 Unused Pin Requirements , :............... 5-1054

6.5 Cache SAAM Requirements . 5-1054

6.5.1 Cache Memory without Transceivers ·................ 5-1054

6.5.2 Cache Memory with Transceivers.. 5-1055

5-1006

intJ 82385SX

CONTENTS PAGE

7.0 SYSTEM TEST CONSIDERATIONS 5-1055

7 .1 Introduction 5-1055

7.2 Main Memory (DRAM) Testing .. . 5-1055

7 .2.1 Memory Testing Routine .. . 5-1055

7.3 82385SX Cache Memory Testing 5-1055

7.3.1 Test Routine in the NCA# or LBA# Memory Map 5-1056

7.3.2 Test Routine in Cacheable Memory 5-1056

7.4 82385SX Cache Directory Testing .. . 5-1056

7.5 Special Function Pins · 5-1056

8.0 MECHANICAL DATA .. . 5-1056

8.1 Introduction .. . 5-1056

8.2 Pin Assignment .. . 5-1056

8.3 Package Dimensions and Mounting 5-1061

8.4 Package Thermal Specification 5-1066

9.0 ELECTRICAL DATA _ 5-1066

9.1 Introduction .. . 5-1066

9.2 Maximum Ratings .. . 5-1066

9.3 D.C. Specifications 5-1066

9.4 A.C. Specifications

9.4.1 Frequency Dependent Signals .. .

5-1067

5-1067 I

5-1007

intef 82385SX

1.0 82385SX FUNCTIONAL
OVERVIEW

The 82385SX Cache Controller is a high perform­
ance ·peripheral for Intel's 386™ SX microproces­
sor. This chapter provides an . overview of the
82385SX, and of the basic architecture and opera­
tion of a 386 SX CPU/82385SX system.

1.1 S2385SX Overview

The main function of a cache memory system is to
provide fast local storage for frequently accessed
code and data. The cache system intercepts 386 SX
memory references to see if the required data re­
sides in the cache. If the data resides in the cache (a
hit), it is returned to the 386 SX without incurring wait
states. If the data is not cached (a miss), the refer­
ence is forwarded to the system and the data re­
trieved from main memory. An efficient cache will
yield a high "hit rate" (the ratio of cache hits to total
386 SX accesses), such that the majority of access­
es are serviced with zero wait states. The net effect
is that the wait states incurred in a relatively infre­
quent miss are averaged over a large number of ac­
cesses, resulting in an average of nearly zero wait
states per access. Since cache hits are serviced lo­
cally, a processor operating out of its local cache
has a much lower "bus utilization" which reduces
system bus bandwidth requirements, ·making more
bandwidth available to other bus masters.

The 82385SX Cache Controller integrates a cache
directory and all cache management logic required
to support an external 16 kbyte cache. The cache
directory structure is such that the entire physical
address range of the 386 SX is mapped into the
cache. Provision is made to allow areas of memory
to be set aside as non-cacheable. The user has two
cache organization options: direct mapped and 2-
way set associative. Both provide the high hit rates
necessary to make a large, relatively slow main
memory array look like fast, zero wait state memory
to the 386 SX.

A good hit rate is an essential ingredient of a suc­
cessful cache implementation. Hit rate is the mea­
sure of how efficient a cache is in maintaining a copy
of the most frequently requested code and data.
However, efficiency is not the only factor for per­
formance consideration. Just as essential are sound
.cache management policies. These policies refer to
the handling of 386 SX writes, preservation of cache
coherency, and ease of system design. The
82385SX's "posted write" capability allows the ma­
jority of 386 SX writes, including most non-cache­
able cycles, to run with zero wait states, and the
82385SX's "bus watching" mechanism preserves

cache coherency with no impact on system perform­
ance. Physically, the 82385SX ties directly to· the
386 SX with virtually no external logic.

1.2 System Overview I: Bus Structure

A good grasp of bus structure of· a 386 SX CPU/
82385SX system is essential in understanding both
the 82385SX and its role in a 386 SX system. The
following is a descripti6ii of this structure.

1.2.1 386™ SX LOCAL BUS/82385SX LOCAL
BUS/SYSTEM BUS

Figure 1-1 depicts the bus structure of a typical
386 SX system. The "386 SX Local Bus" consists of
the physical 386 SX address, data, and control bus­
ses. The local address and data busses are buffered
and/or latched to become the "system" address
and data busses. The local control bus is decoded
by bus control logic to generate the various system
bus read and write commands.

The addition of an 82385SX Cache Controller caus­
es a separation of the 386 SX bus into two distinct
busses: the actual 386 SX local bus and the
"82385SX Local Bus" (Figure .1-2). The 82385SX lo­
cal bus is designed to look like the front end of a
386 SX by providing 82385SX local bus equivalents
to all appropriate 386 SX signals. The system ties to
this "386 SX-like" front end just as it would to an
actual 386 SX. The 386 SX simply sees a fast sys­
tem bus, and the system sees a 386 SX front end
with low bus bandwidth requirements. The cache
subsystem is transparent to both. Note that the
82385SX local bus is not simply a buffered version
of the 386 SX bus, but rather is distinct from, and
able to operate in parallel with the 386 SX bus. Oth­
er masters residing on either the 82385SX local bus
or system bus are free to manage system resources
while the 386 SX operates out of its cache.

1.2.2 BUS ARBITRATION

The 82385SX presents the "386 SX-like" interface
which is called the 82385SX local bus. Whereas the
386 SX provides a Hold Request/ Hold Acknowl­
edge bus arbitration mechanism via its HOLD and
HLDA pins, the 82385SX provides an equivalent
mechanism via its BHOLD and BHLDA pins. (These
signals are described in Section 3.7.) When another
master requests the 82385SX local bus, it issues the
request to the 82385SX via BHOLD. Typically, at the
end of the current 82385SX local bus cycle, the
82385SX will release the 82385SX local bus and ac­
knowledge the request via BHLDA. The 386 SX is of
course free to continue operating on the 386 SX lo­
cal bus while another master owns the 82385SX lo­
cal bus.

5-1008

intJ

--'
0

"' I-z
0
(.)

'Ill ,
BUS

CONTROL

'Ill

SYSTEM
MEMORY

,

82385SX

386™ sx

.. ~
~
0

'Ill ,
DATA

BUFFER

.. ,..

'Ill ,
SYSTEM BUS

"' I "' 386 sx
"' 0 LOCAL BUS 0
<(_l 'Ill ,

ADDRESS
BUFFER

'Ill ,

SYSTEM 1/0

Figure 1-1. 386™ SX System Bus Structure

SYSTEM BUS

386 sx
LOCAL BUS

........--. -4
82385SX

LOCAL BUS

,..._.... _ __l

Figure 1-2. 386™ SX and 82385SX System Bus Structure

5-1009

290222-2

I

290222-3

82385SX

r------------------,

x
(/)

~
00
I<)

------------------4 ·--------------------·

r-----------------,

x
(/)

·:.;

.... "'
00
I<)

~-----------------4

Figure 1-3. Multi-Master/Multi-Cache Environment

5-1010

intJ 82385SX

1.2.3 MASTER/SLAVE OPERATION

The above 82385SX local bus arbitration discussion
is true when the 82385SX is programmed for "Mas­
ter" mode operation. The user can, however, config­
ure the 82385SX for "Slave" mode operation. (Pro­
gramming is done via a hardware strap option.) The
roles of BHOLD and BHLDA are reversed for an
82385SX in slave mode; BHOLD becomes an output
indicating a request to control the bus, and BHLDA
becomes an input indicating that a request has been
granted. An 82385SX programmed in slave mode
drives the 82385SX local bus only when it has re­
quested and subsequently been granted bus control.
This allows multiple 386 SX CPU/82385SX subsys­
tems to reside on the same 82385SX local bus (Fig­
ure 1-3).

1.2.4 CACHE COHERENCY

Ideally, a cache contains a copy of the most heavily
used portions of main memory. To maintain cache
"coherency" is to make sure that this local copy is
identical to main memory. In a system where multi­
ple masters can access the same memory, there is

SNOOP BUS----­
-SYSTEM ADDRESS BUS
-WRITE CYCLE INDICATOR

always a risk that one master will alter the contents
of a memory location that is duplicated in the local
cache of another master. (The cache is said to con­
tain "stale" data.) One rather restrictive solution is to
not allow cache subsystems to cache shared memo­
ry. Another simple solution is to flush the cache any­
time another master writes to system memory. How­
ever, this can seriously degrade system perform­
ance as excessive cache flushing will reduce the hit
rate of what may otherwise be a highly efficient
cache.

The 82385SX preserves cache coherency via "bus
watching" (also called snooping), a technique that
neither impacts performance nor restricts memory
mapping. An 82385SX that is not currently bus mas­
ter monitors system bus cycles, and when a write
cycle by another master is detected (a snoop), the
system address is sampled and used to see if the
referenced location is duplicated in the cache. If so
(a snoop hit), the corresponding cache entry is inval­
idated, which will force the 386 SX to fetch the up­
to-date data from main memory the next time it ac­
cesses this modified location. Figure 1-4 depicts the
general form of bus watching.

3ss™sx
LOCAL BUS

SYSTEM BUS

290222-5

Figure 1-4. 82385SX Bus Watching-Monitor System Bus Write Cycles

5-1011

I

intJ 82385SX

1.3 System Overview II:
Basic Operation

Thi~ rli~l"'11~c:-inn i~ '!In nu.orui.0H1 nf tho h~~; """",.... .. ,..+i,...,...
,,,..._. ,.._..._....., '""'"""'' ,._. ,, .,_,..,...,,..,,...,,,,, Lii <M4~1V VIQLIVll

of a 386 SX CPU/82385SX system. Items discussed
include the 82385SX's response to all 386 SX cy­
cles, including interrupt acknowledges, halts, and
shutdowns. Also discussed are non-cacheable and
local accesses.

1.3.1 386™ SX MEMORY CODE AND DATA
READ CYCLES

1.3.1.1 Read Hits

When the 386 SX initiates a memory code or data
read cycle, the 82385SX compares the high order
bits of the 386 SX address bus with the appropriate
addresses (tags) stored in its on-chip directory. (The
directory structure is described in Section 2.1.1) If
the 82385SX determines that the requested data is
in the cache, it issues the appropriate control signals
that direct the cache to drive the requested data
onto the 386 SX data bus, where it is read by the
386 SX. The 82385SX terminates the 386 SX cycle
without inserting any wait states.

1.3.1.2 Read Misses

If the 82385SX determines that the requested data
is not in the cache, the request is forwarded to the
82385SX local bus and the data retrieved from main
memory. As the data returns from main memory, it is
directed to the 386 SX and also written into the
cache. Concurrently, the 82385SX updates the
cache directory such that the next time this particu­
lar piece of information is requested by the 386 SX,
the 82385SX will find it in the cache and return it
with zero wait states.

The basic unit of transfer between main memory and
cache memory in a cache subsystem is called the
line size. In an 82385SX system, the line size is one
16-bit word. During a read miss, both 82385SX local
bus byte enables are active. This insures that the
16-bit entry is written into the cache. (The 386 SX
simply ignores what it did not request.) In any other
type of 386 SX cycle that is forwarded to the
82385SX local bus, the logic levels of the 386 SX
byte enables are duplicated on the 82385SX local
bus.

The 82385SX does not actively fetch main memory
data independently of the 386 SX. The 82385SX is
essentially a passive device which only monitors the
address bus and activates control signals. The read
miss is the only mechanism by which main memory
data is copied into the cache and validated in the
cache directory.

In an isolated read miss, the number of wait states
seen by the 386 SX is that required by the system
memory to respond with data plus the cache com­
parison cycle (hit/miss decision)_ The cache system
must determine that the cycle is a miss before it can
begin the system memory access. However, since
misses most often ·occur consecutively, the
82385SX will begin 386 SX address pipelined cycles
to effectively "hide" the comparison cycle beyond
the first miss (refer to Section 4.1.3).

The 82385SX can execute a memory access on the
82385SX local bus only if it currently owns the bus. If
not, an 82385SX in master mode will run the cycle
after the current master releases the bus. An
82385SX in slave mode will issue a hold request,
and will run the cycle as soon as the request is ac­
knowledged. (This is true for any read or write cycle
that needs to run on the 82385SX local bus.)

1.3.2 386™ SX MEMORY WRITE CYCLES

The 82385SX's "posted write" capability allows the
majority of 386 SX memory write cycles to run with
zero wait states. The primary memory update policy
implemented in a posted write is the traditional
cache "write through" technique, which implies that
main memory is always updated in any memory write
cycle. If the referenced location also happens to re­
side in the cache (a write hit), the cache is updated
as well.

Beyond this, a posted write latches the 386 SX ad­
dress, data, and cycle definition signals, and the 386
SX local bus is terminated without any wait states,
even though the corresponding 82385SX local bus
cycle is not yet completed, or perhaps not even
started. A posted write is possible because the
82385SX's bus state machine, which is almost iden­
tical to the 386 SX bus state machine, is able to run
82385SX local bus cycles independently of the
386 SX. The only time the 386 SX sees write cycle
wait states is when a previously latched (posted)
write has not yet been completed on the 82385SX
local bus or during an 1/0 write (which is not post­
ed). An 386 SX write can be posted even if the
82385SX does not currently own the 82385SX local
bus. In this case, an 82385SX in master mode will
run the cycle as soon as the current master releases
the bus, and an 82385SX in slave mode will request
the bus and run the cycle when the request is ac­
knowledged. The 386 SX is free to continue operat­
ing out of its cache (on the 386 SX local bus) during
this time.

1.3.3 NON-CACHEABLE CYCLES

Non-cacheable cycles fall into one of two catego­
ries: cycles decoded as non-cacheable, and cycles

5-1012

82385SX

that are by default non-cacheable according to the
82385SX's design. All non-cacheable cycles are for­
warded to the 82385SX local bus. Non-cacheable
cycles have no effect on the cache or cache directo­
ry.

The 82385SX allows the system designer to define
areas of main memory as non-cacheable. The
386 SX address bus is decoded and the decode out­
put is connected to the 82385SX's non-cacheable
access (NCA#) input. This decoding is done in the
first 386 SX bus state in which the non-cacheable
cycle address becomes available. Non-cacheable
read cycles resemble cacheable read miss cycles,
except that the cache and cache directory are unaf­
fected. NCA# defined non-cacheable writes, like
most writes, are posted.

The 82385SX defines certain cycles as non-cache­
able without using its non-cacheable access input.
These include 1/0 cycles, interrupt acknowledge cy­
cles, and halt/shutdown cycles. 1/0 reads and inter­
rupt acknowledge cycles execute as any other non­
cacheable read. 1/0 write cycles are not posted. The
386 SX is not allowed to continue until a ready signal
is returned from the system. Halt/Shutdown cycles
are posted. During a halt/shutdown condition, the
82385SX local bus duplicates the behavior of the
386 SX, including the ability to recognize and re­
spond to a BHOLD request. (The 82385SX's bus
watching mechanism is functional in this condition.)

1.3.4 386™ SX LOCAL BUS CYCLES

386 SX Local Bus Cycles are accesses to resources
on the 386 SX .local bus other than to the 82385SX
itself. The 82385SX simply ignores these accesses:
they are neither forwarded to the system nor do they
affect the cache. The designer sets aside memory
and/or 1/0 space for local resources by decoding
the 386 SX address bus and feeding the decode to
the 82385SX's local bus access (LBA#) input. The
designer can also decode the 386 SX cycle defini­
tion signals to keep specific 386 SX cycles from be­
ing forwarded to the system. For example, a multi­
processor design may wish to capture and remedy a
386 SX shutdown locally without having it detected
by the rest of the system. Note that in such a design,
the local shutdown cycle must be terminated by lo­
cal bus control logic. The 387 SX Math Coprocessor
is considered a 386 SX local bus resource, but it
need not be decoded as such by the user since the
82385SX is able to internally recognize 387 SX ac­
cesses via the M/10# and A23 pins.

1.3.5 SUMMARY OF 82385SX RESPONSE TO
ALL 386™ SX CYCLES

Table 1-1 summarizes the 82385SX response to all
386 SX bus cycles, as conditioned by whether or not
the cycle is decoded as local or non-cacheable. The
table describes the impact of each cycle on the
cache and on the cache directory, and whether or
not the cycle is forwarded to the 82385SX local bus.
Whenever the 82385SX local bus is marked "IDLE",
it implies that this bus is available to other masters.

1.3.6 BUS WATCHING

As previously discussed, the 82385SX "qualifies" a
386 SX bus cycle in the first bus state in which the
address and cycle definition signals of the cycle be­
come available. The cycle is qualified as read or
write, cacheable or non-cacheable, etc. Cacheable
cycles are further classified as hit or miss according
to the results of the cache comparison, which ac­
cesses the 82385SX directory and compares the ap­
propriate directory location (tag) to the current
386 SX address. If the cycle turns out to be non­
cacheable or a 386 SX local bus access, the hit/
miss decision is ignored. The cycle qualification re­
quires one 386 SX state. Since the fastest 386 SX
access is two states, the second state can be used
for bus watching.

When the 82385SX does not own the system bus, it I
monitors system bus cycles. If another master writes
into main memory, the 82385SX latches the system
address and executes a cache look-up to see if the
altered main memory location resides in the cache.
If so (a snoop hit), the cache entry is marked invalid
in the cache directory. Since the directory is at most
only being used every other state to qualify 386 SX
accesses, snoop look-ups are interleaved between
386 SX local bus look-ups. The cache directory is
time multiplexed between the 386 SX address and
the latched system address. The result is that all
snoops are caught and serviced without slowing
down the 386 SX, even when running zero wait state
hits on the 386 SX local bus.

1.3.7 CACHE FLUSH

The 82385SX offers a cache flush input. When acti­
vated, this signal causes the 82385SX to invalidate
all data which had previously been cached. Specifi­
cally, all tag valid bits are cleared. (Refer to the
82385SX directory structure in Section 2.1.1.) There-

5-1013

~
~

"""

Table 1-1. 82385SX Response to 386™ SX Cycles

386 SX Bus Cycle
82385SX Response 82385SX Response

when Decoded when Decoded
Definition

as Cacheable as Non-Cacheable

M/10# D/C# W/R#
386SX

Cache
Cache 82385SX

Cache
Cache 82385SX

Cycle Directory Local Bus Directory Local Bus

0 0 0 INT ACK NIA - - INT ACK - - INT ACK

0 0 1 UNDEFINED NIA UNDEFINED UNDEFINED

0 1 0 l/OREAD NIA - - l/OREAD - - l/OREAD

0 1 1 l/OWRITE NIA - - l/OWRITE - - l/OWRITE

1 0 0 MEMCODE HIT CACHE - IDLE - - MEM
READ READ CODE

MISS CACHE DATA MEMCODE READ

WRITE VALIDATION READ
' 1 0 1 HALT/ NIA - - HALT/ - - HALT/

SHUTDOWN SHUTDOWN SHUTDOWN

1 1 0 MEM DATA HIT CACHE - IDLE - - MEM
READ READ DATA

MISS CACHE DATA MEMDATA READ

WRITE VALIDATION READ

1 1 1 MEMDATA HIT CACHE - MEMDATA - - MEM
WRITE WRITE WRITE DATA

MISS MEMDATA WRITE - -
WRITE

NOTES:
• A dash (-) indicates that the cache and cache directory are unaffected. This table does not reflect how an access affects the LRU bit.
• An "IDLE" 82385SX Local Bus implies that this bus is available to other masters.
• The 82385SX's response to 387TM SX accesses is the same as when decoded as a 386 SX Local Bus Access.
• The only other operations that affect the cache directory are:
1. RESET or Cache Flush-'all tag valid bits cleared.
2. Snoop Hit-corresponding line valid bit cleared.

82385SX Response when
Decoded as a 386SX

Local Bus Access

Cache
Cache 82385SX

Directory Local Bus

- - IDLE

IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

(

Oii
I\)
w
Oii
CTI

"' ><

intef 82385SX

fore, the cache is empty and subsequent cycles are
misses until the 386 SX begins repeating the new
accesses (hits). The primary use of the FLUSH input
is for diagnostics and multi-processor support.

NOTE:
The use of this pin as a coherency mechanism may
impact software transparency.

2.0 82385SX CACHE ORGANIZATION

The 82385SX supports two cache organizations: a
simple direct mapped organization and a slightly
more complex, higher performance two way set as­
sociative organization. The choice is made by strap­
ping an 82385SX input (2W/D#) either high or low.
This chapter describes the structure and operation
of both organizations.

2.1 Direct Mapped Cache

2.1.1 DIRECT MAPPED CACHE STRUCTURE
AND TERMINOLOGY

Figure 2-1 depicts the relationship between the
82385SX's internal cache. directory, the external
cache memory, and the 386 SX's physical address
space. The 386 SX address space can conceptually

I

I

SET10~3 q_,

INTERNAL
CACHE DIRECTORY

EXTERNAL
DATA CACHE

be thought of as cache "pages" each being 8K
words (16 Kbytes) deep. The page size matches the
cache size. The cache can be further divided into
1024 (0 thru 1023) sets of eight words (8 x 16 bits).
Each 16-bit word is called a "line". The unit of trans­
fer between the main memory and cache is one line.

Each block in the external cache has an associated
19-bit entry in the 82385SX's internal cache directo­
ry. This entry has three components: a 10-bit "tag",
a "tag valid" bit, and eight "line valid" bits. The tag
acts as a main memory page number (1 O tag bits
support 210 pages). For example, if line 9 of page 2
currently resides in the cache, then a binary 2 is
stored in the Set 1 tag field. (For any 82385SX direct
mapped cache page in main memory, Set O consists
of lines 0-7, Set 1 consists of lines 8-15, etc. Line 9
is shaded in Figure 2-1.) An important characteristic
of a direct mapped cache is that line 9 of any page
can only reside in line 9 of the cache. All identical
page offsets map to a single cache location.

The data in a cache set is considered valid or invalid
depending on the status of its tag valid bit. If clear,
the entire set is considered invalid. If true, an individ­
ual line within the set is considered valid or invalid
depending on the status of its line valid bit.

The 82385SX sees the 386 SX address bus (A 1 -
A23) as partitioned into three fields: a 10-bit "tag"

MAIN MENORY

290222-6

Figure 2·1. Direct Mapped Cache Organiztion

5-1015

I

intJ 82385SX

CACHE ADDRESS r (1 OF BK WORDS) 1
IA23 . A14 A13 A4 A3 A1

I

~ 10-BITTAG ~ SET ADDRESS ALINE)
(1 OF z10 PAGES (1 OF 1024 SETS) SELECT

{ 1 OF 8 LINES)
290222-7

Figure 2·2. 386™ SX Address Bus Bit Fields-Direct Mapped Organization

field (A14-A23), a 10-bit "set address" field (A4-
A 13), and a 3-bit "line select" field (A 1 -A3). (See
Figure 2-2.) The lower 13 address bits (A 1-A 13)
also serve as the "cache address" which directly
selects one of SK words in the external cache.

2.1.2 DIRECT MAPPED CACHE OPERATION

The following is a description of the interaction be­
tween the 386 SX, cache, and cache directory.

2.1.2.1 Read Hits

When the 386 SX initiates a memory read cycle, the
82385SX uses the 10-bit set address to select one
of 1024 directory entries, and the 3-bit line select
field to select one of eight line valid bits within the
entry. The 13-bit cache address selects the corre­
sponding word in the cache. The 82385SX com­
pares the 10-bit tag field (A14-A23 of the 386 SX
access) with the tag stored in the selected directory
entry. If the tag and upper address bits matqh, and if
both the tag and appropriate line valid bits are set,
the result is a hit, and the 82385SX directs the
cache to drive the selected word onto the 386 SX
data bus. A read hit does not alter the contents of
the cache or directory.

2. 1.2.2 Read Misses

A read miss can occur in two ways. The first is
known as a "line" miss, and occurs when the tag
and upper address bits match and the tag valid bit is
set, but the line valid bit is clear. The second is
called a "tag" miss, and occurs when either the tag
and upper address bits do not match, or the tag valid
bit is clear. (The line valid bit is a "don't care" in a
tag miss.) In both cases, the 82385SX forwards the
386 SX reference to the system, and as the return­
ing data is fed to the 386 SX, it is written into the
cache and validated in the cache directory.

In a line miss, the incoming data is validated simply
by setting the previously clear line valid bit. In a tag
miss, the upper address bits overwrite the previously

stored tag, the tag valid bit is set, the appropriate
line valid bit is set, and the other seven line valid bits
are cleared. Subsequent tag hits with line misses will
only set the appropriate line valid bit (Any data as­
sociated with the previous tag is no longer consid­
ered resident in the cache.)

2.1.2.3 Other Operations That Affect the Cache
and Cache Directory

The other operations that affect the cache. and/ or
directory are write hits, snoop hits, cache flushes,
and 82385SX resets. In a write hit, the cache is up­
dated along with main memory, but the directory is
unaffected. In a snoop hit, the cache is unaffected,
but the affected line is invalidated by clearing its line
valid bit in the directory. Both an 82385SX reset and
cache flush clear all tag valid bits.

When a 386 SX CPU/82385SX system "wakes up"
upon reset, all tag valid bits are clear. At this point, a
read miss is the only mechanism by which main
memory data is copied into the cache and validated
in the cache directory. Assume an early 386 SX
code access seeks (for the first time) line 9 of page
2. Since the tag valid bit is clear, the access is a tag
miss, and the data is fetched from main memory.
Upon return, the data is fed to the 386 SX and simul­
taneously written into line 9 of the cache. The set
directory entry is updated to show this line as valid.
Specifically, the tag and appropriate line valid bits
are set, the remaining seven line valid bits cleared,
and binary 2 written into the tag. Since code is se­
quential in nature, the 386 SX will likely next want

. line 1 O of page 2, then line 11, and so on. If the
386 SX sequentially fetches the next six lines, these
fetches will be line~misses, and as each is fetched
from main memory and written into the cache, its
corresponding line valid bit is set. This is the basic
flow of events that fills the cache with valid data.
Only after a piece of data has been copied into the
cache and validated can it be accessed in a zero
wait state read hit. Also, a cache entry must have
been validated before it can be subsequently altered
by a write hit, or invalidated by a snoop hit.

5-1016

intef 82385SX

An extreme example of "trashing" is if line 9 of page
two is an instruction to jump to line 9 of page one,
which is an instruction to jump back to line 9 of page
two. Trashing results from the direct mapped cache
characteristic that all identical page offsets map to a
single cache location. In this example, the page one
access overwrites the cached page two data, and
the page two access overwrites the cached page
one data. As long as the code jumps back and forth
the hit rate is zero. This is of course an extreme
case. The effect of trashing is that a direct mapped
cache exhibits a slightly reduced overall hit rate as
compared to a set associative cache of the same
size.

2.2 Two Way Set Associative Cache

2.2.1 TWO WAY SET ASSOCIATIVE CACHE
STRUCTURE AND TERMINOLOGY

Figure 2-3 illustrates the relationship between the
directory, cache, and 386 SX address space. Where­
as the direct mapped cache is organized as one
bank of BK words, the two way set associative
cache is organized as two banks (A and B) of 4K
words each. The page size is halved, and the num­
ber of pages doubled. (Note the extra tag bit.) The
cache now has 512 sets in each bank. (Two banks
times 512 sets gives a total of 1024. The structure
can be thought of as two half-sized direct mapped
caches in parallel.) The performance advantage
over a direct mapped cache is that all identical page
offsets map to two cache locations instead of one,
reducing the potential for thrashing. The 82385SX's
partitioning of the 386 SX address bus is depicted in
Figure 2-4.

2.2.2 LRU REPLACEMENT ALGORITHM

The two way set associative directory has an addi­
tional feature: the "least recently used" or LRU bit.
In the event of a read miss, either bank A or bank B
will be updated with new data. The LRU bit flags the
candidate for replacement. Statistically, of two
blocks of data, the block most recently used is the
block most likely to be needed again in the near
future. By flagging the least recently used block, the
82385SX ensures that the cache block replaced is
the least likely to have data needed by the CPU.

2.2.3 TWO WAY SET ASSOCIATIVE CACHE
OPERATION

2.2.3.1 Read Hits

When the 386 SX initiates a memory read cycle, the
82385SX uses the 9-bit set address to select one of

512 sets. The two tags of this set are simultaneously
compared with A13-A23, both tag valid bits
checked, and both appropriate line valid bits
checked. If either comparison produces a hit, the
corresponding cache bank is directed to drive the
selected word onto the 386 SX data bus. (Note that
both banks will never concurrently cache the same
main memory location.) If the requested data resides
in bank A, the LRU bit is pointed toward B. If B pro­
duces the hit, the LRU bit is pointed toward A.

2.2.3.2 Read Misses

As in direct mapped operation, a read miss can be
either a line or tag miss. Let's start with a tag miss
example. Assume the 386 SX seeks line 9 of page 2,
and that neither the A or B directory produces a tag
match. Assume also, as indicated in Figure 2-3, that
the LRU bit points to A. As the data returns from
main memory, it is loaded into offset 9 of bank A.
Concurrently, this data is validated by updating the
set 1 directory entry for bank A. Specifically, the up­
per address bits overwite the previous tag, the tag
valid bit is set, the appropriate line valid bit is set,
and the other seven line valid bits cleared. Since this
data is the most recently used, the LRU bit is turned
toward B. No change to bank B occurs.

If the next 386 SX request is line 10 of page two, the
result will be a line miss. As the data returns from
main memory, it will be written into offset 10 of bank II
A (tag hit/line miss in bank A), and the appropriate
line valid bit will be set. A line miss in one bank will
cause the LRU bit to point to the other bank. In this
example, however, the LRU bit has already been
turned toward 8.

2.2.3.3 Other Operations That Affect the Cache
and Cache Directory

Other operations that affect the cache and cache
directory are write hits, snoop hits, cache flushes,
and 82385SX resets. A write hit updates the cache
along with main memory. If directory A detects the
hit, bank A is updated. If directory B detects the hit,
bank B is updated. If one bank is updated, the LRU
bit is pointed towards the other.

If a snoop hit invalidates an entry, for example, in
cache bank A, the corresponding LRU bit is pointed
toward A. This insures that invalid data is the prime
candidate for replacement in a read miss. Finally,
resets and flushes behave just as they do in a direct
mapped cache, clearing all tag valid bits.

3.0 82385SX PIN DESCRIPTION

The 82385SX creates the 82385SX local bus, which
is a functional 386 SX interface. To facilitate under-

5-1017

l
:::!! DIRECTORY A DIRECTORY B BANK A BANK B
~ TAG VALID TAG VALID
~ ~ ~
N ! LINE ! LINE C:, 11-BIT VALID LBU 11-BIT VALID
• TAG BITS . BITS TAG BITS

, SETO q~ 0!1111111 E3 q~ .1111111111 t===I t===I 1 1 u t n PA:~~~ZE
f ~~ . ~~
'<

~ i Tqp~~~ r l l t tr I
!
~
i I SETS11q~ 1111111111 E3 q

0

i
:I = I INTERNAL EXTERNAL MAIN MEMORY
~ CACHE DIRECTORY DATA CACHE
:I 290222-8

intef 82385SX

CACHE ADDRESS

E:'
r-"" (1 OF 4K WORDS) l

A13 A12 A4 A3 Al

I I I I I I I I I I I I I I I I

11-BIT TAG ~ SET ADDRESS ~LINE)
(1 OF z11 PAGES) (1 OF 512 SETS) SELECT

(1 OF B LINES)
290222-9

Figure 2-4. 386™ SX Address Bus Bit Fields-Two-Way Set Associative Organization

standing, 82385SX :ocal bus signals go by the same
name as their 386 SX equivalents, except that they
are preceded by the letter "B". The 82385SX local
bus equivalent to ADS# is BADS#, the equivalent
to NA# is BNA #, etc. This convention applies to
bus states as well. For example, BT1 P is the
82385SX local bus state equivalent to the 386 SX
T1P state.

3.1 386™ SX CPU/82385SX Interface
Signals

These signals form the direct interface between the
386 SX and the 82385SX.

3.1.1 386™ SX CPU/82385SX Clock (CLK2)

CLK2 provides the fundamental timing for a 386 SX
CPU/82385SX system, and is driven by the same
source that drives the 386 SX CLK2 input. The

CLK2

INTERNAL CLOCK

82385SX, like the 386 SX, divides CLK2 by two to
generate an internal "phase indication" clock. (See
Figure 3-1.) The CLK2 period whose rising edge
drives the internal clock low is called PHl1, and the
CLK2 period that drives the internal clock high is ·
called PHl2. A PHl1-PH12 combination (in that or­
der) is known as a "T" state, and is the basis for
386 SX bus cycles.

3.1.2 386™ SX CPU/82385SX RESET (RESET)

This input resets the 82385SX, bringing it to an initial
known state, and is driven by the same source that
drives the 386 SX RESET input. A reset effectively
flushes the cache by clearing all cache directory tag
valid bits. The falling edge of RESET is synchronized
to CLK2, and used by the 82385SX to properly es-
tablish the phase of its internal clock. (See Figure II
3-2.) Specifically, the second internal phase follow-
ing the falling edge of RESET is PHl2.

290222-10

Figure 3·1. CLK2 and Internal Clock

5-1019

intef 82385SX

CLK2

RESET

INTERNAL CLOCK

290222-11

Figure 3·2. Reset/Internal Phase Relationship

3.1.3 386™ SX CPU/82385SX ADDRESS BUS
(A1-A23}, BYTE ENABLES (BHE#, BLE#),
AND CYCLE DEFINITION SIGNALS
(M/10#, D/C#, W/R#, LOCK#)

The 82385SX directly connects to these 386 SX out­
puts. The 386 SX address bus is used in the cache
directory comparison to see it data referenced by
386 SX resides in the cache, and the byte enables
inform the 82385SX as to which portions of the data
bus are involved in a 386 SX cycle. The cycle defini­
tion signals are decoded by the 82385SX to deter­
mine the type of cycle the 386 SX is executing.

3.1.4 386™ SX CPU/82385SX ADDRESS
STATUS (ADS#) AND READY INPUT
(READYI#)

ADS#, a 386 SX output, tells the 82385SX that new
address and cycle definition information is available.
R EADYI #, an input to both the 386 SX (via the
386 SX READY# input pin) and 82385SX, indicates
the completion of a 386 SX bus cycle. ADS# and
READY!# are used to track the 386 SX bus state.

3.1.5 386™ SX NEXT ADDRESS REQUEST
{NA#)

This 82385SX output controls 386 SX pipelining. It
can be tied directly to the 386 SX NA# input, or it
can be logically "AND"ed with other 386 SX local
bus next address requests.

3.1.6 READY OUTPUT (READYO#) AND BUS
READY ENABLE (BRDYEN#)

The 82385SX directly terminates all but two types of
386 SX bus cycles with its READYO# output.
386 SX local bus cycles must be terminated by the
local device being accessed. This includes devices
decoded using the 82385SX LBA# signal and 387
accesses. The other cycles not directly terminated
by the 82385SX are 82385SX local bus reads, spe-

cifically cache read misses and non-cacheable
reads. (Recall that the 82385SX forwards and runs
such cycles on the 82385SX bus.) In these cycles
the signal that terminates the 82385SX local bus ac­
cess is BREADY# which is gated through to the
386 SX local bus such that the 386 SX and 82385SX
local bus cycles are concurrently terminated.
BR DYEN# is used to gate the BREADY# signal to
the 386 SX.

3.2 Cache Control Signals

These 82385SX outputs control the external 16 KB
cache data memory.

3.2.1 CACHE ADDRESS LATCH ENABLE
(CALEN)

This signal controls the latch (typically an F or AS
series 7 4373) that resides between the low order
386 SX address bits and the cache SAAM address
inputs. (The outputs of this latch are the "cache ad­
dress" described in the previous chapter.) When
CALEN is high the latch is transparent. The falling
edge of CALEN latches the current inputs which re­
main applied to the cache data memory until CALEN
returns to an active high state.

3.2.2 CACHE TRANSMIT/RECEIVE (CT/R#)

This signal defines the direction of an optional data
transceiver (typically an F or AS series 7 4245) be­
tween the cache and 386 SX data bus. When high,
the transceiver is pointed towards the 386 SX local
data bus (the SRAMs are output enabled). When
low, the transceiver points towards the cache data
memory. A transceiver is required if the cache is de­
signed with SRAMs that lack an output enable con­
trol. A transceiver may also be desirable in a system
that has a heavily loaded 386 SX local data bus.
These devices are not necessary when using
SRAMs which incorporate an output enable.

5-1020

intef 82385SX

3.2.3 CACHE CHIP SELECTS (CSO#, CS1#)

These active low signals tie to the cache SRAM chip
selects, and individually enable both bytes of the 16-
bit wide cache. CSO# enables DO-D7 and CS1 #
enables D8-D15. During read hits, both bytes are
enabled regardless of whether or not the 386 SX
byte enables are active. (The 386 SX ignores what it
did not request.) Also, both cache bytes are en~bled
in a read miss so as to update the cache with a
complete line (word). In a write hit, only the cache
bytes that correspond to active byte ena~les are se­
lected. This prevents cache data from being corrupt­
ed in a partial word write.

3.2.4 CACHE OUTPUT ENABLES
(COEA#, COEB#)
AND WRITE ENABLES
(CWEA#, CWEB#)

COEA # and COEB # are active low signals which
tie to the cache SRAM or Transceiver outp!jt en­
ables and respectively enable cache bank A or B.
The state of DEFOE# (define cache output enable),
an 82385SX configuration input, determines the
functional definition of COEA# and CQEB#.

If DEFOE# = V1L. in a two-way set associative
cache either COEA# or COEB# is active during
read hit cycles only, depending on which bank is
selected. In a direct mapped cache, both are activat­
ed during read hits, so the designer is fr~e to use
either one. This COEx# definition best suits cache
SRAMs with output enables.

If DEFOE# = V1H, COEx# is active during a read
hit read miss (cache update) and write hit cycles
oniy. This COEx# definition best suits cache
SRAMs without output enables. In such systems,
transceivers are needed and their output enables
must be active for writing, as well as reading, the
cache SRAMs.

CWEA # and CWEB # are active low signals which
tie to the cache SRAM write enables, and respec­
tively enable cache bank A or B to receive data from
the 386 SX data bus (386 SX write hit or read miss
update). In a two-way set associ~tive ca~he, ?ne or
the other is enabled in a read miss or write hit. In a
direct mapped cache, both are activated, so the de­
signer is free to use either one.

The various cache configurations supported by the
82385SX are described in Section 4.2.1.

3.3 386™ SX Local Bus Decode Inputs

These 82385SX inputs are generated by decoding
the 386 SX address and cycle definition lines. These

active low inputs are sampled at the end of the first
state in which the address of a new 386 SX cycle
becomes available. (T1 or first T2P.)

3.3.1 386™ SX LOCAL BUS ACCESS (LBA#)

This input identifies a 386 SX access as directed to
a resource (other than the cache) on the 386 SX
local bus. (The 387 SX Math Coprocessor is consid­
ered a 386 SX local bus resource, but LBA # need
not be generated as the 82385SX internally decodes
387 SX accesses.) The 82385SX simply ignores
these cycles. They are neither forwarded to the sys­
tem nor do they affect the cache or cache directory.
Note that LBA # has priority over all other types of
cycles. If LBA# is asserted, the cycle is interpreted
as a 386 SX local bus access, regardless of the cy­
cle type or status of NCA #. This allows any 386 SX
cycle (memory, 1/0, interrupt acknowledge, etc.) to
be kept on the 386 SX local bus if desired.

3.3.2 NON-CACHEABLE ACCESS (NCA#)

This active low input identifies a 386 SX cycle as
non-cacheable. The 82385SX forwards non-cache­
able cycles to the 82385SX local bus and runs them.
The cache and cache directory are unaffected.

NCA # allows a designer to set aside a portion of
main memory as non-cacheable. Potential applica- El
tions include memory-mapped 1/0 and systems
where multiple masters access dual ported memory
via different busses. Another possibility makes use
of the 386 SX DIC# output. The 82385SX by de-
fault implements a unified code and data cache, but
driving NCA# directly by Dl_C# creates a ~ata only
cache. If DIC# is inverted first, the result 1s a code
only cache.

3.4 82385SX Local Bus Interface
Signals

The 82385SX presents an "386 SX-like" front en~ to
the system, and the signals discussed in this section
are 82385SX local bus equivalents to actual 386 SX
signals. These signals are named with respect to
their 386 SX counterparts, but with the letter "B"
appended to the front.

Note that the 82385SX itself does not have equiva­
lent output signals to the 386 SX data bus (DO-D15)
address bus (A 1-A23), and cycle definition signals
(M/10#, DIC#, W/R#). The 82385SX data ~us
(BDO-BD15) is actually the system side of a latching
transceiver, and the 82385SX address bus and cycle
definition signals (BA1-BA23, BM/IQ#, BD/C#,

5-1021

intJ 82385SX

BW/R#) are the outputs of an edge-triggered latch.
The signals that control this data transceiver and ad­
dress latch are discussed in Section 3.5.

3.4.1 82385SX BUS BYTE ENABLES
(BBHE #, BBLE #)

BBHE# and BBLE# are the 82385SX local bus
equivalents to the 386 SX byte enables. In a cache
read miss, the 82385SX drives both signals low, re­
gardless of whether or not the 386 SX byte enables
are active. This insures that a complete line (word) is
fetched from main memory for the cache update. In
all other 82385SX local bus cycles, the 82385SX du­
plicates the logic levels of the 386 SX byte enables.
The 82385SX tri-states these outputs when it is not
the current bus master.

3.4.2 82385SX BUS LOCK (BLOCK#)

BLOCK# is the 82385SX local bus equivalent to the
386 SX LOCK# output, and distinguishes between
locked and unlocked cycles. When the 386 SX runs
a locked sequence of cycles (and LBA# is negated),
the 82385SX forwards ·and runs the sequence on
the. 82385SX local bus, regardless of whether any
locations referenced in the sequence reside in the
cache. A read hit will be run as if it is a read miss, but
a write hit will update the cache as well as being
completed to system memory. In keeping with
386 SX behavior, the .82385SX does not allow an­
other master to interrupt the sequence. BLOCK# is
tri~stated when the 82385SX is not the current bus
master.

3.4.3 82385SX BUS ADDRESS STATUS
(BADS#)

BADS# is the 82385SSX local bus equivalent of
ADS#, and indicates that a valid address (BA 1-
BA23, BBHE #, BBLE #) and cycle definition (BM/
10#, BW/R#, BD/C#) are available. It is asserted
in BT1 and BT2P states, and is tri-stated when the
82385SX does not own the bus.

3.4.4 82385SX BUS READY INPUT (BREADY#)

82385SX local bus cycles are terminated by
BREADY#, just as 386 SX cycles are terminated by
the 386 SX READY# input. In 82385SX local bus
read cycles, BREADY# is gated by BRDYEN # onto
the 386 SX local bus, such that it terminates both
the 386 SX and 82385SX local bus cycles.

3.4.5 82385SX BUS NEXT ADDRESS REQUEST
(BNA#)

BNA# is the 82385SX local bus equivalent to the
386 SX NA# input, and indicates that the system is

prepared to accept a pipelined address and cycle
definition. If BNA # is asserted and the new cycle
information is available, the 82385SX begins a pipe­
lined cycle on the 82385SX local bus.

3.5 82385SX Bus Data Transceiver and
Address Latch Control Signals

The 82385SX data bus is the system side of a latch­
ing transceiver (typically for F or AS series 74646),
and the 82385SX address bus and cycle definition
signals are the outputs of an edge-triggered latch (F
or AS series 74374). The following is a discussion of
the 82385SX outputs that control these devices. An
important characteristic of these signals and the de­
vices they control is that they ensure that BDO­
BD15, BA1-BA23, BM/10#, BD/C# and BW/R#
reproduce the functionality and timing behavior of
their 386 SX equivalents.

3.5.1 LOCAL DATA STROBE (LDSTB), DATA
OUTPUT ENABLE (DOE#), AND BUS
TRANSMIT /RECEIVE (BT /R #)

These signals control the latching data transceiver.
BT /R # defines the transceiver direction. When
high, the transceiver drives the 82385SX data bus in
write cycles. When low, the transceiver drives the
386 SX data bus in 82385SX local bus read cycles.
DOE# enables the transceiver outputs.

The rising edge of LDSTB latches the 386 SX data
bus in all write cycles. The interaction of this signal
and the latching transceiver is 1:1sed to perform the
82385SX's posted write capability.

3.5.2 BUS ADDRESS CLOCK PULSE (BACP)
AND BUS ADDRESS OUTPUT ENABLE
(BAOE#)

These signals control the latch that drives BA 1 -
BA23, BM/IQ#, BW/R#, and BD/C#. In any
386 SX cycle that is forwarded to the 82385SX local
bus, the rising edge of BACP latches the 386 SX
address and cycle definition signals. BAOE # en­
ables the latch outputs when the 82385SX is the
current bus master and disables them otherwise.

3.6 Status and Control Signals

3.6.1 CACHE MISS INDICATION (MISS#)

This output accompanies cacheable read and write
miss cycles. This signal transitions to its active low
state when the 82385SX determines that a cache­
able 386 SX access is a miss. Its timing behavior

5-1022

intef 82385SX

follows that of the 82385SX local bus cycle defini­
tion signals (BM/10#, BD/C#, BW/R#) so that it
becomes available with BADS# in BT1 or the first
BT2P. MISS# is floated when the 82385SX does
not own the bus, such that multiple 82385SX's can
share the same node in multi-cache systems. (As
discussed in Chapter 7, this signal also serves a re­
served function in testing the 82385SX.)

3.6.2 WRITE BUFFER STATUS {WBS)

The latching data transceiver is also known as the
"posted write buffer". WBS indicates that this buffer
contains data that has not yet been written to the
system even though the 386 SX may have begun its
next cycle. It is activated when 386 SX data is
latched, and deactivated when the corresponding
82385SX local bus write cycle is completed
(BREADY#). (As discussed in Chapter 7, this signal
also serves a reserved function in testing the
82385SX.)

WBS can serve several functions. In multi-processor
applications, it can act as a coherency mechanism
by informing a bus arbiter that it should let a write
cycle run on the system bus so that main memory
has the latest data. If any other 82385SX cache sub­
systems are on the bus, they will monitor the cycle
via their bus watching mechanisms. Any 82385SX
that detects a snoop hit will invalidate the corre­
sponding entry in its local cache.

3.6.3 CACHE FLUSH {FLUSH)

When activated, this signal causes the 82385SX to
clear all of its directory tag valid bits, effectively
flushing the cache. (As discussed in Chapter 7, this
signal also serves a reserved function in testing the
82385SX.) The primary use of the FLUSH input is for
diagnostics and multi-processor support. The use of
this pin as a coherency mechanism may impact soft­
ware transparency.

The FLUSH input must be held active for at least 4
CLK (8 CLK2) cycles to complete the flush se­
quence. If FLUSH is still active after 4 CLK cycles,
any accesses to the cache will be misses and the
cache will not be updated (since FLUSH is active).

3. 7 Bus Arbitration Signals
(BHOLD and BHLDA)

In master mode, BHOLD is an input that indicates a
request by a slave device for bus ownership. The

82385SX acknowledges this request via its BHLDA
output. (These signals function identically to the
386 SX HOLD and HLDA signals.)

The roles of BHOLD and BHLDA are reversed for an
82385SX in slave mode. BHOLD is now an output
indicating a request for bus ownership, and BHLDA
an input indicating that the request has been grant­
ed.

3.8 Coherency (Bus Watching)
Support Signals
(SA 1-SA23, SSTB #, SEN)

These signals form the 82385SX's bus watching in­
terface. The Snoop Address Bus (SA 1 -SA23) con­
nects to the system address lines if masters reside
at both the system and 82385SX local bus levels, or
the 82385SX local bus address lines if masters re­
side only at the 82385SX local bus level. Snoop
Strobe (SSTB#) indicates that a valid address is on
the snoop address inputs. Snoop Enable (SEN) indi­
cates that the cycle is a write. In a system with mas­
ters only at the 82385SX local bus level, SA 1-SA23,
SSTB #, and SEN can be driven respectively by
BA1-BA23, BADS#, and BW/R# without any sup­
port circuitry.

3.9 Configuration Inputs
(2W/D#, M/S#, DEFOE#)

These signals select the configurations supported
by the 82385SX. They are hardware strap options
and must not be changed dynamically. 2W/D# (2-
Way/Direct Mapped Select) selects a two-way set
associative cache when tied high, or a direct
mapped cache when tied low. MIS# (Master/Slave
Select) chooses between master mode (M/S# high)
and slave mode (M/S# low). DEFOE# defines the
functionality of the 82385SX cache output enables
(COEA# and COEB#). DEFOE# allows the
82385SX to interface to SRAMs with output enables
(DEFOE# low) or to SRAMs requiring transceivers
(DEFOE# high).

3.10 Reserved Pins (RES)

Some pins on the 82385SX are reserved for internal
testing and future cache features. To assure com­
patibility and functionality, these reserved pins must
be configured as shown in Table 3.10.1.

5-1023

I

intJ 82385SX

Table 3.10.1. Reserved Pin Connections

PGA PQFP
Logic Level

Pin Location Pin Location

A12 1 High
A13 131 High
B10 7 High
B11 3 High
B12 132 High
C10 4 High
C1 i 2 High
G13 117 High
H12 110 High
J3 60 High
J14 109 High
K1 58 High
K2 59 High
K3 62 High
L1 61 High
L2 63 High
L3 64 High
L12 100 No Connect
L14 102 High
M13 101 No Connect
N6 75 No Connect
P5 76 No Connect

4.0 386 SX LOCAL BUS INTERFACE

The following is a detailed description of how the
82385SX interfaces to the 386 SX and to 386 SX
local bus resources. Items specifically addressed
are the interfaces to the 386 SX, the cache SRAMs,
and the 387 SX Math Coprocessor.

The many timing diagrams in this and the next chap­
ter provide insight into the dual pipelined bus struc­
ture of a 386 SX CPU/82385SX system. It's impor­
tant to realize, however, that one need not know
every possible cycle combination to use the
82385SX. The interface is simple, and the dual bus
operation invisible to the 386 SX and system. To
facilitate discussion of the timing diagrams, several
conventions have been adopted. Refer to Figure
4-2A, and note that 386 SX bus cycles, 386 SX bus
states, and 82385SX bus states are identified along
the top. All states can be identified by the "frame
numbers" along the bottom, The cycles in Figure
4-2A include a cache read hit (CRDH), a cache read
miss (CROM), and a write (WT). WT represents any
write, cacheable or not. When necessary to distin­
guish cacheable writes, a write hit goes by CWTH
and a write miss by CWTM. Non-cacheable system
reads go by SBRD. Also, it is assumed that system
bus pipelining occurs even though the BNA# signal
is not shown. When the system pipeline begins is a
function of the system bus controller.

386 SX bus cycles can be tracked by ADS# and
READYI#, and 82385SX cycles by BADS# and
BREADY#. These four signals are thus a natural
choice to help track parallel bus activity. Note in the
timing diagrams that 386 SX cycles are numbered
using ADS# and READYI#, and 82385SX cycles
using BADS# and BREADY#. For example, when
the address of the first 386 SX cycle becomes avail­
able, the corresponding assertion of ADS# is
marked "1 ", and the READYI # pulse that termi­
nates the cycle is marked "1" as well. Whenever a
386 SX cycle is forwarded to the system, its number
is forwarded as well so that the corresponding
82385SX bus cycle can be tracked by BADS# and
BREADY#.

The "N" value in the timing diagrams is the assumed
number of main memory wait states inserted in a
non-pipelined 82385SX bus cycle. For example, a
non-pipelined access to N = 2 memory requires a to­
tal of four bus states, while a pipelined access re­
quires three. (The pipeline advantage effectively hid­
es one main memory wait state.)

4. 1 Processor Interface

This section presents the 386 SX CPU/82385SX
hardware interface and discusses the interaction
and timing of this interface. Also addressed is how to
decode the 386 SX address bus to generate the
82385SX inputs LBA# and NGA#. (Recall that
LBA# allows memory and/or 1/0 space to be set
aside for 386 SX local bus resources; and NGA#
allows system memory to be set aside as non­
cacheable.)

4.1.1 HARDWARE INTERFACE

Figure 4-1 is a diagram of a 386 SX CPU/82385SX
system, which can be thought of as three distinct
interfaces. The first is the 386 SX CPU/82385SX in­
terface (including the Ready Logic). The second is
the cache interface, as depicted by the cache con­
trol bus in the upper left corner of Figure 4-1. The
third is the 82385SX bus interface, which includes
both direct connects and signals that control the
74374 address/cycle definition latch and 74646
latching data transceiver. (The 82385SX bus inter­
face is the subject of the next chapter.)

As seen in Figure 4-1 .. the 386 SX CPU/82385SX
interface is a straightforward connection. The only
necessary support logic is that required to sum all
ready sources.

5-1024

TO
CACHE

.,,
c
c ...
CD ..
I

:-"'
w c»
en
i!
en

~ ><
0 0 .,,

I\) c U1
c» ..,
w c» en
~
5' -CD
:::i
DI,

2

12 or 13

~6
-,

CAL EN 82385SX CLK2

CT/R# RESET rr
..L 2

CSO-CS1# ADS#L...
..L 2

COEA#, COEB# . NA#
~2
T CWEA#, CWEB# LOCK#

M/10#, D/C#, W/R#

BHE# , BLE#

A1 -A23

....J BHOLD READYI#

BHLDA READYO#

l

..L 3

..L 2

23

16
rr

1

CLK2
386™ sx

RESET

ADS#

....J NA#

LOCK#

M/10#, D/C#, W/R#

BHE#-BLE#

A1 -A23

DO-D16

""I READY#

:::
'

}
F'ROM
OSC/RESET
CIRCUIT

WBS BRDYEN#

~~
F'LUSH BREADY#

MISS# BACP

BLOCK# BAOE# 1---i
.....i BNA# LDSTB I-

{.) '

ER
.TM SX LB
DY r---1 BADS# DOE# h

r--1 BBHE#- BBLE# BT/R#

I

j ~+ ~ l 1!: _]
!+CAB A SAB CP D CP D

'. ~OE# OE# OE#
4 DIR 2x646 3x374 374 f SBA CBA B Q Q

2 . BM/10#,

I' ':' 16 BDO-BD16 30 BAI -BA23 3 BD/C#,
BREAD' .. BW/R#

82385SX LOCAL BUS

290222-12

II

l

OI)
I\)
Co)
OI)

~ x

intJ 82385SX

4.1.2 READY GENERATION

Note in Figure 4·1 that the ready logic consists of
two gates. The upper three-input AND gate (shown
as a negative logic OR) sums all 386 SX local bus
ready sources. One such source is the 82385SX
READYO# output, which terminates read hits and
posted writes. The output of this gate drives the
386 SX READY# input and is monitored by the
82385SX (via READY!#) to track the 386 SX bus
state.

When the 82385SX forwards a 386 SX read cycle to
the 82385SX bus (cache read miss or non-cache­
able read), it does not directly terminate the cycle via
READYO#. Instead, the 386 SX and 82385SX bus
cycles are concurrently . terminated by a system
ready source. This is the purpose of the additional
two-input OR gate (negative logic AND) in Figure
4-1. When the 82385SX forwards a read to the
82385SX bus, it asserts BRDYEN # which enables
the system ready signal (BREADY#) to directly ter­
minate the 386 SX bus cycle.

Figure 4-2A and 4-2B illustrate the behavior of the
signals involved in ready generation. Note in cycle 1
of Figure 4-2A that the 82385SX READYO# directly
terminates the hit cycle. In cycle 2, READYO# is not
activated. Instead the 82385SX BRDYEN # is acti­
vated in BT2, BT2P, or BT21 states such that
BREADY# can concurrently terminate the 386 SX
and 82385SX bus cycles (frame 6). Cycle 3 is a post­
ed write. The write data becomes available in T1 P
(frame 7), and the address, data, and cycle definition
of the write are latched in T2 (frame 8). The 386 SX
cycle is terminated by READYO# in frame 8 with no
wait states. The 82385SX, however, sees the write
cycle through to completion on the 82385SX bus
where it is terminated in frame 10 by BREADY#. In
this case, the BREADY# signal is not gated through
to the 386 SX. Refer to Figures 4-2A and 4-2B for
clarification.

4.1.3 NA# AND 386 SX LOCAL BUS
PIPELINING

Cycle 1 of Figure 4-2A is a typical cache read hit.
The 386 SX address becomes available in. T1, and
the 82385SX uses this address to determine if the
referenced data resides in the cache. The cache
look-up is completed and the cycle qualified as a hit
or miss in T1 . If the data resides in the cache, the
cache is directed to drive the 386 SX data bus, and
the 82385SX drives its READYO# output so the cy­
cle can be terminated at the end of the first T2 with
no wait states.

Although cycle 2 starts out like cycle 1, at the end of
T1 (frame 3), it is qualified as a miss and forwarded
to the 82385SX bus. The 82385SX bus cycle begins

one state after the 386 SX bus cycle, implying a one
wait state overhead associated with cycle 2 due to
the look-up. When the 82385SX encounters the
miss, it immediately asserts NA#, which puts the
386 SX into pipelined mode. Once in pipelined
mode, the 82385SX is able to qualify a 386 SX cycle
using the 386 SX pipelined address and control sig­
nals. The result is that the cache look-up state is
hidden in all but the first of a contiguous sequence
of read misses. This is shown in the first two cycles,
both read misses, of Figure 4-28. The CPU sees the
look-up state in the first cycle, but not .in the second.
-In fact, the second miss requires a total of only two
states, as not only does 386 SX pipelining hide the
look-up state, but system pipelining hides one of the
main memory wait states. (System level pipelining
via BNA# is discussed in the next chapter.) Several
characteristics of the 82385SX's pipelining of the
386 SX are as follows:

- The above discussion applies to all system
reads, not just cache read misses.

- The 82385SX provides the fastest possible
switch to pipelining, T1 -T2-T2P. The exception to
this is when a system read follows a posted
write. In this case, the sequence is T1-T2-T2-
T2P. (Refer to cycle 4 of Figure 4-2A.) The num­
ber of T2 states is dependent on the number of
main memory wait states.

- Refer to the read hit in Figure 4-2A (cycle 1), and
note that NA# is actually asserted before the
end of T1, before the hit/miss decision is made.
This is of no consequence since even though
NA# is sampled active in T2, the activation of
READYO# in the same T2 renders NA# a
"don't care". NA# is asserted in this manner to
meet 386 SX timing requirements and to insure
the fastest possible switch to pipelined mode.

- All read hits and the majority of writes can be
serviced by the 82385SX with zero wait states in
non-pipelined mode, and the 82385SX accord­
ingly attempts to run all such cycles in non-pipe­
lined mode. An exception is seen in the hit cycles
(cycles 3 and 4) of Figure 4-2B. The 82385SX
does not know soon enough that cycle 3 is a hit,
and thus sustains the pipeline. The result is that
three sequential hits are required before the
386 SX is totally out of pipelined mode. (The
three hits look like T1P-T2P, T1P-T2, T1-T2.)
Note that this does not occur if the number of
main memory wait states is equal to or greater
than two.

As far as the design is concerned, NA# is generally
tied directly to the 386 SX NA# input. However, oth­
er local NA# sources may be logically "AND"ed
with the 82385SX NA# output if desired. It is essen­
tial, however, that no device other than the 82385SX
drive the 386 SX NA# input unless that device re-

5-1026

l
386rw sx CYCLE

1

CRDH

1

CROM

1

WT

1

CROM

3BS™ SX BUS STATE T1 T2 T1 T2 T2P T2P T1 P T2 T1 T2 T2 T2P ~ I 82385SX BUS STATE BTI I BTI BTI I BT1 I BT2 I BT21 BTI I BT1 BT2 I BT2P I BT1 p I BT21

§; CLK2
ID

i"'
~I CLK

:ti
~I ADS#

~
() BRDYEN#
~ ~

01 • N , m ~ o :ti READYO# ~
N 0 ~
~ < w

~ READY!# - I)(
~

~ I NA#
CL
z
~I BADS#

z
II I BREADY# - .

~ N~~A~~ I 1 I 2 I 3 I 4 I s I sl 7 I a I g I 1 o I 11 I 12 I 13 I 14 I 1 s I 1 s
B 290222-13

•

l
386™ sx CYCLE I CROM I CROM I CRDH I CRDH

386™ SX BUS STATE T1 T2 T2P T2P T1 P T2P T1 P T2P T1 P T2

~I 82385SX BUS STATE BTI I BT1 I BT2 I BT2P BT1 p I BT21 BTI I BTI BTI I BTI

c ...
ID ..
I

N
!I'
::u
£:I ADS#

0
<
0 -··- ·-··11 ..., Q)

C11 ~ N
..... m c.>
0 ::u READ YO# Q)

I\) 0
UI

O> < en
m READ YI#

><
z ...,
!I I NA#
a.
z
>I BADS# ...,
z. BREADY#

.: I FRAME I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16
NUMBER 290222-14

intef 82385SX

sides on the 386 SX local bus in space decoded via
L8A #. If desired, the 823B5SX NA# output can be
ignored and the 3B6 SX NA# input tied high. The
386 SX NA# input should never be tied low, which
would always keep it active.

4.1.4 LBA# AND NCA# GENERATION

The B23B5SX inputs signals L8A# and NCA# are
generated by decoding the 3B6 SX address {A 1 -
A23) and cycle definition (W/A#, DIC#, M/10#)
lines. The B23B5SX samples them at the end of the
first state in which they become available, which is
either T1 or the first T2P cycle. The decode configu­
ration and timings are illustrated respectively in Fig­
ures 4-3A and 4-38.

4.2 Cache Interface

The following is a description of the external data
cache and B2385SX cache interface.

386™ sx

4.2.1 CACHE CONFIGURATIONS

The B23B5SX controls the cache memory via the
c~ntrol signals shown in Figure 4-1 . These signals
dnve one of four possible cache configurations, as
depicted in Figures 4-4A through 4-4D. Figure 4-4A
shows a direct mapped cache organized as BK
words. The likely design choice is two BK x 8
SAAMs. Figure 4-48 depicts the same cache memo­
ry but with a data transceiver between the cache
and 3B6 SX data bus. In this configuration, CT /R #
controls the transceiver direction, COEA# drives the
transceiver output enable (COE8# could also be
used), and DEFOE# is strapped high. A data buffer
is required if the chosen SAAM does not have a
separate output enable. Additionally, buffers may be
used to ease SAAM timing requirements or in a sys­
tem with a heavily loaded data bus. (Guidelines for
SAAM selection are included in Chapter 6.)

Figure 4-4C depicts a two-way set associative cache
organized as two banks (A and 8) of 4K words each.
The likely design choice is eight 4K x 4 SRAMs. Fi­
nally, Figure 4-4D depicts the two-way organization
with data buffers between the cache memory and
data bus.

82385SX

ADDRESS AND " 386 Tt.l SX LOCAL __...
CYCLE DEFINITION NCA#,LBA#

SIGNALS -y BUS DECODE,..

290222-15

A. Decode Configuration

386™ SX BUS STATE Tl T2 T2 Tl T2 T2P TlP T2

ADS#

ADDRESS &: CYCLE DEF.

LBA#

B. Decode Timing
290222-16

Figure 4-3. NCA #, LBA # Generation

5-1029

I

intJ

8Kx

CACHE
SRAM

(8Kx8)

82385SX

2x373

''r----tQ D,~p--o---~

OE# E A1-A13

CALEN

2

Figure 4-4A. Direct Mapped Cache without Data Buffers

8Kx

CACHE
SRAM

(8Kx8)

CSO#­
CS 1 #

2x373

"r----tQ D '-r--+-----1

E

OE#DIR

4

Figure 4-4B. Direct Mapped Cache with Data Buffers

5-1030

82385SX
CACHE
CONTROL

DEFOE#= V1L

82385SX
CACl;IE
CONTROL

290222-17

DEFOE# = V1H

290222-18

intef

4Kx4

CACHE SRAM
BANK A
(4K x 4)

82385SX

2x373

0nr--t----t

OE# E A1-A12

DATAl'l.o...-.....,..-.---------.......,,/1

2

2

CSO#- OE# WE#
CS1#

CACHE SRAM
BANK B

(4Kx 16)

DATA

D0-016 <

~

'~-----------to-./

D0-016

CA LEN

82385SX
CACHE
CONTROL

DEFOE#~ V1L

Figure 4-4C. Two-Way Set Associative Cache without Data Buffers

5-1031

290222-19

intef 82385SX

4Kx4
2x373

Q D,,r--t---~

CACHE SRAM
BANK A
{4Kx4)

A1-A12

CSO#­
CS 1 #

2

2

CSO#­
CS 1 #

OE#DIR

WE#

OE# DIR

DO-D16

CAL EN

CSO#-CS1#j
CT/R#

CWEB#

COEB#

82385SX
CACHE
CONTROL

DEFOE# = VtH

DATA ,,......----..riA B '.-----+-,/
2x245 DO-D16

290222-20

Figure 4-4D. Two-Way Set Associative Cache with Data Buffers

4.2.2 CACHE CONTROL ... DIRECT MAPPED

Figure 4-5A illustrates the timing of cache read and
write hits, while Figure 4-58 illustrates cache up­
dates. In a read hit, the cache output enables are
driven from the beginning of T2 (cycle 1 of Figure
4-5A). If at the end of T1 the cycle is qualified as a
cacheable read, the output enables are asserted on
the assumption that the cycle will be a hit. (Driving
the output enables before the actual hit/miss deci­
sion is made eases SRAM timing requirements.)

Cycle 1 of Figure 4-58 illustrates what happens
when the assumption of a hit turns out to be wrong.
Note that the output enables are asserted at the be­
ginning of of T2, but then disabled at the end of T2.
Once the output enables are inactive, the 82385SX
turns the transceiver around (via CT /R #) and drives
the write enables to begin the cache update cycle.
Note in Figure 4-58 that once the 386 SX is in pipe­
lined mode, the output enables need not be driven
prior to a hit/miss decision, since the decision is
made earlier via.the pipelined address information.

5-1032

~oz
-1 els
J: J:'"
II II 9.1

Q&'
(') (')
:;r::r
CD CD

::E :D ,,,:..:
a co a.

i· ~i
1"'
en
i"'
n
Ill n
':z • :u • It
Ill
:I a.

Cf' ~
0
(,.) •
(,.) n

'< n

' 2
;
n
ii:
Ill
'a
'a • a.
z

II
....

368 TM SX CYCLE I
386™ SX BUS STATE
82385SX BUS STATE

I
CLK2

BADS#

BREADY#

CAL EN

CRDH CRDH

Tl I T2
BTI BTI

CWTH
(BYTE 1)

Tl I T2
BTI BT1

CS1# 1---+--...P.--+--P---'

CSO#

CWEA#. CWEB#

COEA#, COEB#

CT/R#

FRAME
NUMBER

+----+---i---+--i----

2 3 4 5 6

CWTH
(BYTE 0)

Tl I T2 I
BT2 BT2

7 8

T2
BT1

9

CROH

Tl I T2
BT2 BT2

10 11 12

N = Number of Non-Pipelined, main memory wait states. Must be greater than zero .

•
13 14 15 16

290222-21

l

CD ..,
(,)
CD
01 en
><

~~ 11 cf
~ 386™ sx CYCLE I CROM I CROM I CROM I CRDH

i 386™ sx BUS STATE T1 I T2 I T2P I T2P T1P I T2P TIP I T2P I T2P TIP I T2
'ifil B2385SX BUS STATE BTI BT1 BT2 BT2P BT1 P BT21 BTI BT2 BT21 BTI BTI
I»
a. CLK2

:!! I ~
ID "' Si CLK
CD ,.,.
a. I ADS#
~ .

(")
~ I READY!#
:::r
CD

~ BADS#

i i ·=-R------.1--thlil I th I ~ i
t CSO#, CS1#

! I CWEA#. CWEB#

.g
1 I COEA#. COEB#
a.
z

II I CT/R#

.= N~~~~~ I 1 I 2 I 3 I 4 I s I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 ·1 14 I 15 I 16

290222-22
N = Number of Non-Pipelined, main memory wait states. Must be greater than zero.

intef 82385SX

One consequence of driving the output enables low
in a miss before the hit/miss decision is made is that
since the cache starts driving the 386 SX data bus,
the 82385SX cannot enable the 7 4646 transceiver
(Figure 4-1) until after the cache outputs are dis­
abled. (The timing of the 74646 control signals is
described in the next chapter.) The result is that the
7 4646 cannot be enabled soon enough to support
N = 0 main memory ("N" was defined in Section 4.0
as the number of non-pipelined main memory wait
states). This means that memory which can run with
zero wait states in a non-pipelined cycle should not
be mapped into cacheable memory. This should not
present a problem, however, as a main memory sys­
tem built with N = O memory has no need of a cache.
(The main memory is as fast as the cache.) Zero
wait state memory can be supported if it is decoded
as non-cacheable. The 82385SX knows that a cycle
is non-cacheable in time not to drive the cache out­
put enables, and can thus enable the 7 4646 sooner.

In a write hit, the 82385SX only updates the cache
bytes that are meant to be updated as directed by
the 386 SX byte enables. This prevents corrupting
cache data in partial doubleword writes. Note in Fig­
ure 4-5A that the appropriate bytes are selected via
the cache byte select lines CSO# and CS1 #.In a
read hit, both select lines are driven as the 386 SX
will simply ignore data it does not need. Also, in a
cache update (read miss), both selects are active in
order to update the cache with a complete line
(word).

4.2.3 CACHE CONTROL ...
TWO-WAY SET ASSOCIATIVE

Figures 4-6A and 4-68 illustrate the timing of cache
read hits, write hits, and updates for a two-way set
associative cache. (Note that the cycle sequences
are the same as those in Figure 4-5A and 4-58.) In a
cache read hit, only one bank on the other is en­
abled to drive the 386 SX data bus, so unlike the
control of a direct mapped cache, the appropriate
cache output enable cannot be driven until the out­
come of the hit/miss decision is known. (This im­
plies stricter SAAM timing requirements for a two­
way set associative cache.) In write hits and read
misses, only one bank or the other is updated.

4.3 387 SX Interface

The 387 SX Math Coprocessor interfaces to the 386
SX just as it would in a system without an 82385SX.
The 387 SX READYO# output is logically "AND"ed
along with all other 386 SX local bus ready sources
(Figure 4-1), and the output is fed to the 387 SX
READY#, 82385SX READYI #, and 386 SX
READY# inputs.

The 386 SX uniquely addresses the 387 SX by driv­
ing M/10# low and A23 high. The 82385SX de­
codes this internally and treats 387 SX accesses in
the same way it treats 386 SX cycles in which LBA#
is asserted, it ignores them.

5.0 82385SX LOCAL BUS AND
SYSTEM. INTERFACE

The 82385SX system interface is the 82385SX Lo­
,:;al Bus, which presents a "386 SX-like" front end to
the system. The system ties to it just as it would to a
386 SX. Although this 386 SX-like front end is func­
tionally equivalent to a 386 SX, there are timing dif­
ferences which can easily be accounted for in a sys­
tem design.

The following is a description of the 82385SX sys­
tem interface. After presenting the 82385SX bus
state machine, the 82385SX bus signals are de­
scribed, as are techniques for accommodating any
differences between the 82385SX bus and 386 SX
bus. Following this is a discussion of the 82385SX's
condition upon reset.

5.1 The 82385SX Bus State Machine

5.1.1 MASTER MODE

Figure 5-1 A illustrates the 82385SX bus state ma- I
chine when the 82385SX is programmed in master
mode. Note that it is almost identical to the 386 SX
bus state machine, only the bus states are 82385SX
bus states (BT1 P, BTH, etc.) and the state tran-
sitions are conditioned by 82385SX bus inputs
(BNA# BHOLD, etc.). Whereas a "pending request"
to the 386 SX state machine indicates that the
386 SX execution or pref etch unit needs bus access,
a pending request to the 82385SX state machine
indicates that a 386 SX bus cycle needs to be for­
warded to the system (read miss, non-cacheable
read, write, etc.). The only difference between the
state machines is that the 82385SX does not imple-
ment a direct BT1 P-BT2P transition. If BNA # is as-
serted in BT1 P, the resulting state sequence is
BT1 P-BT21-BT2P. The 82385SX's ability to sustain a
pipeline is not affected by the lack of this transition.

5.1.2 SLAVE MODE

The 82385SX's slave mode state machine (Figure
5-1 B) is similar to the master mode machine except
that now tran:iitions are conditioned by BHLDA rath­
er than BHOLD. (Recall that in slave mode, the roles
of BHOLD and BHLDA are reversed from their mas­
ter mode roles.) Figure 5-2 clarifies slave mode state
machine operation. Upon reset, a slave mode

5-1035

'.!! co c ...
ID

i"
~
0
DI
()
':/'
ID
:::0
ID
DI
a.
DI
:I a.
:e
:::!. -~ ID
0

0 "< c.:> n. Ol ID
Ill

1
=e
0

:e
DI

"<
J>
Ill
Ill
0
!l
DI = <
ID

z
II ... -

386 TM sx CYCLE I
386™ SX BUS STATE T1
82385SX BUS STATE BTI

CLK2

CLK

ADS#

READYI#

BADS#

BREADY#

NA#

BACP

DOE#

MISS#

FRAME
NUMBER

I

CROM

T2 I T2P
BT1 BT2

2 3 4 5 6

CROM I CROM I
T1 P T2P T2P T1 P T2P
BT1 I BT2 I BT2P BT1 p I BT21

7 8 9 10 11 12

N ~ Number of Non-Pipelined, main memory wait states. Must be greater than zero.

13 14 15 16
290222-23

l

CCI
N
c.:I
CCI
CJ'I en
><

:!!
ca
c ..
(D

f'
OI
!JI
0
DI
(')
:r
(D

c x
DI
(D

0
'<
Q.

~ (D

0 l w
...... :e

0

::e
DI
'<
U!
(D ...
)>
Ill
Ill
0

~-
::!:
< (D

z
II

~

386™ sx CYCLE I
386 SX BUS STATE T1

82385SX BUS STATE BTI
I

CLK2

CLK

ADS#

READYI#

BADS#

BREADY#

CA LEN

CRDM
(UPDATE A)
T2 I T2P
BT1 BT2

CSO#, CS1# -----

CWEA#

CWEB#

COEA#

COEB#

CT/R

FRAME
NUMBER

2 3 4 5 6

CRDM
(UPDATE A)

T1 p I T2P I T2P
BT1 BT2 BT21

7 8 9

CRDH,A

T1P I T2
BTI BTI

10 11 12

N ~ Number of Non-Pipelined, main memory wait states. Must be greater than zero .

•
13 14 15 16

290222-24

cl

QI)
N
(,)
QI)
UI
(/)

><

intJ 82385SX

82385SX enters the BTH state. When the 386 SX of
the slave 82385SX subsystem has a cycle that
needs to be forwarded to the system, the 82385SX
moves to BTI and issues a hold request via BHOLD.
It is important to note that a slave mode 82385SX
does not drive the bus in a BTI state. When the mas­
ter or bus arbiter returns BHLDA, the slave 82385SX
enters BT1 and runs the cycle. When the cycle is
completed, and if no additional requests are pend­
ing, the 82385SX moves back to BTH and disables
BHOLD.

BHOLD ASSERTED

If, while a slave 82385SX is running a cycle, the
master or arbiter drops BHLDA (Figure 5-28), the
82385SX will complete the current cycle, move to
BTH and remove the BHOLD request. If the
82385SX still had cycles to run when it was kicked
off the bus, it will immediately assert a new BHOLD
and move to BTI to await bus acknowledgement.
Note, however, that it will only move to BTI if BHLDA
is negated, insuring that the handshake sequence is
completed.

ALWAYS
BT1P

REQUEST PEN.DING •
BHOLD NEGATED BREADY# ASSERTED•

(BLOCK# ASSERTED+ BHOLD NEGATED)•
• REQUEST PENDING

BREADY# ASSERTED
• BHOLD NEGATED

• REQUEST PENDING

BREADY# NEGATED
• BNA# NEGATED

BREADY# NEGATED

Figure 5·1A. 82385SX Local Bus State Machine-Master Mode

5-1038

290222-25

::!! cc
c
;
Cf'
!JI
00 ...,
Co)
00

'" Ch
><
r-
0 n
!!!..
m c
I/)

~
0
C.:> co Ch -DI -ID

iii:
DI n
::r s·

1
DI
<
ID
iii:
0
a.
ID

I\)

2
~
I

~

"' "' ~
0
-<

"" z

~
13

BHLDA NEGATED

"' "' "' :c~"' ,... z l>
oOO
l>"'-<
z"'"" ..,oz
C> c..,
~~~ .., ........ 
.s•s 

BREADY# NEGATED 
•REQUEST PENDING 
• BHLDA ASSERTED 

BREADY# NEGATED 
• BNA # ASSERTED 
• BHLDA NEGATED 

• REQUEST PENDING 

"' .. "' 
"'"'"' .., :cl> 
o r-o 
co-< ..,,,.,.,. 
~~~ 
,, "' "' ,.,..,..,
Z::o::o
2~r;:t 5oc

. ~
!?l~
J>O
""-< z"" ..,z
C>..,

~£
o"' 0

"' :c ,...
~
l>

"' "' ..,
"',
0

.. ~
"'"'"' g~~, ,'f?:. ..,,,.,.,. ::E
~>> ~
;:g ~ ~ ti)

z"'"'
2~~ Boo

(NO REQUEST+
BHLDA ASSERTED)

• BNA # ASSERTED •
BREADY# NEGATED

BNA # ASSERTED

BREADY# ASSERTED

Iii

"' z
l>

"" z ..,
~,
0

REQUEST PENDING •
BHLDA NEGATED

z
0

"' "'"' "'o::u ,... c.., o,..,,,.
0 UIO
"' -<
"" +,.,.
>m,,.
"' :c "' "' ,... "' "10..,
::OJ>:;o
r;:1zr;:t
o..,o
~.

.§ .
BREADY# ASSERTED•

(NO REQUEST+
BHLDA NEGATED)

BREADY# ASSERTED•
(NO REQUEST+

BHLDA NEGATED)•
BLOCK# NEGATED

"' [;l ..,
l>

"' "' ,.,
~ ..,
0

z
0

"' 8
c ,.,
~
+

"' :c ,...
0
l>

l>

"' "' ,.,
"' ,.,
0

l

CD ...,
Co)
CD
CTI
(/)

><

intJ 82385SX

BTH BTI BTI BT1 BT2 BT2 BTH BTH

BHOLD

BHLDA

290222-27

A. Normal Slave Mode Sequence

BTH BTI BTI BT1 BT2 BT2 BT1 BT2 BT2 BTI BTI BTI BT1

BHOLD

BHLDA

t
ARBITER

DROPS BHLDA
290222-28

B. Sequence of Events if Master or Arbiter Drops BHLDA

Figure 5·2. BHOLD/BHLDA-Slave Mode

There are several cases in which a slave 82385SX
will not immediately release the bus if BHLDA is
dropped. For example, if BHLDA is dropped during a
BT2P state, the 82385SX has already committed to
the next system bus pipelined cycle and will execute
it before releasing the bus. Also, the 82385SX will
complete a sequence of locked cycles before re­
leasing the bus. This should not present any prob­
lems, as a properly designed arbiter will not assume
that the 82385SX has released the bus until it sees
BHOLD become inactive.

5.2 The 82385SX Local Bus

The 82385SX bus can be broken up into two groups
of signals: those which have direct 386 SX counter­
parts, and additional status and control signals pro­
vided by the 82385SX. The operation and interaction
of all 82385SX bus signals are depicted in Figures
5-3A through 5-3L for a wide variety of cycle se­
quences. These diagrams serve as a reference for
the 82385SX bus discussion and provide insight into
the dual bus operation of the 82385SX.

5-1040

intef 82385SX

386 TM SX CYCLE I SBRD SBRD SBRD SBRD

I I 386TM SX BUS STAlE T1
I ~~1 I

T2P TIP I T2P TIP I T2P T1P T2P I T2P T2P
82385SX BUS STAlE BTI BT2 en BT2 en BT2 BTH BTH en BT2

CLK2

CLK

ADS/I

READYlll

BADS#

BREADY#

NA#

BACP

BADE#

DOE#

FRAME 2 3 4 5 7 8 9 1.0 11 12 13 14 15 16
NUMBER

290222-29

Figure 5~3A. Consecutive SBRD Cycles-(N = 0)

386 TM sx CYCLE I CROM I CROM I CROM I CROM I • 386TM SX BUS STAlE T1 IT21T2P T2P T1P T2P T1P I T2P I T2P TIP I T2P
82385SX BUS STAlE BTI BT1 BT2 I BT2P BT1 p I BT21 en BT2 BT2P BT1 P BT21

CLK2

CLK

ADS/I

READYI#

BADS#

BREADY#

NA#

·BACP

DOE#

MISS#

FRAME 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16
NUMBER

290222-30

Figure 5·3B. Consecutive CRDM Cycles-(N = 1)

5-1041

intJ 82385SX

386 TM sx CYCLE I SBRD I CROM 1 · SBRD I
386TM SX BUS STATE T1 T2 I T2P I T2P I T2P T1P I T2P I T2P T1P I T2P I T2P
82385SX BUS STATE en BT1 BT2 BT2P BT2P BT1 P BT21 BT2P BT1 P BT21 BT2P

CLK2

CLK

ADS#

READY!#

BADS#

BREADY#

NA/I

BACP

DO[#

MISS#

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NUMBER

290222-31

Figure 5-3C. SBRD, CRDM, SBRD-(N = 2)

386 TM sx CYCLE I SBRD I SBRD I SBRD
386TM SX BUS STATE T1 T2 I T2.P I T2P T2P I T2P T1P I T2P T1P T2P l~I T2P I T2P I 82385SX BUS STATE BTH BTH BTH BTf BT2 BT2P BT1 P BT21 BTH BTH BT2 BT2P

CLK2

Cll<

AOS#

READY!#

BADS/I

BREADY#

BACP

BAOE#

DOE#

BHOLD

BHLDA

FRAME 2 3 4 5 6 7 8. 9 10 11 12 13 14 15 16
NUMBER

290222-32

Figure 5·3D. SBRD Cycles Interleaved with BTH State....-(N = 1)

5-1042

intef

386 TM sx CYCLE I
386™ SX BUS STATE
82385SX BUS STATE

CLK2

CLK

ADS#

READY!#

BADS#

BREADY#

BACP

DOE#

FRAME
NUMBER

CRDH

T1 I T2
BTI BTI

T1
BTI

3

SBRD

T2 I T2P
BT1 BT2

4 5

82385SX

T2P
BT21

CRDH

T1P I T2
BTI BTI

7 8

T1
BTI

SBRD

T2 I T2P
BT1 BT2

10 11

I T2P I
BT2P

12

Figure 5-3E. Interleaved SBRD/CDRH Cycles-(N = 1)

386 TM sx CYCLE I
386™ SX BUS STATE T1
82385SX BUS STATE BTI

CLK2

CLK

ADS#

READYI#

BADS#

BREADY#

NA#

BACP

DOE#

SBRD

T2 I T2P
BT1 BT2 I T2P I

BT21

WT

T1P I T2
BTI BT1

BT/R# ---------+---r

WBS

FRAME
NUMBER

----..,..--i--""""1----"'f"
3 4 5

SBRD

T11T21T21
BT2 BT2P BT1 P

7 8

T2P
BT21

10

CRDH

T1P I T2P
BTI BTI

11 12

Figure 5·3F. SBRD, WT, SBRD, CRDH-(N = 1)

5-1043

13 14 15 16

290222-33

13 14 15 16

290222-34

inter 82385SX

386™ sx CYCLE I WT WT

386™ SX BUS STATE T1 I T2 T1 I T2 Tl
82385SX BUS STATE BTI BT1 BTI BT1 BTI

CLK2

CLK

ADS#

READYI#

BADS#

BREADY#

BACP

DOE#

BT/R#

LDSTB

was

FRAME 2 4 7 8 10
NUMBER

11 12 13 14 15 16

290222-35

Figure 5·3G. Interleaved WT /CRDH Cycles-(N = 1)

5-1044

intef 82385SX

386 TM sx CYCLE I WT WT CRDH
386TM SX BUS STATE T1 I T2 T1 T2 T2 I T2 I T2 I T1 I T2
82385SX BUS STATE BTH BTH BTH BT1 BT2 BT2P BT1 P BT21 BTI

CLK2

CLK

ADS#

READYI#

BADS#

BREADY#

BACP

BAOE#

DOE#

BT/R#

LDSTB

WBS

BHOLD

BHLDA

I FRAME 2 3 4 5 8 10 11 12 13 14 15 16
NUMBER

290222-36

Figure 5·3H. WT, WT, CRDH-(N = 1)

5-1045

intef 82385SX

386 TM sx CYCLE I WT WT SBRD
386™ SX BUS STATE T1 I T2 T1 T2 T2

IT21T2ln1 T2 I T2
I T2P I 82385SX BUS STATE BTH BTH BTH BT1 BT2 BT2P BT1 P BT21 BT1 BT2 BT21

CLK2

CLK

ADS#

READY!#

BADS#

BREADY#

NA#

BACP

BAOE#

DOE#

BT/R#

LDSTB

wBs

FRAME 2 4 5 7 8 10 11 12 13 14 15 16 NUMBER

290222-37

Figure 5-31. WT, WT, SBRD-(N = 1)

5-1046

intef

386 TM sx CYCLE I
386™ SX BUS STATE
82385SX BUS STATE

CLK2

CLK

ADS#

READY!#

BADS#

BREADY#

BACP

DOE#

BT/R#

LDSTB

WBS

MISS

FRAME
NUMBER

386 TM sx CYCLE I
386™ SX BUS STATE
82385SX BUS STATE

ADS#

READYI#

BADS#

LOCK#

BLOCK#

MISS#

FRAME
NUMBER

82385SX

CWTH
CWTM I CWTM

CWTH I CWTM

Tl I T2 Tl T2 T2 T1 I T2 Tl T2 T2 Tl I T2
BTI BTI BT2 I BT2P I BTIP BT21 BT1 BT2 I BT2P I BTIP BT21 BTI

2 3 4 5 7 8 10 11 12 13 14

Figure 5·3J. Consecutive Write Cycles-(N = 1)

SBRD I CROM I WT I CRDH I
Tl T2 I T2P T2P TIP T2P TIP I T2 T1 T2
BTI BT1 BT2 I BT2P BT1 p I BT21 BTI BT1 BT2 I BT21

2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5·3K. LOCK# /BLOCK# in Non-Cacheable or Miss Cycles-(N = 1)

5-1047

15 16

290222-38

I

15 16

290222-39

intef 82385SX

386 ™ sx CYCLE) (uNt~g~ED>) cfgg~F:t>) cfcfJ~1:Ei) cuNrng~ED> I .
386™SXBUSSTATE T1 I T2 T1 I T2 IT2PIT2P T1PI T2 T1 I T2 I
82385SX BUS STATE BTI BTI BTI BT1 BT2 BT21 BTI BT1 BT2 BT21. BTH

CLK2

CLK

ADS#

READY!#

BADS#

BREADY#

LOCK#

BLOCK#

CT/R#

CWEA#

CWEB#

BHOLD
1-~-....Jf

BHLDA
t---+~-t-~+----+~-+-~1----1-~-1-~l--..J

FRAME
NUMBER

2 3 4 8 10 11 12 13 14 15 16

290222-40

Figure 5·3L. LOCK# /BLOCK# in Cache Read Hit Cycle-(N = 1)

5.2.1 82385SX BUS COUNTERPARTS TO
386™ SX SIGNALS

The following sections discuss the signals presented
on the 82385SX local bus which are functional
equivalents to the signals present at the 386 SX lo-
cal bus. ·

5.2.1.1 Address Bus (BA1-BA23)
and Cycle Definition Signals
(BM/10#, BD/C#, BW/R#)

These signals are not driven directly by the
82385SX, but rather are the outputs of the 7 437 4
address/ cycle definition latch. (Refer to Figure 4-1
for the hardware interface.) This latch is controlled
by the 82385SX BACP and BAOE # outputs. The
behavior and timing of these outputs and the latch
they control (typically F or AS series TIL) ensure
that BA1-BA23, BM/10#, BW/R#, and 80/C# are
compatible in timing and function to their 386 SX
counterparts.

The behavior of BACP can be seen in Figure 5-38,
where the rising edge of BACP latches and forwards
the 386 SX address and cycle definition signals in a
BT1 or first BT2P state. However, the 82385SX
need not bf! the current bus master to latch the
386 SX address, as evidenced by cycle 4 ·of Figure
5-3A. In this case, the address is latched in frame 8,
but not forwarded to the system (via BAOE #) until
frame 10. (The latch and output enable functions of
the 74374 are independent and invisible to one an­
other.)

Note that in frames 2 and 6 the BACP pulses are
marked "False". The reason is that BACP is issued
and the address latched before the hit/miss deter­
mination is made. This ensures that should the cycle
be a miss, the 82385SX bus can move directly into
BT1 without delay. In the case of a hit, the latched
address is simply never qualified by the assertion of
BADS#. The 82385SX bus stays in BTI if there is no
access pending (new cycle is a hit) and no bus activ­
ity. It will move to and stay in BT21 if the system has
requested a pipelined cycle and the 82385SX does
not have a pending bus access (new cycle is a hit).

5-1048

intef 82385SX

5.2.1.2 Data Bus (BDO-BD15)

The 82385SX data bus is the system side of the
7 4646 latching transceiver. (See Figure 4-1.) This
device is controlled by the 82385SX outputs LDSTB,
DOE#, and BT/R#. LDSTB latches data in write
cycles, DOE# enables the transceiver outputs, and
BT /R # controls the transceiver direction. The inter­
action of these signals and the transceiver is such
that BDO-BD15 behave just like their 386 SX coun­
terparts. The transceiver is configured such that
data flow in write cycles (A to B) is latched, and data
flow in read cycles (B to A) is flow-through.

Although BDO-BD15 function just like their 386 SX
counterparts, there is a timing difference that must
be accommodated for in a system design. As men­
tioned above, the transceiver is transparent during
read cycles, so the transceiver propagation delay
must be added to the 386 SX data setup. In addition,
the cache SAAM setup must be accommodated for
in cache read miss cycles.

For non-cacheable reads the data setup is given by:

Min 800-8015 386SXMin 746468-to-A
ReadDataSetup = DataSetup + MaxPropagationDelay

The required BDO-BD15 setup in a cache read miss
is given by:

Min 800-8015 _ 746468-to-A CacheSRAMMin
ReadDataSetup -MaxPropagationDelay + WriteSetup

+ One CLK2 _ 82385SX CWEA# or
Period CWE8# Min Delay

If a data buffer is located between the 386 SX data
bus and the cache SRAMs, then its maximum propa­
gation delay must be added to the above formula as
well. A design analysis should be completed for ev­
ery new design to determine actual margins.

A design can accommodate the increased data set­
up by choosing appropriately fast main memory
DRAMs and data buffers. Alternatively, a designer
may deal with the longer setup by inserting an extra
wait state into cache read miss cycles. If an addition­
al state is to be inserted, the system bus controller
should sample the 82385SX MISS# output to distin­
quish read misses from cycles that do not require
the longer setup. Tips on using the 82385SX MISS#
signal are presented later in this chapter.

The behavior of LDSTB, DOE#, and BT IR# can be
understood via Figures 5-3A through 5-3L. Note that
in cycle 1 of Figure 5-3A (A non-cacheable system
read), DOE# is activated midway through BT1, but
in cycle 1 of Figure 5-3B (a cache read miss), DOE#
is not activated until midway through BT2. The rea-

son is that in a cacheable read cycle, the cache
SRAMs are enabled to drive the 386 SX data bus
before the outcome of the hit/miss decision (in an­
ticipation of a hit.) In cycle 1 of Figure 5-3B, the as­
sertion of DOE# must be delayed until after the
82385SX has disabled the cache output buffers. The
result is that N = O main memory should not be
mapped into the cache.

5.2.1.3 Byte Enables (BBHE #, BBLE #)

These outputs are driven directly by the 82385SX,
and are completely compatible in timing and function
with their 386 SX counterparts. When a 386 SX cy­
cle is forwarded to the 82385SX bus, the 386 SX
byte enables are duplicated on BBHE # and
BBLE #. The one exception is a cache read miss,
during which BBHE# and BBLE# are both active
regardless of the status of the 386 SX byte enables.
This ensures that the cache is updated with a valid
16-bit entry.

5.2.1.4 Address Status.(BADS#)

BADS# is identical in function and timing to its
386 SX counterpart. It is asserted in BT1 and BT2P
states, and indicates that valid address and cycle
definition (BA1-BA23, BBHE#, BBLE#, BM/10#,
BW/R#, BD/C#) information is available on the
82385SX bus.

5.2.1.5 Ready (BREADY#)

The 82385SX BREADY# input terminates 82385SX
bus cycles just as the 386 SX READY# input termi­
nates 386 SX bus cycles. The behavior of
BREADY# is the same as that of READY#, but
note in the A.C timing specifications that a cache
read miss requires a longer BREADY# setup than
do other cycles. This must be accommodated for in
ready logic design.

5.2.1.6 Next Address (BNA#)

BNA# is identical in function and timing to its
386 SX counterpart. Note that in Figures 5-3A
through 5-3L, BNA# is assumed asserted in every
BT1 P or first BT2 state. Along with the 82385SX's
pipelining of the 386 SX, this ensures that the timing
diagrams accurately reflect the full pipelined nature
of the dual bus structure.

5.2.1.7 Bus Lock (BLOCK#)

The 386 SX flags a locked sequence of cycles by
asserting LOCK#. During a locked sequence, the
386 SX does not acknowledge hold requests, so the

5-1049

I

intef 82385SX

sequence executes without interruption by another
master. The 82385SX forces all locked 386 SX cy­
cles to run on the 82385SX bus (unless LBA# is
active), regardless of whether or not the referenced
location resides in the cache. In addition, a locked
sequence of 386 SX cycles is run as a locked se­
quence on the 82385SX bus; BLOCK# is asserted
and the 82385SX does not allow the sequence to be
interrupted. Locked writes (hit or miss) and locked
read misses affect the cache and cache directory
just as their unlocked counterparts do. A locked read
hit, however, is handled differently. The read is nec­
essarily forced to run on the 82385SX local bus, and
as the data returns from main memory, it is "re-cop­
ied" into the cache. (See Figure 5-3L.) The directory
is not changed as it already indicates that this loca­
tion exists in the cache. This activity is invisible to
the system and ensures that semaphores are prop­
erly handled.

BLOCK# is asserted during locked 82385SX bus
cycles just as LOCK# is asserted during locked
386 SX cycles. The BLOCK# maximum valid delay,
however, differs from that of LOCK#, and this must
be accounted for in any circuitry that makes use of
BLOCK#. The difference is due to the fact that
LOCK#, unlike the other 386 SX cycle definition sig­
nals, is not pipelined. The situation is clarified in' Fig­
ure 5-3K. In cycle 2 the state of LOCK# is not
known before the corresponding system read starts
(Frame 4 and 5). In this case, LOCK# is asserted at
the beginning of T1 P, and the dela.y for BLOCK# to
become active is the delay of LOCK# from the
386 SX plus the propagation delay through the
82385SX. This occurs because T1 P and the corre­
sponding 6T1 P are concurrent (Frame 5). The result
is that BLOCK# should not be sampled at the end
of BT1 P. The first appropriate sampling point is mid­
way through the next state, as shown in Frame 6. In
Figure 5-3L, the maximum delay for BLOCK# to be­
come valid in Frame 4 is the same as the maximum
delay for LOCK# to become valid from the 386 SX.
This is true since the pipelining issue discussed
above does not occur.

The 82385 should negate BLOCK# after:
BREADY# of the last 82385 Locked Cycle was as­
serted AND LOCK# turns inactive.

This means that in a sequence of cycles which be­
gins with a 82385 Locked Cycle and goes on with all
the possible Locked Cycles (other 82385 cycles,
idles, and local cycles), while LOCK# is continuous­
ly active, the 82385 will maintain BLOCK# active
continuously. Another implication is that in a Locked
Posted Write Cycle followed by non-locked se­
quence, BLOCK# is negated one CLK after
BREADY# of the write cycle. In other 82385 Locked
Cycles, followed by non-locked sequences,

BLOCK# is negated one CLK after LOCK# is nega­
ted, which occurs two CLKs after BREADY# is as­
serted. In the last case BLOCK# active moves by
one CLK to the non-locked sequence.

The arbitration rules of Locked Cycles are:

MASTER MODE:

BHOLD input signal is ignored when BLOCK# or
internal lock (16-bit non-aligned cycle) are active.
BHLDA output signal remains inactive, and BAOE#
output signal remains active at that time interval.

SLAVE MODE:

The 82385 does not relinquish the system bus if
BLOCK# or internal lock are active. The BHOLD
output signal remains active when BLOCK# or inter­
nal lock is active plus one CLK. The BHLDA input
signal is ignored when BLOCK# or the internal lock
is active plus one CLK. This means the 82385 slave
does not respond to BHLDA inactivation. The
BAOE# output signal remains active during the
same time interval.

5.2.2 ADDITIONAL 82385SX BUS SIGNALS

The 82385SX bus provides two status outputs and
one control input that are unique to cache operation
and thus have no 386 SX counterparts. The outputs
are MISS# and WBS, and the input is FLUSH.

5.2.2.1 Cache Read/Write Miss Indication
(MISS#)

MISS# can be thought of as an extra 82385SX bus
cycle definition signal similar to BM/IQ#, BW/R#,
and BD/C#, that distinguishes cacheable read and
write misses from other cycles. MISS#, like the oth­
er definition signals, becomes valid with BADS#
(BT1 or first BT2P). The behavior of MISS# is illus­
trated in Figures 5-3B, 5-3C, and 5-3J. The 82385SX
floats MISS# when another master owns the bus,
allowing multiple 82385SXs to share the same node
in multi-cache systems. MISS# should thus be light­
ly pulled up (- 20K) to keep it negated during hold
(BTH) states.

MISS# can serve several purposes. As discussed
previously, the BDO-BD15 and BREADY# setup
times in a cache read miss are longer than in other
cycles. A bus controller can distinguish these cycles
by gating MISS# with BW/R#. MISS# may also
prove useful in gathering 82385SX system perform­
ance data.

5-1050

intJ 82385SX

5.2.2.2 WRITE BUFFER STATUS (WBS)

WBS is activated when 386 SX write cycle data is
latched into the 74676 latching transceiver (via
LDSTB). It is deactivated upon completion of the
write cycle on the 82385SX bus when the 82385SX
sees the BREADY# signal. WBS behavior is illus­
trated in Figures 5-3F through 5-3J, and potential
applications are discussed in Chapter 3.

5.2.2.3 Cache Flush (FLUSH)

FLUSH is an 82385SX input which is used to reset
all tag valid bits within the cache directory. The
FLUSH input must be kept active for at least 4 CLK
(8 CLK2) periods to complete the directory flush.
Flush is generally used in diagnostics but can also
be used in applications where snooping cannot
guarantee coherency.

5.3 Bus Watching (Snoop) Interface

The 82385SX's bus watching interface consists of
the snoop address (SA1-SA23), snoop strobe
(SSTB#), and snoop enable (SEN) inputs. If mas­
ters reside at the system bus level, then the SA 1-
SA23 inputs are connected to the system address
lines and SEN the system bus memory write com­
mand. SSTB # indicates that a valid address is pres­
ent on the system bus. Note that the snoop bus in­
puts are synchronous, so care must be taken to en­
sure that they are stable during their sample win­
dows. If no master resides beyond the 82385 bus
level, then the 82385 inputs SA 1-SA23, SEN, and
SSTB # can respectively tie directly to BA 1-BA23,
BW/R#, and BADS# of the other system bus mas­
ter {see Figure 5.5). However, it is recommended
that SEN be driven by the logical "AND" of BW/R#
and BM/IQ# so as to prevent 1/0 writes from un­
necessarily invalidating cache data.

T1 • 1 T2 • 1 T1 • 1 T2 •i T1 •i
BT1 BT2 BT1 BT2 BT1

NOTE:

CLK2

ADS#

335TM SX
Address

ssrnl2

385 LB
Address

BHOLD

BHLDA

SEN*3

Cache Dir
Address

385SX #1

*1. These states are induced by another System Bus master.

385SX #2

*2. SSTB# on the 82385SX is tied directly to BADS# of the System Bus master.
*3. SEN on the 82385SX is tied directly to BW /R # of the System Bus master.

290222-41

Figure 5.4. Interleaved Snoop and 386™ SX Accesses to the Cache Directory

5-1051

I

intef 82385SX

Address
Buffer

80386 sx 82385SX
Control __ _

Address __ _

Data

Data
Buffer

0 ,
Ol

E

i
(/)

·-------------------------'
BADS#

BW/R# ---!-~

BM/10# t----!---'

Other System
Master

290222-63

Figure 5.5. Snooping Connections in a Multi
Master Environment

When the 82385SX detects a system write by anoth­
er master and the conditions in Figure 5.4 are met:
CLK2 PHl1 rising (CLK falling), BHLDA asserted,
SEN asserted, SSTB # asserted, it internally latches
SA 1-SA23 and runs a cache look-up to see if the
altered main memory location is duplicated in the
cache. If yes (a snoop hit), the line valid bit asso­
ciated with that cache entry is cleared. An important
feature of the 82385SX is that even the 386 SX is
running zero wait state hits out of the cache, all
snoops are serviced. This is accomplished by time
multiplexing the cache directory between the 386 SX
address and the latched system address. If the
SSTB # signal occurs during an 82385SX compari­
son cycle (for the 386 SX), the 386 SX cycle has the

highest priority in accessing the cache directory.
This takes the first of the two 386 SX states. The
other state is then used for the snoop comparison.
This worst case example, depicted in Figure 5.4,
shows the 386 SX running zero wait state hits on the
386 SX local bus, and another master running zero
wait state writes on the 82385SX bus. No snoops
are missed, and no performance penalty incurred.

5.4 Reset Definition

Table 5-1 summarizes the states of all 82385SX out­
puts during reset and initialization. A slave mode
82385SX tri-states its "386 SX-like" front end. A
master mode 82385SX emits a pulse stream on its
BACP output. As the 386 SX address and cycle defi­
nition lines reach their reset values, this stream will
latch the reset values through to the 82385SX bus.
Table 5·1. Pin State during RESET and Initialization

Signal Level during
Output RESET and Initialization
Name Master Mode Slave Mode

NA# High High

READYO# High High

BR DYEN# High High

GALEN High High

CWEA#-CWEB# High High

CSO#,CS1# Low Low

CT/R# High High

COEA#-COEB# High High

BADS# High HighZ

BBHE #, BBLE # 386 BE# HighZ

BLOCK# High HighZ

MISS# High HighZ

BACP Pulse(1) Pulse

BAOE# Low High

BT/R# Low Low

DOE# High High

LDSTB Low Low

BHOLD - Low

BHLDA Low -
WBS Low Low

NOTE:
1. In Master Mode, BAOE# is low and BACP emits a pulse
stream during reset. As the 386 SX address and cycle defi­
nition signals reach their reset values, the pulse stream on
BACP will latch these values through to the 82385SX local
bus.

5-1052

intef 82385SX

6.0 82385SX SYSTEM DESIGN
CONSIDERATIONS

6.1 Introduction

This chapter discusses techniques which should be
implemented in an 82385SX system. Because of the
high frequencies and high performance nature of the
386 SX CPU/82385SX system, good design and lay­
out techniques are necessary. It is always recom­
mended to perform a complete design analysis of
new system designs.

6.2 Power and Grounding

6.2.1 POWER CONNECTIONS

The 82385SX utilizes 8 power (Vee) and 10 ground
(Vss) pins. All Vee and Vss pins must be connected
to their appropriate plane. On a printed circuit board,
all Vee pins must be connected to the power plane
and all Vss pins must be connected to the ground
plane.

6.2.2 POWER DECOUPLING

Although the 82385SX itself is generally a "passive"
device in that it has a few output signals, the cache
subsystem as a whole is quite active. Therefore,
many decoupling capacitors should be placed
around the 82385SX cache subsystem.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening
circuit board traces between the decoupling capaci­
tors and their respective devices as much as possi­
ble. Capacitors specifically for PGA packages are
also commercially available, for the lowest possible
inductance.

6.2.3 RESISTOR RECOMMENDATIONS

Because of the dual structure of the 82385SX sub­
system (386 SX Local Bus and 82385SX Local Bus),
any signals which are recommended to be pulled up
will be respective to one of the busses. The follow­
ing sections will discuss signals for both busses.

6.2.3.1 386 SX LOCAL BUS

For typical designs, the pullup resistors shown in Ta­
ble 6-1 are recommended. This table correlates to
Chapter 7 of the 386 SX Data Sheet. However, par­
ticular designs may have a need to differ from the
listed values. Design analysis is recommended to
determine specific requirements.

6.2.3.2 82835SX Local Bus

Pullup resistor recommendations for the 82385SX
Local Bus signals are shown in Table 6-2. Design
analysis is necessary to determine if deviations to
the typical values given are needed.

Table 6-1. Recommended Resistor Pullups
to Vee (386™ SX Local Bus)

Pin and Pullup
Purpose

Signal Value

ADS# 20 Kn ±10% Lightly Pull ADS#
PGA E13 Negated for 386 SX
PQFP 123 Hold States

LOCK# 20 Kn ±10% Lightly Pull LOCK#
PGA F13 Negated for 386 SX
PQFP 118 Hold States

Table 6-2. Recommended Resistor Pullups
to Vee {82385SX Local Bus)

Signal Pullup
Purpose

and Pin Value

BADS# 20 Kn ±10% Lightly Pull BADS#
PGAN9 Negated for
PQFP89 82385SX Hold

States

BLOCK# 20 Kn ±10% Lightly Pull
PGAP9 BLOCK# Negated
PQFP86 for 82385SX Hold

States

MISS# 20 Kn ±10% Lightly Pull MISS#
PGAN8 Negated for
PQFP85 82385SX Hold

States

6.3 82385SX Signal Connections

6.3.1 CONFIGURATION INPUTS

The 82835 configuration signals (M/S#, 2W/D#,
DEFOE#) must be connected (pulled up) to the ap­
propriate logic level for the system design. There is
also a reserved 82385SX input which must be tied to
the appropriate level. Refer to Table 6-3 for the sig­
nals and their required logic level.

5-1053

I

intJ 82385SX

Table 6-3. 82385SX Configuration
Inputs Logic Levels

Pin and Logic Purpose Signal Level

M/S# High Master Mode Operation
PGA 813 Low Slave Mode Operation
PQFP 124

2W/D# High 2-Way Set Associative
PGA D12 Low Direct Mapped
PQFP 127

Reserved High Must be tied to Vee via
PGA L14 a pull-up for proper
PQFP 102 functionality

DEFOE# N/A Define Cache Output
PGAA14 Enable. Allows use of
PQFP 128 anySRAM.

NOTE:
The listed 82385SX pins which need to be tied high should
use a pull-up resistor in the range of 5 KO to 20 KO. '

6.3.2 CLK2 and RESET

The 82385SX has two inupts to which the 386 SX
CLK2 signal must be connected. One is labeled
CLK2 (82385SX pin C13) and the other is labeled
BCLK2 (82385SX pin L 13). These two inputs must
be tied together on the printed circuit board.

The 82385SX also has ·two reset inputs. RESET
(82385SX pin D13) and BRESET (82385SX pin K12)
must be connected on the printed circuit board.

6.4 Unused Pin Requirements

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most
other CMOS processes, a floating input will increase
the current consumption of the component and give
an indeterminate state to the component.

6.5 Cache SAAM Requirements

The 82385SX offers the option of using SRAMs with
or without an output enable pin. This is possible by
inserting a transceiver between the SRAMs and the
386 SX local data bus and strapping DEFOE# to the
appropriate logic level for a given system configura­
tion. This transceiver may also be desirable in a sys­
tem which has a very heavily loaded 386 SX local
data bus. The following sections discuss the SRAM
requirements for all cache configurations.

6.5.1 CACHE MEMORY WITHOUT
TRANSCEIVERS

As discussed in Section 3.2, the 82385SX presents
all of the control signals necessary to access the
cache memory. The SRAM chip selects, write en­
ables, and output enables are driven directly by the
82385SX. Table 6-4 lists the required SRAM specifi­
cations. These specifications allow for zero margins.
They should be used as guides for the actual system
design.

Table 6-4. SRAM Specs for Non-Buffered Cache Memory

SRAM Spec Requirements

Direct Mapped 2-Way Set Associative
16MHz 20MHz 16MHz 20MHz

Read Cycle Requirements
Address Access (MAX) 64 ns 44 ns 62 ns 42 ns
Chip Select Access (MAX) 76 56 76 56
OE# to Data Valid (MAX) 25 19 19 14
OE# to Data Float (MAX) 20 20 20 20

Write Cycle Requirements
Chip Select to End of Write (MIN) 40 30 40 30
Address Valid to End of Write (MIN) 58 42 56 40
Write Pulse Width (MIN) 40 30 40 30
Data Setup (MAX) - - - -
Data Hold (MIN) 4 4 4 4

5-1054

infef 82385SX

6.5.2 CACHE MEMORY WITH TRANSCEIVERS

To implement an 82385SX subsystem using cache
memory transceivers, COEA # or COEB # must be
used as output enable signals for the transceivers
and DEFOE# must be appropriately strapped for
proper COEx# functionality (since the cache SAAM
transceivers must be enabled for writes as well as
reads). DEFOE# must be tied high when using
cache SAAM transceivers. In a 2-way set associa­
tive organization, COEA # enables the transceiver
for bank A and COEB # enables the bank B trans­
ceiver. A direct mapped cache may use either
COEA# or COEB# to enable the transceiver. Table
6-5 lists the required SAAM specifications. These
specifications allow for zero margin. They should be
used as guides for the actual system design.

7.0 SYSTEM TEST CONSIDERATIONS

7.1 Introduction

Power On Self Testing (POST) is performed by most
systems after a reset. This chapter discusses the
requirements for properly testing an 82385SX based
system after power up.

7.2 Main Memory (DRAM) Testing

Most systems perform a memory test by writing a
data pattern and then reading and comparing the

data. This test may also be used to determine the
total available memory within the system. Without
properly taking into account the 82385SX cache
memory, the memory test can give erroneous re­
sults. This will occur if the cache responds with read
hits during the memory test routine.

7.2.1 MEMORY TESTING ROUTINE

In order to properly test main memory, the test rou­
tine must not read from the same block consecutive­
ly. For instance, if the test routine writes a data pat­
tern to the first 16 Kbytes of memory (0000-
3FFFH), reads from the same block, writes a new
pattern to the same locations (0000-3FFFH), and
read the new pattern, the ·second pattern tested
would have had data returned from the 82385SX
cache memory. Therefore, it is recommended that
the test routine work with a memory block of at least
32 Kbytes. This will guarantee that no 16 Kbyte
block will be read twice consecutively.

7.3 82385SX Cache Memory Testing

With the addition of SAAMs for the cache memory, it
may be desirable for the system to be able to test
the· cache SAAMs during system diagnostics. This
requires the test routine to access only the cache
memory. The requirements for this routine are based.
on where it resides within the memory map. This can

Table 6-5. SRAM Specs for Buffered Cache Memory

SAAM Spec Requirements

Direct Mapped 2-Way Set Associative
16MHz 20MHz 16MHz 20MHz

Read Cycle Requirements
Address Access (MAX) 57 ns 37 ns 55 ns 35 ns
Chip Select Access (MAX) 68 48 68 48
OE# to Data Valid (MAX) NIA NIA NIA NIA
OE# to Data Float (MAX) NIA NIA NIA NIA

Write Cycle Requirements
Chip Select to End of Write (MIN) 40 30 40 30
Address Valid to End of Write (MIN) 58 42 56 40
Write Pulse Width (MIN) 40 30 40 30
Data Setup (MAX) 25 15 25 15
Data Hold (MIN) 3 3 3 3

5-1055

intef 82385SX

be broken into two areas: the routine residing in
cacheable memory space or the routine residing in
either non-cacheable memory or on the 386 SX lo­
cal bus (using the LBA# input).

7.3.1 TEST ROUTINE IN THE NCA# OR LBA#
MEMORY MAP

In this configuration, the test routine will never be
cached. The recommended method is code which
will access a single 16 Kbyte block during the test.
Initially, a 16 Kbyte read (assume 0000-3FFFH)
must be executed. This will fill the cache directory
with the address information which will be used in
the diagnostic procedure. Then, a 16 Kbyte write to
the same address locations (0000,.-3FFFH) will load
the cache with the desired test pattern (due to write
hits). The comparison can be made by completing
another 16 Kbyte read (same locations, 0000-
3FFFH), which will be cache read hits. Subsequent
writes and reads to the same addresses will enable
various patterns to be tested.

7.3.2 TEST ROUTINE IN CACHEABLE MEMORY

In this case, it must be understood that the diagnos­
tic routine must reside in the cache memory before
the actual data testing can begin. Otherwise, when
the 386 SX performs a code fetch, a location within

. the cache memory which is to be tested will be al­
tered due to the read miss (code fetch) update.

The first task is to load the diagnostic routine into
the top of the cache memory. It must be known how
much memory is required for the code as the rest of
the cache memory will be tested as in the earlier
method. Once the diagnostics have been cached
(via read updates), the code will perform the same
type of read/write/read/compare as in the routine
explained in the above section. The difference is
that now the amount of cache memory to be tested
is 16 Kbytes minus the length of the test routine.

7.4 82385SX Cache Directory Testing

Since the 82385SX does not directly access the
data bus, it is not,possible to easily complete a com­
parison of the cache directory. (The 82385SX can
serially transmit its directory contents. See Section
7.5.) However, the cache memory tests described in
Section 7.3 will indicate if the directory is working
properly. Otherwise, the data comparison within the
diagnostics will show locations which fail.

There is a slight possibility that the cache memory
comparison could pass even if locations within the
directory gave false hit/miss results. This could
cause the comparison to always be performed to
main memory instead of the cache and give a proper

comparison to the 386 SX. The solution here is to
use the MISS# output of the 82385SX as an indica­
tor to a diagnostic port which can be read by the
386 SX. It could also be used to flag an interrupt if a
failure occurs.

The implementation of these techniques in the diag­
nostics will assure proper functionality of the
82385SX subsystem.

7.5 Special Function Pins

As mentioned in Chapter 3, there are three 82385SX
pins which have reserved functions in addition to
their normal operational functions. These pins are
MISS#, WBS, and FLUSH.

As discussed previously, the 82385SX performs a
directory flush when the FLUSH input is held active
for at least 4 CLK (8 CLK2) cycles. However, the
FLUSH pin also serves as a diagnostic input to the
82385SX. The 82385SX will enter a reserved mode
if the FLUSH pin is high at the falling edge of RE­
SET.

If, during normal operation, the FLUSH input is ac­
tive for only one CLK (2 CLK2) cycle/s, the 82385SX
will enter another reserved mode. Therefore it must
be guaranteed that FLUSH is active for at least the 4
CLK (8 CLK2) cycle specification .

WBS and MISS# serve as outputs in the 82385SX
reserved modes.

8.0 MECHANICAL DATA

8.1 Introduction

This chapter discusses the physical package and its
connections in detail.

8.2 Pin Assignment

The 82385SX PGA pinout as viewed from the top
side of the component is shown by Figure 8-1 . Its
pinout as viewed from the Pin side of the component
is shown in Figure 8-2.

The 82385SX Plastic Quad Flat Pack (PQFP) pinout
from the top side of the component is shown by Fig­
ure 8-3.

Vee and Vss connections must be made to multiple
Vee and Vss (GND) pins. Each Vee and Vss must
be connected to the appropriate voltage level. The
circuit board should include Vee and GND planes for
power distribution and all Vee and Vss pins must be
connected to the appropriate plane.

5-1056

intJ 82385SX

p N M L K H G D c B A

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss Vee RES RES A21 A18 A17 A14 A11 AB Vee Vss AS

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss Vss A23 RES RES A22 A20 A16 A13 A10 A7 A6 A2 SA1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V cc NA # READ YO # RES RES RES A19 A15 A12 A9 A4 A3 A1 SA2

4 0 0 0 0 0 0
V SS CAL EN LDSTB SA3 SA4 SA6

5 0 0 0 0 0 0
RES CT/R # CSO # SAS SA9 SAS

6 0 0 0 0 0 0
CWEB # RES CS1 II SA7 SA10 SA12

7 0 0 0 0 0 0
COEA # CWEA # COEB II SA11 SA14 SA13

8 0 0 0 0 0 0
BRDYEN # MISS# WBS SA17 SA15 SA16

9 0 0 0 0 0 '0
BLOCK # BADS # BAOE # SA21 SA18 SA19

10 0 0 0 0 0 0
BACP BT /R # DOE II RES RES SA20

0 0 0 0 0

0
RES

0

0
RES

0

11

12 0 0 0
I 0

SA22

0

0
Vee

0 0
BHOLD BHLDA

0 0 0
Vss BBHE# BBLE# RES BR ES ET SEN RES NCA# D/C# FLUSH 2W/D# SA23 RES RES

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RES BCLK2 BREADY# SSTB # BHE # RES LOCK# ADS# RESET CLK2 M/S # RES

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss Vss Vss RES BNA# RES LBA# BLE# W/R# M/10# READYI# Vee Vss DEFOE#

290222-42

Figure 8-1. 82385SX PGA Plnout-View from TOP Side

5-1057

intJ

A

1 t'o
AS

2 0
SAi

3 0
SA2

4 0

B c

0 0
Vss Vee

0 0
A2 A6

0 0
A1 A3

0 0
SA& SA4 SA3

s 0 0 0
SAS SA9 SAS

6 0 0 0
SA12 SA10 SA7

7 0 0 0
SA13 SA14 SA11

8 0 0 0
SA16 SA15 SA17

9 0 0 0
SA19 SA18 SA21

10 0 0 0
SA20 RES RES

11 0 0 0

D

0
AB

0
A7

0
A4

82385SX

E f G H K L M N

0 0 0 0 0 0 0 0 0 0
A11 A14 A17 A18 A21 RES RES Vee Vss Vee

0 0 0 0 0 0 0 0 0 0
A10 A13 A16 A20 A22 RES RES A23 Vss Vss

0 0 0 0 0 0 0 0 0 0
A9 A12 A1S A19 RES RES RES READYO# NA# Vee

0 0 0
LDSTB CALEN Vss

METAL LID
0 0 0

CSOll CT/Rll RES

0 0 0
CS1 11 RES CWEB #

0 0 0
COEB # CWEA # COEA #

0 0 0
WBS MISS II BRDYEN #

0 0 0
BAOE # BADS # BLOCK #

0 0 0
·DOE# BT/R# BACP

0 0 0
SA22 RES RES '---------------------' BHLDA BHOLD Vee

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RES RES SA23 2W/Dll FLUSH D/C# NCAll RES SEN BRESET RES BBLE# BBHE# Vss

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RES M/S# CLK2 RESET ADS# LOCK# RES BHE # SSTB # BREADY# BCLK2 RES Vee Vee

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEFOE# Vss Vee READYI# M/10# W/R# BLE# LBA# RES BNA# RES Vss Vss Vss

290222-43

Figure 8-2. 82385SX PGA Pinout-View from PIN Side

5-1058

intef 82385SX

82385SX

132-LEAD

PLASTIC QUAD FLAT PACK (PQFP)

(TOP VIEW)

Figure 8-3. 82385SX PQFP Pinout-View from TOP Side

5-1059

290222-57

intef 82385SX

Table 8·1. 82385SX Plnout-Functlonal Grouping

PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal

M2 65 A23 G12 114 NCA#. N3 67 NA# N5 70 CT/A#
J2 57 A22 H14 113 LBA#
J1 56 A21 D14 122 READYI# E12 124 FLUSH PS 83 BRDYEN#
H2 55 A20 M3 66 READYO# MS 84 WBS K13 105 BREADY#
H3 54 'A19 NS 85 MISS# P10 91 BACP
H1 53 A18 C12 130 SA23 A14 128 DEFOE# M9 90 BAOE#
G1 52 A17 A11 8 SA22 · B13 129 MIS# N10 93 BT/A#
G2 49 A16 C9 9 SA21 D12 127 2W/D#
G3 48 A15 A10 10 SA20 M10 92 DOE# A12 1 Vee(*)
F1 47 A14 A9 11 SA19 M4 68 LDSTB A13 131 Vee(*)
F2 46 A13 B9 12 SA18 B10 7 Vee(*)
F3 45 A12 ca 13 SA17 N11 97 BHOLD B11 3 Vee(*)
E1 44 A11 AS 14 SA16 M11 94 BHLDA B12 132 Vee(*)
E2 43 A10 BS 15 SA15 C10 4 Vee(*)
E3 42 A9 B7 18 SA14 B1 5 Vss C11 2 Vee(*)
D1 41 AS A7 19 SA13 B14 16 Vss G13 117 Vee(*)
D2 40 A7 A6 20 SA12 M14 27 Vss H12 110 Vee(*)
C2 39 A6 C7 21 SA11 N1 50 Vss J3 60 Vee(*)
A1 38 A5 B6 22 SA10 N2 71 Vss J14 109 Vee(*)
D3 37 A4 B5 23 SA9 N14 79 Vss K1 58 Vee(')
ca 36 A3 A5 24 SAS P2 87 Vss K2 59 Vee(*)
B2 35 A2 C6 25 SA7 P4 95 Vss K3 62 Vee(*)
B3 34 A1 A4 26 SAS P12 115 Vss L1 61 Vee(*)
G14 112 BLE# C5 29 SA5 P14 - Vss L2 63 Vee(*)
H13 111 BHE# B4 30 SA4 L3 64 Vee(*)

C4 31 SA3 N9 89 BADS# L12 100 N.C. (*)
C13 126 CLK2 A3 32 SA2 M12 98 BBLE# L14 102 Vee(*)
D13 125 RESET A2 33 SA1 N12 99 BBHE# M13 101 N.C. (*)
K12 104 BRESET J12 107 SEN# pg 86 BLOCK# N6 75 N.C. (*)
L13 103 BCLK2 J13 108 SSTB# P5 76 N.C. (*)

K14 106 BNA#
F14 119 W/R# C1 6 Vee
F12 120 DIC# C14 17 Vee N4 69 CALEN
E14 121 M/10# M1 28 Vee P7 81 COEA#
F13 118 LOCK# N13 51 Vee M7 82 COEB#
E13 123 ADS# P1 72 Vee N7 77 CWEA#

P3 80 Vee P6 78 CWEB#
P11 88 Vee M5 73 CSO#
P13 96 Vee M6 74 CS1#
- 116 Vee

*Reserved pins, N.e. indicates a no connect.

5·1060

intef 82385SX

8.3 Package Dimensions and
Mounting

These come in a choice of terminals such as solder­
tail, surface mount, or wire wrap.

The 82385SX PGA package is a 132-pin ceramic
Pin Grid Array. The pins are arranged 0.100 inch
(2.54 mm) center-to-center, in a 14 x 14 matrix,
three rows around.

The 82385SX POFP is a 132-lead Plastic Quad
Flat Pack. The pins are "fine pitch", 0.025 inches
(0.635 mm) center to center.

A wide variety of available PGA sockets allow low
insertion force or zero insertion force mounting.

The PQFP device is intended to be surface mounted
directly to the printed board although sockets are
available for this device.

~ ;:::-~ ;:::- ;;:;- ~ ;;:; "' 0 "' "' If) "' <D 0 --t 0) ""; "' --t --t
"! 0) "' 0) ..; .0 oO
-::.. !i ~ e -::.. -::.. -::.. -::..

00 0 0 0 0 0 0 If)
If) If) If) If) If) If) "' CIN#1 POSITION I"' C? "! "l ": ""! "! '":

2

3

4

5

6

• @@@@®®1'®@@@@@@
@@@@@@@@@@@@@@
@@®@@@@·@@@@®@@
@@@ @@@
@@@ @@@

®®® I ®®®
7 @@@ + @@@
8 -@@® -- . -- ®@@

9

10

11

12

13

14

@@@ @@@
@@@ @@@
@@@ @@@
@@®@@@@,@@@@ @@
@@@@@@®I®@@@@@@
@@@@@@@,@@@@@@@

c D E F G H J K L M N p II
.020 (0.508) .020 --1
MIN TYP (0.508)

.070 (1.777) DIA
TYP BRAZE PAD

1------1.450(36.802)-------

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
0

SWEDGE PIN
STANDOFF
(4) PLACES

.001 (0.025) R

MIN TYP

.018 (0.47) l
DIA TYP _ ==-111.'

.165(4.189~1 ~
.110(22.J

290222-44

Figure 8-3.1. 132-Pin PGA Package Dimensions

5-1061

I

intef

mm (inch)

mm (inch)

mm (Inch)

82385SX

D2

----D--~...-~~-~~~~c~A~®~s_-~B®~s'-"'"D~®~

PLf.NE

~ 11.211 C.0118)

Figure 8·3.2. Principal Dimensions and Datums

Figure 8·3.3. Molded Details

-n-111 . i.3s c u2s i I

SEE DETAIL L

'-+-++--SEE DETAIL J

1-4---- D3/E3-------!

i------D4/E4 ___ ___,

i------D/E-----

290222-58

290222-59

290222-60

Figure 8-3.4. Terminal Details

5-1062

intef

mm (inch)

mm (inch)

82385SX

I $10.13 < .005>@1c IA@-B® lo® lM

AA0.41 < .lilH»
(.lil08)

(j}J."
0.20 (.008)
lil.14 (.0fil5)

lil.31 (.012) --11-
0.20 (.008)

1$10.20 c.008>@lclA@-s®lo®l&-,

Figure 8-3.5. Typical Lead

I

1.32 (.052)
1.22 (.1148) r , ,,,, "" 1 _L E2

1.32 (.lil52)
i.22 < .1148> ,~ I

11. 90 <. 035) MIN. 1-
2.113 (.llJ80>
1. 93 (.07b)

-~--02 -----.

Figure 8-3.6. Detail M

2.03 (.0811)
1.93 C.07b)

8 DEG.
lil DEG.

290222-62

290222-61

PLASTIC QUAD FLAT PACK

Letter or
Symbol

A

A1

DIE

D1/E1

D2/E2

D3/E3

L1

N

Table 8-3.1. Symbol List for Plastic Quad Flat Pack

Description of Dimensions

Package height: distance
from seating plane to
highest point of body

Standoff: Distance from
seating plane to base plane

Overall package dimension:
lead tip to lead tip

Plastic body dimension

Bumper Distance

Footprint

Foot length

Total number of leads

NOTES:
1. All dimensions and tolerances conform to ANSI Y14.5M-
1982.
2. Datum plane -H- located at the mold parting line and
coincident with the bottom of the lead where lead exits
plastic body.
3. Datums A-B and -D- to be determined where center
leads exit plastic body at datum plane -H-.
4. Controlling Dimension, Inch.
5. Dimensions D1, D2, E1 and E2 are measured at the
mold parting line and do not include mold protrusion. Al­
lowable mold protrusion of 0.18 mm (0.007 in) per side.
6. Pin 1 identifier is located within one of the two zones
indicated.
7. Measured at datum plane -H-.
8. Measured at seating plane datum -C-.

5-1063

I

intef

Symbol

N

A

A1

D,E

D1, E1

D2,E2

D3,E3

L1

Issue

82385SX

Table 8·3.2. PQFP Dimensions and Tolerances

Intel Case Outline Drawings
Plastic Quad Flat Pack

0.025 Inch Pitch

Description Min

Leadcount

Package Height 0.160

Standoff 0.020

Terminal Dimension 1.075

Package Body 0.947

Bumper Distance 1.097

Max

132

0.170

0.030

1.085

0.953

1.103

Lead Dimension 0.800 REF

Foot Length 0.020 0.030

IWS Preliminary 1 /15/87

Symbol

N

A

A1

D,E

D1, E1

D2,E2

D3,E3

L1

Issue

Intel Case Outline Drawings
Plastic Quad Flat Pack

0.64 mm Pitch

Description Min Max

Leadcount 132

Package Height 4.06 4.32

Standotf 0.51 0.76

Terminal Dimension 27.31 27.56

Package Body 24.05 24.21.

Bumper Distance 27.86 28.02

Lead Dimension 20.32REF

Foot Length 0.51 0.76

IWS Preliminary 1/15/87

290222-45

Figure 8·3.7. Measuring 82385SX PGA Case Temperature

5-1064

intJ 82385SX

Table 8·3.3. 82385SX PGA Package Typical Thermal Characteristics

Thermal Resistance-°C/Watt

Airflow-f3/min (m3/sec)

Parameter 0 50 100 200 400
(0) (0.25) (0.50) (1.01) (2.03)

9 Junction-to-Case 2 2 2 2 2
(Case Measured as Figure 8-3.7)

9 Case-to-Ambient 19 18 17 15 12
(No Heatsink)

9 Case-to-Ambient 16 15 14 12 9
(with Omnidirectional Heatsink)

9 Case-to-Ambient 15 14 13 11 8
(with Unidirectional Heatsink)

NOTES:
1. Table 8-3.4 applies to 82385SX PGA plugged into socket or soldered directly onto board.
2. llJA = llJc + llcA·
3. llJ.CAP = 4°C/W (approx.)

llJ.PIN = 4'C/W (inner pins) (approx.)
llJ-PIN = 8'C/W (outer pins) (approx.)

290222-46

600
(3.04)

2

10

7

6

Table 8-3.3. 82385 PQFP Package Typical Thermal Characteristics

Thermal Resistance-°C/Watt

Airflow-/LFM

Parameter 0 50 100 200 400
(0) (0.25) (0.50) (1.01) (2.03)

9 Junction-to-Case 5 5 5 5 5
(Case Measured as Figure 8-3. 7)

9 Case-to-Ambient 23.5 22.0 20.5 17.5 14.0
(No Heatsink)

9 Case-to-Ambient
(with Omnidirectional Heatsink)

9 Case-to-Ambient
TO BE DEFINED

(with Unidirectional Heatsink)

NOTES:
1. Table 8-3.3 applies to 82385SX PQFP plugged into socket or soldered directly onto board.
2. llJA = llJc + llcA·
3. llJ-CAP = 4'C/W (approx.)

OJ.PIN = 4'C/W (inner pins) (approx.)
llJ.PIN = 8'C/W (outer pins) {approx.)

5-1065

600
(3.04)

5

11.5

800
(4.06)

2

9

6

5

I

800
(4.06)

5

9.5

intJ 82385SX

8.4 Package Thermal Specification

The case temperature should be measured at the
center of the top surface as in Figure 8-3. 7 for PGA
or Table 8-3.3 for PQFP. The case temperature may
be measured in any environment to determine
whether or not the 82385SX is within the specified
operating range.

9.0 ELECTRICAL DATA

9.1 Introduction

This chapter presents the A.C. and D.C specifica­
tions for the 82385SX.

9.2 Maximum Ratings

Storage Temperature -65°C to + 150°C

Case Temperature under Bias ... - 65°C to + 11 o•c

Supply Voltage
with Respect to V ss -0.5V to + 6.5V

Voltage on Any Other Pin -0.5V to Vee+ 0.5V

NOTE:
Stress above those listed may cause permanent
damage to the device. This is a stress rating only
and functional operation at these or any other con­
ditions above those listed in the operational sec­
tions of this specification is not implied.

Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Al­
though the 82385SX contains protective circuitry to
resist damage from static electric discharges, al­
ways take precautions against high static voltages
or electric fields.

9.3 D.C. Specifications TcAsE = o·c to + 85°C; Vee = 5V ± 5%; Vss = ov
Table 9-1. D.C. Specifications (16 MHz and 20 MHz)

Symbol Parameter Min Max Unit Test Condition

V1L Input Low Voltage -0.3 0.8 v (Noe 1)

V1H Input High Voltage 2.0 Vee+ 0.3 v
VcL CLK2,BCLK21nputLow -0.3 0.8 v (Note 1)

VcH CLK2, BCLK2 Input High Vee - 0.8 Vee+ 0.3 v
VoL Output Low Voltage 0.45 v loL = 4mA

VoH Output High Voltage 2.4 v loH = -1 mA

Ice Power Supply Current 275 mA (Note 2)

lu Input Leakage Current ±15 P,A ov < V1N <Vee

ILQ Output Leakage Current ±15 µA 0.45V < VouT < Vee

C1N Input Capacitance 10 pF (Nqte 3)

CcLK CLK2 Input Capacitance 20 pF (Note 3)

NOTES:
1. Minimum value is not 100% tested.
2. Ice is specified with inputs driven to CMOS levels. Ice may be higher if driven to TIL levels.
3. Sampled only.

5-1066

inter 82385SX

9.4 A.C. Specifications

The A.G. specifications given in the following tables
consist of output delays and input setup require­
ments. The A.G. diagram's purpose is to illustrate
the clock edges from which the timing parameters
are measured. The reader should not infer any other
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to
the appropriate functional section.

A.G. spec measurement is defined in Figure 9-1. In­
puts must be driven to the levels shown when A.G.
specifications are measured. 82385SX output delays

CLK2 [2V

3.0V
VALID

OUTPUT n
ov

LEGEND:
A-Maximum output delay specification
B-Minimum output delay specification
C-Minimum input setup specification
D-Minimum input hold specification

NOTES:

-A

...-e
MIN

1.5V

MAX

are specified with minimum and maximum limits,
which are measured as shown. 82385SX input setup
and hold times are specified as minimums and de­
fine the smallest acceptable sampling window. With­
in the sampling window, a synchronous input signal
must be stable for correct 82385SX operation.

9.4.1 FREQUENCY DEPENDENT SIGNALS

The 82385SX has signals whose output valid delays
are dependent on the clock frequency. These sig­
nals are marked in the A.G. Specification Tables with
a Note 1.

2V

VALID NOTE "1 OUTPUT n+1

NOTE 2

290222-47

1. Under rated loading 82385SX output (t, and t1) is typically ::: 4.0 ns from O.BV to 2.0V.
2. Input waveforms have t, ::: 2.0 ns from O.BV to 2.0V.

Figure 9-1. Drive Levels and Measurement Points for A.C. Specification

5-1067

I

82385SX

A.C. SPECIFICATION TABLES
Functional operating range: Vee = 5V ± 5%; T CASE = 0°C to + 85°C

Table 4.1. A.C. Specifications at 16 MHz

Symbol Parameter Min Max Units Notes

t1 Operating Frequency 15.4 16 MHz

t2 CLK2, BCLK2 Period 31.25 32.5 ns

t3a CLK2, BCLK2 High Time @ 2V 10 ns

t3b CLK2, .BCLK2 High Time@ 3.7V 7 ns 3

t4a CLK2, BCLK2 Low Time @ 2V 10 ns

t4b CLK2, BCLK2 Low Time @ 0.8V 7 ns 3

t5 CLK2, BCLK2 Fall Time 8 ns 3,9

t6 CLK2, BCLK2 Rise Time 8 ns 3,9

t7a A4-A12 Setup Time 30 ns 1

t7b LOCK# Setup Time 19 ns 1

t7c BLE #, BHE # Setup Time 21 ns 1

t7d A1-A3, A13-A23 Setup Time 23 ns 1

t8 A 1 -A23, BLE #, BHE #, LOCK# Hold 3 ns

t9a MllO#, DIC# Setup Time 30 ns 1

.t9b WIR# Setup Time 30 ns 1

t9c ADS# Setup Time 30 ns 1

t10 MllO#, DIC#, WIR#, ADS# Hold Time 5 ns

t11 READ YI# Setup Time 19 ns 1

t12 READ YI# Hold Time 4 ns

t13a1 NGA# Setup Time (See t55b2) 27 ns 6

t13a2 NGA# Setup Time (See t55b3) 20 ns 6

t13b LBA # Setup Time 16 ns

t14a NGA# Hold Time 4 ns

t14b LBA# Hold Time 4 ns

t15 RESET, BRESET Setup Time 13 ns

t16 RESET, BRESET Hold Time 4 ns

t17 NA# Valid Delay 12 42 ns 1 (25 pF Load)

t18 READYO# Valid Delay 3 31 ns 1 (25 pF Load)

t19 BRDYEN# Valid Delay 3 31 ns

t21a1 GALEN Rising, PHl1 3 30 ns

t21a2 GALEN Falling, PHl1 3 30 ns

t21a3 GALEN Falling in T1 P, PHl2 3 30 ns

t21b GALEN Rising Following CWTH 3 39 ns 1

t21c GALEN Pulse Width 10 ns

t21d GALEN Rising to CS# Falling 13 ns

5-1068

intef 82385SX

A.C. SPECIFICATION TABLES (Continued)
Functional operating range: Vee= 5V ±5%; TcASE = o·c to +85°C

Table 4.1. A.C. Specifications at 16 MHz (Continued)

Symbol Parameter Min Max Units Notes

t22a1 CWEx# Falling, PHl1 (CWTH) 4 31 ns 1

t22a2 CWEx# Falling, PHl2 (CROM) 4 31 ns 1

t22b CWEx # Pulse Width 40 ns 1, 2

t22c1 CWEx# Rising, PHl1 (CWTH) 4 31 ns 1

t22c2 CWEx# Rising, PHl2 (CROM) 4 31 ns 1

t23a1 CS1 #, CS2# Rising, PHl1 (CROM) 6 41 ns 1

t23a2 CS1 #, CS2# Rising, PHl2 (CWTH) 6 41 ns 1

t23a3 CS1 #, CS2# Falling, PHl1 (CWTH) 6 41 ns 1

t23a4 CS1 #, CS2# Falling, PHl2 (CROM) 6 41 ns 1

t24a1 CT/A# Rising, PHl2 (CRDH) 6 43 ns 1

t24a2 CT/A# Falling, PHl1 (CRDH) 6 43 ns 1

t24a3 CT/A# Falling, PHl2 (GROH) 6 43 ns 1

t25a COEA #, COEB # Falling (Direct) 4 33 ns (25 pF Load)

t25b COEA#, COEB# Falling (2-Way) 4 34 ns 1 (25 pF Load)

t25c1 COEx # Rising Delay ® T CASE = OC 4 20 ns (25 pF Load)

t25c2 COEx # Rising Delay ® T CASE = T MAX 4 20 ''ns (25 pF Load)

t23b COEx# Falling to CSx# Rising 0 ns

t25d CWEx# Falling to COEx# Falling or 0 10 ns (25 pF Load) I
CWEx# Rising to COEx# Rising

t26 CSO#,CS1# FallingtoCWEx# Rising 40 ns 1, 2

t27 CWEx# Falling to CSO #, CS1# Falling 0 ns

t28a CWEx# Rising toCALEN Rising 0 ns

t28b CWEx# RisingtoCSO#,CS1# Falling 0 ns

t31 SA(1-23) Setup Time 25 ns

t32 SA(1-23) Hold Time 3 ns

t33 BADS# Valid Delay 4 33 ns 1

t34 BADS# Float Delay 4 33 ns 3

t35 BNA # Setup Time 11 ns

t36 BNA# Hold Time 15 ns

t37 BREADY# Setup Time 31 ns 1

t38 BREADY# Hold Time 4 ns

t40a BACP Rising Delay 0 26 ns

t40b BACP Falling Delay 0 28 ns

t41 BAOE# Valid Delay 3 23 ns

5-1069

intJ 82385SX

A.C. SPECIFICATION TABLES (Continued)
Functional operating range: Vee= 5V ±5%; TcASE = o·c to +85°C

Table 4.1. A.C. Specifications at 16 MHz (Continued)

Symbol Parameter Min Max Units Notes

t43a BT/R# Valid Delay 2 27 ns

t43b1 DOE# Falling Delay 2 30 ns

t43b2 POE# Rising Delay @ T CASE = OC 3 23 ns

t43b3 DOE# Rising Delay @ T CASE = T MAX 3 26 ns

t43c LDSTB Valid Delay, 2 33 ns

t44a SEN Setup Time 15 ns

t44b SSTB# Setup Time 15 ns

t45 SEN, SSTB# Hold Time 5 ns

t46 BHOLD Setup Time 26 ns

t47 BHOLD Hold Time 5 ns

t48 BHLDA Valid Delay 3 33 ns

t55a BLOCK# Valid Delay 3 36 ns 1, 5

t55b1 BBxE# Valid Delay 3 36 ns 1, 7

t55b2 BBxE #Valid Delay 3 36 ns 1, 7

t55b3 BBxE # Valid Delay 3 43 riS 1, 7

t55c LOCK# Falling to BLOCK# Falling 0 36 ns 1, 5

t56 MISS# Valid Delay 3 43 ns 1

t57 MISS#, BBxE#, BLOCK# Float Delay 4 40 ns 3

t58 WBS Valid Delay 3 39 ns 1

t59 FLUSH Setup Time 21 ns

t60 FLUSH Hold Time 5 ns

t61 FLUSH Setup to RESET Low 31 ns

t62 FLUSH Hold from RESET Low 31 ns

5-1070

intef 82385SX

A.C. SPECIFICATION TABLES
Functional operating range: Vee = 5V ± 5%; T CASE = 0°C to + 85°C

A.C. Specifications at 20 MHz

Symbol Parameter Min Max Units Notes

t1 Operating Frequency 15.4 20 MHz

t2 CLK2, BCLK2 Period 25 32.5 ns

t3a CLK2, BCLK2 High Time @ 2V 10 ns

t3b CLK2, BCLK2 High Time@ 3.7V 7 ns 3

t4a CLK2, BCLK2 Low Time @ 2V 10 ns

t4b CLK2, BCLK2 Low Time @ 0.8V 7 ns 3

t5 CLK2, BCLK2 Fall Time 8 ns 3,9

t6 CLK2, BCLK2 Rise Time 8 ns 3,9

t7a1 A4-A 12 Setup Time 20 ns 1

t7a2 A1-A3, A13-A19, A21-A23 Setup Time 18 ns 1

t7a3 A20 Setup Time 16 ns 1

t?b LOCK# Setup Time 16 ns 1

t?c BLE #, BHE # Setup Time 18 ns 1

t8 A1-A23, BLE#, BHE#, LOCK# Hold 3 ns

t9a MllO#, DIC# Setup Time 20 ns 1

t9b WIR# Setup Time 20 ns 1

t9c ADS# Setup Time 22 ns 1

t10 MllO#, DIC#, WIR#, ADS# Hold Time 5 ns I
t11 READYI # Setup Time 12 ns 1

t12 READYI # Hold "J:ime 4 ns

t13a1 NCA # Setup Time (See t55b2) 21 ns 6

t13a2 NCA # Setup Time (See t55b3) 16 ns 6

t13b LBA # Setup Time 10 ns

t14a NCA # Hold Time 4 ns

t14b LBA # Hold Time 4 ns

t15 RESET, BRESET Setup Time 12 ns

t16 RESET, BRESET Hold Time 4 ns

t17 NA# Valid Delay 12 34 ns 1 (25 pF Load)

t18 READYO# Valid Delay 3 26 ns 1 (25 pF Load)

t19 BR DYEN# Valid Delay 3 26 ns

t21a1 GALEN Rising, PHl1 3 24 ns

t21a2 GALEN Falling, PHl1 3 24 ns

t21a3 GALEN Falling in T1P, PH!2 3 24 ns

t21b GALEN Rising Following CWTH . 3 34 ns 1

t21c GALEN Pulse Width 10 ns

5-1071

intef 82385SX

A.C. SPECIFICATION TABLES (Continued)
Functional operating range: Vee = 5V ± 5%; T CASE = o·c to + 85°C

A.C. Specifications at 20 MHz (Continued)

Symbol Parameter Min Max Units Notes

t21d GALEN Rising to CS# Falling 13 ns

t22a1 CWEx# Falling, PHl1 (CWTH) 4 27 ns 1

t22a2 CWEx# Falling, PHl2 (CROM) 4 27 ns 1

t22b CWEx # Pulse Width 30 ns 1, 2

t22c1 CWEx# Rising, PHl1 (CWTH). 4 27 ns 1

t22c2 CWEx# Rising, PHl2 (CROM) 4 27 ns 1

t23a1 CS1 #, CS2# Rising, PHl1 (CROM) 6 37 ns 1

t23a2 CS1 #, CS2# Rising, PHl2 (CWTH) 6 37 ns 1

t23a3 CS1 #, CS2# Falling, PH11 (CWTH) 6 37 ns 1

t23a4 CS1 #, CS2# Falling, PHl2 (CROM) 6 37 ns 1

t24a1 CT /R # Rising, PHl2 (CRDH) 6 38 ns 1

t24a2 CT/R# Falling, PH11 (CRDH) 6 38 ns 1

t24a3 CT /R # Falling, PHl2 (CRDH) 6 38 ns 1

t25a COEA#, COEB# Falling (Direct) 4 22 ns (25 pF Load)

t25b CQEA#, COEB# Falling (2-Way) 4 24.5 ns 1 (25 pF Load)

t25c COEx # Rising Delay 5. 17 ns (25 pF Load)

CACHE SAAM WRITE CYCLES

t23b COEx# Falling to CSx# Rising 0 ns 8

t25d CWEx# Falling to COEx# Falling or 0 10 ns 8 (25 pF Load)
CWEx# Rising to COEx# Rising

t26 CSO#, CS1 # Falling to CWEX# Rising 30 ns 1, 2

t27 CWEx# FallingtoCSO#,CS1# Falling 0 ns

t28a CWEx# Rising to GALEN Rising 0 ns

t28b CWEx# AisingtoCSO#,CS1# Falling 0 ns

t31 SA(1-23) Setup Time 19 ns

t32 SA(1-23) Hold Time 3 ns

t33 BADS# Valid Delay 4 28 ns 1

t34 BADS# Float Delay 4 30 .ns 3

t35 BNA# Setup Time 9 ns

t36 BNA#Hold time 15 ns

t37 BREADY# Setup Time 26 ns 1

t38 BREADY# Hold Time 4 ns

t40a BACP Rising Delay 0 20 ns

t40b BACP Falling Delay 0 22 ns

5-1072

intef 82385SX

A.C. SPECIFICATION TABLES (Continued)
Functional operating range: Vee = 5V ± 5%; T CASE = o·c to + 85°C

A.C. Specifications at 20 MHz (Continued)

Symbol Parameter Min Max Units Notes

t41 BAOE # Valid Delay 3 18 ns

t43a BT /R # Valid Delay 2 19 ns

t43b1 DOE# Falling Delay 2 23 ns

t43b2 DOE# Rising Delay @ T CASE = oc 4 17 ns

t43b3 DOE# Rising Delay @ T CASE = T MAX 4 19 ns

t43c LDSTB Valid Delay 2 26 ns

t44a SEN Setup Time 11 ns

t44b SSTB # Setup Time 11 ns

t45 SEN, SSTB # Hold Time 5 ns

t46 BHOLD Setup Time 17 ns

t47 BHOLD Hold Time 5 ns

t48 BHLDA Valid Delay 3 28 ns

t55a BLOCK# Valid Delay 3 30 ns 1, 5

t55b1 BBxE # Valid Delay 3 30 ns 1, 7

t55b2 BBxE# Valid Delay 3 30 ns 1, 7

t55b3 BBxE# Valid Delay 3 36 ns 1, 7

t55c LOCK# Falling to.BLOCK# Falling 0 30 ns 1, 5

t56 MISS# Valid Delay 3 35 ns 1

t57 MISS#, BBxE#, BLOCK# Float Delay 4 32 ns 3

t58 WBS Valid Delay 3 37 ns 1

t59 FLUSH Setup Time 16 ns

t60 FLUSH Hold Time 5 ns

t61 FLUSH Setup to RESET Low 26 ns

t62 FLUSH Hold from RESET Low 26 ns

82385SX A.C. Specification Notes:
1. Frequency dependent specifications.
2. Used for cache data memory (SAAM) specifications.
3. This parameter is sampled, not 100% tested. Guaranteed by design.
5. BLOCK# delay is either from BPHl1 or from 386 LOCK#. Refer to Figures 5-3K and 5-3L in the 82385SX data sheet.
6. NGA# setup time is now specified to the rising edge of BPHl2 in the state after 386 SX addresses become valid (either
the state after the first T2 or after the first T2P).
7. BBxE# Valid Delay is a function of NGA# setup.

BBxE # valid delay:
t55b1 For cacheable system bus accesses
t55b2 For NGA# setup < t13a1
t55b3 For t13a2 < NGA# setup < t13a1

8. t23b and t25d are only valid specifications when DEFOE# = Vee. Otherwise, if DEFOE# = Vss. COEx# is never
asserted during cache SAAM write cycles. If DEFOE# = Vss. t23b and t25d are Not Applicable.
9. t5 is measured from 0.8V to 3.7V. t6 is measured from 3.7V to 0.8V.

5-1073

I

intef 82385SX

t5 t6 82385SX 0---,
OUTPUT _J_

~CL
290222-49

Figure 9-3. A.C. Test Load
t3--...o---t4

------t2

290222-48

Figure 9-2. CLK2, BCLK2 Timing

386TM SX Interface Parameters
PHl2 PH11 PH12 PHl1

CLK2

CLK

A1-A23~"'l""l'-T"'""r71---~~----~-------t---WT"''""'""""'~

BHE#.BLE# -}..~~~~----i'""""------i------1---l'~~~~ LOCK# -

W/R#~~~c:'T,.t"---,__-----t------;---~7M~~r""
M/10#
D/C# ~1-11-~-..11---+------+------1---...;.c.~~~~

READY!#

OUTPUT DELAYS

PHl2 PHl1 PHl2 PHl1

290222-50

290222-51

5-1074

intJ 82385SX

Cache Write Hit Cycle

T1, 1P T2

PHl1 : PHl2 I PH11 : PHl2 I PHl1 : PHl2

290222-52
©*.This would be 218 if previous bus cycle was Cache Write Hit cycle.

Cache Read Miss (Cache Update Cycle)

T1P T2P T1P

PH11 : PHl2 I PHl1 : PHl2 I PH11 : PH12

El

290222-53
© *. This would be 21 B if previous bus cycle was Cache Write Hit cycle.

5-1075

intJ

CLK2

CALEN (T1)

CS#

COE#
(DIRECT MAPPED)

COE#
(2WAY)

CAL EN

PHl1

-----ol

(T1P) ___ _

82385SX

Cache Read Cycfe

T1,T1P
PHl2 PHl1

T2,T2P
PHl2

, <D •. This would be 21 B if previous bus cycle was Cache Write Hit cycle.

BCLK2

BCLK

BNA#

BREADY#

SEN
SSTB#

BHOLD
(MASTER CONFIG.)

BHLDA
(SLAVE CONFIG.)

System Bus Interface Parameters

BPHl2 BPHl1 BPHl2

<D'. This would be 218 ii previous bus cycle was Cache Write Hit cycle.

5-1076

PHl1

290222-54

BPHl1

290222-55

82385SX

System Bus Interface Parameters (Continued)

OUTPUT DELAYS

BCLK2

BCLK

BADS#, BBE#
BLOCK#

MISS#

(VALID DELAY)

BADS#, BBE#
BLOCK#

MISS#

FLOAT DELAY

BHOLD
(SLAVE CONFIG.)

BHLDA,WBS
(MASTER CONFIG.)

BACP,BAOE#

BT/R#,DOE#

LDSTB

BACP I

DOE#

BPH12 BPH11 BPHl2

5-1077

El

290222-56

intJ 82385SX

APPENDIX A

82385SX Signal Summary

Signal
Signal Function

Active Input/ Tri-State
Group/Name State Output Output?

386 SX INTERFACE

RESET 386 SX Reset High I -
A1-A23 386 SX Address Bus High I -
SHE#, BLE# 386 SX Byte Enables Low I -

CLK2 386SXClock - I -
READYO# Ready Output Low 0 No

BRDYEN# Bus Ready Enable Low 0 No

READY!# 386 SX Ready Input Low I -

ADS# 386 SX Address Status Low I -
M/10# 386 SX Memory I 110 Indication - I -
W/R# 386 SX Write/Read Indication - I -
DIC# 386 SX Data/Control Indication - I -
LOCK# 386 SX .Lock Indication Low I -
NA# 386 SX Next Address Request Low 0 No

CACHE CONTROL

GALEN Cache Address Latch Enable High 0 No

CT/A# Cache Transmit/Receive - 0 No

CSO#,CS1# Cache Chip Selects Low 0 No

COEA #, COEB # Cache Output Enables Low 0 No

CWEA #, CWEB # Cache Write Enables Low 0 No

LOCAL DECODE

LBA# 386 SX Local Bus Access Low I -
NGA# Non-Cacheable Access Low I -
STATUS AND CONTROL

MISS# Cache Miss Indication Low 0 Yes

WBS Write Buffer Status High 0 No

FLUSH Cache Flush High I -

5-1078

intJ 82385SX

82385SX Signal Summary (Continued)

Signal
Signal Function

Active Input/ Tri-State
Group/Name State Output Output?

82385SX INTERFACE

BREADY# 82385SX Ready Input Low I -

BNA# 82385SX Next Address Request Low I -
BLOCK# 82385SX Lock Indication Low 0 Yes

BADS# 82385SX Address Status Low 0 Yes

BBHE#, BBLE# 82385SX Byte Enables Low 0 yes

DATA/ADDA CONTROL

LDSTB Local Data Strobe Pos.Edge 0 No

DOE# Data Output Enable Low 0 No

BT/A# Bus Transmit/Receive - 0 No

BACP Bus Address Clock Pulse Pos.Edge 0 No

BAOE# Bus Address Output Enable Low 0 No

CONFIGURATION

2W/D# 2-Way/Direct Map Select - I -

M/S# Master/Slave Select - I -
DEFOE# Define Cache Output Enable - I -
COHERENCY

SA1-SA23 Snoop Address Bus High I -
SSTB# Snoop Strobe Low I -
SEN Snoop Enable High I -
ARBITRATION

BHOLD Hold High 1/0 No

BHLDA Hold Acknowledge High 1/0 No

5-1079

•

•

•

82380
HIGH PERFORMANCE 32-BIT OMA CONTROLLER WITH

INTEGRATED SYSTEM SUPPORT PERIPHERALS
High Performance 32-Bit OMA • Programmable Wait State Generator
Controller - Oto 15 Wait States Pipelined
- 50 MBytes/sec Maximum Data - 1 to 16 Wait States Non-Pipelined

Transfer Rate at 25 MHz • DRAM Refresh Controller
- 8 Independently Programmable

Channels • 80386 Shutdown Detect and Reset

20-Source Interrupt Controller
Control
- Software/Hardware Reset

- Individually Programmable Interrupt
Vectors • High Speed CHMOS Ill Technology

-15 External, 5 Internal Interrupts • 132-Pin PGA Package
- 82C59A Superset • Optimized for use with the 80386
Four 16-Bit Programmable Interval Microprocessor
Timers - Resides on Local Bus for Maximum
- 82C54 Compatible Bus Bandwidth

The 82380 is a multi-function support peripheral that integrates system functions necessary in an 80386
environment. It has eight channels of high performance 32-bit OMA with the most efficient transfer rates
possible on the 80386 bus. System support peripherals integrated into the 82380 provide Interrupt Control,
Timers, Wait State generation, DRAM Refresh Control, and System Reset logic.

The 82380's OMA Controller can transfer data between devices of different data path widths using a single
channel. Each OMA channel operates independently in any of several modes. Each channel has a temporary
data storage register for handling non-aligned data without the need for external alignment logic.

INTERNAL BUS
ARBITRATION

AND CONTROL

WAIT• STATE
CONTROL

DRAM
REFRESH

CONTROLLER

20 •LEVEL
INTERRUPT

CONTROLLER

CPU
RESET

80386 LOCAL BUS

32· BIT
8-CHANNEL

OMA
CONTROLLER

TIMER 0

TIMER 1

TIMER 2

TIMER 3

82380 Internal Block Diagram

5-1080

290128-1

October 1990
Order Number: 290128-005

infef 82380

TABLE OF CONTENTS
CONTENTS PAGE

1.0 FUNCTIONAL OVERVIEW .. 5-1085
1 .1 82380 Architecture .. 5-1085

1.1.1 OMA Controller .. 5-1086
1.1.2 Programmable Interval Timers .. 5-1087
1.1.3 Interrupt Controller ... 5-1088
1.1.4 Wait State Generator ... 5-1089
1.1.5 DRAM Refresh Controller .. 5-1089
1.1.6 CPU Reset Function ... 5-1090
1. 1. 7 Register Map Relocation ... 5-1090

1.2 Host Interface .. 5-1090
1.3 IBM-PC System Compatibility .. ; 5-1091

2.0 80386 HOST INTERFACE ... 5-1091
2.1 Master and Slave Modes .. 5-1092
2.2 80386 Interface Signals ... 5-1092

2.2.1 Clock (CLK2) .. 5-1092
2.2.2 Data Bus (D0-031) .. 5-1092
2.2.3 Address Bus (A31-A2) ... 5-1093
2.2.4 Byte Enable (BE3#-BEO#) .. 5-1093
2.2.5 Bus Cycle Definition Signals (D/C#, W/R#, M/10#) 5-1094
2.2.6 Address Status (ADS#) .. 5-1094
2.2.7 Transfer Acknowledge (READY#) .. 5-1094
2.2.8 Next Address Request (NA#) .. 5-1094
2.2.9 Reset (RESET, CPURST) .. 5-1094
2.2.1 O Interrupt Out (INT) .. 5-1095

2.3 82380 Bus Timing ... 5-1095
2.3.1 Address Pipelining ... 5-1096
2.3.2 Master Mode Bus Timing ... 5-1096 I
2.3.3 Slave Mode Bus Timing .. 5-1099

3.0 OMA CONTROLLER .. 5-1100
3.1 Functional Description .. 5-1101
3.2 Interface Signals .. 5-1102

3.2.1 DREQn and EDACK (0-2) ... 5-1103
3.2.2 HOLD andHLDA ... 5-1103
3.2.3 EOP# ... 5-1103

3.3 Modes of Operation ... 5-1103
3.3.1 Target/Requester Definition .. 5-1104
3.3.2 Buffer Transfer Processes .. 5-1104
3.3.3 Data Transfer Modes ... 5-1105
3.3.4 Channel Priority Arbitration ... 5-1109
3.3.5 Combining Priority Modes•.................................... 5-1111
3.3.6 Bus Operation ... 5-1112

3.3.6.1 Fly-By Transfers .. 5-1112
3.3.6.2 Two-Cycle Transfers .. 5-1112
3.3.6.3 Data Path Width and Data Transfer Rate Considerations 5-1113
3.3.6.4 Read, Write, and Verify Cycles ... 5-1113

3.4 Bus Arbitration and Handshaking .. 5-1113
3.4.1 Synchronous and Asynchronous Sampling of DREQn and EOP # 5-1116
3.4.2 Arbitration of Cascaded Master Requests 5-1118
3.4.3 Arbitration of Refresh Requests .. 5-1120

5-1081

82380

CONTENTS PAGE

3.0 OMA CONTROLLER (Continued)
3.5 OMA Controller Register Overview .. 5-1120

3.5.1 Control/Status Registers ... 5-1120
3.5.2 Channel Registers ... 5-1121
3.5.3 Temporary Registers ... 5-1122

3.6 OMA Controller Programming ... 5-1123
3.6.1 Buffer Processes ... 5-1123

3.6.1.1 Single Buffer Process ... 5-1123
3.6.1.2 Buffer Auto-Initialize Process .. 5-1123
3.6. 1.3 Buffer Chaining Process ... 5-1123

3.6.2 Data Transfer Modes ... 5-1124
3.6.3 Cascaded Bus Masters ... 5-1124
3.6.4 Software Commands ... 5-1124

3. 7 Register Definitions ... 5-1125
3.8. 8237 A Compatibility ... 5-1131

4.0 .PROGRAMMABLE INTERRUPT CONTROLLER 5-1132
4.1 Functional Description .. 5-1132

4.1.1 Internal Block Diagram ... 5-1132
4.1.2 Interrupt Controller Banks .. 5-1133

4.2 Interface Signals : 5-1134
4.2.1 Interrupt Inputs ... 5-1134
4.2.2 Interrupt Output(INT) .. 5-1135

4.3 Bus Functional Description .. 5-1135
4.4 Modes of Operation ... 5-1136

4.4.1 End-Of-Interrupt ... 5-1136
4.4.2 Interrupt Priorities .. 5-1137

4.4.2.1 Fully Nested Mode .. 5-1137
4.4.2.2 Automatic Rotation-Equal Priority Devices 5-1138
4.4.2.3 Specific Rotation-Specific Priority 5-1139
4.4.2.4 Interrupt Priority Mode Summary ... 5-1139

4.4.3 Interrupt Masking .. 5-1140
4.4.4 Edge Or Level lnterruptTriggering .. 5-1140
4.4.5 Interrupt Cascading .. 5-1140

4.4.5.1 Special Fully Nested Mode .. 5-1141
4.4.6 Reading Interrupt Status ... 5-1141

4.4.6.1 Poll Command .. 5-1141
4.4.6.2 Reading Interrupt Registers , 5-1141

4.5 Register Set Overview .. 5-1141
4.5.1 Initialization Command Words (ICW) .. 5-1143
4.5.2 Operation Control Words (OCW) .. 5-1143
4.5.3 Poll/Interrupt Request/In-Service Status Register 5-1144
4.5.4 Interrupt Mask Register (IMR) .. 5-1144
4.5.5 Vector Register (VR) ... 5-1144

4.6 Programming ... 5-1144
4.6.1 Initialization (ICW) .. 5-1144
4.6.2 Vector Registers (VR) .. 5-1145
4.6.3 Operation Control Words (OCW) ... 5-1145

4.6.3.1 Read Status And Poll Commands (OCW3) 5-1145
4. 7 Register Bit Definition ... 5-1146
4.8 Register Operational Summary .. 5-1149

5-to82

intJ 82380

CONTENTS PAGE

5.0 PROGRAMMABLE INTERVAL TIMER .. 5-1150
5.1 Functional Description .. 5-1150

5.1.1 Internal Architecture ... 5-1151
5.2 Interface Signals .. 5-1152

5.2.1 CLKIN ... 5-1152
5.2.2 TOUT1, TOUT2#, TOUT3# ... 5-1152
5.2.3 GATE .. 5-1152

5.3 Modes of Operation ... 5-1153
5.3.1 Mode 0-lnterrupt On Terminal Count .. 5-1153
5.3.2 Mode 1-GATE Retriggerable One-Shot 5-1153
5.3.3 Mode 2-Rate Generator .. 5-1155
5.3.4 Mode 3-Square Wave Generator .. 5-1156
5.3.5 Mode 4-lnitial Count Triggered Strobe 5-1158
5.3.6 Mode S.-GATE Retriggerable Strobe .. 5-1159
5.3.7 Operation Common to All Modes ... 5-1160

5.3.7.1 GATE ... 5-1160
5.3.7.2 Counter ... 5-1160

5.4 Register Set Overview .. 5-1160
5.4.1 Counter 0, 1, 2, 3 Registers ... 5-1161
5.4.2 Control Word Register I & II : 5-1161

5.5 Programming ... 5-1161
5.5.1 Initialization .. 5-1161
5.5.2 Read Operation .. 5-1161

5.6 Register Bit Definitions .. '. 5-1163

6.0 WAIT STATE GENERATOR ... 5-1165
6.1 Functiona.1.Description ... · · · · · · · · · 5-11651
6.2 Interface Signals .. 5-1166

6.2.1 READY# ...•................ 5-1166
6.2.2 READYO# .. 5-1166
6.2.3 WSC(0-1) ... 5-1166

· 6.3 Bus Function ... · 5-1167
6.3.1 Wait States in Non-Pipelined Cycle ... 5-1167
6.3.2 Wait States in Pipelined Cycle : 5-1168
6.3.3 Extending and Early Terminating Bus Cycle 5-1169

6.4 Register Set Overview ; ... 5-1170
6.5 Programming ... 5-1171
6.6 Register Bit Definition ... 5-1171
6.7 Application Issues .. 5-1171

6.7.1 External 'READY' Control Logic .. 5-1171

7.0 DRAM REFRESH CONTROLLER ... 5-1173
7 .1 Functional Description .. 5-1173
7.2 Interface Signals , .. 5-1173

7.2.1 TOUT1/REF# ... 5-1173
7.3 Bus Function ... 5-1174

7.3.1 Arbitration ...•... 5-1174
7.4 Modes of Operation ... 5-1175

7.4.1 Word Size and Refresh Address Counter 5-1175
7.5 Register Set Overview .. 5-1175
7 .6 Programming ... 5-1175
7. 7 Register Bit Definition ... 5-1175

5-1083

82380

C()NTENTS -PAGE

8.0 RELOCATION REGISTER AND ADDRESS DECODE :•... 5·1175
8.1 Relocation Regi$ter ... 5-1175

8.1.1 1/0-Mapped 82380 .. 5-1176
8.1.2 Memory-Mapped 82380 .. 5-1176

8.2 Address Decoding .. 5-1176

9.0 CPU RESET AND SHUTDOWN DETECT .. 5-1176
9.1 Hardware Reset ... : -5-1176
9.2 Software Reset ... 5-1176
9.3 Shutdown Detect ... \' : .. 5-1177

10.0 INTERNAL CONTROL AND DIAGNOSTIC PORTS 5-1177
10.1 Internal Control Port .· .. 5-1177
10.2 Diagnostic Ports ... 5-1177

11.0 INTEL RESERVED 1/0 PORTS , ... 5-1178

12.0 MECHANICAL DATA .. 5-1178
12.1 Introduction ...•................. 5-1178
12.2 Pin Assignment .. 5-1179
12.3 Package Dimensions and Mounting .. 5-1181
12.4 Package Thermal Specification _ : -....................... 5-1183

13.0 ELECTRICAL DATA ... 5-1184
13.1 Power and Grounding ... ~ 5-1184
13.2 Power Decoupling .. : ... 5-1184
13.3 Unused Pin Recommendations .. 5-1184
13.4 ICE-386 Support ... 5-1184
13.5 Maximum Ratings ... 5-1185
13.6 D.C. Specifications .. 5-1185
13.7 AC. Specifications .. 5-1187

APPENDIX A-Ports Listed by Address .. 5-1196

APPENQIX B-Ports Listed by Function : , 5-1200

APPENDIX C-Pln Descriptions .. 5-1204

APPENDIX 0-System Notes ... 5-1207

5-1084

intef 82380

1.0 FUNCTIONAL OVERVIEW

The 82380 contains several independent functional
modules. The following is a brief discussion of the
components and features of the 82380. Each mod­
ule has a corresponding detailed section later in this
data sheet. Those sections should be referred to for
design and programming information.

1.1 82380 Architecture

The 82380 is comprised of several computer system
functions that are normally found in separate LSI
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt
Controller which is a superset of the 82C59A; four
16-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; a DRAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the
82380 is optimized for high-performance operation
with the 80386 microprocessor.

The 82380 operates directly on the 80386 bus. In
the Slave mode, it monitors the state of the proces-

sor at all times and acts or idles according to the
commands of the host. It monitors the address pipe­
line status and generates the programmed number
of wait states for the device being accessed. The
82380 also has logic to reset the 80386 via hard­
ware or software reset requests and processor shut­
down status.

After a system reset, the 82380 is in the Slave
mode. It appears to the system as an 110 device. It
becomes a bus master when it is performing OMA
transfers.

To maintain.compatibility with existing software, the
registers within the 82380 are accessed as bytes. If
the internal logic of the 82380 requires a delay be­
fore another access by the processor, wait states
are automatically inserted into the access cycle.
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery
times.

Figure 1-1 shows the basic architectural compo­
nents of the 82380. The following sections briefly
discuss the architecture and function of each of the
distinct sections of the 82380.

80386 LOCAL BUS

READY#
READYO#

wsco
WSC1

TOUT1/REF#

151RQ#

INT

RESET
CPURST

INTERNAL BUS

32-BIT
8-CHANNEL

WAIT-STATE OMA
CONTROL CONTROLLER

DRAM
REFRESH

CONTROLLER

20-LEVEL
INTERRUPT

CONTROLLER

CPU
RESET

Figure 1·1. Architecture of the 82380

5-1085

DREQO
• •
•

DREQ7

EDACKO

EOACK1

EDACK2

EOP#

TOUT2#

TOUT3#

290128-2

intJ 82380

1.1.1 DMA CONTROLLER

The 82380 contains a high-performance, 8-channel,
32-bit OMA controller. It is capable of transferring
any combination of bytes, words, and double words.
The addresses of both source and distination can be
independently incremented, decremented or held
constant, and cover the entire 32-bit physical ad­
dress space of the 80386. It can disas.semble and
assemble misaligned data via a 32-bit internal tem­
porary data storage register. Data transferred be­
tween devices of different data path widths can also
be assembled and disassembled using the internal
temporary data storage register. The OMA Controller
can also transfer aligned· data between 1/0 and
memory on the fly, allowing data transfer rates up to
32 megabytes per second for an 82380 operating at
16 MHz. Figure 1-2 illustrates the functional compo­
nents of the OMA Controller.

There are twenty-four general status and command
registers in the 82380 OMA Qontroller. Through
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of any one channel are independent of
the operation of the other channels.

Each channel has three programmable registers
which determine the location and amount of data to
be transferred:

Byte Count Register-Number of bytes. to trans­
fer. (24-bits)

Requester Register-Address of memory. or pe­
ripheral which is requesting OMA service. (32-
bits)

Target Register-Address of peripheral or mem­
ory which will be accessed. (32-bits)

There are also port addresses which, when ac­
cessed, cause the 82380 to perform specific func­
tions. The actual data written does not matter, the
act of writing to the specific address causes the
command to be execu.ted. The commands which op­
erate in this mode are: Master Clear, Clear Terminal
Count Interrupt Request, Clear Mask Register, and
Clear Byte Pointer Flip-Flop.

OMA transfers can be done between all combina­
tions of memory and 1/0; memory-to-memory, mem­
ory-to-'1/0, 1/0-to-memory, and l/O-to-1/0.. OMA
service can be requested through software and/ or
hardware. Hardware OMA acknowledge signals are
available for all channels (except channel 4) through
an encoded 3-bit OMA acknowledge bus
(EDACK0-2).

HOLD+------.
HLDA----.

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

DREQO
DREQ1
DREQ2
DREQ3
DREQ4
DREQS
DREQ6
DREQ7

EDACKO

EDACK1

EDACK2

EOP#

OMA
REQUEST

ARBITRATION
LOGIC

PROCESS.
CONTROL

COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT
REQUESTER
·ADDRESS

---------t REQUESTER
MODE REGISTER II ADDRESS

SOFTWARE REQUEST
REGISTER

MASK REGISTER
STATUS REGISTER

BUS SIZE REGISTER

CHAINING REGISTER

BASE CURRENT
TARGET TARGET

ADDRESS ADDRESS

CHANNEL 1 (SAME AS CH 0)

CHANNEL 2 (SAME AS CH 0)

CHANNEL 3 (SAME AS CH O)

"LOWER" GROUP OF CHANNELS

"UPPER" GROUP OF CHANNELS

CONTROL/STATUS
(SAME AS
LOWER GROUP)

CHANNEL 4 (SAME AS CH 0)

CHANNEL 5 (SAME AS CH 0)

CHANNEL 6 SAME AS CH 0)

CHANNEL 7 (SAME AS CH 0)

Figure 1-2. 82380 DMA Controller

5-1086

CHANNEL 0

290128-3

inter 82380

The 82380 OMA controller transfers blocks of data
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer
Process the 82380 OMA Controller is programmed
to transfer one particular block of data. Successive
transfers then require reprogramming of the OMA
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferr~d, and
there is a contiguous block of data area available.

The Buffer Auto-Initialize Process allows the same
data area to be used for successive OMA transfers
without having to reprogram the channel.

The Buffer Chaining Process allows a program to
specify a list of buffer transfers to be executed. The
82380 OMA Controller, through interrupt routines, is
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer
transfer is complete. This pipelining of the channel
programming process allows the system to allocate
non-contiguous blocks of data storage space, and
transfer all of the data with one OMA process. The
buffers that make up the chain do not have to be in
contiguous locations.

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of
OMA channels based on hardware or other fixed pa­
rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis.

With fixed priority, the programmer can set any
channel to have the current lowest priority. This al-

CONTROL __

LOGIC

lows the user to reset or manually rotate the priority
schedule without reprogramming the command reg­
isters.

1.1.2 PROGRAMMABLE INTERVAL TIMERS

Four 16-bit programmable interval timers reside
within the 82380. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common
clock input which can be independent of the system
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count
can be latched and read by the 80386 at any time,
making these very versatile event timers. Figure 1-3
shows the functional components of the Program­
mable Interval Timers.

The outputs of the timers are directed to key system
functions, making system design simpler. Timer O is

· routed directly to an interrupt input and is not avail­
able externally. This timer would typically be used to
generate time-keeping interrupts.

Timers 1 and 2 have outputs which are available for
general timer/counter purposes as well as special
functions. Timer 1 is routed to the refresh control
logic to provide refresh timing. Timer _2 is conne?ted
to an interrupt request input to provide other timer
functions. Timer 3 is a general purpose timer/coun-
ter whose output is available to external hardware. It El
is also connected internally to the interrupt request
which defaults to the highest priority (IRQO).

GATES[

CLKIN OUTPUT CONTROL LOGIC TOUTO (INTERNAL)
I -------------------4 TIMER 0

TIMER 1 TOUT1

TIMER 2 TOUT2#

TIMER 3 TOUT3#

290128-4

Figure 1-3. Programmable Interval Timers-Block Diagram

5-1087

intJ 82380

1.1.3 INTERRUPT CONTROLLER

The 82380 has the equivalent of three enhanced
82C59A Programmable Interrupt Controllers. These
controllers can all be operated in the Master mode,
but the priority is always as if they were cascaded.
There are 15 interrupt request inputs provided for
the user, all of which can be inputs from external
slave interrupt controllers. Cascading 82C59As to
these request inputs allows a possible total of 120
external interrupt requests. Figure 1-4 is a block dia­
gram of the 82380 Interrupt Controller.

Each of the interrupt request inputs can be individu­
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than
was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being

made to program the vectors in the method of the
82C59A. This provides compatibility of existing soft­
ware that used the 82C59A or 8259A with new de­
signs using the 82380.

In the event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle, the 82380 Interrupt
Controller issues a default vector. This vector, pro­
grammed by the system software; will alert the sys­
tem of unsolicited interrupts of the 80386.

The functions of the 82380 Interrupt Controller are
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above.
Interrupt request inputs are programmable as either
edge or level triggered and are software maskable.
Priority can be either fixed or rotating and interrupt
requests can be nested.

INT. MASK REG.

IROO#
IR01#
IR02#
IR03#
IR04#
IR05#
IR06#
IR07#

DATA (0-7)

INTERRUPT
..----•TO HOST

PRIORITY
RESOLVER

&
CONTROL

LOGIC

IRQO
IRQ1

IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAMMABLE
VECTOR BANK

82380 ENHANCEMENT OVER THE 82C59A

Figure 1·4. 82380 Interrupt Controller-Block Diagram

5-1088

290128-5

intJ 82380

Enhancements are added to the 82380 for cascad­
ing external interrupt controllers. Master to Slave
handshaking takes place on the data bus, instead of
dedicated cascade lines.

1.1.4 WAIT STATE GENERATOR

The Wait State Generator is a programmable
READY generation circuit for the 80386 bus. A pe­
ripheral requiring wait states can request the Wait
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software;
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82380 Wait State
Generator is shown in Figure 1-5. ·

The peripheral being accessed selects the required
wait state count by placing a code on a 2-bit wait
state select bus. This code along with the M/10#
signal from the bus master is used to select one of
six internal 4-bit wait state registers which has been
programmed with the desired number of wait states.
From zero to fifteen wait states can be programmed
into the wait state registers. The Wait State Genera­
tor tracks the state of the processor or current bus
master at all times, regardless of which device is the
current bus master and regardless of whether or not
the Wait State Generator is currently active.

The 82380 Wait State Generator is disabled by mak­
ing the select inputs both high. This allows hardware
which is intelligent enough to generate its own ready
signal to be accessed without penalty. As previously

mentioned, deselecting the Wait State Generator
does not disable its ability to determine the proper
number of wait states due to pipeline status in sub­
sequent bus cycles.

The number of wait states inserted into a pipelined
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
lined mode, the Wait State Generator will increase
the number of wait states inserted into the bus cycle
by one.

On reset, the Wait State Generator's registers are
loaded with the value FFH, giving the maximum
number of wait states for any access in which the
wait state select inputs are active.

1.1.5 DRAM REFRESH CONTROLLER

The 82380 DRAM Refresh Controller consists of a
24-bit refresh address counter and bus arbitration
logic. The output of Timer 1 is used to periodically
request a refresh cycle. When the controller re­
ceives the request, it requests access to the system
bus through the HOLD signal. When bus control is
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF#) that the memory uses to force a
refresh instead of a normal read. Control of the bus I
is transferred to the processor at the completion of
this cycle. Typically a refresh cycle will take six clock
cycles to execute on an 80386 bus.

INTERNAL WAIT STATE
REQUIREMENT

D7 D4 D3 DO

wsco

WSC1

M/10#

REGISTER
SELECT
LOGIC

MEMORY 0 1/0 0

MEMORY 1 1/0 1

MEMORY 2 1/0 2

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 1-5. 82380 Wait State Generator-Block Diagram

5-1089

290128-6

intJ 82380

The 82380 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active OMA process. This allows large
blocks of data to be moved by the OMA controller
without affecting the refresh function. Also the OMA
controller is not required to completely relinquish the
bus, the refresh controller simply steals a bus cycle
between OMA accesses.

The amount by which the refresh address is incre­
mented is programmable to allow for different bus
widths and memory bank arrangements.

1.1.6 CPU RESET FUNCTION

The 82380 contains a special reset function which
can respond to hardware reset signals from the
82384, as well as a software reset command. The
circuit will hold the 80386's RESET line active while
an external hardware reset signal is present at its
RESET input. It can also reset the 80386 processor
as the result of a software command. The software
reset command causes the 82380 to hold the proc­
essor's RESET line active for a minimum of 62 CLK2
cycles; enough time to allow an 80386 to re-initialize.

The 82380 can be programmed to sense the shut­
down detect code on the status lines from the
80386. If the Shutdown Detect function is enabled,
the 82380 will automatically reset the processor. A
diagnostic register is available which can be used to
determine the cause of reset.

1.1.7 REGISTER MAP RELOCATION

After a hardware reset, the internal registers of the
82380 are located in 1/0 space beginning at port
address OOOOH. The map of the 82380's registers is
relocatable via a software command. The default
mapping places the 82380 between 1/0 addresses
OOOOH and OODBH. The relocation register allows
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit 1/0 address space or any
even 16-Mbyte boundary in the 32-bit memory ad"
dress space.

1.2 Host Interface

The 82380 is designed to operate efficiently on the
local bus of an 80386 microprocessor. The control

signals of the 82380 are identical in function· to
those of the 80386. As a slave, the 82380 operates
with all of the features available on the 80386 ·bus.
When the 82380 is in the Master mode, it looks iden­
tical to the 80386 to the connected devices.

The 82380 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipelined or
non-pipelined access. All of the status signals of the
processor are monitored.

The control, status, and data registers within the
82380 are located at fixed addresses relative to
each other, but the group can be relocated to either
memory or 1/0 space and to different locations with­
in those spaces.

As a Slave device, the 82380 monitors the control/
status lines of the CPU. The 82380 will generate all
of the wait states it needs whenever it is accessed.
This allows the programmer the freedom of access­
ing 82380 registers without having to insert NOPs in
the program to wait for slower 82380 internal regis­
ters.

The 82380 can determine if a current bus cycle is a
pipelined or a non-pipelined cycle. It does ttiis by
monitoring the ADS# and READY# signals and
thereby keeping track of the current state of the
80386. .

As a bus master, the 82380 looks like an 80386 to
the rest of the system. This enables the designer
greater flexibility in systems which include the
82380. The designer does not have to alter the inter­
faces of any peripherals designed to operate with
the 80386 to accommodate the 82380. The 82380
will access any peripherals on the bus in the same
manner as the 80386, including recognizing pipe­
lined bus cycles.

The 82380 is accessed as an 8-bit peripheral. This is
done to maintain compatibility with existing system
architectures and software. The 80386 places the
data of all 8-bit accesses either on D (0-7) or D (8-
15). The 82380 will only accept data on these lines
when in the Slave mode. When in the Master mode,
the 82380 is a full 32-bit machine, sending and re­
ceiving data in the same manner as the 80386.

5-1090

82380

1.3 IBM PC* System Compatibility

The 82380 is an 80386 companion device designed
to provide an enhancement of the system functions
common to most small computer systems. It is mod­
eled after and is a superset of the Intel peripheral
products found in the IBM PC, PC-AT, and other
popular small computers.

2.0 80386 HOST INTERFACE

Since the 82380 is residing on the opposite side of
the data bus transceiver (with respect to the rest of
the peripherals in the system), it is important to note
that the transceiver should be controlled so that
contention between the data bus transceiver and
the 82380 will not occur. In order to do this, port
address decoding logic should be included in the di­
rection and enable control logic of the transceiver.
When any of the 82380 internal registers is read, the
data bus transceiver should be disabled so that only
the 82380 will drive the local bus.

The 82380 contains a set of interface signals to op­
erate efficiently with the 80386 host processor.
These signals were designed so that minimal hard­
ware is needed to connect the 82380 to the 80386.

This section describes the basic bus functions of the
82380 to show how this device interacts with the
80386 processor. Other signals which are not direct­
ly related to the host interface will be discussed in
their associated functional block description.

Figure 2-1 depicts a typical system configuration
with the 80386 processor. As shown in the diagram,
the 82380 is designed to interface directly with the
80386 bus.

*IBM PC and IBM PC-AT are registered trademarks of Inter­
national Business Machines Inc.

FROM OTHER
PERIPHERALS

CLOCK GENERATOR -----+----""RESET
CLK2

----;:::::'......_ __ -l--~JCLK2

.----+-------+---... ADS#

ADS# CLK2 82380

80386

RESET-----+-----ICPURST

OPTIONAL
WAIT STATE

LOGIC

HOLDM----------4HOLO

HLOA HLDA

INT INT

NA# NA#

D/C# D/C#

W/R# W/R#

M/10#--------

BE0-3#,l/l-..;:;_------''-'
A2-A31 ,,.....__,,,--, ~--~.fl

TO BUS
BUFFERS

Figure 2-1. 80386/82380 System Configuration

5-1091

290128-7

I

intJ 82380

2.1 Master and Slave Modes

At any time, the 82380 acts as either a Slave device
or a Master device in the system. Upon reset, the
82380 will be in the Slave Mode. In this mode, the
80386 processor can read/write into the 82380 in­
ternal registers. Initialization information may be pro­
grammed into the 82380 during Slave Mode.

When OMA service (including DRAM Refresh Cycles
generated by the 82380) is requested, the 82380 will
request and subsequently get control of the 80386
local bus. This is done through the HOLD and HLDA
(Hold Acknowledge) signals. When the 80386 proc­
essor responds by asserting the HLDA signal, the
82380 will switch into Master Mode and perform
OMA transfers. In this mode, the 82380 is the bus
master of the system. It can read/write data from/to
memory and peripheral devices. The 82380 will re­
turn to the Slave Mode upon completion of OMA
transfers, or when HLDA is negated.

2.2 80386 Interface Slgnals

As mentioned in the Architecture section, the Bus
Interface module of the 82380 (see Figure 1-1) con­
tains signals that are directly connected to the
80386 host processor. This module has· separate
32-bit Data and Address busses. Also, it has addi­
tional control signals to support different bus opera­
tions on the system. By residing on the 80386 local
bus, the 82380 shares the same address,· data and
control lines with the processor. The following sub­
sections discuss the signals which interface to the
80386 host processor.

2.2.1 CLOCK (CLK2)

The CLK2 input provides fundamental timing for the
82380. It is divided by two internally .to generate the
82380 ·internal clock. Therefore, . CLK2 should .be
driven with twice the 80386's frequency. In order to
ma,intain synchronization with the 80386 host proc­
essor, the 82380 and the 80386. should . share a
common clock source.

The internal clock consists of two phases: PHl1 and
PHl2. Each CLK2 period is a phase o1 the internal
clock. PHl2 is usually used to sample input and.set
up internal signals and PHl1 is for latching internal
data. Figure 2-2 illustrates the relationship of CLK2
and the 82380 internal clock. signals. The CPURST
signal generated by the 82380 guarantees that the
80386 will wake up in phase with PHl1.

2.2.2 DATA BUS (D0-031)

This 32-bit three-state bidirectional bus provides a
general purpose data path between the 82380 and
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80386 local bus. The
Data Bus is also used for interrupt vectors generated
by the 82380 in the Interrupt Acknowledge cycle.

During Slave 1/0 operations, the 82380 expects a
single byte to be written or read. When the 80386
host processor writes into the 82380, either D0-07
or 08-015 will be latched into the 82380; depend­
ing upon how the Byte Enable (BEO#-BE#3) sig­
nals are driven. The 82380 does not need to look at
016-031 since the 80386 duplicates the single byte

Figure 2·2. CLK2 and 82380 Internal Clock

5-1092

intef 82380

data on both halves of the bus. When the 80386
host processor reads from the 82380, the single
byte data will be duplicated four times on the Data
Bus; i.e., on DO-D7, D8-D15, D16-D23 and D24-
D31.

During Master Mode, the 82380 can transfer 32-, 16-,
and 8-bit data between memory (or 1/0 devices) and
1/0 devices (or memory) via the Data Bus.

2.2.3 ADDRESS BUS (A31-A2)

These three-state bidirectional signals are connect­
ed directly to the 80386 Address Bus. In the Slave
Mode, they . are used ·as input signals so that the
processor can address the 82380 internal ports/reg­
isters. In the Master Mode, they are used as output
signals by the 82380 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 4 G-bytes of physical memory space
(OOOOOOOOH to FFFFFFFFH), and 64 K-bytes of 1/0
addresses (OOOOOOOOH to OOOOFFFFH).

2.2.4 BYTE ENABLE (BE3#-BEO#)

These bidirectional pins select specific byte(s) in the
double word addressed by A31-A2. Similar to the
Address Bus function, these signals are used as in­
puts to address internal 82380 registers during
Slave Mode operation. During Master Mode opera­
tion, they are used as outputs by the 82380 to ad­
dress memory and 1/0 locations.

NOTE:

In addition to the above function, BE3# is used
to enable a production test mode and must be
LOW during reset. The 80386 processor wlll au­
tomatically hold BE3# LOW during RESET.

The definitions of the Byte Enable signals depend
upon whether the 82380 is in the Master or Slave
Mode. These definitions are depicted in Table 2-1.

Table 2-1. Byte Enable Signals

As INPUTS (Slave Mode):

BE3#-BEO# Implied A1, AO
Data Bits Written

to82380*

xxxo 00 DO-D7
I XX01 01 D8-D15

X011 10 D0-07
X111 11 D8-D15

X-DON'T CARE
'During READ, data will be duplicated on OO-D7, D8-D15, D16-D23, and D24-031.
During WRITE, the 80386 host processor duplicates data on DO-D15, and D16-D31, so that the 82380
is concerned only with the lower half of the Data Bus.

As OUTPUTS (Master Mode):

BE3#-BEO#
Byte to be Accessed
Relative to A31-A2

1110
1101
1011
0111
1001
1100
0011
1000
0001
0000

U = Undefined
A = Logical OO-D7
B = Logical D8-D15
C = Logical D16-D23
D = Logical D24-D31

0
1
2
3
1, 2
0, 1
2,3
0, 1,2
1, 2, 3
0, 1,2,3

Logical Byte Presented On
Data Bus During WRITE Only*

D24-31 D16-23 D8-15 D0-7·

u u u A
u u A A
u A u A
A u A A
u B A A
u u B A
B A B A
u c B A
c B A A
D c B A

•Actual number of by1es accessed depends upon the programmed data path width.

5-1093

82380

2.2.5 BUS CYCLE DEFINITION SIGNALS (D/C#,
W/R#, M/10#)

These three-state bidirectional . signals define the
type of bus cycle being performed. WIR# disti.n­
guishes between write and read cycles. DIC# .dis­
tinguishes between processor data and control cy­
cles. MllO# distinguishes between memory and 110
cycles.

During Slave Mode, these signals are driven by the
80386 host processor; during Master Mode, they are
driven by the 82380. In either mode, these signals
will be valid when the Address Status (ADS#) is
driven LOW. Exact bus cycle definitions are given in
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the
Master Mode, DIC# is always HIGH.

2.2.6 ADDRESS STATUS (ADS#)

This bidirectional signal indicates that a valid ad­
dress (A2-A31, BEO#-BE3#) and bus cycle defini­
tion (WIR#, DIC#, MllO#) is being driven on the
bus. In the Master Mode, it is driven by the 82380 as
an output. In the Slave Mode, this signal is moni­
tored as an input by the 82380. By the current and
past status of ADS# and the READY# input~ the
82380 is able to determine, during Slave Mode, 1f the
next bus cycle is a pipelined address cycle. ADS# is
asserted during T1 and T2P bus states (see Bus
State Definition).

Note that during the idle states at the beginning and
the end of a OMA process, neither the 80386 nor the
82380 is driving the ADS# signal; i.e., the signal is
left floated. Therefore, it is important to use a pull-up
resistor (approximately 10 K!l) on the ADS# signal.

2.2.7 TRANSFER ACKNOWLEDGE {READY#)

This input indicates that the current bus cycle is
complete. In the .Master Mode, assertion of this sig-

nal indicates the end of a OMA bus cycle. In the
Slave Mode, the 82380 monitors this input and
ADS# to detect a pipelined address cycles. This sig­
nal should be tied directly to the READY# input of
the 80386 host processor.

2.2.8 NEXT ADDRESS REQUEST {NA#)

This input is used to indicate to the 82380 in the
Master Mode that the system is requesting address
pipelining. When driven LOW by either memory or
peripheral devices during Master Mode, it indicates
that the system is prepared to accept a new address
and bus cycle definition signals from the 82380 be­
fore the end of the current bus cycle. If this input is
active when sampled by the 82380, the next address
is driven onto the bus, provided a bus request is
already pending internally.

This input pin is monitored only in the Master Mode.
In the Slave Mode, the 82380 use.s the ADS# and
READY# signals to determine address pipelining
cycles, and NA# will be ignored.

2.2.9 RESET {RESET, CPURST)

RESET

This synchronous input suspends any operation in
progress and places the 82380 in a known initial
state. Upon reset, the 82380 will be in the Slave
Mode waiting to be initialized by the 80386 host
processor. The 82380 is reset by asserting RESET
for 15 or more CLK2 periods. When RESET is as­
serted all other input pins are ignored, and all other
bus pi~s are driven to an idle bu~ state as shown.in
Table 2-3. The 82380 will determine the phase of its
internal clock following RESET going inactive.

Table 2-2 Bus Cycle Definition

M/10# DIC# W/R# As INPUTS. As OUTPUTS

0 0 0 Interrupt NOT GENERATED
Acknowledge

0 0 1 UNDEFINED NOT GENERATED
0 1 0 110 Read 110 Read
0 1 1 llOWrite 110 Write
1 0 0 UNDEFINED NOT GENERATED
1 0 1 HALT if NOT GENERATED

BE(3-0) # = X011
SHUTDOWN if

BE (3-0)# = XXXO
1 1 0 Memory Read Memory Read
1 1 1 Memory Write Memory Write

5-1094

82380

Table 2-3. Output Signals Following RESET

Signal Level

A2-A31, DO-D31, BEO#-BE3# Float
DIC#, W/R#, M/10#, ADS# Float
READYO# '1'
EOP# '1' (Weak Pull-UP)
EDACK2-EDACKO '100'
HOLD 'O'
INT UNDEFINED*
TOUT1/REF#, TOUT2#/IRQ3#, TOUT3# UNDEFINED*
CPURST 'O'

'The Interrupt Controller and Programmable Interval Timer are initialized by software commands.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. Therefore, this RESET input
should be tied to the RESET output of the Clock
Generator. The RESET setup and hold time require- ·
ments are shown in Figure 2.3.

CPURST

This output signal is used to reset the 80386 host
processor. It will go active (HIGH) whenever one of
the following events occurs: a) 82380's RESET input
is active; b) a software RESET command is issued
to the 82380; or c) when the 82380 detects a proc­
essor Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active
for 62 CLK2 periods. The timing of CPURST is such
that the 80386 processor will be in synchronization
with the 82380. This timing is shown in Figure 2-4.

CLK2

RESET

T30-RESET Hold Time
T31-RESET Setup Time

2.2.10 INTERRUPT OUT (INT)

This output pin is used to signal the 80386 host
processor that one or more interrupt requests (either
internal or external) are pending. The processor is
expected to respond with an Interrupt Acknowledge
cycle. This signal should be connected directly to
the Maskable Interrupt Request (INTR) input of the
80386 host processor.

2.3 82380 Bus Timing

The 82380 internally divides the CLK2 signal by two
to generate its internal clock. Figure 2-2 shows the
relationship of CLK2 and the internal clock. The in- Et
ternal clock consists of two phases: PHl1 and PHl2.
Each CLK2 period is a phase of the internal clock. In
Figure 2-2, both PHl1 and PHl2 of the 82380 internal
clock are shown.

290128-9

Figure 2-3. RESET Timing

CLK2

CPURST

T33-CPU Reset from CLK2

Figure 2-4. CPURST Timing

5-1095

290128-10

intef 82380

I
82380 CLOCK PERIOD 82380 CLOCK PERIOD 82380 CLOCK PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
01 I 02 01 I 02 01 I 02

CLK2

I
\ J, PHl1_j \ \

, I l PH12\ I I I
I I

290128-11

Figure 2·2. CLK2 and 82380 Internal CIQck

In the 82380, whether it is in the Master or Slave
Mode, the shortest time unit of bus activity is a bus
state. A bus state, which is also referred as a
'T-state', is defined as one 82380 PHl2 clock period
(i.e., two CLK2 periods). Recall in Table 2-2, there
are six different types of bus cycles in the 82380 as
defined by the M/10#, DIC# and W/R# signals.
Each of these bus cycles is composed of two or
more bus states. The length of a bus cycle depends
on when the READY# input is asserted (i.e., driven
LOW).

2.3.1 ADDRESS PIPELINING

The 82380 supports Address Pipelining as an option
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be
required. This is possible because during a pipelined
cycle, the address and bus cycle definition of the
next cycle will be generated by the bus master while
waiting for the end of the current cycle to be ac­
knowledged. The pipelined bus is especially well
suited for interleaved memory environment. For 16
MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses
can be achieved when pipelined addressing is se­
lected.

In the Master Mode, the 82380 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelined or
non-pipelined access depending upon the state of
the NA# input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82380 will

drive the address and bus cycle definition of the next
cycle as soon as there is an internal bus request
pending.

In the Slave Mode, the 82380 is constantly monitor­
ing the ADS# and READY# signals on the proces­
sor local bus to determine if the current bus cycle is
a pipelined cycle. If a pipelined cycle is detected, the
82380 will request one less wait state from the proc­
essor if the Wait State Generator feature is selected.
On the other hand, during an 82380 internal register
access in a pipelined cycle, it will make use of the
advance address and bus cycle information. In all
cases, Address Pipelining will result in a savings of
one wait state.

2.3.2 MASTER MODE BUS TIMING

When the 82380 is in the Master Mode, it will be in
one of six bus states. Figure 2-5 shows the complete
bus state diagram of the Master Mode, including
pipelined address states. As seen in the figure, the
82380 state diagram is very similar to that of the
80386. The major difference is that in the 82380,
there is no Hold state. Also, in the 82380, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a OMA process*.

NOTE:
*The term 'end of a OMA process' is loosely de­
fined here. It depends on the OMA modes of oper­
ation as well as the state of the EOP# and DREQ
inputs. This is explained in detail in section 3-DMA
Controller.

5-1096

intef 82380

The 82380 will enter the idle state, Ti, upon RESET
and whenever the internal address is not available at
the end of a OMA cycle or at the end of a OMA
process. When address pipelining is not used (NA#
is not asserted), a new bus cycle always begins with
state T1. During T1, address and bus cycle definition
signals will be driven on the bus. T1 is always fol­
lowed byT2.

If a bus cycle is not acknowledged (with READY#)
during T2 and NA# is negated, T2 will be repeated.
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next b.us
cycle (if the internal address latch is loaded and if
this is not the end of the OMA process). Otherwise,
the Ti state will be entered. Therefore, if the memory
or peripheral accessed is fast enough to respond
within the first T2, the fastest non-pipelined cycle will
take one T1 and one T2 state.

Not ADAV

ADAV. READY# Asserted

READY# Asserted. (Not ADAV+ End of OMA]

Use of the address pipelining feature allows the
82380 to enter three additional bus states: T1 P,
T2P, and T2i. T1 P is the first bus state of a pipelined
bus cycle. T2P follows T1 P (or T2) if NA# is assert­
ed when sampled. The 82380 will drive the bus with
the address and bus cycle definition signals of the
next cycle during T2P. From the state diagram, it can
be seen that after an idle state Ti, the first bus cycle
must begin with T1 , and is therefore a non-pipelined
bus cycle. The next bus cycle can be pipelined if
NA# is asserted and the previous bus cycle ended
in a T2P state. Once the 82380 is in a pipelined
cycle and provided that NA# is asserted in subse­
quent cycles, the 82380 will be switching between
T1 P and T2P states. If the end of the current bus
cycle is not acknowledged by the READY# input,
the 82380 will extend the cycle by adding T2P
states. The fastest pipelined cycle will consist of one
T1 P and one T2P state.

NA# Asserted. (Not ADAV +End of OMA]

Not ADAV. READY# Negated

290128-:12

NOTE:
ADAV-lnternal Address Available

Figure 2·5. Master Mode State Diagram

5-1097

II

intef 82380

The 82380 will enter state T2i when NA# is assert­
ed and when one of the following two conditions
occurs. The first condition is when the 82380 is in
state T2. T2i will be entered if READY# is not as­
s.erted and there is no next address available. This
situation is similar to a wait state. The 82380 will stay
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82380 enter T2i is
when the 82380 is in state T1 P. Before going to

state T2P, the 82380 needs to wait in state T2i until
the next address is available. Also, in both cases, if
the OMA process is complete, the 82380 will enter
the T2i state in order to finish the current OMA cycle.

Figure 2-6 is a timing diagram showing non-pipelined
bus accesses in the Master Mode. Figure 2-7 shows
the timing of pipelined accesses in the Master Mode:

Tl T2 T1 T2 T2 T1 T2

CLK2

PHl2

ADDRESS ,. ______ .,.,. __________ ,. _____ _

AND CONTROL --< ... ______ ..,x __________ x._ _____ _
DATA c:::J c:::J C (READ) ------- -------- >-----<

DATA ---~c:::::::::::::Jc:::::::::::::::::::::x::::::::: (WRITE)

NA# XXXXXXXXXXXXXXX \
READY# XXXXXXXXXXXXXXX /..XxxxxmxY YXX\"&M __ .900000QQ(h..,..,.. _

I 0 WAIT STATE 1 WAIT STATE 0 WAIT STATE

290128-13

Figure 2·6. Non-Pipelined Bus Cycles

T1 p T2p T1 p T2p T2p T1p . T2p

CLK2

PHl2

ADS# __/ __

ADDRESS -----x"'·-------.x v---
AND CONTROL · · !\..--

NA#~

DATA ,-_,, ,-_,, C
(READ)-------C'---J>---------<L.,_,J~---~

DATA ---.. ,.------..... ----------·----­
(WRITE)---""'"------"""----------•-----

290128-14

Figure 2·7. Pipelined Bus Cycles

5-1098

intef 82380

2.3.3 SLAVE MODE BUS TIMING

Figure 2-8 shows the Slave Mode bus timing in both
pipelined and non-pipelined cycles when the 82380
is being accessed. Recall that during Slave Mode,
the 82380 will constantly monitor the ADS# and
READY# signals to determine if the next cycle is
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82380 will start decoding the ad-

SLAVE
CYCLE

D(0-31)
(READ)

(TWO OR MORE WAIT STATES)

NON-PIPELINED
CYCLE

dress and bus cycle signals one bus state earlier
than in a non-pipelined cycle.

The READY# input signal is sampled by the 80386
host processor to determine the completion of a bus
cycle. This occurs during the end of every T2 and
T2P state. Normally, the output of the 82380 Wait
State Generator, READYO #, is directly connected
to the READY# input of the 80386 host processor
and the 82380. In such case, READYO# and
READY# will be identical (see Wait State Genera­
tor).

(ONE OR MORE WAIT STATES)

PIPELINED
CYCLE

D(0-15) -------<
(WRITE) '--1------+------t ---+-----'''--+------./ />o---

290128-15

NOTE:
NA# is shown here only for timing reference. It is not sampled by the 82380 during Slave Mode.
When the 82380 registers are accessed, it will take one or more wait states in pipelined and two or more wait states in
non-pipelined cycle to complete the internal access.

Figure 2-8. Slave Read/Write Timing

5-1099

I

intJ 82380

3.0 OMA Controller

The 82380 OMA Controller is capable of transferring
data between any combination of memory and/or
1/0, with any combination (8-, 16·, or 32-bits) of data
path widths. Bus bandwidth is optimized through the
use of an internal temporary register which can dis­
assemble or assemble data to or from either an
aligned or a non-aligned destination or source. Fig-

ure 3-1 is a block diagram of the 82380 OMA Con­
troller.

The 82380 has eight channels of OMA. Each chan­
nel operates independently of the .. others. Within the
operation of the individual channels, there are many
different modes of data transfer available. Many of
the operating modes can be intermixed to provide a
very versatile OMA controller.

HOLD-----­ CONTROL/STATUS REGISTERS CHANNEL REGISTERS
HLDA

DREQO
DREQT
DREQ2
DREQ3
DREQ4
DREQ5
DREQS
DREQ7

EDACKO

EDACKT

EDACK2

EDP#

_____.

___.

+--
+--
+--..__...

+ I COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE .CURRENT

MODE REGISTER II
REQUESTER REQUESTER

OMA ADDRESS ADDRESS
CHANNEL 0

REQUEST SOFTWARE REQUEST BASE CURRENT ARBITRATION REGISTER TARGET TARGET
LOGIC

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)
BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0)

1 "LOWER" GROUP or CHANNELS

PROCESS
CONTROL

l '
"UPPER" GROUP OF CHANNELS

CHANNEL 4 SAME AS CH 0)
CONTROL/STATUS CHANNEL 5 SAME AS CH 0)
(SAME AS

CHANNEL 6 SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

290128-16

Figure 3·.1. 82380 DMA Controller Block Diagram

5-1100

intJ 82380

3. 1 Functional Description

In describing the operation of the 82380's OMA Con­
troller, close attention to terminology is required. Be­
fore entering the discussion of the function of the
82380 OMA Controller, the following explanations of
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification:

OMA PROCESS-A OMA process is the execution
of a programmed OMA task from beginning to end.
Each OMA process requires initial programming by
the host 80386 microprocessor.

BUFFER-A contiguous block of data.

BUFFER TRANSFER-The action required by the
OMA to transfer an entire buffer.

DATA TRANSFER-The OMA action in which a
group of bytes, words, or double words are moved
between devices by the OMA Controller. A data
transfer operation may involve movement of one or
many bytes.

BUS CYCLE-Access by the OMA to a single byte,
word, or double word.

Each OMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the
memory or 1/0 devices being serviced by the OMA.
They are the Target, the Requester, and the Byte
Count. They will be defined generically here and in
greater detail in the OMA register definition section.

The Requester is the device which requires service
by the 82380 OMA Controller, and makes the re­
quest for service. All of the control signals which the
OMA monitors or generates for specific channels
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a OMA process.

The Target is the device with which the Requester
wishes to communicate. As far as the OMA process
is concerned, the Target is a slave which is incapa­
ble of control over the process.

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e.,
each can be either a source or a destination.

The Requester and Target may each be either 1/0
or memory. Each has an address associated with it
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester
Address Registers and Target Address Registers,

respectively. These registers have two parts: one
which contains the current address being used in the
OMA process (Current Address Register), and one
which holds the programmed base address (Base
Address Register). The contents of the Base Regis­
ters are never changed by the 82380 OMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the OMA pro­
cess.

The Byte Count is the component of the OMA pro­
cess which dictates the amount of data which must
be transferred. Current and Base Byte Count Regis­
ters are provided. The Current Byte Count Register
is decremented once for each byte transferred by
the OMA process. When the register is decremented
past zero, the Byte Count is considered 'expired'
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event.

Each channel of the 82380. OMA Controller also
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The
operation of this register is transparent to the user,
although the contents of it may affect the timing of
some OMA handshake sequences. Since there is
data storage available for each channel, the OMA
Controller can be interrupted without loss of data.

The.82380 OMA Controller is a slave on the bus until
a request for OMA service is received via either a
software request command or a hardware request
signal. The host processor may access any of the
control/status or channel registers at any time the
82380 is a bus slave. Figure 3-2 shows the flow of
operations that the OMA Controller performs.

At the time a OMA service request is received, the
OMA Controller issues a bus hold request to the
host processor. The 82380 becomes the bus master
when the host relinquishes the bus by asserting a
hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the
time the OMA Controller becomes the bus master.
The OMA Controller will remain in control of the bus
until the hold acknowledge signal is removed, or un­
til the current OMA transfer is complete.

While the 82380 OMA Controller has control of the
bus, it will perform the required data transfer(s). The
type of transfer, source and destination addresses,
and amount of data to transfer are programmed in
the control registers of the OMA channel which re­
ceived the request for service.

5-1101

I

intJ

WAIT FOR OMA
SERVICE REQUEST

ASSERT BUS HOLD
REQUEST

NO REQUEST

82380

At completion of the OMA process, the 82380 will
remove the bus hold request. At this time the 82380
becomes a slave again, .and the host returns to be­
ing a master. If there are other OMA channels with
requests pending, the controller will again assert the
hold request signal and restart the bus arbitration
and switching process.

BUS HOLD ACKNOWLEDGED --------.
ARBITRATE

PENDING REQUESTS

EXECUTE HIGHEST
PRIORITY TRANSFER

DE-ASSERT BUS
. HOLD REQUEST

3.2 Interface Signals

290128-17

Figure 3·2. Flow of OMA Controller Operation

There are fourteen control signals dedicated to the
OMA process. They include eight OMA Channel Re­
quests (DREQn), three Encoded OMA Acknowledge
signals (EDACKn), Processor. Hold and Hold Ac­
knowledge (HOLD, HLDA), and End-Of-Process
(EOP#). The DREQn inputs and EDACK(0-2) out­
puts are handshake signals to the devices requiring
OMA service. The HOLD output and HLDA input are
handshake signals to the host pr()Cessor. Figure 3-3
shows these signals and how they interconnect be­
tween the 82380 OMA Controller, and the Requester
and Target devices.

W/R#. .M/IO# D/C#}. BUS CONTROL
SIGNALS

Figure 3·3. Requester, Target, and OMA Controller Interconnection
(2-Cycle Configuration)

5-1102

290128-18

intJ 82380

3.2.1 DREQn and EDACK(0-2)

These signals are the handshake signals between
the peripheral and the 82380. When the peripheral
requires OMA service, it asserts the DREQn signal
of the channel which is programmed to perform the
service. The 82380 arbitrates the DREQn against
other pending requests and begins the OMA pro­
cess after finishing other higher priority processes.

When the OMA service for the requested channel is
in progress, the EDACK(0-2) signals represent the
OMA channel which is accessing the Requester.
The 3-bit code on the EDACK(0-2) lines indicates
the, number of the channel presently being serviced.
Table 3-2 shows the encoding of these signals. Note
that Channel 4 does not have a corresponding hard­
ware acknowledge.

The OMA acknowledge (EDACK) signals indicate
the active channel only during OMA accesses to the
Requester. During accesses to the Target,
EDACK(0-2) has the idle code (100). EDACK(0-2)
can thus be used to select a Requester device dur­
ing a transfer.

Table 3-2. EDACK Encoding During
a OMA Transfer

EDACK2 EDACK1 EDACKO Active Channel

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 Target Access
1 0 1 5
1 1 0 6
1 1 1 7

DREQn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation
of this pin.

The EDACKn signals are always active. They either
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei­
ther 100, for an idle OMA or during a OMA access to
the Target, or 'n' during a Requester access, where
n is the binary value representing the channel. A
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als.

3.2.2 HOLD and HLDA

The Hold Request (HOLD) and Hold Acknowledge
(HLDA) signals are the handshake signals between

the OMA Controller and the host processor. HOLD is
an output from the 82380 and HLDA is an input.
HOLD is asserted by the OMA Controller when there
is a pending OMA request, thus requesting the proc­
essor to give up control of the bus so the OMA pro­
cess can take place. The 80386 responds by assert­
ing HLDA when it is ready to relinquish control of the
bus.

The 82380 will begin operations on the bus one
clock cycle after the H LOA signal goes active. For
this reason, other devices on the bus should be in
the slave mode when HLDA is active.

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting OMA service. This is be­
cause of the use of OMA-like operations by the
DRAM Refresh Controller. The Refresh Controller is
arbitrated with the OMA Controller for control of the
bus, and refresh cycles have the highest priority. A
refresh cycle will take place between OMA cycles
without relinquishing bus control. See section 3.4.3
for a more detailed discussion of the interaction be­
tween the OMA Controller and the DRAM Refresh
Controller.

3.2.3 EOP#

EOP # is a bi-directional signal used to indicate the
end of a OMA process. The 82380 activates this as
an output during the T2 states of the last Requester I
bus cycle for which a channel is programmed to exe-
cute. The Requester should respond by either with­
drawing its OMA request, or interrupting the host
processor to indicate that the channel needs to be
programmed with a new buffer. As an input, this sig-
nal is used to tell the OMA Controller that the periph-
eral being serviced does not require any more data
to be transferred. This indicates that the current
buffer is to be terminated.

EOP # can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for
details on synchronous versus asynchronous opera­
tion of this pin.

3.3 Modes of Operation

The 82380 OMA Controller has many independent
operating functions. When designing peripheral in­
terfaces for the 82380 OMA Controller, all of the
functions or modes must be considered. All of the
channels are independent of each other (except in
priority of operation) and can operate in any of the
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of
other modes. Because of the large number of com-

5-1103

intef 82380

binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other
modes. The entire list of possible combinations will
not be presented.

Table 3-1 shows the categories of OMA features
available in the 82380. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major func­
tion or mode category. The following sections
explain each mode or function and its relation to oth­
er features.

Table 3-1. OMA Operating Modes

I. Target/Requester Definition

a. Data Transfer Direction

b. Device Type

c. Increment/Decrement/Hold

11. Buffer Processes

a. Single Buffer Process

b. Buffer Auto-Initialize Process

c. Buffer Chaining Process

Ill. Data Transfer/Handshake Modes

a. Single Transfer Mode

b. Demand Transfer Mode

c. Block Transfer Mode

d. Cascade Mode

IV. Priority Arbitration

a. Fixed

b. Rotating

c. Programmable.Fixed

V. Bus Operation

a. Fly-By (Single-Cycle)/Two-Cycle

b. Data Path Width

c. Read, Write, or Verify Cycles

3.3.1 TARGET /REQUESTER DEFINITION

All OMA transfers involve three devices: the OMA
Controller, the Requester, and the Target. Since the
devices to be accessed by the OMA Controller vary
widely, the operating characteristics of the OMA
Controller must be tailored to the Requester and
Target devices.

The Requester can be defined as either the source
or the destination of the data to be transferred. This
is done by specifying a Write or a Read transfer,
respectively. In a Read transfer, the Target is the
data source and the Requester is the destination for

the data. In a Write transfer, the Requester is the
source and the Target in the destination.

The Requester and Target addresses can each be
independently programmed to be incremented, dec­
remented, or held constant. As an example, the
82380 is capable of reversing a string or data by
having a Requester address increment and the Tar­
get address decrement in a memory-to-memory
transfer.

3.3.2 BUFFER TRANSFER PROCESSES

The 82380 OMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the OMA.

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require special programming considerations.
See the OMA Programming section for more details
on setting up the Buffer Transfer Processes.

Single Buffer Process

The Single Buffer Process allows the OMA channel
to transfer only one buffer of data. When the buffer
has been completely transferred (Current Byte
Count decremented past zero or EOP # input ac­
tive), the DMA process ends and the channel be­
comes idle. In order for that channel to be used
again, it must be reprogrammed.

The single Buffer Process is usually used when the
amount of data to be transferred is known exactly,
and it is also known that there is not likely to be any
data to follow before the operating system can
reprogram the channel.

Buffer Auto-Initialize Process

The Buffer Auto-Initialize Process allows multiple
groups of data to be transferred to or from a single
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the Base Registers when the current
process is terminated,. either by an expired Byte
Count or by an external EOP # signal. The data
transferred will always be between the same Target
and Requester.

The auto-initialization/process-execution cycle is re­
peated, with a HOLD/HLDA re-arbitration, until the
channel is either disabled or re-programmed.

5-1104

infef 82380

Buffer Chaining Process

The Buffer Chaining Process is useful for transfer­
ring large quantities of data into non-contiguous
buffer areas. In this process, a single channel is
used to process data from several buffers, while
having to program the channel only once. Each new
buffer is programmed in a pipelined operation that
provides the new buffer information while the old
buffer is being processed. The chain is created by
loading new buffer information white the 82380 DMA
Controller is processing the Current Buffer. When
the Current Buffer. expires, the 82380 DMA Control­
ler automatically restarts the channel using the new
buffer information.

Loading the new buffer information is done by an
interrupt routine which is requested by the 82380.
Interrupt Request 1 (IRQ1) is tied internally to the
82380 DMA Controller for this purpose. IRQ1 is gen­
erated by the 82380 when the new buffer informa­
tion is loaded into the channel's Current Registers,
leaving the Base Registers 'empty'. The interrupt
service routine loads new buffer information into the
Base Registers. The host processor is required to
load the information for another buffer before the
current Byte Count expires. The process repeats un­
til the host programs the channel back to single buff­
er operation, or until the channel runs out of buffers.

The channel runs out of buffers when the Current
Buffer expires and the Base Registers have not yet
been loaded with new buffer information. When this
occurs, the channel must be reprogrammed.

If an external EOP # is encountered while executing
a Buffer Chaining Process, the current buffer is con­
sidered expired and the new buffer information is
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated.

The channel uses the Base Target Address Register
as an indicator of whether or not the Base Registers
are full. When the most significant byte of the Base
Target Register is loaded, the channel considers alt
of the Base Registers loaded, and removes the in­
terrupt request. This requires that the other Base
Registers (Base Requester Address, Last Byte
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re-

loading process this way is that, for most applica­
tions, the Byte Count and the Requester wilt not
change from one buffer to the next, and therefore do
not need to be reprogrammed. The details of pro­
gramming the channel for the Buffer Chaining Pro­
cess can be found in the section of DMA program­
ming.

3.3.3 DATA TRANSFER MODES

Three Data Transfer modes are available in the
82380 DMA Controller. They are the Single Transfer,
Block Transfer, and Demand Transfer Modes.
These transfer modes can be used in conjunction
with any one of three Buffer Transfer modes: Single
Buffer, Auto-Initialized Buffer, and Buffer Chaining.
Any Data Transfer Modes can be used under any of
the Buffer Transfer Modes. These modes are inde­
pendently available for alt DMA channels.

Different devices being serviced by the DMA Con­
troller require different handshaking sequences for
data transfers to take place. Three handshaking
modes are available on the 82380, giving the de­
signer the opportunity to use the OMA Controller as
efficiently as possible. The speed at which data can
be presented or read by a device can affect the way
a DMA controller uses the host's bus, thereby affect­
ing not only data throughput during the OMA pro­
cess, but also affecting the host's performance by
limiting its access to the bus.

Single Transfer Mode

In the Single Transfer Mode, one data transfer to or
from the Requester is performed by the DMA Con­
troller at a time. The DREQn input is arbitrated and
the HOLD/HLDA sequence is executed for each
transfer. Transfers continue in this manner until the
Byte Count expires, or until EOP# is sampled active.
If the DREQn input is held active continuously, the
entire DREO-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4
shows the logical flow of events which make up a
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure.

5-1105

intef

INITIALIZE BUFFER

WAIT FOR DREQn
OR SOFTWARE REQUEST

EXECUTE
ONE REQUESTER

TRANSFER

END OF BUFFER
290128-19

Figure 3-4. Buffer Transfer in
Single Transfer Mode

Tx Tx

82380

Ti

The Single Transfer Mode is used for devices which
require complete handshake cycles with· each data
access. Data is transferred to or from the Requester
only when the Requester is ready to perform the
transfer. Each transfer requires the entire DREQ­
HOLD-HLDA-DACK handshake cycle. Figure 3-5
shows the timing of the Single Transfer Mode cy­
cles.

Block Transfer Mode

In the Block Transfer Mode, the OMA process is ini­
tiated by a OMA request and continues until the Byte
count expires, or until EOP # is activated by the Re­
quester. The DREQn signal need only be held active
until the first Requester access. Only a refresh cycle
will interrupt the block transfer process.

Figure 3-6 illustrates the operation of the OMA dur­
ing the Block Transfer Mode. Figure 3-7. shows the
timing of the handshake signals during Block Mode
Transfers.

Ti T1 T2 Ti

290128-20

Figure 3-5. OMA Single Transfer Mode

5-1106

intJ

CLK2

CLK

DREQn

HOLD

HLDA

ADS#

READY#

A(2-31)
BE{0-3)

M/10#

EOP#

INITIALIZE BUFFER

WAIT FOR DREQn

TRANSFER DATA UNTIL
EOP OR TC

END OF BUFFER
290128-21

Figure 3-6. Buffer Transfer in
Block Transfer Mode

Tx Tx Tx Tl Tl T1

82380

T2

Demand Transfer Mode

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the OMA pro­
cess. A Demand Transfer is initiated by a OMA re­
quest. The process continues until the Byte Count
expires, or an external EOP# is encountered. If the
device being serviced (Requester) desires, it can in­
terrupt the OMA process by de-activating the
DREQn line. Action is taken on the condition of
DREQn during Requester accesses only. The ac­
cess during which DREQn is sampled inactive is the
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of
events during the transfer of a buffer in the Demand
Mode.

T1 12 T1 T2 Tl Tx Tx

290128-22

Figure 3·7. Block Mode Transfers

5-1107

I

82380

INITIALIZE BUFFER

WAIT FOR DREQn

TRANSFER DATA UNTIL
DREQn DE-ACTIVATED

OR EOP OR TC

END OF BUFFER
290128-23

Figure 3-8. Buffer Transfer in
Demand Transfer Mode

When the DREQn line goes inactive, the OMA con­
troller will complete the current transfer, including
any necessary accesses to the Target, and relin­
quish control of the bus to the host. The current pro­
cess information is saved (byte count, Requester
and Target addresses, and Temporary Register).

Tx Tx Tx Ti Ti T1

CLK2

CLK

DREQn

DREQn

HOLD

HLDA

ADS#

READY#

A(2-31)
BE(0-3)

M/10#

EOP#

T2

The Requester can restart the transfer process by
reasserting DREQn. The 82380 will arbitrate the re­
quest with other pending requests and begin the
process where it left off. Figure 3-9 shows the timing
of handshake signals during Demand Transfer Mode
operation.

Using the Demand Transfer Mode allows peripherals
to access memory in small, irregular bursts without
wasting bus control time. The 82380 is designed to
give the best possible bus control latency in the De­
mand Transfer Mode. Bus control latency is defined
here as the time from the last active bus cycle of the
previous bus master to the first active bus cycle of
the new bus master. The 82380 OMA Controller will
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration,
bus control is returned to the host one bus state
after the DREQn goes inactive.

There are two cases where there may be more than
one bus state of bus control latency at the end of a ·
transfer. The first is at the end of an Auto-Initialize
process, and the second is at the end of a process
where the source is the Requester and Two-Cycle
transfers are used.

When a Buffer Auto-Initialize Process is complete,
the 82380 requires seven bus states to reload the

T1 T2 T1 T2 Ti Tx Tx

290128-24

Figure 3-9. Demand Mode Transfers

5-1108

intef 82380

Current Registers from the Base Registers of the
Auto-Initialized channel. The reloading is done while
the 82380 is still the bus master so that it is prepared
to service the channel immediately after relinquish­
ing the bus, if necessary.

In the case where the Requester is the source, and
Two-Cycle transfers are being used, there are two
extra idle states at the end of the transfer process.
This occurs due to housekeeping in the DMA's inter­
nal pipeline. These two idle states are present only
after the very last Requester access, before the
OMA Controller de-activates the HOLD signal.

3.3.4 CHANNEL PRIORITY ARBITRATION

OMA channel priority can be programmed into one
of two arbitration methods: Fixed or Rotating. The
four lower OMA channels and the four upper OMA
channels operate as if they were two separate OMA
controllers operating in cascade. The lower group of
four channels (0-3) is always prioritized between
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows ,a pictorial representation of
the priority grouping.

The priority can thus be set up as rotating for one
group of channels and fixed for the other, or any
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the
lowest priority.

l
CHANNEL 7

CHANNEL 6 I CHANNEL 5

CHANNEL 4
CHANNEL 3

PHANTOM 1-----1
CHANNEL 2

1
CHANNEL 1

CHANNEL 0

T
290128-25

Figure 3·10. DMA Priority Grouping

The 82380 OMA Controller defaults to Fixed Priority.
Channel 0 has the highest priority, then 1, 2, 3, 4, 5,
6, 7. Channel 7 has the lowest priority. Any time the
OMA Controller arbitrates OMA requests, the re­
questing channel with the highest priority will be
serviced next.

Fixed Priority can be entered into at any time by a
software command. The priority levels in effect

after the mode switch are determined by the current
setting of the Programmable Priority.

Programmable Priority is available for fixing the prior­
ity of the OMA channels within a group to levels oth­
er than the default. Through a software command,
the channel to have the lowest priority in a group
can be specified. Each of the two groups of four
channels can have the priority fixed in this way. The
other channels in t.he group will follow the natural
Fixed Priority sequence. This mode affects only the
priority levels while operating with Fixed Priority.

For example, if channel 2 is programmed to have the
lowest priority in its group, channel 3 has the highest
priority. In descending order, the other channels
would have the following priority: (3, 0, 1, 2), 4, 5, 6,
7 (channel 2 lowest, channel 3 highest). If the upper
group were programmed to have channel 5 as the
lowest priority channel, the priority would be (again,
highest to lowest): 6, 7, (3, 0, 1, 2), 4, 5. Figure 3-11
shows this example pictorially. The lower group is
always prioritized as a fifth channel of the upper
group (between channels 4 and 7).

CHANNEL 6

CHANNEL 7
PHANTOM 1---1

CHANNEL 3

CHANNEL 0

CHANNEL 1

High Priority

CHANNEL 4
CHANNEL 5 L~~~~~~~~~-C-H-AN_N_E_L_2~~~~----' I Low Priority

290128-26

Figure 3·11. Example of Programmed Priority

The OMA Controller will only accept Programmable
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority levels.
Switching from Rotating to Fixed Priority returns the
priority levels to those which were last programmed
by use of Programmable Priority.

Rotating Priority allows the devices using OMA to
share the system bus more evenly. An individual
channel does not retain highest priority after being
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was
most recently serviced inherits the lowest priority.
This rotation occurs each time a channel is serviced.
Figure 3-12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper
group.

5-1109

intef 82380

I 0 I 2 3 4 5 6 7 -default (highest to ,lowest)

DREQ2 and DREQ6-process channel 2

3 0 2 -channel 2 drops to lowest priority within group.
~~~~~~ Lower group drops to lowest priority within upper group. 

2(Double Rotation) 

DREQ6 (still) and DREQ7-process channel 6 

[2J j 3 I 0 I 1 I 2 I I 4 I 5 I 6 I -channel 6 drops to lowest priority within group 

DREQ7 (still) and DREQO-process channel 7 

I 3 I O I 1 I 2 I I 4 I 5 I 6 I 7 I -channel 7 drops to lowest priority within group 

DREQO (still) and DREQ1-process channel O 

I 4 I 5 I 6 I 7 I j 1 I 2 I 3 I 0 I -channel 0 drops to lowest priority within group (Double Rotation) 

DREQ1 (still)-process channel 1 

-channel 1 drops to lowest priority within group 

Figure 3-12. Rotating Channel Priority. Lower and Upper 
groups are programmed for the Rotating Priority Mode. 

5-1110 



intef 82380 

3.3.5 COMBINING PRIORITY MODES 

Since the OMA Controller operates as two four­
channel controllers in cascade, the overall priority 
scheme of all eight channels can take on a variety of 
forms. There are four possible combinations of prior-

High Low 

I 0 I 2 3 4 5 6 

High Low 

I 4 I 5 6 7 0 2 

High Low 

[2J 0 2 3 4 5 

High 

4 I 5 6 7 0 I 2 

CASE 1 0-3 Fixed Priority, 4-7 Rotating Priority 

High 

I 0 I 2 3 4 5 .6 

High 

I 3 I 0 2 4 5 6 

High 

I 3 I 0 2 4 5 6 

High 

I 2 I 3 0 4 5 6 

CASE 2 0-3 Rotating Priority, 4-7 Fixed Priority 

ity modes between the two groups of ·channels: 
Fixed Priority only (default), Fixed Priority upper 
group/Rotating Priority lower group, Rotating Priority 
upper group/Fixed Priority lower group, arid Rotating 
Priority only. Figure 3-13 illustrates the operation of 
the two combined priority methods. 

7 -Default priority 

3 After servicing channel 2 

6 -After servicing channel 6 

Low 

3 -After servicing channel 1 

Low 

7 Default priority 

Low 

7 After servicing channel 2 

Low 

7 After servicing channel 6 

Low 

7 After servicing channel 1 

Figure 3-13. Combining Priority Modes 

5-1111 

I 



intef 82380 

3.3.6 BUS OPERATION 

Data may be transferred by the OMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel 
through a command register. Device data path 
widths are . independently programmable for both 
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these 
parameters affect the operation of the 82380 on a 
bus-cycle by bus-cycle basis. 

3.3.6.1 Fly-By Transfers 

The Fly-By Transfer Mode is the' fastest and most 
efficient way to use the 82380 OMA Controller to 
transfer data. In this method of transfer, the data is 
written to the destination device at the same time it 
is read from the source. Only one bus cycle is used 
to accomplish the transfer. 

In the Fly-By Mode, the OMA acknowledge signal is 
used to select the Requester. The OMA Controller 
simultaneously places the address of the Target on 
the address bus. The state of M/10# and W/R# 
during the Fly-By transfer cycle indicate the type of 
Target and whether the target is being written to or 
read from. The Target's Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
. dress registers are ignored during Fly-By transfers. 

Note that memory-to-memory transfers cannot be 
done using the Fly-By Mode. Only one memory or 
1/0 address is generated by the OMA Controller at a 
time during Fly-By transfers. Only one of the devices 
being accessed can be selected by an address. 
Also, the Fly-By method of data transfer limits the 
hardware to accesses of devices with the same data 
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode. 

Fly-By transfers also require that the data paths of 
the Target and Requester be directly connected. 
This requires that successive Fly-By accesses be to 
doubleword boundaries, or that the Requester be 
capable of switching its connections to the data bus. 

3.3.6.2 Two-Cycle Transfers 

Two-Cycle transfers can also be performed by the 
82380 OMA Controller. These transfers require at 
least two bus cycles to execute. The data being 
transferred is read into the OMA Controller's Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus cycle is used to write the data from the 
Temporary Register to the destination. 

If the addresses of the data being transferred are 
not word or doubleword aligned, the 82380 will rec­
ognize the situation and read and write the data in 
groups of bytes, placing them always at the proper 
destination. This process of collecting the desired 
bytes and putting them together is called 'byte as­
sembly'. The reverse process (reading from aligned 
locations and writing to non-aligned locations) is 
called 'byte disassembly'. 

The assembly/disassembly process takes place 
transparent to the software, but can only be done 
while using the Two-Cycle transfer method. The 
82380 will always perform the assembly/disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or 
Target can be used in the Two-Cycle Mode. This is 
very convenient for interfacing existing 8- and 16-bit 
peripherals to the 80386's 32-bit bus. 

The 82380 OMA Controller always attempts to fill 
the Temporary Register from the source before writ­
ing any data to the destination. If the process is ter­
minated before the Temporary Register is filled (TC 
or EOP # ), the 82380 will write the partial data to the 
destination. If a process is temporarily suspended 
(such as when DREQn is de-activated during a. de­
mand transfer), the contents of a partially filled Tem­
porary Register will be stored within the 82380 until 
the process is restarted. 

for example, if the source is specified as an 8-bit 
device and the destination as a 32-bit device, there 
will be four reads as necessary from the 8-bit source 
to fill the Temporary Register. Then the 82380 will 
write the 32-bit contents to the destination. This cy­

. cle will repeat until the process is terminated or sus-
pended. 

Note that for a Single"Cycle transfer mode of opera­
tion (see section 3.3.3), the internal circuitry of the 
OMA Controller actually executes single transfers by 
removing the OREO from the internal arbitration. 
Thus single transfers from an 8-bit requester to a 32-
bit target will consist of four complete and indepen­
dent 8-bit requester cycles, between which bus con­
trol is released and re-requested. Finally, the 32-bit 
data will be transferred to the target device from the 
temporary register before the fifth requester cycle. 

With Two-Cycle transfers, the devices that the 
82380 accesses can reside at ·any address within 
110 or memory space. The device must be able to 
decode the byte-enables (BEn # ). Also, if the device 
cannot accept data in byte quantities, the program­
mer must take care not to allow the OMA Controller 
to access the device on any address other than the 
device boundary. · · 

5-1112 



intef 82380 

3.3.6.3 Data Path Width and Data Transfer Rate 
Considerations 

The number of bus cycles used to transfer a single 
'word' of data is affected by whether the Two-Cycle 
or the Fly-By (Single-Cycle) transfer method is used. 

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of 
bus cycles will decrease the effective data transfer 
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers. 

The choice of data path widths of both Target and 
Requester affects the data transfer rate also. During 
each bus cycle, the largest pieces of data possible 
should be transferred. 

The data path width of the devices to be accessed 
must be programmed into the OMA controller. The 
82380 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and 
independent of the other channels. Since this is a 
software programmable function, more discussion of 
the uses of this feature are found in the section on 
programming. 

3.3.6.4 Read, Write, and Verify Cycles 

Three different bus cycle types may be used in a 
data transfer. They are the Read, Write, and Verify 
cycles. These cycle types dictate the way in which 
the 82380 operates on the data to be transferred. 

A Read Cycle transfers data from the Target to the 
Requester. A Write Cycle transfers data from the 
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access 
(read or write) to the Target; the access to the Re­
quester is assumed to be the opposite. 

The Verify Cycle is used to perform a data read only. 
No write access is indicated or assumed in a Verify 
Cycle. The Verify Cycle is useful for validating block 
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read. 

3.4 Bus Arbitration and Handshaking 

Figure 3-14 shows the flow of events in the OMA 
request arbitration process. The arbitration se-

quence starts when the Requester asserts a DREQn 
(or OMA service is requested by software). Figure 
3-15 shows the timing of the sequence of 'events 
following a OMA request. This sequence is executed 
for each channel that is activated. The DREQn sig­
nal can be replaced by a software OMA channel re­
quest with no change in the sequence. 

WAIT FOR DREQn OR SOFTWARE REQUEST 

REQUESTER ASSERTS DREQn 

82380 ASSERTS HOLD REQUEST 

80386 ASSERTS HOLD ACKNOWLEDGE 

82380 ARBITRATES PENDING REQUESTS 

82380 PERFORMS HIGHEST PRIORITY 
TRANSFER (SEE DATA TRANSFER MODES) 

82380 DE-ASSERTS HOLD REQUEST 

290128-27 

Figure 3-14. Bus Arbitration and OMA Sequence 

After the Requester asserts the service request, the 
82380 will request control of the bus via the HOLD 
signal. The 82380 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80386 responds by asserting the HLDA sig­
nal, thus releasing control of the bus to the 82380 
OMA Controller. 

Priority of pending OMA service requests is arbitrat­
ed during the first state after HLDA is asserted by 
the 80386. The next state will be the beginning of 
the first transfer access of the highest priority pro­
cess. 

5-1113 

• 



intef 82380 

When the 82380 OMA Controller is finished with its 
current bus activity, it returns control of the bus to 
the host processor. This is done by driving the 
HOLD signal inactive. The 82380 does not drive any 
address or data bus signals after HOLD goes low. It 
enters the Slave Mode until another OMA process is 
requested. The processor acknowledges that it has 
regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82380's OMA Controller 
will not re-request control of the bus until the entire 
HOLD/HLDA handshake sequence is complete. 

The 82380 OMA Controller will terminate a current 
.OMA process for one of three reasons: expired byte 
count, end-of-process command (EOP# activated) 
from a peripheral, or de-activated OMA request sig­
nal. In each case, the controller will de-assert HOLD 
immediately after completing the data transfer in 
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19, and 3-18, 
respectively. 

Tx Tx Ti 

.An expired byte count indicates that the current pro­
cess is complete as programmed and the channel 
has no further transfers to process. The channel 
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed 
completely, including a new Buffer Transfer Mode. 

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data 
for the current buffer. The 82380 OMA Controller 
considers this as a completion Of the channel's cur­
rent process and interprets the condition the same 
way as if the byte count expired . 

The action taken by the 82380 OMA Controller in 
response to a de-activated DREQn signal depends 
on the Data Transfer Mode of the channel. In the 
Demand Mode, data transfers will take place as long 
as the DREQn is active and the byte count has not 
expired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing 

Ti T1 T2 T1 

290128-28 

NOTE: . , 
Channel priority resolution takes place during the bus state before HLDA is asserted, allowing the DMA Controller to 
respond to HLDA without extra idle bus states. 

Figure 3-15. Beginning of a DMA process 

5-1114 



intJ 82380 

the bus, even if DREQn goes inactive before the 
transfer is complete. In the Single Mode, the control­
ler will execute single data transfers, relinquishing 
the bus between each transfer, as long as DREQn is 
active. 

Normal termination of a OMA process due to expira­
tion of the byte count (Terminal Count-TC) is shown 

Single 
Buffer Process: or Chaining-

Base Empty 

Event 

Terminal Count True x 
EOP# Input x 0 

Results 

Current Registers - -
Channel Mask Set Set 
EOP# Output 0 x 
Terminal Count Status Set Set 
Software Request CLR CLR 

in Figure 3-16. The condition of DREQn is ignored 
until after the process is terminated. If the channel is 
programmed to auto-initialize, HOLD will be held ac­
tive for an additional seven clock cycles while the 
auto-initialization takes place. 

Table 3-3 shows the OMA channel activity due to 
EOP# or Byte Count expiring (Terminal Count). 

Auto- Chaining-
Initialize Base Loaded 

True x True x 
x 0 x 0 

Load Load Load Load 
- - - -
0 x 1 x 

Set Set - -
CLR CLR - -

Table 3-3. OMA Channel Activity Due to Terminal Count or External EOP# 

T2 T1 T2 Ti Tx Tx Tx 

CLK2 

CLK 

DRE On ------
HOLD 

HLDA 

ADS#~ 
1- BYTE COUNT EXPIRES (TC) 

\,___..~~:::m------------
EOP# ~r--J 

READY# XXXXXXXX)(X tXXXXXXXXXXXXXXXXXXXXXXX 
290128-29 

Figure 3·16. Termination of a OMA Process Due to Expiration of Current Byte Count 

5-1115 

El 



infef 82380 

The 82380 always relinquishes control of the bus 
between channel services. This allows the hardware 
designer the flexibility to externally arbitrate bus hold 
requests, if desired. If another OMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82380 will relinquish the bus until the 
hold acknowledge is inactive. One bus state after 
the HLDA signal goes inactive, the 82380 will assert 
HOLD again. This is illustrated in Figure 3-17. 

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS 
SAMPLING OF DREQn AND EOP# 

As an indicator that a OMA service is to be started, 
DREQn is always sampled asynchronously. It is 
sampled at the beginning of a bus state and acted 
upon at the end of the state. Figure 3-15 illustrates 
the start of a DMA process due to a DREQn input. 

The DREQn and EOP# inputs can be programmed 
to be sampled either synchronously or asynchro­
nously to signal the end of a transfer. 

The synchronous mode affords the Requester one 
bus state of extra time to react to an access. This 
means the Requester can terminate a process on 
the current access, without losing any data. The 
asynchronous mode requires that the input signal be 
presented prior to the beginning of the last state of 
the Requester access. 

CLK2 

CLK 

LOWER PRIORITY DREQa 

HIGHER PRIORITY DREQb WWl//ll/ll/I 
HOLD 

The timing relationships of the DREQn and EOP# 
signals Jo the termination of a OMA transfer are 
shown in Figures 3-18 and 3-19. Figure 3-18 shows 
the termination of a OMA transfer due to inactive 
DREQn. Figure 3-19 shows the termination of a 
OMA process due to an active EOP # input. 

In the Synchronous Mode, DREQn and EOP# are 
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP # is active or 
DREQn is inactive at this time, the 82380 recognizes 
this access to the Requester as the last transfer. At 
this point, the 82380 completes the transfer in prog­
ress, if necessary, and returns bus control to the 
host. 

In the asynchronous mode, the inputs are sampled 
at the beginning of every state of a Requester ac­
cess. The 82380 waits until the end of the state to 
act on the input. 

DREQn and EOP# are sampled at the latest possi­
ble time when the 82380 can determine if another 
transfer is required. In the Synchronous Mode, 
DREQn and EOP# are sampled on the trailing edge 
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that 
the signals be valid one clock cycle earlier. 

' ~ 
,_ _____ _ 

HLDA _J 
--CHANNEL A 

____ .,_J 
---CHANNEL B --

290128-30 

Figure 3-17. Switching between Active OMA Channels 

5-1116 



intef 82380 

T2 T1 T2 Tl Tx Tx Tx 

CLK2 

CLK 

ADS# 

READY# 

DREQn 
(ASYNCHRONOUS) 

DREQn 
(SYNCHRONOUS) 

HOLD 

HLDA 

290128-31 

Figure 3-18. Termination of a OMA Process Due to De-Asserting DREQn 

T2 T1 T2 TI Tx Tx Tx 

CLK2 

CLK 

ADS# 

READY# 

EOP~ 
(ASYNCHRONOUS 

EOP~ 
(SYNCHRONOUS 

HOLD 

HLDA 

290128-32 

Figure 3-19. Termination of a OMA Process Due to an External EOP# 

5-1117 



intef 82380 

While in the Pipeline Mode, if the NA# signal is sam­
pled active during a transfer, the end of the state 
where NA# was sampled active is when the 82380 
decides whether to commit to another transfer. The 
device must de-assert OREQn or assert EOP# be­
fore NA# is asserted, otherwise the 82380 will com­
mit to another, possibly undesired, transfer. 

Synchronous OREQn and EOP# sampling allows 
the peripheral to prevent the next transfer from oc­
curring by de-activating OREQn or asserting EOP# 
during the current Requester access, before the 
82380 OMA Controller commits itself to another 
transfer. The OMA Controller will not perform the 
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent 
timing requirements than the Synchronous Mode, 
but requires that the OREQn signal be valid at the 
beginning of the next to last bus state of the current 
Requester access. 

Using the Asynchronous Mode with zero wait states 
can be very difficult. Since the addresses and con­
trol signals are driven by the 82380 near half-way 

through the first bus state of a transfer, and the 
Asynchronous Mode requires that OREQn be active 
before the end of the state, the peripheral being ac­
cessed is required to present OREQn only a few 
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic 
must be extremely fast (practically non-causal). An 
alternative is the Synchronous Mode. 

3.4.2 ARBITRATION OF CASCADED MASTER 
REQUESTS 

The Cascade Mode allows another OMA-type de­
vice to share the bus by arbitrating its bus accesses 
with the 82380's. Seven of the eight OMA channels 
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control 
through the OREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signaled to the cascaded device 
through the EOACK lines. When the EOACK lines 
are active with the code for the requested cascade 
channel, the bus is available to the cascaded master 
device. 

80386 82380 BUS 
MASTER 0 

M----------t HOLD REQUEST 

HOLD HOLD 

HLDA 1----+1 HLDA 

EDACKO 
EDACK1 
EDACK2 

A 
B 

C LATCHED 
DECODER 7 

HOLD ACKNOWLEDGE 

HOLD ACKNOWLEDGE 
BUS 

MASTER n 
1+---------t HOLD REQUEST ...... ___ ....... 

Figure 3-20. Cascaded Bus Master 

5-1118 

290128-33 



intJ 82380 

A Cascade cycle begins the same way a regular 
OMA cycle begins. The requesting bus master as­
serts the OREQn line on the 82380. This bus control 
request arbitrated as any other OMA request would 
be. If any channel receives a OMA request, the 
82380 requests control of the bus. When the host 
acknowledges that it has released bus control, the 
82380 acknowledges to the requesting master that it 
may access the bus. The 82380 enters an idle state 
until the new master relinquishes .control. 

A cascade cycle will be terminated by one of two 
events: OREQn going inactive, or HLOA going inac­
tive. The normal way to terminate the cascade cycle 

DRE On 

EDA CK n 

HOLD 

HLDA 

is for the cascaded master to drop the OREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences. 

The Refresh Controller may interrupt the cascaded 
master to perform a refresh cycle. If this occurs, the 
82380 OMA Controller will de-assert the EOACK sig­
nal (hold acknowledge to cascaded master) and wait 
for the cascaded master to remove its hold request. 
When the 82380 regains bus control, it will perform 
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82380 will 
return control to the cascaded master which was in­
terrupted. 

100 

290128-34 
Cascade cycle termination by DREOn inactive 

HLDA 

EDA CK n 100 

DRE On 

HOLD 
290128-35 

Cascade cycle termination by HLDA inactive 

Figure 3·21. Cascade Cycle Termination 

5-1119 

I 



intJ 82380 

The 82380 assumes that it is the only device moni­
t~ring the HLDA signal. .11 the system designer 
wishes to place other devices on the bus as bus 
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82380. Using 
the Cascade capability of the 82380 DMA Controller 
offers a much better solution. 

3.4.3 ARBITRATION OF REFRESH REQUESTS 

The arbitration of refresh requests by the ORAM Re­
fresh Controller is slightly different from normal OMA 
channel request arbitration. The 82380 DRAM Re­
fresh Controller always has the highest priority of 
any OMA process. It also can interrupt a process in 
progress. Two types of processes in progress may 
be encountered: normal OMA, aJld bus master cas­
cade. 

In the event of a refresh request during a normal 
OMA process, the OMA Controller will complete the 
data transfer in progress and then execute the re­
fresh cycle before continuing with the current OMA 
process. The priority of the interrupted process is 
not lost. If the data transfer cycle interrupted by the 
Refresh Controller is the last of a OMA process, the 
refresh cycle will always be executed before control 
of the bus is transferred back to the host. 

When the Refresh Controller request occurs during 
a cascade cycle, the Refresh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before it can execute the 
refresh cycle. To do this, the OMA Controller drops 
the EDACK signal to the cascaded master and waits 
for the corresponding DREQn input to go inactive. 
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then 
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to 
an active state before the end of the refresh cycle, 
otherwise control is passed to the processor and the 
cascaded master loses its priority. 

3.5 OMA Controller Register Overview 

The 82380 OMA Controller contains 44 registers 
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual OMA 
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and 
monitoring the operation of the 82380 OMA Control­
ler. Table 3-4 lists the OMA Controller's registers 
and their accessability. 

Register Name Access 

Control/Status Register-One Each Per 
Group 

Command Register I 
Command Register II 
Mode Register I 
Mode Register II 
Software Request Register 
Mask Set-Reset Register 
Mask Read-Write Register 
Status Register 
Bus Size Register 
Chaining Register 

Write Only 
Write Only 
Write Only 
Write Only 
Read/Write 
Write Only 
Read/Write 
Read Only 
Write Only 
Read/Write 

Channel Registers-One Each Per Channel 

Base Target Address Write Only 
Current Target Address Read Only 
Base Requester Address Write Only 
Current Requester Address Read Only 
Base Byte Count Write Only 
Current Byte Count Read Only 

Table 3-4. OMA Controller Registers 

3.5.1 CONTROL/STATUS REGISTERS 

The following registers are available to the host 
processor for programming the 82380 OMA Control­
ler into its various modes and for checking the oper­
ating status of the OMA processes. Each set of four 
OMA channels has one of each of these registers 
associated with it. 

Command Register I 

Enables or disables the OMA channels as a group. 
Sets the Priority Mode (Fixed or Rotating) of the 
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and 
Fixed Priority Mode. 

Command Register II 

Sets the sampling mode of the DREQn and EOP# 
inputs. Also s~ts the lowest priority channel for the 
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after 
a hardware reset to: asynchronous DREQn and 
EOP#, and channels 3 and 7 lowest priority. 

Mode Register I 

Mode Register I is identical in function to the Mode 
register of the 8237 A. It programs the following func­
tions for an individually selected channel: 

5-1120 



intef 82380 

Type of Transfer-read, write, verify 
Auto-Initialize-enable or disable 
Target Address Count-increment or 
decrement 
Data Transfer Mode-demand, single, block, 
cascade 

Mode Register I functions default to the following 
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode. 

Mode Register II 

Programs the following functions for an individually 
selected channel: 

Target Address Hold-enable or disable 
Requester Address Count-increment or 
decrement 
Requester Address Hold-enable or disable 
Target Device Type-1/0 or Memory 
Requester Device Type-1/0 or Memory 
Transfer Cycles-Two-Cycle or Fly-By 

Mode Register II functions are defined as follows 
after a hardware reset: Disable Target Address Hold, 
Increment Requester Address, Target (and Re­
quester) in memory, Fly-By Transfer Cycles. Note: 
Requester Device Type ignored in Fly-By Transfers. 

Software Request Register 

The OMA Controller can respond to service requests 
which are initiated by software. Each channel has an 
internal request status bit associated with it. The 
host processor can write to this register to set or 
reset the request bit of a selected channel. 

The status of the group's software OMA service re­
quests can be read from this register as well. Each 
request bit is cleared upon Terminal Count or exter­
nal EOP#. 

The software OMA requests are non-maskable and 
subject to priority arbitration with all other software 
and hardware requests. The entire register is 
cleared by a hardware reset. 

Mask Registers 

Each channel has associated with it a mask bit 
which can be set/reset to disable/enable that chan­
nel. Two methods are available for setting and clear­
ing the mask bits. The Mask Set/Reset Register is a 
write-only register which allows the host to select an 
individual channel and either set or reset the · ma3k 
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and 
for writing mask bits in groups of four. 

The mask bits of a group may be cleared in one step 
by executing the Clear Mask Command. See the 
OMA Programming section for details. A hardware 
reset sets all of the channel mask bits, disabling all 
channels. 

Status Register 

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request 
status for a group. Four bits indicate the TC status 
and four bits indicate the hardware request status 
for the four channels in the group. The TC bits are 
set when the Byte Count expires, or when an exter­
nal EOP# is asserted. These bits are cleared by 
reading from the Status Register. The Service Re­
quest bit for a channel indicates when there is a 
hardware OMA request (DREQn) asserted for that 
channel. When the request has been removed, the 
bit is cleared. 

Bus Size Register 

This write-only register is used to define the bus size 
of the Target and Requester of a selected channel. 
The bus sizes programmed will be used to dictate 
the sizes of the data paths accessed when the OMA 
channel is active. The values programmed into this 
register affect the operation of the Temporary Regis­
ter. Any byte-assembly required to make the trans­
fers using the specified data path widths will be done 
in the Temporary Register. The Bus Size register of 
the Target is used as an increment/decrement value 
for the Byte Counter and Target Address when in 
the Fly-By Mode. Upon reset, all channels default to 
8-bit Targets and 8-bit Requesters. 

Chaining Register 

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode 
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset, all channels default to 
Chaining disabled. 

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of 
the channels. These interrupt status bits are cleared 
when the new buffer information has been loaded. 

3.5.2 CHANNEL REGISTERS 

Each channel has three individually programmable 
registers necessary for the OMA process; they are 
the Base Byte Count, Base Target Address, and 
Base Requester Address registers. The 24-bit Base 

5-1121 

I 



intef 82380 

Byte Count register contains the number of bytes to 
be transferred by the channel. The 32-bit Bas~ Tar­
get Address Register contains the beginning ad­
dress (memory or 1/0) of the Target device. The 32-
bit Base Requester Address register contains the 
base address (memory or 1/0) of the device which is 
to request DMA service. 

Three more registers for each DMA channel exist 
within the DMA Controller which are directly related 
to the registers mentioned above. These registers 
contain the current status of the DMA process. They 
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It 
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82380 
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers. 

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically 
loaded in the same operation. Reading from the 
channel register addresses yields the contents of 
the corresponding Current register. 

To maintain compatibility with software which ac­
cesses an 8237 A, a Byte Pointer Flip-Flop is used to 
control access to the upper and lower bytes of some 
words of the Channel Registers. These words are 
accessed as byte pairs at single port addresses. The 
Byte Pointer Flip-Flop acts as a one-bit pointer 
which is toggled each time a qualifying Channel 
Register byte is accessed. It always points to the 
next logical byte to be accessed of a pair of bytes. 

The Channel registers are arranged as pairs of 
words, each pair with its own port address. Address­
ing the port with the Byte Poihter Flip-Flop reset ac­
cesses the least significant byte of the pair. The 
most significant byte is accessed when the Byte 
Pointer is set. 

For compatibility with. existing 8237 A designs, there 
is one exception to the above statements about the 
Byte Pointer Flip-Flop. The third byte (bits 16-23) of 
the Target Address is accessed through its own port 
address. The Byte Pointer Flip-Flop is not affected 
by any accesses to this byte. 

The upper eight bits of the Byte Count Register are 
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237A. The 8237A has 
16-bit Byte Count Registers. 

3.5.3 TEMPORARY REGISTERS 

Each channel has a 32-bit Temporary Register used 
for temporary data storage during two-cycle DMA 
transfers. It is this register in which any necessary 
byte assembly and disassembly of non-aligned data 
is performed. Figure 3-22 shows how a block of data 
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does 
not change. 

SOURCE 

20H 

DESTINATION 

21H 

22H 

23H 

24H 

25H 

26H 

27H 

A 

B 

c 
D 

E 

F 

G 

50H 

51H 

52H 

53H 

54H 

55H 

56H 

57H 

58H 

59H 

5AH 
Target = source = 00000020H 
Requester = destination = 00000053H 
Byte Count = 000006H 

A 

B 

c 
D 

E 

F 

G 

Figure 3-22. Transfer of Data between Memory 
Locations with Different Boundaries. This will be 

the result, independent of data path width. 

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP # 
signal or DREQn inactive in the Demand Mode, the 
Temporary Register is not affected. If data remains 
in the Temporary Register due to differences in data 
path widths of the Target and Requester, it will not 
be transferred or otherwise lost, but will be stored for 
later transfer. 

If the destination is the Target and the EOP# signal 
is sensed active during the Requester access of a 
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is 
in the Temporary Register at the time of process 
termination. This implies that the Target could be 
accessed with partial data. For this. reason it is ad­
visable tci have an 1/0 device designated as a Re­
quester, unless it is capable of handling partial data 
transfers. 

5-1122 



82380 

3.6 OMA Controller Programming 

Programming a OMA Channel to perform a needed 
OMA function is in general a four step process. First 
the global attributes of the OMA Controller are pro­
grammed via the two Command Registers. These 
global attributes include: priority levels, channel 
group enables, priority mode, and OREQn/EOP# in­
put sampling. 

The second step involves setting the operating 
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the 
handshaking modes. The Bus Size Register and 
Chaining Register may also need to be programmed 
in this step. 

The third step is setting up the channel is to load the 
Base Registers in accordance with the needs of the 
operating modes chosen in step two. The Current 
Registers are automatically loaded from the Base 
Registers, if required by the Buffer Transfer Mode in 
effect. The information loaded and the order in 
which it is loaded depends on the operating mode. A 
channel used for cascading, for example, ne.eds no 
buffer information and this step can be skipped en­
tirely. 

The last step is to enable the newly programmed 
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data 
transfer. The status of the channel can be observed 
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg-
ister. · 

Once the channel is programmed and enabled, the 
OMA process may be initiated in one of two ways, 
either by a hardware OMA request (OREQn) or a 
software request (Software Request Register). 

Once programmed to a particular Process/Mode 
configuration, the channel will operate in that config­
uration until programmed otherwise. For this reason, 
restarting a channel after the current buffer expires 
does not require complete reprogramming of the 
channel. Only those parameters which have 
changed need to be reprogrammed. The Byte Count 

Register is always changed and must be repro­
grammed. A Target or Requester Address Register 
which is incremented or decremented should be re­
programmed also. 

3.6.1 BUFFER PROCESSES 

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register. 
If Auto-Initialize is enabled, Chaining should not be 
used. 

3.6.1.1 Single Buffer Process 

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro­
gramming Mode Register I for non-Auto-Initialize. 

3.6.1.2 Buffer Auto-Initialize Process 

Setting the Auto-Initialize bit in Mode Register I is all 
that is necessary to place the channel in this mode. 
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this 
will have unpredictable results. 

Once the Base Registers are loaded, the channel is 
ready to be enabled. The channel will reload its.Cur­
rent Registers from the Base Registers each time 
the Current Buffer expires, either by an expired Byte I 
Count or an external EOP #. 

3.6.1.3 Buffer Chaining Process 

The Buffer Chaining Process is entered into from the 
Single Buffer Process. The Mode Registers should 
be programmed first, with all of the Transfer Modes 
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base and Current 
Registers are then loaded. When the channel has 
been set up in this way, and the chaining interrupt 
service routine is in place, the Chaining Process can 
be entered by programming the Chaining Register. 
Figure 3.23 illustrates the Buffer Chaining Process. 

An interrupt (IRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel 

5-1123 



intJ 82380 

then perceives the Base Registers as empty and in 
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining 
Process is entered into. The interrupt request is re­
moved when the most significant byte of the Base 
Target Address is loaded. 

The interrupt will occur again when the first buffer 
expires and the Current Registers are loaded from 
the Base Registers. The cycle continues until the 
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 before the Current Buffer expires. 

INSTALL IRQ1 INTERRUPT SERVICE ROUTINE 

SET THE CHANNEL TO NON-CHAINING PROCESS 

PROGRAM THE .MODE REGISTERS 

LOAD BASE REGISTERS FOR FIRST BUFFER 

SET THE CHANNEL TO CHAINING PROCESS 

(IRQ1 WILL BE ACTIVATED) 

ENABLE. INTERRUPT 

(IRQ1 WILL NEED SERVICE­
LOAD BASE REGISTERS) 

ENABLE THE CHANNEL 

FROM THIS POINT, THE HOST CAN PERFORM ANOTHER. 
TASK. THE INTERRUPT SERVICE ROUTINE LEFT BEHIND 

WILL MAINTAIN THE CHANNEL. 

290128-36 

Figure 3-23. Flow of Events in the 
Buffer Chaining Process 

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is 
pending for the channel when the Chaining Register 
is reset, the interrupt request will be removed. The 
Chaining Process can be temporarily disabled by 
setting the channel's Mask bit in the Mask Register. 

The interrupt service routine for IRQ1 has the re­
sponsibility of reloading the Base Register as neces­
sary. It should check the status of the channel to 
determin~ the cause of channel expiration, etc. It 
should also have access to operating system infor­
mation regarding the channel, if any exists. The 
IRQ1 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information. 

3.6.2 DATA TRANSFER MODES 

The Data Transfer Modes are selected via Mode 
Register I. The Demand, Single, and Block Modes 
are selected by bits 06 and 07. The individual trans­
fer type (Fly-By vs Two-Cycle; Read-Write-Verify, 
and 1/0 vs Memory) is programmed through both of 
the· Mode registers. 

3.6.3 CASCADED BUS MASTERS 

The Cascade Mode is set by writing ones to 07 and 
06 of Mode Register I. When a channel is pro­
grammed to operate in the Cascade Mode, all of the 
other modes associated with Mode Registers I and II 
are ignored. The priority and DREQn/EOP# defini­
tions of the Command Registers will have the same 
effect on the channel's operation as any other 
mode. 

3.6.4 SOFTWARE COMMANDS 

There are five port addresses which, when written 
to,. command certain operations to be performed by 
the 82380 OMA Controller. The data written to these 
locations is not of consequence, writing to the loca­
tion is all that is necessary to command the 82380 fo 
perform the indicated function. Following are de­
scriptions of the command function. 

5-1124 



intef 82380 

Clear Byte Pointer Flip-Flop-location OOOCH 

Resets the Byte Pointer Flip-Flop. This command 
should be performed at the beginning of any access 
to the channel registers in order to be assured of 
beginning at a predictable place in the register pro­
gramming sequence. 

Master Clear-location OOOOH 

All OMA functions are set to their default states. This 
command is the equivalent of a hardware reset to 
the OMA Controller. Functions other than those in 
the OMA Controller section of the 82380 are not af­
fected by this command. 

Clear Mask 
Register -Channels o...:3-location OOOEH 

Channels 4-7-location OOCEH 

Channel Registers 
Channel 

Register Name 

ChannelO Target Address 

Byte Count 

Requester Address 

Channel 1 Target Address 

Byte Count 

Requester Address 

This command simultaneously clears the Mask Bits 
of all channels in the addressed group, enabling all 
of the channels in the group. 

Clear TC Interrupt Request-location 001 EH 

This command resets the Terminal Count Interrupt 
Request Flip-Flop. It is provided to allow the pro­
gram which made a software OMA request to ac­
knowledge that it has responded to the expiration of 
the requested channel(s). 

3.7 Register Definitions 

The following diagrams outline the bit definitions and 
functions of the 82380 OMA Controller's Status and 
Control Registers. The function and programming of 
the registers is covered in the previous section on 
OMA Controller Programming. An entry of 'X' as a bit 
value indicates "don't care." 

(Read Current, Write Base) 
Address Byte Bits 

(Hex) Pointer Accessed 

00 0 0-7 
1 8-15 

87 x 16-23 
10 0 24.,.-31 
01 0 0-7 

1 8-15 
11 0 16-23 
90 0 0-7 

1 8-15 
91 0 16-23 

1 24-31 

02 0 0-7 
1 8-15 

83 x 16-23 
12 0 24-31 
03 0 0-7 

1 8-15 
13 0 16-23 
92 0 0-7 

1 8-15 
93 0 16-23 

1 24-31 

5-1125 

I 



intJ 82380 

Channel Registers (Read Current, Write Base) 
Register Name Address Byte 'Bits Channel (Hex) Pointer Accessed 

Channel2 Target Address 04 0 0-7 
1 8-15 

81 x 16-23 
14 0 24-31 

Byte Count 05 0 0-7 
1 8-15 

15 0 16-23 
Requester Address 94 0 0-7 

1 8-15 
95 0 16-23 

1 24-31 

Channel3 Target Address 06 0 0-7 
1 8-15 

82 x 16-23 
16 0 24-31 

Byte Count 07 0 0-7 
1 8-15 

17 0 16-23 
Requester Address 96 0 0-7 

1 8-15 
97 0 16-23 

1 24-31 

Channel4 Target Address co 0 0-7 
1 .8-15 

SF x 16-23 
DO 0 24-31 

Byte Count C1 0 0-7 
1 8-15 

01 0 16-23 
Requester Address 98 0 0-7 

- 1 8-15 
99 0 16-23 

1 24-31 

Channel5 Target Address C2 o· 0-7 
1 8-15 

88 x 16-23 
02 0 24-31 

Byte Count C3 0 0-7 
1 8-15 

03 0 16-23 
Requester Address 9A 0 0-7 

1 8-15 
98. 0 I 16-23 

1 24-31 

5-1126 



intJ 82380 

Channel Registers (Read Current, Write Base) 

Channel Register Name Address Byte Bits 
(Hex) Pointer Accessed 

Channel 6 Target Address C4 0 0-7 
1 8-15 

89 x 16-23 
04 0 24-31 

Byte Count C5 0 0-7 
1 8-15 

05 0 16-23 
Requester Address 9C 0 0-7 

1 8-15 
90 0 16-23 

1 24-31 

Channel 7 Target Address C6 0 0-7 
1 8-15 

SA x 16-23 
06 0 24-31 

Byte Count C7 0 0-7 
1 8-15 

07 0 16-23 
Requester Address 9E 0 0-7 

1 8-15 
9F 0 16-23 

1 24-31 

Command Register I (Write Only) 

Port Address-Channels 0-3-000SH I 
Channels 4-7-00CSH 

.-------------
D7 D6 05 D4 D3 D2 D1 DO 

'------GROUP MASK 
0 = ENABLE CHANNELS 
1 =DISABLE CHANNELS 

'---------PRIORITY 
0 = FIXED PRIORITY 
1 =ROTATING PRIORITY 

290128-37 

Command Register II (Write Only) 

Port Addresses-Channels 0-3-'-001AH 
Channels 4-7-000AH 

D7 D6 D5 D4 D3 D2 D1 DD 

ololololPLjPLlE~ 
· 1 I DREQn SAMPLING EOP# SAMPLING 

0 =ASYNCHRONOUS 
1 =SYNCHRONOUS 

LOW PRIORITY LEVEL SET 
OO=CHANNEL 0(4) LOWEST 
01 =CHANNEL 1 (5) LOWEST 
10 = CHANNEL 2 (6) LOWEST 
11 = CHANNEL 3 (7) LOWEST 

5-1127 

290128-38 



intef 82380 

Mode Register I (Write Only) 

Port Addresses-Channels 0-3-000BH 
Channels 4-7-00CBH 

D7 D6 D5 D4 D3 D2 D1 DO 

[ B1 I BO I Tl I Al I T1 I TO I C1 I co] 
1 I CHANNEL SELECT 

OO=CHANNEL 
01 =CHANNEL 
10 =CHANNEL 
11 =CHANNEL 

TRANSFER TYPE 
OO=VERIFY 
01 =WRITE 
10=READ 
11 =ILLEGAL 
XX IF IN CASCADE MODE 

AUTO-INITIALIZE 
0 = DISABLE, 1 = ENABLE 

TARgEJ l~~tl~E~m~g~fMENT 
1 =DECREMENT TARGET• 
X IF TARGET HOLD ENABLED 

DATA TRANSFER MODE 
00 =DEMAND MODE 
01 =SINGLE TRANSFER MODE 
10 =BLOCK MODE 
11 = CASCADE MODE 

• Target and Requester DECREMENT is allowed only for byte transfers. 

Mode Register II (Write Only) 

Port Addresses-Channels 0-3-001 BH 
Channels 4-7-00DBH 

D7 D6 D5 04 D3 D2 D1 DO 

CY RD TD RH RI 

'---''---- CHANNEL SELECT 
SEE MODE REGISTER I 

.._ _____ TARGET HOLD 
0 =INCREMENT/DECREMENT 
1 =HOLD 

'-------- REQUESTER INCREMENT 
0 = INCREMENT 
1 =DECREMENT* 
X IF REQUESTER HOLD ENABLED 

.._ _________ REQUESTER HOLD 
0 =INCREMENT/DECREMENT 
1 =HOLD 

'------'------- TARGET DEVICE TYPE 
O=MEMORY 
1 =INPUT/OUTPUT 

.._ _____________ REQUESTER DEVICE TYPE 
O=MEMORY 
1 =INPUT/OUTPUT 

,,_---------------TRANSFER CYCLES 

• Target and Requester DECREMENT is allowed only for byte transfers. 

5-1128 

0 =ONE-CYCLE (FLY-BY) 
1 =TWO-CYCLE 

290128-39 

290128-40 



intef 82380 

Software Request Register (Read/Write) 

Port Addresses-Channels 0-3-0009H 
Channels 4-7-00C9H 

Write Format: 

Read Format: 

Software OMA Service Request 

D7 D6 D5 D4 D3 D2 D1 DO 

x x I x I x I x I R I C1 co 

'----'~-CHANNEL SELECT 
SEE t.tODE REGISTER I 

'-------REQUEST SERVICE 
0 = REt.tOVE REQUEST 
1 =ASSERT REQUEST 

Software Requests Pending 

D7 D6 D5 D4 D3 D2 D1 DO 1 =REQUEST PENDING 

x x x X SR3 SR2 SR1 

CHANNEL 0 (4) REQUEST 
'-----CHANNEL 1 (5) REQUEST 

,__-----CHANNEL 2(6) REQUEST 
'---------CHANNEL 3 (7) REQUEST 

Mask Set/Reset Register Individual Channel Mask (Write Only) 

Port Addresses-Channels 0-3-000AH 
·Channels 4-7-00CAH 

D7 D6 05 04 D3 D2 D1 DO 

x x I x x I x I t.t I C1 co 

'----'~-CHANNEL SELECT 
SEE t.tODE REGISTER I 

'-------t.tASK SET BIT 

5-1129 

0 =CLEAR t.tASK (ENABLE) 
1 =SET t.tASK (DISABLE) 

290128-41 

290128-42 

290128-43 



intef 82380 

Mask Read/Write Register Group Channel Mask (Read/Write) 

Port Addresses-Channels 0-3-000FH 
Channels 4-7-00CFH 

07 06 05 04 03 02 

I x I x x x I M3 I M2 I 
I I 

D1 DD 

M1 M2_ . 
CHANNEL 0 ( 4) MASK BIT 
CHANNEL 1 (5) MASK BIT 
CHANNEL 2 (6) MASK BIT 
CHANNEL 3 (7) MASK BIT 

MASK BIT = 0 -CHANNEL ENABLE 
= 1 -CHANNEL DISABLE 

290128-44 

Status Register Channel Process Status (Read Only) 

Port Addresses-Channels 0-3-000BH 
Channels 4-7-00CBH 

D7 06 D5 D4 D3 D2 D1 DO 

R3 R2 R1 RO TC3 TC1 

Bus Size Register 

CHANNEL 0 ( 4) EXPIRED 1 =EXPIRED 
...._ ___ CHANNEL 1 (5) EXPIRED 

'-------CHANNEL 2(6) EXPIRED 
--------CHANNEL 3(7) EXPIRED 

----------CHANNEL 0(4) REQUEST 1=REQUEST 
'-------------CHANNEL 1 (5) REQUEST PENDING 

'---------------CHANNEL 2(6) REQUEST 
----------------CHANNEL 3(7) REQUEST 

Set Data Path Width (Write Only) 

Port Addresses-Channels 0-3-001 BH 
Channels 4-7-00DBH 

D7 D6 D5 04 03 02 D1 DO 

RBS1 RBSO TBS1 TBSO 0 0 

'----''---CHANNEL SELECT 
SEE MODE REGISTER I 

290128-45 

'---"'----------TARGET BUS SIZE 

'---"'--------------REQUESTER BUS SIZE 
290128-46 

Bus Size Encoding: 
00 = Reserved by Intel 10 = 16-bit Bus 
01 = 32-bit Bus 11 = 8-bit Bus 

5-1130 



intef 82380 

Chaining Register (Read/Write) 

Port Addresses-Channels 0-3-0019H 
Channels 4-7-0009H 

Write Format: Set Chaining Mode 

D7 D6 D5 D4 D3 D2 D1 DO 

0 I CH I C1 I co I 
I I I CHANNEL SELECT 

SEE MODE REGISTER I 

L-----CHAINING ENABLE BIT 

Read Format: Channel Interrupt Status 

D7 D6 D5 D4 D3 D2 D1 DO 

x x x X Cl3 

0 =DISABLE CHAINING MODE 
1 =ENABLE CHAINING MOOE 

290128-47 

CHANNEL 0 (4) BASE EMPTY 
""----CHANNEL 1 (5) BASE EMPTY 

L-----CHANNEL 2(6) BASE EMPTY 
'--------CHANNEL 3 (7) BASE EMPTY 

290128-48 

3.8 8237 A Compatibility 

The register arrangement of the 82380 OMA Con­
troller is a superset of the 8237 A OMA Controller. 
Functionally the 82380 OMA Controller is very differ­
ent from the 8237 A. Most of the functions of the 
8237A are performed also by the 82380. The follow­
ing discussion points out the differences between 
the 8237 A and the 82380. 

The 8237 A is limited to transfers between 1/0 and 
memory only (except in one special case, where two 
channels can be used to perform memory-to-memo­
ry transfers). The 82380 OMA Controller can transfer 
between any combination of memory and 1/0. Sev­
eral other features of the 8237 A are enhanced or 
expanded in the 82380 and other features are add­
ed. 

The 8237 A is an 8-bit only OMA device. For pro­
gramming compatibility, all of the 8-bit registers are 
preserved in the 82380. The 82380 is programmed 
via 8-bit registers. The address registers in the 
82380 are 32-bit registers in order to support the 

80386's 32-bit bus. The Byte Count Registers are I 
24-bit registers, allowing support of larger data 
blocks than possible with the 8237 A. 

All of the 8237 A's operating modes are supported 
by the 82380 (except the cumbersome two-channel 
memory-to-memory transfer). The 82380 performs 
memory-to-memory transfers using only one chan­
nel. The 82380 has the added features of buffer 
pipelining (Buffer Chaining Process), programmable 
priority levels, and Byte Assembly. 

The 82380 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual 
channel. This allows any combination of destination 
and source device. 

Each OMA channel has associated with it a Target 
and a Requester. In the 8237A, the Target is the 
device which can be accessed by the address regis­
ter, the Requester is the device which is accessed 
by the OMA Acknowledge signals and must be an 
1/0 device. 

5-1131 



I 

intJ 82380 

4.0 Programmable Interrupt 
Controller (PIC) 

4.1 Functional Description 

The 82380 Programmable Interrupt Controller (PIC) 
consists of three enhanced 82C59A Interrupt Con­
tollers. These three controllers together provide 15 
external and 5 internal interrupt request inputs. Each 
external request input can be cascaded with an ad­
ditional 82C59A slave collector. This scheme allows 
the 82380 to support a maximum of 120 (15 x 8) 
external interrupt request inputs. 

Following one or more interrupt requests, the 82380 
PIC issues an interrupt signal to the 80386. When 
the 8P386 host processor responds with an interrupt 
acknowledge signal, the PIC will arbitrate between 
the pending interrupt requests and place the inter­
rupt vector associated with the highest priority pend­
ing request on the data bus. 

The major enhancement in the 82380 PIC over the 
82C59A is that each of the interrupt request' inputs 

NOTE: 
Masking IR01.5# also masks IRQ2# 

can be individually programmed with its own inter­
rupt vector, allowing more flexibility in interrupt vec­
tor mapping. 

4.1.1 INTERNAL BLOCK DIAGRAM 

The block diagram of the 82380 Programmable· In­
terrupt Controller is shown in Figure 4-1. Internally, 
the PIC consists of three 82C59A banks: A, B and C. 
The three banks are cascaded to one another: C is 
cascaded to B, B is cascaded to A. The INT output 
of Bank A is used externally to interrupt the 80386. 

Bank A has nine interrupt request inputs (two are 
unused), and Banks B and C have eight interrupt 
request inputs. Of the.fifteen external. interrupt re­
quest inputs, two are shared by other functions. Spe­
cifically, the Interrupt Request 3 input (IRQ3#) can 
be used as the Timer 2 output (TOUT2#). This pin 
can be used in three different ways: IRQ3 # input 
only, TOUT2# output only, or using TOUT2# to 
generate an IRQ3# interrupt request. Also, the In­
terrupt Request 9 input (IRQ 9#) can be used as 
OMA . Request 4 input (DREQ4). Typically, only 
IRQ9# or DREQ4 can be used at a time. 

INT 
(OUTPUT} 

2901.28-49 

Figure 4•1. Interrupt Controller Block Diagram 

5-1132 



intef 82380 

4.1.2 INTERRUPT CONTROLLER BANKS 

All three banks are identical, with the exception of 
the IRQ1 .5 on Bank A. Therefore, only one bank will 
be discussed. In the 82380 PIG, all external requests 
can be cascaded into and each interrupt controller 
bank behaves like a master. As compared to the 
82C59A, the enhancements in the banks are: 

- All interrupt vectors are individually programma­
ble. (In the 82C59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.) 

- The cascade address is provided on the Data 
Bus (00-07). (In the 82C59A, three dedicated 
control signals (CASO, CAS1, CAS2) are used for 
master/slave cascading.) 

The block diagram of a bank is shown in Figure 4-2. 
As can be seen from this figure, the bank consists of 
six major blocks: the Interrupt Request Register 
(IRA), the In-Service Register (ISR), the Interrupt 
Mask Register (IMR), the Priority Resolver (PR), the 
Vector Register (VR), and the Control Logic. The 
functional description of each block follows. 

INT. MASK REG • 

IRQO# 
IRQ1# 
IR02# 
IR03# 
IRQ4# 
IR05# 
IRQ6# 
IR07# 

.....----+INTERRUPT 
TO HOST 

PRIORITY 
RESOLVER 

& 
CONTROL 

LOGIC 

IRQO 
IRQ1 
IRQ2 
IRQ3 

IRQ4 

IN­
SERVICE 

REG. 

DATA (0-7) IRQ5 DATA (0-7) 

IRQ6 
IRQ7 

INDIVIDUALLY PROGRAMMABLE 
VECTOR BANK 

82380 ENHANCEMENT OVER THE 82C59A 

Figure 4-2. Interrupt Bank Block Diagram 

5-1133 

290128-50 

I 



intef 82380 

INTERRUPT REQUEST (IRR) AND IN-SERVICE 
REGISTER (ISR) 

'.he interrupts at the Interrupt Request (IRQ) input 
lines are handled by two registers in cascade, the 
Interrupt Request Register (IRR) and the In-Service 
Register (ISR). The IRR is used to store all interrupt 
levels which are requesting service; and the ISR is 
used to store all interrupt levels which are being 
serviced. 

PRIORITY RESOLVER (PR) 

This logic block determines the priorities of the bits 
set in the IRR. The highest priority is selected and 
strobed into the corresponding bit of the ISR during 
an Interrupt Acknowledge cycle. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt 
lines to be masked (disabled). The IMR operates on 
the IRR. Masking of a higher priority input will not 
affect the interrupt request lines of lower priority. 

VECTOR REGISTERS (VR) 

This block contains a set of Vector Registers one 
for each interrupt request line, to store the pr~-pro­
wammed interrupt vector number. The correspond­
ing vector number will be driven onto the Data Bus 
of the 82380 during the Interrupt Acknowledge cy­
cle. 

CONTROL LOGIC 

The Control Logic coordinates the overall operations 
of the other internal blocks within the same bank. 
This logic will drive the Interrupt Output signal (INT) 
HIGH ~hen one or more unmasked interrupt inputs 
are active (LOW). The INT output signal goes direct­
ly to the 80386 (in Bank A) or to another bank to 
which this bank is cascaded (see Figure 4-1). Also 
this logic will recognize an Interrupt Acknowledg~ 
c~cle (via M/10#, DIC# and W/R# signals). During 
this bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt 
vector onto the Data Bus. 

In Bank A, the Control Logic is also responsible for 
handling the special ICW2 interrupt request input 
(IRQ1.5#). 

4.2 Interface Signals 

4.2.1 INTERRUPT INPUTS 

There are .15 external Interrupt Request inputs and 5 
internal Interrupt Requests. The external request in­
puts are: IRQ3#, IRQ9#, IRQ11 # to IRQ23#. They 
are shown in bold arrows in Figure 4c1. All IRQ in­
p~ts are active LOW and they can be programmed 
(via a control bit in the Initialization Command Word 
1 (ICW1)) to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt 
request, the interrupt input must be active (LOW) un­
til the first INT A# cycle (see Bus Functional De­
scription). 

Note that all 15 external Interrupt Request inputs 
have weak internal pull-up resistors. 

As mentioned earlier, an 82C59A can be cascaded 
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two 
of the interrupt inputs are dual functions: IRQ3 # can 
be used, as Timer 2 output (TOUT2#) and IRQ9# 
can be used as DREQ4 input. IRQ3# is a bidirec­
tional dual function pin. This interrupt request input is 
wired-OR with the output of Timer 2 (TOUT2#). If 
only IRQ3# function is to be used, Timer 2 should 
be programmed so that OUT2 is LOW. Note that 
TOUT2 # can also be used to generate an interrupt 
request to IRQ3# input. 

The five internal interrupt requests serve special 
system functions. They are shown in Table 4-1 . The 
following paragraphs describe these interrupts. 

Table 4-1. 82380 Internal Interrupt Requests 

Interrupt Request Interrupt Source 

IRQO# Timer 3 Output (TOUT3 #) 
IRQ8# Timer 0 Output (TOUTO #) 
IRQ1# DMA Chaining Request 
IRQ4# DMA Terminal Count 
IRQ1.5# ICW2 Written 

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS 
[IRQO#] 

IRQ8# and IRQO# interrupt requests are initiated 
by the output of Timers 0 and 3, respectively. Each 
of these requests is generated by an edge-detector 
flip-flop. The flip-flops are activated by the following 
conditions: 

Set- Rising edge of timer output (TOUT); 

Clear- Interrupt acknowledge for this request; 
OR Request is masked (disabled); OR 
Hardware Reset. 

5-1134 



intef 82380 

CHAINING AND TERMINAL COUNT INTERRUPTS 
[IRQ1#] 

These interrupt requests are generated by the 
82380 OMA Controller. The chaining request 
(IRQ1 #) indicates that the DMA Base Register is 
not loaded. The Terminal Count request (IRQ4#) in­
dicates that a software OMA request was cleared. 

ICW2 INTERRUPT REQUEST [IRQ1.5#) 

Whenever an Initialization Control Word 2 (ICW2) is 
written to a Bank, a special ICW2 interrupt request is 
generated. The interrupt will be cleared when the 
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded 
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request. 

This special interrupt is provided to support compati­
bility with the original 82C59A. A detailed description 
of this interrupt is discussed in the Programming 
section. 

DEFAULT INTERRUPT [IRQ7 #] 

During an Interrupt Acknowledge cycle, if there is no 
active pending request, the PIC will automatically 

PREVIOUS 
CYCLE 

CLK 

READY# 

NOTE: 

INTERRUPT ACKNOWLEDGE 
CYCLE 1 (5 WAIT STATES) 

generate a default vector. This vector corresponds 
to the IRQ7 # vector in Bank A. 

4.2.2 INTERRUPT OUTPUT (INT) 

The INT output pin is taken directly from bank A. 
This signal should be tied to the Maskable Interrupt 
Request (INTR) of the 80386. When this signal is 
active (HIGH), it indicates that one or more internal/ 
external interrupt requests are pending. The 80386 
is expected to respond with an interrupt acknowl­
edge cycle. 

4.3 Bus Functional Description 

The INT output of bank A will be activated as a result 
of any unmasked interrupt request. This may be a 
non-cascaded or cascaded request. After the PIC 
has driven the INT signal HIGH, 80386 will respond 
by performing two interrupt acknowledge cycles. 
The timing diagram in Figure 4-3 shows a typical in­
terrupt acknowledge process between the 82380 
and the 80386 CPU. 

IDLE 
(4 BUS. STATES) 

INTERRUPT ACKNOWLEDGE 
CYCLE 2. (5 WAIT STATES) 

T2 T2 T2 T2 T2 T2 

SEE NOTE 
I I 
290128-51 

What is actually driven on the Data Bus depends on if the current interrupt request is a Slave Request. 

NON-SLAVE REQUEST 
SLAVE REQUEST 

'Slave will place a vector at this time. 

INTACycle 1 
OOH 
Slave Address 

INTACycle2 
Vector 
High Impedance' 

Figure 4-3. Interrupt Acknowledge Cycle 

5-1135 

I 



intJ 82380 

After activating the INT signal, the 82380 monitors 
the status lines (M/10#, DIC#, WIR#) and waits 
for the 80386 to initiate the first interrupt acknowl­
edge cycle. In the 80386 environment, two succes­
sive interrupt acknowledge cycles (INTA) marked by 
MllO# = LOW, DIC# = LOW, and WIR# = 
LOW are performed. During the first INTA cycle, the 
PIC will determine the highest priority request. As­
suming this interrupt input has. no ext~rnal_ Slave 
Controller cascaded to it, the 82380 will drive the 
Data Bus with OOH in the first INTA cycle. During the 
second INTA cycle, the 82380 PIC will drive the 
Data Bus with the corresponding preprogrammed in­
terrupt vector. 

If the PIC determines (from the ICW3) that this inter­
rupt input has an external Slave Controller cascaded 
to it it will drive the Data Bus with the specific Slave 
Cas'cade Address (instead of OOH) during the first 
INTA cycle. Thi.s Slave Cascade Address is the pre­
programmed content in. the corresponding Vector 
Register. This !\leans that no Slave Address should 
be chosen to be OOH. Note that the .Slave Address 
and Interrupt Vector are different interpretations of 
the same thing. They are both the contents of the 
programmable Vector Register. During the second 
INTA cycle, the Data Bus will be floated so that the 
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller 
resides on the system bus, bus transceiver enable 
and direction control logic must take this into consid­
eration. 

In order to have a successful interrupt service, the 
interrupt request input must be held i:i.ctive (LOW) 
until the beginning of the first interrupt acknowledge 
cycle. If there is no pending interrupt request when 
the first INTA cycle is generated, the PIC will gener­
ate a default vector, which is.the IRQ7 vector (bank 
A level 7). 

According to the Bus Cycle definition of the 80386, 
there will be four Bus Idle States between the two 
interrupt acknowledge cycles. These idle bus cycles 
will be initiated by the 80386. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82380 will automatically generate the 
required number of wait states for internal delays. 

4.4 Mode of Operation 

A variety of modes and commands are available for 
controlling the 82380 PIC. All of them are program­
mable; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes. 
With these modes and commands, many possible 

configurations are conceivable, giving the user 
enough versatility for almost any interrupt controlled 
application. 

This section is not intended to show how the 82380 
PIC can be programmed. Rather, it describes the 
operation in different modes. 

4.4.1 END-OF-INTERRUPT 

Upon completion.of an interrupt service routine, the 
interrupted bank needs to be notified so its ISR can 
be updated. This allows the PIC to keep track. of 
which interrupt levels are in the process of being 
serviced and their relative priorities. Three different 
End-Of-Interrupt (EOI) formats are available. They 
are: Non-Specific EOI Command, Specific EOI Com­
mand, and Automatic EOI Mode. Selection of which 
EOI to use is dependent upon the interrupt opera­
tions the user wishes to perform. 

If the 82380 is NOT programmed in the Automatic 
EOI Mode, an EOI command must be issued by the 
80386 to the specific 82380 PIC Controller Bank. 
Also, if this controller bank is cascaded to another 
internal bank, an EOI command must also be sent to 
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank C in t~e 82380 
PIC is serviced, an EOI should be written into Bank 
C, Bank B and Bank A. If the request comes from an 
external interrupt controller cascaded to Bank C, 
then an EOI should be written into the external con­
troller as well. 

NON-SPECIFIC EOI COMMAND 

A Non-Specific EOI command sent from the 80386 
lets the 82380 PIC bank know when a service rou­
tine has been completed, without specification of its 
exact interrupt level. The respective interrupt bank 
automatically determines the interrupt level and re­
sets the correct bit in the ISR. 

To take advantage of the Non-Specific EOI, the in­
terrupt bank must be in a mode of operation in which 
it can predetermine its in-service routine levels. For 
this reason, the Non-Specific EOI command should 
only be used when the most recent level acknowl­
edged arl(:l serviced is always the highest priority lev­
el (i.e., in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a 
Non-Specific EOI command, it simply rese~s the 
highest priority ISR bit to indicate that the highest 
priority rol!tine in service is finished. 

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are 
two operating conditions in which it is best NOT 

5-1136 



82380 

used since the Fully Nested Mode structure will be 
destroyed: 

- Using the Set Priority command within an inter­
rupt service routine. 

- Using a Special Mask Mode. 

These conditions are covered in more detail in their 
own sections, but are listed here for reference. 

SPECIFIC EOI COMMAND 

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific 
EOI command specifies an exact ISR bit to be reset. 
Any one of the IRQ levels of an interrupt bank can 
be specified in the command. 

The Specific EOI command is needed to reset the 
ISR bit of a completed service routine whenever the 
interrupt bank is not able to automatically determine 
it. The Specific EOI command can be used in all 
conditions of operation, including those that prohibit 
Non-Specific EOI command usage mentioned 
above. 

AUTOMATIC EOI MODE 

When programmed in the Automatic EOI Mode, the 
80386 no longer needs to issue a command to notify 
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end 
of the second INT A cycle. 

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may 
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is 
reset right after it is acknowledged, thus leaving no 
designation in the ISR that a service routine is being 
executed. If any interrupt request within the same 
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority. 

Therefore, when using this mode, the 80386 should 
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be serviced only after the 
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in 
this scheme, a routine in service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled. 

4.4.2 INTERRUPT PRIORITIES 

The 82380 PIG provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail. 

4.4.2.1 Fully Nested Mode 

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level 
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged 
from highest to lowest. 

Unless otherwise programmed, the Fully Nested 
Mode is entered by default upon initialization. At this 
time, IRQO# is assigned the highest priority (priority 
= O) and IRQ7 # the lowest (priority = 7). This de­
fault priority can be changed, as will be explained 
later in the Rotating Priority Mode. 

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRA) and its vector is placed on the 
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in 
service. This ISR bit will remain set until the 80386 
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or 
alternately, if the Automatic End Of Interrupt (AEOI) 
bit is set, the ISR bit will be reset at the end of the 
second INTA cycle. 

5-1137 



intJ 82380 

While the ISR bit is set, all further interrupts of the 
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be 
acknowledged only if the 80386 internal interrupt en­
able flip-flop has been re-enabled (through software 
inside the current service routine). 

4.4.2.2 Automatic Rotation-Equal Priority 
Devices 

Automatic rotation of priorities serves in applications 
w~e~e th~ interrupting devices are of equal priority 
within an interrupt bank. In this kind of environment, 
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced 
before the original device is serviced again. This is 
accomplished by automatically assigning a device 
the lowest priority after being serviced. Thus, in the 
worst case, the device would have to wait until all 
other peripherals connected to the same bank are 
serviced before it is serviced again. 

There are two methods of accomplishing automatic 
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with 

the Automatic EOI mode. These two methods are 
discussed below. 

ROTATE ON NON-SPECIFIC EOI COMMAND 

When the Rotate On Non-Specific EOI command is 
issued, the highest ISR bit is reset as in a normal 
Non-Specific EOI command. However after it is re­
set, the corresponding Interrupt Requ~st (IRQ) level 
is assigned the lowest priority. Other IRQ priorities 
rotate to conform to the Fully Nested Mode based 
on the newly assigned low priority. 

Figure 4-4 shows how the Rotate On Non-Specific 
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned with IAQO the 
highest and IRQ7 the lowest. IAQ6 and IRQ4 are 
already in service but neither is completed. Being 
the _higher_ priority routine, IRQ4 is necessarily the 
routine being executed. During the IRQ4 routine, a 
rotate on Non-Specific EOI command is executed. 
When this happens, Bit 4 in the ISR is reset. IRQ4 
then becomes the lowest priority and IAQ5 becomes 
the highest. 

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO 

ISR STATUS 0 O O 

PRIORITY 6 5 4 3 2 

LOWEST PRIORITY 

0 (BEFORE 
COMMAND} 

HIGHEST PRIORITY 

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO 

HIGHEST PRIORITY LOWEST PRIORITY 

Figure 4-4. Rotate On Non-Specific EOI Command 

5-1138 

290128-52 

290128-53 



intef 82380 

ROTATE ON AUTOMATIC EOI MODE 

The Rotate On Automatic EOI Mode works much 
like the Rotate On Non-Specific EOI Command. The 
main difference is that priority rotation is done auto­
matically after the second INT A cycle of an interrupt 
request. To enter or exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode 
is entered, no other commands are needed as in the 
normal Automatic EOI Mode. However, it must be 
noted again that when using any form of the Auto­
matic EOI Mode, special consideration should be 
taken. The guideline presented in the Automatic EOI 
Mode also applies here. 

4.4.2.3 Specific Rotation-Specific Priority 

Specific rotation gives the user versatile capabilities 
in interrupt controlled operations. It serves in those 
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic Ro­
tation which will automatically set priorities after 
each interrupt request is serviced, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to receive the lowest or the 
highest priority. This can be done during the main 

program or within interrupt routines. Two specific ro­
tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand. 

SET PRIORITY COMMAND 

The Set Priority Command allows the programmer to 
assign an IRQ level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode 
based on the newly assigned low priority. 

ROTATE ON SPECIFIC EOI COMMAND 

The Rotate On Specific EOI Command is literally a 
combination of the Set Priority Command and the 
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level 
will be reset in the ISR. Thus, this command accom­
plishes both tasks in one single command. 

4.4.2.4 Interrupt Priority Mode Summary 

In order to simplify understanding the many modes 
of interrupt priority, Table 4-2 is provided to bring out 
their summary of operations. 

Table 4-2. Interrupt Priority Mode Summary 

Interrupt Operation Effect On Priority After EOI 
Priority Mode Summary Non-Specific/ Automatic Specific 

Fully-Nested Mode IRQO#-Highest Priority No change in priority. Not Applicable. 
IRQ7#-Lowest Priority Highest ISR bit is reset. 

Automatic Rotation Interrupt level just serviced Highest ISR bit is reset and the Not Applicable. 
(Equal Priority Devices) is the lowest priority. Other corresponding level becomes the 

priorities rotate to conform lowest priority. 
to Fully-Nested Mode. 

Specific Rotation User specifies the lowest Not Applicable. As described under 
(Specific Priority priority level. Other priorities 'Operation Summary'. 
Devices) rotate to conform to Fully-

Nested Mode. 

5-1139 

I 



intef 82380 

4.4.3 INTERRUPT MASKING 

VIA INTERRUPT MASK REGISTER 

Each bank in the 82380 PIC has an Interrupt Mask 
Register (IMR) which enhances interrupt control ca­
pabilities. This IMR allows. individual IRQ masking. 
When an IAQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR 
disables one interrupt channel if it is set (HIGH). Bit 
O masks IRQO, Bit 1 masks IRQ1 and so forth. 
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others op­
erations. 

The IMR acts only on the output of the IRR. That is, 
if an interrupt occurs while its IMR bit is set, this 
request is not 'forgotten'. Even with an IRQ input 
masked, it is still possible to set the IRR. Therefore, 
when the IMR bit is reset, an interrupt request to the 
80386 will then be generated, providing that the IRQ 
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt 
Vector (Bank A, level 7) will be generated during the 
interrupt acknowledge cycle. 

SPECIAL MASK MODE 

In the Fully Nested Mode, all IRQ levels of .lower 
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let 
a lower priority interrupt request to interrupt the rou­
tine in service. One method to achieve this is by 
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables 
interrupts from all levels except the level in service. 
This is usually done inside an interrupt service rou­
tine by masking the level that is in service and then 
issuing the Special Mask Mode Command. Once the 
Special Mask Mode is enabled, it remains in effect 
until it is disabled. 

82380 

DATA BUS INTA# 
(FROM BUS CONTROLLER) 

4.4.4 EDGE OR LEVEL INTERRUPT 
TRIGGERING 

Each bank in the 82380 PIC can be programmed 
independently for either edge or level sensing for the 
interrupt request signals. Recall that all IRQ inputs 
are active LOW. Therefore, in the edge triggered 
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state. 
The interrupt input may remain active withput gener­
ating another interrupt. During level triggered mode, 
an interrupt request will be recognized by an active 
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the 
80386 must be disabled to prevent a second false 
interrupt from occurring. 

In either modes, the interrupt request input must be 
active (LOW) during the first INTA cycle in order to 
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A. 

4.4.5 INTERRUPT·CASCADING 

As mentioned previously, the 82380 allows for exter­
nal Slave interrupt controllers to be cascaded to any 
of its external interrupt request pins. The 82380 PIC 
indicates that a external Slave Controller is to be 
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the 
80386 Data Bus during the first INTA cycle (instead 
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the 
INTA status signals and use it to select the external 
Slave Controller to be serviced (see Figure 4-5). The 
selected Slave will then respond to the second INTA 
cycle and place its vector on the Data Bus. This 
method requires that if external Slave Controllers 

POSITIVE 
EDGE 

MASTER/SLAVE 
FLIP-FLOP 

IN OUT 
CAS(0-7) 
TO SLAVE 
8259'• 

~ 
LATCH HERE 

290128-54 

Figure 4-5. Slave Cascade Address Capturing 

5-1140 



inter 82380 

are used in the system, no vector should be pro­
grammed to OOH. 

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1, an external 
latch is required to capture this address for the Slave 
Controller. A simple scheme is depicted in Figure 
4-5. 

4.4.5.1 Special Fully Nested Mode 

This mode will be used where cascading is em­
ployed and the priority is to be conserved within 
each Slave Controller. The Special Fully Nested 
Mode is similar to the 'regular' Fully Nested Mode 
with the following exceptions: 

- When an interrupt request from a Slave Control­
ler is in service, this Slave Controller is not 
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority 
logic within the Slave Controller will be recog­
nized by the 82380 PIG and will initiate interrupts 
to the 80386. In comparing to the 'regular' Fully 
Nested Mode, the Slave Controller is masked out 
when its request is in service and no higher re­
quests from the same Slave Controller can be 
serviced. 

- Before exiting the interrupt service routine, the 
software has to check whether the interrupt serv­
iced was the only request from the Slave. Con­
troller. This is done by sending a Non-Specific 
EOI Command to the Slave Controller and then 
reading its In Service Register. If there are no 
requests in the Slave Controller, a Non-Specific 
EOI can be sent to the corresponding 82380 PIG 
bank also. Otherwise, no EOI should be sent. 

4.4.6 READING INTERRUPT STATUS 

The 82380 PIG provides several ways to read differ­
ent status of each interrupt bank for more flexible 
interrupt control operations. These include polling 
the highest priority pending interrupt request and 
reading the contents of different interrupt status reg­
isters. 

4.4.6.1 Poll Command 

The 82380 PIG supports status polling operations 
with the Poll Command. In a Poll Command, the 

pending interrupt request with the highest priority 
can be determined. To use this command, the INT 
output is not used, or the 80386 interrupt is disabled. 
Service to devices is achieved by software using the 
Poll Command. 

This mode is useful if there is a routine command 
common to several levels so that the INTA se­
quence is not needed. Another application is to use 
the Poll Command to expand the number of priority 
levels. 

Notice that the ICW2 mechanism is not supported 
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers 
are of no concern since no INTA cycle will be gener­
ated. 

4.4.6.2 Reading Interrupt Registers 

The contents of each interrupt register (IRR, ISR, 
and IMR) can be read to update the user's program 
on the present status of the 82380 PIG. This can be 
a versatile tool in the decision making process pf a 
service routine, giving the user more control over 
interrupt operations. 

The reading of the IRR and ISR contents can be 
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con-
tent of IMR can be read via a simple read operation I 
of the register itself. 

4.5 Register Set Overview 

Each bank of the 82380 PIG consists of a set of 8-bit 
registers to control its operations. The address map 
of all the registers is shown in Table 4-3. Since all 
three register sets are identical in functions, only 
one set will be described. 

Functionally, each register set can be divided into 
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control 
Words (OCW's), the Poll/Interrupt Request/In-Serv­
ice Register, the Interrupt Mask Register, and the 
Vector Registers. A description of each group fol­
lows. 

5-1141 



intef 82380 

Table 4-3. Interrupt Controller Register Address Map 

Port 
Access Register Description Address 

20H Write Bank B ICW1, OCW2, or OCW3 
Read Bank B Poll, Request or In-Service 

Status Register 
21H Write Bank B ICW2, ICW3, ICW4, OCW1 

Read Bank B Mask Register 
22H Read BankB ICW2 
28H Read/Write IRQB Vector Register 
29H Read/Write IRQ9 Vector Register 
2AH Read/Write Reserved 
2BH Read/Write IRQ11 Vector Register 
2CH Read/Write IRQ12 Vector Register 
2DH Read/Write IRQ13 Vector Register 
2EH Read/Write IRQ14 Vector Register 
2FH Read/Write IRQ15 Vector Register 

AOH Write Bank C ICW1, OCW2, or OCW3 
Read Bank C Poll, Request or In-Service 

Status Register 
A1H Write Bank C ICW2, ICW3, ICW4, OCW1 

Read Bank C Mask Register 
A2H Read BankCICW2 
ABH Read/Write IRQ16 Vector Register 
A9H Read/Write IRQ17 Vector Register 
AAH Read/Write IRQ18 Vector Register 
ABH Read/Write IRQ19 Vector Register 
ACH Read/Write IRQ20 Vector Register 
ADH Read/Write IRQ21 Vector Register 
AEH Read/Write IRQ22 Vector Register 
AFH Read/Write IRQ23 Vector Register 

30H Write Bank A ICW1, OCW2, or OCW3 
Read Bank A Poll, Request or hi-Service 

Status Register 
31H Write Bank A ICW2, ICW3, ICW4, OCW1 

Read Bank A Mask Register 
32H Read BanklCW2 
38H Read/Write IRQO Vector Register 
39H Read/Write IRQ1 Vector Register 
3AH Read/Write IRQ1 .5 Vector Register 
3BH Read/Write IRQ3 Vector Register 
3CH Read/Write IRQ4 Vector Register 
3DH Read/Write Reserved 
3EH Read/Write Reserved 
3FH Read/Write IRQ7 Vector Register 

5-1142 



intef 82380 

4.5.1 INITIALIZATION COMMAND WORDS (ICW) 

Before normal operation can begin, the 82380 PIC 
must be brought to a known state. There are four 
8-bit Initialization Command Words in each interrupt 
bank to setup the necessary conditions and modes 
for proper operation. Except for the second common 
word (ICW2) which is a read/write register, the other 
three are write-only registers. Without going into de­
tail of the bit definitions of the command words, the 
following subsections give a brief description of what 
functions each command word controls. 

ICW1 

The ICW1 has three major functions. They are: 

- To select between the two IRQ input triggering 
modes (edge-or level-triggered); 

- To designate whether or not the interrupt bank is 
to be used alone or in the cascade mode. If the 
cascade mode is desired, the interrupt bank will 
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted; 

- To determine whether or not ICW4 will be issued; 
that is, if any of the ICW4 operations are to be 
used. 

ICW2 

ICW2 is provided for compatibility with the 82C59A 
only. Its contents do not affect the operation of the 
interrupt bank in any way. Whenever the ICW2 of 
any of the three banks is written into, an interrupt is 
generated from Bank A at level 1.5. The interrupt 
request will be cleared after the ICW2 register has 
been read by the 80386. The user is expected to 
program the corresponding vector register or to use 
it as an indicator that an attempt was made to alter 
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operations. 

ICW3 

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1 ). ICW3 is used for specific programming 
within the cascade mode. The bits in ICW3 indicate 
which interrupt request inputs have a Slave cascad­
ed to them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl­
edge cycles as described previously. 

ICW4 

The ICW4 is accepted only if it was selected in 
ICW1. This command word register serves two func­
tions: 

- To select either the Automatic EOI mode or soft­
ware EOI mode; 

- To select if the Special Nested mode is to be 
used in conjunction with the cascade mode. 

4.5.2 OPERATION CONTROL WORDS (OCW) 

Once initialized by the ICW's, the interrupt banks will 
be operating in the Fully Nested Mode by default 
and they are ready to accept interrupt requests. 
However, the operations of each interrupt bank can 
be further controlled or modified by the use of 
OCW's. Three OCW's are available for programming 
various modes and commands. Note that all OCW's 
are 8-bit write-only registers. 

The modes and operations controlled by the OCW's 
are: 

- Fully Nested Mode; 
- Rotating Priority Mode; 
- Special Mask Mode; 
- Poll Mode; 
- EOI Commands; 
- Read Status Commands. 

OCW1 

OCW1 is used solely for masking operations. It pro­
vides a direct link to the Interrupt Mask Register 
(IMR). The 80386 can write to this OCW register to 
enable or disable the interrupt inputs. Reading the 
pre-programmed mask can be done via the Interrupt 
Mask Register which will be discussed shortly. 

OCW2 

OCW2 is used to select End-Of-Interrupt, Automatic 
Priority Rotation, and Specific Priority Rotation oper­
ations. Associated commands and modes of these 
operations are selected using the different combina­
tions of bits in OCW2. 

Specifically, the OCW2 is used to: 

- Designate an interrupt level (0-7) to be used to 
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled; 

- Select which software EOI command (if any) is to 
be executed (i.e., Non-Specific or Specific EOI); 

- Enable one of the priority rotation operations 
(i.e., Rotate On Non-Specific EOI, Rotate On Au­
tomatic EOI, or Rotate on Specific EOI). 

OCW3 

There are three main categories of operation that 
OCW3 controls. That are summarized as follows: 

5-1143 

I 



intJ 82380 

- To select and execute the Read Status Register 
Commands, either reading the Interrupt Request 
Register (IRA) or the In-Service' Register (ISR); 

- To issue the Poll Command. The Poll Command 
will override a Read Register Command if both 
functions are enabled simultaneously; 

- To set or reset the Special Mask Mode. 

4.5.3 POLL/INTERRUPT REQUEST /IN-SERVICE 
STATUS REGISTER 

As the name implies, this 8-bit read-only register has 
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a 
Poll Command, the register read contains the binary 
code of the highest priority level requesting service 
(if any). For a Read IRA Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being 
serviced. 

4.5.4 INTERRUPT MASK REGISTER (IMR) 

This is a read-only 8-bit register which, when read, 
will specify all interrupt levels within the same bank 
that are masked. 

4.5.5 VECTOR REGISTER (VR) 

Each interrupt request input has an 8-bit read/write 
programmable vector register associated with it. The 
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the 
Data Bus during the INTA cycles as described previ­
ously. 

4.6 Programming 

Programming the 82380 PIG is accomplished by us­
ing two types of command words: ICW's and 
OCW's. All modes and commands explained in the 
previous sections are programmable using the 
ICW's and OCW's. The ICW's are issued from the 
80386 in a sequential format and are used to setup 
the banks in the 82380 PIG in an initial state of oper­
ation. The OCW's are issued as needed to vary and 
control the 82380 PIC's operations. 

Both ICW's and OCW's are sent by the 80386 to the 
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by 
the 1/0 address map, the sequence they are issued 
(ICW's only), and by some dedicated bits among the 
ICW's and OCW's. 

All three interrupt banks are programmed in a similar 
way. Therefore, only a single bank will be described. 

4.6.1 INITIALIZATION (ICW). 

Before normal operation can begin, each bank must 
be initialized by programming a sequence of two to 
four bytes written into the ICW's. 

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued. for 
any form of operation. However, ICW3 and ICW4 are 
used only if designated in ICW1. Once initialized, if 
any programming changes within the ICW's are to 
be made, the entire ICW sequence must be repro­
grammed, not just an individual ICW. 

Note that although the ICW2's in the 82380 PIG do 
not affect the Bank's operation, they still must be 
programmed in order to preserve the compatibility 
with the 82C59A. The contents programmed are not 
relevant to the overall operations of the interrupt 
banks. Also, whenever one of the three ICW2's is 
programmed, an interrupt level 1.5 in Bank A will be 
generated. This interrupt request will be cleared 
upon reading of the ICW2 registers. Since the three 
ICW2's share the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three 
ICW2's must be read. 

However, it is not necessary to provide an interrupt 
service routine for the ICW2 interrupt. One way to 
avoid this is as follows. At the beginning of the initial­
ization of the interrupt banks, the 80386 interrupt 
should be disabled. After each ICW2 register write 
operation is performed during the initialization, the 
corresponding ICW2 register is read. This read oper­
ation will clear the interrupt request of the 82380. At 
the end of the initialization, the 80386 interrupt is re­
enabled. With this method, the 80386 will not detect 
the ICW2 interrupt request, thus eliminating the need 
of an interrupt service routine. 

Certain internal setup conditions occur automatically 
within the interrupt bank after the first ICW (ICW1) 
has been issued. They are: ' 

- The edge sensitive circuit is reset, which means 
that following initialization, an interrupt request 
input must make a HIGH-to-LOW transition to 
generate an interrupt; 

- The Interrupt Mask Register (IMR) is cleared; 
that is, all interrupt inputs are enabled; 

- IRQ7 input of each bank is assigned priority 7 
(lowest); 

- Special Mask Mode is cleared and Status Read 
is set to IRR; 

- If no ICW4 is needed, then no Automatic-EOI is 
selected. 

5-1144 



intef 82380 

DISABLE INTERRUPT 

PROGRAM VECTOR(S) • 

ICW1 

ICW2 (ICW2 INTERRUPT GENERATED) 

NO (SNGL= 1) 

NO (IC4=0) 

ICW3 

ICW4 

ENABLE INTERRUPT 

READY TO ACCEPT 
INTERRUPT REQUESTS 

•1cw2 vector address must be programmed now. 

(ALLOW SERVICING 
OF ICW2 INTERRUPT) 

290128-55 

Other vector addresses may be programmed via ICW2 interrupt service routine. 

Figure 4-6. Initialization Sequence 

4.6.2 VECTOR REGISTERS (VR) 

Each interrupt request input has a separate Vector 
Register. These Vector Registers are used to store 
the pre-programmed vector number corresponding 
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be 
programmed with the predefined vector numbers. 
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Register of 
IRQ1 .5 in Bank A should be initialized and the inter­
rupt service routine of this vector is set up before the 
ICW's are written. 

4.6.3 OPERATION CONTROL WORDS (OCW) 

After the ICW's are programmed, the operations of 
each interrupt controller bank can be changed by 
writing into the OCW's as explained before. There is 
no special programming sequence required for the 
OCW's. Any OCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks. 

4.6.3.1 Read Status and Poll Commands (OCW3) 

Since the reading of IRA and ISR status as well as 
the result of a Poll Command are available on the 

5-1145 



intJ 82380 

same read-only Status Register, a special Read 
Status/Poll Command must be issued before the 
Poll/Interrupt Request/In-Service Status Register is 
read. This command can be specified by writing the 
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read 
Command are enabled simultaneously, the Poll 
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will 
contain the result of the Poll Command. 

Note that for reading IRA and ISR, there is no need 
to issue a Read Status Command to the OCW3 ev­
ery time the IRA or ISR is to be read. Once a Read 

4.7 Register Bit Definition 

INITIALIZATION COMMAND WORD 1 (ICW1) 

D7 D6 D5 D4 

x x x 

D3 

LTIM 

Status Command is received by the interrupt bank, it 
'remembers' which register is selected. However, 
this is not true when the Poll Command is used. 

In the Poll Command, after the OCW3 is written, the 
82380 PIG treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the 
priority level. Interrupt Request input status remains 
unchanged from the Poll Command to the Status 
Read. 

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When 
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on 
which interrupt request(s) is(are) currently disabled. 

D2 D1 DO 

x SNGL IC4 

0 - EDGE TRIGGERED 
1 - LEVEL TRIGGERED 

0 - NO ICW4 NEEDED 
1 - ICW4 NEEDED 

0 - EXTERNAL CASCADE 
(ICW3 NEEDED) 

1 - NO EXTERNAL CASCADE 
(ICW3 NOT NEEDED) 

INITIALIZATION COMMAND WORD 2 (ICW2) 

D7 D6 D5 D4 D3 D2 D1 

CONTENT IS NOT RELEVANT TO THE ACTUAL 
OPERATION OF THE BANK BUT CAN BE READ 
BY THE INTERRUPT SERVICE ROUTINE TO 
DETERMINE WHERE THE INTERRUPT VECTORS 
OF EACH BANK START. 

5-1146 

290128-57 

290128-56 



intJ 82380 

INITIALIZATION COMMAND WORD 3 (ICW3) 
ICW3 for Bank A: 

07 06 05 04 03 02 01 DO 

o I o I o I o I sco!olol 
0- NO SLAVE CASCADED TO BANK A 
1 - THERE IS A SLAVE CASCADED TO 

TOUT2#/IRQ3# PIN 
290128-84 

ICW3 for Bank B: 

07 06 05 04 03 02 D1 DO 

S9 

0 - NO CASCADED REQUEST TO IRQn 
1 - THERE IS A CASCADED REQUEST 

CONNECTED TO IRQn (i.e. THE 
CORRESPONDING INTERRUPT 
REQUEST INPUTS) 

290128-65 

ICW3 for Bank C: 

07 D6 OS 04 D3 02 01 DO 

INITIALIZATION COMMAND WORD 4 (ICW4) 

D7 06 DS 04 03 02 01 DO 

0 0 0 SFNM X 

0 =NORMAL EOI 
1 =AUTOMATIC EOI 

OPERATION CONTROL WORD 1 (0CW1) 

D7 06 OS 04 03 02 01 DO 

Ml= 1 MASK SET (INTERRUPT DISABLE) 
Ml= 0 MASK RESET (INTERRUPT ENABLE) 

5-1147 

290128-86 

290128-58 

290128-59 



intef 82380 

OPERATION CONTROL WORD 2 (OCW2) 

D7 D6 D5 D4 D3 D2 D1 DO 

R I SL I EDI 

I I I 
0 0 L2 ,~~I 

'~"""" "'" TO BE ACTED UPON 0 
0 
1 
1 
0 
1 
1 
0 

0 
1 
0 
0 
0 
1 
1 
1 

1 NON-SPECIFIC EOI COMMAND 
1 SPECIFIC EOI COMMAND(L2-LO USED) 
1 ROTATE ON NON-SPECIFIC EOI 
0 ROTATE ON AUTO-EOI MODE (SET) 
O ROTATE ON AUTO-EOI MODE (CLEAR) 
1 ROTATE ON SPECIFIC EOI (L2-LO USED) 
0 SET PRIORITY (L2-LO USED) 
0 NO OPERATION 

290128-60 

OPERATION CONTROL WORD 3 (0CW3) 

D7 D6 D5 D4 

0 

ESMM SMM 
0 0 
0 1 
1 0 
1 1 

NO ACTION 
NO ACTION 

0 

RESET SPECIAL MASK 
SET SPECIAL MASK 

D3 D2 D1 DO 

p 

RIS 
0 NO ACTION 

1 - POLL COMMAND 1 NO ACTION 
0 - NO POLL COMMAND 0 READ IR REG. (STATUS) 

1 READ IS REG. (STATUS) 
290128-61 

ESMM-Enable Special Mask Mode. When this bit is set to 1, it enables the SMM bit to set or reset the Special Mask 
Mode. When this bit is set to 0, SMM bit becomes don't care. 

SMM-Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask Mode. If 
ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMM has no effect. 

Poll/Interrupt Request/In-Service Status Register 

POLL COMMAND STATUS 

D7 D6 D5 D4 D3 D2 D1 DO 

x x x X W2 

0 - NO PENDING INTERRUPT 
1 - PENDING INTERRUPT 

5-1148 

BINARY CODE OF 
THE HIGHEST PRIORITY 
LEVEL REQUESTING 

290128-62 



82380 

INTERRUPT REQUEST STATUS 

D7 D6 D5 D4 D3 D2 D1 DO 

I 1RQ1I1Ra6 I 1Ras I 1RQ4 I 1RQ3 I 1RQ2 I 1RQ1 I 1Rao I 
IF IRQ BIT IS: 0 - NO REQUEST 

1 - REQUEST PENDING 
290128-63 

NOTE: 
Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pins so that when 
there is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request 
Status register. 

IN-SERVICE STATUS VECTOR REGISTER (VR) 

D7 D6 D5 D4 D3 D2 D1 DO 
D7 D6 D5 D4 D3 D2 D1 

I 1s1 I 1s6 I 1s5 I 1s4 I 1s3 I 1s2 I 1s 1 I 1so I 
IF ISn BIT IS: 0 - NOT IN-SERVICE 

1 - REQUEST IS IN-SERVICE 8-BIT VECTOR NUMBER 
290128-64 290128-65 

4.8 Register Operational Summary 

For ease of reference, Table 4-4 gives a summary of the different operating modes and commands with their 
corresponding registers. 

Table 4-4 Register Operational Summary 

Operational Command 
Bits 

Description Words 

Fully Nested Mode OCW-Default -
Non-specific EOI Command OCW2 EOI 
Specific EOI Command OCW2 SL, EOI, 

LO-L2 
Automatic EOI Mode ICW1, ICW4 IC4,AEOI 
Rotate On Non-Specific OCW2 EOI 

EOI Command 
Rotate On Automatic OCW2 R, SL, EOI 

EOI Mode 
Set Priority Command OCW2 LO-L2 
Rotate On Specific OCW2 R, SL, EOI 

EOI Command 
Interrupt Mask Register OCW1 MO-M7 
Special Mask Mode OCW3 ESMM, SMM 
Level Triggered Mode ICW1 LTIM 
Edge Triggered Mode ICW1 LTIM 
Read Register Command, IRR OCW3 RR, RIS 
Read Register Command, ISR OCW3 RR,RIS 
Red IMR IMR MO-M7 
Poll Command OCW3 p 

Special Fully Nested Mode ICW2, ICW4 IC4,SFNM 

5-1149 

I 



inter 82380 

5.0 PROGRAMMABLE INTERVAL 
TIMER 

5.1 Functional Description 

The 82380 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are 
functionally compatible to the Intel 82C54. The first 
three timers (Timer 0-2) have specific functions. 
The fourth timer, Timer 3, is a general purpose timer. 
Table 5-1 depicts the functions of each timer. A brief 
description of each timer's function follows. 

Timer 

0 

1 

2 

3 

Table 5-1. Programmable 
Interval Timer Functions 

Output Function 

IRQ8 Event Based 
IRQ8 Generator 

TOUT1/REF# Gen. Purpose/DRAM 
Refresh Req. 

TOUT2#/IRQ3# Gen. Purpose/Speaker 
Out/IRQ3# 

TOUT3# Gen. Purpose/IRQO 
Generator 

TIMER 0- Event Based IRQB Generator 

Timer O is intended to be used as an Event Counter. 
The output of this timer will generate an Interrupt 
Request 8 (IRQ8) upon a rising edge of the timer 
output (TOUTO). Typically, this timer is used to im­
plement a time-of-day clock or system tick. The Tim­
er O output is not available as an external signal. 

TIMER 1-General Purpose/DRAM Refresh 
Request 

The output of Timer 1, TOUT1, can be used as a 
general purpose timer or as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a 
DRAM refresh request to the 82380 DRAM Refresh 
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1 
output. 

TIMER 2-General Purpose/Speaker Out/IRQ3# 

The Timer 2 .output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin 
is a bidirectional signal. When used as an input, a 
logic LOW asserted at this pin will generate an Inter­
rupt Register 3 (IRQ3#) (see Programmable Inter­
rupt Controller). 

DATA BUFFER ____ ......;..OU;...;T...;;o _ _.. J EDGE l(R08 ) 
--8---8-IT-~•1 & l+-+.r+--+I COUNTER 0 DETECTOR 1----- INTERNAL 

INTERNAL BUS LOGIC BANK B 

CONTROL 
GATE WORD 

REGISTER I 

CONTROL 
WORD 

REGISTER II 

OUT1 
COUNTER 1 

COUNTER2 

COUNTER3 

CLKIN 

J EDGE REFRESH 
DETECTOR CONTROLLER 

REF# 

2-T0-1 
REF 1 MUX 

TOUT1/REF# TOUT1 

REF ENABLE 
OPEN COLLECTOR (INTERNAL) 

TOUT2#/IR03# 

TO IR03# (INTERNAL) 
BANK A 

J EDGE IROO 
DETECTOR (INTERNAL) 

BANK A 

TOUT3# 

290128-66 

Figure 5-1. Block Diagram of Programmable Interval Timer 

5-1150 



intef 82380 

TIMER 3-General Purpose/Interrupt Request O 
Generator 

The output of Timer 3 is fed to an edge detector and 
generates an Interrupt Request O (IRQO) in the 
82380. The inverted output of this timer (TOUT3#) 
is also available as an external signal for general 
purpose use. 

5.1.1 INTERNAL ARCHITECTURE 

The functional block diagram of the Programmable 
Interval Timer section is shown in Figure 5-1. Follow­
ing is a description of each block. 

DATA BUFFER & READ/WRITE LOGIC 

This part of the Programmable Interval Timer is used 
to interface the four timers to the 82380 internal bus. 
The Data Buffer is for transferring commands and 
data between the 8-bit internal bus and the timers. 

GATE n 

CLK n OUT n 

The Read/Write Logic accepts inputs from the inter­
nal bus and generates signals to control other func­
tional blocks within the timer section. 

CONTROL WORD REGISTERS I & II 

The Control Word Registers are write-only registers. 
They are used to control the operating modes of the 
timers. Control Word Register I controls Timers O, 1 
and 2, and Control Word Register II controls Timer 
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview 
section. 

COUNTER 0, COUNTER 1, 
COUNTER 2, COUNTER 3 

Counters 0, 1, 2, and 3 are the major parts of Timers 
0, 1, 2, and 3, respectively. These four functional 
blocks are identical in operation, so only a single 
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2. 

290128-67 

Figure 5-2. Internal Block Diagram of A Counter 

5-1151 

I 



int:J 82380 

The four counters share a common clock input 
(CLKIN), but otherwise are fully independent. Each 
counter is programmable to operate in a different 
Mode. 

Although the Control Word Register is shown in the 
Figure 5-2, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera­
tions of the counters. 

The Status Register, when latched, contains the cur­
rent contents of the Control Word Register and 
status of the output and Null Count Flag (see Read 
Back Command). 

The Counting Element (CE) is the actual counter. It 
is a 16-bit presettable synchronous down counter. 

The Output Latches (OL) contain two 8-bit latches 
(OLM and OLL). Normally, these latches 'follow' the 
content of the CE. OLM contains the most signifi­
cant byte of the counter and OLL contains the least 
significant byte. If the Counter Latch Command is 
sent to the counter, OL will latch the present count 
until read by the 80386 and then return to follow the 
CE. One latch at a time is enabled by the timer's 
Control Logic to drive the internal bus. This is how 
the 16-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever 
the count is read, it is one of the OL's that is being 
read. 

When a new count is written into the counter, the 
value will be stored in the Count Registers (CR), and 
transferred to CE. The transferring of the contents 
from CR's to CE is defined as 'loading' of the coun­
ter. The Count Register contains two 8-bit registers: 
CAM (which contains the most significant byte) and 
CAL (which contains the least significant byte). Simi­
lar to the OL's, the Control Logic allows one register 
at a time to be loaded from the 8-bit internal bus. 
However, both bytes are transferred from the CR's 
to the CE simultaneously. Both CR's are cleared 
when the Counter is programmed. This way, if the 
Counter has been programmed for one byte count 
(either the most significant or the least significant 
byte only), the other byte will be zero. Note that CE 
cannot be written into directly. Whenever a count is 
written, it is the CR that is being written. 

As shown in the diagram, the Control Logic consists 
of three signals: CLKIN, GATE, and OUT. CLKIN 
and GATE will be discussed in detail in the section 
that follows. OUT is the internal output of the coun­
ter. The external outputs of some timers (TOUT) are 
the inverted version of OUT (see TOUT1, TOUT2 #, 
TOUT3#). The state of OUT depends on the mode 
of operation of the timer. 

5.2 Interface Signals 

5.2.1 CLKIN 

CLKIN is an input signal used by all four timers for 
internal timing reference. This signal can be inde­
pendent of the 82380 system clock, CLK2. In the 
following discussion, each 'CLK Pulse' is defined as 
the time period between a rising edge and a falling 
edge, in that order, of CLKIN. 

During the rising edge of CLKIN, the state of GATE 
is sampled. All new counts are loaded and counters 
are decremented on the falling edge of CLKIN. 

Please note that there are restrictions on the CLKIN 
signal during WRITE cycles to the 82380 timer unit. 
Refer to the appendix of this data manual for details 
on this issue. 

5.2.2 TOUT1, TOUT2#, TOUT3 # 

TOUT1, TOUT2# and TOUT3# are the external 
output signals of Timer 1, Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted 
signals of their respective counter outputs, OUT. 
There is no external output for Timer 0. 

If Timer 2 is to be used as a tone generator of a 
speaker, external buffering must be used to provide 
sufficient drive capability. 

The Outputs of Timer 2 and 3 are dual function pins. 
The output pin ofTimer 2 (TOUT2#/IRQ3#), which 
is a bidirectional open-collector signal, can also be 
used as interrupt request input. When the interrupt 
function is enabled (through the Programmable In­
terrupt Controller), a LOW on this input will generate 
an Interrupt Request 3 # to the 82380 Programma­
ble Interrupt Controller. This pin has a weak internal 
pull-up resistor. To use the IRQ3# function, Timer 2 
should be programmed so that OUT2 is LOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge 
detector which will generate an Interrupt Request 0 
(IRQO) to the 82380 after the rising edge of OUT3 
(see Figure 5-1). 

5.2.3 GATE 

GA TE is not an externally controllable signal. Rath­
er, it can be software controlled with the Internal 
Control Port. The state of GA TE is always sampled 
on the rising edge of CLKIN. Depending on the 
mode of operation, GATE is used to enable/disable 
counting or trigger the start of an operation. 

For Timer O and 1, GATE is always enabled (HIGH). 
For Timer 2 and 3, GATE is connected to Bit 0 and 

5-1152 



82380 

6, respectively, of an Internal Control Port (at ad­
dress 61 H) of the 82380. After a hardware reset, the 
state of GATE of Timer 2 and 3 is disabled (LOW). 

5.3 Modes of Operation 

Each timer can be independently programmed to 
operate in one of six different modes. Timers are 
programmed by writing a Control Word into the con­
trol Word Register followed by an Initial Count (see 
Programming). 

The following are defined for use in describing the 
different modes of operation. 

CLK Pulse-A rising edge, then a falling edge, in 
that order of CLKIN. 
Trigger-A rising edge of a timer's GATE input. 
Timer /Counter Loading-The transfer of a· count 
from Count Register (CR) to Count Element (CE). 

Note that figures 5-3 through 5-8 show the logical 
outputs of the timer units, OUT x· This signal polarity 
does not reflect that of the TOUT x signals. See the 
first paragraph of Section 5.2.2. 

5.3.1 MODE 0-INTERRUPT ON TERMINAL 
COUNT 

Mode O is typically used for event counting. After the 
Control Word is written, OUT is initially LOW, and will 
remain LOW until the counter reaches zero. OUT 
then goes HIGH and remains HIGH until a new 
count or a new Mode o Control Word is written into 
the counter. 

In this mode, GATE = HIGH enables counting; 
GATE = LOW disables counting. However, GATE 
has no effect on OUT. 

After the Control Word and initial count are written to 
a timer, the initial count will be loaded on the· next 
CLK pulse. This CLK pulse does not decrement the 

count, so for an initial count of N, OUT does not go 
HIGH until N + 1 CLK pulses after the initial count is 
written. 

If a new count is written to the timer, it will be loaded 
on the next CLK pulse and counting will continue 
from the new count. If a two-byte count is written, 
the following happens: 

1. Writing the first byte disables counting, OUT is set 
LOW immediately (i.e., no CLK pulse required). 

2. Writing the second byte allows the new count to 
be loaded on the next CLK pulse. 

This allows the counting sequence to be synchroniz­
ed by software. Again, OUT does not go HIGH until 
N + 1 CLK pulses after the new count of N is writ­
ten. 

If an initial count is written while GATE is LOW, the 
counter will be loaded on the next CLK pulse. When 
GATE goes HIGH, OUT will go HIGH N CLK pulses 
later; no CLK pulse is needed to load the counter as 
this has already been done. 

5.3.2 MODE 1-GATE RETRIGGERABLE 
ONE-SHOT 

In this mode, OUT will be initially HIGH. OUT will go 
LOW on the CLK pulse following a trigger to start the 
one-shot operation. The OUT signal will then remain 
LOW until the timer reaches zero. At this point, OUT 
will stay HIGH until the next trigger comes in. Since 
the state of GATE signals of Timer O and 1 are inter­
nally set to HIGH. 

After writing the Control Word and initial count, the 
timer is considered 'armed'. A trigger results in load­
ing the timer and setting OUT LOW on the next CLK 
pulse. Therefore, an initial count of N will result in a 
one-shot pulse width of N CLK cycles. Note that this 
one-shot operation is retriggerable; i.e., OUT will re­
main LOW for N CLK pulses after every trigger. The 
one-shotoperation can be repeated without rewrit­
ing the same count into the timer. 

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will 
not be affected until the timer is retriggered. This is 
because loading of the new count to CE will occur 
only when the one-shot is triggered. 

5-1153 

I 



intef 82380 

CW=10 LSB•4 

WRITE 

CLK 

GATE 

OUT =:J 
I N I N I N I N I 0 0 0 0 0 I FF I FF I 4 3 2 1 0 FF FE 

CWm10 LSB=3 

WRITE 

CLK 

GATE 

OUT :=l 
I N I N I N I N I 0 I g I ~ I 0 0 0 FF 

3 2 1 0 FF 

CW•10 LS8=3 LSB=2 

WRITE 

CLK 

GATE 

OUT ~ 
I N I N I N I N I 0 0 0 0 0 0 FF 

3 2 1 2 1 0 FF 
290128-68 

NOTES: 
The following conventions apply to all mode timing diagrams. 
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only. 
2. The counter is always selected (CS always low). 
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter. 
4. LSB stands for "least significant byte" of count. 
5. Numbers below diagrams are count values. 

The lower number is the least significant byte. 
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the 
most significant byte cannot be read. 
N stands for an undefined count. 
Vertical lines show transitions between count values. 

Figure 5-3. Mode 0 

5-1154 



intef 82380 

CW=12 LSB=3 

WRITE 

CLK 

GATE ------1n---------~n-----

OUT~ 

WRITE 

CLK 

I N I N I N I N I N I : I : 

CW=12 LSB=3 

0 
1 

GATE -------~n----1n----------

, _______ r 
INl:I: ~:: ~l~I 

CW•12 LSB=2 LSB=4 

WRITE --- r---------

CLK 

GATE -------;n--------1 ~-----
OUT~ 

1 N 1 N 1 N 1 N 1 N 1 : 1 ~ 1 ~ 1 =n =: 1 ~ 

Figure 5-4. Mode 1 

0 
3 

290128-69 

5.3.3 MODE 2-RATE GENERATOR count of N, the sequence repeats every N CLK cy­
cles. 

This mode is a divide-by-N counter. It is typically 
used to generate a Real Time Clock interrupt. OUT 
will initially be HIGH. When the initial count has dec­
remented to 1, OUT goes LOW for one CLK pulse, 
then OUT goes HIGH again. Then the timer reloads 
the initial count and the process is repeated. In other 
words, this mode is periodic since the same se­
quence is repeated itself indefinitely. For an initial 

Similar to Mode 0, GATE = HIGH enables counting, 
where GATE = LOW disables counting. If GATE 
goes LOW during an output pulse (LOW), OUT is set 
HIGH immediately. A trigger (rising edge on GATE) 
will reload the timer with the initial count on the next 
CLK pulse. Then, OUT will go LOW (for one CLK 
pulse) N CLK pulses after the new trigger. Thus, 
GATE can be used to synchronize the timer. 

5-1155 

I 



intef 82380 

CW=14 LSB=3 

WRITE 

CLK 

GATE 

OUT 

I N I N I N I N I 0 
3 

CW=·14 LSB•3 

WRITE 

CLK 

GATE 

OUT 

0 0 0 
2 1 3 

LJ 

0 
2 

0 
2 

0 
1 

0 
1 

0 
3 

0 
3 

CW•14 . LSB=4 LSB=Sr--------

WRITE 

CLK 

GATE 

OUT =-=i 
j. N l N I N I N I : 

NOTE: 

0 
3 

u 
0 
3 

290128-70 

A GATE transition should not occur one clock prior to terminal count. 

Figure 5-5. Mode 2 

After writing a Control Word and initial count, the 
timer will be loaded on the next CLK pulse. OUT 
goes LOW (for the CLK pulse) N CLK pulses after 
the initial count is written. This is another way the 
timer may be synchronized by software. 

Writing a new count while counting does not affect 
the current counting sequence because the new 
count will not be loaded until the end of the current 
counting cycle. If a trigger is received after writing a 
new count but before the end .of the current period, 

the timer will be loaded with the new count on the 
next CLK pulse after the trigger, and counting will 
continue with the new ?Ount. 

5.3.4 MODE 3-SQUARE WAVE GENERATOR 

Mode 3 is typically used for Baud Rate generation. 
Functionally, this niode is similar to Mode 2 except 
for the duty cycle of OUT. In this mode, OUT will be 
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count. 

5-1156 



intJ 82380 

The counting sequence will be repeated, thus this 
mode is also periodic. Note that an initial count of N 
results in a square wave with a period of N CLK 
pulses. 

The GATE input can be used to synchronize the tim­
er. GATE= HIGH enables counting; GATE= LOW 
disables counting. If GATE goes LOW while OUT is 
LOW, OUT is set HIGH immediately (i.e., no CLK 
pulse is required). A trigger reloads the timer with the 
initial count on the next CLK pulse. 

After writing a Control Word and initial count, the 
timer will be loaded on the next CLK pulse. This al­
lows the timer to be synchronized by software. 

Writing a new count while counting does not affect 
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end 
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next CLK 

CW•16 LSB=4 

pulse and counting will continue from the new count. 
Otherwise, the new count will be loaded at the end 
of the current half-cycle. 

There is a slight difference in operation depending 
on whether the initial count is EVEN or ODD. The 
following description is to show exactly how this 
mode is implemented. 

EVEN COUNTS: 

OUT is initially HIGH. The initial count is loaded on 
one CLK pulse and is decremented by two on suc­
ceeding CLK pulses. When the count expires (decre­
mented to 2), OUT changes to LOW and the timer is 
reloaded with the initial count. The above process is 
repeated indefinitely. 

ODD COUNTS: 

OUT is initially HIGH. The initial count minus one 
(which is an even number) is loaded on one CLK 

WRITE l.__jl_Jr----------------

CLK 

GATE 

OUT 

I ~ I 
CW=18 LSB==S 

WRITE LSLJ----------------

CLK 

GATE 

OUT 

CW•18 LSB=4 
WRITE ULJ.-----------------

CLK 

GATE 

OUT 

NOTE: 
A-GA TE transition should not occur one clock prior to terminal count. 

Figure 5-6. Mode 3 

5-1157 

290128-71 



intef 82380 

pulse and is decremented by two on succeeding 
CLK pulses. One CLK pulse after the count expires 
(decremented to 2), OUT goes LOW and the timer is 
loaded with the initial count minus one again. Suc­
ceeding CLK pulses decrement the count by two. 
When the count expires, OUT goes HIGH immedi. 
ately and the timer is reloaded with the initial count 
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will be HIGH for (N 
+ 1)/2 counts and LOW for (N - 1)/2 counts. 

5.3.5 MODE 4-INITIAL COUNT TRIGGERED 
STROBE 

This mode allows a strobe pulse to be generated by 
writing an initial count to the timer. Initially, OUT will 

CW=18 LSB=3 

WRITE 

CLK 

GATE 

OUT~ 

I N I N I N I N I 

WRITE 

CLK 

GATE 

OUT 

I N I N I N I N I 

CW=18 LSB=3 

WRITE 

CLK 

GATE 

OUT 

0 
3 

be HIGH. When a new initial count is written into-the 
timer, the counting sequence will begin. When the 
initial count expires (decremented to 1), OUT will go 
LOW for one CLK pulse and then go HIGH again. 

Again, GATE= HIGH enables counting while GATE 
= LOW disables counting. GATE has no effect on 
OUT. 

After writing the Control Word and initial count, the 
timer will be loaded on the next CLK pulse. This CLK 
pulse does not decrement the count, so for an initial 
count of N, OUT does not strobe LOW until N + 1 
CLK pulses after initial count is written. 

If a new count is written during counting, it will be 
loaded in the next CLK pulse and counting will con­
tinue from the new count. 

LJ 
0 I 0 I FF I FF I FF I 1 0 FF FE FD 

I ~ I ~ I 

0 0 

I == I 
2 0 

LSB=2 

I N I N I N I N I ~ I ~ I ~ I 

0 0 

I == I 
2 0 

290128-72 

Figure 5-7. Mode 4 
5-1158 



infef 82380 

If a two-byte count is written, the following will occur: 

1. Writing the first byte has no effect on counting. 

2. Writing the second byte allows the new count to 
be loaded on the next CLK pulse. 

OUT will strobe LOW N + 1 CLK pulses after the 
new count of N is written. Therefore, when the 
strobe pulse will occur after a trigger depends on the 
value of the initial count loaded. 

5.3.6 MODE 5-GATE RETRIGGERABLE 
STROBE 

Mode 5 is very similar to Mode 4 except the count 
sequence is triggered by the GATE signal instead of 

CW=1A LSB=3 

by writing an initial count. Initially, OUT will be HIGH. 
Counting is triggered by a rising edge of GATE. 
When the initial count has expired (decremented to 
1 ), OUT will go LOW for one CLK pulse and then go 
HIGH again. 

After loading the Control Word and initial count, the 
Count Element will not be loaded until the CLK pulse 
after a trigger. This CLK pulse does not decrement 
the count. Therefore, for an initial count of N, OUT 
does not strobe LOW until N + 1 CLK pulses after a 
trigger. 

.-~~~~~~~~~~~-

WRITE 

CLK 

OUT 

WRITE 

CLK 

GATE - - - - - - - - -1 ~ - - - - - - - - - - - -

OUT 

I N I N I N I N I N I N I ~ I 

WRITE 

CLK 

GATE - - --- ---;rr---------1n--- --

OUT~ LJ 
I N I N I N I N I N I ~ I ~ I ~ I ~ I ~~ I ~~ I 

290128-73 

Figure 5-8. Mode 5 

5-1159 



intJ 82380 

SUMMARY OF GATE OPERATIONS 

Mode 
GATE LOW or 

Going LOW 

0 Disable Count 
1 No Effect 

2 1. Disable Count 
2. Sets Output HIGH 

Immediately 
3 1. Disable Count 

2. Sets Output HIGH 
Immediately 

4 Disable Count 
5 No Effect 

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial 
count on the next CLK pulse. 

If the new count is written during counting, the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before 
the current count expires, the timer will be loaded 
with the new count on the next CLK pulse and a new 
count sequence will start from there. 

5.3.7 OPERATION COMMON TO ALL MODES 

5.3.7.1 GATE 

The GATE input is always sampled on the rising 
edge of CLKIN. In Modes 0, 2, 3 and 4, the GATE 
input is level sensitive. The logic level is sampled on 
the rising edge of CLKIN. In Modes 1, 2, 3 and 5, the 
GATE input is rising edge sensitive. In these modes, 
a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be 
detected no matter when it occurs; i.e., a HIGH logic 
level does not have to be maintained until the next 
rising edge of CLKIN. Note that in Modes 2 and 3, 
the GATE input is both edge and level sensitive. 

5.3.7.2 Counter 

New counts are loaded and counters are decre­
mented on the falling edge of CLKIN. The largest 
possible initial count is 0. This is equivalent to 2**16 
for binary counting and 10••4 for BCD counting. 

Note that the counter does not stop when it reaches 
zero. In Modes O, 1, 4, and 5, the counter 'wraps 

GATE Rising 
GATE 
HIGH 

No Effect Enable Count 
1. Initiate Count No Effect 
2. Reset Output 

After Next Clock 
Initiate Count Enable Count 

Initiate Count Enable Count 

No Effect Enable Count 
Initiate Count No Effect 

around' to the highest count: either FFFF Hex for 
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The 
counter reloads itself with the initial count and con­
tinues counting from there. 

The minimum and maximum initial count in each 
counter depends on the mode of operation. They 
are summarized below. 

Mode Min Max 

0 1 0 
1 1 0 
2 2 0 
3 2 0 
4 1 0 
5 1 0 

5.4 Register Set Overview 

The Programmable Interval Timer module of the 
82380 contains a set of six registers. The port ad­
dress map of these registers is shown in Table 5-2. 

Table 5-2. Timer Register Port Address Map 

Port Address Description 

40H Counter 0 Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
43H Control Word Register I 

(Counter 0, 1 & 2) (write-only) 

44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 
47H Control Word Register II 

(Counter 3) (write-only) 

5-1160 



intef 82380 

5.4.1 COUNTER 0, 1, 2, 3 REGISTERS 

These four 8-bit registers are functionally identical. 
They are used to write the initial count value into the 
respective timer. Also, they can be used to read the 
latched count value of a timer. Since they are 8-bit 
registers, reading and writing of the 16-bit initial 
count must follow the count format specified in the 
Control Word Registers; i.e., least significant byte 
only, most significant byte only, or least significant 
byte then most significant byte (see Programming). 

5.4.2 CONTROL WORD REGISTER I & II 

There are two Control Word Registers associated 
with the Timer section. One of the two registers 
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1, and 2 and the other (Control 
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low: 

- Select the timer to be programmed. 

- Define which mode the selected timer is to oper-
ate in. 

- Define the count sequence; i.e., if the selected 
timer is to count as a Binary Counter or a Binary 
Coded Decimal (BCD) Counter. 

- Select the byte access sequence during timer 
read/write operations; i.e., least significant byte 
only, most significant byte only, or least signifi­
cant byte first, then most significant byte. 

Also, the Control Word Registers can be pro­
grammed to perform a Counter Latch Command or a 
Read Back Command which will be described later. 

5.5 Programming 

5.5.1 INITIALIZATION 

Upon power-up or reset, the state of all timers is 
undefined. The mode, count value, and output of all 
timers are random. From this point on, how each 
timer operates is determined solely by how it is pro­
grammed. Each timer must be programmed before it 
can be used. Since the outputs of some timers can 
generate interrupt signals to the 82380, all timers 
should be initialized to a known state. 

Timers are programmed by writing a Control Word 
into their respective Control Word Registers. Then, 
an Initial Count can be written into the correspond-

ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to 
be remembered: 

1. For each timer, the Control Word must be written 
before the initial count is written. 

2. The 16-bit initial count must follow the count for­
mat specified in the Control Word (least signifi­
cant byte only, most significant byte only, or least 
significant byte first, followed by most significant 
byte). 

Since the two Control Word Registers and the four 
Counter Registers have separate addresses, and 
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction 
sequence is required. Any programming sequence 
that follows the conventions above is acceptable. 

A new initial count may be written to a timer at any 
time without affecting the timer's programmed mode 
in any way. Count sequence will be affected as de­
scribed in the Modes of Operation section. Note that 
the new count must follow the programmed count 
format. 

If a timer is previously programmed to read/write 
two-byte counts, the following precaution applies. A 
program must not transfer control between writing 
the first and second byte to another routine which 
also writes into the same timer. Otherwise, the 
read/write will result in incorrect count. 

Whenever a Control Word is written to a timer, all 
control logic for that timer(s) is immediately reset 
(i.e., no CLK pulse is required). Also, the corre­
sponding output pin, TOUT(#), goes to a known ini­
tial state. 

5.5.2 READ OPERATION 

Three methods are available to read the current 
count as well as the status of each timer. They are: 
Read Counter Registers, Counter Latch Command 
and Read Back Command. Following is a descrip­
tion of these methods. 

READ COUNTER REGISTERS 

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter 
Register. The only restriction of this read operation 
is that the CLKIN of the timers must be inhibited by 

5-1161 

I 



intef 82380 

using external logic. Otherwise, the count may be in 
the process of changing when it is read, giving an 
undefined result. Note that since all four timers are 
sharing the same CLKIN signal, inhibiting CLKIN to 
read a timer will unavoidably disable the other timers 
also. This may prove to be impractical. Therefore, it 
is suggested that either the Counter Latch Com­
mand or the Read Back Command be used to read 
the current count of a timer. 

Another alternative is to temporarily disable a timer 
before reading its Counter Register by using the 
GATE input. Depending on the mode of operation, 
GATE = LOW will disable the counting operation. 
However, this option is available on Timer 2 and 3 
only, since the GATE signals of the other two timers 
are internally enabled all the time. 

COUNTER LATCH COMMAND 

A Counter Latch Command will be executed when­
ever a special Control Word is written into a Control 
Word Register. Two bits written into the Control 
Word Register distinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also, 
two other bits in the Control Word will select which 
counter is to be latched. 

Upon execution of this command, the selected 
counter's Output Latch (OL) latches the count at the 
time the Counter Latch Command is received. This 
count is held in the latch until it is read by the 80386, 
or until the timer is reprogrammed. The count is then 
unlatched automatically and the OL returns to 'fol­
lowing' the Counting Element (CE). This allows read­
ing the contents of the counters 'on the fly' without 
affecting counting in progress. Multiple Counter 
Latch Commands may be used to latch more than 
one counter. Each latched count is held until it is 
read. Counter Latch Commands do not affect the 
programmed mode of the timer in any way. 

If a counter is latched, and at some time later, it is 
latched again before the prior latched count is read, 
the second Counter Latch Command is ignored. The 
count read will then be the count at the time the first 
command was issued. 

In any event, the latched count must be read ac­
cording to the programmed format. Specifically, if 
the timer is programmed for two-byte counts, two 
bytes must be read. However, the two bytes do not 
have to be read right after the other. Read/write or 
programming operations of other timers may be per­
formed between them. 

Another feature of this Counter Latch Command is 
that read and write operations of the same timer 
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is valid. 

1. Read least significant byte. 

2. Write new least significant byte. 

3. Read most significant byte. 

4. Write new most significant byte. 

If a timer is programmed to read/write two-byte 
counts, the following precaution applies. A program 
must not transfer control between reading the first 
and second byte to another routine which also reads 
from that same timer. Otherwise, an incorrect count 
will be read. 

READ BACK COMMAND 

The Read Back Command is another special Com­
mand Word operation which allows the user to read 
the current count value and/ or the status of the se­
lected timer(s). Like the Counter Latch Command, 
two bits in the Command Word identify this as a 
Read Back Command (see Register Bit Definition). 

The Read Back Command may be used to latch 
multiple counter Output Latches (OL's) by selecting 
more than one timer within a Command Word. This 
single command is functionally equivalent to several 
Counter Latch Commands, one for each counter to 
be latched. Each counter's latched count will be 
held until it is read by the 80386 or until the timer is 
reprogrammed. The counter is automatically un­
latched when read, but other counters remain 
latched until they are read. If multiple Read Back 
commands are issued to the same timer without 
reading the count, all but the first are ignored; i.e., 
the count read will correspond to the very first Read 
Back Command issued. 

As mentioned previously, the Read Back Command 
may also be used to latch status information of the 
selected timer(s). When this function is enabled, the 
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The 
status information of a timer includes the following: 

1. Mode of timer: 

This allows the user to check the mode of opera­
tion of the timer last programmed. 

2. State of TOUT pin of the timer: 

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some 
hardware from a system. 

5-1162 



intef 82380 

3. Null Count/Count available: 

The Null Count Bit in the status byte indicates if 
the last count written to the Count Register (CR) 
has been loaded into the Counting Element (CE). 
The exact time this happens depends on the 
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into 
the Counting Element (CE), it cannot be read from 
the timer. If the count is latched or read before 
this occurs, the count value will not reflect the 
new count just written. 

If multiple status latch operations of the timer(s) are 
performed without reading the status, all but the first 
command are ignored; i.e., the status read in will 
correspond to the first Read Back Command issued. 

Both the current count and status of the selected 
timer(s) may be latched simultaneously by enabling 
both functions in a single Read Back Command. 
This is functionally the same as issuing two separate 
Read Back Commands at once. Once again, if multi­
ple read commands are issued to latch both the 
count and status of a timer, all but the first command 
will be ignored. 

If both count and status of a timer are latched, the 
first read operation of that timer will return the 
latched status, regardless of which was latched first. 
The next one or two (if two count bytes are to be 
read) read operations return the latched count. Note 
that subsequent read operations on the Counter 
Register will return the unlatched count (like the first 
read method discussed). 

5.6 Register Bit Definitions 

COUNTER 0, 1, 2, 3 REGISTER (READ/WRITE) 

Port Address Description 

40H Counter O Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 

01 os 05 04 03 02 01 oi) 
....., ...... .__ ...... ~....1.~...i..~...i..~...._~_,_~c:_...I LSBOFCOUNTBYTE 

~~~~~~~~~~~~~~~MSBOFCOUNTBYTE 

290128-74

5-1163

infef 82380

Note that these 8-bit registers are for writing and
reading of one byte of the 16-bit count value, either
the most significant or the least significant byte.

CONTROL WORD REGISTER I & II (WRITE-ONLY)

Port Address Description

43H Control Word Register I
(Counter 0, 1, 2) (write-only)

47H Control Word Register fl
(Counter 3) (write-only)

CONTROL WORD REGISTER I

CONTROL WORD REGISTER II

D7 D6 DS D4 D3 D2 D1 DO

SELECT COUNTER:
00 SELECT COUNTER 3
01 RESERVED
10 RESERVED
11 READ BACK COMMAND

FOR COUNTER 3

READ/WRITE:

M1

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE.ONLY
10 READ/WRITE MSB BYTE ONLY

0 - 1 6-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

D7 D6 DS D4 D3 D2 D1 DO 11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
X10 MODE 2
X11MODE3
100 MODE 4
101 MODE 5

M1 290128-76

SELECT COUNTER:
00 SELECT COUNTER 0
01 SELECT COUNTER 1
10 SELECT COUNTER 2

0- 16-BIT BINARY
COUNTER

COUNTER LATCH COMMAND FORMAT
(Write to Control Word Register)

1 1 READ BACK COMMAND
FOR COUNTER 0-2

READ /WRITE:
00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

1 - BCD COUNTER
(4 DECADES)

07 D6

''Y"'
OS 04

0 0

11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
X10 MODE 2
X11 MODE 3
100 MODE 4
101 MODES

00 COUNTER 0 (OR 3)
01 COUNTER 1

290128-75 10 COUNTER 2

Timer
Gate

Mode Trigger

0 1 2 3 Edge Level

0 x
1 NA NA (j) (j) x
2 x x
3 x x
4 x
5 NA NA (j) (j) x

<D = Must use Port 61 to generate ../" edge.
NA = Not Applicable

11 READ BACK COMMAND

Interrupt on Terminal Count
Gate Retriggerable One Shot
Rate Generator
Square Wave Generator
Initial Count Triggered Strobe
Gate Retriggerable Strobe

5-1164

03 D2 01 DO

x x x x I

290128-77

82380

READ BACK COMMAND FORMAT
(Write to Control Word Register)

D7 D6 D5 D4 D3 D2 D1 DO

COUNT# STATUS CNT2 CNT1 CNTO /3 0

0- LATCH COUNT
1 - DO NOT LATCH

COUNT

0 - COUNTER NOT
SELECTED

0- LATCH STATUS
1 - DO NOT LATCH

STATUS

1 - COUNTER IS
SELECTED

STATUS FORMAT
(Returned from Read Back Command)

D7 D6

OUT NULL COUNT

0- OUTPUT
PIN=O

D5 D4

290128-78

D3 D2 D1 DO

M2 M1 MO BCD

1 - OUTPUT 0- COUNT AVAILABLE
PIN= 1 FOR READING COUNTER

~~~~~~~~~~~~~~~-,_-_N_u_L_L_c_ou_N_T~~~~~~~~~M-OD-E~~~~~~~~~ El . 290128-79 

6.0 WAIT STATE GENERATOR 

6.1 Functional Description 

The 82380 contains a programmable Wait State 
Generator which can generate a pre-programmed 
number of wait states during both CPU and OMA 
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe-

lined mode, and 0 to 15 wait states in pipelined 
mode. Depending on the bus cycle type and the two 
Wait State Control inputs (WSC 0-1 ), a pre-pro­
grammed number of wait states in the selected Wait 
State Register will be generated. 

The Wait State Generator can also be disabled to 
allow the use of devices capable of generating their 
own READY# signals. Figure 6-1 is a block diagram 
of the Wait State Generator. 

5-1165 



intJ 82380 

6.2 Interface Signals 

The following describes the interface signals which 
affect the operation of the Wait State Generator. 
The READY#, WSCO and WSC1 signals are inputs. 
READYO# is the ready output signal to the host 
processor. 

6.2.1 READY# 

READY# is an active LOW input signal which indi· 
cates to the 82380 the completion of a bus cycle. In 
the Master mode (e.g., 82380 initiated OMA trans· 
fer), this signal is monitored to determine whether a 
peripheral or memory· needs wait states inserted in 
the current bus cycle. In the Slave mode, it is used 
(together with the ADS# signal) to trace. CPU bus 
cycles to determine if the current cycle is pipelined. 

6.2.2 READYO# 

READYO# (Ready Out#) is an active LOW output 
signal and is the output of the Wait State Generator. 
The number of wait states generated depends on 
the WSC(0-1) inputs. Note that special cases are 

07 

handled for access to the 82380 internal registers 
and for the Refresh cycles. For 82380 internal regis· 
ter access, READYO# will be delayed to take into 
account the command recovery time of the register. 
One or more wait states will be generated in a pipe· 
lined cycle. During refresh, the number of wait states 
will be determined by the preprogrammed value in 
the Refresh Wait State Register. 

In the simplest configuration, READYO# can be 
connected to the READY# input of the 82380 and 
the 80386 CPU. This is, however, not always the 
case. If external circuitry is to control the READY# 
inputs as well, additional logic will be required (see 
Application Issues). 

6.2.3 WSC(0-1) 

These two Wait State Control inputs select one of 
the three pre-programmed 8-bit Wait State Registers 
which determines the number of wait states to be 
generated. The most significant half of the three 
Wait State Registers corresponds to memory ac­
cesses, the least significant half to 110 accesses. 
The combination WSC(0-1) = 11 disables the Wait 
State Generator. · 

wsco 

WSC1 

M/10# 

REGISTER 
SELECT 
LOGIC 

MEMORY 1 

MEMORY 2 1/0 2 

(RESERVED) REFRESH 

PROGRAMMABLE WAIT STATE 
REGISTERS 

WAIT STATE 
COUNTER 

Figure 6-1. Walt State Generator.Block Diagram 

5-1166 

290128-80 



infer 82380 

T1 T2 T2 T1 T2 T2 T2 

CLK2 

CLK 

A(2-31) 
M/10# 

BE(O - 3)# 

wsc(o-1)~~EH~:H:::::>--t-~~--t-€:HJ~~(:::~~~~-t-~~-+ 
ADS# 

READYO# 

TWO WAIT STATES 
290128-81 

Figure 6·2. Wait States in Non-Pipelined Cycles 

6.3 Bus Function 

6.3.1 WAIT STATES IN NON-PIPELINED CYCLE 

The timing diagram of two typical non-pipelined cy­
cles with 82380 generated wait states is shown in 
Figure 6-2. In this diagram, it is assumed that the 
internal registers of the 82380 are not addressed. 
During the first T2 state of each bus cycle, the Wait 
State Control and the M/10# inputs are sampled to 
determine which Wait State Register (if any) is se­
lected. If the WSC inputs are active (i.e., not both are 
driven HIGH), the pre-programmed number of wait 
states corresponding to the selected Wait State 
Register will be requested. This is done by driving 
the READYO# output HIGH during the end of each 
T2 state. 

The WSC(0-1) inputs need only be valid during the 
very first T2 state of each non-pipelined cycle. As a 
general rule, the WSC inputs are sampled on the 

rising edge of the next clock (82384 CLK) after the 
last state when ADS# (Address Status) is asserted. 

The number of wait states generated depends on 
the type of bus cycle, and the number of wait states 
requested. The various combinations are discussed 
below. 

1. Access the 82380 internal registers: 2 to 5 wait 
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the In-
terrupt Controller will require 7 wait states. El 

2. Interrupt Acknowledge to the 82380: 5 wait 
states. 

3. Refresh: As programmed in the Refresh Wait 
State Register (see Register Set Overview). Note 
that if WSC(0-1) = 11, READYO # will stay inac­
tive. 

4. Other bus cycles: Depending on WSC(0-1) and 
M/10# inputs, these inputs select a Wait State 
Register in which the number of wait states will be 
equal to the pre-programmed wait state count in 
the register plus 1. The Wait State Register selec­
tion is defined as follows (Table 6-1). 

5-1167 



inter 82380 

Table 6-1. Wait State Register Selection 

M/10# WSC(1-0) Register Selected 

0 00 WAIT REG 0 (1/0 half) 
0 01 WAIT REG 1 (1/0 half) 
0 10 WAIT REG 2 (1/0 half) 
1 00 WAIT REG 0 (MEM half) 
1 01 WAIT REG 1 (MEM half) 
1 10 WAIT REG 2 (MEM half) 
x 11 Wait State Gen. Disabled 

The Wait State Control signals, WSC(0-1), can be 
generated with the address decode and the Read/ 
Write control signals as shown in Figure 6-3. 

ADDRESS DECODES 
LOGIC WSC (0-1) 

W/R# 

290128-82 

Figure 6-3. WSC(0-1) Generation 

CLK2 

CLK 

A(2-31) 
M/10# 

BE{O- 3)# 

WSC(0-1) 

ADS# 

READYO# 

T1p T2 T2p 

Note that during HALT and SHUTDOWN, the num­
ber of wait states will depend on the WSC(0-1) in­
puts, which will select the memory half of one of the 
Wait State Registers (see CPU Reset and Shutdown 
Detect). 

6.3.2 WAIT STATES IN PIPELINED CYCLE 

The timing diagram of two typical pipelined cycles 
with 82380 generated wait states is shown in Figure 
6-4. Again, in this diagram, it is assumed that the 
82380 internal registers are not addressed. As de­
fined in the timing of the 80386 processor, the Ad­
dress (A 2-31), Byte Enable (BE 0-3), and other 
control signals (M/10#, ADS#) are asserted one 
T state earlier than in a non-pipelined cycle; i.e., they 
are asserted at T2P. Similar to the non-pipelined 
case, the Wait State Control (WSC) inputs are sam­
pled in the middle of the state after the last state 
when the ADS# signal is asserted. Therefore, the 
WSC inputs should be asserted during the T1 P state 
of each pipelined cycle (which is one T state earlier 
than in the non-pipelined cycle). 

T1 p T2 T2 T2p 

TWO WAIT STATES 
290128-83 

Figure 6-4. Wait State in Pipelined Cycles 

5-1168 



intef 82380 

The number of wait states generated in a pipelined 
cycle is selected in a similar manner as in the non­
pipelined case discussed in the previous section. 
The only difference here is that the actual number of 
wait states generated will be one less than that of 
the non-pipelined cycle. This is done automatically 
by the Wait State Generator. 

6.3.3 EXTENDING AND EARLY TERMINATING 
BUS CYCLE 

The 82380 allows external logic to either add wait 
states or cause early termination of a bus cycle by 
controlling the READY# input to the 82380 and the 
host processor. A possible configuration is shown in 
Figure 6-5. 

The EXT. ADY# (External Ready) signal of Figure 
6-5 allows external devices to cause early termina­
tion of a bus cycle. When this signal is asserted 
LOW, the output of the circuit will also go LOW 
(even though the READYO# of the 82380 may still 

be HIGH). This output is fed to the READY# input of 
the 80386 and the 82380 to indicate the completion 
of the current bus cycle. 

Similarly, the EXT. NOT READY (External Not 
Ready) signal is used to delay the READY# input of 
the processor and the 82380. As long as this signal 
is driven HIGH, the output of the circuit will drive the 
READY# input HIGH, This will effectively extend the 
duration of a bus cycle. However, it is important to 
note that if the two-level logic is not fast enough to 
satisfy the READY# setup time, the OR gate should 
be eliminated. Instead, the 82380 Wait State Gener­
ator can be disabled by driving both WSC(0-1) 
HIGH. In this case, the addressed memory or 110 
device should activate the external READY# input 
whenever it is ready to terminate the current bus 
cycle. 

Figure 6-6 and 6-7 show the timing relationships of 
the ready signals for the early termination and exten­
sion of the bus cycles. Section 6.7, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit. 

80386 

EXTERNAL READY# 
(EARLY TERMINATION) 

82380 

CLK2 

CLK 
A(2-31) 

M/10# 
BE(O- 3)# 

ADS# 

READYO# 

READ YO# 

----------1 READY# .._ ___ __, 
290128-84 

Figure 6-5. External 'READY' Control Logic 

T1 T2 T1 T2 T2 T2 Tx 

TWO WAIT STATES 

290128-85 

Figure 6-6. Early Termination of Bus Cycle By 'READY#' 

5-1169 

• 



intJ 82380 

CLK2 

CLK 
A(2-31) 

M/10# 
BE(O- 3)# 

ADS# 

READYO# 

T1 T2 T2 T2 T2 Tx Tx 

290128-86 

Figure 6-7. Extending Bus Cycle by 'READY#' 

Due to the following implications, it should be noted 
that early termination of bus cycles in which 82380 
internal registers are accessed is not recommended. 

1. Erroneous data may be read from or written into 
the addressed register. 

2. The 82380 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or be­
fore another bus cycle into an 82380 internal reg­
ister is initiated. 

The recovery time, in bus periods, equals the re­
maining wait states that were avoided plus 4. 

6.4 Register Set Overview 

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Generator. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows. 

Table 6-2. Register Address Map 

Port Address Description 

72H Wait State Reg O (read/write) 
73H Wait State Reg 1 (read/write) 
74H Wait State Reg 2 (read/write) 
75H Ref. Wait State Reg (read/write) 

WAIT STATE REGISTER 0, 1, 2 

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register 
contains the wait state count for 1/0 accesses while 
the other half contains the count for memory ac­
cesses. The total number of wait states generated 
will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a 
pipelined cycle, the number of wait states will be 
equal to the wait state count in the selected register. 
Therefore, the Wait State Generator is capable of 
generating 1 to 16 wait states in non-pipelined 
mode, and 0 to 15 wait states in pipelined mode. 

Note that the minimum wait state count in each reg­
ister is 0. This is equivalent to 0 wait states for a 
pipelined cycle and 1 wait state for a non-pipelined 
cycle. 

REFRESH WAIT STATE REGISTER 

Similar to the Wait State Registers discussed above, 
this 4-bit register is used to store the number of wait 
states to be generated during the DRAM refresh cy­
cle. Note that the Refresh Wait State Register is not 
selected by the WSC inputs. It will automatically be 

5-1170 



inter 82380 

chosen whenever a DRAM refresh cycle occurs. If 
the Wait State Generator is disabled during the re­
fresh cycle (WSC(0-1) = 11 ), READYO# will stay 
inactive and the Refresh Wait State Register is ig­
nored. 

6.5 Programming 

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of 
wait states will be generated when a register is se­
lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate 
wait state count into each register. Note that upon 
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait states possible. Also, each register can 
be read to check the wait state count previously 
stored in the register. 

6.6 Register Bit Definition 

WAIT STATE REGISTER 0, 1, 2 

Port Address Description 

72H Wait State Register O (read/write) 
73H Wait State Register 1 (read/write) 
74H Wait State Register 2 (read/write) 

06 05 02 01 

'-------'--1/0 WAIT 
STATE COUNT 

..._ ___ __.._MEMORY WAIT STATE COUNT 

290128-87 

REFRESH WAIT STATE REGISTER 

Port Address: 75H (Read/Write) 

.__.....__~__..- RErRESH WAIT 
STATE COUNT 

290128-88 

6. 7 Application Issues 

6.7.1 EXTERNAL 'READY' CONTROL LOGIC 

As mentioned in section 6.3.3, wait state cycles gen-
erated by the 82380 can be terminated early or ex-
tended longer by means of additional external logic 
(see Figure 6-5). In order to ensure that the 
READY# input timing requirement of the 80386 and El 
the 82380 is satisfied, special care must be taken 
when designing this external control logic. This sec-
tion addresses the design requirements. 

5-1171 



82380 

A simplified block diagram of the external logic along 
with the READY# tiiming diag~am is shown in Figure 
6-8. The purpose is to determine the maximum delay 
time allowed in the external control logic in order to 
satisfy the READY# setup time. 

First, it will be assumed that the 80386 is running at 
16 MHz (i.e., CLK2 and 32 MHz). Therefore, one bus 
state (two CLK2 periods) will be equivalent to 62.5 
nsec. According to the AC specifications of the 

82380, the maximum delay time for valid READYO# 
signal is 31 ns after the rising edge of CLK2 in the 
beginning of T2 (for non-pipelined cycle) or T2P (for 
pipelined cycle). Also, the minimum READY# setup 
time of the 80386 and the 82380 should be 20 ns 
before the rising edge of CLK2 at the beginning of 
the next bus state. This limits the total delay time for 
the external READY# control logic to be 11 ns 
(62.5-31-21) in order to meet the READY# setup 
timing requirement. 

EXT. READY# EXT. NOT READY 

80386-16 

_j 

READY 
READY# ~ 

1 
CONTROL 

LOGIC 

CLK2 

READYO# 
~-i------------------+--' 

A = PHl1 + PHl2 = 62.5 ns 
B = Maximum READYO# Valid Delay = 31 ns 
C = READY# Set-up Time= 21 ns 
D = Maximum Ready Control Logic Delay = A - B - C = 11 ns 

Figure 6·8. 'READY' Timing Consideration 

5-1172 

82380 

READ YO# 

READY# 

290128-89 



intef 82380 

7 .0 DRAM REFRESH CONTROLLER 

7.1 Functional Description 

The 82380 DRAM Refresh Controller consists of a 
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure 
7-1). TIMER 1 can be used as a trigger signal to the 
DRAM Refresh Request logic. The Refresh Bus Size 
can be programmed to be 8-, 16-, or 32-bit wide. 
Depending on the Refresh Bus Size, the Refresh 
A~dress Counter will be incremented with the appro­
priate v11-1ue after every refresh cycle. The internal 
logic of the 82380 will give the Refresh operation the 
highest pri.ority in the bus control arbitration process. 
Bus control is not released and re-requested if the 
82380 is already a bus master. 

TOUT1 
(INTERNAL) 

EDGE 
DETECTOR 

DRAM 
REFRESH 

CONTROLLER 

24-BIT 
ADDRESS 
COUNTER 

2-T0-1 
i......:R.:.:E::.JFi;..,11 MUX 

7 .2 Interface Signals 

7.2.1 TOUT1/REF# 

The dual function output pin of TIMER 1 (TOUT1 I 
REF#) can be programmed to generate DRAM Re­
fresh signal. If this feature is enabled, the rising edge 
of TIMER 1 output (TOUT1) will trigger the DRAM 
Refresh Request logic. After some delay for gaining 
access of the bus, the 82380 DRAM Controller will 
generate a DRAM Refresh signal by driving REF# 
output LOW. This signal is cleared after the refresh 
cycle has taken place, or by a hardware reset. 

If the DRAM Refresh feature is disabled, the 
TOUT1 /REF# output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates 
is discussed in section 6-Programmable Interval 
Timer, and will not be repeated here. 

INTERNAL 
OMA 

HANDSHAKE OMA 
CONTROLLER 
ARBITRATION 

LOGIC . 

TO OMA 
i....--2- 4-_-B_IT __ _. CONTROLLER 

REFRESH (INTERNAL) 

ADDRESS 

TOUT1 
O select l--------__.TOUT1/REF# 

REFRESH ENABLE (INTERNAL) 
290128-90 

Figure 7·1. DRAM Refresh Controller 

5-1173 

El 



intef 82380 

7.3 Bus Function 

7 .3.1 ARBITRATION 

In order to ensure data integrity of the DRAMS, the 
82380 gives the DRAM Refresh signal the highest 
priority in the arbitration logic. It allows DRAM Re­
fresh to interrupt a OMA in progress in order to per­
form the DRAM Refresh cycle. The OMA service will 
be resumed after the refresh is done. 

In case of a DRAM Refresh during a OMA process, 
the cascaded device will be requested to get off the 
bus. This is done by deasserting the EDACK signal. 
Once DREQn goes inactive, the 82380 will perform 
the refresh operation. Note that the OMA controller 
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply 'steals' a 
bus cycle between OMA accesses. 

Figure 7-2 shows the timing diagram of a Ref.rash 
Cycle. Upon expiration of TIMER 1, the 82380 will try 
to take control of the system bus by asserting 
HOLD. As soon as the 82380 see HLDA go active, 
the DRAM Refresh Cycle will be carried out by acti­
vating the REF# signal as well as the refresh ad­
dress and control signals on the system bus (Note 

Tx Tx 

CLK2 

CLK 

HLDA --------r 

Ti 

that REF# will not be active until two CLK periods 
after HLDA is asserted). The address bus will con­
tain the 24-bit address currently in the Refresh Ad­
dress Counter. The control signals are driven the 
same way as in a Memory Read cycle. This 'read' 
operation is complete when the READY# signal is 
driven LOW. Then, the 82380 will relinquish the bus 
by de-asserting HOLD. Typically, a Refresh Cycle 
without wait states will take five bus states to exe­
cute. If 'n' wait states are added, the Refresh Cycle 
will last for five plus 'n' bus states. 

How often the Refresh Generation will initiate a re-
. fresh cycle depends on the frequency of CLKIN as 
well as TIMER1 's programmed mode of operation. 
For this specific application, TIMER1 should be pro­
grammed to operate in Mode 2 or 3 to generate a 
constant clock rate. See section 6-Programmable 
Interval Timer for more information on programming 
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT1 chang­
es to LOW to HIGH). 

The Wait State Generator can be used to insert wait 
states during a refresh cycle. The 82380 will auto­
matically insert the desired number of wait states as 
programmed in the Refresh Wait State Register (see 
Wait State Generator). 

Ti T1 T2 Ti 

A(2-31)° M/10# ~~~~~~~~----1~--i===~==~---l" D/C# BE(0-3)# W/R# ~ 

TOUT! 

REF# 

290128-91 

*NOTE: 
A24-A31 = 1 during Refresh cycle. 

Figure 7-2. 82380 Refresh Cycle 

5-1174 



intJ 82380 

7.4 Modes of Operation 

7.4.1 WORD SIZE AND REFRESH ADDRESS 
COUNTER 

The 82380 supports 8-, 16- and 32-bit refresh cycle. 
The bus width during a refresh cycle is programma­
ble (see Programming). The bus size can be pro­
grammed via the Refresh Control R~gis~er (see Reg­
ister Overview). If the DRAM bus size 1s 8-, 16-, or 
32-bits, the Refresh Address Counter will be incre­
mented by 1, 2, or 4, respectively. 

The Refresh Address Counter is cleared by a hard­
ware reset. 

7.5 Register Set Overview 

The Refresh Generator has two internal registers to 
control its operation. They are the Refresh Control 
Register and the Refresh Wait State Register. Their 
port address map is shown in Table 7-1 below. 

Port Address Description 

1CH Refresh Control Reg. (read/write) 
75H Ref. Wait State Reg. (read/write) 

Table 7-1. Register Address Map 

The Refresh Wait State Register is not part of the 
Refresh Generator. It is only used to program the 
number of wait states to be inserted during a refresh 
cycle. This register is discussed in detail in section 7 
(Wait State Generator) and will not be repeated 
here. 

REFRESH CONTROL REGISTER 

This 2-bit register serves two functions. First, it is 
used to enable/disable the DRAM Refresh function 
output. If disabled, the output of TIMER 1 is simply 
used as a general purpose timer. The second func­
tion of this register is to program the DRAM bus size 
for the refresh operation. The programmed bus size 
also determines how the Refresh Address Counter 
will be incremented after each refresh operation. 

7.6 Programming 

Upon hardware reset, the DRAM Refresh function is 
disabled (the Refresh Control Register is cleared). 
The following programming steps are needed before · 
the Refresh Generator can be used. Since the rate 
of refresh cycles depends on how TIMER 1 is pro­
grammed, this timer must be initialized with the de­
sired mode of operation as well as the correct re­
fresh interval (see Programming Interval Timer). 

Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register 
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined. 
These can be done in one step by writing the appro­
priate control word into the Refresh Control Register 
(see Register Bit Definition). After these steps are 
done, the refresh operation will automatically be in­
voked by the Refresh Generator upon expiration of 
Timer 1. 

In addition to the above programming steps, it 
should be noted that after reset, although the 
TOUT1 /REF# becomes the Timer 1 output, the 
state of this pin is undefined. This is because the 
Timer module has not been initialized yet. Therefore, 
if this output is used as a DRAM Refresh signal, this 
pin should be disqualified by extern.al logic un~il th_e 
Refresh function is enabled. One simple solution 1s 
to logically AND this output with HLDA, since HLDA 
should not be active after reset. 

7.7 Register Bit Definition 

REFRESH CONTROL REGISTER 
Port Address: 1CH (Read/Write) 

07 06 05 03 02 

MUST BE ZERO 
00 REF. DISABLE 
01 BUS SIZE=32 
10 BUS SIZE= 16 
11 BUS SIZE=8 

290128-92 

8.0 RELOCATION REGISTER AND 
ADDRESS DECODE 

8. 1 Relocation Register 

All the integrated peripheral devices in the 82380 
are controlled by a set of internal registers. These 
registers span a total of 256 consecutive address 
locations (although not all the 256 locations are 
used). The 82380 provides a Relocation Register 
which allows the user to map this set of internal reg­
isters into either the memory or 1/0 address space. 
The function of the Relocation Register is to define 
the base address of the internal register set of the 
82380 as well as if the registers are to be memory­
or 1/0-mapped. The format of the Relocation Regis­
ter is depicted in Figure 8-1. 

5-1175 

• 



intJ 82380 

D7 os DS D4 D3 D2 D1 ·Do 

FOR 1/0 MAPPED: A15-A9 
FOR MEMORY MAPPED: 'A31-A25 

O -1/0 MAPPED 
1-MEMORY 

MAPPED 

290128-82 

Figure 8-1. Relocation Register 

Note that the Relocation Register is part of the inter­
nal register set of the 82380. It has a port address of 
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this 
register will also be moved. Upon reset of the 82380, 
the content of the Relocation Register will be 
cleared. This implies that the 82380 will respond to 
its 1/0 addresses in the range of OOOOH to OOFFH. 

8.1.1 1/0-MAPPED 82380 

As shown in the figure, Bit O of the Relocation Regis­
ter determines whether the 82380 registers are to be 
memory-mapped or 1/0-mapped. Wben Bit 0 is set 
to 'O', the 82380 will respond to 1/0 Addresses. Ad­
dress signals BEO#-BE3#, A2-A7 will be used to 
select one of the internal registers to be accessed. 
Bit 1 to Bit 7 of the Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively. 
Together with A8 implied to be 'O', A15 to A8 will be 
fully decoded by the 82380. The following shows 
how the 82380 is mapped into the 1/0 address 
space. 

Example 

Relocation Register = 11001110 (OCEH) 

82380 will respond to 1/0 address range from 
OCEOOH to OCEFFH. 

Therefore, this 110 mapping mechanism allows the 
82380 internal registers to be located on any even, 
contiguous, 256 byte boundary of the system 1/0 
space. 

Port Address: 7FH (Read/Write) 

8.1.2 MEMORY-MAPPED 82380 

When Bit 0 of the Relocation Register is set to '1 ', 
the 82380 will respond to memory addresses. Again, 
Address signals BEO#-BE3#, A2-A7 will be used 
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will 
correspond to A25-A31, respectively. A24 is as­
sumed to be 'O', and A8-A23 are ignored. Consider 
the following example. 

Example 

Relocation Register = 10100111 (OA7H) 

The 82380 will respond to memory addresses in 
the range of OA6XXXXOOH to OA6XXXXFFH 
(where 'X' is don't care). 

This scheme implies that the internal register can be 
located in any even, contiguous, 2**24 byte page of 
the memory space. 

8.2 Address Decoding 

As mentioned previously, the 82380 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82380 always decodes the lower 8 ad­
dress bits (AO-A?) to determine if any one of its 
registers is being accessed. If the address does not 
correspond to any of its registers, the 82380 will not 
respond. This allows external devices to be located 
within the 'holes' in the 82380 address space. Note 
that there are several unused addresses reserved 
for future Intel peripheral devices. 

9.0 CPU RESET AND SHUTDOWN 
DETECT 

The 82380 will activate the CPURST signal to reset 
the host processor when one of the following condi­
tions occurs: 

- 82380 RESET is active; 

- 82380 detects a 80386 Shutdown cycle (this fea-
ture can be disabled); 

- CPURST software command is issued to 80386. 

Whenever the CPURST signal is activated, the 
82380 will reset its own internal Slave-Bus state ma­
chine. 

9.1 Hardware Reset 

Following a hardware reset, the 82380 will assert its 
CPURST output to reset the host processor. This 
output will stay active for as long as the RESET input 
is active. During a hardware reset, the 82380 internal 
registers will be initialized as defined in the corre­
sponding functional descriptions. 

9.2 Software Reset 
CPURST can be generated by writing the following 
bit pattern into 82380 register location 64H. 

D7 DO 
I 1 x x x 0 
X = Don't Care 

5-1176 



intJ 82380 

The Write operation into this port is considered as 
an 82380 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to this port. 
This signal will last for 62 CLK2 periods. The 82380 
should not be accessed until the CPURST is deacti­
vated. 

This internal port is Write-Only and the 82380 will 
not respond to a Read operation to this location. 
Also, during a CPU software reset command, the 
82380 will reset its Slave-Bus state machine. How­
ever, its internal registers remain unchanged. This 
allows the operating system to distinguish a 'warm' 
reset by reading any 82380 internal register previ­
ously programmed for a non-default value. The Diag­
nostic registers can be used or this purpose (see 
Internal Control and Diagnostic Ports). 

9.3 Shutdown Detect 

The 82380 is constantly monitoring the Bus Cycle 
Definition signals (M/10#, DIC#, R/W#) and is 
able to detect when the 80386 executes a Shutdown 
bus cycle. Upon detection of a processor shutdown, 
the 82380 will activate the CPURST output for 62 
CLK2 periods to reset the host processor. This sig­
nal is generated after the Shutdown cycle is termi­
nated by the READY# signal. 

Although the 82380 Wait State Generator will not 
automatically respond to a Shutdown (or Halt) cycle, 
the Wait State Control inputs (WSCO, WSC1) can be 
used to determine the number of wait states in the 
same manner as other non-82380 bus cycle. 

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control 
Port at address 61 H (see Internal Control and Diag-

Port Address: 61 H (Write Only) 

07 

SHUTDOWN 
ENABLE/ 
DISABLE 

SHUTDOWN 
DETECT 

0- DISABLE 
1- ENABLE 

06 

COUNTER 3 
GATE 
INPUT 

COUNTER 3 
GATE 

O• DISABLE 
1- ENABLE 

nostic Ports). This feature is disabled upon a hard­
ware. reset of the 82380. As in the case of Software 
Reset, the 82380 will reset its Slave-Bus state ma­
chine but will not change any of its internal register 
contents. 

10.0 INTERNAL CONTROL AND 
DIAGNOSTIC PORTS 

10.1 Internal Control Port 

The format of the Internal Control Port of the 82380 
is shown in Figure 10.1. This Control Port is used to 
enable/disable the Processor Shutdown Detect 
mechanism as well as controlling the Gate inputs of 
the Timer 2 and 3. Note that this is a Write-Only port. 
Therefore, the 82380 will not respond to a read op­
eration to this port. Upon hardware reset, this port 
will be cleared; i.e., the Shutdown Detect feature 
and the Gate inputs of Timer 2 and 3 are dis!l.bled. 

10.2 Diagnostic Ports 

Two 8-bit read/write Diagnostic Ports are provided 
in the 82380. These are two storage registers and 
have no effect on the operation of the 82380. They 
can be used to store checkpoint data or error codes 
in the power-on sequence and in the diagnostic 
service routines. As mentioned in CPU RESET AND El 
SHUTDOWN DETECT section, these Diagnostic 
Ports can be used to distinguish between 'cold' and 
'warm' reset. Upon hardware reset, both Diagnostic 
Ports are cleared. The address map of these Diag-
nostic Ports is shown in Figure 10-2. 

Port Address 

Diagnostic Port 1 (Read/Write) 80H 
Diagnostic Port 2 (Read/Write) 88H 

Figure 10-2. Address Map of Diagnostic Ports 

05 04 D3 D2 D1 

NOT USED 

DO 

COUNTER 2 
GATE 
INPUT 

COUNTER 2 
GATE 

0- DISABLE 
1- ENABLE 

290128-93 

Figure 10-1. Internal Control Port 

5-1177 



intef 82380 

11.0 INTEL RESERVED 1/0 PORTS tion may occur if any peripheral is assigned to the 
same address location. 

There are eleven 1/0 ports in the 82380 address 
space which are reserved for Intel future peripheral 

12.0 MECHANICAL DATA device use only. Their address locations are: 2AH, 
3DH, 3EH, 45H, 46H, 76H, 77H, ?DH, ?EH, CCH 
and CDH. These addresses should not be used in 12.1 Introduction 
the system since the 82380 may respond to read/ 
write operations to these locations and bus conten- In this section, the physical package and its connec-

tions are described in detail. 

p N M K H G E D c B A 

01 '"' '"'"\ 01 .... 
Vee Vss EDACKl BED# BEl# A3 AS A8 A9 A12 Vee Vss Vee Vss 

02 02 

Vee Vss INT EDACK2 ADS# BE3# A4 A7 AlO A13 A15 A17 A19 Vee 

03 03 
DREQS DREQ7 HLDA EDACKO EDP# BE2# A2 A6 All A14 A16 A18 A21 Vss 

04 04 
DREQ3 NA# DREQ6 A20 A22 Vee 

05 05 

DREQl OREQ2 DREQ4/IRQ9# A23 A24 A25 

06 06 

IRQ23# IRQ22# DREQO A26 A27 A28 

07 07 
IRQ19# IR020# IRQ21# A30 A29 A31 

OB 08 
IRQ18# IRQ16# IRQ17# 015 023 031 

09 09 

IRQ15# IRQ14# IRQ13# D22 D30 07 

10 10 

IRQ11# IRQ12# WSC1 013 06 014 

11 11 

WSCO CLKIN READY# D28 021 D29 

12 12 

Vee RESET CPURST. D/C# W/R# HOLD READYO# D17 010 D3 D27 012 05 Vee 

13 13 

Vss TOUT2#/IRQ3# TOUT3# M/IO# TOUT1/REF# D24 D16 D9 D2 D26 D19 D4 020 Vss 

14 14 

Vee Vss Vee Vss DB DO 01 CLK2 D25 018 D11 Vee Vss Vee 

p N M L K H G D c A 
290126-94 

Figure 12.1. 82380 PGA Pinout-View from TOP side 

5-1178 



intef 82380 

12.2 Pin Assignment 

The 82380 pinout as viewed from the top side of the 
component is shown in Figure 12.1. Its pinout as 
viewed from the pin side of the component is shown 
in Figure 12.2. 

A c D G 

01 /0 0 0 0 0 0 0 
Vss Vee Vss Vee A12 A9 AB 

02 0 0 0 0 0 0 0 
Vee A19 A17 A15 A13 A10 A7 

03 0 0 0 0 0 0 0 
Vss A21 A18 A16 A14 A11 A6 

04 0 0 0 
Vee A22 A20 

Vee and GND connections must be made to multi­
ple Vee and Vss (GND) pins. Each Vee and Vss 
MUST be connected to the appropriate voltage lev­
el. The circuit board should include Vee and GND 
planes for power distribution and all Vee pins must 
be connected to the appropriate plane. 

H K N 

0 0 0 0 0 0 0 01 

AS A3 BE1 # BEO# EDACK1 Vss Vee 

0 0 0 0 0 0 0 02 

A4 BE3# ADS# EDACK2 INT Vss Vee 

0 0 0 0 0 0 0 03 

A2 BEZ# EOP# EDACKO HLDA DREQ7 DREQS 

0 0 0 04 
DREQ6 NA# DREQ3 

METAL LID 
05 0 0 0 

A25 A24 A23 
0 0 0 

DREQ4/ DREQ2 DREQ1 
IRQ9# 

05 

06 0 0 0 0 0 0 06 
DREQO IRQ22# IRQ23# A28 A27 A26 

07 0 0 0 0 0 0 07 

A31 A29 A30 IRQ21# IRQ20# IRQ19# 

08 0 0 0 0 0 0 08 

031 D23 015 IRQ17# IRQ16# IRQ18# 

09 0 0 0 0 0 0 09 

07 D30 D22 IRQ13# IRQ14# IRQ15# 

10 0 0 0 0 0 0 10 

D14 D6 D13 WSC1 IRQ12# IRQ11 # 

11 0 0 0 0 0 0 11 

D29 D21 028 .__ __________________ __.READY# CLKIN WSCO 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Vee 05 D12 D27 D3 D10 017 READYO# HOLD W/R# D/C# CPURST RESET Vee 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 

Vss D20 D4 D19 D26 02 D9 016 D24 TOUT1/REF# M/10# TOUT3# TOUT2#/IRQ3# Vss 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 

Vee Vss Vee D11 D18 D25 CLK2 01 DO DB Vss Vee Vss Vee 

A B c D G H K N P 
290128-95 

Figure 12.2. 82380 PGA Pinout-View from PIN side 

5-1179 

El 



intef 82380 

Table 12-1. 82380 PGA Pinout-Functional Grouping 

Pin/Signal Pin/Signal Pin/Signal Pin/Signal 

A7 A31 AS 031 P12 Vee L14 Vss 
C7 A30 89 D30 M14 Vee A1 Vss 
87 A29 A11 D29 P1 Vee P13 Vss 
A6 A28 C11 D28 P2 Vee N1 Vss 
86 A27 D12 D27 P14 Vee N2 Vss 
C6 A26 E13 D26 D1 Vee C1 Vss 
A5 A25 F14 D25 C14 Vee A3 Vss 
85 A24 J13 D24 81 Vee 814 Vss 
cs A23 BS D23 A2 Vee A13 Vss 
84 A22 C9 D22 A4 , Vee N14 Vss 
83 A21 811 D21 A12 Vee 
C4 A20 813 D20 A14 Vee P6 IRQ23# 
82 A19 D13 D19 N6 IRQ22# 
C3 A18 E14 D18 G14 CLK2 M7 IRQ21 # 
C2 A17 G12 D17 L12 DIC# N7 IRQ20# 
D3 A16 H13 D16 K12 W/R# P7 IRQ19# 
D2 A15 ca D15 L13 M/10# PS IRQ18# 
E3 A14 A10 D14 K2 ADS# MS IRQ17# 
E2 A13 C10 D13 N4 NA# NS IRQ16# 
E1 A12 C12 D12 J12 HOLD pg IRQ15# 
F3 A11 D14 D11 M3 HLDA N9 IRQ14# 
F2 A10 F12 D10 M6 DREQO M9 IRQ13# 
F1 A9 G13 D9 P5 DREQ1 N10 IRQ12# 
G1 AS K14 DB N5 DREQ2 P10 IRQ11 # 
G2 A7 A9 D7 P4 DREQ3 M2 INT 
G3 A6 810 D6 M5 DREQ4/IRQ9# 
H1 A5 812 D5 P3 DREQ5 N11 CLKIN 
H2 A4 C13 D4 M4 DREQ6 K13 TOUT1/REF# 
J1 A3 E12 D3 N3 DREQ7 N13 TOUT2#/IRQ3# 
H3 A2 F13 D2 M13 TOUT3# 
J2 8E3# H14 D1 K3 EOP# M11 READY# 
J3 8E2# J14 DO L3 EDACKO H12 READYO# 
K1 8E1# M1 EDACK1 P11 wsco 
L1 8EO# N12 RESET L2 EDACK2 M10 WSC1 

M12 CPURST 

5-1180 



intef 82380 

12.3 Package Dimensions and 
Mounting 

The 82380 package is a 132-pin ceramic Pin Grid 
Array (PGA). The pins are arranged 0.100 inch (2.54 
mm) center-to-center, in a 14 x 14 matrix, three rows 
around. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a 
choice of terminals such as soldertail, surface 
mount, or wire wrap. Several applicable sockets are 
listed in Figure 12-4. 

2 

3 

4 

5 

6 

7 

~ ~ ~ 

"' ;::; <n ;::::-
"' ..... "' "' "' "' 0 .. co "": "' .. 
"! co "' co .,; '° .::;. !i e e .::;. .::;. .::;. 

00 0 0 0 0 0 0 
I "' "' "' "' "' "' "' q "! "! "": ""! "! 

• @@@@@@'I@@@@@@@ 
@@@@@@@@@@@@@@ 
@@(!1)@@@@'@@@@(!1)@@ 
@@@ @@@ 
@@@ @@@ 

C!>C!>C!> I C!>C!>C!> 

0 .. 
cxi 
.::;. 

"' N 
": 

@@@ + @@@ 
8 -@@@ -- -- ®@@ 

9 

10 

11 

12 

13 

14 

@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@(!1)@@@@,@@@@ @@ 
@@@@@@@I@@@@@@@ 
@@@@@@@,@@@@@@@ 

A B c 0 E • G H J K L M N p Ir 
.020 (0.508) .020 ---
MIN TYP (0.508) 
.070(1.777) DIA 
TYP BRAZE PAD 

1------1.450(36.802)------+-

.725 ( 18.401) 

.650 ( 16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 ( 1.269) 
0 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057 (1.269) ---11-
MAX TYP 

.001 (0.025) R 
MIN TYP 

.018 (0.47) l 
DIA TYP _ ==-ttf' 

.165(4.189~1 ~ 
.110(2::Ll 

290128-96 

Figure 12.3. 132·Pin Ceramic PGA Package Dimensions 

5-1181 

El 



intJ 

• Low insertion force (LIF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in insertion 
force compared to machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 
55583-1 

• Zero insertion force (ZIF) Burn-in version 
55573-2 

Amp Incorporated 
(Harrisburg, PA 17105 U.S.A. 
Phone 717-564-0100) 

82380 

290128-97 
Cam handle locks in low profile position when substrate is installed 

Peel-A-WayTM Mylar and Kapton 
Socket Terminal Carriers 

• Low insertion force surface mount 
CS132-37TG 

• Low insertion force soldertail 
CS132-01TG 

• Low insertion force wire-wrap 
CS132-02TG (two level) 
CS132-03TG (three-level) 

• Low insertion force press-fit 
CS132-05TG 

Advanced Interconnections 
(5 Division Street 
Warwick, RI 02818 U.S.A. 
Phone 401-885-0485) 

(handle UP for open and DOWN for closed positions) 

Peel-A-Way Carrier No. 132; 
Kapton Carrier is KS 132 
Mylar Carrier is MS 132 

Molded Plastic Body KS132 
is shown below: 

-lf'-'.100TYP 

14•14x3ROWS 

290128-98 

courtesy Amp Incorporated 

SOLDER TAIL -01 LOW PROFILE -04 PRESSFIT·05 

r~ r r ... :tii ---i j --1 .. 
T1i 

~ ~CNA ~~~DIA. ~DIA. ·- . -:::.- llTCL_.. •. , ... 
:=t·.:! .. 

WIRE WAAP-G2/-G3 SOLDER TAIL -33 SURFACE MOUNTING -37 

ti 
PEEL-A-WAY 

Ii 

fj .. • -02 fi :iii 2LEYEL ..lli. ..... .. 
j 3LEYEL ,!!,--l~ [_-_] .... 

DIA. 

290128-99 
courtesy Advanced Interconnections 
(Peel-A-Way Terminal Carriers 
U.S. Patent No. 4442938) 

Figure 12·4- Several Socket Options for 132-pin PGA 

5-1182 



intef 82380 

• Low insertion force socket soldertail 
(for production use) 
2XX-6576-00-3308 (new style) 
2XX-6003-00-3302 (older style) 

• Zero insertion force soldertail 
(for test and burn-in use) 
2XX-6568-00-3302 

Textool Products 
Electronic Products Division/3m 
(1410 West Pioneer Drive 
Irving, Texas 75601 U.S.A. 
Phone 214-259-2676) 

··--------·· Cl ii- ii~ 
!! ii~ 
11 : :u D • .__ _______ ll 
~--------·· 

F J 
0 1 L_ _______ I I 

courtesy Textoll Products/3M 

I 

~ 
'i. 
I 

290128-AO 

Figure 12·4. Several Socket Options for 132-pin PGA (Continued) 

12.4 Package Thermal Specification 

The 82380 is specified for operation when case tem­
perature is within the range of o•c - 85°C. The case 
temperature may be measured in any environment, 

to determine whether the 82380 is within the speci­
fied operating range. 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 12.5. 

290128-A1 

Figure 12.5. Measuring 82380 PGA Case Temperature 

5-1183 

El 



intef 82380 

Thermal Resistance-°C/Watt 

Airflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 800 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

8 Junction-to-Case 2 2 2 2 2 2 2 
(case measured 
as Fig. 6.4) 

8 Case-to-Ambient 19 18 17 15 12 10 9 
(no heatsink) 

8 Case-to-Ambient 16 15 14 12 9 7 6 
(with omnidirectional 
heatsink) 

8 Case-to-Ambient 15 14 13 11 8 6 5 
(with unidirectional 
heatsink) 

NOTES: 290128-A2 

1. Table 12-6 applies to 82380 PGA plugged into socket or soldered 
directly into board. 
2. OJA = 0Jc + OcA· 
3. OJ-CAP = 4°e1w (approx.) 

llJ-PIN = 4°e1w (inner pins) (approx.) 
OJ-PIN = 8°e/W (outer pins) (approx.) 

Figure 12-6. 82380 PGA Package Typical Thermal Characteristics 

13.0 ELECTRICAL DATA 

13.1 Power and Grounding 

The large number of output buffers (address, data 
and control) can cause power surges as multiple 
output buffers drive new signal levels simultaneous­
ly. The 22 Vee and Vss pins of the 82380 each feed 
separate functional units to minimize switching in­
duced noise effects. All Vee pins of the 82380 must 
be connected on the circuit board. 

13.2 Power Decoupling 

Liberal decoupling capacitance should be placed 
close to the 82380. The 82380 driving its 32-bit par­
allel address and data buses at high frequencies can 
cause transient power surges when driving large ca­
pacitive loads. Low inductance capacitors and inter-

connects are recommended for the best reliability at 
high frequencies. Low inductance capacitors are 
available specifically for Pin Grid Array packages. 

13.3 Unused Pin Recommendations 

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most 
other CMOS processes, a floating input will increase 
the current consumption of the component and give 
an indeterminate state to the component. 

13.4 ICE-386 Support 

The 82380 specifications provide sufficient drive ca­
pability to support the ICE386. On the pins that are 
generally shared between the 80386 and the 82380, 
the additional loading represented by the ICE386 
was allowed for in the design of the 82380. 

5-1184 



intef 82380 

13.5 Maximum Ratings 

Storage Temperature .......... - 65°C to + 150°C 
Case temperature Under Bias ... - 65°C to + 110°C 
Supply Voltage with Respect 

to Vss ....................... -0.5V to + 6.5V 
Voltage on any other Pin ..... -0.5V to Vee + 0.5V 

NOTE: 
Stress above those listed above may cause perma­
nent damage to the device. This is a stress rating 

13.6 D.C. Specifications 

T CASE = o·c to 85°C; Vee = 5V ± 5%; Vss = ov. 

only and functional operation at these or any other 
conditions above those listed in the operational 
sections of this specification is not implied. 

Exposure to absolute maximum rating conditions for 
extended periods may affect device reliability. Al­
though the 82380 contains protective circuitry to re­
set damage from static electric discharges, always 
take precautions against high static voltages or elec­
tric fields. 

Table 13-1. 

Symbol Parameter Min Max Unit Notes 

V1L Input Low Voltage -0.3 0.8 v (Note 1) 

V1H Input High Voltage 2.0 Vee+ 0.3 v 

V1LC CLK2 Input Low Voltage -0.3 0.8 (Note 1) 

V1HC CLK2 Input High Voltage Vee - o.8 Vee+ 0.3 v 

Vol Output Low Voltage 
loL = 4mA: A2-A31, 

00-031 0.45 v 
loL = 5 mA: All Others 0.45 v 

VoH Output High Voltage 
loH = -1 mA: A2-A31, 

00-031 2.4 v 
loH = -0.9 mA: All Others 2.4 v 

lu Input Leakage Current for 
all ins except: 

IRQ11 #-IRQ23#, 
TOUT2/IRQ3#, EOP#, OREQ4 ±15 µ.A OV<V1N<Vcc 

lu1 Input Leakage Current for 
pins: IRQ11 #-IRQ23#, 
TOUT2#/IRQ3#, EOP#, OREQ4 10 -300 µ.A OV<V1N<Vcc 

(Note 3) 

ILO Output Leakage Current ± 15 µ.A 0.45<VouT<Vcc 

Ice Supply Current 300 mA CLK2 = 32 MHz 
325 mA = 40MHz 

(Note 4) 

(CAP) Capacitance (Input/IQ) 12 pF f0 = 1 MHz 
(Note 2) 

CCLK CLK2 Capacitance 20 pF fc = 1 MHz 
(Note 2) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Sampled only. 
3. These pins have internal pullups on them. 
4. Ice is specified with inputs driven to CMOS levels. Ice may be higher if driven to TTL levels. 

5-1185 

I 



intJ 82380 

13.6 D.C. Specifications (Continued) 
T CASE = 0°C to 85°C; Vee = 5V ± 5%; Vss = OV. 

Table 13·2. 82380-25 D.C. Specifications 

Symbol Parameter Min Max Unit Notes 

V1L Input Low Voltage -0.3 0.8 v (Note 1) 

V1H Input High Voltage 2.0 Vee+ 0.3 v 
V1LC CLK2 Input Low Voltage -0.3 0.8 v (Note 1) 

V1HC CLK2 Input High Voltage Vee - 0.8 Vee+ o.3 v 
Vol Output Low Voltage 

loL = 4 mA: A2-A31. Do-D31 0.45 v 
loL = 5 mA: All Others 0.45 v 

VoH Output High Voltage 
loH = -1 mA: A2-A31. Do-D31 2.4 v 
loH = -0.9 mA: All Others 2.4 v 

lu Input Leakage Current ±15 µA 
All Inputs except: IRQ11 # -
IRQ23#, EOP#, TOUT2/IRQ3#, 
DREQ4 

lu1 Input Leakage Current 10 -300 µA 0 < V1N <Vee 
Inputs: IR011 #-IRQ23#, (Note 3) 
EOP#, TOUT2/IRQ3#, DREQ4 

ILO Output Leakage Current ±15 µA 0 < V1N <Vee 

Ice Supply Current (CLK2 = 50 MHz) 375 mA (Note 4) 

C1 Input Capacitance 12 pF (Note 2) 

CcLK CLK2 Input Capacitance 20 pF (Note 2) 

NOTES: 
1. Minimum value is not 100% tested. 
2. fc = 1 MHz; Sampled only. 
3. These pins have weak internal pullups. They should not be left floating. 
4. Ice is specified with inputs driven to CMOS levels, and outputs driving CMOS loads. Ice may be higher if inputs are driven 
to TTL levels, or if outputs are driving TTL loads. 

5-1186 



intef 82380 

13. 7 A.C. Specifications 

The A.G. specifications given in the following tables 
consist of output delays and input setup require­
ments. The A.G. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to 
the appropriate functional section. 

CLK2 [ 2V 

NOTE 2 MIN OUTPUTS 
(A2-A31, D/C#, 

BEO#-BE3#. ADS#. 
M/10#, W /R#, 

RDYO#,LOCK#, HOLD 

[ VALID 
OUTPUT n l .SV 

LEGEND: 

OUTPUTS [ 
(DO-D31) 

INPUTS [ 
(NA#) 

INPUTS 
(READY#, HLDA, [ 

A2-A31,DO-D31) 
IROx#,ADS# 

~maximum output delay spec 

[B)_minimum output delay spec 

©-minimum input setup spec 

[ol--minimum input hold spec 

NOTES: 
1. Input waveforms have tr s 2.0 ns from 0.8V to 2.0V. 

A.G. spec measurement is defined in Figure 13.1. 
Inputs must be driven to the levels shown when A.G. 
specifications are measured. 82380 output delays 
are specified with minimum and maximum limits, 
which are measured as shown. The minimum 82380 
output delay times are hold times for external circuit­
ry. 82380 input setup and hold times are specified as 
minimums and define the smallest acceptable sam­
pling window. Within the sampling window, a syn­
chronous input signal must be stable for correct 
82380 operation. 

Tx 

2V 2V 

MAX 

NOTE2 MIN MAX 

VALID 
1.SV OUTPUT n+ 1 

290128-83 

2. Under rated loading (120 pF) 82380 output tr, ti is typically s 4.0 ns from 0.8V to 2.0V. 

Figure 13-1. Drive Levels and Measurement Points for A.C. Specification 

5-1187 

El 



intJ 82380 

A.C. SPECIFICATION TABLES 

Functional Operating Range: Vee= 5V ±5%; TeASE = a°C to +a5°C 

Table 13-3. 82380 A.C. Characteristics 

Symbol Parameter 
82380-16 82380-20 

Min Max Min Max 

Operating Frequency 4MHz 16MHz 4MHz 2aMHz 

t1 CLK2 Period 31 ns 125 ns 25 ns 125 ns 

t2a CLK2 High Time 9 a 

t2b CLK2 High Time 5 5 

t3a CLK2 Low Time 9 a 

t3b CLK2 Low Time 7 6 

t4 CLK2 Fall Time a a 

t5 CLK2 Rise Time a a 

A (2-31 ), BE (a-3) #, 
EDACK (a-2) 

t6 Valid Delay 4 36 4 3a 
t7 Float Delay 4 4a 4 32 

A (2-31), BE (a-3) # 
ta Setup Time 6 6 
t9 Hold Time 4 4 

W/R#, M/10#, DIC#, 
t10 Valid Delay 6 33 6 2a 
t11 Float Delay 4 35 4 3a 
t12 Setup Time 6 6 
t13 Hold Time 4 4 

t14 ADS# Valid Delay 6 33 6 2a 
t15 Float Delay 4 35 4 3a 
t16 Setup Time 21 15 
t17 Hold Time 4 4 

Slave Mode-
D(a-31) Read 

t1a Valid Delay 3 46 4 46 
t19 Float Delay 6 35 6 29 

Slave Mode-
D(a-31) Write 

t20 Setup Time 31 29 
t21 Hold Time 26 26 

5-11aa 

Notes 

Half CLK2 Frequency 

at2.aV 

at (Vee-a.a)V 

at2.aV 

at a.av 

(Vcc-a.a)V to a.av 

a.av to (Vcc-O.a)V 

CL= 120pF 
(Note 1) 

CL= 75pF 
(Note 1) 

CL= 75 pF 

CL= 12apF 
(Note 1) 



intJ 82380 

A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee= 5V ±5%; TeASE = 0°C to +85°C. 

Table 13-3. 82380 A.C. Characteristics (Continued) 

Symbol Parameter 
82380-16 82380-20 

Notes 
Min Max Min Max 

Master Mode-
D(0-31) Write 

t22 Valid Delay 4 48 4 38 CL= 120 pF 
t23 Float Delay 4 35 4 27 (Note 1) 

Master Mode-
D(0-31) Read 

t24 Setup Time 11 11 
t25 Hold Time 6 6 

t26 READY# Setup Time 21 12 
t27 Hold Time 4 4 

t28 WSC (0-1) Setup 6 6 
t29 Hold 21 21 

t31 RESET Setup Time 13 12 
t30 Hold Time 4 4 

t32 READYO# Valid Delay 4 31 4 23 CL= 25 pF 

t33 CPU Reset From CLK2 2 18 2. 16 CL= 50pF 

t34 HOLD Valid Delay 5 33 5 30 CL= 100pF 

t35 HLDA Setup Time 21 17 
t36 Hold Time 6 6 I 
t37a EOP# Setup Time 21 17 Synch. EOP 

t38a EOP# Hold Time 4 4 

t37b EOP # Setup Time 11 11 Asynch. EOP 

t38b EOP# Hold Time 11 11 

t39 EOP# Valid Delay 5 38 5 30 CL= 100 pF ('1'->'0') 

t40 EOP # Float Delay 5 40 5 32 

t41a OREO Setup Time 21 19 Synchronous OREO 
t42a Hold Time 4 4 

t41b OREO Setup Time 11 11 Asynchronous OREO 
t42b Hold Time 11 11 ·. 

t43 INT Valid Delay 500 500 From IRO Input 
CL= 75pF 

t44 NA# Setup Time 11 10 
t45 Hold Time 15 15 

5-1189 



intJ 82380 

A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ± 5%; T CASE = · 0°C to + 85°C. 

Table 13-3. 82380 A.C. Characteristics (Continued) 

Symbol Parameter 
82380-16 82380·20 Notes 

Min Max Min Max 

t46 CLKIN Frequency OMHz 10MHz OMHz 10MHz 

t47 CLKIN High Time 30 c 30 At 1.5V 

t48 CLKIN Low Time 50 50 At 1.5V 

t49 CLKIN Rise Time 10 10 0.8Vto 3.7V 

t50 CLKIN Fall Time 10 10 3.7Vto o.av 

t51 TOUT1 /REF# Valid 4 36 4 30 From CLK2, CL == 25 pF 

t52 TOUT1 /REF# Valid 3 93 3 93 From CLKIN, CL = 120 pF 

t53 TOUT2# Valid Delay 3 93 3 93 From CLKIN, CL = 120 pF 
(Falling Edge Only) 

t54 TOUT2 # Float Delay 3 40 3 40 From CLKIN (Note 1) 

t55 TOUTS# Valid Delay 3 93 3 93 From CLKIN, CL = 120 pF 

NOTE: 
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads. 

Functional Operating Range: Vee= 5V ±5%; TcASE = 0°Gto +85°C .. 

A.C. timings are tested at 1.5V thresholds; except as noted. 

Table 13·4. 82380-25 A.C. Characteristics 

Symbol Parameter 82380·25 

Min Max 

Operating Frequency 1/(t1a x 2) 4 25 

t1 CLK2 Period 20 125 

t2a CLK2 High Time 7 
t2b CLK2 High Time 4 
t3a CLK2 Low Time 7 
t3b CLK2 Low Time 4 
t4 CLK2 Fall Time 7 
t5 CLK2 Rise Time 7 

t6 A2-A31, BEO#-BE3# 4 20 
EDACKO-EDACK3 Valid Delay 

t? A2-A31, BEO#-BE3# 4 27 
EDACKO-EDACK3 Float Delay 

ta A2-A31, BEO#-BE3# Setup Time 6 
t9 A2-A31, BEO#-BE3# Hold Time 4 

t10 W/R#, M/10#, DIC# Valid Delay 4 20 
t11 W/R#, M/10#, D/C# Float Delay 4 29 

5-1190 

Unit Notes 

MHz 

ns 

ns at2.0V 
ns at3.7V 
ns at2.0V 
ns ato.av 
ns 3.7Vto0.8V 
ns 0.8Vto3.7V 

ns 50pF Load 

ns 50 pF Load 

ns 
ns 

ns 50 pFLoad 
ns 50pF Load 



intef 82380 

A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TeASE = 0°C to +85°C. 

A.G. timings are tested at 1.5V thresholds; except as noted. 

Table 13-4. 82380-25 A.C. Characteristics (Continued) 

Symbol Parameter 
82380-25 

Min Max 

t12 W/R#, M/10#, D/C# Setup Time 6 
t13 W/R#, M/10#, D/C# Hold Time 4 

t14 ADS# Valid Delay 4 19 
t15 ADS# Float Delay 4 29 

t16 ADS# Setup Time 12 
t17 ADS# Hold Time 4 

t18 Slave Mode 00-031 Read Valid 4 31 
t19 Slave Mode DO-D31 Read Float 6 21 

t20 Slave Mode D0-031 Write Setup 20 
t21 Slave Mode DO-D31 Write Hold 20 

t22 Master Mode 00-031 Write Valid 8 27 
t23 Master Mode 00-031 Write Float 4 19 

t24 Master Mode 00-031 Read Setup 7 
t25 Master Mode 00-031 Read Hold 4 

t26 READY# Setup Time 9 
t27 READY# Hold Time 4 

t28 WSCO-WSC1 Setup Time 6 
t29 WSCO-WSC1 Hold Time 15 

t30 RESET Hold Time 4 
t31 RESET Setup Time .9 

t32 
) 

READYO# Valid Delay 3 21 

t33 CPURST Valid Delay 2 14 

t34 HOLD Valid Delay 4 22 

t35 HLDA Setup Time 17 
t36 HLDA Hold Time 4 

t37a EOP# Setup (Synchronous) 13 
t38a EOP# Hold (Synchronous) 4 

t37b EOP # Setup (Asynchronous) 10 
t38b EOP# Hold (Asynchronous) 10 

t39 EOP# Valid Delay 4 21 
t40 EOP # Float Delay 4 21 

t41a OREO Setup (Synchronous) 17 
t42a OREO Hold (Synchronous) 4 

t41b OREO Setup (Asynchronous) 10 
t42b DREO Hold (Asynchronous) 10 

t43 INT Valid Delay from IROn 500 

5-1191 

Unit Notes 

ns 
ns 

ns 50pF Load 
ns 50pF Load 

ns 
ns 

ns 50 pF Load 
ns 50 pF Load 

ns 
ns 

ns 50pF Load 
ns 50pF Load 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns I 
ns 25pFLoad 

ns 50pF Load 

ns 50 pF Load 

ns 
ns 

ns 
ns 

ns 
ns 

ns 50 pF Load 
ns 50pF Load 

ns 
ns 

ns 
ns 

ns 50 pF Load 



intef 82380 

A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TcASE = 0°C to +85°C. 

A.G. timings are tested at 1.5V thresholds; except as noted. 

Table 13-4. 82380-25 A.C. Characteristics (Continued) 

Symbol 

t44 
t45 

t46 
t47 
t48 
t49 
t50 

t51 
t52 

t53 

t54 

t55 

Parameter 

NA# Setup Time 
NA# Hold Time 

CLKIN Frequency 
CLKIN High Time 
CLKIN Low Time 
CLKIN Rise Time 
CLKIN Fall Time 

TOUT1 /REF# Valid Delay 
from CLK2 (Refresh) 
from CLKIN (Timer) 

TOUT2# Valid Delay 
(Falling Edge Only) 

TOUT2 # Float Delay 

TOUT3 # Valid Delay 

82380 
OUTPUT~ 

iCL 
290128-A4 

Figure 13-2. A.C. Test Load 

82380-25 Unit 
Min Max 

7 ns 
8 ns 

0 10 MHz 
30 ns 
50 ns 

10 ns 
10 ns 

4 20 ns 
3 90 ns 

3 90 ns 

3 37 ns 

3 90 ns 

Notes 

2.0V 
0.8V 
0.8V to 3.7V 
3.7Vto o.av 

50 pF Load 
50 pF Load 

50 pF Load 

50 pF Load 

50 pF Load 

290128-AS 

Figure 13-3. CLK2 Timing 

5-1192 



intJ 82380 

INPUT SET- UP AND HOLD TIMING (CONT.) 

PHI 1 PHl2 PHI 1 PHl2 PHI 1 PHl2 

CLK2 

READY# ---------
1'----i---"I 

ADS#---------

HLDA ---------
l'----11----"I 

290128-AS 

Figure 13-4. Input Setup and Hold Timing 

Tx 

~ CLKZ T30 T31 

RESET 

Tx 
PHl2 I PHI 1 I PHl2 

CLK2 

[-- T33 MIN. 
CPURST ------------+-T.,..,,... 

\.-- T33 MAX. . 

Figure 13-5. Reset Timing 

5-1193 

290128-A7 

I 



intef 82380 

PHI 1 PHl2 PHl1 PHl2 PHI 1 PHl2 

CLK2 

A(2- 31), BE(O- 3)# ----------'"t-~lm.7f:1'1ir------------­
EDACK(O- 2) 
VALID DELAY 

ADsu----------__,r-'\lli':?::1i:7\I.~-------------~ 

VALID DELAY 

HOLD 

i------<~T34Max 

290128-AB 

Figure 13-6. Address Output Delays 

290128-A9 

Figure 13-7. Data Bus Output Delays 

5-1194 



82380 

El 290128-80 

Figure 13-8. Control Output Delays 

290128-81 

Figure 13-9. Timer Output Delays 

5-1195 



intef 

Port Address (HEX) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
1E 
20 

21 

22 
28 
29 
2A 
2B 
2C 
20 
2E 
2F 

82380 

APPENDIX A 
Ports Listed by Address 

Description 

Read/Write OMA Channel 0 Target Address, AO-A15 
Read/Write OMA Channel O Byte Count, BO-B15 
Read/Write OMA Channel 1 Target Address, AO-A 15 
Read/Write OMA Channel 1 Byte Count, BO-B 15 
Read/Write OMA Channel 2 Target Address, AO-A 15 
Read/Write OMA Channel 2 Byte Count, BO-B15 
Read/Write OMA Channel 3 Target Address, AO-A15 
Read/Write OMA Channel 3 Byte Count, BO-B15 
Read/Write OMA Channel 0-3 Status/Command I Register 
Read/Write OMA Channel 0-3 Software Request Register 
Write OMA Channel 0-3 Set-Reset Mask Register 
Write OMA Channel 0-3 Mode Register I 
Write Clear Byte-Pointer FF 
Write OMA Master-Clear 
Write OMA Channel 0-3 Clear Mask Register 
Read/Write OMA Channel 0-3 Mask Register 
Read/Write OMA Channel O Target Address, A24-A31 
Read/Write OMA Channel 0 Byte Count, B16-B23 
Read/Write OMA Channel 1 Target Address, A24-A31 
Read/Write OMA Channel 1 Byte Count, B16-B23 
Read/Write OMA Channel 2 Target Address, A24-A31 
Read/Write OMA Channel 2 Byte Count, B16-B23 
Read/Write OMA Channel 3 Target Address, A24-A31 
Read/Write OMA Channel 3 Byte Count, B16-B23 
Write OMA Channel 0-3 Bus Size Register 
Read/Write OMA Channel 0-3 Chaining Register 
Write OMA. Channel 0-3 Command Register II 
Write OMA Channel 0-3 Mode Register II 
Read/Write Refresh Control Register 
Reset Software Request Interrupt 
Write Bank B ICW1, OCW2, or OCW3 
Read Bank B Poll, Interrupt Request or In-Service 

Status Register 
Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 
Read Bank B ICW2 
Read/Write IRQ8 Vector Register 
Read/Write IRQ9 Vector Register 
Reserved 
Read/Write IRQ11 Vector Register 
Read/Write IRQ12 Vector Register 
Read/Write IRQ13 Vector Register 
Read/Write IRQ14 Vector Register 
Read/Write IRQ15 Vector Register 

5-1196 



intJ 82380 

APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

30 

31 

32 
3B 
39 
3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
61 
64 
72 
73 
74 
75 
76 
77 
7D 
7E 
7F 
BO 
B1 
B2 
B3 
B7 
BB 
B9 
BA 
BB 
BF 

Description 

Write Bank A ICW1, OCW2 or OCW3 
Read Bank A Poll, Interrupt Request or In-Service 

Status Register 
Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 
Read Bank A ICW2 
Read/Write IRQO Vector Register 
Read/Write IRQ1 Vector Register 
Read/Write IRQ1 .5 Vector Register 
Read/Write IRQ3 Vector Register 
Read/Write IRQ4 Vector Register 
Reserved 
Reserved 
Read/Write IRQ7 Vector Register 
Read/Write Counter 0 Register 
Read/Write Counter 1 Register 
Read/Write Counter 2 Register 
Write Control Word Register I-Counter O, 1, 2 
Read/Write Counter 3 Register 
Reserved 
Reserved 
Write Word Register II-Counter 3 
Write Internal Control Port 
Write CPU Reset Register (Data-1111 XXXOH) 
Read/Write Wait State Register O 
Read/Write Wait State Register 1 
Read/Write Wait State Register 2 
Read/Write Refresh Wait State Register 
Reserved 
Reserved 
Reserved 
Reserved 
Read/Write Relocation Register 
Read/Write Internal Diagnostic Port 0 
Read/Write DMA Channel 2 Target Address, A16-A23 
Read/Write DMA Channel 3 Target Address, A 16-A23 
Read/Write DMA Channel 1 Target Address, A 16-A23 
Read/Write DMA Channel 0 Target Address, A 16-A23 
Read/Write Internal Diagnostic Port 1 
Read/Write DMA Channel 6 Target Address, A 16-A23 
Read/Write DMA Channel 7 Target Address, A 16-A23 
Read/Write DMA Channel 5 Target Address, A 16-A23 
Read/Write DMA Channel 4 Target Address, A16-A23 

5-1197 

I 



intef 82380 

APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

90 
91 
92 
93 
94 
95 
96 
97 
9B 
99 
9A 
9B 
9C 
90 
9E 
9F 
AO 

A1 

A2 
AB 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
co 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
CB 
C9 
CA 
CB 
cc 
CD 
CE 
CF 

Description 

Read/Write OMA Channel O Requester Address, AO-A15 
Read/Write OMA Channel O Requester Address, A16-A31 
Read/Write OMA Channel 1 Requester Address, AO-A 15 
Read/Write OMA Channel 1 Requester Address, A16-A31 
Read/Write OMA Channel 2 Requester Address, AO-A 15 
Read/WriteDMAChannel 2 Requester Address, A16-A31 
Read/Write OMA Channel 3 Requester Address, AO-A 15 
Read/WriteDMA Channel 3 Requester Address, A16-A31 
Read/WriteDMA Channel 4 Requester Address, AO-A 15 
Read/Write OMA Channel 4 Requester Address, A16-A31 
Read/Write OMA Channel 5 Requester Address, AO-A15 
Read/Write OMA Channel 5 Requester Address, A 16-A31 
Read/Write OMA Channel 6 Requester Address, AO-A 15 
Read/Write OMA Channel 6 Requester Address, A16-A31 
Read/Write OMA Channel 7 Requester Address, AO-A 15 
Read/Write OMA Channel 7 Requester Address, A16-A31 
Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 

Status Register 
Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read Bank C ICW2 
Read/Write IRQ16 Vector Register 
Read/Write IRQ17 Vector Register 
Read/Write IRQ18 Vector Register 
Read/Write.IRQ19 Vector Register 
Read/Write IRQ20 Vector Register 
Read/Write IRQ21 ·Vector Register 
Read/Write IRQ22 Vector Register 
Read/Write IRQ23 Vector Register 
Read/Write OMA Channel 4 Target Address, AO-A 15 
Read/Write OMA Channel 4 Byte Count, BO-B 15 
Read/Write OMA Channel 5 Target Address, AO-A 15 
Read/Write OMA Channel 5 Byte Count, BO-B15 
Read/Write OMA Channel 6 Target Address, AO-A 15 
Read/Write DMA Channel 6 Byte Count, BO-B15 
Read/Write OMA Channel 7 Target Address, AO-A 15 
Read/Write OMA Channel 7 Byte Count, BO-B15 
Read OMA Channel 4-7 Status/Command I Register 
Read/Write OMA Channel 4-7 Software Request Register 
Write OMA Channel 4-7 Set-Reset Mask Register 
Write OMA Channel 4-7 Mode Register I 
Reserved 
Reserved 
Write OMA Channel 4-7 Clear Mask Register 
Read/Write OMA Channel 4-7 Mask Register 

5-1198 



intef 82380 

APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

DO 
01 
02 
03 
04 
05 
06 
07 
08 
09 
DA 
DB 

Description 

Read/Write OMA Channel 4 Target Address, A24-A31 
Read/Write OMA Channel 4 Byte Count, B16-B23 
Read/Write OMA Channel 5 Target Address, A24-A31 
Read/Write OMA Channel 5 Byte Count, B16-B23 
Read/Write OMA Channel 6 Target Address, A24-A31 
Read/Write OMA Channel 6 Byte Count,. B16-B23 
Read/Write OMA Channel 7 Target Address, A24-A31 
Read/Write OMA Channel 7 Byte Count, B16-B23 
Write OMA Channel 4-7 Bus Size Register 
Read/Write OMA Channel 4-7 Chaining Register 
Write OMA Channel 4-7 Command Register II 
Write OMA Channel 4-7 Mode Register II 

5-1199 

II 



intef 

Port Addre~ (HE~) 

OD 
oc 
08 
ca 
1A 
DA 
OB 
CB 
1B 
DB 

09 
C9 
1E 

OE 
CE 
OF 
CF 
OA 
CA 
18 
08 
19 
09 
00 
87 
10 
01 
11 
90 
91 

02 
83 
12 
03 
13 
92 
93 

82380 

. APPENDIX B 
Ports Listed by Function 

Description 

DNIACONTROLLER 
Write OMA Master-Clear 
Write OMA Clear Byte~Ppinter FF 

· Read/Write OMA Channel 0-3 Status/Command I Register 
Read/Write OMA Channel 4-7 Status/Command I Register 
Write OMA Channel 0-3 Command Register II 
Write OMA Channel 4-7 Command Register II 
Write OMA Channel 0-3 Mode Register I 
Write OMA Channel 4-7 Mode Register I 
Write OMA Channel 0-3 Mode Register II 
Write OMA Channel 4-7 Mode Register II 
Read/Write OMA Channel 0-3 Software Request Register 
Read/Write OMA Channel 4-7 Software Request Register 
Reset Software Request Interrupt 
Write OMA Channel 0-3 Clear Mask Register 
Write OMA Channel 4-7 Clear Mask Register 
Read/Write OMA Channel 0-3 Mask Register 
Read/Write OMA Channel 4-7 Mask Register 
Write OMA Channel 0-3 Set-Reset Mask Register 
Write OMA Channel 4...:7 Set-Reset Mask Register 
Write OMA Channel 0-3 Bus Size Register 
Write OMA Channel 4-7 Bus Size Register 
Read/Write OMA Channel 0-3 Chaining Register 
Read/Write OMA Channel 4-7 Chaining Register 
Read/Write OMA Channel 0 Target Address, AO-A 15 
Read/Write OMA Channel 0 Target Address, A 16-A23 
Read/Write OMA Channel 0 Target Address, A24-A31 
Read/Write OMA Channel 0 Byte Count, BO-B15 
Read/Write OMA Channel o Byte Count, B16-B23 
Read/Write OMA Channel 0 Requester Address, AO-A15 
Read/Write OMA Channel 0 Requester Address, A16-A31 
Read/Write OMA Channel 1 Target Address, AO-A 15 
Read/Write OMA Channel 1 Target Address, A 16-A23 
Read/Write OMA Channel 1 Target Address, A24-A31 
Read/Write OMA Channel 1 Byte Count, BO-B15 
Read/Write OMA Channel 1 Byte Count, B16-B23 
Read/Write OMA Channel 1 Requester Address, AO-A 15 
Read/Write OMA Channel 1 Requester Address, A16-A31 

5-1200 



intef 82380 

APPENDIX B-Ports Listed by Function (Continued) 

Port Address (HEX) 

04 
B1 
14 
05 
15 
94 
95 

06 
B2 
16 
07 
17 
96 
97 

co 
BF 
DO 
C1 
01 
9B 
99 

C2 
BB 
02 
C3 
03 
9A 
9B 

C4 
B9 
04 
C5 
05 
9C 
90 
C6 
BA 
06 
C7 
07 
9E 
9F 

Description 

OMA CONTROLLER 

Read/Write OMA Channel 2 Target Address, AO-A 15 
Read/Write OMA Channel 2 Target Address, A 16-A23 
Read/Write OMA Channel 2 Target Address, A24-A31 
Read/Write OMA Channel 2 Byte Count, BO-B 15 
Read/Write OMA Channel 2 Byte Count, B 16-B23 
Read/Write OMA Channel 2 Requester Address, AO-A 15 
Read/Write OMA Channel 2 Requester Address, A16-A31 

Read/Write OMA Channel 3 Target Address, AO-A 15 
Read/Write OMA Channel 3 Target Address, A16-A23 
Read/Write OMA Channel 3 Target Address, A24-A31 
Read/Write OMA Channel 3 Byte Count, BO-B15 
Read/Write OMA Channel 3 Byte Count, B 16-B23 
Read/Write OMA Channel 3 Requester Address, AO-A 15 
Read/Write OMA Channel 3 Requester Address, A16-A31 

Read/Write OMA Channel 4 Target Address, AO-A 15 
Read/Write OMA Channel 4 Target Address, A16-A23 
Read/Write OMA Channel 4 Target Address, A24-A31 
Read/Write OMA Channel 4 Byte Count, BO-B15 
Read/Write OMA Channel 4 Byte Count, B16-B23 
Read/Write OMA Channel 4 Requester Address, AO-A 15 
Read/Write OMA Channel 4 Requester Address, A16-A31 

Read/Write OMA Channel 5 Target Address, AO-A 15 
Read/Write OMA Channel 5 Target Address, A 16-A23 
Read/Write OMA Channel 5 Target Address, A24-A31 
Read/Write OMA Channel 5 Byte Count, BO-B15 
Read/Write OMA Channel 5 Byte Count, B16-B23 
Read/Write OMA Channel 5 Requester Address, AO-A 15 
Read/Write OMA Channel 5 Requester Address, A16-A31 

Read/Write OMA Channel 6 Target Address, AO-A 15 
Read/Write OMA Channel 6 Target Address, A 16-A23 
Read/Write OMA Channel 6 Target Address, A24-A31 
Read/Write OMA Channel 6 Byte Count, BO-B15 
Read/Write OMA Channel 6 Byte Count, B16-B23 
Read/Write OMA Channel 6 Requester Address, AO-A 15 
Read/Write OMA Channel 6 Requester Address, A16-A31 

Read/Write OMA Channel 7 Target Address, AO-A 15 
Read/Write OMA Channel 7 Target Address, A 16-A23 
Read/Write OMA Channel 7 Target Address, A24-A31 
Read/Write OMA Channel 7 Byte Count, BO-B 15 
Read/Write OMA Channel 7 Byte Count, B16-B23 
Read/Write OMA Channel 7 Requester Address, AO-A 15 
Read/Write OMA Channel 7 Requester Address, A 16-A31 

5-1201 

I 



intef 82380 

APPENDIX B-Ports Listed by Function (Continued} 

Port Address (HEX) 

20 

21 

22 
28 
29 
2A 
2B 
2C 
20 
2E 
2F 

AO 

A1 

A2 
AB 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
30 

31 

32 
38 
39 
3A 
3B 
3C 
30 
3E 
3F 

Description 

INTERRUPT CONTROLLER 

Write Bank B ICW1, OCW2, or OCW3 
Read Bank B Poll, Interrupt Request or In-Service 

Status Register 
Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 
Read Bank B ICW2 
Read/Write IRQ8 Vector Register 
Read/Write IRQ9 Vector Register 
Reserved 
Read/Write IRQ11 Vector Register 
Read/Write IRQ12 Vector Register 
Read/Write IRQ13 Vector Register 
Read/Write IRQ14 Vector Register 
Read/Write IRQ15 Vector Register 

Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 

Status Register 
Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read Bank C ICW2 
Read/Write IRQ16 Vector Register 
Read/Write IRQ17 Vector Register 
Read/Write IRQ18 Vector Register 
Read/Write IRQ19 Vector Register 
Read/Write IRQ20 Vector Register 
Read/Write IRQ21 Vector Register 
Read/Write IRQ22 Vector Register 
Read/Write IRQ23 Vector Register 

Write Bank A ICW1, OCW2 or OCW3 
Read Bank A Poll, Interrupt Request oor In-Service 

Status Register 
Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 
Read Bank A ICW2 
Read/Write IRQO Vector Register 
Read/Write IRQ1 Vector Register 
Read/Write IRQ1 .5 Vector Register 
Read/Write IRQ3 Vector Register 
Read/Write IRQ4 Vector Register 
Reserved 
Reserved 
Read/Write IRQ7 Vector Register 

5-1202 



82380 

APPENDIX B-Ports Listed by Function (Continued) 

Port Address (HEX) Description 

40 
41 
42 
43 
44 
47 

64 

72 
73 
74 
75 

1C 

61 
80 
88 

7F 

2A 
3D 
3E 
45 
46 
76 
77 
7D 
7E 
cc 
CD 

PROGRAMMABLE INTERVAL TIMER 

Read/Write Counter 0 Register 
Read/Write Counter 1 Register 
Read/Write Counter 2 Register 
Write Control Word Register I-Counter 0, 1, 2 
Read/Write Counter 3 Register 
Write Word Register II-Counter 3 

CPU RESET" 
Write CPU Reset Register (Data-1111 XXXOH) 

WAIT STATE GENERATOR 

Read/Write Wait State Register 0 
Read/Write Wait State Register 1 
Read/Write Wait State Register 2 
Read/Write Refresh Wait State Register 

DRAM REFRESH CONTROLLER 

Read/Write Refresh Control Register 

INTERNAL CONTROL AND DIAGNOSTIC PORTS 

Write Internal Control Port 
Read/Write Internal Diagnostic Port 0 
Read/Write Internal Diagnostic Port 1 

RELOCATION REGISTER 

Read/Write Relocation Register 

INTEL RESERVED PORTS 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

5-1203 



intef 82380 

APPENDIX C 
Pin . Descriptions 

The 82380 provides all of the signals necessary to 
interface it to an 80386 processor. It has separate 
32-bit address and data buses. It also has a set of 
control signals to support operation as a bus master 
or a bus slave. Several special function signals exist 
on the 82380 for interfacing the system support pe­
ripherals to their respective system counterparts. 
Following are the definitions of the individual pins of 
the 82380. These brief descriptions 1:1re provided as 
a reference. Each signal is further defined within the 
sections whi<;:h describe the associated 82380 func­
tion. 

A2-A31 VO ADDRESS BUS 

This is the 32-bit address bus. The addresses are 
doubleword memory and 1/0 addresses. These are 
three-state signals which are active only during Mas­
ter mode. The address lines should be connected 
directly to the 80386's local bus. 

BEO# 1/0 BYTE-ENABLE 0 

BEO# active indicates that data bits D0-07 are be­
ing accessed or are valid. It is connected directly to 
the 80386's BEO#. The byte enable signals are ac­
tive outputs when the 82380 is in the Master mode. 

BEU 1/0 BYTE-ENABLE 1 

BE1 # active indicates that data bits D8-D15 are 
being accessed or are valid. It is connected directly 
to the 80386's BE1 #. The byte enable signals are 
active only when the 82380 is in the Master mode. 

BE2# 1/0 BYTE-ENABLE 2 

BE2# active indicates that data bits D15-D23 are 
being accessed or are valid. It is connected directly 
to the 80386's BE2#. The byte enable signals are 
active only when the 82380 is in the Master mode. 

BE3# 1/0 BYTE-ENABLE 3 

BE3# active indicates that data bits D24-D31 are 
being accessed or afe valid. The byte enable signals 
are active only when the 82380 is in the Master 

' mode. This pin should be connected directly to the 
80386's BE3#. This pin is used for factory testing 
and must be low during reset. The 80386 drives 
BE3 # low during reset. 

. D0-031 1/0 DATA BUS 

This is the 32-bit data bus. These pins are active 
outputs during interrupt acknowledges, during Slave 
accesses, and when the 82380 is in the Master 
mode. 

CLK2 PROCESSOR CLOCK 

This pin must be connected to CLK2. The 82380 
monitors the phase of this clock. in order to remain 
synchronized with the 80386. This clock drives all of 
the internal synchronous circuitry. 

DIC# 1/0 DATA/CONTROL 

DIC# is used to distinguish between 80386 control 
cycles and OMA or 80386 data access cycles. It is 
active as an output only in the Master mode. 

W/R# 1/0 WRITE/READ 

W /R # is used to distinguish between write and read 
cycles. It is active as an output only in the Master 
mode. 

M/10# 1/0 MEMORY/IQ 

M/10# is used to distinguish between memory and 
10 accesses. It is active as an output only in the 
Master mode. 

ADS# 1/0 ADDRESS STATUS 

This signal indicates presence of a valid address on 
the address bus. It is active as output only in the 
Master mode. ADS# is active during the first T-state 
where addresses and control signals are valid. 

NA# NEXT ADDRESS 

Asserted by a peripheral or memory to begin a pipe­
lined address cycle. This pin is monitored only while 
the 82380 is in the Master mode. In the Slave mode, 
pipelining is determined by the current and past 
status of the ADS# and READY# signals. 

5-1204 



intef 82380 

HOLD 0 HOLD REQUEST 

This is an active-high signal to the 80386 to request 
control of the system bus. When control is granted, 
the 80386 activates the hold acknowledge signal 
(HLDA). 

HLDA HOLD ACKNOWLEDGE 

This input signal tells the OMA controller that the 
80386 has relinquished control of the system bus to 
the OMA controller. 

OREO (0-3, 5-7) OMA REQUEST 

The OMA Request inputs monitor requests from pe­
ripherals requiring OMA service. Each of the eight 
OMA channels has one OREO input. These active­
high inputs are internally synchronized and priori­
tized. Upon reset, channel O has the highest priority 
and channel 7 the lowest. 

DREQ4/IRQ9# 
QUEST 

OMA/INTERRUPT RE-

This is the OMA request input for channel 4. It is also 
connected to the interrupt controller via interrupt re­
quest 9. This internal connection is available for 
OMA channel 4 only. The interrupt input is active low 
and can be programmed as either edge of level trig­
gered. Either function can be masked by the appro­
priate mask register. Priorities of the OMA channel 
and the interrupt request are not related but follow 
the rules of the individual controllers. 

Note that this pin has a weak internal pull-up. This 
causes the interrupt request to be inactive, but the 
OMA request will be active if there is no external 
connection made. Most applications will require that 
either one or the other of these functions be used, 
but not both. For this reason, it is advised that OMA 
channel 4 be used for transfers where a software 
request is more appropriate (such as memory-to­
memory transfers). In such an application, DREQ4 
can be masked by software, freeing IRQ9# for other 
purposes. 

EOP# 1/0 END OF PROCESS 

As an output, this signal indicates that the current 
Requester access is the last access of the currently 
operating OMA channel. It is activated when Termi­
nal Count is reached. As an input, it signals the OMA 
channel to terminate the current buffer and proceed 
to the next buffer, if one is available. This signal may 
be programmed as an asynchronous or synchro­
nous input. 

EOP# must be connected to a pull-up resistor. This 
will prevent erroneous external requests for termina­
tion of a OMA process. 

EDACK (0-2) 0 ENCODED OMA ACKNOWL­
EDGE 

These signals contain the encoded acknowledge­
ment of a request for OMA service by a peripheral. 
The binary code formed by the three signals indi­
cates which channel is active. Channel 4 does not 
have a OMA acknowledge. The inactive state is indi­
cated by the code 100. During a Requester access, 
EDACK presents the code for the active OMA chan­
nel. During a Target access, EDACK presents the 
inactive code 100. 

IRQ (11-23)# INTERRUPT REQUEST 

These are active low interrupt request inputs. The 
inputs can be programmed to be edge or level sensi­
tive. Interrupt priorities are programmable as either 
fixed or rotating. These inputs have weak internal 
pull-up resistors. Unused interrupt request inputs 
should be tied inactive externally. 

INT 0 INTERRUPT OUT 

INT signals the 80386 that an interrupt request is 
pending. 

CLKIN TIMER CLOCK INPUT 

This is the clock input signal to all of the 82380's 
programmable timers. It is independent of the sys­
tem clock input (CLK2). 

TOUT1/REF# 0 TIMER 1 OUTPUT/REFRESH 

This pin is software programmable as either the di­
rect output of Timer 1 , or as the indicator of a refresh 
cycle in progress. As REF#, this signal is active dur­
ing the memory read cycle which occurs during re­
fresh. 

TOUT2#/IRQ3# 1/0 TIMER 2 OUTPUT/IN­
TERRUPT REQUEST3 

This is the inverted output of Timer 2. It is also con­
nected directly to interrupt request 3. External hard­
ware can use IRQ3# if Timer 2 is programmed as 
OUT=O (TOUT2# = 1) 

TOUT3# 0 TIMER 3 OUTPUT 

This is the inverted output of Timer 3. 

5-1205 



intef 82380 

READY# READY INPUT 

This active-low input indicates to the 82380 that the 
current bus cycle is complete. READY is sampled by 
the 82380 both while it is in the Master mode, and 
while it is in the Slave mode. 

wsc (0-1) WAIT STATE CONTROL 

WSCO AND WSC1 are inputs used by the Wait-State 
Generator to determine the number of wait states 
required by the currently accessed memory or 1/0. 
The binary code on these ins, combined with the M/ 
10# signal, selects an internal register in which a 
wait-state count is stored. The combination WSC = 
11 disables the wait-state generator. 

READYO# 0 READY OUTPUT 
' 

This is the synchronized output of the wait-state 
generator. It is also valid during 80386 accesses to 
the 82380 in the Slave Mode when the 82380 re­
quires wait states. READYO# should feed directly 
the 80386's READY# input. 

RESET RESET 

This synchronous input serves to initialize the state 
of the 82380 and provides basis for the CPURST 
output. RESET must be held active for at least 15 
CLK2 cycles in order to guarantee the state of the 
82380. After Reset, the 82380 is in the Slave mode 
with all outputs except timers and interrupts in their 
inactive states. The state of the timers and interrupt 
controller must be initialized through software. This 
input must be active for the entire time required by 
the 80386 to guarantee proper reset. 

CPURST 0 CPU RESET 

CPURST provides a synchronized reset signal for 
the CPU. It is activated in the event of a software 
reset command, an 80386 shut-down detect, or a 
hardware reset via the RESET pin. The 82380 holds 
CPURST active for 62 clocks in response to either a 
software reset command or a shut-down detection. 
Otherwise CPURST reflects the RESET input. 

Vee + 5V input power 
Vss Ground 

Table C-1. Wait-State Select Inputs 

Port Wait-State Registers Select Inputs 
Address 07 04 03 DO WSC1 wsco 

72H MemoryO 1/00 0 0 
73H Memory 1 1/01 0 1 
74H Memory2 1/02 1 1 

DISABLED 1 1 

M/10# 1 0 

5-1206 



inter 82380 

APPENDIX D 
82380 System Notes 

82380 TIMER UNIT SYSTEM NOTES 

The 82380 DMA controller with Integrated System 
Peripherals is functionally inconsistent with the data 
sheet. This document explains the behavior of the 
82380 Timer Unit and outlines subsequent limita­
tions of the timer unit. This document also provides 
recommended workarounds. 

1.0 WRITE CYCLES TO THE 82380 
TIMER UNIT 

This errata applies only to SLAVE WRITE cycles to 
the 82380 timer unit. During these cycles, the data 
being written into the 82380 timer unit may be cor­
rupted if CLKIN is not inhibited during a certain "win­
dow" of the write cycle. 

1.1 Description 

Please refer to Figure 1. 

During write cycles to the 82380 timer unit, the 
82380 translates the 386DX interface signals such 
as ADS#, W/R#, M/10#, and DIC# into several 
internal signals that control the operation of the in­
ternal sub-blocks (e.g., Timer Unit). 

The 82380 timer unit is controlled by such internal 
signals. These internal signals are generated and 
sampled with respect to two separate clock signals: 
CLK2 (the system clock) and CLKIN (the 82380 tim­
er unit clock). 

Since the CLKIN and CLK2 clock signals are used 
internally to generate control signals for the inter­
face to the timer unit, some timing parameters must 
be met in order for the interface logic to function 
properly. 

Those timing parameters are met by inhibiting the 
CLKIN signal for a specific window during Write Cy­
cles to the 82380 Timer Unit. 

The CLKIN signal must be inhibited using external 
logic, as the GATE function of the 82380 timer unit is 
not guaranteed to totally inhibit CLKIN. 

1.2 Consequences 

This CLKIN inhibit circuitry guarantees proper write 
cycles to the 82380 timer unit. 

Without this solution, write cycles to the 82380 timer 
unit could place corrupted data into the timer unit 
registers. This, in turn, could yield inaccurate results 
and improper timer operation. 

The proposed solution would involve a hardware 
modification for existing systems. 

1.3 Solution 

A timing waveform (Figure 2) shows the specific win­
dow during which CLKIN must be inhibited. Please 
note that CLKIN must only be inhibited during the 
window shown in Figure 2. This window is defined by 
two AC timing parameters: 

ta = 9 ns 

The proposed solution provides a certain amount of 
system "guardband" to make sure that this window 
is avoided. 

PAL equations for a suggested workaround are also 
included. Please refer to the comments in the PAL 
codes for stated assumptions of this particular work­
around. A state diagram (Figure 3) is provided to 
help clarify how this PAL is designed. 

Figure 4 shows how this PAL would fit into a system 
workaround. In order to show the effect of this work­
around on the CLKIN signal, Figure 5 shows how 
CLKIN is inhibited. Note that you must still meet the 
CLKIN AC timing parameters (e.g., t47 (min), t4s 
(min)) in order for the timer unit to function properly. 

Please note that this workaround has not been test­
ed. It is provided as a suggested solution. Actual 
solutions will vary from system to system. 

1.4 Long Term Plans 

Intel has no plans to fix this behavior in the 82380 
timer unit. 

5-1207 

I 



intJ 82380 

module Timer_82380_Fix 
flag '-r2','-q2','-fl', '-t4', '-wl,3,6,5,4,16,7,12,17,18,15,14' 
title '82380 Timer Unit CLKIN 

INHIBIT signal PAL Solution ' 
Timer_Unit_Fix device 'Pl6R6'; 

"This PAL inhibits the CLKIN signal (that comes from an oscillator) 
"during Slave Writes to the 82380 Timer unit. 

•ASSUMPTION: 

"NOTE: 

This PAL assumes that an external system address 
decoder provides a signal to indicate that an 82380 
Timer Unit access is taking place. This input 
signal is called TMR in this PAL. This PAL also 
assumes that this TMR signal occurs during a 
specific T-State, Please see Figure 3 of this 
document to see when this signal is expected to 
be active by this PAL. 

This PAL does not support pipelined 82380 SLAVE 
cycles. 

"(c) Intel Corporation 1989. This PAL is provided as a proposed 
"method of solving a certain 82380 Timer Unit problem. This PAL 
"has not been tested or validated. Please validate this solution 
"for your system and application. 

5-1208 



intJ 

"Input Pins• 

CLK2 pin 
RESET pin 
TMR pin 

!RDY pin 
!ADS pin 

CLK pin 
W_R pin 
ncl pin 
nc3 pin 
GNDa pin 
GNDb pin 
CLKIN_IN pin 

•output Pins• 

Q_o pin 

CLKIN_OUT pin 
INHIBIT pin 
so pin 
Sl pin 

"Declarations• 

Valid_ADS = ADS ll: 

Valid_RDY = RDY ll: 

l; 
2; 
3; 

4• 
' 5; 

6; 
7; 
8; 
9; 

10; 
ll; 
12; 

18; 

17; 
16; 
15; 
14; 

CLK 

CLK 

82380 

•system Clock 
"Microprocessor RESET signal 
"Input from Address Decoder, indicating 
•an access to the timer unit of the 
"82380. 
"End of Cycle indicator 
"Address and control strobe 
"PHI2 clock 
"Write/Read Signal" 
"No Connect o• 
"No Connect l" 
"Tied to ground, documentation only 
•output enable, documentation only 
"Input-CLKIN directly from oscillator 

"Internal signal only, fed back to 
"PAL logic" 
"CLKIN signal fed to 82380 Timer Unit 
"CLKIN Inhibit signal 
•unused State Indicator Pin 
•unused State Indicator Pin 

"ADS# sampled in PHil of 386DX T-State 

"RDY# sampled in PHil of 386DX T-State 

Timer_Acc = TMR ll: CLK "Timer Unit Access, as provided by 
•external Address Decoder • 

State_Diagram [INHIBIT, Sl, SO] 

state 000: 

state 001: 

state 010: 

state 110: 

if RESET then 000 
else if Valid_ADS ll: W_R then 001 
else 000; 

if RESET then 000 
else if Timer_Acc then 010 
else if !Timer_Acc then 000 
else 001; 

if RESET then 000 
else if CLK then llO 
else 010; 

if RESET then 000 
else if CLK then lll 
else llO; 

5-1209 

El 



intef 82380 

state 111: if RESET then 000 
else if CLK then 011 
else 111; 

state 011: if RESET then 000 
else if Valid_RDY then 000 
else 011; 

state 100: if RESET then 000 
else 000; 

state 101: if RESET then 000 
else 000; 

EQUATIONS 

Q_O := CLKIN_IN ; "Latched incoming clock. This signal is used 
"internally to feed into the MUX-ing logic" 

CLKIN_OUT :: (INHIBIT & CLKIN_OUT & !RESET) 
+(!INHIBIT & Q_O & !RESET) ; 

"Equation for CLKIN_OUT. This 
•reeds directly to the 82380 Timer Unit.• 

END 

Page l 

ABEL(tm) 3.10 - Document Generator 30-June 89 03:17 
PM 
82380 Timer Unit CLKIN 

INHIBIT signal PAL Solution 
Equations for Module Timer_82380_Fix 

Device Timer_Unit_Fix 

- Reduced Equations: 

!INHIBIT := ( !CLK & !INHIBIT # CLK & SO # RESET # !Sl) ; 

!Sl := (RESET 
# INHIBIT & !Sl 
# CLK & !INHIBIT & ! - RDY & SO & Sl 
# !CLK & !Sl 
# !Sl & !TMR 
# !SO & !Sl) ; 

!SO ·- (RESET 
# INHIBIT & !Sl 
# CLK & !INHIBIT & ! - RDY & Sl 
# !CLK & !SO 
# !INHIBIT & !SO & Sl 
# SO & !Sl 
# !Sl & !W_R 
#-ADS & !Sl); 

5-1210 



intef 82380 

!Q_O := ( !CLKIN_IN) ; 

!CLKIN_OUT := (RESET # !CLKIN_OUT & INHIBIT # !INHIBIT & !Q_O) ; 

Page 2 

ABEL(tm) 3.10 - Document Generator 30-June 89 03:17 
PM 
82380 Timer Unit CLKIN 

INHIBIT signal PAL Solution 
Chip diagram for Module Timer_82380_Fix 

Device Timer_Unit_Fix 

CLK2 

RESET 

TMR 

ROY 

ADS 

CLK 

W_R 

nc1 

nc3 

GNDa 

P16R6 

20 

19 

18 Q_O 

17 CLKIN_OUT 

16 INHIBIT 

15 so 
14 S1 

13 

12 CLKIN_IN 

11 GNDb 

290128-87 

end of module Timer_82380_Fix 

CLK2 

ADS 

W/R 
M7iO 

ROY 

CLKIN 

D0-07 

"' ()0 

"' c x 

82380 

CS, WR, RD and 
other internal signals 

m jllll--• c: 
U) 

~ 

TIMER 

UNIT 

290128-88 

Figure 1. Translation of 386DX Signals to Internal 82380 Timer Unit Signals 

5-1211 

I 



intJ 

-
r-

"' -::! 

r-

.. ....., 
::! 

r-' 

., ..... ::! 

r-

... ..... ::! 

...... 

.. ..... .... 

r-

;:: -
...r:: 

~1 ~ 
·U 

82380 

I I I v I I 
I I I 

I I r-
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

~ 

~· 

t-

0 

B 
~ 

· . 'r 
I 
I 

...... '· 

r ,,, x 

·~ ... 
I~ I~ 

;;; 

I! i I 
Q 
I ... 0 

"' Q 3E 8 
< 

Figure 2. 82380 Timer Unit Write Cycle 

5-1212 

~ "' ~ ID 
I 

~ 
ID 

"' g 
~ "' ~ p 
~ 

~ 
~ 

~ 
~ 
~ 
[>< 

~ 
[;: 
~ 
~ 
~ 
~ 

~ 

~ 
~ 
~ 
~ 
~ 
~ "' >< "'c 

CCX) 
3E Cl>C\I 
>< 

II II c::l 
-'.£l 



inter 82380 

[INHIBIT, S1, SO] 

CLK 

(INHIBIT) 
290128-C1 

Figure 3. State Diagram for Inhibit Signal 

l CLK2/CLK 
CIRCUIT 

CLK2 CLK 

TIMER-PAL L ,,,., 
386DX™ 

16R8 

1 17 CLK2 
CLK2 CLK2 I--

6 
CLK 

CLKIN 

RESET LL 
2 

RESET 
ROY LL 4 

ROY 

ADS 
5 -ADS 

I 
W7R ["'"" 7 W7R 

~ 
12 ,.. CLKIN 

TMR CLKIN ~-

ADDR DECODER 

TMR 
t----' 

CLKIN OSC j 
290128-C2 

NOTE: 
This solution does not support pipelined 82380 SLAVE Cycles. 

Figure 4. System with 82380 Timer Unit "Inhibit" Circuitry 

5-1213 



intef 82380 

!:::: 
,......, 

CD "U 
(j) 

:r: > 
z ·.:: 

(j) 

"U 
"--"' 

z 
:;;c 
_J 

u 

,......, 
0 
c 
O> ·.:: 
0 

"--"' 

z 
::::.:: 
_J 

u 

8 
I 

"' "' g 
"' 

Figure 5(a). Inhibited CLKIN in an 82380 Timer Unit and CLKIN Minimum HIGH Time 

5-1214 



intef 

.......... 
iii 
c 
Cl ·.:: 
0 

'-" 

z 
S2 
...J 
u 

82380 

I 
,,• 

,, & 
c 
0 

.......... 
-c 
(J) 

> ·.:: 
(J) 

-c 
'-" 

z 
S2 
...J 
u 

"' & 

1 .., 
-; 
0 

.r: 

"' 

!::: 
CD 

:::c 
z 

Figure 5(b). Inhibited CLKIN in an 82380 Timer Unit and CLKIN Minimum LOW Time 

5-1215 

I 



intef 82380 

82380 DATA SHEET REVISION HISTORY 

Changes in this revision: 

Figure4-1: Added details about IRQ3# and IRQ2#/IRQ1.5#. 

Section 5.2.1: Added note referring reader to Appendix D (System Notes). 

Table 13-2: Changed V1He MIN to Vee - 0.8V. 

Figure 13-1 : Changed signal names to reflect accurate drive levels and measurement points for those sig­
nals. 

Appendix D: Added this appendix to explain the restrictions on the CLKIN signal of the 82380 Timer Unit. 

5-1216 



376™ HIGH PERFORMANCE 
32-BIT EMBEDDED PROCESSOR 

• Full 32-Bit Internal Architecture • Complete Intel Development Support 
- 8-, 16-, 32-Bit Data Types - C, PL/M, Assembler 
- 8 General Purpose 32-Bit Registers - ICETM-376, In-Circuit Emulator 
- Extensive 32-Bit Instruction Set - iRMK™ Real Time Kernel 

• High Performance 16-Bit Data Bus - iSDM™ Debug Monitor 

-16 or 20 MHz CPU Clock - DOS Based Debug 

- Two-Clock Bus Cycles • Extensive Third-Party Support: 
-16 Mbytes/Sec Bus Bandwidth - Languages: C, Pascal, FORTRAN, 

• 16 Mbyte Physical Memory Size BASIC and ADA* 
-Hosts: VMS*, UNIX*, MS-DOS*, and 

• High Speed Numerics Support with the Others 
80387SX - Real-Time Kernels 

• Low System Cost with the 82370 • High Speed CHMOS IV Technology 
Integrated System Peripheral • Available in 100 Pin Plastic Quad Flat-

• On-Chip Debugging Support Including Pack Package and 88-Pin Pin Grid Array 
Break Point Registers (See Packaging Outlines and Dimensions #231369) 

INTRODUCTION 

The 376 32-bit embedded processor is designed for high performance embedded systems. It provides the 
performance benefits of a highly pipelined 32-bit internal architecture with the low system cost associated with 
16-bit hardware systems. The 80376 processor is based on the 80386 and offers a high degree of compatibil­
ity with the 80386. All 80386 32-bit programs not dependent on paging can be executed on the 80376 and all 
80376 programs can be executed on the 80386. All 32-bit 80386 language translators can be used for 
software development. With proper support software, any 80386-based computer can be used to develop and 
test 80376 programs. In addition, any 80386-based PC-AT* compatible computer can be used for hardware El 
prototyping for designs based on the 80376 and its companion product the 82370. 

Execution Unit MMU 

32-Bit Registers Protection 

64-Bit Barrel Segment 
Shifter Registers 

Multiply/Divide 
Segment 

r1 ALU H 
Translator 

I~ 
J1 Bus Interface 

32-Blt Doto Poth Unit 

11 
Decoder H Prefetch 

Queue 

'--1 Instruction Prefetcher 
Queue 

Prefelch Unit 

80376 Microarchitecture 

Intel, iRMK, ICE, 376, 386, lntel386, iSDM, lntel1376 are trademarks of Intel Corp. 
*UNIX is a registered trademark of AT&T. 
ADA is a registered trademark of the U.S. Government, Ada Joint Program Office. 
PC-AT is a registered trademark of IBM Corporation. 
VMS is a trademark of Digital Equipment Corporation. 
MS-DOS is a trademark of Microsoft Corporation. 

5-1217 

Control 

I-¥-
P¥---

240182-48 

December 1990 
Order Number: 240182-004 



intef 376 EMBEDDED PROCESSOR 

1.0 PIN DESCRIPTION 

Address 

A1 18 
A2 51 
A3 52 
A4 53 
As 54 
A5 55 
A? 56 
As 58 
Ag 59 
A10 60 
A11 61 
A12 62 
A13 64 
A14 65 
A15 66 
A16 70 
A11 72 
A10 73 
A19 74 
A2o 75 
A21 76 
A22 79 
A23 80 

DO 
Vss 

HLDA 
HOLD 

Vss 
NA 

READY 
Vee 
Vee 
Vee 
Vss 
Vss 
Vss 
Vss 

CLK2 
ADS 
BLE 

A1 
BHE 

NC 
Vee 
Vss 

M/iO 
D/C 
W/R 

(1)0 CJ o-N fl)Ot'l'otlt'lf")N U>(I) .... 
.... N cnOt<')"lf'U'>C.Or-. ococn ........ .- cno .... .- .... NN <nU>N 
oo>>ocooo>ooooo>>ooo<<>>< 

Figure 1.1. 80376 100-Pin Quad Flat-Pack Pin Out (Top View) 

Table 1.1. 100-Pin Plastic Quad Flat-Pack Pin Assignments 

Data Control N/C 

Do 1 ADS 16 20 
D1 100 BHE 19 27 
D2 99 BLE 17 
D3 96 BUSY 34 29 
D4 95 CLK2 15 30 
Ds 94 DIC 24 31 
D5 93 ERROR 36 43 
D1 92 FLT 28 44 
Da 90 HLDA 3 45 
Dg 89 HOLD 4 46 
D10 88 INTR 40 47 
D11 87 LOCK 26 
D12 86 M/10 23 
D13 83 NA 6 
D14 82 NMI 38 
D1s 81 PEREQ 37 

READY 7 
RESET 33 
W/R 25 

5-1218 

A20 
A19 
A18 
A17 
Vee 
A16 
Vee 
Vss 
Vss 
A15 
A14 
A13 
Vss 
A12 
A11 
A10 
A9 
AS 
Vee 
A7 
A6 
A5 
A4 
A3 
A2 

240182-52 

Vee 
8 
9 
10 
21 
32 
39 
42 
48 
57 
69 
71 
84 
91 
97 

Vss 
2 
5 

11 
12 
13 
14 
22 
35 
41 
49 
50 
63 
67 
68 
77 
78 
85 
98 



intef 

M 

0 0 

376 EMBEDDED PROCESSOR 

0 0 

Top View 
(Component Side) 

G 

0 0 0 0 0 0 0 0 o'-
Vee Yss N/C A1 ADS READY HOLD DO 02 Yss Vee Vss Vee 

0 0 0 0 0 0 0 0 0 0 0 0 0 
Vss Yee M/iO BHE BIE CLK2 NA HLDA 01 03 Yss Vee Yss 

0 0 
Vee D/C 

0 0 
Vss W/R 

0 0 
Yee LOCK 

0 0 
Vss RESET 

0 0 
PEREO BUSY 

0 0 
ERROR NMI 

0 0 
Yss INTR 

10 0 0 
Yee A2 

11 0 0 

0 0 
04 Vee 

0 0 
06 05 

0 0 
07 DB 

0 0 
09 010 

0 0 
011 012 

0 0 
013 014 

0 0 
015 A23 

0 0 10 

A21 A22 

0 0 11 

~ u ~ ~ 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Yss A4 AS A7 AS A10 A13 A15 A17 A18 A20 Yee Yss 

13 0 0 0 0 0 0 0 0 6 0 0 0 0 13 

Vee Yss Vee AS A9 A11 A12 AU A16 A19 Yee Yss Vee 

M 

A 

Bottom View 
(Pin Side) 

A 

M 

01 0 0 0 0 0 0 0 0 0 0 0 0 0 01 
Yee Yss Vee Yss D2 Do HOLD READY ADS A1 N/C ¥55 Vee 

02 0 0 0 0 0 0 0 0 0 0 0 0 0 02 
Yss Yee Yss 03 o, HLDA NA CLK2 8TI BHE M/iO Vee Vss 

03 0 0 

04 0 0 

05 0 0 
Da D7 

06 0 0 

07 0 0 

08 0 0 

09 0 0 

10 0 0 

11 0 0 

0 0 03 
D/C Vee 

0 0 04 
W/R Vss 

0 0 05 
LOCK Yee 

0 0 06 
RESET Yss 

0 0 07 
BUSY PEREQ 

0 0 08 
NMI ERROR 

0 0 09 
INTR Yss 

0 0 10 

0 0 11 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Yss Vee A20 A1s A17 A15 A13 A10 As A7 A5 A4 Yss 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 

Vee Yss Vee A19 A16 A14 A12 A11 Ag Ae Yee Yss Yee 

A D 

Figure 1.2. 80376 88-Pin Grid Array Pin Out 

5-1219 

240182-49 

240182-2 



intJ 376 EMBEDDED PROCESSOR 

Table 1.2. 88-Pin Grid Array Pin Assignments 

Pin Label Pin Label Pin Label Pin Label 

2H CLK2 12D A1a 2L M/10 11A. Vee 
98 D15 12E A11 ' 

5M LOCK 13A Vee 
SA D14 13E A15 1J ADS 13C Vee 
S8 D13 ~2F A15. 1H READY 13L Vee 
7A D12 13F A14 2G NA 1N Vee 
78 D11 12G A13 1G HOLD 13N Vee 
SA D10 13G A12 2F HLDA 118 Vss 
S8 Dg t3H A11 7N PEREQ 2C Vss 
5A Da 12H A10 7M BUSY 1D Vss 
58 D1 13J Ag SN ERROR 1M Vss 
48 Ds 12J Aa 9M INTR 4N Vss 
4A D5 12K A1 SM NMI 9N Vss 
38 D4 13K As SM RESET 11N Vss 
2D Da 12L A5 28 Vee 2A Vss 
1E D2 12M A4 128 Vee 12A Vss 
2E D1 11M As 1C Vee 18 Vss 
1F Do ·10M A2 2M Vee 138 Vss 
9A A23 1K A1 3N Vee 13M Vss 
10A A22 2J 8LE 5N Vee 2N Vss 
108 ~ 2K 8HE 10N Vee SN Vss 
12C A2o 4M W/R 1A Vee 12N Vss 
13D A10 3M DIC 3A Vee 1L N/C 

5-1220 



intJ 376 EMBEDDED PROCESSOR 

The following table lists a brief description of each pin on the 80376. The following definitions are used in 
these descriptions: 

The named signal is active LOW. 
I Input signal. 
0 Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

Symbol Type Name and Function 

CLK2 I CLK2 provides the fundamental timing for the 80376. For additional 
information see Clock in Section 4.1. 

RESET I RESET suspends any operation in progress and places the 80376 in a 
known reset state. See Interrupt Signals in Section 4.1 for additional 
information. 

D1s-Do 1/0 DATA BUS inputs data during memory, 1/0 and interrupt acknowledge 
read cycles and outputs data during memory and 1/0 write cycles. See 
Data Bus in Section 4.1 for additional information. 

A2a-A1 0 ADDRESS BUS outputs physical memory or .port 1/0 addresses. See 
Address Bus in Section 4.1 for additional information. 

W/R 0 WRITE/READ is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals in Section 
4.1 for additional information. 

DIC 0 DATA/CONTROL is a bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: interrupt 
acknowledge, halt, and instruction fetching. See Bus Cycle Definition 
Signals in Section 4.1 for additional information. 

M/10 0 MEMORY 1/0 is a bus cycle definition pin that distinguishes memory 
cycles from input/output cycles. See Bus Cycle Definition Signals in 
Section 4.1 for additional information. 

LOCK 0 BUS LOCK is a bus cycle definition pin that indicates that other 
system bus masters are denied access to the system bus while it is 
active. See Bus Cycle Definition Signals in Section 4.1 for additional 
information. 

ADS 0 ADDRESS STATUS indicates that a valid bus cycle definition and 
address (W/R, D/C, M/10, SHE, SLE and A23-A1) are being driven at 
the 80376 pins. See Bus Control Signals in Section 4.1 for additional 
information. 

NA I NEXT ADDRESS is used to request address pipelining. See Bus 
Control Signals in Section 4.1 for additional information. 

READY I BUS READY terminates the bus cycle. See Bus Control Signals in 
Section 4.1 for additional information. 

SHE, SLE 0 BYTE ENABLES indicate which data bytes of the data bus take part in 
a bus cycle. See Address Bus in Section 4.1 for additional 
information. 

HOLD I BUS HOLD REQUEST input allows another bus master to request 
control of the local bus. See Bus Arbitration Signals in Section 4.1 
for additional information. 

5-1221 

I 

I 



intef 376 EMBEDDED PROCESSOR 

Symbol Type Name and Function 
HLDA 0 BUS HOLD ACKNOWLEDGE output indicates that the 80376 has 

surrendered control of its local bus to another bus master. ·See Bus 
Arbitration Signals in Section 4.1 for additional information. 

INTR I INTERRUPT REQUEST is a maskable input that signals the 80376 to 
suspend execution of the current program and execute an interrupt 
acknowledge function. $ee Interrupt Signals in Section 4.1 for 
additional information. 

NMI I NON-MASKABLE INTERRUPT REQUEST is a non-maskable input 
that signals the 80376 to suspend execution of the current program 
and execute an interrupt acknowledge function. See Interrupt Signals 
in Section 4.1 for additional. information. 

BUSY I BUSY signals a busy condition from a processor extension. See 
Coprocessor Interface Signals in Section 4.1 for additional 
information. 

ERROR I ERROR signals an error condition from a processor extension. See 
Coprocessor Interface Signals in Section 4.1 for additional 
information. 

PEREQ I PROCESSOR EXTENSION REQUEST indicates that the processor 
extension has da~ to be transferred by the 80376. See Coprocessor 
Interface Signals in Section 4.1 for additional information. 

m I FLOAT, when active, forces all bidirectional and output signals, 
including HLDA, to the float condition. FLOAT is not available on the . PGA package. See Float for additional information . 

N/C - NO .CONNECT should always remain unconnected. Connection of a 
N/C pin may cause the processor to malfunction or be incompatible 
with future steppings of the 80376. 

Vee I . SYSTEM POWER provides the + 5V nominal D.C. supply input. 

Vss, I SYSTEM GROUND provides OV connection from which all inputs and 
outputs are measured. ' 

2.0 ARCHITECTURE OVERVIEW sists of the execution unit and instruction unit. The 
execution unit contains the eight 32-bit general reg­
isters which are used for both address calculation 
and data operations and a 64-bit barrel shifter used 
to speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The 80376 supports the protection mechanisms 
needed by sophisticated multitasking embedded 
systems and real-time operating systems. The use 
of these protection mechanisms is completely op­
tional. For embedded applications not needing pro­
tection, the 80376 can easily be configured to pro­
vide a 16 Mbyte physical address space. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 80376 is capable of execution at 
sustained rates of 2.5-3.0 million instructions per 
second. ' · 

The 80376 offers on-chip testability and debugging 
features. Four break point registers allow conditional 
or unconditional break point traps on code execution 
or data accesses for powerful debugging of even 
ROM based systems. Other testability features in­
clude self-test and tri-stating of output buffers during 
RESET. 

The Intel 80376 embedded processor consists of a 
central processing unit, a memory management unit 
and a bus interface. The central processing unit con-

The Memory Management Unit (MMU) consists of a 
segmentation and protection unit. Segmentation al­
lows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi-
cient sharing. · 

The protection unit provides four levels of protection 
for isolating and protecting applications and the op­
erating system from ·each other. The hardware en­
forced protection allows the design of systems with 
a high degree of integrity and simplifies debugging. 

Finally, to facilitate high performance system hard­
ware designs, the 80376 bus interface offers ad­
dress pipelining and direct Byte Enable signals for 
each byte of the data bus. 

5-1222 



infef 376 EMBEDDED PROCESSOR 

2. 1 Register Set 

The 80376 has twenty-nine registers as shown in Figure 2.1. These registers are grouped into the following six 
categories: 

31 16 15 8 7 

AH * AL EAX 

BH 81>< BL EBX 

CH cjx CL ECX 

DH cjx DL EDX 

SI ESI 

DI EDI 

BP EBP 

SP ESP 

15 

cs 

SS 

DS 

ES 

FS 

GS 

31 

LINEAR BREAKPOINT ADDRESS 0 ORO 

LINEAR BREAKPOINT ADDRESS 1 DR1 

LINEAR BREAKPOINT ADDRESS 2 DR2 

LINEAR BREAKPOINT ADDRESS 3 DR3 

DR4 

DRS 

BREAKPOINT STATUS DR6 

BREAKPOINT CONTROL DR7 

- INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.1. 80376 Base Architecture Registers 

5-1223 

GENERAL PURPOSE 
REGISTERS 

SEGMENT 
REGISTERS 

DEBUG 
REGISTERS 

240182-47 



intJ 376 EMBEDDEDPROCESSOR 

General Registers: The eight 32-bit general pur­
pose registers are used to contain arithmetic and 
logical operands. Four of these (EAX, EBX, ECX and 
EDX) can be used either in their entirety as 32-bit 
registers, as/ 16-bit registers, or split into pairs of 
separate 8-bit registers. 

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer Registers: These 
two 32-bit special purpose registers in Figure 2.1 
record or control certain aspects of the 80376 proc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect'the outcome 
of many instructions and modify the semantics of 
some instructions. The Instruction Pointer, called 
EIP, is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments it after executing an instruction. 

Control Register: The 32-bit control register, CAO, 
is used to control Coprocessor Emulation. 

SPECIAL FIELDS: 

System Address Registers: These four special 
registers reference the tables or segments support­
ed by the 80376/80386 protection model. These ta­
bles or segments are: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register), 
LDTR (Local Descriptor Table Register), 
TR (Task State Segment Register). 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. The use of the debug registers is described in 
Section 2.11 Debugging Support. 

EFLAGS REGISTER 

The flag Register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS, shown in Figure 2.2, control certain opera­
tions and indicate the status of the 80376 processor. 
The function of the flag bits is given in Table 2.1. 

STATUS FLAGS: 

..-------------OVERFLOW 

.---------SIGN 

.---------ZERO 

.------AUX CARRY 

1/0 PRIVILEGE LEVEL---------~ 

NESTED TASK-------~ 

.---- PARITY 

CARRY 
31 17 16 15 

0 RF 

1110 9 8 7 6 5 4 3 

OF OF IF W ~ U 0 AF 0 

CONTROL FLAGS 

'-----TRAP 

'------INTERRUPT 

------DIRECTION 

'--------------RESUME 

240182-3 

MONITOR COPROCESSOR-----~ 

31 

~ - INTEL RESERVED DO NOT USE 
. 240182-'5 

EMULATE COPROCESSOR -----, 

TASK SWITCHED ----. 

Figure 2.2. Status and Control Register Bit Functions 

5-1224 

MP 1 CRO 
1 0 

240182-4 



inter 376 EMBEDDED PROCESSOR 

Table 2.1. Flag Definitions 

Bit Position Name Function 
0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise. 
2 PF Parity Flag-Set if low-order 8 bits of result contain an even number 

of 1-bits; cleared otherwise. 
4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low order 

four bits of AL; cleared otherwise. 
6 ZF Zero Flag-Set if result is zero; cleared otherwise. 
7 SF Sign Flag'---Set equal to high-order bit of result (0 if positive, 1 if 

negative). 
8 TF Single Step Flag-Once set, a single step interrupt occurs after the 

next instruction executes. TF is cleared by the single step interrupt. 
9 IF Interrupt-Enable Flag-When set, external interrupts signaled on the 

INTR pin will cause the CPU to transfer control to an interrupt vector 
specified location. 

10 OF Direction Flag-Causes string instructions to auto-increment (default) 
the appropriate index registers when cleared. Setting DF causes auto-
decrement. 

11 OF Overflow Flag'---Set if the operation resulted in a carry/borrow into 
the sign bit (high-order bit) of the result but did not result in a 
carry /borrow out of the high-order bit or vice-versa. 

12, 13 IOPL 1/0 Privilege Level-Indicates the maximum CPL permitted to 
execute 1/0 instructions without generating an exception 13 fault or 
consulting the 1/0 permission bit map. It also indicates the maximum 
CPL value allowing alteration of the IF bit. 

14 NT Nested Task-Indicates that the execution of the current task is 
nested within another task (see Task Switching). 

16 RF Resume Flag-Used in conjunction with debug register breakpoints. It 
is checked at instruction boundaries before breakpoint processing. If 
set, any debug fault is ignored on the next instruction. It is reset at the 
successful completion of any instruction except IRET, POPF, and 
those instructions causing task switches. 

CONTROL REGISTER 

The 80376 has a 32-bit control register called CAO that is used to control coprocessor emulation. This register 
is shown in Figures, 2.1 and 2.2. The defined CAO bits are described in Table 2.2. Bits 0, 4 and 31 of CAO have 
fixed values in the 80376. These values cannot be changed. Programs that load CAO should always load bits 
0, 4 and 31 with values previously there to be compatible with the 80386. 

Table 2.2. CRO Definitions 

Bit Position Name Function 
1 MP Monitor Coprocessor Extension-Allows WAIT instructions to cause 

a processor extension not present exception (number 7). 
2 EM Emulate Processor Extension-When set, this bit causes a 

processor extension not present exception (number 7) on ESC 
instructions to allow processor extension emulation. 

3 TS Task Switched-When set, this bit indicates the next instruction using 
a processor extension will cause exception 7, allowing software to test 
whether the current processor extension context belongs to the 
current task (see Task Switching). 

5-1225 



intJ 376 EMBEDDED PROCESSOR 

2.2 Instruction Set 

The instruction set is divided into nine categories of 
operations: , 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These 80376 processor instructions are listed in Ta­
ble 8.1 80376 Instruction Set and Clock Count 
Summary. 

All 80376 processor instructions operate on either 0, 
1, 2 or 3 operands; an operand resides in a register, 
in the instruction itself, or in memory. Most zero op­
erand instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 80376 has a 16-byte prefetch instruction 
queue an average of 5 instructions can be pre­
fetched. The use of two operands permits the follow­
ing types of common instructions: 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory 

The operands are either 8-, 16- or 32-bit long. 

2.3 Memory Organization 

Memory on the 80376 is divided into 8-bit quantities 
(bytes), 16-bit quantities (words), and 32-bit quanti­
ties (dwords). Words are stored in two consecutive 
bytes in memory with the low-order byte at the low­
est address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address. The address of a word or Dword is the 
byte address of the low-order byte. For maximum 
performance word and dword values should be at 
even physical addresses. 

In addition to these basic data types the 80376 proc­
essor supports segments. Memory can be divided 
up into one or more variable length segments, which 
can be shared between programs. 

ADDRESS SPACES 

The 80376 has three types of address spaces: 
logical, linear, and physical. A logical address 
(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, and 
DISPLACEMENT), discussed in Section 2.4 
Addressing Modes, into an effective address. 

Every selector has a logical base address associat­
ed with it that can be up to 32 bits in length. This 32-
bit logical base address is added to either a 32-bit 
offset address or a 16-bit offset address (by using 
the address length prefix )to form a final 32-bit 
linear address. This final linear address is then trun­
cated so that only the lower 24 bits of this address 
are used to address the 16 Mbytes physical memory 
address space. The logical base address is stored 
in one of two operating system tables (i.e. the Local 
Descriptor Table or Global Descriptor Table). 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 

5-1226 



intJ 376 EMBEDDED PROCESSOR 

EFFECTIVE ADDRESS CALCULATION 

Bose 

32 

Dlsplacement---------' 
Protection 

Descriptor 
Table 

(GOT or LDT) 

~l'.'.'~J'. A_::e;~ 
Bose 

~l~~~A_::e!~ 
Bose 

32 

1 BHE#. 
I BLE#. 
:A23-A1 

15 

16 Mbyte 
Physical 
Memory 

0 

OffFffFH 

___ _.o 

Selector RPL 14 1 ~i'.'.'~J'.: A_::e;~ 
-"""1--~--ft Base ___ ....___,, 

240182-6 

Figure 2.3. Address Translation 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 80376, segments are variable 
sized blocks of linear addresses which have certain 
attributes associated with them. There are two main 
types of segments, code and data. The simplest use 
of segments is to have one code and data segment. 
Each segment is 16 Mbytes in size overlapping each 
other. This allows code and data to be directly ad­
dressed by the same offset. 

In order to provide compact instruction encoding 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg-

ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general, data refer­
ences use the selector contained in the OS register, 
stack references use the SS register and instruction 
fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register, and override the implicit rules list­
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero. 
Further details of segmentation are discussed in 
Section 3.0 Architecture. 

5-1227 

I 



intef 376 EMBEDDED PROCESSOR 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVS, REP STOS, 
REP MOVS Instructions 
(DI is Base Register) 

Other Data References, 
with Effective Address 
Using Base Register of: 

[EAX) 
[EBX) 
[ECX) 
[EDX) 
[ESI] 
[EDI) 
[EBP) 
[ESP) 

2.4 Addressing Modes 

The 80376 provides a total of 8 addressing modes 
for instructions to specify operands. The addressing 
modes are optimized to allow the efficient execution 
of high level languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

The remaining 6 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg-

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

cs None 

SS None 

SS None 

ES None 

DS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
DS CS, SS, ES, FS, GS 
DS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
DS CS, SS, ES, FS, GS 
SS CS, SS, ES, FS, GS 
SS CS, SS, ES, FS, GS 

ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see Figure 2.3): 

DISPLACEMENT: an 8-, 16- or 32-bit immediate val­
ue following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil" 
ers to point to the start of the local variable area. 
Note that if the Address Length Prefix is used, only 
BX and BP can be used as a BASE register. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. Note that if the Address Length Prefix is 
used, no Scaling is available and only the registers 
SI and DI can be used to INDEX. 

5-1228 



intef 376 EMBEDDED PROCESSOR 

Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of BASE 
and INDEX components which requires one addi­
tional clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BASERegister + (INDEXRegister X scaling) + 
DISPLACEMENT 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8-, 16- or 32-bit 
DISPLACEMENT. 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

DS 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents is add­
ed to a DISPLACEMENT to form the operand's 
offset. 

4. Scaled Index Mode: An INDEX register's con­
tents is multiplied by a SCALING factor which is 
added to a DISPLACEMENT to form the oper­
and's offset. 

5. Based Scaled Index Mode: The contents of an 
INDEX register is multiplied by a SCALING factor 
and the result is added to the contents of a BASE 
register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

+Mi------1 

DESCRIPTOR REGISTERS 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

EFFECTIVE 
ADORE SS 

LINEAR 
ADDRESS 

~ 

______ .,. 

TARGET ADDRESS 

SEGMENT BASE ADDRESS 

Figure 2.4. Addressing Mode Calculations 

5-1229 

/ 
\ 

SEGMENT 
LIMIT 

SELECTED 
SEGMENT 

240182-7 

I 



376 EMBEDDED PROCESSOR 

GENERATING 16-BIT ADDRESSES biers. The Operand Length and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. · The 80376 executes code with a default length for 

operands and addresses of 32 bits. The 80376 is 
also able to execute operands and addresses of 16 
bits. This is specified through the use of override 
prefixes. Two prefixes, the Operand Length Prefix 
and the Address Length Prefix, override the de­
fault 32-bit length on an individual instruction basis. 
These prefixes are automatically added by assem-

The 80376 normally executes 32-bit code and uses 
either 8- or 32-bit displacements, and any register 
can be used as based or index registers. When exe­
cuting 16-bit code (by prefix overrides), the displace­
ments are either 8 or 16 bits, and the base and index 
register conform to the 16-bit model. Table 2.4 illus­
trates the differences. 

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16-Bit Addressing 32-Bit Addressing 

BASE REGISTER BX,BP Any 32-Bit GP Register 

INDEX REGISTER Sl,DI Any 32-Bit GP Register 
except ESP 

SCALE FACTOR None 1, 2, 4, 8 

DISPLACMENT 0, 8, 16 Bits 0, 8, 32 Bits 

2.5 Data Types 

The 80376 supports all of the data types commonly used in high level languages: 

Bit: A single bit quantity. 

Bit Field: 

Bit String: 

Byte: 

Unsigned Byte: 

Integer (Word): 

Long Integer (Double Word): 

Unsigned Integer (Word): 

Unsigned Long Integer 
(Double Word): 

Signed Quad Word: 

Unsigned Quad Word: 

Pointer: 

Long Pointer: 

Char: 

String: 

BCD: 

Packed BCD: 

A group of up to 32 contiguous bits, which spans a maximum of four 
bytes. 

A set of contiguous bits, on the 80376 bit strings can be up to 16 Mbits 
long. 

A signed 8-bit quantity. 

An unsigned 8-bit quantity. 

A signed 16-bit quantity. 

A signed 32-bit quantity. All operations assume a 2's complement 
representation. 

An unsigned 16-bit quantity. 

An unsigned 32-bit quantity. 

A signed 64-bit quantity. 

An unsigned 64-bit quantity. 

A 16- or 32-bit offset only quantity which indirectly references another 
memory location. 

A full pointer which consists of a 16-bit segment selector and either a 
16- or 32-bit offset. 

A byte representation of an ASCII Alphanumeric or control character. 

A contiguous sequence of bytes, words or dwords. A string may 
contain between 1 byte and 16 Mbytes. 

A byte (unpacked) representation of decimal digits 0-9. 

A byte (packed) representation of two decimal digits 0-9 storing one 
digit in each nibble. 

5-1230 



intef 376 EMBEDDED PROCESSOR 

When the 80376 is coupled with a numerics Coprocessor such as the 80387SX then the following 
common Floating Point types are supported. 

Floating Point: A signed 32-, 64- or 80-bit real number representation. Floating point 
numbers are supported by the 80387SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 80376 processor and the 80387SX coprocessor. 

7 0 
SIGNED IT"'fT"l 

BYTEu___j 
SIGN BIT .Ji______J 

MAGNITUDE 

7 0 
UN SIGN ED flTTT"T1 

BYTEL....:_j 
L_J 
MAGNITUDE 

+1 0 
1514 87 0 

s~~~g 11 I I j I I I I I t I j I I I I 
SIGN BIT.J .... L_M_s_B ___ _, 

MAGNITUDE 

+1 0 
15 0 

UNS~~~g I ' I I I ' I I I I I I I I I I I 
MAGNITUDE 

+3 +2 +1 0 
31 1615 0 

SIGNED DO~~~~ 11 I I I I I I I I I I I I I I I I I I I I I I I I I I I ' I I I 
SIGN BIT.J .... L_M_s_e ________ ~ 

MAGNITUDE 

+3 +2 +1 0 
31 0 

UNSIGNED oo~g~~ I 111j1tt)11II''1I'11j11' I'' 1j111) 

MAGNITUDE 

+7 +6 +5 +5 +3 +2 +1 

+N +1 0 
7 0 7 07 0 

BINARY flTTTTTT1 I I ii I I ii I I ii I ii I I 
CODED L....:_j e e e L.. __ _. • ..._ _ _,_ 

DECIMAL BCD BCD BCD 
(BCD) DIGIT N DIGIT 1 DIGIT 0 

+N +1 0 
7 0 7 07 0 

ASCllL!:J •• • l'"'"'l'"l"'I 
ASCII ASCII ASCII 

CHARACTERN CHARACTER1 CHARACTER0 

+N +1 0 
7 0 7 07 0 

PAC~~g L!:J • •• I" I I I ii I' ii I' Ii I 
L..J L..J 
MOST LEAST 
SIGNIFICANT DIGIT SIGNIFICANT DIGIT 

+N +1 0 
7/15 0 7/15 07/15 0 

sr~iJ~L!:J •• • l'"l"'l"'l'"I 

+2 GIGABITS 
-2 GIGABITS 

210 

STRl~I~ 11111 II \\ 11111 
BITO 

+3 +2 +1 0 
31 0 

;~.:>:ii I ' ' I I ' ' I I I I I I I I I I I I ' I I I I I I I I I I I I I 
POINTER 

OFFSET 

+5 +4 +3 +2 +1 0 
63 4847 3231 1615 

0 
0 47 0 

SIGNED ~g~g 1 .. 1.._l..__.___,_...__._.._.....,~ 
SIGN BIT.J .... L_M_s_B ________ ~ 

4i~~I~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I 
POINTER 

MAGNITUDE SELECTOR 

+9 +8 +7 +6 +5 +4 +3 +2 +1 0 
n o 

FL~~r~~11 I 
SIGN BIT .J.,.__.__._...__._..__.,_.__.__..__. 

EXPONENT MAGNITUDE 

+5 +4 +3 +2 +1 0 

BIT3~~~~1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
,.._---BIT FIELD ___ __, 

1 TO 32 BITS 

Figure 2.5. 80376 Supported Data Types 

5-1231 

OFFSET 

*SUPPORTED BY 80387SX 
NUMERIC DATA 
COPROCESSOR 

240182-8 



intJ 376 EMBEDDED PROCESSOR 

2.6 1/0 Space 

The 80376 has two distinct physical address 
spaces: physical memory and 1/0. Generally, pe­
ripherals are placed in 1/0 space .although the 
80376 also supports memory-mapped peripherals. 
The l/Q space consists of 64 Kbytes which can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or any 
combination of ports which add to no more than 64 
Kbytes. The M/10 pin acts as an additional address 
line, thus allowing the system designer to easily de­
termine which address space the processor is ac­
cessing. Note that the 1/0 address refers to a physi­
cal address. 

The 1/0 ports are accessed by the IN. and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the DX 
register. All 8-bit and 16-pit port addresses are zero 
extended on the upper address lines. The 1/0 in­
structions cause the M/IOpin to be driven LOW. 1/0 
port addresses .OOF8H through OOFFH are reserved · 
for use by Intel. 

2.7 Interrupts and Exceptjons 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditons. The difference between in­
terrupts and exceptions is that interrupts are used to 
handle asynchronous external events while excep­
tions handle instruction faults. Although a program 
can generate a software interruptvia an INT N in­
struction, the processor treats software interrupts as 
exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
. rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. · 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is suported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of 
the instruction causing .the exception to be deter­
mined. Thus, when an interrupt service routine has 
been completed, execution proceeds from the in-

· struction immediately following the interrupted in­
struction. On the other hand the return address from 
an exception/fault routine will always point at the 
instruction causing the exception and include any 
leading instruction prefixes. Table 2.5 summarizes 
the possible interrupts for the 80376 and shows 
where the return address points to. 

The 80376 has the ability to handle up to 256 differ­
ent interrupts/ exceptions. In order to service the in­
terrupts, a table with up to .. 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointe~s to the appropriate interrupt service routine. 
The interrupt vectors are 8,byte quantities, which are 
put in an Interrupt Descriptor Table. Of the 256 pos­
sible interrupts, 32 are reserved for use by Intel and 
the remaining 224 are free to be used by the system 
designer. 

INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 80376 which identifies the appropriate 
entry in the interrupt table. The table contains either 
an Interrupt Gate, a Trap Gate or a Task Gate that 
will point to an interrupt procedure or task. The user 
supplied interrupt service routine is executed. Final­
ly, when an IRET instruction is executed the old 
processor state is restored and program execution 
resumes at the· appropriate instruction. 

The 8-bit interrupt vector is supplied to the 80376 in 
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2 . 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The 
processor only responds to interrupts between in­
structions (string instructions have an "interrupt win­
dow" between memory moves which allows inter­
rupts during long string moves). When an interrupt 
occurs the processor reads an 8-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user defined interrupts). 

5-1232 



intJ 376 EMBEDDED PROCESSOR 

Table 2.5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function 
Interrupt 

Can Cause 
Points to 

Type 
Number 

Exception 
Faulting 

Instruction 

Divide Error 0 DIV, IDIV Yes FAULT 

Debug Exception 1 Any Instruction Yes TRAP* 

NMI Interrupt 2 INT 2 or NMI No NMI 

One-Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid OP-Code 6 Any Illegal Instruction Yes FAULT 

Device Not Available 7 ESC, WAIT Yes FAULT 

Double Fault 
8 

Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC No ABORT 

lnvalidTSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment Register Instructions Yes FAULT 

Stack Fault 12 Stack References Yes FAULT 

General Protection Fault 13 Any Memory Reference Yes FAULT 

Intel Reserved 14-15 - - -
Coprocessor Error 16 ESC, WAIT Yes FAULT 

Intel Reserved 17-32 

Two-Byte Interrupt 0-255 INTn No TRAP 
'Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction. 

Interrupts through Interrupt Gates automatically re­
set IF, disabling INTR requests. Interrupts through 
Trap Gates leave the state of the IF bit unchanged. 
Interrupts through a Task Gate change the IF bit ac­
cording to the image of the EFLAGs register in the 
task's Task State Segment (TSS). When an IRET 
instruction is executed, the original state of the IF bit 
is restored. 

tion is executed or the processor is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for servicing after executing the first 
IRET instruction. The disabling of INTR requests de­
pends on the gate in IDT location 2. 

Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt no interrupt acknowledgement se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
80376 will not service any further NMI request, or 
INT requests, until an interrupt return (IRET) instruc-

Software Interrupts 

A third type of interrupt/exception for the 80376 is 
the software interrupt. An INT n instruction causes 
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt table. 

A special case of the two byte software interrupt 
INT n is the one byte INT 3, or breakpoint interrupt. 
By inserting this one byte instruction in a program, 
the user can set breakpoints in his program as a 
debugging tool. 

5-1233 

II 



intef 376 EMBEDDED PROCESSOR 

A final type of software interrupt, is the single step 
interrupt. It is discussed in Single-Step Trap (page 
22). 

INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 80376 invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 80376 will invoke the appropriate interrupt serv­
ice routine. 

As the 80376 executes instructions, it follows a con­
sistent cycle in checking for exceptions, as shown in · 
Table 2.6. This cycle is repeated as each instruction 
is executed, and occurs in parallel with instruction 
decoding and execution. 

INSTRUCTION RESTART 

The 80376 fully supports restarting all instructions 
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
9 in Table 2.6), the 80376 device invokes the appro­
priate exception service routine. The 80376 is in a 
state that permits restart of the instruction. 

DOUBLE FAULT 

A Double fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception. 

2.8 Reset and Initialization 

When the processor is Reset the registers have the 
values shown in Table 2.7. The 80376 will then start 
executing instructions near the top of physical mem­
ory, at location OFFFFFOH. A short JMP should be 
executed within the segment defined for power-up 
(see Table 2.7). The GOT should then be initialized 
for a start-up data and code segment followed by a 
far JMP that will load the segment descriptor cache 
with the new descriptor values. The IDT table, after 
reset, is located at physical address OH, with a limit 
of 256 entries. 

RESET forces the 80376 to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be­
comes inactive, the 80376 will start executing in­
structions at the top of physical memory. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 80376 having just completed an instruction. It then performs the following checks 
before reaching the point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data 
Breakpoints set in the Debug Registers). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the 
Debug Registers for the next instruction). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 
13). 

5. Check for Faults decoding the next instruction (exception 6 if illegal opcode; or exception 13 if 
instruction is longer than 15 bytes, or privilege violation (i.e. not at IOPL or at CPL = 0). 

6. If WAIT opcode, check if TS = 1 and MP = 1 (exception 7 if both are 1). 

7. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1). 

8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR input signal (exception 
16 if ERROR input is asserted). 

9. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 
12, 13). 

5-1234 



intJ 376 EMBEDDED PROCESSOR 

Table 2.7. Register Values after Reset 

Flag Word (EFLAGS) uuuu0002H (Note 1) 

Machine Status Word (CAO) uuuuuuu1H (Note2) 

Instruction Pointer (EIP) OOOOFFFOH 

Code Segment (CS) FOOOH (Note 3) 

Data Segment (OS) OOOOH (Note 4) 

Stack Segment (SS) OOOOH 

Extra Segment (ES) OOOOH (Note 4) 

Extra Segment (FS) OOOOH 

Extra Segment (GS) OOOOH 

EAX Register OOOOH (Note 5) 

EDX Register Component and Stepping ID (Note6) 

All Other Registers Undefined (Note 7) 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined 
flag bits are zero. 
2. CAO: The defined 4 bits in the CAO is equal to 1 H. 
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and 
Limit set to OFFFFH. 
4. The Data and Extra Segment Registers (DS and ES) will have their Base Address set 
to OOOOOOOOOH and Limit set to OFFFFH. 
5. If self-test is selected, the EAX should contain a 0 value. If a value of O is not found 
the self-test has detected a flaw in the part. 
6. EDX register always holds component and stepping identifier. 
7. All unidentified bits are Intel Reserved and should not be used. 

2.9 Initialization 

Because the 80376 processor starts executing in protected mode, certain precautions need be taken during 
initialization. Before any far jumps can take place the GOT and/or LDT tables need to be setup and their 
respective registers loaded. Before interrupts can be initialized the IDT table must be setup and the IDTR must 
be loaded. The example code is shown below: 

**************************************************************** 

This is an example of startup code to put either an 80376, 
80386SX or 80386 into flat mode. All of memory is treated as 
simple" linear RAM. There are no interrupt routines. The 
Builder creates the GDT-alias and IDT-alias and places them, 
by default, in GDT[l] and GDT[2]. Other entries in the GDT 
are specified in the Build file. After initialization it jumps 
to a C startup routine. To use this template, change this jmp 
address to that of your code, or make the label of your code 
•c_startup•. 

This code was assembled and built using version 1.2 of the 
Intel RLL utilities and Intel 386ASM assembler. 

*** This code was tested *** 

**************************************************************** 

5-1235 

I 



intef ' 376 EMBEDDED PROCESSOR 

NAME FLAT. name of the .object module 

EXTRN c_startup:near this is the label jmped to after init 

pe_flag equ l 
data_selc equ 20h ; assume code is GDT[3], data GDT[4] 

INIT_CODE SEGMENT ER PUBLIC USE32 ; Segment base at Offffff80h 

PUBLIC GDT_DESC 

gdt_desc dq ? 

PUBLIC START 

start·: 
old 
smsw bx 
test bl,l 
jnz pestart 

reals tart 
db 66h 
mov eax,offset gdt_desc 
xor ebx,ebx 
mov bh,ah 
move b.l,al 
db 67h 
db 66h 
lgdt cs:[ebx] 
smsw ax 
or al,pe_flag 
lmsw ax 
jmp next 

pestart: 
mov ebx,offset gdt_desc 
xor eax,eax 
mov ax,b~ 
lgdt cs:[eax] 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov ss,bx 
mov es,bx 
mov fs,bx 
mov gs,bx 
jmp pejump 

next: 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov ss,bx 
mov es,bx 
mov fs,bx 
mov gs,bx 
db 66h 

pejump: 
jmp·far ptr c_startup 

org 70h 
jmp short start 

INIT_CODE ENDS 
END 

clear direction flag 
check for processor (80376) at reset 
use SMSW rather than MOV for speed 

is an.80386 and in real mode 
force the next operand into 32-bit mode. 
move address of the GOT descriptor into eax 
clear·ebx 
load 8 bits of address ~nto bh 
load 8 bits of address into bl 

use the 32-bit form of LGDT to load 
the 32-bits of address into the GDTR 
go into protected mode (set PE bit)_ 

flush prefetch queue 

;· lower portion of address only 

initialize data selectors 
GDT[3] 

initialize data selectors 
GDT[3] 

for the 80386, need to make a 32-bit jump 

but the 80376 is already 32-bit. 

only if segment base is at Offffff80h 

5-1236 



intJ 376 EMBEDDED PROCESSOR 

This code should be linked into your application for boot loadable code. The following build file illustrates how 
this is accomplished. 

FLAT; -- build program id 

SEGMENT 

GATE 

*segments (dpl=Ol, 
_phantom_code_ (dpl=Ol, 
_phantom_data_ (dpl=Ol, 
ini t_code (base=Offffff80h) ; 

gl3 (entry=l3, dpl=O, trap), 

Give all user segments a DPL of O. 
.These two segments are created by 
the builder when the FLAT control is used. 
Put startup code at the reset vector area. 

i32 (entry=32, dpl=O, interrupt), 
trap gate disables interrupts 
interrupt gates doesn't 

TABLE 
create GDT 

GDT (LOCATION = GDT_DESC, 

ENTRY = (3:_phantom_code_, 
4:_phantom_data_, 
5:code32, 
6:data, 
7:init_code) 

) ; 
TASK 

MAIN_TASK 
( 
DPL = 0, 
DATA = DATA, 

CODE = main, 

STACKS = (DATA), 

NO INTENABLED, 
PRESENT 

) ; 

MEMORY 

In a buffer starting at GDT_DESC, 
BLD386 places the GDT base and 
GDT limit values. Buffer must be 
6 bytes long. The base and limit 
values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Explicitly place segment 
-- entries into the GDT. 

Task privilege level is O. 
Points to a segment that 
indicates initial DS value. 
Entry point is main, which 
must be a public id. 

Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 
Present bit in TSS set to 1. 

(RANGE= (EPROM = ROM(Offff8000h •• Offffffffh), 
DRAM= RAM(O •• Offffh)), 

ALLOCATE= (EPROM = (MAIN_TASK))); 

END 

asm386 flatsim.a38 debug 
asm386 application.a38 debug 
bnd386 application.obj,flatsim.obj nolo debug oj (application.bnd) 
bld386 application.bnd bf (flatsim.bld) bl flat 

Commands to assemble and build a boot-loadable application named "application.a38". The initialization code 
is called "flatsim.a38", and build file is called "application.bid". 

5-1237 

I 



376 EMBEDDED PROCESSOR 

2.1 O Self-Test 

The 80376 has the capability to perform a self-test. 
The self-test checks the function of all of the Control 
ROM and most of the non-random logic of the part. 
Approximately one-half of the 80376 can be tested 
during self-test. 

Self-Test is initiated on the 80376 when the RESET 
pin transitions from HIGH to LOW, and the BUSY pin 
is LOW. The self-test takes about 220 clocks, or ap­
proximately 33 ms with a 16 MHz 80376 processor. 
At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register is zero. If the EAX register is not 
zero then the self-test has detected a flaw in the 
part. If selt-test is not selected after reset, EAX may 
be non-zero after reset. 

DEBUG REGISTERS 

2.:11 Debugging Support 

The 80376 provides several features which simplify 
the debugging process. The three categories of on-
chip debugging aids are: · 

1. The code execution breakpoint opcode (OCCH). 

2. The single-step capability provided by the TF bit 
in the flag register, and 

3. The code and data breakpoint capability provided 
by the Debug Registers DR0-3, DR6, and DR?. 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 
The breakpoint opcode is OCCh, and generates an 
exception 3 trap when executed. 

BREAKPOINT 0 DEBUG FAULT/TRAP---------------------. 

BREAKPOINT 1 DEBUG FAULT/TRAP-------------------, 

BREAKPOINT 2 DEBUG FAULT/TRAP-----------------. 

BREAKPOINT 3 DEBUG FAULT/TRAP---------------~ 

REGISTER ACCESS FAULT-------. 

Gti~tgg:t ~~~~~g:~i ~~!~t~: t---------------, 
LOCAL EXACT BREAKPOINT MATCH---------, 

GLOBAL EXACT BREAKPOINT MATCH ------~ 

GLOBAL DEBUG REGISTER ACCESS DETECT 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

DEBUG 
STATUS 
REGISTER 

B3 B2 B1 BO DR6 
3 2 1 0 

240182-9 

BREAKPOINT 
CONTROL 

LEN 3 RW3 LEN'2 RW2 LEN 1 RWt LEN 0 RWO L3 G2 L2 G1 L1 GD DR? 
6 5 4 3 2 

[ LENi: BREAKPOINT LENGTH i '----------"----! RWI: MEMORY ACCESS QUALIFIER i 

~ - INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.6. Debug Registers 

5-1238 

240182-10 



intef 376 EMBEDDED PROCESSOR 

SINGLE-STEP TRAP 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception. is auto vectored to exception number 1. 

The Debug Registers are an advanced debugging 
feature of the 80376. They allow data access break­
points as well as code execution breakpoints. Since 
the breakpoints are indicated by on-chip registers, 
an instruction execution breakpoint can be placed in 
ROM code or in code shared by several tasks, nei­
ther of which can be supported by the INT 3 break­
point opcode. 

The 80376 contains six Debug Registers, consisting 
of four breakpoint address registers and two break­
point control registers. Initially after reset, break­
points are in the disabled state; therefore, no break­
points will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug 
Registers are auto-vectored to exception 1. 
Figure 2.6 shows the breakpoint status and control 
registers. 

48/32 •BIT POINTER 

SELECTOR 
EFFECTIVE 
ADDRESS 

24 

3.0 ARCHITECTURE 

The Intel 80376 Embedded Processor has a physi­
cal address space of 16 Mbytes (224 bytes) and al­
lows the running of virtual memory programs of al­
most unlimited size (16 Kbytes x 16 Mbytes or 
256 Gbytes (238 bytes)). In addition the 80376 pro­
vides a sophisticated memory management and a 
hardware-assisted protection mechanism. 

3.1 Addressing Mechanism 

The 80376 uses two components to form the logical 
address, a 16-bit selector which determines the lin­
ear base address of a segment, and a 32-bit effec­
tive address. The selector is used to specify an 
index into an operating system defined table (see 
Figure 3.1 ). The table contains the 32-bit base ad­
dress of a given segment. The linear address is 
formed by adding the base address obtained from 
the table to the 32-bit effective address. This value 
is truncated to 24 bits to form the physical address, 
which is then placed on the address bus. 

SEGMENT LIMIT 

__ _. MEMORY OPERAND 

16 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

32 

SEGMENT BASE 
ADDRESS 

Figure 3.1. Address Calculation 

5-1239 

SELECTED 
SEGMENT 

240182-11 

II 



intef 376 EMBEDDED PROCESSOR 

3.2 Segmentation 

Segmentation is one method of memory manage­
ment and provides the basis for protection in the 
80376. Segments are used to encapsulate regions 
of memory which have common attributes. For ex­
ample, all of the code of a given program could be 
contained in a segment, or an operating system ta­
ble may reside in a segment. All information about 
each segment, is stored in an 8-byte data structure 
called a descriptor. All of the descriptors in a system 
are contained in tables recognized by hardware. 

TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

APL: Requestor Privilege Level-The privilege 
level of the original supplier of the selector. 
APL is determined by the least two significant 
bits of a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access 
that descriptor (and the segment associate.d 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level 
at which a task is currently executing, which 
equals the privilege level of the code seg­
ment being executed. CPL can also be deter­
mined by examining the lowest 2 bits of the 
CS register, except for conforming code seg­
ments. 

EPL: Effective Privilege Level-The effective 
privilege level is the least privileged of the 
APL and the DPL. EPL is the numerical maxi­
mum of APL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in an 80376 system. There are three 
types of tables on the 80376 which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and the lnterrup't Decriptor Table. All of the tables 
are variable length memory arrays, they can range in 
size between 8 bytes and 64 Kbytes. Each table can 
hold up to 8192 8-byte descriptors. The upper 13 
bits of a selector are used as an index into the de­
scriptor table. The tables have registers associated 
with them which hold the 32-bit linear base address, 
and the 16-bit limit of each table. 

Each of the tables have a register associated with it: 
GDTR, LOTA and IOTA; see Figure 3.2. The LGDT, 
LLDT and LIDT instructions load the base and limit 
of the Global, Local and Interrupt Descriptor Tables 
into the appropriate register. The SGDT, SLOT and 
SIDT store these base and limit values. These are 
privileged instructions. 

LDTR 

IDTR 

GDTR 

15 

LDT DESCR 
SELECTOR 

15 

IDT LIMIT 

IDT BASE 
LINEAR ADDRESS 

31 

15 

GOT LIMIT 

GOT BASE 
LINEAR ADDRESS 

31 

0 

0 

0 

0 

0 

15 0 I 
I 
I 

LDT LIMIT I 
I 
I 

LDT BASE I 

LINEAR ADDRESS I 
I 

32 I 
I 

PROGRAM INVISIBLE I 

AUTOMATICALLY LOADED : 
FROM LDT DESCRIPTOR 1 

·--------------· 

240182-12 

Figure 3.2. Descriptor Table Registers 

Global Descriptor Table 

The Global Descriptor Table (GOT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GOT can contain any type of 
segment descriptor except for interrupt and trap de­
scriptors. Every 80376 system contains a GOT. A 
simple 80376 system contains only 2 entries in the 
GOT; a code and a data descriptor. For maximum 
performance, descriptor tables should begin on 
even addresses. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GOT. This pro-

5-1240 



inter 376 EMBEDDED PROCESSOR 

vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6-byte GOT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT (see Figure 2.1 ). 

INTERRUPT DESCRIPTOR TABLE 

The third table needed for 80376 systems is the In­
terrupt Descriptor Table. The IDT contains the de­
scriptors which point to the location of up to 256 
interrupt service routines. The IDT may contain only 
task gates, interrupt gates and trap gates. The IDT 
should be at least 256 bytes in size in order to hold 
the descriptors for the 32 Intel Reserved Interrupts. 
Every interrupt used by a system must have an entry 
in the IDT. The IDT entries are referenced by INT 
instructions, external interrupt vectors, and excep­
tions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight-byte 
quantities which contain attributes about a given 
region of linear address space. These attributes in­
clude the 32-bit logical base address of the seg-

31 

ment, the 20-bit length and granularity of the seg­
ment, the protection level, read, write or execute 
privileges, and the type of segment. All of the attri­
bute information about a segment is contained in 12 
bits in the segment descriptor. Figure 3.3 shows the 
general format of a descriptor. All segments on the 
the 80376 have three attribute fields in common: the 
Present bit (P), the Descriptor Privilege Level bits 
(DPL) and the Segment bit (S). P = 1 if the segment 
is loaded in physical memory, if P = O then any 
attempt to access the segment causes a not present 
exception (exception 11). The DPL is a two-bit field 
which specifies the protection level, 0"-3, associated 
with a segment. 

The 80376 has two main categories of segments: 
system segments, and non-system segments (for 
code and data). The segment bit, S, determines if a 
given segment is a system segment, a code seg­
ment or a data segment. If the S bit is 1 then the 
segment is either a code or data segment, if it is 0 
then the segment is a system segment. 

Note that although the 80376 is limited to a 
16-Mbyte Physical address space (224), its base ad­
dress allows a segment to be placed anywhere in a 
4-Gbyte linear address space. When writing code for 
the 80376, users should keep code portability to an 
80386 processor (or other processors with a larger 
physical address space) in mind. A segment base 
address can be placed anywhere in this 4-Gbyte lin­
ear address space, but a physical address will be 

0 BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

BASE A LIMIT 
31 ... 24 G 1 0 v 19 ... 16 L 

BASE Base Address of the segment 
LIMIT The length of the segment 

p DPL 

l 

P Present Bit 1 = Present O = Not Present 
DPL Descriptor Privilege Level 0-3 

s TYPE A 

l ~ 

S Segment Descriptor: O = System Descriptor, 1 = Code or Data Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is 4 Kbyte Granular 

O = Segment length is byte granular 
O Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

Figure 3.3. Segment Descriptors 

31 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 

BASE A LIMIT ACCESS 

31 ... 24 G 1 0 v 19 ... 16 RIGHTS 
L BYTE 

BASE +4 
23 ... 16 

0 

0 

BASE 
23 ... 16 +4 

G Granularity Bit 1 = Segment length 1s 4 Kbyte granular 
O = Segment length is byte granular 

O Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

Figure 3.4. Code and Data Descriptors 
5-1241 

I 



intef 376 EMBEDDED PROCESSOR 

Table 3.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

Position 

7 Present (P) p = 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exits 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

4 Segment S=1 Code or Data (includes stacks) segment descriptor 
Descriptor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: 

} 
If 

2 Expansion ED = 0 Expand up segment, offsets must be s limit. Data 
Direction (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

1 Writable (W) W = O Data segment may not be written into. (S = 1, 
w = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

} 
If 

2 Conforming (C) C=1 Code segment may only be executed when Code 
CPL ~ DPL and CPL remains unchanged. Segment 

1 Readable (R) R=O Code segment may not be read. (S = 1, 
R=1 Code segment may be read. E = 1) 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

generated that is a truncated version of this linear 
address. Truncation will be to the maximum number 
of address bits. It is recommended to place EPROM 
at the highest physical address and DRAM at the 
lowest physical addresses. 

Code and Data Descriptors (S= 1) 

Figure 3.4 shows the general format of a code and 
data descriptor and Table 3.1 illustrates how the bits 
in the Access Right Byte are interpreted. 

Code and data segments have several descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is 1-byte­
granular or 4-Kbyte-granular. Base address bits 
31-24, which are normally found in 80386 descrip­
tors, are not made externally available on the 80376. 
They do not affect the operation of the 80376. The 
A31-A24 field should be set to allow an 80386 to 
correctly execute with EPROM at the upper 4096 
Mbytes of physical memory. 

System Descriptor Formats (S = O) 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 3.5 
shows the general format of system segment de­
scriptors, and the various types of system segments. 

80376 system descriptors (which are the same as 
80386 descriptor types 2, 5, 9, B, C, E and F) contain 
a 32-bit logical base address and a 20-bit segment 
limit. 

Selector Fields 

A selector has three fields: Local or Global Descrip­
tor Table Indicator (Tl), Descriptor Entry Index (In­
dex), and Requester ( the selector's) Privilege Level 
(RPL) as shown in Figure 3.6. The Tl bit selects ei­
ther the Global Descriptor Table or the Local De­
scriptor Table. The Index selects one of SK descrip­
tors in the appropriate descriptor table. The RPL bits 
allow high speed testing of the selector's privilege 
attributes. 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's 
value. 

5-1242 



inter 376 EMBEDDED PROCESSOR 

31 16 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

BASE G O O O LIMIT p 
31 ... 24 19 ... 16 

DPL 0 TYPE 
BASE 

23 ... 16 +4 

Type Defines Type Defines 
0 Invalid 8 Invalid 
1 Reserved 9 Available 80376/80386 TSS 
2 LDT A Undefined (Intel Reserved) 
3 Reserved 8 Busy 80376/80386 TSS 
4 Reserved C 80376/80386 Call Gate 
5 Task Gate (80376/80386 Task) D Undefined (Intel Reserved) 
6 Reserved E 80376/80386 Interrupt Gate 
7 Reserved F 80376/80386 Trap Gate 

Figure 3.5. System Descriptors 

SEGMENT 
REGISTER 

15 

SELECTOR 

........... ~~ ............... .....,,.... ..... ~ 
TABLE INDEX 
INDICATOR 

Tl=1 Tl=O 

N N 

DESCRIPTOR 
NUMBER 

6 6 

5 5 

4 4 
3 OESCRIPTOR 3 

2 2 

0 0 NULL 

LOCAL GLOBAL 
DESCRIPTOR DESCRIPTOR 

TABLE TABLE 
(LDT) (GOT) 

240182-13 

Figure 3.6. Example Descriptor Selection 

3.3 Protection 

The 80376 offers extensive protection features. 
These protection features are particularly useful in 
sophisticated embedded applications which use 
multitasking real-time operating systems. For sim­
pler embedded applications these protection capa­
bilities can be easily bypassed by making all applica­
tions run at privilege level (PL) 0. 

RULES OF PRIVILEGE 

The 80376 controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules. 

-Data stored in a segment with privilege level p 
can be accessed only by code executing at a 
privilege level at least as privileged as p. 

-A code segment/procedure with privilege level p 
can only be called by a task executing at the 
same or a lesser privilege level than p. 

PRIVILEGE LEVELS 

At any point in time, a task on the 80376 always 
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies what the task's 
privilege level is. A task's CPL may only be changed 

5-1243 

I 



inter 376 EMBEDDED PROCESSOR 

by ·control transfers through gate descriptors to a 
code segment with a different privilege level. Thus, 
an application program running at PL= 3 may call an 
operating system routine at PL= 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
APL field. The selector's APL is only used to estab­
lish a less trusted privilege level than the current 
pri~ilege l~vel of the task for the use of a segment. 
This level 1s called the task's effective privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's APL. The APL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer. 
Since the originator of a selector can specify any 
~PL value, the Adjust APL (AAPL) instruct.ion is pro­
vided to force the APL bits to the originator's CPL. 

110 Privilege 

The 1/0 privilege level (IOPL) lets the operating sys­
tem code executing at CPL= O define the least privi­
leged level at which 1/0 instructions can be used. An 
exce~tion 13 (General Protection Violation) is gener­
ated 1f an 1/0 instruction is attempted when the CPL 
of the task is less privileged than the IOPL. The 
~OPL is stored in bits 13 and 14 of the EFLAGS reg­
ister. The following instructions cause an exception 
13 if the CPL is greater than IOPL: IN, INS, OUT, 
OUTS, STI, CLI and LOCK prefix. 

Descriptor Access 

There are basically two types of segment acces­
sess: those involving code segments such as con­
trol transfers, and those involving data accesses. 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed 
the instruction used, the type of descriptor used and 
CPL, APL, and DPL as described above. 

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 80376 makes protection 
validation checks. Selectors loaded in the OS ES 
FS, GS registers must refer only to data segm~nt o~ 
readable code segments. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

T_he rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 3.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13. 

CALL GATES 

Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the ·gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 

5-1244 



infef 376 EMBEDDED PROCESSOR 

Table 3.2. Descriptor Types Used for Control Transfer 

Control Transfer Types 

lntersegment within the same privilege level 

lntersegment to the same or higher privilege level 
Interrupt within task may change CPL 

lntersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) ~ O 
"NT (Nested Task bit of flag register) ~ 1 

Operation Types 

JMP, CALL, RET, IRET* 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET, IRET* 

CAL,L, JMP 

CALL, JMP 

IRET** 
Interrupt Instruction, 
Exception, External 
Interrupt 

5-1245 

Descriptor 
Referenced 

Code Segment 

Call Gate 

Trap or 
Interrupt 
Gate 

Code Segment 

Task State 
Segment 

Task Gate 

Task Gate 

Descriptor 
Table 

GOT/LDT 

GOT/LDT 

IDT 

GOT/LDT 

GOT 

GOT/LDT 

IDT 



intef 

NOTE: 
BIT _MAP _OFFSET 
must be ,,;, DFFFH 

P-------------· 
I 

ACCESS T I 
I TSS H1 I RIGHTS LIMIT 
I I 
I I 
I BASE H1 I 
I I 

: 31 PROGRAM 0: 
: ____ ~N~l_:l~':_E ____ ! 

TASK REGISTER 

TR SELECTOR }-

15 0 

Type = 9: Available 80376 
TSS. 

Type = 8: Busy 80376 TSS. 

h 

31 

376 EMBEDDED PROCESSOR 

31 16 

0000000000000000 

ESPO 

0000000000000000 

ESP1 

0000000000000000 

ESP2 

0000000000000000 

CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

STACKS 
FOR 
CPL 0, 1, 2 

CURRENT 
TASK 
STATE 

BILMAP _OFFSET(15:0) 0000000000000000 TT ~4 D 

~:y';;jil:Aiil( __ .;........;....,::::'.~:::::::::::::::==~==tL 68'-. EBUG 

..J. TRAP BIT 

'f' 

0 

32 l\ILMA P _OFFSET 

64 

96 OFFSET + c 
OFFSET + 10 

.), 

1/0 PERMISSION BITMAP '(' 

554o7 (ONE BIT PER BYTE 1/0 OFFSET + 1FEC 

65439 PORT. BITMAP MAY BE 
t-----~TRUNCATED USING TSS LIMIT.) 1------1 

OFFSET + 1FFO 

65471 l_ OFFSET + 1FF4 

65503 65472 OFFSET + 1FF8 

65535 65504 OFFSET + 1FFC 

"FFH" OFFSET + 2000 

t TSS LIMIT= OFF SET+ 2000H 
80386 TSS DESCRIPTOR (IN GOT) 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .. 0 

240182-14 

Figure 3.7. 80376 TSS And TSS Registers 

5-1246 



intJ 376 EMBEDDED PROCESSOR 

TASK SWITCHING 

A very important attribute of any multi-tasking oper­
ating system is its ability to rapidly switch between 
tasks or processes. The 80376 directly supports this 
operation by providing a task switch instruction in 
hardware. The 80376 task switch operation saves 
the entire state of the machine (all of the registers, 
address space, and a link to the previous task), 
loads a new execution state, performs protection 
checks, and commences execution in the new task. 
Like transfer of control by gates, the task switch op­
eration is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS), or a task gate descriptor in 
the GOT or LDT. An INT n instruction, exception, 
trap or external interrupt may also invoke the task 
switch operation if there is a task gate descriptor in 
the associated IDT descriptor slot. For simple appli­
cations, the TSS and task switching may not be 
used. The TSS or task switch. will not be used or 
occur if no task gates are present in.the GOT, LDT 
or IDT. 

The TSS descriptor points to a segment (see Figure 
3.7) containing the entire 80376 execution state. A 
task gate descriptor contains a TSS selector. The 
limit of an 80376 TSS must be greater than 64H, and 
can be as large as 16 Mbytes. In the additional TSS 
space, the operating system is free to store addition­
al information as the reason the task is inactive, the 
time the task has spent running, and open files be­
longing to the task. For maximum performance, TSS 
should start on an even address. 

Each Task must have a TSS associated with it. The 
current TSS is identified by a special register in· the 
80376 called the Task State Segment Register (TR). 
This register contains a selector referring to the task 
state segment descriptor that defines the current 
TSS. A hidden base and limit register associated 
with the TSS descriptor is loaded whenever TR is 
loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 

interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and CRO register give 
information about the state of a task which is useful 
to the operating system. The Nested Task bit, NT, 
controls the function of the IRET instruction. If NT = 
O the IRET instruction performs the regular return. If 
NT = 1, IRET performs a task switch operation 
back to the previous task. The NT bit is set or reset 
in the following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
TSS selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An inter­
rupt that does not cause a task switch will clear 
NT (The NT bit will be restored after execution 
of the interrupt handler). NT may also be set or 
cleared by POPF or IRET instructions. 

The 80376 task state segment is marked busy by 
changing the descriptor type field from TYPE 9 to 
TYPE OBH. Use of a selector that references a busy 
task state segment causes an exception 13. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Bit, 
TS, in the CRO register helps deal with the coproces- I 
sor's state in a multi-tasking environment. Whenever 
the 80376 switches tasks, it sets the TS bit. The 
80376 detects the first use of a processor extension 
instruction after a task switch and causes the proc-
essor extension not available exception 7. The ex-
ception handler for exception 7 may then decide 
whether to save the state of the coprocessor. 

The T bit in the 80376 TSS indicates that the proc­
essor should generate a debug exception when 
switching to a task. If T = 1 then upon entry to a 
new task a debug exception 1 will be generated. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

31 

63 

95 

127 

1 

0 

1 

0 

~ 

1 1 

0 1 

1 1 

0 0 

1 0 1 1 

0 0 0 1 

1 ( 1 1 

0 0 0 0 

0 0 0 0 0 1 1 1 1 

1 1 1 0 0 1 0 1 0 

1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 

etc. 

0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

; 
240182-15 

1/0 Ports Accessible 2 -+ 9. 12, 13. 15, 20 -+ 24, 27, 33, 34, 40, 41, 48, 50. 52, 53, 58 -+ 60, 62, 63, 96 -+ 127 

Figure 3.8. Sample 1/0 Permission Bit Map 

5-1247 



intJ 376 EMBEDDED PROCESSOR 

PROTECTION AND 110 PERMISSION BIT MAP 

The 1/0 instructions that directly refer to addresses 
in the processor's 1/0 space are IN, INS, OUT and 
OUTS. The 80376 has the ability to selectively trap 
references to specific 1/0 addresses. The structure 
that enables selective trapping is the 1/0 Permis­
sion Bit Map in the TSS segment (see Figures 3.7 
and 3.8). The 1/0 permission map is a bit vector. 
The size of the map and its location in the TSS seg­
ment are variable. The processor locates the 1/0 
permission map by means of the 110 map base field 
in the fixed portion of the TSS. The 1/0 map base 
field is 16 bits wide and contains the offset of the 
beginning of the 1/0 permission map. 

If an 1/0 instruction (IN, INS, OUT or OUTS) is en­
countered, the processor first checks whether 
CPL :s: IOPL. If this condition is true, the 1/0 opera­
tion may proceed. If not true, the processor checks 
the 110 permission map. 

Each bit in the map corresponds to an 110 port byte 
address; for example, the bit for port 41 is found at 
110 map base + 5 linearly, (5 x 8 = 40), bit offset 
1. The processor tests all the bits that correspond to 
the 1/0 addresses spanned by an 1/0 operation; for 
example, a double word operation tests four bits cor­
responding to four adjacent byte addresses. If any 
tested bit is set, the processor signals a general pro­
tection exception. If all the tested bits are zero, the 
1/0 operations may proceed. 

2X CLOCK( 
CLK2 

A -" i( DATA BUS 
'I v 

16-BIT[D0-015 
DATA 

Bus[ 
CONTROL 

BUS( 
ARBITRATION 

INTERRUPTS ( 

..... ADS 

NA II> 
READY ...,... 

HOLD 

HLDA 

INTR_.. 

NMI....._ 

RESET 

80376 
PROCESSOR 

It is not necessary for the 110 permission map to 
represent all the 1/0 addresses. 1/0 addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 110 map base should be at 
least one byte less than the TSS limit and the last 
byte beyond the 1/0 mapping information must con­
tain all 1 's. 

Because the 1/0 permission map is in the TSS seg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the 1/0 permission map in the task's TSS. 

IMPORTANT IMPLEMENTATION NOTE: 
Beyond the last byte of 1/0 mapping information in 
the 1/0 permission bit map must be a byte contain­
ing all 1's. The byte of all 1's must be within the 
limit of the 80376's TSS segment (see Figure 3.7). 

4.0 FUNCTIONAL DATA 

The Intel 80376 embedded processor features a 
straightforward functional interface to the external 
hardware. The 80376 has separate parallel buses 
for data and address. The data bus is 16 bits in 
width, and bidirectional. The address bus outputs 
24-bit address values using 23 address lines and 
two-byte enable signals. 

The 80376 has two selectable address bus cycles: 
pipelined and non-pipelined. The pipelining option 
allows as much time as possible for data access by 

-" 
ADDRESS BUS ) 

BHE v 
BLE 

--,. 

...... 

A1-A23 l 
24-BIT 

} BYTE ADDRESS 
ENABLES 

Wj_R 

QL.c 
M/10 

LOCK l '"' """' "'"""' 
i....PEREQ 

4 BUSY 

ERROR 
} COPROCESSOR SIGNALLING 

Yee 
GND } POWER CONNECTIONS 

240182-16 

Figure 4.1. Functional Signal Groups 

5-1248 



intef 376 EMBEDDED PROCESSOR 

starting the pending bus cycle before the present 
bus cycle is finished. A non-pipelined bus cycle 
gives the highest bus performance by executing ev­
ery bus cycle in two processor clock cycles. For 
maximum design flexibility, the address pipelining 
option is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 80376 bus cy­
cles perform data transfer in a minimum of only two 
clock periods. On a 16-bit data bus, the maximum 
80376 transfer bandwidth at 16 MHz is therefore 
16 Mbytes/sec. However, any bus cycle will be ex­
tended for more than two clock periods if external 
hardware withholds acknowledgement of the cycle. 

The 80376 can relinquish control of its local buses 
to allow mastership by other devices, such as direct 
memory access (DMA) channels. When relin­
quished, HLDA is the only output pin driven by the 
80376, providing near-complete isolation of the 

processor from its system (all other output pins are 
in a float condition). 

4. 1 Signal Description Overview 

Ahead is a brief description of the 80376 input and 
output signals arranged by functional groups. 

The signal descriptions sometimes refer to A.C. tim­
ing parameters, such as "t25 Reset Setup Time" and 
"t25 Reset Hold Time." The values of these parame­
ters can be found in Tables 6.4 and 6.5. 

CLOCK (CLK2) 

CLK2 provides the fundamental timing for the 
80376. It is divided by two internally to generate the 
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two 

PROCESSOR CLOCK 
PERIOD 

PROCESSOR CLOCK 
PERIOD 

CLK2[ 

INTERNAL [ 
PROCESSOR CLOCK 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
01 02 01 02 

62.5 NS MIN. 
(16 MHz MAX) 

Figure 4.2. CLK2 Signal and Internal Processor Clock 

5-1249 

240182-17 

I 



infef 376 EMBEDDED PROCESSOR 

phases, "phase one" and "phase two". Each CLK2 
period is a phase of the internal clock. Figure 4.2 
illustrates the relationship. If desired, the phase of 
the internal processor clock can be synchronized to 
a known phase by ensuring the falling edge of the 
RESET signal meets the applicable setup and hold 
times t25 and t26· 

DATA BUS (D15-Do) 

These three-state bidirectional signals provide the 
general purpose data path between the 80376 and 
other devices. The data bus outputs are active HIGH 
and will float during bus hold acknowledge. Data bus 
reads require that read-data setup and hold times 
t21 and t22 be met relative to CLK2 for correct oper­
ation. 

ADDRESS BUS (BHE, BLE, A23-A1) 

These three-state outputs provide physical memory 
addresses or 1/0 port addresses. A23-A1s are LOW 
during 1/0 transfers except for 1/0 transfers auto­
matically generated by coprocessor instructions. 

During coprocessor 1/0 transfers, A22-A15 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the 1/0 address 
driven by the 80376 for coprocessor commands is 
8000F8H, and the 1/0 address driven by the 80376 
processor for coprocessor data is 8000FCH or 
8000FEH. 

The address bus is capable of addressing 16 Mbytes 
of physical memory space (OOOOOOH through 
OFFFFFFH), and 64 Kbytes of 1/0 address space 
(OOOOOOH through OOFFFFH) for programmed 1/0. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs BHE and BLE directly indi­
cate which bytes of the 16-bit data bus are involved 
with the current transfer. BHE applies to D15-D8 
and BLE applies to D7-D0. If both BHE and BCE are 
asserted, then 16 bits of data are being transferred. 
See Table 4.1 for a complete decoding of these sig­
nals. The byte enables are active LOW and will float 
during bus hold acknowledge. 

Table 4.1. Byte Enable Definitions 

BHE BLE Function 

0 0 Word Transfer 

0 1 Byte Transfer on Upper Byte of the Data Bus, D15-D8 

1 0 Byte Transfer on Lower Byte of the Data Bus, Dr Do 

1 1 Never Occurs 

5-1250 



intJ 376 EMBEDDED PROCESSOR 

BUS CYCLE DEFINITION SIGNALS 
(W/R, D/C, M/10, LOCK) 

These three-state outputs define the type of bus cy­
cle being performed: W IA distinguishes between 
write and read cycles, DIC distinguishes between 
data and control cycles, MllO distinguishes between 
memory and 110 cycles, and LOCK distinguishes be­
tween locked and unlocked bus cycles. All of these 
signals are active LOW and will float during bus ac­
knowledge. 

The primary bus cycle definition signals are WIR, 
DIC and MllO, since these are the signals driven 
valid as ADS (Address Status output) becomes ac­
tive. The LOCK signal is driven valid at the same 
time the bus cycle begins, which due to address 
pipelining, could be after ADS becomes active. Ex­
act bus cycle definitions, as a function of WIR, DIC 
and MliO are given in Table 4.2. 

LOCK indicates that other system bus masters are 
not to gcin control of the system bus while it is ac­
tive. LO K is activated on the CLK2 edge that be­
gins the first locked bus cycle (i.e., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned to the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY is 
returned in a previous bus cycle and another is 
pending (ADS is active) or the clock in which ADS is 
driven active if the bus was idle. This means that it 
follows more closely with the write data rules when it 
is valid, but may cause the bus to be locked longer 
than desired. The LOCK signal may be explicitly acti­
vated by the LOCK prefix on certain instructions. 
LOCK is always asserted when executing the XCHG 
instruction, during descriptor updates, and during the 
interrupt acknowledge sequence. 

BUS CONTROL SIGNALS 
(ADS, READY, NA) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS) 

This three-state output indicate~ that~ vali~bus cy­
cle definition and address (WIR, DIC, MllO, BHE, 
BLE and A23-A1) are being driven at the 80376 
pins. ADS is an active LOW output. Once ADS is 
driven active, valid address, byte enables, and defi­
nition signals will not change. In addition, ADS will 
remain active until its associated bus cycle begins 
(when READY is returned for the previous bus cycle 
when running pipelined bus cycles). ADS will float 
during bus hold acknowledge. See sections Non­
Plpelined Bus Cycles and Pipelined Bus Cycles 
for additional information on how ADS is asserted 
for different bus states. 

Transfer Acknowledge (READY) 

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BHE and 
BLE are accepted or provided. When READY is 
sampled active during a read cycle or interrupt ac- 5 knowledge cycle, the 80376 latches the input data 
and terminates the cycle. When READY is sampled 
active during a write cycle, the processor terminates 
the bus cycle. 

Table 4.2. Bus Cycle Definition 

M/10 D/C W/R Bus Cycle Type Locked? 

0 0 0 INTERRUPT ACKNOWLEDGE Yes 

0 0 1 Does Not Occur -
0 1 0 110 DATA READ No 

0 1 1 110 DATA WRITE No 

1 0 0 MEMORY CODE READ No 

1 0 1 HALT: SHUTDOWN: No 
Address= 2 Address= 0 
BHE = 1 BHE = 1 
BLE = 0 BLE = 0 

1 1 0 MEMORY DATA READ Some Cycles 

1 1 1 MEMORY DATA WRITE Some Cycles 

5-1251 



. <,' 

376 EMBEDDED PROCESSOR 

READY is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY must eventually be asserted to ac­
knowledge every bus cycle, including Halt Indication 
and Shutdown Indication bus cycles. When being 
sampled, READY must always meet setup and hold 
times t19 and t20 for correct operation. 

Next Address Request (NA) 

This is used to request pipelining. This input indi­
cates the. system is prepared to accept new values 
of BHE, BCE, A2a-A1, WIR, DIC and MllO from the 
80376 ·even if the end of the current cycle is not 
being acknowledged on READY. If this input is ac­
tive when sampled, the next bus cycle's address and 
status signals are driven onto the bus, provided the 
next bus request is already pending internally. NA is 
ignored in clock cycles in which ADS or READY is 
activated. Thi.s signal is active LOW and must satisfy 
setup and holdJimes t1s and t15 for correct opera­
tion. See . Plpellned Bus Cycles and Read and 
Write Cycles for additional information. 

BUS ARBITRATION.SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge for addi­
tional information . 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
80376 requires bus mastership. When control is 
granted, the 80376 floats A2a-A1, BHE, BLE, 
D15-D0, LOCK, MIR'.5, DIC, WIR and ADS, and 
then activates HLDA, thus entering the bus hold ac­
knowledge state. The local bus will remain granted 
to the requesting master until HOLD becomes inac­
tive. When HOLD becomes inactive, the 80376 will 
deactivate HLDA and drive the local bus (at the 
same time), thus terminating the hold acknowledge 
condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge 
state since none of the 80376 floated outputs have 
internal pull-up resistors. See Resistor Recommen­
dations for additional information. HOLD is not rec­
ognized while RESET is active but is r1;1cognized dur­
ing the time between the high-to~low transistion of 
RESET and the first instruction fetch. If RESET is 
asserted while HOLD is asserted, RESET has priori­
ty and places the bus into an idle state, rather than 
the hold acknowledge (high-impedance) state. 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always meet setup .and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When active (HIGH), this output indicates the 80376 
has relinquished control of its local bus in response 
to an· asserted HOLD signal, and is in the bus Hold 
Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In· ·the Hold Acknowledge 
state, HLDA is the only signal being driven by the 
80376. The other ou.!E!!! signals or bi~ectional ajg_­
nals (D1s-DJk.!!,HE, BLE, A2a-A1. WIR, DIC, MITO, 
LOCK and ADS) are in a high-impedance state so 
t~e requesting bus master may control them. These 
pins remain OFF throughout the time that HLDA re­
mains active (see Table 4.3). Pull-up resistors may 
be desired on several signals to avoid spurious ac­
tivity when no bus master is driving them. See 
Resistor Recommendations for additional informa­
tion. 

When the HOLD signal is made inactive, the 80376 
will deactivate HLDA and drive the bus. One rising 
edge on the NMI input is remembered for processing 
after the HOLD input is negated. · 

Table 4.3. Output Pin State during HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK, MIR'.5, DIC, WIR, 

ADS, A23-A1, BHE, BLE, 
D15-Do 

· Hold Latencies 

The maximum possible HOLD latency depends on 
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK signal (internal to the CPU) 
activated by the LOCK prefix, and interrupts. The 
80376 will not honor a HOLD request until the cur· 
rent bus operation is complete. 

The 80376 breaks 32-bit data or 110 accesses into 2 
internally locked 16-bit bus cycles; the LOCK signal 
is not asserted. The 80376 breaks unaligned 16-bit 
or 32-bit data or 110 accesses into 2 or 3 internally 
locked 16-bit bus cycles. Again the LOCK signal is 
not asserted but. a HOLD request will not be recog­
nized until the end of the entire transfer. 

5-1252 



intef 376 EMBEDDED PROCESSOR 

Wait states affect HOLD latency. The 80376 will not 
honor a HOLD request until the end of the current 
bus operation, no matter how many wait states are 
required. Systems with OMA where data transfer is 
critical must insure that READY returns sufficiently 
soon. 

COPROCESSOR INTERFACE SIGNALS 
(PEREQ, BUSY, ERROR) 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following signals control 
communication between the 80376 and the 
80387SX processor extension. 

Coprocessor Request (PEREQ) 

When asserted (HIGH), this input signal indicates a 
coprocessor request for a data operand to be trans­
ferred to/from memory by the 80376. In response, 
the 80376 transfers information between the co­
processor and memory. Because the 80376 has in­
ternally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with 
the correct direction and memory address. 

PEREQ is a level-sensitive active HIGH asynchro­
nous signal. Setup and hold times, t29 and t3o. rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This signal is 
provided with a weak internal pull-down resistor of 
around 20 Kn to ground so that it will not float active 
when left unconnected. 

Coprocessor Busy (BUSY) 

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not 
yet able to accept another. When the 80376 en­
counters any coprocessor instruction which oper­
ates on the numerics stack (e.g. load, pop, or arith­
metic operation), or the WAIT instruction, this input 
is first automatically sampled until it is seen to be 
inactive. This sampling of the BUSY input prevents 
overrunning the execution of a previous coprocessor 
instruction. 

The F(N)INIT, F(N)CLEX coprocessor instructions 
are allowed to execute even if BUSY is active, since 
these instructions are used for coprocessor initializa­
tion and exception-clearing. 

BUSY is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t20 and t3o. rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 Kn to Vee so that it will not float active when left 
unconnected. 

BUSY serves an additional function. If BUSY is sam­
pled LOW at the falling edge of RESET, the 80376 
processor performs an internal self-test (see Bus 
Activity During and Following Reset. If BUSY is 
sampled HIGH, no self-test is performed. 

Coprocessor Error (ERROR) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction generated 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
ically sampled by the 80376 when a coprocessor 
instruction is encountered, and if active, the 80376 
generates exception 16 to access the error-handling 
software. 

Several coprocessor instructions, generally those 5 which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without 
the 80376 generating exception 16 even if 
ERROR is active. These instructions are FNINIT, 
FNCLEX, FNSTSW, FNSTSWAX, FNSTCW, 
FNSTENV and FNSAVE. 

ERROR is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times t29 and t3o. rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 Kn to Vee so that it will not float active when left 
unconnected. 

5-1253 



intef 376 EMBEDDED PROCESSOR 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 80376 
Flag Register IF bit. When the 80376 responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles and, at the end of the second, 
latches an 8-bit interrupt vector on D7-D0 to identify 
the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t2a. rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain 
active until the first interrupt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
execution of the instruction. If recognized, the 60376 
will begin execution of the interrupt. 

Non-Maskable lnterrupt·Request (NMI) 

This input indicates a request for interrupt service 
which cannot be masked by sofi¥/are. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are performed when 
processing NMI. 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t28· 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the execution 
of an instruction. 

Once NMI processing has begun, no additional 
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instruction. 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the interrupt source. Any of the following factors 
can affect interrupt latency: 

1. If interrupts are masked, and INTR request will 
not be recognized until interrupts are reenabled. 

2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 80376 
encounters the IRET instruction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 80376 Execution Unit 
except for the following cases: 

- Repeat string instructions can be interrupted 
after each iteration. 

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after 
the following instruction, which should be an 
ESP load. This allows the entire stack pointer 
to be loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an. interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives· while the 80376 processor is exe­
cuting a long instruction such as multiplication, di­
vision or a task-switch. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 80376. 

RESET 

This input signal suspends any operation in progress 
and places the 80376 in a known reset state. The 
80376 is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re~ 
questing self-test). When RESET is active, all other 
input pins except FLT are ignored, and all other bus 
pins are driven to an idle bus state as shown in Ta­
ble 4.4. If RESET and HOLD are both active at a 
point in time, RESET takes priority even if the 80376 
was in a Hold Acknowledge state prior to RESET 
active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t25 and t2a, must 
be met in order to assure proper operation of the 
80376. 

5-1254 



intJ 376 EMBEDDED PROCESSOR 

Table 4.4. Pin State (Bus Idle) during RESET 

Pin Name Signal Level during RESET 

ADS 1 

D15-Do Float 

BHE, BLE 0 

A23-A1 1 

W/R 0 

DIC 1 

M/10 0 

LOCK 1 

HLDA 0 

4.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 
physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers. 

The 80376 processor address signals are designed 
to simplify external system hardware. BHE and BLE 
provide linear selects for the two bytes of the 16-bit 
data bus. 

Byte Enable outputs BHE and BLE are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 4.5. 

Table 4.5. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Associated Data Bus Signals 

BHE D1s-D8 (Byte 1-Most Significant) 
BLE Dr Do (Byte 0-Least Significant) 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See Bus Functional 
Description for additional information. 

4.3 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
1/0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or 1/0-mapped, or both. 
As shown in Figure 4.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 Mbytes) and 
1/0 addresses from OOOOOOH to OOFFFFH 
(64 Kbytes). Note the 1/0 addresses used by the 
automatic 1/0 cycles for coprocessor communica­
tion are 8000F8H to 8000FFH, beyond the address 
range of programmed 1/0, to allow easy generation 
of a coprocessor chip select signal using the A23 
and M/10 signals. 

OPERAND ALIGNMENT 

With the flexibility of memory addressing on the 
80376, it is possible to transfer a logical operand 
that spans more than one physical Dword or word of 
memory or 1/0. Examples are 32-bit Dword or 16-bit 
word operands beginning at addresses not evenly 
divisible by 2. 

Operand alignment and size dictate when multiple I 
bus cycles are required. Table 4.6 describes the 
transfer cycles generated for all combinations of log-
ical operand lengths and alignment. 

Table 4.6. Transfer Bus Cycles 
for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 

Physical Byte 
Address in xx 00 
Memory 
(low-Order 
Bits) 

Transfer b w 
Cycles 

Key: b ~ byte transfer 
w = word transfer 

01 

lb, 
hb 

I ~ low-order portion 
m ~ mid-order portion 
x = don't care 
h ~ high-order portion 

2 4 

10 11 00 0.1 10 

w hb, lw, hb, hw, 
l,b hw lb, lw 

mw 

11 

mw, 
hb, 
lb 

5-1255 



intef 376 EMBEDDED PROCESSOR 

ffFFFFH ----

~ W,!~ 

~ PHYSICAL 
MEMORY BOOOFFH I :---?---- COPROCESSOR 

BOOOFBH '"· --=-...:.:.!-"" 
'"") ~ 

/NOT/), 

16-MBYTE 

w ./~ 
OOFFFFH El } ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOH 1/0 SPACE OOOOOOH .._ __ __, 

1/0 SPACE PHYSICAL MEMORY SPACE 
240182-18 

NOTE: 
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/TO LOW can be used to easily 
generate a coprocessor select signal. 

Figure 4.3. Physical Memory and 1/0 Spaces 

4.4 Bus Functional Description 

The 80376 has separate, parallel buses for data and 
address. The data bus is 16 bits in width, and bidi­
rectional. The address bus provides a 24-bit value 
using 23 signals for the 23 upper-order address bits 
and 2 Byte Enable signals to directly indicate the 
active bytes. These buses are interpreted and con­
trolled by several definition signals. 

The definition of each bus cycle is given by three 
signals: M/10, W/R and DIC. At the same time, a 
valid address is present on the byte enable signals, 
BHE and BLE, and the other address signals 
A23-A1. A status signal, ADS, indicates when the 
80376 issues a new bus cycle definition and ad· 
dress. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. Locked read from memory space 

3. Write to memory space 

4. Locked write to memory space 

5. Read from 1/0 space (or coprocessor) 

6. Write to 1/0 space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown 

Table 4.2 shows the encoding of the bus cycle defi· 
nition signals for each bus cycle.· See Bus Cycle 
Definition Signals for additonal information. 

When the 80376 bus is not performing one of the 
activities listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
80376 giving no further assertions on its address 
strobe output (ADS) since the beginning of its most 
recent bus cycle, and the most recent bus cycle hav· 
ing been terminated. The hold acknowledge state is 
identified by the 80376 asserting its hold acknowl­
edge (HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

5-1256 



intef 376 EMBEDDED PROCESSOR 

CLK2[ 
{INPUT) 

BHE.~LE,A ~ -A2~ [ 
M/10, D/C, W/R 

{OUTPUTS) 

ADS [ 
{OUTPUT) 

NA [ 
(INPUT) 

READY [ 
{INPUT) 

LOCK [ 
{OUTPUT) 

CYCLE 1 
NON-PIPELINED 

(READ) 

T1 T2 

CYCLE 2 
NON-PIPELINED 

(READ) 

T1 T2 

CYCLE 3 
NON-PIPELINED 

{READ) 

T1 T2 

DO-D15 [ 

~~~~~~c1_N_Pu_r_D_u_R_1N_G_R-EA_D_)~~~~~~~~~~~~~~~~~~~~~~~~~~~ I - 240162-19 

Figure 4.4. Fastest Read Cycles with Non-Pipelined Timing

The fastest 80376 bus cycle requires only two bus
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown
by Figure 4.4. The bus states in each cycle are
named T1 and T2. Any memory or 1/0 address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 80376
READY input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY is not immedi­
ately asserted however, T2 states are repeated in­
definitely until the READY input is sampled active.

The pipelining option provides a choice of bus cycle
timings. Pipelined or non-pipelined cycles are

selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When pipelining is selected the address (BHE, BLE
and A23-A1) and definition (W/R, DIC, M/10 and
LOCK) of the next cycle are available before the end
of the current cycle. To signal their availability, the
80376 address status output (ADS) is asserted. Fig­
ure 4.5 illustrates the fastest read cycles with pipe­
lined timing.

Note from Figure 4.5 the fastest bus cycles using
pipelining require only two bus states, named T1P
and T2P. Therefore pipelined cycles allow the same
data bandwidth as non-pipelined cycles, but ad­
dress-to-data access time is increased by one
T-state time compared to that of a non-pipelined cy­
cle.

5-1257

intJ 376 EMBEDDED PROCESSOR

CYCLE 1
PIPELINED

(READ)

CYCLE 2
PIPELINED

{READ)

CYCLE 3
PIPELINED

{READ)

T1P T2P T1P T2P T1P T2P

.;1 j.;2 .;! j.;2 .;1 j.;2 .;1 j.;2 .;1 j.;2 .;1 j.;2

CLK2[
(INPUT)

BHE,~LE.A!-A2~ [
M/10,D/C,W/R

{OUTPUTS)

ADS [
(OUTPUT)

NA [
{INPUT)

READY [
{INPUT)

LOCK [
{OUTPUT)

DO-D15 [
{INPUT DURING READ)

240182-20

Figure 4.5. Fastest Read Cycles with Pipelined Timing

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the
processor to an external device.

Two choices of bus cycle timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined tim­
ing. However the NA (Next Address) input may be
asserted to select pipelined timing for the next bus
cycle. ·When pipelining is selected and the 80376
has a bus request pending internally, the address
and definition of the next cycle is made available
even before the current bus cycle is acknowledged
by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in­
serts wait states into the bus cycle, to allow adjust-

ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY input at the appropri­
ate time.

At the end of the second bus state within the bus
cycle, READY is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY, the bus cycle terminates as shown in Figure
4.6. If READY is negated as in Figure 4.7, the 80376
executes another bus state (a wait state) and
READY is sampled again at the end of that state.
This continues indefinitely until the cycle is acknowl­
edged by READY asserted.

When the current cycle is acknowledged, the 80376
terminates it. When a read cycle is acknowledged,
the 80376 latches the information present at its data
pins. When a write cycle is acknowledged, the write
data of the 80376 remains valid throughout phase
one of the next bus state, to provide write data hold
time.

5-1258

intef 376 EMBEDDED PROCESSOR

IDLE I CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2 I CYCLE 3 I IDLE
NON-PIPELINED NON-PIPELINED

(READ) (WRITE)

CYCLE 4 I IDLE
NON-PIPELINED

(READ)

CLK2 [

PROCESSOR CLK [

BHE,BLE, [
A1-A23,

M/iO,D/C

w;r{

ADS [

NA [

READY [

LOCK [

DO-D15 [

Ti T1 T2 T1 T2 T1 T2 Ti T1 T2 Ti

240182-21

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 4.6. Various Non-Pipelined Bus Cycles (Zero Wait States)

Non-Pipelined Bus Cycles

Any bus cycle may be performed with non-pipelined
timing. For example, Figure 4.6 shows a mixture of
non-pipelined read and write cycles. Figure 4.6
shows that the fastest possible non-pipelined cycles
have two bus states per bus cycle. The states are
named T1 and T2. In phase one of T1, the address
signals and bus cycle definition signals are driven
valid and, to signal their availability, address strobe
(ADS) is simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 80376 floats its
data signals to allow driving by the external device
being addressed. The 80376 requires that all data
bus pins be at a valid logic state (HIGH or LOW)
at the end of each read cycle, when READY is
asserted. The system MUST be designed to
meet this requirement. If the cycle is a write, data
signals are driven by the 80376 beginning in phase
two of T1 until phase one of the bus state following
cycle acknowledgement.

5-1259

I

intef 376 EMBEDDED PROCESSOR

IDLE CYCLE 2 IDLE CYCLE 3 IDLE
NON-PIPELINED

I CYCLE 1
NON-PIPELINED

I
NON-PIPELINED

I (READ) (WRITE) (READ)

TI T1 T2 T1 T2 T2 Tl T1 T2 T2 TI

CL~2 [

PROCESSOR CLK [

BHE,BLE, [
A1-A23, VALID 2 VALID 3

M/iO,D/c

W/R[

ADS [

NA (

READY [

LOCK [VALID 1 VALID 2 VALID 3

00-015[• ---------- -- OUT - ----
240182-22

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 4.7. Various Non·Plpelined Bus Cycles (Various Number of Wait States)

Figure 4.7 illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, .READY is sam-
pled active. · ·

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir­
able to maintain non-pipelined timing, it is necessary
to negate NA during each T2 state except the

last one, as shown in Figure 4.7, Cycles 2 and 3 . .If
NA is sampled active during a T2 other than the last
one, the next state would be T21 or T2P instead of
another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
4.8. The bL!S transitions between four possible
states, T1, T2, Ti, and Th· Bus cycles consist of T1
and T2, with T2 being· repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state Th·

infef 376 EMBEDDED PROCESSOR

HOLD ASSERTED

Bus States:

ALWAYS

READY ASSERTED •
HOLD NEGATED•

REQUEST PENDING

READY NEGATED •
NA NEGATED

240182-23

T1-first clock of a non-pipelined bus cycle (80376 drives new address and asserts ADS).
T2-subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
Ti-idle state.
Th-hold acknowledge state (80376 asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.
Four basic bus states describe bus operation when not using pipelined address.

Figure 4.8. 80376 Bus States (Not Using Pipelined Address)

Bus cycles always begin with T1. T1 always leads to
T2. If a bus cycle is not acknowledged during T2 and
NA is inactive, T2 is repeated. When a cycle is ac­
knowledged during T2, the following state will be T1
of the next bus cycle if a bus request is pending
internally, or Ti if there is no bus request pending, or
Th if the HOLD input is being asserted.

Use of pipelining allows the 80376 to enter three
additional bus states not shown in Figure 4.8. Figure
4.12 is the complete bus state diagram, including
pipelined cycles.

Pipelined Bus Cycles

Pipelining is the option of requesting the address
and the bus cycle definition of the next inter-

nally pending bus cycle before the current bus cycle
is acknowledged with READY asserted. ADS is as­
serted by the 80376 when the next address is is­
sued. The pipelining option is controlled on a cycle­
by-cycle basis with the NA input signal.

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA is sampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 4.9, during which NA is sampled at the end
of phase one of every T2 (it was asserted once dur­
ing the first T2 and has no further effect during that
bus cycle).

5-1261

I

intef 376 EMBEDDED PROCESSOR

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON-PIPELINED NON-PIPELINED PIPELINED PIPELINED

(WRITE) (READ) (WRITE) (READ)

Ti T1 T2 T1 T2 T2P T1P T2P T1P T21 Tl

CLK2 [

PROCESSOR CLK [

BHE,BLE, [
A1 -A23,

M/iO, D/C

W/R [

ADS [

N"A[

READY.[

LOCK [VALID 2

D0-015 [. ---- -- OUT --+-1> OUT 1---~--
240182-24

Following any idle bus state (Ti), bus cycles are non-pipelined. Within non-pipelined bus cycles, NA is only sampled
during wait states. Therefore, to begin pipelining during a group of non-pipelined bus cycles requires a. non-pipelined
cycle with at least one wait state (Cylcle 2 above).

Figure 4.9. Transitioning to Pipelining during Burst of Bus Cycles

If NA is sampled active, the 80376 is free to drive the
address and bus cycle definition of the next bus cy­
cle, and assert ADS, as soon as it has a bus request
internally pending. It may drive the next address as
early as the next bus state, whether the current bus
cycle is acknowledged at that time or not.

Regarding the details of pipeliriing, the 80376 has
the following characteristics:

1. The neXt address arid status may appear as early
as the bus state after NA was sampled active (see
Figures 4.9 or 4.10). In that case, state T2P is
entered immediately. However, when there is not
an internal bus request already pending, the next
address and status will not be available immedi­
ately after NA is asserted and T21 is entered in­
stead of T2P (see Figure 4.11 Cycle 3). Provided
the current bus cycle isn't yet acknow-

ledged by READY asserted, T2P will be entered
as soon as the 80376 does drive the next address
and status. External hardware should therefore
observe the ADS output as confirmation the next
address and status are actually being driven on
the bus.

2. Any address and status which are validated by a
pulse on the 80376 ADS output will remain stable
on the address pins for at least two processor
clock periods. The 80376 cannot produce a new
address and status more frequently than every
two processor clock periods (see Figures 4.9,
4.10 and 4.11).

3. Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-.
pability cannot look further than one bus cycle
ahead (see Figure 4.11, Cycle 1). ,

5-1262

intef 376 EMBEDDED PROCESSOR

IDLE CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(WRITE)

CYCLE 4
PIPELINED

(READ)

IDLE

Ti T1 T2 T2P T1 P T2P T1 P T2P T1P T21 T21 Ti

CLK2 [

PROCESSOR CLK [

BHE,BLE,[~::1\.~~,-~~:--"'il~--:'.~:-:'"°1~--:~::-::--"1t7~:-:7:-::-"'."'""~~:7'd;"'7'~7b~:ioll
A1-A23,

M/iO, D/C

W/R [

ADS [

READY[~~~~~~lj..K.¥

LOCK [~~c::it.~.._--!.....:;:::::.,:..~--I0.....:.:::;:,.:_~~__;:.;:::..;:---11:l..,~.J-,::.:::::..;~~~::C.~I

DO-D15 [

240182-25

Following any idle bus state (Ti) the bus cycle is always non-pipelined and NA is only sampled during wait states. To
start, address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 4.10. Fastest Transition to Pipelined Bus Cycle Following Idle Bus State

The complete bus state transition diagram, including
pipelining is given by Figure 4.12. Note it is a super­
set of the diagram for non-pipelined only, and the
three additional bus states for pipelining are drawn
in bold.

The fastest bus cycle with pipelining consists of just
two bus states, T1 P and T2P (recall for non-pipe­
lined it is T1 and T2). T1 P is the first bus state of a
pipelined cycle.

Initiating and Maintaining Pipelined Bus Cycles

Using the. state diagram Figure 4.12, observe the
transitions from an idle state, Ti, to the beginning of

a pipelined bus cycle T1 P. From an idle state, Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address and
status for the next bus cycle is driven during T2P).
The fastest path from an idle state to a pipelined bus
cycle is shown in bold below:

idle non-pipelined
states cycle

T1P-T2P,

pipelined
cycle

5-1263

I

intef

CLK2 [

PROCESSOR CLK [

BHE,BLE, [
A1-A23,

M/iO, D/C

NA [

READY [

LOCK [

DO-D15 [

T1P

376 EMBEDDED PROCESSOR

CYCLE 1
PIPELINED
(WRITE)

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(WRITE)

T2P T2P T1 P T2 T2P T1 P T21 T2P T1 P

ASSERTING NA MORE
THAN ONCE DURING
ANY CYCLE HAS NO
ADDITIONAL EFFECTS

NA COULD HAVE
BEEN ASSERTED

IN T1 P IF DESIRED.
ASSERTION NOW IS

THE LATEST TIME
POSSIBLE TO ALLOW
80376 TO ENTER T2P
STATE TO MAINTAIN

PIPELINING IN CYCLE 3

CYCLE 4
PIPELINED

(READ)

Figure 4.11. Details of Address Pipelining during Cycles with Wait States

240162-26

T1 - T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle,
which begins with T1 P. The same is true after a bus
hold state, shown below:

The transition to pipelined address is shown func­
tionally by Figure 4.10, Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

T1-T2-T2P,

hold aknowledge non-pipelined
states cycle

T1P-T2P,

pipelined
cycle Once a bus cycle is in progress and the current ad­

dress and status has been valid for one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged.

5-1264

inter

Bus States:

376 EMBEDDED PROCESSOR

HOLD ASSERTED

READY ASSERTED •
HOLD NEGATED•
REQUEST PENDING

READY ASSERTED •
HOLD NEGATED•

NO REQUEST .

READY NEGATED

NA NEGATED

T1-first clock of a non-pipelined bus cycle (80376 drives new address, status and asserts ADS).

240182-27

T2-subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there is not yet
an internal bus request pending (80376 will not drive new address, status or assert ADS).
T2P-subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there is an
internal bus request pending (80376 drives new address, status and asserts ADS).
T1 P-first clock of a pipelined bus cycle.
Ti-idle state.
Th-hold acknowledge state (80376 asserts HLDA).

Asserting NA for pipelined bus cycles gives access to three more bus states: T21, T2P and T1 P.
Using pipelining the fastest bus cycle consists of T1 P and T2P.

Figure 4.12. 80376 Processor Complete Bus States (Including Pipelining)

5-1265

I

intJ 376 EMBEDDED PROCESSOR

Sampl!!!g begins in T2 during Cycle 1 in Figure 4.10.
Once NA is sampled active during the current cycle,
the 80376 is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 4.10, Cycle 1 for example, the next
address and status is driven during state T2P. Thus
Cycle 1 makes the transition to pipelined timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it
begins with T1 P. Cycle 2 begins as soon as READY
asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 4.1 O,
Cycle 1 and Figure 4.9, Cycle 2. Figure 4.1 O shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad­
dress pipelining. Figure 4.9, Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA is asserted
at that time), and T2P (provided the 80376 has an
internal bus request already pending, which it almost
always has). T2P states are repeated if wait states
are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipelined into pipelined timing, for example Fig­
ure 4.10, Cycle 1. Figure 4.10, Cycles 2, 3 and 4
show that pipelining can be maintained with two­
state bus cycles consisting only of T1 P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA and detecting that the 80376 enters T2P during
the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS. Figures 4.9 and 4.10 however, each show

pipelining ending after Cycle 4 because Cycle 4
ends in T21. This indicates the 80376 didn't have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T21, the next
cycle will not be pipelined.

Realistically, pipelining is almost always maintained
as long as NA is sampled asserted. This is so be­
cause in the absence of any other request, a code
prefetch request is always internally pending until
the instruction decoder and code prefetch queue are
completely full. Therefore pipelining is maintained
for long bursts of bus cycles, if the bus is available
(i.e., HOLD inactive) and NA is sampled active in
each of the bus cycles.

INTERRUPT ACKNOWLEDGE (INTA) CYCLES

In repsonse to an interrupt request on the INTR in­
put when interrupts are enabled, the 80376 performs
two interrupt acknowledge cycles. These bus cycles
are similar to read cycles in that bus definition sig­
nals define the type of bus activity taking place, and
each cycle continues until acknowledged by READY
sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A23-A3, A1, BLE LOW, A2 and BHE HIGH). The
byte address driven during the second interrupt ac­
knowledge cycle is O (A23-A1, BLE LOW and BHE
HIGH).

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the 80376 between
the two interrupt acknowledge cycles for compatibil­
ity with the interrupt specification T RHRL of the
8259A Interrupt Controller and the 82370 Integrated
Peripheral.

5-1266

intJ 376 EMBEDDED PROCESSOR

CLK2 [

PROCESSOR CLK [

BLE,_A 1 , A_3· A2~ [
M/10, D/C, W/R

LOCK [

ADS [

NI<[

READY [

PREVIOUS I
CYCLE

T2 Tl

INTERRUPT
ACKNOWLEDGE

CYCLE 1

Ti

IGNORED

D0-01[• ---- ---------- --0--
os-01s[·t· -- -1- ----.- -- -- --<+>--

IDLE
(4 BUS STATES)

Tl Ti Tl Tl

INTERRUPT
ACKNOWLEDGE

CYCLE 2

T2 T21

IDLE

Ti

\----+---------

VECTOR

--©--­
IGNORED

--<:µ---
I

240182-28

Interrupt Vector (0-255) is read on D0-07 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.
Choose the approach which is simplest for your system hardware design.

Figure 4.13. Interrupt Acknowledge Cycles

During both interrupt acknowledge cycles, D1s-Do
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 80376 will read an ex­
ternal interrupt vector from D7-D0 of the data bus.
The vector indicates the specific interrupt number
(from 0-255) requiring service.

HALT INDICATION CYCLE

The 80376 execution unit halts as a result of execut­
ing a HL T instruction. Signaling its entrance into the
halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the
bus definition signals and a byte address of 2. See
the Bus Cycle Definition Signals section. The halt
indication cycle must be acknowledged by READY
asserted. A halted 80376 resumes execution when
INTR (if interrupts are enabled), NMI or RESET is
asserted.

5-1267

El

intef 376 EMBEDDED PROCESSOR

I
CYCLE 1 I

NON-PIPELINED
. (WRITE)

T1 T2

CYCLE 2 I IDLE
NON-PIPELINED

(HALT)

T1 T2 Ti Ti Ti

CLK2[

PROCESSOR CLK [

BHE, Al, [
M/iO, W/R

A2-A23 [
BLE, D/C

ADS [

Nii[

READY [

LOCK [VALID 1 VALID 2

Ti

NOTE: HALT CYCLE MUST BE
ACKNOWLEDGED BY READY
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

•(FLOATING)••••

I I
240182-29

Figure 4.14. Example Halt Indication Cycle from Non-Pipelined Cycle

SHUTDOWN INDICATION CYCLE

The 80376 shuts down as a result of a protection
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
definition signals shown in Bus Cycle Definition
Signals and a byte address of O. The shutdown indi­
cation cycle must be acknowledged by READY as­
serted. A shutdown 80376 resumes execution when
NMI or RESET is asserted.

ENTERING AND EXITING HOLD
ACKNOWLEDGE

The bus hold acknowledge state, Th• is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 80376 floats all
outputs or bidirectional signals, except for HLDA.
HLDA is asserted as long as the 80376 remains in
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD and RE­
SET are ignored.

5-1268

inter 376 EMBEDDED PROCESSOR

CLK2 [

PROCESSOR CLK [

BHE [
M/iO, W/R

BLE, A1-A23_, [
D/C

ADS [

NA [

READY [

LOCK[

CYCLE 1
PIPELINED

(READ)

T1 P T2P

CYCLE 2
PIPELINED

(SHUTDOWN)

T1P T21

I IDLE

Tl Ti Ti

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

Ti

UNDEFINED --crLOATINGr- • - • + · -• •
240182-30

Figure 4.15. Example Shutdown Indication Cycle from Non-Pipelined Cycle

Th may be entered from a bus idle state as in Figure
4.16 or ·after the acknowledgement of the current
physical bus cycle if the LOCK signal is not asserted,
as in Figures 4.17 and 4.18.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
4.16 if no bus request is pending. The following bus

state will be T1 if a bus request is internally pending,
as in Figures 4.17 and 4.18. Th is exited in response
to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI
input while in Th• the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exit­
ed unless the 80376 is reset before Th is exited.

5-1269

I

intJ 376 EMBEDDED PROCESSOR

IDLE

Ti

!--- HOLD --l
I - ACKNOWLEDGE - I

Th Th Th

IDLE

Ti

CLK2[

PROCESSOR CLK [

BHE, BLE
A1-A~3, M(iO [

D/C, W/R

ADS [

FiA[

(FLOATING)••••

I
(FLOATING)••••

LOCK ["-¥-.J~Jf ---- (FLOATIJG)•••• ''-'.......,"'-"'

(FLOATING)
DO- D1S [• ---------------~---- 240182-31

NOTE:
For maximum design flexibility the 80376 has no internal pull-up resistors on its outputs. Your design may require an
external pullup on ADS and other 80376 outputs to keep them negated during float periods.

Figure 4.16. Requesting Hold from Idle Bus

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re­
mains asserted, the 80376 drives its pins to defined
states during reset, as in Table 4.5, Pin State Dur­
ing Reset, and performs internal reset activity as
usual.

If HOLD remains asserted when RESET is inactive,
the 80376 enters the hold acknowledge state before
performing its first bus cycle, provided HOLD is still
asserted when the 80376 processor would other­
wise perform its first bus cycle. If HOLD remains as­
serted when RESET is inactive, the BUSY input is
still sampled as usual to determine whether a self
test is being requested.

FLOAT

Activating the FLT input floats all 80376 bidirectional
and output signals, including HLDA. Asserting FLT
isolates the 80376 from the surrounding circuitry.

When an 80376 in a PQFP surface-mount package
is used without a socket, it cannot be removed from
the printed circuit board. The FLT input allows the
80376 to be electrically isolated to allow testing of
external circuitry. This technique is known as ON­
CE™. for "ON-Circuit Emulation".

ENTERING AND EXITING FLOAT

FLT is an asynchronous, active-low input. It is recog­
nized on the rising edge of CLK2. When recognized,
it aborts the current bus cycle and floats the outputs
of the 80376 (Figure 4.20). FLT must be held low for
a minimum of 16 CLK2 cycles. Reset should be as­
serted and held asserted until after FLT is deassert­
ed. This will ensure that the 80376 will exit float in a
valid state.

Asserting the FLT input unconditionally aborts the
current bus cycle and forces the 80376 into the
FLOAT mode. Since activating FLT unconditionally
forces the 80376 into FLOAT mode, the 80376 is not

5-1270

intef 376 EMBEDDED PROCESSOR

NOTE:

CLK2 [

PROCESSOR CLK [

HOLD [

HLDA [

BHE, B_l:E, A~ -A2~, [
M/10, D/C, W /R

T1

CYCLE 1
NON-PIPELINED

(READ)

T2 T2

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(WRITE)

Th Th T1 T2

NO LATER THAN READY ASSERTED

240182-32

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.17. Requesting Hold from Active Bus (NA Inactive)

guaranteed to enter FLOAT in a valid state. After
deactivating FLT, the 80376 is not guaranteed to
exit FLOAT mode in a valid state. This is not a prob­
lem as the FLT pin is meant to be used only during
ONCE. After exiting FLOAT, the 80376 must be re­
set to return it to a valid state. Reset should be as­
serted before FLT is deasserted. This will ensure
that the 80376 will exit float in a valid state.

FLT has an internal pull-up resistor, and if it is not
used it should be unconnected.

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-

ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80376, and at least 80 CLK2 periods if a 80376 self­
test is going to be requested at the falling edge. RE­
SET asserted pulses less than 15 CLK2 periods may
not be recognized. RESET pulses less than 80 CLK2
periods followed by a self-test may cause the self­
test to report a failure when no true failure exists.

Provided the RESET falling edge meets setup and
hold times t25 and t26, the internal processor clock
phase is defined at that time as illustrated by Figure
4.19 and Figure 6.7.

5-1271

inter 376 EMBEDDED PROCESSOR

CLK2[

PROCESSOR CLK[

HOLD [

BHE, B~. A1_-A2~. [
M/10, D/C, W /R

ADS [

T1 p

CYCLE 1
PIPELINED

(WRITE)

T21 T21

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(READ)

Th Th T1 T2

NA [.QIC~~~~~~~~~qo.~qo.~q

240182-33

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.18. Requesting Hold from Idle Bus (NA Active)

An 80376 self-test may be requested at the time RE­
SET goes inactive by having the BUSY input at a
LOW level as shown in Figure 4.19. The self-test
requires (220 + approximately 60) CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a

problem, the 80376 attempts to proceed with the
reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the 80376 performs an internal
initialization sequence for approximately 350 to 450
CLK2 periods.

5-1272

intJ

CLK2 [

RESET [

CLK (INTERNAL) [

PROCESSOR CLK [

BUSY [

ERROR [

BHE, BLE,
W/R,M/i6, [

HLDA

A1-A23, [
D/C, LOCK

ADS [

NA [

READY [

DO-D1s[

NOTES:

376 EMBEDDED PROCESSOR

i----RESET----i----INl~~~~~~~ON _____ _..,
2: 15 CLK2 DURATION IF
NOT GOING TO REQUEST
SELF-TEST.

xxxxxx~--- - (FLOATING)- - • • • • • • • • • --- -- -

CYCLE 1

NON-PIPELINED
(READ)

T1 T2

240182-34

1. BUSY should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested, the 80376 outputs remain in their reset state as shown here.

Figure 4.19. Bus Activity from Reset until First Code Fetch

CK2

CTRL ~--------------------------------··-.------•'----~
DATA •••Q··< ... __ _,V.-AL""ID..._ __ >••••••••••••••••••••••••••••••••-~

ADDR ::::::x ______ v_AL .. 10......, ___ _.>---------------------------------<-~~-x ... _____ _
RESET

Figure 4.20. Entering and Exiting FLOAT

5-1273

240182-53

I

intef 376 EMBEDDED PROCESSOR

4.5 Self-Test Signature

Upon completion of self-test (if self-test was re­
quested by driving BUSY LOW at the falling edge of
RESET) the EAX register will contain a signature of
OOOOOOOOH indicating the 80376 passed its self-test
of microcode and major PLA contents with no prob­
lems detected. The passing signature in EAX,
OOOOOOOOH, applies to all 80376 revision levels. Any
non-zero signature indicates the 80376 unit is faulty.

4.6 Component and Revision
Identifiers

To assist 80376 users, the 80376 after reset holds a
component identifier and revision identifier in its DX
register. The upper 8 bits of DX hold 33H as identifi·
cation of the 80376 component. (The lower nibble,
03H, refers to the lntel386™ architecture. The up­
per nibble, 30H, refers to the third member of the
lntel386 family). The lower 8 bits of DX hold an
8-bit unsigned binary number related to the compo­
nent revision level. The revision identifier will, in gen­
eral, chronologically. track those component step­
pings which are intended to have certain improve­
ments or distinction from previous steppings. The
80376 revision identifier will track that of the 80386
where possible.

The revision identifier is intended to assist 80376
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev­
ery stepping revision, or to follow a completely uni­
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re­
quired to be changed. Intel has sole discretion over
these characteristics of the component.

Table 4.7. Component and
Revision Identifier History

80376 Stepping Name Revision Identifier

AO 05H

B 08H

4.7 Coprocessor Interfacing

The 80376 provides an automatic interface for the
Intel 80387SX numeric floating-point coprocessor.
The 80387SX coprocessor uses an 1/0 mapped in­
terface driven automatically by the 80376 and as­
sisted by three dedicated signals: BUSY, ERROR
and PEREQ.

As the 80376 begins supporting a coprocessor in­
struction, it tests the BUSY and ERROR signals to
determine if the coprocessor can accept its next in­
struction. Thus, the BUSY and ERROR inputs elimi­
nate the need for any "preamble" bus cycles for
communication between processor and coproces­
sor. The 80387SX can be given its command op­
code imm~diately. The dedicated signals provide
instruction synchronization, and eliminate the need
of using the 80376 WAIT opcode (9BH) for 80387SX
instruction synchronization (the WAIT opcode was
required when the 8086 or 8088 was used with the
8087 coprocessor).

Custom coprocessors can be included in 80376
based systems by memory-mapped or 1/0-mapped
interfaces. Such coprocessor interfaces allow a
completely custom protocol, and are not limited to a
set of coprocessor protocol "primitives". Instead,
memory-mapped or 1/0-mapped interfaces may use
all applicable 80376 instructions for high-speed co­
processor communication. The 6(JSY and ERROR
inputs of the 80376 may also be used for the custom
coprocessor interface, if such hardware assist is de­
sired. These signals can be . tested by the 80376
WAIT opcode (9BH). The WAIT instruction will wait
until the BUSY input is inactive (interruptable by an
NMI or enabled INTR .input), but generates an ex·
caption 16 fault if the ERROR pin is active when the
BUSY goes (or is) inactive. If the custom coproces­
sor interface is memory-mapped, protection of the
addresses used for the interface can be provided
with the segmentation mechanism of the 80376. If
the custom interface is 1/0-mapped, protection of
the interface can be provided with the 80376 IOPL
(1/0 Privilege Level} mechanism.

The 80387SX numeric coprocessor interface is 1/0
mapped as shown in Table 4.8. Note that the
80387SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed 1/0.
When the 80376 supports the 80387SX coproces­
sor, the 80376 automatically generates bus cycles to
the coprocessor interface addresses.

Table 4.8 Numeric Coprocessor Port Addresses

Address in 80376 80387SX
l/OSpace Coprocessor Register

8000F8H . Opcode Register
8000FCH Operand Register
8000FEH Operand Register

5-1274

376EMBEDDEDPROCESSOR

SOFTWARE TESTING FOR COPROCESSOR
PRESENCE

When software is used to test coprocessor
(80387SX) presence, it should use only the following
coprocessor opcodes: FNINIT, FNSTCW and
FNSTSW. To use other coprocessor opcodes when
a coprocessor is known to be not present, first set
EM = 1 in the 80376 CRO register.

5.0 PACKAGE THERMAL
SPECIFICATIONS

The Intel 80376 embedded processor is specified
for operation when case temperature is within the
range of 0°C-115°C for both the ceramic 88-pin
PGA package and the plastic 100-pin PQFP pack­
age. The case temperature may be measured in any
environment, to determine whether the 80376 is
within specified operating range. The case tempera­
ture should be measured at the center of the top
surface.

The ambient temperature is guaranteed as long as
Tc is not violated. The ambient temperature can be
calculated from the Ojc and 11ja from the following
equations:

TA= Tj - P*Oja

Tc = Ta + P* [Oja -- Ojcl

Values for Oja and Ojc are given in Table 5.1 for the
100-lead fine pitch. Oja is given at various airflows.
Table 5.2 shows. the maximum Ta allowable (without
exceeding Tc) at various airflows. Note that Ta can
be improved further by attaching "fins" or a "heat
sink" to the package. P is calculated using the maxi­
mum cold Ice of 305 mA and the maximum Vee of
5.5V for both packages.

Table 5.1. 80376 Package Thermal
Characteristics Thermal Resistances

(°C/Watt) Ojc and Oja

Oja Versus Airflow-ft/min (m/sec)

Package Ojc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7.5 34.5 29.5 25.5 22.5 21.5 21.0
Fine Pitch

88-Pin 2.5 29.0 22.5 17.0 14.5 12.5 12.0
PGA

Table 5.2. 80376
Maximum Allowable Ambient

Temperature at Various Airflows

T A(°C) vs Airflow-ft/min (m/sec)

Package Ojc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7.5 70 78 85 90 92 93
Fine Pitch

88-Pin 2.5 70 81 90 95 98 99
PGA

6.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec­
trical connections for the 80376, and its electrical
specifications.

6.1 Power and Grounding

The 80376 is implemented in CHMOS IV technology
and has modest power requirements. However, its
high clock frequency and 47 output buffers (address,
data, control, and HLDA) can cause power surges
as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution
at high frequency, 14 Vee and 18 Vss pins separate­
ly feed functional units of the 80376.

Power and ground connections must be made to all
external Vee and GND pins of the 80376. On the
circuit board, all Vee pins should be connected on a
Vee plane and all Vss pins should be connected on
a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the 80376. The 80376 driving its 24-bit address bus
and 16-bit data bus at high frequencies can cause
transient power surges, particularly when driving
large capacitive loads. Low inductance capacitors
and interconnects are recommended for best high
frequency electrical performance. Inductance can
be reduced by shortening circuit board traces be­
tween the 80376 and decoupling capacitors as
much as possible.

RESISTOR RECOMMENDATIONS

The ERROR, FLT and BUSY inputs have internal
pull-up resistors of approximately 20 Kn and the
PEREO input has an internal pull-down resistor of
approximately 20 Kn built into the 80376 to keep
these signals inactive when the 80387SX is not
present in the system (or temporarily removed from
its socket).

5-1275

I

intef 376 EMBEDDED PROCESSOR

In typical designs, the external pull-up resistors
shown in Table 6.1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

Pin Signal

16 ADS

26 LOCK

Table 6.1. Recommended
Resistor Pull-Ups to Vee

Pull-Up Value Purpose

20 Kn± 10% Lightly Pull ADS
Inactive during 80376
Hold Acknowledge
States

20Kn ± 10% Lightly Pull LOCK
Inactive during 80376
Hold Acknowledge
States

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to Vee or Vss will result in incompatibility
with future steppings of the 80376.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to
GND:

-INTR
-NMI
-HOLD

If not using address pipelining connect the NA pin to
a pull-up resistor in the range of 20 Kn to Vee.

6.2 Absolute Maximum Ratings
Table 6.2. Maximum Ratings

Parameter Maximum Rating

Storage Temperature - 65°C to + 150°C

Case Temperature - 65°C to + 120°C
under Bias

Supply Voltage with - 0.5V to + 6.5V
Respect to Vss

Voltage on Other Pins -0.5V to (Vee + 0.5)V

Table 6.2 gives a stress ratings only, and functional
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in Section 6.3,
D.C. Specifications, and Section 6.4, A.C. Speclfl·
cations.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the
80376 contains protective circuitry to resist damage
from static electric discharge, always take precau­
tions to avoid high static voltages or electric fields.

5-1276

intef 376 EMBEDDED PROCESSOR

6.3 D.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE
Table 6.3: 80376 D.C. Characteristics

Functional Operating Range: Vee = 5V ± 10%; T CASE = 0°C to 115°C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit

V1L Input LOW Voltage -0.3 +0.8 V(1)

V1H Input HIGH Voltage 2.0 Vee +0.3 V(1)

V1LC CLK2 Input LOW Voltage -0.3 +0.8 V(1)

V1HC CLK2 Input HIGH Voltage Vee - 0.8 Vee+ 0.3 V(1)

VoL Output LOW Voltage

loL = 4mA: A23-A1, D15-Do 0.45 V(1)

loL = 5mA: BHE, BLE, W/R, 0.45 V(1)

DIC, M/10, LOCK,
ADS, HLDA

VoH Output High Voltage

loH = -1 mA: A23-A1, D15-Do 2.4 V(1)

loH = - 0.2 mA: Vee -- 0.5 V(1)

A23-A1, D15-Do

loH = -0.9 mA: SHE, BLE, W /R, 2.4 V(1)

DIC, MllO, LOCK,
ADS, HLDA

loH = -0.18 mA: SHE, BLE, WIR, Vee - 0.5 V(1)

DIC, MllO, LOCK
ADS,HLDA

lu Input Leakage Current ±15 µA, OV S: V1N S: Vcc(1)
(For All Pins except
PEREQ, BUSY, FLT and ERROR)

l1H Input Leakage Current 200 µA, V1H = 2.4V(1, 2)
(PEREQ Pin)

l1L Input Leakage Current -400 µA, V1L = 0.45V(3)
(BUSY and ERROR Pins)

ILO _Output Leakage Current ±15 µA, 0.45V s: VouT s: Vcc(1)

Ice Supply Current
mA, Ice typ = 175 mA(4) CLK2 = 32 MHz 275

CLK2 = 40 MHz 305 mA, Ice typ = 200 mA(4)

C1N Input Capacitance 10 pF, Fe = 1 MHz(5)

CouT Output or 110 Capacitance 12 pF, Fe = 1 MHz(5)

CcLK CLK2 Capacitance 20 pF, Fe = 1 MHz(5)

NOTES:
1. Tested at the minimum operating frequency of the device.
2. PEREQ input has an internal pull-down resistor.
3. BUSY, FLT and ERROR inputs each have an internal pull-up resistor.
4. Ice max measurement at worse case load, Vee and temperature (O'C).
5. Not 100% tested.

5-1277

intef 376 EMBEDDED.PROCESSOR

The A.C. specifications given in table 6.4 consist of
output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela­
tive to the CLK2 rising· edge crossing the 2.0V level.

A.C. specification measurement is defined by Figure
6.1. Inputs must be driven to the voltage levels indi­
cated by Figure 6.1 when A.C. specifications are
measured. 80376 output delays are specified with
minimum and maximum limits measured as shown.
The minimum 80376 delay times are hold times pro­
vided to external circuitry. 80376 input· setup and
hold .times are specified as minimums, defining the

smallest acceptable sampling window. Within the
sampling window, a synchronous input signal must
be stable for correct 80376 processor operation.

Outputs NA, W/R, DIC, M/10, LOCK, BHE, BLE,
A23-A1 and HLDA only change at the beginning of
phase one. D15-Do (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ and 015-Do (read cycles) inputs
are sampled at the beginning of .phase one. The NA,
INTR and NMI inputs are sampled at the beginning
of phase two. ·

Tx

01 02

OUTPUTS[
(00-015)

INPUTS[
(NA,INTR,NMI)

INPUTS
{REAOY,HOLO, [
ERROR.BUSY,

PEREQ,00-015)

LEGEND:

NOTE 2 MIN

A-'-Maximum Output Delay Spec.
B-Minimum Output Delay Spec:
C--Minimum Input Setup Spec.
0-Minimum Input Hold Spec.

®
MAX

i------<A.J----+t

®
NOTE 2 MIN MAX

@ NOTE 1

@ NOTE 1

Figure 6.1. Drive Levels and Measurement Points for A.C. Specifications

5-1278

®

240182-35

376 EMBEDDED PROCESSOR

6.4 A.C. Specifications
Table 6.4. 80376 A.C. Characteristics at 16 MHz

Functional Operating Range: Vee = 5V ± 10%; T CASE = 0°C to 115°C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

Operating Frequency 4 16 MHz Half CLK2 Freq

t1 CLK2 Period 31 125 ns 6.3

t2a CLK2 HIGH Time 9 ns 6.3 At 2(3)

t2b CLK2 HIGH Time 5 ns 6.3 At (Vee - 0.8)V(3)

t3a CLK2 LOW Time 9 ns 6.3 At 2V(3)

t3b CLK2 LOW Time 7 ns 6.3 At0.8V(3)

t4 CLK2 Fall Time 8 ns 6.3 (Vcc-0.8)V to 0.8V(3)

ts CLK2 Rise Time 8 ns 6.3 o.av to (Vcc-0.8)C3l

ts A23-A1 Valid Delay 4 36 ns 6.5 CL = 120 pF(4)

t1 A23-A1 Float Delay 4 40 ns 6.6 (1)

ta BHE, BLE, LOCK 4 36 ns 6.5 CL= 75 pF(4)
Valid Delay

tg BHE, BLE, LOCK 4 40 ns 6.6 (1)

Float Delay

t10 W/R, M/10, DIC, 6 33 ns 6.5 CL= 75 pF(4)
ADS Valid Delay

t11 W/R, M/10, DIC, 6 35 ns 6.6 (1)

ADS Float Delay

t12 D1s-Do Write Data 4 40 ns 6.5 CL = 120 pF(4)
Valid Delay

t13 D1s-Do Write Data 4 35 ns 6:6 (1)

Float Delay

t14 HLDA Valid Delay 4 33 ns 6.6 CL= 75 pF(4)

t15 NA Setup Time 5 ns 6.4

t16 NA Hold Time 21 ns 6.6

t19 READY Setup Time 19 ns 6.4

t20 READY Hold Time 4 ns 6.4

t21 Setup Time D15-Do Read Data 9 ns 6.4

t22 Hold Time D15-D0 Read Data 6 ns 6.4

t23 HOLD Setup Time 26 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 13 ns 6.7

t26 RESET Hold Time 4 ns 6.7

5-1279

intJ 376 EMBEDDED PROCESSOR

Table 6.4. 80376 A.C. Characteristics at 16 MHz (Continued)
Functional Operating Range: Vee= 5V ±10%; TcASE = o·c to 115°C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

t27 NMI, INTR Setup Time 16 ns 6.4 (2)

t2s NMI, INTR Hold Time 16 ns 6.4 (2)

!29 PEREQ, ERROR, BUSY, FLT 16 ns 6.4 (2)

Setup Time

!30 PEREQ, ERROR, BUSY, FLT 5 ns 6.4 (2)

Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILQ in magnitude. Float delay is not 100%
tested. ·
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. Trese are not.tested. They are guaranteed by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figures 6.8 through 6.10
for capacitive derating curves.
5. The 80376 does not have t17 or t18 timing specifications.

Table 6.5. 80376 A.C. Characteristics at 20 MHz
Functional Operating Range: Vee = 5V ± 10%; T CASE = o·c to 115°C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

Operating Frequency 4 20 MHz Half CLK2 Frequency

t1 CLK2 Period 25 125 ns 6.3

t2a CLK2 HIGH Time 8 ns 6.3 At 2V(3)

t2b CLK2 HIGH Time 5 ns 6.3 At (Vee - 0.8)V(3)

t3a CLK2 LOW Time 8 ns 6.3 At 2V(3)

t3b CLK2 LOW Time 6 ns 6.3 At0.8V(3)

t4 CLK2 Fall Time 8 ns 6.3 (Vee- 0.8V) to 0.8V(3J

ts CLK2 Rise Time 8 ns 6.3 o.0v to (Vcc-0.8)(3J

ts A23-A1 Valid Delay 4 30 ns 6.5 CL = 120 pF(4)

!7 A23-A1 Float Delay 4 ns 6.6 (1)

ta BHE, BLE, LOCK 4 30 ns 6.5 CL= 75 pF(4)

Valid Delay

lg BHE, BLE, LOCK 4 32 ns 6.6 (1)

Float Delay

t10a MllO, DIC 6 28 ns 6.5 CL= 75 pF(4)
Valid Delay

t10b WIR,ADS 6 26 ns 6.5 CL= 75 pF(4)

Valid Delay

!11 WIR, MllO, DIC, 6 30 ns 6.6 (1)

ADS Float Delay

t12 D15-Do Write Data 4 38 ns 6.5 CL= 120 pF
Valid Delay

!13 Dls-Do Write Data 4 27 ns 6.6 (1)

Float Delay

5-1280

intJ 376 EMBEDDED PROCESSOR

Table 6.5. 80376 A.C. Characteristics at 20 MHz (Continued)
Functional Operating Range: Vee = 5V ± 10%; T CASE = 0°C to 115°C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

t14 HLDA Valid Delay 4 28 ns 6.5 CL= 75 pF(4)

t15 NA Setup Time 5 ns 6.4

t16 NA Hold Time 12 ns 6.4

t19 READY Setup Time 12 ns 6.4

t20 READY Hold Time 4 ns 6.4

t21 D15-Do Read Data Setup Time 9 ns 6.4

t22 D15-Do Read Data Hold Time 6 ns 6.4

t23 HOLD Setup Time 17 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 12 ns 6.7

t26 RESET Hold Time 4 ns 6.7

t27 NMI, INTR Setup Time 16 ns 6.4 (2)

t2e NMI, INTR Hold Time 16 ns 6.4 (2)

t29 PEREQ, ERROR, BUSY, FLT 14 ns 6.4 (2)

Setup Time

tao PEREQ, ERROR, BUSY, FLT 5 ns 6.4 (2)

Hold Time

NOTES: 5 1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. These are not tested. They are guaranteed by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figures 6.8 through 6.1 o
for capacitive derating curves.
5. The 80376 does not have t11 or t1a timing specifications.

A.C. TEST LOADS A.C. TIMING WAVEFORMS

240182-36

240182-37

Figure 6.2. A.C. Test Loads Figure 6.3. CLK2 Waveform

5-1281

intJ

NA [

INTR, [
NMI

376 EMBEDDED PROCESSOR

Tx Tx Tx

240182-38

Figure 6.4. A.C. Timing Waveforms-Input Se~up and Hold Timing

CLK2 [

BHE, BTI, [
LOCK

W/R,M/iO, [
D/C,ADS

A1-A23 [

00-015 [
(OUTPUT)

HLDA [

Tx

Figure 6.5. A.C. Timing Waveforms-Output Valid Delay Timing

5-1282.

240182-39

intef 376 EMBEDDED PROCESSOR

Th Tl OR T1
.2 .1 .2 .1 .2

CLK2 [
t.lAX

BHE, BLE, [LOCK

W/R,t.l/iO,
t.lAX

D/C,ADS [
t.lAX

A1-A2J [

t.llN t.llN t.lAX

DO-D15 [- - - -
(HIGH Z)

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

HLDA [

240182-40

Figure 6.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing

-RESET-1----INITIALIZATION SEQUENCE----.2 .1
CLK2 [

RESET [

240182-41
The second internal processor phase following RESET high-to-low transition (provided t25 and t2s are met) is 4>2.

Figure 6.7. A.C. Timing Waveforms-RESET Setup and Hold Timing, and Internal Phase

5-1283

I

i~ 376 EMBEDDED PROCESSOR

nom+6 nom+9

... nom+3
5.
j
"' nom
0

... nom+6
5
~ _,
"' nom+3 0

0
:::;
~ nom-3
5
IL
I-
::>
0 nom-6

0
:::;
~
I- nom
.::>
I!:
::>
0

nom-3

nom-6 75 100 125 150
nom-9'--~-'-~--l~--..J.....~_J

50 75 25 150 100

CL (picofarads) CL (picofarads)

240182-42 240182-43

Figure 6.8. Typical Output Valid Delay versus
Load Capacitance at Maximum Operating

Temperature (CL = 120 pf)

Figure 6.9. Typical Output Valid Delay versus
Load Capacitance at Maximum Operating

Temperature (CL = 75 pf)

~
"' 6 I
>
"!
c ... 4
5
"' :::E
;:: 2
"' !!!
"'

8'--~-'-~--1~~.J.....~.-.J

50 75 100 125 150

CL (picofarads)

240182-44

Figure 6 •. 10. Typical Output Rise
Time versus Load Capacitance at
Maximum Operating Temperature

Ice MEASURED AT TYPICAL Vee AND TEMPERATURE
o~~-i---~~i---~~'~~~i~~~i~~-'-~--l

4 6 8 10 12 14

FREQUENCY (MHz)

Figure 6.11. Typical Ice vs Frequency

5-1284

16 20

240182-45

inter 376 EMBEDDED PROCESSOR

6.5 Designing for the ICE™-376
Emulator

The 376 embedded processor in-circuit emulator
product is the ICE-376 emulator. Use of the emula­
tor requires the target system to provide a socket
that is compatible with the ICE-376 emulator. The
80376 offers two different probes for emulating user
systems: an 88-pin PGA probe and a 100-pin fine
pitch flat-pack probe. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin
PQFP, which is available from 3-M Textool (part
number 2-0100-07243-000). The ICE-376 emulator
probe attaches to the target system via an adapter
which replaces the 80376 component in the target
system. Because of the high operating frequency of
80376 systems and of the ICE-376 emulator, there is
no buffering between the 80376 emulation proces­
sor in the ICE-376 emulator probe and the target
system. A direct result of the non-buffered. intercon­
nect is that the ICE-376 emulator shares the ad­
dress and data bus with the user's system, and the
RESET signal is intercepted by the ICE emulator
hardware. In order for the ICE-376 emulator to be
functional in the user's system without the Optional
Isolation Board (OIB) the designer must be aware of
the following conditions:

1 .. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles
of the 80376, other local devices or other bus
masters.

2. Before another bus master drives the local proc­
essor address bus; the other master must gain
control of the address bus by asserting HOLD and
receiving the HLDA response.

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 80376 would,
and responds to RESET later. Correct phase of
the response is guaranteed.

In addition to the above considerations, the ICE-376
emulator processor module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the 80376 sys­
tem.

Capacitive Loading: ICE-376 adds up to 27 pF to
each 80376 signal.

Drive Requirements: ICE-376 adds one FAST TTL
load on the CLK2, ·control, address, and data lines.
These loads are within the processor module and
are driven by the 80376 emulation processor, which
has standard drive and loading capability listed in
Tables 6.3 and 6.4.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICE-376 emulator
processor module is powered by the user system.
The circuitry on the processor module draws up to
1.4A including the maximum 80376 Ice from the
user 80376 sopket.

80376 Location and Orientation: The ICE-376 em­
ulator processor module may require lateral. clear-
ance. Figure 6.12 shows the clearance requirements I
of the iMP adapter and Figure 6.13 shows the clear-
ance requirements of the 88-pin PGA adapter. The

"--------- 17.5" --------- r--3.5"
i-""l"""------1 r-3.0"

o _-_--~~~---~--c~_-x= __ IB--~L--E--~-----' FLEXIBLE 4.0"
----------=-=--=-= --

t
PIN 1

°==I"'>------------------ 26.75"----------------........1·1

~-e;;!~~~========~SFS==========~C:=-~±~~· I m .c:::oi
1.25"

Figure 6.12. Preliminary ICE™-376 Emulator User Cable with PQFP Adapter

5-1285

240182-46

intJ 376 EMBEDDED PROCESSOR

PIN 1

b
240182-50

Figure 6.13. ICE™-376 Emulator User Cable with 88-Pin PGA Adapter

optional isolation board (018). which provides extra
electrical buffering and has the same latera.-clear·
ance requirements as Figures 6.1.2 and 6.13, adds
an additional 0.5 inches to the vertical clearance re­
quirement. This is illustrated in Figure 6.14.

Optional Isolation Board (OIB) and the CLK2
speed reduction: Due to the unbuffered probe de­
sign, the ICE-376 emulator is susceptible to errors

on the user's bus. The OIEI allows the ICE-376 emu­
lator to function in user systems with faults (shorted
signals, etc.). After electrical verification the 018
may be removed. When the 018 is installed, the user
system must have a maximum CLK2 frequency of 20
MHz.

---------12.75"---------+I

CJc:t ~ ie=a-1· -·-----22.0"------·.1
fM iiL E!

240182-51

Figure 6~14. ICE™-376 Emulator User Cable with OIB and PQFP Adapter

5-1286

376 EMBEDDED PROCESSOR

7.0 DIFFERENCES BETWEEN THE
80376 AND THE 80386

The following are the major differences between the
80376 and the 80386.

1. The 80376 generates byte selects on BHE and
BLE (like the 8086 and 80286 microprocessors)
to distinguish the upper and lower bytes on its
16-bit data bus. The 80386 uses four-byte selects,
BEO-BE3, to distinguish between the different
bytes on its 32-bit bus.

2. The 80376 has no bus sizing option. The 80386
can select between either a 32-bit bus or a 16-bit
bus by use of the BS16 input. The 80376 has a
16-bit bus size.

3. The NA pin operation in the 80376 is identical to
that of the NA pin on the 80386 with one excep­
tion: the NA pin of the 80386 cannot be activated
on 16-bit bus cycles (where BS16 is LOW in the
80386 case), whereas NA can be activated on
any 80376 bus cycle.

4. The contents of all 80376 registers at reset are
identical to the contents of the 80386 registers at
reset, except the DX register. The DX register
contains a component-stepping identifier at reset,
i.e.

in 80386, after reset DH = 03H indicates 80386
DL = revision number;

in 80376, after reset DH = 33H indicates 80376
DL = revision number.

5. The 80386 uses A31 and M/10 as a select for
numerics coprocessor. The 80376 uses the
A23 and M/10 to select its numerics coproces­
sor.

6. The 80386 prefetch unit fetches code in four­
byte units. The 80376 prefetch unit reads two
bytes as one unit (like the 80286 microproces­
sor). In BS16 mode, the 80386 takes two con­
secutive bus cycles to complete a prefetch re­
quest. If there is a data read or write request
after the prefetch starts, the 80386 will fetch
all four bytes before addressing the new re­
quest.

7. The 80376 has no paging mechanism.

8. The 80376 starts executing code in what corre­
sponds to the 80386 protected mode. The 80386
starts execution in real mode, which is then used
to enter protected mode.

9. The 80386 has a virtual-86 mode that allows the
execution of a real mode 8086 program as a task
in protected mode. The 80376 has no virtual-86
mode.

10. The 80386 maps a 48-bit logical address into a
32-bit physical address by segmentation and
paging. The 80376 maps its 48-bit logical ad­
dress into a 24-bit physical address by segmen­
tation only.

11. The 80376 uses the 80387SX numerics coproc­
essor for floating point operations, while the
80386 uses the 80387 coprocessor.

12. The 80386 can execute from 16-bit code seg­
ments. The 80376 can only execute from 32-bit
code Segments.

13. The 80376 has an input called FLT which three­
states all bidirectional and output pins, including
HLDA, when asserted. It is used with ON Circuit
Emulation (ONCE).

8.0 INSTRUCTION SET

This section describes the 376 embedded processor El
instruction set. Table 8.1 lists all instructions along
with instruction encoding diagrams and clock
counts. Further details of the instruction encoding
are then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within 80376 instruc-
tions.

8.1 80376 Instruction Encoding and
Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8.1 be­
low, by the processor clock period (e.g. 50 ns for an
80376 operating at 20 MHz). The actual clock count
of an 80376 program will average 10% more

5-1287

intef 376 EMBEDDED PROCESSOR

than the calculated clock count due to instruction
sequences which execute faster than they can be
fetched from memory.

Instruction Clock Count Assumptions:
1. The instruction has been prefetched, decoded,

and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor acess to the bus.

4. No exceptions are detected during instruction ex­
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis­
ter, scaling and displacement can be used within
the clock counts showns. However, if the effec­
tive address calculation uses two general register
components, add 1 clock to the clock count
shown.

6. Memory reference instruction accesses byte or
aligned 16-bit operands.

Instruction Clock Count Notation
- If two clock counts are given, the smaller refers to

a register operand and the larger refers to a
memory operand.

-n = number of times repeated.

-m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire im­
mediate data (if any) counts as one component,
and all other bytes of the instruction and pre­
fix(es) each count as one component.

Misaligned or 32-Bit Operand Accesses:
- If instructions accesses a misaligned 16-bit oper­

and or 32-bit operand on even address add:

2* clocks for read or write.

4 • • clocks for read and write.

- If instructions accesses a 32-bit operand on odd
address add:

4 • clocks for read or write.

8** clocks for read and write.

Wait States:

Wait states add 1 clock per wait state to instruction
execution for each data access.

5-1288

intJ 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary
...:.

Clock Number
Instruction Format Counts of Data Notes

Cycles

GENERAL DATA TRANSFER
MOV ~Move:

Register to Register/Memory I 1000100w I mod reg rlml 212• 011• a

Register/Memory to Register 1000101w I mod reg rim I 214' 0/1' a

Immediate to Register/Memory 11 00011 w I modOOO r/ml immediate data 212· 011· a

Immediate to Register (Short Form) 1011 w reg I immediate data 2 2

Memory to Accumulator (Short Form) 1010000w I full displacement 4• 1• a

Accumulator to Memory (Short Form) 1010001w I full displacement 2• 1• a

Register/Memory to Segment Register I 10001110] mod sreg3 rim I 22123' 016' a,b,c

Segment Register to Register/Memory I 10001100 I mod sreg3 rim I 212• 011• a

MOVSX ~ Move with Sign Extension

Register from Register/Memory I 00001111 I 1011111 w [mod reg rim I 316' 011• a

MOVZX ~ Move with Zero Extension

Register from Register/Memory I 00001111 I 1011011 w I ITTf?dreg rim I 316' 0/1' a

PUSH~ Push:

Register/Memory I 11111111 mod 11 O r/ml 7/9' 214' a

Register (Short Form) !01010 reg 4 2 a

Segment Register (ES, CS, SS or OS) I OOOsreg211 O 4 2 a

Segment Register (FS or GS) I 00001111 1 Osreg3000 I 4 2 a

Immediate I 011010s0 immediate data 4 2 a

PUSHA ~ Push All I 01100000 34 16 a

POP~ Pop I
Register/Memory I 10001111 modOOO r/ml 7/9' 214' a

Register (Short Form) Io 1o11 reg 6 2 a

Segment Register (ES, SS or DS) I 000sreg2111 25 6 a, b,c

Segment Register (FS or GS) I 00001111 1 Osreg3001 I 25 6 a, b,c

POPA~ Pop All I 01100001 40 16 a

XCHG ~ Exchange

Register/Memory with Register I 1000011w I mod reg r/;J 3/5" 0/2** a,m

Register with Accumulator (Short Form) 110010 reg I 3 0

IN ~ Input from:

Fixed Port I 111001 Ow I port number I 6' 1' f,k

26' 1• f,I

Variable Port I 11101.1 Ow I 7' 1• f,k

27' 1' f,I

OUT ~ Output to:

Fixed Port I 1110011 w I port number I 4' 1• f,k

24' 1• f,I

Variable Port I 1110111 w I 5' 1• f,k

26' 1' f,I

LEA ~ Load EA to Register I 10001101 I mod reg r/ml 2

5-1289

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts of Data Notes

Cycles

SEGMENT CONTROL

LOS = Load Pointer to OS I 11000101 mod reg rim I 26' 6' a, b,c

LES = Load Pointer to ES I 11000100 mod reg rim I 26' 6' a,b;C

LFS = Load Pointer to FS I 00001111 101101 00 I mod reg rim I 29' 6' a, b, c

LGS = Load Pointer to GS I 00001111 10110101 j mod reg rim I 29' 6' a, b,c

LSS = Load Pointer to SS I 00001111 1011001 0 I mod reg rim I 26' 6' a, b; c

FLAG CONTROL

CLC = Clear Carry Flag 11111.000 I 2

CLO = Clear Direction Flag 111111 00 I 2

CLI = Clear Interrupt Enable Flag 1111101 0 I 8 f

CLTS = Clear Task Switched Flag 00001111 I 00000110 I 5 e

CMC = Complement Carry Flag 11110101 I 2

LAHF = Load AH into Flag I 10011111 I 2

POPF = Pop Flags I 10011101 I 7 a, g

PUSHF = Push Flags lioo 111 oo I 4 a

SAHF = Store AH Into Flags ' I 1001111 0 I 3

STC = Set Carry Flag I 11111001 I 2

STD = Set Direction Flag I 11111101 I 2

STI = Set Interrupt Enable Flag I 11111011 I 8 f

ARITHMETIC
ADD= Add

Register to Register I OOOOOOdw I mod reg rim I 2

Register to Memory I ooooooow j mod reg rim I 7" 2" a

Memory to Register I 0000001w I mod reg rim I 6' 1' a

Immediate to Register/Memory I 100000sw I modOOO rim J immediate data 217" 0/2" a

Immediate to Accumulator (Short Form) I 0000010w I immediate data 2

ADC = Add with Carry

Register to Register I 000100dw mod reg rim I 2

Register to Memory I 0001000w mod reg rim I 7" 2" a

Memory to Register I 0001001w mod-reg rim I 6' 1• a

Immediate to Register/Memory I 100000sw mod O 1 O rim I immediate data 217" 0/2"'* a

Immediate to Accumulator (Short Form) I 0001010w immediate data 2

INC = Increment

Register/Memory I 1111111w I modOOO rim I 216"'* 0/2** a

Register (Short Form) I o 10 o o reg I 2

SUB = Subtract

Register from Register I 001010dw I mod reg rim I 2

5-1290

infel" 376EMBEDDEDPROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Instruction Format

ARITHMETIC (Continued)

RegisterfromMemory I 0010100w]modreg r/ml
Memory from Register I O O 1O101 w !mod reg rim]
lmmediatefromRegister/Memory I 1 OOOOOsw lmod101 r/ml immediate data

Immediate from Accumulator (Short Form) I O O 1 O 1 1 0 w I immediate data

SBB = Subtract with Borrow

Register from Register l 000110dw [modreg r/rnl

Register from Memory [00011oowlmodreg r/ml

Memory from Register I O O O 1 1 O 1 w I mod reg r/ml
Immediate from Register/Memory I 1 0 0 0 0 0 s w I mod 0 1 1 rim! immediate data

Immediate from Accumulator (Short Form) I O O O 1 1 1 Ow I immediate data

DEC ~ Decrement

Register/Memory I 1111111wlregOO1--=rJffil

Register (Short Form) 101001 regl

CMP ~ Compare

Register with Register loo111odwlmodreg r/ml

Memory with Register j 00111 OOw I mod reg r/ml

Register with Memory J 0011 i O 1 w I mod reg r/ml

Immediate with Register/Memory I 1 O O o o 0 s w I mod 1 1 1 r/ml immediate data

Immediate with Accumulator (Short Form) I O O 1 1 1 1 ow I immediate data

NEG~ Change Sign l 1111o11wlmodO11 r/ml

AAA ~ ASCII Adjust for Add ~ma
AAS ~ ASCII Adjust for Subtract

DAA ~ Decimal Adjust for Add

DAS ~ Decimal Adjust for Subtract

MUL ~ Multiply (Unsigned)

Accumulator with Register/Memory

Multiplier-Byte
-Word
-Doubleword

IMUL ~ Integer Multiply (Signed)

Accumulator with Register/Memory

Multiplier-Byte

-Word
-Doubleword

Register with Register/Memory

Multiplier-Byte
-Word
-Doubleword

l 00111111 J
[00100111]

I oo, o 1111 I

l1111011wlmod100 r/ml

j 1111011 w I mod 1O1 r/ml

I 00001111 I 10101111 [modr~

Register/Memory with Immediate to Register I O 1 i O 1 Os 1 I mod reg rim! immediate data

-Word
-Doubleword

5-1291

Clock
Counts

7"

6'

217"

7"

6'

217'"

2/6**

5'

6"

2/5'

216'

12-17/15-20
12-25/15-28"

12-41/17-46'

12-17 /15-20

12-25/15-28'
12-41/17-46'

12-17/15-20
12-25/15-28'
12-41/17-46'

13-26/14-27'
13-42/16-45'

Number
Of Data
Cycles

2··

0/1'"

2"

1'

012••

012••

1'

2"

0/1'

012'

0/1
0/1'

0/2'

0/1

0/1'
012'

0/1
0/1*

012'

0/1'
012'

Notes

a

a

a

a

a

a

a,n

a,n
a,n

a,n

a,n
a,n

a,n
a,n
a,n

a,n

a,n

El

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

Of Data Notes
Cycles

ARITHMETIC (Continued)
DIV = Divide (Unsigned)

Accumulator by Register/Memory I 111101 lw lmod110 r/ml

Divisor-Byte 14/17 0/1 a,o

-Word 22/25' 0/1' a,o
-Doubleword 36/43' 012· a,o

IDIV = Integer Divide (Signed)

Accumulate~ by Register /Memory I 1111011w lmod111 r/ml

Divisor-Byte 19/22 0/1 a,o
-Word 27/30' 0/1 a,o
-Doubleword 43/48* 0/2* a,o

AAD = ASCII Adjust for Divide I 11010101 I 000010101 19

AAM = ASCII Ad)ustfor Multiply I 11010100 loooo101ol 17

CBW = Convert Byte to Word I 100110001 3

CWD = Convert Word to Double Word I 10011001 I 2

LOGIC

Shift Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 j 1101ooowlmodTTT r/ml 3/7** 012" a

Register/Memory by CL I 1101001w lmodTTI r/ml 3/7" 012" a

Register/Memory by Immediate Count I 11 OOOOOw lmodTTI r/ml immed 8-bit data 3/7" 012" a

Through Carry (RCL and RCR)

Register/Memory by 1 I 11O1 OOOw lmodTTT r/ml 9/10** 0/2*" a

Register /Memory by CL I 1101001 w lmodTTI rim) 9/10" 10/2" a

Register/Memory by Immediate Count I 11 OOOOOw lmodTTT r/mlimmed 8-bitdata 9/10** 012** a

TTT Instruction
000 AOL
001 ROR
010 RCL
011 RCA
100 SHL/SAL

101 SHR
111 SAR

SHLD = Shill Left Double

Register/Memory by Immediate I 00001111 I 10100100 lmodreg r/mlimmed 8-bit data 3/7" 0/2"

Register/Memory by CL I 00001111 I 10100101 I mod reg r/ml 317" 012**

SHRD = Shill Right Double

Register/Memory by Immediate I 00001111 I 101011 00 I mod reg r/mlimmed 8-bitdata 3/7*"' 0/2*"'

Register/Memory by CL I 00001111 I 10101101 I mod reg r/ml 3/7" 0/2**

AND= And

Register to Register I 001000dw lmodreg r/ml 2

5-1292

intef 376 EMBEDDED PROCESSOR

a e T bl 8 1 80376 I r ns rue ion e oc S tCI kC oun ts ummai:y (C ont1nue d)

Clock Number
Instruction Format Counts of Data Notes

Cycles

LOGIC (Continued)

Register to Memory I 0010000w I mod reg r/ml 7" 2" a

Memory to Register I 0010001w Jmodreg rtmj 6' 1' a

Immediate to Register/Memory I 1000000w Jmod100 r/m I immediate data 217" 012" a

Immediate to Accumulator (Short Form) I O O 1 O O t 0 w J immediate data 2

TEST = And Function to Flags, No Result

Register/Memory and Register I 100001 Ow jmodreg rtmJ 2/5' 0/1' a

Immediate Data and Register/Memory I 1111011 w lmodOOO r Im I immediate data 2/5' 0/1' a

Immediate Data and Accumulator
(Short Form) I 1010100w I immediate data 2

OR= Or

Register to Register I 000010dw Jmodreg r/mj 2

Register to Memory I 00001 OOw Jmodreg r/mj 7" 2" a

Memory to Register I 0000101w Jmodreg r/ml 6' 1' a

Immediate to Register/Memory I 1000000w jmod001 r/ml immediatedata 2/7 .. 012•• a

Immediate to Accumulator (Short Form) I 000011 ow I immediatedata 2

XOR = Exclusive Or

Register to Register 001100dw Jmodreg r/ml 2

Register to Memory 001 tOOOw Jmodreg r/ml 7" 2" a

Memory to Register 0011001w Jmod reg r/mj 6' 1• a

Immediate to Register/Memory 1000000w J mod 1 1 o ---;;J immediate data 217° 012•• u

Immediate to Accumulator (Short Form) 001101ow I immediate data 2 • NOT = Invert Register/Memory 1111011w Jmod010 r/ml 2/6** 012•• a

STRING MANIPULATION

CMPS = Compare Byte Word I 1010011 w I 10' 2' a

I 011011 Ow J
9" 1" a,f,k

INS = Input Byte/Word from DX Port
29** 1" a,f,I

LOOS = Load Byte/Word to AL/ AX/EAX I 101011 ow I 5' 1' a

MOVS = Move Byte Word I 1010010w I 7" 2" a

I o 11 o,,, w I 8" 1" a,f,k
OUTS = Output Byte/Word to DX Port 20•• 1" a,f,I

SCAS = Scan Byte Word I 1010111 w I 7' 1' a

STOS = Store Byte/Word from

AL/AX/EX I 1010101 w I 4' 1' a

XLAT = Translate String I 11010111 I 5' 1' a

REPEATED STRING MANIPULATION
Repeated by Count in.ex or ECX

REPE CMPS = Compare String

(Find Non-Match) I 11110011 I , o, 0011 w I 5 + 9n** 2n"'* a

5-1293

376 EMBE.DDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
lnstructton Fonnat Counts of Data Notss

'' Cycles

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS = Compare String

(Find Match) I 11110010 I 1010011w 5 + 9n .. 2n'* a

REP INS = Input String I 11110011 I 011011ow.
7 +en• 1n' ·a,l,k

27 +en• 1n' . a,l,I

REP LOOS = Load String I 1111 0011 I 1010110w 5 +Sn' 1n• a

REP MOVS = Move String I 1111 0011 I 101001ow 7 + 4n° 2n .. a

REP OUTS = Output String I 11110011 I 0110111 w
6.+ Sn* 1n' a,l,k
26 +Sn* 1n' a,f,I

REPE SCAS = Scan String

(Find Non.AL/ AX/EAX) I 11110011 I 1010111 w I 5 +en• 1n' a

REPNE SCAS = Scan String

(Find AL/ AX/EAX) I 11110010 I 101o111 w I 5 +an• 1n' a

REP STOS = Store String I 11110011 I 1010101 w I 5 +Sn' 1n' a

BIT MANIPULATION

BSF = Scan Bit Forward I 00001111 I 10111100 I mod reg r/ml. 10 + 3n .. 2n·~ a

BSR = Scan Bit Reverss I 00001111 I 10111101 I mod reg r/ml 10 +an•• 2n*"' a

BT= Test Bit

Register/Memory, Immediate I 00001111 I 10111010 lmod100 r/ml immed 8-bitdatal 3/6' 0/1' a

Register/Memory, Register I 00001111 I 10100011 I mod reg rtml 3/12' 0/1' a

BTC = Test BH and Complement

Registel/Memory, Immediate I 0000111·1 I 10111010 lmod111 rim I immed 8-bii data I 618' 012' a

Register/Memory, Register I 00001111 I 10111011 I mod reg · r/ml 6/13' 012' a

BTR = Test Bit and Reset

Register/Memory, Immediate Loooo1111J 1011101olmoo110 rim _1mmed 8-bit dat~ 618' 012' a

Register/Memory, Register I 00001111 I 10110011 I mod reg r/ml 6/13' 012' a

BTS = Test Bit and Set

Register/Memory, Immediate I 00001111 I 10111_010 lmod101. r/ml immed8-bitdatal 618' 012' a

Register/Memory, Register I 00001111 I 10101011 I mod reg r/ml 6/13' 012' a

CONTROL TRANSFER

CALL= Call

Direct within Segment I 11101000 I full displacement 9 + m• 2 j

Register /Memory

Indirect within Segment I 11111111 lmod010 r/ml 9 + m/12 + m 2/3 a,j

Direct lntersegment I 10011010 I unsigned full offset, selector 42 + m 9 c,d,j

5-1294

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts

or Data Notes
Cycles

CONTROL TRANSFER (Continued)
(Direct lntersegment)

Via Call Gate to Same Privilege Level 64 + m 13 a,c,d,j

Via Call Gate to Different Privilege Level,
(No Parameters) 98 + m 13 a,c,d,j

Via Call Gate to Different Privilege Level,
(x Parameters) 106 +ex+ m 13 + 4x a,c,d,j

From 386 Task to 386 TSS 392 124 a,c,d,j

Indirect lntersegment I 11111111 Jmod011 rimJ 46 + m 10 a,c,d,j

Via Call Gate to Same Privilege Level 68 + m 14 a,c,d,j

Via Call Gate to Different Privilege Level,
(No Parameters) 102 + m 14 a,c,d,j

Via Call Gate to Different, Privilege Level,
(x Parameters) 110+8x+m 14 + 4x a,c,d,j

From 386 Task to 386 TSS 399 130 a,c,d,j

JMP ~ Uncondltlonal Jump

Short I 11101 011 J 8-bit displacement I 7 + m j

Direct within Segment I 11101001 J full displacement 7 + m j

Register/Memory Indirect within Segment I 11111111 lmod100 r/ml 9 + m/14 + m 2/4 a,j

Direct lntersegment I 1110101 0 I unsigned full offset. selector 37 + m 5 c,d,j

Via Call Gate to Same Privilege Level 53 + m 9 a,c,d,j

From 386 Task to 386 TSS 395 124 a,c,d,j

Indirect lntersegment I 11111111 I mod 101 r/ml 37 + m 9 a,c,d,j

Via Call Gate to Same Privilege Level 59 + m 13 a,c,d,j

From 386 Task to 386 TSS 401 124 a,c,d,j

5-1295

intJ. 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counta of Data Notes

Cycles

CONTROL TRANSFER (Continued)
RET = Return from CALL:

Within Segment I 11000011 I 12+ m 2 a,j,p

Within Segment Adding Immediate to SP I 11000010 I 16-bit displ I 12+ m 2 a,j,p

lntersegment I 11001011 I 36 + m 4 a,c,d,J,p

lntersegment Adding Immediate to SP I 11001010 I 16-bit displ I 36 + m 4 a,c,d,J,p

to Different Privilege Level
lntersegment 80 4 c,d,j,p
lntersegment Adding Immediate to SP 80 4 c,d;j,p

CONDITIONAL JUMPS
NOTE: Times Are Jump "Taken or Not Taken"
JO = Jump on Overflow

8-8it Displacement I 01110000 I 8-bltdispl 1· 7 + mor3 I

Full Displacement I 00001111 I 10000000 I full displacement 7 + mor3 i

JNO = Jump on Not overflow

9:0it Displacement I 011'10001 I 8-bitdispl I 7+mor3 i

Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 i

JB/JNAE = Jump on Below/Not Above or Equal

8-8it Displacem~nt [01110010} 8-bitdispi J 7+mor3, i

Full Displacement [00001111} 1 o o o o o 1 o] full displacement 7 + mor3 i

JNB/JAE = Jump on Not Below/Above or Equal

8-8it Displacement I 01110011 I 8-bitdispl I 7+mor3 i

Full Displacement I 00001111 I 10000011 I full displacement 7+mor3 i

JE/ JZ = Jump on Equal/Zero

8-Bit Displacement I 01110100 I 8-bitdispl I 7 + mor3 i

Full Displacement I 00001111 I 10000100 I full displacement 7 + mor3 I

JNE/JNZ = Jump on Not Equal/Not Zaro

8-Bit Displacement I 0111o101 I 8-bitdispl I 7+mor3 I

Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 i

JBE/JNA = Jump on Balow or Equal/Not Above

8-8it Displacement ~ I 0111011 o I 8-bltdispi I 7+mor3 i

Full Displacement I 00001111 I 10000110 I full displacement 7 + mor3 I

JNBE/ JA = Jump on Not Below or Equal/ Above

8-Blt Displacement I 01110111 I 8-bitdispl I 7 + mor3 i

Full Displacement I 00001111 I 10000111 I full displacement 7+mor3 j

JS = Jump on Sign

8-Blt Displacement I 01111000 I 8-bitdispl I 7+mor3 I

Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 I

5-1296

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 lnstructi.on Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts of Data Notes

Cycles

CONDITIONAL JUMPS (Continued)

JNS = Jump on Not Sign

8-Bit Displacement I o 1111oo1 I 8-bitdispl I 7+mor3 i

Full Displacement I 00001111 I 1.0001001 l full displacement 7 + mor3 i

JP/JPE = Jump on Parity/Parity Even

8-Blt Displacement I o 1111 01 o I 8-bitdispl I 7 + mor3 i

Full Displacement I 00001111 I t0001010 l full displacement 7+mor3 i

JNP/JPO = Jump on Not Parity/Parity Odd

8-Blt Displacement I o 1111 011 I 8-bitdispl I 7+mor3 j

Full Displacement I 00001111 I 10001011 l lull displacement 7+mor3 i

JL/ JNGE = Jump on Less/Not Greater or Equal

8-Bit Displacement I 01111100 I 8-bitdispl I 7+mor3 i

Full Displacement I 00001111 I 10001100 l full displacement 7 + mor3 i

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement I 01111101 I 8-bltdispl I 7 + mor3 j

Full Displacement I 00001111 I 10001101 I full displacement 7 + mor3 i

JLE/JNG = Jump on Less or Equal/Not Greater

8-Bit Displacement I 0111111 o I 8-bitdispl I 7+mor3 j

Full Displacement I 00001111 I 1_000111 o l full displacement 7+mor3 i

JNLE/ JG = Jump on Not Less or Equal/Greater

8-Bit Displacement I o 1111111 I 8-bitdispl I 7+mor3 i

Full Displacement I 00001111 I 10001111 I full displacement 7 + mor3 i • JECXZ = Jump on ECX Zero I 11100011 I 8-bitdispl I 9 + mor5 i

(Address Size Prefix Differentiates JCXZ fr.om JECXZ)

LOOP = Loop ECX Times I 11100010 I 8-bitdispl I 11 + m j

LOOPZ/LOOPE = Loop with
Zero/Equal I 11100001 I 8-bitdispl I 11 + m j

LOOPNZ/LOOPNE = Loop Wh!le
Not Zero I 11100000 I 8-bltdispl I 11 + m j

CONDITIONAL BYTE SET
NOTE: Times Are Register/Memory

SETO = Set Byte on overflow

To Register/Memory I 00001111 I 10010000 I modOOO rtml 4/5' 0/1' a

SETNO = Set Byte on Not overflow

To Register/Memory I 00001111 I 10010001 I modOOO r/ml 4/5' 0/1' a

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory I 00001111 I 10010010 I modOOO rim I 4/5' 0/1' a

5-1297

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format

Counta
of Data Notes
Cycles

CONDITIONAL BYTE SET (Continued)

SETNB = Set Byte on Not Below/ Above or Equal

To Register/Memory I 00001111 I 10010011 I modOOO rim I 4/5' 0/1' a

SETE/SETZ = Set Byte on Equal/Ze•o

To Register/Memory I 00001111 I 10010100 I modOOO rim I 4/5' 0/1' a

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory I 00001111 I 10010101 I modOOO rim I 4/5' 0/1' a

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory I 00001111 I 1001011 0 I modOOO r/ml 4/5' 0/1' a

SETNBE/SETA = Set Byte on Not Below or Equal/ Above

To Register/Memory I 00001111 I 10010111 I modOOO rlml 4/5' 011' a

SETS = Set Byte on Sign

To Register/Memory I 00001111 I 10011000 I modOOO r/ml 4/5' 0/1' a

SETNS = Set Byte on Not Sign

To Register/Memory I 00001111 I 10011001 I modOOO r/ml 4/5' 0/1' a

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/Memory I 00001111 I 1001101 0 I modOOO r/ml 4/5' 0/1' a

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory I 00001111 I 10011011 I modOOO r/ml 4/5' 0/1' a

SETL/SETNGE = Set Byte on Less/Not Greater or Equal

To Register/Memory I 00001111 I 100111 00 I modOOO r/ml 4/5' 0/1' a

SETNL/SETGE = Set Byte on Not Less/Greater or Equal

To Register/Memory I 00001111 I 01111101 I modOOO r/ml 415' 011' a

SETLE/SETNG = Set Byte on Less or Equal/Not Greater

To Register/Memory I 00001111 I 1001111 0 I modOOO r/ml 4/5' 0/1' a

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory I 00001111 I 10011111 I modOOO r/ml 4/5' 011' a

ENTER = Enter Procedure l 1 1 O O 1 0 O O l 16-bit displacement, 8-bitlevel J
L=O 10 a
L = 1 14 1 a
L > 1 17 +B(n ·- 1) 4(n -1) a

LEA VE = Leave Procedure I 11001001 I 6 a

5-1298

intJ 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format Counts of Data Notes
Cycles

INTERRUPT INSTRUCTIONS

INT ~ Interrupt:

Type Specified I 11001101 I type I
Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 467 140 c,d,j,p

Type3 I 11001100 I
Via Interrupt or Trap Gate

to Same PrMlege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 308 138 c,d,J,p

INTO = Interrupt 4 If Overflow Flag Sat I 1100111 0 I
llOF = 1: 3

llOF = 0

Via Interrupt or Trap Gate

to Same PrMlege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 413 136 c,d,j,p El

intef 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format

Counts Of Data Notes
Cycles

INTERRUPT INSTRUCTIONS (Continued)

Bound ~ Out of Range I 01100010 I mod reg rim I
Interrupt 5 if Detect Value

illn Range 10 0 a,c;d,j,o,p

II Out of Range:
Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p
Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 398 138 c,d,j,p

INTERRUPT RETURN

IRET ~ l~terrupt Return I 11001111 I
To the Same Privilege Level (within Task) 42 5 a,c,d,j,p
To Different Privilege Level (within Task) 86 5 a,c,d,j,p

From 386 Task to 386 TSS 328 138 c,d,j,p

PROCESSOR CONTROL

HLT ~HALT I 111101 00 I 5 b

MOV = Move to and from Control/Debug/Test Registers

CRO from register I 00001111 I 00100010 I 11 eee reg 10 b

Register from CRO I 00001111 I 00100000 I 11 eee reg 6 b

DR0-3 from Register I 00001111 I 00100011 I 11 eee reg 22 b

DR6-7 from Register I 00001111 I 00100011 I 11 eee reg 16 b

Register from DR6-7 I 00001111 I 00100001 I 11 eee reg 14 b

Register from DR0-3 I 00001111 I 00100001 I 11 eee reg 22 b

NOP ~ No Operation I 10010000 I 3

WAIT~ Walt until BUSY Pin Is Negated I 10011011 I 6

5-1300

376EMBEDDEDPROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format of Data Notes Counts
Cycles

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011 TTT I modLLL r/m I See 80387SX Data Sheet a

TTT and LLL bits are opcode

information tor coprocessor.

PREFIX BYTES

Address Size Prefix I o 11oo111 I 0

LOCK ~ Bus Lock Prefix I 11110000 I 0 f

Operand Size Prefix I 0110011 0 I 0

Segment Override Prefix

CS: I 0010111 0 I 0

OS: ~111101 0

ES: I 00100110 I 0

FS: I 01100100 I 0

GS: I 01100101 I 0

SS: ~110110 I 0

PROTECTION CONTROL

ARPL ~ Adjust Requested Privilege Level

From Register/Memory [01100011 I mod reg rim I 20/21" 2" a

LAR ~ Load Access Rights

From Register/Memory I 00001111 I 00000010 I mod reg rim I 17/18' 1· a,c,i,p

LGDT ~ Load Global Descriptor

Table Register I 00001111 I 00000001 I mod 0 1 o rim I 13" 3' a,e

LIDT ~ Load Interrupt Descriptor

Table Register I 00001111 I 00000001 I modO 11 r/;J 13" 3• a,e

LLDT ~ Load local Descriptor

Table Register to
Register/Memory [00001111 I 00000000 lmod010 r/mJ 24/28' 5' a,c,e,p

LMSW ~Load Machine Status Word

From Register/Memory [00001111 I 00000001 I mod 11 O rim I 10/!3' 1' a,e

LSL ~ Load Segment Limit

From Register/Memory I 00001111 I 00000011 i mod reg r/mj

Byte-Granular Limit 24/27' 2• a,c,i,p
Page-Granular Limit 29/32' 2' a,c,i,p

LTR ~ Load Task Register

From Register/Memory I 00001111 I 00000000 lmodO~ 27/31' 4• a,c,e,p

SGDT ~ Store Global Descriptor

Table Register I 00001111 I 00000001 JmodOO~ 11' 3' a

SIOT~ Store Interrupt Descriptor

Table Register I 00001111 I 00000001 I mod001 r/mj 11' 3• a

SLOT ~ Store Local Descriptor Table Register

To Register I Memory I 00001111 I 00000000 I modOOO r/ml 2/2' 4' a

5-1301

intJ 376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts of Data Notes

Cycles

PROTECTION CONTROL (Continued)

SMSW ~ Store Machine
Status Word I 00001111 I 00000001 Jmod100 rtm) 212* 1' a,c

STA~ Store Task Register

To Register/Memory I 00001111 I 00000000 I mod001 r/mj 2/2' 1' a

VEAR~ Verify Read Accesss

Register /Memory I 00001111 I 00000000 Jmod100 rim I 10/11** 2" a,c,i,p

VERW ~ Verify Write Accesss I 00001111 I 00000000 I mod 101 r/mj 15/16*" 2" a,c,i,p

NOTES:
a. Exception 13 fault (general violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack limit is violated, and exception 12 (stack segment limit
violation or not present) occurs.
b. For segment load operations, the CPL, RPL and DPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segments's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation .or not present occurs).
c. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain
descriptor integrity in multiprocessor systems.
d. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is volated.
e. An exception 13 fault occurs if CPL is greater than 0.
f. An exception 13 fault occurs if CPL is greater than IOPL.
g. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only
if CPL= 0.
h. Any violation of privelege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
i. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or no present) will occur if the stack limit is violated by the operand's starting address.
j. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.
k. If CPL s IOPL
I. If CPL> IOPL
m. LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.
n. The 80376 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most signifi­
cant bit in the operand (multiplier). Clock counts given are minimum to maximum. To calculate actual clocks use the follow­
ing formula:

Actual Clock = if m < > 0 then max ([iog2 lmll. 3) + 9 clocks:
if m = 0 then 12 clocks (where m is the multiplier)

o. An exception may occur, depending on the value of the operand.
p. LOCK is asserted during descriptor table accesses.

5-1302

intef 376 EMBEDDED PROCESSOR

8.2 INSTRUCTION ENCODING

Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 8.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rim"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex­
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod rim
byte, specifies the address mode to be used. Certain

encodings of the mod rim byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod rim byte to fully specify the addressing
mode.

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the rim field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 8.2 is a complete list of all fields ap­
pearing in the 80376 instruction set. Further ahead,
following Table 8.2, are detailed tables for each
field.

I T T T T T T T T I T T T T T T T T I mod T T T r Im I ss index base I d32 J 16 I 8 I none data32 I 16 I 8 I none

7 01 o~\755.320;..__ ____ _

opcode
(one or two bytes)
(T represents an

opcode bit.)

"mod rim"
byte

"s-i-b"
byte

register and address
mode specifier

address
displacement
(4, 2, 1 bytes

or none)

Figure 8.1. General Instruction Format

Table 8.2. Fields within 80376 Instructions

Field Name Description

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits
d Specifies Direction of Data Operation
s Specifies if an Immediate Data Field Must be Sign-Extended
reg General Register Specifier
mod rim Address Mode Specifier (Effective Address can be a General Register)

SS Scale Factor for Scaled Index Address Mode
index General Register to be used as Index Register
base General Register to be used as Base Register
sreg2 Segment Register Specifier for CS, SS, OS, ES
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated

Note: Table 8.1 shows encoding of individual instructions.

5-1303

immediate
data

(4, 2, 1 bytes
or none)

Number of Bits

1
1
1
3

2 for mod;
3 for rim

2
3
3
2
3

4

intJ 376 EMBEDDED PROCESSOR

16-Bit Extensions of the
Instruction Set

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected Two prefixes, the operand size prefix (66H) and the
effective address size prefix (67H), allow overriding
individually the default selection of operand size and
effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of.the prefix­
es may be placed before the opcode bytes. The
presence of the operand size prefix (66H) and the
effective address prefix will allow 16-bit data opera­
tion and 16-bit effective address calculations.

reg Field
Register Selected

with 66H Prefix
During 32-Bit

For instructions with more than one prefix, the order
of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on.

ENCODING OF OPERAND LENGTH (w) FIELD

For any given instruction performing a data opera­
tion, the instruction will execute as a 32-bit opera­
tion. Within the constraints of the operation size, the
w field encodes the operand size as either one byte
or the full operation size, as shown in the table be­
low.

wField
Operand Size

with 66H Prefix

0 8 Bits
1 16 Bits

ENCODING OF THE GENERAL
REGISTER (reg) FIELD

Normal
Operand Size

8 Bits
32 Bits

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

5-1304

000
001
010
011
100
101
110
111

reg

000
001
010
011
100
101
110
111

reg

000
001
010
011
100
101
110
111

Data Operations

AX EAX
ex ECX
DX EDX
BX EBX
SP ESP
BP EBP
SI ESI
DI EDI

Encoding of reg Field When w Field
is Present in Instruction

Register Specified by reg Field
with 66H Prefix

Function of w Field

(when w = 0) (when w = 1)

AL AX
CL ex
DL DX
BL BX
AH SP
CH BP
DH SI
BH DI

Register Specified by reg Field
without 66H Prefix

Function of w Field

(whenw = 0) (when w = 1)

AL EAX
CL ECX

. DL EDX
BL EBX
AH ESP
CH ESP
DH ESI
SH EDI

intJ 376 EMBEDDED PROCESSOR

ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the CS, DS, ES or SS segment regis­
ters to be specified. The sreg field in other instruc­
tions is a 3-bit field, allowing the FS and GS segment
registers to be specified also.

2·Bit sreg2 Field

2-Bit
Segment

sreg2 Field
Register
Selected

00 ES
01 cs
10 SS
11 DS

3-Bit sreg3 Field

3-Bit
Segment

sreg3 Field
Register
Selected

000 ES
001 cs
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
th.e addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the "mod
rim" byte has rim = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rim" byte,
also contains three bits (shown as TTT in Figure 8.1)
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the
"mod rim" byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
"mod rim" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit
addressing modes.

5-1305

I

intJ 376 EMBEDDED PROCESSOR

Encoding of Normal Address Mode with "mod r/m" byte (no "s·l·b" byte present):

mod r/m Effective Address modr/m Effective Address

00 000 DS:[EAX] 10000 DS: [EAX + d32]
00 001 DS:[ECX) 10001 DS: [ECX + d32]
00010 DS:[EDX] 10 010 OS: [EDX + d32)
00 011 DS:[EBX] 10 011 DS: [EBX + d32]
00 100 s-i-b is present 10 100 s-i-b is present
00 101 DS:d32 10 101 SS: [EBP + d32)
00 110 DS:[ESI] 10 110 DS: [ESI + d32)
00 111 DS:[EDI] 10 111 DS: [EDI + d32]

01 000 OS: [EAX +dB) 11 000 register-see below
01 001 OS: [ECX +dB] 11 001 register-see below
01 010 DS: [EDX +dB] 11 010 register-see below
01 011 OS: [EBX +dB) 11 011 register-see below
01 foo s-i-b is present 11 100 register-see below
01 101 SS: [EBP +dB] 11 101 register-see below
01 110 DS:[ESl+dB] 11 110 register-see below
01 111 DS: [EDI+ dB] 11 111 register-see below

Register Specified by reg or r/m
during Normal Data Operations:

modr/m
function of w field

(when w=O) (whenw= 1)

11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

Register Specified by reg or r/m
during 16-Bit Data Operations: (66H Prefix)

mod r/m
function of w field

(whenw=O) (whenw= 1)

11 000 AL AX
11 001 CL ex
11 010 DL DX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 DH SI
11 111 BH DI

5-1306

376 EMBEDDED PROCESSOR

Encoding of 16-bit Address Mode with "mod r/m" Byte Using 67H Prefix

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[BX+SI] 10 000 DS:[BX+SI +d16]
00 001 DS:[BX+DI] 10 001 DS:[BX+ DI+ d16]
00 010 SS:[BP+SI] 10 010 SS:[BP+Sl+d16]
00 011 SS:[BP+DI] 10 011 SS:[BP+ DI +d16]
00 100 DS:[SI] 10 100 OS: [SI+ d16]
00 101 DS:[DI) 10 101 OS: [DI+ d16]
00 110 DS:d16 10 110 SS:[BP+d16]
00 111 DS:[BX] 10 111 DS:[BX+d16]

Oi 000 OS: [BX+ SI+ d8] 11 000 register-see below
01 001 DS:[BX+Dl+d8] 11 001 register-see below
01 010 SS: [BP+ SI+ d8] 11 010 register-see below
01 011 SS: [BP+ DI+ d8] 11 011 register-see below
01 100 DS:[Sl+d8] 11 100 register-see below
01101 DS:[Dl+d8] 11 101 register-see below
01 110 SS:[BP+d8] 11 110 register-see below
01 111 DS:[BX+d8] 11 111 register-see below

5-1307

intef

mod base

00 000
00 001
00 010
00 011
00 100
00 101
00 110
00 111

01 000
01 001
01 010
01 011
01100
01 101
01110
01 111

10000
10001
10 010
10 011
10 100
10 101
10 110
10 111

NOTE:

376 EMBEDDED PROCESSOR

Encoding of 32-bit Address Mode ("mod r/m" byte and "s·i·b" byte present):

Effective Address

DS: [EAX +(scaled index))
OS: [ECX +(scaled index))
OS: [EDX +(scaled index))
DS: [ESX +(scaled index))
SS: [ESP+ (scaled index))
DS: [d32 +(scaled index)]
DS:[ESI +(scaled index))
DS: [EDI+ (scaled index)]

DS: [EAX +(scaled index)+ dB]
DS: [ECX +(scaled index)+ dB]
DS: [EDX +(scaled index)+ dB)
OS: [ESX +(scaled index)+ dB]
SS: [ESP+ (scaled index)+ dB]
SS: [ESP+ (scaled index)+ dB]
DS: [ESI +(scaled index)+ dB]
DS: [EDI+ (scaled index)+ dB)

DS: [EAX +(scaled index)+ d32)
DS: [ECX +(scaled index)+ d32)
OS: [EDX +(scaled index)+ d32)
DS: [ESX +(scaled index)+ d32)
SS: [ESP+ (scaled index)+ d32]
SS: [ESP+ (scaled index)+ d32]
DS: [ESI +(scaled index)+ d32)
DS: [EDI+ (scaled index)+ d32)

SS Scale Factor

00 x1
01 x2
10 x4
11 xB

index Index Register

000 EAX
001 ECX
010 EDX
011 ESX
100 no index reg••
101 ESP
110 ESI
111 EDI

**IMPORTANT NOTE:
When index field is 100, indicating "no index register," then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.

Mod field in "mod rim" byte; ss, index, base fields in
"s-i-b" byte.

5-130B

intef 376 EMBEDDED PROCESSOR

ENCODING OF OPERATION
DIRECTION (d) FIELD

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod rim" or "mod ss index base" Indicates
Destination Operand

1 Register<- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod rim" or "mod ss index base" Indicates
Source Operand

ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Effect on Effect on s Immediate Data& Immediate Data 16132

ONone

1 Sign-Extend Data8 to Fill
16-Bit or 32-Bit Destination

ENCODING OF CONDITIONAL
TEST (tttn) FIELD

None

None

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

Mnemonic Condition

0 Overflow
NO No Overflow
B/NAE Below/Not Above or Equal
NB/AE Not Below I Above or Equal
E/Z Equal/Zero
NE/NZ Not Equal/Not Zero
BE/NA Below or Equal/Not Above
NBE/A Not Below or Equal/ Above
s Sign
NS Not Sign
PIPE Parity/Parity Even
NP/PO Not Parity/Parity Odd
L/NGE Less Than/Not Greater or Equal
NL/GE Not Less Than/Greater or Equal
LE/NG Less Than or Equal/Greater Than
NLE/G Not Less or Equal/Greater Than

ENCODING OF CONTROL OR DEBUG
REGISTER (eee) FIELD

tttn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

For the loading and storing of the Control and Debug
registers.

When Interpreted as Control Register Field

eee Code Reg Name

000 CRO
010 Reserved
011 Reserved

Do not use any other encoding

When Interpreted as Debug Register Field

eeeCode Reg Name

000 ORO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

5-1309

intef 376 EMBEDDED PROCESSOR

9.0 REVISION HISTORY

The sections significantly revised since version '003 are:

Section 1.0 Added FLT pin.

Section 4.4 Added description of FLOAT operation and ()NCE Mode. Figure 4.20 is new.

Section 4.6

Section 5.0

Section 6.3

Section 6.4

Added revision identifier information for change to CHMOS IV manufacturing process.

Both packages now specified for 0°C-115°C case temperature operation. Thermal resist­
ance values changed.

Ice Max. specifications changed from 400 mA (cold) and 360 mA (hot) to 275 mA (cold, 16
MHz) and 305 mA (cold, 20 MHz).

HLDA Valid Delay, t14, min. changed from 6 ns to 4 ns. Added 20 MHz A.C. specifications in
Table 6.5. Replaced Capacitive Derating Curves in Figures 6.8-6.1 Oto reflect new manufac­
turing process. Replaced Ice vs. Frequency data (Figure 6.11) to reflect new specifications.

The sections significantly revised since version -002 are:

Section 1.0 Modified table 1.1. to list pins in alphabetical order.

The sections significantly revised since version -001 are:

Section 2.0 Figure 2.0 was updated to show the 16-bit registers SI, DI, BP and SP.

Section 2.1

Section 2.1

Section 2.3

Section 2.6

Section 2.8

Section 2.10

Section 3.0

Section 3.2

Section 3.2

Section 3.3

Section 4.1

Section 4.1

Section 4.2

Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CRO register.

Tables 2.1 and 2.2 were updated to include additional information on the EFLAGs and CAO
registers.

Figure 2.3 was updated to more accurately reflect the addressing mechanism of the 80376.

In the subsection Mas.kable Interrupt a paragraph was added to describe the effect of
interrupt gates on the IF EFLAGs bit.

Table 2.7 was updated to reflect the correct power up condition of the CAO register.

Figure 2.6 was updated to show the correct bit positions of the BT, BS and BD bits in the
DR6 register.

Figure 3.1 was updated to clearly show the address calculation process.

The subsection DESCRIPTORS was elaborated upon to clearly define the relationship be­
tween the linear address space and physical address space of the .80376.

Figures 3.3 and 3.4 were updated to show the AVL bit field.

The last sentence in the first paragraph of subsection PROTECTION AND 1/0 PERMIS­
SION BIT MAP was deleted. This was an incorrect statement.

In the Subsection ADDRESS BUS (BHE, BLE, A2a-A1 last sentence in the first paragraph
was updated to reflect the numerics operand addresses as 8000FCH and 8000FEH. Be­
cause the 80376 sometimes does a double word 1/0 access a second access to 8000FEH
can be seen.

The Subsection Hold Lantencies was updated to describe how 32-bit and unaligned ac­
cesses are internally locked but do not assert the LOCK signal.

Table 4.6 was updated to show the correct active data bits during a BLE assertion.

5-1310

intef 376 EMSEDDED PROCESSOR

9.0 REVISION HISTORY (Continued)
Section 4.4

Section 4.6

Section 4.7

Section 5.0

Section 6.2

Section 6.4

Section 6.4

Section 8.1

Section 8.2

This section was updated to correctly reflect the pipelining of the address and status of the
80376 as opposed to "Address Pipelining" which occurs on processors such as the 80286.

Table 4.7 was updated to show the correct Revision number, 05H.

Table 4.8 was updated to show the numerics operand register 8000FEH. This address is
seen when the 80376 does a DWORD operation to the port address 8000FCH.

In the first paragraph the case temperatures were updated to reflect the 0°C-115°C for the
ceramic package and 0°C-110°C for the plastic package.

Table 6.2 was updated to reflect the Case Temperature under Bias specification of -65°C-
1200C.

Figure 6.8 vertical axis was updated to reflect "Output Valid Delay (ns)".

Figure 6.11 was updated to show typical Ice vs Frequency for the 80376.

The clock counts and opcodes for various instructions were updated to their correct values.

The section INSTRUCTION ENCODING was appended to the data sheet.

5-1311

82370
INTEGRATED SYSTEM PERIPHERAL

• High Performance 32-Bit OMA • Programmable Wait State Generator
Controller for 16-Bit Bus - O to 15 Wait States Pipelined
-16 MBytes/Sec Maximum Data - 1 to 16 Wait States Non-Pipelined

Transfer. Rate at 16 MHz • DRAM Refresh Controller
- 8 Independently Programmable

Channels • 80376 Shutdown Detect and Reset

20-Source Interrupt Controller
Control • - Software/Hardware Reset

- Individually Programmable Interrupt
Vectors • High Speed CHMOS Ill Technology

....... 15 External, 5 Internal Interrupts • 1oo~Pin Plastic Quad Flat-Pack Package
- 82C59A Superset and 132-Pin Pin Grid Array Package

• Four 16-Bit Programmable Interval (See Packaging Handbook Order # 231369)

Timers • Optimized for Use with the 80376
- 82C54 Compatible Microprocessor

• Software Compatible to 82380 - Resides on Local Bus for Maximum
Bus Bandwidth

The 82370 is a multi-function support peripheral that integrates system functions necessary in an 80376
environment. It has eight channels of high performance 32-bit OMA (32-bit internal, 16-bit external) with the
most efficient transfer rates possible on the 80376 bus. System support peripherals integrated into the 82370
provide Interrupt Control, Timers, Wait State generation, DRAM Refresh Control, and System Reset logic.

The 82370's OMA Controller can transfer data between devices of different data path widths using a single
channel. Each OMA channel operates independently in any of several modes. Each channel has a temporary
data storage register for handling non-aligned data without the need for external alignment logic.

INTERNAL BUS
ARBITRATION

AND CONTROL

WAIT-STATE
CONTROL

DRAM
REFRESH

CONTROLLER

20-LEVE.L
INTERRUPT

CONTROLLER

CPU
RESET

80376 LOCAL BUS

16 - BIT PHYSICAL
(32 - BIT LbGICAL)

8-CHANNEL
DMA

CONTROLLER

TIMER 0

TIMER 1

TIMER 2

TIMER 3

Internal Block Diagram

5-1312

290164-1

December 1990
Order Number: 290164-004

inter 82370

Table of Contents
CONTENTS PAGE

Pin Descriptions .. 5-1318

1.0 Functional Overview .. 5-1323
1.1 82370 Architecture .. 5-1323

1.1.1 OMA (Direct Memory Access) Controller 5-1325
1.1.2 Programmable Interval Timers , 5-1326
1.1.3 Interrupt Controller ... 5-1327
1.1.4 Wait State Generator ... 5-1328
1.1.5 DRAM (Dynamic RAM) Refresh Controller 5-1328
1.1.6 CPU Reset Function ... 5-1328
1.1. 7 Register Map Relocation ... 5-1329

1.2 Host Interface .. 5-1329

2.0 80376 Host Interface .. 5-1329
2.1 Master and Slave Modes .. 5-1330
2.2 80376 Interface Signals ... 5-1330

2.2.1 Clock (CLK2) ... 5-1331
2.2.2 Data Bus (Do-015) ... 5-1331
2.2.3 Address Bus (A23-A1) ... 5-1331
2.2.4 Byte Enable (BHE#, BLE#) : ... 5-1331
2.2.5 Bus Cycle Definition Signals (DIC#, W/R#, M/10#) 5-1332
2.2.6 A.ddress Status (ADS#) ... 5-1332
2.2. 7 Transfer Acknowledge (READY#) .. 5-1332
2.2.8 Next Address Request (NA#) ... 5-1332 I
2.2.9 Reset (RESET, CPURST) ... 5-1333
2.2.10 Interrupt Out (INT) .. 5-1334

2.3 82370 Bus Timing ... 5-1334
2.3.1 Address Pipelining ... 5-1334
2.3.2 Master Mode Bus Timing ... 5-1334
2.3.3 Slave Mode Bus Timing .. 5-1335

3.0 OMA Controller ... 5-1337
3.1 Functional Description .. 5-1337
3.2 Interface Signals .. 5-1339

3.2.1 DREQn and EDACK (0-2) ... 5-1340
3.2.2 HOLD and HLDA ~ .. 5-1340
3.2.3 EOP# ... 5-1341

3.3 Modes of Operation .. 5-1341
3.3.1 Target/Requester Definition .. 5-1341
3.3.2 Buffer Transfer Processes .. 5-1342

5-1313

intef 82370

CONTENTS PAGE

3.0 OMA Controller (Continued)
3.3.3 Data Transfer Modes ... 5-1342
3.3.4 Channel Priority Arbitration ... 5-1346
3.3.5 Combining Priority Modes .. 5-1348
3.3.6 Bus Operation ... 5-1348

3.3.6.1 Fly-By Transfers .. 5-1348
3.3.6.2 Two-Cycle Transfers .. 5-1349
3.3.6.3 Data Path Width and Data Transfer Rate Considerations 5-1349
3.3.6.4 Read, Write, and Verify Cycles ... 5-1350

3.4 Bus Arbitration and Handshaking .. 5-1350
3.4.1 Synchronous and Asynchronous Sampling of DREQn and EOP # 5-1352
3.4.2 Arbitration of Cascaded Master Requests 5-1354
3.4.3 Arbitration of Refresh Requests .. 5-1355

3.5 DMA Controller Register Overview .. 5-1356
3.5.1 Control/Status Registers ... 5-1356
3.5.2 Channel Registers ... 5-1357
3.5.3 Temporary Registers ... 5-1358

3.6 DMA Controller Programming ... 5-1358
3.6.1 Buffer Processes ... 5-1359

3.6.1.1 Single Buffer Process ... 5-1359
3.6.1.2 Buffer Auto-Initialize Process .. 5-1359
3.6.1.3 Buffer Chaining Process ... 5-1360

3.6.2 Data Transfer Modes ... 5-1360
3.6.3 Cascaded Bus Masters ... 5-1360
3.6.4 Software Commands ... 5-1360

3.7 Register Definitions ... 5-1360
3.8 8237A Compatibility ... 5-1367

4.0 Programmable Interrupt Controller (PIC) ... 5-1367
4.1 Functional Description .. 5-1367

4.1.1 Internal Block Diagram ... 5-1367
4.1.2 Interrupt Controller Banks .. 5-1368

4.2 Interface Signals .. 5-1370
4.2.1 Interrupt Inputs ... 5-1370
4.2.2 Interrupt Output (INT) ... 5-1370

4.3 Bus Functional Description .. 5-1370
4.4 Modes of Operation ... 5-1371

4.4.1 End-of-Interrupt .. 5-1372
4.4.2 Interrupt Priorities .. 5-1372

4.4.2.1 Fully Nested Mode .. 5-1372
4.4.2.2 Automatic Rotation-Equal Priority Devices 5-1373
4.4.2.3 Specific Rotation-Specific Priority 5-1374
4.4.2.4 Interrupt Priority Mode Summary ... 5-1374

5-1314

intJ 82370

CONTENTS PAGE

4.0 Programmable Interrupt Controller (Continued)
4.4.3 Interrupt Masking .. 5-1374

4.4.4 Edge or Level Interrupt Triggering .. 5-1375

4.4.5 Interrupt Cascading .. 5-1375
4.4.5.1 Special Fully Nested Mode .. 5-1376

4.4.6 Reading Interrupt Status _ ... 5-1376
4.4.6.1 Poll Command .. 5-1376

4.4.6.2 Reading Interrupt Registers ... 5-1376
4.5 Register Set Overview .. 5-1376

4.5.1 Initialization Command Words (ICW) .. 5-1378
4.5.2 Operation Control Words (OCW) ... 5-1378

4.5.3 Poll/Interrupt Request/In-Service Status Register 5-1379

4.5.4 Interrupt Mask Register (IMR) .. 5-1379

4.5.5 Vector Register (VR) ... 5-1379

4.6 Programming ... 5-1379
4.6.1 Initialization (ICW) .. 5-1379

4.6.2 Vector Registers (VR) .. 5-1380

4.6.3 Operation Control Words (OCW) ... 5-1381

4.6.3.1 Read Status and Poll Commands (OCW3) 5-1381

4.7 Register Bit Definition ... 5-1381
4.8 Register Operational Summary .. 5-1385

5.0 Programmable Interval Timer ... 5-13851
5.1 Functional Descri~tion .. 5-1385

5. t.1 Internal Architecture ... 5-1386
5.2 Interface Signals .. 5-1388

5.2.1 CLKIN ... 5-1388
5.2.2 TOUT1, TOUT2#, TOUT3# ... 5-1388

5.2.3 GATE .. 5-1388

5.3 Modes of Operation ... 5-1388
5.3.1 Mode 0-lnterrupt on Terminal Count .. 5-1388

5.3.2 Mode 1-GATE Retriggerable One-Shot 5-1389

5.3.3 Mode 2-Rate Generator .. 5-1390

5.3.4 Mode 3-Square Wave Generator .. 5-1391 ,
5.3.5 Mode 4-lnitial Count Triggered Strobe ~-1393
5.3.6 Mode 5-GATE Retriggerable Strobe .. $-1394

5.3.7 Operation Common to All Modes ... 5-1395

5.3.7.1 GATE ... 5-1395

5.3.7.2 Counter ... 5-1396
5.4 Register Set Overview .. 5-1396

5.4.1 Counter 0, 1, 2, 3 Registers ... 5-1396

5.4.2 Control Word Register I & II .. 5-1396

5-1315

intJ 82370

CONTENTS PAGE

5.0 Programmable Interval Timer (Continued)
5.5 Programming · ... 5-1397

5.5.1 Initialization ' ... 5-1397
5.5.2 Read Operation ... 5-1397

5.6 Register Bit Definitions .. 5-1399

6.0 Wait State Generator ... 5-1401
6.1 Function~! Description .. 5-1401
6.2 Interface. Signals , ... 5-1401

6.2.1 READY# .. 5-1401
6.2.2 READYO# .. 5-1401
6.2.3 wsc (0-1) -· ~ 5-1401

6.3 Bus Function ... 5-1402
6.3.1 Wait States in Non-Pipelined Cycle ... 5-1402
6.3.2 Wait States in Pipelined Cycles ... 5-1403
6.3.3 Extending and Early Terminating Bus Cycle 5-1403

6.4 Register Set Overview ... 5-1405
6.5 Programming ... 5-1405
· 6.6 Register Bit Definition ... 5-1405
6.7 Application Issues .. : 5-1406

6.7.1 External 'READY' Control Logic "'· 5-1406

7.0 DRAM Refresh Controller ... 5-1407
7.1 Functional Description .. 5-1407
7.2 Interface SignFtls · .. 5-1407

7.2.1 TOUT1/REF# ... 5-1407
7.3 Bus Function ... 5-1407

7.3.1 Arbitration ... 5-1407
7.4 Modes of Operation ... 5-1408

7.4.1 Word Size and Refresh Address Counter 5-1408
7.5 Register Set Overview , 5-1408
7.6 Programming ... 5-1409
7.7 Register Bit Definition ... 5-1409

8.0 Relocation Register, Address Decode and Chip-Select (CHPSEL#} 5-1409
: 8.1 Relocation Register .. , 5-1409

. 8.1.1 1/0-Mapped 82370 .. 5-1410
8.1.2 Memory-Mapped 82370 : 5-141 o

8.2 Address Decoding .. 5-1410 •
8.3 Chip-Select (CHPSEL#) .. 5-1410

5-1316

intef 82370

CONTENTS PAGE

9.0 CPU Reset and Shutdown Detect .. 5-1411
9.1 Hardware Reset .. 5-1411

9.2 Software Reset ... 5-1411

9.3 Shutdown Detect ... 5-1411

10.0 Internal Control and Diagnostic Ports .. 5-1412
10.1 Internal Control Port ... 5-1412

10.2 Diagnostic Ports ... 5-1412

11.0 Internal Reserved 1/0 Ports ... 5-1412

12.0 Package Thermal Specifications .. 5-1413

13.0 Electrical Specifications ... 5-1414

Appendix A-Ports Listed by Address ... 5-1422

Appendix B-Ports Listed by Function .. 5-1426

Appendix C-System Notes .. 5-1430

5-1317

82370

Pin Descriptions

The 82370 provides all of the signals necessary to
interface an 80376 host processor. It has a separate
24-bit address and 16-bit data bus. It also has a set
of control signals to support operation as a bus mas­
ter or a bus slave. Several special function signals

exist on the 82370 for interfacing the system support
peripherals to their respective system counterparts.
Following are the definitions of the individual pins of
the 82370. These brief descriptions are provided as
a reference. Each signal is further defined within the
sections which describe the associated 82370 func­
tion.

Symbol Type Name and Function

A1-A23 1/0 ADDRESS BUS: Outputs physical memory or port 1/0 addresses. See
Address Bus (2.2.3) for additional information.

BHE# 1/0 BYTE ENABLES: Indicate which data bytes of the data bus take part in a bus
BLE# cycle. See Byte Enable (2.2.4) for additional information.

Do-015 1/0 DAT A BUS: This is the 16-bit data bus. These pins are active outputs during
interrupt acknowledges, during Slave accesses, and when the 82370 is in the
Master Mode.

CLK2 I PROCESSOR CLOCK: This pin must be connected to the processor's clock,
CLK2. The 82370 monitors the phase of this clock in order to remain
synchronized with the CPU. This clock drives all of the internal synchronous
circuitry.

DIC# 1/0 DATA/CONTROL: D/C# is used to distinguish between CPU control cycles
and OMA or CPU data access cycles. It is active as an output only in the
Master Mode.

W/R# 1/0 WRITE/READ: W /R # is used to distinguish between write and read cycles. It
is active as an output only in the Master Mode.

M/10# 1/0 MEMORY /10: M/10# is used to distinguish between memory and 10
accesses. It is active as an output only in the Master Mode.

ADS# 1/0 ADDRESS STATUS: This signal indicates presence of a valid address on the
address bus. It is active as output only in the Master Mode. ADS# is active
during the first T-state where addresses and control signals are valid.

NA# I NEXT ADDRESS: Asserted by a peripheral or memory to begin a pipelined
address cycle. This pin is monitored only while the 82370 is in the Master
Mode. In the Slave Mode, pipelining is determined by the current and past
status of the ADS# and READY# signals.

HOLD 0 HOLD REQUEST: This is an active-high signal to the Bus Master to request
control of the system bus. When control is granted, the Bus Master activates
the hold acknowledge signal (HLDA).

HLDA I HOLD ACKNOWLEDGE: This input signal tells the OMA controller that the
Bus Master has relinquished control of the system bus to the OMA controller.

5-1318

intJ 82370

Pin Descriptions (Continued)

Symbol Type Name and Function

DREQ (0-3, 5-7) I OMA REQUEST: The OMA Request inputs monitor requests from peripherals
requiring OMA service. Each of the eight OMA channels has one DREQ input.
These active-high inputs are internally synchronized and prioritized. Upon
request, channel O has the highest priority and channel 7 the lowest.

DREQ4/IRQ9# I OMA/INTERRUPT REQUEST: This is the OMA request input for channel 4. It
is also connected to the interrupt controller via interrupt request 9. This
internal connection is available for OMA channel 4 only. The interrupt input is
active low and can be programmed as either edge or level triggered. Either
function can be masked by the appropriate mask register. Priorities of the
OMA channel and the interrupt request are not related but follow the rules of
the individual controllers.

Note that this pin has a weak internal pull-up. This causes the interrupt
request to be inactive, but the OMA request will be active if there is no
external connection made. Most applications will require that either one or the
other of these functions be used, but not both. For this reason, it is advised
that OMA channel 4 be used for transfers where a software request is more
appropriate (such as memory-to-memory transfers). In such an application,
DREQ4 can be masked by software, freeing IRQ9 # for other purposes.

EOP# 1/0 END OF PROCESS: As an output, this signal indicates that the current
Requester access is the last access of the currently operating OMA channel.
It is activated when Terminal Count is reached. As an input, it signals the OMA
channel to terminate the current buffer and proceed to the next buffer, if one
is available. This signal may be programmed as an asynchronous or
synchronous input.

EOP# must be connected to a pull-up resistor. This will prevent erroneous
external requests for termination of a OMA process.

EDACK(0-2) 0 ENCODED OMA ACKNOWLEDGE: These signals contain the encoded
acknowledgment of a request for OMA service by a peripheral. The binary
code formed by the three signals indicates which channel is active. Channel 4
does not have a OMA acknowledge. The inactive state is indicated by the
code 100. During a Requester access, EDACK presents the code for the
active OMA channel. During a Target access, EDACK presents the inactive
code 100.

IRQ(11-23)# I INTERRUPT REQUEST: These are active low interrupt request inputs. The
inputs can be programmed to be edge or level sensitive. Interrupt priorities
are programmable as either fixed or rotating. These inputs have weak internal
pull-up resistors. Unused interrupt request inputs should be tied inactive
externally.

INT 0 INTERRUPT OUT: INT signals that an interrupt request is pending.

CLKIN I TIMER CLOCK INPUT: This is the clock input signal to all of the 82370's
programmable timers. It is independent of the system clock input (CLK2).

TOUT1/REF# 0 TIMER 1 OUTPUT /REFRESH: This pin is software programmable as either
the direct output of Timer 1, or as the indicator of a refresh cycle in progress.
As REF#, this signal is active during the memory read cycle which occurs
during refresh.

5-1319

82370

Pin Descriptions (Continued)

Symbol Type Name and Function

TOUT2#/IRQ3# 110 TIMER 2 OUTPUT/INTERRUPT R.EQUEST: This is the inverted output of
Timer 2. It is also connected directly to interrupt request 3. External hardware
can use IRQ3 # if Timer 2 is programmed as OUT= 0 (TOUT2 # = 1).

TOUT3# 0 TIMER 3 OUTPUT: This is the inverted output of Timer 3.

READY# I READY INPUT: This active-low input indicates to the 82370 that the current
bus cycle is complete. READYis sampled by the 82370 both while it is in the
Master Mode, and while it is in the Slave Mode.

wsc (0-1) I WAIT STATE CONTROL: WSCO and WSC1 are inputs used by the Wait-
State Generator to determine the number of wait states required by the
currently accessed memory or 1/0. The binary code on these pins, combined
with the M/10# signal, selects an internal register in which a wait-state count
is stored. The combination WSC = 11 disables the wait-state generator.

READYO# 0 READY OUTPUT: This is the synchronized output of the wait-state generator.
It is also valid during CPU accesses to the 82370 in the Slave Mode when the
82370 requires wait states. READYO# should feed directly the processor's
READY# input.

RESET I RESET: This synchronous input serves to initialize the state of the 82370 and
provides basis for the CPURST output. RESET must be held active for at least
15 CLK2 cycles in order to guarantee the state of the 82370. After Reset, the
82370 is in the Slave Mode with all outputs except timers and interrupts in
their inactive states. The state of the timers and interrupt controller must be
initialized through software. This input must be active for the entire time
required by the host processor to guarantee proper reset.

CHPSEL# 0 CHIP SELECT: This pin is driven active whenever the 82370 is addressed in a
slave bus read or write cycle. It is also active during interrupt acknowledge
cycles when the 82370 is driving the Data Bus. It can be used to control the
local bus transceivers to prevent contention with the system bus.

CPURST 0 CPU RESET: CPURST provides a synchronized reset signal for the CPU. It is
activated in the event of a software reset command, a processor shut-down
detect, or a hardware reset via the RESET pin. The 82370 holds CPURST
active for 62 clocks in response to either a software reset command or a shut-
down detection. Otherwise CPURST reflects the RESET input.

Vee POWER: + 5V input power.

Vss Ground Reference.

Tabl~ 1. Walt-State Select Inputs

Port Wait-State Registers Select Inputs
Address D7 D4 D3 DO WSC1 wsco

72H MEMORYO 1/00 0 0
73H MEMORY1 1/01 0 1
74H MEMORY2 1/02 1 0

DISABLED 1 1

M/10# 1 0

5-1320

82370

100 290164-2

100 Pin Quad Flat-Pack Pin Out (Top View)

A Row BRow CRow DRow

Pin Label Pin Label Pin Label Pin Label

1 CPURST 26 Vee 51 A11 76 DREQ5
2 INT 27 D11 52 A10 77 DREQ4/IRQ9#
3 Vee 28 D4 53 Ag 78 DREQ3
4 Vss 29 D12 54 As 79 DREQ2
5 TOUT2#/IRQ3# 30 Ds 55 A7 80 DREQ1
6 TOUT3# 31 D13 56 As 81 DREQO
7 DIC# 32 Ds 57 As 82 IRQ23#
8 Vee 33 Vss 58 Vee 83 IRQ22#
9 W/R# 34 D14 59 A4 84 IRQ21 #

10 M/10# 35 D7 60 As 85 IRQ20#
11 HOLD 36 D15 61 A2 86 IRQ19#
12 TOUT1/REF# 37 A23 62 A1 87 IRQ18#
13 CLK2 38 A22 63 Vss 88 IRQ17# I
14 Vss 39 A21 64 BLE# 89 IRQ16#
15 READYO# 40 A20 65 BHE# 90 IRQ15#
16 EOP# 41 A19 66 Vss 91 IRQ14#
17 CHPSEL# 42 A19 67 ADS# 92 IRQ13#
18 Vee 43 Vee 68 Vee 93 IRQ12#
19 Do 44 A17 69 EDACK2 94 IRQ11 #
20 Ds 45 A16 70 EDACK1 95 CLKIN
21 D1 46 A15 71 EDACKO 96 wsco
22 Dg 47 A14 72 HLDA 97 WSC1
23 D2 48 Vss 73 DREQ7 98 RESET
24 D10 49 A13 74 DREQ6 99 READY#
25 Ds 50 A12 75 NA# 100 Vss

5-1321

82370

A B c D G H K M N p

/.,SS Vee Vss Vee A12 A9 AB AS A3 BHE# DREQO EDACK1 Vss Vee

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee A19 A17 A15 A13 A10 A? A4 A1 ADS# EDACK2 INT Vss Vee

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss A21 A18 A16 A14 A11 A6 A2 BLE#

DREQ4/
IRQ9# EDACKO HLDA OREO? DREQS

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee A22 A20 DREQ6 NA# DREQ3

4 0 0 0 0 0 0
(NC) (NC) A23 wsco DREQ2 DREQ1

5 0 0 0 0 0 0
BOTIOM VIEW

(NC) (NC) (NC) METAL LID WSC1 IRQ22# IRQ23#

0 0 0 0 0 0
(NC) (NC) (NC) IRQ21# IRQ20# IRQ19#

0 0 0 0 0 0
{NC) {NC) 015 (82370) IRQ17# IRQ16# IRQ18#

0 0 0 0 0 0
07 {NC) (6:, IR013# IRQ14# IRQ15#

0 0 0 0 0
014 06 D13 D/C# IRQ12# IR011#

10 0 0 0 0 0 0
(NC) 05 (NC) READY# CLKIN W/R#

11 0 0 0 0 0 0
Vee (NC) 012 (NC) D3 D10 (NC) READYO# HOLD CH PS EL# EDP# CPURST RESET Vee

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(NC) (NC) (NC) (NC) (NC)

TOUT1/
M/10#

TOUT2#/
Vss 04 D2 09 REF# TOUT3# IRQ3 Vss

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss Vee 011 (NC) (NC) CLK2 D1 DO DB Vss Vee Vss Vee

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

290164-3

82370 PGA Pinout

5-1322

intef 82370

Pin Label Pin Label

G14 CLK2 014 011
N12 RESET F12 010
M12 CPURST G13 Og
C5 A23 K14 Os
84 A22 A9 07
83 A21 810 06
C4 A20 811 05
82 A19 C13 04
C3 A18 E12 03
C2 A17 F13 D2
03 A16 H14 D1
02 A15 J14 Do
E3 A14 P11 W/R#
E2 A13 L13 M/10#
E1 A12 K2 ADS#
F3 A11 M10 DIC#
F2 A10 N4 NA#
F1 Ag M11 READY#
G1 As H12 READYO#
G2 A7 J12 HOLD
G3 A6 M3 HLDA
H1 As M2 INT
H2 A4 L12 EOP#
J1 A3 L2 EDACK2
H3 A2 M1 EDACK1
J2 A1 L3 ED AC KO
J3 8LE# N3 OREO?
K1 8HE# M4 DREQ6
K12 CHPSEL# P3 DREQ5
CB 015 K3 OREQ4/IRQ9#
A10 014 P4 DREQ3
C10 013 N5 DREQ2
C12 D12 P5 DREQ1

1.0 FUNCTIONAL OVERVIEW

The 82370 contains several independent functional
modules. The following is a brief discussion of the
components and features of the 82370. Each mod­
ule has a corresponding detailed section later in this
data sheet. Those sections should be referred to for
design and programming information.

1. 1 82370 Architecture

The 82370 is comprised of several computer system
functions that are normally found in separate LSI
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt

Pin Label Pin Label

L1 OREQO A2 Vee
P6 IRQ23# P2 Vee
N6 IRQ22# A4 Vee
M7 IRQ21 # A12 Vee
N7 IRQ20# P12 Vee
P7 IRQ19# A14 Vee
PB IRQ1B# C14 Vee
MB IRQ17# M14 Vee
NB IRQ16# P14 Vee
pg IRQ15# A5 NC
N9 IRQ14# 85 NC
M9 IRQ13# A6 NC
N10 IRQ12# 86 NC
P10 IRQ11 # C6 NC
M5 wsco A? NC
M6 WSC1 87 NC
M13 TOUT3# C7 NC
N13 TOUT2#/IRQ3# AB NC
K13 TOUT1/REF# 8B NC
N11 CLKIN 89 NC
A1 Vss C9 NC
C1 Vss A11 NC
N1 Vss 812 NC
N2 Vss C11 NC
A3 Vss 012 NC
A13 Vss G12 NC
P13 Vss 813 NC
814 Vss 013 NC
L14 Vss E13 NC
N14 Vss H13 NC
81 Vee J13 NC
01 Vee E14 NC
P1 Vee F14 NC

Controller which is a superset of the 82C59A; four
16-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; a DRAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the
82370 is optimized for high-performance operation
with the 80376 microprocessor.

The 82370 operates directly on the 80376 bus. In
the Slave Mode, it monitors the state of the proces­
sor at all times and acts or idles according to the
commands of the host. It monitors the address pipe­
line status and generates the programmed number
of wait states for the device being accessed. The
82370 also has logic to the reset of the 80376 via
hardware or software reset requests and processor
shutdown status.

5-1323

El

intef 82370

After a system reset, the 82370 is in the Slave
Mode. It appears to the system as an 1/0 device. It
becomes a bus master when it is performing OMA
transfers.

To maintain compatibility with existing software, the
registers within the 82370 are accessed as bytes. If
the internal logic of the 82370 requires a delay be­
fore another access by the processor, wait states

are automatically inserted into the access cycle.
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery
times.

Figure 1-1 shows the basic architectural compo­
nents of the 82370. The following sections briefly
discuss the architecture and function of each of the
distinct sections of the 82370.

80376 LOCAL BUS CHPSEL#

TOUT1/REF#

13 IRO# 20- LEVEL
-1----1--+I INTERRUPT

INT
I
I

RESET-r-­
CPURST

CONTROLLER

CPU
RESET

1 6 - BIT PHYSICAL
(32 - BIT LOGICAL)

8-CHANNEL
OMA

CONTROLLER

DREQO

DRE07

EDACKO

EDACK1

EDACK2

EOP#

, ,,-·~--TOUT2# ---- TOUT3#

Figure 1-1. Architecture of the 82370

5-1324

290164-4

intef 82370

1.1.1 OMA CONTROLLER

The 82370 contains a high-performance, 8-channel
OMA Controller. It provides a 32-bit internal data
path. Through its 16-bit external physical data bus, it
is capable of transferring data in any combination of
bytes, words and double-words. The addresses of
both source and destination can be independently
incremented, decremented or held constant, and
cover the entire 16-bit physical address space of the
80376. It can disassemble and assemble non­
aligned data via a 32-bit internal temporary data
storage register. Data transferred between devices
of different data path widths can also be assembled
and disassembled using the internal temporary data
storage register. The OMA Controller can also trans­
fer aligned data between 110 and memory on the fly,
allowing data transfer rates up to 16 megabytes per
second for an 82370 operating at 16 MHz. Figure
1-2 illustrates the functional components of the OMA
Controller.

There are twenty-four general status and command
registers in the 82370 OMA Controller. Through
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of any one channel are independent of
the operation of the other channels.

Each channel has three programmable registers
which determine the location and amount of data to
be transferred:

Byte Count Register- Number of bytes to trans­
fer. (24-bits)

Requester Register - Byte Address of memory
or peripheral which is re­
questing OMA service.
(24-bits)

Target Register - Byte Address of peripheral
or memory which will be
accessed. (24-bits)

There are also port addresses which, when ac­
cessed, cause the 82370 to perform specific func­
tions. The actual data written doesn't matter, the act
of writing to the specific address causes the com­
mand to be executed. The commands which operate
in this mode are: Master Clear, Clear Terminal Count
Interrupt Request, Clear Mask Register, and Clear
Byte Pointer Flip-Flop.

OMA transfers can be done between all combina­
tions of memory and 1/0; memory-to-memory, mem­
ory-to-1/0, 1/0-to-memory, and l/O-to-1/0. OMA
service can be requested through software and/or
hardware. Hardware OMA acknowledge signals are
available for all channels (except channel 4) through
an encoded 3-bit OMA acknowledge bus
(EDACK0-2).

HOLD+------.
HLDA---..,

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

DREQO
DREQ1
DREQ2
DREQ3
DREQ4
DREQS
DREQ6
DREQ7

EDACKO

EDACK1

EDACK2

EDP#

OMA
REQUEST

ARBITRATION
LOGIC

PROCESS
CONTROL

COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT
-------- REQUESTER REQUESTER CHANNEL O

MODE REGISTER II ADDRESS ADDRESS

SOFTWARE REQUEST BASE CURRENT
REGISTER TARGET TARGET

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)
BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0)

".LOWER" GROUP OF' CHANNELS

"UPPER" GROUP OF' CHANNELS

CONTROL/STATUS
(SAME AS
LOWER GROUP)

CHANNEL 4 (SAME AS CH 0

CHANNEL 5 (SAME AS CH 0
CHANNEL 6 (SAME AS CH 0)
CHANNEL 7 (SAME AS CH 0)

Figure 1-2. 82370 OMA Controller

5-1325.

290164-5

•

intJ 82370

The 82370 OMA Controller transfers blocks of data
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer
Process, the 82370 OMA Controller is programmed
to transfer one particular block of data. Successive
transfers then require reprogramming of the OMA
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferred, and
there is a contiguous block of data area available.

The Buffer Auto-Initialize Process allows the same
data area to be used for successive OMA transfers
without having to reproi;iram the channel.

The Buffer Chaining Process. allows a program to
specify a list of buffer transfers to be executed. The
82370 OMA Controller, through interrupt routines, is
reprogrammed from the list. The channel is repro­
grammed for a new buffer before· the current buffer
transfer is complete. This pipelining of the channel
programming process allows the system to allocate
non-contiguous blocks of data storage space, and
transfer all of the data with one OMA process. The
buffers that make up the chain do not have to be in
contiguous locations.

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of
OMA channels based on hardware or other fixed pa-

CLKIN

CONTROL t-1--.i
LOGIC

rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis.

With fixed priority, the programmer can set any
channel to have the current lowest priority. This al­
lows the user to reset or manually rotate the priority
schedule without reprogramming the command reg­
isters.

1.1.2 PROGRAMMABLE INTERVAL TIMERS

Four 16-bit programmable interval timers reside
within the 82370. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common
clock input which can be independent of the system
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count
can be latched and read by the 80376 at any time,
making these very versatile event timers. Figure 1-3
shows the functional components of the Program­
mable lntervalTimers.

The outputs of the timers are dfrected to key system
functions, making system design simpler. Timer 0 is
routed directly to an interrupt input and is not avail­
able externally. This timer would typically be used to
generate time-keeping interrupts.

OUTPUT CONTROL LOGIC TOUTO

TIMER 0

TIMER 1 TOUT1

TIMER 2 TOUT2

TIMER 3 TOUT3
290164-6

Figure 1-3. Programmable Interval Timers-Block Diagram

5-1326

intJ 82370

Timers 1 and 2 have outputs which are available for
general timer/counter purposes as well as special
functions. Timer 1 is routed to the refresh control
logic to provide refresh timing. Timer 2 is connected
to an interrupt request input to provide other timer
functions. Timer 3 is a general purpose timer I coun­
ter whose output is available to external hardware. It
is also connected internally to the interrupt request
which defaults to the highest priority (IRQO).

1.1.3 INTERRUPT CONTROLLER

The 82370 has the equivalent of three enhanced
82C59A Programmable Interrupt Controllers. These
controllers can all be operated in the Master Mode,
but the priority is always as if they were cascaded.
There are 15 interrupt request inputs provided for
the user, all of which can be inputs from external
slave interrupt controllers. Cascading 82C59As to
these request inputs allows a possible total of 120
external interrupt requests. Figure 1-4 is a block dia­
gram of the 82370 Interrupt Controller.

Each of the interrupt request inputs can be individu­
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than

was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being
made to program the vectors in the method of the
82C59A. This provides compatibility of existing soft­
ware that used the 82C59A or 8259A with new de­
signs using the 82370.

In the event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle, the 82370 Interrupt
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys­
tem of unsolicited interrupts of the 80376.

The functions of the 82370 Interrupt Controller are
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above.
Interrupt request inputs are programmable as either
edge or level triggered and are software maskable.
Priority can be either fixed or rotating and interrupt
requests can be nested.

Enhancements are added to the 82370 for cascad­
ing external interrupt controllers. Master to Slave
handshaking takes place on the data bus, instead of
dedicated cascade lines.

INT. MASK REG.

IRQO#
IR01#
IR02#
IR03#
IRQ4#
IR05#
IRQ6#
IR07#

_____ INTERRUPT

TO HOST

PRIORITY
RESOLVER

&
CONTROL

LOGIC

IN­
SERVICE

REG.

·----------------WR-----.

IRQO
IRQ1
IRQ2
IRQ3
IRQ4

DATA (0-7) IRQ5 DATA (0-7)

IRQ6
IRQ7

INDIVIDUALLY PROGRAMMABLE
VECTOR BANK

82370 ENHANCEMENT OVER THE 82C59A

Figure 1-4. 82370 Interrupt Controller-Block Diagram

5-1327

290164-7

I

intef 82370

1.1.4 WAIT STATE GENERATOR

The Wait State Generator is a programmable
READY generation circuit for the 80376 bus. A p~­
ripheral requiring wait states can request the Wait
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software;
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82370 Wait State
Generator is shown in Figure 1-5.

The peripheral being accessed selects the re~uire?
wait state count by placing a code on a 2-bit wait
state select bus. This code along with the M/10#
signal from the bus master is used to select one of
six internal 4-bit wait state registers which has been
programmed with the desired number of wait states.
From zero to fifteen wait states can be programmed
into the wait state registers. The Wait State genera­
tor tracks the state of the processor or current bus
master at all times, regardless of which device is the
current bus master' and regardless of whether or not
the wait state generator is currently active.

The 82370 Wait State Generator is disabled by mak­
ing the select inputs both high. This allows hardware
which is intelligent enough to generate its own ready
signal to be accessed without penalty. As previously
mentioned, deselecting the Wait State Generator
does not disable its ability to determine the proper
number of wait states due to pipeline status in sub­
sequent bus cycles.

The number of wait states inserted into a pipelined
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
lined mode, the Wait State Generator will increase
the number of wait states inserted into the bus cycle
by one.

Pipelined 0-15 Wait States
Non-Pipelined 0-16 Wait States

07

On reset, the Wait State Generator's registers are
loaded with the value FFH, giving the maximum
number of wait states for any access in which the
wait state select inputs are active.

1.1.5 DRAM REFRESH CONTROLLER

The 82370 DRAM Refresh Controller consists of a
24-bit refresh address counter and bus arbitration
logic. The output of Timer 1 is used to periodically
request a refresh cycle. When the controller re­
ceives the request, it requests access to the syste~
bus through the HOLD signal. When bus control 1s
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF#) that the memory uses to force a
refresh instead of a normal read. Control of the bus
is transferred to the processor at the completion of
this cycle. Typically a refresh cycle will take six clock
cycles to execute on an 80376 bus.

The 82370 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active DMA process. This allows large
blocks of data to be moved by the DMA controller
without affecting the refresh function. Also the DMA
controller is not required to completely relinquish the
bus, the refresh controller simply steals a bus cycle
between DMA accesses.

The amount by which the refresh address is incre­
mented is programmable to allow for different bus
widths and memory bank arrangements.

1.1.6 CPU RESET FUNCTION

The 82370 contains a special reset function which
can respond to hardware reset signals as well as a

INTERNAL WAIT STATE
REQUIREMENT

04 03

MEMORY 0 1/0 0
wsco

WSC1

M/10#

REGISTER
SELECT
LOGIC

MEMORY 1 1/0 1

MEMORY 2 1/0 2

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 1-5. 82370 Wait State Generator-Block Diagram

5-1328

290164-8

82370

software reset command. The circuit will hold the
80376's RESET line active while an external hard­
ware reset signal is present at its RESET input. It
can also reset the 80376 processor as the result of a
software command. The software reset command
causes the 82370 to hold the processor's RESET
line active for a minimum of 62 clock cycles. The
80376 requires that its RESET line be held active for
a minimum of 80 clock cycles to re-initialize. For a
more detailed explanation and solution, see Appen­
dix D (System Notes).

The 82370 can be programmed to sense the shut­
down detect code on the status lines from the
80376. If the Shutdown Detect function is enabled,
the 82370 will automatically reset the processor. A
diagnostic register is available which can be used to
determine the cause of reset.

1.1.7 REGISTER MAP RELOCATION

After a hardware reset, the internal registers of the
82370 are located in 1/0 space beginning at port
address OOOOH. The map of the 82370's registers is
relocatable via a software command. The default
mapping places the 82370 between 110 addresses
OOOOH and OODBH. The relocation register allows
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit 1/0 address space or any
even 64 kbyte boundary in the 24-bit memory ad­
dress space.

1.2 Host Interface

The 82370 is designed to operate efficiently on the
local bus of an 80376 microprocessor. The control
signals of the 82370 are identical in function to
those of the 80376. As a slave, the 82370 operates
with all of the features available on the 80376 bus.
When the 82370 is in the Master Mode, it looks iden­
tical to an 80376 to the connected devices.

The 82370 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipelined or
non-pipelined access. All of the status signals of the
processor are monitored.

The control, status, and data registers within the
82370 are located at fixed addresses relative to
each other, but the group can be relocated to either
memory or 1/0 space and to different locations with­
in those spaces.

As a Slave device, the 82370 monitors the control/
status lines of the CPU. The 82370 will generate all
of the wait states it needs whenever it is accessed.
This allows the programmer the freedom of access-

ing 82370 registers without having to insert NOPs in
the program to wait for slower 82370 internal regis­
ters.

The 82370 can determine if a current bus cycle is a
pipelined or a non-pipelined cycle. It does this by
monitoring the ADS#, NA# and READY# signals
and thereby keeping track of the current state of the
80376.

As a bus master, the 82370 looks like an 80376 to
the rest of the system. This enables the designer
greater flexibility in systems which include the
82370. The designer does not have to alter the inter­
faces of any peripherals designed to operate with
the 80376 to accommodate the 82370. The 82370
will access any peripherals on the bus in the same
manner as the 80376, including recognizing pipe­
lined bus cycles.

The 82370 is accessed as an 8-bit peripheral. The
80376 places the data of all 8-bit accesses either on
D(0-7) or D(8-15). The 82370 will only accept data
on these lines when in the Slave Mode. When in the
Master Mode, the 82370 is a full 16-bit machine,
sending and receiving data in the same manner as
the 80376.

2.0 80376 HOST INTERFACE

The 82370 contains a set of interface signals to op-11
erate efficiently with the 80376 host processor.
These signals were designed so that minimal hard-
ware is needed to connect the 82370 to the 80376.
Figure 2-1 depicts a typical system configuration
with the 80376 processor. As shown in the diagram,
the 82370 is designed to interface directly with the
80376 bus.

Since the 82370 resides on the opposite side of the
data bus transceivers with respect to the rest of the
system peripherals, it is important to note that the
transceivers should be controlled so that contention
between the data bus transceivers and the 82370
will not occur. In order to ease the implementation of
this, the 82370 activates the CHPSEL# signal which
indicates that the 82370 has been addressed and
may output data. This signal should be included in
the direction and enable control logic of the trans­
ceiver. When any of the 82370 internal registers are
read, the data bus transceivers should be disabled
so that only the 82370 will drive the local bus.

This section describes the basic bus functions of the
82370 to show how this device interacts with the
80376 processor. Other signals which are not direct­
ly related to the host interface will be discussed in
their associated functional block description.

5-1329

intJ 82370

FROM OTHER
PERIPHERALS

Vee
+

CLOCK GENERATOR
-$ '
~10kA

CLK2 RESET RESET

CLK2

I
ADS#

ADS# CLK2
RESET CPURST

J OPTIONAL }-READY# WAITSTATE READYO#

l 1 LOGIC

--"' READY#

HOLD HOLD 82370
HLDA --"' HLDA

80376 INT INT

D/C# D/C#

W/R# W/R#

M/10# M/10#

BLE#,BHE# A .J\. BLE#,BHE#
A1 -A23 -v' A1 -A23

I~ lf I\,

DO-D15 DO-D15 CH PS EL#

"' 1 -u
TO BUS TO BUS J CONTROLLER BUFFERS

290164-AS

Figure 2·1. 80376/82370 System Configuration

2.1 Master and Slave Modes

At any time, the 82370 acts as either a Slave device
or a Master device in the system. Upon reset, the
82370 will be in the Slave Mode. In this mode, the
80376 processor can read/write into the 82370 in­
ternal registers. Initialization information may be pro­
grammed into the 82370 during Slave r-1ode.

When OMA service (including DRAM Refresh Cycles
generated by the 82370) is requested, the 82370 will
request and subseq:.iently get control of the 80376
local bus. This is done through the HOLD and HLDA
(Hold Acknowledge) signals. When the 80376 proc-

essor responds by asserting the HLDA signal, the
82370 will switch into Master Mode and perform
OMA transfers. In this mode, the 82370 is the bus
master of the system. It can read/write data from/to
memory and peripheral devices. The 82370 ·will re­
turn to the Slave Mode upon completion of OMA
transfers, or when HLDA is negated.

2.2 80376 Interface Signals

As mentioned in the Architecture section, the Bus
Interface module of the 82370 (see Figure 1-1) con­
tains signals that are directly connected to the
80376 host processor. This module has separate

5-1330

inter 82370

16-bit Data and 24-bit Address busses. Also, it has
additional control signals to support different bus op­
erations on the system. By residing on the 80376
local bus, the 82370 shares the same address, data
and control lines with the processor. The following
subsections discuss the signals which interfar.e to
the 80376 host processor.

2.2.1 CLOCK (CLK2)

The CLK2 input µrovides fundamental timing for the
82370. It is divided by two internally to generate the
82370 internal clock. Therefore, CLK2 should be
driven with twice the 80376's frequency. In order to
maintain synchronization wi1h the 80376 host proc­
essor, the 82370 and the 80376 should share a
common clock source.

The internal clock consists of two phases: PHl1 and
PHl2. Each CLK2 period is a phase of the internal
clock. PHl2 is usually used to sample input and set
up internal signals and PHl1 is for latching internal
data. Figure 2-2 illustrates the relationship of CLK2
and the 82370 internal clock signals. The CPURST
signal generated by the 82370 guarantees that the
80376 will wake up in phase with PHl1.

2.2.2 DATA BUS (Do-D15)

This 16-bit three-state bidirectional bus provides a
general purpose data path between the 82370 and
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80376 local bus. The
Data Bus is also used for interrupt vectors generated
by the 82370 in the Interrupt Acknowledge cycle.

During Slave 1/0 operations, the 82370 expects a
single byte to be written or read. When the 80376
host processor writes into the 82370, either Do-D7
or D8-D15 will be latched into the 82370, depending

upon whether Byte Enable bit BLE# is O or 1 (see
Table 2-1). When the 80376 host processor reads
from the 82370, the single byte data will be duplicat­
ed twice on the Data Bus; i.e. on Do-D7 and D8-
D15.

During Master Mode, the 82370 can transfer 16-,
and 8-bit data between memory (or 1/0 devices) and
1/0 devices (or memory) via the Data Bus.

These three-state bidirectional signals are connect­
ed directly to the 80376 Address Bus. In the Slave
Mode, they are used as input signals so that the
processor can address the 82370 internal ports/reg­
isters. In the Master Mode, they are used as output
signals by the 82370 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 16 Mbytes of physical memory space
(OOOOOOH to FFFFFFH), and 64 Kbytes of 1/0 ad­
dresses.

2.2.4 BYTE ENABLE (SHE#, BLE#)

The Byte Enable pins BHE# and BLE# select the
specific by1e(s) in the word addressed by A1 -A23.
During Master Mode operation, it is used as an out­
put by the 82370 to address memory and 1/0 loca­
tions. The definition of BHE# and BLE# is further
illustrated in Table 2-1.

NOTE:
The 82370 will activate BHE # when output in Mas­
ter Mode. For a more detailed explanation and its
solutions, see Appendix D (System Notes).

I

82370 CLOCK PERIOD 82370 CLOCK PERIOD 82370 CLOCK PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
01

I
02 01

I
02 01 I 02

CLK2

I
I Jr \ \
I

\ PH11_j 1 I l PH12\ I / ~ I
I I

290164-9

Figure 2-2. CLK2 and 82370 Internal Clock

5-1331

El

intef 82370

As an output (Master Mode):
Table 2-1. Byte Enable Signals

Byte to be Accessed
Logical Byte Presented on

BHE# BLE# Data Bus During WRITE Only*
Relative to A2a-A1

D1s-Da D1-Do
---1 --

0 0 0, 1 B A
0 1 1 A A
1 0 0 u A
1 1 l (Not Used)

'-------

U = Undefined
A = Logical D0-D7
B = Logical Da-D1s

*NOTE:
Actual number of bytes accessed depends upon the programmed data path width.

Table 2·2. Bus Cycle Definition

M/10# D/C# W/R#

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

1 1 0
1 1 1

2.2.5 BUS CYCLE DEFINITION SIGNALS
(D/C#, W/R#, M/10#)

These three-state bidirectional signals define the
type of bus cycle being performed. W/R# distin­
guishes between write and read cycles. DIC# dis­
tinguishes between processor data and control cy­
cles. M/10# distinguishes between memory and 1/0
cycles.

During Slave Mode, these signals are driven by the
80376 host processor; during Master Mode, they are
driven by the 82370. In either mode, these signals
will be valid when the Address Status (ADS#) is
driven LOW. Exact bus cycle definitions are given in
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the
Master Mode, DIC# is always HIGH.

2.2.6 ADDRESS STATUS (ADS#)

This signal indicates that a valid address (A1 -A23,
BHE#, BLE#) and bus cycle definition (W/R#,
DIC#, M/10#) is being driven on the bus. In the
Master Mode, it is driven by the 82370 as an output.
In the Slave Mode, this sign-al is monitored as

As INPUTS As OUTPUTS

Interrupt Acknowledge NOT GENERATED
UNDEFINED NOT GENERATED
1/0 Read 110 Read
1/0 Write l/OWrite
UNDEFINED NOT GE'NERATED
HALT if A1 = 1 NOT GENERATED
SHUTDOWN if A1 = 0
Memory Read Memory Read
Memory Write Memory Write

an input by the . 82370. By the current and past
status of ADS# and the READY# input, the 82370
is able to determine, during Slave Mode, if the next
bus cycle is a pipelined address cycle. ADS# is as­
serted during T1 and T2P bus states (see Bus State
Definition).

NOTE:
ADS# must be qualified with the rising edge of
CLK2.

2.2.7 TRANSFER ACKNOWLEDGE (READY#)

This input indicates that the current bus cycle is
complete. In the Master Mode, assertion of this sig­
nal indicates the end of a OMA bus cycle. In the
Slave Mode, the 82370 monitors this input and
ADS# to detect a pipelinecj address cycle. This sig­
nal should be tied directly to the READY# input of
the 80376 host processor.

2.2.8 NEXT ADDRESS REQUEST (NA#)

This input is used to indicate to the 82370 in the
Master Mode that the system is requesting address

5-1332

intJ 82370

pipelining. When driven LOW by either memory or
peripheral devices during Master Mode, it indicates
that the system is prepared to accept a new address
and bus cycle definitior• signals trom the 82370 be­
fore the end of the current bus cycle. If this input is
active when sampled by the 82370, the next address
is driven onto the bus. provided d bu:; request is
already pending internally.

This input pin is monitored only ;n tt1e Master Mode.
In the Slave Mode, the 82370 uses the ADS# and
READY# siynals to determine address pipelining
cycles, ana NA# will be ignored.

2.2.9 RESET (RESET, CPURST)

RESET

This synchronous suspends any operation in
progress ana places the 82370 in a known initial
state. Upon reset the 82370 will be in the Slave
Mode waiting to t•e initialized by the 80376 host
processor, The 82370 1s reset by asserting RESET
for 15 or more CLK2 periods. When RESET is as­
serted, all other input pins are ignored, and all other
bus pins are driven to an idle bus state as shown in
Table 2-3. The 82370 will determine the phase of its
internal clock following R.ESET going inactive.

RESET is level-sensitive and rnust be synchronous
to the CLK2 signal. The RESET setup ana hold time
requirements are shown in Figure 2-3.

Table 2·3. Output Signals Following RESET

Signal Level

A1-A23, Do ·D15, SHE#. BLE# Float
DIC#, W/R#, M/10#, ADS# Float
READY"U# '1'

EOP# '1' (Weak Pull-UP)

IEDACK2-EDACKO '100'
HOLD 'O'

~
NT UNDEFINED*

UT11REF-#, UNDEFINED*
UT2# /IRQ3#, TOUT3#

URST 'O'
PSEL# ·1
- ,, ___ -·----~·--~~-·- _____ H ______ _.L__ ________ _,

'NOTE:
The lntenupt Curnruller and Programmable Interval Timer
are initialized by software comi: •<mas.

CPURST

This output signal is used to reset the 80376 host
processor. It will go active (HIGH) whenever one of
the following events occurs. a) 82370's RESET input
is active; b) a software RESET command is issued
to the 82370; or c) when the 82370 detects a proc­
essor Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active
for 62 clocks. The timing of CPURST is such that the
80376 prncessor will be in synchronization with the
82370. This tirning is shown in Figure 2-4.

PHI 1/2 PHI 1/2 PHI 2 PHI 1 PHI 2

CLK2

RESET

T30--RESET Hold rime
T3·1---HESET '.ie\uf' Time

Figure 2-3. RESET fimln!;i

5-1333

El

intef 82370

2.2.10 INTERRUPT OUT (INT)

This output pin is used to signal the 80376 host
processor that one or more interrupt requests (either
internal or external) are pending. The processor is
expected to respond with an Interrupt Acknowledge
cycle. This signal should be connected directly to
the Maskable Interrupt Request (INTR) input of the
80376 host processor.

2.3 82370 Bus Timing

The 82370 internally divides the CLK2 signal by two
to generate its internal clock. Figure 2-2 showed the
relationship of CLK2 and the . internal clock which
consists of two phases: PHl1 and PHl2. Each CLK2
period is a phase of the internal clock.

In the 82370, whether it is in the Master or Slave
Mode, the shortest time unit of bus activity is a bus
state. A bus state, which is also referred as a
'T-state', is defined as one 82370 PHl2 clock period
(i.e. two CLK2 periods). Recall in Table 2-2 various
types of bus cycles in the 82370 are defined by the
M/10#, DIC# and W/R# signals. Each of these
bus cycles is composed of two or more bus.states.
The length of a bus cycle depends on when the
READY# input is asserted (i.e. driven LOW).

2.3.1 ADDRESS PIPELINING

The 82370 supports AddressPipelining as an option
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be
required. This is possible because during a pipelined
cycle, the address and bus cycle definition of the
next cycle will be generated by the bus master while
waiting for the end of the current cycle to be ac­
knowledged. The pipelined bus is especially well
suited for an interleaved memory environment. For
16 MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses
can be achieved when pipelined addressing is se­
lected.

In the Master Mode, the 82370 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelined or
non-pipelined access depending upon the state of
the NA# input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82370 will
drive the address and bus cycle definition of the next
cycle as soon as there is an internal bus request
pending.

In the Slave Mode, the 82370 is constantly monitor­
ing the ADS# and READY# signals on the proces­
sor local bus to determine if the current bus cycle is

a pipelined cycle. If a pipelined cycle is detected, the
82370 will request one less wait state from the proc­
essor if the Wait State Generator feature is selected.
On the other hand, during an 82370 internal register
access in a pipelined cycle, it will make use of the
advance address and bus cycle information. In all
cases, Address Pipelining will result in a savings of
one wait state.

2.3.2 MASTER MODE BUS TIMING

When the 82370 is in the Master Mode, it will be in
one of six bus states. Figure 2-5 shows the complete
bus state diagram of the Master Mode, including
pipelined address states. As seen in the figure, the
82370 state diagram is very similar to that of the
80376. The major difference is that in the 82370,
there is no Hold state. Also, in the 82370, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a OMA process.

NOTE:
The term 'end of a OMA process' is loosely defined
here. It depends on the OMA modes of operation
as well as the state of the EOP# and OREO in­
puts. This is expained in detail in section 3-DMA
Controller.

The 82370 will enter the idle state, Ti, upon RESET
and whenever the internal address is not available at
the end of a OMA cycle or at the end of a OMA
process. When address pipelining is not used (NA#
is not asserted), a new bus cycle always begins with
state Ti. During Ti, address and bus cycle definition
signals will be driven on the bus. T1 is always fol­
lowed by T2.

If a bus cycle is not acknowledged (with READY#)
during T2 and NA# is negated, T2 will be repeated.
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next bus
cycle (if the. internal address latch is loaded and if
this is not the end of the OMA process). Otherwise,
the Ti state will be entered. Therefore, if the memory
or peripheral accessed is fast enough to respond
within the first T2, the fastest non-pipelined cycle will
take one T1 and one T2 state.

Use of the address pipelining feature allows the
82370 to enter three additional bus states: Ti P, T2P
and T2i. Ti P is the first bus state of a pipelined bus
cycle. T2P follows T1 P (or T2) if NA# is asserted
when sampled. The 82370 will drive the bus with the
address and bus cycle definition signals of the next
cycle during T2P. From the state diagram, it can be
seen that after an idle state Ti, the first bus cycle
must begin with Ti, and is therefore a non-pipelined
bus cycle. The next bus cycle can be pipelined if

5-i 334

inter 82370

NA# is asserted and the previous bus cycle ended
in a T2P state. Once the 82370 is in a pipelined
cycle and provided that NA# is asserted in subse­
quent cycles, the 82370 will be switching between
T1 P and T2P states. If the end of the current bus
cycle is not acknowledged by the READY# input,
the 82370 will extend the cycle by adding T2P
states. The fastest pipelined cycle will consist of one
T1 P and one T2P state.

The 82370 will enter state T2i when NA# is assert­
ed and when one of the following two conditions
occurs. The first condition is when the 82370 is in
state T2. T2i will be entered if READY# is not as­
serted and there is no next address available. This
situation is similar to a wait state. The 82370 will stay
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82370 to enter
T2i is when the 82370 is in state T1 P. Before going
to state T2P, the 82370 needs to wait in state T2i
until the next address is available. Also, in both cas­
es, if the OMA process is complete, the 82370 will
enter the T2i state in order to finish the current OMA
cycle.

Figure 2-6 is a timing diagram showing non-pipelined
bus accesses in the Master Mode. Figure 2-7 shows
the timing of pipelined accesses in the Master Mode.

Not ADAV

ADAY. READY# Asserted

READY# Asserted. [Not ADAV+ End of DMA]

2.3.3 SLAVE MODE BUS TIMING

Figure 2-8 shows the Slave Mode bus timing in both
pipelined and non-pipelined cycles when the 82370
is being accessed. Recall that during Slave Mode,
the 82370 will constantly monitor the ADS# and
READY# signals to determine if the next cycle is
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82370 will start decoding the ad­
dress and bus cycle signals one bus state earlier
than in a non-pipelined cycle.

The READY# input signal is sampled by the 80376
host processor to determine the completion of a bus
cycle. This occurs during the end of every T2, T2i
and T2P state. Normally, the output of the 82370
Wait State Generator, READ YO#, is directly con­
nected to the READY# input of the 80376 host
processor and the 82370. In such case, READYO#
and READY# will be identical (see Wait State Gen­
erator).

NA# Asserted. [Not ADAV +End of OMA]

Not ADAV. READY# Negated

290164-12

NOTE:
ADAV--lmernal AdcJ1es~ Available

Figure 2-5. Master Mode State Diagram

5-1335

II

intef

CYCLE 1

T1 T2

CLK2

PHl2

82370

T1

CYCLE 2

T2 T2 T1

ADDRESS ---{. ADDR 1 X ADDR 2 X ADDR 3
AND CONTROL ..__ -......_ _ _,,, ·-------------'· ·

T2

DATA r-:-'\ CD ,-;-
(READ) -------C"--2.....J>--------c 2 \..L

DATA ----<======x=========J(==== (WRITE)

NA# Xi$XXiXi$l.Y#

READY# XXXXXXXXXXXXXXX l.XtJttitl.X'I @ 2 &00¢00000.. 3

I 0 WAIT STATE 1 WAIT STATE 0 WAIT STATE

Figure 2·6. Non-Pipelined Bus Cycles

CYCLE 1

T1 p T2p T1p

CLK2

PHl2

CYCLE 2

T2p T2p

CYCLE 3

T1 p T2p

\

290164-13

ADS# ...1.) ~\ 2 §' 3 §~
ADDRESS X 2 X 3 V--

AND CONTROL------'·'"·------·"-·----------"---

NA# ~ .oooooooooo<A lXXXXXXXXXXXXXX t&X'tf&.X

W@ 2 .0000000000. 3

DATA ~ CD ,,-
(READ) -------L.l-.J~--------c 2 ~----<\.,L

DATA ---.,.--....,---u----~----"""'X
(WRITE) __ __,x._ ______ __,x.._ ___ _...2.._ ___ ...J.__ ... 3..__

290164-14

Figure 2-7. Pipelined Bus Cycles

5-1336

intef 82370

CLK2

PHl2

ADS#

D(0-15)
(READ)

(TWO OR MORE WAIT STATES)

NON-PIPELINED
CYCLE

(ONE OR ~ORE WAIT STATES)

PIPELINED
CYCLE

D(0-15) -------<
(WRITE) '--!------+-----~ >------_,, _ _,_ ____ _,).----1

290164-15

NOTE:
NA# is shown here only for timing reference. It is not sampled by the 82370 during Slave Mode.
When the 82370 registers are accessed, it will take one or more wait states in pipelined and two or more wait states in
non-pipelined cycle to complete the internal access.

Figure 2-8. Slave Read/Write Timing

3.0 OMA CONTROLLER

The 82370 OMA Controller is capable of transferring
data between any combination of memory and/or
110, with any combination of data path widths. The
82370 OMA Controller can be programmed to ac­
commodate 8- or 16-bit devices. With its 16-bit ex­
ternal data path, it can transfer data in units of byte
or a word. Bus bandwidth is optimized through the
use of an internal temporary register which can dis­
assemble or assemble data to or from either an
aligned or non-aligned destination or source .. Figure
3-1 is a block diagram of the 82370 OMA Controller.

The 82370 has eight channels of OMA. Each chan­
nel operates independently of the others. Within the
operation of the individual channels, there are many
different modes of data transfer available. Many of
the operating modes can be intermixed to provide a
very versatile OMA controller.

3.1 Functional Description

In describing the operation of the 82370's OMA Con­
troller, close attention to terminology is required. Be-

5-1337

El

intef 82370

HOLD------.
HLDA·

DREQO
DREQ1
DREQ2
DREQ3
DREQ4
DREQS
DREQ6
DREQ7

~
~
~
~

i l

DMA
REQUEST

ARBITRATION
LOGIC

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER JI BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT
REQUESTER REQUESTER

MODE REGISTER JI ADDRESS ADDRESS
CHANNEL 0

SOFTWARE REQUEST BASE CURRENT
REGISTER TARGET TARGET

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)
BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0)

J "LOWER" GROUP OF CHANNELS

EDACKO +----
EDACK1 +---- PROCESS

CONTROL
EDACK2 +----

EOP# .,._._.... i..._

l "UPPER" GROUP OF CHANNELS

CHANNEL 4 (SAME AS CH 0)
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0)
(SAME AS .

CHANNEL 6 (SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

290164-16

Figure 3-1. 82370 DMA Controller Block Diagram

fore entering the discussion of the function of the
82370 DMA Controller, the following explanations of
some 'of the terminology used herein may be of ben­
efit. First, a few terms for clarification:

DMA PROCESS-A DMA process is the execution
of a programmed DMA task from beginning to end.
Each DMA process requires intitial programming by
the host 80376 microprocessor.

BUFFER-A contiguous block of data.

BUFFER TRANSFER-The action required by the
DMA to transfer an entire buffer.

DATA TRANSFER-The OMA action in which a
group of bytes or words are moved between devices
by the OMA Controller. A data transfer operation
may involve movement of one or many bytes.

BUS CYCLE-Access by the OMA to a single byte
or word.

Each DMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the

memory or 1/0 devices being serviced by the OMA.
They are the Target, the Requester, and the Byte
Count. They will be defined generically here and in
greater detail in the DMA register definition section.

The Requester is the device which requires service
by the 82370 DMA Controller, and makes the re­
quest for service. All of the control signals which the
DMA monitors or generates for specific channels
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process.

The Target is the device with which the Requester
wishes to communicate. As far as the DMA process
is concerned, the Target is a slave which is incapa­
ble of control over the process.

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e.
each can be either a source or a destination.

The Requester and Target may each be either 1/0
or memory. Each has an address associated with it
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester

5-1338

82370

Address Registers and Target Address Registers,
respectively. These registers have two parts: one
which contains the current address being used in the
OMA process (Current Address Register), and one
which holds the programmed base address (Base
Address Register). The contents of the Base Regis­
ters are never changed by the 82370 OMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the OMA pro­
cess.

The Byte Count is the component of the OMA pro­
cess which dictates the amount of data which must
be transferred. Current and Base Byte Count Regis­
ters are provided. The Current Byte Count Register
is decremented once for each byte transferred by
the OMA process. When the register is decremented
past zero, the Byte Count is considered 'expired'
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event.

Each channel of the 82370 OMA Controller also
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The
operation of this register is transparent to the user,
although the contents of it may affect the timing of
some OMA ha11dshake sequences. Since there is
data storage available for each channel, the OMA
Controller can be interrupted without loss of data.

To avoid unexpected results, care should be taken
in programming the byte count correctly when as­
sembing and disassembling non-aligned data. For
example:

Words to Bytes:
Transferring two words to bytes, but setting the byte
count to three, will result in three bytes transferred
and the final byte flushed.

Bytes to Words:
Transferring six bytes to three words, but setting the
byte count to five, will result in the sixth byte trans­
ferred being undefined.

The 82370 OMA Controller is a slave on the bus until
a request for OMA service is received via either a
software request command or a hardware request
signal. The host processor may access any of the
control/status or channel registers at any time the
82370 is a bus slave. Figure 3-2 shows the flow of
operations that the OMA Controller performs.

At the time a OMA service request is received, the
OMA Controller issues a bus hold request to the
host processor. The 82370 becomes the bus master
when the host relinquishes the bus by asserting a

hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the
time the OMA Controller becomes the bus master.
The OMA Controller will remain in control of the bus
until the hold acknowledge signal is removed, or un­
til the current OMA transfer is complete.

While the 82370 OMA Controller has control of the
bus, it will perform the required data transfer(s). The
type of transfer, source and destination addresses,
and amount of data to transfer are programmed in
the control registers of the OMA channel which re­
ceived the request for service.

At completion of the OMA process, the 82370 will
remove the bus hold request. At this time the 82370
becomes a slave again, and the host returns to be­
ing a master. If there are other OMA channels with
requests pending, the controller will again assert the
hold request signal and restart the bus arbitration
and switching process.

WAIT FOR DMA
SERVICE REQUEST NO REQUEST

REQUEST PENDING

ASSERT BUS HOLD
REQUEST

BUS HOLD ACKNOWLEDGED

ARBITRATE
PENDING REQUESTS

EXECUTE HIGHEST
PRIORITY TRANSFER

DE-ASSERT BUS
HOLD REQUEST

290164-17

Figure 3-2. Flow of DMA Controller Operation

3.2 Interface Signals

There are fourteen control signals dedicated to the
OMA process. They include eight OMA Channel Re­
quests (OREQn), three Encoded OMA Acknowledge
signals (EOACKn), Processor Hold and Hold Ac-

5-1339

intef 82370

TO HOST { HOLD 82370
PROCESSOR OMA CONTROLLER __ _.

HLDA l EDACK
EOP#

290164-18

Figure 3-3. Requester, Target and OMA Controller Interconnection

knowledge (HOLD, HLDA), and End-of-Process
(EOP#). The DREQn inputs and EDACK (0-2) out­
puts are handshake signals to the devices requiring
DMA service. The HOLD output and HLDA input are
handshake signals to the host processor. Figure 3-3
shows these signals and how they interconnect be­
tween the 82370 DMA Controller, and the Requester
and Target devices.

3.2.1 DREQn and EDACK (0-2)

These signals are the handshake signals between
the peripheral and the 82370. When the peripheral
requires DMA service, it asserts the DREQn signal
of the channel which is programmed to perform the
service. The 82370 arbitrates the DREQn against
other pending requests and begins the DMA pro­
cess after finishing other higher priority processes.

When the DMA service for the requested channel is
in progress, the EDACK (0-2) signals represent the
DMA channel which is accessing the Requester.
The 3-bit code on the EDACK (0-2) lines indicates
the number of the channel presently being serviced.
Table 3-2 shows the encoding of these signals. Note
that Channel 4 does not have a corresponding hard­
ware acknowledge.

The OMA acknowledge (EDACK) signals indicate
the active channel only during DMA accesses to the
Requester. During accesses to the Target, EDACK
(0-2) has the idle code (100). EDACK (0-2) can
thus be used to select a Requester device during a
transfer.

DREQn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation
of these pins.

EDACK2

0
0
0
0
1
1
1
1

Table 3·2. EDACK Encoding
During a OMA Transfer

EDACK1 EDACKO Active Channel

0 0 0
0 1 1
1 0 2
1 1 3
0 0 Target Access
0 1 5
1 0 6
1 1 7

The EDACKn signals are always active. They either
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei­
ther 100, for an idle DMA or during a DMA access to
the Target, or 'n' during a Requester access, where
n is the binary value representing the channel. A
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als.

3.2.2 HOLD AND HLDA

The Hold Request (HOLD) and Hold Acknowledge
(HLDA) signals are the handshake signals between
the DMA Controller and the host processor. HOLD is
an output from the 82370 and HLDA is an input.
HOLD is asserted by the OMA Controller when there
is a pending DMA request, thus requesting the proc­
essor to give up control of the bus so the DMA pro­
cess can take place. The 80376 responds by assert­
ing HLDA when it is ready to relinquish control of the
bus.

5-1340

intef 82370

The 82370 will begin operations on the bus one
clock cycle after the HLDA signal goes active. For
this reason, other devices on the bus should be in
the slave mode when HLDA is active.

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting OMA service. This is be­
cause of the use of OMA-like operations by the
DRAM Refresh Controller. The Refresh Controller is
arbitrated with the OMA Controller for control of the
bus, and refresh cycles have the highest priority. A
refresh cycle will take place between OMA cycles
without relinquishing bus control. See section 3.4.3
for a more detailed discussion of the interaction be­
tween the OMA Controller and the DRAM Refresh
Controller.

3.2.3 EOP#

EOP# is a bi-directional signal used to indicate the
end of a OMA process. The 82370 activates this as
an output during the T2 states of the last Requester
bus cycle for which a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing its OMA request, or interrupting the host
processor to indicate that the channel needs to be
programmed with a new buffer. As an input, this sig­
nal is used to tell the OMA Controller that the periph­
eral being serviced does not require any more data
to be transferred. This indicates that the current
buffer is to be terminated.

EOP# can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for
details on synchronous versus asynchronous opera­
tion of this pin.

3.3 Modes of Operation

The 82370 OMA Controller has many independent
operating functions. When designing peripheral in­
terfaces for the 82370 OMA Controller, all of the
functions or modes must be considered. All of the
channels are independent of each other (except in
priority of operation) and can operate in any of the
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of
other modes. Because of the large number of com­
binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other
modes. The entire list of possible combinations will
not be presented.

Table 3-1 shows the categories of OMA features
available in the 82370. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major lune-

Table 3-1. OMA Operating Modes

I. TARGET/REQUESTER DEFINITION
a. Data Transfer Direction
b. Device Type

II. BUFFER PROCESSES
a. Single Buffer Process
b. Buffer Auto-Initialize Process
c. Buffer Chaining Process

Ill. DATA TRANSFER/HANDSHAKE MODES
a. Single Transfer Mode
b. Demand Transfer Mode
c. Block Transfer Mode
d. Cascade Mode

IV. PRIORITY ARBITRATION
a. Fixed
b. Rotating
c. Programmable Fixed

V. BUS OPERATION
a. Fly-By (Single-Cycle)/Two-Cycle
b. Data Path Width
c. Read, Write, or Verify Cycles

tion or mode category. The following sections ex­
plain each mode or function and its relation to other
features.

3.3.1 TARGET /REQUESTER DEFINITION

All OMA transfers involve three devices: the OMA
Controller, the Requester, and the Target. Since the
devices to be accessed by the OMA Controller vary
widely, the operating characteristics of the OMA
Controller must be tailored to the Requester and
Target devices.

The Requester can be defined as either the source
or the destination of the data to be transferred. This
is done by specifying a Write or a Read transfer,
respectively. In a Read transfer, the Target is the
data source and the Requester is the destination for
the data. In a Write transfer, the Requester is the
source and the Target is the destination.

The Requester and Target addresses can each be
independently programmed to be incremented, dec­
remented, or held constant. As an example, the
82370 is capable of reversing a string of data by
having the Requester address increment and the
Target address decrement in a memory-to-memory
transfer.

5-1341

intef 82370

-------·------

3.3.2 BUFFER TRANSFER PROCESSES

The 82370 DMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the DMA.

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require special programming considerations.
See the DMA Programming section for more details
on setting up the Buffer Transfer Processes.

Single Buffer Process

The Single Buffer Process allows the OMA channel
to transfer only one buffer of data. When the buffer
has been completely transferred (Current Byte
Count decremented past zero or EOP# input ac­
tive), the DMA process ends and the channel be­
comes idle. In order for that channel to be used
again, it must be reprogrammed.

The Single Buffer Process is usually used when the
amount of data to be transferred is known exactly,
and it is also known that there is not likely to be any
data to follow before the operating system can re­
program the channel.

Buffer Auto-Initialize Process

The Buffer Auto-Initialize Process allows multiple
groups of data to be transferred to or from a single
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the Base Registers when the current
process is terminated, either by an expired Byte
Count or by an external EOP# signal. The data
transferred will always be between the same Target
and Requester.

The auto-initialization/process-execution cycle is re­
peated until the channel is either disabled or re-pro­
grammed.

Buffer Chaining Process

The Buffer Chaining Process is useful for transfer­
ring large quantities of data into non-contiguous
buffer areas. In this process, a single channel is
used to process data from several buffers, while
having to program the channel only once. Each new
buffer is programmed in a pipelined operation that
provides the new buffer information while the old
buffer is being processed. The chain is created by
loading new buffer information while the 82370 OMA
Controller is processing the Current Buffer. When
the Current Buffer expires, the 82370 OMA Control­
ler automatically restarts the channel using the new
buffer information.

Loading the new buffer information is _done by an
interrupt routine which is requested by the 82370.
Interrupt Request 1 (IR01) is tied internally to the
82370 DMA Controller for this purpose. IRQ1 is gen·
erated by the 82370 when the new buffer informa­
tion is loaded into the channel's Current Registers,
leaving the Base Registers 'empty'. The interrupt
service routine loads new buffer information into the
Base Registers. The host processor is required to
load the information for another buffer before the
current Byte Count expires. The process repeats un­
til the host programs the channel back to single buff­
er operation, or until the channel runs out ol buffers.

The channel runs out of buffers when the Current
Buffer expires and the Base Registers have not yet
been loaded with new buffer information, When this
occurs, the channel must be reprogrammed.

If an external EOP# is encountered while executing
a Buffer Chaining Process, the current buffer is con­
sidered expired and the new buffer information is
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated.

The channel uses the Base Target Address Register
as an indicator of whether or not the Base Registers
are full. When the most significant byte of the Base
Target Register is loaded, the channel considers all
of the Base Registers loaded, and removes the in­
terrupt request This requires that the other Base
Registers (Base Requester Address, Base Byte
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re­
loading process this way is that, for most applica­
tions, the Byte Count and the Requester will not
change from one buffer to the next, and therefore do
not need to be reprogrammed. The details of pro­
gramming the channel for the Buffer Chaining Pro­
cess can be found in the section on DMA program­
ming.

3.3.3 DATA TRANSFER MODES

Three Data Transfer modes are available in the
82370 OMA Controller. They are the Single Transfer,
Block Transfer, and Demand Transfer Modes.
These transfer modes can be used in conjunction
with any one of three Buffer Transfer modes: Single
Buffer, Auto-Initialized Buffer and Buffer Chaining.
Any Data Transfer Mode can be used under any of
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels:

Different devices being serviced by the OMA Con­
troller require different handshaking sequences for
data transfers to take place. Three handshaking
modes are available on the 82370, giving the de­
signer the opportunity to use the DMA Cqntroller as
efficiently as possible. The speed at which data can

5-1342

inter 82370

be presented or read by a device can affect the way
a OMA Controller uses the host's bus, thereby af­
fecting not only data throughput during the OMA pro­
cess, but also affecting the host's performance by
limiting its access to the bus.

HOLD-HLDA-DACK handshake cycle. Figure 3-5
shows the timing of the Single Transfer Mode cycle.

Single Transfer Mode

In the Single Transfer Mode, one data transfer to or
from the Requester is performed by the OMA Con­
troller at a time. The DREQn input is arbitrated and
the HOLD/HLDA sequence is executed for each
transfer. Transfers continue in this manner until the
Byte Count expires, or until EOP# is sampled active.
If the DREQn input is held active continuously, the
entire DREQ-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4
shows the logical flow of events which make up a
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure.

The Single Transfer Mode is used for devices which
require complete handshake cycles with each data
access. Data is transferred to or from the Requester
only when the Requester is ready to perform the
transfer. Each transfer requires the entire OREO-

Tx Tx Ti

CLK2

CLK

DREQn

AD~# xxxxxxxxxxxxxxxxX> -----
I I

NOTE:

Ti

INITIALIZE BUFFER

WAIT FOR DREQn
OR SOFTWARE REQUEST

EXECUTE
ONE REQUESTER

TRAN Sf ER

END Of BUFFER

Figure 3-4. Buffer Transfer
in Single Transfer Mode

T1 T2 Ti

290164-19

290164-20

The Single Transfer Mode is more efficient (15%-20%) in the case where the source is the Target. Because of the
internal pipeline of the 82370 OMA Controller, two idle states are added at the end of a transfer in the case where the
source is the Requester.

Figure 3-5. DMA Single Transfer Mode

5-1343

I

intef 82370

Block Transfer Mode

In the Block Transfer Mode, the DMA process is ini­
tiated by a OMA request and continues unti the Byte
Count expires, or until EOP# is activated by the Re­
quester. The OREOn signal need only be held active
until the first Requester access. Only a refresh cycle
will interrupt the block transfer process.

INITIALIZE BUFFER

WMf FOR DREOn

TRANSFER DATA UNTIL
EOP OR TC

END OF BUFFER
290164-.21

Figure 3-6 illustrates the operation of the OMA dur­
ing the Block Transfer Mode. Figure 3-7 shows the
timing of the handshake signals during Block Mode
Transfers. ~-------------· .. ··----------

Figure 3·6. Buffer Transfer
in Block Transfer Mode

------------~

290164-22

Figure 3-7. Block Mode Transfers

5-1344

intef 82370

Demand Transfer Mode

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the OMA pro­
cess. A Demand Transfer is initiated by a OMA re­
quest. The process continues until the Byte Count
expires, or an external EOP # is encountered. If the
device being serviced (Requester) desires, it can in­
terrupt the OMA process by de-activating the
DREQn line. Action is taken on the condition of
DREQn during Requester accesses only. The ac­
cess during which DREOn is sampled inactive is the
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of
events during the transfer of a buffer in the Demand
Mode.

When the DREQn line goes inactive, the OMA Con­
troller will complete the current transfer, including
any necessary accesses to the Target, and relin­
quish control of the bus to the host. The current pro­
cess information is saved (byte count, Requester
and Target addresses, and Temporary Register).

The Requester can restart the transfer process by
reasserting DREQn. The 82370 will arbitrate the re­
quest with other pending requests and begin the
process where it left off. Figure 3-9 shows the timing
of handshake signals during Demand Transfer Mode
operation.

Tx Tx Tx Ti Tl T1

CLK2

CLK

DREQn

DREQn

HOLD

HLDA

ADS#

READY#

A(1-23)
BLE#, BHE#

WR#,M/10#

EOP#

T2 T1 T2

INITIALIZE BUFFER

WAIT FOR DREQn

TRANSFER DATA UNTIL
DREQn DE-ACTIVATED

OR EOP OR TC

END OF BUFFER
290164-23

Figure 3-8. Buffer Transfer
in Demand Transfer Mode

T1 T2 Ti Tx Tx

290164-24

Figure 3·9. Demand Mode Transfers

5-1345

I

intef 82370

Using the Demand Transfer Mode allows peripherals
to access memory in• small,· irregular bursts without
wasting bus control time. The 82370 is designed to
give the best possible bus control latency in the De­
mand Transfer Mode. Bus control latency is defined
here as the time form the last active bus cycle of the
previous bus master to the first active bus cycle of·
the new bus master. The 82370 OMA Controller will
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration,
bus control is returned to the host one bus state
after the DREQn goes inactive.

There are two cases where there may be more than
one bus state of bus control latency at the end of a
transfer. The first is at the end of an Aufo-lnitialize
process, and the second is at the end of a process
where the source is the Requester and Two-Cycle
transfers are used.

When a Buffer Auto-Initialize Porcess is complete,
the 82370 requires seven bus states to reload the
Current Registers from the Base Registers of the
Auto-Initialized channel. The reloading is done while
the 82370 is still the bus master so that it is prepared
to service the channel immediately after relinquish­
ing the bus, if necessary.

l
CHANNEL 7

CHANNEL 6
CHANNEL 5
CHANNEL 4
PHANTOM .._

_j

In the case where the Requester is the source, and
Two-Cycle transfers are being used, there are two
extra idle states at_ the end of the transfer process.
This occurs due to the housekeeping in the DMA's
internal pipeline. These two idle states are present
only after the very last Requester access, before the
OMA Qontroller de-activates the HOLD signal.

3.3.4 CHANNEL PRIORITY ARBITRATION

OMA channel priority can be programmed into one
of two arbitration methods: Fixed or Rotating. The
four lower OMA channels and the four upper OMA
channels operate as if they were two separate OMA
controllers operating in cascade. The lower group of
four channels (0-3) is always prioritized between
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows a pictorial representation of
the priority grouping.

I -
The priority can thus be set up as rotating for one
group of channels and fixed for the other, or any
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the
lowest priority.

LOW PRIORITY

l
CHANNEL 3
CHANNEL 2
CHANNEL 1
CHANNEL 0

l HIGH PRIORITY
290164-25

Figure 3-10. OMA Priority Grouping

5-1346

82370

The 82370 OMA Controller defaults to Fixed Priority.
Channel O has the highest priority, then 1, 2, 3, 4, 5,
6, 7. Channel 7 has the lowest priority. Any time the
OMA Controller arbitrates OMA requests, the re­
questing channel with the highest priority will be
serviced next.

Fixed Priority can be entered into at any time by a
software command. The priority levels in effect after
the mode switch are determined by the current set­
ting of the Programmable Priority.

Programmable Priority is available for fixing the prior­
ity of the OMA channels within a group to levels oth­
er than the default. Through a software command,
the channel to have the lowest priority in a group
can be specified. Each of the two groups of four
channels can have the priority fixed in this way. The
other channels in the group will follow the natural
Fixed Priority sequence. This mode affects only the
priority levels while operating with Fixed Priority.

For example, if channel 2 is programmed to have the
lowest priority in its group, channel 3 has the highest
priority. In descending order, the other channels
would have the following priority: (3,0, 1,2),4,5,6, 7
(channel 2 lowest, channel 3 highest). If the upper

CHANNEL 6

CHANNEL 7

PHANTOM !-------!
CHANNEL 4

CHANNEL 5

group were programmed to have channel 5 as the
lowest priority channel, the priority would be (again,
highest to lowest): 6,7, (3,0,1,2), 4,5. Figure 3-11
shows this example pictorially. The lower group is
always prioritized as a fifth channel of the upper
group (between channels 4 and 7).

The OMA Controller will only accept Programmable
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority levels.
Switching from Rotating to Fixed Priority returns the
priority levels to those which were last programmed
by use of Programmable Priority. •

Rotating Priority allows the devices using OMA to
share the system bus more evenly. An individual
channel does not retain highest priority after being
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was
most recently serviced inherits the lowest priority.
This rotation occurs each time a channel is serviced.
Figure 3-12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper
group.

CHANNEL 3

CHANNEL 2

CHANNEL 1

CHANNEL 0

LOW PRIORITY

HIGH PRIORITY
290164-26

Figure 3-11. Example of Programmed Priority

5-1347

El

intJ 82370

!0!1!2!31141516171-default (highest to low­
est)

DREQ2 and DREQ6-process channel 2

141516171131 o I 1 l 2 l- chann~I .2 dr?P~ to low-
est pnonty within group.
Lower group drops to
lowest priority within up­
per group. (Double Rota­
tion)

DREQ6 (still) and DREQ7-process channel 6

0 131 O I 1 I 2 I [iliEJ- chan~el . 6 dr?p.s to low­
est priority w1th1n group

DREQ7 (still) and DREQO-process channel 7

131ol1 l21141516171-chan~el.7 dr?p.s to low-
est pnonty w1th1n group

DREQO (still) and DREQ1-process channel o

14151617111l2l3loJ_channel o drops to low­
est priority within group.
(Double Rotation)

DREQ1 (still)-process channel 1

141516171 /2l3ioi1l-chan~e1.1 d~o~s to low-
. est pnonty within group

Figure 3-12. Rotating Channel Priority.
Lower and upper groups are programmed

for the Rotating Priority Mode.

3.3.5 COMBINING PRIORITY MODES

Since the DMA Controll.er operates as two four­
channel controllers in cascade, the overall priority
scheme of all eight channels can take on a variety of
forms. There are four possible combinations of prior­
ity modes between the two groups of channels:
Fixed Priority only (default), Fixed Priority upper
group/Rotating Priority lower group, Rotating Priority
upper group/Fixed Priority lower group, and Rotating
Priority only. Figure 3-13 illustrates the operation of
the two combined priority methods.

Case 1-
0-3 Fixed Priority, 4-7 Rotating Priority

High Low

Default priority lol 1I2131141516 71

After servicing channel 2 1415161711ol1I2131

After servicing channel 6 0 I 0 I 1 I 2 I 3 I [iliEJ

After servicing channel 1 J4/ 51617 I / 0I1I2131

Case2-
0-3 Rotating Priority, 4-7 Fixed Priority

High Low

Default priority lol 1I2! 31 /41516 71

After servicing channel 2 131ol1I21 / 41516171

After servicing channel 6 131ol1I21141516171

After servicing channel 1 12131ol11141516171

Figure 3-13. Combining Priority Modes

3.3.6 BUS OPERATION

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel
through a command register. Device data path
widths are independently programmable for both
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these
parameters affect the operation of the 82370 on a
bus-cycle by bus-cycle basis.

3.3.6.1 Fly-By Transfers

The Fly-By Transfer Mode is the fastest and most
efficient way to use the 82370 DMA Controller to
transfer data. In this method of transfer, the data is
written to the destination device at the same time it
is read from the source. Only one bus cycle is used
to accomplish the transfer.

5-1348

82370

In the Fly-By Mode, the DMA acknowledge signal is
used to select the Requester. The DMA Controller
simultaneously places the address of the Target on
the address bus. The state of M/10# and W/R#
during the Fly-By transfer cycle indicate the type of
Target and whether the Target is being written to or
read from. The Target's Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
dress registers are ignored during Fly-By transfers.

Note that memory-to-memory transfers cannot be
done using the Fly-By Mode. Only one memory of
1/0 address is generated by the DMA Controller at a
time during Fly-By transfers. Only one of the devices
being accessed can be selected by an address.
Also, the Fly-By method of data transfer limits the
hardware to accesses of devices with the same data
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode.

Fly-By transfers also require that the data paths of
the Target and Requester be directly connected.
This requires that successive Fly-By access be to
word boundaries, or that the Requester be capable
of switching its connections to the data bus.

3.3.6.2. Two-Cycle Transfers

Two-Cycle transfers can also be performed by the
82370 DMA Controller. These transfers require at
least two bus cycles to execute. The data being
transferred is read into the DMA Controller's Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus cycle is used to write the data from the
Temporary Register to the destination.

If the addresses of the data being transferred are
not word aligned, the 82370 will recognize the situa­
tion and read and write the data in groups of bytes,
placing them always at the proper destination. This
process of collecting the desired bytes and putting
them together is called "byte assembly". The re­
verse process (reading from aligned locations and
writing to non-aligned locations) is called "byte dis­
assembly".

The assembly/disassembly process takes place
transparent to the software, but can only be done
while using the Two-Cycle transfer method. The
82370 will always perform the assembly/disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or
Target can be used in the Two-Cycle Mode. This is
very convenient for interfacing existing 8- and 16-bit
peripherals to the 80376's 16-bit bus.

The 82370 DMA Controller always reads and write
data within the word boundaries; i.e. if a word to be

read is crossing a word boundary, the DMA Control­
ler will perform two read operations, each reading
one byte, to read the 16-bit word into the Temporary
Register. Also, the 82370 DMA Controller always at­
tempts to fill the Temporary Register from the
source before writing any data to the destination. If
the process is terminated before the Temporary
Register is filled (TC or EOP#), the 82370 will write
the partial data to the destination. If a process is
temporarily suspended (such as when DREQn is de­
activated during a demand transfer), the contents of
a partially filled Temporary Register will be stored
within the 82370 until the process is restarted.

For example, if the source is specified as an 8-bit
device and the destination as a 32-bit device, there
will be four reads as necessary from the 8-bit source
to fill the Temporary Register. Then the 82370 will
write the 32-bit contents to the destination in two
cycles of 16-bit each. This cycle will repeat until the
process is terminated or suspended.

With Two-Cycle transfers, the devices that the
82370 accesses can reside at any address within
1/0 or memory space. The device must be able to
decode the byte-enables (BLE#, BHE#). Also, if the
device cannot accept data in byte quantities, the
programmer must take care not to allow the OMA
Controller to access the device on any address oth­
er than the device boundary.

3.3.6.3 Data Path Width and Data Transfer Rate ..
Considerations Iii

The number of bus cycles used to transfer a single
"word" of data is affected by whether the Two-Cycle
or the Fly-By (Single-Cycle) transfer method is used.

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of
bus cycles will decrease the effective data transfer
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers.

The choice of data path widths of both Target and
Requester affects the data transfer rate also. During
each bus cycle, the largest pieces of data possible
should be transferred.

The data path width of the devices to be accessed
must be programmed into the DMA controller. The
82370 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and
independent of the other channels. Since this is a
software programmable function, more discussion of
the uses of this feature are found in the section on
programming.

5-1349

intef 82370

3.3.6.4 Read, Write and Verify Cycles

Three different bus cycles types may be used in a
data transfer. They are the Read, Write and Verify
cycles. These cycle types dictate the way in which
the 82370 operates on the data to be transferred.

A Read Cycle transfers data from the Target to the
Requester. A Write Cycle transfers data from the
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate' the access
(read of write) to the Target; the access to the Re­
quester is assumed to be the opposite.

The Verify Cycle is used to perform a data read only.
No write access is indicated or assumed in a Verify
Cycle. The Verify Cycle is useful for validating block
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read.

3.4 Bus Arbitration and Handshaking

Figure 3-14 shows the flow of events in the OMA
request arbitration process. The arbitration se­
quence starts when the Requester asserts a OREQn
(or OMA service is requested by software). Figure
3-15 shows the timing of the sequence of events
following a OMA request. This sequence is executed
for each channel that is activated. The DREQn sig­
nal can be replaced by a software OMA channel re­
quest with no change in the sequence.

After the Requester asserts the service request, the
82370 will request control of the bus via the HOLD
signal. The 82370 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80376 responds by asserting the HLOA sig­
nal, thus releasing control of the bus to the 82370
OMA Controller.

Priority of pending OMA service requests is arbitrat­
ed during the first state after HLDA is asserted by
the 80376. The next state will be the beginning of
the first transfer access of the highest priority pro­
cess.

When the 82370 OMA Controller is finished with its
current bus activity, it returns control of the bus to
the host processor. This is done by driving the
HOLD signal inactive. The 82370 does not drive any
address or data bus signals after HOLD goes low. It
enters the Slave Mode until another OMA process is
requested. The processor acknowledges that it has

regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82370's OMA Controller
will not re-request control of the bus until the entire
HOLD/HLDA handshake sequence is complete.

WAIT roR DREQn OR SOFTWARE REQUEST

REQUESTER ASSERTS DREQn

82370 ASSERTS HOLD REQUEST

80376 ASSERTS HOLD ACKNOWLEDGE

82370 ARBITRATES PENDING REQUESTS

82370 PERFORt.4S HIGHEST PRIORITY
TRANSfER (SEE DATA TRANSfER t.40DES)

82370 DE-ASSERTS HOLD REQUEST

290164-27

Figure 3·14. Bus Arbitration and DMA Sequence

The 82370 OMA Controller will terminate a current
OMA process for one of three reasons: expired byte
count, end-of-process command (EOP# activated)
from a peripheral, or deactivated OMA request sig­
nal. In each case, the controller will de-assert HOLD
immediately after completing the data transfer in
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19 and 3-18,
respectively.

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel
has no further transfers to process. The channel
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed
completely, including a new Buffer Transfer Mode.

5-1350

infef 82370

Tx Tx Ti Ti T1 T2 T1

CLK2

CLK

DREQn

READY# ~xgxggggxgxgx:~~~~~:x8XXXXXXXXXXgx:~~~J..l.~~
NOTE: 290164-28
Channel priority resolution takes place during the bus state before HOLDA is asserted, allowing the OMA Controller to
respond to HLDA without extra idle bus states.

Figure 3·15. Beginning of a OMA process

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data
for the current buffer. The 82370 OMA Controller
considers this as a completion of the channel's cur­
rent process and interprets the condition the same
way as if the byte count expired.

The action taken by the 82370 OMA Controller in
response to a de-activated DREQn signal.depends
on the Data Transfer Mode of the channel. In the
Demand Mode, data transfers will take place as long
as the DREQn is active and the byte count has not
expired. In the Block Mode, the controller witl com­
plete the entire block transfer without relinquishing
the bus, even if DREQn goes inactive before the

transfer is complete. In the Single Mode, the control­
ler will execute single . data transfers, relinquishing
the bus between each transfer, as long as DREQn is
active.

Normal termination of a OMA process due to expira­
tion of the byte count (Terminal Count-TC) is
shown if Figure 3-16. The condition of DREQn is
ignored until after the process is terminated. If the
channel is programmed to auto-initialize, HOLD will
be held active for an additional seven clock cycles
while the auto-initialization takes place.

Table 3-3 shows the OMA channel activity due to
EOP# or Byte Count expiring (Terminal Count).

Table 3-3. OMA Channel Activity Due to Terminal Count or External EOP#

Single or Auto- Chaining-Base Buffer Process Chaining-Base
Empty

Initialize Loaded

EVENT

Terminal Count True x True x True x
EOP# x 0 x 0 x 0

RESULTS

Current Registers Load Load Load Load
Channel Mask Set Set
EOP# Output 0 x 0 x 1 x
Terminal Count Status Set Set Set Set
Software Request CLR CLR CLR CLR

5-1351

I

82370

T2 T1 T2 Tl Tx Tx Tx

CLK2

CLK

DREQn

HOLD

HLDA

ADS# =1
I .;. BYTE COUNT EXPIRES (TC)

'-~-r--i~--~~,~~~~
EOP# ~i--1

READY# XXXXXX@ txxxxxxxxxxxxxxxxxxxxxxx
290164-29

Figure 3-16. Termination of a OMA Process Due to Expiration of Current Byte Count

T2 Tl Tx Tx Tl

CLK2

CLK

DREQa

DREQb

HOLD

HLDA 11
-- CHANNEL A _____:..i li.1---CHANNEL B --

290164-30

·Figure 3·17. Switching between Active OMA Channels

The 82370 always relinquishes control of the bus
between channel services. This allows the hardware
designer the flexibility to externally arbitrate bus hold
requests, if desired. If another OMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82370 will relinquish the bus until the
hold acknowledge is inactive. One bus state after
the HLDA signal goes inactive, the 82370 will assert
HOLD again. This is illustrated in Figure 3-17.

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS
SAMPLiNG OF DREQn AND EOP#

As an indicator that a OMA service is to be started,
DREQn is always sampled asynchronous. It is sam-

pied at the beginning of a bus state and acted upon
at the end of the state. Figure 3" 15 illustrates the
start of a OMA process due to a DREQn input.

The DREQn and EOP # inputs can be programmed
to be sampled either synchronously or asynchro­
nously to signal the end of a transfer.

The synchronous mode affords the Requester one
bus state of extra time to react to an access. This
means the Requester· can terminate a process on
the current access, without losing any data. The
asynchronous mode requires that the input signal be
presented prior to the beginning of the last state of
the Requester access.

5-1352

inter 82370

The timing relationships of the OREQn and EOP#
signals to the termination of a OMA transfer are
shown in Figures 3-18 and 3-19. Figure 3-18 shows
the termination of a DMA transfer due to inactive
DREQn. Figure 3-19 shows the termination of a
OMA process due to an active EOP# input.

In the Synchronous Mode, DREQn and EOP# are
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP# is active or
DREQn is inactive at this time, the 82370 recognizes
this access to the Requester as the last transfer. At
this point, the 82370 completes the transfer in prog­
ress, if necessary, and returns bus control to the
host.

T2 T1

CLK2

CLK

ADS#

DREQn --+---+--"'

T2

In the asynchronous mode, the inputs are sampled
at the beginning of every state of a Requester ac­
cess. The 82370 waits until the end of the state to
act on the input.

DREQn and EOP# are sampled at the latest possi­
ble time when the 82370 can determine if another
transfer is required. In the Synchronous Mode,
DREQn and EOP# are sampled on the trailing edge
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that
the signals be valid one clock cycle earlier.

Ti Tx Tx Tx

(ASYNCHRONOUS) \...4----µ~:.Q.i:i.,Qj~~~,Q,Q~~~~~~

DREQn ~""''7t7~-..,..-m:~~7'm~
(SYNCHRONOUS) ~~~l.a.r:l4.-.j-..4~~~:i.,Qj~~~~~l.a.r:l.a.r:~IA

HOLD

HLOA

290164-31

Figure 3-18, Termination of a DMA Process due to De-Asserting DREQn

T2 T1 T2 Ti Tx Tx Tx

CLK2

CLK

A~# ---- -----~------ -----

(~"~,:~~; f~
'"'""""::~ ! ®"I~ I~

HLDA t ·+- f ·~:r .
290164-32

Figure 3-19. Termination of a DMA Process due to an External EOP#

5-1353

intJ 82370

While in the Pipeline Mode, if the NA# signal is sam­
pled active during a transfer, the end of the state
where NA# was sampled active is when the 82370
decides whether to commit to another transfer. The
device must de-assert DRE On or assert EOP # be­
fore NA# is asserted, otherwise the 82370 will com­
mit to another, possibly undesired, transfer.

Synchronous DREQn and EOP# sampling allows
the peripheral to prevent the next transfer from oc­
curring by de-activating OREOn or asserting EOP#
during the current Requester access, before the
82370 OMA Controller commits itself to another
transfer. The OMA Controller will not perform· the
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent
timing requirements than the Synchronous Mode,
but requires that the OREQn signal be valid at the
beginning of the next to last bus state of the current
Requester access.

Using the Asynchronous Mode with zero wait states
can be very difficult. Since the addresses and con­
trol signals are driven by the 82370 near half-way
through the first bus state of a transfer, and the
Asynchronous Mode requires that OREQn be inac­
tive before the end of the state, the peripheral being
accessed is required to present DREQn only a few
nanoseconds after the control information is avail­
able. This ·means that the peripheral's control logic
must be extremely fast (practically non-causal). An
alternative is the Synchronous Mode.

80376 82370

DREQO
HOLD HOLD

HLDA HLDA
EDACKO
EDACK1
EDACK2

DREQn

A
B
c

3.4.2 ARBITRATION OF CASCADED MASTER
REQUESTS

The Cascade Mode allows another OMA-type de­
vice to share the bus by arbitrating its bus accesses
with the 82370's. Seven of the eight OMA channels
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control
through the OREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signalled to the cascaded device
through the EOACK lines. When the EOACK lines
are active with the code for the requested cascade
channel, the bus is available to the cascaded master
device.

A cascade cycle begins the same way a regular
OMA cycle begins. The requesting bus master as­
serts the OREQn line on the 82370. This bus control
request is arbitrated as any other OMA request
would be. If any channel receives a OMA request,
the 82370 requests contml of the bus. When the
host acknowledges that it has released bus control,
the 82370 acknowledges to the requesting master
that it may access the bus. The 82370 enters an idle
state until the new master relinquishes control.

A cascade cycle will be terminated by one of two
events: OREQn going inactive, or HLOA going inac­
tive. The normal way to terminate the cascade cycle

0

Bus Moster 0
HOLD REQUEST

HOLD ACKNOWLEDGE

latched
decoder

7 HOLD ACKNOWLEDGE

Bus Master 7
HOLD REQUEST

290164-33

Figure 3·20. Cascaded Bus Master

5-1354

intef 82370

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences.

The Refresh Controller may interrupt the cascaded
master to perform a refresh cycle. If this occurs, the
82370 OMA Controller will de-assert the EDACK sig­
nal (hold acknowledge to cascaded master) and wait
for the cascaded master to remove its hold request.
When the 82370 regains bus control, it will perform
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82370 will
return control to the cascaded master which was in­
terrupted.

The 82370 assumes that it is the only device moni­
toring the HLDA signal. If the system designer
wishes to place other devices on the bus as bus
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82370. Using
the Cascade capabililty of the 82370 OMA Controller
offers a much better solution.

3.4.3 ARBITRATION OF REFRESH REQUESTS

The arbitration of refresh requests by the DRAM Re­
fresh Controller is slightly different from normal OMA

channel request arbitration. The 82370 DRAM Re­
fresh Controller always has the highest priority of
any OMA process. It also can interrupt a process in
progress. Two types of processes in progress may
be encountered: normal OMA, and bus master cas­
cade.

In the event of a refresh request during a normal
OMA process, the OMA Controller will complete the
data transfer in progress and then execute the re­
fresh cycle before continuing with the current OMA
process. The priority of the interrupted process is
not lost. If the data transfer cycle interrupted by the
Refresh Controller is the last of a OMA process, the
refresh cycle will always be executed before control
of the bus is transferred back to the host.

When the Refresh Controller request occurs during
a cascade cycle, the Refresh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before it can execute the
refresh cycle. To do this, the OMA Controller drops
the EDACK signal to the cascaded master and waits
for the corresponding DREQn input to go inactive.
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to
an active state before the end of the refresh cycle,
otherwise control is passed to the processor and the
cascaded master loses its priority.

Cascade cycle termination by DREOn inactive

DREOn

EDACK

HOLD

HLDA

HLDA

EDACK

DREQn

HOLD

100

Cascade cycle termination by HLDA inactive

100

Figure 3-21. Cascade Cycle Termination

5-1355

290164-34

intef 82370

3.5 OMA Controller Register Overview
)

The 82370 DMA Controller contains 44 registers
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual DMA
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and
monitoring the operation of the 82370 DMA Control­
ler. Table 3-4 lists the DMA Controller's registers
and their accessability. ·

Table 3-4. DMA Controller Registers

Register Name Access

Control/Status Registers-one each per group

Command Register I
Command Register II
Mode Register I
Mode Register II
Software Request Register
Mask Set-Reset Register
Mask Read-Write Register
Status. Register
Bus Size Register
Chaining Register

write only
write only
write only
write only
read/write
write only
read/write
read only
write only
read/write

Channel Registers-one each per channel

Base Target Address write only
Current Target Address read only
Base Requester Address write only
Current Requester Address read only
Base Byte Count write only
Current Byte Count read only

3.5.1 CONTROL/STATUS REGISTERS

The following registers are available to the host,
processor for programming the 82370 DMA Control­
ler into its various modes and for checking the oper­
ating status of the DMA processes. Each set of four
OMA channels has one of each of these registers
associated with it.

Command Register I

Enables or disables the OMA channel as a group.
Sets the Priority Mode (Fixed or Rotating) of the
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and
Fixed Priority Mode.

Command Register II

Sets the sampling mode of the DREQn and EOP #
inputs. Also sets the lowest priority channel for the
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after

a hardware reset to: asynchronous DREQn and
EOP#, and channels 3 and 7 lowest priority.

Mode Registers I

Mode Register I is identical in function to the Mode
register of the 8237 A. It programs the following func­
tions for an individually selected channel:

Type of Transfer-read, write, verify
Auto-Initialize-enable or disable
Target Address Count-'increment or decrement
Data Transfer Mode-demand, single, block,
cascade

Mode Register I functions default to the following
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode.

Mode Register II

Programs the following functions for ail individually
selected channel:

Target Address Hold-enable or disable
Requester Address Count-increment or
decrement
Requester Address Hold-enable or disable
Target Device Type-1/0 or Memory
Requester Device Type-1/0 or Memory
Transfer Cycles-Two-Cycle or Fly-By

Mode Register II functions are defined as follows
after a hardware reset: Disable Target Address Hold,
Increment Requester Address, Target (and Re­
quester) in memory, Fly~By Transfer Cycles. Note:
Requester Device Type ignored in Fly-By Transfers.

Software Request Register

The OMA Controller can respond to service requests
which are initiated by software. Each channel has an
internal request status bit associated with it. The
host processor can write to this register to set or
reset the request bit of a selected channel.

The status of a group's software OMA service re­
quests can be re,ad from this register as well. Each
status bit is cleared upon Terminal Count or external
EOP#.

The software OMA requests are non-maskable and
subject to priority arbitration with all other software
and hardware requests. The entire register is
cleared by a hardware reset.

Mask Registers

Each channel has· associated with it a mask bit
which can be set/reset to disable/enable that chan­
nel. Two methods are available for setting and clear­
ing the mask bits.The Mask Set/Reset Register is a

5-1356

intJ 82370

write-only register which allows the host to select an
individual channel and either set or reset the mask
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and
for writing mask bits in groups of four.

The mask bits of a group may be cleared in one step
by executing the Clear Mask Command. See the
OMA Programming section for details. A hardware
reset sets all of the channel mask bits, disabling all
channels.

Status Register

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request
status for a group. Four bits indicate the TC status
and four bits indicate the hardware request status
for the four channels in the group. The TC bits are
set when the Byte Count expires, or when and exter­
nal EOP # is asserted. These bits are cleared by
reading from the Status Register. The Service Re­
quest bit for a channel indicates when there is a
hardware OMA request (DREQn) asserted for that
channel. When the request has been removed, the
bit is cleared.

Bus Size Register

This write-only register is used to define the bus size
of the Target and Requester of a selected channel.
The bus sizes programmed will be used to dictate
the sizes of the data paths accessed when the OMA
channel is active. The values programmed into this
register affect the operation of the Temporary Regis­
ter. When 32-bit bus width is programmed, the
82370 OMA Controller will access the device twice
through its 16-bit external Data Bus to perform a
32-bit data transfer. Any byte-assembly required to
make the transfers using the specified data path
widths will be done in the Temporary Register. The
Bus Size register of the Target is used as an incre­
ment/decrement value for the Byte Counter and
Target Address when in the Fly-By Mode. Upon re,
set, all channels default to 8-bit Targets and 8-bit
Requesters.

Chaining Register

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset, all channels default to
Chaining disabled.

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of
the channels. These interrupt status bits are cleared
when the new buffer information !las been loaded.

3.5.2 CHANNEL REGISTERS

Each channel has three individually programmable
registers necessary for the OMA process; they are
the Base Byte Count, Base Target Address, and
Base Requester Address registers. The 24-bit Base
Byte Count register contains the number of bytes to
be transferred by the channel. The 24-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or 1/0) of the Target device. The
24-bit Base Requester Address register contains the
base address (memory or 1/0) of the device which is
to request OMA service.

Three more registers for each OMA channel exist
within the OMA Controller which are directly related
to the registers mentioned above. These registers
contain the current status of the OMA process. They
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82370
OMA Controller during the OMA process. The Cur­
rent registers are loaded from the Base registers at
the beginning of a OMA process.

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically
loaded in the same operation. Reading from the
channel register addresses yields the contents of
the corresponding Current register.

To maintain compatibility with software which ac­
cesses an 8237A, a Byte Pointer Flip-Flop is used to
control access to the upper and lower bytes of some
words of the Channel Registers. These words are
accessed as byte pairs at single port addresses. The
Byte Pointer Flip-Flop acts as a one-bit pointer
which is toggled each time a qualifying Channel
Register byte is accessed.

It always points to the next logical byte to be ac­
cessed of a pair of bytes.

The Channel registers are arranged as pairs of
words, each pair with its own port address. Address­
ing the port with the Byte Pointer Flip-Flop reset ac­
cesses the least significant byte of the pair. The
most significant byte is accessed when the Byte
Pointer is set.

For compatibility with existing 8237A designs, there
is one exception to the above statements about the
Byte Pointer Flip-Flop. The third byte (bits 16-23) of
the Target Address is accessed through its own port
address. The Byte Pointer Flip-Flop is not affected
by any accesses to this byte.

5-1357

II

82370

The upper eight bits of the Byte Count Register are
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has
16-bit Byte Count Registers.

NOTE:
The 82370 is a subset of the Intel 82380 32-bit
DMA Controller with Integrated System Peripherals.

Although the 82370 has 24 address bits externally,
the programming model is actually a full 32 bits wide.
For this reason, there are some "hidden" DMA reg­
isters in the 82370 register set. These hidden regis­
ters correspond to what would be A24-A31 in a
32-bit system.

Think of the 82370 addresses as though they were
32 bits wide, with only the lower 24 bits available
externally.

This should be of concern in two areas:

1. Understanding the Byte Pointer Flip Flop
2. Removing the IR01 Chaining Interrupt

The byte pointer flip flop will behave as though the
hidden upper address bits were accessible.

The IR01 Chaining Interrupt will be removed only
when the hidden upper address bits are pro­
grammed. You will note that since the hidden upper
address bits are not available externally, the value
you program into the registers is not important. The
act of programming the hidden register is critical in
removing the IRQ1 Chaining interrupt for a DMA
channel.

The port assignments for these hidden upper ad­
dress bits come directly from the port assignments
of the Intel 82380. For your convenience, those port
definitions have been included in this data sheet in
section 3.7.

3.5.3 TEMPORARY REGISTERS

Each channel has a 32-bit Temporary Register used
for temporary data storage during two-cycle DMA
transfers. It is this register in which any necessary
byte assembly and disassembly of non-aligned data
is performed. Figure 3-22 shows how a block of data
will be moved betwGen memory locations with differ­
ent boundaries. Note that the order of the data does
not change.

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP #
signal or DREQn inactive in the Demand Mode, the
Temporary Register is not affected. If data remains
in the Temporary Register due to differences in data
path widths of the Target and Requester, it will not

Source Destination

20H

21H

22H

23H

24H

25H

26H

27H

A

B

c
D

E

F

G

SOH

S1H

S2H

S3H

S4H

SSH

SSH

S7H

SSH

S9H

SAH

Target = source = 00000020H
Requester = destination = 00000053H
Byte Count = 000007H

A

B

c
D

E

F

G

Figure 3-22. Transfer of data between memory
locations with different boundaries. This will be

the result, independent of data path width.

be transferred or otherwise lost, but will be stored for
later transfer.

If the destination is the Target and the EOP# signal
is sensed active during the Requester access of a
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is
in the Temporary Register at the time of process
termination. This implies that the Target could be
accessed with partial data in two accesses. For this
reason it is advisable to have an 1/0 device desig­
nated as a Requester, unless it is capable of han­
dling partial data transfers.

3.6 OMA Controller Programming

Programming a DMA Channel to perform a needed
DMA function is in general a four step process. First
the global attributes of the DMA Controller are pro­
grammed via the two Command Registers. These.
global attributes include: priority levels, channel
group enables, priority mode, and DREOn/EOP# in­
put sampling.

The second step involves setting the operating
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the
handshaking modes. The Bus Size Register and
Chaining Register may also need to be programmed
in this step.

The third step in setting up the channel is to load the
Base Registers in accordance with the needs of the
operating modes chosen in step two. The Current
Registers are automatically loaded from the Base
Registers, if required by the Buffer Transfer Mode in

5-1358

intJ 82370

effect. The information loaded and the order in
which it is loaded depends on the operating mode. A
channel used for cascading, for example, needs no
buffer information and this step can be skipped en­
tirely.

The last step is to enable the newly programmed
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data
transfer. The status of the channel can be observed
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister.

Once the channel is programmed and enabled, the
OMA process may be initiated in one of two ways,
either by a hardware OMA request (OREQn) or a
software request (Software Request Register).

Once programmed to a particular Process/Mode
configuration, the channel will operate in that config­
uration until programmed otherwise. For this reason,
restarting a channel after the current buffer expires
does not require complete reprogramming of the
channel. Only those parameters which have
changed need to be reprogrammed. The Byte Count
Register is always changed and must be repro­
grammed. A Target or Requester Address Register
which is incremented or decremented should be re­
programmed also.

3.6.1 BUFFER PROCESSES

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register.
If Auto-Initialize is enabled, Chaining should not be
used.

3.6.1. 1 Single Buffer Process

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro­
gramming Mode Register I for non-Auto-Initialize.

3.6.1.2 Buffer Auto-Initialize Process

Setting the Auto-Initialize bit in Mode Register I is all
that is necessary to place the channel in this mode.
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this
will have unpredictable results.

Once the Base Registers are loaded, the channel is
ready to be enabled. The channel will reload its Cur­
rent Registers from the Base Registers each time
the Current Buffer expires, either by an expired Byte
Count or an external EOP #.

INSTALL IRQ1 INTERRUPT SERVICE ROUTINE

SET THE CHANNEL TO NON-CHAINING PROCESS

LOAD BASE REGISTERS FOR FIRST BUFFER

SET THE CHANNEL TO CHAINING PROCESS

(IRQ1 WILL BE ACTIVATED)

(IRQ1 WILL NEED SERVICE­
LOAD BASE REGISTERS)

ENABLE THE CHANNEL

FROM THIS POINT, THE HOST CAN PERFORM
ANOTHER TASK. THE INTERRUPT SERVICE ROUTINE

LEFT BEHIND WILL MAINTAIN THE CHANNEL.
290164-35

Figure 3·23. Flow of Events in the Buffer Chaining Process

5-1359

El

intJ 82370

3.6.1.3 Buffer Chaining Process

The Buffer Chaining Process is entered into from the
Single Buffer Process. The Mode Registers should
be programmed first, with all of the Transfer Modes
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base Registers
are then loaded. When the channel has been set up
in this way, and the chaining interrupt service routine
is in place, the Chaining Process can be entered by
programming the Chaining Register. Figure 3-23 il­
lustrates the Buffer Chaining Process.

An interrupt (IRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel
then perceives the Base Registers as empty and in
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining
Process is entered into. The interrupt request is re­
moved when the most significant byte of the Base
Target Address is loaded.

The interrupt will occur again when the first buffer
expires and the Current Registers are loaded from
the Base Registers. The cycle continues until the
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 before the Current Buffer expires.

Exiting the Chaining Process can be done by reset­
ting ihe Chaining Mode Register. If an interrupt is
pending for the channel when the Chaining Register
is reset, the interrupt request will be removed. The
Chaining Process can be temporarily disabled by
setting the channel's Mask bit in the Mask Register.

The interrupt service routine for IRQ1 has the re­
sponsibility of reloading the Base Registers as nec­
essary. It should check the status of the channel to
determine the cause of channel expiration, etc. It
should also have access to operating system infor­
mation regarding the channel, if any exists. The
IRQ1 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information.

3.6.2 DATA TRANSFER MODES

The Data Transfer Modes are selected via Mode
Register I. The Demand, Single, and Block Modes
are selected by bits 06 and 07. The individual trans­
fer type (Fly-By vs Two-Cycle, Read-Write-Verify,
and 1/0 vs Memory) is programmed through both of
the Mode registers.

3.6.3 CASCADED BUS MASTERS

The Cascade Mode is set by writing ones to 07 and
06 of Mode Register I. When a channel is pro-

grammed to operate in the Cascade Mode, all of the
other modes associate.d with Mode Registers I and II
are ignored. The priority and DREQn/EOP# defini­
tions of the Command Registers will have the same
effect on the channel's operation as any other
mode.

3.6.4 SOFTWARE COMMANDS

There are five port addresses which, when written
to, command certain operations to be performed by
the 82370 OMA Controller. The data written to these
locations is not of consequence, writing to the loca­
tion is all that is necessary to command the 82370 to
perform the indicated function. Following are de­
scriptions of the command functions.

Clear Byte Pointer Flip-Flop-Location OOOCH

Resets the Byte Pointer Flip-Flop. This command
should be performed at the beginning of any access
to the channel registers in order to be assured of
beginning at a predictable place in the register pro­
gramming sequence.

Master Clear-Location OOODH

All OMA functions are set to their default states. This
command is the equivalent of a hardware reset to
the OMA Controller. Functions other than those in

·the OMA Controller section of the 82370 are not af-
fected by this command.

Clear Mask Register-Channels 0-3
- Location OOOEH

Channels 4-7
- Location OOCEH

This command simultaneously clears the Mask Bits
of all channels in the addressed group, enabling all
of the channels in the group.

Clear TC Interrupt Request-Location 001EH

This command resets the Terminal Count Interrupt
Request Flip-Flop. It is provided to allow the pro­
gram which made a software OMA request to ac­
knowledge that it has responded to the expiration of
the requested channel(s).

3. 7 Register Definitions

The following diagrams outline the bit definitions and
functions of the 82370 OMA Controller's Status and
Control Registers. The function and programming of
the registers is covered in the previous section on
OMA Controller Programming. An entry of "X" as a
bit value indicates "don't care."

5-1360

intJ 82370

Channel Registers (read Current, write Base)
··----.--· ·--

Channel Register Name
Address Byte Bits

(hex) Pointer Accessed
--

ChannelO Target Address 00 0 0-7
1 8-15

87 x 16-23
10 0 24-31 (*)

Byte Count 01 0 0-7
1 8-15

11 0 16-23
Requester Address 90 0 0-7

1 8-15
91 0 16-23

1 24-31 (*)

Channel 1 Target Address 02 0 0-7
1 8-15

83 x 16-23
12 0 24-31 (*)

Byte Count 03 0 0-7
1 8-15

13 0 16-23
Requester Address 92 0 0-7

1 8-15
93 0 16-23

1 24-31 (*)

Channel2 Target Address 04 0 0-7
1 8-15

81 x 16-23
14 0 24-31 (*) I

Byte Count 05 0 0-7
1 8-15

15 0 16-23
Requester Address 94 0 0-7

1 8-15
95 0 16-23

1 24-31 (*)

Channel 3 Target Address 06 0 0-7
1 8-15

82 x 16-23
16 0 24-31 (*)

Byte Count 07 0 0-7
1 8-15

17 0 16-23
Requester Address 96 0 0-7

1 8-15
97 0 16-23

1 24-31 (*)

5-1361

intJ 82370

Channel Registers (read Current, write Base) (Continued)

Channel Register Name
Address Byte Bits

(hex) Pointer Accessed

Channel4 Target Address co 0 0-7
1 S-15

SF x 16-23
DO 0 24-31 (*)

Byte Count C1 0 0-7
1 S-15

01 0 16-23
Requester Address 9S 0 0~7

1 S-15
99 0 16-23

1 24-31(*)

Channel5 Target Address C2 0 0-7
1 S-15

SB x 16-23
02 0 24-31(*)

Byte Count C3 0 0-7
1 S-15

03 0 16-23
Requester Address 9A 0 0-7

1 S-15
9B 0 16-23

1 24-31(*)

Channels Target Address C4 0 0-7
1 S-15

S9 x 16-23
04 0 24-31(*)

Byte Count C5 0 0-7
1 S-15

05 0 16-23
Requester Address 9C 0 0-7

1 S-15
90 0 16-23

1 24-31(*)

Channel 7 Target Address C6 0 0-7
1 S-15

SA x 16-23
06 0 24-31 (*)

Byte Count C7 0 0-7
1 8-15

07 0 16-23
Requester Address 9E 0 0-7

1 8-15
9F 0 16-23

1 24-31(*)

NOTE:
(*)These bits are not available externally. You need to be aware of their existence for chaining and Byte Pointer Flip-Flop
operations. Please see section 3.5.2 for further details.

5-1362

intef
Command Register I (write only)

Port Addresses- Channels 0-3-000BH

Channels 4-7--00CBH

82370

D7 D6 D5 D4 r3 D2 D1 DO

Ix xlxlPlxlMlx xi

'----- G~O~~N~~~~ CHANNELS
1 = DISABLE CHANNELS

'--------- P~l~R~ED PRIORITY

Command Register II (write only)

Port Addresses- Channels 0-3-001 AH

Channels 4-7-00DAH

D7 D6 D5 D4 D3 D2 D1 DO

1 = ROTATING PRIORITY

DREQN SAMPLING

EDP# SAMPLING
0 = ASYNCHRONOUS
1 = SYNCHRONOUS

.____._ ____ Lg~ :Rd~~~E~E6~~)5C~wEST

Mode Register I (write only)

Port Addresses- Channels 0-3-000BH

Channels 4-7-00CBH

07 D6 05 04 03 02 D1 DO

l 81 l Bo l Tl l All T1 l TO l C1 l co J
LL

01 = 1(5)
10 = 2(6)
11 = 3(7)

CHANNEL SELECT
00 =CHANNEL 0(4)
01 = 1(5)
10 = 2(6)
11 = 3(7)

TRANSFER TYPE
00 = VERIFY
Ot =WRITE
10 ""'READ
11 = ILLEGAL
XX IF IN CASCADE MODE

AUTO-INITIALIZE
0 = DISABLE, 1 = ENABLE

TARGET INCREMENT/DECREMENT
0 = INCREMENT TARGET
1 = DECREMENT TARGET '
X If TARGET HOLD ENABLED

DATA TRANSFER MODE
00 = DEMAND MODE
01 = SINGLE TRANSFER MODE
10 = BLOCK MODE
11 = CASCADE MODE

*Target and Requester DECREMENT is allowed only for byte transfers.

5-1363

290164-36

290164-37

290164-38

intef
Mode Register II (write only)

Port Addresses- Channels 0-3-001 BH

Channels 4.,-7-00DBH

82370

07 DS 05 D4 D3 D2 D1 DO

[CY l RD l TD l RH l RI l TH l C1 l CO j

l l CHANNEL SELECT
SEE MODE REGISTER I

TARGET HOLD
0 = INCREMENT/DECREMENT
1 =HOLD

REQUESTER INCREMENT
0 = INCREMENT
1 = DECREMENT •

X IF REQUESTER HOLD ENABLED

REQUESTER HOLD
0 = INCREMENT/DECREMENT
1 =HOLD

TARGET DEVICE TYPE

REQUESTER DEVICE TYPE
0 =MEMORY
1 = INPUT/OUTPUT

TRANSFER CYCLES
0 = ONE-CYCLE (FLY-BY)
1 = TWO-CYCLE

*Target and Requester DECREMENT is allowed only for byte transfers.

Software Request Register (read/write)

Port Addresses- Channels 0-3-0009H

Channels 4-7-00C9H

Write Format: Software OMA Service Request

D7 D6 05 04 03 02 u1 DO

I x I x I x I x I x I R I C1 I co ~
I I .. CHANNEL SELECT

SEE MODE REGISTER I

REQUEST SERVICE .._____ 0 = REMOVE REQUEST

1 = ASSERT REQUEST

5-1364

290164-39

290164-40

intJ 82370

Read Format: Software Requests Pending
------··-----··--·-----·-· ----

D7 06 05 D4 D3 D2 D1 DO 1 =REQUEST PENDING

x x x

CHANNEL 0(4) REQUEST

.._--CHANNEL 1(5) REQUEST

'------ CHANNEL 2(6) REQUEST
...__ ______ CHANNEL 3(7) REQUEST

Mask Set/Reset Register Individual Channel Mask (write only)

Port Addresses-· Channels 0-3-000AH

Channels 4· · 7--00CAH

290164-41

---------···------------------------------,

07 06 . 05 D4 D3 D2 D1 DO

I x I x I x x I x I M C1 co

...___.._ CHANNEL SELECT
SEE MODE REGISTER I

MASK SET BIT
..._____ 0 = CLEAR MASK

1 = SET MASK

Mask Read/Write Register Group Channel Mask (read/write)

Port Addresses- Channels 0-3-000FH

Channels 4-7-00CFf'.I ·---

D7 D6 D5 04 D3 D2 D 1 DO

x x X M3 M2

CHANNEL 0(4) MASK BIT

'-----·CHANNEL 1(5) MASK BIT

--- CHANNEL 2(6) MASK BIT

L----··--~- CHANNEL 3(7) MASK BIT

MASK BIT "' 0 ., CHANNEL ENABLED
= 1 - CHANNEL DISABLED

5-1365

290164-42

290164-43

inter 82370

Status Register Channel Process Status (read only)

Port Addresses- Channels 0-3-000BH

Channels 4-7-00CBH

D7 D6 D5 D4 D3 D2 D1 DO

[R3 I R2 J R1 I Ro J TC3 JTC2I mI Teo]

1 L CHANNEL 0(4) EXPIRED

CHANNEL 1 (5) EXPIRED

CHANNEL 2(6) EXPIRED

CHANNEL 3(7) EXPIRED
1 =EXPIRED

CHANNEL 0(4) REQUEST

CHANNEL 1 (5) REQUEST

CHANNEL 2(6) REQUEST

CHANNEL 3(7) REQUEST
1 =REQUEST PENDING

290164-44

Bus Size Register Set Data Path Width (write only)

Port Addresses- Channels 0-3--001 BH

Channels 4-7--00DBH

D7 D6 D5 D4 03 D2

RBS1 RBSO TBS 1 TBSO 0 0

01 DO

C1

CHANNEL SELECT
.....__....__ SEE MODE REGISTER I

...__ __________ TARGET BUS SIZE

"---'---------------REQUESTER BUS SIZE

Bus Size Encoding:
00 = Reserved by Intel 10 = 16-bit Bus
01 = 32-bit Bus* 11 = 8-bit Bus

290164-45

*If programmed as 32-bit bus width, the corresponding device will be accessed in two 16-bit cycles provided that the data is
aligned within word boundary.

Chaining Register (read/write)

Port Addresses- Channels 0-3-0019H

Channels 4-7-00D9H

WRITE FORMAT: SET CHAINING MODE

D7 D6 DS 04 03 02 D 1 DO

I o o I o 0 0 I CH I C1 I co I

I I CHANNEL SELECT

...
----- SEE MODE REGISTER I

. CHAINING ENABLE BIT

5-1366

0 = DISABLE CHAINING MODE
1 = ENABLE CHAINING MODE

290164-46

intef 82370

--

READ FORMAT: CHANNEL INTERRUPT STATUS

D7 D6 D5 D4 D3 D2 D1 DO

X X X X Cl3 Cl2

CHANNEL 0(4) BASE EMPTY

.._--CHANNEL 1(5) BASE EMPTY

'------ CHANNEL 2(6) BASE EMPTY
,__ ______ CHANNEL 3(7) BASE EMPTY

290164-47

3.8 8237 A Compatibility

The register arrangement of the 82370 OMA Con­
troller is a superset of the 8237 A OMA Controller.
Functionally the 82370 OMA Controller is very differ­
ent from the 8237 A. Most of the functions of the
8237 A are performed also by the 82370. The follow­
ing discussion points out the differences between
the 8237 A and the 82370.

The 8237A is limited to transfers between 1/0 and
memory only (except in one special case, where two
channels can be used to perform memory-to-memo­
ry transfers). The 82370 OMA Controller can transfer
between any combination of memory and 1/0. Sev­
eral other features of the 8237 A are enhanced or
expanded in the 82370 and other features are add­
ed.

The 8237 A is an 8-bit only OMA device. For pro­
gramming compatibility, all of the 8-bit registers are
preserved in the 82370. The 82370 is programmed
via 8-bit registers. The address registers in the
82370 are 24-bit registers in order to support the
80376's 24-bit bus. The Byte Count Registers are
24-bit registers, allowing support of larger data
blocks than possible with the 8237 A.

All of the 8237 A's operating modes are supported
by the 82370 (except the cumbersome two-channel
memory-to-memory transfer). The 82370 performs
memory-to-memory transfers using only one chan­
nel. The 82370 has the added features of buffer
pipelining (Buffer Chaining Process) and program­
mable priority levels.

The 82370 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual
channel. This allows any combination of destination
and source device.

Each OMA channel has associated with it a Target
and a Requester. In the 8237A, the Target is the
device which can be accessed by the address regis­
ter, the Requester is the device which is accessed
by the OMA Acknowledge signals and must be an
110 device.

4.0 PROGRAMMABLE INTERRUPT
CONTROLLER (PIC)

4.1 Functional Description

The 82370 Programmable Interrupt Controller (PIG)
consists of three enhanced B2C59A Interrupt Con­
trollers. These three controllers together provide 15
external and 5 internal interrupt request inputs. Each I
external request input can be cascaded with an ad­
ditional 82C59A slave controller. This scheme al-
lows the 82370 to support a maximum of 120
(15 x 8) external interrupt request inputs. ·

Following one or more interrupt requests, the 82370
PIC issues an interrupt signal to the 80376. When
the 80376 host processor responds with an interrupt
acknowledge signal, the PIG will arbitrate between
the pending interrupt requests and place the inter-
rupt vector associated with the highest priority pend-
ing request on the data bus.

, The major enhancement in the 82370 PIC over the
82C59A is that each of the interrupt request inputs
can be individually programmed with its own inter­
rupt vector, allowing more flexibility in interrupt vec­
tor mapping.

4.1.1 INTERNAL BLOCK DIAGRAM

The block diagram of the 82370 Programmable In­
terrupt Controller 1s shown in Figure 4-1. Internally,

5-1367

intJ 82370

the PIC consists of three 82C59A banks: A, B and C.
The three banks are cascaded to one another: C is
cascaded to B, B is cascaded to A. The INT output
of Bank A is used externally to interrupt the 80376.

Bank A has nine interrupt request inputs (two are
unused), and Banks B and C have eight interrupt
request inputs. Of the fifteen external interrupt re­
quest inputs, two are shared by other functions. Spe­
cifically, the Interrupt Request 3 input (IRQ3#) can
be used as the Timer 2 output (TOUT2#). This pin
can be used in three different ways: IRQ3# input
only, TOUT2# output only, or using TOUT2# to
generate an IRQ3# interrupt request. Also, the In­
terrupt Request 9 input (IRQ9#) can be used as
DMA Request 4 input (DREQ 4). Typically, only
IRQ9# or DREQ4 can be used at a time.

IRQ1 6#----+1 0
IRQ17# 1

4.1.2 INTERRUPT CONTROLLER BANKS

All three banks are identical, with the exception of
the IRQ1 .5 on Bank A. Therefore, only one bank will
be discussed. In the 82370 PIC, all external requests
can be cascaded into and each interrupt controller
bank behaves like a master. As compared to the
82C59A, the enhancements in the banks are:

- All interrupt vectors are individually programma­
ble. (In the 82C59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.)

- The cascade address is provided on the Data
Bus (D0-07). (In the 82C59A, three dedicated
control signals (CASO, CAS1, CAS2) are used for
master/slave cascading.)

IRQ18# 2
IRQ19# 3 INTERRUPT INT
IRQ20# 4 BANK
IRQ21# 5 C
IRQ22# 6
IRQ23# 7

TOUT3# (IRQO#) 0
CHAINING (I.RO 1 #) 1

ICW2 (IRQ 1.5#) 1 .5
(IRQ2#) 2 INTERRUPT

TOUT2#/IRQ3#---_.. 3 BANK
SW Req TC (IRQ4#) 4 A

NOT USED S
NOT USED 6

DEFAULT (IR07#) _7 ___ _

INT
(OUTPUT)

Figure 4-1. Interrupt Controller Block Diagram

5-1368

290164-48

intef 82370

The block diagram of a bank is shown in Figure 4-2.
As can be seen from this figure, the bank consists of
six major blocks: the Interrupt Request Register
(IRR), the In-Service Register (ISR), the Interrupt
Mask Register (IMR), the Priority Resolver (PR), the
Vector Registers (VR), and the Control Logic. The
functional description of each block is included be­
low.

INTERRUPT REQUEST (IRA) AND
IN-SERVICE REGISTER (ISR)

The interrupts at the Interrupt Request (IRQ) input
lines are handled by two registers in cascade, the
Interrupt Request Register (IRR) and the In-Service
Register (ISR). The IRR is used to store all interrupt
levels which are requesting service; and the ISR is
used to store all interrupt levels which are being
serviced.

PRIORITY RESOLVER (PR)

This logic block determines the priorities of the bits
set in the IRR. The highest priority is selected and
strobed into the corresponding bit of the ISR during
an Interrupt Acknowledge cycle.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt
lines to be masked (disabled). The IMR operates on
the IRR. Masking bf a higher priority input will not
affect the interrupt request lines of lower priority.

VECTOR REGISTERS (VR)

This block contains a set of Vector Registers, one
for each interrupt request line, to store the pre-pro­
grammed interrupt vector number. The correspond­
ing vector number will be driven onto the Data Bus
of the 82370 during the Interrupt Acknowledge cy­
cle.

CONTROL LOGIC

The Control Logic coordinates the overall operations
of the other internal blocks within the same bank.
This logic will drive the Interrupt Output signal (INT)
HIGH when one or more unmasked interrupt inputs
are active (LOW). The INT output signal goes direct­
ly to the 80376 (in bank A) or to another bank to
which this bank is cascaded (see Figure 4-1). Also,

INT. MASK REG.

IROO#

IR01#

IR02#

IR03#

IR04#

IR05#

IR06#

IR07#

DATA (0-7)

----•INTERRUPT
TO HOST

PRIORITY
RESOLVER

&
CONTROL

LOGIC

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAMMABLE
VECTOR BANK

82380 ENHANCEMENT OVER THE 82C59A

Figure 4·2. Interrupt Bank Block Diagram

5-1369

290164-AS

intef 82370

this logic will recognize an Interrupt Acknowledge
cycle (via M/10#, DIC# and W/R# signals). During
this bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt
vector onto the Data Bus.

In bank A, the Control Logic is also responsible for
handling the special ICW2 interrupt request input
(IRQ1 .5).

4.2 Interface Signals

4.2.1 INTERRUPT INPUTS

There are 15 external Interrupt Request inputs and 5
internal Interrupt Requests. The external request in­
puts are: IRQ3#, IRQ9#, IRQ11 #to IRQ23#. They
are shown in bold arrows in Figure 4-1. All IRQ in­
puts are active LOW and they can be programmed
(via a control bit in the Initialization Command Word
1 (ICW1)) to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt
request, the interrupt input must be active (LOW) un­
til the first INTA cycle (see Bus Functional Descrip­
tion). Note that all 15 external Interrupt Request in­
puts have weak internal pull-up resistors.

As mentioned earlier, an 82C59A can be cascaded
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two
of the interrupt inputs are dual functions: IRQ3# can
be used as Timer 2 output (TOUT2#) and IRQ9#
can be used as DREQ4 input. IRQ3# is a bidirec­
tional dual function pin. This interrupt request input is
wired-OR with the output of Timer 2 (TOUT2#). If
only IRQ3 # function is to be used, Timer 2 should
be programmed so that OUT2 is LOW. Note that
TOUT2 # can also be used to generate an interrupt
request to IRQ3# input.

The five internal interrupt requests serve special
system functions. They are shown in Table 4-1. The
following paragraphs describe these interrupts.

Table 4-1. 82370 Internal Interrupt Requests

Interrupt Request Interrupt Source

IRQO# Timer 3 Output (TOUT3)
IRQ8# Timer 0 Output (TOUTO)
IRQ1# OMA Chaining Request
IRQ4# DMA Terminal Count
IRQ1.5# ICW2 Written

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS

IRQ8# and IRQO# interrupt requests are initiated
by the output of Timers 0 and 3, respectively: Each
of these requests is generated by an edge-detector
flip-flop.

The flip-flops are activated by the following condi­
tions:

Set - Rising edge of timer output (TOUT);

Clear - Interrupt acknowledge for this request; OR
Request is masked (disabled); OR Hard­
ware Reset.

CHAINING AND TERMINAL COUNT INTERRUPTS

These interrupt requests are generated by the
82370 OMA Controller. The chaining request
(IRQ1 #) indicates that the DMA Base Register is
not loaded. The Terminal Count request (IRQ4#) in­
dicates that a software OMA request was cleared.

ICW2 INTERRUPT REQUEST

Whenever an Initialization Control Word 2 (ICW2) is
written to a Bank, a special ICW2 interrupt request is
generated. The interrupt will be cleared when the
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request.

This special interrupt is provided to support compati­
bility with the original 82C59A. A detailed description
of this interrupt is discussed in the Programming
section.

DEFAULT INTERRUPT (IRQ7#)

During an Interrupt Acknowledge cycle, if there is no
active pending request, the PIC will automatically
generate a default vector. This vector corresponds
to the IRQ7 # vector in bank A.

4.2.2 INTERRUPT OUTPUT (INT)

The INT output pin is taken directly from bank A.
This signal should be tied to the Maskable Interrupt
Request (INTR) of the 80376. When this signal is
active (HIGH), it indicates that one or more internal/
external interrupt requests are pending. The 80376
is expected to respond with an interrupt acknowl­
edge cycle.

4.3 Bus Functional Description

The INT output of bank A will be activated as a result
of any unmasked interrupt request. This may be a
non-cascaded or cascaded request. After the PIC
has driven the INT signal HIGH, the 80376 will re­
spond by performing two interrupt acknowledge cy­
cles. The timing diagram in Figure 4-3 shows a typi­
cal interrupt acknowledge process between the
82370 and the 80376 CPU.

5-1370

intef 82370

PREVIOUS INTERRUPT ACKNOWLEDGE IDLE INTERRUPT ACKNOWLEDGE
CYCLE CYCLE 1 (5 WAIT STATES) (4 BUS STATES) CYCLE 2 (5 WAIT STATES)

T2 T1 T2 T2 T2 T2 T2 T2 Ti Ti Ti Ti T1 T2 T2 T2 T2 T2 T2

CLK

M/10#

D/C# &i/:.~~-lo~-1---1~-l-~.l--l-~~~~tC:l&.~~~:l......j_--i~-l-~.1--l-~.J---I~~
W/R#

READY#

SEE NOTE
I I
290164-49

NOTE:
What is actually driven on the Data Bus depends on if the current interrupt request is a Slave Request.

INTA Cycle 1 INTA Cycle 2
NON-SLAVE REQUEST
SLAVE REQUEST

*Slave will place a vector at this time.

OOH Vector
Slave Address High Impedance•

Figure 4-3. Interrupt Acknowledge Cycle

After activating the INT signal, the 82370 monitors
the status lines {M/10#, DIC#, W/R#) and waits
for the 80376 to initiate the first interrupt acknowl­
edge cycle. In the 80376 environment, two succes­
sive interrupt acknowledge cycles {INTA) marked by
M/IO#=LOW, D/C#=LOW, and W/R#=LOW
are performed. During the first INTA cycle, the PIG
will determine the highest priority request. Assuming ·
this interrupt input has no external Slave Controller
cascaded to it, the 82370 will drive the Data Bus
with OOH in the first INTA cycle. During the second
INTA cycle, the 82370 PIG will drive the Data Bus
with the corresponding pre-programmed interrupt
vector.

If the PIG determines {from the ICW3) that this inter­
rupt input has an external Slave Controller cascaded
to it, it will drive the Data Bus with the specific Slave
Cascade Address {instead of OOH) during the first
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector
Register. This means that no Slave· Address should
be chosen to be OOH. Note that the Slave Address
and Interrupt Vector are different interpretations of
the same thing. They are both the contents of the
programmable Vector Register. During the second
INTA cycle, the Data Bus will be floated so that the
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller
resides on the system bus, bus transceiver enable
and direction control logic must take this into consid­
eration.

In order to have a successful interrupt service, the
interrupt request input must be held valid {LOW) until
the beginning of the first interrupt acknowledge cy-
cle. If there is no pending interrupt request when the I
first INTA cycle is generated, the PIG will generate a
default vector, which is the IRQ7 vector {Bank A,
level 7). ·

According to the Bus Cycle definition of the 80376,
there will be four Bus Idle States between the two
interrupt acknowledge cycles. These idle bus cycles
will be initiated by the 80376. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82370 will automatically generate the
required number of wait states for internal delays.

4.4 Modes of Operation

A variety of modes and commands are available for
controlling the 82370 PIG. All of them are program­
mable; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes.
With these modes and commands, many possible
configurations are conceivable, giving the user
enough versatility for almost any interrupt controlled
application.

This section is not intended to show how the 82370
PIG can be programmed. Rather, it describes the
operation in different modes.

5-1371

intef 82370

4.4.1 END-OF-INTERRUPT

Upon completion of an interrupt service routine, the
interrupted bank needs to be notified so its ISR can
be updated. This allows the PIG to keep track of
which interrupt levels are in the process of being
serviced and their relative priorities. Three different
End-Of-Interrupt (EOI) formats are available. They
are: Non-Specific EOI Command, Specific EOI Com­
mand, and Automatic EOI Mode. Selection of which
EOI to use is dependent upon the interrupt opera­
tions the user wishes to perform.

If the 82370 is NOT programmed in the Automatic
EOI Mode, an EOI command must be issued by the
80376 to the specific 82370 PIG Controller Bank.
Also, if this controller bank is cascaded to another
internal bank, an EOI command must also be sent to
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank C in the 82370
PIG is serviced, an EOI should be written into Bank
C, Bank B and Bank A. If the request comes from an
external interrupt controller cascaded to Bank C,
then an EOI should be written into the external con­
troller as well.

NON-SPECIFIC EOI COMMAND

A Non-Specific EOI command sent from the 80376
lets the 82370 PIG bank know when a service rou­
tine has been completed, without specification of its
exact interrupt level. The respective interrupt bank
automatically determines the interrupt level and re­
sets the correct bit in the ISR.

To take advantage of the Non-Specific EOI, the in­
terrupt bank must be in a mode of operation in which
it can predetermine its in-service routine levels. For
this reason, the Non-Specific EOI command should
only be used when the most recent level acknowl­
edged and serviced is always the highest priority lev­
el (i.e. in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a
Non-Specific EOI command, it simply resets the
highest priority ISR bit to indicate that the highest
priority routine in service is finished.

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are
two operating conditions in which it is best NOT
used since the Fully Nested Mode structure will be
destroyed:

- Using the Set Priority command within an inter­
rupt service routine.

- Using a Special Mask Mode.

These conditions are covered in more detail in their
own sections, but are listed here for reference.

SPECIFIC EOI COMMAND

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific
EOI command specifies an exact ISR bit to be reset.
Any one of the IRQ levels of an interrupt bank can
be specified in the command,

The Specific EOI command is needed to reset the
ISR bit of a completed service routine whenever the
interrupt bank is not able to automatically determine
it. The Specific EOI command can be used in all
conditions of operation, including those that prohibit
Non-Specific EOI command usage mentioned
above.

AUTOMATIC EOI MODE

When programmed in the Automatic EOI Mode, the
80376 no longer needs to issue a command to notify
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end
of the second INTA cycle.

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is
reset right after it is acknowledged, thus leaving no
designation in the ISR that a service routine is being
executed. If any interrupt request within the same
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority.
Therefore,' when using this mode, the 80376 should
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be serviced only after the
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in
this scheme, a routine in service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled.

4.4.2 INTERRUPT PRIORITIES

The 82370 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail.

4.4.2.1 Fully Nested Mode

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged
from highest to lowest.

5-1372

intJ 82370

Unless otherwise programmed, the Fully Nested
Mode is entered by default upon initialization. At this
time, IRQO# is assigned the highest priority
(priority= 0) and IRQ7 # the lowest (priority= 7).
This default priority can be changed, as will be ex­
plained later in the Rotating Priority Mode.

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRA) and its vector is placed on the
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in
service. This ISR bit will remain set until the 80376
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or
alternately, if the Automatic End Of Interrupt (AEOI)
bit is set, the ISR bit will be reset at the end of the
second INT A cycle.

While the ISR bit is set, all further interrupts of the
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be
acknowledged only if the 80376 internal interrupt en­
able flip-flop has been reenabled (through software
inside the current service routine). -

4.4.2.2 Automatic Rotation-Equal Priority
Devices

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority

----·-··-------·--·---

within an interrupt bank. In this kind of environment,
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced
before the original device is serviced again. This is
accomplished by automatically assigning a device
the lowest priority after being serviced. Thus, in the
worst case, the device would have to wait until all
other peripherals connected to the same bank are
serviced before it is serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with
the Automatic EOI mode. These two methods are
discussed below.

ROTATE ON NON-SPECIFIC EOI COMMAND

When the Rotate On Non-Specific EOI command is
issued, the· highest ISR bit is reset as in a normal
Non-Specific EOI command. However, after it is re­
set, the corresponding Interrupt Request (IRQ) level
is assigned the lowest priority. Other IRQ priorities
rotate to conform to the Fully Nested Mode based
on the newly assigned low priority.

Figure 4-4 shows how the Rotate On Non-Specific
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned with IRQO the
highest and IRQ7 the lowest. IRQ6 and IRQ4 are

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO

ISR STATUS

PRIORITY

1 0 0 0 D (BEFORE
COMMAND) 6 5 4 3 2

LOWEST PRIORITY HIGHEST PRIORITY

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO

HIGHEST PRIORITY

(AFTER
COMMAND)

LOWEST PRIORITY

Figure 4·4. Rotate On Non-Specific EOI Command

5-1373

290164-50

290164-51

I

intJ 82370

already in service but neither is completed. Being
the higher priority routine; IRQ4 is necessarily the
routine being executed. During the IRQ4 routine, a
rotate on Non-Specific EOI command is executed.
When this happens, Bit 4 in the ISR is reset. IRQ4
then becomes the lowest priority and IRQ5 becomes
the highest.

ROTATE ON AUTOMATIC EOI MODE

The Rotate On Automatic EOI Mode works much
like the Rotate On Non-Specific EOI Command. The
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt
request. To enter or exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode
is entered, no other commands are needed as in the
normal Automatic EOI Mode. However, it must be
noted again that when .using any form of the Auto­
matic EOI Mode, special consideration should be
taken. The guideline presented in the Automatic EOI
Mode also applies here.

4.4.2.3 Specific Rotation-Specific Priority

Specific rotation gives the user versatile capabilities
in interrupt controlled operations. It serves in those
applications in which a specific device's interrupt pri­
ority must be altered .. As opposed to Automatic Ro­
tation which will automatically set priorities after
each interrupt request is serviced, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive the lowest or the
highest priority. This can be done during the main
program or within interrupt routines. Two specific ro-

talion commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand.

SET PRIORITY COMMAND

The Set Priority Command allows the programmer to
assign an IRQ level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode
based on the newly assigned low priority.

ROTATE ON SPECIFIC EOI COMMAND

The Rotate On Specific EOI Command is literally a
combination of the Set Priority Command and the
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level
will be reset in the ISR. Thus, this command accom­
plishes both tasks in one single command.

4.4.2.4 Interrupt Priority Mode Summary

In order to simplify understanding the many modes
of interrupt priority, Table 4-2 is provided to bring out
their summary of operations.

4.4.3 INTERRUPT MASKING

VIA INTERRUPT MASK REGISTER

Each bank in the 82370 PIG has an Interrupt Mask
Register (IMR) which enhances interrupt control ca-

Table 4-2. Interrupt Priority Mode Summary

Interrupt
Operation Effect On .Priority After EOI

Priority
Summary

Mode Non-Specific/ Automatic Specific

Fully-Nested Mode IRQO# - Highest Priority No change in priority. Not Applicable.
IRQ7# - Lowest Priority Highest ISR bit is reset.

Automatic Rotation Interrupt level just Highest JSR bit is reset Not Applicable.
(Equal Priority Devices) serviced is the lowest and the corresponding

priority. level becomes the lowest

Other priorities rotate to priority.

conform to Fully-Nested
Mode.

Specific Rotation User specifies the Not Applicable. As described under
(Specific Priority Devices) lowest priority level. "Operation Summary".

Other priorities rotate to
conform to Fully-Nested
Mode.

5-1374

intJ 82370

pabilities. This IMR allows individual IRQ masking.
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR
disables one interrupt channel if it is set (HIGH}. Bit
0 masks IRQO, Bit 1 masks IRQ1 and so forth.
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others'
operations.

The IMR acts only on the output of the IRA. That is,
if an interrupt occurs while its IMR bit is set, this
request is not "forgotten". Even with an IRQ input
masked, it is still possible to set the IRA. Therefore,
when the IMR bit is reset, an interrupt request to the
80376 will then be generated, providing that the IRQ
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt
Vector (Bank A, level 7} will be generated during the
interrupt acknowledge cycle.

SPECIAL MASK MODE

In the Fully Nested Mode, all IRQ levels of lower
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let
a lower priority interrupt request to interrupt the rou­
tine in service. One method to achieve this is by
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables
interrupts from all levels except the level in service.
This is usually done inside an interrupt service rou­
tine by masking the level that is in service and then
issuing the Special Mask Mode Command. Once the
Special Mask Mode is enabled, it remains in effect
until it is disabled.

4.4.4 EDGE OR LEVEL INTERRUPT
TRIGGERING

Each bank in the 82370 PIC can be programmed
independently for either edge or level sensing for the

82370

DATA BUS INTA#
(FROM BUS CONTROLLER)

interrupt request signals. Recall that all IRQ inputs
are active LOW. Therefore, in the edge triggered
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH} to active (LOW} state.
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode,
an interrupt request will be recognized by an active
(LOW} input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the
80376 must be disabled to prevent a second false
interrupt from occurring.

In either modes, the interrupt request input must be
active (LOW} during the first INTA cycle in order to
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A.

4.4.5 INTERRUPT CASCADING

As mentioned previously, the 82370 allows for exter­
nal Slave interrupt controllers to be cascaded to any
of its external interrupt request pins. The 82370 PIC
indicates that an external Slave Controller is to be
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the
80376 Data Bus during the first INTA cycle (instead
of OOH during a non-slave service}. The external log­
ic should latch the vector on the Data Bus using the
INTA status signals and use it to select the external
Slave Controller to be serviced (see Figure 4-5}. The I
selected Slave will then respond to the second INTA
cycle and place its vector· on the Data Bus. This
method requires that if external Slave Controllers
are used in the system, no vector should be pro­
grammed to OOH.

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1, an external
latch is required to capture this address for the Slave
Controller. A simple scheme is depicted in Figure
4-5 below.

POSITIVE
EDGE

MASTER/SLAVE
FLIP-FLOP

IN OUT
CAS(0-7)
TO SLAVE
8259's

'--(
LATCH HERE

290164-52

Figure 4-5. Slave Cascade Address Capturing

5-1375

intef 82370

4.4.5.1 Special Fully Nested Mode

This mode will be used where cascading is em­
ployed and the priority is to be conserved within
each Slave Controller. The Special Fully Nested
Mode is similar to the "regular" Fully Nested Mode
with the following exceptions:

- When an interrupt request from a Slave Control­
ler is in service, this Slave Controller is not
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority
logic within the Slave Controller will be recog­
nized by the 82370 PIG and will initiate interrupts
to the 80376. In comparing to the "regular" Fully
Nested Mode, the Slave Controller is masked out
when its request is in service and no higher re­
quests from the same Slave Controlle~ can be
serviced.

- Before exiting the interrupt service routine, the
software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
troller. This is done by sending a Non-Specific
EOI Command to the Slave Controller and then
reading its In Service Register. If there are no
requests in the Slave Controller, a Non-Specific
EOI can be sent to the corresponding 82370 PIC
bank also. Otherwise, no EOI should be sent.

4.4.6 READING INTERRUPT STATUS

The 823.70 PIG provides several ways to read differ­
ent status of each interrupt bank for more flexible
interrupt control operations. These include polling
the highest priority pending interrupt request and
reading the contents of different interrupt status reg­
isters.

4.4.6.1 Poll Command

The 82370 PIG supports status polling operations
with the Poll Command. In a Poll Command, the
pending interrupt request with the highest priority
can be determined. To use this command, the INT
output is not used, or the 80376 interrupt is disabled.
Service to devices is achieved by software using the
Poll Command.

This mode is useful if there is a routine command
common to several levels so that the INTA se­
quence is not needed. Another application is to use
the Poll Command to expand the number of priority
levels.

Notice that the ICW2 mechanism is not supported
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers
are of no concern since no INT A cycle will be gener­
ated.

4.4.6.2 Reading Interrupt Registers

The contents of each interrupt register (IRA, ISR,
and IMR) can be read to update the user's program
on the present status of the 82370 PIC This can be
a versatile tool in the decision making process of a
service routine, giving the user more control over
interrupt operations.

·The reading of the IRR and ISR contents can be
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con­
tent of IMR can be read via a simple read operation
of the register itselt

4.5 Register Set Overview

Each bank of the 82370 PIC consists of a set of 8-bit
registers to control its operations. The address map
of all the registers is shown in Table 4-3 below.
Since all three register sets are identical in functions,
only one set will be described.

Functionally, each register set can be divided into
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control
Words (OCW's), the Poll/Interrupt Request/In-Serv­
ice Register, the Interrupt Mask Register,, and the
Vector Registers. A description of each group fol­
lows.

5-1376

intef 82370

Table 4-3. Interrupt Controller Register Address Map

Port
Access Register Description

Address

20H Write Bank B ICW1, OCW2, or OCW3
Read Bank B Poll, Request or In-Service

Status Register
21H Write Bank B ICW2, ICW3, ICW4, OCW1

Read Bank B Mask Register
22H Read BankB ICW2
28H Read/Write IRQ8 Vector Register
29H Read/Write IRQ9 Vector Register
2AH Read/Write Reserved
2BH Read/Write IRQ11 Vector Register
2CH Read/Write IRQ12 Vector Register
2DH Read/Write IRQ13 Vector Register
2EH Read/Write IRQ14 Vector Register
2FH Read/Write IRQf 5 Vector Register

AOH Write Bank C ICW1, OCW2, or OCW3
Read Bank C Poll, Request or In-Service

Status Register
A1H Write Bank C ICW2, ICW3, ICW4, OCW1

Read Bank C Mask Register
A2H Read BankCICW2
ASH Read/Write IRQ16 Vector Register
A9H Read/Write IRQ17 Vector Register
AAH Read/Write IRQ18 Vector Register
ABH Read/Write IRQ19 Vector Register
ACH Read/Write IRQ20 Vector Register
ADH Read/Write IRQ21 Vector Register
AEH Read/Write IRQ22 Vector Register

I
AFH Read/Write IRQ23 Vector Register

30H Write Bank A ICW1, OCW2, or OCW3
Read Bank A Poll, Request or In-Service

Status Register
31H Write Bank A ICW2, ICW3, ICW4, OCW1

Read Bank A Mask Register
32H Read' Bank1CW2
38H Read/Write IRQO Vector Register
39H Read/Write IRQ1 Vector Register
3AH Read/Write IRQ1 .5 Vector Register
3BH Read/Write IRQ3 Vector Register
3CH Read/Write IRQ4 Vector Register
3DH Read/Write Reserved
3EH Read/Write Reserved
3FH Read/Write IRQ7 Vector Register

5-1377

intef 82370

4.5.1 INITIALIZATION COMMAND WORDS (ICW)

Before normal operation can begin, the. 82370 PIC
must be brought to a known state. There are four
8-bit Initialization Command Words in each interrupt
bank to setup the necessary conditions and modes
for proper operation. Except for the ·second com­
mand word (ICW2) which is a read/write register, the
other three are write-only registers. Without going
into detail of the bit definitions of the command
words, the following subsections give a brief de­
scription of what functions each command word
controls.

ICW1

The ICW1 has three major functions. They are:

- To select between the two IRQ input triggering
modes (edge- or level-triggered);

- To designate whether or not the interrupt bank is
to be used alone or in the cascade mode. If the
cascade mode is desired, the interrupt bank will
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted;

- To determine whether or not ICW4 will be issued;
that is, if any of the ICW4 operations are to be
used.

ICW2

ICW2 is provided for compatibility with the 82C59A
only. Its contents do not affect the operation of the
interrupt bank in any way. Whenever the ICW2 of
any of the three banks is written into, an interrupt is
generated from bank A at level 1.5 . .The interrupt
request will be cleared after the ICW2 register has
been read by the 80376. The user is expected to
program the corresponding vector register or to use
it as an indicator that an attempt was made to alter
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operations.

ICW3

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1). ICW3 is used for specific programming
within the cascade mode. The bits in ICW3 indicate
which interrupt request inputs have a Slave cascad­
ed to them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl­
edge cycles as described previously.

ICW4

The ICW4 is accepted only if it was selected in
ICW1. This command word register serves two func­
tions:

- To select either the Automatic EOI mode or soft­
ware EOI mode;

- To select if the Special Nested mode is to be
used in conjunction with the cascade mode.

4.5.2 OPERATION CONTROL WORDS (OCW)

Once initialized by the ICW's, the interrupt banks will
be operating in the Fully Nested Mode by default
and they are ready to accept interrupt requests.
However, the operations of each interrupt bank can
be further controlled or modified by the use of
OCW's. Three OCW's are available for programming
various modes and' commands. Note that all OCW's
are 8-bit write-only registers.

The modes and operations controlled by the OCW's
are:

- Fully Nested Mode;

- Rotating Priority Mode;

- Special Mask Mode;

- Poll Mode;

- EOI Commands;

- Read Status Commands.

OCW1

OCW1 is used solely for masking operations. It pro­
vides a direct . link to the Internal Mask Register
(IMR). The 80376.can write to this OCW register to
enable or disable the interrupt inputs. Reading the
pre-programmed mask can be done via the Interrupt
Mask Register which will be discussed shortly.

OCW2

OCW2 is used to select End-Of-Interrupt, Automatic
Priority Rotation, and Specific Priority Rotation oper­
ations. Associated commands. and modes of these
operations are selected using the different combina­
tions of bits in OCW2.

Specifically, the OCW2 is used to:

- Designate an interrupt level (0-7) to be used to
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled;

- Select which software EOI command (if any) is to
be executed (i.e. Non-Specific or Specific EOI);

- Enable one of the priority rotation operations (i.e.
Rotate On Non-Specific EOI, Rotate On Auto­
matic EOI, or Rotate On Specific EOI).

5-1378

intJ 82370

OCW3

There are three main categories of operation that
OCW3 controls. They are summarized as follows:

- To select and execute the Read Status Register
Commands, either reading the Interrupt Request
Register (IRA) or the In-Service Register (JSR);

- To issue the Poll Command. The Poll Command
will override a Read Register Command if both
functions are enabled simultaneously;

- To set or reset the Special Mask Mode.

4.5.3 POLL/INTERRUPT REQUEST /IN-SERVICE
STATUS REGISTER

As the name implies, this 8-bit read-only register has
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a
Poll Command, the register read contains the binary
code of the highest priority level requesting service
(if any). For a Read IRA Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being
serviced.

4.5.4 INTERRUPT MASK REGISTER. (!MR)

This is a read-only 8-bit register which, when read,
will specify all interrupt levels within the same bank
that are masked.

4.5.5 VECTOR REGISTERS (VR)

Each interrupt request input has an 8-bit read/write
programmable vector register associated with it. The
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the
Data Bus during the INT A cycles as described previ­
ously.

4.6 Programming

Programming the 82370 PIC is accomplished by us­
ing two types of command words: ICW's and
OCW's. All modes and commands explained in the
previous sections are programmable using the
ICW's and OCW's. The ICW's are issued from the
80376 in a sequential format and are used to setup
the banks in the 82370 PIC in an initial state of oper­
ation. The OCW's are issued as needed to vary and
control the 82370 PIC's operations.

Both ICW's and OCW's are sent by the 80376 to the
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by
the 1/0 address map, the sequence they are issued
(ICW's only), and by some dedicated bits among the
ICW's and OCW's.

An example of programming the 82370 interrupt
controllers is given in Appendix C (Programming the
82370 Interrupt Controllers).

All three interrupt banks are programmed in a similar
way. Therefore, only a single bank will be described
in the following sections.

4.6.1 INITIALIZATION (ICW)

Before normal operation can begin, each bank must
be initialized by programming a sequence of ·two to
four bytes written into the ICW's.

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for
any form of operation. However, ICW3 and ICW4 are
used only if designated in ICW1. Once initialized, if
any programming changes within the ICW's are to
be made, the entire ICW sequence must be repro­
grammed, not just an individual ICW.

Note that although the ICW2's in the 82370 PIC do
not effect the Bank's operation, they still must be
programmed in order to preserve the compatibility
with the 82C59A. The contents programmed are not
relevant to the overall operations of the interrupt
banks. Also, whenever one of the three ICW2's is
programmed, an interrupt level 1.5 in Bank A will be
generated. This interrupt request will be cleared
upon reading of the ICW2 registers. Since the three
ICW2's share the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three
ICW2's must be read.

5-1379

I

intef 82370

NO (SNGL= 1)

NO (IC4=0)

DISABLE INTERRUPT

PROGRAM VECTOR(S)"

ICW1

ICW2

ICW3

ICW4

ENABLE INTERRUPT

READY TO ACCEPT
INTERRUPT REQUESTS

*ICW2 vector address must be programmed now.

(ICW2 INTERRUPT GENERATED)

(ALLOW SERVICING
OF ICW2 INTERRUPT)

290164-53

Other vector addresses may be programmed via ICW2 interrupt service routine.

Figure 4-6. Initialization Sequence

Certain internal setup conditions occur automatically
within the interrupt bank after the first ICW (ICW1)
has been issued. These are:

- The edge sensitive circuit is reset, which means
that following initialization, an interrupt request
input must make a HIGH-to-LOW transition to
generate an interrupt;

- The Interrupt Mask Register (IMR) is cleared;
that is, all interrupt inputs are enabled;

- IRQ7 input of each bank is assigned priority 7
(lowest);

- Special Mask Mode is cleared and Status Read
is set to IRR;

If no ICW4 is needed, then no Automatic-EOI is
selected.

4.6.2 VECTOR REGISTERS (VR)

Each interrupt request input has a separate Vector
Register. These Vector Registers are used to store
the pre-programmed vector number corresponding
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be
programmed with the predefined vector numbers.
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Register of
IRQ1 .5 in Bank A should be initializeq and the inter­
rupt service routine of this vector is set up before the
ICW's are written.

5-1380

82370

4.6.3 OPERATION CONTROL WORDS (OCW)

After the ICW's are programmed, the operations of
each interrupt controller bank can be changed by
writing into the OCW's as explained before. There is
no special programming sequence required for the
OCW's. Any OCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks.

4.6.3.1 Read Status and Poll Commands (0CW3)

Since the reading of IRA and ISR status as well as
the result of a Poll Command are available on the
same read-only Status Register, a special Read
Status/Poll Command must be issued before the
Poll/Interrupt Request/In-Service Status Register is
read. This command can be specified by writing the
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read
Command are enabled simultaneously, the Poll
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will
contain the result of the Poll Command.

4. 7 Register Bit Definition

INITIALIZATION COMMAND WORD 1 {ICW1)

Note that for reading IRA and ISR, there is no need
to issue a Read Status Command to the OCW3 ev­
ery time the IRA or ISR is to be read. Once a Read
Status Command is received by the interrupt bank, it
"remembers" which register is selected. However,
this is not true when the Poll Command is used.

In the Poll Command, after the OCW3 is written, the
82370 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the
priority level. Interrupt Request input status remains
unchanged from the Poll Command to the Status
Read.

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on
which interrupt request(s) is(are) currently disabled.

D7 D6 05 D4 D3 D2 D1 DO

X X X LTIM X SNGL IC4

0 - NO ICW4 NEEDED
1 - ICW4 NEEDED

0 - EDGE TRIGGERED
1 - LEVEL TRIGGERED

INITIALIZATION COMMAND WORD 2 (ICW2)

0 - EXTERNAL CASCADE
(ICW3 NEEDED)

1 - NO EXTERNAL CASCADE
(ICW3 NOT NEEDED)

D6 D5 D4 D3 D2 01

CONTENT IS NOT RELEVANT TO THE ACTUAL
OPERATION OF THE BANK BUT CAN BE READ

BY THE INTERRUPT SERVICE ROUTINE TO
DETERMINE WHERE THE INTERRUPT VECTORS

OF EACH BANK START.

5-1381

290164-55

290164-54

I

intJ 82370

INITIALIZATION COMMAND WORD 3 (ICW3)

ICW3 for Bank A:

D7 D6 D5 D4 .D3 D2 D1 DO

I o I o I o I o 1 sco 1 o 1 o 1

0 - NO SLAVE CASCADED TO BANK A

ICW3 for Bank B:

D7 D6 D5 D4

S13

ICW3 for Bank C:

D7 D6 D5 D4

INITIALIZATION COMMAND WORD 4 (ICW4)

1 - THERE IS A SLAVE CASCADED
TO TOUT2#/IRQ3# PIN

D3 D2 D1 DO

x S9 0

0 - NO CASCADED REQUEST TO IRON
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRON (I.E. THE
CORRESPONDING INTERRUPT
REQUEST INPUTS)

D3 D2 D1 DO

0 - NO CASCADED REQUEST TO IRON
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRON

D7 D6 D5 D4 D3 D2 D1 DO

0 SfNM X x x

0 = NORMAL EOI
..._ __ 1 =AUTOMATIC EOI

290164-56

290164-57

290164-58

'----------+ 0 =NOT SPECIAL FULLY NESTED MODE
1 =SPECIAL FULLY NESTED MODE

5-1382

290164-59

inter 82370

OPERATION CONTROL WORD 1 (OCW1)

D7 D6 D5 D4 D3 D2 D1 DO

M6 M5 M4 M1 MO

.__ __ Mi= 1 MASK SET (INTERRUPT DISABLED)
Mi= 0 MASK RESET (INTERRUPT ENABLED)

290164-60

OPERATION CONTROL WORD 2 (OCW2)

D7 D6 D5 D4 D3 D2 01 DO

R I SL I EDI

I I I
0

'E~'" I ~!"'"'"" """ TO BE ACTED UPON

0 L2

1 NON-SPECIFIC EOI COMMAND
1 SPECIFIC EOI COMMAND
1 ROTATE ON NON-SPECIFIC EOI
0 ROTATE ON AUTO-EOI MODE (SET)
O ROTATE ON AUTO-,EOI MODE (CLEAR)

0
0
1
1
0
1
1
0

0
1
0
0
0
1
1
1

1 ROTATE ON SPECIFIC EOI (L2-LO USED)
0 SET PRIORITY (L2-LO USED)
0 NO OPERATION

OPERATION CONTROL WORD 3 (0CW3)

D7 D6 D5 D4

0

ESMM SMM
0 0
0 1
1 0
1 1

NO ACTION
NO ACTION

0

RESET SPECIAL MASK
SET SPECIAL MASK

D3 D2 D1

p

1 - POLL COMMAND
0 - NO POLL COMMAND

DO

RIS
0 NO ACTION
1 NO ACTION
0 READ IR REG.
1 READ IS REG.

290164-61

290164-62

ESMM - Enable Special Mask Mode. When this bit is set to 1, it enables the SMM bit to set or reset the
Special Mask Mode. When this bit is set to 0, SMM bit becomes don't care.

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask
Mode. If ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMM
has no effect.

5-1383

El

intef 82370

POLL/INTERRUPT REQUEST/IN-SERVICE STATUS REGISTER

Poll Command Status

Interrupt Request Status

NOTE:

D7 D6 D5 D4 D3 D2 D1 DO

x x x x

0- NO PENDING INTERRUPT
1 - PENDING INTERRUPT

BINARY CODE or
THE HIGHEST PRIORITY
LEVEL REQUESTING

D7 D6 D5 D4 D3 02 D1 DD

I 1RQ7 I 1RQ6 I 1RQ5 ! 1RQ4 I 1RQ3 f 1RQ2 I 1RQ1 I 1RQ0 I
If" IRQ BIT IS: 0 - NO REQUEST

290164-63

1 - REQUEST PENDING
290164-64

Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pins so that when there
is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request Status
register.

In-Service Status

D7 D6 D5 D4 D3 D2 01 . DO

I 1s7 I 1ss I 1ss f 1s4 I 1s3 I 1s2 I is 1 I 1so I
If" IS BIT IS: 0 - NOT IN-SERVICE

1 - REQUEST IS IN-SERVICE
290164-65

VECTOR REGISTER (VR)

D6 D5 D4 ' D3 D2 D1 DO

8-BIT VECTOR NUMBER
290164-66

5-1384

intef 82370

Table 4-4. Register Operational Summary

Operational
Description

Fully Nested Mode
Non-specific EOI Command
Specific EOI Command
Automatic EOI Mode
Rotate On Non-Specific

EOICommand
Rotate On Automatic

EOI Mode
Set Priority Command
Rotate On Specific

EOICommand
Interrupt Mask Register
Special Mask Mode
Level Triggered Mode
Edge Triggered Mode
Read Register Command, IRA
Read Register Command, ISR
Read IMR
Poll Command
Special Fully Nested Mode

4.8 Register Operational Summary

For ease of reference, Table 4-4 gives a summary of
the different operating modes and commands with
their corresponding registers.

5.0 PROGRAMMABLE INTERVAL
TIMER

5. 1 Functional Description

The 82370 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are
functionally compatible to the Intel 82C54. The first
three timers (Timer 0-2) have specific functions.
The fourth timer, Timer 3, is a general purpose timer.
Table 5-1 depicts the functions of each timer. A brief
description of each timer's function follows.

Timer

0
1

2

3

Table 5-1. Programmable
Interval Timer Functions

Output Function

IRQ8 Event Based IRQ8 Generator
TOUT1/REF# Gen. Purpose/DRAM

Refresh Req.
TOUT2/IRQ3# Gen. Purpose/Speaker

Out/IRQ3#
TOUT3# Gen. Purpose/IRQO

Generator

Command Bits Words

OCW-Default
OCW2 EOI
OCW2 SL, EOI, LO-L2

ICW1, ICW4 IC4,AEOI
OCW2 EOI

OCW2 R,SL, EOI

OCW2 LO-L2
OCW2 R, SL, EOI

OCW1 MO-M7
OCW3 ESMM,SMM
ICW1 LTIM
ICW1 LTIM
OCW3 RR,RIS
OCW3 RR,RIS

IMR MO-M7
OCW3 p

ICW1, ICW4 IC4, SFNM

TIMER 0-Event Based Interrupt Request 8
Generator

Timer o is intended to be used as an Event Counter. •
The output of this timer will generate an Interrupt
Request 8 (IRQ8) upon a rising edge of the timer
output (TOUTO). Normally, this timer is used to im-
plement a time-of-day clock or system tick. The Tim-
er 0 output is not available as an external signal.

TIMER 1-General Purpose/DRAM Refresh
Request

The output of Timer 1, TOUT1, can be used as a
general purpose timer or as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a
DRAM refresh request to the 82370 DRAM Refresh
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1
output.

TIMER 2-General Purpose/Speaker Out/IRQ3#

The Timer 2 output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin
is a bidirectional signal. When used as an input, a
logic LOW asserted at this pin will generate an Inter­
rupt Request 3 (IRQ3 #) (see Programmable Inter­
rupt Controller).

5-1385

intef 82370

DATA BUFFER

·~-8---B-IT--t~~I LO~IC M-----.i

INTERNAL BUS

GATE-4--.t
CONTROL

WORD
REGISTER I

CONTROL
WORD

REGISTER II

COUNTERO

COUNTER 1

COUNTER2

COUNTER3

OUTO EDGE
DETECTOR

IRQB
1-----(INTERNAL) ____ ...

EDGE
DETECTOR

REFRESH
CONTROLLER

---------'REF#

2-T0-1
.__~RE;;;..F._..1 MUX

'-----'T""'OU""'T'°"'1 .. 0 select

OPEN COLLECTOR

TDUT1/REF#

REF ENABLE
(INTERNAL) ------1 :::IO-----+--+TOUT2#/IRQ3#

CLKIN

TO IRQ.3# (INTERNAL)

EDGE
DETECTOR

IRQO
1-----(INTERNAL) ____ ...

290164-67

Figure 5-1. Block Diagram of Programmable Interval Timer

TIMER 3-General Purpose/Interrupt Request O
Generator

The output of Timer 3 is fed to an edge detector and
generates an Interrupt Request 0 (IRQO) in the
82370. The inverted output of this timer (TOUT3 #)
is also available as an external signal for general
purpose use.

5.1.1 INTERNAL ARCHITECTURE

The functional block diagram of the Programmable
Interval Timer section is shown in Figure 5-1. Follow­
ing is a description of each block.

DATA BUFFER & READ/WRITE LOGIC

This part of the Programmable Interval Timer is used
to interface the four timers to the 82370 internal bus.
The Data Buffer is for transferring commands and
data between the 8-bit internal bus and the timers.

The Read/Write Logic accepts inputs from the inter­
nal bus and generates signals to control other func­
tional blocks within the timer section.

CONTROL WORD REGISTERS I & II

The Control Word Registers are write-only registers.
They are used to control the operating modes of the
timers. Control Word Register I controls Timers 0, 1
and 2, and Control Word Register II controls Timer
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview
section.

COUNTER 0, COUNTER 1, COUNTER 2,
COUNTER 3

Counters O, 1, 2, and 3 are the major parts of Timers
o, 1, 2, and 3, respectively. These four functional
blocks are identical in operation, so only a single
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2.

5-1386

intef 82370

c~~~~gL i---+--+-----1,. --............

!
GATE n

CLK n OUT n

290164-68

Figure 5-2. Internal Block Diagram of a Counter

The four counters share a common clock input
(CLKIN), but otherwise are fully independent. Each
counter is programmable to operate in a different
mode.

Although the Control Word Register is shown in the
figure, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera­
tions of the counters.

The Status Register, when latched, contains the cur­
rent contents of the Control Word Register and
status of the output and Null Count Flag (see Read
Back Command).

The Counting Element (CE) is the actual counter. It
is a 16-bit presettable synchronous down counter.

The Output Latches (OL) contain two 8-bit latches
(OLM and OLL). Normally, these latches "follow"
the content of the CE. OLM contains the most signif­
icant byte of the counter and OLL contains the least
significant byte. If the Counter Latch Command is
sent to the counter, OL will latch the present count
until read by the 80376 and then return to follow the
CE. One latch at a time is enabled by the timer's
Control Logic to drive the internal bus. This is how
the 16-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever
the count is read, it is one of the OL's that is being
read.

When a new count is written into the counter, the
value will be stored in the Count Registers (CR), and
transferred to CE. The transferring of the contents
from CR's to CE is defined as "loading" of the coun­
ter. The Count Register contains two 8-bit registers:
CAM (which contains the most significant byte) and El
CAL (which contains the least significant byte). Simi-
lar to the OL's, the Control Logic allows one register
at a time to be loaded from the 8-bit internal bus.
However, both bytes are transferred from the CR's
to the CE simultaneously. Both CR's are cleared
when the Counter is programmed. This way, if the
Counter has been programmed for one byte count
(either the most significant or the least significant
byte only), the other byte will be zero. Note that CE
cannot be written into directly. Whenever a count is
written, it is the CR that is being written.

As shown in the diagram, the Control Logic consists
of three signals: CLKIN, GATE, and OUT. CLKIN
and GATE will be discussed in detail in the section
that follows. OUT is the internal output of the coun­
ter. The external outputs of some timers (TOUT) are
the inverted version of OUT (see TOUT1, TOUT2 #,
TOUT3#). The state of OUT depends on the mode
of operation of the timer.

5-1387

82370

5.2 Interface Signals

5.2.1 CLKIN

CLKIN is an input signal used by all four timers for
internal timing reference. This signal can be inde­
pendent of the 82370 system clock, CLK2. In the
following discussion, each "CLK Pulse" is defined
as the time period between a rising edge and a fall­
ing edge, in that order, of CLKIN.

During the rising edge of CLKIN, the state of GATE
is sampled. All new counts are loaded and counters
are decremented on the falling edge of CLKIN.

5.2.2 TOUT1, TOUT2#, TOUT3#

TOUT1 , TOUT2 # and TOUT3 # are the external
output signals of Timer 1, Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted
signals of their respective counter outputs, OUT.
There is no ei<ternal output for Timer 0.

If Timer 2 is to be used as a tone generator of a
speaker, external buffering must be used .to provide
sufficient dnve capability.

The Qutputs of Timer 2 and 3 are dual function pins.
The output pin ofTimer 2 (TOUT2# /IRQ3#), which
is a bidirectional open-collector signal, can also ·be
used as interrupt request input. When the. interrupt
function is enabled (through the Programmable In­
terrupt Controller), a LOW on this input will generate
an Interrupt Request 3# to the 82370 Programma­
bl!i! Interrupt Controller. This pin has a weak internal
pull-up resistor. To.use the IRQ3# function, Timer 2
should be programmed so that OUT2 is LOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge
detector which will generate an Interrupt Request 0
(IRQO) to the 82370 after the rising edgf:I of OUT3
(see Figure 5-1),

5.2.3 GATE

GATE is not an externally controllable signal. Rath­
er, it can be sottWare controlled with the Internal
Control Port. The state of GATE is always sampled
on thE:I rising edge of CLKIN. Depending on the
mode of operation, GATE is used to enable/disable
counting or trigger the start of an operation.

For Timer O and 1, GATE is always enabled (HIGH).
For Timer 2 and 3, GATE is connected to Bit o and
6, respectively, . of an Internal Control Port (at ad­
dress 61 H) of the 82370. After a hardware reset, the
state of GATE of Timer 2 and 3 is disabled (LOW).

5.3 Modes of Operation

Each timer can be independently programmed to
operate' in one of six different modes. Timers are
programmed by writing a Control Word into the Con­
trol Word Register followed by an Initial Count (see
Programming).

The following are defined for use in describing the
different modes of operation.

CLK Pulse- A rising edge, then a falling edge, in
that order, of CLKIN.

Trigger-A rising edge of a timer's GATE input.

Timer/Counter Loading-The transfer of a count
from Count Register
(CR) to Count Element
(CE).

5.3.1 MODE 0-INTERRUPT ON TERMINAL
COUNT

Mode 0 is typically used for event counting. After the
ControfWord is written, OUT is initially LOW, and will
remain LOW until the counter reaches zero. OUT
then goes HIGH and remains HIGH until a new
count or a new Mode 0 Control Word is written into
the counter.

In this mode, GATE= HIGH enables counting;
GATE = LOW disables counting. However, GATE
has no effect on OUT.

After the Control Word and initial count are written to
a timer, the initial count will be loaded on the next
CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not go
HIGH until N + 1 CLK pulses after the initial count is
written.

If a new count is written to the timer, it will be loaded
on the next CLK pulse and counting will continue
from the new count. If a two-byte count is written,
the following happens:

1. Writing the first byte disables counting, OUT is set
LOW immediately (i.e. no CLK pulse required).

2. Writing the second byte allows the new count to
be loaded on the next CLK pulse.

This allows th& counting sequence to be ·synchroniz­
ed by software. Again, OUT does not go HIGH until
N + 1 CLK pulses after the new count of N is written.

5-1388

82370

WRITE

CLK

GATE ----------------

OUT ~._ ________ __,

cw-10 LSB•3

WRITE

CLK

GATE

OUT

CW=10 LSl•3 LSB•2 -------WRITE

CLK

GATE

OUT

290164-69

NOTES:
The following conventions apply to all mode timing diagrams.
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant bY1e (LSB) only.
2. The counter is always selected (CS# always low).
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter.
4. LSB stands for "Least significant bY1e" of count.
5. Numbers below diagrams are count values.
The lower number is the least significant bY1e.
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the most
significant bY1e cannot be read.
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 5-3. Mode O

If an initial count is written while GATE is LOW, the
counter will be loaded on the next CLK pulse. When
GATE goes HIGH, OUT will go HIGH N CLK pulses
later; no CLK pulse is needed to load the counter as
this has already been done.

5.3.2 MODE 1-GATE RETRIGGERABLE
ONE-SHOT

In this mode, OUT will be initially HIGH. OUT will go
LOW on the CLK pulse following a trigger to start the

one-shot operation. The OUT signal will then remain
LOW until the timer reaches zero. At this point, OUT
will stay HIGH until the next trigger comes in. Since
the state of GATE signals of Timer 0 and 1 are inter­
nally set to HIGH.

After writing the Control Word and initial count, the
timer is considered "armed". A trigger results in
loading the timer and setting OUT LOW on the next
CLK pulse. Therefore, an initial count of N will result
in a one-shot pulse width of N CLK cycles. Note

5-1389

•

intef

CW=12 .LSB=3

CLK

OUT

INININININI

CLK

GATE ----""--;n----1n----------

OUT =:.J r
1.N I N I N I N I N I ~ I ~ I 0 I ~ I 1

CV'<l=12 LSB=2 LSB=4

WFi

CLK

GATE -------;n--------; n------

OUT

290164-70

Figure 5-4. Mode 1

that this one-shot operation is retriggerable; i.e. OUT
will remain LOW for N CLK pulses after every trigger.
The one-shot operation can be repeated without re-
writing the same count into the timer. ·

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will
not be affected unti! the timer is retriggered. This is
because loading of the new. count to CE will occur
only when the one-shot is triggered.

5.3.3 MODE 2-RATE GENERATOR

This mode is a divide-by-N counter. It is typically
used to generate a Real Time Clock interrupt. OUT
will initially be HIGH. When the initial count has dee-

remented to 1, OUT goes· LOW for one CLK pulse,
then Ol,JT goes HIGH again. Then the timer reloads
the initial count and the process is repeated. In other
words, this mode is · periodic since the same se­
querice is repeated itself indefinitely. For an initial
count of N, the sequence repeats every N CLK cy-
cles. ·· ·

Similar to Mode 0, GATE= HIGH enables counting,
where GATE=LOW disables counting. lf GATE
goes LOW during an output pulse (LOW), OUT is set
HIGH immediately. A trigger (rising edge on GATE)
will reload the timer with the initial. count on .the next
CLK pulse. Then, OUT will go LOW (for orie CLK
pulse) N . CLK pulses after the new trigger. Thus,
GATE can be used to synchronize the timer.

intJ 82370

CW=14 LSB=3

WRITE

. CLK

GATE

OUT

I N I N I N I N I 0 0 0 0 0
3 2 3 1 3

CW=14 LSB=3

WRITE

CLK

GATE LJ
OUT

I .N I N I N I N I : I g I ~ I :
0
2

0
1

0
3

CW=14 LSB=4 LSB=S

WRITE

CLK

GATE

OUT~

I N I N I N I N I

NOTE:

0
3

...... ~~~~~~~

u
: I

290164-71

A GATE transition should not occur one clock prior to terminal count.

Figure 5-5. Mode 2

After writing a Control Word and initial count, the
timer will be loaded on .the next CLK pulse. OUT
goes LOW (for one CLK pulse) N CLK pulses after
the initial count is written. This is another way the
timer may be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence because the new
count will not be loaded until the end of the current
counting cycle. If a trigger is received after writing a

new count but before the end of the current period,
the timer will be loaded with the new count on the
next CLK pulse after the trigger, and counting will
continue with the new count.

5.3.4 MODE 3-SQUARE WAVE GENERATOR

Mode 3 is typically used for Baud Rate generation.
Functionally, this mode is similar to Mode 2 except

5-1391

II

intJ 82370

for the duty cycle of OUT. In this mode, OUT will be
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count.
The counting sequence will be repeated, thus this
mode is also periodic. Note that an initial count of N
results in a square wave with a period of N CLK
pulses.

The GATE input can be used to synchronize the tim­
er. GATE=HIGH enables counting; GATE= LOW
disables counting. If GATE goes LOW while OUT is
LOW, OUT is set HIGH immediately (i.e. no CLK
pulse is required). A trigger reloads the timer with the
initial count on the next CLK pulse.

After writing a Control Word and initial count, the
timer will be loaded on the next CLK p1:1lse. This al­
lows the timer to be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next CLK
pulse and counting will continue from the new count.
Otherwise, the new count will be loaded at the end
of the current half-cycle.

There is a slight difference in operation depending
on whether the initial count is EVEN or ODD. The
following description is to show exactly how this
mode is implemented.

EVEN COUNTS:

OUT is initially HIGH. The initial count is loaded on
one CLK pulse and is decremented by two on suc­
ceeding CLK pulses. When the count expires (decre­
mented to 2), OUT changes to LOW and the timer is
reloaded with the initial count. The above process is
repeated indefinitely.

ODD COUNTS:

OUT is initially HIGH. The initial count minus one
(which is an even number) is loaded on one CLK
pulse and is decremented by two on succeeding
CLK pulses. One CLK pulse after the count expires
(decremented to 2), OUT goes LOW and the timer is
loaded with the initial count minus one again. Suc­
ceeding CLK pulses decrement the count by two.
When the count expires, OUT goes HIGH immedi­
ately and the timer is reloaded with the initial count
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will HIGH or
(N + 1)/2 counts and LOW for (N-1)/2 count~.

5-1392

intef 82370

cw-11 LSI=•
WRITE \..JU.-----------------

CLK

GATE

OUT

CW=11 LSB•S

WRITE .---------
CLK

GATE

OUT

cw-1e · LBB=•

0
2

WRITE Lfl__/.-----------------

CLK

GATE

OUT

290164-72

NOTE:
A GATE transition should not occur one clock prior to terminal count.

Figure 5-6. Mode 3

5.3.5 MODE 4-INITIAL COUNT TRIGGERED
STROBE

This mode allows a strobe pulse to be generated by
writing an initial count to the timer. Initially, OUT will
be HIGH. When a new initial count is written into the
timer, the counting sequence will begin. When the
initial count expires (decremented to 1), OUT will go
LOW for one CLK ~ulse and then go HIGH again.

Again, GATE=HIGH enables counting while
GATE = LOW disables counting. GATE has no ef­
fect on OUT.

After writing the Control Word and initial count, the
timer will be loaded on the next CLK pulse. This CLK
pulse does not decrement the count, so for an initial
count of N, OUT does not strobe LOW until N + 1
CLK pulses after initial count is written.

If a new count is written during counting, it will be
loaded in the next CLK pulse and counting will con­
tinue from the new count.

5-1393

•

intef 82370

CW=18 LSB=3

WRITE

CLK

GATE

OUT~

I N I N I N I N I

WRITE

CLK

GATE

OUT

0
2

LJ
0 I 0 I FF I FF I FF I
1 0 FF FE. FD

I N I N I N I N I ~ I ~ I ~ I ~ 0
1

CW=18 LSB=3 LSB=2
...-~~~~~~~

WRITE

CLK

GATE

OUT

I N I N I N I N I ~ I : I ~ I ~ 0
1

290164-73

Figure 5-7. Mode 4

If a two-byte count is written, the following will occur:

1. Writing the first byte has no effect on counting.

2. Writing the second byte allows the new count to
be loaded on the next CLK pulse.

OUT will strobe LOW N + 1 CLK pulses after the
new count of N is written. Therefore, when the
strobe pulse will occur after a trigger depends on the
value of the initial count loaded.

5.3.6 MODE 5-GATE RETRIGGERABLE
STROBE

Mode 5 is very similar to Mode 4 except the count
sequence is triggered by the gate signal instead of

by writing an initial count. Initially, OUT will be HIGH.
Counting is triggered by a rising edge of GATE.
When the initial count has expired (decremented to
1), OUT will go LOW for one CLK pulse and then go
HIGH again.

After loading the Control Word and initial count, the
Count Element will not be loaded until the CLK pulse
after a trigger. This CLK pulse does not decrement
the count. Therefore, for an initial count of N, OUT
does not strobe LOW until N + 1 CLK pulses after a
trigger.

5-1394

inter 82370
---·----·--·---··-••• ··--h----~--N-••-••-• ----·~

WRITE

CLK

GATE -------1 rr--------1rc=
OUT

I N I N I N I N I N I ~

WRITE

CLK

GATE - - - - - - - - -1 ~ - - - - - - - - - - - -

OUT

0 0
3 2

WRITE

CLK

GATE --------1n----------1n-----
OUT~ u·

I N I N I N I N I N I ~ I ~ I ~ I g I == I ~~ I ~
Figure 5-8. Mode 5

0
4

290164-74

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial
count on the next CLK pulse.

5.3.7 OPERATION COMMON TO ALL MODES

If the new count is written during counting, the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before
the current count expires, the timer will be loaded
with the new count on the next CLK pulse and a new
count sequence will start from there.

5.3.7.1 GATE

The GATE input is always sampled on the rising
edge of CLKIN. In Modes 0, 2, 3 and 4, the GATE
input is level sensitive. The logic level is sampled on
the rising edge of CLKIN. In Modes 1, 2, 3 and 5, the
GATE input is rising edge sensitive. In these modes,

5-1395

I

intJ 82370

Summary of Gate Operations

Mode GATE LOW or Going LOW

0 Disable count
1 No Effect

2· 1. Disable count
2. Sets output HIGH

immediately
3 1. Disable count

2. Sets output HIGH
immediately

4 Disable count
5 No Effect

a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be
detected no matter when it occurs; i.e. a HIGH logic
level does not have to be maintained until the next
rising edge of CLKIN. Note that in Modes 2 and 3,
the GATE input is both edge and level sensitive.

5.3.7.2 Counter

New counts are loaded and counters are decre­
mented on the falling edge of CLKIN. The largest
possible initial count is 0. This is equivalent to 2** 16
for binary counting and 10••4 for BCD counting.

Note that the counter does not stop when it reaches
zero. -In Modes 0, 1, 4 and 5, the counter 'wraps
around' to the highest count: either FFFF Hex for·
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The
counter reloads itself with the initial count and con­
tinues counting from there.

The minimum and maximum initial count in each
counter depends on the mode of operation. They
are summarized below.

Mode Min Max

0 1 0
1 1 0
2 2 0
3 2 0
4 1 0
5 1 0

5.4 Register Set Overview

The Programmable Interval Timer module of the
82370 contains a set of six registers. The port ad­
dress map of these registers is shown in Table 5-2.

GATE Rising HIGH

No Effect Enable count
1. Initiate count No Effect
2. Reset output

after next clock
Initiate count Enable count

Initiate count Enable count

No Effect Enable count
Initiate count No Effect

Table 5·2. Timer Register Port Address Map

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
43H Control Word Register I

(Counter 0, 1 & 2) (write-only)

44H Counter 3 Register (read/write)
45H Reserved
46H Reserved
47H Control Word Register II

(Counter 3) (write-only)

5.4.1 COUNTER 0, 1, 2, 3 REGISTERS

These four 8-bit registers are functionally identical.
They are used to write the initial count value into the
respective timer. Also, they can be.used to read the
latched count varue of a timer. Since they are 8-bit
registers, reading and writing of the 16-bit initial
count must follow the count format specified in the
Control Word Registers; i.e. least significant byte
only, most significant byte only, or least significant
byte then most significant byte (see Programming).

5.4.2 CONTROL WORD REGISTER I & II

There are two Control Word Registers associated
with the Timer section. One of the ,two registers
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1 and 2 and the other (Control
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low:

5-1396

intef 82370

Select the timer to be programmed.

Define which mode the selected timer is to oper­
ate in.

- Define the count sequence; i.e. if the selected
timer is to count as a Binary Counter or a Binary
Coded Decimal (BCD) Counter.

Select the byte access sequence during timer
read/write operations; ie. least significant byte
only, most significant oniy, or least significant
byte first, then most significant byte.

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a
Read Back Command which will be described later.

5.5 Programming

5.5.1 INITIALIZATION

Upon power-up or reset, the state of all timers is
undefined. The mode, count value, and output of all
timers aria random. From this point on, how each
timer operates is determined solely by how it is pro­
grammed. Each timer must be programmed before it
can be used. Since the outputs of some timers can
generate interrupt signals to the 82370, all timers
should be initialized to a known state.

Counters are programmed by writing a Control Word
into their respective Control Word Registers. Then,
an Initial Count can be written into the correspond­
ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to
be remembered:

1. For each timer, the Control Word must be written
before the initial count is written

2. The 16-bit initial count must follow the count for­
mat specified in the Control Word (least significant
byte only, most significant byte only, or least signifi­
cant byte first, followed by most significant byte).

Since the two Control Word Registers and the four
Counter Registers have separate addresses, and
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction
sequence is required. Any programming sequence
that follows the conventions above is acceptable.

A new initial count may be written to a timer at any
time without affecting the timer's programmed mode
in any way. Count sequence will be affected as de­
scribed in the Modes of Operation section .. Note that
the new count must follow the programmed count
format.

If a timer is previously programmed to read/write
two-byte counts. the following precaution applies. A
program must not transfer control between writing
the first and second byte to another routine which
also writes into the same timer. Otherwise, the read/
write will result in incorrect count.

Whenever a Control Word is written to a timer, all
control logic for that timer(s) is immediately reset
(i.e. no ClK pulse 1s required). Also, the correspond­
ing output in, TOUT#, goes to a known initial state.

5,5,2 READ OPERATION

Three methods are available to read the current
count as well as the status of each timer. They are:
Read Counter Registers, Counter latch Command
and Read Back Command. Below is a description of
these methods.

READ COUNTER REGISTERS

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter
Register. The only restriction of this read operation
is that the ClKIN of the timers must be inhibited by
using external logic. Otherwise, the count may be in
the process of changing when it is read, giving an
undefined result. Note that since all four timers are
sharing the same CLKIN signal, inhibiting CLKIN to
read a timer will unavoidably disable the other timers I
also. This may prove to be impractical. Therefore, it
is suggested !hat either the Counter Latch Com-
mand or the Read BacK Command can be used to
read the current count of a timer.

Another alternative is to temporarily disable a timer
before reading its Counter Register by using the
GATE: input. Depending on the mode of operation,
GATE~ LOW will disable the counting operation.
However. this option is available on Timer 2 and 3
only, sin0e the GATE signals of the other two timers
are internally enablerJ all the time.

COUNTER LA T'CH COMMAND

A Counter Latch Command will be executed when­
ever a spec1a1 Control Word is written into a Control
Word Register. Two bits written into the Control
Word Hegister distinguish this command from a 'reg­
ular' Controi Word (see Register Bit Definition). Also,
two othe(tiits "' thE. Control Word will select which

Upon execution of this command, the selected
counter's ")ut'::t.' 1 •. atcr (Ol) latches the count at the
time the Countet unch Command is received. This

5-1397

intef 82370

count is held in the latch until it is read by the 80376,
or until the timer is reprogrammed. The count is then
unlatched automatically and the OL returns to "fol­
lowing" the Counting Element (CE). This allows
reading the contents of the counters "on the fly"
without affecting counting in progress. Multiple
Counter Latch Commands may be used to latch
more than one counter. Each latched count is held
until it is read. Counter Latch Commands do not af­
fect the programmed mode of the timer in any way.

If a counter is latched, and at some time later, it is
latched again before the prior latched count is read,
the second Counter Latch Command is ignored. The
count read will then be the count at the time the first
command was issued.

In any event, the latched count must be read ac­
cording to the programmed format. Specifically, if
the timer is programmed for two-byte counts, two
bytes must be read. However, the two bytes do not
have to be read right after the other. Read/write or
programming operations of other timers may be per­
formed between them.

Another feature of this Counter Latch Command is
that read and write operations of. the same timer
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is valid.

1. Read least significant byte.

2. Write new least significant byte.

3. Read most significant byte.

4. Write new most significant byte.

If a timer is programmed to read/write two-byte
counts, the following precaution applies. A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same timer. Otherwise, an incorrect count
will be read.

READ BACK COMMAND

The Read Back Command is another special Com­
mand Word operation which allows the user to read
the current count value and/ or the status of the se­
lected timer(s). Like the Counter Latch Command,
two bits in the Command Word identify this as a
Read Back Command (see Register Bit Definition).'

The Read Back Command may be used to latch
multiple counter Output Latches (OL's) by selecting
more than one timer within a Command Word. This
single command is functionally equivalent to several
Counter Latch Commands, one for each counter to

be latched. Each counter's latched count will be
held until it is read by the 80376 or.until the timer is
reprogrammed. The counter is automatically un­
latched when read, but other counters remain
latched until they are read. If multiple Read Back
commands are issued to the same timer without
reading the count, all but the first are ignored; i.e. the
count read will correspond to the very first Read
Back Command issued.

As mentioned previously, the Read Back Command
may also be used to latch status information of the
selected timer(s). When this function is enabled, the
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The
status information of a timer includes the following:

1 . Mode of timer:

This allows the user to check the mode of opera­
tion of the timer last programmed.

2. State of TOUT pin of the timer:

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some
hardware from a system.

3. Null Count/Count available:

The Null Count Bit in the status byte indicates if
the last count written to the Count Register (CR)
has been loaded into the Counting Element (CE).
The exact time this happens depends on the
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into
the Counting Element (CE), it cannot be read from
the timer. If the count is latched or read before
this occurs, the count value will not reflect the
new count just written.

If multiple status latch operations of the timer(s) are
performed without reading the status, all but the first
command are ignored; i.e. the status read in will cor­
respond to the first Read Back Command issued.

Both the current count and status of the selected
timer(s) may be latched simultaneously by enabling
both functions in a single Read Back Command.
This is functionally the same as issuing two separate
Read Back Commands at once. Once again, if multi­
ple read commands are issued to latch both the
count and status of a timer, all but the first command
will be ignored.

If both count and status of a timer are latched, the
first read operation of that timer will return the
latched status, regardless of which was latched first.
The next one or two (if two count bytes are to be
read) read operations return the latched count. Note
that subsequent read operations on the Counter
Register will return the unlatched count (like the first
read method discussed).

5-1398

5.6 Register Bit Definitions

COUNTER 0, 1, 2, 3 REGISTER (READ/WRITE)

Port Address Description

40H Counter O Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
44H Counter 3 Register (read/write)
45H Reserved
46H Reserved

11
Control Word Register I

D7 D6 D5

SELECT COUNTER:
00 SELECT COUNTER 0
01 SELECT COUNTER 1
10 SELECT COUNTER 2
11 READ BACK COMMAND

FOR COUNTER 0-2

D4

READ/WRITE:

03

06

02

M1

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

05 04 03

Dl DO

0 - 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
XlO MODE 2
Xl 1 MODE 3
100 MODE 4
101 MODE 5

290164-76

82370

02

Note that these 8-bit registers are for writing and
reading of one byte of the 16-bit count value, either
the most significant or the least significant byte.

CONTROL WORD REGISTER I & II (WRITE­
ONL Y)

Port Address Description

43H Control Word Register I
(Counter 0, 1, 2 (write-only)

47H Control Word Register II
(Counter 3) (write-only)

01

Ot!_ LSB OF COUNT BYTE

MSB OF COUNT BYTE
290164-75

Control Word Register II

D7 D6 D5

SELECT COUNTER:
00 SELECT COUNTER 3
01 RESERVED
10 RESERVED

· 11 READ BACK COMMAND
FOR COUNTER 3

D4

READ/WRITE:

D3 D2

Ml

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

Dl DO

0- 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 READ/WRITE LSB, THEN fotSB BYTE

MODE:
000 MODE 0
001 MODE 1
XlO MODE 2
Xll MODE 3
100 MODE 4
101 MODE 5

290164-77

5-1399

El

intJ 82370

COUNTER LATCH COMMAND FORMAT

(Write to Control Word Register)

D7 D6 D5 D4 D3 D2 D1 DO

''Y"'' 0 I 0 I ' I ' I ' I ' I
00 COllNTER 0 (OR 3)
01 COUNTER 1
10 COUNTER 2
11 READ BACK COMMAND

READ BACK COMMAND FORMAT

(Write to Control Word Register)

D7 D6 D5 D4 D3 D2 D1

290164-78

DO

COUNT# STATUS CNT2 CNT1 CNT0/3 0

STATUS FORMAT

0- LATCH COUNT
1 - DO NOT LATCH

COUNT

0 - LATCH STATUS
1 - DO NOT LATCH

STATUS

0 - COUNTER NOT
SELECTED

1 - COUNTER IS
SELECTED

(Returned from Read Back Command)

D7 D6

OUT NULL COUNT

0- OUTPUT
PIN =O

1 - OUTPUT
PIN=1

D5 D4 D3

M2

0- COUNT AVAILABLE
f"OR READING

1 - NULL COUNT

5-1400

D2

M1

D1

MO

DO

BCD

COUNTER
MODE

290164-79

290164-80

intef 82370

6.0 WAIT STATE GENERATOR

6.1 Functional Description

The 82370 contains a programmable Wait State
Generator which can generate a pre-programmed
number of wait states during both CPU and DMA
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe­
lined mode, and O to 15 wait states in pipelined
mode. Depending on the bus cycle type and the two
Wait State Contrdl inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait
State Register will be generated.

The Wait State Generator can also be disabled to
allow the use of devices capable of generating their
own READY# signals. Figure 6-1 is a block diagram
of the Wait State Generator.

6.2 Interface Signals

The following describes the interface signals which
affect the operation of the Wait State Generator.
The READY#, WSCO and WSC1 signals are inputs.
READYO# is the ready output signal to the host
processor.

6.2.1 READY#

READY# is an active LOW input signal which indi­
cates to the 82370 the completion of a bus cycle. In
the Master mode (e.g. 82370 initiated OMA transfer),
this signal is monitored to determine whether a pe­
ripheral or memory needs wait states inserted in the
current bus cycle. In the Slave mode, it is used (to-

. gather with the ADS# signal) to trace CPU bus cy­
cles to determine if the current cycle is pipeiined.

- 6.2.2 READYO#

READYO# (Ready Out#) is an active LOW output
signal and is the output of the Wait State Generator.
The number of wait states generated depends on
the WSC(0-1) inputs. Note that special cases are
handled for access to the 82370 internal registers
and for the Refresh c;ycles. For 82370 internal regis­
ter access, READYO # will be delayed to take into
the command recovery time of the register. One or
more wait states will be generated in a pipelined cy­
cle. During refresh, the number of wait states will be
determined by the preprogrammed value in the Re­
fresh Wait State Register.

In the simplest configuration, READYO# can be
connected to the READY# input of the 82370 and
the 80376 CPU. This is, however, not always the
case. If external circuitry is to control the READY#
inputs as well, additional logic will be required (see
Application Issues).

6.2.3 WSC(0-1)

These two Wait State Control inputs, together with
the M/10# input, select one of the three pre-pro­
grammed 8-bit Wait State Registers which deter- ·
mines the number of wait states to be generated.
The most significant half of the three Wait State
Registers corresponds to memory accesses, the
least significant half to 1/0 accesses. The combina- 5 tion WSC(0-1) = 11 disables the Wait State Gener-
ator.

INTERNAL WAIT STATE
REQUIREMENT

READYO#

wsco
WSC1

M/10#

D7 D4 D3 DO

REGISTER MEMORY 0 1/0 0

SELECT
MEMORY 1 1/0 1 LOGIC

MEMORY 2 1/0 2

(RESERVED) REFRESH ADS#,
READY#

PROGRAMMABLE WAIT STATE
REGISTERS

Figure 6-1. Walt State Generator Block Diagram

5-1401

290164-81

intef 82370

6.3 Bus Function

6.3.1 WAIT STATES IN NON-PIPELINED CYCLE

The timing diagram of two typical .non-pipelined cy­
cles with 82370 generated wait states is shown in
Figure 6-2. In this diagram, it is assumed that the
internal registers of the 82370 are not addressed.
During the first T2 state of each bus cycle, the Wait
State Control and the M/10# inputs are sampled to
determine which Wait State Register (if any) is se­
lected. If the WSC inputs are active (i.e. not both are
driven HIGH), the pre-programmed number of wait
states corresponding to the selected Wait State
Register will be requested. This is done by driving
the READYO# output HIGH during the end of each
T2 state.

The WSC (0-1) inputs need only be valid during the
very first T2 state of each non-pipelined cycle. As a
general rule, the WSC inputs are sampled on the ·
rising edge of the next clock (82384 CLK) after the
last state when ADS# (Address Status) is asserted.

The number of wait states generated depends on
the type of bus cycle, and the number of wait states
requested. The various combinations are discussed
below.

1. Access the 82370 internal registers: 2 to 5 wait
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the Inter­
rupt Controller will require 7 wait states.

T1 T2 T2

CLK2

CLK

A(1 -23)
M/10#

BLE#,BHE#

WSC(0-1)

ADS#

READY#

READYO#

ONE WAIT STATE

2. Interrupt Acknowledge to the 82370: 5 wait states.

3. Refresh: As programmed in the Refresh Wait
State Register (see Register Set· Overview). Note
that if WCS (0-1) = 11, READYO# will stay inac­
tive.

4. Other bus cycles: Depending on WCS (0-1) and
M/10# inputs, these inputs select a Wait State Reg­
ister in which the number of wait states will be equal
to the pre-programmed wait state count in the regis­
ter plus 1. The Wait State Register selection is de­
fined as follows (Table 6-1).

Table 6-1. Walt State Register Selection

M/10# WSC(0-1) Register Selected

0 00 WAIT REG 0 (110 half)
0 01 WAIT REG 1 (110 half)
0 10 WAIT REG 2 (110 half)
1 00 WAIT REG 0 (MEM half)
1 01 WAIT REG 1 (MEM half)
1 10 WAIT REG 2 (MEM half)
x 11 Wait State Gen. Disabled

The Wait State Control signals, WSC (0-1), can be
generated with the address decode and the Read/
Write control signals as shown in Figure 6-3.

T1 T2 T2 T2

TWO WAIT STATES
290164-82

Figure 6·2. Wait States in Non-Pipelined Cycles

5-1402

intef 82370

!: ';;:: . I ,~;· I· . ~", . ., L 290164-83

Figure 6-3. WSC (0-1) Generation

Note that during HALT and SHUTDOWN, the num­
ber of wait states will depend on the WSC (0-1)
inputs, which will select the memory half of one of
the Wait State Registers (see CPU Reset and Shut­
down Detect).

6.3.2 WAIT STATES IN PIPELINED CYCLES

The timing diagram of two typical pipelined cycles
with 82370 generated wait states is shown in Figure
6-4. Again, in this diagram, it is assumed that the
82370 internal. registers are not addressed. As de­
fined in the timing of the 80376 processor, the Ad­
dress (A1-23), Byte Enable (BHE#, BLE#), and
other control signals (M/10 #, ADS#) are asserted
one T-state earlier than in a non-pipelined cycle; i.e.
they are asserted at T2P. Similar to the non-pipe­
lined case, the Wait State Control (WSC) inputs are
sampled in the middle of the state after the last state
the ADS# signal is asserted. Therefore, the WSC
inputs should be asserted during the T1 P state of
each pipelined cycle (which is one T-state earlier
than in the non-pipelined cycle).

T1p T2 T2p

CLK2

CLK

The number of wait states generated in a pipelined
cycle is selected in a similar manner as in the non­
pipelined case discussed in the previous section.
The only difference here is that the actual number of
wait states generated will be one less than that of
the non-pipelined cycle. This is done automatically
by the Wait State GeneratoL

6.3.3 EXTENDING AND EARLY TERMINATING
BUS CYCLE

The 82370 allows external logic to either add wait
states or cause early termination of a bus cycle by
controlling the READY# input to the 82370 and the
host processor A possible configuration is shown in
Figure 6-5.

80376

EXTERNAL READY#
(EARLY TERMINATION)

82370

Figure 6··5. External 'READY' Control Logic

T1p T2 T2 T2p

A(1-23) lr----+--~--tlr----+-----t---+----.ii---~
M/10#

BLE#, BHE# ~---+-----ir'----+-----t---+----'I'---~

WSC(0-1)

ADS#

READYO#
I

ONE WAIT STATE TWO WAIT STATES
290164-84

Figure 6-4. Wait States in Pipelined Cycles

5-1403

intef 82370

The EXT. ADY# (External Ready) signal of Figure 6-
5 allows external devices to cause early termination
of a bus cycle. When this signal is asserted LOW,
the output of the circuit will also go LOW (even
though the READYO# of the 82370 may still be
HIGH). This output is fed to the READY# input of
the 80376 and the 82370 to indicate the completion
of the current bus cycle.

Similarly, the EXT. NOT READY (External Not
Ready) signal is used to delay the READY# input of
the processor and the 82370. As long as this signal
is driven HIGH, the output of the circuit will drive the
READY# input HIGH. This will effectively extend the
duration of a bus cycle. However, it is important to

T1 T2 T1

CLK2

CLK

note that if the two-level logic is not fast enough to
satisfy the READY# setup time, the OR gate should
be eliminated. Instead, the 82370 Wait State Gener­
ator can be disabled by driving both WSC (0-1)
HIGH. In this case, the addressed memory or 1/0
device should activate the external READY# input
whenever it is ready to terminate the current bus
cycle.

Figures 6-6 and 6-7 show the timing relationships of
the r_eady signals for the early termination and exten­
sion of the bus cycles. Section 6-7·, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit.

T2 T2 T2 Tx

A(1-23)·11----l---"""'\Jr----t----+----+-----.ir----t-
M/10#

BLE#,BHE#

ADS#

READYO#
0 WAIT STATES TWO WAIT STATES

290164-86

Figure 6-6. Early Termination of Bus Cycle By 'READY#'

T1 T2 T2 T2 T2 Tx Tx

CLK2

CLK

A(1-23) 11----t----+-~-+----1---~r---+----!-
M/IO#

BLE#, BHE# i----+----+----1----+----'l'---+----+-

ADS#

READYO#

290164-87

Figure 6-7. Extending Bus Cycle by 'READY#'

5-1404

intef 82370

Due to the following implications, it should be noted
that early termination of bus cycles in which 82370
internal registers are accessed is not recommended.

1 . Erroneous data may be read from or written into
the addressed register.

2. The 82370 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or before
another bus cycle into an 82370 internal register is
initiated.

The recovery time, in clock periods, equals the re­
maining wait states that were avoided plus 4.

6.4 Register Set Overview

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Genertor. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows.

Table 6·2. Register Address Map

Port Address Description

72H Wait State Reg 0 (read/write)
73H Wait State Reg 1 (read/write)
74H Wait State Reg 2 (read/write)
75H Ref. Wait State Reg (read/write)

WAIT STATE REGISTER 0, 1, 2

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register
contains the wait state count for 1/0 accesses while
the other half contains the count for memory ac­
cesses. The total number of wait states generated
will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a
pipelined cycle, the number of wait states will be
equal to the wait state count in the selected register.
Therefore, the Wait State Generator is capable of
generating 1 to 16 wait states in non-pipelined
mode, and O to i 5 wait states in pipelined mode.

Note that the minimum wait state count in each reg­
ister is 0. This is equivalent to 0 wait states for a
pipelined cycle and 1 wait state for a non-pipelined
cycle.

REFRESH WAIT STATE REGISTER

Similar to the Wait State Registers discussed above,
this 4-bit register is used to store the number of wait
states to be generated during a DRAM refresh cycle.

Note that the Refresh Wait State Register is not se­
lected by the WSC inputs. It will automatically be
chosen whenever a DRAM refresh cycle occurs. If
the Wait State Generator is disabled during the re­
fresh cycle (WSC (0-1) = 11), READYO# will stay
inactive and the Refresh Wait State Register is ig­
nored.

6.5 Programming

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of
wait states will be generated when a register is se­
lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate
wait state count into each register. Note that upon
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait states possible. Also, each register can
be read to check the wait state count previously
stored in the register.

6.6 Register Bit Definition

WAIT STATE REGISTER 0, 1, 2

Port Address

72H
73H
74H

06 05

Description

Wait State Register O (read/write)
Wait State Register 1 (read/write)
Wait State Register 2 (read/write)

--

02 01

'-------'--1/0 WAIT
STATE COUNT

.__ ___ __..._MEMORY WAIT STATE COUNT

290164-88

REFRESH WAIT STATE REGISTER

Port Address: 75H (Read/Write)

06 05 02 01

...._ ___ _.__ REFRESH WAIT

STATE COUNT

290164-89

5-1405

I

82370

6. 7 Application Issues

6.7.1 EXTERNAL 'READY' CONTROL LOGIC

As mentioned in section 6.3.3, wait state cycles gen­
erated by the 82370 can be terminated early or ex­
tended longer by means of additional external logic
(see Figure 6-5). In order to ensure that the
READY# input timing requirement of the 80376 and
the 82370 is satisfied, special care must be taken
when designing this external control logic:. This sec­
tion addresses the design requirements.

A simplified block diagram of the external logic along
with the READY# timing diagram is shown in Figure
6-8. The purpose is to determine the maximum delay

time allowed in the external control logic in order to
satisfy the READY# setup time.

First, it will be assumed that the 80376 is running at
16 MHz (i.e. CLK2 is 32 MHz). Therefore, one bus
state (two CLK2 periods) will be equivalent to
62.5 ns. According to the AC specifications of the
82370, the maximum delay time for valid READYO#
signal is 31 ns after the rising edge of CLK2 in the
beginning of T2 (for non-pipelined cycle) or T2P (for
pipelined cycle). Also, the minimum READY# setup
time of the 80376 and the 82370 should be 19 ns
before the rising edge of CLK2 at the beginning of
the next bus state. This limits the total delay time for
the external READY# control logic to be 12.5 ns
(62.5-31-19) in order to meet the READY# setup
timing requirement.

EXT. READY# EXT. NOT READY

80376- 16

READY#

I

A = PHl1 + PH12 = 62.5 ns
B = Maximum READYO# Valid Delay = 35 ns
C = READY# Setup Time= 20 ns

t
READY

CONTROL
LOGIC

D = Maximum Ready Control Logic Delay = A - B - C = 7.5 ns

~

J

Figure 6-8. 'READY' Timing Consideration

5-1406

82370

READYO#

READY#

290164-90

intef 82370

7.0 DRAM REFRESH CONTROLLER

7.1 Functional Description

The 82370 DRAM Refresh Controller consists of a
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure
7-1). TIMER 1 can be used as a trigger signal to the
DRAM Refresh Request logic. The Refresh Bus Size
can be programmed to be 8- or 16-bit wide. Depend­
ing on the Refresh Bus Size, the Refresh Address
Counter will be incremented with the appropriate val­
ue after every refresh cycle. The internal logic of the
82370 will give the Refresh operation the highest
priority in the bus control arbitration process. Bus
control is not released and re-requested if the 82370
is already a bus master.

7.2 Interface Signals

7.2.1 TOUT1/REF#

The dual function output pin of TIMER 1
(TOUT1 /REF#) can be programmed to generate
DRAM Refresh signal. If this feature is enabled, the
rising edge of TIMER 1 output (TOUT1 #)will trigger
the DRAM Refresh Request logic. After some delay
for gaining access of the bus, the 82370 DRAM Con­
troller will generate a DRAM Refresh signal by driv­
ing REF# output LOW. This signal is cleared after
the refresh cycle has taken place, or by a hardware
reset.

TOUT1
(INTERNAL)

EDGE
DETECTOR

DRAM
REFRESH

CONTROLLER

24- BIT
ADDRESS
COUNTER

2-T0-1
REF 1 MUX

If the DRAM Refresh feature is disabled, the
TOUT1 /REF# output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates
is discussed in section 6-Programmable Interval
Timer, and will not be repeated here.

7.3 Bus Function

7.3.1 ARBITRATION

In order to ensure data integrity of the DRAMs, the
82370 gives the DRAM Refresh signal the highest
priority in the arbitration logic. It allows DRAM Re­
fresh to interrupt OMA in progress in order to per­
form the DRAM Refresh cycle. The OMA service will
be resumed after the refresh is done.

In case of a DRAM Refresh during a OMA process,
the cascaded device will be requested to get off the
bus. This is done by de-asserting the EDACK signal.
Once DREQn goes inactive, the 82370 will perform
the refresh operation. Note that the OMA controller
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply "steals"
a bus cycle between OMA accesses.

Figure 7-2 shows the timing diagram of a Refresh
Cycle. Upon expiration of TIMER 1, the 82370 will try
to take control of the system bus by asserting
HOLD. As soon as the 82370 see HLDA go active. •
the DRAM Refresh Cycle will be carried out by acti-
vating the REF# signal as well as the address and
control signals on the system bus (Note that REF#
will not be active until two CLK periods HLDA is as­
serted). The address bus will contain the 24-bit ad-

INTERNAL
DMA

HANDSHAKE OMA
CONTROLLER
ARBITRATION

LOGIC

TO OMA
------- CONTROLLER 24- BIT

REFRESH
ADDRESS

(INTERNAL)

TOUT1
-----------PIO select i----------TOUT1/REF#

REFRESH ENABLE (INTERNAL)
290164-91

Figure 7-1. DRAM Refresh Controller

5-1407

intef 82370

dress currently in the Refresh Address Counter. The
control signals are driven the same way as in a
Memory Read cycle. This "read" operation is com­
plete when the READY# signal is driven LOW.
Then, the 82370 will relinquish the bus by de-assert­
ing HOLD. Typically, a Refresh Cycle without wait
states will take five bus states to execute. If "n" wait
states are added, the Refresh Cycle will last for five
plus "n" bus states.

How often the Refresh Generator will initiate a re­
fresh cycle depends on the frequency of CLKIN as
will as TIMER 1 's programmed mode of operation.
For this specific application, TIMER 1 should be pro­
grammed to operate in Mode 2 to generate a ;;on­
stant clock rate. See section 6-Programmable ln­
terv~I Timer for more information on programming
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT~ chang­
es from LOW to HIGH).

The Wait State Generator can be used to insert wait
states during a refresh cycle. The 82370 will auto­
matically insert the desired number of wait states as
programmed in the Refresh Wait State Register (see
Wait State Generator).

~-----------·----.. --·--·-···----

7.4 Modes of Operation

7.4.1 WORD SIZE AND REFRESH ADDRESS
COUNTER

The 82370 supports 8- and 15-bit refresh cycle. The
bus width during a refresh cycle is programmable
(see Prog~amming). The bus size can be pro­
grammed via the Refresh Control Register (see Reg­
ister Overview). If the DRAM bus size is 8- or 16-bits,
the Refresh Address Counter will be incremented by
1 or 2, respectively.

The Refresh Address Counter is cleared by a hard­
ware reset.

7.5 Register Set Overview

The Refresh Generator has two internal registers to
control its operation. They are the Refresh Control
Register and the Refresh Wait State Register. Their
port address map is shown in Table 7-1 below.

290164-92
... -----··-----__J

Figure 7-2. 82370 Refresh Cycle

5-1408

intJ 82370

Table 7-1. Register Address Map

Port Address Description

1CH Refresh Control Reg. (read/write)
75H Ref. Wait State Reg. (read/write)

The Refresh Wait State Register is not part of the
Refresh Generator. It is only used to program the
number of wait states to be inserted during a refresh
cycle. This register is discussed in detailed in section
7 (Wait State Generator) and will not be repeated
here.

REFRESH CONTROL REGISTER

This 2-bit register serves two functions. First, it is
used to enable/disable the DRAM Refresh function
output. If disabled, the output of TIMER 1 is simply
used as a general purpose timer. The second func­
tion of this register is to program the DRAM bus size
for the refresh operation. The programmed bus size
also determines how the Refresh Address Counter
will be incremented after each refresh operation.

7.6 Programming

Upon hardware reset, the DRAM Refresh function is
disabled (the Refresh Control Register is cleared).
The following programming steps are needed before
the Refresh Generator can be used. Since the rate
of refresh cycles depends on how TIMER 1 is pro­
grammed, this timer must be initialized with the de­
sired mode of operation as well as the . correct
refresh interval (see Programming Interval Timer).
Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined.
These can be done in one step by writing the appro­
priate control word into the Refresh Control Register

07 06 05 03 02

(see Register Bit Definition). After these steps are
done, the refresh operation will automatically be in­
voked by the Refresh Generator upon expiration of
Timer 1.

In addition to the above programming steps, it
should be noted that after reset, although the
TOUT1 /REF# becomes the Time 1 output, the
state of this pin in undefined. This is because the
Timer module has not been initialized yet. Therefore,
if this output is used as a DRAM Refresh signal, this
pin should be disqualified by external logic until the
Refresh function is enabled. One simple solution is
to logically AND this output with HLDA, since HLDA
should not be active after reset.

7.7 Register Bit Definition

REFRESH CONTROL REGISTER

Port Address: 1 CH (Read/Write)

8.0 RELOCATION REGISTER,
ADDRESS DECODE, AND
CHIP-SELECT (CHPSEL#)

8.1 Relocation Register

All the integrated peripheral devices in the 82370 I
are controlled by a set of internal registers. These
registers span a total of 256 consecutive address
locations (although not all the 256 locations are
used). The 82370 provides a Relocation Register
which allows the user to map this set of internal reg-
isters into either the memory or 1/0 address space.
The function of the Relocation Register is to define
the base address of the internal register set of the
82370 as well as if the registers are to be memory-
or 110-mapped. The format of the Relocation Regis-
ter is depicted in Figure 8-1.

MUST BE ZERO

00 REF. DISABLED
01 INTEL RESERVED
10 BUS SIZE = 16
11 BUS SIZE = 8

5-1409

intef 82370

07 06 05 04 03 02 01 DD

A23/ A22/ A21/ A20/ A19/ A18/ A17/ M/10#
A15 A14 A13/ A12/ A11/ A10

FOR 1/0 MAPPED:A15-A9
FOR MEMORY MAPPED: A23-A 16

0 -1/0 MAPPED
1 -MEMORY

MAPPED

Port Address: 7FH (Read/Write)
~---------------··-----_, ______ _

Figure 8-1. Relocation Register

Note that the Relocation Register is part of the inter­
nal register set of the 82370. It has a port address of
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this
register will also be moved. Upon reset of the 82370,
the content of the Relocation Register will. be
cleared. This implies that the 82370 will respond to
its !/O addresses in the range of OOOOH to OOFFH.

8.1.1 110-MAPPED 82370

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82370 registers are to be.
memory-mapped or 1/0 mapped. When Bit 0 is set
to 'O', the 82370 will respond to 1/0 Addresses. Ad­
dress signals SHE#, BLE#, A1-A7 will be used to
select one of the internal registers to be accessed.
Bit 1 to Bit 7 ofthe Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively.
Together with A8 implied to be 'O', A 15 to A8 will be
fully decoded by the 82370 .. The following shows
how the 82370 is mapped into the 1/0 address
space.

Example

Relocation Register = 11001110 (OCEH)

82370 will respond to 1/0 address range from
OCEOOH to OCEFFH.

Therefore, this 1/0 mapping mechanism allows the
82370 internal registers to be located on any even,
contiguous, 256 byte boundary of the system 1/0
space.

8.1.2 MEMORY-MAPPED 82370

When Bit 0 of the Relocation Register is set to '1 ',
the 82370 will respond to memory addresses. Again,

Address signals SHE#, BLE#, A1-A7 will be used
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 ol the Relocation Register will
correspond to A 17-A23, respectively. A 16 is as­
sumed to be 'O', and A8-A 15 are ignored. Consider
the following example.

Exan:iple

Relocation Register = 10100111 (OA7H)

The 82370 will respond to memory addresses in
the range of A6XXOOH to A60XXFFH (where 'X' is
don't care).

This scheme implies that the internal registers can
be located in any even, contiguous, 2**16 byte page
of the memory space.

8.2 Address Decoding

As mentioned previously, the 82370 .internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82370 always decodes the lower 8 ad­
dress signals (SHE#, BLE #,A 1-A?) to determine if
any one of its registers is being accessed. If the ad­
dress does not correspond to any of its registers, the
82370 will not respond. This allows external devices
to be located within the 'holes' in the 82370 address
space. Note that there are several unused address­
es reserved for future Intel peripheral devices.

8.3 Chip-Select (CHPSEL #)

The Chip-Select signal (CHPSEL#) will go active
when the 82370 is addressed in a Slave bus

5-1410

intJ 82370

----------------------------·---------·.·--------
----·------ ---------·----·---------------··-··

82370
NOT ACCESSED

T1 T2

-·--·--·-·----·--------·---------------,

T1

82370
ACCESSED- 2 WAIT STATES

T2 T2 T2

290164-95
L-----------------·-·---------------------~

Figure 8-2. CHPSEL# Timing

cycle (either read or write), or in an interrupt ac­
knowledge cycle in which the 82370 will drive the
Data Bus. For a given bus cycle, CHPSEL# be­
comes active and valid in the first T2 (in a non-pipe­
lined cycle) or in T1 P (in a pipelined cycle). It will
stay valid until the cycle is terminated by READY#
driven active. As CHPSEL# becomes valid well be­
fore the 82370 drives the Data Bus, it can be used to
control the transceivers that connect the local CPU
bus to the system bus. The timing diagram of
CHPSEL # is shown in Figure 8-2.

9.0 CPU RESET AND SHUTDOWN
DETECT

The 82370 will activate the CPURST signal to reset
the host processor when one of the following condi­
tions occurs:

- 82370 RESET is active;

- 82370 detects a 80376 Shutdown cycle (this fea-
ture can be disabled);

- CPURST software command is issued to 80376.

Whenever the CPURST signal is activated, the
82370 will reset its own internal Slave-Bus state ma­
chine.

9.1 Hardware Reset

Following a hardware reset, the 82370 will assert its
CPURST output to reset the host processor. This
output will stay active for as long as the RESET input
is active. During a hardware reset, the 82370 internal
registers will be initialized as defined in the corre­
sponding functional descriptions.

9.2 Software Reset

CPURST can be generated by writing the following
bit pattern into 82370 register location 64H.

07 DO
1111XXXO

The Write operation into this port is considered as
an 82370 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to this port.
This signal will last for 62 CLK2 periods. The f!2370
should not be accessed until the CPURST is deacti­
vated.

This internal port is Write-Only and the 82370 will
not respond to a Read operation to this location.
Also, during a software reset command, the 82370
will reset its Slave-Bus state machine. However, its
internal registers remain unchanged. This allows the
operating system to distinguish a 'warm' reset by
reading any 82370 internal register previously pro­
grammed for a non-default value. The Diagnostic
registers can be used for this purpose (see Internal
Control and Diagnostic Ports),

9.3 Shutdown Detect

The 82370 is constantly monitoring the Bus Cycle
Definition signals (M/10#, DIC#, W/R#) and is
able to detect when the 80376 is in a Shutdown bus
cycle, Upon detection of a processor shutdown, the
82370 will activate the CPURST output for 62 CLK2
periods to reset the host processor. This signal is
generated after the Shutdown cycle is terminated by
the READY# signal.

5-1411

I

intef 82370

Although the 82370 Wait State Generator will not
automatically respond to a Shutdown (or Halt) cycle,
the Wait State Control inputs (WSCO, WSC1) can be
used to determine the number of wait states in the
same manner as other non-~2370 bus cycles.

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control
Port at address 61 H (see Internal. Control and Diag­
nostic Ports). This feature is disabled upon a hard­
ware reset of the 82370. As in the case of Software
Reset, the 82370 will reset its Slave-Bus state ma­
chine but will not change any of its internal register
contents.

10.0 INTERNAL CONTROL AND
DIAGNOSTIC PORTS

10.1 Internal Control Port

The format of the Internal Control Port of the 82370
is shown in Figure 10-1 .. This Control Port is used to
enable/ qisable the Processor Shutdown Detect
mechanism as well as controlling the Gate inputs of
the Timer 2 and 3. Note that this is a Write-Only port.
Therefore, the 82370 will not respond to a read op­
eration to this port. Upon hardware reset, this port
will be cleared; i.e., the Shutdown Detect feature
and the Gate inputs of Timer 2 and 3 are disabled.

Port Address: 61 H (Write only)

10.2 Diagnostic Ports

Two 8-bit read/write Diagnostic Ports are provided
in the 82370. These are two storage registers and
have no effect on the operation of the 82370. They
can be used to store checkpoint data or error codes
in the power-on sequence and in the diagnostic
service routines. As mentioned in the CPU RESET
AND SHUTDOWN DETECT section, these Diagnos­
tic Ports can be used to distinguish between 'cold'
and 'warm' reset. Upon hardware reset, both Diag­
nostic Ports are cleared. The address map of these
Diagnostic Ports is shown in Figure 10-2.

Port Address

Diagnostic Port 1 (Read/Write) 80H
Diagnostic Port 2 (Read/Write) 88H

Figure 10-2. Address Map of Diagnostic Ports

11.0 INTEL RESERVED 1/0 PORTS

There are nineteen 1/0 ports in the 82370 address
space which are reserved for Intel future peripheral
device use only. Their address locations are: 10H,
12H, 14H, 16H, 2AH, 3DH, 3EH, 45H, 46H, 76H,
77H, ?DH, ?EH, CCH, CDH, DOH, D2H, 1;)4H, and
D6H. These addresses should not be. used in the
system since the 82370 will respond to read/write
operations to these locations and bus contention
may occur if any peripheral is assigned to the same
address location .

. 07 D6 D5 D4 03 02 D1 DO

SHUTDOWN
ENABLE/
DISABLE

SHUTDOWN
DETECT·

0- DISABLE
1 - ENABLE

COUNTER 3
GATE
INPUT

COUNTER 3
GATE

0- DISABLE
1 - ENABLE

NOT USED

Figure 10-1. Internal Control Port

5-1412

COUNTER 2
GATE
INPUT

COUNTER 2
GATE

0- DISABLE
1 - ENABLE

infef 82370

12.0 PACKAGE THERMAL
SPECIFICATIONS

calculated from the Ojc and Oja from the following
equations:

The intel 82370 Integrated System Peripheral is
specified for operation when case temperature is
within the range of 0°C to 78°C for the ceramic
132-pin PGA package, and 68°C for the 100-pin
plastic package. The case temperature may be mea­
sured in any environment, to determine whether the
82370 is within specified operating range. The case
temperature should be measured at the center of
the top surface opposite the pins.

The ambient temperature is guaranteed as long as
Tc is not violated. The ambient temperature can be

TJ = Tc + P*Ojc

TA= Ti·- P*Oja

Tc= Ta+ P*[Oja - Oicl

Values for Oja and Ojc are given in Table 12.1 for the
100-lead fine pitch. Oja is given at various airflows.
Table 12.2 shows the maximum Ta allowable (with­
out exceeding T cl at various airflows. Note that Ta
can be improved further by attaching "fins" or a
"heat sink" to the package. P is calculated using the
maximum hot Ice·

Table 12.1 82370 Package Thermal Characteristics
Thermal Resistances (°C/Watt) O;c and Oja

I -· I I 3 I 3 I
Package

Oja Versus Airflow-ft3/min (m3/sec)
Ojc

0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100L Fine Pitch 7 33 27 24 21 18 17
1-------t---1--r------i ·------i---·--;----i---,
132L PGA 2 21 17 14 12 11 10
'-----·--'---~-~---'---~---~-~--~

Table 12.2 82370 Maximum Allowable Ambient
Temperature at Various Airflows

I I I 3 I 3 I
Package Ojc

T 8 (c) Versus Airflow-ft3/min (m3/sec)

1 OOL Fine Pitch

132L PGA

1 OOL PQFP Pkg:
Tc~ Ta+ P'(9ja - Ojc)
Tc= 63 + 1.21(33 - 7)
Tc= 63 + 1.21(26)
Tc= 63 + 31.46
Tc=94'C

0
(0)

7 63

2 74

200 400 600
(1.01) (2.03) (3.04)

74 79 85
--· j---

83 88 93

132L PGA Pkg:
Tc-= Ta+ P*(8ja ,_ 6jd
Tc=74+1.21(21- 2)
Tc= 74 + 1.21(19)
Tc = 74 + 22.99
Tc= 96'C

5-1413

800 1000
(4.06) (5.07)

91 92

97 99

I

82370

13.0 ELECTRICAL SPECIFICATIONS

82370 D.C. Specifications Functional Operating Range:
Vee = 5.0V ± 10%; T CASE = 0°C to .96°C for 132-pin PGA, 0°C to 94°C for 100-pin plastic

Symbol Parameter Description Min Max Units Notes

V1L Input Low Voltage -0.3 0.8 v (Note 1)

V1H Input High Voltage 2.0 Vee+ 0.3 v
V1Le CLK2 Input Low Voltage -0.3 0.8 v (Note 1)

V1HC CLK2 Input High Voltage Vee - 0.8 Vee+ 0.3 v
Vol Output Low Voltage

loL = 4 mA: 0.45 v
A1-23· Do-15, BHE#, BLE#

loL = 5mA: 0.45 v
All Others

VoH Output High Voltage

loH = .:..1 mA A23-A1, D15-Do, BHE#, BLE# 2.4 v (Note 5)

loH = -0.2mA A23-A1. D15-Do, BHE#, BLE# Vee - o.5 v (Note 5)

loH = -0.9 mA All Others 2.4 v (Note 5)

loH = -0.18 mA All Others Vee - 0.5 v (Note 5)

lu Input Leakage Current ±15 µA
All Inputs Except:

IRQ11 #-IRQ23 #
EOP#, TOUT2/IRQ3#
DREQ4/IRQ9#

lu1 Input Leakage Current 10 -300 µA 0 < V1N <Vee
Inputs: (Note 3)

IRQ11 #-IRQ23#
EOP#, TOUT2/IRQ3
DREQ4/IRQ9

lw Output Leakage Current ±15 µA 0 < V1N <Vee

Ice Supply Current (CLK2 = 32 MHz) 220 mA (Note 4)

C1 Input Capacitance 12 pF (Note 2)

CcLK CLK2 Input Capacitance. 20 pF (Note 2)

NOTES:
1 . Minimum value is not 1 00% tested.
2. fc = 1 MHz; sampled only.
3. These pins have weak internal pullups. They sould not be left floating.
4. Ice is specified with inputs driven to CMOS levels, and outputs driving CMOS loads. Ice may be higher if inputs are driven
to TTL levels, or if outputs are driving TIL loads.
5. Tested at the minimum operating frequency of the part.

5-1414

infef

CLK2 [2V

3.0V
VALID

OUTPUT n
ov

LEGEND:
A-Maximum output delay specification
8-Minimum output delay specification
C-Minimum input setup specification
D-Minimum input hold specification

82370

2V

-A

-a--
MIN MAX

1.SV 1.SV VALID
OUTPUT n+1

290164-97

Figure 13·1. Drive Levels and Measurement Points for A.C. Specification

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 10%; T CASE = 0°C to 96°C for 132-pin PGA, 0°C to 94°C for
100-pin plastic

Symbol Parameter Description Min Max Units Notes

Operating Frequency 1 /(t1 a x 2) 4 16 MHz

t1 CLK2 Period 31 125 ns

t2a CLK2 High Time 9 ns At2.0V
t2b CLK2 High Time 5 ns At Vee - 0.8V
t3a CLK2 Low Time 9 ns At 2.0V
t3b CLK2 Low Time 7 ns At0.8V
t4 CLK2 Fall Time 7 ns Vee - o.av too.av
t5 CLK2 Rise Time 7 ns o.av to Vee - o.av

t6 A1-A23, SHE#, SLE# 4 36 ns CL= 120 pF
EDACKO-EDACK2 Valid Delay

t7 A1-A23, SHE#, SLE# 4 40 ns (Note 1)
EDACKO-EDACK3 Float Delay

ta A1-A23, SHE#, SLE# Setup Time 6 ns
t9 A1-A23, SHE#, SLE# Hold Time 4 ns

t10 W/R#, M/10#, D/C# Valid Delay 4 33 ns CL= 75 pF
t11 W/R#, M/10#, DIC# Float Delay 4 35 ns (Note 1)

5-1415

I

intJ 82370

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee= 5.0V ± 10%; TeASE = 0°C to 96°C for 132-pin PGA, O"Cto 94°C for
100-pin plastic (Continued) ·

Symbol Parameter Description Min Max Units Notes.

t12 W/R#, M/10#, D/C# Setup Time 6 ns
t13 W/R#, M/10#, DIC# Hold Time 4 ns

t14 ADS# Valid Delay 6 33 ns CL= 50pF
t15 ADS# Float Delay 4 35 ns (Note 1)

t16 ADS# Setup Time 21 ns
t17 ADS# Hold Time 4 ns

t18 Slave Mode 00-015 Read Valid 3 46 ns CL= 120pF
t19 Slave Mode 00-015 Read Float 6 35 ns (Note 1)

t20 Slave Mode 00-015 Write Setup 31 ns
t21 Slave Mode 00-015 Write Hold 26 ns

t22 Master Mode 00-015 Write Valid 4 40 ns CL= 120pF
t23 Master Mode 00-015 Write Float 4 35 ns (Note 1)

t24 Master Mode D0-015 Read Setup 8 ns
t25 Master Mode 00-015 Read Hold 6 ns

t26 READY# Setup Time 19 ns
t27 READY#. Hold Time 4 ns

t28 WSCO-WSC1 Setup Time 6 ns
t29 WSCO-WSC1 Hold Time 21 ns

t30 RESET Setup Time 13 ns
t31 RESET Hold Time 4 ns·

t32 READYO# Valid Delay 4 31 ns CL= 25pF

t33 CPURST Valid Delay (Falling Edge Only) 2 .18 ns CL= 50 pF

t34 HOLD Valid Delay 5 33 ns CL= 100pF

t35 HLDA Setup Time 21 ns
t36 HLDA Hold Time 6 ns

t37a EOP # Setup (Synchronous) 21 ns
t38a EOP # Hold (Synchronous) 6 ns

t37b EOP # Setup (Asynchronous) 11 ns
t38b EOP# Hold (Asynchronous) 11 ns

t39 EOP# Valid Delay (Falling Edge Only) 5 38 ns CL= 100 pF
t40 EOP# Float Delay 5 40 ns (Note 1)

t41a OREO Setup (Synchronous) 21 ns
t42a OREO Hold (Synchronous) 4 ns

t41b OREO Setup (Asynchronous) 11 ns
t42b OREO Hold (Asynchronous) 11 ns

t43 INT Valid Delay from IROn 500 ns

t44 NA# Setup Time 5 ns
t45 NA# Hold Time 15 ns

5-1416

intJ 82370

82370 A.C. Specifications These AC. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 10%; T CASE = O'C to 96°C for 132-pin PGA, O'C to 94°C for
100-pin plastic (Continued)

Symbol Parameter Description Min Max Units Notes

t46 CLKIN Frequency DC 10 MHz
t47 CLKIN High Time 30 ns 2.0V
t48 CLKIN Low Time 50 ns 0.BV
t49 CLKIN Rise Time 10 ns O.BV to 3.7V
t50 CLKIN Fall Time 10 ns 3.7V to O.BV

TOUT1 #/REF# Valid Delay
t51 from CLK2 (Refresh) 4 36 ns CL= 120 pF
t52 from CLKIN (Timer) 3 93 ns CL= 120 pF

t53 TOUT2# Valid Delay 3 93 ns CL= 120 pf
(from CLKIN, Falling Edge Only)

t54 TOUT2 # Float Delay 3 36 ns (Note 1)

t55 TOUT3 # Valid Delay 3 93 ns CL= 120 pF
(from CLKIN)

t56 CHPSEL# Valid Delay 1 35 ns CL= 25 pF

NOTE:
1. Float condition occurs when the maximum output current becomes less than ILQ in magnitude. Float delay is not tested.
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads .

82370
OUTPUT <>----i

~CL
290164-98

CL indicates all parasitic capacitances.

290164-99

Figure 13-2. A.C. Test.Load Figure 13·3

5-1417

•

infef 82370

INPUT SET- UP AND HOLD TIMING (CONT.~

Tx
PHI 1 PHl2 PHI 1 PHl2 PHI 1 PHl2

CLK2

NA#

WSC(0-1)

PHI 1 PHl2 PHl1 PHl2 PHl1 PHl2

CLK2

A(1 -A23), BHE/I, BLE#

W/R#, t.l/10#, D/C#

READY#

ADS#

T35 T36

HLDA

D(O- 15) (Dt.IA Read)

D(o- 15) (CPU Write)

EOP#

T41 T42

DREQ(0-7)

290164-AO

Figure 13-4. Input Setup and Hold Timing

5-1418

intJ 82370

Tx
PH!x PHl2 PHI 1 PHl2

CLK2
T31t30

RESET --------- -

Hold set-u-p--------------------

Tx
PHl2 I PHI 1 ! PHl2

CLK2
- r- T33 MIN.

CPURST -------------+-..,.;..,.......,..
!..- T33 MAX.

290164-A1

Figure 13·5. Reset Timing

PHI 1 PHl2 PHI 1 PHl2 PHI 1 PHl2

CLK2

A1 - 23, BHE#, BLE# --;------------j-"""~~l\IJ'-----+-~------

EDACK(0- 2) --4-----~---------4--/I'°'~~--~--~--.+-~---------

HOLD

CHPSEL#

Figure 13-6. Address Output Delays

5-1419

290164-A2

intJ 82370

Tx Tx
PHI 1 PHl2 PHI 1 PHl2 PHl1 PHl2

D(0-15)(CPU READ)

D(0-15)(DMA WRITE)

D(0-15)(DMA WRITE)

D(0-15)(DMA WRITE)

290164-A3

Figure 13-7. Data Bus Output Delays

290164-M

Figure 13-8. Control Output Delays

5-1420

intJ

CLKIN

TOUT1

82370

~~~~~~~~~"""'1 ............... ~~~~~~~~~~~~~~~~~-

290164-A5 

Figure 13•9. Timer Output Delays 

I 

5·1421 



intef 82370 

APPENDIX A 
PORTS LISTED BY ADDRESS 

Port Address 
Description 

(HEX) 

00 Read/Write OMA Channel 0 Target Address, AO-A 15 
01 Read/Write OMA Channel O Byte Count, BO-B15 
02 Read/Write OMA Channel 1 Target Address, AO-A 15 
03 Read/Write OMA Channel 1 Byte Count, BO-B15 
04 Read/Write OMA Channel 2 Target Address, AO-A 15 
05 Read/Write OMA Channel 2 Byte Count, BO-B15 
06 Read/Write OMA Channel 3 Target Address, AO-A 15 
07 Read/Write OMA Channel 3 Byte Count, BO-B15 
08 Read/Write OMA Channel 0-3 Status/Command I Register 
09 Read/Write OMA Channel 0-3 Software Request Register 
OA Write OMA Channel 0-3 Set-Reset Mask Register 
OB Write OMA Channel 0-3 Mode Register I 
oc Write Clear Byte-Pointer FF 
OD Write OMA Master-Clear 
OE Write OMA Channel 0-3 Clear Mask Register 
OF Read/Write OMA Channel 0-3 Mask Register 
10 Intel Reserved 
11 Read/Write OMA Channel O Byte Count, B16-B23 
12 Intel Reserved 
13 Read/Write OMA Channel 1 Byte Count, B16-B23 
14 Intel Reserved 
15 Read/Write OMA Channel 2 Byte Count, B16-B23 
16 Intel Reserved 
17 Read/Write OMA Channel 3 Byte Count, B16-B23 
18 Write OMA Channel 0-3 Bus Size Register 
19 Read/Write OMA Channel 0-3 Chaining Register 
1A Write OMA Channel 0-3 Command Register II 
18 Write OMA Channel 0-3 Mode Register II 
1C Read/Write Refresh Control Register 
1E Reset Software Request Interrupt 
20 Write Bank B ICW1, OCW2 or OCW3 

Read Bank B Poll, Interrupt Request or In-Service 
Status Register 

21 Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 

22 Read Bank B ICW2 
28 Read/Write IRQ8 Vector Register 
29 Read/Write IRQ9 Vector Register 
2A Reserved 

5-1422 



inter 82370 

Port Address 
Description 

(HEX) 

2B Read/Write IRQ11 Vector Register 
2C Read/Write IRQ12 Vector Register 
20 Read/Write IRQ13 Vector Register 
2E Read/Write IRQ14 Vector Register 
2F Read/Write IRQ15 Vector Register 
30 Write Bank A ICW1, OCW2 or OCW3 

Read Bank A Poll, Interrupt Request or In-Service 
Status Register 

31 Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 

32 Read Bank A ICW2 
3S Read/Write IRQO Vector Register 
39 Read/Write IRQ1 Vector Register 
3A Read/Write IRQ1 .5 Vector Register 
3B Read/Write IRQ3 Vector Register 
3C Read/Write IRQ4 Vector Register 
30 Reserved 
3E Reserved 
3F Read/Write IRQ7 Vector Register 
40 Read/Write Counter 0 Register 
41 Read/Write Counter 1 Register 
42 Read/Write Counter 2 Register 
43 Write Control Word Register I-Counter 0, 1, 2 
44 Read/Write Counter 3 Register 
45 Reserved 
46 Reserved 
47 Write Word Register II-Counter 3 
61 Write Internal Control Port El 
64 Write CPU Reset Register (Data-1111 XXXOH) 
72 Read/Write Wait State Register O 
73 Read/Write Wait State Register 1 
74 Read/Write Wait State Register 2 
75 Read/Write Refresh Wait State Register 
76 Reserved 
77 Reserved 
70 Reserved 
7E Reserved 
7F Read/Write Relocation Register 
so Read/Write Internal Diagnostic Port O 
S1 Read/Write OMA Channel 2 Target Address, A 16-A23 
S2 Read/Write OMA Channel 3 Target Address, A16-A23 
S3 Read/Write OMA Channel 1 Target Address, A 16-A23 
S7 Read/Write OMA Channel 0 Target Address, A 16-A23 
SS Read/Write Internal Diagnostic Port 1 
S9 Read/Write OMA Channel 6 Target Address, A 16-A23 
SA Read/Write OMA Channel 7 Target Address, A 16-A23 
SB Read/Write OMA Channel 5 Target Address, A 16-A23 
SF ..:::::::..---- Read/Write OMA Channel 4 Target Address, A16-A23 

5-1423 



intef 82370 

Port Address Description 
(HEX) 

90 Read/Write OMA Channel O Requester Address, AO-A15 
91 Read/Write OMA Channel 0 Requester Address, A16-A23 
92 Read/Write OMA Channel 1 Requester Address, AO-A 15 
93 Read/Write OMA Channel 1 Requester Address, A16-A23 
94 Read/Write OMA Channel 2 Requester Address, AO-A15 
95 Read/Write OMA Channel 2 Request~r Address, A 16-A23 
96 Read/Write OMA Channel 3 Requester Address, AO-A 15 
97 Read/Write OMA Channel 3 Requester Address, A 16-A23 
9B Read/Write OMA Channel 4 Requester Address, AO-A15 
99 ' Read/Write OMA Channel 4 Requester Address, A 16-A23 
9A Read/Write OMA Channel 5 Requester Address, AO-A15 
9B Read/Write OMA Channel 5 Requester Address, A16-A23 
9C Read/Write OMA Channel 6 Requester Address, AO-A 15 
90 Read/Write OMA Channel 6 Requester Address, A 16-A23 
9E Read/Write OMA Channel 7 Requester Address, AO-A15 
9F Read/Write OMA Channel 7 Requester Address, A16-A23 
AO Write Bank C ICW1, OCW2 or OCW3 

Read Bank C Poll, Interrupt Request or In-Service 
Status Register 

A1 Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 

A2 Read Bank C ICW2 
AB Read/Write IRQ16 Vector Register 
A9 Read/Write IRQ17 Vector Register 
AA Read/Write IRQtB Vector Register 
AB Read/Write IRQ19 Vector Register 
AC Read/Write IRQ20 Vector Register 
AD Read/Write IRQ21 Vector Register 
AE Read/Write IRQ22. Vector Register 
AF Read/Write IRQ23 Vector Register 
co Read/Write OMA Channel 4 Target Address, AO-A 15 
C1 Read/Write OMA Channel 4 Byte Count, BO-B15 
C2 Read/Write OMA Channel 5 Target Address, AO-A 15 
C3 Read/Write OMA Channel 5 Byte Count, BO-B15 
C4 Read/Write OMA Channel 6 Target Address, AO-A 15 
cs Read/Write OMA Channel 6 Byte Count, BO-B15 
C6 Read/Write OMA Channel 7 Target Address, AO-A 15 
C7 Read/Write OMA Channel 7 Byte Count, BO-B15 
CB Read OMA Channel 4-7 Status/Command I Register 
C9 Read/Write OMA Channel 4-7 Software Request Register 
CA Write OMA Channel 4-7 Set-Reset Mask Register 
CB Write OMA Channel 4-7 Mode Register I 
cc Reserved 
CD Reserved 
CE Write OMA Channel 4-7 Clear Mask Register 
CF Read/Write OMA Channel 4-7 Mask Register 
DO Intel Reserved 
01 Read/Write OMA Channel 4 Byte Count, B16-B23 
02 Intel Reserved 
03 Read/Write OMA Channel 5 Byte Count, B16-B23 

5-1424 



intef 82370 

Port Address 
Description 

(HEX) 

D4 Intel Reserved 
D5 Read/Write DMA Channel 6 Byte Count, B16-B23 
D6 Intel Reserved 
D7 Read/Write DMA Channel 7 Byte Count, B16-B23 
DB Write DMA Channel 4-7 Bus Size Register 
D9 Read/Write DMA Channel 4-7 Chaining Register 
DA Write DMA Channel 4-7 Command Register II 
DB Write OMA Channel 4-7 Mode Register II 

El 

5-1425 



intJ 82370 

APPENDIX B 
PORTS LISTED BY FUNCTION 

Port Address 
Description (HEX) 

DMA CONTROLLER 

OD Write OMA Master-Clear 
oc Write OMA Clear Byte-Pointer FF 

08 Read/Write OMA Channel 0-3 Status/Command I Register 
CB Read/Write OMA Channel 4-7 Status/Command I Register 
1A Write OMA Channel 0-3 Command Register II 
DA Write OMA Channel 4-7 Command Register II 

~ 

OB Write OMA Channel 0-3 Mode Register I 
CB Write OMA Channel 4-7 Mode Register I 
1B Write OMA Channel 0-3 Mode Register II 
DB Write OMA Channel 4-7 Mode Register II 

09 Read/Write OMA Channel 0-3 Software Request Register 
C9 Read/Write OMA Channel 4-7 Software Request Register 
1E Reset Software Request Interrupt 

OE Write OMA Channel 0-3 Clear Mask Register 
CE Write OMA Channel 4-7 Clear Mask Register 
OF Read/Write OMA Channel 0-3 Mask Register 
CF Read/Write OMA Channel 4-7 Mask Register 
OA Write OMA Channel 0-3 Set-Reset Mask Register 
CA Write OMA Channel 4-7 Set-Reset Mask Register 

18 Write OMA Channel 0-3 Bus Size Register 
08 Write OMA Channel 4-7 Bus Size Register 

19 Read/Write OMA Channel 0-3 Chaining Register 
09 Read/Write OMA Channel 4-7 Chaining Register 

00 Read/Write OMA Channel 0 Target Address, AO-A 15 
87 Read/Write OMA Channel 0 Target Address, A 16-A23 
01 Read/Write OMA Channel 0 Byte Count, BO-B15 
11 Read/Write OMA Channel 0 Byte Count, B16-B23 
90 Read/Write OMA Channel 0 Requester Address, AO-A 15 
91 Read/Write OMA Channel 0 Requester Address, A16-A23 

5-1426 



intJ 82370 

Port Address . . 
·--------------··----·-·-·--1·-·--·--·--··--------·---·-···----··- ········-·-·--- ··--··--·-··-·-- -----------·-·-·-

(HEX) Description 
---·-·--···- ------··---· --·---~·---

OMA CONTROLLER (Continued) 
--------·----·----·---------· - __ ____, 

02 Read/Write DMA Channel 1 Target Address, AO- A 15 
B3 Read/Write DMA Channel I T a1yet Address, A 16 A23 
03 Read/Write DMA Channel i Byte Count, 80-815 
13 Read/Write DMA Channel 1 Byte Count, 816-823 
92 Read/Write DMA Channel 1 Requester Address, AO-A 15 
93 Read/Write OMA Channel 1 Requester Address, A16-A23 

04 
B1 
05 
15 
94 
95 

06 
B2 
07 
17 
96 
97 

co 
BF 
C1 
01 
9B 
99 

C2 
BB 
C3 
03 
9A 
98 

C4 
B9 
C5 
05 
9C 
90 

Read/Write OMA Channel 2 Target Address, AO-A 15 
Read/Write DMA Channel 2 Target Address, A16-·A23 
Read/Write OMA Channel 2 Byte Count, 80-815 
Read/Write OMA Channel 2 Byte Count, B16-B23 
Read/Write OMA Channel 2 Requester Address, AO-A 15 
Read/Write OMA Channel 2 Requester Address, A 16-A23 

Read/Write OMA Channel 3 Target Address, AO-A 15 
Read/Write OMA Channel 3 Target Address, A 16-A23 
Read/Write OMA Channel 3 Byte Count, BO-B15 
Read/Write OMA Channel 3 Byte Count, B16-B23 
Read/Write OMA Channel 3 Requester Address, AO-A 15 
Read/Write OMA Channel 3 Requester Address, A16-A23 

Read/Write OMA Channel 4 Target Address, AO-A 15 
Read/Write OMA Channel 4 Target Address, A16-A23 
Read/Write OMA Channel 4 Byte Count, BO -B15 
Read/Write OMA Channel 4 Byte Count, B 16-B23 
Read/Write OMA Channel 4 Requester Address, AO-A 15 
Read/Write OMA Channel 4 Requester Address, A 16-A23 

Read/Write OMA Channel 5 Target Address, AO-A15 
Read/Write OMA Channel 5 Target Address, A16-A23 
Read/Write OMA Channel 5 Byte Count, 80-B15 
Read/Write OMA Channel 5 Byte Count, 816-B23 
Read/Write OMA Channel 5 Requester Address, AO-A 15 
Read/Write OMA Channel 5 Requester Address, A16-A23 

Read/Write OMA Channel 6 Target Address, AO-A15 
Read/Write OMA Channel 6 Target Address, A16-A23 
Read/Write OMA Channel 6 Byte Count, BO-B15 
Read/Write OMA Channel 6 Byte Count, B16-B23 
Read/Write OMA Channel 6 Requester Address, AO-A 15 
Read/Write OMA Channel 6 Requester Address, A16-A23 

C6 Read/Write OMA Channel 7 Target Address, AO-·A15 
BA l Read/Write OMA Channel 7 Target Address, A16-A23 
C7 Read/Write OMA Channell Byte Count, 80-815 
07 Read/Write OMA Channell Byte Count, 816-823 
9E Read/Write OMA Channel 7 Requester Address, AO-A 15 

.__ _____ 9~--·---- ___ R_e_ad_l_W_r_ite_OM_~_<?~~-~.~.L~.8.~~~t~~-~~~~~~s,__~_16_·-_A_2_3 __ 

5-1427 



intef 82370 

Port Address 
Description 

(HEX) 

INTERRUPT CONTROLLER 

20 Write Bank B ICW1, OCW2 or OCW3 
Read Bank B Poll, Interrupt Request or In-Service 
Status Register 

21 Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 

22 Read Bank B ICW2 
28 'Read/Write IRQ8 Vector Register 
29 Read/Write IRQ9 Vector Register 
2A Reserved 
2B Read/Write IRQ11 Vector Register 
2C Read/Write IRQ12 Vector Register 
2D Read/Write IRQ13 Vector Register 
2E Read/Write IRQ14 Vector Register 
2F Read/Write IRQ15 Vector Register 

AO Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 
Status Register 

A1 Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 

A2 Read Bank C ICW2 
A8 Read/Write IRQ16 Vector Register 
A9 Read/Write IRQ17 Vector Register 
AA Read/Write IRQ18 Vector Register 
AB Read/Write IRQ19 Vector Register 
AC Read/Write IRQ20 Vector Register 
AD Read/Write IRQ21 Vector Register 
AE Read/Write IRQ22 Vector Register 
AF Read/Write IRQ23 Vector Register 

30 Write Bank A ICW1, OCW2 or OCW3 
Read Bank A Poll, Interrupt Request or In-Service 
Status Register 

31 Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 

32 Read Bank A ICW2 
38 Read/Write IRQO Vector Register 
39 Read/Write IRQ1 Vector Register 
3A Read/Write IRQ1 .5 Vector Register 
3B Read/Write IRQ3 Vector Register 
3C Read/Write IRQ4 Vector Register 
3D Reserved 
3E Reserved 
3F Read/Write IRQ7 Vector Register 

5-1428 



intef 82370 

Port Address 
Description 

(HEX) 

PROGRAMMABLE INTERVAL TIMER 

40 Read/Write Counter O Register 
41 Read/Write Counter 1 Register 
42 Read/Write Counter 2 Register 
43 Write Control Word Register I-Counter 0, 1, 2 
44 Read/Write Counter 3 Register 
47 Write Word Register II-Counter 3 

CPU RESET 

64 Write CPU Reset Register (Data-1111 XXXOH) 

WAIT STATE GENERATOR 

72 Read/Write Wait State Register 0 
73 Read/Write Wait State Register 1 
74 Read/Write Wait State Register 2 
75 Read/Write Refresh Wait State Register 

DRAM REFRESH CONTROLLER 

1C Read/Write Refresh Control Register 

INTERNAL CONTROL AND DIAGNOSTIC PORTS 

61 Write Internal Control Port 
80 Read/Write Internal Diagnostic Port O 
88 Read/Write Internal Diagnostic Port 1 

RELOCATION REGISTER 
-

7F Read/Write Relocation Register 

INTEL RESERVED PORTS 

10 Reserved 
12 Reserved 
14 Reserved 
16 Reserved 
2A Reserved 
3D Reserved 
3E Reserved 
45 Reserved 
46 Reserved 
76 Reserved 
77 Reserved 
7D Reserved 
7E Reserved 
cc Reserved 
CD Reserved 
DO Reserved 
D2 Reserved 
D4 Reserved 
D6 Reserved 

5-1429 



intJ 

1. BHE# IN MASTER MODE. 

82370 

APPENDIX C 
SYSTEM NOTES 

In Master Mode, BHE# will be activated during DMA to/from 8-bit devices residing at even locations when 
the remaining byte count is greater than 1. 

For example, if an 8-bit device is located at 00000000 Hex and the number of bytes to be transferred is > 1, 
the first address/SHE# combination will be 00000000/0. In some systems this will cause the bus controller 
to perform two 8-bit accesses, the first to 0000000 Hex and the second to 00000001 Hex. However, the 
82370's DMA will only read/write one byte. This may or may not cause a problem in tlie system depending 
on what is located at 00000001 Hex. 

Solution: 

There are two solutions if BH # active is unacceptable. Of the two, number 2 is the cleanest and most 
recommended. 

1 . If there is an 8-bit device that uses DMA located at an even address, do not use that· address + 1. The 
limitation of this solution is that the user must have complete control over what addresses will be used in 
the end system. 

2. Do not allow the Bus Controller to split cycles for the DMA. 

82370 TIMER UNIT NOTES 

The 82370 DMA Controller with Integrated System Peripherals is functionally inconsistent with the data sheet. 
This document explains the behavior of the 82370 Timer Unit and outlines subsequent limitations of the timer 
unit. This document also provides recommended workarounds. 

1.0 WRITE CYCLES TO THE 82370 TIMER UNIT: 

This errata applies only to SLAVE WRITE cycles to the 82370 timer unit. During these cycles, the data being 
written into the 82370 timer unit may be corrupted if asynchronous CLKIN is not inhibited during a certain 
"window" of the write cycle. 

5-1430 



82370 

1.1 Description 

Please refer to Figure C-2. 

During write cycles to the 82370 timer unit, the 82370 translates the 80376 interface signals such as #ADS, 
#W/R, #M/10, and #DIC into several internal signals that control the operation of the internal sub-blocks 
(e.g. Timer Unit). 

The 82370 timer uint is controlled by such internal signals. These internal signals are generated and sampled 
with respect to two separate clock signals: CLK2 (the system clock) and CLKIN (the 82370 timer unit clock). 

Since the CLKIN and CLK2 clock signals are used internally to generate control signals for the interface to the 
timer unit, some timing parameters must be met in order for the interface logic to function properly. 

Those timing parameters are met by inhibiting the CLKIN signal for a specific window during Write Cycles to 
the 82370 Timer Unit. 

The CLKIN signal must be inhibited using external logic, as the GATE function of the 82370 timer unit is not 
guaranteed to totally inhibit CLKIN. 

1.2 Consequences 

This CLKIN inhibits circuitry guarantees proper write cycles to the 82370 timer unit. 

Without this solution, write cycles to the 82370 timer unit could place corrupted data into the timer unit 
registers. This, in turn, could yield inaccurate results and improper timer operation. 

The proposed solution would involve a hardware modification for existing systems. 

1.3 Solution 

A timing waveform (Figure C-3) shows the specific window during which CLKIN must be inhibited. Please note 
that CLKIN must only be inhibited during the window shown in Figure C-3. This window is defined by two AC 
timing parameters: 

ta = 9 ns 

tb = 28 ns 

The proposed solution provides a certain amount of system "guardband" to make sure that this window is 
avoided. 

PAL equations for a suggested workaround are also included. Please refer to the comments in the PAL codes 
for stated assumptions of this particular workaround. A state diagram (Figure C-4) is provided to help clarify 
how this PAL is designed. 

Figure C-5 shows how this PAL would fit into a system workaround. In order to show the effect of this work­
around on the CLKIN signal, Figure C-6 shows how CLKIN is inhibited. Note that you must still meet the CLKIN 
AC timing parameters (e.g. t47 (min), t48 (min)) in order for the timer unit to function properly. 

Please note that this workaround has not been tested. It is provided as a suggested solution. Actual solutions 
will vary from system to system. 

5-1431 

I 



intef 82370 

1.4 Long Term Plans 

Intel has no plans to fix this behavior in the 82370 timer unit. 

module Timer_82370_Fix 
flag •-r2', '-q2 1 , '-fl', '-t4', ·~wl,3,6,5,4,16,7,12,17,18,15,14' 

title '82370 Timer Unit CLKIN 
INHIBIT signal PAL Solution ' 

Timer_Unit_Fix device 'Pl6R6' ; 

"This PAL inhibits the CLKIN signal (that comes from an oscillator} 
"during Slave Writes to the 82370 Timer unit. 

"ASSUMPTION: This PAL assumes that an external system address 
decoder provides a signal to indicate that an 82370 
Timer Unit access is taking place. This input 
signal is called TMR in this, PAL. This PAL also 
assumes that this TMR signal occurs during a 
specific T-State. Please see Figure 2 of this 
document to see when this signal is expected to 
be active by this PAL. 

"NOTE: This PAL does not support pipelined 82370 SLAVE 
cycles. 

"(c) Intel Corporation 1989. This PAL is provided as a proposed 
•method of solving a certain 82370 Timer Unit problem. This PAL 
"has not been tested or validated. Please validate this solution 
•for your system and application. 
" 
"Input Pins" 

CLK2 
RESET 
TMR 

!RDY 
!ADS 

CLK 
W_R 
ncl 
nc3 
GNDa 
GNDb 
CLKIN_IN 

"Output Pins" 

pin 
pin 
pin 

pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 

Q_O pin 

CLKIN_OUT pin 
INHIBIT pin 
SO pin 
Sl pin 

"Declarations" 

l; "System Clock 
2; "Microprocessor RESET signal 
3; "Input from Address Decoder, indicating 

"an access to the timer unit of the 
"82370. 

4; "End of Cycle indicator 
5; "Address and control strobe 
6; "PHI2 clock 
7; "Write/Read Signal" 
8; "No Connect 0" 
9; "No Connect l" 

10; "Tied to ground, documentation only 
11; "Output enable, documentation only 
12; "Input-CLKIN directly from oscillator 

18; "Internal signal only, fed back to 
"PAL logic" 

17; "CLKIN signal fed to 82370 Timer Unit 
16; "CLKIN Inhibit signal 
15; •unused State Indicator Pin 
14; •unused State Indicator Pin 

5-1432 



intJ 
Valid_ADS 
Valid_RDY 
Timer_Acc 

ADS &: CLK 
ROY &: CLK 
TMR &: CLK 

82370 

"#ADS sampled in PHil of 80376 T-State 
"#ROY sampled in PHil of 80376 T-State 
"Timer Unit Access, as provided by 
•external Address Decoder• 

State_Diagram [INHIBIT, Sl, SO] 

state 000: 

state 001: 

state 010: 

state 110: 

state 111: 

state 011: 

state 100: 

state 101: 

EQUATIONS 

if RESET then 000 
else if Valid_ADS &: W_R then 001 
else 000; 

if RESET then 000 
else if Timer_Acc then 010 
else if !Timer_Acc then 000 
else 001; 

if RESET then 000 
else if CLK then 110 
else 010; 

if RESET then 000 
else if CLK then 111 
else 110; 

if RESET then 000 
else if CLK then 011 
else 111; 

if RESET then 000 
else if Valid_RDY then 000 
else 011; 

if RESET then 000 
else 000; 

if RESET then 000 
else 000; 

Q_O : = CLKIN_IN; "Latched incoming clock. This signal is used 
"internally to feed into the MUX-ing logic" 

CLKIN_OUT •= (INHIBIT &: CLKIN_OUT &: !RESET) 
+( !INHIBIT &: Q_O &: !RESET) ; 

"Equation for CLKIN_OUT. This 
"feeds directly to the 82370 Timer Unit.• 

END 

5-1433 

I 



intef 
82370 Timer Unit CLKIN 

INHIBIT signal PAL Solution 
Equations for Module Timer_82370_Fix 

Device Timer_UniLFix 

-Reduced Equations: 

82370 

!INHIBIT:= (!CLK & !INHIBIT # CLK & SO # RESET # !S1); 

!S1 : = (RESET 
. # INHIBIT & !S1 
# CLK & !INHIBIT & ! - ROY & SO & S1 
# !CLK & !S1 
# !S1 & !TMR 
# !SO & !S1); 

!SO : = (RESET 
# INHIBIT & !S1 
# CLK & !INHIBIT & !- ROY & S1 
#!INHIBIT & !SO & S1 
# !CLK & !SO 
# !INHIBIT & !SO & S1 
#so & !S1 
# !S1 & !W_R 
# -ADS&!S1); 

!Q_O : = (!CLKIN_IN); 

!CLKIN_OUT : = (RESET # !CLKIN_OUT & INHIBIT # !INHIBIT & !Q_O); 

5-1434 



intef 
82370 Timer Unit CLKIN 

INHIBIT signal PAL Solution 
Chip diagram for Module Timer_82370_Fix 

Device Timer_UniLFix 

end of module Timer_82370_Fix 

CLK2 

ADS# 

W/R# 

M/10# 

ROY# 

CLKIN 

00-07 

CLK2 

RESET 2 

TMR 3 

ROY 4 

ADS 5 

CLK 6 

W_R 7 

nc1 8 

nc3 9 

GNDe. 10 

--.,, 

..... 
--.,, 

..... 

82370 

P16R6 

20 

19 

18 Q_O 

17 CLKIN_OUT 

16 INHIBIT 

15 so 
14 St 

13 

12 CLKIN_IN 

11 GNDb 

290164-A9 

82370 

r--
00 
0 
lH 

" CS#, WR#, RD# and 
O> other internal signals 
to 
c 
Vl 

-::::. ..,, .___ 

TIMER 
UNIT 

Internal Data Bus 

290164-BO 

Figure C-2. Translation of 80376 Signals to Internal 82370 Timer Unit Signals 

5-1435 

I 



82370 

00-ITT --------- ---

READYO# 

INHIBIT 
+----------+---------+---------+----'l'----+------+---+"''--------i----------~ 

Figure C-3. 82370 Timer Unit Write Cycle 

[INHIBIT, S1, SO] 

{INHIBIT) 
290164-82 

Figure C-4. State Diagram for Inhibit Signal 

5-1436 



intef 82370 

CLK2/CLK 
CIRCUIT 

CLK2 CLK 

82370 
TIMER-PAL 

80376 16R8 

CLK2 CLK2 17 
CLK2 

CLK 
CLKIN 

RESET RESET 

ROY# ROY# 

ADS# ADS# 
CLKIN 

W/R# W/R# 
3 TMR 

12 
CLKIN 

ADDR DECODER 

TMR 

CLKIN OSC 
290164-83 

NOTE: 
This solution does not support pipelined 82370 SLAVE Cycles. 

Figure C-5. System with 82370 Timer Unit "INHIBIT" Circuitry 

INHIBIT 

CLKIN (derived) 

Should have gone 
HIGH here, but WOS; 
Inhibited. 

1
,.. _ _ _ _ _ ~==~ 

I 

CLKIN (original) \'-__ ___,/ \'----JI 
r!GURE D-5 {a): Inhibited CLKIN In an 82370 Timer Unit & CLKIN Minimum HIGH time. 

INHIB __ IT ____ _,f 

CLKIN (derived) 

CLKIN (original) 

Should hove gone 
LOW here, but was 
Inhibited. 

, _____ ! 

\ ___ _ 
\ 

290164-84 

Figure C-6. Inhibited CLKIN in an 82370 Timer Unit and CLKIN Minimum LOW Time 

5-1437 



i860™ Microprocessor Family 6 

I 



i86QTM 64-BIT MICROPROCESSOR 

• Parallel Architecture that Supports Up 
to Three Operations per Clock 
- One Integer or Control Instruction 

per Clock 
- Up to Two Floating-Point Results per 

Clock 

• High Performance Design 
- 33.3/40/50** MHz Clock Rates 
- 80 Peak Single Precision MFLOPs 
- 60 Peak Double Precision MFLOPs 
- 64-Bit External Data Bus 
- 64-Bit Internal Instruction Cache Bus 
- 128-Bit Internal Data Cache Bus 

• High Level of Integration on One Chip 
- 32-Bit Integer and Control Unit 
- 32/64-Bit Pipelined Floating-Point 

Adder and Multiplier Units 
- 64-Bit 3-D Graphics Unit 
- Paging Unit with Translation 

Lookaside Buffer 
- 4 Kbyte Instruction Cache 
- 8 Kbyte Data Cache 

• Compatible with Industry Standards 
-ANSI/IEEE Standard 754-1985 for 

Binary Floating-Point Arithmetic 
- 386™/i486™ Microprocessor Data 

Formats and Page Table Entries 
-JEDEC 168-pin Ceramic Pin Grid 

Array Package (see Packaging 
Outlines and Dimensions, order 
#231369) 

• Easy to Use 
- On-Chip Debug Register 
-Assembler, Linker, Simulator, 

Debugger, C and FORTRAN 
Compilers, FORTRAN Vectorizer, 
Scalar and Vector Math Libraries for 
both OS/2* and UNIX* Environments 

The Intel i860TM Microprocessor (order codes A80860-33 and A80860-40) delivers supercomputing perform­
ance in a single VLSI component. The 64-bit design of the i860 microprocessor balances integer, floating 
point, and graphics performance for applications such as engineering workstations, scientific computing, 3-0 
graphics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RISC 
design techniques, pipelined processing units, wide data paths, large on-chip caches, million-transistor design, 
and fast one-micron CHMOS IV silicon technology. 

A31-A3 063-DO CONTROL 

64 64 64 

32 FP FP FP 
src1 result src2 

64 
64 

DATA BUS 

32 
FP INSTRUCTION BUS FLOATING-POINT 

CONTROLLING UNIT &: 
FP -REGISTER FILE 

64 64 

CACHE LOW CACHE HIGH 
INSTRUCTION DATA DATA 

ADDRESS 30 

64 
32 

PAGE UNIT 
32 32 DATA ADDRESS 

DATA CACHE GRAPHICS UNIT 

240296-1 

Figure 0.1. Block Diagram 

Intel, intel, 386, i486, i860, Multibus II and Parallel System Bus are trademarks of Intel Corporation. 
*UNIX is a registered trademark of AT&T. OS/2 is a trademark of International Business Machines Corporation. 
**ADVANCE INFORMATION 

6-1 
November 1990 

Order Number: 240296-004 

I 



intef i860TM MICROPROCESSOR 

TABLE OF CONTENTS 

CONTENTS PAGE 

1.0 FUNCTIONAL DESCRIPTION ........................................................... 6-7 

2.0 PROGRAMMING INTERFACE ......................................................... 6-7 
2.1 Data Types ......................................................................... 6-8 

2.1.1 Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... 6-8 
2.1.2 Ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

2.1.3 Single- and Double-Precision Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

2.1 .4 Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 

2.2 Register Set ......................................................................... 6-9 
2.2.1 Integer Register File......... . .... ; ......................................... 6-10 

2.2.2 Floating-Point Register File ... ., ............................................ 6-10 
2.2.3 Processor Status Register ..................................................... 6-10 

2.2.4 Extended Processor Status Register ........................................... 6-13 
2.2.5 Data Breakpoint Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

2.2.6 Directory Base Register ...................................................... 6-14 

2.2.7 Fault Instruction Register ...................... ·" .................... 6-15 
2.2.8 Floating-Point Status Register . . . . . . . . . . . . . . . . ................. , . . . . . . . . . . . 6-15 

2.2.9 KR, Kl, T, and MERGE Registers ............................................. 6-16 · 
2.3 Addressing ............... ~ ......................................................... 6-17 

2.4 Virtual Addressing ...................... ., . .. . .. . . . .. . . . . .. . . .. . . . .. . .. . . . .. . . . . . . .. 6-17 

2.4.1 Page Forms ............................................. : ..................... 6-19 

2.4.2 Virtual Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19 
2.4.3 Pages Tables ................................................................ 6-19 

2.4.4 Page-Table Entries ........................................................... 6-20 

2.4.4.1 Page Frame Address . .. . .. . . . .. .. .. .. .. .. .. . .. . .. .. .. ...... ., . .. .. . . 6-20 

2.4.4.2 Present Bit ................................................ ; . . . . . . . . . . . . 6-20 

2.4.4.3 Writable and User Bits . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 
2.4.4.4 Write-Through Bit ...................................................... 6-21 

2.4.4.5 Cache Disable Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ 6-21 

2.4.4.6 Accessed and Dirty Bits ................................................ 6-21 

2.4.4.7 Combining Protection of Both Levels of Page Tables .................... 6-21 

2.4.5 Address Translation Algorithm .................................................. 6-22 

2.4.6 Address Translation Faults . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 

2.4.7 Page Translation Cache ....................................................... 6-23 
2.5 Caching and Cache Flushing . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 

2.6 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................ 6-24 

2.6.1 Pipelined and Scalar Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 

2.6.1.1 Scalar Mode ........................................................... 6-24 

2.6.1.2 Pipelining Status Information ........................................... 6-24 

2.6.1.3 Precision in the Pipelines ............................................... 6-26 

2.6. 1.4 Transition between Scalar and Pipelined Operations . . . . . . . ........... 6-27 

6-2 



i860™ MICROPROCESSOR 

·-----·------· ------

CONTENTS PAGE 

2.6.2 Dual-Instruction Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27 

2.6.3 Dual-Operation Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ 6-28 

2.7 Addressing Modes ............................................................... 6-28 

2.8 Traps and Interrupts . . . . . . . . . . ...................................................... 6-29 

2.8.1 Trap Handler Invocation . . . . . . . . .............................................. 6-29 

2.8.2 Instruction Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . ................... 6-30 

2.8.3 Floating-Point Fault. .. . .. .. . . . . . . . .. .. . .. . .. . .. .. . . .. . . .. . .. .. .. . . . .. .. . .. . .. .. 6-30 

2.8.3.1 Source Exception Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30 

2.8.3.2 Result Exception Faults . . .. .. . . . . . . ................................... 6-30 

2.8.4 Instruction Access Fault ....................................................... 6-31 

2.8.5 Data Access Fault . . . . . . . . . . . . . . . . . . . . . . . . ................................... 6-31 

2.8.6 Interrupt Trap ................................................................ 6-31 

2.8.7 Reset Trap...... . . . . . . . . . . . . . . . . . . . . . . . . . ................................. 6-31 

2.9 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ 6-32 

3.0 HARDWARE INTERFACE ........................................................... 6-32 

3.1 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32 

3.1.1 Clock (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32 

3.1.2 System Reset (RESET) ........................................................ 6-32 

3.1.3 Bus Hold (HOLD) and Bus Hold Acknowledge (H LOA) . . . . . . . . . . . . . . . . . . . . . . . 6-32 

3.1.4 Bus Request (BREQ) .......................................................... 6-33 

3.1.5 Interrupt/Code-Size (INT /CS8) ................................................ 6-33 

3.1.6 Address Pins (A31-A3) and Byte Enables (BE7#-BEO#) ..................... 6-34 

3.1.7DataPins(D63-DO) .......................................................... 6-34 

3.1.8 Bus Lock (LOCK#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34 

3.1.9 Write/Read Bus Cycle (W /R #) ................................................ 6-35 

3.1.10 Next Near (NENE #) ......................................................... 6-35 

3.1.11 Next Address Request (NA#) .. .. . . . .. .. . .. . . . . .. .. . . .. . . .. . . .. .. .. .. . . . . . . . . 6-35 

3.1.12 Transfer Acknowledge (READY#) .............................. ~ ............. 6-35 

3.1.13 Address Status (ADS#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35 

3.1.14 Cache Enable (KEN#) . . . . . . . . . . ... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35 

3.1.15 Page Table Bit (PTB) ......................................................... 6-36 

3.1.16 Boundary Scan Shift Input (SHI) .............................................. 6-36 

3.1.17 Boundary Scan Enable (BSCN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 

3. 1.18 Shift Scan Path (SCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 

3.1.19 Configuration (CC1 -CCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 

3.1.20 System Power (Vee) and Ground (Vss) ....................................... 6-36 

3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 

3.3 Testability .......................................................................... 6-37 

3.3.1 Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 

3.3.2 Shift Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 

6-3 



i860TM MICROPROCESSOR 

CONTENTS PAGE 

4.0 BUS OPERATION ...................................................................... 6-38 

4.1 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 

4.2 Bus State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-39 

4.3 Bus Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41 

4.3.1 Nonpipelined Read Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41 

4.3.2 Nonpipelined Write Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42 

4.3.3 Pipelined Read and Write Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44 

4.3.4 Locked Cycles ................................................................ 6-46 

4.3.5 HOLD and BREQ Arbitration Cycles ........................................... 6-46 

4.4 Bus States during RESET ........................................................... 6-47 

5.0 MECHANICAL DATA .................................................................. 6-48 

6.0 PACKAGE THERMAL SPECIFICATIONS .............................................. 6-53 

7.0 ELECTRICAL DATA ................................................................... 6-55 

7.1 Absolute Maximum Ratings ......................................................... 6-55 

7.2 D.C. Characteristics ................................................................. 6-55 

7.3 A.G. Characteristics ................................................................. 6-56 

8.0 INSTRUCTION SET .................................................................... 6-59 

8.1 Instruction Definitions in Alphabetical Order ......................................... 6-60 

8.2 Instruction Format and Encoding .................................................... 6-67 

8.2.1 REG-Format Instructions ...................................................... 6-67 

8.2.2 CTRL-Format Instructions ..................................................... 6-70 

8.2.3 Floating-Point Instructions ..................................................... 6-71 

8.3 .Instruction Timings .................................................................. 6-73 

8.4 Instruction Characteristics ........................................................... 6-76 

6-4 



i860TM MICROPROCESSOR 

FIGURES PAGE 

Figure 0.1 Block Diagram ................................................................. 6-1 

Figure 2.1 Real Number Formats . . . . . . . . . . . . . . ............................................ 6-8 

Figure 2.2 Pixel Format Example . . . . . . . .. ................................................. 6-9 

Figure 2.3 Registers and Data Paths ....................................................... 6-11 

Figure 2.4 Processor Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 

Figure 2.5 Extended Processor Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 

Figure 2.6 Directory Base Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 

Figure 2.7 Floating-Point Status Register .................................................. 6-15 

Figure 2.8 Little and Big Endian Data Access .. . . . .. . . . . .. .. . . . . . . . . . . . . . . . .. .. .. . .. . .. . .. . 6-18 

Figure 2.9 Format of a Virtual Address ..................................................... 6-19 

Figure 2.10 Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................... 6-19 

Figure 2.11 Format of a Page Table Entry............ . . .. . ................................ 6-20 

Figure 2.12 Pipelined Instruction Execution ................................................. 6-26 

Figure 2.13 Dual-Instruction Mode Transitions . . . . . . . . . . . . . . .............................. 6-27 

Figure 2.14 Dual-Operation Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28 

Figure 3.1 Order of Boundary Scan Chain .................................................. 6-38 

Figure 4.1 Bus State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 6-40 

Figure 4.2 Fastest Read Cycles .......................................................... 6-41 

Figure 4.3 Fastest Write Cycles ........................................................... 6-42 

Figure 4.4 Fastest Read/Write Cycles ..................................................... 6-43 

Figure 4.5 Pipelined Read Followed by Pipelined Write ..................................... 6-43 

Figure 4.6 Pipelined Write Followed by Pipelined Read ..................................... 6-44 

Figure 4. 7 Pipelining Driven by NA# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-45 

Figure 4.8 NA# Active with No Internal Bus Request. ...................................... 6-45 

Figure 4.9 Locked Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. 6-46 

Figure 4.10 HOLD, HLDA, and BREQ.............. . .................................. 6-47 

Figure 4.11 Reset Activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................. 6-47 

Figure 5.1 Pin Configuration-View from Top Side . . . .. . . . . . . . .. .. . . . . . ................... 6-48 

Figure 5.2 Pin Configuration-View from Pin Side . . ....................................... 6-49 

Figure 5.3 168-Lead Ceramic PGA Package Dimensions ................................... 6-53 

Figure 6.1 Ice vs Case Temperature ....................................................... 6-54 
Figure 7 .1 CLK, Input, and Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57 

Figure 7.2 Typical Output Delay vs Load Capacitance under Worst-Case Conditions ........ 6-53 

Figure 7 .3 Typical Slew Time vs Load Capacitance under Worst-Case Conditions ........... 6-58 

Figure 7.4 Typical Ice vs Frequency ....................................................... 6-58 

Figure 8.1 REG-Format Variations ......................................................... 6-68 

Figure 8.2 Core Escape Instruction Format ................................................ 6-69 

Figure 8.3 CTRL Instruction Format ...................................................... 6-70 

Figure 8.4 Floating-Point Instruction Encoding ........................................... 6-71 

6-5 

I 



intef i860TM MICROPROCESSOR 

TABLES PAGE 

Table 2.1 Pixel Formats ................................................................... 6-9 
Table 2.2 Values of PS ................................................................... 6-13 
Table 2.3 Values of RB ................................................................... 6-15 
Table 2.4 Values of RC ................................................................... 6-15 
Table 2.5 Values of RM ................................................................... 6-16 
Table 2.6 Combining Directory and Page Protection ....................................... 6-22 
Table 2,7 Instruction Set. ................................................................. 6-25 
Table 2.8 Types of Traps ................................................................. 6-29 
Table 2.9 Register and Cache Values after Reset ...................................... , .. 6-32 
Table 3.1 Pin Summary ................................................................... 6-33 
Table 3.2 lndentifying Instruction Fetches ................................................. 6-35 

Table 3.3 Cacheability based on KEN# and GP OR'ed WT ................................ 6-36 
Table 3.4 Output Pin Status during RESET ................................................ 6-37 
Table 3.5 Test Mode Selection ........................................................... 6-37 
Table 3.6 Test Mode Latches ............................................................. 6-37 
Table 5.1 Pin Cross Reference by Location ............................................... 6-50 
Table 5.2 Pin Cross Reference by Pin Name .............................................. 6-51 
Table 5.3 Ceramic PGA Package Dimension Symbols ..................................... 6-52 
Table 6.1 ecA at Various Airflows and 8JC· ................................................ 6-54 
Table 6.2 Maximum TA at Various Airflows ................................................ 6-55 
Table 7.1 D.C. Characteristics ............................................................ 6-55 
Table 7.2 A.G. Characteristics ............................................................ 6-56 
Table 8.1 Precision Specification ......................................................... 6-59 
Table 8.2 FADDP MERGE Update ....................................... , ................ 6-67 
Table 8.3 Register Encoding .............................................................. 6-67 
Table 8.4 REG-Format Opcodes ....... : .................................................. 6-69 
Table 8.5 Core Escape Opcodes .. , ...................................................... 6-70 
Table 8.6 CTRL-Format Opcodes ......................................................... 6-70 
Table 8.7 Floating-Point Opcodes ........................................................ 6-71 
Table 8.8 DPC Encoding ................................................................. 6-72 
Table 8.9 Instruction Characteristics ...................................................... 6-77 

6-6 



inter i86QTM MICROPROCESSOR 

1.0 FUNCTIONAL DESCRIPTION 

As shown by the block diagram on the front page, 
the i860 microprocessor consists of 9 units: 

1. Core Execution Unit 
2. Floating-Point Control Unit 
3. Floating-Point Adder Unit 
4. Floating-Point Multiplier Unit 
5. Graphics Unit 
6. Paging Unit 
7. Instruction Cache 
8. Data Cache 
9. Bus and Cache Control Unit 

The core execution unit controls overall operation of 
· the i860 microprocessor. The core unit executes 

load, store, integer, bit, and control-transfer opera­
tions, and fetches instructions for the floating-point 
unit as well. A set of 32 x 32-bit general-purpose 
registers are provided for the manipulation of integer 
data. Load and store instructions move 8-, 16-, and 
32-bit data to and from these registers. Its full set of 
integer, logical, and control-transfer instructions give 
the core unit the ability to execute complete systems 
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference. 

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be 
accessed as 16 x 64-bit registers, or 32 x 32-bit reg­
isters. Special load and store instructions can also 
access these same registers as 8 x 128-bit registers. 
All floating-point instructions use these registers as 
their source and destination operands. 

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and result 
exceptions, and updating status bits in the floating­
point status register. The adder and multiplier can 
operate in parallel, producing up to two results per 
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic 
(ANSI/IEEE Std 754-1985). 

The floating-point adder performs addition, subtrac­
tion, comparison, and conversions on 64- and 32-bit 
floating-point values. An adder instruction executes 
in three clocks; however, in pipelined mode, a new 
result is generated every clock. 

The floating-point multiplier performs floating-point 
and integer multiply and floating-point reciprocal op­
erations on 64- and 32-bit floating-point values. A 
multiplier instruction executes in three to four clocks; 

6-7 

however, in pipelined mode, a new result can be 
generated every clock for single-precision and every 
other clock for double precision. 

The graphics unit has special integer logic that sup­
ports three-dimensional drawing in a graphics frame 
buffer, with color intensity shading and hidden sur­
face elimination via the Z-buffer algorithm. The 
graphics unit recognizes the pixel as an 8-, 16-, or 
32-bit data type. It can compute individual red, blue, 
and green color intensity values within a pixel; but it 
does so with parallel operations that take advantage 
of the 64-bit internal word size and 64-bit external 
bus. The graphics features of the i860 microproces­
sor assume that the surface of a solid object is 
drawn with polygon patches whose shapes approxi­
mate the original object. The color intensities of the 
vertices of the polygon and their distances from the 
viewer are known, but the distances and intensities 
of the other points must be calculated by interpola­
tion. The graphics instructions of the i860 microproc­
essor directly aid such interpolation. 

The paging unit implements protected, paged, virtual 
memory via a 64-entry, four-way set-associative 
memory called the TLB (Translation Lookaside Buff­
er). The paging unit uses the TLB to perform the 
translation of logical address to physical address, 
and to check for access violations. The access pro­
tection scheme employs two levels of privilege: user 
and supervisor. 

The instruction cache is a two-way set-associative 
memory of four Kbytes, with 32-byte blocks. It trans­
fers up to 64 bits per clock (400 Mbyte/sec at 
50 MHz). 

The data cache is a two-way set-associative memo­
ry of eight Kbytes, with 32-byte blocks. It transfers 
up to 128 bits per clock (800 Mbyte/sec at.50 MHz). 
The i860 microprocessor normally uses writeback 
caching, i.e. memory writes update the cache (if ap­
plicable) without necessarily updating memory im­
mediately; however, caching can be inhibited by 
software where necessary. 

The bus and cache control unit performs data and 
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit, 
performs the data-cache or instuction-cache miss 
processing, controls TLB translation, and provides 
the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. 

2.0 PROGRAMMING INTERFACE 

The programmer-visible aspects of the architecture 
of the i860 microprocessor include data types, regis­
ters, instructions, and traps. 

I 



intef i860™ MICROPROCESSOR 

2.1 Data Types 

The i860 microprocessor provides operations for in­
teger and floating-point data. Integer operations are 
performed on 32-bit operands with some support 
also for 64-bit operands. Load and store instructions 
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit 
operands. Floating-point operations are performed 
on IEEE-standard 32- and 64-bit formats. Graphics 
oriented instructions operate on arrays of 8-, 16·, or 
32-bit pixels. 

2.1.1 INTEGER 

An integer is a 32-bit signed value in standard two's 
complement form. A 32-bit integer can represent a 
value in the range -2,147,483,648 (-231) to 
2, 147,483,647 ( + 231 - 1). Arithmetic operations on 
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using 
the 32-bit operations. 

There are also add and subtract instructions that op­
erate on 64-bit long integers. 

Load and store instructions may also reference (in 
addition to the 32- and 64-bit formats previously 
mentioned) 8- and 16-bit items in memory. When an 
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to 
32 bits. When an 8- or 16-bit item is stored from a 
register, the corresponding number of low-order bits 
of th.a register are used. 

2.1.2 ORDINAL 

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal 
can represent values in the range 0 to 
4,294,967,295 (+232 - 1). 

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals. 

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL 

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is 
a 32-bit binary floating-point number. Bit 31 is the 
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 
are the fraction. In accordance with ANSI/IEEE 
standard 754, the value of a single-precision real is 
defined as follows: 

1. If e = 0 and f * 0 ore = 255 then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 255, then the value is (-1)S x 1.f x 
2e-127. 

3. If e = O and f = O, then the value is signed zero. 

A double-precision real (also called "double real") 
data type is a 64-bit binary floating-point number. Bit 
63 is the sign bit; bits 62 .. 52 are the exponent; and 
bits 51..0 are the fraction. In accordance with ANSI/ 
IEEE standard 754, the value of a double-precision 
real is defined as follows: 

1. If e = 0 and f * 0 ore = 2047, then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 2047, then the value is (-1)S x 1.f x 
2e-1023. 

Single-Precision Real 
31 23 

L FRACTION 
'-----------------EXPONENT 

~-------------------SIGN 

Double-Precision Real 
63 52 

I· I 
t LFRACTION l ~----·-----------EXPONENT 
'-----------~-------SIGN 

Figure 2.1. Real Number Formats 
6-8 

0 

240296-2 

0 

240296-3 



intef i860™ MICROPROCESSOR 

3. If e = O and f = 0, then the value is signed zero. 

The special values infinity, NaN ("Not a Number"), 
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results. 

A double real value occupies an even/odd pair of 
floating-point registers. Bits 31 .. 0 are stored in the 
even-numbered floating-point register; bits 63 .. 32 
are stored in the next higher odd-numbered floating­
point register. 

2.1.4 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on 
color and intensity resolution requirements. Regard­
less of the pixel size, the i860 microprocessor al­
ways operates on 64 bits worth of pixels at a time. 
The pixel data type is used by two kinds of instruc­
tions: 

• The selective pixel-store instruction that helps im­
plement hidden surface elimination. 

• The pixel add instruction that helps implement 
3-0 color intensity shading. 

To perform color intensity shading efficiently in a va­
riety of applications, the i860 microprocessor de­
fines three pixel formats according to Table 2.1. 

Figure 2.2 illustrates one way of assigning meaning 
to the fields of pixels. These assignments are for 
illustration purposes only. The i860 microprocessor 
defines only the field sizes, not the specific use of 
each field. Other ways of using the fields of pixels 
are possible. 

1 6-BIT PIXEL 

32-BIT PIXEL 

31 23 

R G 

Table 2.1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Size Color 1 Color 2 Color 3 

(in bits) Intensity Intensity Intensity 

8 
16 
32 

N ( <::: 8) bits of intensity* 

; l ; l : 

Bits of 
Other 

Attribute 
(Texture) 

8-N 

8 
The intensity attribute fields may be assigned to colors in 
any order convenient to the application. 

15 

15 

*With 8-bit pixels, up to 8 bits can be used for intensity; the 
remaining bits can be used for any other attribute, such as 
color. The intensity bits must be the low-order bits of the 
pixel. 

2.2 Register Set 

As Figure 2.3 shows, the i860 microprocessor has 
the following registers: 

• An integer register file 

• A floating-point register file 

• Six control registers (psr, epsr, db, dirbase, fir, 
and fsr) 

• Four special-purpose registers (KR, Kl, T, and 
MERGE) 

The control registers are accessible only by load 
and store control-register instructions; the integer 
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The 
special-purpose registers KR, Kl, T, and MERGE are 
used by a few specific instructions. 

7 5 0 

8-BIT PIXEL c 

9 3 0 

R G B 

7 0 

B 1='" T 

240296-4 
I-Intensity, R-Red intensity, G-Green intensity, B-Blue intensity, C-Color, T-Texture 
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are 
defined, not the specific use of each field. 

Figure 2.2. Pixel Format Example 

6-9 

I 



intJ i860TM MICROPROCESSOR 

2.2.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32 bits wide, 
referred to as rO through r31, which are used for 
address computation and scalar integer computa­
tions. Register rO always returns zero when read, 
independently of what is stored in it. 

2.2.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits 
wide, referred to as fO through f31, which are used 
for floating-point computations. Registers fO and f1 
always return zero when read, independently of 
what is stored in them. The floating-point registers 
are also used by a set of graphics operations, pri­
marily for 30 graphics computations. 

When accessing 64-bit floating-point or integer val­
ues, the i860 microprocessor uses an even/ odd pair 
of registers. When accessing 128-bit values, it uses 
an aligned set of four registers (fO, f4, 18, ... , f28). 
The instruction must designate the lowest register 
number of the set of registers containing 64- or 128-
bit values. Misaligned register numbers produce un­
defined results. The register with the lowest number 
contains the least significant part of the value. For 
128-bit values, the register pair with the lower num­
bers contain the least significant 64 bits while the 
register pair with the higher numbers contain the 
most significant 64 bits. 

The 128-bit load and store instructions, along with 
the 128-bit data path between the floating-point reg­
isters and the data cache help to sustain the extraor­
dinarily high rate of computation. 

2.2.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscel­
laneous state information for the current process. 
Figure 2.4 shows the format of the psr. 

6-10 

• BR (Break Read) and BW (Break Write) enable a 
data access trap when the operand address 
matches the address in the db register and a 
read or write (respectively) occurs. 

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla 
instruction sets and tests LCC (Loop Condition 
Code). 

• IM (Interrupt Mode) enables external interrupts if 
set; disables interrupts if clear. 

• U (User Mode) is set when the i860 microproces­
sor is executing in user mode; it is clear when the 
i860 microprocessor is executing in supervisor 
mode. In user mode, writes to some control regis­
ters are inhibited. This bit also controls the mem­
ory protection mechanism. See section 2.4.4.3 
for a description of memory protection in user 
and supervisor modes. 



intef 

128 

32 128 32 

MMU 

CONTROL 
REGISTERS 32 32 

psr 

epsr 

fsr 

dlrbase 

db 

fir 

31 

i860™ MICROPROCESSOR 

32 

32 
32 

CORE 
UNIT 

32 

ADDRESS 

EXTERNAL 
MEMORY 

64 

64 

32 
14--"'----ADDRESS 

64 

FP 
ADDER UNIT 

GRAPHICS UNIT 

MERGE REG 

Figure 2.3. Registers and Data Paths 

6-11 

128 

64 

240296-5 II 



intef 

31 

31 

i860TM MICROPROCESSOR 

BREAK READ 
BREAK WRITE ------------------------~ 
CONDITION CODE 
LOOP CONDITION CODE ---------------------, 
INTERRUPT MODE ---------------------~ 
PREVIOUS INTERRUPT MODE ---------------~ 
USER MODE -------------·-------, 
PREVIOUS USER MOPE 

:~~:~~3~~N_T_R_AP __ - -_ -_ -_ -_ ---_ -_ -_ -_ -_ -_ -_ -_ -_ -----------_ -_ -_ -_ -_-_-_ -----~-,I I 
INSTRUCTION ACCESS TRAP 
DATA ACCESS TRAP ------- j 
FLOATING-POINT TRAP - ~ l l 
DELAYED SWITCH ---------
DUAL INSTRUCTION MODE -------

23 21 17 15 7 

PM PS SC 

. . . . . 
LLl~~-L KILL NEXT FLOATING-POINT INSTRUCTION 

(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

'Can be changed only from supervisor level. 

Figure 2.4 Processor Status Register 

INTERLOCK-------------~ 

WRITE-PROTECT MODE----------, 

! I DATA CACHE SIZE -----

(RESERVED) 

24 22 

0 B p 

F E ~ . . 
DCS 

18 

I 
N 
T 

15 13 8 

· W I STEPPING xx p L NUMBER 

r 
t t L_ (RESERVED) 
I ~---------PAGE-TABLE BIT MODE 
- BIG ENDIAN MODE 

~-----------OVERFLOW FLAG 

Figure 2.5 Extended Processor Status Register 

PROCESSOR 
TYPE 

0 

240296-6 

0 

240296-31 

• PIM (Previous Interrupt Mode) and PU (Previous 
User Mode) save the corresponding status bits 
(IM and U) on a trap, because those status bits 
are changed when a trap occurs. They are re­
stored into their corresponding status bits when 
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr. 

• DS (Delayed Switch) is set if a trap occurs during 
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Dual Instruc­
tion Mode) is clear, the i860 microprocessor 
switches to dual-instruction mode one instruction 
after returning from the trap handler. If DS and 
DIM are both set, the i860 microprocessor 
switches to single-instruction mode one instruc­
tion after returning from the trap handler. 

• FT (Floating-Point Trap), DAT (Data Access 
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags. 
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits 
to determine which condition or conditions have 
caused the trap. 

6-12 

• When a trap occurs, the i860 microprocessor 
sets DIM if it is executing in dual-instruction 
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set after returning from a 
trap handler, the i860 microprocessor resumes 
execution in dual-instruction mode. 



intJ i860TM MICROPROCESSOR 

• When KNF (Kill Next Floating-Point Instruction) is 
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit 
is interpreted). A trap handler sets KNF if the 
trapped floating-point instruction should not be 
reexecuted. 

• SC (Shift Count) stores the shift count used by 
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion. 

• PS (Pixel Size) and PM (Pixel Mask) are used by 
the pixel-store instruction and by the graphics in­
structions. The values of PS control pixel size as 
defined by Table 2.2. The bits in PM correspond 
to pixels to be updated by the pixel-store instruc­
tion pst.d. The low-order bit of PM corresponds 
to the low-order pixel of the 64-bit source oper­
and of pst~d. The number of low-order bits of PM 
that are actually used is the number of pixels that 
fit into 64-bits, which depends upon PS. If a bit of 
PM is set, then pst.d stores the corresponding 
pixel. Refer also to the pst.d instruction in section 
8. 

Table 2.2. Values of PS 

Value 
PlxelSlze PlxelSlze 

In bits in bytes 

00 8 1 
01 16 2 
10 32 4 
11 (undefined) (undefined) 

2.2.4 EXTENDED PROCESSOR STATUS 
REGISTER 

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows 
the format of the epsr. 

• The processor type is one for the i860 microproc­
essor. 

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor. 

• IL (Interlock) is set if a trap occurs after a lock 
instruction but before the load or store following 
the subsequent unlock instruction. IL indicates to 
the trap handler that a locked sequence has 
been interrupted. When the trap handler finds IL 
set, it should scan backwards for the lock in­
struction and restart at that point. The absence of 
a lock instruction within 30-33 instructions of the 
trap indicates a programming error. 

• WP (write protect) controls the semantics of the 
W bit of page table entries. A clear W bit in either 
the directory or the page table entry causes 
writes to be trapped. When WP is clear, writes 
are trapped in user mode, but not in supervisor 
mode. When WP is set, writes are trapped in both 
user and supervisor modes. After the value of the 
WP bit is changed, the TLB must be invalidated 
by setting the ITI bit of the dlrbase register, be­
fore any stores are performed. 

• INT (Interrupt) is the value of the INT input pin. 

• DCS (Data Cache Size) is a read-only field that 

ber of bytes actually available is 212 + DCS; there- 1 
tells the size of the on-chip data cache. The num-11 

fore, a value of zero indicates 4 Kbytes, one indi­
cates 8 Kbytes, etc. 

ADDRESS TRANSLATION ENABLE ---------------------..., 

31 

DRAM PAGE SIZE ---------:----------------.., 
BUS LOCK------.-------------------.., 
I-CACHE, TLB INVALIDATE ------------------, 
(RESERVED) ----------------------., 

l I I I CODE SIZE 8-Brr -------------------­
REPLACEMENT BLOCK ----------------, 
REPLACEMENT CONTROL ------------, 

12 10 8 7 4 

c I 
B 

RC RB s x T DPS 
8 I L 

DIRECTORY TABLE BASE (OTB) 

• • • • • • • • 
*Can be changed only from supervisor level 

Figure 2.6. Directory Base Register 

6-13 

1 0 

A 
T 
E 

• 
240296-7 



intef i860TM MICROPROCESSOR 

• PBM (Page-Table Bit Mode) determines which bit 
of page-table entries is output on the PTB pin. 
When PBM is clear, the PTB signal reflects bit CD 
of the page-table entry used for the current cycle. 
When PBM is set, the PTB signal reflects bit WT 
of the page-table entry used for the current cycle. 

• BE (Big Endian) controls the ordering of bytes 
within a data item in memory. Normally (i.e. when 
BE is clear) the i860 microprocessor operates in 
little endian mode, in which the addressed byte is 
the low-order byte. When BE is set (big endian 
mode), the low-order three bits of all load and 
store addresses are complemented, then 
masked to the appropriate boundary for align­
ment. This causes the addressed byte to be the 
most significant byte. Section 2.3 discusses little 
and big endian addressing. 

• OF (Overflow Flag) is set by adds, addu, subs, 
and subu when integer overflow occurs. For 
adds and subs, OF is set if the carry from bit 31 
is different than the carry from. bit 30. For addu, 
OF is set if there is a carry from bit 31. For subu, 
OF is set if there is no carry from bit 31. Under all 
other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr 
instruction. 

2.2.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to gener­
ate a trap when the i860 microprocessor makes a 
data-operand access to the address stored in this 
register. The trap is enabled by BR and BW in psr. 
The db register can only be changed from supervi­
sor level. When comparing, a number of low order 
bits of the address are ignored, depending on the 
size of the operand. For example, a 16-bit access 
ignores the low-order bit of the address when com­
paring to db; a 32-bit access ignores the low-order 
two bits. This ensures that any access that overlaps 
the address contained in the register will generate a 
trap. The DAT occurs before the data is accessed 
and prevents the load or store from completing. 

2.2.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 
2.6) controls address translation, caching, and bus 
options. The dirbase register can only be changed 
from supervisor level. The BL bit is changed from 
user level with the lock and unlock instructions. 

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm. 
The data cache must be flushed before changing 
the ATE bit. 

• DPS (DRAM Page Size) controls how many bits 
to ignore when comparing the current bus-cycle 

address with the previous bus-cycle address to 
generate the NENE# signal. This feature allows 
for higher speeds when using static column or 
page-mode DRAMs and consecutive reads and 
writes access the row. The comparison ignores 
the low-order 12 + DPS bits. A value of zero is 
appropriate for one bank of 256K x n RAMs, 1 
for 1 M x n RAMS, etc. For interleaved memory, 
increase DPS by one for each power of interleav­
ing-add one for 2-way, and two for 4-way, etc. 

• When· BL (Bus Lock) is set, external bus accessc 
es are locked. The LOCK# signal is asserted the 
next bus cycle whose internal bus request is gen­
erated after BL is set. It remains set on every 
subsequent bus cycle as long as BL remains set. 
The LOCK# signal is deasserted on tne next 
load or store instruction after BL is cleared. Traps 
immediately clear BL. The lock and unlock 
instructions control the BL bit. The result of modi­
fying BL with the st.c instruction is not defined. 

• ITI (I-Cache, TLB Invalidate), when set in the val­
ue that is loaded into dirbase, causes all entries 
in the instruction cache and address-translation 
cache (TLB) to be invalidated. The ITI bit does 
not remain set in dirbase. ITI always appears as 
zero when reading dirbase. Section 2.5 discuss­
es flushing the data cache before invalidating the 
TLB. 

• When CS8 (Code Size 8-Bit) is set, instruction 
cache misses are processed as 8-bit bus cycles. 
When this bit is clear, instruction cache misses 
are processed as 64-bit bus cycles. This bit can 
not be set by software; hardware sets this bit at 
initialization time. It can be cleared by software 
(one time only) to allow the system to execute out 
of 64-bit memory· after bootstrapping from 8-bit 
EPROM. A nondelayed branch to code in 64-bit 
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order 
to make the transition from 8-bit to 64-bit memory 
occur at the correct time. The branch must be 
aligned on a 64-bit boundary. 

• RB (Replacement Block) Identifies the cache 
block to be replaced by cache replacement algo­
rithms. The high-order bit of RB is ignored by the 
instruction and data caches. RB conditions the 
cache flush instruction flush, which is discussed 
in Section 8. Table 2.3 explains the values of RB. 

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC. 

• OTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page 
directory when address translation is enabled (i.e. 
ATE = 1 ). The low-order 12 bits of the address 
are zeros. 



intef 

Value 

0 0 
0 1 
1 0 
1 1 

Value 

00 

01 

10 

11 

31 

i86QTM MICROPROCESSOR 

FLUSH ZERO 
TRAP INEXACT ---------------------------, 
ROUNDING MODE -----------------------­
UPDATE 
FLOATING-POINT TRAP ENABLE ------------------, 
(RESERVED) --------------------­
STICKY INEXACT FLAG ----------------~ 
SOURCE EXCEPTION ----------------­
MULTIPLIER UNDERFLOW--------------­
MULTIPLIER OVERFLOW ---------------, ~1111 MULTIPLIER INEXACT -------­
MULTIPLIER ADD ONE -------­
ADDER UNDERFLOW--------­
ADDER OVERFLOW---------

28 25 22 17 

A M I L 

15 7 

F 

0 

x x R R R R X AE RR A A A A 
A I 0 u 

M M M M 
A I 0 u 

s s 
E I 

X T U RM T F 
I Z p p p p 

] 11 
[ t t ADDER INEXACT 

ADDER ADD ONE 
RESULT REGISTER 

ADDER EXPONENT 
(RESERVED) 

LOAD PIPE RESULT PRECISION 

E 

INTEGER (GRAPHICS) PIPE RESULT PRECISION 
MULTIPLIER PIPE RESULT PRECISION 

ADDER PIPE RESULT PRECISION 
(RESERVED) 

240296-8 

Figure 2.7. Floating-Point Status Register 

Table 2.3. Values of RB 

Replace Replace Instruction 
TLBBlock and Data Cache Block 

0 0 
1 1 
2 0 
3 1 

Table 2.4. Values of RC 

Meaning 

Selects the normal replacement 
algorithm where any block in the set 
may be replaced on cache misses in all 
caches. 

Instruction, data, and TLB cache 
misses replace the block selected by 
RB. The instruction and data caches 
ignore the high-order bit of RB. This 
mode is used for instruction cache and 
TLB testing. 

Data cache misses replace the block 
selected by the low-order bit of RB. 
Instruction and TLB caches use 
random replacement. 

Disables data cache replacement. 
Instruction and TLB caches use 
random replacement. 

6-15 

2.2.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register contains the ad-
dress of the trapping instruction (not necessarily the 
instruction that created the conditions that required 
the trap). The fir is a read-only register. In single-in­
struction mode, using a ld.c instruction to read the II 
fir anytime except the first time after a trap saves in 1 
idest the address of the ld.c instruction; in dual-in­
struction mode, the address of its floating-point com­
panion (address of the ld.c - 4) is saved. 

2.2.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the 
floating-point trap and rounding-mode status for the 
current process. Figure 2. 7 shows its format. The fsr 
is writable in user level. 

• If FZ (Flush Zero) is clear and underflow occurs, 
a result-exception trap is generated. When FZ is 
set and underflow occurs, the result is set to zero, 
and no trap due to underflow occurs. 

• If Tl (Trap Inexact) is clear, inexact results do not 
cause a trap. If Tl is set, inexact results cause a 
trap. The sticky inexact flag (SI) is set whenever 
an inexact result is produced, regardless of the 
setting of Tl. 

• RM (Rounding Mode) specifies one of the four 
rounding modes defined by the IEEE standard. 
Given a true result b that cannot be represented 



i860™ MICROPROCESSOR 

Table 2.5. Values of RM 

Value Rounding Mode 

00 Round to nearest or even 

01 Round down (toward - oo) 
10 Round up (toward + oo 
11 Chop (toward zero) 

by the target data type, the i860 microprocessor 
determines the two representable numbers a 
and c that most closely bracket b in value (a < b 
< c). The i860 microprocessor then rounds 
(changes) b to a or c according to the mode se­
lected by RM as defined in Table 2.5. Rounding 
introduces an error in the result that is less than 
one least-significant bit. 

• The U-bit (Update Bit), if set in the value that is 
loaded into fsr by a st.c instruction, enables up­
dating of the result-status bits (AE, AA, Al, AO, 
AU, MA, Ml, MO, and MU) in the first-stage of the 
floating-point adder and multiplier pipelines. If this 
bit is clear, the result-status bits are unaffected 
by a st.c instruction; st.c ignores the correspond­
ing bits in the value that is being loaded. A st.c 
always updates fsr bits 2L 17 and 8 .. 0 directly. 
The U-bit does not remain set; it always appears 
as zero when read. 

• The FTE (Floating-Point Trap Enable) bit, if clear, 
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result). 

• SI (Sticky Inexact) is set when the last stage re­
sult of either the multiplier or adder is inexact (i.e. 
when either Al or Ml is set}. SI is "sticky" in the 
sense that it remains set until reset by software. 
Al and Ml, on the other hand, can by changed by 
the subsequent floating-point instruction. 

• SE (Source Exception) is set when one of the 
source operands of a floating-point operation is 
invalid; it is cleared when all the input operands 
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling). 

• When read from the fsr, the result-status bits MA, 
Ml, MO, and MU (Multiplier Add-One, Inexact, 
Overflow, and Underflow, respectively) describe 
the last stage result of the multiplier. 

When read from the fsr, the result-status bits AA, 
Al, AO, AU, and AE (Adder Add-One, Inexact, 
Overflow, Underflow, and Exponent, respectively) 
describe the last stage result of the adder. The 
high-order three bits of the 11-bit exponent of the 
adder result are stored in the AE field .. 

The Adder Add One and Multiplier Add One bits 
indicate that the absolute value of the result frac-

6-16 

Rounding Action 

Closer to b of a or c; if equally 
close, select even number 
(the one whose least 
significant bit is zero). 
a 
c 
Smaller in magnitude of a or c. 

tion grew by one least-significant bit due to 
rounding. AA and MA are not influenced by the 
sign of the result. 

After a floating-point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit 
are undefined until the point at which result ex­
ceptions are reported. 

When written to the fsr with the U-bit set, the 
result-status bits are placed into the first stage of 
the adder and multiplier pipelines. When the 
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit 
(multiplier or adder) one stage for each pipelined 
floating-point operation for that unit. When they 
reach the last stage, they replace the normal re­
sult-status bits in the fsr. When the U-bit is not 
set, result-status bits in the word being written to 
the fsr are ignored. 

In a floating-point dual-operation instruction (e.g. 
add-and-multiply or subtract-and-multiply), both 
the multiplier and the adder may set exception 
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that 
unit. 

• RR (Result Register) specifies which floating­
point register (f0-f31) was the destination regis­
ter when a result-exception trap occurs due to a 
scalar operation. 

• LRP (Load Pipe Result Precision), IRP (Integer 
(Graphics) Pipe Result Precision), MRP (Multiplier 
Pipe Result Precision), and ARP (Adder Pipe Re­
sult Precision) aid in restoring pipeline state after 
a trap or process switch. Each defines the preci­
sion of the last stage result in the corresponding 
pipeline. One of these bits is set when the result 
in the last stage of the corresponding pipeline is 
double precision; it is cleared if the result is single 
precision. These bits cannot be changed by soft­
ware. 

2.2.9 KR, Kl, T, AND MERGE REGISTERS 

The KR, Kl, and T registers are special-purpose reg­
isters used by the dual-operation floating-point 
instructions pfam, pfmam, pfsm, and pfmsm, 



intef i860™ MICROPROCESSOR 

which initiate both an adder (A-unit) operation and a 
multiplier (M-unit) operation. The KR, Kl, and T regis­
ters can store values from one dual-operation in­
struction and supply them as inputs to subsequent 
dual-operation instructions. (Refer to Figure 2.14.) 

The MERGE register is used only by the graphics 
instructions. The purpose of the MERGE register is 
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a 
Z-buffer. The accumulated results can then be 
stored in one 64-bit operation. 

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values 
to each color-intensity field in an array of pixels or to 
each distance value in a Z-buffer. 

Refer to the instruction descriptions in section 8 for 
more information about these registers. 

2.3 Addressing 

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address 
space. Address arithmetic is performed using 32-bit 
input values and produces 32-bit results. The low-or­
der 32 bits of the result are used in case of overflow. 

Normally, multibyte data values are stored in memo­
ry in little endian format, i.e., with the least significant 
byte at the lowest memory address. As an option, 
the ordering can be dynamically selected by soft­
ware in supervisor mode. The i860 microprocessor 
also offers big endian mode, in which the most sig­
nificant byte of a data item is at the lowest address. 
Figure 2.8 shows the difference between the two 
storage modes. Big endian and little endian data ar­
eas should not be mixed within a 64-bit data word. 
Illustrations of data structures in this data sheet 
show data stored in little endian mode, i.e., the low­
order byte is at the lowest memory address. 

6-17 

Code accesses are always done with little endian 
addressing. This implies that code will appear differ­
ently than documented here when accessed as big 
endian data. Intel recommends that disassemblers 
running in a big endian system, convert instructions 
which have been read as data back to little endian 
form and present them in the format documented 
here. 

Page directories and page tables are also accessed 
in little endian mode, regardless of the value of the 
BE bit 

Alignment requirements are as follows (any violation 
results in a data-access trap): 

• 128-bit values are aligned on 16-byte boundaries 
when referenced in memory (i.e. the four least 
significant address bits must be zero). 

• 64-bit values are aligned on 8-byte boundaries 
when referenced in memory (i.e. the three least 
significant address bits must be zero). 

• 32-bit values we aligned on 4-byte boundaries 
when referenced in memory (i.e. the two least 
significant address bits must be zero). 

• 16-bit values are aligned on 2-byte boundaries 
when referenced in memory (i.e. the least signifi­
cant address bit must be zero). 

2.4 Virtual Addressing 

When address translation is enabled, the i860 micro­
processor maps instruction and data virtual address­
es into physical addresses before referencing mem-
ory. This address transformation is compatible with 6 that of the 386 microprocessor and implements the 
basic features needed for page-oriented virtual­
memory systems and page-level protection. 

The address translation is optional. Address transla­
tion is in effect only when the A TE bit of dirbase is 
set. This bit is typically set by the operating system 
during software initialization. The ATE bit must be 
set if the operating system is to implement page-ori­
ented protection or page-oriented virtual memory. 



"Tl 
1Ti 
c 
iil 
N 
Ci> 
r-::: 
ii' 
DI 
:I 

Cf> a. 
~ Ill 
CJ) cS' 

m 
:I 
a. 
iii" 
:I 

> g 
CD 

i 

ld.b O(rO), r16 

ld.b 1(r0), r16 
ld.b 2(r0), r16 
ld.b 3(r0), r16 
ld.b 4(r0), r16 
ld.b 5(r0), r16 
ld.b 6(r0), r16 
ld.b 7(r0), r16 

ld.s O(rO), r16 
ld.s 2(r0), r16 
ld.s 4(r0), r16 
ld.s 6(r0), r16 

Id.I O(rO), r16 
Id.I 4(r0), r16 

NOTE: 

Byte Enables 

(BE#) 

0 
1 
2 
3 
4 
5 
6 
7 

1:0 
3:2 
5:4 
7:6 

3:0 
7:4 

MAIN MEMORY 

WORD1 
WORDO H G F E D C B A 

LITTLE ENDIAN 

DATA BUS 

d63 dO 

F 
G 

H 

D 
E 

A 
B 

c 

d63 dO 

G c 
E 

G 

d63 dO 

I . D c B Al 
HGFE 

d63 

r16 

d31 dO 

A 
B 
c 
D 
E 
F 
G 
H 

d31 dO 

[J] c 
E 
G 

d31 do 

ID c B Al 
H G F E 

dO 

Byte Enables 

(BE#) 

7 
6 
5 
4 
3 
2 
1 
0 

7:6 
5:4 
3:2 
1:0 

7:4 
3:0 

64- and 128-bit big endian accesses are treated the same as little endian accesses. 

BIGENDIAN 

DATA BUS 

d63 dO 

H 
G 

F 
E 

D 
c 

B 
A 

d63 dO 

5J E 
c 

A 

d63 dO 

IH G FE I 
DCBA 

r16 

d31 dO 

H 
G 
F 
E 
D 
c 
8 
A 

d31 dO 

[J] E 
c 
A 

d31 dO 

IH G F El 
D C B A 

I I 
I I 
I 

l 

Qi 
~ 
i! 
a: 
0 
:xi 
0 .,, 
:xi 
0 
0 
m 

~ 
:xi 

"@ 
~ 
liiiil 
IP 
c:::> 

~ 
~ 
~ 

~ 



intJ 1860™ MICROPROCESSOR 

~=;~---_--_ ... _ .. _ ......... l~_-1_ ... -_ ..... _ .. ---_-_-_._ .. _P_A-GE ___ -_ .. -·_-_-··---~l·_n-~_·-·--~~-T---~--=J I 

Figure 2.9. Format of a Virtual Address 

Address translation is disabled when the processor 
is reset. It is enabled when a store to dirbase sets 
the ATE bit. It is disabled again when a store clears 
the ATE bit. 

2.4.1 PAGE FRAME 

A page frame is a 4-Kbyte unit of contiguous ad­
dresses of physical main memory. Page frames be­
gin on 4-Kbyte boundaries and are fixed in size. A 
page is the collection of data that occupies a page 
frame when that data is present in main memory. 
The data may also occupy some location in second­
ary storage when there is not sufficient space in 
mairi memory. 

2.4.2 VIRTUAL ADDRESS 

A virtual address refers indirectly to a physical ad­
dress by specifying a page table, a page within that 

[ DIR l PAGE 1 OFFSET j 

.1 

PAGE DIRECTORY 

table, and an offset within that page. Figure 2.9 
shows the format of a virtual address. 

Figure 2.1 O shows how the i860 microprocessor 
converts the DIR, PAGE, and .OFFSET fields of a 
virtual address into the physical address by consult­
ing two levels of page tables. The addressing mech­
anism uses the DIR field as an index into a page 
directory, uses the PAGE field as an index into the 
page table determined by the page directory, and 
uses the OFFSET field to address a byte within the 
page determined by the page table. 

2.4.3 PAGE TABLES 

A page table is simply an array of 32-bit page specifi­
ers. A page table is itself a page, and therefore con­
tains 4 Kbytes of memory or at most 1 K 32-bit en­
tries. 

PAGE FRAME 

PHYSICAL 
ADDRESS 

PAGE TABLE 

4 PG TBL ENTRY 

~ DIR ENTRY t---i 

OTB 
240296-32 

Figure 2.10. Address Translation 

6-19 

I 



intJ i860™ MICROPROCESSOR 

Two levels of tables are used to address a page of 
memory. At the higher level is a page directory. The 
page directory addresses up to 1 K page tables of 
the second level. A page table of the second level 
addresses up to 1 K pages. All the tables addressed 
by one page directory, therefore, can address 1 M 
pages (220). Because each page contains 4 Kbytes 
(212 bytes), the tables of one page directory can 
span the entire physical address space of the i860 
microprocessor (220 x 212 = 232). 

The physical address of the current page directory is 
stored in OTB field of the dirbase register. Memory 
management software has the option of using one 
page directory for all processes, one page directory 
for each process, or some combination of the two. 

2.4.4 PAGE-TABLE ENTRIES 

Page-table entries (PTEs) in either level of page ta­
bles have the same format. Figure 2.11 illustrates 
this format. 

2.4.4.1 Page Frame Address 

The page frame address specifies the physical start­
ing address of a page. Because pages are located 
on 4K boundaries, the low-order 12 bits are always 
zero. In a page directory, the page frame address is 
the address of a page table. In a second-level page 
table, the page frame address is the address of the 
page frame that contains the desired memory oper­
and. 

2.4.4.2 Present Bit 

The P (present) bit indicates whether a page table 
entry can be used in address translation. P = 1 indi-

cates that the entry can be used. When P = O in 
either level of page tables, the entry is not valid for 
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the 
entry is tested by the hardware. If P = 0 in either 
level of page tables when an attempt is made to use 
a page-table entry for address translation, the proc­
essor signals either a data-access fault or an in­
struction-access fault. In software systems that sup­
port paged virtual memory, the trap handler can 
bring the required page into physical memory. 

Note that there is no P bit for the page directory 
itself. The page directory may be not-present while 
the associated process is suspended, but the oper­
ating system must ensure that the page directory 
indicated by the dirbase image associated with the 
process is present in physical memory before the 
process is dispatched. 

2.4.4.3 Writable and User Bits 

The W (writable) and U (user) bits are used for page­
level protection, which the i860 microprocessor per­
forms at the same time as address translation. The 
concept of privilege for pages is implemented by as­
signing each page to one of two levels: 

1. Supervisor level (U = 0)-for the operatlng sys­
tem and other systems software and related data. 

2. User level (U = 1 )-for applications procedures 
and data. 

The U bit of tt.le psr indicates whether the i860 mi­
croprocessor is executing at user or supervisor level. 
The i860 microprocessor maintains the U bit of psr 
as follows: 

PRESENT----------------------~ 

WRITABLE---------------------~ 

31 

NOTE: 

USER-----------------------, 
WRITE-THROUGH--------------------, 
CACHE DISABLE----------------~ 
ACCESSED-------------------, 
DIRTY--------------------, 
(RESERVED)---------------~ 

AVAILABLE FOR SYSTEMS PROGRAMMER USER I 
12 0 

PAGE FRAME ADDRESS 31. .12 AVAIL X X 

X indicates Intel reserved. Do not use. 

Figure 2.11. Format of a Page Table Entry 

6-20 

240296-34 



intJ i86QTM MICROPROCESSOR 

• The i860 microprocessor clears the psr U bit to 
indicate supervisor level when a trap occurs (in­
cluding when the trap instruction causes the 
trap). The prior value of U is copied into PU. 

• The i860 microprocessor copies the psr PU bit 
into the U bit when an indirect branch is executed 
and one of the trap bits is set. If PU was one, the 
i860 microprocessor enters user level. 

With the U bit of psr and the W and U bits of the 
page table entries, the i860 microprocessor imple­
ments the following protection rules: 

• When at user level, a read or write of a supervi­
sor-level page causes a trap. 

• When at user level, a write to a page whose W bit 
is clear causes a trap. 

• When at user level, st.c to certain control regis-
ters is ignored. 

When the i860 microprocessor is executing at super­
visor level, all pages are addressable, but, when it is 
executing at user level, only pages that belong to the 
user-level are addressable. 

When the i860 microprocessor is executing at super­
~isor. level, all pages are readable. Whether a page 
1s writable depends upon the write-protection mode 
controlled by WP of epsr: 

WP= 0 

WP= 1 

All pages are writable. 

A write to a page whose W bit is 
clear causes a trap. 

When the i860 microprocessor is executing at user 
level, only pages that belong to user level and are 
marked writable are actually writable; pages that be­
long to supervisor level are neither readable nor wri­
table from user level. 

2.4.4.4 Write-Through Bit 

The i860 microprocessor does not implement a 
write-through caching policy for the on-chip data 
cache; however, the WT (write-through) bit in the 
second-level page-table entry does determine inter­
nal ~aching policy. If WT is set in a PTE, on-chip 
caching of data from the corresponding page is in­
hibited. The i860 CPU may place pages having 
WT = 1 into the instruction cache. Future imple­
mentations of the i860 architecture may adhere to a 
write-through data caching policy. Therefore, they 
may cache pages having the WT bit of the PTE set. 
If WT is clear, the normal write-back policy is applied 
to data from the page in the on-chip caches. The WT 
bit of page directory entries is not referenced by the 
processor, but is reserved. 

The WT bit is independent of the CD bit; therefore, 
data may be placed in a second-level coherent 
cache, but kept out of the on-chip caches. 

6-21 

2.4.4.5 Cache Disable Bit 

If the CD (cache disable) bit in the second-level 
page-table entry is set, data from the associated 
page is not placed in instruction or data caches. 
Clearing CD permits the cache hardware to place 
data from the associated page into caches. The CD 
bit of page directory entries is not referenced by the 
processor, but is reserved. 

To control external caches, the i860 microprocessor 
outputs on its PTB pin either the CD or WT bit. The 
PBM bit of epsr determines which bit is output. 

2.4.4.6 Accessed and Dirty Bits 

The A (accessed) and D (dirty) bits provide data 
about page usage in both levels of the page tables. 

The i860 microprocessor sets the corresponding ac­
cessed bits in both levels of page tables before a 
read or write operation to a page. The processor 
tests the dirty bit in the second-level page table be­
fore a write to an address covered by that page table 
entry, and, under certain conditions, causes traps. 
The trap handler then has the opportunity to main­
tain appropriate values in the dirty bits. The dirty bit 
in directory entries is not tested by the i860 micro­
processor. The precise algorithm for using these bits 
is specified in Section 2.4.5. 

An operating system that supports paged virtual 
memory can use these bits to determine what pages 
to eliminate from physical memory when the de-
ma~d for memory exceeds the physical memory 
available. The D and A bits in the PTE (page-table I 
entry) are normally initialized to zero by the operat- 1 
ing system. The processor sets the A bit when a 
page is accessed either by a read or write operation. 
When a data- or instruction-access fault occurs, the 
trap handler sets the D bit if an allowable write is 
being performed, then re-executes the instruction. 

!he operating system is responsible for coordinating 
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may 
share the page tables. The i860 microprocessor au­
tomatically asserts the LOCK# signal while setting 
the A bit. If an A-bit of a PTE is found not set during 
a locked.sequence (created by the loc~ instruction), 
a trap will occur and the processor will not update 
the A-bit. 

2.4.4.7 Combining Protection of Both Levels of 
Page Tables 

For any one page, the protection attributes of its 
page directory entry may differ from those of its 
page table entry. The i860 microprocessor com­
putes the effective protection attributes for a page 



intef 1860™ MICROPROCESSOR 

by examining the protection attributes in both the 
directory and the page table. Table 2.6 shows the 
effective protection provided by the possible combi­
nations of protection attributes. 

2.4.5 ADDRESS TRANSLATION ALGORITHM 

The algorithm below defines the translation of each 
virtual address to a physical address. Let DIR, 
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields Of the first and second level page tables 
respectively; DTB is the page directory table base 
address stored in the dirbase register. 

1. Read the PTE (page table entry) at the physical 
address formed by DTB:DIR:OO. 

2. If P in the PTE is zero, generate a data- or instruc­
tion-access fault. 

3. If W in the PTE is zero, the operation is a write, 
and either the U-bit of the PSR is set or WP = 1, 
generate a data or instruction access fault. 

4. If the U-bit in the PTE is zero and the U-bit in the 
psr is set, generate a data or instruction access 
fault. · 

5. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was locked, generate a 

data or instruction access fault. (The trap allows 
software to set A to one and restart the se­
quence. This avoids ambiguity in determining 
what address corresponds to a locked sema­
phore for external bus hardware use.) 

6. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was not locked, assert 
LOCK#. Re-fetch and check the PTE, set A, and 
store the PTE. Deassert LOCK# during the store. 

7. Locate the PTE at the physical address formed by 
PFA 1 :PAGE:OO. 

8. Perform the P, W, U, and A checks as in steps 2 
through 6 with the second-level PTE. 

9. If D in the PTE is clear and the operation is a 
write, generate a data or instruction access fault. 

10. Form the physical address as PFA2:0FFSET. 

The i860 microprocessor looks only in external 
memory for Page Directories and Page Tables, in 
the translation process. The data cache is not 
searched. Therefore, any code which modifies Page 
Directories or Page Tables must keep them out of 
the cache. The tables should be kept in non-cache­
able memory, or flushed from the cache. 

Table 2.6. Combining Directory and Page Protections 

Page Directory Page Table 
Comb.ined Protection 

Entry Entry User Supervisor 
Access Access 

U-bit W-bit U-bit W-bit WP= X WP= 0 WP= 1 

0 0 0 0 N R/W R 
0 0 0 1 N R/W R 
0 0 1 0 N R/W R 
0 0 1 1 N R/W R 

0 1 0 0 N R/W R 
0 1 0 1 N R/W R/W 
0 1 1 0 N R/W R 
0 1 1 1 N R/W R/W 

1 0 0 0 N R/W R 
1 0 0 1 N R/W R 
1 0 1 0 R R/W R 
1 0 1 1 R R/W R 

1 1 0 0 N R/W R 
1 1 0 1 N R/W R/W 
1 1 1 0 R R/W R 
1 1 1 1 R/W R/W R/W 

NOTES: 
N = No access allowed R/W = Both reads and writes allowed 
R = Read access only X = Don't care 

6-22 



i860™ MICROPROCESSOR 

The i860 microprocessor expects Page Directories 
and Page Tables to be in little endian format. The 
operating system must maintain these tables in little 
endian format by either setting BE = o when manip­
ulating the tables or by complementing bit 2 of the 
address when loading or storing entries. 

2.4.6 ADDRESS TRANSLATION FAULTS 

The address translation fault is one instance of the 
data-access fault. The instruction causing the fault 
can be re-executed upon returning from the trap 
handler. 

2.4.7 PAGE TRANSLATION CACHE 

For greatest efficiency in address translation, the 
i860 microprocessor stores the most recently used 
page-table data in an on-chip cache called the TLB 
(translation lookaside buffer). Only if the necessary 
paging information is not in the cache must both lev­
els of page tables be referenced. 

2.5 Caching and Cache Flushing 

The i860 microprocessor has the ability to cache in­
struction, data, and address-translation information 
in on-chip caches. Caching uses virtual-address 
tags. The effects of mapping two different virtual ad­
dresses in the same address space to the same 
physical address are undefined. 

Instruction, data, and address-translation caching on 
the i860 microprocessor are not transparent. Be­
cause the data cache uses a write-back protocol, 
writes do not immediately update memory, and 
writes to memory by other bus devices do not up­
date the cache. Changes to page tables do not auto­
matically update the TLB, and changes to instruc­
tions do not automatically update the instruction 
cache. Under certain circumstances, such as 1/0 
references, self-modifying code, page-table up­
dates, or shared data in a multiprocessing system, it 
is necessary to bypass or to flush the caches. The 
i860 microprocessor provides the following methods 
for doing this: 

• Bypassing Instruction and Data Caches. If 
deasserted during cache-miss processing, the 
KEN# pin disables instruction and data caching 
of the referenced data. If the CD bit of the associ­
ated second-level PTE is set, caching of data and 
instructions is disabled. The i860 CPU may place 
pages having WT = 1 into the instruction cache. 
Future implementations of the i860 architecture 
may adhere to a write-through data cache policy. 
Thus, they may cache pages having the WT bit of 

6-23 

the PTE set. The value of the CD bit or the WT bit 
is output on the PTB pin for use by external 
caches. 

• Invalidating Instruction and Address-Transla­
tion Caches. Storing to the dirbase register with 
the ITI bit set invalidates the contents of the in­
struction and address-translation caches. This bit 
should be set when modifying a page table, when 
modifying a page containing instructions, or when 
changing the OTB field of dirbase or the WP bit 
of the epsr. Note that in order to make the in­
struction or address-translation caches consist­
ent with the data cache, the data cache must be 
flushed before invalidating the other caches. 

NOTE: 
The mapping of the page containing the 
currently executing instruction and the 
next six instructions should not be differ­
ent in the new page tables when st.c dir­
base changes OTB or activates ITI. The 
six instructions following the st.c should 
be nops and should lie in the same page 
as the st.c. 

• Flushing the Data Cache. The data cache is 
flushed by a software routine using the flush in­
struction. The data cache must be flushed prior to 
invalidating the instruction or address-translation 
caches (as controlled by the ITI bit of dirbase) or 
enabling or disabling address translation (via the 
ATE bit). The data cache does not need flushing 
if the program is modifying only the P, U, W, A, or 
D bits of a PTE (as long as the Page Frame Ad­
dress is not changed and the PTE itself was not 

these protection bits on cache line writeback. 1 

in the data cache.) The i860 CPU does not check I 
Thus, a trap handler can service a DAT for 0-bit­
zero by setting D = 1 and then ITI = 1. In the 
case of setting the P or A bits active, there is no 
need to invalidate or flush any caches because 
the processor does not load entries into the TLB 
that have P = O or A = 0. The i860 microproces-
sor searches only external memory for Page Di­
rectories and Page Tables in the translation pro­
cess. The data cache is not searched. Therefore, 
Page Tables and Directories should be kept in 
non-cacheable memory, or flushed from the 
cache by any code which accesses them. 



intJ i86QTM ·MICROPROCESSOR 

2.6 Instruction Set 

Table 2.7 shows the complete set of instructions 
grouped by function within processing unit. Refer to 
Section 8 for an algorithmic definition of each in-
struction. · 

The architecture of the i860 microprocessor uses 
parallelism to increase the rate at which operations 
may be introduced into the unit. Parallelism in the 
i860 microprocessor is not transparent; rather, pro­
grammers have complete control over parallelism 
and therefore can achieve maximum performance 
for a variety of computational problems. 

2.6.1 PIPELINED AND SCALAR OPERATIONS 

One type of parallelism used within the floating-point 
unit is "pipelining". The pipelined architecture treats 
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder unit as an 
example. Let A represent the operation of the adder. 
Let the stages be represented by A1, A2, and A3· 
The stages are designed such that Ai+ 1 for one ad­
der instruction can execute in parallel with A1 for the 
next adder instruction. Furthermore, each A1 can be 
executed in just one clock. The pipelining within the 
multiplier and graphics units can be described simi­
larly, except that the number of stages may be differ­
ent. 

Figure 2.12 illustrates three-stage pipelining as 
found in the floating-point adder (also in the floating­
point multiplier when single-precision input operands 
are employed). The columns of the figure represent 
the three stages of the pipeline. Each stage holds 
intermediate results and also (when introduced into 
first stage by software) holds status information per­
taining to those results. The figure assumes that the 
instruction stream consists of a series of consecu­
tive floating-point instructions, all of one type (i.e. all 
adder instructions or all single-precision multiplier in­
structions). The instructions are represented as i, 
i + 1, etc. The rows of the figure represent the states 
of the unit at successive clock cycles. Each time a 
pipelined operation is performed, the result of the 
last stage of the pipeline is stored in the destination 
register tdest, the pipeline is advanced one stage, 
and the input operands tsrc1 and fsrc2 are trans­
ferred to the first stage of the pipeline. 

In the i860 microprocessor, the number of pipeline 
stages ranges from one to three. A pipelined opera­
tion with a three-stage pipeline stores the result of 
the third prior operation. A pipelined operation with a 
two-stage pipeline stores the result of the second 
prior operation. A pipelined operation with a one­
stage pipeline stores the result of the prior opera­
tion. 

There are four floating-point pipelines: one for the 
multiplier, one for the adder, one for the graphics 
unit, and one for floating-point loads. The adder 
pipeline h;is three stages. The number of stages in 
the multiplier pipeline depends on the precision of 
the source operands in the pipeline. Single precision 
has three stages and double precision has two 
stages. The graphics unit has one stage for all preci­
sions. The load pipeline has three stages for all pre­
cisions. 

Changing the FZ (flush zero), RM (rounding mode), 
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined. 

2.6.1.1 Scalar Mode 

In addition to the pipelined execution mode, the i860 
microprocessor also can execute floating-point in­
structions in "scalar" mode. Most floating-point in­
structions have both pipelined and scalar variants, 
distinguished by a bit in the instruction encoding. In 
scalar mode, the floating-point unit does not start a 
new operation until the previous floating-point oper­
ation is completed. The scalar operation passes 
through all stages of its pipeline before a new opera­
tion is introduced, and the result is stored automati­
cally. Scalar mode is used when the next operation 
depends on results from the previous few floating­
point operations (or when the compiler or program­
mer does not want to deal with pipelining). 

2.6.1.2 Pipelining Status Information 

6-24 

Result status information in the fsr consists of the 
AA, Al, AO, AU, and AE bits, in the case of the ad­
der, ancfthe MA, Ml, MO, and MU bits, in the case of 
the multiplier. This information arrives at the fsr via 
the pipeline in one of two ways: 



inter i860TM MICROPROCESSOR 

Table 2.7. Instruction Set 

Core Unit Floating-Point Unit 

Mnemonic Description Mnemonic Description 

Load and Store Instructions Register to Register Moves 

ld.x Load integer fxfr Transfer F-P to integer register 
st.x Store integer 
fld.y F-P load 
pfld.z Pipelined F-P load 
fst.y F-P store 
pst.d Pixel store 

Register to Register Moves 

F-P Multiplier Instruction 

fmul.p F-P multiply 
pfmul.p Pipelined F-P multiply 
pfmul3.dd 3-Stage pipelined F-P multiply 
fmlow.p F-P multiply low 
frcp.p F-P reciprocal 

ixfr Transfer integer to F-P register frsqr.p F-P reciprocal square root 

Integer Arithmetic Instructions F-P Adder Instructions 

addu Add unsigned 
adds Add signed 
subu Subtract unsigned 
subs Subtract signed 

Shift Instructions 

fadd.p F-P add 
pfadd.p Pipelined F-P add 
famov.r F-P adder move 
pfamov.r Pipelined F-P adder move 
fsub.p F-P subtract 
pfsub.p Pipelined F-P subtract 

shl Shift left 
shr Shift right 
shra Shift right arithmetic 
sh rd Shift right double 

Logical Instructions 

pfgt.p Pipelined F-P greater-than compare 
pfeq.p Pipelined F-P equal compare 
fix.p F-P to integer conversion 
pfix.p Pipelined F-P to integer conversion 
ftrunc.p F-P to integer truncation 
pftrunc.p Pipelined F-P to integer truncation 

and Logical AND Dual-Operation Instructions 
andh Logical AND high 
andnot Logical AND NOT 
andnoth Logical AND NOT high 
or Logical OR 
orh Logical OR high 

pfam.p Pipelined F-P add and multiply 
pfsm.p Pipelined F-P subtract and multiply 
pfmam.p Pipelined F-P multiply with add 
pfmsm.p Pipelined F-P multiply with subtract 

xor Logical exclusive OR Long Integer Instructions 
xorh Logical exclusive OR high 

Control-Transfer Instructions 

trap Software trap 
intovr Software trap on integer overflow 
br Branch direct 

fisub.z Long-integer subtract 
pfisub.z Pipelined long-integer subtract 
fiadd.z Long-integer add 
pfiadd.z Pipelined long-integer add 

Graphics Instructions 

I 
bri Branch indirect fzchks 16-bit Z-buffer check 
be Branch on CC 
bc.t Branch on CC taken 

pfzchks Pipelined 16-bit Z-buffer check 
fzchkl 32-bit Z-buffer check 

bnc Branch on not CC 
bnc.t Branch on not CC taken 

pfzchkl Pipelined 32-bit Z-buffer check 
faddp Add with pixel merge 

bte Branch if equal pfaddp Pipelined add with pixel merge 
btne Branch if not equal faddz Add with Z merge 
bla Branch on LCC and add pfaddz Pipelined add with Z merge 
call Subroutine call form OR with MERGE register 
calli Indirect subroutine call pform Pipelined OR with MERGE register 

System Control Instructions 

flush Cache flush 
Assembler Pseudo-Operations 

ld.c Load from control register Mnemonic Description 

st.c Store to control register 
lock Begin interlocked sequence 

mov Integer register-register move 
fmov.r F-P reg-reg move 

unlock End interlocked sequence pfmov.r Pipelined F-P reg-reg move 
nop Core no-operation 
fnop F-P no-operation 
pfle.p Pipelined F-P less-than or equal 

6-25 



intJ i860™ MICROPROCESSOR 

STAGE 1 STAGE 2 STAGE 3 

results (status) results (status) results status 

CLOCK n 

INSTRUC 

CLOCK n+1 

INSTR UC 
1+1 

JNSTRUC 
i+2 

r 

1+1 

i+2 

(s) r 

(s) 

CLOCKn+~ 
1+1 I 

(s) r...::. s 

~ CLOCKn+~ ~~ 
INSTRUC 

1+3 
r 

i+3 1+2 

(s) r 

i+1 

(s) '...::. s 

fdest 
1+3 

~ CLOCKn+~ ~~ 
INSTRUC 

1+4 

1+4 1+3 

(s) 

1+2 l 
r ....._ s I 

fdest 
i+4 

CLOCK n+~ 
INSTRUC 

1+5 

1+5 i+4 

(s) 

i+3 
fdest 
1+5 

240296-9 

Figure 2.12. Pipelined Instruction Execution 

1. It is calculated by the last stage of the pipeline. 
This is the normal case. 

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the state 
of the pipeline after a preemption. When a store 
instruction updates the fsr and the value of the 
U bit in the word being written into the fsr is set, 
the store updates the result status bits in the first 
stage of both the adder and multiplier pipelines. 
When software changes the result-status bits of 
the first stage of a particular unit (multiplier or ad­
der), the updated result-status bits are propagat­
ed one stage for each pipelined floating-point op­
eration for that unit. In this case, each stage of the 
adder and multiplier pipelines holds its own copy 
of the relevant bits of the fsr. When they reach 
the last stage, they override the normal result­
status bits computed from the last stage result. 

6-26 

At the next floating-point instruction (or at certain 
core instructions), after the result reaches the last 
stage, the i860 microprocessor traps if any of the 
status bits of the fsr indicate exceptions. Note that 
the instruction that creates the exceptional condition 
is not the instruction at which the trap occurs. 

2.6.1.3 Precision in the Pipelines 

In pipelined mode, when a floating-point operation is 
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of 
the current instruction applies to the operation being 
initiated. The precision of the value stored in fdest is 
that which was specified by the instruction that initia­
ted that operation. 



intJ i860™ MICROPROCESSOR 

31 0 

OP 

d.FP-OP 

63 d.FP-OP or CORE-OP 

CORE-OP 

CORE-OP 

CORE-OP 

31 

63 

[ CORE-OP 

d.FP-OP 

FP-OP 

FP-OP 

OP 

OP 

OP 

d.FP-OP 

f'P-OP 

FP-OP 

OP 

OP 

0 

ENTER DUAL­
INSTRUCTION MODE. 
INITIATE EXIT FROM 
DUAL-INSTRUCTION MODE. 

LEAVE DUAL­
INSTRUCTION MODL 

TEMPORARY DUAL­
INSTRUCTION MODE 

240296-10 

Figure 2.13. Dual-Instruction Mode Transitions 

If fdest is the same as fsrc1 or fsrc2, the value being 
stored in fdest is used as the input operand. In this 
case, the precision of fdest must be the same as the 
source precision. 

The multiplier pipeline has two stages when the 
source operand is double-precision and three stages 
when the precision of the source operand is single. 
This means that a pipelined multiplier operation 
stores the result of the second previous multiplier 
operation for double-precision inputs and third previ­
ous for single-precision inputs (except when chang­
ing precisions). 

2.6.1.4 Transition between Scalar and Pipelined 
Operations 

When a scalar operation is executed, it passes 
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To 
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy 
pipelined operations that unload unstored results 
from the affected pipeline. 

6-27 

After a scalar operation, the values of all pipeline 
stages of the affected unit (except the last) are un­
defined. No spurious result-exception traps result 
when the undefined values are subsequently stored 
by pipelined operations; however, the values should 
not be referenced as source operands. 

For best performance a scalar operation should not 
immediately precede a pipelined operation whose 
fdest is nonzero. 

2.6.2 DUAL-INSTRUCTION MODE 

Another form of parallelism results from the fact that 
the i860 microprocessor can execute both a floating­
point and a core instruction simultaneously. Such 
parallel execution is called dual-instruction mode. 
When executing in dual-instruction mode, the in­
struction sequence consists of 64-bit aligned instruc­
tions with a floating-point instruction in the lower 32 
bits and a core instruction in the upper 32 bits. Table 
2. 7 identifies which instructions are executed by the 
core unit and which by the floating-point unit. 

I 



intJ i860™ MICROPROCESSOR 

Programmers specify dual-instruction mode either 
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual ... . enddual. Both of the specifications 
cause the D-bit of floating-point instructions to be 
set. If the i860 microprocessor is executing in single­
instruction mode and encounters a floating-point in­
struction with the D-bit set, one more 32-bit instruc­
tion is executed before dual-mode execution begins. 
If the i860 microprocessor is executing in dual-in­
struction mode and a floating-point instruction is en­
countered with a clear D-bit, then one more pair of 
instructions is executed before resuming single-in­
struction mode. Figure 2.13 illustrates two variations 
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair. 

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction 
mode, both 32-bit instructions are executed. 

2.6.3 DUAL-OPERATION INSTRUCTIONS 

Special dual-operation floating-point instructions 
(add-and-multiply, subtract-and-multiply) use both 
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT), 
and performing graphics transformations. 

The instructions pfam fsrc1, fsrc2, fdest (add and 
multiply), pfsm fsrc1, fsrc2, fdest (subtract and mul­
tiply), pfmam fscr1, fsrc2, fdest (multiply and add), 
and pfmsm fsrc1, fsrc2, fdest (multiply and subtract) 
initiate both an adder operation and a multiplier op­
eration. Six operands are required, but the instruc­
tion format specifies only three operands; therefore, 
there are special provisions for specifying the oper­
ands. These special provisions consist of: 

• Three special registers (KR, Kl, and T), that can 
store values from one dual-operation instruction 
and supply them as inputs to subsequent dual­
operation instructions. 

1. The constant registers KR and Kl can store the 
value of fsrc 1 and subsequently supply that 
value to the multiplier pipeline in place of fsrct. 

2. The transfer register T can store the last stage 
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline 
in place of fsrc1. 

• A four-bit data-path control field in the opcode 
(DPC) that specifies the operands and loading of 
the special registers. 

1. Operand-1 of the multiplier can be KR, Kl, or 
fsrct. ' 

2. Operand-2 of the multiplier can be fsrc2 or the 
last stage result of the adder pipeline. 

3. Operand-1 of the adder can be fsrct, the 
T-register, or the last stage result of the adder 
pipeline. 

4. Operand-2 of the adder can be fsrc2, the last 
stage result of the multiplier pipeline, or the 
last stage result of the adder pipeline. 

Figure 2.14 shows all the possible data paths sur­
rounding the adder and multiplier. A DPC field in 
these instructions select different data paths. Sec­
tion 8 shows the various encodings of the DPC field. 

6-28 

SRC1 SRC2 RDEST 

OP1 OP2 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

240296-11 

Figure 2.14. Dual-Operation Data Paths 

Note that the mnemonics pfam.p, pfsm.p, 
pfmam.p, and pfmsm.p are never used as such in 
the assembly language; these mnemonics are used 
here to designate classes of related instructions. 
Each value of DPC has a unique mnemonic associ­
ated with it. 

2. 7 Addressing Modes 

Data access is limited to load and store instructions. 
Memory addresses are computed from two fields of 
load and store instructions: isrc1 and isrc2. 

1 . isrc 1 either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset. 

2.isrc2 always specifies a register. 



intef i86QTM MICROPROCESSOR 

Table 2.8. Types of Traps 

Type Indication Caused by 

PSR,EPSR FSR Condition Instruction 

Instruction IT OF Software traps trap, intovr 
Fault IL Missing unlock Any 

Floating SE Floating-point source exception Any M- or A-unit except fmlow 
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt, 
Fault FT AO,MO overflow and pfeq. Reported on any F-P 

AU,MU underflow instruction plus pst, fst, and 
Al,MI inexact result sometimes fld, pfld, ixfr 

Instruction IAT Address translation exception Any 
Access Fault during instruction fetch 

Data Access Load/store address translation Any load/store 
Fault exception 

DAT* Misaligned operand address Any load/store 
Operand address matches Any load/store 

db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 

NOTES: 
'These cases can be distinguished by examining the operand addresses. 
The IL bit of the epsr must be checked by the trap handler to tell if the bus is currently in a locked sequence. 

Because either isrct or isrc2 may be null (zero), a 
variety of useful addressing modes result: 

offset + register Useful for accessing fields within 
a record, where register points 
to the beginning of the record. 
Useful for accessing items in a 
stack frame, where register is 
r3, the register used for pointing 
to the beginning of the stack 
frame. 

register+ register Useful for two-dimensional ar­
rays or for array access within 
the stack frame. 

register 

offset 

Useful as the end result of any 
arbitrary address calculation. 

Absolute address into the first or 
last 32K of the logical address 
space. 

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this 
mode isrc2 is replaced by the sum of isrc 1 and isrc2 
after performing the load or store. This mode makes 
stepping through arrays more efficient, because it 
eliminates one address-calculation instruction. 

2.8 Traps and Interrupts 
Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps 
cause interruption of normal program flow to exe-

6-29 

cute a special program known as a trap handler. 
Traps are divided into the types shown in Table 2.8. 
Interrupts and traps start execution in single instruc­
tion mode at virtual address OxFFFFFFOO in supervi­
sor level (U = 0). 

2.8.1 TRAP HANDLER INVOCATION 

This section applies to traps other than reset. When II 
a trap occurs, execution of the current instruction is 1 
aborted. The instruction is restartable. The proces-
sor takes the following steps while transferring con-
trol to the trap handler: 

1. Copies U (user mode) of the psr into PU (previous 
U). 

2. Copies IM (interrupt mode) into PIM (previous IM). 

3. Sets U to zero (supervisor mode). 

4. Sets IM to zero (interrupts disabled). 

5. If the processor is in dual instruction mode, it sets 
DIM; otherwise it clears DIM. 

6. If the processor is in single-instruction mode and 
the next instruction will be executed in dual­
instruction mode or if the processor is in dual-in­
struction mode and the next instruction will be 
executed in single-instruction mode, DS is set; 
otherwise, it is cleared. 

7. The appropriate trap type bits in psr are set (IT, 
IN, IAT, DAT, FT). Several bits may be set if the 
corresponding trap conditions occur simulta­
neously. 



intJ i86QTM MICROPROCESSOR 

.a. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In 
single-instruction mode, the address in fir is the 
address of the trapped instruction itself. In dual-in­
struction mode, the address in fir is that of the 
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of the 
dual instruction (fir + 4). In dual-instruction 
mode, when a data access fault occurs in the ab­
sence of other trap conditions, the floating-point 
half of the dual instruction will already have been 
executed. 

The processor begins executing the trap handler 
by transferring execution to virtual address 
OxFFFFFFOO. The trap handler begins execution in 
single-instruction mode. The trap handler must ex­
amine the trap-type bits in psr (IT, IN, IAT, DAT, FT) 
to determine the cause or causes of the trap. 

2.8.2 INSTRUCTION FAULT 

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler. 
1. By the trap instruction. When trap is executed in 

dual-instruction mode, the floating-point compan­
ion of the trap instruction is not executed before 
the trap is taken. 

2. By the intovr instruction. The trap occurs only if 
OF in epsr is set when intovr is executed. The 
trap handler should clear OF before returning. 
When intovr causes a trap in dual-instruction 
mode, the floating-point companion of the intovr 
instruction is completely executed before the trap 
is taken. 

3. By violation of lock/unlock protocol, explained be­
low. (Note that trap and intovr should not be 
used within a locked sequence; otherwise, it 
would be difficult to distinguish between this and 
the prior cases.) 

The lock protocol requires the following sequence 
of activities: 

1. lock 
2. Any load or store instruction that misses the 

cache 
3. unlock 
4. Any load or store instruction (regardless of 

whether it misses the cache) 

There may be other instructions between any of 
these steps. The bus is locked after step 2, and re­
mains locked until step 4. Step 4 must follow step 1 
by 30 instructions or less, otherwise the instruction 
trap occurs. In case of a trap, IL is also set. If the 
load or store instruction in step 2 hits the cache, the 
sequence is legal, but the bus is not locked. 

2.8.3 FLOATING-POINT FAULT 

The floating-point fault is reported on floating-point 
instructions, pst, fst, and sometimes fld, pfld, ixfr. 
The floating-point faults of the i860 microprocessor 
support the floating-point exceptions defined by the 
IEEE standard as well as some other useful classes 
of exceptions. The i860 microprocessor divides 
these into two classes: source exceptions and result 
exceptions. The numerics library supplied by Intel 
provides the IEEE standard default handling for all 
these exceptions. 

2.8.3.1 Source Exception Faults 

When used as inputs to the multiplier or adder, all 
exceptional operands, including infinities, denormal­
ized numbers and NaNs, cause a floating-point fault 
and set SE in the fsr. Source exceptions are report­
ed on the instruction that initiates the operation. For 
pipelined operations, the pipeline is not advanced. 

The SE value is undefined for faults on fld, pfld, fst, 
pst, and ixfr instructions when in single-instruction 
mode or when in dual-instruction mode and the com­
panion instruction is not a multiplier or adder opera­
tion. 

2.8.3.2 Result Exception Faults 

The class of result exceptions includes any of the 
following conditions: 

6-30 

• Overflow. The absolute value of the rounded 
true result would exceed the largest positive finite 
number in the destination format. 

• Underflow (when FZ is clear). The absolute val­
ue of the rounded true result would be smaller 
than the smallest positive finite number in the 
destination format. 

• Inexact result (when Tl is set). The result is not 
exactly representable in the destination format. 
For example, the fraction 1/a cannot be precisely 
represented in binary form. This exception occurs 
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost. 

The point at which a result exception is reported de­
pends upon whether pipelined operations are being 
used: 
• Scalar (nonpipelined) operations. Result ex­

ceptions are reported on the next floating-point, 
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap 
occurs, the last stage of the affected unit con­
tains the result of the scalar operation. 

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the 
next floating-point, fst.x or pst.x (and sometimes 
fld, pfld, ixfr) instruction is executed. When a 
trap occurs, the pipeline is not advanced, and the 
last stage results (that caused the trap) remain 
unchanged. 



intJ i860TM MICROPROCESSOR 

When no trap occurs (either because FTE is clear or 
because no exception occurred), the pipeline is ad­
vanced normally by the new floating-point operation. 

The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last stage result-status bits (bits 
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the 
last stages of both the adder and multiplier. For ex­
ample, if the last stage result in the multiplier has 
overflowed and a pipelined floating-point pfadd is 
started, a trap occurs and MO is set. 

For scalar operations, the RR bits of fsr specify the 
register in which the result was stored. RR is updat­
ed when the scalar instruction is initiated. The trap, 
however, occurs on a subsequent instruction. Pro­
grammers must prevent intervening stores to fsr 
from modifying the RR bits. Prevention may take one 
of the following forms: 

• Before any store to fsr when a result exception 
may be pending, execute a dummy floating-point 
operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and 
mask updates so that the RR bits are not 
changed. 

For pipelined operations, RR is cleared· and the re­
sult is in the last stage of the pipeline of the appro­
priate unit. The trap handler must flush the pipeline, 
saving the results and the status bits. 

In either pipelined or scalar. mode, the trap handler 
must then compute the trapping result. In either 
case, the result has the same fraction as the true 
result and has an exponent which is the low-order 
bits of the true result. The trap handler can inspect 
the result, compute the result appropriate for that 
instruction (a NaN or an infinity, for example), and 
store the correct result. The result is either stored in 
the register specified by RR (if nonzero) or (if RR = 

0) the trap handler must reload the pipeline with the 
saved results and status bits. 

Result exceptions may be reported for both the ad­
der and multiplier units at the same time. In this 
case, the trap handler should fix up the last stage of 
both pipelines. 

2.8.4 INSTRUCTION ACCESS FAULT 

This trap occurs during address translation for in­
struction fetches in any of these cases: 

• The address fetched is in a page whose P (pres­
ent) bit in the page table is clear (not present). 

• The address fetched is in a supervisor mode 
page, but the processor is in user mode. 

• The address fetched is in a page whose PTE has 
A = 0, and the access occurs during a locked 
sequence (i.e., between lock and unlock). 

6-31 

Note that several instructions are fetched at one 
time, either due to instruction prefetching or to in­
struction caching. Therefore, a trap handler can 
change from supervisor to user mode and continue 
to execute instructions fetched from a supervisor 
page. An instruction access trap occurs only when 
the next group of instructions is fetched from a su­
pervisor page (up to eight instructions later). If, in the 
meantime, the handler branches to a user page, no 
instruction access trap occurs. No protection viola­
tion results, because the processor does not permit 
data accesses to supervisor pages while running in 
user mode. 

2.8.5 DATA ACCESS FAULT 

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es: 

• An attempt is being made to write to a page 
whose D (Dirty) bit is clear. 

• A memory operand is misaligned (is not located 
at an address that is a multiple of the length of 
the data). 

• The address stored in the db register is equal to 
one of the addresses spanned by the operand. 

• The operand is in a not-present page. 

• An attempt is being made from user level to write 
to a read-only page or to access a supervisor-lev­
el page. 

• The operand was in a page whose PTE had A = 
0, and the access occurred during a locked se­
quence. (i.e., between lock and unlock.) I 

• Write protection (determined by epsr bit WP = 1) 1 
is violated in supervisor mode. 

2.8.6 INTERRUPT TRAP 

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (IM set in the psr), the processor 
sets the interrupt bit IN in the psr, and generates an 
interrupt trap: Vectored interrupts are implemented 
by interrupt controllers and software. 

2.8.7 RESET TRAP 

When the i860 microprocessor is reset, execution 
begins in single-instruction mode at . physical ad­
dress OxFFFFFFOO. This is the same address as for 
other traps. The reset trap can be distinguished from 
other traps by the fact that no trap bits are set. The 
instruction cache is flushed. The bits DPS, BL, and 
ATE in dirbase are cleared. CS8 is initialized by the 
value at the INT pin at the end of reset. The read­
only fields of the espr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The 



1860TM MICROPROCESSOR 

bits U, IM, BR, and BW in psr are cleared, as are the 
trap bits FT, DAT; IAT, IN, and IT. All other bits of 
psr and all other register contents are undefined. 

Refer to Table 2.9 for a summary of these initial set­
tings. 
Table 2.9. Register and Cache Values after Reset 

Registers Initial Value 

Integer Registers Undefined 
Floating-Point Undefined 

flegisters 
psr U, IM, BR, BW, FT, DAT, IAT, IN, 

IT = O; others are undefined 
epsr IL, WP, PBM, BE = O; 

Processor Type, Stepping 
Number, DCS are read 
only; others are undefined 

db Undefined 
dirbase DPS, BL, ATE = O; others 

are undefined 
fir Undefined 
fsr Undefined 
KR,KI, T, Undefined 

MERGE 

Caches Initial Value 

Instruction Cache Flushed 
Data Cache Undefined 
TLB Flushed 

The software must ensure that the data cache is 
flushed and control registers are. properly initialized 
before performing operations that depend on the 
values of the cache or registers. The data cache has 
no "validity" bits, so memory accesses before the 
flush may result in false data cache hits. 

Reset code must initialize the floating-point pipeline 
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated. 

After a RESET the i860 microprocessor starts exe­
cution at supervisor level (U = 0). Before branching 
to the first user-level instruction, the RESET trap 
handler or subsequent initialization code has to set 
PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user level. 

2.9 Debugging 

The iB60 microprocessor supports debugging with 
both data and instruction breakpoints. The features 
of the i860 architecture that support debugging in­
clude: 

• db (data breakpoint register) which permits speci­
fication of a data addresses that the i860 micro­
processor will monitor. 

• BR (break read) and BW (break write) bits of the 
psr, which enable trapping of either reads or 
writes (respectively) to the address in db. 

• DAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data 
breakpoint was the cause of the trap. 

• trap instruction that can be used to set break­
points in code. Any. number of code breakpoints 
can be set. The values of the isrc 1 and isrc2 
fields help identity which breakpoint has oc­
curred. 

• IT (instruction trap) bit of the. psr, which allows 
the trap handler to determine when a trap 
instruction was the cause of the trap. 

3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low voltage. When no # is present after 
the signal name, the signal is asserted when at the 
high voltage level. 

3.1 Signal Description 

Table 3.1 identifies functional groupings of the pins, 
lists every pin by its identifier, gives a brief descrip­
tion of its function, and· lists some of its characteris­
tics. All output pins are tristate, except HLDA and 
BREQ. All inputs are synchronous, except HOLD 
and INT. 

3.1.1 CLOCK (CLK) 

The CLK input determines execution rate and timing 
of the i860 microprocessor. Timing of other signals 
is specified relative to the rising edge of this signal. 
The i860 microprocessor can utilize a clock rate of 
33.3 MHz or 40 MHz. The internal operating frequen­
cy is the same as the external clock. 

3.1.2 SYSTEM RESET (RESET) 

Asserting RESET for at least 16 CLK periods causes 
initialization of the i860 microprocessor. Refer to 
section 3.2 "lnitia.lization" for more details related to 
RESET. 

6-32 

3.1.3 BUS HOLD (HOLD) AND BUS HOLD 
ACKNOWLEDGE (HLDA) 

These pins are used for i860 microprocessor bus 
arbitration. At some clock after the HOLD signal is 
asserted, the i860 microprocessor releases control 



intJ i860TM MICROPROCESSOR 

Table 3.1. Pin Summary 

Pin Function Active Input/ 
Name State Output 

Execution Control Pins 

CLK CLocK I 
RESET System reset High I 
HOLD Bus hold High I 
HLDA Bus hold acknowledge High 0 
BREQ Bus request High 0 
INT/CSB Interrupt, code-size High I 

Bus Interface Pins 

A31-A3 Address bus High 0 
BE7#-BEO# Byte Enables Low 0 
D63-DO Data bus High 1/0 
LOCK# Bus lock Low 0 
W/R# Write/Read bus cycle High/Low 0 
NENE# NExt NEar 

l 
Low 0 

NA# Next Address request Low I 
READY# Transfer Acknowledge Low I 
ADS# ADdress Status Low 0 

Cache Interface Pins 

KEN# Cache ENable Low I 
PTB Page Table Bit High 0 

Testability Pins 

SHI Boundary Scan Shift Input High I 
BSCN Boundary Scan Enable High I 
SCAN Shift Scan Path High I 

Intel-Reserved Configuration Pins 

CC1-CCO Configuration High I 

Power and Ground Pins 

Vee System power 
Vss System ground 

A # after a pin name indicates that the signal is active when at the low voltage level. 

of the local bus and puts all bus interface outputs 
(except BREQ and HLDA) into a floating state, then 
asserts HLDA-all during the same clock period. It 
maintains this state until HOLD is deasserted. In­
struction execution stops only if required instructions 
or data cannot be read from the on-chip instruction 
and data caches. 

The time required to acknowledge a hold request is 
one clock plus the number of clocks needed to finish 
any outstanding bus cycles. HOLD is recognized 
even while RESET or LOCK# are asserted. 

When leaving a bus hold, the i860 microprocessor 
deactivates HLDA and, in the same clock period, ini­
tiates a pending bus cycle, if any. 

Hold is an asynchronous input. 

6-33 

3.1.4 BUS REQUEST (BREQ) 

This signal is asserted when the i860 microproces­
sor has a pending memory request, even when 
HLDA is asserted. This allows an external bus arbi­
ter to implement an "on demand only" policy for 
granting the bus to the i860 microprocessor. BREQ 
is asserted the clock after the i860 microprocessor 
realizes an internal request for the bus. In normal 
operation, BREQ goes low the clock after ADS# 
goes low for the final pending bus cycle. (Refer to 
Figure 4.10 for timing information.) During data or 
instuction cache fills, however, BREQ may be deas­
serted for one or more clocks, due to cache and TLB 
logic. 

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8) 

This input allows interruption of the current instruc­
tion stream. If interrupts are enabled (IM set in psr) 
when INT is asserted, the i860 microprocessor 
fetches the next instruction from address 

I 



intJ i86QTM MICROPROCESSOR 

-------·--·-··------------

OxFFFFFFOO. To assure that an interrupt is recog­
nized, INT should remain asserted until the software 
acknowledges the interrupt (by writing, for example, 
to a memory-mapped port of an interrupt controller). 
When the bus is not locked, the maximum time be­
tween the assertion of INT and the execution of the 
first instruction of the trap handler is ten clocks, plus 
the time for four sets of four pipelined read cycles 
and two sets of four pipelined writes (instruction­
and data-cache misses and write-back cycles to up­
date memory), plus the time for twenty nonpipelined 
read cycles (six TLB misses, with eight refetches 
when the A-bit is zero), plus the time for eight non­
pipelined writes (updates to the A-bit). 

If the bus is locked from a lock instruction, the INT 
pin is ignored and the INT bit of epsr is always zero. 
The lock instruction can only assert LOCK# for 30-
33 instructions before trapping. 

If INT is asserted during the clock before the falling 
edge of RESET, the eight-bit code-size mode is se­
lected. For more about this mode, refer to section 
3.2 "Initialization". 

INT is an asynchronous input. 

3.1.6 ADDRESS PINS (A31-A3) AND BYTE 
ENABLES(BE7#-BEO#) 

The 29-bit address bus (A31-A3) identifies address­
es to a 64-bit location. Separate byte-enable signals 
(BE?# -BEO #) identify which bytes should be ac­
cessed within the 64-bit location. In all noncachea­
ble read cycles (KEN# deasserted), the byte 
enables match the length and address of the re­
quested data. Cacheable read cycles (KEN# assert­
ed), however, result in four 64-bit memory cycles to 
fill an entire 32-byte cache line. The BEn# pins acti­
vated are those that represent the operand of the 
load instruction that caused the line fill, and these 
same BEn# pins remain activated for all four cycles 
of the line fill. All 64 bits must be returned for each 
cycle without regard for the BEn# signals. In all 
write cycles (noncacheable writes as well as cache 
line write-backs) the BEn# signals indicate the 
bytes that must be written. 

Instruction fetches (WI R # is low) are distinguished 
from data accesses by the unique combinations of 
BE7#-BEO# defined in Table 3.2. For an eight-bit 
code fetch in eight-bit code-size (CS8) mode, 
BE2#-BEO# are redefined to be A2-AO of the ad­
dress. In this case BE7#-BE3# form the code 
shown in Table 3.2 that identifies · an instruction 
fetch. The A2 in the table does not represent a phys­
ical pin, just a conceptual internal address line value. 
The "x"under A2 for CS8 mode means "not applica­
ble", or "don't care". All other combinations of byte 
enables indicate data accesses. 

The address and byte-enable pins are driven until 
either NA# or READY# is asserted. 

3.1.7 DATA PINS (063-00) 

The bus interface has 64 bidirectional data pins 
(D63-DO) to transfer data in eight- to 64-bit quanti­
ties. Pins D7--DO transfer the least significant byte; 
pins D63-D56 transfer the most significant byte. 

In read bus cycles. all 64 bits of the data bus are 
latched. even in CSB-mode instruction fetches when 
only the low-order eight bits are used. 

In write bus cycles, the point at which data. is driven 
onto the bus depends on the type of the preceding 
cycle. If there was no preceding cycle (i.e. the bus 
was idle), data is driven with the address. If the pre­
ceding cycle was a write, data is driven as soon as 
READY# is returned from the previous cycle. If the 
preceding cycle was a read, data is driven one clock 
after READY# is retlimed from the previous cycle, 
thereby allowing time !or the bus to be turned 
around. Data continues to be 1riven until READY# 
for the current cycle is returned. 

3.1.8 BUS LOCK (LOCK#) 

This signal is used to provide atomic {indivisible) 
read-modify-write sequences in multiprocessor sys­
tems. A multiprocessor bus arbiter must permit only 
one processor a locked access to the address which 
is on the bus when LOCK# first activates. The sys­
tem must maintain the lock of that location until 
LOCK# deactivates. 

The i860 microprocessor coordinates the external 
LOCK# signal with the software-controlled BL bit of 
the dirbase register. Programmers do not have to 
be concerned about the fact that bus activity is not 
always synchronous with instruction execution. 
LOCK# is asserted with ADS# for the address op­
erand of the first load or store instruction executed 
after the BL bit is set by the lock instruction. Pend­
ing bus cycles are locked according to the value of 
the BL bit when the instruction was executed. Even 
if the BL bit is changed between the time that an 
instruction generates an internal bus request and 
the time that the cycle appears on the bus, the i860 
microprocessor still asserts LOCK# for that bus cy­
cle. 

6-34 

If ADS# is active when LOCK# deactivates, then 
that request should complete before the hardware 
relinquishes the lock. If ADS# is not active, the lock­
ing of the location can immediately end when 
LOCK# deactivates. Of course the simplest arbitra­
tion hardware can just lock the entire bus against all 
other accesses during LOCK# assertion. 



intef i860TM MICROPROCESSOR 

Table 3.2. Identifying Instruction Fetches 

~-~e-~-~-~-.,.--A-2--r-B-E_7_#--r--BE6# BE5# BE4#-~~~~-~~~J.-__ e_E_1_#--+_eE_0_#-1 

Normal O 1 1 1 1 1 o J 1 0 
(Non-CSB) 

1--N~o_r_m_a_l--'--+-----1---1---t--0---t--1----i--·-o 1 -~----11+---1 _ __,_ __ 1 _ __, 

(Non-CSB) 1 
1-"-------'--+---t----t----r-----r----

CSB 
Mode x 0 0 Low-order address bits 

'-------~---''-----~----~---~---~~-----'-------------~ 

When the BL bit is deasserted with the unlock in­
struction, LOCK# is deasserted with the next load 
or store but after any pending bus cycles. Between 
locked sequences, at least one cycle of no LOCK# 
is guaranteed by the behavior of the unlock instruc­
tion. LOCK# deassertion may occur independently 
of ADS# for the case of a trap or a cache hit after 
unlock. 

The i860 microprocessor also asserts LOCK# dur­
ing TLB miss processing for updates of the ac­
cessed bit in page-table entries. The maximum time 
that LOCK# can be asserted in this case is five 
clocks plus the time required to perform a read-mod­
ify-write sequence. Instruction fetches do not alter 
the LOCK# pin. 

Between lock and unlock instructions, the INT pin is 
ignored and the INT bit of epsr is zero when read by 
ld.c epsr. The time that interrupts are disabled is 
limited by the lock protocol outlined in Section 2.8.2. 

3.1.9 WRITE/READ BUS CYCLE {W/R#) 

This pin specifies whether a bus cycle is a read 
(LOW) or write (HIGH) cycle. It is driven until either 
NA# or READY# is asserted. 

3.1.10 NEXT NEAR (NENE#) 

This signal allows higher-speed reads and writes in 
the case of consecutive reads and writes that ac­
cess static column or page-mode DRAMs. The i860 
microprocessor asserts NENE # when the current 
address is in the same DRAM page as the previous 
bus cycle. The i860 microprocessor determines the 
DRAM page size by inspecting the DPS field in the 
dirbase register. The page size can range from 29 to 
21s 64-bit words, supporting DRAM sizes from 256K 
x 1, 256K x 4, and up. NENE# is never asserted 
on the next bus cycle after HLDA is deasserted. 

3.1.11 NEXT ADDRESS REQUEST (NA#) 

NA# makes address pipelining possible. The sys­
tem asserts NA# for at least one clock to indicate 
that it is ready to accept the next address from the 
i860 microprocessor. NA# may be asserted before 
the current cycle ends. (If the system does not im-

plement pipelining, NA# does not have to be acti­
vated.) The i860 microprocessor samples NA# ev­
ery clock, starting one clock after the prior activation 
of ADS# . When NA # is active, the i860 microproc­
essor is free to drive address and bus-cycle defini­
tion for the next pending bus cycle. The i860 micro­
processor remembers that NA# was asserted when 
no internal request is pending; therefore, NA# can 
be deactivated after the next rising edge of the CLK 
signal. Up to three bus cycles can be outstanding 
simultaneously. 

3.1.12 TRANSFER ACKNOWLEDGE (READY#) 

The system must assert the READY# signal during 
read cycles when valid data is on the data pins and 
during write cycles when the system has accepted 
data from ttie data pins. READY# must be asserted 
for at least one clock. Sampling of READY# begins 
in the clock after an ADS# or in the second clock 
after a prior READY#. 

3.1.13 ADDRESS STATUS (ADS#) 

The i860 microprocessor asserts ADS# during the 
first clock of each bus cycle to identify the clock 
period during which it begins to assert outputs on 
the address bus. This signal is held active for one 
clock. 

6-35 

3.1.14 CACHE ENABLE (KEN#) 

The i860 microprocessor samples KEN# to deter­
mine whether the data being read for the current 
cache-miss cycle is to be cached. This pin is inter­
nally NORed with the CD and WT bits to control 
cacheability on a page by page basis (refer to Table 
3.3). 

If the address is one that is permitted to be in the 
cache, KEN# must be continuously asserted during 
the sampling period starting from the second rising 
clock edge after ADS# is asserted, through the 
clock NA# or READY# is asserted. The entire 64 
bits of the data bus will be used for the read, regard­
less of the state ol the byte-enable pins. Three addi­
tional 64-bit bus cycles will be generated to fill the 
rest of the 32-byte cache block. 



intef i860TM MICROPROCESSOR 

If KEN# is found deasserted at any clock from the 
clock after ADS# through the clock of the first NA# 
or READY#, the data being read will not be cached 
and two scenarios can occur: 1) if the cycle is due to 
data-cache miss, no subsequent cache-fill cycles 
will be generated; 2) if the cycle is due to an instruc­
tion-cache miss, additional cycle(s) will be generat­
ed until the address reaches a 32-byte boundary. To 
avoid caching a line, external hardware must deas­
sert KEN# during or before the first NA# or 
READY#. 

3.1.15 PAGE TABLE BIT (PTB) 

Depending on the setting of the PBM (page-table bit 
mode) bit of the epsr, the PTB reflects the value of 
either the CD (cache disable) bit or the WT (write 
through) bit of the page-table entry used for the cur­
rent cycle. When paging is disabled, PTB remains 
inactive. 

Table 3.3. Cacheability based on 
KEN# and CD OR WT 

CD OR WT KEN# Meaning 

0 0 Cacheable access 
0 1 Noncacheable access 
1 0 Noncacheable page 
1 1 Noncacheable page 

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI) 

This pin is used with the testability features. Refer to 
section 3.3. 

6-36 

3.1.17 BOUNDARY SCAN ENABLE (BSCN) 

This pin is used with the testability features. Refer to 
section 3.3. 

3.1.18 SHIFT SCAN PATH (SCAN) 

This pin is used with the testability features. Refer to 
section 3.3. 

3.1.19 CONFIGURATION (CC1-CCO) 

These two pins are reserved by Intel. Strap both pins 
LOW. 

3.1.20 SYSTEM POWER {Vee) AND GROUND 
(Vss) 

The i860 microprocessor has 48 pins for power and 
ground. All pins must be connected to the appropri­
ate low-inductance power and ground signals in the 
system. 

3.2 Initialization 

Initialization of the i860 microprocessor is caused by 
assertion of the RESET signal for at least 16 clocks. 
Table 3.4 shows the status of output pins during the 
time that RESET is asserted. Note that HOLD re­
quests are honored during RESET and that the 
status of output pins depends on whether a HOLD 
request is being acknowledged. 



intef i86QTM MICROPROCESSOR 

Table 3.4. Output Pin Status during Reset 

Pin Value 

Pin Name HOLD 
HOLD 

Not 
Acknowledged 

Acknowledged 

ADS#, LOCK# HIGH Tri-State OFF 

W/R#, PTB LOW Tri-State OFF 

BREQ LOW LOW 

HLDA LOW HIGH 

D63-DO Tri-State OFF Tri-state OFF 

A31-A3, 
BE?#-BEO#, Undefined Tri-State OFF 
NENE# 

After a reset, the i860 microprocessor begins exe­
cuting at physical address OxFFFFFFOO. The pro­
gram-visible state of the i860 microprocessor after 
reset is detailed in section 2.8.7. 

Eight-bit code-size mode is selected when INT /CSS 
is asserted during the clock before the falling edge 
of RESET. While in eight-bit code-size mode, in­
struction cache misses are byte reads (transferred 
on D7-DO of the data bus) instead of eight-byte 
reads. This allows the i860 microprocessor to be 
bootstrapped from an eight-bit EPROM. For these 
code reads, byte enables BE2#-BEO# are rede­
fined to be the low order three bits of the address, 
so that a complete byte address is available. These 
reads update the instruction cache if KEN# is as­
serted (refer to section 3.1.14) and are not pipelined 
even if NA# is asserted. While in this mode, instruc­
tions must reside in an eight-bit wide memory, while 
data must reside in a separate 64-bit wide memory. 
After the code has been loaded into 64-bit memory, 
initialization code can initiate 64-bit code fetches by 
clearing the csa bit of the dirbase register (refer to 
section 2). Once eight-bit code-size mode is dis­
abled by software, it cannot be reenabled except by 
resetting the i860 microprocessor. 

3.3 Testability 

The i860 microprocessor has a boundary scan mode 
that may be used in component- or board-level test­
ing to test the signal traces leading to and from the 
i860 microprocessor. Boundary scan mode provides 
a simple serial interface that makes it possible to 
test all signal traces with only a few probes. Probes 
need be connected only to CLK, BSCN, SCAN, SHI, 
BREQ, RESET, and HOLD. 

The pins BSCN and SCAN control the boundary 
scan mode (refer to Table 3.5). When BSCN is as-

6-37 

serted, the i860 microprocessor enters boundary 
scan mode on the next rising clock edge. Boundary 
scan mode can be activated even while RESET is 
active. When BSCN is deasserted while in boundary 
scan mode, the i860 microprocessor leaves bounda­
ry scan mode on the next rising clock edge. After 
leaving boundary scan mode, the internal state is 
undefined; therefore, RESET should be asserted. 

Table 3.5. Test Mode Selection 

BSCN SCAN Testability Mode 

LO LO No testability mode selected 
LO HI (Reserved for Intel) 
HI LO Boundary scan mode, normal 
HI HI Boundary scan mode, shift 

SHI as input; BREQ as 
output 

For testing purposes, each signal pin has associated 
with it an internal latch. Table 3.6 indentifies these 
latches by name and classifies them as input, out­
put, or control. The input and output latches carry 
the name of the corresponding pins. 

Table 3.6. Test Mode Latches 

Input Output 
Associated 

Control 
Latch Latch 

Latch 

SHI 
BSCN 
SCAN 
RESET 
DO-D63 DO-D63 DATAt 
CC1-CCO 

A31-A3 ADDRt 
NENE# NENEt 
PTB# PTBt 
W/R# W/Rt 
ADS# AD St 
HLDA 
LOCK# LOCKt 

READY# 
KEN# 
NA# 
INT/CSS 
HOLD 

BE7#-BEO# BEt 
BREQ 

Within boundary scan mode the i860 microproces­
sor operates in one of two submodes: normal mode 
or shift mode, depending on the value of the SCAN 
input. A typical test sequence is ... 



intef i860™ MICROPROCESSOR 

1. Enter shift mode to assign values to the latches 
that correspond with the pins. 

2. Enter normal mode. In normal mode the i860 mi­
croprocessor transfers the latched values to the 
output pins and latches the values that are being 
driven onto the input pins. 

3. Reenter shift mode to read the new values of the 
input pins. 

3.3.1 NORMAL MODE 

When SCAN is deasserted, the normal mode is se­
lected. For each input pin {RESET, HOLD, 
INT/CSB, NA#, READY#, KEN#, SHI, BSCN, 
SCAN, CCt, and CCO), the corresponding latch is 
loaded with the value that is being driven onto the 
pin. 

The tristate output pins (A31:-A3, BE?#-BEO#, 
W/R#, NENE#, ADS#, LOCK#, and PTB) are en­
abled by the control latches ADDRt (for A31-A3), 
BEt, W/Rt, NENEt, ADSt, LOCKt, and PTBt. If a con­
trol latch is set, the corresponding output latches 
drive their output pins; otherwise the pins are not 
driven. 

The 1/0 pins (D63-DO) are enabled by the control 
latch DAT At, which is similar to the other control 
latches. In addition, when DATAt is not set, the data 
pins are treated as input pins and their values are 
latched. 

3.3.2 SHIFT MODE 

When SCAN is asserted, the shift mode is selected. 
In shift mode, the pins are organized into a boundary 
scan chain. The scan chain is configured as a shift 
register that is shifted on the rising edge of CLK. The 
SHI pin is connected to ttie input of one end of the 
boundary scan chain. The value of the most signifi­
cant bit of the scan chain is output on the BREQ pin. 
To avoid glitches while the values are being shifted 
along the chain, the tester should assert both the 
RESET and HOLD pins. Then all tristate outputs are 
disabled. The order of the pins within the chain is 
shown in Figure 3.1. 

1 2 3 4 
-+ SHI -+ BSCN -+ SCAN -+ RESET -+ 

70 71 72 100 
CC1 -+ cco -+ A31 -+ --- A3 

105 106 107 108 109 
PTB# -+ W/Rt -+ W/R# -+ ADSI -+ ADS# 

114 115 116 117 118 
KEN# NA# -+ INT/CS8 -+ HOLD -+ BEt 

A tester causes entry into this mode for one of two 
purposes: 

1. To assign values to output latches to be driven 
onto output pins upon subsequent entry into nor­
mal mode. 

2. To read the values of input pins previously latched 
in normal mode. 

4.0 BUS OPERATION 

A bus cycle begins when ADS# is activated and 
ends when READY# is sampled active. READY# is 
sampled one clock after assertion of ADS# and 
thereafter until it becomes active. New cycles can 
start as often as every other clock until three cycles 
are outstanding. A bus cycle is considered outstand­
ing as long as READY# has not been asserted to 
terminate that cycle. After READY# becomes ac­
tive, it is not sampled again for the following (out­
standing) cycle until the second clock after the one 
during which it became active. READY# is assumed 
to be inactive when it is not sampled. 

With regard to how a bus cycle is generated by the 
i860 microprocessor, there are two types of cycles: 
pipelined and nonpipelined. Both types of cycles can 
be either read or write cycles. A pipelined cycle is 
one that starts while one or two other bus cycles are 
outstanding. A nonpipelined cycle is one that starts 
when no other bus cycles are outstanding. 

4. 1 Pipelining 

A m-n read or write cycle is a cycle with a total cycle 
time of m clocks and a cycle-to-cycle time of n 
clocks (m :<: n). Total cycle time extends from the 
clock in which ADS# is activated to the clock in 
which READY# becomes active, whereas cycle-to­
cycle time extends from the time that READY# is 
sampled active for the previous cycle to the time 
that it is sampled active again for the current cycle. 
When m = n, a nonpipelined cycle is implied; m > n 
implies a pipelined cycle. 

5 6 69 
DATA! -+ DO -+ -+ D63 -+ 

101 102 103 104 
-+ ADDRI -+ NENEI _. NENE# -+ PTBI -+ 

110 111 112 113 
-+ HLDA -+ LOG Kt LOCK# -+ READY# -+ 

119 126 127 
-+ BE?# -+ -+ BEO# -+ BREQ -+ 

Figure 3.1. Order of Boundary Scan Chain 

6-38 



i86QTM MICROPROCESSOR 

Pipelining may occur for the next bus cycle any time 
the current bus cycle requires more than two clock 
periods to finish (m > 2). If a bus request is pending, 
the next cycle will be initiated when NA# is sampled 
active, even if the current cycle has not terminated. 
In this case, pipelining occurs. NA# is not recog­
nized unitl after ADS# has become inactive. 

To allow high transfer rates in large memory sys­
tems, two-level pipelining is supported (i.e., there 
may be up to three cycles in progress at one time). 
Pipelining enables a new word of data to be trans­
ferred every two clocks, even though the total cycle 
time may be up to six clocks. 

4.2 Bus State Machine 

The operation of the bus is described in terms of a 
bus state machine using a state transition diagram. 
Figure 4.1 illustrates the i860 microprocessor bus 
state machine. A bus cycle is composed of two or 
more states. Each bus state lasts for one CLK peri­
od. 

The i860 microprocessor supports up to two levels 
of address pipelining. Once it has started the first 
bus cycle, it can generate up to two more cycles as 
long as READY# remains inactive. To start a new 
bus cycle while other cycles are still outstanding, 
NA# must be active for at least one clock cycle 
starting with the clock after the previous ADS#. 
NA# is latched internally. 

States Ti and Tik• for j = { 1,2,3 l and k = ( 1,2 l, are 
used to describe the state of the i860 microproces­
sor Bus State Machine. Index j indicates the number 
of outstanding bus cycles while index k distinguishes 
the intermediate states for the j-th outstanding cycle. 

6-39 

Therefore there can be up to three outstanding cy­
cles, and there are two possible intermediate states 
for each level of pipelining. Tj1 is the next state after 
Tj. as long as j cycles are outstanding. Tj2 is entered 
when NA# is active but the i860 microprocessor is 
not ready to start a new cycle. 

Five conditions have to be met to start a new cycle 
while one or more cycles are already pending: 

1. READY# inactive 

2. NA# having been active 

3. An internal request pending (BREQ active) 

4. HOLD not active 

5. Fewer than three cycles outstanding 

Note that BREQ is asserted on the clock after the 
i860 microprocessor realizes an internal request for 
the bus. 

Upon hardware RESET, the bus control logic enters 
the idle state T1 and awaits an internal request for a 
bus cycle. If a bus cycle is requested while there is 
no hold request from the system, a bus cycle begins, 
advancing to state T 1. On the next cycle, the state 
machine automatically advances to state T 11 . If 
READY# is active in state T 11 , the bus control logic 
returns either to Ti. if no new cycle is started, or to 
T1, if a new cycle request is pending internally. In 
fact, if an internal bus request is pending each time 
READY# is active, the state machine continues to 
cycle between T 11 and T 1. 

However, if READY# is not active but the next ad-
dress request is pending (as indicated by an active I 
NA#), the state machine advances either to state 
T 2 (if an internal bus request is pending, signifying I 
that two bus cycles are now outstanding), or to state 
T12 (if no bus internal request is pending, signifying 
NA# has been found active). Transitions from state 
T 12 are similar to those from T 11 · 



intef 1860™ MICROPROCESSOR 

HOLD ASSERTED 

READY# DE.ASSERTED 

NOTES: 
READY# 

NA# 
ADS# 
HLDA 
HOLD 

REQUEST 

Once READY# has been sampled active, it is 
not sampled again until two clocks later 
Not sampled during ADS# active clock 
Active in T1, T2 and Ts 
Active in TH 
HOLD in this figure is the internally synchro­
nized version of the external signal HOLD 
Internal Bus Request Pending (BREQ assert­
ed) 

240296-29 

Figure 4.1. Bus State Machine 

If two bus cycles are already outstanding (as indicat­
ed by T 2k for k = { 1,2 l) and NA# is latched active 
but READY# is not active, one more bus request 
causes entry into state T 3. Transitions from this 
state are similar to those from T 2· 

In general, if there is an internal bus request each 
time both READY# and NA# are active, the state 

6-40 

machine continues to oscillate between Tj1 and Tj, 
for j = {2,3l. 

When NA# is sampled active while there is a pend­
ing bus request, ADS# is activated in the next clock 
period (provided no more than two cycles are al­
ready outstanding). 



intJ i860TM MICROPROCESSOR 

Internal pending bus requests start new bus cycles 
only if no HOLD request has been recognized. TH is 
entered from the idle state Ti. T11 , and T12. HLDA is 
active in this state. There is a one clock delay to 
synchronize the HOLD input when the signal meets 
the respective minimum setup and hold time require­
ments. The state machine uses the synchronized 
HOLD to move from state to state. 

4.3 Bus Cycles 

Figures 4.2 through 4.10 illustrate combinations of 
bus cycles. 

CYCLE 1 

4.3.1 NONPIPELINED READ CYCLES 

A read cycle begins with the clock in which ADS# is 
asserted. The i860 microprocessor begins driving 
the address during this clock. It samples READY# 
for active state every clock after the first clock. A 
minimum of two clocks is required per cycle. Data is 
latched when READY# is found active when sam­
pled at the end of a clock period. Figure 4.2 illus­
trates nonpipelined read cycles with zero wait 
states. 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED NON-PIPELINED 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

D63-DO 

READ READ 
(2-2) (2-2) 

r, r,, r, r,, 

Figure 4.2. Fastest Read Cycles 

6-41 

READ 
(2-2) 

r, r,, 

240296-13 

I 



intef i860™ MICROPROCESSOR 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

D63-DO 

CYCLE 1 
NON-PIPELINED 

WRITE 
(2-2) 

T1 T11 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED 

WRITE WRITE 
(2-2) (2-2) 

T1 T11 T, T11 

240296-14 

Figure 4.3. Fastest Write Cycles 

4.3.2 NONPIPELiNED WRITE CYCLES 

The ADS# and READY# activity for write cycles 
follows the same logic as that for read cycles, as 
Figure 4.3 illustrates for back-to-back, nonpipelined 
write cycles with zero wait-states. 

The fastest write cycle takes only two clocks to com­
plete. However, when a read cycle immediately pre­
cedes a write cycle, the write cycle must contain a 

wait state, as illustrated in Figure 4.4. Because the 
device being read might still be driving the data bus 
during the first clock of the write cycle, there is a 
potential for bus contention. To help avoid such con­
tention, the i860 microprocessor does not drive the 
data bus until .the second clock of the write cycle. 
The wait state is required to provide the additional 
time necessary to terminate the write cycle. In other 
read-write combinations, the i860 microprocessor 
does not require a wait state. 

6-42 



intef 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

READY# 

D63-DO 

i860™ MICROPROCESSOR 

CYCLE 1 CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED NON-PIPELINED 

READ WRITE READ 
(2-2) (3-3) (2-2) 

T1 T11 T1 T11 T11 T1 T11 

CLK 

ADS# 

A31-A3, W/R#, ------------------­BEn#, NENE#, 
PTB 

NA# 

READY# 

D63-DO 

Figure 4.4. Fastest Read/Write Cycles 

CYCLE 1 CYCLE 2 CYCLE 3 
NON-PIPELINED PIPELINED PIPELINED 

READ READ WRITE 
{5-5) (5-2) (6-3) 

r, T11 T2 T21 T3 T21 T3 T21 T3 T31 

Figure 4.5. Pipelined Read Followed by Pipelined Write 

6-43 

240296-15 

CYCLE 4 
PIPELINED 

WRITE 
(6-2) 

I T3 T31 

240296-16 



intJ i860TM MICROPROCESSOR 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

D63-DO 

CYCLE 1 
NON-PIPELINED 

WRITE 
(5-5) 

CYCLE 2 
PIPELINED 

WRITE 
(5-2) 

CYCLE 3 
PIPELINED 

READ 
(5-2) 

CYCLE 4 
PIPELINED 

READ 
(5-2) 

240296-17 

Figure 4.6. Pipelined Write Followed by Pipelined Read 

4.3.3 PIPELINED READ AND WRITE CYCLES 

Figures 4.5 and 4.6 illustrate combinations of non­
pipelined and pipelined read and write cycles. The 
iollowing description applies to both diagrams. While 
Cycle 1 is still in progress, two new cycles are initiat­
ed. By the time READY# first becomes active, the 
state machine has moved through states T1, T11 , 
T 2. T 21. and T 3. Cycles 3 and 4 show how activating 
READY# terminates the corresponding outstanding 
cycle, and yet activating NA# while there is an inter­
nal request pending adds a new outstanding cycle. 

In Figure 4.5, Cycle 3 is a write cycle following a read 
cycle; therefore, one wait state must be inserted. 
The i860 microprocessor does not drive the data 
bus until one clock after the read data is returned 
from the preceding read cycle. During Cycles 3 and 
4, the state machine oscillates between states T 3 

6-44 

and T 31 maintaining full bus capacity (two levels of 
pipelining; three outstanding cycles). Cycles 2, 3, 
and 4 in Figure 4.6 are 5-2 cycles; i.e. each requires 
a total cycle time of five clocks while the throughput 
rate is one cycle every two clocks. 

Figure 4. 7 illustrates in a more general manner how 
the NA# signal controls pipelining. Cycle 1 is a 2-2 
cycle, the fastest possible. The next cycle cannot be 
started any earlier; therefore, there is no need to 
activate NA# to start the next cycle early. Cycle 2, a 
3-3 read, is different. Cycle 3 can be started during 
the third state (a wait state) of Cycle 2, and NA# is 
asserted to accomplish this. 

NA# is not activated following the ADS# clock of 
Cycle 3, thereby allowing Cycle 3 to terminate be­
fore the start of Cycle 4. As a result, Cycle 4 is a 
nonpipelined cycle. 



intef 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

CYCLE 1 
NON-PIPELINED 

READ 
(2-2) 

r, r,, T1 

1860™ MICROPROCESSOR 

CYCLE 2 
NON-PIPELINED 

READ 
(3-3) 

r,, 

CYCLE 3 
PIPELINED 

READ 
(3-2) 

T1 t T11 

CYCLE 4 
NON-PIPELINED 

READ 
(2-2) 

r, T11 

IDLE IDLE 

PTB ... 11..11...i+~~ .... .11..1-.a.+~~-1-1~~+--~-+-~~+"-.K..I~~~-+-~~~~~ 

NA# 

READY# 

D63-DO 

CLK 

ADS# 

A31-A3, W /R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

D63-DO 

240296-13 

Figure 4.7. Pipelining Driven by NA# 

240296-19 

Figure 4.8. NA# Active with No Internal Bus Request 

6-45 



intef i860™ MICROPROCESSOR 

CLK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

063-DO 

LOCK# 

CYCLE 1 
NON-PIPELINED 

READ 
(2-2) 

T1 T11 T1 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED 

WRITE WRITE 
(3-3) (2-2) 

T11 T11 T1 T11 

240296-20 

Figure 4.9. Locked Cycles 

When there is no internal bus request, activating 
NA# does not start a new cycle; the i860 microproc­
essor, however, remembers that NA# has been ac­
tivated. Figure 4.8 illustrates the situation where 
NA# is active but no internal bus request is pending. 
NA# is activated when two cycles are outstanding. 
Because there is no internal request pending until 
after one idle state, no new bus cycle is started dur­
ing that period. 

4.3.4 LOCKED CYCLES 

The LOCK# signal is asserted when the current bus 
cycle is to be locked with the next bus cycle. Asser­
tion of LOCK# may be initiated by a program's set­
ting the BL bit of the dirbase register using the lock 
instruction (refer to section 2) or by the i860 micro­
processor itself during page table updates. 

In Figure 4.9, the first read cycle is to be locked with 
the following write cycle. If there were idle states 
between the cycles, the LOCK# signal would re­
main asserted. This is the case for a read/modify/ 
write operation. Cycle 3 is not locked because 
LOCK# is no longer asserted when Cycle 2 starts. 

6-46 

4.3.5 HOLD AND BREQ ARBITRATION CYCLES 

The HOLD, HLDA, and BREQ signals permit bus ar­
bitration between the i860 microprocessor and an­
other bus master. 

See Figure 4.10. When HOLD is asserted, the i860 
microprocessor does not relinquish control of the 
bus until all outstanding cycles are completed. If 
HOLD were asserted one clock earlier, the last i860 
microprocessor bus cycle before HLDA would not 
be started. 

The outputs (except HLDA and BREQ) float when 
HLDA is asserted. HOLD is sampled at the end of 
the clock in which it is activated. Recommended set­
up and hold times must be met to guarantee sam­
pling one clock after external HOLD activation. 
When HOLD is sampled active, a one clock delay for 
internal synchronization follows. Likewise when 
HOLD is deasserted, there is a one-clock delay for 
internal synchronization before HLDA is deasserted. 



intef i86QTM MICROPROCESSOR 

CLK 

ADS# 

A31-A3, W/R#, t---h:"'l':'lo:"Tt--+---t--t-~'l\I 
BEn#, NENE#, PTB ___ ....,. ________ +-'....._,.I 

NA# 

READY# 

HOLD 

HLDA 

BREQ 

240296-21 

Figure 4.10. HOLD, HLDA, and BREQ 

If, during a HOLD cycle, an internal bus request is 
generated, BREQ is activated even though HLDA is 
asserted. It remains active at least until the clock 
after ADS# is activated for the requested cycle. 

4.4 Bus States During RESET 

Figure 4.11 shows how INT /CS8 is sampled during 
the clock period just before the falling edge of RE-

I· 
CLK 

RESET 

OTHER 

SET. If INT /CS8 is sampled active, the i860 micro­
processor enters CS8 mode. No inputs (except for 
HOLD and INT /CS8) are sampled during RESET. 

Note that, because HOLD is recognized even while 
RESET is active, the HLDA output signal may also II 
become active during RESET. Refer to Table 3.4 
"Output Pin Status during Reset". 

<!:: 16 CLKs ·I 

INPUTS ~~Q.£~~~-~~~~~~~-...j 

240296-22 

Figure 4. 11. Reset Activities 

6-47 



intJ 1860TM MICROPROCESSOR 

5.0 MECHANICAL DATA 

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers. 

Q M 

() () () () () () () () () () () () () () () () () ....... 1 

Vee Vee Vss Vee Vss A12 A17 A19 A21 A23 A25 A29 A31 Vee Vss Vee Vss 

() () () () () () () () () () () () () () () () () 

Vss Vss Vee Vss AB A10 A13 A15 A18 A20 A24 A27 A28 cco Vee V55 Vee 

() () () () () () () () () () () () () () () () () 

Vee Vee Vss A6 A7 A9 A11 A14 A16 CU( A22 A26 A30 CC1 062 060 Yss 

() () () 

Vss Vee A5 

() () () 

Vee A4 A3 

() () () 

W/R# NENE# PTB 

() () () 
ADS# HLDA BREQ 

() () () 
LOCK# KEN# READY# 

() () () 
INT/CSB HA# HOLD 

10 () () () 
BES# BE7# BE6# 

11 () () () 
BE3# BE2# BE4# 

12 () () () 
SHI BE1 # BED# 

13 () () () 
RESET SCAN BSCN 

14 () 

Vss 

15 () 

() 

DO 

() 

() 
01 

() 
Vee v55 02 

16 () () () 

() 
D3 

() 

Vss Vee Vss Vee 

17 () () () () 

() () 

D5 D7 

() () 
04 09 

() () 

() () () 
063 059 Vss 

() () () 

061 058 D56 

() () () 
057 054 052 

() () () 
055 053 DSO 

() () () 

051 049 D48 

() () () 
047 045 046 

() () () 10 

0-43 042 044 

() () () 11 

039 041 040 

() () () 12 

037 036 038 

() () () 13 

035 034 Vee 

() () () 14 

033 Vee v55 

() () () () () () () () () () () 15 

011 013 011 021 023 021 029 031 032 v55 Vee 

() () () () () () () () () () () 16 

oa ots 014 019 022 025 028 030 Vss Vee Vss 

() () () () () () () () () () () 17 

Vee Yss Yee Vss Vee 06 010 012 016 018 020 024 026 Yss Vee Vss Vee 

M 

240296-23 

Figure 5.1. Pin Configuration-View from Top Side 

6-48 



i860TM MICROPROCESSOR 

A 

0 0 0 0 0 0 0 0 0 0 0 0 0 
••• Vee Vss Vee A31 A.29 A25 A.23 A21 A19 A17 A12 •ss 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
•ss •cc •ss Vee cco A28 A.27 A24 A20 A18 A15 A13 Arn •• 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
•cc •ss D6D 062 CCI A30 A.26 A22 CLK A16 A1"4 A11 A9 A7 

0 0 0 
v55 059 063 

METAL LID 
0 0 0 
056 058 061 

0 0 0 
D52 D54 D57 

0 0 0 
050 053 055 

0 0 0 
048 049 051 

0 0 0 
D46 045 047 

10 0 0 0 
1>44 042 043 

11 0 0 0 
040 041 039 

12 0 0 0 
036 036 037 

13 0 0 0 
Vee 034 035 

14 0 0 0 
Vss Yee D33 '-------------------------' 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vee v55 D32 031 029 021 023 021 011 013 011 D7 D5 D3 

0 0 
•cc •ss 

0 0 0 
•ss •cc •ss 

0 0 0 
A6 •ss •cc 

0 0 0 
AS Yee Yss 

0 0 0 
A3 A4 Yee 

0 0 0 
PTB NENE# W/R# 

0 0 0 
BREQ HLDA ADS# 

0 0 0 
READY# KEN# LOCK# 

0 0 0 
HOLD NA# INT/CSB 

0 0 0 1D 

BE6# BE7# BES# 

0 0 0 11 

BE4# BE2# BU# 

0 0 0 12 
BEO# BE1 # SHI 

0 0 0 13 
BSCN SCAN RESET 

0 0 
01 DO 

0 0 

0 ,. 
•ss 

0 15 

02 v55 Yee 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 
v55 Yee Vss 030 02a 02s 022 019 014 01s os os °' Vee Yss Yee Yss 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 
Yee v55 Yee Yss 026 024 020 ota 01s 012 010 as Vee v55 Yee v55 Yee 

M 0 

240296-24 

Figure 5.2. Pin Configuration-View from Pin Side 

6-49 

II 



intef i860TM MICROPROCESSOR 

Table 5.1. Pin Cross Reference by Location 
~--------~--------

Location Signal Location Signal Location Signal Location Signal 

A1 ............. Vee cs ............. 047 J15 ............ 017 010 .......... BE6# 
A2 ............. Vss C10 ............ D43 J16 ............ 014 011 .......... BE4# 
A3 ............. Vee C11 ............ 03S J17 , ........... 016 012 .......... BEO# 
A4 ............. Vss C12 ............. 037 K1 ............. A21 013 .......... BSCN 
AS ............. OS6 C13 .......... 03S K2 ............. A18 014 ............. 01 
A6 ............. OS2 C14.,. ........ 033 K3 ............. A16 01S ......... ; ... 02 
A7 ............. OSO C15 ............ 032 K15 ............ D13 016 ............ Vss 
AB ............. 04B C16 ............ Vss K16 ............ 015 017 ........... Vee 
AS ............. 046 C17 ............ Vee K17, ... ' ........ 012 R1 ............. Vss 
A10 ............ D44 01 ............. Vss L1 ............. A1S R2 ............. Vee 
A11 ............ D40 02 ............. Vee L2 ............. A1S R3 ............. Vss 
A12 ............ D3B 03 ............. D62 L3 ............. A14 R4 ............. Vee 
A13 ............ Vee 015 ............ 031 L1S ............ 011 RS .............. A4 
A14 ............ Vss 016 ............ 030 L16 ............. DB R6 ......... NENE# 
A1S ............ Vee 017 ............ Vss L17 ............ 010 R7 ........... HLDA 
A16 ............ Vss E1 ............. Vee M1 ............. A17 RB .......... KEN# 
A17 ............ Vee E2 ............. CCO M2 ............. A13 RS ............ NA# 
B1 ............. Vss E3 ............. CC1 M3 ............. A11 R10 .......... BE7# 
B2 ............. Vee E1S ............ 02S M1S ............ 07 R11 .......... BE2# 
B3 ............. Vss E16 ............ 028 M16 ............ DS R12 .......... BE1# 
84 ............. DSS E17 ............ 026 M17 ............ 06 R13 .......... SCAN 
BS ............. DSB F1 ............. A31 N1 ............. A12 R14 ............. DO 
86 ............. DS4 F2 ............. A28 N2 ............. A10 R1S ............ Vss 
B7 •............ DS3 F3 ............. A30 N3 .. : . .......... AS R16 ............ Vee 
BB ............. D4S F1S ............ 027 N15 ............. DS R17 ............ Vss 
BS ............. D4S F16 ........... D2S N16 ............. D4 s1 ............. Vee 
B10 ............ D42 F17 ............ 024 N17 ............ Vee s2 ............. Vss 
B11 ............ D41 G1 ............. A2S P1 ............. Vss S3 ............. Vee 
B12 ............ D36 G2 ............. A27 P2 .............. AB S4 ............. Vss 
B13 ............ 034 G3 ............. A26 P3 .............. A7 SS ............. Vee 
B14 ............ Vee G1S ........... 023 P15 ............. 03 S6 .......... W/R# 
B1S ............ Vss Gi6 ........... D22 P16 ............ Vee S7 ........... ADS# 
B16 ............ Vee G17 .......... D20 P17 ............ Vss SB ......... LOCK# 
817 ............ Vss Hi ............. A2S 01 ............. Vee SS ........ INT/CSB 
c1 ............. Vee H2 ............. A24 02 ............. Vss 810 .......... BES# 
c2 ............. Vss H3 ............. A22 03 .............. A6 S11 .......... BE3# 
C3 ............. D60 H1S ............ D21 04 .............. AS 812 ............ SHI 
C4 ............. D63 H16 ............ 01S 0S .............. A3 813 ......... RESET 
CS ............. D61 H17 ............ D18 06 ............ PTB 814 ............ Vss 
C6 .... , ........ DS7 J1 ............. A23 07 ........... BREO s1s ............ Vee 
C7 ............. OS5 J2 ............. A20 QB ........ READY# 816 ............ Vgs 
ca ............. 051 J3 ............. CLK OS ........... HOLD 817 ............ Vee 

6-SO 



intef i860™ MICROPROCESSOR 

Table 5.2. Pin Cross Reference by Pin Name -~~---------~ 

Signal Location Signal Location Signal Location Signal Location 

A3 .............. OS CLK ............. J3 D41 ............ B11 Vee- ........... 816 
A4 .............. RS DO ............. R14 D42 ............ B10 Vee ............. c1 
AS ............. 04 D1 ............. 014 D43 ........... C10 Vee ........... C17 
A6 ............. 03 D2 ............. 01S D44 ............ A10 Vee· ............ D2 
A? .............. P3 D3 ............. P1S D4S ............. B9 Vee ............. E1 
A8 .............. P2 D4 ............. N16 D46 ............. A9 Vee· ........... N17 
A9 .............. N3 DS ............. N1S D47 ............. C9 Vee ............ P16 
A10 ............ N2 D6 ............ M17 D4B ............. A8 Vee· ............ 01 
A11 ............. M3 D7 ............ M1S D49 ............. BB Vee ........... 017 
A12 ............. N1 DB ............. L16 DSO ............. A? Vee- ............ R2 
A13 ............. M2 D9 ............ M16 D51 ............. CB Vee- ............ R4 
A14 ............. L3 D10 ............ L17 D52 ............. A6 Vee· ........... R16 
A1S ............. L2 D11 ............ L15 DS3 ............. B7 Vee ............. s1 
A16 ............. K3 D12 ............ K17 D54 ............. B6 Vee ............. S3 
A17 ............. M1 D13 ............ K15 DSS ............. C7 Vee ............. S5 
A18 ............. K2 D14 ............ J16 D56 ............. AS Vee ............ s1s 
A19 ............. L1 D15 ............ K16 D57 ............. C6 Vee· ........... S17 
A20 ............. J2 D16 ............ J17 D5B ............. 85 Vss ............. A2 
A21 ............. K1 D17 ............ J15 D59 ............. 84 Vss ............. A4 
A22 ............. H3 D1B ............ H17 D60 ............. C3 Vss ............ A14 
A23 ............. J1 D19 ............ H16 D61 ............. cs Vss ............ A16 
A24 ............. H2 D20 ........... G17 D62 ............. D3 Vss ............. B1 
A2S ............. H1 D21 ............ H15 D63 ............. C4 Vss ............. B3 
A26 ............. G3 D22 ........... G16 HLDA ........... R7 Vss ............ B15 
A27 ............. G2 D23 ........... G15 HOLD ........... 09 Vss ............ B17 
A28 ............ F2 D24 ............ F17 INT/CSB ........ S9 Vss ............. c2 
A29 ............ G1 D25 ............ F16 KEN# .......... RB Vss ............ C16 
A30 ............ F3 D26 ............ E17 LOCK# ......... SB Vss ............. D1 
A31 ............. F1 
ADS# ........... S? 
BEO# ......... 012 
BE1# .......... R12 

D27 ............ F15 
D28 ............ E16 
D29 ............ E15 
D30 ........... D16 

NA# ............ R9 
NENE# ......... R6 
PTB ............ 06 
READY# ........ 08 

v88 ............ D17 I 
Vss ............. P1 
Vss ............ P17 
V55 ............. 02 

BE2# .......... R11 D31 ............ D15 RESET ......... S13 V55 ............ 016 
BE3# .......... S11 D32 ............ C1S SCAN ......... R13 Vss ............. R1 
BE4# .......... 011 D33 ............ C14 SHI ............ S12 Vss ............. R3 
BES# .......... S10 D34 ............ B13 Vee ............. A1 Vss ............ R15 
BE6# .......... 010 D35 ............ C13 Vee ............. A3 Vss· ........... R17 
BE?# .......... R10 D36 ............ B12 Vee ............ A13 Vss ............. s2 
BREO ........... 07 D37 ............ C12 Vee· ........... A15 Vss ............. S4 
BSCN .......... 013 D38 ............ A12 Vee· ........... A17 Vss ............ S14 
CCO ....... , ..... E2 D39 ............ C11 Vee ............. B2 Vss ............ S16 
CC1 ............. E3 D40 ............ A11 Vee- ........... B14 W/R# .......... S6 

6-S1 



intef i86QTM MICROPROCESSOR 

Table 5.3. Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

As Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

81 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "B", "81" and "C" are nominal. 
5. Details of Pin 1 identifier are optional. 

6-52 



intJ i86Qi"M MICROPROCESSOR 

I' ---D s, '\ ------ o, ---- f--
¢1.65 
REF. @~0@@@@@@@@@@~@@@1 

@@@@@@@@@@@@@@@@@ 
@@©@@@@@@@@@@@~@@ 

@@@ @@@ 
@@@ @@@ 

@@@ @@@ I 
@@@ @@@ 
@@@ ( \ @@@ 
@@@ @@@ D 

@@@ @@@ 
PINC3 @@@ '-.. / @@@ 

@@@ @@@ 
@@ @@@ 

@ @ @@@ 
@@o@@@@@@@@@@@o@@l 
@@@@@@@@@@@@@@@o@ 

L_@@@@@®@@®@@@@@@o@ ,-
rn REF. SW~~GED--

450 CHAMFER (4 PL) 
(INDEX CORNER) 

SEATING 
PLANE"1 

¢8 (ALL PINS) I 

f=~ 
SWAGGED 

PIN 
DETAIL 

,---·-------F-a_m_i_ly_:_C_e_ra_m_i_c_P_in_G_r_id-A-rr-a·y-·_-r:_a__c~-1!-~-~~~=--=-~ 

Symbol Millimeters Inches -~ 
Min Max Notes Min 1---Max Notes 

A 3.56 4.57 . 0.1~~-+-·~:1~---j ------1 

A1 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID 

23 0.30 

1.14 1.40 

0.43 0.51 

44.07 44.83 

40.51 40.77 

2.29 2.79 

2.54 3.30 

S1 1.52 2.54 O.OS_9~: 100 
ISSUE IWS REVX 7/15/88 .. __ -··--I-.. _.__ _______ __, 

240296-30 

___________________ ..J 

Figure 5.3. 168 Lead Ceramic PGA Package Dimensions 

6.0 PACKAGE THERMAL 
SPECIFICATIONS 

For this section, let: 

P = maximum power consumption 

Tc = case temperature 

TA = ambient air temperature 

8cA = thermal resistance from case to ambient air 

8Jc = thermal resistance from junction to case 

8JA = thermal resistance from junction to ambient 
air 

6-53 

The i860 microprocessor is specified for operation 
when Tc is within the range of 0°C-85°C. Tc may be 
measured in any environment to determine whether 
the i860 microprocessor is within specified operating 
range. The case temperature should be measured at 
the center of the top surface opposite the pins. 

TA can be calculated from 8cA (thermal resistance 
from case to ambient) with the following equation: 



intef i860TM MICROPROCESSOR 

Typical values for 8cA and 8Jc at various airflows 
are given in Table 6.1 for the 1.75 sq. in., 168 pin, 
ceramic PGA. 8Jc is also shown so that 8JA can be 
calculated by: 

Note that TA is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Ice at 5V as tabulated in the DC Characteris­
tics of section 7. 

Note that 8Jc with a heatsink differs from 8Jc with­
out a heatsink because case temperature is mea­
sured differently. 

Figure 6.1 gives typical Ice derating with case tem­
perature. For more information on heat sinks, mea­
surement techniques, or package characteristics, re­
fer to Intel Packaging Handbook, order number 
240800. 

Table 6.2 shows the maximum TA allowable (without 
exceeding Tc) at various airflows and operating fre­

, quencies (fcLKl· 

Typical part at 5V with maximum load 

Ice {mA) 

8cA with 

580~~~~~~~~~~~~~~ 

570>---+-~-+----<f----+-~-+---t~-J~---t--j 

560f---+~-t---"f---+-~-t---t~--+-~+--1 

550 t--
540 f---+~4r----'~_'i--e-=~-4.0~M_H_z--l-~J---+--I 

-r-+---530f---t-~-t-~f---t-~-t----t-"'""l'-.....,.±r--:--I 

520>---+-~-+-~f---t-~-+---t~-t-~+--I 

5101---+~-t-~f---+-~-t---t~-+-~+--i 

500 1---J 
490f---+~4r"-~-~f---=t'~3-3~M·H~z--l-~J---t---I 
4801---+-~+--+---+---J----~t---f---+=t-....""""+-1 
470>---+-~-+-~f---t-~-+----<~-t-~+-< 

460'-----'"~-'--~'---'-~_,__---"~-'-~..._. 

0 10 20 30 40 50 60 70 80 85 

Tc ("C) 

Figure 6.1. Ice vs Case Temperature 

Table 6.1. 8cA at Varipus Airflows and 8 JC 

In °C/Watt 

Airflow-ft/min (m/sec) 

8Jc 
0 200 400 600 800 

(0) (1.01) (2.03) (3.04) (4.06) 

Heat Sink* 
2 13 9 5.5 5 3.9 

8cA without 1.5 17.5 13 11, 9.5 8.5 
Heat Sink 

240296-33 

1000 
(5.07) 

3.4 

8 

*Nine-fin, unidirectional heat sink (fin dimensions: 0.350" height, 0.040 
width, 0.115" center-to-center spacing, 1.530" length). 

6-54 



intef i860™ MICROPROCESSOR 

Table 6.2. Maximum TA at Various Airflows 

ln°C 

Airflow-ft/min (m/sec) 

fcLK 0 200 400 600 800 1000 
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

TA with 33.3 52 67 73 75.5 75.5 78.5 
Heat Sink* 40 49 65.5 72 74.5 77 77.8 

TA without 33.3 32.5 46 52 56.5 59.5 61 
Heat Sink 40 28 43 49 54 57.5 59 

*Nine-fin unidirectional heat sink (fin dimensions: 0.350" height, 0.040 width, 
0.115" center-to-center spacing, 1.530" length). 

7.0 ELECTRICAL DATA 

Inputs and outputs are TTL compatible, except for 
CLK. All input and output timings are specified rela­
tive to the 1.5 volt level of the rising edge of CLK 
and refer to the point that the signals reach 1.5V. 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. 

7 .1 Absolute Maximum Ratings 

Case Temperature Tc under Bias ...... 0°C to 85°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin 
with Respect to Ground .............. -0.5 to 6.5V 

7 .2 D.C. Characteristics 

•WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tenf}ed exposure beyond the "Operating Conditions" 
may affect device reliability. 

Table 7 .1. DC Characteristics 
Tc= o•cto85°C, Vee= 5V ±5% 

Symbol Parameter Min Max Units Notes 

V1L Input LOW Voltage -0.3 +0.8 v 
V1H Input HIGH Voltage 2.0 Vcc+0.3 v 
V1LC CLK Input LOW Voltage -0.3 +0.8 v 
V1HC CLK Input HIGH Voltage 3.0 Vee+ 0.3 v 
Vol Output LOW Voltage 0.45 v (Note 1) 

VoH Output HIGH Voltage 2.4 v (Note 2) 

Ice Power Supply Current 
CLK = 33.3 MHz 600 mA Vcc®5V 
CLK = 40.0 MHz 650 mA Vcc@5V 

lu Input Leakage Current ±15 µA No pullup 
orpulldown 

ILQ Output Leakage Current ±15 µA 
C1N Input Capacitance 15 pF (Note 3) 

Co 1/0 or Output Capacitance 15 pF (Note 3) 

CcLK Clock Capacitance 20 pF (Note 3) 

NOTES: 
1. This parameter is measured at 4.0 mA for A31-A3, 063-00, BE7#-BEO#; at 5.0 mA for all other outputs. 
2. This parameter is measured at 1.0 mA for A31-A3, 063-00, BE7 #-SEO#; at 0.9 mA all other outputs. 
3. These are not tested. They are guaranteed by design characterization. 

6-55 

I 



intef 
7.3 A.C. Characteristics 

i860™ MICROPROCESSOR 

Table 7.2. A.C. Characteristics 
Tc= 0°Cto85°C, Vee= 5V ±5% 

All timings measured at CLK = 1.5V unless otherwise specified. 

33MHz 40MHz 50MHz 

Symbol Parameter Min Max Min Max Min Max 
(ns) (ns) (ns) {ns) (ns) (ns) 

t1 CLK Period 30 125 25 125 20 125 

t2 CLK High Time 5 3 -=. _ji[ 
t3 CLK Low Time 7 5 E 

"' t4 CLK Fall Time 7 7 .. L•~• ; i 6 

t5 CLK Rise Time 7 7 ~\ ;;::;s 
t6a A31-A3, PTB, W/R#, NENE# 3.5 23 3.5 19 1~5 :·~ 1:1 ::!;~4 Valid Delay 

t6b BEn#* Valid Delay 3.5 25 3.5 21 , -i~\.5 .:~ 1::: ~7 
t7 Float Time, All 3.5 30 3.5 25 9;5·;1; fo•Jio 
t8 ADS#,BREQ,LOCK#,HLDA 3.5 20 3.5 15 Ji: ~!~o Valid Delay 

t9 D63-DO Valid Delay 3.5 35 3.5 31 tw ····~5 ~1 
t10 Setup Time, All Inputs except 11 8 15 ~.~ll DATA 

t11 Hold Time All Inputs except DATA 4 3 2 •i2lt 

t14 Data Setup Time 11 8 6.5 

ti 5 DAT A Hold Time 4 3 2.5 

NOTES: 

Notes 

at3V 

at0.8V 

3V-0.8V 

0.8V-3V 

50 pF Load 

50 pF Load 

(Note 1) 

50 pF Load 

50 pF Load 

(Note 2) 

(Note 2) 

_ __, 

1. Float condition occurs when maximum output current becomes. less than ILQ in magnitude. Float delay is not tested. 
2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure 
recognition on a specific rising edge of CLK. I NT should remain asserted until software acknowledges the interrupt. 
• n = 0, 1, .. ., 7 

6-56 



i86QTM MICROPROCESSOR 

t5 t4 

3.0V 

2.0V 

CLK 

1.5V t2 t3 

0.8V 

t1 

INPUT INPUT 
SETUP HOLD 

t12mln l13mln 

INPUTS 

t10mln t11mln 

l6max•t8max,l9max 

VALID 

l7max 

FLOAT 

240296-25 

Figure 7.1. CLK, Input, and Output Timings 

6-57 



i860™ MICROPROCESSOR 

TYPICAL• OUTPUT 
DELAY (ns) nom +5 f---+----+----,."""'l:::ii"'""---t---J 

0 1.5V 

nom-s~--'------~--~-~ 
25 

NOTES: 
Graphs are not linear outside the CL range shown. 
nom = nominal value given in the AC timing table. 
•Typical part under worst-case conditions. 

50 75 100 125 150 

LOAD CAPACITANCE, CL (pf) 
240296-26 

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions 

TYPICAL• OUTPUT A S#, BREQ, LOCK#. HLDA 
SLEW TIME (ns) 9 1----t--.t<---t------,,"I--~ 

(D.B-2.0V) 

o~~-~-----~~ 
25 50 75 100 125 150 

NOTES: LOAD CAPACITANCE, CL (pf) 
240296-27 

Graphs are not linear outside the CL range shown. 
•Typical part under worst-case conditions. 

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions 

NOTES: 

Jl 400~ 
300 l--+-+-+-+--!--!---1--+-< 

200 .__.._..__.__._-!-_,__._......., 
8 12 16 20 24 26 30 34 3840 

FREQUENCY (MHz) 

Graphs are not linear outside the frequency range shown. 
•worst-case supply current at 5V. 

Figure 7.4. Typical Ice vs Frequency 

6-58 

240296-28 



intef 1860™ MICROPROCESSOR 

8.0 INSTRUCTION SET 

Key to abbreviations: 

For register operands, the abbreviations that describe the operands are composed of two parts. The first part 
describes the type of register: 

c 
f 

One of the control registers fir, psr, epsr, dirbase, db, or fsr 

One of the floating-point registers: fO through f31 

One of the integer registers: rO through r31 

The second part identifies the field of the machine instruction into which the operand is to be placed: 

srct 

srctni 

srcts 

src2 

de st 

The first of the two source-register designators, which may be either a register or a 16-bit 
immediate constant or address offset. The immediate value is zero-extended for logical 
operations and is sign-extended for add and subtract operations (including addu and subu) 
and for all addressing calculations. 

Same as src 1 except that no immediate constant or address offset value is permitted. 

Same as srct except that the immediate constant is a 5-bit value that is zero-extended to 32 
bits. 

The second of the two source-register designators. 

The destination register designator. 

Thus, the operand specifier isrc2, for example, means that an integer register is used and that the encoding of 
that register must be placed in the src2 field of the machine instruction. 

Other (nonregister) operands are specified by a one-part abbreviation that represents both the type of operand 
required and the instruction field into which the value of the operand is placed: 
#const A 16-bit immediate constant or address offset that the i860 microprocessor sign-extends to 

/bro ff 
sbroff 
brx 

32 bits when computing the effective address. 
A signed, 26-bit, immediate, relative branch offset. 
A signed, 16-bit, immediate, relative branch offset. 
A function that computes the target address by shifting the offset (either lbroff or sbroff) left 
by two bits, sign-extending it to 32 bits, and adding the result to the current instruction pointer 
plus four. The resulting target address may lie anywhere within the address space. 

Unless otherwise specified, floating-point operations accept single- or double-precision 
source operands and produce a result of equal or greater precision. Both input operands 
must have the same precision.The source and result precision are specified by a two-letter 
suffix to the mnemonic of the operation. 

Other abbreviations include: 
.p Precision specification .ss, .sd, or .dd (.ds not permitted). Refer to Table 8.1. 

. r 

. v 

. w 

.x 

.y 

.z 

Precision specification .ss, .sd, .ds, or .dd. Refer to Table 8-1 . 
.sd or .dd. Refer to Table 8-1 . 
.ss or .dd. Refer to Table 8.1 . 
.b (8 bits), .s (16 bits), or .I (32 bits) 
.I (32 bits), .d (64 bits), or .q (128 bits) 
.I (32 bits), or .d (64 bits) 

Table 8.1. Precision Specification 

Suffix 
Source Result 

Precision Precision 

.SS single single 
.sd single double 
.dd double double 
.ds double single 

6-59 



intJ i860™ MICROPROCESSOR 

mem.x(address) The contents of the memory location indicated by address with a size of x. 

PM The pixel mask, which is considered as an array of eight bits PM[7] .. PM[O], where PM[O] is 
the least significant bit. 

8.1 Instruction Definitions in Alphabetical Order 
adds isrc1, isrc2, idest ........................................................... . Add Signed 

idest +-- isrc 1 + isrc2 
OF +-- (bit 31 carry * bit 30 carry) 
CC set if isrc2 < -isrct (signed) 
CC clear if isrc2 2 -isrc1 (signed) 

addu isrct, isrc2, idest ......................................................... . Add Unsigned 
idest +-- isrc 1 + isrc2 
OF+-- bit 31 carry 
CC +-- bit 31 carry 

and isrc1, isrc2, idest .......................................................... . Logical AND 
idest +-- isrc1 and isrc2 
CC set if result is zero, cleared otherwise 

andh # const, isrc2, idest .................................................... Logical AND High 
idest +-- ( # const shifted left 16 bits) and isrc2 
CC set if result is zero, cleared otherwise 

and not isrc 1, isrc2, idest . ...................................................... Logical AND NOT 
idest +-- not isrc1 and isrc2 
CC set if result is zero, cleared otherwise 

andnoth #cons!, isrc2, idest ............................................... Logical AND NOT High 
idest +-- not ( # const shifted left 16 bits) and isrc2 
CC set if result is zero, cleared otherwise 

be lbroff .................................................................... Branch on CC 

bc.t 

IF CC= 1 
THEN continue execution at brx(lbroff) 
Fl 

IF 
THEN 

ELSE 
Fl 

lbroff .............................. ", ............................... Branch on CC, Taken 
cc= 1 
execute one more sequential instruction 
continue execution at brx(lbroff) 
skip next sequential instruction 

bla isrc 1 ni, isrc2, sbroff .............................................. Branch on LCC and Add 
LCC-temp clear if isrc2 < -isrctni (signed) 
LCC-temp set if isrc2 2 -isrctnl (signed) 

isrc2 +-- isrc 1 ni + isrc2 
Execute one more sequential instruction 
IF LCC 
THEN LCC +-- LCC-temp 

continue execution at brx(sbroff) 
ELSE LCC +-- LCC-temp 
Fl 

bnc lbroff ................................................................ Branch on Not CC 
IF CC= 0 
THEN continue execution at brx{lbroff) 
Fl 

bnc.t lbroff ......................................................... Branch on Not CC, Taken 
IF CC= 0 
THEN execute one more sequential instruction 

continue execution at brx{lbroff) 
ELSE skip next sequential instruction 
Fl 

6-60 



intef i86QTM MICROPROCESSOR 

br lbroff . .................................................... Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at brx(lbroff). 

bri [isrc 1 nil ................................................ Branch Indirect Unconditionally 

bte 

Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to IM in psr 

clear trap bits 

Fl 

IF DS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF DS is set and DIM is set 

Fl 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 

Fl 

THEN enter dual-instruction mode 
for next two instructions 

ELSE enter single-instruction mode 
for next two instructions 

Fl 

Continue execution at address in isrc1ni 
(The original contents of isrc 1 ni is used even if the next instruction 
modifies isrctni. Does not trap if isrctni is misaligned.) 

IF 
THEN 
Fl 

isrc 1 s, isrc2, sbroff. . . . . . . ............................................... Branch If Equal 
isrc 1 s = isrc2 
continue execution at brx(sbroff) 

btne isrc 1 s, isrc2, sbroff ................................................... Branch If Not Equal 
IF 
THEN 
Fl 

isrc 1 s * isrc2 
continue execution at brx(sbroff) 

call r1 - :;~~~~·~t ~·~~t·~~q~~~ti~l ·i~~tr~·cti·~~ ·+· 4· (+·a ·i~ ·d~~i ;,.;~ci~) .. · · .... ·······.Subroutine Call P;I 
Execute one more sequential instruction Iii 
Continue execution at brx(lbroff) 

calli [isrc1niJ ...................... : ................................ . Indirect Subroutine Call 
r1 - address of next sequential instruction + 4 ( + 8 in dual mode) 
Execute one more sequential instruction 
Continue execution at address in isrc1ni 

(The original contents of isrctni is used even if the next instruction 
modifies isrctni. Does not trap if isrctni is misaligned. 
The register isrc1ni must not be r1.) 

fadd.p fsrc 1, fsrc2, fdest. . . . ................................................ Floating-Point Add 
fdest - fsrc1 + fsrc2 

faddp fsrc1, fsrc2, fdest .................................................. . Add with Pixel Merge 
fdest ..,_ fsrct + fsrc2 
Shift and load MERGE register as defined in Table 8.2 

faddz fsrc1, fsrc2, fdest ..................................................... . Add with Z Merge 
fdest - fsrc1 + tsrc2 
Shift MERGE right 16 and load fields 31..16 and 63 . .48 

famov.r fsrc 1, fdest . ................................................... Floating-Point Adder Move 
fdest - fsrc 1 
Send fsrc1 through the floating-point adder. (Preserves -O (minus zero) when fsrc1 is -0. fsrc2 
must be coded as fO by the assembler.) 

6-61 



intef i86QTM MICROPROCESSOR 

fiadd.w fsrc1,fsrc2, fdest . ..................................................... Long-Integer Add 
tdest - tsrct + fsrc2 

fisub.w fsrct, fsrc2, fdest .................................................. Long-Integer Subtract 
fdest - tsrc1 - fsrc2 

fix.v fsrct, fdest ......................................... Floating-Point to Integer Conversion 
tdest - 64- bit value with low-order 32 bits equal to integer part of fsrc1 rounded 

Floating-Point Load 
fld.y isrc1(isrc2}, fdest .............................................................. (Normal) 
fld.y isrc1(isrc2)+ +, fdest .................................................. . (Autoincrement) 

fdest - mem.y (isrc1 + isrc2) 
IF autoincrement 
THEN isrc2 - isrct + isrc2 
Fl 

Cache Flush 
flush # const(isrc2) .................................................................. (Normal) 
flush # const(isrc2) + + ... , .................................................. (Autoincrement) 

Replace block in data cache with address (#const + isrc2). 
Contents of block undefined. 
IF autoincrement 
THEN isrc2 - #const + isrc2 
Fl 

fmlow.dd fsrc 1, fsrc2, fdest . ............................................ Floating-Point Multiply Low 
fdest - low-order 53 bits of fsrc1 mantissa x fsrc2 mantissa 
fdest bit 53 - most significant bit of mantissa 

fmov.r fsrc 1, fdest ................................................ floating-Point Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss fsrc1, fdest = fiadd.ss fsrc1, fO, fdest 
fmov.dd fsrc1, fdest = fiadd.dd fsrc1, fO, fdest 
fmov.sd fsrc1, fdest = famov.sd fsrc1, fdest 
fmov.ds fsrc1, fdest = famov.ds fsrc1, fdest 

fmul.p fsrc1, fsrc2, fdest ................................................. Floating-Point Multiply 
fdest - fsrc1 x fsrc2 

fnop ... , ..............•............................................... Floating-Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, rO, rO 
form fsrc1, fdest .................................................... OR with MERGE Register 

fdest - fsrc1 OR MERGE 
MERGE - 0 

frcp.p fsrc2, fdest .................................................... Floating-Point Reciprocal 
fdest · - 1 I fsrc2 with maximum mantissa error < 2-7 

frsqr.p fsrc2, fdest ....................................... Floating-Point Reciprocal Square Root 
fdest - 1 /SQRT (fsrc2) with maximum mantissa error < 2-7 

Floating-Point Store 
fst.y fdest, isrc1(isrc2) .............................................................. (Normal) 
fst.y fdest, isrc1(isrc2) + + ................................................... (Autoincrement) 

mem.y (isrc2 + isrc1) - fdest 
IF autoincrement 
THEN isrc2 +-- isrc1 + isrc2 

• Fl 
fsub.p fsrc 1, fsrc2, fdest . ................................................ Floating-Point Subtract 

fdest - fsrc1 - fsrc2 

ftrunc.v fsrc1, tdest ......................................... Floating-Pointto Integer Conversion 
fdest - 64-bit value with low-order 32 bits equal to integer part of fsrc1 

fxfr fsrc1, idest . ............................................. Transfer F-P to Integer Register 
idest - fsrc1 

6-62 



intef i86QTM MICROPROCESSOR 

fzchkl fsrc 1, fsrc2, fdest .................................................. 32-Bit Z-Buffer Check 
Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit 

fields fsrc1(0) .. fsrc1(1), fsrc2(0) .. fsrc2(1), and fdest(O)..fdest(1) 
where zero denotes the least-significant field. 

PM - PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] - fsrc2(i) ,,;; fsrc1(i) (unsigned) 
fdest(i) - smaller of fsrc2(i) and fsrc1(i) 

OD 
MERGE - 0 

fzchks fsrc1, fsrc2, fdest ................................................. . 16-Bit Z-Buffer Check 
Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit 

fields fsrc1(0) .. fsrc1(3), fsrc2(0) .. fsrc2(3), and fdest(O) .. fdest(3) 
where zero denotes the least-significant field. 

PM - PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] - fsrc2(i) ,,;; fsrc1(i) (unsigned) 
fdest(i) - smaller of fsrc2(i) and fsrc1(i) 

OD 
MERGE - 0 

intovr .......................................................... Software Trap on Integer Overflow 
If OF in epsr = 1, generate trap with IT set in psr. 

ixfr isrc1ni, fdest ............................................ Transfer Integer to F-P Register 
fdest - isrc1ni 

ld.c csrc2, idest . ................................................. Load from Control Register 
idest - csrc2 

ld.x isrc1(isrc2), idest . .......................................................... Load Integer 
idest - mem.x (isrc 1 + isrc2) · 

lock .................................................................. Begin Interlocked Sequence 
Set BL in dirbase. The next load or store that misses the cache locks that location. 
Disable interrupts until the bus is unlocked. 

mov isrc2, ides! ...................................................... Register-Register Move a 
Assembler pseudo-operation 

mov isrc2, idest = shl rO, isrc2, idest 

mov const32, idest . ............................................... Constant-to-Register Move 
Assembler pseudo-operation 

adds 1%const32, rO, idest 
... when const32 < Ox8000 

orh h%const32, rO, ides! 
or /%const32, idest, idest 

... when const32 ~ Ox8000 

nop ....................................................................... Core-Unit No Operation 
Assembler pseudo-operation 

nop = shl rO, rO, rO 

or isrct, isrc2, idest . ............................................................ Logical OR 
idest - isrcf OR isrc2 
CC set if result is zero, cleared otherwise 

orh # const, isrc2, idest ..................................................... Logical OR High 
idest - (#cons! shifted left 16 bits) OR isrc2 
CC set if result is zero, cleared otherwise 

6-63 



intef 1860™ MICROPROCESSOR 

pfadd.p fsrc 1, fsrc2, fdest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ Pipelined Floating-Point Add 
fdest +-- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage +-- fsrc1 + fsrc2 

pfaddp fsrc1, fsrc2, fdest .......................................... Pipelined Add with Pixel Merge 
fdest +-- last stage Graphics result 
last stage Graphics result +-- fsrct + fsrc2 
Shift and load MERGE register from last stage Graphics result as defined in Table 8.2 

pfaddz fsrct, fsrc2, fdest . ............................................ Pipelined Add with Z Merge 
fdest +-- last stage Graphics result 
last stage Graphics result +-- fsrc1 + fsrc2 
Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from last stage Graphics result 

pfam.p fsrct, fsrc2, fdest ............................... Pipelined Floating-Point Add and Multiply 
fdest +-- last stage Adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +-- A-op1 + A-op2 
M pipeline first stage +-- M-op1 x M-op2 

pfamov.r fsrc1, fdest ..... 
fdest +-- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage -- fsrc1 

............... Pipelined Floating-Point Adder Move 

pfeq.p fsrc1, fsrc2, fdest ........ ........................ Pipelined Floating-Point Equal Compare 
tdest +-- last stage Adder result 
CC set if fsrc1 = fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p fsrc1, fsrc2, fdest ...................... Pipelined Floating-Point Greather-Than Compare 
(Assembler clears R-bit of instruction) 
fdest +-- last stage Adder result 
CC set if fsrc1 > fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w fsrct, fsrc2, fdest ........................................... Pipelined Long-Integer Add 
fdest +-- last stage Graphics result 
last stage Graphics result +-- fsrct + fsrc2 

pfisub.w fsrct, fsrc2, fdest ........................................ Pipelined Long-Integer Subtract 
fdest +-- last stage Graphics result 
last stage Graphics result +-- tsrc1 - fsrc2 

pfix.v fsrct, fdest . ............................... Pipelined Floating-Pointto Integer Conversion 
fdest +-- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage +-- 64-bit value with low-order 32 bits 

equal to integer part of fsrct rounded 
Pipelined Floating-Point Load 

pfld.z isrct(isrc2), fdest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... (Normal) 
pfld.z isrc 1 (isrc2) + + , fdest .................................................... (Autoincrement) 

fdest +-- mem.z (third previous pfld's (isrct + isrc2)) 
(where .z is precision of third previous pfld.z) 

If autoincrement 
THEN isrc2 +-- isrct + isrc2 
Fl 

pfle.p fsrc 1, fsrc2, fdest .............................. Pipelined F·P Less-Than or Equal Compare 
Assembler pseudo-operation, identical to pfgt.p except that 

assembler sets R-bit of instruction. 
fdest +-- last stage Adder result 
CC clear if fsrc 1 :s: fsrc2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

6-64 



intef 1860TM MICROPROCESSOR 

pfmam.p tsrc1, fsrc2, fdest ............................... Pipelined Floating-Point Add and Multiply 
fdest - last stage Multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage - A-op1 - A-op2 
M pipeline first stage - M-op1 x M-op2 

pfmov.r fsrc1, tdest ...................................... . Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss fsrc1, fdest = pfiadd.ss tsrct, fO, fdest 
pfmov.dd tsrc1, fdest = pfiadd.dd tsrc1, fO, fdest 
pfmov.sd fsrc1, fdest = pfamov.sd tsrc1, tdest 
pfmov.ds fsrc1, fdest = pfamov.ds fsrc1, tdest 

pfmsm.p fsrc1, fsrc2, fdest ........................... Pipelined Floating-Point Subtract and Multiply 
tdest - last stage Multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage - A-op1 - A-op2 
M pipeline first stage - M-op1 x M-op2 

pfmul.p fsrc1, tsrc2, fdest ....................................... . Pipelined Floating-Point Multiply 
fdest - last stage Multiplier result 
Advance M pipeline one stage 
M pipeline first stage +- fsrc1 x fsrc2 

pfmul3.dd fsrc 1, tsrc2, fdest . ......................................... Three-Stage Plpellned Multiply 
tdest +- last stage Multiplier result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage +- tsrc1 x fsrc2 

pform fsrct, tdest ............................................. Pipelined OR to MERGE Register 
tdest +- last stage Graphics result 
last stage Graphics result +- fsrct OR MERGE 
MERGE+- 0 

pfsm.p fsrc 1, tsrc2, tdest ........................... Pipelined Floating-Point Subtract and Multiply 
tdest +- last stage Adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfsub.p fsrct, tsrc2, tdest ...................................... . Pipelined.Floating-Point Subtract •. 
1 fdest +- last stage Adder result 

Advance A pipeline one stage 
A pipeline first stage +- fsrct + tsrc2 

pftrunc.v tsrct, fdest ............................... . Pipelined Floating-Point to Integer Conversion 
fdest +- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 
· equal to integer part of fsrct 

pfzchkl fsrc 1, fsrc2, fdest ......................................... Pipelined 32·Blt Z·Buffer Check 
Consider fsrct, fsrc2, and fdest, as arrays of two 32-bit 

fields fsrc1(0) . .fsrc1(1), fsrc2(0} .. fsrc2(1), and fdest(O)..fdest(1) 
where zero denotes the least significant field. 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] +- tsrc2(i) ~ fsrct(i) (unsigned) 
fdest(i) +- last stage Graphics result 
last stage Graphics result :+-- smaller of fsrc2(i) and tsrct(i) 

OD 
MERGE+- 0 

6-65 



intef i860n.t MICROPROCESSOR 

pfzchks tsrct, fsrc2, fdest . ........................................ Pipelined 16·Blt Z·Buffer Check 
Consider fsrct, fsrc2, and fdest, as arrays of four 16-bit 

fields fsrc1(0) .. fsrc1(3), fsrc2(0) .. fsrc2(3), and fdest(O) .. fdest(3) 
where zero denotes the least significant field. 

PM - PM shifted right by 4 bits 
FORi=Oto3 
DO 

PM [i + 4] - fsrc2(i) s fsrct(i) (unsigned) 
fdest(i) - last stage Graphics result · 
last stage Graphics result - smaller of fsrc2(i) and fsrct(i) 

OD 
MERGE - 0 

pst.d fdest, # const(isrc2) .......................................................... Pixel Store 
pst.d fdest, # const(isrc2) + + ....................................... Pixel Store Autolncrement 

Pixels enabled by PM in mem.d (isrc2 + #cons() - fdest · 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement 
THEN isrc2 - # const + isrc2 
Fl 

shl isrct, isrc2, idest .................................. , .......................... . Shift Left 
idest - isrc2 shifted left by isrct bits 

shr isrct, isrc2, idest ............................................................ . Shift Right 
SC (in psr) - isrct 
idest - isrc2 shifted right by isrc 1 bits 

shra isrc 1, isrc2, idest . .................................................. Shift Right Arithmetic 
idest - isrc2 arithmetically shifted right by isrct bits 

shrd isrct, isrc2, idest .........................•................. ........... . Shift Right.Double 
idest - low-order 32 bits of isrc1:isrc2 shifted right by SC bits • 

st.c isrc 1 ni, csrc2 .................................................. Store to Control Register 
csrc2 - isrctni 

st.x isrctni, #const(isrc2) ..................................................... ·.store Integer 
mem.x (isrc2 + #cons() - isrctni · 

subs . isrct, isrc2, idest ... ............ "'" .................. · J' .. ................ . Subtract Signed 
idest - isrct - isrc2 
OF - (bit 31 carry* bit 30 carry) 
CC set if isrc2 > isrct (signed) 
CC clear if isrc2 s isrct (signed) 

subu isrct, isrc2, idest ..................................................... . Subtract Unsigned 
idest - isrct - isrc2 · 
OF - NOT (bit 31 carry) 
CC - bit 31 carry 
(i.e. CC set if isrc2 s isrct (unsigned) 

CC clear if isrc2 > isrct (unsigned) 

trap isrc 1 ni, isrc2, idest ........................................................ Software Trap 
Generate trap with IT set in psr 

unlock ................................................................. End Interlocked Sequence 
Clear BL in dlrbase. The next load or store unlocks the bus. · 
Enable interrupts after bus is unlocked. 

xor isrct, isrc2, idest .................................................. . Logical Exclusive OR 
idest - isrct XOR isrc2 
CC set if result is zero, cleared otherwise 

xorh # const, isrc2, idest ............................................ Logical Exclusive OR High 
idest - ( # const shifted left 16 bit) XOR isrc2 
CC set if result is zero, cleared otherwise 

6-66 



intef i860TM MICROPROCESSOR 

Table 8.2. FADDP MERGE Update 

Pixel 
Fields Loaded From 

Right Shift 
Size 

Result Into MERGE 
Amount 

{from PS) (Field Size) 

8 63 .. 56, 47 .. 40, 31 .. 24, 15 .. 8 8 
16 63 .. 58, 47 .. 42, 31..26, 15 .. 10 6 
32 63 .. 56, 31..24 8 

8.2 Instruction Format and Encoding 

All instructions are 32 bits long and begin on a four­
byte boundary. When operands are registers, the 
register encodings shown in Table 8.3 are used. 
There are two general core-instruction formats, 
REG-format and CTRL-format, as well as a separate 
format for floating-point instructions. 

8.2.1 REG-FORMAT INSTRUCTIONS 

Within the REG-format are several variations as 
shown in Figure 8.1. Table 8.4 gives the encodings 
for these instructions. One encoding is an escape 
code that defines yet another variation: the core es­
cape instructions. Figure 8.2 shows the format of 
this group, and Table 8.5 shows the encodings. 

In these instructions, the src2 field selects one of 
the 32 integer registers (most instructions) or five 
control registers (st.c and ld.c). Dest selects one of 
the 32 integer registers (most instructions) or float­
ing-point registers (fld, fst, pfld, pst, ixfr). For in­
structions where src1 is optionally an immediate val­
ue, bit 26 of the opcode (I-bit) indicates whether srct 
is an immediate. If bit 26 is clear, an integer register 
is used; if bit 26 is set, src1 is contained in the low­
order 16 bits, except for bte and btne instructions. 
For bte and btne, the five-bit immediate value is 
contained in the src1 field. For st, bte, btne, and 
bla, the upper five bits of the offset or broffset are 
contained in the dest field instead of src 1, and the 
lower 11 bits of offset are the lower 11 bits of the 
instruction. 

Table 8.3. Register Encoding 

Register Encoding 

rO 0 

r31 31 

to 0 

f31 31 
,_ 

Fault Instruction 0 
Processor Status 1 
Directory Base 2 
Data Breakpoint 3 
Floating-Point Status 4 
Extended Process Status 5 

'-----

6-67 

For Id and st, bits 28 and zero determine operand 
size as follows: 

Bit28 BitO Operand Size 

0 0 8-bits 
0 1 8-bits 
1 0 16-bits 
1 1 32-bits 

When src 1 is an immediate and bit 28 is set, bit zero 
of the immediate value is forced to zero. 

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. For fld, fst, pfld, and 
pst, bits one and two select the operand size as 
follows: 

Bit 1 Bit2 Operand S.ize 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

When srct is an immediate value, bits zero and one 
of the immediate value are forced to zero to main­
tain alignment. When bit one of the immediate value 
is clear, bit two is also forced to zero. 

For flush, bits one and two must be zero. 



intJ 

31 25 

OPCODE/I 

31 25 

I OPCODE 

31 25 

OPCODE/I 

31 25 

OPCODE 

SRC2 

i860TM MICROPROCESSOR 

20 
General Format 

15 

DEST SRC1 

10 

IMMEDIATE, OFFSET, OR NULL 

16-Bit Immediate Variant (except bte and btne) 
20 15 

SRC2 I DEST I IMMEDIATE 

SRC2 

SRC2 

st, bla, bte, and btne 
20 15 

OFFSET 
HIGH 

SRC1 
SRC1S 

10 

bte and btne with 5-Bit Immediate 
20 15 10 

OFFSET 
HIGH 

IMMEDIATE 

Figure 8.1. REG-Format Variations 

6-68 

OFFSET LOW 

OFFSET LOW 

0 

0 

0 

0 



intJ 

ld.x 
st.x 
ixfr 

fld.x, fst.x 
flush 
pst.d 
ld.c, st.c 
bri 
trap 

bte, btne 
pfld.y 

i86QTM MICROPROCESSOR 

Table 8.4. REG-Format Opcodes 
31 

Load Integer 0 0 
Store Integer 0 0 
Integer to F-P Reg Transfer 0 0 
(reserved) 0 0 
Load/Store F-P 0 0 
Flush 0 0 
Pixel Store 0 0 
Load/Store Control Register 0 0 
Branch Indirect 0 1 
Trap 0 1 
(Escape for F-P Unit) 0 1 
(Escape for Core Unit) 0 1 
Branch Equal or Not Equal 0 1 
Pipelined F-P Load 0 1 
(CTRL-Format Instructions) 0 1 

0 L 
0 L 
0 0 
0 1 
1 0 
1 1 
1 1 
1 1 
0 0 
0 0 
0 0 
0 0 
0 1 
1 0 
1 x 

addu, -s, subu, -s, Add/Subtract 1 0 0 so 
shl, shr 
sh rd 
bla 
shra 
and(h) 
andnot(h) 
or(h) 
xor(h) 

L Integer Length 
o -8 bits 

Logical Shift 
Double Shift 
Branch LCC Set and Add 
Arithmetic Shift 
AND 
ANDNOT 
OR 
XOR 
(reserved) 

1 -16 or 32 bits (selected by bit 0) 
LS Load/Store 

o -Load 
1 -Store 

SO Signed/Ordinal 
0. -Ordinal 
1 -Signed 

H High 
O -and, or, andnot, xor 
1 -andh,orh,andnoth,xorh 

31 26 

reserved 

1 0 1 
1 0 1 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 
1 1 x 

AS Add/Subtract 
0 -Add 
1 -Subtract 

LR Left/Right 
0 -Left Shift 
1 -Right Shift 

E Equal 

15 

0 -Branch on Not Equal 
1 -Branch on Equal 
Immediate 
O -srct is register 
1 --srct is immediate 

10 

SRC1 reserved 

Figure 8.2. Core Escape Instruction Format 

6-69 

0 
1 
1 
1 
0 
1 
0 
1 
x 

26 

0 I 
1 1 
1 0 
1 0 

LS I 
0 1 
1 1 

LS 0 
0 0 
0 1 
1 0 
1 1 
E I 
0 I 
x x 

AS I 
LR I 
0 0 
0 1 
1 I 
H I 
H I 
H I 
H I 
1 0 

I 
5 0 

OPCODE 



intef i860Tllll MICROPROCESSOR 

lock 
calli 

intovr 

unlock 

Table 8.5. Core Escape Opcodes 
4 

(reserved) 0 0 
Begin Interlocked Sequence 0 0 

Indirect Subroutine Call 0 0 
(reserved) 0 0 

Trap on Integer Overflow 0 0 
(reserved) 0 0 
(reserved) 0 0 

End Interlocked Sequence 0 0 
(reserved) 0 1 
(reserved) 1 0 
(reserved) 1 1 

8.2.2 CTRL·FORMAT INSTRUCTIONS 

0 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
x x x 
x x x 
x x x 

The CTRL instructions do not refer to registers, so instead of the register fields, they have a 26-bit relative 
branch offset. Figure 8.3 shows the format of these instructions and Table 8.6 defines the encodings. 

31 28 25 0 

BROFFSET 

BROFFSET is a signed 26-bit relative branch offset. 

Figure 8.3. CTRL Instruction Format 

Table 8.6. CTRL-Format Opcodes 
28 26 

(reserved) 0 0 0 
(reserved) 0 0 1 

br Branch Direct 0 1 0 
call Call 0 1 1 
bc(.t) Branch on CC Set 1 0 T 
bnc(.t) Branch on CC Clear 1 1 T 

T Taken 
O -be or bnc 
1 -bc.t or bnc.t 

6-70 



intJ i86QTM MICROPROCESSOR 

8.2.3 FLOATING-POINT INSTRUCTIONS 

The floating-point instructions also constitute an escape series. All these instructions begin with the bit se­
quence 010010. Figure 8.4 shows the format of the floating point instructions, and Table 8. 7 gives the encod­
ings. Within the dual-operation instructions is a subcode DPC whose values are given in Table 8.8 along with 
the mnemonic that corresponds to each. 

31 25 20 15 

10100101 SRC2 DEST SRC1 

SRC1, SRC2 -Source; one of 32 floating-point registers 
DEST -Destination register 

(instructions other than fxfr) one of 32 floating-point registers 
(fxfr) one of 32 integer registers 

P Pipelining S Source Precision 

OPCODE 

1 -Pipelined instruction mode 
O -Scalar instruction mode 

D Dual-Instruction Mode 

1 -Double-precision source operands 
0 -Single-precision source operands 

R Result Precision 
1 -Dual-instruction mode 
O -Single-instruction mode 

1 -Double-precision result 
O -Single-precision result 

Figure 8.4. Floating-Point Instruction Encoding 

Table 8.7. Floating-Point Opcodes 
6 

pf am Add and Multiply* 
pfmam Multiply with Add* 0 
pfsm Subtract and Multiply* 

0 
pfmsm Multiply with Subtract* 

(p)fmul Multiply 0 
fmlow Multiply Low 0 
frcp Reciprocal 0 
frsqr Reciprocal Square Root 0 
pfmul3.dd 3-Stage Pipelined Multiply 0 

(p)fadd Add 0 
(p)fsub Subtract 0 
(p)fix Fix 0 
(p)famov Adder Move 0 
pfgt/pfle** Greater Than 0 
pfeq Equal 0 
(p)ftrunc Truncate 0 

fxfr Transfer to Integer Register 1 
(p)fiadd Long-Integer Add 1 
(p)fisub Long-Integer Subtract 1 

(p)fzchkl Z-Check Long 1 
(p)fzchks Z-Check Short 1 
(p)faddp Add with Pixel Merge 1 
(p)faddz Add with Z Merge 1 
(p)form OR with MERGE Register 1 

*pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear. 
• *pfgt has R bit cleared; pfle has R bit set. 

NOTE: 
All opcodes not shown are reserved. 

6-71 

0 0 

0 1 

1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 

1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 1 

0 0 0 
0 0 1 
0 0 1 

0 1 0 
0 1 1 
0 1 0 
0 1 0 
0 1 1 

DPC 

DPC 

0 0 
0 0 
0 1 
0 1 
1 0 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
0 1 

0 0 
0 0 
1 0 

1 1 
1 1 
0 0 
0 0 
0 1 

0 

0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
1 
0 

0 
1 
1 

1 
1 
0 
1 
0 

I 



intef 1860™ MICROPROCESSOR 

The following table shows the opcode mnemonics that generate the various encodings of DPC and explains 
each encoding. 

Table 8.8. DPC Encoding 

DPC 
PFAM PFSM M·Unit M·Unlt A·Unit A·Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 

0100 12p1 12s1 Kl src2 src1 M result No No 
0101 i2pt i2st Kl src2 T M result No Yes 
0110 12ap1 12as1 Kl src2 src1 A result Yes No 
0111 12apt 12ast Kl src2 T A result Yes Yes 

1000 rat1p2 rat1s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra1s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 

1100 lat1p2 iat1s2 Kl A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 Kl A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

DPC 
PF MAM PFMSM M·Unit M·Unit A-Unit A·Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 

0100 ml2p1 mi2s1 Kl src2 src1 M result No No 
0101 1n12pt ml2st Kl src2 T M result No Yes 
0110 mi2mp1 mi2ms1 Kl src2 src1 M result Yes No 
0111 ml2mpt ml2mst Kl src2 T M result Yes Yes 

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T A result Yes No 

1100 mlmt1p2 mlmt1s2 Kl M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mlm1p2 mlm1s2 Kl M result src1 src2 No No 
1111 Intel-Reserved 

*If K-load is set, KR is loaded when operand-1 of the multiplier is KR; Kl is loaded when operand-1 of the multiplier is Kl. 

6-72 



infef i860TM MICROPROCESSOR 

8.3 Instruction Timings 

i860 microprocessor instructions take one clock to 
execute unless a freeze condition is invoked. Freeze 
conditions and their associated delays are shown in 

Freeze Condition 

Instruction-cache miss 

Reference to destination of Id instruction that 
misses 

fld miss 

call, calli, ixfr, fxfr, ld.c, or st.c and data cache 
load miss processing in progress 

ld/st/pfld/fld/fst and data cache load miss 
processing in progress 

Reference to dest of Id, call, cam, fxfr, or ld.c in 
the next instruction. (Dest of call and cam is r1 .) 

the table below. Freezes due to multiple simulta­
neous cache misses result in a delay that is the sum 
of the delays for processing each miss by itself. Oth­
er multiple freeze conditions usually add only the de­
lay of the longest individual freeze. 

Delay 

Number of clocks to read instruction (from ADS 
clock to first READY# clock) plus time to last 
READY# of block when jump or freeze occurs 
during miss processing plus two clocks if data-
cache being accessed when instruction-cache 
miss occurs. 

One plus number of clocks to read data (from 
ADS# clock to first READY# clock) minus number 
of instructions executed since load (not counting 
instruction that references load destination) 

One plus number of clocks until first READY# 
returned (for 32- or 64-bit read cycles) or until 
second READY# returned (for 128-bit fld.q read 
cycles) 

One plus number of clocks until first READY# 
returned (for 64-bit read cycles) or until second 
READY# returned (for 128-bit fld.q read cycles) 

One plus number of clocks until last READY# 
returned 

One clock 

6-73 



intJ i860™ MICROPROCESSOR 

Freeze Condition Delay 

Reference to dest of fld/pfld/ixfr in the next two Two clocks in the first instruction; one in the 
instructions second instruction 

bc/bnc/bc.t/bnc.t following fadd/fsub/pfeg/ One clock 
pf gt 

Fsrct of multiplier operation refers to result of One clock 
previous operation 

Floating-point operation or graphics-unit If the scalar operation is fadd, fix, fmlow, fmul.ss, 
instruction or fst, and scalar operation in progress fmul.sd, ftrunc, or fsub, two minus the number of 
other than frcp or frsqr instructions (or dual-mode pairs) already executed 

after the scalar operation. If the scalar operation is 
fmul.dd, three minus the number of instructions 
(or dual-mode pairs) executed after it. Add one if 
either or both of these two situations occur: 
1. There is an overlap between the result register 

of the previous scalar operation and the source 
of the floating-point operation, and the 
destination precision of the scalar operation is 
different than the source precision of the 
floating-point operation. 

2. The floating-point operation is pipelined and its 
destinB;tion is not fO. 

There is no delay if the result is negative. 

Multiplier operation preceded by a double- One clock 
precision multiply 

Multiplier operation with data pattern requiring One clock 
extra rounding operation 

TLB miss Five plus the number of clocks to finish two reads 
plus the number of clocks to set A-bits (if 
necessary) 

pfld when three pfld's are outstanding One plus the number of clocks to return data from 
first pfld 

pfld hits in the data cache Two plus the number of clocks to finish all 
outstanding accesses 

st, pst or fst miss, Id miss, or flush with modified One plus the number of clocks until READY# 
block when store path full (two stores or one 256- active on next 64-bit write cycle or second 
bit write-back internally waiting for bus plus READY# of next 128-bit write cycle. 
external bus pipeline full) 

Id, fld, pfld, st, pst, or fst when address path full Number of clocks until next nonrepeated address 
(one address internally waiting for bus plus can be issued (i.e., an address that is not the 2nd-
external bus pipeline full) 4th cycle of a cache fill, the 2nd-8th cycle of a 

CS8 mode instruction fetch, nor the 2nd cycle of a 
128-bit write) 

ld/fld following st/fst hit One clock 

6-74 



intJ i860TM MICROPROCESSOR 

Freeze Condition Delay 

Delayed branch not taken One clock 

Nondelayed branch taken: 
bc,bnc One clock 
bte, btne Two clocks 

Indirect branch bri or call calli One clock 

st.c Two clocks 

Result of graphics-unit instruction (other than One clock 
fmov.dd) used in next instruction when the next 
instruction is an adder- or multiplier-unit instruction 

Result of graphics-unit instruction used in next One clock 
instruction when the next instruction is a graphics-
unit instruction 

flush followed by flush Three clocks minus the number of instructions 
between the two flush instructions. There is no 
delay if the result is negative. 

fst or pst followed by pipelined floating-point One clock 
operation that overwrites the register being stored 

• 

6-75 



i860™ MICROPROCESSOR 

8.4 Instruction Characteristics 

The following table lists some of the characteristics 
of each instruction. The characteristics are: 

• What processing unit executes the instruction. 
The codes for processing units are: 
A Floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P 
indicates that the instruction is pipelined. 

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches. 

• Whether the instruction changes the condition 
code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. 
The codes used for exceptions are: 

IT Instruction Fault 
SE Floating-Point Source Exception 
RE Floating-Point Result Exception, including 

overflow, underflow, inexact result 
DAT Data Access Fault 

Note that this is not the same as specifying at 
which instructions faults may be reported. A re­
sult exception is reported on the subsequent 
floating-point instruction, pst, fst, or sometimes 
fld, pfld, and ixfr. 

The instruction access fault IAT and the interrupt 
trap IN are not shown in the table because they 
can occur for any instruction. 

• Performance notes. These comments regarding 
optimum performance are recommendations 
only. If these recommendations are not followed, 
the i860 microprocessor automatically waits the 
necessary number of clocks to satisfy internal 
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table: 

1. The following instruction should not be a con­
ditional branch (be, bnc, bc.t, or bnc.t). 

2. The destination should not be a source oper­
and of the next two instructions. 

6-76 

3. A load should not directly follow a store that is 
expected to hit in the data cache. 

4. When the prior instruction is scalar, fsrct 
should not be the same as the fdest of the 
prior operation. 

5. The fdest should not reference the destination 
of the next instruction if that instruction is a 
pipelined floating-point operation. 

6. The destination should not be a source oper­
and of the next instruction. (For call and cam, 
the destination is r1 .) 

7. When the prior operation is scalar and multipli­
er opt is fsrct, fsrc2 should not be the same 
as the fdest of the prior operation. 

8. When the prior operation is scalar, fsrct and 
fsrc2 of the current operation should nqt be the 
same as fdest of the prior operation. 

9. A pfld should not immediately follow a pfld. 

• Programming restrictions. These indicate combi­
nations of conditions that must be avojded by 
programmers, assemblers, and compilers. The 
following notes define the alphabetic codes that 
appear in the instruction table: 

a. The sequential instruction following a delayed 
control-transfer instruction may not be another 
control-transfer instruction (except in the case 
of external interrupts), nor a trap instruction, 
nor the target of a control-transfer instruction. 

b. When using a bri to return from a trap handler, 
programmers should take care to prevent traps 
from occurring on that or on the next sequen­
tial instruction. IM should be zero (interrupts 
disabled) when the bri is executed. 

c. If fdest is not zero, fsrct must not be the same 
as fdest. 

d. When fsrct goes to the multiplier opt, KR, or 
Kl, fsrct must not be the same as fdest. 

e. If fdest is not zero, fsrct and fsrc2 must not be 
the same as fdest 

f. isrct must not be the same as isrc2 for the 
autoincrementing form of this instruction. 

g. isrct must not be the same as isrc2. 



intef 1860™ MICROPROCESSOR 

Table 8.9 Instruction Characteristics 

Instruction Execution Plpellned? Sets Faults Performance Programming 
Unit Delayed? CC? Notes Restrictions 

adds E cc 1 
addu E cc 1 
and E cc 
andh E cc 
and not E cc 
andnoth E cc 
be E 
bc.t E D a 
bla E D a,g 
bnc E 

bnc.t E D a 
br E D a 
brl E D a,b 
bte E 
btne E 

call E D 6 a 
calli E D 6 a 
fadd.p A SE,RE 
faddp G 8 
fad dz G 8 

famov.r A SE,RE 
fladd.z G 8 
fisub.z G 8 
flx.p A SE,RE 
fld.y E DAT 2,3 f 

flush E 
fmlow.p M 4 
fmul.p M SE, RE 4 
form G 8 II 
frep.p M SE, RE 

frsqr.p M SE,RE 
fst.y E DAT 5 f 
fsub.p A 

I 
SE,RE 

ftrunc.p A SE,RE 
fxfr G 6,8 

fzchkl G 8 
fzchks G 8 
lntovr E IT 
lxfr E 2 
ld.c E 

ld.x E DAT 6 
or E cc 
orh E cc 
pfadd.p A p SE,RE 
pfaddp G p 8 e 

6-77 



intef i860TM MICROPROCESSOR 

Instruction 
Execution Pipenn•d1 ··. Sets 

Faults 
Performance Programming 

Unit Delayed? CC? Notes Restrictions 

pf ad dz G p 8 e 
pfam.p A&M p SE,RE 7 d 
pfamov.r A p SE,RE 
pfeq.p A p cc SE 1 
pfgt.p A p cc SE 1 
pfiadd.z G p 8 e 

pfisub.z G ,P 8 e 
pflx.p A p SE,RE 
pfld.z E p DAT 2,9 f 
pfmam.p A&M p SE,RE 7 d 

pfmsm.p A&M p SE, RE 7 d 
pfmul.p M p SE,RE 4 c 
pfmul3.dd M p SE,RE 4 c 
pform G p 8 e 
pfsm.p A&M p SE,RE 7 d 
pfsub.p A p SE,RE 

pftrunc.p A p SE,RE 
pfzchkl G p 8 
pfzchks G p 8 
pst.d E DAT f 
shl E 

shr E 
shra E 
sh rd E 
st.c;: E 
st.x E DAT 
subs E cc 1 
subu E cc 1 
trap E IT 
xor E cc 
xorh E cc 

6-78 



i860™ MICROPROCESSOR 

DATA SHEET REVISION REVIEW 

The following list represents the key differences be­
tween version 002 and version 001 of the i860 Mi­
croprocessor Data Sheet. 

1. Big-endian description in section 2.3 has been 
expanded. 

2. Bit 17 of the Extended Processor Status Regis­
ter (EPSR) is the INT bit which reflects the value 
on the interrupt pin (INT), as described in section 
2.2.4 entitled "EXTENDED PROCESSOR 
STATUS REGISTER". This is .a documentation 
update only. 

3. The cacheability of a page is controlled by 
NOR'ing the value of the CD, WT bits and the 
KEN# input pin, as described in section 2.5 enti­
tled "Caching and Cache Flushing" and section 
3.1.14 entitled "Cache Enable (KEN#)". This is 
a documentation update only. 

4. The NOTE section in section 2.5 entitled "Cach­
ing and Cache Flushing" has been updated to 
clarify the paging requirement on changing the 
OTB field in the dlrbase register. 

5. Information on register encoding is added in sec­
tion 8.2 entitled "Instruction Format and Encod­
ing". This is a documentation ypdate only. 

The following list represents the key differences be­
tween version 003 and version 002 of the i860 Mi­
croprocessor Data Sheet. 

Specification Changes: 

1. Specification changes for improved AC perform­
ance are in section 7.3. 

2. HOLD is acknowledged during locked bus cy­
cles. See section 3.1.8. 

3. Additional paths have been added to the bus 
state diagram to allow direct transitions from 
states T12 and T11 to state TH. See Figures 4.1 
and 4.10. 

4. Two new instructions, (p)famov.r, have been 
added. These replace (p)fadd.ds and 
(p)fadd.sd in the assembler pseudo-ops 
(p)fmov.r. These changes are in section 8.1 and 
tables 2.7, 8.7, and 8.9. 

Documentation Changes: 

1. Big and little endian description has .been ex­
panded in sections 2.2.2, 2.3, and Figure 2.8. 

2. The actions and explanations of the lock, un­
lock, and st.c dlrbase changing the BL bit have 
been updated in sections 2.2.4, 3.1.5, 3.1.8, 
4.3.4, 4.3.5, and 8.1. 

3. The explanation of the AA and MA bits of the 
fpsr have been expanded in section 2.2.8. 

4. The explanation of the WT bit of the Page Table 
Entries has been expanded in sections 2.4.4.4 
and 2.5. 

5. A change concerning the locking of the bus dur­
ing address translation is explained in sections 
2.4.5 and 2.8.5. 

6. A further explanation on when to flush the data 
cache is given in section 2.5. 

7. The explanation of the floating point multiplier 
pipeline has been expanded in section 2.6.1. 

8. The explanation of BREQ has been expanded in 
section 3.1.4 and Figure 4.1. 

9. The explanation of result exceptions has been 
expanded in sections 2.8 and 3.2. 

10. Instruction fetch identification has been clarified 
in section 3.1.6 and table 3.2. 

11. Bus cycle diagrams in Figures 4.7, 4.8, and 4.10 
have been clarified/corrected. 

12. Precision specification .r has been added to sec­
tion 8.0 and table 8.1. 

6-79 

13. In section 8.4, performance note 9 has been 
added, programming restriction d has been 
changed, and programming restriction f has 
been added. Table 8.9 has been updated to re­
flect these changes. 

14. The description of testability has changed in II 
sections 3.3. and 3.3.2. RESET and HOLD must 
be asserted by the tester to force the chip out-
puts to float (tri-state). 

The following list represents the major differences 
between this version and version 003 of the i860 
Microprocessor Data Sheet: 

Section 2.2.4 The explanation of the WP bit of the 
epsr has been expanded. 

Section 2.8.2 More information on the instruction 
trap has been added. 

Section 2.8.4 The instruction access trap has 
been clarified. 

Section 2.8.7 The values of registers after a reset 
trap have been specified. 

Section 3.1.4 BREQ timing has been cfarified. 



intef 1860™ MICROPROCESSOR 

Section 3.1.5 The calculation of interrupt latency 
has been corrected. 

Section 3.1.6 The description of the byte-enable 
signals has been expanded. 

Section 3.1.8 The relation between the lock in­
struction and the LOCK# signal has 
been clarified. The BL bit should no 
longer be changed by writing to the 
dlrbase register. 

Section 6.0 The thermal specifications have 
been updated. 

Section 7.3 The A.C. characteristics tor CLK 
have changed. 

Section 7 .3 Advance timing information tor the 
50 MHz clock rate has been added. 
These timings are subject to change 
without notice. Contact Intel Corpo­
ration for design-in information. 

Section 8.0 The operand naming conventions 
have improved. 

Section 8.2.1 The encoding of the flush instuction 
has been corrected. 

The following list represents the major differences 
between this version and version -003 of the i860 
Microprocessor Data Sheet: 
Section 2.2.4 The explanation of the WP bit of the 

espr has been expanded. 

Section 2.8.2 More information on the instruction · 
trap has been added. 

Section 2.8.4 The instruction access trap has been 
clarified. 

Section 2.8.7 The values of registers after a reset 
trap have been specified. 

Section 3.1.4 BREQ timing has been clarified. 

Section 3.1.5 The calculation of interrupt latency 
has bee corrected. 

Section 3.1.6 The description of the. byte-enable 
signals has been expanded. 

Section 3.1.8 The relation between the lock 
instruction and the LOCK# signal has 
been clarified. The BL bit should no 
longer be changed by writing to the 
dirbase register. 

Section 6.0 The thermal specifications havE1 been 
updated. 

Section 7.3 The A.C. Characteristics tor CLK have 
changed. 

Section 7.3 Advance timing information for the 50 
MHz clock rate has been added. 
These timings are subject to change 
without notice. 

Section 8.0 The operand naming conventions 
have improved. 

Section 8.2.1 The encoding of the flush instruction 
has been corrected. 

Section 8.3 The data-dependent multiplier freeze 
has been eliminated. Other freeze 
conditions have been corrected or 
clarified. 

6-80 



APPLICATION 
NOTE 

AP-434 

November 1989 

Using i86QTM Microprocessor 
Graphics Instructions 

for 3-D Rendering I 

Order Number: 240856-001 
6-81 



USING i860™ 
MICROPROCESSOR 

GRAPHICS INSTRUCTIONS 
FOR 3·0 RENDERING 

CONTENTS PAGE 

INTRODUCTION ........................ 6-84 

1.0 3·D RENDERING .................... 6-84 

2.0 DISTANCE INTERPOLATION ....... 6-86 

3.0 COLOR INTERPOLATION .......... 6-88 

4.0 BOUNDARY CONDITIONS .......... 6-89 

4.1 Z-Buffer Masking ................ 6-89 

4.2 Accumulator Initialization ......... 6-91 

5.0 THE INNER LOOP .................. 6-91 

6.0 ALTERNATIVE 
IMPLEMENTATIONS ............. 6-95 

6-82 



FIGURES PAGE EXAMPLES PAGE 

Figure 1 Z-BUFFER Interpolation ........ 6-86 Example 1 : Setting Pixel Size ............ 6-84 

Figure 2 faddz Operands ................ 6-87 Example 2: Register Assignments ....... 6-85 

Figure 3 Pixel Interpolation for Gouraud Example 3: Construction of Z 
Shading ............................... 6-88 lnterpolants ........................... 6-88 

Figure 4 faddp Operands ................ 6-89 Example 4: Construction of Color 
lnterpolants ........................... 6-89 

TABLES PAGE Example 5: Z Mask Procedure ........... 6-90 

Table 1 faddz Visualization .............. 6-87 
Example 6: Accumulator Initialization .... 6-92 

Table 2 Accumulator Initial Values ....... 6-91 
Example 7: 3-D Rendering (1 of 2) ....... 6-93 

Table 3 Accumulator Initialization 
Example 7: 3-D Rendering (2 of 2) ....... 6-94 

Table ................................. 6-91 Example 8: Inner Loop of Renderers for 
Two Pixel Sizes ....................... 6-95 

I 

6-83 



intJ AP-434 

Introduction 

The i860™ 64-bit microprocessor is a general-purpose 
CPU with on-chip integer unit, floating point, memory 
management, caches, and graphics. The i860 micro­
processor supports 3-D graphics software with the fol­
lowing functions: 

1. Hidden surface elimination 

2. Distance interpolation 

3. Intensity interpolation for 3-D shading 

The fzchks (Z-buffer Check) and pst (Pixel Store) in­
structions expedite hidden surface elimination. Dis­
tance interpolation is accomplished with faddz (Add 
with Z merge), and intensity interpolation occurs with 
faddp (Add with Pixel Merge). The purpose of this ap­
plication note is to illustrate the intended use of these 
instructions in a manner independent of any graphics 
environment in which the instructions might be used. It 
is not the purpose of this application note to present the 
most efficient instruction sequences. While the inner 
loop of Example 7 has as few instructions as logically 
possible, the other examples are intended to present 
general concepts, not optimum implementations. Tun­
ing for maximum performance depends on the specific 
environment. 

This application note assumes familiarity with the 
i860™ 64-bit Microprocessor Programmer's Reference 
Manual (Intel order number 240329); the i860 micro­
processor instructions for graphics are detailed in sec­
tion 6.6. 

1.0 3-D RENDERING 

This series of examples are routines that might be used 
at the lowest level of a graphics software system to con­
vert a machine-independent description of a 3-D image 
into values for the frame buffer of a color video display. 
Typically, higher-level graphics routines represent an 
object as a set of polygons that together roughly de­
scribe the surfaces of the objects to be displayed. The 
graphics system maintains a database that describes 

II SET PIXEL SIZE TO 16 

these polygons in terms of their colors, properties of 
reflectance or translucence, and the locations in 3-D 
space of their vertices. Due to the roughness of the 
representation, the amount of information in the data­
base is considerably less than that which must be deliv­
ered to the video display. A rendering procedure, such 
as Example 7, uses interpolation to derive the detailed 
information needed for each pixel in the graphics frame 
buffer. The rendering procedure also performs pixel-by­
pixel hidden-surface elimination. 

The focus of this series of examples is Example 7, 
which operates on a segment of a scan line. The seg­
ment is bounded by two points of given location and 
color: from point (XI, YO, Zl) with color intensities 
Redl, Grnl, Blul to point (X2, YO, Z2) with color in­
tensities Red2, Grn2, Blu2. The points and color inten­
sities are determined by higher-level graphics software. 
The points represent the intersection of the scan line 
with two edges of the projected image of a polygon. For 
a given scan line, the rendering procedure is executed 
once for each polygon that projects onto that scan line. 
The higher-level graphics software is responsible for 
orienting the objects with respect to the viewer, for 
making perspective calculations, for scaling, and for de­
termining the amount of light that falls on each poly­
gon vertex. 

The 16-bit pixel format is used, giving ample resolution 
for color shading: 26 intensity values for red, 26 intensi­
ty values for green, and 24 intensity values for blue. 
Example 1 shows how to set the pixel size. For hidden­
surface elimination, the Z-buffer (or depth buffer) tech­
nique is employed, each Z value having a resolution of 
16-bits. 

Because the examples presented here use almost all of 
the registers of the i860 microprocessor, the registers 
are given symbolic names, as defined by Example 2. In 
a real application, it is likely that some of the inputs to 
the rendering procedure would be passed in floating­
point registers instead of the integer registers employed 
here. The register allocation shown in Example 2 sim­
plifies the examples by avoiding the need to use any 
register for multiple purposes. 

ld.c psr, Ra II Work on psr 
andnoth OxOOCO, Ra, Ra// Clear PS 
orh Ox0040, Ra, Ra// PS = 16-bit pixels 
st.c Ra, psr II 

Example 1. Setting Pixel Size 

6-84 



intJ AP-434 

II REGISTER DEFINITIONS FOR RENDERING PROCEDURE 
II INTEGER LOCALS 

II 

II 

Ra 
Rb 
Re 
Rd 

= r4 II Temporary = r5 II Temporary 
= r6 II Temporary 
= r7 II Temporary 

INTEGER INPUTS 
Xl = rl6 II X coordinate of starting point of line segment in pixels 
dX = rl7 II Width of scan line segment in number of pixels 
ZBP = rl8 II Z-buffer pointer to the current line segment 
Zl = rl9 II Initial Z value, fixed-point 16.16 format 
mZ = r20 II Z slope, fixed-point 16.16 format 
FBP = r21 II Graphics frame buffer pointer to the current line segment 
Redl = r22 II Initial red intensity, fixed-point 6.10 format, plus .5 
Grnl = r23 II Initial green intensity, fixed-point 6.10 format, plus .5 
Blul = r24 II Initial blue intensity, fixed-point 6.10 format, plus .5 
mR = r25 II Red slope, fixed-point 6.10 format 
mG = r26 II Green slope, fixed-point 6.10 format 
mB = r27 II Blue slope, fixed-point 6.10 format 

REAL LOCALS 
aZ = f2 II Accumulated Z values 
aZh = f3 II 
iZl = f4 II Z interpolant, coefficient 1.0 
iZlh = f5 II 
iZ3 = f6 II Z interpolant, coefficient 3.0 
iZ3h = f7 II 
oldz = f8 II Original values from the Z-buffer 
newz = flO II New Z-buffer values 
newzh = fll 11 
newi = fl2 II New pixel values 
iR = fl4 II Red interpolant, coefficient 4.0 
iRh = fl5 II 
aR = fl6 II Accumulated red intensities 
aRh = fl7 II 
iG = fl8 II Green interpolant, coefficient 4.0 
iGh = fl9 II 
aG = f20 II Accumulated green intensities 
aGh = f21 II 
iB = f22 II Blue interpolant, coefficient 4.0 
iBh = f23 II 
aB = f24 II Accumulated blue intensities 
aBh = f25 II 
lZmask = f26 
lZmaskh = f27 
rZmask = f28 
rZmaskh = f29 

II left-end Z mask 
II 
II 
II 

right-end Z mask 

Example 2. Register Assignments 

6-85 

I 



intJ AP-434 

2.0 DISTANCE INTERPOLATION 

To perform hidden surface elimination at each pixel, 
the rendering routine first interpolates the value of Z at 
each pixel. Distance interpolation consists of calculat­
ing the slope of Z over the given line segment, then 
increasing the Z value of each successive pixel by that 
amount, starting from XI. The width 'of the line seg­
ment in pixels is ... 

dX = X2 - XI 

Calculate the reciprocal of dX: 

RdX = l/dX 

The value of dX is used several times as a divisor. It is 
most efficient to calculate its reciprocal once, then, in­
stead of dividing by dX, multiply by RdX. The slope of 
z is ... 

mZ = (Z2 - Zl)" RdX 

Because each polygon is a plane, the value of mZ is 
constant for all scan lines that intersect the polygon; 
therefore mZ needs to be calculated only once for each 

polygon .. Example 7 assumes that dX and mZ have al­
ready been calculated, and all that remains is to apply 
mZ to successive pixels. Let Z(Xn) be the Z value at 
pixel Xn. Then ... 

Z(XI) = ZI 
Z(XI + 1) = ZI + mZ 
Z(XI + 2) = ZI + 2•mz 

Z(XI + N) = ZI + N'mZ 

Z(XI + dX) =ZI + dX*mZ = Z(X2) 

Figure 1 illustrates this Z-value interpolation. 

The faddz instruction helps to perform the above calcu­
lations 64 bits at a time. Because a Z value is 16 bits 
wide, Example 7 operates on the Z·buffer in groups of 
four. The faddz instruction, however, treats the interpo­
lation values (N'mZ) as 32-bit fixed-point numbers; 
therefore, two faddz instructions are executed for each 
group of four pixels. Because of the way the faddz shifts 

(r,g,b,x,y,z = 4000) 

(r',g',b',x',y',z' = 800) 

8 ~ 8 ~ 8 ~ 
"Ill'· "Ill' U') I() co co 
N N N N N N 

mZ = 3000-2400 
12 pixels 

(r",g",b",x",y",z" = 1000) 

Figure 1. Z-Buffer lnterpolatlon 

6-86 

240856-1 



intJ AP-434 

the MERGE register, the first faddz corresponds to 
even-numbered pixels, while the second corresponds to 
odd-numbered pixels. Instead of starting with the value 
for the first pixel (Z(Xl)) and adding mZ to each pixel 
to produce the value for the next pixel, the example 
procedure starts with the values for the first two even­
numbered pixels and adds l * mZ to each of these values 
to produce the values for the adjacent odd-numbered 
pair. Adding 3*mZ to each of the Z values of an odd­
numbered pair produces the values for the next even-

numbered pair. Figure 2 shows one way of constructing 
the operands before starting the distance interpolations. 
(The initial value given to srcl depends on the align­
ment of the first pixel.) Table 1 helps to visualize the 
process. 

After two faddz instructions, the MERGE register 
holds the Z values for four adjacent pixels (in the cor­
rect order). The form instruction copies MERGE into 
one of the 64-bit floating-point registers. 

Accumulator 
63 47 31 15 0 

z1-1.o•mz fraction Z1-3.0'mZ fraction I Initial 
src1 

lnterpolants 
63 47 31 15 0 

3.o•mz fraction 3.0'mZ fraction I First 
src2 

63 47 31 15 0 

1.0'mZ fraction 1.o•mz fraction I Second 
src2 

Figure 2. faddz Operands 

Table 1. faddz Visualization 

MERGE Register 
Operands 63·32 31·0 63-48 I 47·32 I 31-16 I 15-0 

src1 -1.0 -3.0 

src2 3.0 3.0 

rdestlsrc1 2.0 0.0 2 l l 0 I 
src2 1.0 1.0 

rdest/src1 3.0 1.0 3 1 2 l 1 I 0 

src2 3.0 3.0 

rdestlsrc1 6.0 4.0 6 I I 4 I 
src2 1.0 1.0 

rdest/src1 7.0 5.0 7 I 6 I 5 I 4 

src2 3.0 3.0 

rdest/src1 10.0 8.0 10 I I 8 I 
src2 1.0 1.0 

rdest/src1 11.0 9.0 11 I 10 I 9 I 8 

src2 3.0 3.0 

rdestlsrc1 14.0 12.0 14 I I 12 I 
src2 1.0 1.0 

rd est 15.0 11.0 15 I 14 I 13 I 12 

Because the values of Zt and mZ are constant for each loop through the rendering routine, the numbers shown here are 
the values of the coefficient N, where the actual operands have the values Zt + N'mZ. For each execution of faddz, srct 
is the same as rdest of the prior faddz. After every two faddz instructions, a form instruction empties the MERGE register. 

6-87 



intJ AP-434 

II CONSTRUCT INTERPOLANTS iZl AND iZ3 GIVEN mZ 
ix fr mZ, iZl II Join each half in 64-bit register 
shl 1, mZ, Ra II Ra = 2*mZ 
adds Ra, mZ, Ra II Ra = 3*mZ 
ix fr Ra, iZ3 II Join each halt in 64-bit register 
fmov.ss iZl, iZlh II Join each half in 64-bit register 
fmov.ss iZ3, iZ3h II Join each halt in 64-bit register 

Example 3. Construction of Z lnterpolants 

(r = 20,g,b,x,y,z) 

Red Color 
(0-63) 

(r' = 40, g', b', x', y', z') 

mR = 27-30 
12 pixels 

(r" = 40,g",b",x",y",z") 
240856-2 

Figure 3. Pixel Interpolation for Gouraud Shading 
i 

The same register is used as both srcl and rdest in all 
faddz instructions. This register serves to accumulate Z 
values for successive pixels; therefore, it is called an 
accumulator. The registers used as src2 are called inter­
polilnts. The code in Example 3 constructs the interpo­
lants; it needs to be executed only once for each poly­
gon. 

3.0 COLOR INTERPOLATION 

To determine the RGB color intensities at each pixel, 
the rendering routine interpolates between the color in­
tensities at the end points. (This rendering technique is 
called "Gouraud shading" after H. Gouraud, "Contin­
uous Shading of Curved Sufaces," IEEE Transactions 
on Computers, C-20(6), June 1971, pp. 623-628.) Let 
the symbol C (color) represent either R (red), G 
(green), or B (blue). Color interpolation consists of cal­
culating the slope of C over the given line segment, then 
increasing the C values of each successive pixel by that 
amount, starting from the values for Xl. This must be 
done for C=R, C=G, and C=B. The slope ofC is ... 

mC = (C2 - Cl)*RdX 

... where RdX = l/dX 

The value of mC is constant for all scan lines that inter­
sect a given pair of polygon edges; therefore mC needs 
to be calculated only once for each such pair. Example 
7 assumes that mC has already been calculated for all 
colors, and all that remains is to apply mC to successive 
pixels. Let C(Xn) be a C value at pixel Xn. Then ... 

6-88 

C(Xl) = Cl 
C(Xl + l) = Cl + mC 
C(Xl + 2) = Cl + 2*mC 

C(Xl + N) = Cl + N*mC 

C(Xl + dX) = Cl + dX*mC = C(X2) 

Figure 3 illustrates Gouraud shading of a triangle. 

The faddp instruction performs the above calculations 
64 bits at a time. Because a pixel is 16 bits wide, Exam~ 
pie 7 operates on pixels in groups of four. Instead of 
starting with the value for the first pixel (C(Xl)) and 
adding mC to each pixel to produce the value for the 
next pixel, the example procedure starts with the values 
for the first four pixels and adds 4*mCto each group of 



intef AP-434 

four to produce the values for the next four. Three 
faddp instructions are executed for each group of four 
pixels. The first increments the blue values; the second, 
green; the third, red. Figure 4 shows one way of con­
structing the operands for each color before starting the 
color interpolations. (The initial value given to srcl de­
pends on the alignment of the first pixel.) 

Setup of the accumulator and interpolants is similar to 
that of the Z-buffer. The code in Example 4 constructs 
the interpolants; it needs to be executed only once for 
each pair of edges in each polygon. 

4.0 BOUNDARY CONDITIONS 

The i860 microprocessor operates on 64-bit quantities 
that are aligned on 8-byte boundaries. The code in this 
example takes full advantage of this design, handling 
four 16-bit pixels in each loop. However, if the first or 

Accumulator 

63 47 31 
I I 

last pixel of a line segment is not on an 8-byte bounda­
ry, two kinds of special considerations are required: 

I. Masking of Z values near the end points. 

2. Initialization of the accumulators. 

4.1 Z-Buffer Masking 

When either the first or last pixel of the line segment is 
not at an 8-byte boundary, the rendering procedure 
must mask the first or last set of new Z-buffer values 
(newz) so that the Z-buffer and the frame buffer are not 
erroneously updated. Sometimes both the first and last 
pixels are in the same 4-pixel set, in which case either 
one may not be on an 8-byte boundary. A function that 
looks up and calculates masks is shown in Example 5. 

Because the value OxFFFF is used for masking, the Z­
buffer is initialized with OxFFFE, so that the fzchks 
instruction always finds the mask to be greater than 
any Z-buffer contents. 

15 0 

Initial 
C1+3*mC\ frac C1 +2*mC\ frac c1+mc frac C1 frac 

src1 I I 

lnterpolant 

63 47 31 15 0 

4*mC frac 4*mC frac 4*mC frac 4*mC frac src2 

Figure 4. faddp Operands 

II CONSTRUCT INTERPOLANTS iR, iG, iB GIVEN mR, mG, mB 
shl 18, mR, Ra II Multiply each color slope by four, then 
shl 18, mG, Rb II shift by 16 to put the significant 
shl 18, mB, Re II bits into the high-order half 
shr 16, Ra, mR II Return significant 16 bits 
shr 16, Rb, mG II to low-order half. Any sign bits 
shr 16, Re, mB II in high-order half are gone. 
or mR, Ra, Ra II Join 16-bit quarters 
or rG, Rb, Rb II in 32-bit register 
or mB, Re, Re II 
ix fr Ra, 1R II Join 32-bit halves 
ixfr Rb, iG II in 64-bit register 
ix fr Re, iB II 
fmov.ss iR, iRh II 
fmov.ss iG, iGh II 
fmov.ss iB, iBh II 

Example 4. Construction of Color lnterpolants 

6-89 



inter AP-434 

.macro zmask l_align, r_align, Rx, Ry 
/I l_align, r_align - left- and right-end alignment [0 •• 3] in 2-byte units 
/I Rx, Ry - scratch registers 

.data 

.align 8 
left_mask:: //low 

.long OxOOOOOOOO, 

.long OxOOOOFFFF, 

.long OxFFFFFFFF, 

.long OxFFFFFFFF, 
right_mask:://low 

.long OxFFFFOOOO, 

.long OxOOOOOOOO, 

.long OxOOOOOOOO, 

.long OxOOOOOOOO, 

.text 

high 
OxOOOOOOOO 
oxoooooooo 
OxOOOOOOOO 
OxOOOOFFFF 

high 
OxFFFFFFFF 
OxFFFFFFFF 
OxFFFFOOOO 
OxOOOOOOOO 

II O mod 4 
II l mod 4 
II 2 mod 4 
II 3 mod 4 

II O mod 4 
II l mod 4 
II 2 mod 4 
II 3 mod 4 

shl 3, l_align, l_align // Multiply by 8 
mov left_mask, Rx // 
fld~d l_align (Rx), lZmask // Load 8-byte mask 

shl 3, r_align, r_align II Multiply by 8 
mov right_mask, Rx II 
fld.d r_align (Rx), rZmask II Load 8-byte mask 

II If the first and last pixels are contained in the same 
II aligned set, then lZmask = lZmask OR rZmask. 

andh Ox8000, dX, rO II Is dX negative 
be L2 II If not, right end 
fxfr lZmask, Rx II 
fxfr rZmask, Ry II 
or Rx, Ry, Rx II OR low-order half 
ix fr Rx, lZmask II 
fxfr lZmaskh, Rx II 
fxfr rZmaskh, Ry II 
or Rx, Ry, Rx II OR high-order half 
ix fr Rx, lZmaskh II 

L2: nop II 
.endm 

Example 5. Z Mask Procedure 

6-90 

64-bit 

is in other set 



intJ AP-434 

Table 2. Accumulator Initial Values 

Alignment Initial Z Accumulator Values 

0 z1 - 1•mz Z1 - 3*mZ 
2 z1 - 2•mz Z1 - 4*mZ 
4 Z1 - 3*mZ Z1 - 5*mZ 
6 Z1 - 4*mZ Z1 - 6*mZ 

Alignment Initial Color Accumulator Values 
C = R,G,B 

0 c1 - 1•mc c1 - 2•mc C1 - 3*mC C1 - 4*mC 
2 c1 - 2•mc C1 - 3*mC C1 - 4*mC C1 - 5*mC 
4 C1 - 3*mC C1 - 4*mC C1 - 5*mC C1 - 6*mC 
6 C1 - 4*mC C1 - 5*mC c1 - 6*mC C1 - 7*mC 

Table 3. Accumulator Initialization Table 

Alignment 
•mz *mR 

0 -1, -3 -1, -2, -3, -4 
2 -2, -4 -2, -3, -4, -5 
4 -3,-5 -3, -4, -5, -6 
6 -4,-6 -4, -5, -6, -7 

4.2 Accumulator Initialization 

When the first pixel of the line segment is not at an 8-
byte boundary, initial values placed in the accumulators 
(aZ, aB, aG, and aR) must be selected so that Zl, 
Redl, Grnl, and Blul correspond to the correct pixel. 
The desired result is that shown by Table 2. However, 
each value is a composite of two terms: one that is 
constant for each edge pair (n *mZ, n *mR, n *mG, 
n*mB) and one that can vary with each scan line (ZJ, 
Redl, Grnl, Blul). The example assumes that the con­
stant values have all been calculated and stored in a 
memory table of the format shown by Table 3. At the 
beginning of each line segment the values appropriate 
to the alignment of the line segment are retrieved from 
the table and added to the initial Z and color values, as 
shown in Example 6. 

5.0 THE INNER LOOP 

Once the proper preparations have been made, only a 
minimal amount of code is needed to render each scan-

6-91 

Table Values 

*mG •me 

-1, -2, -3, -4 -1, -2, -3, -4 
-2, -3, -4, -5 -2, -3, -4, -5 
-3, -4, -5, -6 -3, -4, -5, -6 
-4, -5, -6, -7 -4, -5, -6, -7 

line segment of a polygon. The code shown in Example 
7 operates on four pixels in each loop. The left and 
right ends of the line segment go through different logic 
paths so that the Z-buffer masks can be applied by the 
form instruction. All the interior points are handled by 
the tight inner loop. 

The controlling variable dX is zero-relative and is ex­
pressed as a number of pixels. The value of dX also I 
indicates alignment of the end-points with respect to 1 
the 4-pixel groups. Unaligned left-end pixels are sub­
tracted from dX before entering the inner loop; there-
fore, subsequent values of dX indicate the alignment of 
the right end. A value that is 3 mod 4 indicates that the 
right end is aligned, which explains the test for a value 
of - 5 near the end of the loop ( - 5 mod 4 = 3). The 
fact that the value - 5 is loaded into register Rb on 
every execution of the loop does not represent a pro­
gramming inefficiency, because there is nothing else for 
the core unit to do at that point anyway. 



intJ AP-434 

II ACCUMULATOR INITIALIZATION TABLE 
.data; .align .double 

acc_init_tab:: .double [16) O 
.dsect 

aBi: .double 
aGi: .double 
aRi: • double 
aZi: • double 

.end 

.text 

II Four initial 16-bit blue values 
II Four initial 16-bit green values 
II Four initial 16-bit red values 
II Two initial 32-bit Z values 

II INITIALIZE ACCUMULATORS 
.macro acc_init Lalign, Rtab, Rx, Ry, Fx, Fxh 
II Lalign - left-end alignment (0 •• 3) in two-byte units 
II Rtab - register to use for addressing the table 
II Rx, Ry, Fx, Fxh - scratch registers 

mov acc_init_tab, Rtab II 
shl, 5, Lalign, Lalign II Multiply by row width 
adds Lalign, Rtab, Rtab II Index row corresponding to alignment 
fld.d aZi(Rtab), aZ II Z 
ixfr Zl, Fx II Z 
fld.d aRi(Rtab), aR II R-Load constant values 
shl 16, Redl, Rx II R-Shift starting value to hi-order 
fmov.ss Fx, Fxh II Z 
shr 16, Rx, Ry II R-Redl stripped of sign bits 
fiadd.dd Fx, aZ, aZ II Z 
or Rx, Ry, Ry II R-Form (Redl,Redl) 
ixfr Ry, Fx II R-Put in 64-bit register 
fld.d aGi (Rtab), aG II G 
shl 16, Grnl, Rx II G 
fmov.ss Fx, Fxh II R-Form (Redl,Redl,Redl,Redl) 
shr 16, Rx, Ry II G 
fiadd.dd Fx, aR, aR II R-Add variables to constants 
or Rx, Ry, Ry II G 
ixfr Ry, Fx II G 
fld.d aBi(Rtab), aB II B 
shl 16, Blul, Rx II B 
fmov.ss Fx, Fxh II G 
shr 16, Rx, Ry II B 
fiadd.dd Fx, aG, aG II G 
or Rx, Ry, Ry II B 
ixfr Ry, Fx II B 
fmov.ss Fx, Fxh II B 
fiadd.dd Fx, aB, aB II B 

.endm 

Example 6. Accumulator Initialization 

6-92 



infef AP-434 

II RENDERING PROCEDURE 
II 16-bit pixels, 16-bit Z-buffer 

and 3, Xl, Ra II Determine alignment of starting-point 
acc_init Ra, Rb, Re, Rd, Fa, Fah II Initialize accumulators 
subs 4, Ra, Rb II 4 - alignment 
subs dX, Rb, dX II Adjust dX by Xl alignment 
II If dX <= 0, then right end is in same set as left end 
and 3, dX, Rb II Determine alignment of right end 
zmask Ra, Rb, Re, Rd II Prepare both left- and right-end masks 

left_end:: II Handle boundary conditions 
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 

adds -8, FBP, FBP II Anticipate autoincrement 
d.faddz aZ, iZl, aZ II Interpolate 2 odd Z values 

adds -8, ZBP, ZBP II Anticipate autoincrement 
d.form lZmask, newz II Mask 4 new Z values 

fld.d 8(ZBP), oldz II Fetch 4 old Z values 
d.faddp aB, iB, aB II Interpolate 4 blue intensities 

mov -4, Ra II Loop increment: 4 pixels 
d,faddp aG, iG, aG II Interpolate 4 green intensities 

adds -4, dX, dX II Prepare dX for bla at end of loop 
d.faddp aR, iR, aR II Interpolate 4 red intensities 

bla Ra, dX, Ll II Initialize LCC 
d.form fO, newi II Move 4 new pixels to 64-bit reg 

adds 5, dX, rO II Are there any whole sets (dX < -5)? 
Ll: d.fzchks oldz, newz, newzll Mark closer points in PM[7 •• 4] 

be short_segment II Get out now if no whole set 
d.fnop II 

fld.d 16(ZBP), oldz II Fetch 4 old Z values 
inner_loop:: II Handle all interior points 

d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 
nop II 

d.faddz aZ, iZl, aZ II Interpolate 2 odd Z values 
fst.d newz, 8(ZBP)++ II Update Z buf from prior loop 

d.form fO, newz II Move 4 new Z values to 64-bit reg 

nop II E d.fzchks fO, fO, fO II Shift PM[7 •• 4] to PM[3 •• 0] 
mov -5, Rb II -5 mod 4 = 3, aligned right end 1 

d.faddp aB, iB, aB II Interpolate 4 blue intensities 
pst.d newi, 8(FBP)++ II Store pixels indicated by PM[3 •• 0] 

d.faddp aG, iG, aG II Interpolate 4 green intensities 
xor Rb, dX, rO II Are we at an aligned right end? 

d.faddp aR, iR, aR II Interpolate 4 red intensities 
be aligned_end II Taken if at an aligned right end 

d.form fO, newi II Move 4 new pixels to 64-bit reg 
bla Ra, dX, ir1ner _loop 11 Loop if not at end of line segment 

d.fzchks oldz, newz, newzl/ Mark closer points in PM[7 •• 4] 
fld.d 16(ZBP), oldz II Fetch 4 old Z values for next loop 

II End of inner_loop. Right end not aligned 

Example 7. 3·0 Rendering (1of2) 

6-93 



intJ AP-434 

right_encf:: II Handle boundary conditions 
d.:faddz aZ, iZ3, aZ II Interpolate 2 even Z yalues 

nop 
d.:faddz 

:fst.d 
d.form 

nop 
d.fzchks 

nop 
d.faddp 

pst;d 
d.:faddp 

nop 
d.:faddp 

nop 

aligned_end: : 
d.form 

br 
d.fzchks 

nop 

short_segment:: 
d.fnop 

adds 
d.fnop 

bnc.t 
d.:fnop 

:fld.d 

aZ, iZl, aZ 
newz, · S(ZBP)++ 
rZmask, newz 

II 
II 
II 
II 
II 

Interpolate 2 odd Z values 
Update Z but from prior loop 
Mask 4 new Z values 

:ro, :ro, to II Shift PM[7 •• 4] to PM[3 •• O] 

aB, 
newi, 
aG, 

iB, aB 
S(FBP)++ 
iG, aG. 

II 
II 
II 
II 
II 

Interpolate 4 blue intensities 
Store pixels indicated by PM[3 •• 0] 
Interpolate 4 green intensities 

aR, iR, aR II Interpolate 4 red intensities 
.II 

II No special boundary conditions 
tO, newi II Move 4 new pixels to 64-bit reg 
wrap_up II 
oldz, newz, newzll Mark. closer points in PM[7 •• 4] 

II 

II 
8, dX, rO II Is right end in same set as left? 

II 
right_end II Branch taken if no. 

II 
16(ZBP), oldz II Fetch 4 old Z values 

wrap_up : : 11 
:fzchks 

:fst.d. 
:fno'p 

pst.d 

Store the unstored and leave dual moge. 
to. to. to II Shift PM[7 •• 4] to PM[3 •• O] 
newz, S(ZBP)++ II Update Z but from prior loop 

newi, S(FBP)++ II Store pixels indicated by PM[3 •• 0] 

Example 7. 3-D Rendering (2 of 2) 

• 
6-94 



intJ AP-434 

6.0 ALTERNATIVE IMPLEMENTATIONS 

Example 8 contrasts the inner loop of the 16-bit pixel rendering procedure with that of an 8-bit procedure. For 8-bit 
pixels, two faddp instructions accomplish 64-bits of pixel intensity interpolation; there is no need to maintain three 
separate color accumulators. Four faddz instructions (rather than two) are required, because eight Z values are 
created for the eight pixels per loop. 

II 8-bit Pixels, 16-Bit Zbuffer = 8 Pixels in 15 Clocks 
II G-Unit I Core Unit 

inner _loop:: 
d.faddz aZ,deltaZl,aZ fld.q l6(ZBP),oldZ_A 
d.faddz aZ,deltaZ2,aZ nop 
d.form fO,newZ_A nop 
d.faddz aZ,deltaZl,aZ andh 
d.faddzz aZ,deltaZ2,aZ bnc 
d.form fO,newZ_B nop 
d.fzchks oldZ_A,newZ_A,newZ_A nop 
d.fzchks oldZ_B,newZ_B,newZ_B nop 

Ox8000,dX, rO 
right end 

d.faddp intens,dI,intens fst.q newZ_A ,l6(ZBP)++ 
d.faddp intens,dI2,intens bte O,dX,end 
d.form fO,newi bla neg8,dX,inner_loop 
d.fnop pst.d newi,8(FBP)++ 

11------------------------------------------------------------
II 16-Bit Pixels, 16-Bit Zbuffer = 4 Pixels in 10 Clocks 
II G-Unit I Core Unit 

inner _loop: : 
d.faddz aZ,iz3,aZ nop 
d.faddz aZ,izl,aZ fst.d newz,8(ZBP)++ 
d.form fO,newz nop 
d.fzchks fO,fO,fO mov -5,Rb 
d.faddp aB,iB,aB pst.d newi,8(FBP)++ 
d.faddp aG,iG,aG xor Rb,dX,rO 
d.faddp aR,iR,aR be aligned_end 
d.form fO,newi bla neg4,dX,inner_loop 
d.fzchks oldz,newz,newz fld.d l6(ZBP) ,oldz 
11------------------------------------------------------------

Example 8. Inner Loop of Renderers for Two Pixel Sizes 

6-95 

I 



APPLICATION 
NOTE 

March 1990 

FAST Fourier Transforms on the 
i860™ Microprocessor 

MARK ATKINS 
APPLICATIONS ENGINEER 

6-96 
Order Number: 240658-001 



FAST FOURIER TRANSFORMS ON THE 
i860TM MICROPROCESSOR 

CONTENTS PAGE CONTENTS PAGE 

1.0 INTRODUCTION TO FF.Ts .......... 6-98 6.0 PIPELINE SCHEDULING ........... 6-101 

2.0 BUTTERFLY DEFINED ............. 6-98 7.0 PERFORMANCE 
MEASUREMENTS ............... 6-103 

3.0 BIT REVERSAL .................... 6-1 oo 7 .1 Cache Fill and Writeback Time .. 6-103 

4.0 FFT IMPLEMENTATION ON THE 
i860TM CPU ...................... 6-100 

8.0 CODE HIERARCHY ................ 6-104 

5.0 CODE DESIGN ..................... 6-101 
9.0 CONCLUSION ..................... 6-104 

5.1 Cache Utilization ................ 6-101 APPENDIX A: 

5.2 Pfld ............................. 6-101 PROGRAM LISTINGS ................. 6-105 

5.3 Fst.q ........................... 6-101 

5.4 Bit Reversal Code .............. 6-101 

6-97 



intef AP-435 

ABSTRACT 

The i860 Processor computes floating-point results rap­
idly, lending itself to DSP (digital signal processing) as 
well as general-purpose computing. With this high per­
formance, DSP functions can be added to any system 
containing an i860 CPU. A Fast Fourier Transform 
(FFT) illustrates this DSP power. Complete code for 
the FFT is presented in this application note, as well as 
performance measurements. Both complex and real in­
put data FFTs are included, as well as both Decimation 
in Time and Decimation in Frequency. 

1.0 INTRODUCTION TO FAST 
FOURIER TRANSFORMS 

Discrete Fourier Transforms (DFTs) change time-do­
main data samples into a frequency-domain profile of 
the sampled signal. The frequency-domain representa­
tion consists of the magnitudes of sine waves at various 
frequencies, which would recreate the original data if 
superimposed. To accomplish the transform, a DFT 
adds combinations of the input data samples, after mul­
tiplying some of those inputs with weighting factors. 
The number of samples, "N", is usually a power of two. 

Each result in the frequency domain comes from a 
weighted sum of all data samples. The weighting ("W") 
factors are called "twiddles", and are complex cosine/ 
sine values for each particular frequency. 

The FFT (Fast Fourier Transform) is an efficient im­
plementation of the DFT, defined by: 

x(n) = time domain samples of the signal, 
n = 0, 1, ... N-1 

X(k) = the Discrete Fourier Transform of x(n), k = 
0,1, ... N- l 

a "frequency domain" equivalent of x(n) 

l: x(n) • Wnk, n = 0 to N-1, and 
Wnk = e-i211'nk/N , where j = Fl 

= l: x(n) • (cos(27Tnk/N) - j • sin(27Tnk/N)) 

The (N-1) complex adds and (N-1) complex multiplica­
tions required for each X(k) make the DFT an Order 
(N2) computation. Fortunately, the FFT decomposes 
this to an Order (N • log2 N) algorithm by splitting the 
N-sum into units of 2-sums. These units are called 
"butterflies" because they produce 2 output values 
from 2 inputs, with the butterfly-shaped dataflow 
shown below. (Some FFT algorithms, called Radix-4, 
use 4-input, 4-output butterflies.) The butterfly calcula­
tions are executed in stages, with log2 N stages and N/2 
butterflies per stage. 

The subdivision, or decimation, of the N-sum into but­
terflies can be done via two different methods: "Deci­
mation in Time" (DIT) or "Decimation in Frequency" 
(DIF). The methods differ in the ordering of twiddles 
and the form of the butterfly arithmetic, but they yield 
the same answer. They are based on different mathe­
matical derivations of the FFT: DIT results from recur­
sively splitting the input time-domain samples into an 
even-indexed group and an odd-indexed, while DIF 
comes from splitting the DFT output frequency-do­
main points into odd/even groups. 

2.0 BUTTERFLY DEFINED 

Let A = the first input to the butterfly (complex 
number, composed of Real part AR and 
Imaginary part AI) 

B = the second input to the butterfly (com­
plex, BR and BI) 

W = twiddle factor (also complex, WR and 
WI) 

Anew = complex result # 1, which overwrites A 

Bnew = result # 2, which overwrites B 

For a "Decimation-in-Frequency" butterfly, 

Anew= A+B 
Bnew = (A - B) • W 

The complex add, subtract, and multiply of a butterfly 
decompose into 4 real multiplies, 3 real adds, and 3 real 
subtracts: 

6-98 

AnewR = AR + BR 

Anewl = AI + BI 

tempR = AR-BR 

tempi = AI-BI 

BnewR = (tempR • WR) - (tempi • WI) 

Bnewl = (tempR • WI) + (tempi • WR) 

For a "Decimation-in-Time" butterfly, 

Anew A+(B*W) 

Bnew =A-(B*W) 

The number of real operations remains 4 multiplies and 
6 add/subtracts, but the equations differ and the multi­
plies must be done first: 

tempR = (WR • BR) - (WI * BI) 

tempi = (WR * BI) + (WI * BR) 

AnewR = AR + tempR BnewR = AR-tempR 

Anewl = AI + tempi Bnewl = AI-tempi 



AP-435 

Butterfly Dataflow: 

(Decimation In Frequency) 

The stages, twiddles, and butterflies for 8-point FFTs 
are shown in Figures 1 and 2. For larger values of N, 
the dataflow patterns are very similar, with N/2 butter­
flies executed at each stage, and a greater number of 

(Decimation In Time) :x ·~-.. ,~ 
B BNEW=A-(e•w) 

240658-1 

stages. Refer to a text on Digital Signal Processing for a 
complete discussion of FFT design, such as chapter 6 of 
Theory and Application of Digital Signal Processing (see 
the Bibliography at the end of this note). 

240658-2 

Figure 1. Decimation-In-Frequency FFT for 8 points 

X(O) 

X(4) 

X(2) 

X(6) 

X(1) 

X(5) 

X(l) 

X(7) 
240658-3 

Figure 2. Decimation-In· Time FFT for 8 points 

6-99 



intef AP-435 

3.0 BIT REVERSAL 

Due to their structure, FFT algorithms have the side­
effect of scrambling the ordering of output data. For 
radix-2 FFTs, the output is in "bit-reversed" order­
for example, the value for frequency one is NOT at 
location one in the output array, but at location N/2. 
Time to unscramble the output is often NOT included 
in FFT benchmarking, because scrambled output is fine 
for some signal-processing uses such as convolution. In 
any event, unscrambling consists of swapping the loca­
tions of pairs of output values. Alternatively, input val­
ues can be shuffied, as Decimation in Time usually does 
before the first stage (as shown in Figure 2). Otherwise, 
to avoid the shuffiing of input in DIT, the twiddles 
must be accessed in bit-reversed order. As an example 
of bit-reversal, for 256 points the reordering involves: 

SW AP X(i) and X(j), where i = 'klmnopqr'b and j = 
'rqponmlk'b. The second index (j) contains the same 
bits as (i), but in opposite order. 

/1--------------------

4.0 FFT IMPLEMENTATION ON THE 
i860 CPU 

Several features of the i860 CPU contribute to FFT 
performance. The floating-point multiplier and adder 
can simultaneously produce l product and l sum per 
cycle, using Dual-Operation FP instructions. To fetch 
the butterfly inputs and store outputs, Dual-Instruc­
tion-Mode allows a memory fetch or store simultaneous 
with the multiply and add. Four floating-point numbers 
can be stored by one instruction, using the 16-byte-op­
erand "fst.q" instruction. Likewise, 16 bytes can be 
fetched from the data cache in one fld.q op. 

The floating-point arithmetic of the i860 CPU- con­
forms to IEEE 754 format, which some DSPs fail to do. 
Shown below is code for the crucial inner loop of the 
FFT: 

//inner_loop: do 2 Decimation-In-Frequency FFT butterflies. 
// Twelve clocks for 2 butterflies - 12 FP add/sub, 8 multiplies, 
// 6 8-byte loads, 4 8-byte stores. 
// FP-op Core-op 
inner _loop: : 
d.r2pt.ss WR,DI,BnewR 
d.pfsub.ss AR,BR,AnewRo 
d.ratls2.ss AI,BI,Anewio 
d.i2st.ss WI,DR,BnewI 
d.ratlp2.ss AR,BR,DR 
d.ialp2.ss AI,BI,DI 

//--------------------d.r2pt.ss WRo,DI,BnewRo 
d.pfsub.ss ARo,BRo,AnewR 
d.ratls2.ss Aio,Bio,AnewI 
d.i2st.ss Wio,DR,Bnewio 
d.ratlp2.ss ARo,BRo,DR 
d.ialp2.ss Aio,Bio,DI 

//--------------------

pfld.d 
fld.d 
fld.d 
fst.q 
adds 
pfld.d 

adds 
fld.d 
fld.d 
fst.q 
bla 
and 

6-100 

wind (wstart),WRo 
8 (fetch)++,ARo 
offset (fetch) ,BRo 
AnewR,16(store)++ 
wincr,wind,wind 
wind (wstart) ,WR 

wincr,wind,wind 
8 (fetch)++,AR 
offset (fetch) ,BR 
BnewR, offset (store) 
decrem,count,inner_loop 
wlimit,wind,wind //modulo. 



intJ AP·435 

5.0 CODE DESIGN 

Refer to the inner_loop above and code listings at the 
end of this application note for the discussions that fol­
low. Refer to the "i860™ 64-bit Microprocessor Pro­
grammer's Reference Manuaf' (Intel order number 
240329) for details on instructions and formats. 

The programs include both assembly and Fortran com­
ponents. Input data can number any power of 2 from 
16 to 1024 points. The algorithms are radix-2, floating­
point, in-place. Included in the listing are both Decima­
tion-in-Time and Frequency, and both complex-input 
and real-input FFTs. 

5. 1 Cache Utilization 

Because the instruction cache contains 4-Kbytes, all re­
quired code easily fits in cache. However, a 1024-point 
complex FFT fills the 8-Kbyte data cache with the in­
put X() array. Thus the more rarely-used twiddle W() 
array is intentionally kept out of cache, as described in 
the "pfld" section. 

A subroutine ("fetch.ss") is used to move the input data 
array efficiently into cache for the 1024-point FFT. 
"Fetch" allows all data to be brought into cache using 
the next-near (NENE#) accesses to DRAM. Without 
that routine, getting A and B from locations separated 
by 4 Kbytes (NOT the same DRAM page) makes 
fetches and writebacks from DRAM for the first stage 
slower, and adds 30% to overall execution time. 

For larger FFTs (2048 points = 16 kB), straightfor­
ward expansion of the present algorithm would cause 
increased cache misses. Thus a larger FFT should be 
broken into multiple FFTs of 1024 points so that all 10 
stages of each can achieve high cache hits. The algo­
rithm becomes (assuming 2048 points, Decimation-In­
Time): 

1) Bit-reverse the entire input array 

2) Do a 10-stage FFT on the second set of 1024 points. 
Cache hits should be high on those, since they were 
most recently accessed by the bit-reversal. 

3) Do a 10-stage FFT on the first 1024 points. Prefetch 
before the first stage to ensure cache hits. 

4) Combine the 2 separate 1024-point results with a fi­
nal stage of butterflies, where A is offset from B by 
8 Kbytes. 

5.2 Pfld 

Twiddle factors (W) are fetched with pfld (Pipelined 
Floating-Point Load), to avoid caching them. Only in 
the first stage are all the W() elements used; successive 
stages use fewer and fewer elements, which are separat­
ed by larger and larger strides. Thus placing W() in 
cache would be inefficient. The streaming of W() from 
main memory actually yields better performance than 
caching W(), for 512 and 1024 points. With the i860 
CPU's 8-byte external data bus, a complex W() value 
can be transferred in a single bus cycle. Some FFT rou­
tines calculate W() on the fly, rather than fetching pre­
calculated values; however, performance decreases due 
to the added run-time calculations. 

5.3 Fst.q 

Quad-word (16-byte) stores allow 4 floating-point regis­
ter values to update the cache in one cycle. Likewise, 
fld.q (Quad Floating Point Load) transfers 4 values to 
the registers in a cycle. However, in some FFT stages, 
double-word fetches (fld.d) are used instead of fld.q; 
that allows the "background" fetch of a set of operands 
concurrent with arithmetic on the other set. For the 
same reason, the inner loop does 2 butterflies, rather 
than one. 

5.4 Bit Reversal Code 

The code for bit-reversal fetches the indices of 2 ele­
ments to be swapped from a pre-allocated array of indi­
ces, and swaps the data elements. Again, pfld.d keeps 
the indices out of cache, for the 1024 point case. That II 
assembly version of bit-reversal is approximately 7 1 
times faster than the standard Fortran routine. The ar-
ray of indices was generated by printing out the values 
generated during operation of the standard Fortran ver-
sion; similarly, the twiddle W() values can be pre-allo­
cated and generated using a high-level- language pro­
gram. 

6.0 PIPELINE SCHEDULING 

The adder pipeline is 3 stages, as is the multiplier; for 
the calculation of 

BnewR = (AR - BR) • WR - (Al - Bl) * WI 

the adder result is fed back into the multiplier, and the 
product again feeds into the adder. The adder and mul­
tiplier pipes each advance one stage for each floating­
point instruction issued. 

6-101 



intJ AP·435 

The butterfly decomposes into 6 real add/subtracts and 
4 real multiplies. Thus the best possible performance 
would be 6 clocks per butterfly, with the multiplies to­
tally overlapping the adds. The overlap is accomplished 
with the Dual-Operation instructions: 

r2pt (KR'src2, Treg+ Mout, load KR+- srcl) 

ratls2 (KR'Aout, srcl-src2, load T +- Mout) 

i2st (KI'src2, Treg-Mout, load KI+- srcl) 

ratlp2 (KR'Aout, srcl +src2, load T +- Mout) 

ialp2 (KI'Aout, srcl +src2, load KI+- srcl) 

KR, Kl, and T are operand registers feeding the multi­
plier and adder, separate from the floating-point regis­
ter file. They permit the 4 inputs for multiply and add, 
even thought the instruction format holds only 2 regis­
ters. "Aout" and "Mout" are adder and multiplier out­
puts. 

The data path arrangements of some of these ops are 
illustrated in Figures 3 and 4. Fetching and storing of 
butterfly operands is overlapped with the calculations, 
using Dual Instruction Mode - the integer core op 
(such as a load or branch) and FP op are fetched simul­
taneously from the instruction cache and executed 
simultaneously. -

Scheduling of instructions was done with a pipeline dia­
gram, as illustrated in the comments of the code listing 

src2 rd est 

op2 

MULTIPLIER UNIT 

RESULT 

op1 

ADDER UNIT 

RESULT 

r2pt &: r2st 
240658-4 

Figure 3. Datapath for r2pt op 

of difstep.ss in the Appendix. (The comments show the 
machine state after the instruction is processed.) Begin 
by placing the desired results in the rightmost column, 
then tracing progress backwards through the adder. 
When adder inputs are products (of the multiplier), one 
product is kept in the Treg for a cycle while the other 
propogates through the multiplier final stage. Those 
products can be traced back on the multiplier pipeline, 
to determine at what instruction the multiplier inputs 
must be provided. 

For example, place the BnewR label in the "Write" 
stage of the pipe (the output of the Adder). Now 

BnewR = WR ' DR - WI • DI 

Three instructions earlier, the adder inputs for BnewR 
must be fed to adder; those inputs are products, one of 
which comes directly from the multiplier output, and 
the other from the Treg. The multiplier output and 
Treg value must then be traced back through multiplier 
stages, requiring the following instructions: 

i2st.ss Wlo,DR,Bnewlo as the 10th op of 12, to start (T - Mout) 

ratls2.ss Alo,Blo,Anewi as the 9th instruction, to update the Treg 

ialp2.ss AI,BI,DI as the 6th op, to multiply DI • WI 

ratlp2.ss AR,BR,DR as the 5th op, to multiply DR ' WR 

rat1s2.ss Al,BI,Anewlo as the 3rd, to start DI into the adder 

pfsub.ss AR,BR,AnewRo as the 2nd, to start DR into the adder 

src1 

op2 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

rot1p2 &: rot1s2 

src2 rdest 

240658-5 

Figure 4. Datapath for rat1p2 op 

6-102 



intef AP-435 

Some trial-and-error ordering of the desired outputs is 
needed to devise a sequence which keeps the adder 
pipeline full. An op is chosen for each slot for its ability 
to load the KR or KI register, or to initiate an adder 
operation simultaneous with the multiplies required to 
calculate BnewR and Bnewl. 

Handy hints to assist dual-operation scheduling in­
clude: 

1) Feedback the adder result to the multiplier, or visa 
versa, whenever possible. For example, the ratlp2 
op feeds adder-out to multiplier. Thus both srcl and 
src2 fields of the instruction are available to feed the 
adder-in, and a simultaneous useful add and multi­
ply are initiated. 

2) Freeze one of the pipes, by using a pfadd or pfmul, 
when appropriate. In the butterfly, where 6 adds are 
done for every 4 multiplies, freezing of the multipli­
er does not degrade performance. The freeze allows 
multiplier results to be held until needed in the ad­
der. 

3) The Treg can hold a multiplier result for several 
cycles until needed in the adder. 

4) Unroll a loop to do 2 iterations per loop. That pro­
vides time to fetch inputs for iteration 2 while calcu­
lating iteration 1, and store results of iteration 1 
(and fetch more inputs) while calculting iteration 2. 

7.0 PERFORMANCE MEASUREMENTS 

The code was run on an evaluation card with DRAM 
memory only, no external cache, 33.33 MHz clock, and 
5 wait-states or more for some accesses. Next-near ac­
cesses (address falls into the same DRAM page as the 
previous access) are zero wait-state, but far accesses 
take 5 or more wait-states. The code was run under a 
virtual-memory multitasking executive. Shown below 
are measured results: 

System: 33.3 MHz 80860 with a single bank of 
static-column DRAM 

Algorithm: Radix-2 FFT, in-place. Data is IEEE 754 
single-precision floating point. Implemented in assem­
bly-language and Fortran code. 

Time 
Type of FFT Time (including 

bit-reversal) 

1024-point-complex, DIF 1.17 ms 1.33 ms 
1024-point-real 0.67 ms 
512-point-complex, DIF 0.48 ms 0.56 ms 
512-point-real 0.33 ms 
256-point-complex, DIF 0.22 ms 0.26 ms 
1024-point-complex, DIT 1.37 ms 
512-point-complex, DIT 0.59 ms 

7.1 Cache Fill and Writeback Time 

Measured times do not include cache-fill and write­
back. That is, the timings measured 200,000 executions 
of the FFT using the same input array. (Performance 
figures offered by other manufacturers for DSP chips 
likewise assume that the data is already in on-chip 
RAM. Of course, the i860 CPU will do that fetching 
automatically into its data cache.) The additional time 
for cache fill and writeback were measured as: 

1024-point-complex 0.25 ms (8 Kbytes fetched, 
8 Kbytes writeback) 

512-point-complex 0.12 nis (4 Kbytes) 

To quantify the calculations in MFlops (Millions of 
FLoating-point OPerations per Second), consider that 
the 1024-point complex FFT is implemented with 
about 16,400 multiplies and 28,700 adds/subtracts. 
Thus the 1.17 ms translates to a sustained 38.5 MFlops 
rate. For 512 points, the required 20,000 Flops means 
41.6 MFlops. 

The overall FFT is about 10 times faster than the equiv­
alent Fortran. Inner loop performance was measured at 
13 cycles for the 24 instructions, which is 6.5 cycles per 
butterfly. 

6-103 

I 



AP-435 

8.0 CODE HIERARCHY 
Pictured below are the programs ,developed for the i860 CPU FFT: 

fittest.I 

I 
I 

dlff.f 

I 
I 

bltrev.ss 

I 
fetch 

The Fortran program ffttest.f is the highest-level pro­
gram of those listed on the following pages. It calls two 
FFT subroutines, diff.f and fft.f, then compares their 
outputs. Fft.f is a Fortran decimation-in-time algo­
rithm, while diff.f is the high-speed DIF routine. Diff.f 
is callable by C or Fortran applications. It in turn calls 
difstep, which is implemented in assembly code 
(difstep.ss). Difstep is called once per stage of the FFT. 
A Fortran version (difstepf.f) is shown, for comparison. 
Other assembly routines are the bit-reversal-data-move­
ment (bitrev.ss) and prefetch ("fetch" inside bitrev.ss). 

Difstep.ss contains approximately 225 assembly in­
structions, and bitrev.ss contains about 24. The Fortran 
diff.f compiles to about 80 instructions. 

A Decimation-in-Time version of diff.f and difstep.ss 
can be found in ditt.f and ditstep.ss. The DIT version 
performs 5-10% slower than the Decimation-in-Fre­
quency because the DIT loop takes 7 cycles per butter­
fly, while DIF takes 6. 

A real-input algorithm is dirr.f, which can be called 
and tested using program real.f. Dirr .f calls difstep to 
do a complex DIF FFT on N real data points, but 
treats them as N/2 complex points. Then realfix.ss is 
called by dirr.f to fix the DIF output, compensating for 
the treatment of the N real points as N/2 complex. The 
derivation of the real-fix can be found in reference 3, 
Numerical Recipes in C. 

The mixture of Fortran, C, and assembly code is ac­
complished by passing function inputs and outputs in 
registers. Only pointers and integer values were used in 
the above code, but floating point parameters can also 
be exchanged. A calling program feeds arguments to a 
function in r16, rl7, and higher-numbered integer reg­
isters. The callee is permitted to destroy the contents of 
those registers, but rl:rl5 must be preserved. For more 
details on parameter-passing conventions see the i860 
64-bit Microprocessor Programmer's Reference Manual, 
Chapter 8. 

I 'T' 
flt.I dlrr.f 

I 
I 

dlfstep.ss reolflx.ss 

240658-6 

9.0 CONCLUSION 

The i860 CPU computes very Fast Fourier Transforms, 
quicker than most high-end dedicated DSP chips. Con­
tributing to the FFT performance are the 8-kByte on­
chip data cache and 4-kByte instruction cache. Also the 
8-byte external data bus, pfld instruction, and 16-byte 
data cache width provide sufficient bandwidth to keep 
the arithmetic units busy. Dual-Operation instructions 
and Dual-Instruction-Mode allow parallel data move­
ment and calculations. The 33.3 MHz clock rate allows 
both an add and a multiply every 30 ns, giving a time of 
1.17 ms for a 1024-point complex FFT. A 40 MHz i860 
Microprocessor will yield a time of Jess than l mSec. 

ACKNOWLEDGEMENTS 

The author wishes to thank Tricord Systems, Inc. for 
providing the key inner loop kernel design of the FFT. 

BIBLIOGRAPHY 

1. Gold, Bernard and Rabiner, Lawrence, Theory and 
Application of Digital Signal Processing, 1975, Pren­
tice-Hall Inc., Englewood Cliffs, NJ. Pages 356-
38l,573ff 

[This text explains DFT and FFT basics well, with 
ample pictures] 

2. Horden, Ira, "An FFT Algorithm For MCS(c)-96 
Products Including Supporting Routines and Exam­
ples'', Intel Application Note AP-275, order number 
270189. (That Application Note cim also be found 
in the Intel Embedded ControlJer Handbook, Vol­
ume II, order number 210918) 

[The note, dated 9/87, reviews FFT theory, real vs. 
complex, AID issues, and waveforms] 

3. Press, William, Flannery, Brian, et. al., Numerical 
Recipes in C, 1988, Cambridge University Press. 
Pages 398-424. 

[Numerical Recipes contains the C-code source for 
"realfix"] 

6-104 



intJ 

Pg. 

AP-435 

APPENDIX A 
PROGRAM LISTINGS 

A-2 1) diff.f: 

Fortran module to do fast Decimation-In-Frequency (DIF) Radix-2 FFT. 

A-3 2) difstep.ss: 

Assembly code which does all DIF FFT butterflies; called by diff.f. 

A-11 3) difstepf.f: 

Fortran equivalent of difstep.ss. Included here for clarity. 

A-13 4) bitrev.ss: 

Assembly code to do bit-reversal. 

A-17 5) ffttest.f: 

Highest-level Fortran code. Tests diff.f or ditt.f. 

A-21 6) ditt.f: 

Fortran module to do fast Decimation-In-Time (DIT) Radix-2 FFT. 

A-22 7) ditstep.ss: 

Assembly code which does all DIT FFT butterflies; called by ditt.f. 

A-30 8) dirr.f: 

Fortran module for Real-Input Decimation-In-Frequency (DIF) Radix-2 FFT. 

A-31 9) realfix.ss: 

Assembly code required by dirr.f to compensate for Real-Input. 

A-36 10) real.f: 

Highest-level Fortran code, for Real-value input. Tests dirr.f. 

A-40 11) fft.f: 

Fortran FFT algorithm. Generates "correct" answers for comparison against the other code. 

A-43 12) makefile: 

Unix V /386 version of a makefile to maintain the FFT code, using the Unix "make" program-mainte­
nance utility. Note that this makefile uses the Unix macro preprocessor "m4" to convert symbolic names 
to register numbers. 

A-45 13) start.ss: 

Assembly code preamble for Fortran runtime. 

A-45 14) time.c: 

Dummy routine, used to install breakpoints. 

6-105 

I 



intef AP-435 

c-------------------c File: diff. f 
C FFT - Decimation in Freq, radix-2, inplace, 1-dimen 

C Intel assumes no responsibility for use or misuse of this code. 

C 5/19/89: call fetch8() added for 1024-point caching. 
C 6/01/89: fetch() CRUCIAL-30% performance loss if removed 

C Inputs: 
c 
c 
c 
c 
c 
c 
c 

A= complex array of input, up to 1024 pts, single-prec float 
M= log of number of pts 

= (number of stages of FFT) 
N = number of points. ie, N= 2**M = number of pts 
W= complex array of twiddle factors, length N/2. 
REV= 0 if bitreversed output ok. l=must re-order output 

C Outputs: 
C A= complex fft of input A 
c 

subroutine diff(a,m,N,W,REV) 
integer m,N, i, j,k, REV,wlimit 
integer offset, stage, groups, wincr,powers2(0:10) 
complex a(n) ,w(N/2) ,temp 

data powers2 /l,2,4,8,16,32,64,l28,256,512,l024/ 
C Powers2 to avoid calls to POW, DIV 

C Twiddle factor array w(k) has (cos,-sin) of 2pi*k/N 
CC Assume the caller provides w(k) constants ALREADY initialized 

c------------c Pre-touch data, lock into cache, for 8kByte fft: 
IF (N .gt. 513) THEN 

call fetch(a,%VAL(n)) 
ENDIF 

c------------
w limit= 8*((N/2) - 1) 

C "DO 20" stage-loop 
DO 20 stage = l,m 

groups = powers2(stage-l) 
C groups=number of times the twiddle factors are used, ie, the number of 
C smaller DFTs the stage is split into. 

C offset gets N/2,N/4,N/8,N/16, ••• 
offset = powers2(m-stage) 
winer = groups 
call difstep(a,w,groups,offset,wincr,wlimit) 

20 CONTINUE 

IF (REV .ne. 0) THEN 
cc REV .ne. 0 means must do bit-reversal reordering of output 

call bitrev(a,%VAL(M) ,n) 
ENDIF 

RETURN 
END 

c------------

6-106 



intef AP-435 

11--------------
11 difstep.ss: do one stage of fft butterflies 
// DIF = Decimation in Frequency, radix-2, inplace, 1-dimension 
// (C) Copyright 1989 INTEL Corporation. 
// Inner loop developed with assistance from Tricord Systems, Inc. 

11--------------
11 5/18/89: 1 pm - offset_2 added, as next-to-last stage was slow 
// 5/19/89: 4 pm - fetch8() routine added, for cache miss avoidance. 
// 5/31/89: am - use fst.q (13% perf improvement of inner_loop!) 
// last_bfly added, for performance. 
// 6/02/89: am - bptr deleted. Modulo-address W (5% perf improved) 

//------------
// Intel is not responsible for use nor for misuse of this program. 

//------------
//Do one entire stage (n/2 butterflies). Sample invocation: 
// call difstep(a,w,groups,offset,wincr,wlimit) 
//==================================================== 
II Inputs: 
// A= complex array of input, single-prec float 
// (complex stored as 4byte real, 4byte imag contiguously) 
// W= pointer to array of twiddle factors. Assuming W(k) is 
II CMPLX(cos(2pi*k/N)) ,-sin(2pi*k/N)) for k=O to (N/2)-l. 
// offset= distance (except for scale-by-8byte sizeof(complex)) between 
// the 2 input values for each butterfly. 
// Offset also is the number of butterflies done per •group•. 
// groups= N/(2*offset). The number of sub-DFTs this stage is split into. 
// winer= distance (except for scale-by-8byte sizeof(complex)) between 
// successive w values for successive butterflies 
// wlimit =max index, in bytes, of W table. 
II 
II Outputs: 
// A= complex radix-2 butterflied version of input. 
/1-------------------
define(astart, rl6) //input data base address 
define(wstart,rl7) //twiddle array ptr. Because w-contents depend on N, 
// we will assume the caller has initialized w() array. 
define(groups,rl8) //groups:number of sub-DFTs this stage is split into. 
define(offset,rl9) //offset (initially elements, mult by 8 to get bytes) 
II between node and its dual (the 2 numbers to butterfly, i.e. A and B) 
define(wincr,r20) //increment between successive W values. Remains constant 
// within a given stage. For Decimation in Freq, winer addressing is: 

// +8 for offset=N/2 {WO,Wl,W2,W3, ••• W(n-l)) 
II +16 offset=N/4 (WO, W2, W4, ••• ) etc ••• 

define(wlimit,r2l) //max index, in bytes, of W table. 
define(wind,r22) //current index, in bytes, of W table. 
define(offset2,r23) //offset*2 

define(decrem,r24) //bla decrement 
define(somecount,r25) // bla counter 

define(FEtch, r26) 
define(STore,r27) 

//pointer to lst component of butterfly (load) 
// • • lst component of butterfly (store) 

6-107 



intJ 

II f4:f7 spare 
define {AR, fl2) 
define {AI, fl3) 
define{ARo,fl4) 
define{Aio,fl5) 
define {BR, fl6) 
define{BI, fl7) 
define{BRo,fl8) 
define {.Bio, fl9) 

define{ER, f20) 
define{EI, f2l) 
define{ERo,f22) 
define {Eio, f23) 

AP-435 

//element A, real component 
II " ", imag 
// extra A value, for prefetch {o="odd") 

//element B, real component 

// extra B value, for prefetch 

//A+B, 
II " 
//A+B, 
II " 

real {ER = AR + BR) 
imag " 
real, previous loop's value 
imag • 

define{FR, f24) //W*{A-B), real 
define{FI, f25) // " imag " 
define{FRo,f26) 
define {Flo, f27) 

define{DR, f28) //Difference of A-B, real part 
define{DI, f29) // " •, imag • 
define{WR, f30) //W {twiddle factor), real part 
define{WI, f3l) // " " , imag 
define{WRo,flO) //W (twiddle factor), real part (EXTRA copy) 
define{Wlo,fll) // " " , imag 

.text 

.align .quad 
_difstep_:: 
ld.l O{groups),groups 
ld.l O(offset) ,offset 
shl 3,offset,offset 
shl l,offset,offset2 

//fix Fortran call-by-ref 
II 

// change from elements to bytes 

fst.q 
fst.q 

f8 ,-l6(sp)++ //save "local" regs 
fl2,-l6(sp)++ // " " 

adds 
adds 

-1,groups,groups // pre-decrement for bnc usage, or bla usage 
-16,rO,decrem //bla decrement 

// We code the last 2· stages as special cases: 
//--------
xor 8, offset, rO //offset:l, special case, no complex mul t, funny addressing 
bcoffset_l// (ASSUMING .offset=l means wincr=O, and no twiddle used) 
xor 16,offset,rO //offset=2, special case, no complex mult, funny addressing 
bcoffset_2//(ASSUMING offset=2 means wincr=N/4) 

//--------
ld.l O(wincr),wincr 
ld.l O(wlimit) ,wlimit 

6-108 



intef 

pfadd.ss fO,fO,fO 
pfadd.ss fO,fO,fO 

AP-435 

pfadd.ss fO,fO,fO // init Al,A2,A3=0 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 

11--------
11 init pointers: 
shl 3,wincr,wincr 
shl l,wincr,wind 

pfld.d 0 ( wstart) ,fO 
pfld.d winer ( wstart) ,fO 
adds -8,astart,FEtch 
pfld.d wind (wstart) ,fO 

//scale for bytes. 
//init wind =2*wincr 

adds wincr,wind,wind //wind now 3*wincr 
// here fetch first set of A,B,W before bla-loop 
pfld.d wind (wstart) ,WR 
adds winer, wind, wind 
and wlimit,wind,wind //modulo-wlimit the w index 

/I We do modulo-addressing on W( ), to keep the pfld pipeline full. We 
// never do a W-fetch beyond the end of the table. 
/I And the modulo-check needs to be done only every 4th pfld, as always 
/I we use a multiple of 4 W() factors. 

fld.d 8 (FEtch)++,AR 
fld.d offset (FEtch) ,BR 

d.r2apl.ss fO,fO,fO //clear Treg. 
adds -32,offset,somecount // bla counter (predecrement by 4 elements) 

II -----------// Definitions for pipe diagram: 
// (the complex multiply product, F, broken into 4 real mult and 2 adds): 
II WR= cos(), WI=-sin(). 
/I DR= AR - BR; (diffence of Real components of A,B) 
/I DI= AI - BI; (diffence of !mag components) 
II ER= AR+ BR; EI= AI+ BI; 
// FR= K - L; where K= WR*DR, L:WI*DI 
II FI = N + M; where M= WI*DR, N:WR*DI 

/I For lst time thru inner_loop, don't have correct values to store. 
/I Must do 1 loop before the loop, sans the stores. 

first_bfly:: //fill pipe 
II KR ••• KI ••• Ml •••• M2 •••• M3 T 

d.r2pt.ss WR,fO,fO // WRO 
pfld,d wind (wstart) ,WRo 

d.pfsub,ss AR,BR,fO II 
fld,d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,fO // 
fld.d offset (FEtch) ,BRo 

d.i2st.ss WI,fO,fO II WIO 
adds wincr,wind,wind 

6-109 

Al •••• A2 •••• A3 •••• Write 

DRO 

DIO DRO 

DIO DRO 

• 



intef AP-435 

d.ratlp2.ss AR,BR,DR II KO ERO DIO DRO 
nop 

d.ialp2.ss AI,BI,DI II LO KO EIO ERO DIO 
pfld.d wind (wstart) ,WR 

d.r2pt.ss WRo,DI,fO II WRl NO LO KO EIO ERO 
fld.d 8 (FEtch)++,AR 

d.pfsub.ss ARo,BRo,ER II NO LO KO DRl EIO ERO 
fld.d offset (FEtch) ,BR 

d.ratls2.ss Aio,Bio,EI // NO LO KO Dll DRl EIO 
adds wincr,wind,wind 

d.i2st.ss Wlo ,DR,fO II Wll MO NO KO K-L Dll DRl 
and wlimit ,wind,wind 

quickstart:: 
d.ratlp2.ss ARo,BRo,DR /I Kl MO NO ERl FRO Dll DRl 
bla decrem,somecount,inner_loop //init LCC 

d.1alp2.ss Aio,Bio,DI II Ll Kl MO NO Ell ERl FRO Dll 
adds -16,astart,STore II ptrs init 16 low, for fst.q instructions 

//-------------------
// Each butterfly = l complx multiply, l complx add, l complx subtract 
II = 4 multiply, 
II 3 add 
// 3 subtract 
II 3 8-byte fetches (A, B, W) 
II 2 8-byte stores (A, B) 
II 
//,6 cycles per butterfly 
II 
// inner_loop: iterates •offset/2" times (eg, N/4 for stage l, N/8 for stage2), 
// for each group. It does 2 butterflies per iteration 

inner_loop:: 
II KR ••• KI ••• Ml ••• M2 •• M3 
11 I I I I I 

d.r2pt.ss WR,DI,FR II WR2 - Nl Ll Kl 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss AR,BR,ERo II 
fld.d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,Elo // 
fld.d offset (FEtch) ,BRo 

d.12st.ss WI,DR,FI // 
fst.q ER,16(STore)++ //update 

d.ratlp2.ss AR,BR,DR II 
adds wincr,wind,wind 

d,ialp2.ss AI,BI,DI // 

Nl Ll 

Nl 

WI2 Ml 
ER/EI/ERo/Eio 

K2 Ml 

L2 K2 

Kl 

Ll 

Nl 

Ml 

T Al •• A2 ••• A3 •• Write 
I I I I I 
NO N+M Ell ERl FRO 

NO DR2 FIO Ell ERl 

Kl DI2 DR2 FIO Ell 

Kl K-L DI2 DR2 FIO 

Nl ER2 FRl DI2 DR2 

Nl EI2 ER2 FRl DI2 
//no need for modulo-check ("and") here, as odd num of W's have been fetched. 
pfld.d wind (wstart) ,WR 

// ................................................................. . 

6-110 



intJ AP-435 

II KR ••• KI ••• Ml •••• M2 •••• M3 
d.r2pt.ss WRo,01,FRo II WR3 N2 

adds wincr,wind,wind 
d.pfsub.ss ARo,BRo,ER// N2 
fld.d 8 (FEtch)++,AR 

d.ratls2.ss Alo,Blo,EI// 
fld.d offset (FEtch) ,BR 

d.i2st.ss Wlo,OR,Floll Wl3 M2 
fst.q FR, offset (STore) 
//update FR/FI/FRo/Flo 

d.ratlp2.ss ARo,BRo,OR// K3 
bla decrem,somecount, inner_loop 

d.ialp2.ss Alo,Blo,01// 13 
and wlimit,wind,wind //modulo. 

end_inner_loop:: //KEEP Pipelines full 
// RE-init pointers for fetches 
d.fiadd.ss fO,fO,fO 

12 K2 

12 K2 

N2 12 

N2 

M2 

K3 M2 

T 
Nl 

Nl 

K2 

K2 

N2 

N2 

adds offset2,astart,astart //bump to next group 
//redo A,B fetches, with proper ptr. 

d.fiadd.ss fO,fO,fO 
fld.d O(astart) ,AR //get first AR/AI in next group 

d.fiadd.ss fO,fO,fO 
fld.d offset (astart) ,BR 

d.fiadd.ss fO,fO,fO 
adds O,astart,FEtch 

last_bfly:: //do final 2 butterflies, start next 
II KR ••• KI ••• Ml •••• M2 •••• M3 

d.r2pt.ss WR,01,FR II WR4 N3 13 K3 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss AR,BR,ERo // N3 13 K3 
fld.d 8 (FEtch)++,ARo 

d.ratls2.ss AI,BI,Elo// N3 13 
fld.d offset (FEtch) ,BRo 

d.i2st.ss WI,OR,FI II WI4 M3 N3 
fst.q ER,16(STore)++ 

d.ratlp2.ss AR,BR,OR // K4 M3 
adds wincr,wind,wind 

d.ialp2.ss AI,BI,OI II 14 K4 M3 
pfld.d wind (wstart) ,WR 

group 
T 
N2 

N2 

K3 

K3 

N3 

N3 

Al •••• A2 •••• A3 •••• Write 
N+M El2 ER2 FRl 

OR3 Fil El2 ER2 

013 OR3 Fil EI2 

K-1 013 OR3 Fil 

ER3 FR2 013 OR3 

EI3 ER3 FR2 013 

Al •••• A2 •••• A3 •••• Write 
N+M EI3 ER3 FR2 

OR4 Fl2 EI3 ER3 

014 OR4 Fl2 El3 

K-1 014 OR4 Fl2 

ER4 FR3 014 OR4 

EI4 ER4 FR3 OI4 

// .................................................................. 
II KR ••• KI ••• Ml •••• M2 •••• M3 

d.r2pt.ss WRo,OI,FRo // WR5 N4 14 K4 
fld.d 8 (FEtch)++,AR 

d.pfsub.ss ARo,BRo,ER// N4 14 K4 
adds -32,offset,somecount II reset bla counter 

d.ratls2.ss Aio,Bio,EI// 
adds wincr,wind,wind 

d.i2st.ss Wio,OR,Fioll 
adds -1,groups,groups 

d.fnop 
fld.d offset (FEtch) ,BR 

d.fnop 

N4 

WI5 M4 

bnc.t quickstart //branch on value of groups 
d.fnop 
fst.q FR, offset (STore) 

6-111 

14 

N4 

T Al •••• A2 •••• A3 •••• Write 
N3 N+M EI4 ER4 FR3 

N3 OR5 FI3 EI4 ER4 

K4 015 OR5 FI3 EI4 

K4 K-1 015 OR5 FI3 

I 



intef 

end_last_bfly: : 
d,fnop 
br endit 

fiadd.ss fO,fO,fO 

AP·435 

fst.q FR, offset (STore) //repeated for bnc.t untaken case 
.align .quad 
//============================================================= 
offset_!:: 
/I want FEtch=0,2,4,6,8, ••• elements. ASSUMING wincr=O, 
// and that w=(l,0), so that no complex mult needed, and NO W will be fetched. 
// E=A+B, F=A-B. (Per double-butterfly loop: 8 pfadd,4 dword fld, 4 fst, 
/I 1 bla) (fld.q required, to reduce # flds to avoid pipe stalls) 
// Performance = 4 cyc/bfly best case. 

//Redefine regs 
define(AR3,fl2) 
define(A!3,fl3) 
define(BR3,fl4) 
define(BI3,fl5) 
define(AR4,fl6) 
define(AI4,fl7) 
define(BR4,fl8) 
define(BI4,fl9) 

for fld,q,fst.q usage, when A and B adjacent: 
//element A, real component 

II • •, imag 
//element B, real component 

/I extra A value, for prefetch 

/I extra A value, for prefetch 

define(ER3, f20) //A+B, real (ER= AR + BR) 
define(EI3, f21) // " imag • 
define(FR3, f22) //(A-Bl, real 
define(FI3, f23) // • imag • 

define(ER4,f24) //A+B, real, extra copy 
define(EI4,f25) // " imag 

define(FR4,f26) 
define(FI4,f27) 
//========================================= 
adds -16,astart,FEtch 
fld.q 16 (FEtch)++,AR4 
adds -1,groups,somecount // bla counter (predecremented already by l) 

//using groups:blacount on the offset_l loop, intentionally. 
adds -16,FEtch,STore 

//startup the loop: 
II---------------------// Al •••••• A2 •••••• A3 •••••• Write: 
d.pfadd,ss AR4,BR4,f0 // ARn+BRn -
fld.q 16 (FEtch)++,AR3 

d,pfadd,ss AI4,BI4,f0 // Ain+Bin ERn 
adds -2,rO,decrem //2 bflies per loop 

d.pfsub.ss AR4,BR4,f0 // ARn-BRn Ein ERn 
bla decrem,somecount, offsetl_loop //init LCC 

d.pfsub.ss AI4,BI4,ER4 // Ain-Bin FRn Ein ERnext 
nop 

II---------------------// Al •••••• A2 •••••• A3 •••••• Write: 
offsetLloop: : 

6-112 



intef AP-435 

d.pfadd.ss AR3,BR3,EI4 II AR+BR FI-
nop 

d.pfadd.ss AI3,BI3,FR4 II AI+BI ER 
fld.q 16 (FEtch)++,AR4 

d.pfsub.ss AR3,BR3,FI4 II AR-BR EI 
fst.q ER4,16(STore)++ 

d.pfsub.ss AI3,BI3,ER3 II AI-BI FR 
nop 

d.pfadd.ss AR4,BR4,EI3 // AR2+BR2 FI 
fld.q 16 (FEtch)++,AR3 

d.pfadd.ss AI4,Bl4,FR3 // AI2+BI2 ER2 
nop 

d.pfsub.ss AR4,BR4,FI3 // AR2-BR2 El2 
bla decrem,somecount, offsetl_loop 

d.pfsub.ss Al4,Bl4,ER4 // AI2-Bl2 FR2 
fst.q ER3,16(STore)++ 

1/--------------------------
end_offsetl_loop:: 
d.fiadd.ss fO,fO,fO 
br endit 

fiadd.ss fO,fO,fO 
nop 

//--------------------------
.align • quad 
offset_2:: 

FR-

FI-

ER 

EI 

FR 

FI 

ER2 

El2 

//want FEtch=0,1;4,5;8,9;12,13; ••• elements. 

EI-

FR-

FI-

ER 

EI 

FR 

Fl 

ERnext 

//ASSUMING wincr:N/4 (W_addr=O,N/4,0,N/4,0, ••• ). Trivial W() factors. 
//USE bla loop, incrementing FEtch by 16 (2*offset). 
// Even-indexed elements identical to offset_l,W=WO, no complex mult. 
II So FReven:(AR-BR), Fleven:(AI-BI). 
// Odd components have W:(0,-1). So FRodd:(AI-BI), Flodd:(BR-AR). 
// Each fld.q fetches AReven,Aleven,ARodd,Alodd. 

//Assume ER,EI,ERo,Eio are 4 contiguous regs. 
//Assume FR,Fl,FRo,Flo are 4 contiguous regs. 

adds -16,astart,FEtch 
fld.q 16 (FEtcn)++,AR 
fld.q 16 (FEtch)++,BR 
adds 0,groups,somecount //bla counter 

//startup the loop: 
II---------------------// Al •••••• A2 •••••• A3 •••••• Write: 

pfadd.ss AR ,BR ,fO // AR+BRe 
pfadd.ss AI ,Bl ,fO II AI+Ble ER 

d,pfadd.ss ARo,BRo,fO // ARo+BRo El ER 
nop 

d.pfadd.ss Alo,Blo,ER // Alo+Blo ERo EI ER 
nop 

d.pfsub.ss AR ,BR ,EI // AR-BRe Elo ERo EI 
adds -1,rO,decrem //2 bflies per loop,but groups is half desired value. 

d.pfsub.ss AI ,BI ,ERo // AI-Ble FR Elo ERo 
adds -16,astart,STore 

d.pfsub.ss Alo,Bio,Eio // Alo-Bio FI FR Elo 
bla decrem,somecount, offset2_loop //init LCC 

d.pfsub.ss BRo,ARo,FR // BRo-ARo FRo Fl FR 
nop 

- 6-113 

I 



offset2_loop:: 
d.fnop 

AP-435 

fld.q 16 (FEtch)++,AR //fetch AR,AI,ARo,Aio 
d.fnop 
fld.q 16 (FEtch)++,BR //fetch BR,BI,BRo,Blo 
II--------------~-----// Al •••••• A2 •••••• A3 •••••• Write: 
d.pfadd,ss AR ,BR ,FI // AR+BRe Flo FRo FI 

nop 
d.pfadd.ss AI ,BI ,FRo // AI+Bie ER 

nop 
d.pfadd.ss ARo,BRo,Fio // ARo+BRo EI 
fst,q ER ,16(STore)++ 
//update ER ,EI ,ERo,Eio 

d.pfadd.ss Aio,Bio,ER // Aio+Bio ERo 
nop 

d.pfsub.ss AR ,BR ,EI // AR-BRe Elo 
nop 

d.pfsub.ss AI ,BI ,ERo // AI-Ble FR 
fst.q FR ,16(STore)++ 

d.pfsub.ss Aio,Bio,Elo // Aio-Bio FI 
bla decrem,somecount,offset2_loop 

d,pfsub.ss BRo,ARo,FR // BR9-AR0 FRo 
nop 

endi t:: 
II restore regs 
fiadd,ss fO,fO,fO //exit DIM 
fld.q O(sp),fl2 

fiadd.ss fO,fO,fO //last DIM pair 
fld,q l6(Sp),f8 

adds 32,sp,sp 
bri rl 
nop 

/!----------------------------------

Flo FRo 

ER Flo 

EI ER 

ERo EI 

Eio ERo 

FR Elo 

FI FR 

6-114 



AP-435 

c------------------------------------------------------------c difstepf,f: do one stage of fft (DIF) butterflies 
c (C) Copyright 1989 INTEL Corporation. ALL RIGHTS RESERVED. 

c------------------------------------------------------------c Decimation in Freq, radix-2, inplace, 1-dimen 
c 6/20/89 

c Do one entire stage (n/2 butterflies). Sample invocation: 
c call difstep(a,w,groups,offset,wincr) 

c Inputs: 
c A:: complex array of input, single-prec float 
c (complex stored as 4byte real, 4byte imag contiguously) 
c W= pointer to array of twiddle factors. Assuming W(k) is 
c CMPLX(cos(2pi*k/N)),-sin(2pi*k/N)) for k=O to (N/2)-1. 
c offset = distance (in •elements•) between 
c the 2 input values for each butterfly 
c groups = number of sub-DFTs this stage is split into. 
c (groups*offset*2 = N) 
c winer = distance between successive w values for successive butterflies 
c 
c Outputs: 
c A= complex but_terflied version of input. 

SUBROUTINE difstep(a,w,groups,offset,wincr) 
integer groups,offset,wincr 
integer i,j,indexl,iplus 
complex a(groups*offset*2),w(groups*offset),wtemp,temp 

c--------------------------------------------------------c We implement a ••• , 
c Special case for offset=l(last stage): no complex multiplies, simple add 
c (Performance enhancement) 

IF (offset .eq. l) THEN 
CVD$ NODEPCHK 

DO 8 i = 1;(2*groups),2 
iplus = i + l 
temp = a(iplus) 
a(iplus) = a(i) - temp 

8 a(i) = a(i) + temp 
ELSE 

c------------c Special case for offset=2 (next-to-last stage): no complex multiplies, 
cc simple add, (Pert'ormance enhancement) 
cc For half the butterflies, W=(l,O). For the other half, W=(0,-1) 

IF (offset .eq. 2) THEN 
CVD$ NODEPCHK 

DO 90 i = l,(4*groups),4 
iplus = i + 2 
temp = a(iplus) 
a(iplus) = a(i) - temp 

90 a(i) = a(i) + temp 
C 2nd call to i-loop: w=~mplx(0,-1.) 
CVD$ NODEPCHK 
CVD$ NOVECTOR 

DO 92 i = 2,(4*groups),4 
iplus = 1 + 2 
temp = a(i) - a(iplus) 
a(i) = a(i) + a(iplus) 

92 a(iplus) = CMPLX(AIMAG(temp),-REAL(temp)) 

6-115 

I 



intef 
ELSE 

C------------
c "DO 
CVD$ 
CVD$ 

20" indexl-loop is •outer loop• 
VECTOR 
NODEPCHK 

AP-435 

DO 20 indexl = 1, (2*offset*groups), (2*offset) 
j = l 

CVD$ 
CVD$ 

NODEPCHK 
ALT CODE 
DO 10 i = indexl,(indexl+offset-1) 

iplus = i + offset 

10 
20 CONTINUE 

ENDIF 
ENDIF 
RETURN 
END 

temp = a(i) - a(iplus) 
a(i) = a(i) + a(iplus) 
a(iplus) = w(j) * temp 
j = j + winer 

cccccccccccccccccccccccccccccccccc 
subroutine fetch(a,n) 
integer n 
complex a(n) ,temp 

cc Kludge do-nothing prefetch. 
temp = a(l) 
RETURN 
END 

cccccccccccccccccccccccccccccccccc 
subroutine bitrev(a,dummy,n) 

C Bit-Reverse 
Inputs: c 

c 
c 
c 

A= complex array of input, 
dummy= %val(m). Probably 
N = number of input points 

single-prec float 
unusable from Fortran. 
(and output points) 

C Ouput: 
C A = original A data, but in bit-reversed order from A 

integer n,i,j,k,ndiv2 
complex a(n),temp 

c------------c "DO 7" loop to in-place-bit-reverse-shuffle output 
j:l 
ndiv2 = n / 2 
DO 7 i: l, n-1 

IF (i .lt. j) THEN 
temp= a(j) 
a(j) a(i) 
a(i) = temp 

ENDIF 
k = ndiv2 

C "While (j .gt. k)" /*decrease j by 2**something */ 
6 IF (j .gt. k) THEN 

ENDIF 

j = j-k 
k = k I 2 
GOTO 6 

C Add next lower power of 2 to j 
7 j = j+k 

RETURN 
END 

C------------

6-116 



intJ AP-435 

11--------------
11 bitrev.ss 
// (C) Copyright 1989 INTEL Corporation. ALL RIGHTS RESERVED. 
II 
// BIT-reversal of 8byte array elements. 
II IN PLACE. 
II (Allows arrays of 8,16,32,64,128,256,512, or 1024 elements) 

//--------------
// INTEL is not responsible for use nor misuse of this code. 
//--------------
// 8/13/89 
//==================================================== 
// Invocation: (from Fortran) 
//call bitrev(a,%VAL{m)) 

II 
II 
II 
II 
II 
II 
II 

Inputs: 
a = rl6 = pointer to array of 8byte elements 
m = rl7 (call by value)= base-2 log of total number of elements 

(2**m = N) 
Outputs: 

a= Bit-reversed ordered version of A 

/I Expected best-can-do performance, and measured performance= 
II approx 4*N clocks (0.06 mSec for 512 points) 
/1-------------------
define(astart, rl6) //initial input data base address 
define(m, rl7) 
define(logN,rl7) 
define(destl,rl9) 
define(dest2,r20) 
define(dest3,r21) 
define(dest4,r22) 
define(iptr, r23) //index-array pointer 

define(decrem,r24) //bla decrement 
define(count,r25) // bla counter 

.text 

.align .quad 
//========================================= 
_bitrev_:: 
_bitr_:: 
//fetch base address for index table (rbasetab) 
/I base-addr-table elements = (baseaddr, number_of_swaps-2) 
/I base-addr-table indexed by logN. 
shl 3,logN,r30 //scale to 8-byte-entry length 
mov rbasetab,r29 
ld.l r29(r30), iptr 
addu 4,r29,r29 
ld.l r29{r30), count //number of swaps required for this value N 

pfld.d O(iptr) ,fO //initiate fetch of first 2 bit-rev indices 
pfld.d 8(iptr)++,f0 
adds -2,rO,decrem//2 swaps per loop 
pfld.d 8(iptr)++,f0 

bla decrem,count, revloop //init LCC 
pfld.d 8(iptr)++,fl6 //get 2 indices, but don't cache the indices 

6-117 

I 



intef AP-435 

revloop:: //2 swaps per loop 
//7.5 cycles consumed for each swap, best case. 
pfld.d 8(iptr)++,fl8 //2 more indices 
fxfr fl6,destl //transfer to integer index regs 
fxfr fl 7 ,.dest2 
fld.d destl (astart) ,f24 //fetch 2 elements to swap 
fld.d dest2 (astart) ,f26 
fxfr fl8,dest3 
fst.d f24, dest2 (astart) 
fst.d f26, destl (astart) 
fxfr fl9,dest4 
fld.d dest3 (astart),f28 
fld.d dest4 (astart) ,f30 
pfld.d 8(iptr)++,fl6 //2 more indices 
fst.d f28, dest4 (astart) 
bla decrem,count, revloop // 
fst.d f30, dest3 (astart) 

bri rl 
nop 

//---------------
// _fetch8_: Touch all 32-byte lines in the Bk data bytes, to get them 
II, into dcache. (ASSUMING .lte. 8Kbytes and .gte. 4Kbytes) 
II 
// Invocation= fetch(astart,num8) 
II Inputs= 
// astart=rl6=pointer to data which is to be touched. 
// num8:rl7 (passed by VALUE, %VAL(), not by reference) 
11------------
11 Using RC and RB to improve dcache hit rates, for FFTs bigger than 
II 1024 complex (8kB). 
// RC=lO causes replacement only of block denoted by RB lsbit. RC=ll disables 
II replacement. 
//--------
define (num8,rl7) 
define(FEtch, r26) 

_fetch8_:: 
_fetch_:: 
ld.c dirbase,r30 
or Ox800,r30,r30 // Replace Dcache slot 0 only (RC=lO,RB=OO) 
st.c r30,dirbase 

//Put 4Kbytes into Dcache slot O. (The rest after 4kB goes to slotl). 
adds -4,rO,decrem //4 8-byte-groups per cache line 
adds 508,rO,count //512, but pre-decremented for bla usage 
bla decrem,count,floop 
adds -32,astart,FEtch 

floop:: 
bla 
fld.d 

decrem,count,floop 
32(FEtch)++,f30 //dummy load. 

adds -512,numB,count 
be fdone //if data exhausted, quit 

II ld.c dirbase,r30 
or Ox900,r30,r30 // Replace Dcache slot 1 only (RC=lO,RB=Ol) 
st.c r30,dirbase 

6-118 



intef AP-435 

adds 
bla 
fld.d 

floop2:: 
bla 
fld.d 

-8,count,count //predecr for bla 
decrem,count,floop2 //set LCC 
32(FEtch)++,f30 

decrem,count,floop2 
32(FEtch)++,f30 //dummy load. 

fdone:: 
II unlock dcache 

andnot OxFOO,r30,r30 //clear RC,RB (dirbase(ll:8)) 
st.c r30,dirbase 
bri rl 

nop 

.data 

//---------------
// rbasetab:: (Table of bit-reversed indices for bitrev subroutine) 
II base-addr-table elements = (baseaddr, number_of_swaps-2) 
/I base-addr-table indexed by logN • 
• align .quad 
rbasetab:: 
.long [6]0 //don't bother with log(n)=0,1,2 
.long revs, O 
.long revl6, 4 
.long rev32, 10 
.long rev64, 26 
.long rev128, 54 
.long rev256, 118 
.long rev512, 238 
.long revl024, 494 
//===================== 

//number of swaps=240 for N=512 (ie, 32 symmetrical patterns 
II exist between O and 511.) 
/I rev512: array of bit-reversed indices, for N=512. 
// Each entry is ("i", and "bit-reversed-i"), shifted left by 3 
/I to account for 8-byte-elements. 
11 NOTE: This listing DOES NOT SHOW all the table elements, to save paper. 

• align • quad 
rev512:: 
.long 8, 2048, 
.long 24, 3072, 
.long 40, 2560, 
II ETC •••• ETC ••••• 
11==--============ 
.align .quad 
revl024:: 
.long 8, 4096, 
.long 24, 6144, 
.long 40, 5120, 
.long 56, 7168, 
II ETC ••• , ETC •••• , 

16, 1024 
32, 512 
48, 1536 

ETC ••• 

16, 2048 
32, 1024 
48, 3072 
64, 512 

ETC ••• 

6-119 

I 



intef 

//Number of swaps = 496 
//N (Number of elements) = 1024 

//================= 
.align .quad 
revl6:: 

.long 1*8,8*8,2*8,4*8 

.long 3*8,12*8,5*8,10*8 

.long 7*8,14*8,11*8,13*8 
revs:: 

.long 1*8,4*8,3*8,6*8 

//================= 
.align .quad 
rev32:: 

AP-435 

.long 8, 128,16, 64, 24, 192, 40, 160, 48, 96, 56, 224 

.long 72, 144, 88, 208, 104, 176, 120, 240, 152, 200, 184, 232 

//================= 
.align .quad 
rev64:: 
.long 8, 256, 
.long 24, 384, 
.long 40, 320, 
.long 56, 448, 
II ETC ••• , ETC •••• , 
//================= 
.align .quad 
revl28:: 
.long 8, 512, 
.long 24, 768, 
.long 40, 640, 
.long 56, 896, 
II ETC ••• , ETC •••• , 
//Number of swaps = 
//================= 
.align .quad 
rev256:: 
.long 8, 1024, 
.long 24, 1536, 
.long 40, 1280, 
.long 56, 1792, 
II ETC ••• , ETC •••• , 
//Number of swaps = 

16, 128 
32, 64 
48, 192 
72, 288 

ETC ••• 

16, 256 
32, 128 
48, 384 
72, 576 

ETC •• , 
56 (Number of elements) =128 

16, 512 
32, 256 
48, 768 
64, 128 

ETC ••• 
120, N (Number of elements) = 

6-120 

256 



intJ AP-435 

PROGRAM FFTTEST 
c 
C 1-D FFT TEST PROGRAM 
c 
C Intel assumes no responsibility for use or misuse of this code. 
c 
c 7/20/89 
c------------------c 

character*8 REALLY 
PARAMETER {IREV=Ol 
PARAMETER {REALLY:'complex') 
PARAMETER {TIMEIT:l, CACHETIME:O) 
DATA IT/200000/ 

c PARAMETER (N:l024,M=l0) 
PARAMETER (N:512,M= 9) 

c PARAMETER (N:256,M= 8) 
c PARAMETER (N:l28,M= 7) 
c PARAMETER (N:64,M= 6) 
c PARAMETER (N:32,M= 5) 
c PARAMETER (N:l6, M=4) 

PARAMETER (Pl:3.1415926536) 
COMPLEX X(N) ,Xl{N) ,X2(N),X3{N), W(N/2) 

c Fortran complex values stored R,I, R,I for arrays. 

c 

Real ASQR{N),ASQR2(N),XR{N) 
complex wtemp 
real rtemp 

PRINT*,' FFT test program (ffttest.f) 
print *, '===============================' 
IF {!REV .eq. 0) THEN 
print *,'NOT counting time for bit-reversal.' 
print *,'DO NOT expect matching answers.without bit-rev' 

ELSE 
print*• 'Time for bit-reversal included.' 

END IF 

print*• 'Time for cache writeback and fills ••• • 
IF {CACHETIME .eq. 0) THEN 
print*,' NOT included, if iterating.' 

ELSE 
print * . I 

END IF 

print * . 
print * . 
print * . 
print * . 
print * . 
print * . 

included.' 

'==============================' 
'If iterating ••• Number of Iterations =',IT 
'===============================' 
'Number of Points 
'{',REALLY,' data)' 

= '' N 

'================================' 

6-121 



intJ AP-435 

c------------------c !nit twiddle factor array w(k) with (cos,-sin) of 2pi*k/N 
C (Should just declare this as constant, if N is non-variable) 
C (OR could have one constant 512-entry W (for N=l024), adjust winer accordingly 
C in diff.f for smaller N) 

rtemp = 2.0*pi/N 
wtemp= CMPLX(cos(rtemp), -sin(rtemp)) 
w(l) = (1.0, 0.0) 
DO 200 k = 2,N/2 

200 w(k) = wtemp * w(k-1) 
cc print*,' W (twiddle) initialization completed •••••• • 
cccccccccccccccccccccccccccccccccccccccccc 
C INITIALIZE input data 
c 

PIN= (4*PI)/ N 
DO 10'0 I = 1, N 

c For testing with sinewave input data: 
c Treal = COS( I*PIN) 
c Timag = SIN( I*PIN) 

c For testing with squarewave input: 
cc IF (I .lt. N/2) THEN 

cc 
cc 
cc 
cc 
cc 
cc 

Treal = 
Timag = 

ELSE 
Treal = 
Timag = 

END IF 

1.0 
0.5 

o.o 
o.o 

C For testing with ramp function input data: 
Treal = I - 1.0 
Timag = Treal + 0.5 
X(I) = CMPLX (Treal, Timag) 
Xl(I) = CMPLX (Treal, Timag) 
X2(I) = CMPLX (Treal, Timag) 
X3(I) = CMPLX (Treal, Timag) 

100 CONTINUE 
c 
cccccccccccccccccccccccccccccccccccccccccc 

IF (TIMEIT .ne. 0) THEN 

CALL fft (X2, M, N) 
cc Subroutine fft is Decimation-In-Time, Fortran version. 

c CALL ditt(X, M, N,W,IREV) 
CALL diff(X, M, N,W,IREV) 

END IF 

ccccccccccccccccccccccccccccccccccccccc 
IF (!REV .ne. 0) THEN 
IF (TIMEIT .eq. 0) THEN 

call vcompare(X,X2,2*N) 
call cmags(X,N,ASQR) 

c cmags to take squared magnitude of complex values 
call cmags(X2,N,ASQR2) 

6-122 



intef AP-435 

c----------------------c 
C print non-zero results: 

J=O 
DO 700 I = l,N 
IF ( (ASQ.R(I) .GT. 1.0) .OR. (ASQ.R2{I) .GT. 1.0)) THEN 

WRITE (6,22) (I-1), ASQ.R(I), ASQ.R2(I) 
22 FORMAT (' I-l=',I4,' ASQ.R(I): ',Fl4.2, 'ASQ.R2(I): ',Fl4.2//) 

J = J+l 
IF (J .GT. 32) GOTO 725 
ENDIF 

700 CONTINUE 

725 CALL TIME 
END IF 
END IF 

IF (TIMEIT .ne. 0) THEN 
ccccccccccccccccccccccccccccccccccccccc 
cc- Timing loop follows: 

print*,' Start Ass.FFT' 
IF (CACHETIME .eq. 0) THEN 

DO 500 I = l, IT,4 
C Reuse same array, so cache fill and writeback 

CALL diff(X, M, N,W,IREV) 

500 
ELSE 

CALL diff(X, M, N,W,IREV) 
CALL diff(X, M, N,W,IREV) 
CALL diff(X, M, N,W,IREV) 

DO 504 I = l, IT,4 

time NOT included. 

C Alternating between X,Xl,X2,X3 should 
CALL diff{X, M, N,W,IREV) 
CALL diff(Xl, M, N,W,IREV) 

provide cache misses. 

504 
END IF 

CALL diff(X2, M, N,W,IREV) 
CALL diff(X3, M, N,W,IREV) 

print*,' END Ass. FFT' 
ccccccccccccccccccccccccccccccccccccccc 

ENDIF 
STOP 
END 

6-123 



intef AP~435 

c----------------------c 
subroutine vcompare(res,exp,n) 

c VCOMPARE compares 2 REAL vectors, prints out lst few miscompares 
c 

integer n, errcnt 
real res(n), exp(n) 

write(6,l2) 
12 format('*** VCOMPARE: vector comparison beginning ***') 

data errcnt/O/ 
do 30 i = l,n 

if(AINT(res(i)) .ne. AINT(exp(i))) then 
c {print out error, exit if alot already} 
120 print *, '*** Error in compares ***' 

write(6,l2l) i 
l2l format (' Item number = ' , 16) 

write(6,l24) res(i), exp(i) 
124 format (' Res_:• ,Fl4.2,' Expected_:• ,Fl4.2) 

errcnt = errcnt + l 
if (errcnt .gt. 19) then 

end if 
end if 

30 continue 

if (errcnt .eq. 0) then 

return 

190 print*,' ***vector compares SUCCESSFUL***' 
end if 

99 return 
end 

c----------------------c 

6-124 



intef 

c---------------
c File: ditt.f 
c 6/15/89 

AP-435 

C Intel assumes no responsibility for use or misuse of this code. 

C FFT - Decimation in TIME, radix-2, inplace, 1-dimen 
C Inputs: 
C A= complex array of input, up to 1024 pts, single-prec float 
C M= log of number of pts 

= (Number of stages of FFT) c 
c 
c 
c 
c 

N =number of points. ie, N= 2**M =number of pts 
W= complex array of twiddle factors, length=N/2. 
REV= ignored parameter. 

C Outputs: 
C A= complex fft of input A. Correct order (bit-reversal done). 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine ditt(a,m,N,W,REV) 
integer m,N, i, REV,wlimit 
integer offset, stage, groups, wincr,powers2(0:10) 
complex a(n) ,w(N/2),temp 

data powers2 /1,2,4,8,16,32,64,128,256,512,1024/ 
C Powers2 to avoid calls to POW, DIV 

C Twiddle factor array w(i) has (cos,-sin) of 2pi*i/N 
CC Assume the caller provides w(i) constants ALREADY initialized 

c------------c Pre-touch data, lock into cache, for 8kByte fft: 
IF (N ,gt. 513) THEN 

call fetch(a,%VAL(n)) 
END IF 

c------------
cal l bitrev(a,%VAL(M) ,n) 

C Bitreversal of input needed for in-place decim in time FFT, to avoid 
C fetching twiddle-factors in bitrev order. 

wlimit = 8*((N/2) - 1) 

DO 20 stage = l,m 
groups = powers2(m-stage) 

C groups=number of times the twiddle factors are used, ie, the number of 
C smaller DFTs the stage is split into. 

C offset gets 1,2,4,8, ••• N/2 
offset = powers2(stage-l) 
winer = groups 
call ditstep(a,w,groups,offset,wincr,wlimit) 

20 CONTINUE 

RETURN 
END 

C------------

6-125 



intJ AP-435 

//--------------
// ditstep.ss: do one stage of fft butterflies 
// DIT = Decimation in Time, radix-2, inplace, 1-dimension 
// (C) Copyright 1989 INTEL Corporation. ALL 'RIGHTS RESERVED. 
II 7/15/89 
//------------
// Intel is not responsible for use nor for misuse of this program. 

//------------
// Do one entire stage (n/2 butterflies). Sample invocation: 
/I call ditstep(a,w,groups,offset,wincr,wlimit) 
//==================================================== 
// Inputs: 
// A= complex array of input, single-prec float 
// (complex stored as 4byte real, 4byte imag contiguously) 
// W= pointer to array of twiddle factors. Assuming W(k) is 
// CMPLX(cos(2pi*k/N)),-sin(2pi*k/N)) for k=O to (N/2)-1. 
/I offset= distance (except for scale-by-8byte sizeof(complex)) between 
/I the 2 input values for each butterfly. 
// Offset also is the number of butterflies done per "group•. 
// groups= N/(2*offset). The number of sub-DFTs this stage is split into. 
/I winer= distance (except for scale-by-8byte sizeof(complex)) between 
// successive w values for successive butterflies 
// wlimit =max index, in bytes, of W table. 
II 
II Outputs: 
// A= complex radix-2 butterflied version of input. 
II 
/1-------------------
define(astart, rl6) // input data base address 
define(wstart,rl7) //twiddle array ptr. Because w-contents depend on N, 
//we will assume the caller has initialized w() array. 
define(groups,rl8) llgroups:number of sub-DFTs this stage is split into. 
define(offset,rl9) //offset (initially elements, mult by 8 to get bytes) 
// between node and its dual (the 2 numbers to butterfly, ie. A and Bl 
define(wincr,r20) //increment between successive W values. Remains constant 
// within a given stage. 
define(wlimit,r21) //max index, in bytes, of W table. 
define(wind,r22) //current index, in bytes, of W table. 
define(offset2,r23) //offset*2 

define(decrem,r24) //bla decrement 
define(somecount,r25) // bla counter 

define(FEtch, r26) 
define(STore,r27) 

//pointer to lst component of butterfly (load) 
// • " lst component of butterfly (store) 

define(offsetp8,r28) //offset+8 

6-126 



intJ 

II f4:f7 spare 
define (ARe, fl2) 
define (Ale, fl3) 
define(ARo,fl4) 
define(Aio,fl5) 
define (BRe, fl6) 
define (Bie, fl 7) 
define(BRo,fl8) 
define(Blo,fl9) 

define(ERe,f20) 
define(Ele,f21) 
define(ERo,f22) 
define(Eio,f23) 

AP-435 

//element A, real component 
II " •, imag 
// extra A value, for prefetch (o="odd") 

//element B, real component 

// extra B value, for prefetch 

//A+(B*Wl, real (ER= AR + BR) 
// • imag " 
// previous loop's value 
// • imag • 

define(FRe,f24) //A-(B*W), real 
define(Fle,f25) // • imag • 
define(FRo,f26) // previous loop's value 
define(Fio,f27) // • imag • 

define(PR, f28) //(B*W), real 
define(PI, f29) //(B*W), imag 

define(WRe,f30) 
define(Wie,f31) 

//W (twiddle factor), real part 
II " •,, imag 

define (WRo, flO) 
define(Wlo,fll) 

//W (twiddle factor), real part (EXTRA copy) 
II " • , imag 

.text 

.align .quad 
_ditstep_:: 
ld.l O(groups) ,groups 
ld.l O(offset) ,offset 
shl 3,offset,offset 
shl l,offset,offset2 
adds 8,offset,offsetp8 

//fix Fortran call-by-ref 
II 

// change from elements to bytes 

fst.q 
fst.q 

f8 ,-16(sp)++ //save "local" regs 
fl2,-l6(Sp)++ // n n 

adds 
adds 

-1,groups,groups // pre-decrement for bnc usage, or bla usage 
-16,rO,decrem //bla decrement 

// We code the last 2 stages as special cases: 
//--------
xor 
be 
xor 
be 

//--------

8,offset,rO //offset=l, special case, no complex mult, funny addressing 
offset_l// (ASSUMING offset=l means wincr=O, and no twiddle used) 
16,offset,rO //offset=2, special case, no complex mult 
offset_2 

ld.l O(wincr) ,winer 
ld.l O{wlimit) ,wlimit 

6-127 

I 



AP-435 

pfadd.ss tO,tO,tO 
pfadd.ss tO,tO,tO 
pfadd.ss fO,fO,fO //· init Al,A2,A3=0 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 
pfmul.ss fO,fO,fO 

11--------
11 init pointers: 
shl 3,wincr,wincr //scale for bytes. 
shl l,wincr,wind //init wind =2*wincr 

pfld.d O ( wstart),fO 
pfld.d winer ( wstart) ,fO 
adds -8,astart,FEtch 
pfld.d wind (wstart) ,fO 
adds wincr,wind,wind //wind now 3*wincr 

/I here fetch first set of B,W before bla-loop 
pfld.d wind (wstart) ,WRe 
adds wincr,wind,wind 

//first Bfetch from offset, then 1st afetch from o. 
fld.d offsetp8 (FEtch),BRe //first B value 

and wlimit,wind,wind //modulo-wlimit the w index 
/I We do modulo-addressing on W( ), to keep the pfld pipeline full. We 
/I never do a W-fetch beyond the end of the table. 
/I And the modulo-check needs to be done only every 4th pfld, as always 
/I we use a multiple of 4 W() factors. 

d.r2apl.ss f_O,fO,fO //clear Treg. 
adds -32,offset,somecount // bla counter (predecrement by 4'elements) 

II ----------- . . 
/I Definitions for pipe diagram: 
II Anew= E = A+(B*W) 
II Bnew = F = A-(B*.Wl 
II Let P=(B*W). 
11--------------
11 (the complex multiply product, P, broken into 4 real mult and 2 adds): 
II WR = cos() , WI=-sin ( l • 
// PR= K - L; where K= WR*BR, L=WI*BI 
// PI = N + M; where N= WI*BR, M=WR*BI 
II ER= AR+ PR (Overwrites AR) 
/I EI = AI + PI ( · AI l 
I/ FR = AR - PR ( BR) 
/I FI = AI - PI ( BI) 

/I For 1st time thru inner--loop, don't have correct values to store. 
// Must do l loop before the loop, sans the stores. 

/1-----------------first_bfly:: //fill pipe 

6-128 



intef AP-435 

II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 
d.r2pt.ss WRe,fO,fO II WRe 
pfld.d wind (wstart) ,WRo 

d.i2st.ss Wie,fO,fO II Wie 
adds wincr,wind,wind 

d.r2apl.ss fO ,BRe,fO II KO 
fld.d 8 (FEtch)++,ARe //first A value 

d.pfmul.ss Wie,Bie,fO // LO KO 
pfld.d wind (wstart) ,WRe 

d.r2pt.ss WRo,Bie,fO II WRo MO LO KO 
fld.d offsetp8 (FEtch) ,BRo 

d.ratls2.ss fO ,PR ,fOll MO LO KO 
adds wincr,wind,wind 

d.i2st.ss Wio,BRe,fO II Wio NO MO KO K-LO 
nop 

I I. · . · · · . · · · · · · · · · · · · · · · · · · · . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · d. r2apl. ss fO ,BRo, fO II Kl NO MO PRO 
and wlimit,wind,wind 

d.pfsub. SS fO • PI • fO II Kl NO MO PRO 
fld.d 8 (FEtch)++,ARo 

d.pfadd.ss ARe,PR ,PR II Kl NO MO ERO PRO 
fld.d offsetpB (FEtch) ,BRe 

d.pfmul.ss Wio,Blo,fO II Ll Kl NO MO ERO 
nop 

d.r2pt.ss WRe,Bio,fO // WRe Ml Ll Kl 
bla decrem,somecount,restart //init LCC 

d.ratls2.ss ARe,PR ,fOll Ml Ll 
nop 

restart:: 

MO M+NO ERO 

Kl FRO PIO ERO 

d.i2st.ss Wie,BRo,ERe// Wie Nl Ml Kl K-Ll FRO PIO ERO 
adds -16,astart,STore // ptrs init 16 low, for fst.q instructions 

//-------------------
// Each butterfly = l complx multiply, l complx add, l complx subtract 
// = 4 multiply, 3 add, 3 subtract 
II 3 8-byte fetches (A, B, W) 
II 2 8-byte stores (A, Bl 
II 
II 7 cycles per butterfly 
II 
// inner_loop: iterates "offset/2" times 
// for each group. It does 2 butterflies per iteration 

II AR/AI fetches need to be a .cycle behind BR/BI fetches here. So we 
// must index with offset+8 into B. 
// AR is used 1/2 loop before AI. 
// Pattern= AIO,ARl,BR2,BI2;Ail,AR2,BR3,BI3. 

inner _loop:: II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A 3 •••• Write 
d.r2apl.ss Aie,BRe,PI II K2 Nl Ml EIO PRl FRO PIO 
pfld.d wind (wstart) ,WRo 

d.pfsub.ss Aie,PI ,FRe// K2 Nl Ml FIO EIO PRl FRO 
fld.d 8(FEtch)++,ARe 

d.pfadd.ss ARo,PR ,PR // K2 Nl Ml ERl FIO EIO PRl 
fld.d offsetp8 (FEtch) ,BRo 

d.pfmul.ss Wie,Bie,fO // L2 K2 Nl Ml ERl FIO EIO 
adds wincr,wind,wind 

6-129 



intef 

M2 d.r2pt.ss WRo,Bie,Eie II WRo 
pfld.d wind {wstart) ,WRe 

d.ratls2.ss ARo,PR ,Fie// 
adds wincr,wind,wind 

d.i2st.ss Wio,BRe,ERo// Wio N2 
//modulo. and wlimit,wind,wind 

AP-435 

L2 K2 

M2 L2 

M2 

II 
d.r2apl.ss Aio,BRo,PI II 

nop 

KR ••• KI ••• Ml •••• M2 •••• M3 

d.pfsub.ss Aio,PI ,FRo// 
fld.d 8 {FEtch)++,ARo 

d.pfadd.ss ARe,PR ,PR // 

fld.d offsetp8 {FEtch) ,BRe 
d.pfmul.ss Wio,Bio,fO // 

nop 

K3 N2 

K3 N2 

K3 N2 

L3 K3 N2 

d.r2pt.ss WRe,Bio,Eio II WRe 
fst.q ERe,l6(STore)++ //update 

d.ratls2.ss ARe,PR ,Flo// 

M3 L3 K3 
ERe/Eie/ERo/Eio 

bla decrem,somecount, inner_loop 
d.i2st.ss Wie,BRo,ERe// Wie 
fst.q FRe, offset (STore) 
//update FRe/Fle/F,Ro/Fio 

N3 

end_inner_loop:: //KEEP Pipelines full 
/I RE-init pointers for fetches 
d.fiadd.ss fO,fO,fO 

M3 L3 

M3 

adds offset2,astart,astart //bump to next group 
//redo A,B fetches, with proper ptr. 

d.fiadd.ss fO,fO,fO 

M+Nl ERl FIO EIO 

K2 FRl Pil ERl FIO 

K2 K-L2 FRl Pil ERl 

T Al •••• A2 •••• A3 •••• Write 
M2 Ell PR2 FRl Pil 

M2 Fil Ell PR2 FRl 

M2 ER2 Fil Ell PR2 

M2 ER2 Fil Ell 

M+N2 ER2 Fil Ell 

K3 FR2 PI2 ER2 Fil 

K3 K-L3 FR2 PI2 ER2 

fld.d offset {astart) ,BRe //get first BR/BI in next group 
d.fiadd.ss fO,fO,fO 

adds -8,astart,FEtch 

last_bfly:: //do final 2 butterflies, start next group 
II KR ••• KI ••• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 

d.r2apl.ss Aie,BRe,PI // KO N3 M3 EI2 PR3 FR2 PI2 
pfld.d wind {wstart) ,WRo 

d.pfsub.ss Aie,PI ,FRe// KO N3 M3 FI2 EI2 PR3 FR2 
fld.d B(FEtch)++,ARe 

d.pfadd.ss ARo,PR ,PR // KO N3 M3 ER3 FI2 EI2 PR3 
fld.d off setp8 (FEtch) ,BRo 

d.pfmul.ss Wie,Bie,fO // LO KO N3 M3 ER3 FI2 EI2 
adds wincr,wind,wind 

d.r2pt.ss WRo,Bie,Eie II WRo MO LO KO M+N3 ER3 FI2 EI2 
pfld.d wind {wstart) ,WRe 

d.ratls2.ss ARo,PR ,Fle// MO LO KO FR3 PI3 ER3 FI2 
adds wincr,wind,wind 

d.i2st.ss Wio,BRe,ERo/I Wio NO MO KO K-LO FR3 PI3 ER3 
and wlimit,wind,wind //modulo 

I/, •••••••••••••••••••• .- •• • •• • • •• • ••• • •• • •• • • ••••••••••••••• • • • • • 
d.r2apl.ss Aio,BRo,PI // Kl NO MO EI3 PRO FR3 PI3 

adds -32,offset,somecount // reset bla counter 
d.pfsub.ss Aio,PI ,FRo// Kl NO MO FI3 EI3 PRO FR3 
fld.d 8 (FEtch)++,ARo 

6-130 



intJ AP·435 

d,pfadd.ss ARe,PR ,PR I/ Kl NO 
fld.d offsetp8 (FEtch) ,BRe 

d,pfmul.ss Wlo,Bio,fO // Ll Kl 
bla decrem,somecount,nowhere //re-init 

d.r2pt.ss WRe,Bio,Eio // WRe Ml Ll 
adds -1,groups,groups 

nowhere:: 
d.ratls2.ss ARe,PR ,Flo// Ml 
fst.q ERe,16(STore)++ 

d.fnop 
bnc,t restart //branch on value of groups 

d.fnop 
fst.q FRe, offset (STore) 

end_last_bfly:: 
d,fnop 
br endit 

fiadd.ss fO,fO,fO 

MO ERO 

NO MO ERO 
LCC=l 
Kl M+NO 

Ll Kl FRO 

fst.q FRe, offset (STore) //repeated for bnc.t untaken case 
.align .quad 

FI3 

FI3 

ERO 

PIO 

//============================================================= 
offset_l:: 
//want FEtch=0,2,4,6,8, ••• elements. ASSUMING wincr=O, 
// and that w=(l,0), so that no complex mult needed. 

EI3 

EI3 

FI3 

ERO 

// E=A+B, F=A-B. (Per double-butterfly loop: 8 pfadd,4 dword fld, 4 fst, 
// l bla) (fld.q used to reduce # flds) 
// Performance = 4 cyc/bfly best case. 

//Redefine regs for fld.q,fst.q usage, when A and B adjacent: 
define(AR3,fl2) //element A, real component 
define(Al3,fl3) // • •, imag 

define(BR3,fl4) //element B, real component 
define(BI3,fl5) 
define(AR4,fl6) // extra A value, for prefetch 
define(AI4,fl7) 
define(BR4,fl8) 
define(BI4,fl9) 

define(ER3, f20) //A+B, real (ER= AR+ BR) 
define(EI3, f21) // • imag • 
define(FR3, f22) //(A-Bl, real 
define(FI3, f23) // • imag 

define(ER4,f24) //A+B, real 
define(EI4,f25) // • imag 
define(FR4,f26) //(A-B), real 
define(FI4,f27) // • imag 
//========================================= 
adds -16,astart,FEtch 
fld.q 16 (FEtch)++,AR4 

PRO 

EI3 

FI3 

adds -1,groups,somecount II bla counter (predecremented already by l) 
//using groups=blacount on the offset_l loop, intentionally. 

adds -16,FEtch,STore 
//startup the loop: 

6-131 



AP-435 

II ------------'"-----..;.-// A.l •••••• A2 •• ~ ••• A3 •••••• Write: 
d.pfadd.ss AR4,BR4,f0 // ARn+BRn -

fld.,q 16 (FEtch) ++,AR3 
d.pfadd.ss AI4,BI4,f0 // Ain+Bin ERn 
adds -2,rO,decrem //2 bflies per loop 

d.pfsub.ss AR4,BR4,f0 // ARn-BRn Eln ERn 
bla decrem,somecount, offsetl_loop //init LCC 

d.pfsub.ss AI4,BI4,ER4 II Ain-Bin FRn Ein ERnext 
nop 

II------------------// Al •••••• A2 •••••• A3 •••••• Write: 
offsetl_loop:: 
d •. pfadd.ss AR3,BR3,EI4 II AR+BR FI­
nop 

d.pfadd.ss AI3,BI3,FR4 // AI+BI ER 
fld.q 16 (FEtch)++,AR4 

d.pfsub.ss AR3,BR3,FI4 // AR-BR EI 
fst.q ER4,16(STore)++ 

d.pfsub.ss AI3,BI3,ER3 // AI•BI FR 
nop 

d.pfadd.ss AR4,BR4,EI3 // AR2+BR2 FI 
fld.q 16 (FEtch)++,AR3 

d.pfadd.ss AI4,BI4,FR3 // AI2+BI2 ER2 
nop 

d.pfsub.ss AR4,BR4,FI3 
bla decrem,somecount, 

d.pfsub.ss AI4,BI4,ER4 
fst.q ER3,16(STore)++ 

11-------- -
end_offsetl_loop:: 
d.fiadd.ss fO,fO,fO 
br endit 

fiadd.ss fO,fO,fO 
nop 

11-------- -
.align .quad 

:'-.• otf'set_2::, 

II AR2-BR2 EI2 
offsetl_loop 
// AI2-BI2 FR2 

FR-

FI-

ER 

EI 

FR 

FI 

ER2 

EI2 

II want FEtch=O,l ;4,5 ;8,9 ;12,13 ; ••• eleme.nts. 

EI-

FR-

FI-

ER 

EI 

FR 

FI 

J;Rnext 

//ASSUMING wincr:N/4 (W_addr:O,N/4,0,N/4,0, ••• ). Trivial W() factors. 
/I Even-indexed elements identical to offset_l,W=WO, no complex mult. 
// So EReven:(AR+BR), Eieven:(AI+BI). 
/I So FReven=(AR-BR), Fieven::(AI-BI). 

// Odd components have W=(0,-1). So B*W = (BI,-BR). 
// So ERodd:Re(A+(B*W)) = (AR+BI) Eiodd:(AI-BR). 
/// So FRodd:Re(A-(B*W)) =(AR-BI) Fiodd:(AI+BR). 
/I Each fld.q fetches AReven,Aieven,ARodd,Aiodd. 

//Assume ERe,Eie,ERo,Eio are 4 contiguous regs. 
//Assume FRe,Fie,FRo,Fio are 4 contiguous regs. 
//Assume ARe,Aie,ARo,Aio are 4 contiguous regs. 

6-132 



intef 

adds -16,astart,FEtch 
fld.q 16 (FEtch)++,ARe 
fld.q 16 (FEtch)++,BRe 

AP-435 

adds O,groups,somecount //bla counter 
//startup the loop: 
II---------------------// Al •••••• A2 •••••• A3 •••••• Write: 

pfadd.ss ARe,BRe,fO // AR+BRe 
pfadd.ss Aie,Bie,fO // AI+Bie ER 

d.pfadd.ss ARo,Bio,fO // ARo+Bio EI ER 
nop 

d.pfsub.ss Aio,BRo,ERe // Aio-BRo ERo EI ER 
nop 

d.pfsub.ss ARe,BRe,Eie // AR-BRe Elo ERo EI 
ads -1,rO,decrem //2 bflies per loop,but groups is half desired value. 

d.pfsub.ss Aie,Bie,ERo // AI-Bie FR Eio ERo 
adds -16,astart,STore 

d.pfsub.ss ARo,Bio,Eio // ARo-Bio FI FR Eio 
bla decrem,Somecount, offset2_loop //init LCC 

d.pfadd.ss Aio,BRo,FRe // Aio+BRo FRo FI FR 
nop 

offset2_loop:: 
d.fnop 
fld.q 16 (FEtch)++,ARe//fetch AR,AI,ARo,Aio 

d.fnop 
fld.q 16 (FEtch)++,BRe 

II ------- II Al. ••••• A2 •••••• A3 •••••• Write: 
d.pfadd.ss ARe,BRe,Fie // AR+BRe Flo FRO FI 

nop 
d.pfadd.ss Aie,Bie,FRo // AI+Ble ER Flo FRo 

nop 
d.pfadd.ss 
fst.q 

d.pfsub.ss 

ARo,Bio,Fio // ARo+Bio EI ER Flo 
ERe,l6(STore)++ //update ER ,EI ,ERo,Eio 

Aio,BRo,ERe // Aio-BRo ERo EI ER 
nop 

d.pfsub.ss ARe,BRe,Eie II AR-BRe 
®nop 
d.pfsub.ss Aie,Bie,ERo II AI-Bie 
fst.q FRe,l6(STore)++ 

d.pfsub.ss ARo,Bio,Eio II ARo-Bio 
bla decrem,somecount,offset2_loop 

d.pfadd.ss Aio,BRo,FRe 
nop 

endit:: 
II restore regs 

II Aio+BRo 

fiadd.ss fO,fO,fO //exit DIM 
fld.q O(sp) ,fl2 

fiadd.ss fO,fO,fO //last DIM pair 
fld.q l6(Sp) ,f8 

adds 32,sp,sp 
bri rl 

nop 

Elo ERo 

FR Eio 

FI FR 

FRo FI 

//=============================================== 

6-133 

EI 

ERo 

Eio 

FR 

I 



intef AP-435 

c---------------c File: dirr.f 
C FFT - Decimation in Freq, radix-2, inplace, 1-dimen, 
C REAL input 
C Intel is not responsible for use nor misuse of this code. 

c 8/14/89 

C Inputs: 
C A= REAL array of input, up to 1024 pts, single-prec fl?at 
C M= log of number of pts 
C = (Number of stages of FFT) 
C N = number of points. ie, N= 2**M = number of pts 
C W= complex array of twiddle factors, length N/2, 
C REV= O if bitreversed output ok. l=must re-order output 
c 
c 
c 

(REV will be ignored, and output will be properly ordered. 
reversal WILL be done.) 

C Outputs: 

Bit 

C A= complex fft of input A, but only the positive frequency half. 
C Length= N/2+1 complex numbers. A(O:n/2) 
c 

subroutine dirr(a,m,N,W,REV) 
integer m,N, i, j,k, REV,wlimit 
integer offset, stage, groups, wincr,powers2(0:10) 
real a(N) 
complex w(N/2),temp 

data powers2 /l,2,4,8,16,32,64,128,256,512,1024/ 
C Powers2 to avoid calls to POW, DIV 

C Twiddle factor array w(k) has (cos,-sin) of 2pi*k/N 
CC Assume the caller provides w(k) constants ALREADY initialized 

c------------c Pre-touch data, for 8kByte fft: (2048 points real) 
IF (N .gt. 1025) THEN 

call fetch(a,%VAL(n/2)) 
ENDIF 

c------------
vilimi t = 8* ( (N/2) - l) 

C "DO 20" stage-loop: doing Complex FFT on length N/2 array. Twiddles are 
C for a length N array, so winer gets scaled by 2. 

DO 20 stage = l,m-1 
groups = powers2(stage-l) 

C groups:number of times the twiddle factors are used, ie, the number of 
C smaller DFTs the stage is split into. 

C offset gets N/4,N/8,N/16, ••• 
offset = powers2(m-l-stage) 
winer = groups * 2 
call difstep(a,w,groups,offset,wincr,wlimit) 

20 CONTINUE 

call bitrev(a,%VAL(M-l) ,n/2) 
call realfix(a,w,%VAL(n)) 

RETURN 
END 

c------------
6-134 



intef AP·435 

II 
II 
II 
II 
II 
II 

realfix.ss: This is i860(tm) CPU assembly code to revise data from an 
N/2 length Complex FFT. 
(assumes the input data fed to Complex FFT was N real values) 

INTEL is not responsible for use nor misuse of this code. 

II 8/14/89 
/I This 18-cycle-butterfly loop may be sub-optimal. 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

output = overwrite the data array used for input. Results are 
complex. ReO,ImO,Rel,Iml, ••• , Re(N/2) ,Im(N/2). 

NOTE that output array is 1 element longer than input. 

Input is H(k), output is F(k) ••• 
F(k)=.5*( H(k)+ Hconj(N/2-k) -j*(H(k) -Hconj (N/2-k))*Wconj(k)) 

Algorithm from "Numerical Recipes in C", by Flannery, Press, Teukolsky, and 
Vetterling, Cambridge Univ. Press 1988, p.417. 

//*************************/ 

//* The C-version of realfix: */ void realfix_(a,w,n) 
///*Input = 
II a ( 0 :n+l) : length n/2+1 complex array. Entries 0 :n/2.-1 are the complex FFT 
// * result, in correct (NON BIT REVERSED) order. Entry n/2 is undefined. 
// * w: length n/2 complex array of twiddles. (cos,-sin(2pi*k/n)) 
// * n: call-by-value, number of REAL input samples 

II *Output = 
// * a(O:n+l): length n/2+1 complex array. 
// * Format is ReO,ImO,Rel,Iml, ••• , Re(N/2) ,Im(N/2). 
// * NOTE: To generate entire N-length complex output 
// * conjugate of element(!) to element(N-i). 

spectrum, you can copy 

II *I 
//float 
II 

a[), w[]; int n; ( int aptr,bptr, wptr; float half=0.5, 
AR,AI,BR,BI, /* input values for A,B*/ 

II 
II 

PR,PI,SR,SI,DR,DI, /*temporary differences,sums,products*/ 
K,L,M,N, /*temporary products */ 

II ER,EI,ERD,EID, 
II FR,FI,FRD,FID, 
II WR,WI; 

///*We do first and last elements as special case(Imag=O, W:(l,0))*/ 
II AR = a[O) ; AI = a[l) ; 
I I a[O) = AR + AI ; a[l) = O ; 
I/ a[n) = AR - AI ; a[n+l) = 0; 

6-135 

I 



intJ AP-435 

//for(aptr=2, bptr=(n-2), wptr=2; aptr < n/2; aptr +=2, bptr -=2, wptr +=2) 
//{WR = w[wptr]; WI = w[wptr+l]; 
// AR = a[aptrl; AI = a[aptr+l] ; 
/I BR = a[bptr] ; BI = a[bptr+l] ; 
// /* aptr =2,4,6 ••• ,14; bptr=30,28,26, ••• ,l8 (if n=32) */ 
// /* Note that there is no need to revise the value at the middle of the 
// list, as it is already correct. (.5*(H(n/4)+Hconj(n/4)) */ 
II SI = (AI + BI); 
II DR= (BR - AR); 
// K = WR*SI; L= WI*DR; 
II M = WR*DR; N: WI*SI; 
II SR = (AR + BR) ; 
// DI = (AI - BI) ; 

PR= K-L; 
PI = M+N; 

II ERD = SR+PR; ER= half*ERD; 
11 a[aptr] = ER; 
II EID= DI+PI; EI= half*EID; 
I/ a[aptr+l]= EI ; 
/I FRD =SR-PR; FR= half*FRD; 
11 a[bptrl = FR; . 
II FID =PI-DI; FI= half*FID; 
II a[bptr+l]= FI; l /*end of for-loop * / l 
/I************* End of C-code for realfix.*********************** 
.text 
.align .quad 

/1--------------
define(astart, rl6) //input data base address 

define(wptr,rl7) //pointer to W table. Because w-contents depend on N, 
/I we will assume the caller has initialized w() array. 
define(N,rl8) // 
define(aptr, r20) 
define(bptr, r2l) 

//pointer to lst component of butterfly {load) 
//pointer to 2nd component of bfly (load); DOWNCOUNTER 

define(decrem,r24) //bla decrement 
define(count,r25) // bla counter 

define (WR, fl8) 
define(WI, fl9) 

define (AR, fl2) 
define (AI, fl3) 
define(ARo,fl4) 
define(Aio,fl5) 
define(BR, fl6) 
define (BI, fl 7) 

//W (twiddle factor), real part 
II • " , imag 

//element A, real component 
II • •, imag 
/I extra A value, for prefetch (o:"odd") 

//element B, real component 

define(ER, f20) //Result of butterfly which overwrites AR 
define(EI, f2l) // • • • " AI 

define(half,f22) //constant 0.5 

define(FR, f24) //Result of butterfly which overwrites BR 
define(FI, f25) 
define (PR, f26) 
define (PI,f27) 

define (DR, f28) 
define (DI, f29) 

6-136 



intef AP-435 

define(SR, f30} //Sum of A+B, real part 
define(SI, f31} // • •, imag • 

.data 

.align .double 
halfloc:: .float 0.5 
//--------
.text 
.align .quad 
_real fix_:: 
fst.q fl2,-16(sp}++ //save "local" regs 
adds -4,rO,decrem //bla decrem.ent 

11--------
11 We do not bother to initialize FP pipes to zero here, as we assume 
/I this routine is called after another,•safe", pipelined FP routine. 

pfld.l halfloc,fO 
pfld.d 8( wptr}++,fO //skip W(O} intentionally. Is a trivial (1,0) value 
II init pointers: 
adds O,astart,aptr 

pfld.d 8( wptr}++,fO 
shl 2,N,bptr //bptr=total # bytes of input data 

pfld.d 8( wptr)++,half //0.5 into an fpr 
adds bptr,astart,bptr // bptr points to a(N) 

/I here fetch first set of A,B,W before bla-loop 
pfld.d 8( wptr)++,WR 
fld.d O (aptr),AR //for 1st and last elements 
adds -8,N,count // bla counter (predecrement by 2 butterflies worth) 

II -----------
// Do n/4 butterflies: (computing only N/2 elements of complex output, because 
/I the second N/2 are just complex conjugates of the 1st N/2) 

/I Definitions for pipe diagram: 
II WR= cos(), WI=-sin(). 
/I DR= BR - AR; (diffence of Real components of A,B} 
/I DI= AI - BI; (diffence of !mag components} 
II SR,SI = sum of A,B 
// PR= K - L; where K= WR*SI, L=WI*DR 
// PI = M + N; where M= WR*DR, N:WI*SI 
/I (ER,EI}=complex result to overwrite A. 
II (FR,FI)=" ••• B. 

first_fly:: //fill pipe. 
II For 0th butterfly: 
II AR = a[O) ; AI = a[l) ; 
I/ a[O) = AR + AI ; a[l) = 0 ; 
II a[n] = AR - AI ; a[n+l) = 0; 

II 
r2pt.ss fO,fO,fO II 
mrmlp2.ss AR,AI,fO // 
mrmls2.ss AR,AI,fO // 

KR •• KI •• Ml •••• M2 •••• M3 T Al •••• A2 •••• A3 •••• Write 

fld.d 8 (aptr}++,AR 
fld.d -8(bptr)++,BR 

d.pfadd.ss fO,fO,fO II 
d.pfadd.ss fO,fO,ER // 

0 0 
0 
0 

0 
0 

0 
0 

0 
0 

6-137 

0 

0 
0 

ERO 
FR ER 

0 
0 

FR 
0 

ER 
FR ERO 

I 



intef AP•435 

d.ralp2.ss AI ,BI ,FR II 0 0 Sll FRO 
nop 

d.mrmls2.ss BR ,AR ,EI II 0 DRl Sll EIO 
fst.d ER,-8(aptr) 

d.mr2pt.ss WR ,fO, FI II WR DRl Sll FIO 
fst.d FR, 8(bptr) 

d.ralp2.ss BR ,AR ,SI II Kl SRl DRl Sll 
andh Ox8000,count,r0 //check for negative 

d.ml2tpm.ss WI ,DR ,DR II Ll Kl SRl DRl 
bnc endfix 

d.r2pt.ss half,DR, fO //half Ml Ll Kl SRl 
nop 

d.ml2ttpa.ss WI ,SI ,SR// Nl Ml Ll Kl SRl 
nop, 

d.i2st.ss fO ,fO ,fO// fO - Nl Ml Kl PRl 
nop 

II KR •• KI •• Ml •••• M2 •••• M3 T Al •••.• A2 •••• A3 •••• Write 
d.ratls2.ss AI ,BI ,fO II Nl Ml Dll PRl 

nop 
d.i2pt.ss fO ,fO, fO// fO - Ml Pll Dll PRl 
fld.d 8 (aptr)++,AR 

d.r2apl.ss SR ,fO, PR// ERD Pll Dll PRl 
fld.d -8(bptr)++,BR 

d.rals2.ss SR ,PR, DI II FRD ERD Pll Dll 
pfld.d 8( wptr)++,WR 

d.r2apl.ss DI ,fO, PI// EID FRD ERD Pll 
nop 

d.rals2.ss PI ,DI ,fO II ERl FID EID FRD 
nop 

d.ralp2.ss fO ,fO ,fO II FRl ERl FID EID 
nop 

d.rals2.ss fO ,fO ,fO II Ell FRl ERl - FID 
bla decrem,count,fix_loop 

d.pfadd.ss fO ,fO ,FI II Ell FRl ERl - -FID 
nop 

11-------------------11 Each butterfly = l complx multiply, 3 complx add, l real multiply 
/I = 8 multiply, 10 add/subtract 
II 3 8-byte fetches (A, B, W) 
II 2 8-byte stores (E, Fl 
II 
/I approx. 18 cycles per butterfly 
II 

6-138 



intef AP-435 

fix_loop:: II KR •• KI •• Ml •••• M2 •••• M3 
d.mr2pt.ss fO ,FI ,ER II 0 Fil Ell FRl 
nop 

d.mrmlp2.ss AI ,BI ,FR II Fil Ell 
nop 

d.mrmls2.ss BR ,AR ,EI II Fil 
fst.d ER,-8(aptr) 

d.mr2pt.ss WR ,fO, FI II WR 
fst.d FR, 8(bptr) 

d.ralp2.ss BR ,AR ,SI II K2 
andh Ox8000,count,r0 //check for negative 

d.ml2tpm.ss WI ,DR ,DR II 12 K2 
bnc end fix 

d.r2pt.ss half,DR, fO //half M2 12 K2 
nop 

d.ml2ttpa.ss WI ,SI ,SR// N2 M2 12 
nop 

d.i2st.ss fO ,fO ,fO// fO - N2 M2 
nop 

II KR •• KI •• Ml •••• M2 •••• M3 
d.ratls2.ss AI ,BI . fO// 
nop 

d.i2pt.ss fO ,fO, fO// 
fld.d 8 (aptr)++,AR 

d.r2apl.ss SR ,fO, PR// 
fld.d -8(bptr)++,BR 

d.rals2.ss SR ,PR, DI// 
pfld.d 8( wptr)++,WR 

d.r2apl.ss DI ,fO, PI// 
nop 

d.rals2.ss PI ,DI ,fO II 
nop 

d.ralp2.ss fO ,fO ,fO II 
nop 

d.rals2.ss fO ,fO ,fO // 
bla decrem,count,fix_loop 

d.pfadd.ss fO ,fO ,FI // 
nop 

//---------
endfix:: 
II restore regs 
fiadd.ss fO,fO,fO //exit DIM 
fld.q O(sp) ,fl2 

fO -

ER2 

FR2 ER2 

EI2 FR2 

EI2 FR2 

fiadd.ss fO,fO,fO //last DIM pair 
adds 16,sp,sp 
bri rl 

nop 

//------------

6-139 

N2 

ER2 

ER2 

T Al •••• A2 •••• A3 •••• Write 
- ERl 

- SI2 FRl 

- DR2 SI2 Ell 

DR2 SI2 Fil 

SR2 DR2 SI2 

SR2 DR2 

SR2 

K2 - SR2 

K2 PR2 

T Al •••• A2 •••• A3 •••• Write 
M2 DI2 PR2 

M2 PI2 DI2 PR2 

ERD PI2 DI2 PR2 

FRD ERD PI2 DI2 

EID FRD ERD PI2 

FID EID FRD 

FID EID 

- FID 

I - FID 



intJ AP-435 

PROGRAM FFTTEST 
c file = real.f 
c 
C 1-D FFT TEST PROGRAM 
c 
c 8/14/89 

C Intel assumes no responsibility for use or misuse of this code. 
C------------------

PARAMETER (IREV=l) 
character*B really 
PARAMETER (REALLY='real') 

c PARAMETER (REALLY='complex') 
PARAMETER (TIMEIT:O, CACHETIME:O) 

c REALLY='real' means real-only input, otherwise assume complex input 
DATA IT/200000/ 

c PARAMETER (N=2048,M=ll) 
PARAMETER (N=l024,M:l0) 

c PARAMETER (N:512,M= 9) 
c PARAMETER (N:256,M= 8) 
c PARAMETER (N:l28,M= 7) 
c PARAMETER (N:64,M= 6) 
c PARAMETER (N=32,M= 5) 
c PARAMETER (N:l6, M=4) 

c 

PARAMETER (PI=3.l415926536) 
COMPLEX X2(N) ,X(N),X3(N), W(N/2) 

Real ASQR{N) ,ASQR2{N) ,XR(N+2) ,XRl(N+2) ,XR2(N+2) ,XR3(N +2) 
complex wtemp 
real rtemp 

PRINT*,' FFT test program 
print*,'===============================' 
IF (!REV .eq. 0) THEN 
print *,'NOT counting time for bit-reversal,' 
print *,'DO NOT expect matching answers,without bit-rev' 

ELSE 
print*• 'Time for bit-reversal included.' 

END IF 

print *• 'Time for cache writeback and fills ••• • 
IF (CACHETIME .eq. 0) THEN 
print*,' NOT included, if iterating.' 

ELSE 
print *,' 

END IF 

print *• 
print *, 
print *, 
print *• 
print *• 
print * 

included.' 

'===============================' 
'If iterating ••• Number of Iterations =',IT 
'===============================' 
'Number of Points 
'(',REALLY,' data)' 

= '' N 

'===============================' 

6-140 



intef AP-435 

c------------------c lnit twiddle factor array w(k) with (cos,-sin) of 2pi*k/N 
rtemp = 2.0*pi/N 
wtemp= CMPLX(cos(rtemp), -sin(rtemp)) 
w(l) = (1.0, 0.0) 
DO 200 k = 2,N/2 

200 w(k) = wtemp * w(k-1) 
cc print*,' W (twiddle) initialization completed •••••• • 
cccccccccccccccccccccccccccccccccccccccccc 
C INITIALIZE input data 
c 

DO 100 I = l, N 
c :constant: 
c Treal = l.O 
c Timag = O.O 

c:squarewave: 
cc IF (I .lt. N/2) THEN 
cc Treal = l.O 
cc Timag = 0.5 

cc ELSE 
cc Treal = o.o · 
cc Timag = O.O 
cc ENDIF 
C: ramp function: 

Treal = I - l.O 
Timag = Treal + 0.5 

IF (REALLY .ne. 'real') .THEN 

ELSE 

X(I) = CMPLX (Treal, Timag) 
X2(1) = CMPLX (Treal, Timag) 
X3(1) = CMPLX (Treal, Timag) 

X(I) = CMPLX (Treal,0.0) 
X2(1) = CMPLX (Treal,0.0) 
XR(I) = Treal 
XRl(I) = Treal 
XR2(1) = Treal 
XR3(1) = Treal 

ENDIF 
100 CONTINUE 
c 
cccccccccccccccccccccccccccccccccccccccccc 

CALL fft (X2, M, N) 
cc Subroutine fft is Decimation-In-Time, Fortran version. 

CALL dirr(XR,M,N,W,l) 
c (Assuming dirr produces inplace result, items O:N/2 complex results) 

6-141 

I 



intef AP-435 

c cc cc cc c·c cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc 
IF (IREV .ne. 0) THEN 
IF (TIMEIT .eq. 0) THEN 
call vcompare(XR,X2,N/2+2) 
call cmags(XR,N/2+1,ASQR) 

c cmags to take squared magnitude of complex values in X 
call cmags(X2,N,ASQR2) 

c----------------------c 
C print non-zero resul.ts: 

J:O 

DO 700 I = l,N/2+1 
IF ( (ASQR(I) .GT. 1.0) .OR. (ASQR2(1) .GT. 1.0)) THEN 

WRITE (6,22) (1-1), ASQR(I), ASQR2(1) 
22 FORMAT (' 1-1=',14,' ASQR(I): ',Fl4.2, ' ASQR2(1)= ',Fl4.2//) 

J = J+l 
IF (J .GT. 32) GOTO 725 
END IF 

700 CONTINUE 

725 CALL TIME 
ENDIF 
ENDIF 

IF (TIMEIT .ne. 0) THEN 
ccccccccccccccccccccccccccccccccccccccc 
cc- Timing loop follows: 

print*,' Start Ass.FFT' 
IF (CACHETIME .eq. 0) THEN 

DO 500 I = 1, IT,4 
C Reuse same array, so cache fill and writeback time NOT included. 

CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XR, M, N,W,IREV) 

500 CALL dirr(XR, M, N,W,IREV) 
ELSE 

DO 504 I = 1, IT,4 
C Alternating between XR,XR1,XR2,XR3 should provide cache misses. 

. CALL dirr(XR, M, N,W,IREV) 
CALL dirr(XRl, M, N,W,IREV) 
CALL dirr(XR2, M, N,W,IREV) 

504 CALL dirr(XR3, M, N,W,IREV) 
END IF 

print*,' END Ass. FFT' 
ccccccccccccccccccccccccccccccccccccccc 

6-142 



END IF 

STOP 
END 

c----------------------c 
subroutine vcompare(res,exp,n) 

AP-435 

c VCOMPARE compares 2 vectors, prints out 1st few miscompares 
c 

integer n, errant 
real res(n), exp(n) 

write(6,12) 
12 format('*** VCOMPARE: vector comparison beginning ***') 

data errcnt/O/ 
do 30 1 = l,n 

if(AINT(res(i)) .ne. AINT(exp(i))) then 
c (print out error, exit if alot already} 
120 print *• '*** Error in compares ***' 

write(6,121) i 
121 format ( ' Item number = ' , IS) 

write(S,124) res(i), exp(i) 
124 format (' Res_:• ,Fl4.2,' Expected_:• ,Fl4.2) 

errant = errant + l 
if (errant .gt. 19) then 

return 
end if 

end if 
30 continue 

if (errant .eq. 0) then 
190 print*•' ***vector compares SUCCESSFUL***' 

end if 

99 return 
end 

c----------------------c 

6-143 

II 



AP-435 

c--------------~ C file: f'f't. f' 

C FFT routine from Rabiner & Gold, 1975, who copied it 
C from Cooley, Lewis, Welch 
c 6/02/89 
c 
C Decimation in Time, radix-2, inplace, l-dimen 
C Inputs: 
C Ai:: complex array of' input, up to 1024 pts, single-prec float 
C (maybe more than 1024, uncertain what limit is) 
C M= log of' number of' pts 
C = (Number of' stages of' FFT) 
C N =number of' points. -ie, N= 2**M =number of' pts 
c 
C Outputs: 
C ~ complex f'f't of' input A, in NON-bit-reversed order. 
c 
C w (twiddle factor) calculated by recursion. Supposedly takes 15% more 
C operations than keeping entire twiddle array as constants pre-allocated. 
c 

subroutine f'f't(a,m,n) 
integer m,n, i, j,k, ndiv2,powers2(0:l0) 
integer iplus,of'f'set, stage, indexl,' groups 
complex a(n),wtemp(2),w(ll),temp 

C Init twiddle factor array w() with (cos,-sin) of' pi,pi/2,pi/4, ••• 
data w(l) /(-l.0,0,0) I 
data w(2) /(0.0,-l.O) I 
data w(3) /(0.7071068,-0.7071068)/ 
data w(4) /(0.9238795,-0.3826834)/ 
data w ( 5) / ( o. 9807853, -o .1950903-l / 
data w(6) /(0.9951847,-0.0980171)/ 
data w(7) /(0.9987955,-0.0490677)/ 
data w(8) /(0.9996988,-0.0245412)/ 
data w(9) /(0.9999247,-0.0122715)/ 
data w(lO) /(0.9999812,-0.0061359) I 
data w(ll) /(0,9999953,-0.003068) / 

data powers2 /l,2,4,8,l6,32,64,l28,256,5l2,l024/ 
C Powers2 to avoid calls to POW, DIV 

C Setup f'or bit-reversal loop: 
ndiv2 = n / 2 
j =l 

c-----------c •no 7• loop to in-place-bit-reverse-shuf'f'le input 
DO 7 i: l, n-l 

IF (i .lt. j) THEN 
temp = a(j l 
a(j) = a(i) 
a(i) = temp 

END IF 
k = ndiv2 

6-144 



intJ AP-435 

C "While (j .gt. k)" /*decrease j by 2**something */ 
6 IF (j .gt. k) THEN 

END IF 

j = j-k 
k = k I 2 
GOTO 6 

C Add next lower power of 2 to j 
7 j = j+k 

c------------c Special case for stage l: no complex multiplies, simple add 
C (Performance enhancement) 

groups = 2 
offset = l 
indexl = l 

C i-loop iterates N/2 times for lst stage (and would do twice N/4 x for 2nd) 
CVD$ NODEPCHK 

DO 8 i = l,n,2 
iplus = i + l 

temp = a(iplus) 
a(iplus) = a(i) - temp 

8 a(i) = a(i) + temp 

c------------c Special case for stage 2: no complex multiplies, simple add 
C (Performance enhancement) 

groups = 4 
offset = 2 
indexl = l 

C i-loop iterates N/4 times for 2nd stage 
C lst call to i-loop,in stage2: indexl=l, wtemp(l):(l,0) 
CVD$ NODEPCHK 

DO 90 i = l,n,4 
iplus = i + 2 
temp = a(iplus) 
a(iplus) = a(i) - temp 

90 a(i) = a(i) + temp 

indexl 
CVD$ 

= 2 
NODEPCHK 
NOVECTOR CVD$ 

DO 92 i = 2,n,4 
iplus = i + 2 , 

temp= CMPLX(AIMAG(a(iplus)),-REAL(a(iplus))) 
a(iplus) = a(i) - temp 

92 a(i) = a(i) + temp 
CVD$ VECTOR 

c------------c •no 20• stage-loop executed once for each of the (m) stages of FFT 
C (Except lst and 2nd stage) 
C offset gets 4,8,16,32,64,128,256 ••• 

DO 20 stage = 3,m 
groups = powers2(stage) 
offset = groups/2 
wtemp(l) :(l.O, 0.0) 

C One twiddle seed (W) calc per stage. 
C We pre-allocated w(l2)-array with those values, avoid cos/sin calls 

6-145 

I 



intef AP-435 

c-------------------
DO 20 indexl = l,offset 

C •no 10" i-loop does each butterfly of each stage, with varying twiddles 
C i-loop iterates N/2 times for lst stage, N/4 x for 2nd, N/8 x for 3rd 
C stage, N/16 x for 4th stage, ••• l time for last stage. 

CVD$ 
CVD$ 

10 
20 wtemp(l) 

RETURN 
END 

NODEPCHK 
ALT CODE 
DO 10 i = indexl,n,groups 

iplus = i + offset 
temp = a(iplus) * wtemp(l) 
a(iplus) = a(i) - temp 
a(i) = a(i) + temp 

= wtemp(l) * w(stage) 

c------------
subroutine cmags(a,n,asqr) 

C Complex magnitude squared. 
C Inputs: 
C A= complex array of input, single-prec float 
C N = number of input points (and output points) 
C Ouput: 
C asqr =real squared magnitude (R*R + i*I), N elements, single-prec float 

integer n,i 
real asqr(n) 
complex a(n) 

DO 100 i = l, n 
asqr(i) = (REAL(a(i))*REAL(a(i))) + (AIMAG(a(i))*AIMAG(a(i).)) 

100 CONTINUE 
RETURN 
END 

6-146 



infef AP-435 

##makefile f0r i860(tm) CPU FFTs (for Unix V/386 programming environment) 
## 8/7/89 
## 
GH=/usr/i860/bin 
GHL=/usr/i860/lib 
CC=$(GH)/c860 
FC:$(GH)/f860 

CFLAGS= -OLM -X393 -X405 -Xl88 -X370 

FFLAGS= -OLM -X370 -X393 -X71 -X422 
## -X71 uses single-precision math routines 

FLFLAGS= -Mx map -e start 

LFLAGS= -Mx map -e _main 
CLIB:$(GHL)/libc.a 
MLIBPSR=$(GHL)/860mtlib.a 

MLIB=$(GHL)/libm.a 
FLIB=$(GHL)/libf.a 

ASM=$(GH)/as860 

FLINK=$(GH)/ld860 $(FLFLAGS) 

RT:$(GHL)/s5lib.a 

LIBS= $(FLIB) $(MLIBPSR) $(MLIB) $(CLIB) $(RT) 

LIBCC= $(MLIB) $(CLIB) $(RT) 
## NOTE: Order of linked files is CRUCIAL, other orders may give errors 

.SUFFIXES: 

.SUFFIXES: .f .c .s .ss .o .8 

.IGNORE: 
## .ignore causes make to ignore error codes from compilers 

## To test Fortran plus assembler-fft-stage version: 
FILE= ffttest.o fft.o diff,o bitrev.o difstep.o start.a time.o 

##To test all-Fortran version of fft: 
##FILE= ffttest.o fft.o diff.o difstepf.o start.a time.a 

##To test REAL-input version of fft: 
RFILE= real.o fft,o dirr.o realfix.o difstep.o bitrev.o start.a time.o 

.f .o: 
$(FC) $(FFLAGS) $*.f 
$(ASM) -x -o $*.o $*.s 

.c.o: 
$(CC) $(CFLAGS) $*.c 
$(ASM) -x -o $*.o $*.s 

6-147 



intef 

• s.o: 
m4 $*.s temp2.s 
$(ASM) -x -o $*.o temp2.s 

ffttest.8: $(FILE) 

AP-435 

$(FLINK) -o ffttest.8 $(FILE) $(LIBS) 
real.8: $(RFILE) 

$(FLINK) -o real.8 $(RF'ILE) $(LIBS) 

clean: 
rm -f *.o *.8 

.ss.o: 
m4 $*.ss temp.s 
$(ASM) -x -o $*.o temp.s 

6-148 



intef 

//start .ss 
II 8118189 
II Fortran runtime startoff routine 
II 

.text 

.globl start 
• globl finish 

start:: 

AP-435 

orh h%-stack+262128+262144,r0,sp 
or l%_stack+262128+262144,sp,sp 
adds -16,sp,sp 
st.l rl,12(sp) 
call _main 
nop 

finish:: 
call 
nop 
.file 

.data 

_exit 

•start.a" 

.align .quad 

.lcomm _stack,262144+262144 

.end 
II=============================================================== 
I* file: time.a. Purpose: establish a label to use for breakpoints *I 
long time_(x) 
long *x; 
{ x = x+4; 

return( (long) x); 

long timestop_(x) 
long *x; 
{ x = x+4; 

return((long) x); 

6-149 



i750™ Video Processor Family 7 

II 



• 
• 
• 
• 
• 
• 
• 
• 

82750PB 
PIXEL PROCESSOR 

25 MHz Clock with Single Cycle • Pixel lnterpolator 
Execution • High Performance Memory Interface 
Zero Branch Delay - 32-Bit Memory Data Bus 

Wide Instruction Word Processor - 50 MBytes per Second Maximum 
- 25 MBytes per Second with Standard 

512 x 48-Bit Instruction RAM VRAMs or DRAMS 
512 x 16-Bit Data RAM • 16 General-Purpose Registers 
Two Internal 16-Bit Buses • 4 Gbyte Linear Address Space 
ALU with Dual-Add-With-Saturation • 132-Pin PQFP 
Mode 

Compatible with the 82750PA • Variable Length Sequence Decoder 

The 82750PB is a 25 MHz wide instruction processor that generates and manipulates pixels. When paired with 
its companion chip, the 8275008, and used to implement a DVI Technology video subsystem, the 82750PB 
provides real time (30 images/sec) pixel processing, real time video compression, interactive motion video 
playback and real time video effects. 

Real time pixel manipulations, including 30 images/sec video compression, are supported by the 25 MHz 
instruction rate. On-chip instruction RAM provides programmability for execution of a wide range of algorithms 
that support motion video decompression, text, and 20 and 30 graphics. Inner loops are optimized with the 
integration of sixteen 16-bit quad ported registers, on-chip DRAM, and two loop counters that provide zero 
delay two-way branching "free" in any instruction. Two, 16-bit internal buses enable two parallel register 
transfers on each 82750PB instruction, contributing to the real time performance of the video processing. 
Another feature that adds to the processing power of the 82750PB is the 16-bit ALU, which includes an 8-bit 
dual-add-with-saturate operation critical for pixel arithmetic. Other specialized features for pixel processing 
include a 20 pixel interpolator for image processing functions and a variable length sequence decoder for 
decoding compressed data. 

The 82750PB is implemented using Intel's low-power CHMOS IV Technology and is packaged in a 132-lead 
space-saving, plastic quad flat pack (PQFP) package. 

ADDRESS 

Video putput 82750PB DATA 

CSYNC 
VBUS[3:0] VRAM 

Video B/U 

Mixer/ R/V 8275008 
Dlaplay G/Y 

SCLK[t:O Device ALPHA(7:0] 
Serial Shift 

Register 

VRESETf 
DATAIN 31:0 

Video Input 

82750PB Subsystem Diagram 

For the complete data sheet on this device, contact Intel's Literature Distribution Dept., (800) 548-4725. 

7-1 

240854-1 

November 1990 
Order Number: 240854-o01 

I 





8275008 
DISPLAY PROCESSOR 

• Programmable Video Timing 
- 28 MHz Operating Frequency 
- Pixel/Line Address Range to 4096 
- Fully Programmable Sync, 

Equalization, and Serration 
Components 

- Fully Programmable Blanking and 
Active Display Start and Stop Times 

- Genlocking Capability 

• Flexible Display Characteristics 
- 8-, Pseudo 16-, 16-, and 32-Bit/Pixel 

Modes 
- Selectable Pixel Widths of 1.0, 1.5, 

2.0, 2.5, through 14 Periods of the 
Input Frequency 

- Support Popular Display Resolutions: 
VGA, NTSC, PAL, and SECAM 

- On-Chip Triple DAC for Analog RGB/ 
YUV Output 

- Mix Graphics and Video Images on a 
Pixel by Pixel Basis 

- Real Time Expansion of the Reduced 
Sample Density Video Color 
Components (U, V) to Full Resolution 

- Three Independently Addressable 
Color Palettes 

- Programmable 2X Horizontal 
Interpolation of Y Channel 

-16 x 16 x 2-Bit Cursor Map with 
Independently Programmable 2X 
Expansion Factors in X and Y 
Dimensions 

- YUV to RGB Color Space Conversion 
- 2X Vertical Replication of Y, U, and V 

Data for Displaying Full Motion Video 
on VGA Monitor 

- Register and Function Compatible 
with the 82750DA 

The 827500B is a custom designed VLSI chip used for processing and displaying video graphic information. It 
is register and function compatible with the 827500A. 

Reset inputs allow the 827500B. to be genlocked to an external sync source. By programming internal control 
registers, this sync can be modified to accommodate a wide variety of scanning frequencies. A large selection 
of bits/pixel, pixels/line, and pixel widths are programmable, allowing a wide latitude in trading-off image 
quality vs update rate and VRAM requirements. 

The 827500B can operate in a digitizing mode, wherein it generates timing and control signals to the 82750PB 
and VRAM, .but does not output display information. Besides digitizer support signals and video synchroniza­
tion, the 8275008 outputs digital and analog RGB or YUV information and an 8-bit digital word of alpha data. 
This alpha channel data may be used to obtain a fractional mix of 827500B outputs with another video source. 

ADDRESS 

Video Output 82750PB DATA 

CSYNC 
VBUS 3:0 VRAM 

Video B/U 

Mixer/ R/V 

Display G/Y 
SCLK(l·O) Davlce ALPHA{7'0] 

Serial Shift 
Register 

Video Input 

8275008 Subsystem Diagram 

For the complete data sheet on this device, contact lntel"s Literature Distribution Dept., (BOO) 548-4725. 

7-3 

240855-1 

November 1990 
Order Number: 240855-001 

I 



Development Tools for the 8 
80386 and 80486 

I 



INTEL386™/i486™ FAMILY DEVELOPMENT 
SUPPORT 

COMPREHENSIVE DEVELOPMENT SUPPORT FOR THE 
INTEL386™/i486™ FAMILIES OF MICROPROCESSORS 

280608-1 

The perfect complement to the Intel386™ and i486™ microprocessor family is the 
optimum development solution. From a single source, Intel, comes a complete, synergistic 
hardware and software development toolset, delivering full access to the power of the 
Intel386 and i486 microprocessor family architectures. 

Intel development tools are easy to use, yet powerful, with contemporary user interface 
techniques and productivity boosting features such as symbolic debugging. And you'll 
find Intel first to market with the tools needed to start development, and with lasting 
product quality and comprehensive support to keep development on-track. 

If what interests you is getting the best product to market in as little time as possible, 
Intel is the choice. 

* AboveBoard, i486, Intel386, 386 DX, 386 SX, 376, 387, ICE, and iPAT are trademarks of Intel Corporation. 
VAX, MicroVAX and VMS are registered trademarks of Digital Equipment Corporation. 

8-1 
November 1990 

Order Number: 280808·005 

I 



intef 
FEATURES 

• Comprehensive support for the full 32 bit 
Intel 386 and i486 microprocessor 
architectures-includes protected mode, 4 
gigabyte physical memory addressing, and 
i486 microprocessor on-chip cache and 
numerics 

• Standard windowed interface that is common 
across Intel debug tools and architectures 

• Source line display and symbolics allow 
debugging in the context of the original 
program 

• Intel high-level languages provide 
architectural extensions for manipulating 
hardware directly without assembly 
language routines 

• A common object code format (Intel 
OMF386TM) supports symbolic debug and 
permits the intermixing of modules written 
in various languages-Intel's assembler, C, 
PL/M, and FORTRAN 

• A common OMF386 permits compilers and 
assembler to seamlessly operate with in­
circuit and software debug tools 

• ROM-able code is output directly from the 
language tools, significantly reducing the 
effort necessary to integrate software into 
the final target system 

• Extensive support for the Intel family of 
math coprocessors 

• Operation in DOS IBM PC AT*, PS/2 Model 
60 and 80, or compatible) and VAX/VMS* 
hosted environments 

280808-2 

Figure 1: Intel Microprocessor Development Environment 

8-2 



intef 
FEATURES 

ASM 386™/i486™ MACRO 
ASSEMBLER 
Intel's ASM 386™ is a "high-level" macro 
assembler for the Intel386 Family. ASM 386 
offers many features normally found only in 
high-level languages. The macro facility in 
ASM 386 saves development time by allowing 
common program sequences to be coded only 
once. The assembly language is strongly typed, 
performing extensive checks on the usage of 
variables and labels. 

Other Intel ASM 386 features include: 
• "High-level" assembler mnemonics to 

simplify the language 
• Structures and records for data 

representation 
• Support for Intel's standard object code 

format for source-level symbolic debug, arid 
for linking object modules from other 
Intel386 and i486 microprocessor languages 

• Full support for processor and math 
coprocessor instruction sets 

• A "MOD486" switch for support of the i486 
microprocessor instructions 

• 16 bit or 32 bit address overrides 
• Supports development for Virtual 86, Real, 

286 Protected, and 386 Protected modes 

iC386™/i486™ COMPILER 
Intel's iC-386 compiler provides special 
features for architectural support and code 
efficiency, for ease of use, and for compatibility 
with other Intel development tools. 

The iC-386 compiler produces code for Intel386 
and i486™ processors from C source files, and 
conforms to the 1989 ANSI standard (ANS 
X3.159-1989) for the C programming language. 

Key Intel iC-386 features include: 
• Controls to tailor the compilation for each 

step of your application development process 
• In-line versions of many ANSI-standard 

library functions 
• Uses expanded memory (LIM Version 3.0 

and higher) 
• Object code (including supplied run-time 

libraries) suitable for ROM 
• Three different levels of optimization 
• A choice of three segmentation memory 

models (small, compact, and flat) to create 
compact and efficient code 

• Object code that takes advantage of the on­
chip cache of the i486 processor 

• In-line processor-specific functions and time­
saving macros that provide access to the 
special features of the Intel386 and i486 
processors 

• In-line floating-point instructions for the 
387™ numerics coprocessor and i486 
processor floating-point unit 

• Time-saving macros and functions to help 
assembly language routines interface with 
Intel's high-level programming languages 

• The standard C run-time library plus 
libraries for floating-point support and the 
iRMX® III C interface library 

• An easy interface to Intel's non-C 
programming languages, along with object 
module compatibility between Intel C and 
non-C compilers 

• Support for source-level debugging using the 
Intel DB-386 Software Debugger 

• Programming with subsystems, allowing 
mixed segmentation memory models 

• Extensions to the 1989 ANSI C standard for 
compatibility with previous versions of 
IntelC 

8-3 

The iC-386 libraries contain over 200 functions 
for use in iC-386 programs. The libraries and 
header files make development ofiC-386 
applications easier by providing: 
• Fast and efficient functions for common 

programming tasks 
• Interfaces to standard and custom execution 

environments 
• Built-in versions of some functions 

PL/M386™/i486™ COMPILER 
Intel's PL/M-386 is a structured high-level 
system implementation language for the 
Intel386/i486 Families. PL/M-386 supports the 
implementation of protected operating system 
software by providing built-in procedures and 
variables to access the Intel386/i486 
architectures. 

For efficient code generation, PL/M-386 
features four levels of optimization, a virtual 
symbol table, and four models of program size 
and memory usage. 

I 



'I FEATURES 

Other Intel PL/M-386 features include: 
• The ability to define a procedure as an 

interrupt handler as well as facilities for 
generating interrupts 

• Direct support of byte, half-word, and wqrd 
input and output from microprocessor ports 

• Upward compatibility with Intel PL/M-286 
and PL/M-86 source code 

• A "MOD486" compiler switch for i486 
microprocessor instruction genera~ion 

PL/M-386 combines the benefits of a high-level 
language with the ability to access the Intel386 
architecture. For the development of systems 
software, PL/M-386 is a costeffective 
alternative to assembly language 
programming. 

FORTRAN 386™/i486™ 
COMPILER 
Intel's FORTRAN-386 compiler is a cross­
compiler that supports the entire Intel386 
family of components and i486 (when 
operating in the 386 chip mode) 
microprocessors. 
FORTRAN-386 features high-level support for 
floating-point calculations, transcendentals, 
interrupt procedures, and run-time exception 
handling. Specifically, the FORTRAN-386 
language is a superset of the language 
described in the ANSI Fortran 77 standard. 
The additions to that standard include the 
Department of Defense (DOD) extensions, 
extensions that support programs written for 
the ANSI Fortran 66 standard, and extensions 
that support the 386 microprocessor and 
80387 /80387DX/80387SX math coprocessors. 
To aid in the development and debugging 
process, the compiler generates warning and 
error messages and an optional listing file. The 
listing file can include symbol cross-veference 
tables and a listing of the generated 386 
microprocessor assembly-language 
instructions. Library routines are reentrant 
and ROMable. 

Other Intel FORTRAN-386 compiler features 
include: 
• Object code can be configured to reside in 

either RAM or ROM 
• The program code can be optimized for 

execution speed or memory size 
• Source-level debugging is supported via the 

rich symbolics provided in the object module 
format (Intel OMF386) 

· • Support for the proposed REALMATH IEEE 
floating point standard 

RLL 386™/i486™ RELOCATION, 
LINKAGE, AND UBRARY 
TOOLS 
The RLL 386™ relocation, linkage, and 
library tools are a cohesive set of utilities 
featuring comprehensive support of the full 
Intel386TM/i486™ architectures. RLL-386 
provides for a variety of functions-from 
linking separate modules, building an object 
library, or linking in 387™ support, to 
building a task to execute under protected 
mode or the multi-tasking, memory protected 
system software itself. Specifically, RLL-386 
supports loadable, linkable, and bootloadable 
Intel object module formats; and supports all 
segmentation models, including FLAT. Map, 
librarian, and conversion (for outputting hex 
format code for PROM programming) utilities 
are included. 

EMUL387, NUM387 NUMERICS 
SUPPORT UBRARIES 
Intel's EMUL-387 and NUM-387 Numerics 
Libraries fully support the 80387 /80387DX/ 
80387SX math coprocessors an.d the i486 
internal math coprocessor-whether an actual 
math coprocessor is used in the final system or 
not. · 

For 386 microprocessor based applicatfons 
without a math coprocessor, EMUL-387, a 
numerics software emulator, will execute 
instructions as though the coprocessor were 
present. Its functionality is identical to that of 
the math coprocessor. It is ideal for 
prototyping and debugging floating-point 
application software independent of hardware. 
Further, this permits portability of application 
code regardless of the presence of math 
coprocessor hardware in target systems. 
For applications .with a math coprocessor, 
NUM-387 numerics support library provides 
Intel's ASM 386, C-386, PL/M-386, and 
FORTRAN-386 language users with enhanced 
numeric data processing capability. With the 
library, it is easy for programs to do floating 
point arithmetic. Programmers can bind in 
library modules to do trigonometric, 
logarithmic and other numeric functions, and 
the user is guaranteed accurate, reliable 
results for all appropriate inputs. 

8-4 



inter 
FEATURES 

Intel's NUM-387 support library is a collection 
of four functionally distinct libraries: 
• Common elementary function library 

routines perform algebraic, logarithmic, 
exponential, trigonometric, and hyperbolic 
operations on real and complex numbers, as 
well as real-to-integer conversions; the 
routines extend the ranges of the coprocessor 
instructions 

• Initialization library routines set up the 
numerics processing environment for 80386 
microprocessor based systems with an 
80387 /80387DX/80387SX or true software 
emulator 

• Decimal conversion library routines convert 
floating-point numbers from one 
80387 /80387DX/80387SX binary storage 
format to another, or from ASCII decimal 
strings to 80387 /80387DX/80387SX binary 
floating-point format and vice versa 

• Exception handling library routines make 
writing numerics exception handlers easier 

All support library modules are in 80386 
microprocessor object module format (Intel 
OMF-386) so they can be linked with the object 
output of any Intel language. All routines are 
reentrant and ROMable. 

By using Intel's NUM-387, the user not only 
saves software development time, but is 
guaranteed that the numeric software meets 
industry standard (ANSI/IEEE standard for 
binary floating point arithmetic, 754-1985) and 
is portable--software investment is 
maintained. 

I 

8-5 



intJ 
FEATURES 

ONCE-386 
If you have a surface mount Intel386 SX 
microprocessor design using 100 pin PQFP 
parts, Intel ICE emulators now have "On­
Circuit Emulation" (ONCE™) capability. With 
your part surface mounted, the ICE-386 SX 
emulator cabling clamps over the part, tri­
stating the component, and allowing the 
emulator to operate. This allows you to debug 
manufactured boards without resoldering. 

REM-386 
Designed to enhance your existing ICE-386 DX 
25 and ICE-386 DX 33 emulators, the REM-386 
DX Expansion board adds 2 MB of expanded 
memory. 

INTEL386™/i486™ FAMILY IN­
CIRCUIT TOOLS 
In-Circuit Emulators 
Intel386 Family in-circuit emulators embody 
exclusive technology that gives access to 
internal processor states that are accessible in 
no other way. Intel386 microprocessors fetch 
and execute instructions in parallel, with 
fetched instructions not necessarily executing 
in order of input. Because of this, an emulator 
without this access to internal processor states 
is prone to error in determining what actually 
occurred inside the microprocessor. With 
Intel's exclusive technology, Intel386 Family 
emulators are one hundred percent accurate. 
In addition, internal access comes without 
signal buffer interference of processor timing. 
Operation is non-intrusive (zero wait-state). 

Other features of Intel386 Family in-circuit 
emulators include: 
• Unparalleled support of the lntel386 

architecture, notably the native protected 
mode 

• Emulation at clock speeds to 33 MHz, and 
full featured trigger and trace capabilities 

• Convertible using removable probes to 
support any of the Intel386 
microprocessors-80386DX, 80386SX, and 
80376 microprocessors 

With symbolic debugging, memory locations 
can be examined or modified using symbolic 
references to the original program, such as 
procedure or a variable names, line numbers, 
or program labels. Source code associated with 
a given line number can be displayed, as can 
the type information of variables, such as byte, 

word, record, or array. Microprocessor data 
structures, such as registers, descriptor tables, 
and page tables, can also be examined and 
modified using symbolic names. The symbolic 
debugging information for use with Intel 
development tools is produced by Intel 
OMF386 compatible languages. 

ICE™-486 IN-CIRCUIT 
EMULATOR 
The ICE-486 In-circuit Emulator is the world's 
leading tool for debugging software and 
hardware designs based on the Intel i486 
family of microprocessors. The ICE-486 
emulator features real-time emulation at 
speeds up to 33 MHz. The standard high- level 
symbolic debug capability saves valuable 
development time. The flexible breakpoint 
capability and SK deep trace buffer provide 
power to identify and solve even the toughest 
hardware and software bugs. The emulator 
also provides 2 MB expansion memory to 
debug large programs. It is designed to work 
with the rich array of software development 
tools optimized for creating 32-bit applications. 

In-Circuit Debugger 
Intel's ICD-486 represents a new generation of 
in-circuit emulation technology. From the 
inventor of the microprocessor comes a 
development tool that delivers complete access 
to the i486 architecture. ICD-486 is the first 
development tool which allows users to debug 
high speed, cached applications at the full 
speed of the target processor. ICD-486 
embodies exclusive technology, giving users 
symbolic access to the internal processor states 
that would not be accessible in any other way. 
With Intel;s exclusive technology, users can be 
assured that the ICD-486 provides complete 
accuracy when debugging cached applications 
in real-time. 

Other Intel ICD-486 features include: 
• Real-time emulation at the full speed of the 

i486 microprocessor 
• Full support for the i486 on-chip caching and 

numerics 
• Ability to set up to 16 software breakpoints 

and four hardware breakpoints on execution 
addresses, data writes, or data accesses 

• Full symbolic information to display and 
modify all registers of the i486 
microprocessor 

8-6 



intJ 
FEATURES 

SOFTWARE DEBUGGER 
Intel's DB386™ is an on-host software 
execution environment with source-level 
symbolic debug capabilities for object modules 
produced by Intel's assembler and high-level 
language compilers. For the DOS hosted 
version, this software debug environment 
allows 386 microprocessor code to be executed 
and debugged directly on a 386 DX or 386 SX 
microprocessor based PC, without any 
additional target hardware required. With 
Intel's standard windowed human interface, 
users can focus their efforts on finding bugs 
rather than spending time learning and 
manipulating the debug environment. 

For the VMS* hosted version, the debugger 
works in conjunction with an extensive 386 
microprocessor software instruction simulator 
included with the product. This simulator 
simulates the 386 microprocessor in "flat" 
mode, 387, 8259A and 8254 interrupt 
controller and timer chips, supports map 
memory up to 4 gigabytes, and provides 
complex break, trace, and profiling support. 

I 

8-7 



intJ 
FEATURES 

Other Intel DB386™ features include: 
• A run-time interface allows protected-mode 

386 microprocessor programs to be executed 
directly on a 386 DX or 386 SX 
microprocessor based PC 

• Drop-down menus make the tool easy to 
learn for new or casual users. A command 
line interface is also provided for more 
complex problems 

• Watch windows (which display user-specified 
variables), trace points, and breakpoints 
(including fixed, temporary, and conditional) 
can be set and modified as needed, even 
during a debug session 

• The user can browse source and callstacks, 
observe processor registers, and access watch 
window variables by either the pull down 
menu or by a single keystroke using the 
function keys 

• An easy-to-use disassembler and single-line 
assembler speeds the debug process 

• The user need not know whether a variable 
is an unsigned integer, a real, or a 
structure-the debugger uses the wealth of 
typing information available in Intel 
languages to display program variables in 
their respective type formats 

• DB-386 supports the i486 microprocessor 
when operated in the 386 microprocessor 
mode 

MON386 TARGET RESIDENT 
SOFTWARE DEBUGGER 
Intel's MON-386 is a hosted or unhosted target 
resident software debugger for the 386 DX and 
386 SX-based systems. MON-386 provides 
program execution control and symbolic 
processor and memory interrogation and 
modification. Hardware and software 
breakpoints can be set at symbolic addresses 
and program execution can be single-stepped 
through assembly level or high-level language 
instructions. 

Other Intel MON-386 features include: 
• Debug procedures (user-definable sequences 

ofMON-386 commands) enable users to 
define macro commands that would 
otherwise take several lines of command 
entries to perform the same function 

• A disassembler/single line assembler allows 
users to display memory and patch memory 
with 80386/80387 mnemonics 

~ 

MON-386, used in conjunction with Intel single 
board computers iSBC® 386/22 and iSBC 386/ 
116, or other customer designed systems, can 

debug software before a functional prototype of 
the target system is available. 

Intel's MON-386 can be used for i486 
microprocessor development when the 
component is run in the 386 microprocessor 
mode of operation. 

iPAT-386™ PERFORMANCE 
ANALYSIS TOOL 
Intel's iPAT-386™ performance analysis tool 
provides analysis of real-time software 
executing on a 386-based target system. With 
iPAT-386, it is possible to speed-tune 
applications, optimize use of operating 
systems, determine response characteristics, 
and identify code execution coverage. 

By examining iPAT-386 histogram and tabular 
information about procedure usage for critical 
functions (with the option of including 
interaction with other procedures, hardware, 
the operating system, or interrupt service 
routines) performance bottlenecks can be 
identified. With iPAT-386 code execution 
coverage information, the completeness of 
testing can be confirmed. 

Intel's iPAT-386 provides real-time analysis up 
to 20 MHz, performance profiles of up to 125 
partitions, and code execution coverage 
analysis over 252K. The iPAT-386 target probe 
is used with the same iP AT base module 
supporting 80286, 80186, and 8086 
development. The iPAT-386 system can be 
used independently or piggy-backed with 
Intel386 in-circuit emulator tools. 

WORLDWIDE SERVICE, 
SUPPORT, AND TRAINING 
To augment its development tools, Intel offers 
a full array of seminars, classes, and 
workshops, field application engineering 
expertise, hotline technical support and on-site 
service. 

Intel also offers a Software Support package 
which includes technical software information, 
telephone support, automatic distribution of 
software and documentation updates, access to 
the "ToolTalk" electronic bulletin board, 
"iComments" publication, remote diagnostic 
software, and a development tools 
troubleshooting guide. 

8-8 



intef 
FEATURES 

PRODUCT SUPPORT MATRIX 

Component Host 
Product i486TM 386™ 386™ 376™ DOS VMS 

DX sx 3.x 5.1+ 

ASM-386 Macro Assembler ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
iC-386 Compiler ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
PL/M:-386 Compiler ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
FORTRAN-386 Compiler ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
RLL-386 Relocation, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
Linkage, Library, Support 
Tools 

NUM-387 Libraries ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, 
EMUL:-387 Libraries NA ,;,. ,,,, ,,,, ,,,, ,,,, 
In-circuit Emulators ,,,, ,,,, ,,,, ,,,, 
In-circuit Debugger ,,,, ,,,, 
DB-386 Software Debugger ,,,, ,,,, ,,,, ,,,, ,,,, 
MON-386 Target Level ,,,, ,,,, ,,,, ,,,, 
Software Debugger 

iP AT-386 Performance ,,,, ,,,, 
Analysis Tool 

I 

8-9 



intef 
ORDERING INFORMATION 

386™/i486™ FAMILY DOS 
HOSTED DEVELOPMENT KIT 
ORDER CODES 
DKIT386C Compiler Software 

Development Kit (see 
following content list). Also 
supports i486 
microprocessor 

DKIT386CS C Compiler Software 
Development Kit w/ one 
year Gold Software 
Support. Also supports i486 
microprocessor. 

DKIT386CIDX C Compiler Software 
Development Kit w/ ICE386 
DX 33 MHz In-circuit 
Emulator and 2 MB 
AboveBoardTM 

DKIT386CIDXS Same as above w/ one year 
Hardware and Gold 
Software Support 

pDKIT386CISX C Compiler Software 
Development Kit w/ ICE386 
SX 20 MHz In-circuit 
Emulator and 2 MB Above 
Board 

pDKIT386CISXS Same as above w I one year 
Hardware and Gold 
Software Support 

pDKIT386Cl376 C Compiler Software 
Development Kit w/ ICE376 
16 MHz In-circuit Emulator 
and 2 MB Above Board 

pDKIT386Cl376S Same as above w/ one year 
Hardware and Gold 
Software Support 

The Intel Ba8ic Software Development Kit for 
the DOS hosted environment includes: 

iC386 compiler 
ASM386 assembler 
RLL386 relocation linker and locator 
(builder /binder) 
NUM387 numerics library 
EMUL387 math coprocessor emulator 
library 
DB386 software debugger 
OMF386LOAD loader development object 
module format documentation 

386™/i486™ FAMILY VAX AND 
MICROVAX/VMS* HOSTED 
DEVELOPMENT KIT ORDER 
CODES 
MVVSC386KIT MicroVAX/VMS C386 

compiler, RLL386 relocation 
linker and locator, ASM386 
assembler, DB386 software 
debugger 

MVVSP386KIT MicroVAX/VMS PL/M386 
compiler, RLL386, ASM386, 
DB386 

MVVSF386KIT MicroVAX/VMS 
FORTRAN386 compiler, 
RLL386, ASM386, DB386 

VVSC386KIT VAX/VMS C386, RLL386, 
ASM386, DB386 

VVSP386KIT VAX/VMS PL/M386, 
RLL386, ASM386, DB386 

VVSF386KIT VAX/VMS FORTRAN386, 
RLL386, ASM386, DB386 

ADDITIONAL 386TM/i486™ 
FAMILY DEVELOPMENT TOOL 
ORDER CODES 
ICD48625D 25 MHz In-circuit Debugger 

for the i486 microprocessor 

ICD486CON33D ICD48625D with a prepaid 
upgrade to 33 MHz 

iPATCORE iPAT Performance Analysis 
Tool base unit 

iP AT386DOS iP AT 80386 probe kit 
including PC-DOS 3.x 
software, requires 
iPATCORE 

8-10 



JINTEL 376™ FAMILY DEVELOPMENT SUPPORT I 

COMPREHENSIVE DEVELOPMENT SUPPORT FOR THE 
INTEL 376™ EMBEDDED PROCESSORS 

280903-1 

The perfect complement to the Intel 376™ embedded processor is the optimum 
development solution. From a single source, Intel, comes a complete, synergistic 
hardware and software development toolset, delivering full access to the power of the 
Intel 376 architecture. 

Intel development tools are easy to use, yet powerful, with ease-of-use user interface 
techniques and productivity boosting features such as symbolic debugging. And you'll 
find Intel first to market with the tools needed to start development, and with lasting 
product quality and comprehensive support to keep development on-track 

If what interests you is getting the best product to market in as little time as possible, 
Intel is the choice. 

FEATURES 
• Full speed emulation up to 20 MHz 
• Source line display and symbolics allow 

debugging in the context of the original 
program 

• Intel high-level languages provide 
architectural extensions for 
manipulating hardware directly without 
assembly language routines 

• A common object code format (Intel 
OMF386) supports symbolic debug and 
permits the intermixing of modules 
written in various languages-Intel's 
assembler, C, PL/M, and FORTRAN 

• A common OMF386 permits compilers 
and assembler to seamlessly operate 
with in-circuit and software debug tools 

• ROM-able code is output directly from 
the language tools, significantly reducing 
the effort necessary to •ntegrate software 
into the final target system 

• Extensive support for the Intel 80387SX 
math coprocessor 

• Operation in DOS IBM PC AT*, PS/2 
Model 60 and 80, or compatible) and 
VAX/VMS* hosted environments 

8-11 
November 1990 

Order Number: 280903-001 

II 



intJ 
INTEL 376™ FAMILY DEVELOPMENT SUPPORT 

280903-2 

Figure 1: Intel Microprocessor Development Environment 

ASM 386™ MACRO ASSEMBLER 
Intel's ASM 386TM is a "high-level" macro 
assembler for developing 376 based embedded 
system. ASM 386 offers many features 
normally found only in high-level languages. 
The macro facility in ASM 386 saves 
development time by allowing common 
program sequences to be coded only once. The 
assembly language is strongly typed, 
performing extensive checks on the usage of 
variables and labels. 

Other Intel ASM 386 features include: 
• "High-level" assembler mnemonics to 

simplify the language 
• Structures and recordsfor data 

representation 
• Support for Intel's standard object code 

format for source-level symbolic debug, and 
for linking object modules from other 
Intel386/376 languages 

• Full support for processor and math 
coprocessor instruction sets 

• 16 bit or 32 bit address overrides 
• Supports development for Virtual 86, Real, 

286 Protected, and 386 Protected modes 

iC~386 COMPILER 
Intel's iC-386 compiler provides special 
features for Intel 376 architectural support 
and code efficiency, for ease of use, and for 
compatibility with other Intel development 
tools. 

The iC-386 compiler produces code for Intel 
376 processor from C source files, and conforms 
to the ANSI standard (ANS X3.159-1989) for 
the C programming language. 

Key Intel iC-386 features include: 
• Controls to tailor the compilation for each 

step of your application development process 
• In-line versions of many ANSI-standard 

library functions 
• Uses expanded memory (LIM Version 3.0 

and higher) 
• Object code (including supplied run-time 

libraries) suitable for ROM 
• Three different levels of optimization 
• A choice of three segmentation memory 

models (small, compact, and flat) to create 
compact and efficient code 

• In-line processor-specific functions and time­
saving macros that provide access to the 
special features of the Intel 376 embedded 
processor 

8-12 



intef 
INTEL 376™ FAMILY DEVELOPMENT SUPPORT 

• In-line floating-point instructions for the 
387™ SX™ numerics coprocessor 

• Time-saving macros and functions to help 
assembly language routines interface with 
Intel's high-level programming languages 

• The standard C run-time library plus 
libraries for floating-point support 

• An easy interface to Intel's non-C 
programming languages, along with object 
module compatibility between Intel C and 
non-C compilers 

• Support for source-level debugging using the 
Intel DB-386 Software Debugger 

• Programming with subsystems, allowing 
mixed segmentation memory models 

• Extensions to the ANSI C standard for 
compatibility with previous versions of 
Intel C 

The iC-386 libraries contain over 200 
functions. The libraries and header files make 
development ofiC-386 applications easier by 
providing: 
• Fast and efficient functions for common 

programming tasks 
• Interfaces to standard and custom execution 

environments 
• Built-in versions of some functions 

PLIM-386 COMPILER 
Intel's PL/M-386 is a structured high-level 
system implementation language for the Intel 
376 embedded processor. PL/M-386 supports 
the implementation of protected operating 
system software by providing built-in 
procedures and variables to access the Intel 
376 architecture. 

For efficient code generation, PL/M-386 
features four levels of optimization, a virtual 
symbol table, and four models of program size 
and memory usage. 

Other Intel PL/M-386 features include: 
• The ability to define a procedure as an 

interrupt handler as well as facilities for 
generating interrupts 

• Direct support of byte, half-word, and word 
input and output from microprocessor ports 

• Upward compatibility with Intel PL/M-286 
and PL/M-86 source code 

PL/M-386 combines the benefits of a high-level 
language with the ability to access the Intel386 
architecture. For the development of systems 
software, PL/M-386 is a cost-effective 
alternative to assembly language 
programming. 

FORTRAN-386 COMPILER 
Intel's FORTRAN-386 compiler is a cross­
compiler that supports the entire Intel 376 
embedded processor. 

FORTRAN-386 features high-level support for 
floating-point calculations, transcendentals, 
interrupt procedures, and run-time exception 
handling. Specifically, the FORTRAN-386 
language is a superset of the language 
described in the ANSI Fortran 77 standard. 
The additions to that standard include the 
Department of Defense (DOD) extensions, 
extensions that support programs written for 
the ANSI Fortran 66 standard, and extensions 
that support the 376 processor and 80387SX 
math coprocessors. 

To aid in the development and debugging 
process, the compiler generates warning and 
error messages and an optional listing file. The 
listing file can include symbol cross-reference 
tables and a listing of the generated 386 
microprocessor assembly-language 
instructions. Library routines are reentrant 
and ROMable. 

Other Intel FORTRAN-386 compiler features 
include: 
• Object code can be configured to reside in 

either RAM or ROM 
• The program code can be optimized for 

execution speed or memory size 
• Source-level debugging is supported via the 

rich symbolics provided in the object module 
format (Intel OMF386) 

• Support for the proposed REALMATH IEEE 
floating point standard 

RLL-386 RELOCATION, 
LINKAGE, AND LIBRARY 
TOOLS 
The RLL-386 relocation, linkage, and library 
tools are a cohesive set of utilities featuring 
comprehensive support of the full Intel 376 
architecture. RLL-386 provides for a variety of 

8-13 

II 



INTEL 376™ FAMILY DEVELOPMENT SUPPORT 

functions-from linking separate modules, 
building an object library, or linking in 387 SX 
support, to building a task to execute under 
protected mode or the multi-tasking, memory 
protected system software itself. Specifically, 
RLL-386 supports loadable, linkable, and 
bootloadable Intel object module formats; and 
supports all segmentation models, including 
FLAT. Map, librarian, and conversion (for 
outputting hex format code for PROM 
programming) utilities are included. 

EMUL-387, NUM-387NUMERICS 
SUPPORT LIBRARIES 
Intel's EMUL-387 and NUM-387 Numerics 
Libraries fully support the 80387SX math 
coprocessor whether an actual math 
coprocessor is used in the final system or not. 
For 376 microprocessor based applications 
without a math coprocessor, EMUL-387, a 
numerics software emulator, will execute 
instructions as though the coprocessor were 
present. Its functionality is identical to that of 
the math coprocessor. It is ideal for 
prototyping and debugging floating-point 
application software independent of hardware. 
Further, this permits portability of application 
code regardless of the presence of math 
coprocessor hardware in target systems. 

For applications with a math coprocessor, 
NUM-387 numerics support library provides 
Intel's ASM 386, C-386, PL/M-386, and 
FORTRAN-386 language users with enhanced 
numeric data processing capability. With the 
library, it is easy for programs to do floating 
point arithmetic. Programmers can bind in 
library modules to do trigonometric, 
logarithmic and other numeric functions, and 
the user is guaranteed accurate, reliable 
results for all appropriate inputs. 

Intel's NUM-387 support library is a collection 
of four functionally distinct libraries: 
• Common elementary function library 

routines perform algebraic, logarithmic, 
exponential, trigonometric, and hyperbolic 
operations on real and complex numbers, as·' 
well as real-to-integer conversions; the 
routines extend the ranges of the coprocessor 
instructions 

• Initialization library routines set up the 
numerics processing environment for 80376 
microprocessor based systems with an 
80387SX or true software emulator 

• Decimal conversion library routines convert 
floating-point numbers from 80387SX binary 
storage format to ASCII decimal strings to 
80387SX binary and vice versa 

• Exception handling library routines make 
writing numerics exception handlers easier 

All support library modules are in 80386 
microprocessor object module format (Intel 
OMF386) so they can be linked with the object 
output of any Intel 80386 language. All 
routines are reentrant and ROMable. 
By using Intel's NUM-387, the user not only 
saves software development time, but is 
guaranteed that the numeric software meets 
industry standard (ANSI/IEEE standard for 
binary floating point arithmetic, 754-1985) and 
is portable-software investment is 
maintained. 

8-14 



intef 
INTEL 376™ FAMILY DEVELOPMENT SUPPORT 

INTEL 376™ IN-CIRCUIT 
EMULATORS 
Intel 376 In-circuit Emulators embody 
exclusive technology that gives access to 
internal processor states that are accessible in 
no other way. Intel 376 processor fetch and 
execute instructions in parallel, with fetched 
instructions not necessarily executing in order 
of input. Because of this, an emulator without 
this access to internal processor states is prone 
to error in determining what actually occurred 
inside the microprocessor. With Intel's 
exclusive technology, Intel 376 emulator is one 
hundred percent accurate. In addition, 
internal access comes without signal buffer 
interference of processor timing. Operation is 
non-intrusive (zero wait-state). 

Opening the Door to Protected Mode 
The Intel 376 In-circuit Emulator opens the 
door to the full potential of the architecture 
with unparalleled support of protected mode. 
The emulator can display and modify task 
state segments and global, local, and interrupt 
descriptor tables (with symbolic access to all 
descriptor components like privilege level and 
segment type). Emulation memory of 128 
Kbytes or the optional 2 Mbytes of relocatable 
expansion memory can be used instead of 
target memory for code debugging. 

With symbolic debugging, memory locations 
can be examined or modified using symbolic 
references to the original program, such as 
procedure or a variable names, line numbers, 
or program labels. Source code associated with 
a given line number can be displayed, as can 
the type information ofvariables, such as byte, 
word, record, or array. Processor data 
structures, such as registers, descriptor tables, 
and page tables, can also be examined and 
modified using symbolic names. The symbolic 
debugging information for use with Intel 
development tools is produced by Intel 
OMF386 compatible languages. 

Flexible and Versatile Event Recognition 
Flexibility and versatility in event recognition 
makes short work of uncovering the most 
complex bugs. Bus even recognition circuitry 
may be used to trigger on specific or masked 
data input, output, read, written, or fetched at 
a physical address or range of addresses. Or on­
chip debug registers may be used to trigger on 
virtual, linear, or symbolic addresses being 
executed, accessed, or written. 

Versatility shows in other triggering options­
upon a task switch, an external signal from 
another emulator or a logic analyzer, multiple 
occurrences of an event, a full trace buffer, 
halt or shutdown cycles, or interrupt 
acknowledge. And up to four sequential event 
triggers can be combined with a high-level 
construct. 

The Intel 376 In-circuit Emulator continuously 
captures all bus activity and, as an option, 
execution information, into a trace buffer of 
4K frames with PRE, POST, and CENTERED 
collection modes. The contents of the trace 
buffer can be displayed during full speed 
emulation in either execution cycle or 
machine-level instruction formats. 

Accessing the Power 
The power of the Intel 376 In-circuit Emulator 
is reflected in the sophisticated user interface. 
Refined for ease-of-use, the command line 
interface contains many features to boost 
productivity and customize functionality. 

On-line help, a syntax menu, command line 
editing, command history, and error message 
query promote ease oflearning and use. I/O 
redirection and the ability to escape the host 
operating system provide versatility for the 
power user. Customized procedures with 
variables and literal definitions can be created 
to assist in debugging or for manufacturing 
test or field service applications. 

SOFTWARE DEBUGGER 
Intel's DB386 is a useful tool for early software 
algorithm debug. It is an on-host software 
execution environment with source-level 
symbolic debug capabilities for object modules 
produced by Intel's assembler and high-level 
language compilers. For the DOS hosted 
version, this software debug environment 
allows 386 microprocessor code to be executed 
and debugged directly on a 386 DX or 386 
SX™ microprocessor based PC, without any 
additional target hardware required. With 
Intel's standard windowed human interface, 
users can focus their efforts on finding bugs 
rather than spending time learning and 
manipulating the debug environment. 

8-15 

• 



INTEL 376™ FAMILY DEVELOPMENT SUPPORT 

Other Intel DB386 features include: 
• A run-time interface allows protected-mode 

376 microprocessor programs to be executed 
directly on a 386 DX or 386 SX 
microprocessor based PC 

• Drop-down menus make the.tool easy to 
learn for new or casual users. A command 
line interface is also provided for more 
complex problems 

• Watch windows (which display user-specified 
variables), trace points, and breakpoints 
(including fixed, temporary, and conditional) 
can be set and modified as needed, even 
during a debug session 

• The user can browse source and callstacks, 
observe processor registers, and access watch 
window variables by either the pull down 
menu or by a single keystroke using the 
function keys 

• An easy-to-use disassembler and single-line 
assembler speeds the debug process 

• The user need not know whether a variable 
is an unsigned integer, a real, or a 
structure-the debugger uses the wealth of 
typing informatfon available in Intel 
languages to display program variables in 
their respective type formats 

ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC AT® or Personal System/2® Model 60. 
Host system requirements to run the emulator include the following: 

• DOS version 4.0, or Hewlett-Packard HP9000 
UNIX 

• 640 Kbytes of RAM in conventional memory 
• An AboveTM board with 1 megabyte of RAM 

configured in expanded memory mode, · 
EMM.SYS software version 3.2 

• A 20 MB hard disk 

ELECTRICAL 
CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60 Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

• A serial port or the National Instruments 
GPIB-PCII™, GPIB-PCIIA™, or 
MC-GPIB™ board 

• A math coprocessor if either the optional 
time tag board is used or if a math 
coprocessor resides on the target system 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating Temperature: + l0°C to + 40°C 
(50°F to 104°F) 

Operating Humidity: Maximum of 85% 
relative humidity, non-condensing 

The Emulator's Physical Characteristics 

Width Height Length 
Unit 

inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 11.2 
Power Supply 7.7 19.6 4.1 10.4 11.0 27.9 
User Cable 1.9 4.8 17.3 43.9 
100-Pin Target-Adapter Cable 2.3 5.3 0.5 1.3 5.1 13.0 
88-Pin Target-Adapter Cable 2.3 5.3 0.5 1.3 5.8 14.7 
Serial Cable 144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

8-16 



intJ 
ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions (88 Pin PGA) 

i-------- 17.5" -------i 

i----------------26.7"--------------+<·1 

°E;-r-,::====~SFI =====bb--f+--=g:g:g~1 II.::· 

1.2" 

i-------- 12.7" -------i 

i--------------22.0"------------------11 

6@ rbii ;j r .. :
1 

The Processor Module and Bus Isolation Board Dimensions (100 Pin PQFP) 

i----------17.5" -------< r--3.5"==:1 13.0" I 

~lSl 
t 

PIN 1 

.....-------------26.7"-------------+<1 

~°E:'i"'""'i!=======\SFl=====LC::=:f:f=;§§;;;JI ~ 
1.3" 

8-17 

280903-4 

280903-5 

280903-6 

II 



intef 
ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions (100 Pin PQFP) (Continued) 

i+------- 12.7" ------->< 

PIN 1 

~ ~ U -R-----22.0"------·: 

.rM iii E" 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid 
for at least four CLK2 cycles as they are only 
sampled on every other cycle. These input lines 

280903-7 

are standard TTL inputs. The synchronization 
output lines are driven by TTL open collector 
outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals 
on the optional clips pod are standard TTL 
input and outputs. 

AC Specifications With the Bus Isolation Board Installed. 

Symbol Parameter Minimum Maximum Notes 

t1 CLK2period 50nS tlMax 
t2a CLK2 high time t2aMin+2nS @2V 
t3b CLK2 low time t3bMin+2nS @0.8v 
t6 Al-A23 valid delay t6 Min+ 3.5 nS t6 Max+ 24.6 nS CL=l20pF 
t7 Al-A23 float delay t14 Min+ 5.5 nS t14 Max+ 37 .6 nS 
t8 BLE #, BHE# LOCK# valid delay t8 Min+ 3.5 nS t8Max+24.6 CL=75pF 
t9 BLE #, BHE # LOCK# float delay t14 Min+ 5.5 nS t14 Max+ 37.6 
tlO W IR#, MllO#, DIC#, ADS# valid delay tlO Min+ 3.5 nS tlO Min+ 24.6 CL=75pF 
tll WIR#, MllO#, DIC#, ADS# float delay t14 Min+ 5.5 nS t14Max+37.6 
t12 DO-D15 write data valid delay t12 Min+ 4.5 nS t12 Max+ 20.6 CL=l20pF 
t13 DO-D15 write data float delay 7.5nS 45.6nS 
t14 HLDA valid delay t14Min=3nS t14 Max+ 21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t20 READY# hold time t20 Min+ 10.6 nS 
t21 DO-D15 read setup time t21 Min+ 8.5 nS 
t22 DO-Dl5 read hold time t22 Min +7.6 nS 
t24 HOLD hold time t24 Min+ 10.6 nS 
t25 RESET setup time t25 Min+ 2.1 nS 
t26 RESET hold time t26 Min+ 2.1 nS 
t28 NMI, INTR hold time t28 Min+ 10.6 nS 
t30 PEREQ, ERROR#, BUSY# hold time t30 Min+ 10.6 nS 

8-18 



intJ 
SPECIFICATIONS 

Emulator Capacitance Specifications 
With Target-Adapter Cable Installed 

Typical 
Symbol Description (Note 1) 

CIN Input Capacitance 
CLK2 55pf 
READY#,ERROR# 35pf 
HOLD, BUSY#, PEREQ, NA#, 
INTR,NMI 20pf 
RESET 30pf 

CouT Output or I/O Capacitance 
D15-DO 50pf 
A15-Al, BLE# 40pf 
A23-A16, BHE#, DIC# 30pf 
HLDA, WIR# 55pf 
ADS#, MIIO #, LOCK# 35pf 

Note 1: Not tested. These specifications include the 80376 component and 
all additional emulator loading. 

Item 

PM-Ice 

Irn 

I1L 

Emulator DC Specifications 
Without the Bus Isolation Board Installed 

Description Max. 

Processor Module Supply Current 376-Icc+ 
940mA 

Input High Leakage Current 
A23-Al, BLE#, BHE#, DIC#, HLDA 0.02mA 
D15-DO 0.06mA 
ADS#, MIIO#, LOCK#, READY#, 

ERROR# 0.01 mA 
WIR# 0.03mA 
CLK2 0.04mA 
RESET 0.06mA 

Input Low Leakage Current 
A23-Al, BLE#, BHE#, DIC# 0.6mA 
D15-DO 0.06mA 
ADS#, MIIO#, LOCK#, READY#, 

ERROR# O.OlmA 
WIR# 0.5lmA 
CLK2 0.62mA 
RESET 0.6mA 
HLDA 0.02mA 

Notes 

1 
1 

1 
1 
1 
2 

1 
1 

1 
1 
1 
2 
1 

Note 1: This specification is the DC input loading of the emulator circuitry only and does not 
include any 80376 leakage current. 

Note 2: This specification replaces the 80376 specification for this signal. 

8-19 

• 



intef 
SPECIFICATIONS· 

Emulator DC Specifications With the Bus Isolation Board Installed 

Item Description Min. Max. 
BIB-Ice Bus Isolation Board Supply Current PM-Ice+ 

350mA 

Vo1 Output Low Voltage (Io1 = 48 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 0.5v 
Dl5-DO, M/IO#, LOCK#, W/R# 0.5v 
HLDA (Io1=24 mA) 0.44. v 

Output High Voltage (loH = 3 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 2.4v 
D15-DO, M/10 #, LOCK#, W /R# 2.4v 
HLDA (Ion= 24 mA) 3.8v 

Irn Input High Current 
CLK2,RESET 1.0 µA 
READY# 25 µA 

111 Input Low Current 
CLK2,RESET 1.0 µA 
READY# 250µ,A 

Ira Output Leakage Current 
A23-Al, BLE#, BHE#, DIC#, ADS# ±20µA 
D15-DO, M/10#, LOCK#, W /R# 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the bus 
isolation board, the target system must meet 
the following requirements. 
• The user bus controller must only drive the 

data bus during a valid read cycle of the 
emulator processor or while the emulator 
pr.ocessor is in a hold state (the emulator 
processor uses the data bus to communicate 
with the emulator hardware). 

• Before driving the address bus, the user 
system must gain control by asserting HOLD 
and receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in 
emulation, but is delayed by 2 or 4 CLK2 
cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to 
the emulation processor. 

±20µA 

When the target system does not satisfy the 
first two restrictions, the bus isolation board is 
used to isolate the emulation processor from 
the target system. With the isolation board 
installed, the processor CLK2 is restricted to 
running at 20 MHz. 

The processor module derives its DC power 
from the target system through the 80376 
socket. It requires 1400mA, including the 
80376 current. The isolation board requires an 
additional 350mA. 

The processor must be socketed, for example 
using Textool 2-0100-07243-000 or AMP 
821949-4 sockets. 

The printed circuit board design should locate 
the processor socket at the physical ends of the 
printed circuit board traces that connect the 
processor to the other logic of the target 
system. This reduces transmission line noise. 
Additionally, ifthe target system is enclosed in 
a box, pin one of the processor socket should be 
oriented away from the target system's box 
opening to make connecting the target-adapter 
cable easier. 

8-20 



intef 
ORDERING INFORMATION] 

SERVICE, SUPPORT, AND 
TRAINING 
To augment its development tools, Intel offers 
a full array of seminars, classes, and 
workshops, field application engineering 
expertise, hotline technical support, and on­
si te service. 

Intel also offers a Gold Software Support 
package which includes: 

Technical software information phone 
support, 
Automatic distribution of software and 
documentation updates 
Access to the "ToolTalk" electronic 
bulletin board 

Intel's Hardware Support package includes: 

Technical hardware information phone 
support, 
Warrantee on parts/labor/material 
On-site hardware support 
One Customer Training Course of choise, 
plus discounts on additional customer 
training and SE consulting 

SOFTWARE DEVELOPMENT 
TOOL 
Order Code Description 

D86ASM386NL DOS Macro Assembler 
supports 80386/80376 

D86C386NL DOS C Compiler supports 
80386/80376 

D86PLM386NL DOS PL/M Compiler 
supports 80386/80376 

D86FOR386NL DOS FORTRAN Compiler 
supports 80386/80376 

D86RLL386NL DOS S/W DEV Package 
Builder /Binder /Mapper I 
Librarian. Supports 80386/ 
80376 

DASM386PLUS DOS ASM Developers Kit, 
Inc. ASM, NUM, RLL and 
EMUL 

DB386 DOS S/W Debugger for 
80386 

D86NUM387NL DOS 80387 Numerics 

EMUL387SU 

Libraries 

387 Numerics Coprocessor 
S/W Emulator object code 

EMUL387RO 

EMUL387RF 

EMUL-387 to form 
derivative works. 
Requires incorporation 
fee 

Requires prior purchase 
of EMUL-387RF 

EMUL-387 one time 
incorp fee 

IN-CIRCUIT.EMULATOR 
pICE376D 

ICE37620D 

REM386SX376 

pICE386T0376D 

ICE376 In-circuit 
Emulator for 80376 
component. Operates to 
16 MHz. Includes control 
unit, power supply, 376 
Processor Module with 
PQFP adaptor, Stand­
Alone Self-Test board, bus 
Isolation Board, and DOS 
3.x host software and 
interface cable. 

ICE376 In-circuit 
Emulator for 80376 
component. Operates to 
20 MHz. Includes control 
unit, power supply, 376 
Processor Module with 
PQFP adaptor, Stand­
Alone Self-Test board, bus 
Isolation Board, and DOS 
3.x host software and 
interface cable. 

2 Mbytes relocatable 
expansion memory 

Conversion kit to adapt 
ICE386 25 MHz emulat.or 
to support the 80376 
component. Operates to 
16 MHz. Includes ICE376 
emulator Processor 
Module and DOS 3.x host 
software. 

pICE386SXT0376D Conversion kit to adapt 
ICE386SX 16 or 20 MHz 

8-21 

emulator to support the 
80376 component. 
Operates to 16 MHz. 
Includes ICE376 emulator 
Processor Module and 
DOS 3.x host software. 

II 



ORDERING INFORMATION 

p88PGAADAPT Adaptor for ICE376 p1CE3:XXTTB 
emulator to support 88 
pin PGA component 
packaging. 

pICE3XXCPO Clips Pod Option for 
ICE376, ICE386SX 16 or DTOAB 
20 MHz, ICE386 25 MHz, 
and ICE386DX 33 MHz 
emulators. 

8-22 

Time Tag Board. Option 
for ICE376, ICE386SX 16 
or 20 MHz, ICE386 25 
MHz, and ICE386DX 33 
MHz emulators. · 

2 MB Intel Above Board. 



ICD-486/25 IN-CIRCUIT DEBUGGER 

280872-1 

i4~6™ MICROPROCESSOR IN-CIRCUIT DEBUGGER 
Intel's ICD-486/25, the in-circuit debugger for the 25 MHz i486TM microprocessor, 
represents a new generation of in-circuit emulation technology. From the inventor of the 
microprocessor comes a development tool that delivers complete access to the i486 
architecture. ICD-486/25 is the first development tool which allows users to debug high­
speed, cached applications at the full speed of the target processor. ICD-486/25 embodies 
exclusive technology, giving users symbolic access to the internal processor states that 
would not be accessible in any other way. With Intel's exclusive technology, users can be 
assured that the ICD-486/25 provides complete accuracy when debugging cached 
applications in real-time. 

FEATURES 
• Real-time emulation at the full speed of 

the i486 microprocessor 
• Full development and debug support for 

the i486 microprocessor on-chip caching 
and numerics 

• Programming support for the i486 
microprocessor real mode and native 
protected modes 

• Non-intrusive operation, allowing the 
target system to be debugged without 
modification 

• Ability to set up to sixteen software 
breakpoints and four hardware 
breakpoints on execution addresses, data 
writes, or data accesses 

• Sync in and out lines for connecting an 
ICD-486/25 to a high-speed logic 
analyzer to provide trace information 
and bus breakpoints 

• Provides full symbolic information to 
display and modify all registers of the 
i486 microprocessor 

8-23 
November 1990 

Order Number: 280872-002 



intJ 
FEATURES 

FULL-SPEED DEBUG AND 
DEVELOPMENT 
The ICD-486/25 In-circuit Debugger provides 
sophisticated real-time hardware and software 
debug capabilities for i486 microprocessor 
based designs. The user can run at the full 
speed of the target processor, ensuring that 
elusive timing bugs will be found. And, because 
the ICD-486/25 is non-intrusive, your target 
system being developed can be the same as 
your final target system. 

DEBUG CACHED 
APPLICATIONS 
Until now, it has been extremely difficult to 
accurately debug high-speed, cached 
microprocessor applications. However, by 
incorporating Intel's exclusive technology, the 
ICD-486/25 allows users to debug applications 
which use the on-chip caching features of the 
i486 microprocessor. ICD-486/25 provides 
complete debugging accuracy whether the 
cache is on or off. 

IDEAL FOR ALL STAGES OF 
DEVELOPMENT 
The ICD-486/25 can be used by both hardware 
and software developers, at any stage of design. 
Early in the development process the ICD-486/ 
25 allows prototype development and software 
debugging when using the optional REM 
board. Later in the design cycle, the ICD-486/ 
25 can be used to integrate hardware and 
software modules. 

SPEEDING DEVELOPMENT 
WITH SYMBOLICS 
With symbolic debugging, memory locations 
can be examined or modified using symbolic 
refere11ces to the original program, such as a 
procedure or variable name, line number, or 
program label. Microprocessor data structures, 
such as registers, descriptor tables, and page 
tables, can also be examined and modified 
using symbolic names rather than 
cumbersome linear or physical addresses. 
Optimal symbolic debugging can be achieved 
when using the ICD-486/25 with Intel 
languages. 

THE COMPLETE STORY 
For advanced hardware debugging, the ICD-
486/25 has been designed to work with high­
speed logic analyzers. The standard ICD-486/ 
25 ships with a Logic Analyzer Interface (LAD 
board providing access to all chip signals which 
may be used to trigger a logic analyzer. With a 
user-supplied interface, the ICD-486/25 and 
logic analyzer can work in combination to 
monitor and recognize bus activity. 

SOFTWARE COMPLETES THE 
SYSTEM 
Intel provides a comprehensive software 
development environment to complement the 
ICD-486/25, delivering the most complete 
32-bit microprocessor development 
enyironment available from a single vendor. 
Intel's i486 software development tools for the 
386™ and i486 microprocessor families 
include 32-bit ANSlC, FORTRAN 77, and 
PL/M compilers, as well as 32-bit assembly 
language, linkage, IEEE math, run-time 
libraries and systemsoftware builders with 
full access to all aspects of the i486 
microprocessor. In addition, all translators are 
object code compatible. Architectural 
extensions in the high-level languages allow 
hardware features such as interrupts, input/ 
output or flags to be controlled directly, 
avoiding the maintenance of assembly 
routines. 

Intel's software environment includes the 
sophisticated source-level DOS DB-386 
software debugger and execution environment, 
allowing i486 software applications to be tested 
and debugged directly on a standard 386 
microprocessor-based PC. 

To provide full access to the power of the i486 
architecture, the software portfolio 
incorporates a unique, sophisticated, and very 
powerful system builder, simplifying the 
generation of protected mode systems. To 
further reduce the task of integrating software 
into the final target configuration, Intel i486 
microprocessor development tools produce 
code which can be directly downloaded target 
system ROM or .converted into standard hex 
code. 

8-24 



intJ 
FEATURE"S] 

THE RIGHT TOOL FOR THE JOB 
The ICD-486/25, representing a new 
generation of in-circuit emulation technology, 
is the right tool to use when your product 
development schedules are tight and your 
product quality requirements are high. Intel's 
exclusive technology allows you to debug 
cached applications at the full speed of the i486 
microprocessor, and the symbolic debug 
information can vastly improve your 
productivity. 

THE TOOL FOR THE FUTURE 
The ICD-486/25 was designed to be easily, and 
rapidly, convertible to support the newest 
speeds of the i486 microprocessor. You can be 
assured that your investment in the ICD-486/ 
25 today will put you squarely on the upgrade 
path to higher speed components when they 
are made available. 

WORLDWIDE, WORLD CLASS 
SERVICES 
Augmenting Intel i486 microprocessor 
development tools is a full array of seminars, 
classes, and workshops; on-site consulting 
services; field application engineering 
expertise; telephone hotline support; and 
software and hardware maintenance contracts. 

8-25 

El 



inter 
I ICD-486/25 SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be an IBM® 
PC/ AT® or Personal System/2® Model 60, or 
Model 80 or fully compatible system. Host 
system requirements to run the in-circuit 
debugger include the following: 
• DOS version 3.2 or later 
• 640K bytes of RAM in conventional memory 
• An AboveTM board with 1 megabyte of RAM 

configured in expanded memory mode, 
EMM.SYS version 3.2, or later, or 

• One megabyte of RAM configured as 
expanded memory using QEMM.SYS or 
386MAX 

• A hard disk with 2 megabytes of free space 
• A serial port 

Serial Cable ~2" j 1-- 0.4" 

4:-=:4-J 4.0" 
I I 
I I p 
I I IN1 
t ____ ! 

6.5" 

-~~~---ir--~~~~~-*-
-----.=:;;;;11.0" 

t 
280872-2 

Figure 1: In-circuit Board (ICB) 

280872-3 

Figure 2: ICB with Optional Isolation Board 
(OIB) installed 

LAIB rd 00 14--31"--I 

1 _j_ 

~ .. Serial Cable 0.4"j I-
+ ·--- .. I 1: I 

4.6" 

J 
4.0" I PINI: I 

I I ·----· 

L 
L 6.5" 

280872-4 

Figure 3: ICD with Logic Analyzer Interface 
(LAI) board installed 

ELECTRICAL 
CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60Hz 
2 amps (AC max) @ 120V 
1 amp (AC max).@ 240V 

ENVmONMENTAL 
CHARACTERISTICS 
Operating Temperature: + 10" C to + 40° C 

(50 to 104° F) 
Operating Humidity: Maximum of 85% 
relative humidity, 

non-condensing 

. ELECTRICAL SPECIFICATIONS 
The synchronization input line must be valid 
for at least two CLK cycles. The 
synchronization input and output signals are 
standard TTL input and outputs. 

8-26 



intef 
ICD-486/25 SPECIFICATIONS AND REQUIREMENTS 

ICD-486/25 INTERFACE 
CONSIDERATIONS 
With the ICB directly attached to the target 
system without using the optional isolation 
board, the target system must meet the 
following requirements: 
• The bus controller must only enable data 

transceivers onto the bus during valid read 
cycles of the 486 CPU. 

• READY# cannot be used with BREQ to 
terminate outstanding bus requests. (i.e., 
when using the ICD-486/25, BREQ will be 
asserted when there is not a corresponding 
assertion of ADS#). 

• Before another bus master drives the local 
processor address bus, the other bus master 
must gain access to the address bus through 
the use of HOLD HLDA, AHOLD or BOFF#. 

• The user system must be able to drive one 
additional CMOS load (approximately 25pF) 
on all signals that go to the emulation 
processor. 

If the target system does not satisfy these 
restrictions, the optional isolation board 
should be used to isolate the emulation 
processor from the target system. To guarantee 
proper operation with the optional isolation 

Symbol Parameter 

t6 A2-A31 valid delay 

board, the clock period should be increased by 
the round trip buffer delay (lOns) unless the 
target system design already has enough 
timing margin. 

The processor module derives its DC power 
from the target system through the i486 CPU 
socket. It requires 1300mA, including the i486 
microprocessor current. The optional isolation 
board requires an additional 500mA. 

The processor must be socketed. The printed 
circuit board design should locate the processor 
socket at the physical ends of the printed 
circuit board traces that connect the processor 
to the other logic of the target system. This 
reduces transmission line noise. Additionally, 
if the target system is enclosed in a box, pin 
one of the processor socket should be oriented 
to make connecting the hinge cable easier. The 
ICD-486/25 hinge cable adds an additional 
lOpF of capacitive loading and approximately 
0.5ns of propagation delay to each i486 CPU 
signal. 

Pins specified as N.C. in the i486 CPU pin 
description must be left unconnected. 
Connection of any of these pins to power, 
ground or any other signal may cause the 
processor or the ICD-486/25 debugger to 
malfunction. 

Minimum Maximum Notes 

t6 Min+ 1.5ns t6Max+5ns 
t6 BE0-3#, M/IO#, W/R#, ADS#, HLDA valid delay t6 Min+ 2.5ns t6Max+8ns 
t6 A2-A31 valid delay t6 Min+ 1.5ns t6Max+llns 1 
t6 BE0-3#, M/IO#, W/R#, ADS# valid delay t6 Min+ 2.5ns t6Max+14ns 1 
t8a BLAST# valid delay t8a Min+ 2.5ns t8aMax+8ns 
tlO DO-D31 write data valid delay tlO Min+ 1.5ns t10Max+5ns 
t22 A4-A31, DO-D31 input set-up time t22Min+5ns 

Note 1: Use these specifications for any bus cycle that begins on the same clock that HLDA is de-asserted. 

8-27 

I 



intef 
j . ICD-486/25 ·SPECIFICATIONS AND REQUIREMENTS 

DC SPECIFICATIONS WITH OPERATION ISOLATION BOARD INSTAJ,LED 

Item Description Minimum Maximum Notes 

Vcm Output High Voltage 
A2-A31,DO-D31 (loH=l5mA) 2.4V 
BE0-3#, M/IO#, (IoH= 3mA) 2.4V 
W/R#,ADS#, BLAST# (IoL= 3mA) 2.4V 
HLDA (IoH = 3.2 mA) 2.4V 

VoL Output Low Voltage 
A2-A31,DO-D31 (IoL=64mA) 0.55V 
BE0-3#, M/IO#, (loH=64mA) 0.55V 
W/R#,ADS#, BLAST# <IoL=64mA) 0.55V 
HLDA (loL=24mA) 0.5V 

I11 Input Leakage Current 
A2-A31, DO-D31 ±15uA 

l1L Input High Current 
CLK, RESET, RDY #, BRDY #, BOFF#, 25uA 1 
AHOLD 

Irn Input Low Current 
CLK, RESET, RDY #, BRDY #, BOFF#, -250uA 1 
AHOLD 

Note 1: These specifications are for the OIB only and do not include any processor module loading. 

ORDERING INFORMATION 
Order Code 
ICD48625D 

ICD486CON33D 

Description 

In-circuit debugger for the 
i486 microprocessor. 
Operates to 25MHz. 
Includes hardware debug 
module, power supply, 
isolation board, stand alone 
self-test chassis, flexible 
hinge cable, socket 

· accessory assortment, user 
documentation, DOS host 
software and interface 
cable. 
Identical to the ICD48625D, 
but includes a prepaid 
upgrade to 33 MHz i486 
microprocessor support 
when available. 

ICD486CON33DS Identical to the 
ICD486CON33D, but 
includes an additional 12 
months of hardware and 
software maintenance and 
support. 

ICD486LAI Additional Logic Analyzer 
lhterface board. 

ICD48625DS Identical to ICD48625D, but 
includes an additional 12 
months of hardware and· 
software maintenance and 
support. 

486HNGCBLA Additional flexible, hinge 
cable assembly. 

ICD486ACC Additional ICD-486 socket 
accessory assortment and 
board separator. 

8-28 



INTEL386™ FAMILY IN-CIRCUIT EMULATORS 

280850-1 

ACCURATE AND SOPHISTICATED EMULATION FOR THE 
INTEL386™ FAMILY OF MICROPROCESSORS 
Intel386™ In-circuit Emulators are the cornerstone of the optimum development 
solution for the Intel386 Family of microprocessors. From the inventor of the 
microprocessor comes a development tool that delivers absolute access to the 
sophistication of the architecture in a way that only Intel can. 

Productivity boosting features such as symbolic debugging make Intel386 emulators easy 
to use and powerful. Intel product quality and world class technical support and service 
minimizes the "downtime" incurred in resolving problems. And your investment in 
development tools is protected via interchangeable probes for the 80386 DX, 80386 SX, 
and 80376 microprocessors. 

Maximize your productivity with Intel development tools. Reduced time to market and 
increased market acceptance for your microprocessor-based product are the benefits 
when Intel is the choice . 

.. HP9000 is a trademark of Hewlett Packard. 
ICE, iPAT, Above Board, Intel386, 386 DX, 386 SX, and 376 are trademarks oflntel Corporation. 
IBM, PC AT, PS/2 are registered trademarks oflnternational Business Machines Corporation. 
GPIB-PCII, GPIB-PCIIA, and MC-GPIB are trademarks of National Instruments Corporation. 

8-29 
November 1990 

Order Number: 280850.004 



FEATURES 

JNTELICE™-386 FAMILY IN-CmCUIT EMULATOR FEATURES 
• Unparalleled support of all of the. Intel386 · 

operating mOdes·opens the door to the full 
potential of the Intel386 architecture 

• Non-intrusive (zero wait-state) emulation to 
processor speeds of 33 MHz ' 

• Versatile event recognition makes short 
work of uncovering complex bugs 

• Dynamic trace display of bus and execution 
information during emulation · 

• A .comprehel)sive software development 
system creates the most complete · 

· developtnent environment available from a 
shJgle vendor . . 

• A companion performance an8lysis too1.··· 
provides analysis of software for optimized 
perform!lnce and reliability . . 

• Available on Hewlett-Packard HP9000 ; 
UNIX•. . 

8-30 



intJ 
FEATURES 

100% ACCURATE EMULATION 
Intel386 Family In-circuit Emulators embody 
technology that accesses internal processor 
states that are otherwise invisible. Intel386 
microprocessors fetch and execute instructions 
in parallel; fetched instructions are not 
necessarily executed in any order. Because of 
this, an emulator without this capability is 
prone to error in determining what actually 
occurs inside the microprocessor. With Intel's 
technology, an Intel386 In-circuit Emulator 
displays execution history with one hundred 
percent accuracy and in real-time. 

OPENING THE DOOR TO 
PROTECTED MODE 
The Intel386 family of In-circuit Emulators 
opens the door to the full potential of the 
architecture with unparalleled support of 
protected mode. Not only does the emulator 
display and modify task state segments and 
global, local, and interrupt 'descriptor tables 
(with symbolic access to all descriptor 
components like privilege level and segment 
type), but emulator functions are sensitive to 
the operating mode of the processor, greatly 
improving ease of use. 

The Intel386 family ofin-circuit Emulators 
supports all aspects of protected mode 
addressing, including paged virtual memory. 
Processor tables are used to automatically 
translate virtual addresses to linear and 
physical addresses. Physical addresses can be 
translated to symbolic references to indicate 
the module, procedure, or data segment 
accessed. And when debugging a memory 
management system, components of the page 
table and directory can be displayed and 
modified. 

FLEXIBLE AND VERSATILE 
EVENT RECOGNITION 
Flexibility and versatility in event recognition 
makes short work of uncovering the most 
complex bugs. Bus event recognition circuitry 
may be used to trigger on specific or masked. 
data input, output, read, written, or fetched at 
a physical address or range of addresses. Or on­
chip debug registers may be used to trigger on 
virtual, linear, or symbolic addresses being 
executed, accessed, or written. 

Versatility shows in other triggering options­
upon a task switch, an external signal from 
another emulator or a logic analyzer, multiple 
occurrences of an event, a full trace buffer, 
halt or shutdown cycles, or interrupt 
acknowledge. And up to four sequential event 
triggers can be combined with a high-level 
construct. 

The Intel386 family of In-circuit Emulators 
continuously captures all bus activity and, as 
an option, execution information, into a trace 
buffer of 4 K frames with PRE, POST, and 
CENTERED collection modes. The contents of 
the trace buffer can be displayed during full 
speed emulation in either execution cycle or 
machine-level instruction formats. Symbolic 
information can optionally be included in the 
trace display. A third trace display, the current 
chain of procedure calls, can be displayed when 
emulating high-level language programs. 

SPEEDING DEVELOPMENT 
WITH SYMBOLICS 
Intel386 processor data structures, such as 
registers, descriptor tables, and page tables, 
can be examined and modified using symbolic 
names. And with the symbolic debugging 
information that is a feature of Intel 
languages, memory locations can be accessed 
using symbolic references to the source 
program (such as a procedure and variable 
names, line numbers, or program labels) 
rather than via cumbersome virtual, linear, or 
physical addresses. The type information of 
variables (such as byte, word, record, or array) 
can also be displayed. 

ACCESSING THE POWER 
The power of the Intel386 In-circuit Emulator 
is reflected in the sophisticated user interface. 
Refined for ease-of-use, the command line 
interface contains many features to boost 
productivity and customi,ze functionality. 

On-line help, a syntax menu, command line 
editing, command history, and error message 
query promote ease oflearning and use. I/O 
redirection and the ability to escape to the host 
operating system provide versatility for the 
power user. Customized procedures with 
variables and literal definitions can be created 
to assist in debugging or for manufacturing 
test or field service applications. 

8-31 

El 



intef 
FEATURES 

ADDITIONAL FEATURES 
The Intel386 In-circuit Emulator can be 
combined with a variety of devices.1/0 lines 
synchronize emulation starts and triggers with 
external tools such as a logic analyzer or 
another emulator. An optional Time Tag 
Board synchronizes multiple lntel386 
emulators and records timestamp information 
in the trace buffer with 20 nanosecond 
resolution. An Optional Clips Pod allows 8 user 
defined data lines to be captured and displayed 
in the trace. The bus isolation board buffers 
the emulation processor from faults in an 
untested target. And with the Stand-Alone 
Self-Test board the emulator can be used to 
debug software before the target system is 
functional, as well as execute confidence tests. 

THE INVESTMENT PICTURE 
As designs move from one Intel386 Family 
processor t<,> another, the reinvestment cost is 
limited to probes that adapt the emulator base 
to the specific processor. Beside cost savings, 
migration from one processor to another is 
accomplished with minimum disruption in the 
engineering environment, as the same 
command language applies to the entire 
emulator family. 

8·32 



intJ 
FEATURES 

SOFTWARE COMPLETES THE 
SYSTEM 
Intel wraps a comprehensive software 
development system around the emulator to 
deliver the most complete development 
environment available from a single vendor. 
Like the emulator, Intel's software 
development system supports every aspect of 
the Intel386 architecture. 

Overlooked at times is the fact that a 
significant part of developing a system is 
making sure the code works. Intel languages 
and software debugger integrate seamlessly 
with the Intel386 emulator and provide the 
symbolics so important for efficient debugging. 
By using Intel software tools with the Intel386 
emulator the full power oflntel development 
solution can be utilized. 

The software development system offers a 
broad choice oflanguages with object code 
compatibility so performance can be 
maximized by using different languages for 
specialized, performance critical modules. 
Architectural extensions in the high-level 
languages allows hardware features such as 
interrupts, input/output, or flags to be 
controlled directly, avoiding the tediousness of 
coding assembly language routines. 

Intel's software portfolio includes a unique, 
sophisticated, and very powerful system 
builder, simplifying the generation of 
protected mode systems. To further reduce the 
effort necessary to integrate software into the 
final target configuration, Intel tools produce 
ROM-able code directly from the development 
system. 

OPTIMIZING PERFORMANCE 
AND RELIABILITY 
A companion performance analysis tool, 
iPAT™-386, provides analysis of real-time 
software executing on 80386-based target 
systems. With iPAT-386, it is possible to speed­
tune applications, optimize use of operating 
systems, determine response characteristics, 
and identify code execution coverage. And 
iPAT-386 can be used in conjunction with an 
Intel386 in-circuit emulator to control test 
conditions. 

WORLD CLASS, WORLDWIDE 
SERVICES 
Augmenting the Intel386 Family development 
tools is a full array of seminars, classes and 
workshops; on-site consulting services; field 
application engineering expertise; telephone 
hotline support; and software and hardware 
maintenance contracts. 

ICE™-386 DX 33 MHz SPECIFICATIONS AND 
REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC AT® or Personal System/2® Model 60. 
Host system requirements to run the emulator include the following: 

• DOS version 4.0 or Hewlett Packard HP9000 • A serial port or the National Instruments 
UNIX GPIB-PCII™, GPIB-PCIIA™, or MC-

• 640 Kbytes of RAM in conventional memory GPIB™ board 
• An Above™ board with 1 megabyte of RAM • A math coprocessor if either the optional 

configured in expanded memory mode, time tag board is used or if a math 
EMM.SYS software version 3.2 coprocessor resides on the target system 

• A 20 MB hard disk 

ELECTRICAL 
CHARACTERISTICS 
100-120Vor 220-240V selectable 
50-60Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating temperature: + lO"C to + 40°C 

(50°F to 104°F) 
Operating Humidity: Maximum of 85% 

relative humidity, 
non-condensing 

8-33 

II 



intef 
ICE™-386 DX 33 MHz SPECIFICATIONS AND 

REQUIREMENTS 

The Emulator's Physical Characteristics 

Unit Width Height Length 

inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 11.2 
Power Supply 7.7 19.6 4.1 10.4 11.0 27.9 
User Cable 1.9 4.8 17.3 43.9 
Target-Adapter Cable 2.3 5.3 0.5 1.3 5.8 14.7 
Serial Cable 144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

The Processor Module and Bus Isolation Board Dimensions 

PIN 1 
i--------17.5" -----~----4.5"-----3.6" 

-------------27.1"-----------~ 

IS L I 
1.25" 

i--------12.75"---------+< 

PIN 1 

IF?.,.___ --23.4"---·1 
tJ1=I' ~ J:l--- I c:::E 

H 
280850-2 

8-34 



intef 
ICE™-386 DX 33 MHz SPECIFICATIONS AND 

REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions 

1.35" j 
~; 

0.25" 

I I 
4.0" I 

I PINI 

~----! 

b 1a.8S" ~-==========~1.=:::r-~-ii::,,=,,:= .. ~ .. 
280850-3 

ELECTRICAL SPECIFICATIONS output lines are driven by TTL open collector 
outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals 
on the optional clips pod are standard TTL 
input and outputs. 

The synchronization input lines must be valid 
for at least four CLK2 cycles as they are only 
sampled on every other cycle. These input lines 
are standard TTL inputs. The synchronization 

AC Specifications With the Bus Isolation Board Installed 

Symbol Parameter Minimum Maximum 

tl CLK2period 40nS tlMax 
t2a CLK2 high time t2aMin+2nS 
t3b CLK2 low time t3bMin+2nS 
t6 A2-A31 valid delay t6 Min+ 3.5 nS t6 Max+ 24.6 nS 
t7 A2-A31 float delay t14 Min+ 5.5 nS tl 4 Max+ 32.6 nS 
t8 BEO #-BE3#, LOCK# valid delay t8 Min+ 3.5 nS t8Max+24.6 
t9 BEO#-BE3#, LOCK# float delay t14 Min+ 5.5 nS t14 Max+ 32.6 
tlO W/R#, M/IO#, DIC#, ADS# valid.delay tlO Min+ 3.5 nS tlO Min+ 24.6 
tll W/R#,M/IO#,D/C#,ADS# float delay t14 Min+ 5.5 nS t14 Max+ 32.6 
t12 DO-D31 write data valid delay t12 Min+ 4.5 nS t12 Max+ 20.6 
t13 DO-D31 write data float delay 7.5nS 41.6nS 
t14 HLDA valid delay t14Min=3nS t14 Max+21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t18 BS16# hold time t18 Min+ 10.6 nS 
t20 READY# hold time t20Min+10.6 nS 
t21 DO-D31 read setup time t21 Min+ 8.5 nS 
t22 DO-D31 read hold time t22 Min+ 7.6 nS 
t24 HOLD hold time t24 Min+ 10.6 nS 
t25 RESET setup time t25 Min+ 2.1 nS 
t26 RESET hold time t26 Min+ 2.1 nS 
t28 NMI, INTR hold time j;28Min+10.6 nS 
t30 PEREQ, ERROR#,.BUSY# hold time t30 Min+ 10.6 nS 

8-35 

Notes 

@2V 
@0.8v 
CL=120pF 

CL=75pF 

CL=75pF 

CL=120pF 

II 



infer 
SPECIFICATIONS I · 

Emulator Capacitance Specifications 

TAC 
Symbol . Description Typical Installed 

C1N Input Capacitance 
CLK2 35pF 45pF 
READY#, NMI, BS16# 25pF 35pF 
HOLD, BUSY#, PEREQ, 

NA#, INTR, ERROR# lOpF 20pF 
RESET 20pF 30pF 

CoUT Output orIIO Capacitance -
DO-D31 40pF 50pF 
A2-A31, BEO#-BE3# 30pF 40pF 
DIC# 35pF 45pF 
WIR# 40pF 50pF 
ADS#, MIIO#, LOCK#, 25pF 35pF 
HLDA l 

Note 1: Not tested. These specifications include the 80386 component and all additional 
emulator loading. 

Note 2: The target-adapter cable adds a propagation delay of 0.5 nS. 

Item 

PM-Ice 

Irn 

IIL 

' 

Emulator DC Specifications 
Without the Bus Isolation Board Installed 

Description Max. 

Processor Module Supply Current 386-Icc+ 
1.5A 

Input High Leakage Current 
A2-A31, BEO#-BE3#, DO-D31 20µA 
HLDA, NMI, BS16# lOµA 
ADS#, MIIO#, LOCK#, READY# lOµA 
WIR#,DIC# 30µA 
CLK2 15µA 
RESET 5µA 

Input Low Leakage Current 
A2-A31, BEO#-BE3f, DO-D31 600µA 
HLDA, NMI; BS16# ' lOµA 
ADS#, MIIO#, LOCK#, READY# lOµA 
WIR# llOµA 
DIC# 610µA 
CLK2 15µA 
RESET 5µA 

Notes 

1 
1 
1 
1 
1 
2 

1 
1 
1 
1 
1 
1 
2 

Note 1: ThlS specification is the DC input loading of the emulator circuitry only and does 
not include any 80386 leakage current. 

Note 2: This specification replaces the 80386 specification for this signal. 



intJ 
SPECIFICATIONS] 

Emulator DC Specifications With the Bus Isolation Board Installed 

Item Description Min. Max. 

BIB-Ice Bus Isolation Board Supply Current PM-Ice+ 
475mA 

VoL Output Low Voltage (IoL = 48 mA) 
A2-A31, BEO#-BE3#, DIC#, ADS# 0.5v 

DO-D31, M/IO#, LOCK#, W/R# 0.5v 
HLDA (loL = 24 mA) 0.44 v 

Yott Output High Voltage (Iott= 3 mA) 
A2-A31, BEO#-BE3#, DIC#, ADS# 2.4v 
DO-D31, M/IO#, LOCK#, W/R# 2.4v 
HLDA (Iott= 24 mA) 3.8v 

Irn Input High Current 
CLK2,RESET 1.0 µA 
READY# 25 µA 

IrL Input Low Current 
CLK2,RESET 1.0 µA 
READY# 250 µA 

Iro Output Leakage Current 
A2-A31, BEO#-BE3#, DIC#, ADS# ±20 µA 
DO-D31, M/IO#, LOCK#, W/R# 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the bus 
isolation board, the target system must meet 
the following requirements: 
• The user bus controller must only drive the 

data bus during a valid read cycle of the 
emulator processor or while the emulator 
processor is in a hold state (the emulator 
processor uses the data bus to communicate 
with the emulator hardware). 

• Before driving the address bus, the user 
system must gain control by asserting HOLD 
and receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in 
emulation, but is delayed by 2 or 4 CLK2 
cycles. , 

• The user system must be able to drive one 
additional TTL load on all signals that go to 
the emulation processor. 

When the target system does not satisfy the 
first two restrictions, the bus isolation board is 
used to isolate the emulation processor from 
the target system. With the isolation board 
installed, the processor CLK2 is restricted to 
running at 25 MHz. 

±20 µ.A 

The processor module derives its DC power 
from the target system through the 80386 
socket. It requires 1500mA, including the 
80386 current. The isolation board requires an 
additional 475mA. 

The processor must be socketed. The printed 
circuit board design should locate the processor 
socket at the physical ends of the printed 
circuit board traces that connect the processor 
to the other logic of the target system. This 
reduces transmission line noise. Additionally, 
if the target system is enclosed in a box, pin 
one of the processor socket should be oriented 
to make connecting the processor module or 
target-adapter cable (TAC) easier. 

The emulator uses the 386 microprocessor's 
pins C7, El3, and Fl3. The 80386 High 
Performance 32-Bit Microprocessor With 
Integrated Memory Management data sheet 
specifies these pins as "N/C" (no connect). If 
the target system uses any of these pins, you 
must do one of the following: 
• Use the bus isolation board. 
• Use the target-adapter cable (TAC). 
• Build an adapter to disconnect pins C7, E13, 

and F13 (i.e., a socket with these pins 
removed). 

8-37 

I 



intJ 
ICE™-386 DX 25 MHz SPECIFICATIONS AND 

REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM PC AT or Personal System/2 Model 60. Host 
system requirements to run the emulator include the following: 

• DOS version 4.0, or Hewlett-Packard HP • A serial port or the National Instruments 
9000 UNIX GPIB-PCII, GPIB-PCIIA, or MC-GPIB board 

• 640 Kbytes of RAM in conventional memory • A math coprocessor if either the optional 
• An Above board with 1 megabyte of RAM time tag board is used or if a math 

configured in expanded memory mode, coprocessor resides on the target system 
EMM.SYS software version 3.2 

• A 20 MB hard disk 

ELECTRICAL 
CHARACTERISTICS 

ENVIRONMENTAL 
CHARACTERISTICS 

100-120V or 220-240V selectable 
50-60Hz 

Operating temperature: +lO"to +40"C 
(50° to 104° F) 

2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

Operating Humidity: Maximum of 85% 
relative humidity, 
non-condensing 

The Processor Module and Bus Isolation Board Dimensions 

PIN 1 
i---------17.5" --------4.5"----3.6" o_._____ 

i--------,--------27.1"-------------i 

;; L I "ii 
1.25" 

i---------12.75"-------

PIN 1 

D -.--.-.. --:~ -----

o t---G-------23.•"-------·1. 

1 r.~---- I 

.280850-4 

8-38 



intef 
ICE™-386 DX 25 MHz SPECIFICATIONS AND 

REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions 

r-----4.5''--j 

i.J5" j I- 0.25" 

Lr=· 
I f !i 
: ~ PIN1 4.0" 

' ' 

-======1-b--..----.il##ii#iii5=~'J .85" 

21:!01350-5 

The Emulator's Physical Characteristics 

Width Height Length 
Unit 

inches cm 

Base Unit 13.4 34.0 
Processor Module 3.8 9.7 
Optional Isolation Board 3.8 9.7 
Power Supply 7.7 19.6 
User Cable 1.9 4.8 
Target-Adapter Cable 2.3 5.3 
Serial Cable 
Optional Clips Pod 3.3 8.4 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid 
for at least four CLK2 cycles as they are only 
sampled on every other cycle. These input lines 
are standard TTL inputs. The synchronization 

inches cm inches cm 

4.6 11.7 11.0 27.9 
0.7 1.8 4.4 11.2 
0.5 1.3 4.4 11.2 
4.1 10.4 11.0 27.9 

17.3 43.9 
0.5 1.3 5.8 14.7 

144 366 
0.8 2.0 6.0 15.2 

output lines are driven by TTL open collector 
outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals 
on the optional clips pod are standard TTL 
input and outputs. 

8-39 

I 



ICE™-386 DX 25 MHz SPECIFICATIONS AND 
REQUIREMENTS 

AC Specifications With the Bus Isolation Board Installed 

Symbol Parameter Minimum Maximum Notes 

t1 CLK2period 50nS tlMax 
t2a CLK2 high time t2aMin+2nS @2V 
t3b CLK2 low time t3bMin+2nS @0.8v 
t6 A2-A31 valid delay t6 Min+ 3.5 nS t6 Max+ 24.6 nS CL=120pF 
t7 A2-A31 float delay t14 Min +5.5 nS t14Max+37.6nS 
t8 BEO# -BE3 #, LOCK# valid delay t8 Min+ 3.5 nS t8Max+24.6 CL=75pF 
t9 BEO# -BE3 #, LOCK# float delay t14 Min+ 5.5 nS t14 Max+.32.6 
tlO W IR#, MllO#, DIC#, ADS# valid delay tlO Min+ 3.5 nS tlO Min+ 24.6 CL=75pF 
tll W IR#, MllO#, DIC#, ADS# float delay t14 Min+ 5.5 nS t14 Max+ 32.6 
t12 DO-D31 write data valid delay t12 Min+ 4.5 nS t12 Max+ 20.6 CL=l20pF 
t13 DO-D31 write data float delay 7.5nS 41.6nS 
t14 HLDA valid delay t14Min=3nS t14 Max+ 21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t18 BS16# hold time I t18 Min+ 10.6 nS· 
t20 READY# hold time t20 Min+ 10.6 nS 
t21 DO-D31 read setup time t21 Min+ 8.!) nS 
t22 DO-D31 read hold time t22Min+7.6nS 
t24 HOLD hold time t24 Min+ 10.6 nS 
t25 RESET setup time t25 Min+ 2.1 nS 
t26 RESET hold time t26 Min+ 2.1 nS 
t28 NMI, INTR hold time t28 Min+ 10.6 nS 
t30 PEREQ, ERROR#, BUSY# hold time t30 Min+ 10.6 nS 

'I SPECIFICATIONS 

Emulator Capacitance Specifications 

TAC 
Symbol Description Typical Installed 

C1N InpU:t Capacitance 
CLK2 35pF 45pF 
READY#,NMI,BS16# 25pF 35pF 
HOLD, BUSY#; PEREQ, NA#, INTR, ERROR# lOpF 20pF 
RESET 20pF 30pF 

CouT Output or 1/0 Capacitance 
DO-D31 40pF 50pF 
A2-A31, BEO#-BE3# 30pF 40pF 
DIC# 35pF 45pF 
W/R# 40pF 50pF 
ADS#,MllO#,LOCK#, 25pF 35pF 
HLDA 

Note 1: Not tested. These specifications include the 80386 component and all additional emulator loading. 
Note 2: The target-adapter cable adds a propagation delay of 0.5 nS. 

8-40 



intef 
SPECIFICATIONS 

Emulator DC Specifications Without the Bus Isolation Board Installed 

Item Description Max. Notes 

PM-Ice Processor Module Supply Current 386SX-Icc+ 
l.5A 

Im Input High Leakage Current 
A2-A31, BEO#-BE3#, DO-D31 20µA 1 
HLDA, NMI, BS16# lOµA 1 
ADS#, MIIO#, LOCK#, READY# lOµA 1 
WIR#,DIC# 30µA 1 
CLK2 15µA 1 
RESET 5µA 2 

I11 Input Low Leakage Current 
A2-A31, BEO#-BE3#, DO-D31 600µA 1 
HLDA, NMI, BS16# lOµA 1 
ADS#, MIIO#, LOCK#, READY# lOµA 1 
WIR#llO µA 1 
DIC# 610µA 1 
CLK2 15µA 1 
RESET 5µA 2 

Note 1: This specification is the DC input loading of the emulator circuitry only and does not 
include any 80386 leakage current. 

Note 2: This specification replaces the 80386 specification for this signal. 

Emulator DC Specifications With the Bus Isolation Board Installed 

Item Description Min. Max. 

BIB-Ice Bus Isolation Board Supply Current PM-Ice+ 
475mA 

Vo1 Output Low Voltage (101=48 mA) 
A2-A31, BEO#-BE3#, DIC#, ADS# 0.5v 
DO-D31, MIIO#, LOCK#, WIR# 0.5v 
HLDA (101 = 24 mA) 0.44v 

VoH Output High Voltage (IoH = 3 mA) 
A2-A31, BEO#-BE3#, DIC#, ADS# 2.4v 
DO-D31, MIIO#, LOCK#, WIR# 2.4v 
HLDA (IoH = 24 mA) 3.8v 

Im Input High Current 
CLK2,RESET 1.0 µA 
READY# 25µA 

I11 Input Low Current 
CLK2,RESET 1.0 µA 
READY# 250µA 

I10 Output Leakage Current 
A2-A31, BEO#-BE3#, DIC#, ADS# ±20µA 
DO-D31, MIIO#, LOCK#, WIR# ±20 µA 

8-41 

II 



intef 
ICE™-386 SX 20 MHz SPECIFICATIONS AND 

REQUIREMENTS 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the bus , 
isolation board, the target system must meet 
the following requirements: 
• The user bus controller must only drive the 

data bus during a valid read cycle of the 
emulator processor or while the emulator 
processor is in a hold state (the emulator 
processor uses the data bus to communicate 
with the emulator hardware). 

• Before driving the address bus, the user 
system must gain control by asserting HOLD 
and receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in 
emulation, but is delayed by 2 or 4 CLK2 
cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to 
the emulation processor. 

When the target system does not satisfy the 
first two restrictions, the bus isolation board is 
used to isolate the emulation processor from 
the target system. With the isolation board 
installed, the processor CLK2 is restricted to 
running at 25 MHz. 

HOST SYSTEM REQUIREMENTS 

The processor module derives its DC power 
from the target system through the 80386 
socket. It requires 1500mA, including the 
80386 current. The isolation board requires an 
additional 475mA. 
The processor must be socketed. The printed 
circuit board design should locate the processor 
socket at the physical ends Of the printed 
circuit board traces that connect the processor 
to the other logic of the target system. This 
reduces transmission line noise. Additionally, 
if the target system is enclosed in a box, pin 
one of the processor socket should be oriented 
to make connecting the processor module or 
target-adapter cable (TAC) easier. 

The emulator uses the 386 microprocessor's 
pins C7, El3, and Fl3. The 80386 High 
Performance 32-Bit Microprocessor With 
Integrated Memory Management data sheet 
specifies these pins as "N/C" (no connect). If 
the target system uses any of these pins, you 
must do one of the following: 
• Use the bus isolation board. f 
• Use the target-adapter cable (TAC). 
• Build an adapter to disconnect pins C7, El3, 

and F13 (i.e., a socket with these pins 
removed). 

The user supplied host system can be either an IBM PC AT or Personal System/2 Model 60. Host 
system requirements to run the emulator include the following: 

• DOS version 4.0, or Hewlett-Packard HP9000 • A serial port or the National Instruments 
UNIX GPIB-PCII, GPIB-PCIIA, or MC-GPIB board 

• 640 Kbytes of RAM in conventional memory • A math coprocessor if either the optional 
• An Above board with 1 megabyte of RAM time tag board is used or if a math 

configured in expanded memory mode, coprocessor resides on the target system 
EMM.SYS software version 3.2 

• A 20 MB hard disk 

ELECTRICAL 
CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating temperature: + 10°C to + 40°C 

(5D°F to 104°F) 

Operating Humidity: Maximum of 85% 
relative humidity, 
non-condensing 

8-42 



intef 
ICE™-386 SX 20 MHz SPECIFICATIONS AND 

REQUIREMENTS 

The Emulator's Physical Characteristics 

Width Height Length 
Unit 

inches cm inches cm inches 

Base Unit 13.4 34.0 4.6 11.7 11.0 
Processor Module 3.8 9.7 0.7 1.8 4.4 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 
Power Supply 7.7 19.6 4.1 10.4 11.0 
User Cable 1.9 4.8 17.3 
Target-Adapter Cable 2.3 5.3 0.5 1.3 5.1 
Serial Cable 144 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 

The Processor Module and Bus Isolation Board Dimensions 

Joo--------17.5"-------i 

D....,_____, .___------f .. 
-~~-=-- -·===-=--=-==-------

-------. _--::-~ - --=-=---::--==. -

PIH 1 

PIN 1 

cm 

27.9 
11.2 
11.2 
27.9 
43.9 
13.0 

366 
15.2 

280850-6 

b§ii-----22.0"----.t·1 
f~ ~. 
1.8"~ ~ 
! . e E3 

280850-7 

8-43 



intJ 
ICE™-386 SX 20 MHz SPECIFICATIONS AND 

REQUIREMENTS 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid 
for at least four CLK2 cycles as they are only 
sampled on every other cycle. These input lines 
are standard TTL inputs. The synchronization 

output lines are driven by TTL open collector 
outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals 
on the optional clips pod are standard TTL 
input and outputs. 

AC Specifications With the Bus Isolation Board Installed 

Symbol Parameter Minimum Maximum Notes 

tl CLK2 period 50nS tl Max 
t2a CLK2 high time t2aMin+2nS @2V 
t3b CLK2 low time t3b Min +2 nS @0.8v 
t6 Al-A23 valid delay t6 Min+ 3.5 nS t6 Max+ 24.6 nS CL=120pF 
t7 Al-A23 float delay t14 Min+ 5.5 nS t14 Max+ 37.6 nS 
t8 BLE #, BHE # LOCK# valid delay t8 Min+ 3.5 nS t8Max+24.6 CL=75pF 
t9 BLE #, BHE # LOCK# float delay t14 Min+ 5.5 nS t14 Max+ 37.6 
tlO W IR#, MIIO#, DIC#, ADS# valid delay tlO Min+ 3.5 nS tlO Min+ 24.6 CL=75pF 
tll WIR#, MIIO#, DIC#, ADS# float delay t14 Min+ 5.5 nS t14Max+37.6 
tl2 DO-D15 write data valid delay t12 Min+ 4.5 nS t12 Max+ 20.6 CL:=120pF 
t13 DO-D15 write data float delay 7.5nS 45.6nS 
t14 HLDA valid delay t14Min=3nS t14 Max+ 21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t20 READY# hold time t20 Min+ 10.6 nS 
t21 DO-D15 read setup time t21 Min+ 8.5 nS 
t22 DO-Dl5 read hold time t22 Min+ 7.6 nS 
t24 HOLD hold time t24 Min+ 10.6 nS 
t25 RESET setup time t25 Min+ 2.1 nS 
t26 RESET hold time t26 Min+ 2.1 nS 
t28 NMI, INTR hold time t28 Min+ 10.6 nS 
t30 PEREQ, ERROR#, BUSY# hold time t30 Min+ 10.6 nS 

8-44 



intef 
SPECIFICATIONS 

Symbol 

Crn 

CoUT 

Emulator Capacitance Specifications 
With the Target-Adapter Cable Installed 

Typical 
Description (Note 1) 

Input Capacitance 
CLK2 55pF 
READY#, ERROR# 35pF 
HOLD, BUSY#, PEREQ, 
NA#, INTR, NMI 20pF 
RESET 30pF 

Output or I/O Capacitance 
D15-DO 50pF 
A15-Al, BLE# 40pF 
A23-Al6, BHE#, DIC# 30pF 
HLDA,WIR# 55pF 
ADS#, MIIO#, LOCK# 35pF 

Note 1: Not tested. These specifications include the 80386SX compo­
nent and all additional emulator loading. 

Emulator DC Specifications 
Without the Bus Isolation Board Installed 

Item Description Max. Notes 

PM-Ice Processor Module Supply Current 386SX-Icc+ 
940mA 

Irn Input High Leakage Current 
A23-Al, BLE#, BHE#, DIC#, HLDA 0.02mA 1 
Dl5-DO 0.06mA 1 
ADS#, MIIO#, LOCK#, READY#, 

ERROR# O.OlmA 1 
WIR# 0.03mA 1 
CLK2 0.04mA 1 
RESET 0.06mA 2 

IrL Input Low Leakage Current 
A23-Al, BLE#, BHE#, DIC# 0.6mA 1 
D15-DO 0.06mA 1 
ADS#, MIIO#, WCK #,READY#, 

ERROR# O.OlmA 1 
W/R# 0.51mA 1 
CLK2 0.62mA 1 
RESET 0.6mA 2 
HLDA 0.02mA 1 

Note 1: This specification is the DC input loading of the emulator circuitry only and does not include 
any 80386SX leakage current. 

Note 2: This specification replaces the 80386SX specification for this signal. 

8-45 

II 



intef 
SPECIFICATIONS 

Emulator DC Specifications With the Bus Isolation Board Installed 

Item Description Min. Max. 

BIB-Ice Bus Isolation Board Supply Current PM-Ice+ 
350mA 

Vo1 Output Low Voltage (101=48 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 0.5v 
D15-DO, MIIO#, LOCK#, WIR# 0.5v 
HLDA (101 = 24 mA) 0.44v 

Yott Output High Voltage (Iott= 3 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 2.4v 
D15-DO, MIIO#, LOCK#, WIR# 2.4v 
HLDA (Iott= 24 mA) 3.8v 

Irn Input High Current 
CLK2,RESET 1.0 µA 
READY# 2.5µA 

111 Input Low Current 
CLK2,RESET 1.0µA 
READY# 250µA 

Iro Output Leakage Current 
A23-Al, BLE#, BHE#, DIC#, ADS# ±20µA 
Dl5-DO, MIIO#, LOCK#, WIR# 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the bus 
isolation board, the target system must meet 
the following requirements: 
• The user bus controller must only drive the 

data bus during a valid read cycle of the 
emulator processor or while the emulator 
processor is in a hold state (the emulator 
processor uses the data bus to communicate 
with the emulator hardware). 

• Before driving the address bus, the user 
system must gain control by asserting HOLD 
and receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in 
emulation, but is delayed by 2 or 4 CLK2 
cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to 
the emulation processor. 

When the target system does not satisfy the 
first two restrictions, the bus isolation board is 
used to isolate the emulation processor from 
the target system. With the isolation board 
installed, the processor CLK2 is restricted to 
running at 20 MHz. 

±±20mA 

The processor module derives its DC power 
from the target system through the 80386SX 
socket. It requires 1400mA, including the 
80386SX current. The isolation board requires 
an additional 350mA. 
The processor must be socketed, for example 
using Textool 2-0100-07243-000 or AMP 
821949-4 sockets. 
The printed circuit board design should locate 
the processor socket at the physical ends of the 
printed circuit board traces that connect the 
processor to the other logic of the target 
system. This reduces transmission line noise. 
Additionally, ifthe target system is enclosed in 
a box, pin one of the processor socket should be 
oriented away from the target system's box 
opening to make connecting the target-adapter 
cable easier. 

8-46 



intJ 
ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM PC AT or Personal System/2 Model 60. Host 
system requirements to run the emulator include the following: 

• DOS version 4.0, or Hewlett-Packard HP9000 • A serial port or the National Instruments 
UNIX GPIB-PCII, GPIB-PCIIA, or MC-GPIB board 

• 640 Kbytes of RAM in conventional memory • A math coprocessor if either the optional 
• An Above board with 1 megabyte of RAM time tag board is used or if a math 

configured in expanded memory mode, coprocessor resides on the target system 
EMM.SYS software version 3.2 

• A 20 MB hard disk 

ELECTRICAL 
CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating temperature: + lO'C to + 40'C 

(50'F to 104'F) 

Operating Humidity: Maximum of 85% 
relative humidity, 
non-condensing 

The Emulator's Physical Characteristics 

Width Height Length 
Unit 

inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 11.2 
Power Supply 7.7 19.6 4.1 10.4 11.0 27.9 
User Cable 1.9 4.8 17.3 43.9 
100-Pin Target-Adapter Cable 2.3 5.3 0.5 1.3 5.1 13.0 
88-Pin Target-Adapter Cable 2.3 5.3 0.5 1.3 5.8 14.7 
Serial Cable 144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

8-47 

II 



intJ 
ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions (88 Pin PGA) 

i-------17.5" _______ _, 

t+--------------25.7"-~-,, 

1.2" 

280850-8 

14'------ 12.7" -------+! 

,[bi 
280850-9 

8-48 



intef 
ICE™-376 SPECIFICATIONS AND REQUIREMENTS 

The Processor Module and Bus Isolation Board Dimensions (JOO Pin PQFP) 

.__------17.5" ______ _. 
r--3.5"~ 

13.0" I 

PIN 1 

1.3"' 

280850-10 

r--3 .. 5"~ 13.0" I 

o~---_-_-_-__ -~-==---~---_-_- =~=---~=------:~~ =-~---=~-~ -- 1-==-1 

i-------- 12.7" -------! 

PIN 1 

I 

u==?i--------22.0"-----·1 
tJc::t ~ 

IM ji E'l 
280850-11 

8-49 



intJ 
ICETM-376 SPECIFICATIONS AND REQUIREMENTS 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid 
for at least four CLK2 cycles as they are only 
sampled on every other cycle. These input lines 
are standard TTL inputs. The synchronization 

output lines are driven by 'ITL open collector 
outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals 
on the optional clips pod are standard 'ITL 
input and outputs. 

AC Specifications With the Bus Isolation Board Installed 

Sym~ol Parameter Minimum Maximum Notes 

t1 CLK2period 50nS tlMax 
t2a CLK2 high time t2aMin+2nS @2V 
t3b CLK2 low time t3bMin+2nS @O.Sv 
t6 Al-A23 valid delay t6 Min+ 3.5 nS t6 Max+ 24.6 nS CL=120pF 
t7 Al-A23 float delay t14 Min+ 5.5 nS tl4 Max+ 37.6 nS 
tB BLE#, BHE# LOCK# valid delay t8 Min+ 3.5 nS t8Max+24.6 CL=75pF 
t9 BLE #, BHE # LOCK# float delay t14 Min+ 5.5 nS t14Max+37.6 
tlO W/R#, M/10#, DIC#, ADS# valid delay tlO Min+ 3.5 nS tlO Min+ 24.6 CL=75pF 
tll W/R#,M/IO#,D/C#,ADS# floatdelay t14 Min+ 5.5 nS tl4 Max+ 37.6 
t12 DO-D15 write data valid delay t12 Min+ 4.5 nS tl2 Max+ 20.6 CL=120pF 
t13 DO-D15 write data float delay 7.5nS 45.6nS 
t14 HLDA valid delay t14Min=3nS t14 Max+ 21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t20 READY# hold time t20 Min+ 10.6 nS 
t21 DO-D15 read setup time t21 Min+ 8.5 nS 
t22 DO-D15 read hold time t22 Min+ 7.6 nS 
t24 HOLD hold time t24 Min+ 10.6 nS 
t25 RESET setup time t'25 Min+ 2.1 nS 
t26 RESET hold time t26 Min+ 2.1 nS 
t28 NMI, INTR hold time t28 Min+ 10.6 nS 
t30 PEREQ, ERROR#, BUSY# hold time t30 Min+ 10.6 nS 

8-50 



intJ 
SPECIFICATIONS 

Emulator Capacitance Specifications 
With Target-Adapter Cable Installed 

Typical 
Symbol Description (Note 1) 

CIN Input Capacitance 
CLK2 55pF 
READY#, ERROR# 35pF 
HOLD, BUSY#, PEREQ, NA#, 
INTR,NMI 20pF 
RESET 30pF 

Com Output or 1/0 Capacitance 
D15-DO 50pF 
A15-Al, BLE# 40pF 
A23-A16, BHE#, DIC# 30pF 
HLDA,WIR# 55pF 
ADS#, MIIO#, LOCK# 35pF 

Note 1: Not tested. These specifications include the 80376 component and all 
additional emulator loading. 

Item 

PM-Ice 

Irn 

IIL 

Emulator DC Specifications 
Without the Bus Isolation Board Installed 

Description Max. 

Processor Module Supply Current 376-Icc+ 
940mA 

Input High Leakage Current 
A23-Al, BLE#, BHE#, DIC#, HLDA 0.02mA 
D15-DO 0.06mA 
ADS#, MIIO#, LOCK#, READY#, 

ERROR# O.OlmA 
WIR# 0.03mA 
CLK2 0.04mA 

RESET 0.06mA 
Input Low Leakage Current 

A23-Al, BLE#, BHE#, DIC# 0.6mA 
D15-DO 0.06mA 
ADS#, MIIO#, LOCK#, READY#, 

ERROR# O.OlmA · 
WIR# 0.5lmA 
CLK2 0.62mA 
RESET 0.6mA 
HLDA 0.02mA 

Notes 

1 
1 

1 
1 
1 
2 

1 
1 

1 
1 
1 
2 
1 

Note 1: This specification is the DC input loading of the emulator circuitry only and does not 
include any 80376 leakage current. 

Note 2: This specification replaces the 80376 specification for this signal. 

8-51 

I 



infef 
SPECIFICATIONS] 

Emulator DC Specifications With the Bus Isolation Board Installed 

Item Description Min. Max. 

BIB-Ice Bus Isolation Board Supply Current PM-Ice+ 
350mA 

Vo1 Output Low Voltage (101=48 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 0.5v 
Dl5-DO,MIIO#,LOCK#, WIR# 0.5v 
HLDA Clo1=24 mA) 0.44v 

VoH Output High Voltage (IoH = 3 mA) 
A23-Al, BLE#, BHE#, DIC#, ADS# 2.4v 
D15-DO, M/IO#, LOCK#, W IR# 2.4v 
HLDA (loH= 24 mA) 3.8v 

Im Input High Current 
CLK2,RESET 1.0 µA 
READY# 25µA 

In, Input Low Current 
CLK2,RESET 1.0 µA 
READY# 250µA 

Im Output Leakage Current 
A23-Al, BLE#, BHE#, DIC#, ADS# ±20µA 
D15-DO, MIIO#, LOCK#, WIR# 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the bus 
isolation board, the target system must meet 
the following requirements: 
• The user bus controller must only drive the 

data bus during a valid read cycle of the 
emulator processor or while the emulator 
processor is in a hold state (the emulator 
processor uses the data bus to communicate 
with the emulator hardware). 

• Before driving the address bus, the user 
system must gain control by asserting HOLD 
and receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in 
emulation, but is delayed by 2 or 4 CLK2 
cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to 
the emulation processor. 

When the target system does not satisfy the 
first two restrictions, the bus isolation board is 
used to isolate the emulation processor from 
the target system. With the isolation board 
installed, the processor CLK2 is restricted to 
running at 20 MHz. 

±20µA 

The processor module derives its DC power 
from the target system through the 80376 
socket. It requires 1400mA, including the 
80376 current. The isolation board requires an 
additional 350mA. 

The processor must be socketed, for example 
using Textool 2-0100-07243-000 or AMP 
821949-4 sockets. 

The printed circuit board design should locate 
the processor socket at the physical ends of the 
printed circuit board traces that connect the 
processor to the other logic of the target 
system. This reduces transmission line noise. 
Additionally, if the target system is enclosed in 
a box, pin one of the processor socket should be 
oriented away from the target system's box 
opening to make connecting the target-adapter 
cable easier. 

8-52 



intef 
ORDERING INFORMATION 

IN-CIRCUIT EMULATORS 
ORDER CODES 
pICE376D 

ICE37616H 

ICE386SX20D 

ICE386SX20H 

ICE376 In-circuit Emulator for 
80376 component. Operates to 
16 MHz. Includes control unit, 
power supply, 376 Processor 
Module with PQFP adaptor, 
Stand-Alone Self-Test board, 
bus Isolation Board, and DOS 
3.x host software and interface 
cable. 

HP9000 hosted In-circuit 
Emulator for 80376 
component. Operates to 
16MHz. 

ICE386SX 20 MHz In-circuit 
Emulator for 80386 SX 
component. Includes control 
unit, power supply, 386 SX 
Processor Module with PQFP 
adaptor, Stand-Alone Self-Test 
board, bus Isolation Board, and 
DOS 3.x host software and 
interface cable. 

HP9000 hosted In-circuit 
Emulator for 80386 SX 
component. Operates to 
20MHz. 

pICE38625D ICE386 25 MHz In-circuit 
Emulator for 80386 DX 
component. Includes control 
unit, power supply, 386 DX 
Processor Module with 132 pin 
PGA adaptor, Stand-Alone 
Self-Test board, bus Isolation 
Board, and DOS 3.x host 
software and interface cable. 

ICE386DX33D ICE386DX 33 MHz In-circuit 
Emulator for 80386 DX 
component. Includes control 
unit, power supply, 386 DX 
Processor Module with 132 pin 
PGA adaptor, Stand-Alone 
Self-Test board, bus Isolation 
Board, and DOS 3.x host 
software and interface cable. 

ICE386DX25H HP9000 hosted In-circuit 
Emulator for 80386 DX 
component. Operates to 
25MHz. 

ICE386DX33H HP9000 hosted In-circuit 
Emulator for the 386 DX 
component. This custom unit 
operates to 33 MHz. 

8-53 



intef 
ORDERING INFORMATION 

IN-CIRCUIT EMULATOR 
CONVERSION KITS ORDER 
CODES 
pTOICE386SX20D Conversion kit to adapt 

emulator base to support 
the 80386 SX component. 
Operates to 20 MHz. 
Includes ICE386SX 
20 MHz Processor Module 
and DOS 3.x host 
software. 

pICE376T0386D Conversion kit to adapt 
ICE376 emulator to 
support the 80386 DX 
component at 25 MHz. 
Includes ICE386 25 MHz 
Processor Module and 
DOS 3.x host software. 

pICE386SXT0376D Conversion kit to adapt 
ICE386SX 16 or 20 MHz 
emulator to support the 
80376 component. 
Operates to 16 MHz. 
Includes ICE376 emulator 
Processor Module and 
DOS 3.x host software. 

plCE386SXT0386D Conversion kit to adapt 
ICE386SX 16 or 20 MHz 
emulator to support the 
80386 DX component at 
25 MHz. Includes ICE386 
25 MHz Processor Module 
and DOS 3.x host 
software. 

pICE386T0376D Conversion kit to adapt 
ICE386 25 MHz emulator 
to support the 80376 
component. Operates to 
16 MHz. Includes ICE376 
emulator Processor 
Module and DOS 3.x host 
software. 

TOICE386DX33D Conversion kit to adapt 
emulator base to support 
the 80386 DX 33 MHz 
component. Operates to 
33 MHz. Includes 
ICE386DX 33 MHz 
emulator Processor 
Module and DOS 3.x host 
software. 

IN-CIRCUIT EMULATOR 
OPTION ORDER CODES 
p88PGAADAPT 

pICE3XXCPO 

pICE3XXTTB 

DTOAB 

Adaptor for ICE376 
emulator to support 
88 pin PGA component 
packaging. 

Clips Pod Option for 
ICE376, ICE386SX 16 or 
20 MHz, ICE386 25 MHz, 
and ICE386DX 33 MHz 
emulators. 

Time Tag Board Option 
for ICE376, ICE386SX 
16 or 20 MHz, ICE386 
25 MHz, and ICE386DX 
33 MHz emulators. 

2 MB Above Board. 

8-54 



INTEL i486™ IN-CIRCUIT EMULATOR 

280094-1 

ACCURATE AND SOPHISTICATED EMULATION FOR THE 
INTEL i486™ FAMILY OF MICROPROCESSORS 
The Intel ICE™-486 In-Circuit Emulator is the world's leading tool for debugging 
software and hardware designs based on the Intel i486™ family of microprocessors. 
From the inventor of the microprocessor comes a development tool that allows you 
complete access and control over the sophisticated capabilities of the i486 microprocessor. 

The ICE-486 features real-time emulation of the i486 microprocessor at speeds up to 33 
MHz. Its standard high-level, symbolic debug capability saves valuable development 
time. The flexible breakpoint capability and SK deep trace buffer provide the power to 
identify and solve the toughest hardware and software bugs. 

Intel product quality and world-class technical support and service give you the time-to­
market advantage in designing your i486 microprocessor based product. And your 
investment in development tools is protected via interchangeable probes for the 386™ 
family and i486 microprocessors. 

8-55 
November 1990 

Order Number: 280894-001 

I 



intJ 
FEATURES 

OVERVIEW 
• Intel technology to access and modify all 

internal processor registers including the 
i486 processor on-chip cache control registers 
and floating point registers 

• Non-intrusive, 100% accurate emulation and 
execution history to processor speeds of 33 
MHz 

• Symbolic support saves time in referencing 
program objects while debugging 

• Complete support for all processor 
addressing modes including real, protected, 
and virtual 8086 modes with support for i486 
processor paging modes 

• 2MB expansion memory to debug large 
programs 

• Maximum flexibility in break-point 
specification cuts time to identify complex 
bugs 

• Deep trace buffer with the ability to collect 
and display SK frames of bus and/or 
execution trace information 

• Comprehensive software development tools 
optimized for creating 32-bit applications 
which utilize all the features of the i486 
microprocessor 

BENEFITS OF 100% ACCURATE 
EXECUTION HISTORY 
The i486 microprocessor can simultaneously 
fetch and execute instructions. However, due 
to code branching, fetched instructions are not 
necessarily executed. Additionally, the i486 
can execute instructions from the on-chip 
cache with no associated external. bus activity. 
The ICE-486 emulator uses Intel technology to 
access the internal processor conditions that 
are not available to emulators which simply 
monitor the external buses for detection of 
internal events. Emulators which do not have 
access to the internal processor conditions 
cannot guarantee accurate display of what 
actually was executed by the microprocessor. 
With an Intel ICE-486, you can be certain that 
the emulator is displaying execution history 
with 100% accuracy, even when executing 
code from the on-chip cache memory. 

OPENING THE DOOR TO 
PROTECTED MODE 
Intel i486 emulators support protected mode 
operation of the i486 microprocessor. The 
emulator can display and modify task state 

segments and global, local, and interrupt 
descriptor tables (with symbolic access to all 
descriptor components such as privilege level 
and segment type). Emul<ttor functions are 
sensitive to the operating mode of the 
processor, saving user setup time in debugging 
complex protected lllode applications. 

Intel i486 emulators support all aspects of 
protected mode addressing, including p<tged 
virtual memory. You can automatically 
translate virtual addresses to linear and 
physical addresses. Physical addresses can be 
translated to symbolic references to indicate 
the module, procedure, or data segment 
accessed. When debugging a memory 
management system, components of the page 
tables and directory can be displayed and 
modified. 

FLEXIBLE EVENT 
RECOGNITION 
The emulator can be configured to break on a 
wide variety of events. Flexible event 
recognition saves time isolating and fixing the 
most complex bugs. The emulator can trigger 
breakpoints on a variety of bus events such as 
a specific or masked data input, output, read, 
write, or a fetch at a physical address or range 
of addresses. On-chip debug registers can be set 
to break on virtual, linear, or symbolic address 
execution, access, or writes using the cache 
memory or RAM. 

There are several other triggering options: You 
can break on a task switch, an external signal 
from another emulator or logic analyzer, 
multiple occurrences of an event, full trace 
buffer, halt or shutdown cycles, or interrupt 
acknowledge cycle. And up to four sequential 
event triggers can be combined with a high­
level construct. 

BK TRACE BUFFER FOR 
COLLECTING EXECUTION AND 
BUS ACTIVITY 
Intel i486 emulators can continuously capture 
all or selective bus activity, and/or optionally 
capture execution information. The trace 
buffer can store up to 8,192 frames with PRE, 
POST, and CENTERED collection modes. 

8-56 



inter 
FEATURES 

With the emulator halted, the trace buffer 
contents can be displayed in bus cycle or 
execution instruction formats. Dynamic trace 
capability allows the contents of the trace 
buffer to be displayed as bus cycles during full­
speed emulation, a benefit when the processor 
cannot be halted while debugging time-critical 
systems. Symbolic information can be included 
in the trace display. When debugging high­
level language programs, the callstack can also 
be displayed to show the current chain of 
procedure calls. · 

SYMBOLIC DEBUGGING SAVES 
DEVELOPMENT TIME 
With the symbolic debugging capability of 
Intel languages and the Intel ICE-486, all data 
structures such as register, descriptor table, 
and page table contents can be examined and 
modified using symbolic names. Memory 
locations can be examined and modified using 
symbolic referencea to the source program 
(procedure and variable names, line numbers, 
or program labels). This eliminates the time­
consuming use of virtual, linear, or physical 
address referencing used in other emulator 
systems. Variable type information (such as 
byte, word, record, or array) is also provided to 
make the debugging process faster and easier. 

ACCESSING THE POWER 
The Intel ICE-486 in-circuit emulator features 
a sophisticated command structure that allows 
you to easily access all the capabilities of the 
emulator. 

On-line help, a syntax guide, command line 
editing, command history, and detailed error 
messages promote ease of learning and use. I/ 
0 redirection and the ability to escape to the 
host operating system increase versatility for 
the user with complex debugging needs. 
Creation of customized debug procedures with 
variables and literal defmitions simplifies and 
automates debugging tasks used in design, test 
and evaluation, manufacturing test, or field 
service. 

SYSTEM CONNECTIVITY AND 
CONFIGURATION 
The Intel i486 emulator can be combined with 
a variety of lab instruments to extend the 
capability of the tool. I/O sync lines allow 
emulator event control and synchronization 
with external tools such as logic analyzers, 
scopes, or another emulator. 

INCLUDED OPTIONAL USE 
EQUIPMENT 
The Relocatable Expansion Memory (REM) 
board included with the ICE-486 system allows 
you to map 2 MB of memory for developing 
large applications before prototype target 
system memory is completely functional. Also, 
an optional isolation board is provided with the 
emulator. It buffers signals to the emulator, 
protecting the emulator from potential damage 
caused by an untested prototype target system. 
The REM board can be used in conjunction 
with the isolation board to overlay EPROMs. 
This technique avoids tli!l slow process of 
programming new EPROMs each time a new 
version ofEPROM software is compiled. 

A stand-alone/self-test board is also provided 
with the emulator. The stand-alone/self-test 
board, in conjunction with the REM board, 
allows execution and debugging of code to 
begin before target system availability~ It also 
allows execution of the emulator confidence 
tests so you always know with certainty that 
the emulator is functioning properly. 

EMULATOR OPTIONS 
An optional time tag board synchronizes 
multiple Intel i486 emulators and adds 20-
nanosecond resolution time stamp information 
to the trace buffer. 

An optional clips pod allows eight data lines to 
be captured in the trace buffer and displayed 
in the CYCLES format. 

SOFTWARE COMPLETES THE 
SYSTEM 
Intel provides comprehensive software 
development tools which work together with 
the ICE-486 emulator for the most complete 
development environment available from a 
single vendor. C, PL/M, and Fortran compilers 
are available in addition to a Macroassembler. 
A builder and binder, available for configuring 
and linking software modules, greatly simplify 
configuration of code modules for protected 
mode systems. The DB-386/ 486 source-level 
software debugger with its powerful windowed 
interface completes the picture. 

To further reduce the effort necessary to 
integrate software into the final target 
configuration, Intel tools produce ROM code 
directly, saving you the time and headaches 
frequently encountered using converter 
utilities from other vendors. 

8-57 

I 



intJ 
FEATURES 

WORLD-CLASS, WORLDWIDE 
SERVICES 
Intel i486 development tools are supplemented 
by a full array of support services. Seminars, 
classes and workshops, on-site consulting, field 
application engineering expertise, telephone 
hotline support, and software and hardware 
maintenance are just a few of the services 

which are available from Intel to insure your 
design requirements are met on time and with 
minimal problems. Only Intel gives you one 
source to call for complete development tool 
support for your i486 design. 

ICE™-486 33 MHz SPECIFICATIONS AND 
REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC/ AT®, Personal System/2® Model 60, or 
Model 80. Host system requirements to run the emulator include the following: 

• DOS version 3.3 • A 20MB hard disk 
• 640K bytes of RAM in conventional memory • A serial port or the National Instruments 
•An Above™ board with 1 megabyte of RAM GPIB-PCII™, GPIB-PCIIA™, or MC-

configured in expanded memory mode, GPIB™ board 
EMM.SYS software version 3.2, or • A math coprocessor is required in the host 

• One megabyte of RAM configured as system if either the optional time tag board 
expanded memory using 386MAX is used or ifthe on-chip floating point unit is 

ELECTRICAL 
CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60 Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

utilized by the target system ' 

ENVIRONMENTAL 
CHARACTERISTICS 
Operating temperature: + l0°C to + 40°C 

(50°F to 104°F) 

Operating Humidity: Maximum of 85% 
relative humidity, 
non-condensing 

The Emulator's Physical Characteristics 

Unit Width Height Length 
inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 4.2 10.7 1.4 3.6 4.7 11.9 
Optional Isolation Board 3.5 8.9 0.7 1.8 3.5 8.9 
Power Supply 7.7 19.6 4.1 10.4 11.0 27.9 
lTserCable 1.9 4.8 15.8 40.1 
Hinge Cable 2.6 6.6 0.5 1.3 7.7 19.6 
Relocatable Expansion Memory Board 3.5 8.9 0.7 1.8 6.0 15.2 
Serial Cable 144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

8-58 



intJ 
ICE™-486 33 MHz SPECIFICATIONS AND 

REQUIREMENTS 

THE PROCESSOR MODULE AND OPTIONAL BOARD DIMENSIONS 

PIN 1 
,___---12.8" ------i-----

11 D 
260894-3 

280694-4 

r---4.7"-~ 

,,Is.. j 1--- 0.35" 

t ·--- • 
4.2" : -f :1 

: 'if-PIN 1 
-----

I I 
~--- "---- .. 

280894-5 

8-59 

I 



intJ 
ICE™-486 33 MHz SPECIFICATIONS AND 

REQUIREMENTS 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid for at least two CLK cycles. These input lines are 
standard TTL inputs. The synchronization output lines are driven by TTL open collector outputs 
that have 4. 7K-ohm pull-up resistors. The synchronization input and output signals on the 
optional clips pod are standard TTL input and outputs. The emulator delays the RESET signal to 
the i486 by a maximum of 8ns and the A20M # and FLUSH# signals by a maximum of 5ns. 

Emulator AC Specifications with the Isolation Board Installed 

Symbol Parameter Minimum Maximum Notes 

t6 A2-A31 valid delay t6 Min+ l.5ns t6 Max+5ns 
t6 BE0-3 #, M/IO#, W /R#, ADS#, HLDA valid delay t6 Min+ 2.5ns t6Max+8ns 
t6 A2-A31 valid delay t6 Min+ l.5ns t6Max+llns 1 
t6 BE0-3#, M/IO#, W/R#, ADS# valid delay t6 Min+ 2.5ns t6Max+14ns 1 
t8a BLAST# valid delay t8a Min+ 2.5ns t8aMax+8ns 
tlO DO-D31 write data valid delay tlO Min+ l.5ns t10Max+5ns 
t16 RDY # setup time t16Min+5ns 
t22 A4-A31, DO-D31 input set up time t22Min+5ns 

Note 1: Use these specifications for any bus cycle that begins on the same clock that HLDA is de-asserted. 

Emulator Capacitance Specifications 

Symbol Description Typical Hinge Cable Installed 

CIN Input Capacitance: 
CLK 55pF 
A20M#, AHOLD, FLUSH#, HOLD, 
IGNNE#, INTR 20pF 
BS8#, BS16#, EADS#, KEN# 25pF 
BRDY #, NMI, RDY # 30pF 
RESET, BOFF# 35pF 

CouT Output or 1/0 Capacitance: 
DO - D31, BLAST#, DIC#, LOCK#, 30pF 
PLOCK# 25pF 
A2-A31, ADS# 25pF 
HLDA,M/IO# 25pF 
PWT 35pF 
BEO#-BE3#,PCD 15pF 
BREQ#, PCHK # 15pF 
FERR# 20pF 
DPO-DP3 40pF 
W/R# 

Note 1: Not tested. These specifications include the i486 component and all additional emulator loading. 
Note 2: The hinge cable adds a propagation delay of 0.5 ns. 

8-60 

70pF 

30pF 
40pF 
40pF 
50pF 

50pF 
50pF 
45pF 
40pF 
55pF 
35pF 
30pF 
35pF 
60pF 



intJ 

Item 

PM-Ice 
Irn 

l1L 

/ 

ICE™-486 33 MHz SPECIFICATIONS AND 
REQUIREMENTS 

Emulator DC Specifications without the Isolation Board Installed 

Description Maximum 

Processor Module Supply Current 486lcc + l.5A 
Input High Leakage Current 

D0-31 15uA 
A2-31, BE#0-3, PWT 5uA 
WIR#, DIC#, MllO#, LOCK#, PLOCK# 5uA 
BLAST#, HLDA 5uA 
BS16 #, BS8#, EADS#, KEN#, NMI 5uA 
BOFF#, RDY#, BRDY# 25uA 
PCD 30uA 
CLK 15uA 
RESET 30uA 
A20M#, FLUSH# 5uA 

Input Low Leakage Current 
D0-31 15uA 
A2-31, BE#0-3, PWT 5uA 
WIR#, DIC#, MllO#, LOCK#, PLOCK# 5uA 
BLAST#, HLDA 5uA 
BS16#, BS8#, EADS#, KEN#, NMI 5uA 
BOFF#, RDY #, BRDY # 250uA 
PCD 255uA 
CLK 15uA 
RESET 255uA 
A20M#, FLUSH# 5uA 

Notes 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

Note 1: This specification is the DC loading of the emulator circuitry only and does not include any i486 leakage current. 
Note 2: This specification replaces the i486 specification for this signal. 

Emulator DC Specifications with the Isolation Board Installed 

Item Description Minimum Maximum 

VoH Output High Voltage 
A2-A31, DO-D31 (!mi:= 15 mA) 2.4V 
BE0-3#, MllO#, (loH= 3 mA) 2.4V 
WIR#, ADS#, BLAST# (loH 3mA) 2.4V 
HLDA (IoH 3.2mA) 2.4V 

VoL Output Low Voltage 
A2-A31, DO-D31 0oL=64mA) 0.55V 
BE0-3 #, M/IO #, (loL=64mAl 0.55V 
WIR#, ADS#, BLAST# (loL=64mA) 0.55V 
HLDA (loL=24mA) 0.5V 

Iu Input Leakage Current 
A2-A31, DO-D31 ±15uA 

Irn Input High Curre.nt 
CLK, RESET, BRDY #, BOFF #, AHOLD 25uA 
RDY# 30uA 

lrL Input Low Current 
CLK, RESET, BRDY #, BOFF#, AHOLD 250uA 
RDY# 255uA 

Note 1: This specification is for the Isolation Board only and does not include any processor module loading. 
Note 2: These specifications replace the i486 specifications for this signal. 

8-61 

Notes 

2 

2 

2 

1 
2 

1 
2 

I 



intJ 
ICE™-486 · 33 MHz SPECIFICATIONS AND 

REQUIREMENTS 

PROCESSOR MODULE 
INTERFACE CONSIDERATIONS 
With the processor module directly attached to 
the target system without using the optional 
isolation board, the target system must meet 
the following requirements: 
• The bus controller must only enable data 

transceivers onto the bus during valid read 
cycles of the 486 CPU or while another bus 
master has gained access to the bus through 
the use of HOLD/HLDA or BOFF #. 

• Before another bus master drives the local 
processor address bus, the other bus·master 
must gain access to the address bus through 
the use ofHOLD/HLDA, AHOLD or 
BOFF#. 

• The user system must be able to drive one 
additional CMOS load (approximately 25pF) 
on all signals that go to the emulation 
processor. 

If the target system does not satisfy the 
restrictions, the optional isolation board 
should be used to isolate the emulation 
processor from the target system. To guarantee 
proper operation with the optional isolation 
board, the clock period should be increased by 
the round trip buffer delay (10 ns) unless the 

target system design already has enough 
timing margin. 

The processor module derives its DC power 
from the target system through the 486 CPU 
socket. It requires 2200mA, including the i486 
current. The optional isolation board requires 
an additional 500mA. Tl:ie REM board requires 
an additional 2100mA. 

The processor must be socketed. The printed 
circuit board design should locate the processor 
socket at the physical ends of the printed 
circuit board traces that connect the processor 
to the other logic of the target system. This 
reduces transmission line noise. If the target ' 
system is enclosed in a box, orient pin one of 
the processor socket to simplify connecting the 
ICB. This makes connecting the hinge cable 
easier. The ICE-486 emulator hinge cable adds 
an additional 15pF of capacitive loading and 
approximately 0.5ns of propagation delay to 
each 486 CPU signal. 

Pins specified as N.C. in the 486 CPU pin 
description must be left unconnected. 
Connection of any of these pins to power, 
ground or any other signal may cause the 
processor or the ICE-486 emulator to 
malfonction. 

ORDERING INFORMATION 

!CE™-486 IN-CIRCUIT EMULATOR ORDER CODES 
ICE48633D ICE-486 In-circuit emulator for 80486 component. Operates to 33 MHz. Includes 

control unit, power supply, 80486 Processor Module, Stand-Alone/Self-Test 
Board, Optional Bus Isolation Board, Relocatable Expansion Memory Board, 
host software and cables. 

ICE™-486 IN-CIRCUIT EMULATOR CONVERSION KIT ORDER 
CODES 
BASECONV386 Conversion kit to upgrade the 386 family emulator base to support the 80486 

processor module. 
TOICE48633D Conversion kit to adapt the above upgraded base to support the 80486 

component. Includes ICE486 33 MHz Processor Module, Stand-Alone/Self-Test 
Board, Optional Bus Isolation Board, Relocatable Expansion Memory Board, 
and host software. 

ICE™-486 IN-CIRCUIT EMULATOR OPTION ORDER CODES 
DTOAB 
ICE3XXCPO 
ICE3XXTTB 

2Mb Intel Above™ Board. 
Clips Pod Option for ICE-486. 
Time Tag Board Option for ICE-486. 

B-62 



inter 
ALABAMA 

Intel Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 
Tel: (205) 830·4010 
FAX,(205) 837-2840 

ARIZONA 

tlntel Corp. 
410 North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602) 231-0386 
FAX: (802) 244·0446 

i~~~ 1f.r~ona Lisa Rd. 
Suite 215 
Tucson 85741 

~~i<}~~k)5~im2 
CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Suite 116 
Canoga Park 91303 
Tel: (81 B) 704·8500 
FAX: (818) 340·1144 

tlntel Corp. 
300 N. Continental Blvd. 
Suite 100 
El Segundo 90245 
Tel: (213) 840·6040 
FAX: (213) 840·7133 

Intel Cor~. 
1 Sierra Gate Plaza 
Suite 280C 
Roseville 95678 
Tel: (916) 782·8088 
FAX: (916) 782·8153 

tlntel Corp. 
9685 Chesapeake Dr. 
Suite 325 

~:g gir~o Ji~~:&i6 
FAX: (619) 292·0628 

tlntel Corp.• 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835·9642 
TWX: 910·595-1114 
FAX: (714) 541 ·9157 

tlntel Corp.* 
San Tomas 4 
2700 San Tomas Expres~ 
2nd Floor 
Santa Clara 95051 
Tel: (406) 986-8086 
TWX: 910·338-0255 
FAX: (408) 727·2620 

COLORADO 

Intel Corp. 
4445 Northpark Drive 
SuHe 100 

¥~10~?3) ~~te:J0907 
FAX: (303) 594·0720 

tlntel Corp.* 
600 S. Cherry St. 
Suite 700 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931-2289 
FAX: (303) 322·8670 

CONNECTICUT 

tlntel Corp. 

~g\.;~~s~~r~8~~oR~~ Park 
Danbury 06810 
Tel: (203) 748·3130 
FAX: (203) 794-0339 

tSales and Service Office 
*Field Application Location 

DOMESTIC SALES 
FLORIDA MICHIGAN 

tlntel Corp. tlntel Corp. 
800 Fairway Drive 7071 Orchard Lake Road 
Suite 160 Suite 100 
Deerfield Beach 33441 West Bloomfield 48322 
Tel: (305) 421-0506 Tel: (313) 851·8096 
FAX: (305) 421 ·2444 FAX: (313) 851·8770 

tlntel Corp. 
5850 T.G. Lee Blvd. 

MINNESOTA 

Suite 340 tlntel Corp. 
Orlando 32822 3500 W. Both St. 
Tel: (407) 240·8000 Suite 360 
FAX: (407) 240·6097 

~~~~~\n2~~s5~~ 
m~~%~· Street North

TWX: 910·576-2867

Suite 170
FAX: (612) 831·6497

St. Petersburg 33718
MISSOURI

~~;,}~~~1)5~~8~t~31
l\rJ~1 if.:'J~· City Expressway

GEORGIA Suite 131
Earth Ci~ 63045

tlntel Corp. Tel: (314 291-1990
20 Technology Parkway FAX: (314) 291·4341
Suite 150
Norcross 30092 NEW JERSEY Tel: (404)·449·0541
FAX: (404) 605·9762

~:~~~e Center
ILUNOIS 125 Half Mlle Road

Red Bank 07701

tli:~c:I'borp. Center Ill
Tel: (908) 747·2233
FAX: (908) 747-0983

300 N. Martingale Road Intel Corp. Suite 400

~;r<%ntuJugm
280 Corporate Center
75 Livingston Avenue

FAX: (7mi) 706-9762 First Floor
Roseland 07088

IN DIANA
Tel: (201) 740·0111
FAX: (201) 740·0626

tlntal Corp.
8910 Purdue Road NEW YORK

Suite 350 Intel Corp.*
Indianapolis 46268 ~;gp~~~t?~ Office Park Tel: (317) 875-0623
FAX: (317) 875-8938 Tel: (716) 425·2750

TWX: 510-253-7391
IOWA FAX: (716) 223·2561

tlntel Corp.* Intel Corp.
1930 St. Andrews Drive N.E. 2950 Express Dr., South

2nd Floor SuHe 130
Cadar Rapids 52402 Islandia 11122
Tel: (319) 393·5510 Tel: (516) 231·3300

TWX: 510·227-6236
FAX: (516) 348·7939

KANSAS
tlntel Corp.

tlntel Corp. 300 Wastage Business Center
10985 Cody St. SuHe 230
SuHe 140 Fishkill 12524
Overland Park 6621 o Tel: (914) 897-3860
Tel: (913) 345·2727 FAX: (914) 897·3125
FAX: (913) 345·2076

Intel Corp.

MARYLAND
Seventeen State Street
14th Floor

tlntel Corp.*
Naw York 10004
Tel: (212) 248·8088

1001 o Junction Dr. FAX: (212) 246-0888
SuHe 200

~l~~~~i il!i~~ 20701 NORTH CAROLINA
FAX: i301 ! 206-3677 tlntel Corp. 301 206-3878

5800 Executive Center Or.
Suite 105

MASSACHUSETTS Charlotte 28212
Tel: (704) 568·8988

tlntel Corp.* ';AX: (704) 535·2236
Westford Corp. Center
3 Carlisle Road ~~~wDr. 2nd Floor
Westford 01886 Suite 215

~~5~6~::gg ~=1~~~ 9r:3f.9537
FAX: (SOB) 892·7887 FAX: (919) 851·8974

OFFICES
OHIO VIRGINIA

tlntel Corp.• tlntel Corp.
3401 Park Center Drive 9030 Stony Point Pkwy.
Suite 220 Suite 360

~:rr5~ :r~6-5350 Richmond 23235
Tel: (804) 330.9393

TWX: 810-450·2528 FAX: (804) 330-3019
FAX: (513) 890·8658

ttntel Corp.•
25700 Science Park Dr.

WASHINGTON

Suite 100 tlntel Corp.
Beechwood 44122
Tel: (216) 484·2736

155 1 Oath Avenue N.E.
Suite 386

TWX: 81Cl-427·9298 Bellevue 98004
FAX: (604) 282·0673

~l~~1i-:~g~
OKLAHOMA FAX: (208) 451·9558

Intel Corg. ·
6801 N. roadWay ~~1 ~0r:l'u11an Road Suite 115
Oklahoma City 73162 SuHe 102

Tel: (405) 848·8086 Spokane 99206
FAX: (405) 840·9819 Tel: (509) 928-8086

FAX: (509) 928·9467

OREGON
WISCONSIN

1~~~ CJ~: Greenbrier Pkwy. Intel Corp.
Building B 330 S. Execu11ve Dr.
Beaverton 97008 SuHe 102
Tel: (503) 845-8051 Brookfield 53005
TWX: 91Cl-487·B741 Tel: (414) 784·8087
FAX: (503) 845·8181 FAX: (414) 796·2115

PENNSYLVANIA

tlntel Corp.•
925 Harvest Drive

CANADA
SuHe 200
Blue Bell 19422 BRITISH COLUMBIA
Tel: (215) 841-1000
FAX: (215) 841-0785 Intel Semlconductar of
tlntel Corp.* Canada, Ltd.
400 Penn Center Blvd. 4585 Canada Way
SuHe 610 Suite 202

~:~~1~f Jia~~70
Burnaby V5G 4L8
Tel: (604) 296-0387

FAX: (412) 829-7578 FAX: (604) 296-8234

PUERTO RICO ONTARIO

tlntel Corp. tlntel Semiconductor of South Industrial Park
P.O. Box 910 Canada, Ltd.

Las Piedras 00671
2650 Queensvlew Drive

Tel: (809) 733-8816 SuHe 250
Ottawa K2B BH6
Tel: (613) 829·9714

TEXAS FAX: (613) 820·5936

Intel Co~. tlntel Semiconductor of 8911 N. Capital of Texas Hwy.
Suite 4230 Canada, Ltd.

Austin 78759 190 Attwell Drive

Tel: (512) 794·8088 Suite 500
Rexdale M9W 6HB FAX: (512) 336-9335 Tel: (416) 675·2105

tlntel Corp.*
12000 Ford Road

FAX: (418) 675·2438

Suite 400
Dallas 75234 QUEBEC
Tel: (214) 241 ·8087
FAX: (214) 484·1180 tlntel Semlconduelor of

Canada, Ltd.
tlntel Corp.* 1 Rue Holiday
7322 s.w. Freaway Suite 115
Suite 1490 Tour East
Houston 77074 Pt. Claire H9R 5N3
Tel: (713) 988·8086 ~~m~.:ttJ: TWX: 910·881·2490
FAX: (713) 988-3860

UTAH

tlntel Corp.
428 East 8400 Sou1h
Suite 104

~e~~r/'lo\l;'~~-8051
FAX: (801) 268·1457

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805
Tel: (205) 837-6955
FAX: 205-751-1581

Hamilton/Avnet Computer
4930 I Corporate Drive
Huntsville 35805

Hamilton/Avnet Electronics
4940 Research Drive
Huntsville 35805
Tel: (205) 837-7210
FAX: 205-721-0356

~g~o8b~~~~a~e8~~ve
Suite 120
Huntsville 35806
Tel: (205) 830-9526
FAX: (205) 830-9557

Pioneer/Technologies Group, Inc.
4825 University Square
Huntsville 35805
Tel: (205) 837-9300
FAX: 205-837-9358

ALASKA

Hamilton/Avnet Computer
1400 W. Benson Blvd., Suite 400
Anchorage 99503

ARIZONA

tArrow Electronics, Inc.
4134 E. Wood Street
Phoenix 85040
Tel: (602) 437-0750
TWX: 910-951-1550

Hamilton/Avnet Computer
30 South McKemy Avenue
Chandler 85226

Hamilton/Avnet Computer
90 South McKemy Road
Chandler 85226

tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281
Tel: (602) 231-5140
TWX: 910-950-0077

Hamilton/Avnet Electronics
30 South McKemy
Chandler 85226
Tel: (602) 961-6669
FAX: 602-961-4073

Wyle Distribution Group
4141 E. Raymond
Phoenix 85040
Tel: (602) 249-2232
TWX: 910-371-2871

CALIFORNIA

Arrow Commercial System Group
1502 Crocker Avenue
Hayward 94544
Tel: (415) 489-5371
FAX: (415) 489-9393

Arrow Commercial System Group
14242 Chambers Road
Tustin 92680
Tel: (714) 544-0200
FAX: (714) 731-8438

tArrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (213) 701-7500
TWX: 91 0-493-2086

tArrow Electronics, Inc.
9511 Ridgehaven Court
San Diego 92123
Tel: (619) 565-4800
FAX: 619-279-8062

tArrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086
Tel: (408) 745-6600
TWX: 910-339-9371

tCertified Technical Distributor

DOMESTIC DISTRIBUTORS
tArrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680
Tel: (714) 838-5422
TWX: 910-595-2860

Hamilton/Avnet Computer
3170 Pullman Street
Costa Mesa 92626

Hamilton/Avnet Computer
13618 West 190th Street
Gardena 90248

Hamilton/Avnet Computer
4103 Northgate Blvd.
Sacramento 95834

Hamilton/Avnet Computer
4545 Viewridge Avenue
San Diego 92123

Hamilton/Avnet Computer
1175 Bordeaux Drive
Sunnyvale 94089

Hamilton/Avnet Electronics
21150 Cahfa Street
Woodland Hills 91367

tHamilton/Avnet Electronics
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 641-4150
TWX: 910-595-2638

1Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
TWX: 910-339-9332

tHamilton/Avnet Electronics
4545 Ridgeview Avenue
San Diego 92123
Tel: (619) 571-7500
TWX: 910-595-2638

tHamilton/Avnet Electronics
21150 Califa St.
Woodland Hills 91376
Tel: (818) 594-0404
FAX: 818-594-8233

tHamilton/Avnet Electronics
10950 W. Washington Blvd.
Culver City 20230
Tel: (213) 558-2458
TWX: 910-340-6364

tHamilton/Avnet Electronics
13618 West 1901h Street
Gardena 90248
Tel: (213) 217-6700
TWX: 910-340-6364

tHamilton/Avnet Electronics
4103 Northgate Blvd.
Sacramento 95834
Tel: (916) 920-3150

Pioneer/Technologies Group, Inc.
134 Rio Robles
San Jose 95134
Tel: (408) 954-9100
FAX: 408-954-9113

Wyle Distribution Group
124 Maryland Street
El Segundo 90254
Tel: (213) 322-8100

Wyle Distribution Group
7431 Chapman Ave.
Garden Grove 92641
Tel: (714) 891-1717
FAX: 714-891-1621

tWyle Distribution Group
2951 Sunrise Blvd., Suite 175
Rancho Cordova 95742
Tel: (916) 638-5282

tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel: (619) 565-9171
TWX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
TWX: 408-988-2747

tWyle Distribution Group
1 7872 Cowan Avenue
Irvine 92714
Tel: (714) 863-9953
TWX: 910-371-7127

tWyle Distribution Group
26677 W. Agoura Rd.
Calabasas 91302
Tel: (818) 880-9000
TWX: 372-0232

COLORADO

Arrow Electronics, Inc.
7060 South Tucson Way
Englewood 80112
Tel: (303) 790-4444

Hamilton/Avnet Computer
9605 Maroon Circle, Ste. 200
Engelwood 80112

tHamilton/Avnet Electronics
9605 Maroon Circle
Suite 200
Englewood 80112
Tel: (303) 799-0663
TWX: 910-935-0787

tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9953
TWX: 910-936-0770

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492
Tel: (203) 265-7741
TWX: 710-476-0162

Hamilton/Avnet Computer
Commerce Industrial Park
Commerce Drive
Danbury 06810

tHamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
TWX: 710-456-9974

tpioneer/Standard Electronics
112 Mam Street
Norwalk 06851
Tel: (203) 853-1515
FAX: 203-838-9901

FLORIDA

tArrow Electronics, Inc.
400 Fairway Drive
Suite 102
Deerfield Beach 33441
Tel: (305) 429-8200
FAX: 305-428-3991

tArrow Electronics, Inc.
37 Skyline Drive
Suite 3101
Lake Marv 32746
Tel: (407) 323-0252
FAX: 407-323-3189

Hamilton/Avnet Computer
6801 N.W. 151h Way
Ft. Lauderdale 33309

Hamilton/Avnet Computer
3247 Spring Forest Road
St. Petersburg 33702

tHamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309
Tel: (305) 971-2900
FAX: 305-971-5420

tHamilton/Avnet Electronics
3197 Tech Drive North
St. Petersburg 33702
Tel: (813) 573-3930
FAX: 813-572-4329

tHamilton/Avnet Electronics
694 7 University Boulevard
Winter Park 32792
Tel: (407) 628-3888
FAX: 407-678-1878

tPioneer/Technologies Group, Inc.
337 Northlake Blvd., Suite 1000
Alta Monte Springs 32701
Tel: (407) 834-9090
FAX: 407-834-0865

Pioneer(fechnologies Group, Inc.
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
FAX: 305-481-2950

GEORGIA

Arrow Commercial System Group
3400 C. Corporate Way
Deluth 30139
Tel: (404) 623-8825
FAX: (404) 623-8802

tArrow Electronics, lnc.
4250 E. Rivergreen Parkway
Deluth 30136
Tel: (404) 497-1300
TWX: 610-766-0439

Hamilton/Avnet Computer
5825 D. Peachtree Corners E.
Norcross 30092

tHamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 30092
Tel: (404) 447-7500
TWX: 810-766-0432

Pioneer/Technologies Group, Inc.
3100 F Northwoods Place
Norcross 30071
Tel: (404) 448-1711
FAX: 404-446-8270

ILLINOIS

tArrow Electronics, Inc.
1140 W. Thorndale
Itasca 60143
Tel: (708) 250-0500
TWX: 708-250-0916

Hamilton/Avnet Computer
1130 Thorndale Avenue
Bensenville 60106

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-7780
TWX: 708-860-8530

MTI Systems Sales
1100 W. Thorndale
Itasca 60143
Tel: (708) 773-2300

tPioneer/Standard Electronics
2171 Executive Dr., Suite 200
Addison 60101
Tel: (708) 495-9680
FAX: 708-495-9831

IN DIANA

tArrow Electronics, Inc.
7108 Lakeview Parkway West Drive
Indianapolis 46268
Tel: (317) 299-2071
FAX: 317-299-0255

~:g1~~~~vg~~;omputer
Carmel 46032

Hamilton/Avnet Electronics
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9333
FAX: 317-844-5921

tPioneer/Standard Electronics
9350 Priority Way
West Drive
Indianapolis 46250
Tel: (317) 573-0880
FAX: 317-573-0979

IOWA

Hamllton/Avnet Computer
915 33rd Avenue SW
Cedar Rapids 52404

Hamilton/Avnet Electronics
915 33rd Avenue, S.W.
Cedar Rapids 52404
Tel: (319) 362-4757

KANSAS

Arrow Electronics, Jnc.
8208 Melrose Dr., Suite 210
Lenexa 66214
Tel: (913) 541-9542
FAX: 913-541-0328

Hamilton/Avnet Computer
15313 W. 95th Street
Lenexa 61219

tHamilton/Avnet Electronics
15313 w. 951h
Overland Park 66215
Tel: (913) 888-8900
FAX: 913-541-7951

KENTUCKY

Hamilton/Avnet Electronics
805 A. Newtown Circle
Lexington 40511
Tel: (606) 259-1475

MARYLAND

tArrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046
Tel: (301 I 995-6002
FAX: 301-381-3854

Hamilton/Avnet Computer
6822 Oak Hall Lane
Columbia 21045

tHamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045
Tel: (301) 995-3500
FAX: 301-995-3593

i~:g~~t~~~~~1~o"o~~r8r.
Columbia 21046
Tel: (301) 290-8150
FAX: 301 -290-6474

tPioneer(Technologies Group, Inc.
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 921-0660
FAX: 301-921-4255

MASSACHUSETTS

Arrow Electronics, Inc.
25 Upton Dr.
Wilmington 01887
Tel: (508) 658-0900
TWX: 710-393-6770

Hamilton/Avnet Computer
1 O D Centennial Drive
Peabody 01960

tHamilton/Avnet Electronics
1 OD Centennial Drive
Peabody 01960
Tel: (508) 532-9838
FAX: 508-596-7802

tPioneer/Standard Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
FAX: 617-863-1547

Wyle Distribution Group
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: 617-272-6809

MICHIGAN

tArr'ow Electronics, Inc.
19880 Haggerty Road
Livonia 48152
Tel: (313) 665-4100
TWX: 810-223-6020

tCertified Technical Distributor

DOMESTIC DISTRIBUTORS (Contd.)
Hamilton/Avnet Computer
2215 S.E. A-5
Grand Rapids 49508

~f~igo~~~~~~tR~~,mft~~e1r 00
Novi 48050

Hamilton/Avnet Electronics
2215 29th Street S.E.
Space AS
Grand Rapids 49508
Tel: (616) 243-8805
FAX: 616-698-1831

Hamilton/Avnet Electronics
41650 Garden Brook
Novi 48050
Tel: (313) 347-4271
FAX: 313-347-4021

tPioneer/Standard Electronics
4505 Broadmoor S.E.
Grand Rapids 49508
Tel: (616) 698-1800
FAX: 616-698-1831

tPioneer/Standard Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
FAX: 313-427-3720

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-576-3125

Hamilton/Avnet Computer
12400 Whitewater Drive
Minnetonka 55343

tHamilton/Avnet Electronics
12400 Whitewater Drive
Minnetonka 55434
Tel: (612) 932-0600
TWX: 910-576-2720

tPioneer/Standard Electronics
7625 Golden Triange Dr.
Suite G
Eden Prairie 55343
Tel: (612) 944-3355
FAX: 612-944-3794

MISSOURI

tArrow Electronics, Inc.
2380 Schuetz
St. Louis 63141
Tel: (314) 567-6888
FAX: 314-567-1164

Hamilton/Avnet Computer
739 Goddard Avenue
Chesterfield 63005

tHamilton/Avnet Electronics
741 Goddard
Chesterfield 63005
Tel: (314) 537-1600
FAX: 314-537-4248

NEW HAMPSHIRE

Hamilton/Avnet Computer
2 Executive Park Drive
Bedford 03102

Hamilton/Avnet Computer
444 East Industrial Park Dr
Manchester 03103

NEW JERSEY

tArrow Electronics, Inc.
4 East Stow Road
Unit 11
Marlton 08053
Tel: (609) 596-8000
FAX: 609-596-9632

tArrow Electronics
6 Century Drive

~:r:s~~~)bg:.~~bo
FAX: 201-538-0900

Hamilton/Avnet Computer
1 Keystone Ave., Bldg. 36
Cherry Hill 08003

Hamilton/Avnet Computer
1 0 Industrial Road
Fairfield 07006

tHamilton/Avnet Electronics
1 Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0110
FAX: 609-751-2552

tHamilton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
FAX: 201-575-5839

tMTI Systems Sales
9 Law Drive
Fairfield 07006
Tel: (201) 227-5552
FAX: 201-575-6336

tPioneer/Standard Electronics
14-A Madison Ad.
Fairfield 07006
Tel: (201) 575-3510
FAX: 201-575-3454

NEW MEXICO

Alliance Electronics Inc.
10510 Research Avenue
Albuquerque 87123
Tel: (505) 292-3360
FAX: 505·292-6537

Hamilton/Avnet Computer
5659 Jefferson, N.E. Suites A & B
Albuquerque 87109

tHamllton/Avnet Electronics
5659A Jefferson N.E.
Albuquerque 87109
Tel: (505) 765-1500
FAX: 505-243-1395

NEW YORK

tArrow Electronics, Inc.
3375 Brighton Henrietta Townline Rd.
Rochester 14623
Tel: (716) 427-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
lWX: 510·227-6623

HamiltQn/Avnet Computer
933 Motor Parkway
Haupauge 11788

Hamilton/Avnet Computer
2060 Townline
Rochester 14623

tHamilton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

tHamilton/Avnet Electronics
2060 Townline Rd.
Rochester 14623
Tel: (716) 272-2744
TWX: 510-253-5470

Hamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206
Tel: (315) 437-0288
TWX: 710-541-1560

tMTI Systems Sales
38 Harbor Park Drive
Port Washington 11050
Tel: (516) 621-6200
FAX: 510-223-0846

Pioneer/Standard Electronics
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
FAX: 607-722-9562

Pioneer/Standard Electronics
40 Oser Avenue
Hauppauge 11787
Tel: (516) 231-9200
FAX: 510-227-9869

tPioneer/Standard Electronics
60 Crossway Park West
Woodbury, Long Island 11797
Tel: (516) 921-8700
FAX: 516-921-2143

tPioneer/Standard Electronics
840 Fairport Park
Fairport 14450
Tel: (716) 381-7070
FAX: 716·381 ·5955

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greensdairy Road
Raleigh 27604
Tel: (919) 876-3132
lWX: 510-928-1856

Hamilton/Avnet Computer
3510 Spring Forest Road
Raleigh 27604

tHamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604
Tel: (919) 878-0819
lWX: 510-928-1836

Pioneer/Technologies Group, Inc.
9401 L-Southern Pine Blvd.
Charlotte 28210
Tel: (919) 527-6188
FAX: 704-522-8564

Pioneer Technologies Group, Inc.
2810 Meridian Parkway
Suite 148
Durham 27713
Tel: (919) 544-5400
F/\X: 919-544-5885

OHIO

Arrow Commercial System Group
284 Cramer Creek Court
Dublin 43017
Tel: (614) 889-9347
FAX: (614) 889-9680

tArrow Electronfcs, Inc.
6238 Cochran fioad
Solon 44139
Tel: (216) 248-3990
TWX: 810-427-9409

Hamilton/Avnet Computer
7764 Washington Village Dr.
Dayton 45459

Hamilton/Avnet Computer'
30325 Bainbridge Rd., Bldg. A
Solon 44139

tHamiiton/Avnet Electronics
7760 Washington Village Dr.
Dayton 45459
Tel: (513) 439-6733
FAX: 513-439-6711

tHamilton/Avnet Electronics
30325 Bainbridge
Solon 44139
Tel: (216) 349-5100
TWX: 810-427-9452

Hamilton/Avnet Computer
777 Brooksedge Blvd,
Westerville 43081
Tel: (614) 882-7004
FAX: 614-882-8650

Hamilton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081
Tel' (614) 862-7004

MTI Systems Sales
23400 Commerce Park Road
Beachwood 44122
Tel: (216) 464-6688

tPioneer/Standard Electronics
4433 lnterpoint Boulevard
Dayton 45424
Tel: (513) 236-9900
FAX: 513-236-8133

tPioneer/Standard Electronics
4800 E. 131st Street
Cleveland 441 05
Tel: (216) 587-3600
FAX: 216-663-1004

OKLAHOMA

Arrow Electronics, Inc.
4719 South Memorial Or.
Tulsa 74145

tHamilton/Avnet Electronics
12121 E. 51st St., Suite 102A
Tulsa 74146
Tel: (918) 252-7297

OREGON

tAlmac Electronics Corp.
1885 N.W. 169th Place
Beaverton 97005
Tel: (503) 629-8090
FAX: 503-845-0611

Hamilton/Avnet Computer
9409 Southwest Nimbus Ave.
Beaverton 97005

tHamllton/Avnet Electronics
9409 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0201
FAX: 503-641-4012

Wyle
9640 Sunshine Court
Bldg. G, Suite 200
Beaverton 97005
Tel: (503) 643-7900
FAX: 503-646-5466

PENNSYLVANIA

Arrow Electronics, Inc.
650 Saco Road
Monroeville 15146
Tel: (412) 856-7000

Hamilton/Avnet Computer
2800 Liberty Ave., Bldg. E
Pittsburgh 15222

Hamilton/Avnet Electronics
2600 Liberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pioneer/Standard Electronics
259 Kappa Drive

~~~~m~r ;:.~~00 
FAX: 412-963-8255 

tPioneer/Technologies Group, Inc. 
Delaware Valley 
261 Gibraltar Road 
Horsham 19044 
Tel: (215) 674-4000 
FAX: 215-674-3107 

TENNESSEE 

Arrow Commercial System Group 
3635 Knight Road 
Suite 7 
Memphis 38118 
Tel: (901) 367-0540 
FAX: (901) 367-2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 
Tel: (214) 380-6464 
FAX: (214) 248-7208 

tCertifled Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnet Computer Hamilton/Avnet Computer tArrow Electronics, Inc. 
1807A West Braker Lane 17761 Northeast 76th Place 1 093 Meyerside, Unit 2 
Austin 78758 Redmond 98052 Mississauga LST 1 M4 

Hamilton/Avnet Computer tHamilton/Avnet Electronics 
Tel: (416) 673-7769 

Forum 2 17761 N.E. 78th Place 
FAX: 416-672-0849 

4004 Beltllne, Suite 200 Redmond 98052 Hamilton/Avnet Computer 
Dallas 75244 Tel: (206) 881-6697 Canada System Engmeering 

Hamilton/Avnet Computer 
FAX: 206-867-0159 Group 

Wyle Distribution Group 
3688 Nashua Drive 

4850 Wright Rd., Suite 190 Units 7 & 8 
Stafford 77477 15385 N.E. 90th Street Mississuaga L4V 1 MS 

Redmond 98052 
tHamilton/Avnet Electronics Tel: (206) 881-1150 Hamilton/Avnet Computer 
1807 W. Braker Lane FAX: 206-881-1567 3688 Nashua Drive 
Austin 78758 Units 9 & 10 
Tel: (512) 837-8911 WISCONSIN Mississuaga L4V 1 MS 
TWX: 910-874-1319 Hamilton/Avnet Computer Arrow Electronics, Inc. 
tHamilton/Avnet Electronics 200 N. Patnck Blvd., Ste. 100 6845 Rexwood Road 
4004 BeltHne, Suite 200 Brookfield 53005 Units 7, 8, & 9 
Dallas 75234 Tel: (414) 792-0150 Mississuaga L4V 1 R2 
Tel: (214) 308-8111 FAX: 414-792-0156 Hamilton/Avnet Computer TWX: 910-860-5929 190 Colonade Road 
tHamilton/Avnet Electronics 

Hamilton/Avnet Computer Nepean K2E 7 J5 
20875 Crossroads Circle 4850 Wright Rd., Suite 190 Suite 400 tHamilton/Avnet Electronics 

Stafford 77477 Waukesha 53186 6845 Rexwood Road 
Tel: (713) 240-7733 Units 3·4·5 
TWX: 910-881-5523 tHamilton/Avnet Electronics Mississauga L4T 1 R2 

tPioneer/Standard Electronics 
28875 Crossroads Circle Tel: (416) 677-7432 
Suite 400 FAX: 416-677-0940 1826-D Kramer Waukesha 53186 

Austin 78758 Tel: (414) 784'4510 tHamilton/Avnet Electronics 
Tel: (512) 835-4000 FAX: 414-784-9509 190 Colonnade Road South 
FAX: 512-835-9829 Nepean K2E 7L5 

tPioneer/Standard Electronics 
Tel: (613) 226-1700 

13710 Omega Road CANADA FAX: 613-226-1184 

Dallas 75244 tZentronics 
Tel: (214) 386-7300 ALBERTA i 355 Meyerside Drive 
FAX: 214-490-6419 Mississauga LST 1 C9 

tPioneer/Standard Electronics 
Hamilton/Avnet Computer Tel: (416) 564-9600 
2816 21st Street Northeast FAX: 416-564-8320 

10530 Rockley Road Calgary T2E 6Z2 tZentronics Houston 77099 
Tel: (713) 495-4700 Hamilton/Avnet Electronics 155 Colonnade Road 
FAX: 713-495-5642 2816 21st Street N.E. #3 Unit 17 

Calgary T2E 6Z3 Nepean K2E 7K1 
tWyle Distribution Group Tel: (403) 230-3586 Tel: (613) 226-8840 
1810 Greenville Avenue FAX: 403-250-1591 FAX: 613-226-6352 
Richardson 75081 

OUEBEC Tel: (214) 235-9953 Zentronics 
FAX: 214-644-5064 6815 #8 Street N.E. Arrow Electronics Inc. 

Suite 100 1100 St. Regis 
UTAH Calgary T2E 7H Dorval H9P 2T5 

Hamilton/Avnet Computer 
Tel: (403) 295-8818 Tel: (514) 421-7411 
FAX: 403-295-8714 FAX: 514-421-7430 

1585 West 21 00 South 
Salt Lake City 84119 BRITISH COLUMBIA Arrow Electronics, Inc. 

500 Baul. St-Jean-Baptiste 
tHamilton/Avnet Electronics tHamiJton/Avnet Electronics Suite 280 
1585 West 2100 South 8610 Commerce Ct Quebec G2E 5A9 
Salt Lake City 84119 Burnaby VSA 4N6 Tel: (418) 871-7500 
Tel: (801 I 972-2800 Tel: (604) 420-4101 FAX: 418-871-6816 
TWX: 910-925-4018 FAX: 604-437-4712 Hamilton/Avnet Computer 
tWyle Distribution Group Zentronics 2795 Rue Halpern 
1325 West 2200 Sou1h 108-11400 Bridgeport Road St. Laurent H4S 1 PB 
Suite E Richmond V6X 1 T2 tHamUton/Avnet Electronics 
West Valley 84119 Tel: (604) 273-5575 2795 Halpern Tel: (801 I 974-9953 FAX: 604-273-2413 St. Laurent H2E 7K1 

WASHINGTON ONTARIO 
Tel: (514) 335-1000 
FAX: 514-335-2481 

tAlmac Electronics Corp. Arrow Electronics, Inc. tZentronics 
14360 S.E. Eastgate Way 36 Antares Dr., Unit 100 520 Mccaffrey 
Bellevue 98007 Nepean K2E 7W5 St. Laurent H4T 1 N3 
Tel: (206) 643-9992 Tel: (613) 226-6903 Tel: (514) 737-9700 
FAX: 206-643-9709 FAX: 613-723-2018 FAX: 514-737-5212 



FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLX: 123332 

FRANCE 

Intel Corporation S.A.R.L. 
1 , Aue Edison-BP 303 
78054 St. Quentin-en-Yvelines 
Ced ex 
Tel: (33) (1 I 30 57 70 00 
TLX: 699016 

ISRAEL 

Intel Semiconductor Ltd. 
Atidim Industrial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03-498080 
TLX: 371215 

EUROPEAN SALES OFFICES 
ITALY 

Intel Corporation Italia S.p.A. 
Milanofion Palazzo E 
20094 Assago · 
Milano 
Tel: (39) (02) 89200950 
TLX: 341286 

NETHERLANDS 

Intel Semiconductor 8.V. 
Postbus 84130 
3099 CC Rotterdam 
Tel: (31) 10.407.11.11 
TLX: 22283 

SPAIN 

Intel Iberia S.A. 
Zurbaran, 28 
28010 Madnd 
Tel: (34) (1) 308.25.52 
TLX: 46880 

SWEDEN 

Intel Sweden A.B 
Dalvagen 24 
171 36 Solna 
Tel: (46) 8 734 01 00 
TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winke!-Ruetl bei Zuerich 
Tel: (41 I 01 /860 62 62 
TLX: 825977 

UNITED KINGDOM 

Intel Corporation (UK) Ltd. 
Pipers Way 
Swindon, Wiltshire SN3 1 AJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

WEST GERMANY 

Intel GmbH 
Dornacher Strasse 1 
8016 Feldkirchen bei Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/904/3948 

Intel GmbH 
Abraham Lincoln Strasse 16-1 B 
6200 Wiesbaden 
Tel: (49) 06121/7605-0 
TLX: 4-186183 

Intel GmbH 
Zettachring 1 OA 
7000 Stuttgart 80 
Tel: (49) 0711/7287-280 
TLX: 7-254826 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA IRELAND NORWAY UNITED KINGDOM Rapid Recall, Ltd. 

Bacher Electronics G.m.b.H. Micro Marketing Ltd. Nordisk Elektronlkk (Norge) NS Accent Electronic Components Ltd. 
28 High Street 
Nantwich 

Rotenmuehlgasse 26 Glenageary Office Park Postboks 123 Jubilee House, Jubilee Road Cheshire CW5 SAS 
1120Wien Glenageary Smedsvingen 4 Letchworth, Harts SG6 1QH Tel: (0270) 627505 
Tel: (43) (0222) 83 56 46 Co. Dublin 1364 Hvalstad Tel: (44) (0462) 670011 FAX: (0270) 629883 
TLX: 31532 Tel: (21) (353) (01) 856288 Tel: (47) (02) 84 62 10 FAX: (44) (0462) 682467 TWX: 36329 

FAX: (21) (353) (01) 857364 TLX: 77546 TWX: 826505 
BELGIUM TLX: 31584 

lnelco Belgium S.A. PORTUGAL 
Bytech Components Ltd. 

WEST GERMANY 12A Cedarwood 
Av. des Croix de Guerre 94 IS RAEL 

ATD Portugal LOA Chineham Busmess Park 
1120 Bruxelles Crockford Lane Electronic 2000 AG 
?1o2bo~~~~~~rniaan, 94 

Eastronics Ltd. Rua Dos Lusiados, 5 Sala B Basingstoke Stahlgruberring 12 11 Rozanis Street 1300 Lisboa Hants AG24 OWD 8000 Muenchen 82 
Tel: (32) (02) 216 01 60 P.O.B. 39300 Tel: (35) (1) 64 80 91 

Tel: (0256) 707107 Tel: (49) 089/42001-0 
TLX: 64475 or 22090 Tel-Aviv 61392 TLX: 61562 FAX: 0256-707162 TLX: 522561 

Tel: (972) 03-475151 
DENMARK TLX: 33638 Ditram Conform ix lTI Multikomponent GmbH Avenida Miguel Bombarda, 133 Unit 5 Postfach 1265 ITI-Muttikomponent 

ITALY 
1000 Lisboa A 1 M Bus mess Centre Bahnhofstrasse 44 Naverland 29 Tel: (35) (1) 54 53 13 Dixons Hill Road 7141 Moeglingen 2600 Glostrup lntesi TLX: 14182 Welham Green Tel: (49) 07141/4879 Tel: (45) (0) 2 45 66 45 Div1sione ITI Industries GmbH South Hatfield TLX: 7264472 TLX: 33 355 Viale Milanofiorf SPAIN Herts AL9 7JE 

FINLAND 
Palazzo E/5 Tel: (07072) 73282 Jermyn GmbH 
~~p~~ti·8g?s~J~~1 

ATD Electronica, S.A. FAX: (07072) 61678 
Plaza Ciudad de Viena, 6 Im Dachsstueck 9 

OY Fintronic AB 6250 Limburg 
Melkonkatu 24A TLX: 311351 28040 Madrid Bytech Systems 

Tel: (49) 06431/508-0 00210 Helsinki Tel: (34) (1 I 234 40 00 3 The Western Centre 
Tel: (358) (0) 6926022 Lasi Elettronica S.p.A. TLX: 42477 Western Road TLX: 415257·0 

TLX: 124224 V. le Fulvio Testf, 126 
Metrologia lberica, S.A. 

BracKnell RG 12 1 AW 
20092 Cinisello Balsamo (Ml) Tel: (44) (0344) 55333 Metrologie GmbH 

FRANCE Tel: (39) 02/2440012 Ctra. de Fuencarral, n.80 FAX: (44) (0344) 867270 Megtingerstrasse 49 
TLX: 352040 28100 Alcobendas (Madrid) TWX: 849624 8000 Muenchen 71 

Almex Tel: (34) (1 I 653 86 11 Tel: (49) 089/78042-0 
Zone industrietle d'Antony Telcom S.r.I. Jermyn TLX: 5213189 
48, rue de l'Aubepine Via M. Civitali 75 SWEDEN Vestry Estate 
BP 102 20148 Milano Otford Road Proelectron Vertriebs GmbH 
92164 Antony cedex Tel: (39) 02/4049046 Nordisk Elektronik AB Sevenoaks Max Planck Strasse 1-3 
Tel: (33) (1) 46 66 21 12 TLX: 335654 Torshamnsgatan 39 Kent TN14 SEU 6072 Dreieich 
TLX: 250067 

ITT Mult1components Box 36 Tel: (44) (0732) 450144 Tel: (49) 06103/30434-3 

Jermyn Viale Milanofiori E/5 164 93 Kista FAX: (44) (0732) 451251 TLX: 417903 
Tel: (46) 08-03 46 30 TWX: 95142 60, rue des Gemeaux ~~p~g:isggfs~J~1 TLX: 105 47 Silic 580 MMD Ltd. YUGOSLAVIA 94653 Rungis Cedex TLX: 311351 3 Bennet Court 

Tel: (33) (1 I 49 78 49 78 SWITZERLAND Bennet Road 
TLX: 261585 Silverstar Reading H.A. Microelectronics Corp. 

Via Dei Gracchi 20 lndustrade A.G. Berkshire RG2 OOX 2005 de fa Cruz Blvd., Ste. 223 
Metrologie 20146 Milano Hertistrasse 31 Tel: (44) (0734) 313232 Santa Clara, CA 95050 
Tour d'Asnieres Tel: (39) 02/49961 8304 Wallisellen FAX: (44) (0734) 313255 U.S.A. 
4, av. Laurent-Cely TLX: 332189 Tel: (41) (01) 8328111 TWX: 846669 Tel: (1) (408) 988-0286 
92606 Asnieres Cedex TLX: 56788 TLX: 387452 
Tel: (33) (1) 47 90 62 40 

NETHERLANDS Rapid Recall, Ltd. TLX: 611448 
TURKEY Rapid House Rapido Electronic Components 

Tekelec-Airtronic Koning en Hartman Oxford Road S.p.a. 
Cite des Bruyeres Elektrotechniek B.V. EMPA Electronic High Wycombe Via C. Beccaria, 8 
Rue Carle Vernet - BP 2 Energieweg 1 Undwurmstrasse 95A Buckinghamshire HP11 2EE 34133 Trieste 
92310 Sevres 2627 AP Delft 8000 Muenchen 2 Tel: (44) (0494) 26271 Italia 
Tel: (33) (1) 45 34 75 35 Tel: (31) (1) 15/609906 Tel: (49) 089/53 80 570 FAX: (44) (0494) 21860 Tel: (39) 040/360555 
TLX: 204552 TLX: 38250 TLX: 528573 TWX: 837931 TLX: 460461 



AUSTRALIA 

Intel Australia Pty. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Tel: 61-2975-3300 
FAX: 61-2975-3375 

BRAZIL 

Intel Semicondutores do Brazil L TOA 
Av. Paulista, 1159-CJS 404/405 
01311 - Sao Paulo· S.P. 
Tel: 55-11-287-5899 
TLX: 3911153146 ISDB 
FAX: 55·11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 

~:N 1?~i ~~0~4050 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd.* 
10/F East Tower 
Bond Center 
Queensway, Central 

~~~~8~~)~44-4555 
FAX: (852) 868-1989

*

INTERNATIONAL SAL!S OFFICES
INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001
Tel: 011-91-812-215065
TLX: 953·845·2646 INTL IN
FAX: 091·812-215067

JAPAN

Intel Japan KK
5~6 Tokodai, Tsukuba-shi
lbaraki, 300·26
Tei: 0298-47-8511
TLX: 3656· 160
FAX: 0298·47·8450

Intel Japari K.K.*
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: 0423-60-7871
FAX: 0423-60-0315

Intel Japan K.K.*
Bldg. Kuma,gaya
2°69 Hon-cho
Kumagaya-shi, Saitama 360
Tel: 0485-24-6871
FAX: 0485-24-7518

Intel Japan KK. *
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-Shi
Kanagawa, 222
Tel: 045-474-7661
FAX: 045-471-4394

Intel Japan K.K. *
Ryokuchi-Ek1 Bldg.
2-4· 1 Terauchi
i~f:o06~~~-~j0~saka sso
FAX: 06-863-1084

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621
FAX: 03-201-6850

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 450
Tel: 052-204-1261
FAX: 052-204-1285

KOREA

Intel Korea, Ltd.
16th Floor, Lite Bldg.
61 Yoido-dong, Youngdeungpo-Ku
Seoul 150-010

irk (~~~i2al~M~~6. 8386
FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #21-05/06
United Square
Singapore 1130
Tel: 250-7811
TLX: 39921 INTEL
FAX: 250-9256

TAIWAN

Intel Technology Far East Ltd.
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei
Tel: 886-2-716-9660
FAX: 886-2-717-2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES
ARGENTINA

Dafsys S.R.L.
Chacabuco, 90-6 Pisa
1069-Buenos Aires
Tel: 54-1-334-7726
FAX: 54-1-334-1871

AUSTRALIA

Email Electronics
15-17 Hume Street
Huntingdale, 3166
Tel: 011-61-3-544-8244
TLX: AA 30895
FAX: 011-61-3-543-8179

NSO-Australia
205 Middleborough Ad.
Box Hill, Victoria 3128
Tel: 03 8900970
FAX: 03 8990819

BRAZIL

Elebra Componentes
Rua Geraldo Flausina Gomes, 78
7 Andar
04575 - Sao Paulo - S.P.
Tel: 55-11-534-9641
TLX: 55-11-54593/54591
FAX: 55-11-534-9424

CHINA/HONG KONG

Novel Precision Machinery Co., Ltd.
Room 728 Trade Square
681 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: (852) 360-8999
TWX: 32032 NVTNL HX
FAX: (852) 725-3695

INDIA

Micronic Devices
Arun Complex
No. 65 D.V.G. Road
Basavanagudi
Bangalore 560 004
Tel: 011-91-812-600-631

011-91-812-611-365
TLX: 9538458332 MDBG

*field Application Location

Micronic Devices
No. 516 5th Floor
Swastik Chambers
Sion, Trombay Road
Chembur
Bombay 400 071
TLX: 9531 171447 MDEV

Micronic Devices
25/8, 1st Floor
Bada Bazaar Marg
O!d Rajlnder Nagar
New Delhi 11 O 060
Tel: 011-91-11-5723509

011-91-11-589771
TLX: 031-63253 MONO IN

Micronic DeVices
6-3-348/12A Owarakapuri Colony
Hyderabad 500 482
Tel: 011-91-842·226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TLX: 820281
FAX: (408) 978-8635

JAPAN

Asahi Electronics Co. Ltd.
KMM Bldg. 2-14-1 Asano
Kokufakita-ku
Kitakyushu-shi 802
Tel: 093-511-6471
FAX: 093-551-7861

CTC Components Systems Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki-shi, Kanagawa 213
Tel: 044-852-5121
FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shinmachi Higashi-kan
1-23-9 Shinmachi, Setagaya-ku
Tokyo 154
Tel: 03-439-1600
FAX: 03-439-1601

Okaya Koki
2-4-18 Sakae
Naka-ku, Nagoya-Shi 460
Tel: 052-204-2916
FAX: 052-204-2901

Ryoyo Electro Corp.
Konwa Bldg.
1-12-22 Tsukiji
Chuo-ku, Tokyo 104
Tel: 03-546-5011
FAX: 03-546-5044

KOREA

J-Tek Corporation
Dong Sung Bldg. 9/F
158-24, Samsung-Dong, Kangnam-Ku
Seoul 135-090
Tel: (822) 557-8039
FAX: (822) 557-8304

Samsung Electronics
Samsung Main Bldg.
150 Taepyung-Ro-2KA, Chung-Ku
Seoul 100-102
C.P.O. Box 8780
Tel: (822) 751-3680
TWX: KORSST K 27970
FAX: (822) 753-9065

MEXICO

SSB Electronics, Inc.
675 Palomar Street, Bldg. 4, Suite A
Chula Vista, CA 92011
Tel: (619) 585-3253
TLX: 287751 CBALL UR
FAX: (619) 585-8322

Dicopel S.A
Tochtli 368 Fracc. Ind. San Antonio
Azcapotzalco
C.P. 02760-Mexico, D.F.
rn: 52.5.551.3211
TLX: 177 3790 Oicome
FAX: 52-5-561-1279

PHI S.A de C.V.
Fco. Villa esq. Ajusco s/n
Cuernavaca- Morelos
Tel: 52-73-13-9412
FAX: 52-73-17-5333

NEW ZEALAND

Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011-64-9-591-155
FAX: 011-64-9-592-681

SINGAPORE

Electronic Resources Pte, Ltd.
17 Harvey Road
#03-01 Singapore 1336
Tel: (65) 283-0888
TWX: RS 56541 ERS
FAX: (65) 289-5327

SOUTH AFRICA

~;~ctE~~!~~~1~;.nroN 1~~fe~~eyet sq
Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN

Micro Electronics Corporation
12th Floor, Section 3
285 Nanking East Road
Taipei, R.0.C.
Tel: (886) 2-7198419
FAX: (886) 2-7197916

Acer Sertek 1nc.
15th Floor, Section 2
Chien Kuo North Rd.
Taipei 18479 R.O.C.
Tel: 886-2-50f,0055
TWX: 23756 SERTEK
FAX: (886) 2-5012521

'

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	5-0000
	5-0001
	5-0002
	5-0003
	5-0004
	5-0005
	5-0006
	5-0007
	5-0008
	5-0009
	5-0010
	5-0011
	5-0012
	5-0013
	5-0014
	5-0015
	5-0016
	5-0017
	5-0018
	5-0019
	5-0020
	5-0021
	5-0022
	5-0023
	5-0024
	5-0025
	5-0026
	5-0027
	5-0028
	5-0029
	5-0030
	5-0031
	5-0032
	5-0033
	5-0034
	5-0035
	5-0036
	5-0037
	5-0038
	5-0039
	5-0040
	5-0041
	5-0042
	5-0043
	5-0044
	5-0045
	5-0046
	5-0047
	5-0048
	5-0049
	5-0050
	5-0051
	5-0052
	5-0053
	5-0054
	5-0055
	5-0056
	5-0057
	5-0058
	5-0059
	5-0060
	5-0061
	5-0062
	5-0063
	5-0064
	5-0065
	5-0066
	5-0067
	5-0068
	5-0069
	5-0070
	5-0071
	5-0072
	5-0073
	5-0074
	5-0075
	5-0076
	5-0077
	5-0078
	5-0079
	5-0080
	5-0081
	5-0082
	5-0083
	5-0084
	5-0085
	5-0086
	5-0087
	5-0088
	5-0089
	5-0090
	5-0091
	5-0092
	5-0093
	5-0094
	5-0095
	5-0096
	5-0097
	5-0098
	5-0099
	5-0100
	5-0101
	5-0102
	5-0103
	5-0104
	5-0105
	5-0106
	5-0107
	5-0108
	5-0109
	5-0110
	5-0111
	5-0112
	5-0113
	5-0114
	5-0115
	5-0116
	5-0117
	5-0118
	5-0119
	5-0120
	5-0121
	5-0122
	5-0123
	5-0124
	5-0125
	5-0126
	5-0127
	5-0128
	5-0129
	5-0130
	5-0131
	5-0132
	5-0133
	5-0134
	5-0135
	5-0136
	5-0137
	5-0138
	5-0139
	5-0140
	5-0141
	5-0142
	5-0143
	5-0144
	5-0145
	5-0146
	5-0147
	5-0148
	5-0149
	5-0150
	5-0151
	5-0152
	5-0153
	5-0154
	5-0155
	5-0156
	5-0157
	5-0158
	5-0159
	5-0160
	5-0161
	5-0162
	5-0163
	5-0164
	5-0165
	5-0166
	5-0167
	5-0168
	5-0169
	5-0170
	5-0171
	5-0172
	5-0173
	5-0174
	5-0175
	5-0176
	5-0177
	5-0178
	5-0179
	5-0180
	5-0181
	5-0182
	5-0183
	5-0184
	5-0185
	5-0186
	5-0187
	5-0188
	5-0189
	5-0190
	5-0191
	5-0192
	5-0193
	5-0194
	5-0195
	5-0196
	5-0197
	5-0198
	5-0199
	5-0200
	5-0201
	5-0202
	5-0203
	5-0204
	5-0205
	5-0206
	5-0207
	5-0208
	5-0209
	5-0210
	5-0211
	5-0212
	5-0213
	5-0214
	5-0215
	5-0216
	5-0217
	5-0218
	5-0219
	5-0220
	5-0221
	5-0222
	5-0223
	5-0224
	5-0225
	5-0226
	5-0227
	5-0228
	5-0229
	5-0230
	5-0231
	5-0232
	5-0233
	5-0234
	5-0235
	5-0236
	5-0237
	5-0238
	5-0239
	5-0240
	5-0241
	5-0242
	5-0243
	5-0244
	5-0245
	5-0246
	5-0247
	5-0248
	5-0249
	5-0250
	5-0251
	5-0252
	5-0253
	5-0254
	5-0255
	5-0256
	5-0257
	5-0258
	5-0259
	5-0260
	5-0261
	5-0262
	5-0263
	5-0264
	5-0265
	5-0266
	5-0267
	5-0268
	5-0269
	5-0270
	5-0271
	5-0272
	5-0273
	5-0274
	5-0275
	5-0276
	5-0277
	5-0278
	5-0279
	5-0280
	5-0281
	5-0282
	5-0283
	5-0284
	5-0285
	5-0286
	5-0287
	5-0288
	5-0289
	5-0290
	5-0291
	5-0292
	5-0293
	5-0294
	5-0295
	5-0296
	5-0297
	5-0298
	5-0299
	5-0300
	5-0301
	5-0302
	5-0303
	5-0304
	5-0305
	5-0306
	5-0307
	5-0308
	5-0309
	5-0310
	5-0311
	5-0312
	5-0313
	5-0314
	5-0315
	5-0316
	5-0317
	5-0318
	5-0319
	5-0320
	5-0321
	5-0322
	5-0323
	5-0324
	5-0325
	5-0326
	5-0327
	5-0328
	5-0329
	5-0330
	5-0331
	5-0332
	5-0333
	5-0334
	5-0335
	5-0336
	5-0337
	5-0338
	5-0339
	5-0340
	5-0341
	5-0342
	5-0343
	5-0344
	5-0345
	5-0346
	5-0347
	5-0348
	5-0349
	5-0350
	5-0351
	5-0352
	5-0353
	5-0354
	5-0355
	5-0356
	5-0357
	5-0358
	5-0359
	5-0360
	5-0361
	5-0362
	5-0363
	5-0364
	5-0365
	5-0366
	5-0367
	5-0368
	5-0369
	5-0370
	5-0371
	5-0372
	5-0373
	5-0374
	5-0375
	5-0376
	5-0377
	5-0378
	5-0379
	5-0380
	5-0381
	5-0382
	5-0383
	5-0384
	5-0385
	5-0386
	5-0387
	5-0388
	5-0389
	5-0390
	5-0391
	5-0392
	5-0393
	5-0394
	5-0395
	5-0396
	5-0397
	5-0398
	5-0399
	5-0400
	5-0401
	5-0402
	5-0403
	5-0404
	5-0405
	5-0406
	5-0407
	5-0408
	5-0409
	5-0410
	5-0411
	5-0412
	5-0413
	5-0414
	5-0415
	5-0416
	5-0417
	5-0418
	5-0419
	5-0420
	5-0421
	5-0422
	5-0423
	5-0424
	5-0425
	5-0426
	5-0427
	5-0428
	5-0429
	5-0430
	5-0431
	5-0432
	5-0433
	5-0434
	5-0435
	5-0436
	5-0437
	5-0438
	5-0439
	5-0440
	5-0441
	5-0442
	5-0443
	5-0444
	5-0445
	5-0446
	5-0447
	5-0448
	5-0449
	5-0450
	5-0451
	5-0452
	5-0453
	5-0454
	5-0455
	5-0456
	5-0457
	5-0458
	5-0459
	5-0460
	5-0461
	5-0462
	5-0463
	5-0464
	5-0465
	5-0466
	5-0467
	5-0468
	5-0469
	5-0470
	5-0471
	5-0472
	5-0473
	5-0474
	5-0475
	5-0476
	5-0477
	5-0478
	5-0479
	5-0480
	5-0481
	5-0482
	5-0483
	5-0484
	5-0485
	5-0486
	5-0487
	5-0488
	5-0489
	5-0490
	5-0491
	5-0492
	5-0493
	5-0494
	5-0495
	5-0496
	5-0497
	5-0498
	5-0499
	5-0500
	5-0501
	5-0502
	5-0503
	5-0504
	5-0505
	5-0506
	5-0507
	5-0508
	5-0509
	5-0510
	5-0511
	5-0512
	5-0513
	5-0514
	5-0515
	5-0516
	5-0517
	5-0518
	5-0519
	5-0520
	5-0521
	5-0522
	5-0523
	5-0524
	5-0525
	5-0526
	5-0527
	5-0528
	5-0529
	5-0530
	5-0531
	5-0532
	5-0533
	5-0534
	5-0535
	5-0536
	5-0537
	5-0538
	5-0539
	5-0540
	5-0541
	5-0542
	5-0543
	5-0544
	5-0545
	5-0546
	5-0547
	5-0548
	5-0549
	5-0550
	5-0551
	5-0552
	5-0553
	5-0554
	5-0555
	5-0556
	5-0557
	5-0558
	5-0559
	5-0560
	5-0561
	5-0562
	5-0563
	5-0564
	5-0565
	5-0566
	5-0567
	5-0568
	5-0569
	5-0570
	5-0571
	5-0572
	5-0573
	5-0574
	5-0575
	5-0576
	5-0577
	5-0578
	5-0579
	5-0580
	5-0581
	5-0582
	5-0583
	5-0584
	5-0585
	5-0586
	5-0587
	5-0588
	5-0589
	5-0590
	5-0591
	5-0592
	5-0593
	5-0594
	5-0595
	5-0596
	5-0597
	5-0598
	5-0599
	5-0600
	5-0601
	5-0602
	5-0603
	5-0604
	5-0605
	5-0606
	5-0607
	5-0608
	5-0609
	5-0610
	5-0611
	5-0612
	5-0613
	5-0614
	5-0615
	5-0616
	5-0617
	5-0618
	5-0619
	5-0620
	5-0621
	5-0622
	5-0623
	5-0624
	5-0625
	5-0626
	5-0627
	5-0628
	5-0629
	5-0630
	5-0631
	5-0632
	5-0633
	5-0634
	5-0635
	5-0636
	5-0637
	5-0638
	5-0639
	5-0640
	5-0641
	5-0642
	5-0643
	5-0644
	5-0645
	5-0646
	5-0647
	5-0648
	5-0649
	5-0650
	5-0651
	5-0652
	5-0653
	5-0654
	5-0655
	5-0656
	5-0657
	5-0658
	5-0659
	5-0660
	5-0661
	5-0662
	5-0663
	5-0664
	5-0665
	5-0666
	5-0667
	5-0668
	5-0669
	5-0670
	5-0671
	5-0672
	5-0673
	5-0674
	5-0675
	5-0676
	5-0677
	5-0678
	5-0679
	5-0680
	5-0681
	5-0682
	5-0683
	5-0684
	5-0685
	5-0686
	5-0687
	5-0688
	5-0689
	5-0690
	5-0691
	5-0692
	5-0693
	5-0694
	5-0695
	5-0696
	5-0697
	5-0698
	5-0699
	5-0700
	5-0701
	5-0702
	5-0703
	5-0704
	5-0705
	5-0706
	5-0707
	5-0708
	5-0709
	5-0710
	5-0711
	5-0712
	5-0713
	5-0714
	5-0715
	5-0716
	5-0717
	5-0718
	5-0719
	5-0720
	5-0721
	5-0722
	5-0723
	5-0724
	5-0725
	5-0726
	5-0727
	5-0728
	5-0729
	5-0730
	5-0731
	5-0732
	5-0733
	5-0734
	5-0735
	5-0736
	5-0737
	5-0738
	5-0739
	5-0740
	5-0741
	5-0742
	5-0743
	5-0744
	5-0745
	5-0746
	5-0747
	5-0748
	5-0749
	5-0750
	5-0751
	5-0752
	5-0753
	5-0754
	5-0755
	5-0756
	5-0757
	5-0758
	5-0759
	5-0760
	5-0761
	5-0762
	5-0763
	5-0764
	5-0765
	5-0766
	5-0767
	5-0768
	5-0769
	5-0770
	5-0771
	5-0772
	5-0773
	5-0774
	5-0775
	5-0776
	5-0777
	5-0778
	5-0779
	5-0780
	5-0781
	5-0782
	5-0783
	5-0784
	5-0785
	5-0786
	5-0787
	5-0788
	5-0789
	5-0790
	5-0791
	5-0792
	5-0793
	5-0794
	5-0795
	5-0796
	5-0797
	5-0798
	5-0799
	5-0800
	5-0801
	5-0802
	5-0803
	5-0804
	5-0805
	5-0806
	5-0807
	5-0808
	5-0809
	5-0810
	5-0811
	5-0812
	5-0813
	5-0814
	5-0815
	5-0816
	5-0817
	5-0818
	5-0819
	5-0820
	5-0821
	5-0822
	5-0823
	5-0824
	5-0825
	5-0826
	5-0827
	5-0828
	5-0829
	5-0830
	5-0831
	5-0832
	5-0833
	5-0834
	5-0835
	5-0836
	5-0837
	5-0838
	5-0839
	5-0840
	5-0841
	5-0842
	5-0843
	5-0844
	5-0845
	5-0846
	5-0847
	5-0848
	5-0849
	5-0850
	5-0851
	5-0852
	5-0853
	5-0854
	5-0855
	5-0856
	5-0857
	5-0858
	5-0859
	5-0860
	5-0861
	5-0862
	5-0863
	5-0864
	5-0865
	5-0866
	5-0867
	5-0868
	5-0869
	5-0870
	5-0871
	5-0872
	5-0873
	5-0874
	5-0875
	5-0876
	5-0877
	5-0878
	5-0879
	5-0880
	5-0881
	5-0882
	5-0883
	5-0884
	5-0885
	5-0886
	5-0887
	5-0888
	5-0889
	5-0890
	5-0891
	5-0892
	5-0893
	5-0894
	5-0895
	5-0896
	5-0897
	5-0898
	5-0899
	5-0900
	5-0901
	5-0902
	5-0903
	5-0904
	5-0905
	5-0906
	5-0907
	5-0908
	5-0909
	5-0910
	5-0911
	5-0912
	5-0913
	5-0914
	5-0915
	5-0916
	5-0917
	5-0918
	5-0919
	5-0920
	5-0921
	5-0922
	5-0923
	5-0924
	5-0925
	5-0926
	5-0927
	5-0928
	5-0929
	5-0930
	5-0931
	5-0932
	5-0933
	5-0934
	5-0935
	5-0936
	5-0937
	5-0938
	5-0939
	5-0940
	5-0941
	5-0942
	5-0943
	5-0944
	5-0945
	5-0946
	5-0947
	5-0948
	5-0949
	5-0950
	5-0951
	5-0952
	5-0953
	5-0954
	5-0955
	5-0956
	5-0957
	5-0958
	5-0959
	5-0960
	5-0961
	5-0962
	5-0963
	5-0964
	5-0965
	5-0966
	5-0967
	5-0968
	5-0969
	5-0970
	5-0971
	5-0972
	5-0973
	5-0974
	5-0975
	5-0976
	5-0977
	5-0978
	5-0979
	5-0980
	5-0981
	5-0982
	5-0983
	5-0984
	5-0985
	5-0986
	5-0987
	5-0988
	5-0989
	5-0990
	5-0991
	5-0992
	5-0993
	5-0994
	5-0995
	5-0996
	5-0997
	5-0998
	5-0999
	5-1000
	5-1001
	5-1002
	5-1003
	5-1004
	5-1005
	5-1006
	5-1007
	5-1008
	5-1009
	5-1010
	5-1011
	5-1012
	5-1013
	5-1014
	5-1015
	5-1016
	5-1017
	5-1018
	5-1019
	5-1020
	5-1021
	5-1022
	5-1023
	5-1024
	5-1025
	5-1026
	5-1027
	5-1028
	5-1029
	5-1030
	5-1031
	5-1032
	5-1033
	5-1034
	5-1035
	5-1036
	5-1037
	5-1038
	5-1039
	5-1040
	5-1041
	5-1042
	5-1043
	5-1044
	5-1045
	5-1046
	5-1047
	5-1048
	5-1049
	5-1050
	5-1051
	5-1052
	5-1053
	5-1054
	5-1055
	5-1056
	5-1057
	5-1058
	5-1059
	5-1060
	5-1061
	5-1062
	5-1063
	5-1064
	5-1065
	5-1066
	5-1067
	5-1068
	5-1069
	5-1070
	5-1071
	5-1072
	5-1073
	5-1074
	5-1075
	5-1076
	5-1077
	5-1078
	5-1079
	5-1080
	5-1081
	5-1082
	5-1083
	5-1084
	5-1085
	5-1086
	5-1087
	5-1088
	5-1089
	5-1090
	5-1091
	5-1092
	5-1093
	5-1094
	5-1095
	5-1096
	5-1097
	5-1098
	5-1099
	5-1100
	5-1101
	5-1102
	5-1103
	5-1104
	5-1105
	5-1106
	5-1107
	5-1108
	5-1109
	5-1110
	5-1111
	5-1112
	5-1113
	5-1114
	5-1115
	5-1116
	5-1117
	5-1118
	5-1119
	5-1120
	5-1121
	5-1122
	5-1123
	5-1124
	5-1125
	5-1126
	5-1127
	5-1128
	5-1129
	5-1130
	5-1131
	5-1132
	5-1133
	5-1134
	5-1135
	5-1136
	5-1137
	5-1138
	5-1139
	5-1140
	5-1141
	5-1142
	5-1143
	5-1144
	5-1145
	5-1146
	5-1147
	5-1148
	5-1149
	5-1150
	5-1151
	5-1152
	5-1153
	5-1154
	5-1155
	5-1156
	5-1157
	5-1158
	5-1159
	5-1160
	5-1161
	5-1162
	5-1163
	5-1164
	5-1165
	5-1166
	5-1167
	5-1168
	5-1169
	5-1170
	5-1171
	5-1172
	5-1173
	5-1174
	5-1175
	5-1176
	5-1177
	5-1178
	5-1179
	5-1180
	5-1181
	5-1182
	5-1183
	5-1184
	5-1185
	5-1186
	5-1187
	5-1188
	5-1189
	5-1190
	5-1191
	5-1192
	5-1193
	5-1194
	5-1195
	5-1196
	5-1197
	5-1198
	5-1199
	5-1200
	5-1201
	5-1202
	5-1203
	5-1204
	5-1205
	5-1206
	5-1207
	5-1208
	5-1209
	5-1210
	5-1211
	5-1212
	5-1213
	5-1214
	5-1215
	5-1216
	5-1217
	5-1218
	5-1219
	5-1220
	5-1221
	5-1222
	5-1223
	5-1224
	5-1225
	5-1226
	5-1227
	5-1228
	5-1229
	5-1230
	5-1231
	5-1232
	5-1233
	5-1234
	5-1235
	5-1236
	5-1237
	5-1238
	5-1239
	5-1240
	5-1241
	5-1242
	5-1243
	5-1244
	5-1245
	5-1246
	5-1247
	5-1248
	5-1249
	5-1250
	5-1251
	5-1252
	5-1253
	5-1254
	5-1255
	5-1256
	5-1257
	5-1258
	5-1259
	5-1260
	5-1261
	5-1262
	5-1263
	5-1264
	5-1265
	5-1266
	5-1267
	5-1268
	5-1269
	5-1270
	5-1271
	5-1272
	5-1273
	5-1274
	5-1275
	5-1276
	5-1277
	5-1278
	5-1279
	5-1280
	5-1281
	5-1282
	5-1283
	5-1284
	5-1285
	5-1286
	5-1287
	5-1288
	5-1289
	5-1290
	5-1291
	5-1292
	5-1293
	5-1294
	5-1295
	5-1296
	5-1297
	5-1298
	5-1299
	5-1300
	5-1301
	5-1302
	5-1303
	5-1304
	5-1305
	5-1306
	5-1307
	5-1308
	5-1309
	5-1310
	5-1311
	5-1312
	5-1313
	5-1314
	5-1315
	5-1316
	5-1317
	5-1318
	5-1319
	5-1320
	5-1321
	5-1322
	5-1323
	5-1324
	5-1325
	5-1326
	5-1327
	5-1328
	5-1329
	5-1330
	5-1331
	5-1332
	5-1333
	5-1334
	5-1335
	5-1336
	5-1337
	5-1338
	5-1339
	5-1340
	5-1341
	5-1342
	5-1343
	5-1344
	5-1345
	5-1346
	5-1347
	5-1348
	5-1349
	5-1350
	5-1351
	5-1352
	5-1353
	5-1354
	5-1355
	5-1356
	5-1357
	5-1358
	5-1359
	5-1360
	5-1361
	5-1362
	5-1363
	5-1364
	5-1365
	5-1366
	5-1367
	5-1368
	5-1369
	5-1370
	5-1371
	5-1372
	5-1373
	5-1374
	5-1375
	5-1376
	5-1377
	5-1378
	5-1379
	5-1380
	5-1381
	5-1382
	5-1383
	5-1384
	5-1385
	5-1386
	5-1387
	5-1388
	5-1389
	5-1390
	5-1391
	5-1392
	5-1393
	5-1394
	5-1395
	5-1396
	5-1397
	5-1398
	5-1399
	5-1400
	5-1401
	5-1402
	5-1403
	5-1404
	5-1405
	5-1406
	5-1407
	5-1408
	5-1409
	5-1410
	5-1411
	5-1412
	5-1413
	5-1414
	5-1415
	5-1416
	5-1417
	5-1418
	5-1419
	5-1420
	5-1421
	5-1422
	5-1423
	5-1424
	5-1425
	5-1426
	5-1427
	5-1428
	5-1429
	5-1430
	5-1431
	5-1432
	5-1433
	5-1434
	5-1435
	5-1436
	5-1437
	6-000
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	7-00
	7-01
	7-02
	7-03
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	xBack

