Microprocessors
Volume II

JoI

A\
- "‘*;‘\
YN

SI0SSII0IdOIDIIN

11 QIUIIIOA

Benedict Norbert Wong

I1661

Order Number: 230843-008

intgl”

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.0. BOX 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

INTEL
TITLE ORDER NUMBER ISBN
SET OF THIRTEEN HANDBOOKS 231003 N/A

(Available in U.S. and Canada)

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

COMPONENTS QUALITY/RELIABILITY 210997 1-565512-132-2
EMBEDDED APPLICATIONS 270648 1-55512-123-3
8-BIT EMBEDDED CONTROLLERS 270645 1-55512-121-7
16-BIT EMBEDDED CONTROLLERS 270646 1-565512-120-9
16/32-BIT EMBEDDED PROCESSORS 270647 1-55512-122-5
MEMORY PRODUCTS 210830 1-55512-117-9
MICROCOMMUNICATIONS 231658 1-55512-119-5
MICROCOMPUTER PRODUCTS 280407 1-55512-118-7
MICROPROCESSORS 230843 1-55512-115-2
PACKAGING 240800 1-565512-128-4
PERIPHERAL COMPONENTS 296467 1-55512-127-6
PRODUCT GUIDE 210846 1-65512-116-0
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083 1-55512-124-1
ADDITIONAL LITERATURE:

(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792 1-55512-125-x
INTERNATIONAL LITERATURE GUIDE E00029 N/A

(Available in Europe only)

CUSTOMER LITERATURE GUIDE 210620 N/A
MILITARY HANDBOOK 210461 1-55512-126-8
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6

intel”

U.S. and CANADA LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: _()

ORDER NO. TITLE QTy. PRICE = TOTAL
LI T 1T T1] x =
LI 1T T T X =
Lt 11T 11 x =
Lttt x =
LI 1T 1T I T x =
LI T T 1T x =
| x =
AR x =
LI 1T 1T T 1] x =
CIT T 111 x =

Subtotal

Must Add Your
Local Sales Tax

Include postage:
Must add 15% of Subtotal to cover U.S. > Postage
and Canada postage. (20% all other.)

Total

Pay by check, money order, or include company purchase order with this form ($100 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery.

[OJVISA [MasterCard [] American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 7641 should use the International order form on the next page or
Mt. Prospect, IL 60056-7641 contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/91.
Source HB -

intgl”

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: , ZIP:
COUNTRY:

PHONE NO.: _()

ORDER NO. TITLE QTy. PRICE TOTAL
HEEEEE x =
HEEERN x =
BN x =
HEEEEN x =
HEERERN x =
HEEERN ke =
Lt 11 x =
LI ri1 x =
NN RE x =
Lt i1d x =

Subtotal
Local Salos Tax
Total _
PAYMENT ;

Cheques should be made payable to your local Intel Sales Office (see inside badk 'cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.

in

Intel Corporation is a leading supplier of microcomputer components,

moadules and systems. When Intel invented the microprocessor in 1971, it
created the era of the microcomputer. Today, Intel architectures are considered
world standards. Whether used in embedded applications such as automobiles,
printers and microwave ovens, or as the CPU in personal computers, client
servers or supercomputers, Intel delivers leading-edge technology.

MICROPROCESSORS
VOLUME I

1991

About Our Cover:

Thinkers, inventors, and artists throughout history have breathed

life into their ideas by converting them into rough working sketches, models,
and products. This series of covers shows a few of these creations, along
with the applications and products created by Intel customers.

Intel Corporation-makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to' make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

287, 376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
ActionMedia, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK,
Genius, i, 1, 1486, 750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, IAICE, iLBX, iMDDX,
iMMX, Inboard, Insite, Intel, intgl, Intel386, intglBOS, Intel Certified, Intelevision, intgligent
Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX,
iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, Pro750, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, READY LAN, RMX/80, RUPI, Seamless, SLD, SugarCube, SX, ToolTALK,
UPI, VAP, Visual Edge, VLSIiCEL, and ZapCode, and the combination of ICE, iCS, iRMX,
iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel’s FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales
P.O. Box 7641)
Mt: Prospect, IL 60056-7641

©INTEL CORPORATION 1990 .

intel”

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is extensive. It can start with assistance during your development
effort to network management. 100 Intel sales and service offices are located worldwide —in the U.S., Canada,
Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close
reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

NETWORK SERVICE AND SUPPORT

Today’s broad spectrum of powerful networking capabilities are only as good as the customer support provided
by the vendor. Intel offers network services and support structured to meet a wide variety of end-user comput-
ing needs. From a ground up design of your network’s physical and logical design to implementation, installa-
tion and network wide maintenance. From software products to turn-key system solutions; Intel offers the
customer a complete networked solution. With over 10 years of network experience in both the commercial
and Government arena; network products, services and support from Intel provide you the most optimized
network offering in the industry.

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting.'Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

intgl®

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it
relates to the product. The marking appears in the upper, right-hand corner of the data
sheet. The following is the definition of these markings:

Data Sheet Marking Description

Product Preview Contains information on products in the design phase of
development. Do not finalize a design with this
information. Revised information will be published when
the product becomes available.

Advanced Information Contains information on products being sampled or in
the initial production phase of development.*

Preliminary Contains preliminary information on new products in
production.*

No Marking Contains information on products in full production.*

*Specifications within these ‘data sheets are subject to change without notice. Verify with your local Intel sales
office that you have the latest data sheet before finalizing a design.

E

Overview

8086 Microprocessor Family

80286 Microprocessor Family

Development Tools for the
8086, 80186, 80188, and
80286

Intel386™ Family

i860T™ Microprocessor Family

i750™ Video Processor Family

Development Tools for the
80386 and 80486

Table of Contents

Alphanumeric INdeXttt ettt e

CHAPTER 1

Overview
INtrOAUCHION ..ot e e e e e

CHAPTER 2

8086 Microprocessor Family
DATA SHEETS
8086 16-Bit HMOS Microprocessor 8086/8086-2/8086-1*
80C86A 16-Bit CHMOS MiCrOproCESSOr . .« ot vvieie et ieieeeeeeanenanennnn
8088 8-Bit HMOS Microprocessor 8088/8088-2.c.vurrrerennnrenennns
80CB88A 8-Bit CHMOS MiCrOPrOCESSOr .« « v e e oo eeeeeeieaieneenns
8087 Math COProCESSOT . ..o vttt ettt et eiiieeeenananns

CHAPTER 3

80286 Microprocessor Family
DATA SHEETS
80C286 High Performance Microprocessor with Memory Management and
[(0] =Tz (o] o 1R P
80286 High Performance Microprocessor with Memory Management and
ProteCtioNo e e
80287XL/XLT CHMOS Il Math COProcessOoruuuuuuuuiinnnneeeenns
82C288 Bus Controller for 80286 Processors (82C288-12, 82C288-10, 82C288-8) .
82C284 Clock Generator and Ready Interface for 80286 Processors (82C284-12,
82C284-10,820284-8) oottt e

CHAPTER 4

Development Tools for the 8086, 80186, 80188, and 80286

LANGUAGES AND SOFTWARE DEVELOPMENT TOOLS
8086/80186 Software DevelopmentPackages...............ooiiiiiiiiinan.
iC-86/286 C COMPIlEr .. .ottt ettt e e
AEDIT Source Codeand TextEditorcoiiiiiiiiniii e
iPAT Performance Analysis TOOlttt

IN-CIRCUIT EMULATORS
I12ICE In-Circuit Emulation System i e
ICE-186 and ICE-188 In-Circuit Emulatorst ininna.n.
ICE-186EB and ICE-188EB In-CircuitEmulators it
ICE-286 In-Circuit Emulator. . ..ottt e

CHAPTER 5

INTEL386T™ Family
DATA SHEETS
1486 MICIrOPrOCESSOr\ttt ittt ittt
485Turbocache Module i486 Microprocessor Cache Upgrade
82485 Second Level Cache Controller for the i486 Microprocessor
AP-447 A Memory Subsystem for the i486 CPU Including Second Level Cache
386 DX Microprocessor High Performance 32-Bit CHMOS Microprocessor with
Integrated Memory Management i il
387 DX Math COproCeSSOr . .o .vt ittt ettt iiiiee e ennaaeeeneaenns
82395DX High Performance 386 SmartCacheooviiiiiian..
82385 High Performance 32-Bit Cache Controllercoiieo..
AP-442 33 MHz 386 System Design Considerations
386 SL Microprocessor SUPerSetcvviiiirteiiiinertetnneneeeeennnns
386 SX MICIOPrOCESSON v vttt ettt ettt ettt it eeenieennans
387 SX Math COoproCeSSOr vvvettt ittt ettt ettt ettt eeieenns

Xi

2-1
2-31
2-60
2-90

2-122

3-1

3-60
3-116
3-148

3-169

41
4-8

4-12

4-14

4-18
4-22
4-25
4-32

Table of Contents (continued)

82395SX 386 SXSmartCache.........ccoviniiiiiii i 5-1002
82385SX High Performance Cache Controller................ooooiiiiiiiiae. 5-1003
82380 High Performance 32-Bit DMA Controller with Integrated System Support
Peripherals e e 5-1080
376 High Performance 32-Bit Embedded ProcessorcoLe. 5-1217
82370 Integrated System Peripheralc i 5-1312
CHAPTER 6
i860™ Microprocessor Family
860 B4-Bit MiCrOPrOCESSOr oottt it it iiee e iienanenaionnnnan 6-1
AP-434 Using i860 Microprocessor Graphics Instructions for 3-D Rendenng 6-81
AP-435 Fast Fourier Transforms on the i860 Microprocessor.................... 6-96
CHAPTER 7
i750™ Video Processor Family
82750PB Pixel Processorc.cciiiiiiiiiiiinnn.. T 7-1
82750DB Display ProCeSSOro oottt eeiiee i 7-3
CHAPTER 8

Development Tools for the 80386 and 80486
LANGUAGES AND SOFTWARE DEVELOPMENT TOOLS

Intel386/i486 Family Development Support. ..., 8-1

Intel 376 Family Development Support ..ot N 8-11

ICD-486 In-Circuit Debuggervuiuiii it it 8-23
IN-CIRCUIT EMULATORS '

Intel386 Family of In-Circuit Emulatorsccoeiiieat. Cieeeeen 8-29

Intel i486 In-Circuit Emulatoro e 8-55

Alphanumeric Index

376 High Performance 32-Bit Embedded Processor ...t 5-1217
386 DX Microprocessor High Performance 32-Bit CHMOS Microprocessor with Integrated

Memory Management e 5-287
386 SL Microprocessor SUPErSetttt e e 5-731
886 SX MICIOPIOCESSON . . o v vttt ettt et ettt e e e ettt et e 5-864
387 DX Math COPrOCESSOrottt t ettt et e e e et e ettt aes 5-425
387 SX Math COproCeSSOrot - 5-962
485Turbocache Module i486 Microprocessor Cache Upgrade - 5-177
80286 High Performance Microprocessor with Memory Management and Protection. 3-60
80287XL/XLT CHMOS Il Math COPIroCESSOr oot e eeeeenns 3-116
8086 16-Bit HMOS Microprocessor 8086/8086-2/8086-1*ccovviiinnn... 2-1
8086/80186 Software Development Packagesoovieiiniiiineenennenn.. 4-1
8087 Math COPrOCESSOr vt ottt ettt ettt et ettt 2-122
8088 8-Bit HMOS Microprocessor 8088/8088-2c.coiuiiiiiriienneneennn 2-60
80C286 High Performance Microprocessor with Memory Management and Protection 3-1
80CB6A 16-Bit CHMOS MiICrOPrOCESSOr . . .\ttt t e ee ettt iannnn 2-31
80CBBA 8-Bit CHMOS MiCrOPrOCESSOT. . .« vttt ettt ettt en 2-90
82370 Integrated System Peripheral. e 5-1312
82380 High Performance 32-Bit DMA Controller with Integrated System Support

Peripherals e e e e, 5-1080
82385 High Performance 32-Bit Cache Controllerttt 5-547
82385SX High Performance CacheController i ittt 5-1003
82395DX High Performance 386 SmartCache..............ooiiiiiiiiiiiiiiian.. 5-466
82395SX 386 SXSmMart Cachecoviiiiiiiiiiiiiiit et 5-1002
82485 Second Level Cache Controller for the i486 Microprocessor 5-206
82750DB Display PrOCESSOr.ttt 7-3
82750PB PiXel PrOCESSON v ottt et ettt et eiee et 7-1
82C284 Clock Generator and Ready Interface for 80286 Processors (82C284-12,

B2C284-10,820284-8) . ..ottt e 3-169
82C288 Bus Controller for 80286 Processors (82C288-12, 82C288-10, 82C288-8). 3-148
AEDIT Source Code and Text EQitor. i ees 4-12
AP-434 Using i860 Microprocessor Graphics Instructions for 3-D Rendering 6-81
AP-435 Fast Fourier Transforms on the i860 Microprocessorcccoviin... 6-96
AP-442 33 MHz 386 System Design Considerations, 5-620
AP-447 A Memory Subsystem for the i486 CPU Including Second Level Cache........... 5-207
12ICE In-Circuit Emulation Systemt e 4-18
1486 MICTOPIOCESSOT . .« v vttt ettt ettt ettt et ettt ettt ettt e e e et eeees 5-1
i860 64-Bit MiCrOPrOCeSSOr. . .. oottt i e 6-1
iC-86/286 C COMPIIEr . ..ottt ettt et et 4-8
ICD-486 In-Circuit Debugger. ..., e 8-23
ICE-186 and ICE-188 In-Circuit Emulatorst e i 4-22
ICE-186EB and ICE-188EB In-CircuitEmulators. oo, 4-25
ICE-286 In-Circuit Emulatoro oottt it ean 4-32
Intel 376 Family Development Support. ... ittt 8-11
Intel386 Family of In-Circuit Emulatorso ittt 8-29
Intel386/i486 Family Development Support ...ttt 8-1
Intel i486 In-Circuit Emulator oottt ittt 8-55
iPAT Performance Analysis TOOIottt e 4-14

xi

Intel386™ Family

intgl’

i486™ MICROPROCESSOR

m Binary Compatible with Large m High Performance Design

Software Base — Frequent Instructions Execute in One

— MS-DOS*, 0S/2**, Windows Clock

— UNIX*** System V/386 — 25 MHz and 33 MHz Clock

— iRMX®, iRMK™ Kernels Frequencies

: ; — 80 and 106 Mbyte/Sec Burst Bus

m High Integration Enables On-Chi

—98 Kbytg Code and Data Cachep — CHMOS IV Process Technology

— Floating Point Unit _ Dynqmlc Bus Sizing for 8-, 16- and

— Paged, Virtual Memory Management 32-Bit Busses

m Complete 32-Bit Architecture
" _E_a;)l/""l;c_)h:l ;eelf Test — Address and Data Busses
. — Registers

— Hardware Debugging Support .

— Intel Software Sgugppgrt PP — 8-, 16- and 32-Bit Data Types

— Extensive Third Party Software m Multiprocessor Support

Support — Multiprocessor Instructions

m 168-Pin Grid Array Package — Cache Consistency Protocols

— Support for Second Level Cache

The i486™ CPU offers the highest performance for DOS, 0S/2, Windows and UNIX System V/386 applica-
tions. It is 100% binary compatible with the 386™ CPU. Over one miillion transistors integrate cache memory,
floating point hardware and memory management on-chip while retaining binary compatibility with previous
members of the X86 architectural family. Frequently used instructions execute in.one cycle resulting in RISC
performance levels. An 8 Kbyte unified code and data cache combined with a 106 Mbyte/Sec burst bus at
33.3 MHz ensure high system throughput even with inexpensive DRAMs.

New features enhance multiprocessing systems. New instructions speed manipulation of memory based sem-
aphores. On-chip hardware ensures cache consistency and provides hooks for muiltilevel caches.

The built in self test extensively tests on-chip logic, cache memory and the on-chip paging translation cache.
Debug features include breakpoint traps on code execution and data accesses.

i486™ Microprocessor Pipelined 32-Bit Microarchitecture

64 Bit Interunit Tronsfer Bus

32-bit Dota Bus /
] 32
$2-bR Doto Bus 7
32
Tineor Address Bus)
L 32 | Bus Interface Sé;“;g“
-
Segmentation Fogi PCD, PWT
Barrel Shitter | Base/ | Sk frcind Coche Unit K= 5 Address Drivers
Index 2 32
Bus Descriptor 7 Writ
Register File 20 o Buffers
i Physical oo T L
it and Tromsigtion | Address 00-D31
ALY Attribute Lookaside Data Bus ey
PLA Buffer 4osg w/rg p/c
7'y 32 nag | OCKs PLock
—F = wors | SR
,
R
Displacement Bus /. Prefetcher lequeat Sequencer PERed eNNES
micro=instruction R it N and
Code 32 Byte Code BROY# BLASTH
A v K 4 strea Qheus Burst Bus Control |
Flogting Control and / P N S
L= point Protection Test 724 asw; BS8y
Polnt ction Decade Bus Size Control
mee | | T T =
F.P. Register Control Instruction Cache Control f]
L R v oy
Parity Generation wo—&n
and Control
2404401

iRMX, iRMK, 386, 387, 486, i486 are trademarks of Intel Corporation.
*MS-DOS® is a registered trademark of Microsoft Corporation.
**0S/2™ is a trademark of Microsoft Corporation.
***UNIX™ is a trademark of AT&T.

November 1990
5-1 Order Number: 240440-003

i486™ MICROPROCESSOR

CONTENTS ' PAGE CONTENTS PAGE
1.0 TABLE OF CONTENTS 5.2 z';g E:’“‘t’_'e F:“‘"t‘l' MRS 543
. .7.9 Floating Point Interrup
Pinout................oll 5-6 VECtOrS . oo 5.43
Brief Pin Descriptions 5-9
Component and RevisionD 5-13 3.0 REAL MODE ARCHITECTURE ... 5-44
3.1 Real Mode Introduction 5-44
2.0 ARCH'TECTURAL OVERVIEW 514 3.2 Memory Addressing 5-45
2.1 Register Set . R RRRAERIILE 5-14 ‘3.3 Reserved Locations 5-45
2‘}:&199?3&%? sArchltecture 515 B.A4lnterrupts ...l 5-45
2.1.2 System Level Registers ... 5.19 3.5 Shutdownand Halt 545
2.1.3 Floating Point Registers 5-23 4.0 PROTECTED MODE
2.1.4 Debug and Test Registers ... 5-30 ARCHITECTPRE 5-46
2.1.5 Register Accessibility 5.30 4.1 Introduction 5-46
2.1.6 Compatibility 5-31 4.2 Addressing Mechanism 5-46
2.2 Instruction Set 5-32 4,3 Segmentationeeee 547
2.3 Memory Organization 5-32 4.3.1 Segmentation Introduction .. 5-47
2.3.1 Address Spaces 5-32 4.3.2 Termipology """"""""" a7
2.3.2 Segment Register Usage 533 4.3.3 Descriptor Tables 5-48
2.41/08paceceeninnnn.. 5-33 4.3.4 Descriptors 5-49
2.5 Addressing Modes 5.34 4.4 Protection 5-58
2.5.1 Addressing Modes 4.4.1 Protection Concepts 5-58
Overviewcccocevvenn. 5-34 4.4.2 Rules of Privilege 5-59
2.5.2 Register and Immediate : 4.4.3 Privilege Levels 5-59
Modes SO s 534 4.4.4 Privilege Level Transfers 5-60
2'?\}'%3&;8“ Memory Addressing 534 445CallGates 5-63
2 5.4 Differences between 16- and 4.46 Tafk .SW|‘tch|ng e 5-63
32-BitAddresses 5-36 4.4.7 Initialization and Transition to
2.6 Data Formats 5.6 ProtectedMode 5-64
o 4 Pt T T 4.4.8 Tools for Building Protected
26.1 Eatla "l;yp;es - B - E d """" 5-36 SYStemMSooviieieiannnnnn. 5-65
2.6.2 Little Endian vs Big Endian ; ’ g
Data Formats 5.40 4.5 Paging A 5-65
271Interrupts ... 5-40 4.5.1 Paging Concepts 5-65
2.7.1 Interrupts and Exceptions 5-40 :gg iagm?_ Orglaglz?tlc? """"" 5-66
. .5.3 Page Level Protection
2.7.2 Interrupt Processing 5-40 R /W,gU ISBHS) «vvviornnn 5-67
2.7.3 Maskable Interrupt 5-41 4.5.4 Page Cacheability
2.7.4 Non-Maskable Interrupt 5-42 (PWT,PCDBIts) 5-68
2.7.5 Software Interrupts 5-42 4.5.5 Translation Lookaside
276 |nterfupt and Exception Buffer REEEEERE 5-68
Prioritiesl 5-42 4.5.6 Paging Operation 5-69
2.7.7 Instruction Restart 5-43 4.5.7 Operating System
Responsibilities 5-70

5-2

i486™ MICROPROCESSOR

CONTENTS PAGE
4.6 Virtual 8086 Environment 5-70
4.6.1 Executing 8086 Programs 5-70
4.6.2 Virtual 8086 Addressing
Mechanism 5-70
4.6.3 Paging in Virtual Mode 5-70
4.6.4 Protection and Virtual 8086
Mode to 170 Permission
Bitmap ... 5-71
4.6.5 Interrupt Handling 5-72
4.6.6 Entering and Leaving Virtual
8086Mode 5-73
5.00N-CHIPCACHE 5-75
5.1 Cache Organization 5-75
5.2CacheControl 5-76
5.3 Cache LineFills 5-76
5.4 Cache Line Invalidations 5-77
5.5 Cache Replacement 5-77
5.6 Page Cacheability 5-78
5.7 CacheFlushing 5-79
5.8 Caching Translation Lookaside
BufferEntries 5-79
6.0 HARDWARE INTERFACE 5-80
6.1 Introduction 5-80
6.2 Signal Descriptions 5-81
6.2.1 Clock (CLK) 5-81
6.2.2 Address Bus
(A31-A2, BEO# -BE3#) 5-81
6.2.3 Data Lines (D31-DO) 5-81
6.24 ParitycoaLl 5-82
Data Parity Input/Outputs
(DPO-DP3)covvvennn... 5-82
Parity Status Output
(PCHK#)covvvivinin.s. 5-82
6.2.5 Bus Cycle Definition 5-82
M/10#,D/C#, W/R#
Outputsccvvvinnn. 5-82
Bus Lock Output
(LOCK#) o 5-82
Pseudo-Lock Output
(PLOCK#) ...oeviiiiiiienn. 5-82

CONTENTS PAGE
6.26 BusControl 5-83
Address Status Output
(ADS#) ..o 5-83
Non-Burst Ready Input
(RDY#) o 5-83
6.2.7 BurstControl 5-83
Burst Ready Input
(BRDY#)cvviviiinininnns. 5-83
Burst Last Output
(BLAST#) ...cvivieiiinnnnn.. 5-83
6.2.8 InterruptSignals 5-84
Reset Input (RESET) 5-84
Maskable Interrupt Request
Input (INTR) 5-84
Non-Maskable Interrupt
Request Input (NMi) 5-84
6.2.9 Bus Arbitration Signals 5-84
Bus Request Output
(BREQ)oovvvvviiinnnn, 5-84
Bus Hold Request Input
(HOLD)ooiiiiiiin., 5-84
Bus Hold Acknowledge
Output (HLDA) 5-84
Backoff Input (BOFF#) 5-85
6.2.10 Cache Invalidation 5-85
Address Hold Request Input
(AHOLD)covvviiiiannns. 5-85
External Address Valid Input
(EADS#) ...ooviiiiiiiiiiinns 5-85
6.2.11 Cache Control 5-85
Cache Enable Input
(KEN#) ..o 5-85
Cache Flush Input .
(FLUSH#)ocoviiiinia... 5-86
6.2.12 Page Cacheability Outputs
(PWT,PCD)c.oiieviinn 5-86
6.2.13 Numeric Error Reporting 5-86
Floating Point Error Output
(FERR#) ...c.oviiiiiienanns 5-86
Ignore Numeric Error Input
(IGNNE#)ccooviiinnn.. 5-86
6.2.14 Bus Size Control
(BS16#,BS8+#) 5-86

i486T™M MICROPROCESSOR

CONTENTS ‘ PAGE
‘ 6.2.15 Address Bit 20 Mask
(A20M#) ... 5-87
6.3 Write Buffers 5-87
6.3.1 Write Buffers and 1/0 .
Cyclescoooviviiiiiiiiiiiiin 5-88
6.3.2 Write Buffers Implications on
Locked Bus Cycles 5-88
6.4 Interrupt and Non-Maskable
Interrupt Interface 5-88
6.4.1 Interrupt Logic 5-88
6.4.2NMiLogic 5-89
6.5 Reset and Initialization. 5-89
6.5.1 Pin State during Reset 5-90
7.0BUSOPERATION 5-92
7.1 Data Transfer Mechanism 5-92
7.1.1 Memory and 1/0O Spaces 592
7.1.2 Memory and I/O Space
Organization 5-93
7.1.3 Dynamic Data Bus Sizing5-94

7.1.4 Interfacing with 8-, 16- and 32-

bit Memories 5-95
7.1.5 Dynamic Bus Sizing during '
Cache LineFills 5-97
7.1.6 Operand Alignment 5-97
7.2 Bus Functional Description 5-98
7.2.1 Non-Cacheable Non-Burst
SingleCycle 5-98
7.2.2 Multiple and Burst Cycle Bus -
Transfersc......oo.L. 5-99
7.2.3 Cacheable Cycles 5-103
7.2.4 Burst Mode Details 5-106
7.25 8-and 16-BitCycles 5-110
7.2.6 LockedCycles 5-112
7.2.7 Pseudo-Locked Cycles5-113
7.2.8 Invalidate Cycles. 5-113
7.2.9 BusHold e, 5-117
7.2.10 Interrupt Acknowledge 5-117
7.2.11 Special Bus Cycles 5-119

7.2.12 Bus Cycle Restart 5120
7.2.13 Bus States

CONTENTS PAGE
7.2.14 Floating Point Error
Handlingcoooout 5-122
80 TESTABILITY 5-122
8.1 Built-In Self Test (BIST) 5-122
8.2 On-Chip Cache Testing 5-123
8.2.1 Cache Testing Registers TR3,
TR4andTR5 5-123
Cache Data Test Register:
TR3 . 5-124
Cache Status Test Register:
4 5-124
Cache Control Test Register:
TR oo 5-124
8.2.2 Cache Testability Write 5-124
8.2.3 Cache Testability Read 5-126
8.2.4 FlushCache 5-126
8.3 Translation Lookaside Buffer (TLB)
Testing e EEETTREPRPPTRE P 5-126
8.3.1 Translation Lookaside Buffer
Organization 5-126
8.3.2 TLB Test Registers: TR6 and
R7 .. S 5-127
Command Test Register:
......................... 5-128
Data Test Register: TR7 5-128
8.3.3 TLBWrite Test 5-129
8.3.4 TLB Lookup Test 5-129
8.4 Tristate Output Test Mode 5-129
9.0 DEBUGGING SUPPORT 5-130
9.1 Breakpoint Instructions 5-130
9.2 Single Step Instructions 5-130
9.3 Debug Registers 5-130
9.3.1 Linear Address Breakpoint
Registers 5-130
9.3.2 Debug Control Register 5-130
9.3.3 Debug Status Register 5-133
9.3.4 Use of Resume Flag (RF) in
Flag Register 5-133

i486™ MICROPROCESSOR

CONTENTS PAGE

10.0 INSTRUCTION SET SUMMARY .. 5-133
10.1 486™ Microprocessor Instruction

Encoding and Clock Count
Summary ... 5-134
10.2 Instruction Encoding 5152
10.2.1 Overview 5-152
10.2.2 32-Bit Extensions of the
InstructionSet 5-153
10.2.3 Encoding of Integer
Instruction Fields 5-154
10.2.4 Encoding of Floating Point
Instruction Fields 5-160
11.0 DIFFERENCES WITH THE 386™
MICROPROCESSOR 5-160

CONTENTS PAGE
12.0 ELECTRICAL DATA 5-161
12.1 Power and Grounding 5-161
12.2 Maximum Ratings 5-161
12.3 D.C. Specifications 5-162
12.4 A.C. Specifications 5-162
12.5 Designing for ICD-486 5-167
13.0 MECHANICAL DATA 5-172
13.1 Package Thermal
Specifications 5-173

14.0 SUGGESTED SOURCES FOR i486
ACCESSORIES

15.0 REVISION HISTORY

i486TM MICROPROCESSOR

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17

s A27 A26 A23 NC Al4 VSS A12 VSS VSS VSS VSS VSS A0 VSS A6 A4 ADSf S
© 0o o o0 o O o o o o o O O o0 0. o0 o0

R A28 A25 VCC VSS A18 VCC A15 VCC VCC VCC VCC A1 A8 VCC A3 BLAST# NC R
0O o o o o o o o o o o o o o o o o

Q A31 VSS A17 A1S A21 A24 A22 A20 A16 A13 A9 AS A7 A2 BREQ PLOCK# PCHK# Q
o o o o o o o o o o0 0 o o o o o o

p DO A29 A30 HLDA VCC VSS p
o o o o o o

N D2 D1 DPO LOCK# M/10§ W/R§ N
o o o o o o

M VSS VCC D4 D/C# VCC VSS M
o o o o .o o

L vss D6 D7 ‘ PWT vCC VSS L
o o o o o o

K VSS VvCC D14 1486™ Microprocessor BEO# VCC VSS K
fe) o o PIN SIDE VIEW o o fe)

J vecC D5 D16 BE2# BE1# PCD J
o o o o o o

H vss D3 DP2 BRDY# VCC VSS H
o o o o ©o ©

G vsS vcC Di2 NC vcC Vss G
o o o o o o

F DP{ D8 DIS KEN# RDY# BE3# F
o o © o o o

E VSS vcc Dio HOLD VCC VSS E
o o o \ o o o

D D9 D13 D17 A20M# BS8# BOFF# D
o o o o o o

C DIt D18 CLK VCC VCC D27 D26 D28 D30 NC NC NC NC FERR#FLUSH# RESET BS16# c
o o o o o o o o o o0 o o o0 o o o o

B DI9 D2t VSS VSS VSS D25 VCC D31 VCC NC VCC NC NC NC NMI NC EADS# B

0O o o o o o o O O o o O o o o o o i

A D20 D22 NC D23 ODP3 D24 VSS D29 VSS NC VSS NC NC NC IGNNE# INTR AHOLD A
\) © o o 0 o 0o 0 0 O 0 O O 0o O ©o O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

240440-2
Figure 1.1

ntel

i486™ MICROPROCESSOR

5-7

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
s ADS§ A4 A6 VSS AI0 VSS VSS VSS VSS VSS A12 VSS A14 NC A23 A26 A27 s
o o o o o o o o o o o o o o o o o
R NC BLAST# A3 VCC A8 Alf VCC VCC VCC VCC A15 VCC A18 VSS VCC A25 A28 R
o o o o o o o o o o o o o o o o o
Q PCHK# PLOCK# BREQ A2 A7 A5 A9 A13 A16 A20 A22 A24 A21 A19 A17 VSS A31 Q
o o o o o o o o o o o o o o o o o
P VSS VCC HLDA A3 A29 DO P
o o o o o o
N W/R# M/IO# LOCK# DPO DI D2 N
o o o o o o
M VSS VCC D/C# D4 VCC VSS M
o o o o o o
L VSS VCC PWT D7 D6 VSS L
o o o o o o
K VSS VCC BEO# 1486™ Microprocessor Pinout D14 VCC VSS K
o o o TOP SIDE VIEW o o) fo)
J PCD BE1# BE2# D16 D5 VCC J
o o o o o o
H VSS VCC BROY# DP2 D3 VSS H
o o o o o o
G VSS VCC NC D12 VCC VSS G
o o o o o o
F BE3# RDY# KEN# D15 D8 DP1 F
o o o o o o
VSS VCC HOLD DI0 VCC VSS
E o o o o o o© E
D BOFF# BSB# A20M# D17 D13 D9 D
o o o o o o
C BS16# RESETFLUSH#FERR# NC NC NC NC D30 D28 D26 D27 VcC VCC CLK D18 D1t C
o o o o o o o o o o o o o o o o o
EADS# NC NMI NC NC NC VCC NC VCC D31 VCC D25 VSS VSS VSS D21 D19
B o o o o o o o o o o o O o o o o o B
A AHOLD INTR IGNNE# NC NC NC VSS NC VSS D29 VSS D24 DP3 D23 NC D22 D20 A
o o o o o o o o o o o o o o o o (V
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
240440-3
Figure 1.2

i486™ MICROPROCESSOR

Pin Cross Reference by Pin Name

Address

Data Control N/C Vee Vss
Ao Q14 Do P1 A20M # D15 A3 B7 A7
A3 R15 D4 N2 ADS # $17 A10 B9 A9
Aq S16 Do N1 AHOLD A17 A12 B11 A1
As Q12 D3 H2 BEO# K15 A13 C4 B3
As S15 Dy M3 BE1# J16 A4 C5 B4
Az Q13 Ds J2 BE2# J15 B10 E2 B5
Ag R13 De L2 BE3# F17 B12 E16 E1
Ag Qi1 D7 L3 BLAST # R16 B13 G2 E17
Ao S13 Dg F2 BOFF # D17 B14 G16 G1
Aqq R12 Dg D1 BRDY # H15 B16 H16 G17
A2 S7 Dqo E3 BREQ# Q15 c10 J1 H1
Aq3 Q10 D14 (03] BS8 # D16 Cc11 K2 H17
Aqg S5 Dy2 G3 BS16# C17 c12 K16 K1
Ais R7 D13 D2 CLK C3 C13 L16 K17
Ag Q9 D4 K3 D/C# M15 G15 M2 L1
A7 Q3 Dys F3 DPO N3 R17 M16 L17
A1s R5 Die J3 DP1 F1 S4 P16 M1
Aqg Q4 D47 D3 DP2 H3 R3 M17
Azo Qs Dig c2 DP3 A5 R6é P17
Aoq Q5 Dig B1 EADS # B17 R8 Q2
Ao Q7 D2o Al FERR # C14 R9 R4
A2g S3 Doq B2 FLUSH # C15 R10 S6
Aoy Q6 Dos A2 HLDA P15 R11 S8
Aos R2 Daos A4 HOLD E15 R14 S9
Aze S2 Doy A6 IGNNE # A15 S10
Aoz S1 Da2s B6 INTR A16 S11
Aog R1 Dog Cc7 KEN # F15 S12
Aog P2 Do7 Ccé LOCK # N15 S14
Aszo P3 Dog cs. M/10# N16
Aszq Q1 D29 A8 NMI B15
D3g c9 PCD J17
D34 B8 PCHK # Q17
PWT L15
PLOCK # Q16
RDY # F16
RESET Cié
W/R# N17

5-8

|nte[i486™ MICROPROCESSOR

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol | Type Name and Function
CLK | Clock provides the fundamental timing and the internal operating frequency for the 486
microprocessor. All external timing parameters are specified with respect to the rising
edge of CLK. ‘
ADDRESS BUS
A31-A4 1/0 | A31-A2 are the address lines of the microprocessor. A31-A2, together with the byte
A2-A3 O | enables BEO# -BE3#, define the physical area of memory or input/output space

accessed. Address lines A31-A4 are used to drive addresses into the microprocessor to
perform cache line invalidations. Input signals must meet setup and hold times t> and
ta3. A31-A2 are not driven during bus or address hold.

BEO-3# O | The byte enable signals indicate active bytes during read and write cycles. During the
first cycle of a cache fill, the external system should assume that all byte enables are
active. BE3 # applies to D24-D31, BE2# applies to D16-D23, BE1# applies to D8-
D15 and BEO# applies to DO-D7. BEO# -BE3# are active LOW and are not driven
during bus hold.

DATA BUS

D31-D0 1/0 | These are the data lines for the 486 microprocessor. Lines DO-D7 define the least
significant byte of the data bus while lines D24-D31 define the most significant byte of
the data bus. These signals must meet setup and hold times tyo and tpg for proper
operation on reads. These pins are driven during the second and subsequent clocks of
write cycles.

DATA PARITY

DPO-DP3 | 1/0 | There is one data parity pin for each byte of the data bus. Data parity is generated on all
write data cycles with the same timing as the data driven by the 486 microprocessor.
Even parity information must be driven back into the microprocessor on the data parity
pins with the same timing as read information to insure that the correct parity check
status is indicated by the 486 microprocessor. The signals read on these pins do not
affect program execution.

Input signals must meet setup and hold times t2o and to3. DP0O-DP3 should be
connected to Vgc through a pullup resistor in systems which do not use parity. DPO-DP3
are active HIGH and are driven during the second and subsequent clocks of write cycles.

PCHK # O | Parity Status is driven on the PCHK # pin the clock after ready for read operations. The
parity status is for data sampled at the end of the previous clock. A parity error is
indicated by PCHK # being LOW. Parity status is only checked for enabled bytes as
indicated by the byte enable and bus size signals. PCHK # is valid only in the clock
immediately after read data is returned to the microprocessor. At all other times PCHK #
is inactive (HIGH). PCHK # is never floated.

BUS CYCLE DEFINITION
M/IO# O | The memory/input-output, data/control and write/read lines are the primary bus
D/C# O | definition signals. These signals are driven valid as the ADS # signal is asserted.
W/R# O [m/l0# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 1/0 Read

0 1 1 1/0 Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

5-9

intel

i486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol l Type | Name and Function

BUS CYCLE DEFINITION (Continued)

LOCK#

0

The bus lock pin indicates that the current bus cycle is locked. The 486 microprocessor
will not allow a bus hold when LOCK # is asserted (but address holds are allowed).
LOCK# goes active in the first clock of the first locked bus cycle and goes inactive after
the last clock of the last locked bus cycle. The last locked cycle ends when ready is
returned. LOCK # is active LOW and is not driven during bus hold. Locked read cycles
will not be transformed into cache fill cycles if KEN # is returned active.

PLOCK #

The pseudo-lock pin indicates that the current bus transaction requires more than one
bus cycle to complete. Examples of such operations are floating point long reads and
writes (64 bits), segment table descriptor reads (64 bits), in addition to cache line filis
(128 bits). The 486 microprocessor will drive PLOCK # active until the addresses for the
last bus cycle of the transaction have been driven regardless of whether RDY # or
BRDY # have been returned.

Normally PLOCK # and BLAST # are inverse of each other. However during the first bus
cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be asserted.
PLOCK # is a function of the BS8#, BS16# and KEN# inputs. PLOCK # should be
sampled only in the clock ready is returned PLOCK# is active LOW and is not driven
during bus hold.

BUS CONTROL

ADS #

o

The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS # is driven active in the same
clock as the addresses are driven. ADS # is active LOW and is not driven during bus hold.

RDY #

The non-burst ready input indicates that the current bus cycle is complete. RDY #
indicates that the external system has presented valid data on the data pms in response
to aread or that the external system has accepted data from the 486 microprocessor in
response to a write. RDY # is ignored when the bus is idle and at the end of the first clock
of the bus cycle.

RDY # is active during address hold. Data can be returned to the processor while AHOLD
is active.

RDY # is active LOW, and is not provided wnth an internal pullup resistor. RDY# must
satisfy setup and hold times t1g and t17 for proper chip operation.

BURST CONTROL

BRDY #

The burst ready input performs the same function during a burst cycle that RDY #
performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first
clock in a bus cycle.

BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is ignored and
the burst cycle is prematurely aborted.

BRDY # is active LOW and is provided with a small pullup resistor. BRDY # must satisfy
the setup and hold times t1g and t47.

BLAST #

The burst last signal indicates that the next time BRDY # is returned the burst bus cycle is
complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is active
LOW and is not driven during bus hold.

intel

i486™ MICROPROCESSOR

QUICK

PIN REFERENCE (Continued)

Symbol

l Type | Name and Function

INTERRUPTS

RESET

1 The reset input forces the 486 microprocessor to begin execution at a known state. The
microprocessor cannot begin execution of instructions until at least 1 ms after Vgc and
CLK have reached their proper DC and AC specifications. The RESET pin should remain
active during this time to insure proper microprocessor operation. RESET is active HIGH.
RESET is asynchronous but must meet setup and hold times tog and to4 for recognition in
any specific clock.

INTR

| The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
486 microprocessor will generate two locked interrupt acknowledge bus cycles in
response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.

INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times tyg and t2¢ for recognition in any
specific clock.

NMI

| The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMl is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NMI is not provided with an internal
pulldown resistor. NMl is asynchronous, but must meet setup and hold times tyg and tp4
for recogpnition in any specific clock.

BUS ARBITRATION

BREQ

O | The internal cycle pending signal indicates that the 486 microprocessor has internally
generated a bus request. BREQ is generated whether or not the 486 microprocessor is
driving the bus. BREQ is active HIGH and is never floated.

HOLD

! The bus hold request allows another bus master complete control of the 486
microprocessor bus. In response to HOLD going active the 486 microprocessor will float
most of its output and input/output.pins. HLDA will be asserted after completing the
current bus cycle, burst cycle or sequence of locked cycles. The 486 microprocessor will
remain in this state until HOLD is deasserted. HOLD is active high and is not provided with
an internal pulldown resistor. HOLD must satisfy setup and hold times t;g and t4g for
proper operation.

HLDA

O | Hold acknowledge goes active in response to a hold request presented on the HOLD pin.
HLDA indicates that the 486 microprocessor has given the bus to another local bus
master. HLDA is driven active in the same clock that the 486 microprocessor floats its
bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and remains
driven during bus hold.

BOFF #

| The backoffinput forces the 486 microprocessor to float its bus in the next clock. The
microprocessor will float all pins normally floated during bus hold but HLDA will not be
asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #; if
both are returned in the same clock, BOFF # takes effect. The microprocessor remains in
bus hold until BOFF # is negated. If a bus cycle was in progress when BOFF # was
asserted the cycle will be restarted. BOFF # is active LOW and must meet setup and hold
times t1g and t1g for proper operation.

CACHE INVALIDATION

AHOLD

| The address hold request allows another bus master access to the 486 microprocessor’s
address bus for a cache invalidation cycle. The 486 microprocessor will stop driving its
address bus in the clock following AHOLD going active. Only the address bus will be
floated during address hold, the remainder of the bus will remain active. AHOLD is active
HIGH and is provided with a small internal pulldown resistor. For proper operation AHOLD
must meet setup and hold times t1g and tyg.

511

intel

i486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol TType [Name and Function

CACHE INVALIDATION (Continued)

EADS #

This signal indicates that a valid external address has been driven onto the 486
microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS # is active LOW and is provided with an internal pullup resistor.
EADS # must satisfy setup and hold times t12 and t13 for proper operation.

CACHE CONTROL

KEN#

The cache enable pin is used to determine whether the current cycle is cacheable. When
the 486 microprocessor generates a cycle that can be cached and KEN # is active, the
cycle will become a cache line fill cycle. Returning KEN # active one clock before ready
during the last read in the cache line fill will cause the line to be placed in the on-chip
cache. KEN# is active LOW and is provided with a small internal pullup resistor. KEN #
must satisfy setup and hold times t14 and t15 for proper operation.

FLUSH#

The cache flush input forces the 486 microprocessor to flush its entire internal cache.
FLUSH # is active low and need only be asserted for one clock. FLUSH # is
asynchronous but setup and hold times tog and to1 must be met for recognition in any
specific clock. FLUSH # being sampled low in the clock before the falling edge of RESET
causes the 486 microprocessor to enter the tri-state test mode.

PAGE CACHEAB!

ILITY

PWT
PCD

o
o

The page write-through and page cache disable pins reflect the state of the page
attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is
disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/I0#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register 0.

NUMERIC ERROR REPORTING

FERR#

o)

The floating point error pin is driven active when a floating point error occurs. FERR # is
similar to the ERROR # pin on the 387™ math coprocessor. FERR # is included for
compatibility with systems using DOS type floating point error reporting. FERR # will not
go active if FP errors are masked in FPU register. FERR # is active LOW, and is not
floated during bus hold.

IGNNE #

When the ignore numeric error pin is asserted the 486 microprocessor will ignore a

‘| numeric error and continue executing non-control floating point instructions, but FERR #

will still be activated by the i486. When IGNNE # is deasserted the 486 microprocessor
will freeze on a non-control floating point instruction, if a previous floating point instruction
caused an error. IGNNE# has no effect when the NE bit in control register 0 is set.
IGNNE # is active LOW and is provided with a small internal pullup resistor. IGNNE # is
asynchronous but setup and hold times tgg and t31 must be met to insure recognition on
any specific clock. :

BUS SIZE

CONTROL

BS16#
BS8 #

The bus size 16 and bus size 8 pins (bus sizing pins) cause the 486 microprocessor to run
multiple bus cycles to complete a request from devices that cannot provide or accept 32
bits of data in a single cycle. The bus sizing pins are sampled every clock. The state of
these pins in the clock before ready is used by the 486 microprocessor to determine the
bus size. These signals are active LOW and are provided with internal pullup resistors.

These inputs must satisfy setup and hold times t14 and t45 for proper operation.

5-12

intel

i486™ MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol | Type |

Name and Function

ADDRESS MASK

A20M # |

When the address bit 20 mask pin is asserted, the 486 microprocessor masks physical
address bit 20 (A20) before performing a lookup to the internal cache or driving a memory
cycle on the bus. A20M# emulates the address wraparound at one Mbyte which occurs
on the 8086. A20M # is active LOW and should be asserted only when the processor is in
real mode. This pin is asynchronous but should meet setup and hold times tpg and t4 for
recognition in any specific clock. For proper operation, A20M # should be sampled high at
the falling edge of RESET.

Table 1.1. Output Pins Table 1.2. Input Pins
Name Active When Name Active Synchronous/
Level Floated Level Asynchronous
BREQ HIGH CLK
HLDA HIGH RESET HIGH Asynchronous
BEO# -BE3# LOW Bus Hold HOLD HIGH Synchronous
PWT, PCD HIGH Bus Hold AHOLD HIGH Synchronous
W/R#,D/C#,M/10# | HIGH Bus Hold EADS # LOW Synchronous
LOCK# LOW Bus Hold BOFF # LOW Synchronous
PLOCK # LOW Bus Hold FLUSH # LOW Asynchronous
ADS # LOW Bus Hold A20M # LOW: Asynchronous
BLAST # LOW Bus Hold BS16#, BS8# LOW Synchronous
PCHK # LOW KEN # LOW Synchronous
FERR # LOW RDY # LOW Synchronous
A2-A3 HIGH | Bus, Address Hold BRDY # LOW Synchronous
INTR HIGH Asynchronous
NMI HIGH Asynchronous
IGNNE # LOW Asynchronous
Table 1.3. Input/Output Pins Table 1.4 Component and Revision ID
Name Active When i486™ CPU Component Revision
Level Floated Stepping Name ID ID
D0-D31 HIGH Bus Hold B3 04 01
DP0O-DP3 HIGH Bus Hold B4 04 01
A4-A31 HIGH Bus, Address Hold B5 04 01
B6 04 01
Cco 04 02

5-13

intel

.1486™ MICROPROCESSOR

2.0 ARCHITECTURAL OVERVIEW

The 486 microprocessor is a 32-bit architecture with
on-chip memory management, floatlng point and
cache memory unlts

The 486 microprocessor contains all the features of

the 386™ microprocessor with enhancements to in-

crease performance. The instruction set includes the
complete 386 microprocessor instruction set along
with extensions to serve new applications. The on-
chip memory management unit (MMU) is completely
compatible with the 386 microprocessor MMU. The
486 microprocessor brings the 387™ math coproc-
essor on-chip. All software written for the 386 micro-
processor, 387 math coprocessor and previous
members of the 86/87 architectural family will run on
the 486 microprocessor without any modifications.

Several enhancements have been added to the 486
microprocessor to increase performance. On-chip
cache memory allows frequently used data and
code to be stored on-chip reducing accesses to the
external bus. RISC design techniques have been
used to reduce instruction cycle times. A burst bus
feature enables fast cache fills. All of these features,
combined, lead to performance greater than twice
that of a 386 microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is op-
tional and can be disabled by system software. Each
segment can be divided into one or more 4 Kbyte
segments. To implement a virtual memory system,
the 486 microprocessor supports full restartability
for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (282
bytes) in size. A segment can have attributes associ-
ated with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on a 486 microprocessor can have a max-
imum of 16,381 segments, each up to four gigabytes
in size. Thus each task has a maximum of 64 tera-
bytes (trillion bytes) of virtual memory.

The segmentation unit provides four-levels of pro-
‘tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The 486 mlcroprocessor has two modes of opera-
tion: Real Address Mode (Real Mode) and Protected

Mode Virtual Address Mode (Protected Mode). In
Real Mode the 486 microprocessor operates as a

very fast 8086. Real Mode is required primarily to set

up the processor for Protected Mode operation. Pro-
tected Mode provides access to the sophisticated
memory management paging and privilege capabili-
ties of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica-
tion program or an entire operating system) to exe-
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logic unit and provides arith-
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func-
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
|IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en-
abled and disabled by software or hardware.

Finally the 486 microprocessor has features to facili-
tate high performance hardware designs. The 1X
clock eases high frequency board level designs. The
burst bus feature enables fast cache fills. These fea- -
tures are described beginning in Section 6.

2.1 Register Set

- The 486 microprocessor register set includes all the

registers contained in the 386 microprocessor and
the 387 math coprocessor. The register set can be
split into the following categories:

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register
Segment Registers

Systems Level Registers
Control Registers
System Address Registers

5-14

intel

i486™ MICROPROCESSOR

Floating Point Registers
Data Registers
Tag Word
Status Word
Instruction and Data Pointers
Control Word

Debug and Test Registers

The base architecture and floating point registers
are accessible by the applications program. The sys-
tem level registers are only accessible at privilege
level 0 and are used by the systems level program.
The debug and test registers are also only accessi-
ble at privilege level 0.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the 486 microprocessor base ar-
chitecture registers. The contents of these registers
are task-specific and are automatically loaded with a
new context upon a task switch operation.

General Purpose Registers

31 24 I 23 16| 15 8 | 7 0
' AH AX AL EAX
BH BX BL EBX
CH Cx CL ECX
DH DX DL EDX
sI ESI
DI EDI
BP EBP
SP ESP
Segment Registers
15]
cs Code Segment
Ss Stack Segment
DS
ES Data Segments
FS
GS
Instruction Pointer
31 16 15 0
[| P | e
Flags Register
| | FLAGS | EFLAGS

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to 4
Gbytes in size. The descriptors are indicated by the
selector values placed in the 486 microprocessor
segment registers. Various selector values can be
loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, SI, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of the general purpose registers AX, BX, CX and
DX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces-
sibility offers additional flexibility for data operations
but is not used for effective address calculation.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0—15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

. The flags register is a 32-bit register named

Figure 2.1. Base Architecture Registers

5-15

EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the 486 microprocessor. The lower 16 bits
(bit 0-15) of EFLAGS contain the 16-bit register
named FLAGS, which is most useful when executing
8086 and 80286 code. EFLAGS is shown in Figure
2.2

. ,
lnter i486™ MICROPROCESSOR
. FLAGS
3322222222221 111111111
10987654321098765432109876543210
alv|rE InJior Jolo]i]7]s]z el |c
EFLAGS : [cmlrtelt] L IFIFIFIFIFlF FlifF
s ALAL‘ A A AAAAAA M
ALIGNMENT cn-u:c«————-—1 \ L—CARRY FLAG
VIRTUAL MODE PARITY FLAG
RESUME FLAG AUXILIARY CARRY
NESTED TASK FLAG ZERO FLAG
1/0 PRIVILEGE LEVEL SIGN FLAG
OVERFLOW TRAP FLAG
DIRECTION FLAG
INTERRUPT ENABLE
240440-6
NOTE:
Dindicates Intel Reserved: do not define; see Section 2.1.6.

Figure 2.2. Flags Register

EFLAGS bits 1, 3, 5, 15 and 19-31 are “undefined”.
When these bits are stored during interrupt process-
ing or with a PUSHF instruction (push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31. .

The EFLAGS register in the 486 microprocessor
contains a new bit not previously defined. The new
bit, AC, is defined in the upper 16 bits of the register
and it enables faults on accesses to misaligned
data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access

to an odd address, a dword access to an ad-
dress that is not on a dword boundary, or an
8-byte reference to an address that is not on a
64-bit word boundary. See Section 7.1.6 for
more information on operand alignment.

Alignment faults are only generated by pro-
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level O references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 2.1 gives the alignment required
for the 486 microprocessor data types.

Table 2.1. Data Type Alignment Requirements

Memory Access Alignment (Byte Boundary)
Word 2
Dword 4
Single Precision Real 4
Double Precision Real 8
Extended Precision Real 8
Selector 2
48-Bit Segmented Pointer 4
32-Bit Flat Pointer 4
32-Bit Segmented Pointer 2
48-Bit “Pseudo-Descriptor” 4
~ FSTENV/FLDENV Save Area 4/2 (On Operand Size)
FSAVE/FRSTOR Save Area 4/2 (On Operand Size)
Bit String 4

5-16

intel

i486™ MICROPROCESSOR

IMPLEMENTATION NOTE:

Several instructions on the 486 microprocessor
generate misaligned references, even if their mem-
ory address is aligned. For example, on the 486 mi-
croprocessor, the SGDT/SIDT (store global/inter-
rupt descriptor table) instruction reads/writes two
bytes, and then reads/writes four bytes from a
“pseudo-descriptor” at the given address. The 486
microprocessor will generate misaligned references
unless the address is on a 2 mod 4 boundary. The
FSAVE and FRSTOR instructions (floating point
save and restore state) will generate misaligned
references for one-half of the register save/restore
cycles. The 486 microprocessor will not cause any
AC faults if the effective address given in the in-
struction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the 486 Micro-
processor is in Protected Mode, the 486 Mi-
croprocessor will switch to Virtual 8086 opera-
tion, handling segment loads as the 8086
does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set
only in Protected Mode, by the IRET instruc-
tion (if current privilege level = 0) and by task
switches at any privilege level. The VM bit is
unaffected by POPF. PUSHF always pushes a
0 in this bit, even if executing in Virtual 8086
Mode. The EFLAGS image pushed during in-
terrupt processing or saved during task
switches will contain a 1 in this bit if the inter-
rupted code was executing as a Virtual 8086
Task.

(Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine, the IRET instruc-
tion can pop an EFLAG image having the RF
bit set and resume the program’s execution at
the breakpoint address without generating an-
other breakpoint fault on the same location.

(Nested Task, bit 14)
This flag applies to Protected Mode. NT is set

to indicate that the execution of this task is
nested within another task. If set, it indicates

RF

NT

5-17

IOPL

OF

DF

TF

that the current nested task’s Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by con-
trol transfers to other tasks. The value of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac-
cording to the image popped, at any privilege
level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the IOPL field when execut-
ed at CPL = 0. Task switches can always al-
ter the IOPL field, when the new flag image is
loaded from the incoming task’s TSS.

(Overflow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order
bit, or vice-versa. For 8-, 16-, 32-bit opera-
tions, OF is set according to overflow at bit 7,
15, 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if DF
is reset. Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing altera-
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the 486 Microprocessor generates an
exception 1 trap after the next instruction is
executed. When TF is reset, exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug registers DRO-
DR3.

intel

i486™ MICROPROCESSOR

SF (Sign Flag, bit 7) . NOTE:,
SF is set if the high-order bit of the result is I these descriptions, “set” means “set to 1,” and
set, it is reset otherwise. For 8-, 16-, 32-bit reset” means “reset to 0. ‘
operations, SF reflects the state of bit 7, 15,)
31 respectively. 2.1.1.4 Segment Registers ,
ZF (Zero Flag, bit 6) Six 16-bit t rgisters hold select
i . . L ix it segment registers hold segment selector
ZF ls'ts_estrnf sa;'t bits of the result are 0. Other- ;o identifying the currently addressable memory
wise 1L1s reset. _ segments. In protected mode, each segment may
AF (Auxiliary Carry Flag, bit 4) range in sfize from one byte.up to the entire linear
The Auxiliary Flag is used to simplify the addi- ~ and physical address space of the machine, 4
tion and subtraction of packed BCD quanti- Gbytes (232 bytes). In real address mode, the maxi-
ties. AF is set if the operation resulted in a ~ Mum segment size is fixed at 64 Kbytes (26 bytes).
carry out of bit 3 (addition) or a borrow into bit o « PN
3 (subtracﬁon)_ Otherwise AF is reset. AF is The six addl:essable Segments are defined by the
affected by carry out of, or borrow into bit 3 Segment'reglsteirs CS, SS, DS, ES, FS and GS. The
only, regardiess of overall operand length: 8, selector in CS indicates the current code segment;
16 or 32 bits. the selector in SS indicates the current stack seg-
. . ment; the selectors in DS, ES, FS and GS indicate
PF (Parity Flags, bit 2) the current data segments.
PF is set if the low-order eight bits of the oper-
ation contains an even number of “1’s” (even : .
parity). PF is reset if the low-order eight bits 2.1.1.5 Segment Descriptor Cache Registers
have odd parity. PF is a function of only the . . L
low-order 2igt?tl bits, regardless of opgrand The segment descriptor cache registers are not pro-
size. ' grammer visible, yet it is very useful to understand
) . their content. A programmer invisible descriptor
CF (Carry Flag, bit 0) cache register is associated with each programmer-
CF is set if the operation resulted in a carry visible segment register, as shown by Figure 2.3.
out of (addition), or a borrow into (subtraction) Each descriptor cache register holds a 32-bit base
the high-order bit. Otherwise CF is reset. For address, a 32-bit segment limit, and the other neces-
8-, 16- or 32-bit operations, CF is set accord- ~ sary segment attributes. ' '
ing to carry/borrow at bit 7, 15 or 31, respec-
tively.
SEGMENT , N
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N r Other D
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- - —
~ Selector DS- —_ =
Selector ES- el el
Selector FS- — ==
Selector GS- — ==

Figure 2.3. i486™ MIcroprocessdr Segment Registers and Associated Descriptor Cache Registers

5-18

intel

i486™ MICROPROCESSOR

When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat-
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri-
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera-
tion of the on-chip cache, the on-chip floating point

unit (FPU) and the segmentation and paging mecha-
nisms. These registers are only accessible to pro-
grams running at privilege level 0, the highest privi-
lege level.

The system level registers include three control reg-
isters and four segmentation base registers. The
three control registers are CR0O, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta-
ble Register (IDTR), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register
(TR).

2.1.2.1 Control Registers
Control Register 0 (CRO0)

CRO, shown in Figure 2.5, contains 10 bits for con-
trol and status purposes. Five of the bits defined in
the 486 microprocessor’'s CRO are newly defined.
The new bits are CD, NW, AM, WP and NE. The
function of the bits in CRO can be categorized as
follows:

31 24|23 16|15 8|7 0
CRO
PAGE FAULT LINEAR ADDRESS REGISTER CR2
PAGE DIRECTORY BASE REGISTER] CR3
. SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
A A
s o 7 32.BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT ATTRIBUTES"
TR| SELECTOR
LDTR| SELECTOR
Figure 2.4. System Level Registers
31 0
PlC T|E|M|P
G|D 1slmlplelcro
N 5 Y,
MSW
NOTE:
ndicates Intel reserved: Do not define; See Section 2.1.6

Figure 2.5. Control Register 0

5-19

intel

i486™ MICROPROCESSOR

486 Microprocessor Operating Modes: PG, PE
(Table 2.2) i .

On-Chip Cache Control Modes: CD, NW (Table 2.3)

On-Floating Point Unit Control: TS, EM, MP, NE
(Table 2.4)

Alignment Check Control: AM
Supervisor Write Protect: WP

Table 2.2. Processor Opérating Modes

PG | PE Mode

0 0 | REAL Mode. Exact 8086 semantics,
with 32-bit extensions available with

prefixes.

Protected Mode. Exact 80286
semantics, plus 32-bit extensions
through both prefixes and “default”
prefix setting associated with code
segment descriptors. Also, a sub-
mode is defined to support a virtual
8086 within the context of the
extended 80286 protection model.

UNDEFINED. Loading CRO with this
combination of PG and PE bits will
raise a GP fault with error code 0.

Paged Protected Mode. All the
facilities of Protected mode, with
paging enabled underneath
segmentation.

Table 2.3. On-Chip Cache Control Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, write-through and

invalidates disabled.
Cache fills disabled, write-through and
invalidates enabled.

INVALID. If CRO is loaded with this
configuration of bits, a GP fault with
error code is raised.

Cache fills enabled, write-through and
invalidates enabled.

0

Table 2.4. On-Chip Floating Point Unit Control

CRO BIT Instruction Type

EM | TS { MP | Floating-Point Wait
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Trap 7 Execute
0 1 1 Trap 7 Trap 7
1 0 0 Trap 7 Execute
1 0 1 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7

5-20

The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 protected mode. LMSW and SMSW (load
and store MSW) instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. The
LMSW and SMSW instructions in the 486 microproc-
essor work in an identical fashion to the LMSW and
SMSW instructions in the 80286. (i.e., they only oper-
ate on the low-order 16 bits of CRO and ignores the
new bits). New 486 microprocessor operating sys-
tems should use the MOV CRO, Reg instruction.

The defined CRO bits are described below.
PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is
enabled (PG=1) or disabled (PG=0). See Ta-
ble 2.2. :

(Cache Disable, bit 30)

The CD bit'is used to enable the on-chip cache.
When CD=1, the cache will not be filled on
cache misses. When CD=0, cache fills may be
performed on misses. See Table 2.3.

The state of the CD bit, the cache enable input
pin (KEN#), and the relevant page cache dis-
able (PCD) bit determine if a line read in re-
sponse to a cache miss will be installed in the
cache. A line is installed in the cache only if
CD=0 and KEN# and PCD are both zero. The
relevant PCD bit comes from either the page
tablé entry, page directory entry or control reg-
ister 3. Refer to Section 5.6 for more details on
page cacheability.

CD is set to one after RESET.

NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles (NW=0).
When NW=0, all writes, including cache hits,
are sent out to the pins. Invalidate cycles are
enabled when NW=0. During an invalidate cy-
cle a line will be removed from the cache if the
invalidate address hits in the cache. See Table
23.

When NW=1, write-throughs and write-invali-
date cycles are disabled. A write will not be sent
to the pins if the write hits in the cache. With
NW=1 the only write cycles that reach the ex-
ternal bus are cache misses. Write hits with
NW=1 will never update main memory. Invali-
date cycles are ignored when NW=1.
(Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS) can
allow an alignment fault. AM=0 disables the
AC bit. AM=1 enables the AC bit. AM=0 is the
386 microprocessor compatible mode.

CD

AM

intel

i486™ MICROPROCESSOR

WP

NE

386 microprocessor software may load incor-
rect data into the AC bit in the EFLAGS register.
Setting AM=0 will prevent AC faults from oc-
curring before the 486 microprocessor has cre-
ated the AC interrupt service routine.

(Write Protect, bit 16)

WP protects read-only pages from supervisor
write access. The 386 microprocessor allows a
read-only page to be written from privilege lev-
els 0-2. The 486 microprocessor is compatible
with the 386 microprocessor when WP=0.
WP =1 forces a fault on a write to a read-only
page from any privilege level. Operating sys-
tems with Copy-on-Write features can be sup-
ported with the WP bit. Refer to Section 4.5.3
for further details on use of the WP bit.

(Numerics Exception, bit 5)

The NE bit controls whether unmasked floating
point exceptions (UFPE) are handled through
interrupt vector 16 (NE=1) or through an exter-
nal interrupt (NE=0). NE=0 (default at reset)
supports the DOS operating system error re-
porting scheme from the 8087, 80287 and 387
math coprocessor. In DOS systems, math co-
processor errors are reported via external inter-
rupt vector 13. DOS uses interrupt vector 16 for
an operating system call. Refer to Sections
6.2.13 and 7.2.14 for more information on float-
ing point error reporting.

For any UFPE the floating point error output pin
(FERR#) will be driven active.

For NE=0, the 486 microprocessor works in
conjunction with the ignore numeric error input
(IGNNE #) and the FERR # output pins. When a
UFPE occurs and the IGNNE # input is inactive,
the 486 microprocessor freezes immediately
before executing the next floating point instruc-
tion. An external interrupt controller will supply
an interrupt vector when FERR # is driven ac-
tive. The UFPE is ignored if IGNNE # is active
and floating point execution continues.

NOTE:

The freeze does not take place if the next in-
struction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENYV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDISI and FNSETPM. The freeze does occur
if the next instruction is WAIT.

For NE=1, any UFPE will result in a software
interrupt 16, immediately before executing the
next non-control floating point or WAIT instruc-
tion. The ignore numeric error input (IGNNE #)
signal will be ignored.

5-21

TS (Task Switched, bit 3)

The TS bit is set whenever a task switch opera-
tion is performed. Execution of a floating point
instruction with TS=1 will cause a device not
available (DNA) fault (trap vector 7). If TS=1
and MP=1 (monitor coprocessor in CRO) a
WAIT instruction will cause a DNA fault. See
Table 2.4.

(Emulate Coprocessor, bit 2)

The EM bit determines whether floating point
instructions are trapped (EM= 1) or executed. If

EM=1, all floating point instructions will cause
fault 7.

EM

NOTE:
WAIT instructions are not affected by the state
of EM. See Table 2.4.

(Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should trap. If
MP=1 and TS=1, WAIT instructions cause
fault 7. Refer to Table 2.4. The TS bit is set to 1
on task switches by the 486 microprocessor.
Floating point instructions are not affected by
the state of the MP bit. It is recommended that
the MP bit be set to one for the normal opera-
tion of the 486 microprocessor.

(Protection Enable, bit 0)

The PE bit enables the segment based protec-
tion mechanism. If PE=1 protection is enabled.
When PE=0 the 486 microprocessor operates
in REAL mode, with segment based protection
disabled, and addresses formed as in an 8086.
Refer to Table 2.2.

MP

PE

All new CRO bits added to the 386 and 486 micro-
processors, except for ET and NE, are upward com-
patible with the 80286 because they are in register
bits not defined in the 80286. For strict compatibility
with the 80286, the load machine status word
(LMSW) instruction is defined to not change the ET
or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future Intel microproces-
sors.

Control Register 2 (CR2)

CR2, shown in Figure 2.6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

i486™ MICROPROCESSOR

31 0
PAGE FAULT LINEAR ADDRESS REGISTER ¢R2
31
PAGE DIRECTORY BASE REGISTER
NOTE:
Qindicates Intel reserved: Do not define; See Section 2.1.6.

Figure 2.6. Control Registers 2 and 3

Control Register 3 (CR3)

CR3, shown in Figure 2.6, contains the physical
base address of the page directory table. The 486
microprocessor page directory is always page
aligned (4 Kbyte-aligned). This alignment is enforced
by only storing bits 20-31 in CR3.

In the 486 microprocessor CR3 contains two new
bits, page write-through (PWT) (bit 3) and page
-cache disable (PCD) (bit 4). The page table entry
(PTE) and page directory entry (PDE) also contain
PWT and PCD bits. PWT and PCD control page
cacheability. When a page is accessed in external
memory, the state of PWT and PCD are driven out
on the PWT and PCD pins. The source of PWT and
PCD can be CR3, the PTE or the PDE. PWT and
PCD are sourced from CR3 when the PDE.is being
updated. When paging is disabled (PG = 0 in CRO),

"~ PCD and PWT are assumed to be 0, regardiess of
their state in CR3.

A task switch through a task state segment (TSS)

which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation Iookasnde buffer

(TLB).

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is

“resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.

5-22

2.1.2.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286, 386
and 486 microprocessor protection model. These ta-
bles or segments are:

GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 2.4.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 4, Protected Mode Archi-
tecture, describes the use of these registers.

System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Since the GDT and IDT segments are global to all
tasks in the system, the GDT and IDT are defined by
32-bit linear addresses (subject to page translation if
paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Since the LDT and TSS segments are task specific
segments, the LDT and TSS are defined by selector
values stored in the system segment registers.

'NOTE:
A programmer-invisible segment descriptor register
is associated with each system segment register.

ntel

i486™ MICROPROCESSOR

2.1.3 FLOATING POINT REGISTERS

Figure 2.7 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

RO

R2
R3
R4
R5
R6
R7

Tag
Field
79 78 64 63 0 1 0
Sign | Exponent Significand
15 0 47 0
Control Register| Instruction Pointer
Status Register Data Pointer
Tag Word

Figure 2.7. Floating Point Registers

The operation of the 486 microprocessor’s on-chip
floating point unit is exactly the same as the 387
math coprocessor. Software written for the 387
math coprocessor will run on the on-chip floating
point unit (FPU) without any modifications.

2.1.3.1 Data Registers

Floating point computations use the 486 microproc-
essor’s FPU data registers. These eight 80-bit regis-

into “fields” corresponding to the FPU’s extended-
precision data type.

The FPU'’s register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push” operation
decrements TOP by one and loads a value into the
new top register. A “pop” operation stores the value
from the current top register and then increments
TOP by one. Like other 486 microprocessor stacks
in memory, the FPU register stack grows ‘“‘down”
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.1.3.2 Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 2.8. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPUs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

2.1.3.3 Status Word

The 16-bit status word reflects the overall state of
the FPU. The status word is shown in Figure 2.9 and

ters provide the equivalent capacity of twenty 32-bit
registers. Each of the eight data registers is divided

is located in the status register.

15

0

[Tacm | Tace) | TAGB) | TAGH)

| 1ac@ | 1AG@ | TAG() | TAG(O) |

NOTE:

field refers to logical top of stack.

TAG VALUES:
00 = Valid
01 = Zero
10

11 Empty

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

QNaN, SNaN, Infinity, Denormal and Unsupported Formats

Figure 2.8. FPU Tag Word

5-23

intal i486™ MICROPROCESSOR

BUSY
TOP OF STACK POINTER
CONDITION CODE

15 7 0

(]
—
—

(2]

o

[}

m
(7]
o
c
[=]
N
o

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS :
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

240440-7
ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.5 for interpretation of condition code.
TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
L]

L]
L]
111 = Register 7 is Top of Stack

For definitions of exceptions, refer to the Section entitled
“Exception Handling”.

Figure 2.9. FPU Status Word

The B bit (Busy, bit 15) is included for 8087 compati- The four numeric condition code bits, CO-C3, are
bility. The B bit reflects the contents of the ES bit (blt similar to the flags in EFLAGS. Instructions that per-
7 of the status word). form arithmetic operations update CO-C3 to reflect

the outcome. The effects of these instructions on

Bits 13-11 (TOP) point to the FPU reglster that is the condition codes are summarized in Tables 2.5
the current top-of-stack. through 2.8.

5-24

intel

i486™ MICROPROCESSOR

Table 2.5. FPU Condition Code Interpretation

Instruction co(S) C3(2) | c1 c2(C)
FPREM, FPREM1 Three least significant bits Reduction
(see Table 2.3) of quotient 0 = complete
Q2 Qo Q1 g

or O/U# = incomplete

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison Zero Operand is not

FUCOM, FUCOMP, (see Table 2.7) or O/U# comparable

FUCOMPP, FICOM, (Table 2.7)

FICOMP

FXAM Operand class Sign Operand class

(see Table 2.8) orO/U# (Table 2.8)

FCHS, FABS, FXCH,

FINCTOP, FDECTOP,

Constant loads, ' Zero

FXTRACT, FLD, UNDEFINED or O/U# UNDEFINED

FILD, FBLD,

FSTP (ext real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,

FDIV, FDIVR, Roundup

FSUB, FSUBR, UNDEFINED or O/U# UNDEFINED

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED orO/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1

FLDENV, FRSTOR

Each bit loaded from memory

FINIT

Clears these bits

FLDCW, FSTENV,
FSTCW, FSTSW,
FCLEX, FSAVE

UNDEFINED

Oo/u#

Reduction

Roundup

When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

5-25

lntel | i486™ MICROPROCESSOR

Table 2.6. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
C2 Cc3 C1 Co
Incomplete Reduction:
1 X X X further interaction required
for complete reduction

Qi Qo Q2 Q MOD8
0 0 0 0
? (1) g ; Complete Reduction:

0 1 1 0 3 CO0, C3, C1 contain three least

0 0 1 4 significant bits of quotient
0 1 1 5
1 0 1 6
1 1 1 7

Table 2.7. Condition Code Resulting from Comparison

Order Cc3 c2 Cco
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.8. Condition Code Defining Operand Class

C3 C2 Ct Cco Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN

0 0 1 0 — Unsupported
0 0 1 1 — NaN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 — Normal

0 1 1 1 — Infinity

1 0 0 0 +0

1 0 0. 1 + Empty

1 0 1 0 -0

1 0 1 1 — Empty

1 1 0 0 + Denormal

1 1 1 0 — Denormal

5-26

intel

i486™ MICROPROCESSOR

Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR# (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (C1=1) and underflow
(C1=0).

Table 2.9 shows the six exception flags in bits 0-5
of the status word. Bits 0-5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 2.9 lists the exception conditions, and
their causes in order of precedence. Table 2.9 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
exception flag in the status word will be set, the ES
bit in the status word will be set and the FERR #
output signal will be asserted. When the 486 micro-
processor attempts to execute another floating point
or WAIT instruction, exception 16 occurs or an exter-
nal interrupt happens if the NE=1 in control register

0. The exception condition must be resolved via an
interrupt service routine. The FPU saves the address
of the floating point instruction that caused the ex-
ception and the address of any memory operand re-
quired by that instruction in the instruction and data
pointers (see Section 2.1.3.4).

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR # output of the 486 micro-
processor is activated immediately.

2.1.3.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the 486 microprocessor the arithmetic and logic
unit (ALU) consists of the base architecture regis-
ters), any errors detected by the FPU may be report-
ed after the ALU has executed the floating point in-
struction that caused it. To allow identification of the
failing numeric instruction, the 486 microprocessor
contains two pointer registers that supply the ad-
dress of the failing numeric instruction and the ad-
dress of its numeric memory operand (if appropri-
ate).

Table 2.9. FPU Exceptions

Exception Cause Default Action
(if exception is masked)
Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (0* 0, 0/0, (+ %) + (— %), etc.), or | indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).
Denormalized | Atleast one of the operands is denormalized, i.e., it has Normal processing
Operand the smallest exponent but a nonzero significand. continues
Zero Divisor The divisor is zero while the dividend is a noninfinite, -Result is
nonzero number.
Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or o
Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
‘ accuracy.
Inexact The true result is not exactly representable in the Normal processing
Result specified format (e.g., 1/3); the result is rounded continues
(Precision) according to the rounding mode.

5-27

intel

i486™ MICROPROCESSOR

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the 486 microprocessor decodes a new floating
point instruction, it saves the instruction (including
any prefixes that may be present), the address of
the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the 486 microprocessor (protected mode or real-ad-

dress mode) and depending on the operand-size at-
tribute in effect (32-bit operand or 16-bit operand).
When the 486 microprocessor is in the .virtual-86
mode, the real address mode formats are used. The
four formats are shown in Figures 2.10-2.13. The
floating point instructions FLDENV, FSTENV,
FSAVE and FRSTOR are used to transfer these val-
ues to and from memory. Note that the value of the
data pointer is undefined if the prior floating point
instruction did not have a memory operand.

NOTE:
The operand size attribute is the D bit in a segment
descriptor.

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0
RESE:RVED CONTR(%L WORD 0
T T
RESERVED STATUS WORD 4
RESE:RVED TAG v:vono 8
T T
IP OFFSET . 1c
T
00000 OPCODE 199 CS SELECTOR 10
—t
. DATA OPERAND OFFSET . 14
T T
RESERVED OPERAND SELECTOR 18
T T

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT

31 23 15 7 0

+— 4

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8
| S

RESERVED INSTRUCTION POINTER 15..0 c

0000 INSTRUCTION POINTER 31.16 I 0 | OPCODE 10..0 10

RESERVED OPERAND POINTER 15..0 14

0000 OPERAND POINTER 31..16 0000 00000000 18

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

5-28

i486™ MICROPROCESSOR

intel

16-BIT PROTECTED MODE FORMAT 16-BIT REAL-ADDRESS MODE AND
15 7 0 VIRTUAL-8086 MODE FORMAT
: 15 7 0
I
CONTROL WORD 0 '
f CONTROL WORD 0
1
STATUS WORD 2 '
} STATUS WORD 2
i
TAG WORD 4
— TAG WORD 4
1L
IPOFFSET 6 INSTRUCTION POINTER 15..0 6
T 1
CS SELECTOR 8 IP19.16 |0 OPCODE 10..0 8
I — 1
T
OPERAND OFFSET A OPERAND POINTER 15.0 A
-
' DP19.16 [0{0 0 00 00000 0 0| C
OPERAND SELECTOR c .
4
T
Figure 2.13. Real Mode FPU

Figure 2.12. Protected Mode FPU
Instruction and Data Pointer
Image in Memory, 16-Bit Format

Instruction and Data Pointer
Image in Memory, 16-Bit Format

2.1.3.5 FPU Control Word

The FPU provides several processing options that are selected by loading a control word from memory into
the control register. Figure 2.14 shows the format and encoding of fields in the control word.

RESERVED
RESERVED*
ROUNDING CONTROL
PRECISION CONTROL

15 7 0

RESERVED
* 0" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

EXCEPTION MASKS:
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

240440-8

Precision Control
00—24 bits (single precision)
01—(reserved)
10—53 bits (double precision)
11—64 bits (extended precision)

Rounding Control
00—Round to nearest or even
01—Round down (toward — o)
10—Round up (toward +)
11—Chop (truncate toward zero)

Figure 2.14. FPU Control Word

intel

i486™ MICROPROCESSOR

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0-5
of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

‘The RC bits provide for directed rounding and
true chop, as well as the unbiased round to
nearest even mode specified in the IEEE stan-
dard. Rounding control affects only those in-
structions that perform rounding at the end of
the operation (and thus can generate a preci-
sion exception); namely, FST, FSTP, FIST, all
arithmetic instructions (except = FPREM,
FPREM1, FXTRACT, FABS and FCHS), and all
transcendental instructions.

PC (Precision Control, bits 8—-9)

The PC bits can be used to set the FPU internal
operating precision of the significand at less
than the default of 64 bits (extended precision).
This can be useful in providing compatibility with
early generation arithmetic processors of small-
er precision. PC affects only the instructions
ADD, SUB, DIV, MUL, and SQRT. For all other
instructions, either the precision is determined
by the opcode or extended precision is used.

2.1.4 DEBUG AND TEST REGISTERS

2.1.4.1 Debug Registers

The six programmer accessible debug registers, Fig-
ure 2.15, provide on-chip support for debugging. De-
bug registers DRO-3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR®, displays the current state of the breakpoints.
The use of the Debug registers is described in Sec-
tion 9.

5-30

Debug Registers
LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
Intel Reserved Do Not Define DR4
Intel Reserved Do Not Define DR5
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
Test Registers
CACHE TEST DATA TR3
CACHE TEST STATUS TR4
CACHE TEST CONTROL TR5
TLB TEST CONTROL TR6
TLB TEST STATUS TR7

TLB = Translation Lookaside Buffer

Figure 2.15

2.1.4.2 Test Registers

The 486 microprocessor contains five test registers.
The test registers are shown in Figure 2.15. TR6 and
TR7 are used to control the testing of the translation
lookaside buffer. TR3, TR4 and TR5 are used for
testing the on-chip cache. The use of the test regis-
ters is discussed in Section 8.

2.1.5 REGISTER ACCESSIBILITY

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2.10 summarizes these differences. See Section
4, Protected Mode Architecture, for further details.

intel

i486™ MICROPROCESSOR

Table 2.10. Register Usage

Usein Usein Usein

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL IoPL*
Control Registers Yes Yes PL=10 PL=10 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Control Registers Yes Yes Yes Yes Yes Yes
FPU Status Registers Yes Yes Yes Yes Yes Yes
FPU Instruction Pointer Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yes Yes Yes Yes Yes
Debug Registers Yes Yes PL=0 ‘PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 86 Mode.

2.1.6 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain 486 Microprocessor register bits are Intel re-
served. When reserved bits are called out, treat
them as fully undefined. This is essential for
your software compatibility with future proces-
sors! Follow the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-

fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

- Depending upon the values of undefined regis-

ter bits will make your software dependent upon
the unspecified 486 Microprocessor handling of
these bits. Depending on undefined values risks
making your software incompatible with future
processors that define usages for the 486 Micro-
processor-undefined bits. AVOID ANY SOFT-
WARE DEPENDENCE UPON THE STATE OF UN-
DEFINED 486 MICROPROCESSOR - REGISTER
BITS.

'5-31

intel

i486™ MICROPROCESSOR

2.2 Instruction Set

The 486 microprocessor instruction set can be divid-
ed into 11 categories of operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control
Floating Point

Floating Point Control

The 486 microprocessor instructions are listed in
Section 10. Note that all floating point unit instruc-
tion mnemonics begin with an F.

All 486 microprocessor instructions operate on ei-
ther 0, 1, 2 or 3 operands; where an operand resides
in a register, in the instruction itself or in memory.
Most zero operand instructions (e.g., CLI, STI) take
only one byte. One operand instructions generally
are two bytes long. The average instruction is 3.2
bytes long. Since the 486 microprocessor has a 32-
byte instruction queue, an average of 10 instructions
will be prefetched. The use of two operands permits
the following types of common instructions:

Register to Register
Memory to Register
Memory to Memory
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
486 or 386 microprocessors (32-bit code), operands
are 8 or 32 bits; when executing existing 80286 or
8086 code (16-bit code), operands are 8 or 16 bits.
Prefixes can be added to all instructions which over-
ride the default length of the operands (i.e., use 32-
bit operands for 16-bit code, or 16-bit operands for
32-bit code).

2.3 Memory Organization

Introduction

Memory on the 486 Microprocessor is divided up
into 8-bit quantities (bytes), 16-bit quantities (words),
and 32-bit quantities (dwords). Words are stored in
two consecutive bytes in memory with the low-order
byte at the lowest address, the high order byte at the

high address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest ad-
dress. The address of a word or dword is the byte
address of the low-order byte.

In addition to these basic data types, the 486 Micro-
processor supports two larger units of memory:
pages and segments. Memory can be divided up
into one or more variable length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4 Kbyte pages. Finally, both segmentation and
paging can be combined, gaining the advantages of
both systems. The 486 Microprocessor supports
both pages and segments in order to provide maxi-
mum flexibility to the system designer. Segmentation
and paging are complementary. Segmentation is
useful for organizing memory in logical modules, and

~ as such is a tool for the application programmer,

5-32

while pages are useful for the system programmer
for managing the physical memory of a system.

2.3.1 ADDRESS SPACES

The 486 Microprocessor has three distinct address:
spaces: logical, linear, and physical. A logical
address (also known as a virtual address) consists
of a selector and an offset. A selector is the con-
tents of a segment register. An offset is formed by
summing all of the addressing components (BASE,
INDEX, DISPLACEMENT) discussed in Section
2.5.3 Memory Addressing Modes into an effective
address. Since each task on the 486 Microproces-
sor has a maximum of 16K (214 —1) selectors, and
offsets can be 4 gigabytes, (232 bits) this gives a
total of 246 bits or 64 terabytes of logical address
space per task. The programmer sees this virtual
address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

i486™ MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE %} DISPLACEMENT
31 0
SCALE
1,2,4,8
PHYSICAL
v MEMORY
() BE3 - BEO
A31=A2
32, EFFECTIVE _
7 ADDRESS
15 320 LOGICAL OR SEGMENTATION 32, | PAGING UNIT 32 .
R VIRTUAL ADDRESS | UNIT LINEAR (OPTIONAL USE) |7 pHYSICAL
SELECTOR | P 2 , ADDRESS ADDRESS
L | 7 oescripTor
INDEX
SEGMENT
REGISTER
240440-4

Figure 2.16. Address Translation

Figure 2.16 shows the relationship between the vari-
ous address spaces.

2.3.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the 486 Microprocessor, segments
are variable sized blocks of linear addresses which
have certain attributes associated with them. There
are two main types of segments: code and data, the
segments are of variable size and can be as small
as 1 byte or as large as 4 gigabytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2.11
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provide the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2.11. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero

and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in Section 4.1. ‘

2.4 1/0 Space

The 486 Microprocessor has two distinct physical
address spaces: Memory and |/0. Generally, periph-
erals are placed in I/0 space although the 486 Mi-
croprocessor also supports memory-mapped periph-
erals. The 1/0 space consists of 64 Kbytes, it can be
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K
32-bit ports, or any combination of ports which add
up to less than 64 Kbytes. The 64K I/O address
space refers to physical memory rather than linear
address since 1/0 instructions do not go through the
segmentation or paging hardware. The M/IO# pin
acts as an additional address line thus allowing the
system designer to easily determine which address
space the processor is accessing.

The 1/0 ports are accessed via the IN and OUT I/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/IO# pin to be driven low.

1/0 port addresses 00F8H through O0FFH are re-
served for use by Intel.

5-33

i486™ MICROPROCESSOR

Table 2.11. Segment Register Selection Rules

Type of Implied (Defauit) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch CSs " None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS " None
IRET, RET instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dl is Base Register) '
Other Data References, with
Effective Address Using Base
Register of:

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS

[ESI] DS Al

[EDI] DS

[EBP] Ss

[ESP] SS

2.5 Addressing Modes

2.5.1 ADDRESSING MODES OVERVIEW

The 486 Microprocessor provides a total of 11 ad-
dressing modes for instructions to specify operands.
The addressing modes are optimized to allow the
efficient execution of high level languages such as C
and FORTRAN, and they cover the vast majority of
data references needed by high-level languages.

2.5.2 REGISTER AND IMMEDIATE MODES
Two of the addressing modes provide for .instruc-

tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

5-34

2.5.3 32-BIT MEMORY ADDRESSING MODES

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char- "
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index

intel

i486™ MICROPROCESSOR

mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2.17, the effective address (EA)
of an operand is calculated according to the follow-
ing formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

EXAMPLE: ADD EAX, TABLE(ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a

DISPLACEMENT to form the operand’s offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to

form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-

ter to obtain the operand’s offset.
EXAMPLE: MOV ECX, [EDX*8] [EAX]

SEGMENT REGISTER

Ss
GS
FS
ES
DS

— CS

SELECTOR

= BASE REGISTER I
INDEX REGISTER

SCALE
1,2,4, OR 8
A 4
. DISPLACEMENT
'()‘ (IN INSTRUCTION)
EFFECTIVE
ADDRESS fﬁﬁ;“m
LINEAR
DESCRIPTOR REGISTERS).~ ADDRESS
(®)————>| vaRoer AbDRESS
| SELECTED
] SEGMENT
; RIGHTS, ES]
ACCESS. RIGHTS. DS
ACCESS RIGHTS CS
LIMIT /
S BASE ADDRESS |—ed e e e ea o >
SEGMENT BASE ADDRESS
240440-5

Figure 2.17. Addressing Mode Calculations

5-35

intel

i4866™ MICROPROCESSOR

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[ED|*4]
[EBP -+ 80]

2.5.4 DIFFERENCES BETWEEN 16— AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
80286 and the 8086, the 486 Microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the
instructions it is executing by examining the D bit in
the CS segment Descriptor. If the D bit is 0 then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16-bits. .

Regardless of the default precision of the operands
or addresses, the 486 Microprocessor is able to exe-
cute either 16- or 32-bit instructions. This is specified
via the use of override prefixes. Two prefixes, the
Operand Size Prefix and the Address Length Pre-
fix, override the value of the D bit on an individual
instruction basis. These prefixes are automatically
added by Intel assemblers.

Example: The processor is executing in'Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM486 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an

Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-b|t value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional 486 Microprocessor addressing modes.

When executing 32-bit code, the 486 Microproces-
sor uses either 8-, or 32-bit displacements, and any
register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8, or 16 bits, and the base and index register

“conform to the 80286 model. Table 2.12 |Ilustrates

the differences.

2.6 Data Formats

2.6.1 DATA TYPES

The 486 microprocessor can support a wide-variety
of data types. In the following descriptions, the on-
chip floating point unit (FPU) consists of the floating
point registers. The central processing unit (CPU)
consists of the base architecture registers.

2.6.1.1 Unsigned Data Types

The FPU does not support unsigned data types. Re-
fer to Table 2.13.

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and

* the most significant bit is 7.

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER S1,Di
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

5-36

intel

i486™ MICROPROCESSOR

2.6.1.2 Signed Data Types

All signed data types assume 2’s complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. Refer to Table 2.13.

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity
32-bit Integer: Signed 32-bit quantity
64-bit Integer: Signed 64-bit quantity

The FPU only supports 16-, 32- and 64-bit integers.
The CPU only supports 8-, 16- and 32-bit integers.

2.6.1.3 Floating Point Data Types

Floating point data type in the 486 microprocessor
contain three fields, sign, significand and exponent.
The sign field is one bit and is the MSB of the float-
ing point number. The number is negative if the sign
bitis 1. If the sign bit is 0, the number is positive. The
significand gives the significant bits of the number.
The exponent field contains the power of 2 needed
to scale the significand. Refer to Table 2.13.

Only the FPU supports floating point data types.

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total.
52-bit significand and 11-
bit exponent. 64 bits total.

64-bit significand and 15-
bit exponent. 80 bits total.

Double Precision Real:

Extended Precision Real:

5-37

2.6.1.4 BCD Data Types

The 486 microprocessor supports packed and un-
packed binary coded decimal (BCD) data types. A
packed BCD data type contains two digits per byte,
the lower digit is in bits 0-3 and the upper digit in
bits 4-7. An unpacked BCD data type contains 1
digit per byte stored in bits 0-3.

The CPU supports 8-bit packed and unpacked BCD
data types. The FPU only supports 80-bit packed
BCD data types. Refer to Table 2.13.

2.6.1.5 String Data Types

A string data type is a contiguous sequence of bits,

bytes, words or dwords. A string may contain be-
tween 1 byte and 4 Gbytes. Refer to Table 2.14.

String data types are only supported by the CPU.
Byte String: Contiguous sequence of bytes.
Word String: Contiguous sequence of words.
Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the 486 micro-
processor bit strings can be up to 4 gigabits long.

2.6.1.6 ASCII Data Types

The 486 microprocessor supports ASCIlI (American
Standard Code for Information Interchange) strings
and can perform arithmetic operations (such as ad-
dition and division) on ASCIi data. The CPU can only
operate on ASCII data. Refer to Table 2.14.

intel

i486™ MICROPROCESSOR

Table 2.13. i486™ Microprocessor Data Types
Supported by Supported by

Base Registers FPU Least Significant Byte
1l 1
Data Format Range |Precision| 7 o|7 o] 7 ol'r ol7 0]7 ol 7 o|7 ol 7 ol 7 0
7 0|
Byte 0-255 |8bits [
‘ 15 0
Word '0-64K |16 bits ,
31 0|
Dword 0-4G |32 bits
7 0|
8-Bit Integer 102 |8 bits Compiemont I
Sign Bit
15 » 0
16-Bit Integer X 104 16 bits mlemem
SignBit T
31 0|
32-Bit Integer x| 10° |a2bits Cement ||
SignBit T
63 0|
64-Bit Integer x| 10 [eabits | Owmmemont | |
SignBit T
7 0|
8-Bit Unpacked BCD 0-9 |1 Digit One BCD Digit per BV‘°I
7 0|
8-Bit Packed BCD 0-9 (2 Digits Two BCD Digits per BV'°|
79 72]
80-Bit Packed BCD X| £10%18 |18 Digits | |woes |
T SignBit
31 23 0|
. - +38 . Biased)
Single Precision Real X| 10 24 Bits Exp. Significand
SignBit T
63 52 0|
Double Precision Real | || +10%30%8 |53 Bits | e Significand
SignBit T
79 63 0|
- +4082 ; Biased ignif
Extended Precision Real| |X|+10 64 Bits Bp. |1 Significand
T .Sign Bit

5-38

intel

i486™ MICROPROCESSOR

Table 2.14. String and ASCII Data Types

String Data Types
Address A+N A+1 A
K N 1 0
Byte String |7 o °°° |7 °|7 Ol
A+2N+1 A+2N A+3 A+2 A+1 A
T T
A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+1 A
Dword " ,', l s l ' : ' | ' (|) ' l
String |31 0| 31 0|31 0|
A+268,435,455 A—268,435,456
1 A+3 A+2 A+1 -1 -2 -3 1
N N
String7 0|7 Ol 7 07 0|7 o7 ...1 07 0|7 0|7 0| 7 of7 0|
T T1 T
+2,147,483,647 +7 +10 —2,147,483,648
ASCII Data Types
ASCII Character
2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types
Least Sig Byte
A pointer data type contains a value that gives the 1
address of a piece of data. The 486 microprocessor Data Format I | | I J l I l I
supports two types of pointers. Refer to Table 2.15.

47 31 0
48-bit Pointer: 16-bit selector and 32-bit offset 48-Bit Pointer Selactor Offset
32-bit Pointer: 32-bit offset

31 0

32-Bit Pointer

=

5-39

intel

i486™ MICROPROCESSOR

2.6.2 LITTLE ENDIAN vs BIG ENDIAN
DATA FORMATS

The 486 microprocessor, as well as all other mem-
bers of the 86 architecture use the “little-endian”
method for storing data types that are larger than
one byte. Words are stored in two consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the high address.
Dwords are stored in four consecutive bytes in mem-
ory with the low-order byte at the lowest address
and the high order byte at the highest address. The
address of a word or dword data item is the byte
address of the low-order byte.

Figure 2.18 'illustrates the differences between the
big-endian and little-endian formats for dwords. The
32 bits of data are shown with the low order bit num-
bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The 486 microprocessor has two instructions which
can convert 16- or 32-bit data between the two byte
orderings. BSWAP (byte swap) handles four byte
values and XCHG (exchange) handles two byte val-
ues.

m+3 m+2 m+1 m
31 24 23 16 15 8 7 0
Dword in Little-Endian Memory Format
m m+1 m+2 m+3

31 24 15 8 7

| l I I

Dword in Big-Endian Memory Format

23 16

Figure 2.18. Big vs Little Endian Memory Format

2.7 Interrupts

2.7.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

.Hardware interrupts occur as the result of an exter-

5-40

nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately
after the interrupted instruction. Sections 2.7.3 and
2.7.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and’ serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the 486 Microprocessor-would restart
the instruction. Traps are exceptions that are report-
ed immediately after the execution of the instruction
which caused the problem. User defined interrupts
are examples of traps. Aborts are exceptions which
do not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2.16 summarizes the possi-
ble interrupts for the 486 Microprocessor and shows
where the return address points.

The 486 Microprocessor has the ability to handle up
to 256 different interrupts/exceptions. In order to
service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are
simply pointers to the appropriate interrupt service
routine. In Real Mode (see Section 3.1), the vectors
are 4 byte quantities, a Code Segment plus a 16-bit
offset; in Protected Mode, the interrupt vectors are 8
byte quantities, which are put in an Interrupt Descrip-
tor Table (see Section 4.3.3.4). Of the 256 possible
interrupts, 32 are reserved for use by Intel, the re-
maining 224 are free to be used by the system de-
signer.

2.7.2 INTERRUPT PROCESSING

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the 486 Microprocessor which identifies the

inte

i486™ MICROPROCESSOR

appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc-
tion is executed the old processor state is restored
and program execution resumes at the appropriate
instruction.

The 8-bit interrupt vector is supplied to the 486 Mi-
croprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska-
ble hardware interrupts are assigned to interrupt
vector 2.

2.7.3 MASKABLE INTERRUPT

Maskable interrupts are the most common way used
by the 486 Microprocessor to respond to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled high and the Inter-
rupt Flag bit (IF) is enabled. The processor only re-
sponds to interrupts between instructions, (REPeat
String instructions, have an “interrupt window”, be-
tween memory moves, which allows interrupts dur-
ing long string moves). When an interrupt occurs the
processor reads an 8-bit vector supplied by the
hardware which identifies the source of the interrupt,
(one of 224 user defined interrupts). The exact na-
ture of the interrupt sequence is discussed in Sec-
tion 7.2.10.

Table 2.16. Interrupt Vector Assignments

Instruction Which Return Address
Function Interrupt Can Cause Points_: to. Type
Number Exception Faultm_g
Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 Any Instruction YES TRAP*
NMI interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Intel Reserved 9

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Intel Reserved 15

Floating Point Error 16 Floating Point, WAIT YES FAULT
Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT
Intel Reserved 18-31
‘Two Byte Interrupt 0-255 INT n NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

5-41

intel

i486™ MICROPROCESSOR

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing. additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.7.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMl) would
be to activate a power failure routine. When the NMI
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the
486 Microprocessor will not service further NMI re-
quests until an interrupt return (IRET) instruction is
executed or the processor is reset. If NMI occurs
while currently servicing an NMI, its presence will be
saved for servicing after executing the first IRET in-
struction. The IF bit is cleared at the beginning of an
NMI interrupt to inhibit further INTR interrupts.

2.7.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the 486 Micro-
processor is the software interrupt. An INT n instruc-
tion causes the processor to execute the interrupt
service routine pointed to by the nth vector in the
interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Section 9.2.

5-42

2.7.6 INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the 486 Microprocessor invokes the NMI
service routine first. If, after the NMI service routine
has been invoked, maskable interrupts are still en-
abled, then the 486 Microprocessor will invoke the
appropriate interrupt service routine.

Table 2.17a. i486™ Microprocessor Priority for
Invoking Service Routines in Case of
Simultaneous External Interrupts
1. NMI
2. INTR

Exceptions are internally-generated events. Excep-
tions are detected by the 486 Microprocessor if, in
the course of executing an instruction, the 486 Mi-
croprocessor detects a problematic condition. The
486 Microprocessor then immediately invokes the
appropriate exception service routine. The state of
the 486 Microprocessor is such that the instruction
causing the exception can be restarted. if the excep-
tion service routine has taken care of the problemat-
ic condition, the instruction will execute without
causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully. :

As the 486 Microprocessor executes instructions, it
follows a consistent cycle in checking for- excep-
tions, as shown in Table 2.17b. This cycle is repeat-
ed as each instruction is executed, and occurs in
parallel with instruction decoding and execution.

ntd- i486™ MICROPROCESSOR

Table 2.17b. Sequence of Exception Checking

Consider the case of the 486 Microprocessor
having just compieted an instruction. It then per-
forms the following checks before reaching the
point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc-
tion).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see Section 4.6.4); or exception
13 if instruction is longer than 15 bytes, or priv-
ilege violation in Protected Mode (i.e., not at
IOPL or at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If opcode for Floating Point Unit, check if
EM=1 or TS=1 (exception 7 if either are 1).

9. If opcode for Floating Point Unit (FPU), check
FPU error status (exception 16 if error status is
asserted).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (excep-
tion 14).

NOTE:
The order stated supports the concept of the
paging mechanism being “underneath” the seg-
mentation mechanism. Therefore, for any given
code or data reference in memory, segmenta-
tion exceptions are generated before paging ex-
ceptions are generated.

2.7.7 INSTRUCTION RESTART

The 486 Microprocessor fully supports restarting all
instructions after faults. If an exception is detected in
the instruction to be executed (exception categories
4 through 10 in Table 2.17b), the 486 Microproces-
sor invokes the appropriate exception service rou-
tine. The 486 Microprocessor is in a state that per-
mits restart of the instruction, for all cases but those
in Table 2.17c. Note that all such cases are easily
avoided by proper design of the operating system.

Table 2.17c. Conditions Preventing
Instruction Restart

An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “not present” TSS is re-
startable.) Partially present TSS’s can be avoid-
ed either by keeping the TSS’s of such tasks
present in memory, or by aligning TSS segments
to reside entirely within a single 4K page (for TSS
segments of 4 Kbytes or less).

NOTE:
These conditions are avoided by using the oper-
ating system designs mentioned in this table.

2.7.8 DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

When a Double Fault occurs, the 486 Microproces-

5-43

sor invokes the exception service routine for excep-
tion 8.)

2.7.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the 486 microprocessor
are used to report exceptional conditions while exe-
cuting numeric programs in either real or protected
mode. Table 2.18 shows these interrupts and their
causes.

intel

i486™ MICROPROCESSOR

Table 2.18. Interrupt Vectors Used by FPU

Interrupt
Number

Cause of Interrupt

7

A Floating Point instruction was encountered when EM or TS of the 486™ processor
control register zero (CR0) was set. EM = 1 indicates that software emulation of the
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes
interrupt 7. This indicates that the current FPU context may not belong to the current task.

13

The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
Floating Point instruction that caused the exception, including any prefixes. The FPU has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16

The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt.
The 486™ processor return address pushed onto the stack of the exception handier
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be
restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX,
FNSTSW, FNSTENYV, and FNSAVE instructions cannot cause this interrupt.

3.0 REAL MODE ARCHITECTURE

3.1 Real Mode Introduction

When the processor is reset or powered up it is ini-

tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the

32-bit register set of the 486 Microprocessor. The .

addressing mechanism, memory size, interrupt han-
dling, are all identical to the Real Mode on the
80286.

All of the 486 Microprocessor instructions are avail-
able in Real Mode (except those instructions listed
in Section 4.6.4). The default operand size in Real
Mode is 16 bits, just like the 8086. In order to use the
32-bit registers and addressing modes, override pre-
fixes must be used. In addition, the segment
size on the 486 Microprocessor in Real Mode is
64 Kbytes so 32-bit effective addresses must have a
value less the 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode Operation. i

15 0
OFFSET
19 0
MAX LIMIT
seaMENT [[000 FIXED AT 64K IN
SELECTOR REAL MODE
L (*)——>| MEMORY OPERAND
, SELECTED
64K SEGMENT

SEGMENT BASE

240440-9

Figure 3.1. Real Address Mode Addressing

intel

i486™ MICROPROCESSOR

The LOCK prefix on the 486 Microprocessor, even in
Real Mode, is more restrictive than on the 80286.
This is due to the addition of paging on the 486 Mi-
croprocessor in Protected Mode and Virtual 8086
Mode. Paging makes it impossible to guarantee that
repeated string instructions can be LOCKed. The
486 Microprocessor can't require that all pages
holding the string be physically present in memory.
Hence, a Page Fault (exception 14) might have to be
taken during the repeated string instruction. There-
fore the LOCK prefix can’t be supported during re-
peated string instructions.

These are the only instruction forms where the
LOCK prefix is legal on the 486 Microprocessor:

Operands
Opcode (Dest, Source)

BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG) Mem, Reg

ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the 486 Microprocessor, repeated string
instructions are not LOCKable, it is not possible to
LOCK the bus for a long period of time. Therefore,
the LOCK prefix is not IOPL-sensitive on the 486
Microprocessor. The LOCK prefix can be used at
any privilege level, but only on the instruction forms
listed above.

3.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until
an intersegment jump or call is executed (see Sec-
tion 6.5)).

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective

5-45

address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits, Real Mode segments always
start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The 486
Microprocessor will generate an exception 13 if a
data operand or instruction fetch occurs past the
end of a segment (i.e., if an operand has an offset
greater than FFFFH, for example a word with a low
byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.4 Interrupts

Many of the exceptions shown in Table 2.16 and
discussed in Section 2.7 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
17, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3.1 identifies these exceptions.

3.5 Shutdown and Hait

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the 486 Microprocessor
out of halt. If interrupted, the saved CS:IP will point
to the next instruction after the HLT.

As in the case in protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions:

An interrupt or an exception occur (exceptions 8 or
13) and the interrupt vector is larger than the Inter-
rupt Descriptor Table (i.e., there is not an interrupt
handler for the interrupt).

intel

i486™ MICROPROCESSOR

Table 3.1. Exceptions with Different Meanings in Real Mode (see Table 2.16)

. Interrupt Related Return
Function Number Instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS,DS, ES, FS,GS 13 " Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even (i.e.,
pushing a value on the stack when SP = 0001 re-
sulting in a stack segment greater than FFFFH). |

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
486 CPU is unable to execute the NMI and executes
another shutdown cycle. In this case, the processor
remains in the shutdown and can only exit via the
RESET input.

4.0 PROTECTED MODE
ARCHITECTURE

4.1 Introduction

The complete capabilities of the 486 Microprocessor
are unlocked when the processor operates in Pro-
tected Virtual Address Mode (Protected Mode). Pro-
tected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim-
ited size (64 terabytes or 246 bytes). In addition Pro-
tected Mode allows the 486 Microprocessor to run
all of the existing 8086, 80286 and 386 microproces-
sor software, while providing a sophisticated memo-
ry management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi-
tional instructions especially optimized for support-
ing multitasking operating systems. The base archi-
tecture of the 486 Microprocessor remains the
same, the registers, instructions, and addressing
modes described in the previous sections are re-

tained. The main difference between Protected
Mode, and Real Mode from a programmer’s view is
the increased address space, and a different ad-
dressing mechanism.

4.2 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.)

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the 486 Microprocessor. As such, pag-
ing operates beneath segmentation. The paging
mechanism translates the protected linear address
which comes from the segmentation unit into a
physical address. Figure 4.2 shows the complete
486 Microprocessor addressing mechanism with
paging enabled. '

5-46

i486™ MICROPROCESSOR

48/32 BIT POINTER

SELECTOR OFFSET

47/31 31/15 0

ACCESS RIGHTS
LIMIT
BASE ADDRESS

L—-»@—»

SEGMENT LIMIT

MEMORY OPERAND

UP TO
4G BYTES

SELECTED
SEGMENT

SEGMENT BASE

SEGMENT ADDRESS
DESCRIPTOR 240440-10
Figure 4.1. Protected Mode Addressing
48 BIT POINTER
PHYSICAL ADDRESS
SEGMENT I OFFSET 4KBYTES
15 31
4KBYTES
486™ cpPu
PAGING 4KBYTES
ACCESS RIGHTS MECHANISM | - PHYSICAL
. SE'-:;';R — »{ MEMORY GPERAND] | PHYSICAL PAGE:
A 3
o — PAGE FRAME
SEGMENT ADDRESS ADDRESS
DESCRIPTOR 4KBYTES
4KBYTES
4KBYTES
240440-11

Figure 4.2. Paging and Segmentation

4.3 Segmentation

4.3.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

5-47

4.3.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

intel

i486™ MICROPROCESSOR

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 DESCRIPTOR TABLES

4.3.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in an 486 Microprocessor system.
There are three types of tables on the 486 Micro-
processor which hold descriptors: the Global De-
scriptor Table, Local Descriptor Table, and the Inter-
rupt Descriptor Table. All of the tables are variable
length memory arrays. They can range in size be-
tween 8 bytes and 64 Kbytes. Each table can hold
up to 8192 8-byte descriptors. The upper 13 bits of a
selector are used as an index into the descriptor ta-
ble. The tables have registers associated with them
which hold the 32-bit linear base address, and the
16-bit limit of each table.

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 4.3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

5-48

.

) J LDT LIMIT
LDT BASE
LINEAR ADDRESS

. 32
PROGRAM INVISIBLE
| + AUTOMATICALLY LOADED
FROM LDT DESCRIPTOR

15

LDT DESCR
SELECTOR

LDTR I

teccccanccccncaans

DT BASE '
LINEAR ADDRESS

IDTR

GDT LIMIT

GDT BASE
LINEAR ADDRESS

31

GDTR

240440-12

Figure 4.3. Descriptor Table Registers

4.3.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every 486 Microprocessor system con-
tains a GDT. Generally the GDT contains code and
data segments used by the operating systems and
task state segments, and descriptors for the LDTs in
a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment -cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-

intel

i486™ MICROPROCESSOR

vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 Interrupt Describtor Table

The third table needed for 486 Microprocessor sys-
tems is the Interrupt Descriptor Table. (See Figure
.4.4.) The IDT contains the descriptors which point to
the location of up to 256 interrupt service routines.
The IDT may contain only task gates, interrupt
gates, and trap gates. The IDT should be at least
256 bytes in size in order to hold the descriptors for
the 32 Intel Reserved Interrupts. Every interrupt
used by a system must have an entry in the IDT. The
IDT entries are referenced via INT instructions, ex-
ternal interrupt vectors, and exceptions. (See Sec-
tion 2.7 Interrupts).

A~ MEmoRY
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
. INTERRUPT
DESCRIPTOR
cPu { . TABLE
@tom)
i ° GATE FOR
oromr L INTERRUPT #1
GATE FOR
INTERRUPT #0
1DT BASE §
El =
= ~
240440-13

Figure 4.4. Interrupt Descriptor
Table Register Use

5-49

4.3.4 DESCRIPTORS

4.3.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e., a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4.5 shows the gen-
eral format of a descriptor. All segments on the 486
Microprocessor have three attribute fields in com-
mon: the P bit, the DPL bit, and the S bit. The Pres-
ent P bit is 1 if the segment is loaded in physical
memory, if P=0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field which specifies the protection level 0-3 associ-
ated with a segment.

The 486 Microprocessor has two main categories of
segments: system segments and non-system seg-
ments (for code and data). The segment S bit in the
segment descriptor determines if a given segment is
a system segment or a code or data segment. If the
S bit is 1 then the segment is either a code or data
segment, if it is 0 then the segment is a system seg-
ment.

4.3.4.2 i486™ CPU Code, Data Descriptors
(s=1)

Figure 4.6 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Rights Byte are interpreted.

Iﬂter i486™ MICROPROCESSOR

BYTE
ADDRESS

0

+4

31 0
SEGMENT BASE 15...0 : SEGMENT LIMIT15...0
LIMIT BASE
BASEl31...24 G| D}|O|AVL 19.. .16 P D||>L S I'I'YF'EI A 23.. 16
BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1=Present 0=Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0=_System Descriptor 1=Code or Data Segment Descriptor
TYPE Type of Segment P
A Accessed Bit /)
G Granularity Bit 1=Segment length is page granular 0=Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) :
1=_382-bit segment 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
NOTE: ‘
In a maximum-size segment (i.e., a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (i.e., segment base 11...000=000H).

Figure 4.5. Segment Descriptors

31 . 0
SEGMENT BASE 15...0 SEGMENT LIMIT 15...0 0
‘) LMIT ACCESS BASE
BASE31...24 |G | D | 0| AVL RIGHTS +4
‘ 19...16 BYTE 23...16

D/B 1=Default Instruction Attributes are 32-Bits
0=Default Instruction Attributes are 16-Bits
AVL Available field for user or OS
G Granularity Bit 1=Segment length is page granular
0=_Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4.6. Segment Descriptors

5-50

intel

i486™ MICROPROCESSOR

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions

Po:ilttion Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P = 0 No mapping to physical memory exits, base and limit are
not used.
6-5 |[Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- (S = 1 Code or Data (includes stacks) segment descriptor.
tor (S) S = 0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E = 0 Descriptor type is data segment: 1 If
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. - Segment
1 Writeable (W) W = 0 Data segment may not be written into. Ss=1,
Type W = 1 Data segment may be written into. JE=0)
F'e'.d . 3 Executable (E) E = 1 Descriptor type is code segment: If
Definition 2 Conforming (C) C =1 Code segment may only be executed Code
when CPL > DPL and CPL | Segment
remains unchanged. Ss=1,
1 Readable (R) R = 0 Code segment may not be read. E=1)
R =1 Code segment may be read. J
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. 486 Microprocessor segments can
be one megabyte long with byte granularity (G=0)
or four gigabytes with page granularity (G=1), (i.e.,
220 pages each page is 4 Kbytes in length). The
granularity is totally unrelated to paging. A 486 Mi-
croprocessor system can consist of segments with
byte granularity, and page granularity, whether or not
" paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

5-51

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the 486 Microproc-
essor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See Section 4.4 Protection.)

Segments identified as data segments (E=0, S=1)
are used for two types of 486 Microprocessor seg-
ments: stack and data segments. The expansion di-
rection (ED) bit specifies if a segment expands
downward (stack) or upward (data). If a segment is a
stack segment all offsets must be greater than the
segment limit. On a data segment all offsets must be
less than or equal to the limit. In other words, stack
segments start at the base linear address plus the
maximum segment limit and grow down to the base
linear address plus the limit. On the other hand, data
segments start at the base linear address and ex-
pand to the base linear address plus limit.

intel 1486™ MICROPROCESSOR

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.7
shows the general format of system segment de-
scriptors, and the various types of system segments.
486 Microprocessor system descriptors contain a
32-bit base linear address and a 20-bit segment lim-
it. 80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment limit. 80286 system de-
scriptors are identified by the upper 16 bits being all
zero.

4.3.4.4 LDT Descriptors (S=0, TYPE=2)

LDT descriptors (S=0, TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS Descriptors (S=0,
TYPE=1, 3,9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or a 486 Microprocessor TSS. The Task Reg-
ister (TR) contains the selector which points to the
current Task State Segment.

4.3.4.6 Gate Descriptors (S=0,
TYPE=4-7,C,F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, ‘task gates,
interrupt gates, and trap gates. Gates provide a
level of indirection between the source and destina-
tion of the control transfer. This indirection allows
-the processor to automatically perform protection’
checks. It also allows system designers to control
entry points to the operating system. Call gates are
used to change privilege levels (see Section 4.4
Protection), task gates are.used to perform a task
switch, and interrupt and trap gates are used to
specify interrupt service routines.

31 ‘ 16 0
SEGMENTBASE 15...0 SEGMENT LIMIT 15...0 0
LIMIT BASE
BASE31...24 | G {0 (|(0| O 19.. .16 P DPL | O TYPE 23 16 +4
e N L 3 .

Type Defines Type Defines

0 Invalid 8 Invalid

1 Available 80286 TSS 9 Available 486™ CPU TSS

2 LDT A Undefined (Intel Reserved)

3 Busy 80286 TSS B Busy 486™ CPU TSS

4 80286 Call Gate C 486™ CPU Call Gate

5 Task Gate (for 80286 or 486™ CPU Task) D Undefined (Intel Reserved)

6 80286 Interrupt Gate E 486™ CPU Interrupt Gate

7 80286 Trap Gate F 486™ CPU Trap Gate

Figure 4.7. System Segment Descriptors

5-52

ntel

i486™ MICROPROCESSOR

Figure 4.8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see Section 4.4
Protection). The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descrip-
tor. The type field specifies the descriptor type as

. indicated in Figure 4.8.

4.3.4.7 Differences Between i486™
Microprocessor and 80286 Descriptors

In order to provide operating system compatibility
between the 80286 and 486 Microprocessor, the
486 Microprocessor supports all of the 80286 seg-
ment descriptors. Figure 4.9 shows the general for-
mat of an 80286 system segment descriptor. The
only differences between 80286 and 486 Microproc-
essor descriptor formats are that the values of the
type fields, and the limit and base address fields
have been expanded for the 486 Microprocessor.
The 80286 system segment descriptors contained a
24-bit base address and 16-bit limit, while the 486
Microprocessor system segment descriptors have a
32-bit base address, a 20-bit limit field, and a granu-
larity bit.

32-bit 486™ CPU

31 24 16 8 5 0
SELECTOR OFFSET15...0 0
' WORD

OFFSET 31...16 P| DPL | O TYPE 0] 0| 0|COUNT|+4
, L 4...0
Gate Descriptor Fields
Name Value Description
Type 4 80286 call gate
5 Task gate (for 80286 or 486™ CPU task)
6 80286 interrupt gate
7 80286 trap gate
C 486™ CPU call gate
E 486™ CPU interrupt gate
F 486™ CPU trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack
to the called procedure’s stack. The parameters are 32-bit quantities for 486™ CPU gates, and 16-bit quantities for 80286 gates.

DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or
Selector to the target task state segment for task gate
DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 80286

Figure 4.8. Gate Descriptor Formats

5-53

intel

i486™ MICROPROCESSOR

By supporting 80286 system segments the 486 Mi-
croprocessor is able to execute 80286 application
programs on a 486 Microprocessor operating sys-
tem. This is possible because the processor auto-
matically understands which descriptors are 80286-
style descriptors and which descriptors are 486 Mi-
croprocessor-style descriptors. In particular, if the
upper word of a descriptor is zero, then that descrip-
tor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and 486 Microprocessor descriptors is the
interpretation of the word count field of call gates
and the B bit. The word cotint field specifies the
number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for 486 Microprocessor
call gates. The B bit controls the size of PUSHes
when using a call gate; if B=0 PUSHes are 16 bits,
if B=1 PUSHes are 32 bits.

4.3.4.8 Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (Tl), Descriptor

Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4.10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 . 0
Intel Reserved BASE

Setto0 DPLIS| | TYPE 3.1

BASE Base Address of the segment DPL Descriptor Privilege Level 0-3
LIMIT, The length of the segment S System Descriptor 0=System 1=User

P Present Bit . 1=Present 0= Not Present TYPE Type of Segment

Figure 4.9. 80286 Code and Data Segment Descriptors

5-54

intel i486™ MICROPROCESSOR

SELECTOR
15 43210
SEGMENT TH| RPL
REGISTER JoJo -——-o]o)1]1]1] |
h ” | TABLE
INDEX INDICATOR
Ti=1 T|=ol
N N
y DESCRIPTOR A
] NUMBER A
6 6
5 5
4 4
3 | DESCRIPTOR 3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE
240440-14
Figure 4.10. Example Descriptor Selection
4.3.4.10 Segment Descriptor Register Settings tecture, the base is set to sixteen times the current

selector value, the limit is fixed at 0000FFFFH, and
The contents of the segment descriptor cache vary the attributes are fixed so as to indicate the segment
depending on the mode the 486 Microprocessor is is present and fully usable. In Real Address Mode,
operating in. When operating in Real Address Mode, the internal “privilege level” is always fixed to the
the segment base, limit, and other attributes within highest level, level 0, so 1/0 and other privileged
the segment cache registers are defined.as shown opcodes may be executed.
in Figure 4.11. For compatibility with the 8086 archi-

555

i486™ MICROPROCESSOR

intersegment JMP, or INT). (See Figure 4.13 Example.)
Key: = yes

no

privilege level 0

privilege level 1

privilege level 2

privilege level 3

expand up

con=0zZ<
| MTSTWO
mnnn

LI 1}

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32-BIT BASE 32=BIT LIMIT OTHER ATTRIBUTES

(UPDATED DURING SELECTOR (FIXED) (FIXED)

LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE .
READABLE
EXPANSION DIRECTION
GRANULARITY ,
ACCESSED
PRIVILEGE LEVEL !
PRESENT
o ____BASE LMt }_ VYYVYYVY Y
cs 16X CURRENT CS SELECTOR® 0000FFFFH |Y[O|Y|B|U|Y|Y|Y|=|N
ss 16X CURRENT SS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y[N[W|=
DS 16X CURRENT DS SELECTOR 0000FFFFH |Y|O|Y|B|U|Y|Y|N|[=]~
ES 16X CURRENT ES SELECTOR 0000FFFFH |Y|0|Y|B[U|Y[Y|N[=] -
FS 16X CURRENT FS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y|N| =] -
[16X CURRENT GS SELECTOR 000OFFFFH - |[Y|O|Y|B|U|Y|Y|N[=]| -

240440-15

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., intersegment CALL, or

expand down

byte granularity

page granularity

push/pop 16-bit words

push/pop 32-bit dwords

= does not apply to that segment cache register

Figure 4.11. Segment Descriptor Caches for Real Address Mode

(Segment Limit and Attributes are Fixed)

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4.12.
In Protected Mode, each of these fields are defined

ment register.

5-56

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-

intef

i486™ MICROPROCESSOR

SEGMENT
32~ BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32 = BIT LiIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

DESCRIPTOR CACHE REGISTER CONTENTS

SELECTOR LOAD INTO

OTHER ATTRIBUTES
(UPDATED DURING

SEGMENT REGISTER)

STACK SIZE

EXECUTABLE
WRITEABLE

READABLE

EXPANSION DIRECTION

GRANULARITY

ACCESSED

PRIVILEGE LEVEL
PRESENT

BASE PER SEG DESCR

LIMIT PER SEG DESCR

&
<

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

Key: Y = fixed yes

N = fixed no

d = per segment descriptor
(exception 12 in case of SS)
(special case for SS)

(special case for SS)

p
p
p
LIMIT PER SEG DESCR P
p
P

LIMIT PER SEG DESCR

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11
r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13

w = per segment descriptor, but descriptor must indicate “writable” to avoid exception 13

- = does not apply to that segment cache register

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4.13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

5-57

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

i486™ MICROPROCESSOR

SEGMENT
32 -BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32

= BIT LIMIT
(FIXED)

OTHER ATTRIBUTES
(FIXED)

o

privilege level 3
expand up

STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY - -
ACCESSED
PRIVILEGE LEVEL
PRESENT
: BASE LIMIT ¥ 3
cs 16X CURRENT CS SELECTOR 0000FFFFH |Y|3|Y|B|U|Y Y|Y|[=]|N
SS 16X CURRENT SS SELECTOR OOQOFFFFH [Y|3|Y|B|U|Y|Y|N|W|~-
DS 16X CURRENT DS SELECTOR O0000FFFFH |Y[3|Y|B|U|Y|Y|N]|=]|=
ES 16X CURRENT ES SELECTOR O0000FFFFH {Y[3|Y|B|U|Y|Y|N|=|=
FS 16X CURRENT FS SELECTOR OOO0OFFFFH |Y|3|Y|BIU|Y|YIN|=|=
GS 16X CURRENT GS SELECTOR OQO0OFFFFH [Y[3|YIBIU|YIYINI=]|=
240440-17
Key: Y =yes D = expand down

N =no B = byte granularity

0 = privilege level 0 P = page granularity

1 = privilege level 1 W = push/pop 16-bit words

2 privilege level 2 F = push/pop 32-bit dwords

3 -

U

= does not apply to that segment cache register

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode

(Segment Limit and Attribqtes are Fixed)

4.4 Protection

4.4.1 PROTECTION CONCEPTS

APPLICATIONS
CcPU

0S EXTENSIONS

SYSTEM
SERVICES
PL

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

240440-18

Figure 4.14. Four-Level Hierarchical Protection

'

The 486 Microprocessor has four levels of protec-
tion which are optimized to support the needs of a
multi-tasking operating system to isolate and protect
user programs from each other and the operating
system. The privilege levels control the use of privi-
leged instructions, 1/0 instructions, and access to
segments and segment descriptors. Unlike tradition-
al microprocessor-based systems where this protec-
tion is achieved only through the use of complex
external hardware and software the 486 Microproc-
essor provides the protection as part of its integrat-
ed Memory Management Unit. The 486 Microproc-
essor offers an additional type of protection on a
page basis, when paging is enabled (See Section
4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. it is an extension of the user/
supervisor privilege mode commonly used by mini-

- computers and, in fact, the user/supervisor mode is

5-58

fully supported by the 486 Microprocessor paging

intel

i486™ MICROPROCESSOR

mechanism. The privilege levels (PL) are numbered
0 through 3. Level 0 is the most privileged or trusted
level.

4.4.2 RULES OF PRIVILEGE

The 486 Microprocessor controls access to both
data and procedures between levels of a task, ac-
cording to the following rules.

® Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

® A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 PRIVILEGE LEVELS

4.4.3.1 Task Privilege

At any point in time, a task on the 486 Microproces-
sor always executes at one of the four privilege lev-
els. The Current Privilege Level (CPL) specifies the
task’s privilege level. A task’s CPL may only be
changed by control transfers through gate descrip-
tors to a code segment with a different privilege lev-
el. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’'s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor’s RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level

5-59

3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator’s CPL.

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 1I/0O privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 170 instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS))
When CPL > |OPL, and the current task is associat-
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with a 486 Microprocessor
TSS, the 1/0 Permission Bitmap (part of a 486 Mi-
croprocessor TSS) is consulted on whether /0 to
the port is allowed, or an exception 13 fault is to be
generated instead. For diagrams of the 1/0 Permis-
sion Bitmap, refer to Figures 4.15a and 4.15b. For
further information on how the I/0O Permission Bit-
map is used in Protected Mode or in Virtual 8086
Mode, refer to Section 4.6.4 Protection and I/0 Per-
mission Bitmap.

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the 486 Microprocessor.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > I0PL, the IF bit
cannot be changed by a new value POP’ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated. o

intel

i486™ MICROPROCESSOR

Table 4.2. Pointer Test Instructions

Instruction | Operands Function

ARPL Selector,

Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector | VERIfy for Read: sets the |
zero flag if the segment
referred to by the selector

can be read.

VERW | Selector |VERify for Write: sets the
zero flag if the segment
referred to by the selector

can be written.

LSL Register,

Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

- LAR Register,

- | Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set

zero flag if successful.

4.4.3.4 Privilege Validation

The 486 Microprocessor provides several instruc-
tions to speed pointer testing and help maintain sys-
tem integrity by verifying that the selector value
refers to an appropriate segment. Table 4.2 summa-
rizes the selector validation procedures available for
the 486 Microprocessor.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0.and passing the operat-
ing system routine a ““bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-

5-60

tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the 486 Microprocessor makes
protection validation checks. Selectors loaded in the
DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data ac-
cess rules are specified in Section 4.4.2 Rules of
Privilege. The only exception to those rules is read-
able conforming code segments which can be ac-
cessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

intel

i486™ MICROPROCESSOR

Table 4.3. Descriptor Types Used for Control Transfer

" Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or DT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate. GDT/LDT

IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register) = 1

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system seCurity, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or viaa gateto a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

5-61

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

ntel

i486™ MICROPROCESSOR
31 16 15 0 J
0000000000000000 | BACK LINK o TS BASE
ESPO 4)
0000000000000000 | '$S0 8
ESP1 € | stacks
0000000000000000 | ss1 10 | FOF 0.1.2
) ESP2 14
0000000000000000 | sS2 18
CR3 1c
EIP 20
EFLAGS 24
EAX 28
ECX 2c
EDX 30
EBX 34
ESP 38
£8P 3¢
Esl 40 %‘SRKR BN
DI 44 STATE
0000000000000000 ES 48
0000000000000000 cs 4c
0000000000000000 ss 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 [sC
0000000000000000 LDT 60 |
NOTE: BIT_MAP_OFFSET(15:0) 0000000000000000 | T {
BIT__MAP_OFFSET AVAILABLE ~ 158 e
must be < DFFFH & SYSTEM STATUS, ETC. d TRAP BIT
T IN 486™ cPU TSS T
31 24|23 16] 15 8|7 0
63 56|55 48] 47 40| 39 32| BIT_MAP_OFFSET
95 ss|87 80|79 72| 71 64
TecTooooooooe : 96| OFFSET + C
] | o o
' ' La s
, BASE : T 1/0 PERMISSION BITMAP I
53 T PROGRAM 0; 65407 (F(‘,(:,RETE,;I TZEEPB&? | éé’ OFFSET + 1FEC
t____NvisBLE = 65439 TRUNCATED USING TSS LIMIT.) OFFSET + 1FFO
TASK REGISTER 65471 OFFSET + 1FF4
65503 65472 | OFFSET + 1FF8
TR{SELECTOR 4 65535 65504 | OFFSET + 1FFC
15 0 "FFH" OFFSET + 2000

Type
Type

]

B: Busy 486™ CPU TSS

9: Available 486™ CPU TSS,

31

486™ CPU TSS DESCRIPTOR (IN GDT)

* TSS LIMIT = OFFSET + 2000H

0

v

SEGMENT BASE 15...0

SEGMENT LIMIT 15..0

e R 00|

LiMIT

19.16 1

Pl DI;LIOI lT‘(PE

A

23..16

BASE

240440-19

Figure 4.15a. i486™ Microprocessor TSS and TSS Registers

5-62

i486™ MICROPROCESSOR

313029 2827262524232

]

2

2019181716151413121110 9

31
63
95
127

1111011 011

- o

23
[}
1
1
0

o - =0
o - oo

o
1
1
0

o - O =

0o
1
0

o = 0

1 0 1 010
1 1 1 111
0 0 0 000

o

T etc.

O = =
o - O =

0] 10

O = O ojm

01
11
11
00

O = = -

1 1 10
1 1 11
0 0 00

- 0O = = O|N
- O = = O|o;
- 0 = = oflu
- 0 = = ofa
- 0 = = olw
- O = O oOiN
-~ 0 =0 o]
-~ 0 = = =lo

1/0 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

240440-20

Figure 4.15b. Sample 1/0 Permission Bit Map

4.4.5 CALL GATES

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform |/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’s DPL. Gates follow the contro! transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level 486 Microprocessor call
gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters .are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 TASK SWITCHING

A very important attribute of any multi-tasking/muilti-
user operating systems is its ability to rapidly switch
between tasks or processes. The 486 Microproces-
sor directly supports this operation by providing a
task switch instruction in hardware. The 486 Micro-
processor task switch operation saves the entire

state of the machine (all of the registers, address
space, and a link to the previous task), loads a new
execution state, performs protection checks, and
commences execution in the new task, in about 10
microseconds. Like transfer of control via gates, the
task switch operation is invoked by executing an in-
ter-segment JMP or CALL instruction which refers to
a Task State Segment (TSS), or a task gate descrip-
tor in the GDT or LDT. An INT n instruction, excep-
tion, trap, or external interrupt may also invoke the
task switch operation if there is a task gate descrip-
tor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
4.15) containing the entire 486 Microprocessor exe-
cution state while a task gate descriptor contains a
TSS selector. The 486 Microprocessor supports
both 80286 and 486 Microprocessor style TSSs. Fig-
ure 4.16 shows a 80286 TSS. The limit of a 486
Microprocessor TSS must be greater than 0064H
(002BH for a 80286 TSS), and can be as large as 4
Gigabytes. In the additional TSS space, the operat-
ing system is free to store additional information
such as the reason the task is inactive, time the task

has spent running, and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
486 Microprocessor called the Task State Segment
Register (TR). This register contains a selector refer-
ring to the task state segment descriptor that de-
fines the current TSS. A hidden base and limit regis-
ter associated with TR are loaded whenever TR is
loaded with a new selector. Returning from a task is
accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was
interrupted. The current executing task’s state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word- (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the

-previous task. The NT bit is set or reset in the follow-

5-63

ing fashion:

i486™ MICROPROCESSOR

15 0
BACK LINK SELECTOR TO TSS
SP FOR CPL 0

SS FOR CPL 0

“SP FOR CPL 1

SS FOR CPL 1

SP FOR CPL 2

SS FOR CPL 2

1P (ENTRY POINT)
FLAGS

AX

[

DX

BX

SP

BP

sl

DI

ES SELECTOR

CS SELECTOR

SS SELECTOR

DS SELECTOR

TASK'S LDT SELECTOR

Jh AVAILABLE
")

INITIAL
STACKS
FOR CPL 0, 1,2

m O P> 0 O & N O
s\)

-
o

-
N

-
rs

16

CURRENT
TASK
STATE

ra
by

240440-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The 486 Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU’s state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU’s state in a muilti-
tasking environment. Whenever the 486 Micro-

processor switches tasks, it sets the TS bit. The 486
Microprocessor detects the first use of a processor
extension instruction after a task switch and causes
the processor extension not available exception 7.
The exception handler for exception 7 may then de-
cide whether to save the state of the FPU. A proces-
sor extension not present exception (7) will occur
when attempting to execute a Floating Point or
WAIT instruction if the Task Switched and Monitor
coprocessor extension bits are both set (i.e. TS = 1
and MP = 1).

The T bit in the 486 Microprocessor TSS indicates
that the processor should generate a debug excep-
tion when switching to a task. If T = 1 then upon
entry to a new task a debug exception 1 will be gen-
erated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the 486 Microprocessor begins executing in
Real Mode immediately after RESET it is necessary
to initialize the system tables and registers with the
appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta-
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode 486 Microprocessor system.
It has a single code and single data/stack segment
each four gigabytes long and a single privilege level
PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the 486 Microprocessor in Pro-
tected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state

- segment.

5-64

i486™ MICROPROCESSOR

31 0
15 0 RESET ROUTINES :;:::E;
ss) INITIALIZATION
ROUTINES
cs
s
s
cs
oo 000’501;': - DATA DESCRIPTOR 00000118
=2 CODE DESCRIPTOR | 20000110
BASE ADDRESS At 00000108 | 60T
IDTR | 000FF | LIMIT 00000100
00000000 INTERRUPT BT
BASE ADDRESS DESCRIPTORS (32)
00000000 24044022
Figure 4.17. Simple Protected System
LIMIT
BASE31...24|G (D BASE 23...16
2 ofo 19.16 1{0 0|1]0 0 1{0O
00 (H 111 00 (H
DATA .| SEGMENTBASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H) .
LIMIT
BASE31...24 |G BASE 23...16
1 ofo0 19.16 1]/0 0|11 0 1|0
00 (H 111 00 (H
CODE SEGMENT BASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H)
NULL | DESCRIPTOR
0
31 .24 16 15 8 0

Figure 4.18. GDT Descriptors for Simple System

4.4.8 TOOLS FOR 'BUILDING PROTECTED
SYSTEMS

In order to simplify the design of a protected muiti-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
486 Microprocessor system. This tool is the builder
BLD-3867. BLD-386 lets the operating system writ-
er specify all of the segment descriptors discussed
in the previous sections (LDTs, IDTs, GDTs, Gates,
and TSSs) in a high-level language.

5-65

4.5 Paging

4.5.1 PAGING CONCEPTS

Paging is another type of memory management
useful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pag-
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical

intel

i486™ MICROPROCESSOR

structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-

sponds to only a portion of a module or data struc- -

ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The 486 Microprocessor uses two levels of tables to
translate the linear address (from the segmentation
unit) into a physical address. There are three com-
ponents to the paging mechanism of the 486 Micro-
processor: the page directory, the page tables, and
the page itself (page frame). All memory-resident el-
ements of the 486 Microprocessor paging mecha-
nism are the same size, namely, 4 Kbytes. A uniform
size for all of the elements simplifies memory alloca-
tion and reallocation schemes, since there is no

problem with memory fragmentation. Figure 4.19.

shows how the paging mechanism works.

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CRS, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.5 Translation
Lookaside Buffer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

31 22 12 0 ’
——| orectory | TasLe | oFFser | USER
LINEAR MEMORY
ADDRESS 10 12 l
3 ° @-b ADDRESS
486™ cpu { T
31) 3 2 (Oe >
CRO [1} T
N | .
CR1 > >
Q/ PAGE TABLE
CR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
240440-23
Figure 4.19. Paging Mechanism
31 ‘ 12 11 10 9 8 7 6 5 4 3 2 1 0
' oS P P|J]U|R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 DIA|C|W|—|—[P
. D|T|S|W

Figure 4.20. Page Directory Entry (Points to Page Table)

5-66

intel

i486™ MICROPROCESSOR
31 122 1 10 9 8 7 6 5 4 3 2 1 0
os P|P|U]|R
PAGE FRAME ADDRESS 31..12 RESERVED O|O|D|A|C|W|—|—|P
D|T|S|W

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If

= 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the 486 Microproc-
essor for both types of entries before a read or write
access occurs to an address covered by the entry.
The D (Dirty) bit 6 is set to 1 before a write to an
address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the 486
Microprocessor, the processor generates a Read-
Modify-Write cycle which locks the bus and prevents
conflicts with other processors or perpherials. Soft-
ware which modifies these bits should use the LOCK
prefix to ensure the integrity of the page tables in
multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9—11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

5-67

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The 486 microprocessor provides a set of protection
attributes for paging systems. The paging mecha-
nism distinguishes between two levels of protection:
User which corresponds to level 3 of the segmenta-
tion based protection, and supervisor which encom-
passes all of the other protection levels (0, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The 386
microprocessor does not contain the WP bit. The
WP bit has been added to the 486 microprocessor
to protect read-only pages from supervisor write ac-
cesses. The 386 microprocessor allows a read-only
page to be written from protection levels 0, 1 or 2.
WP =0 is the 386 microprocessor compatible mode.
When WP =0 the supervisor can write to a read-only
page as defined by the U/S and R/W bits. When
WP=1 supervisor access to a read-only page
(R/W=0) will cause a page fault (exception 14).

Table 4.4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WP =0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP=1 and R/W =0 the supervi-
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S=0), or write
to a read only page will cause a page fault (excep-
tion 14).

The R/W and U/S bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di-
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
table pointed to by that directory entry. The U/S and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the U/S and R/W bits from the Page
Directory Table and the Page Table Entry are used
to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the

intel

i486™ MICROPROCESSOR

U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD (page cache dis-
able) are two new bits defined in entries in both lev-
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con-
trol page cacheability and write policy.

PWT controls write policy. PWT =1 defines a write-
through policy for the current page. PWT =0 allows
the possibility of write-back. PWT is ignored internal-
iy because the 486 microprocessor has a write-
through cache. PWT can be used to control the write
policy of a second level cache.

PCD controls cacheability. PCD=0 enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN# (cache
enable) input signal and the state of the CD (cache
disable bit) and NW (no write-through) bits in control
register 0 (CR0O). When PCD= 1, caching is disabled
regardless of the state of KEN#, CD and NW. (See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register 3 (CR3), the Page Direc-
tory Entry or the Page Table Entry, depending on the
type of cycle run. However, when paging is disabled
(PG = 0 in CRO) or for cycles which bypass paging
(i.e., 170 (input/output) references, INTR (interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The i486 CPU assumes PCD =
0 and PWT = 0 and drives these values on the PCD
and PWT pins.

When paging is enabled (PG=1 in CRO0), the bits
from the page table entry are cached in the transla-
tion lookaside buffer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta-
ble Entry. During TLB refresh cycles when the Page
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc-
tory Entry when the Page Table Entry is being updat-
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft-
ware.

4.5.5 TRANSLATION LOOKASIDE BUFFER

The 486 Microprocessor paging hardware is de-
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the 486 Microprocessor keeps a
cache of the most recently accessed pages, this
cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com-
plements the 486 Microprocessor’s paging mecha-

~ nism.

Reading a new entry into the TLB (TLB refresh) is a

" two step process handled by the 486 microproces-

sor hardware. The sequence of data cycles to per-
form a TLB refresh are:

Table 4.4. Page Level Protection Attributes

u/s R/W WP User Access Supervisor Access
0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 None Read/Execute
0 1 1 None Read/Write/Execute
1 0 1 Read/Execute Read/Execute
1 1 1 Read/Write/Execute Read/Write/Execute

5-68

intel

i486™ MICROPROCESSOR

. Read the correct Page Directory Entry, as point-
ed to by the page base register and the upper 10
bits of the linear address. The page base register
is in control register 3.

Optionally perform a locked read/write to set the
accessed bit in the directory entry. The directory
entry will actually get read twice if the 486 micro-
processor needs to set any of the bits in the en-
try. If the page directory entry changes between
the first and second reads, the data returned for
the second read will be used.

Read the correct entry in the Page Table and
place the entry in the TLB.

Optionally perform a locked read/write to set the
accessed and/or dirty bit in the page table entry.
Again, note that the page table entry will actually
get read twice if the 486 microprocessor needs
to set any of the bits in the entry. Like the direc-
tory entry, if the data changes between the first
and second read the data returned for the sec-
ond read will be used.

1a.

2a.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig-
naled from either the page directory read or the
page table read. Page directory and page table en-
tries may be placed in the 486 on-chip cache just
like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES

PHYSICAL
MEMORY
TRANSLATION
LOOKASIDE
BUFFER

LINEAR
ADDRESS

HIT

MISS

[

v

O—

PAGE
TABLE

® 98% HIT RATE

PAGE
DIRECTORY

240440-24

Figure 4.22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

However, if the page table entry is not in the TLB,
the 486 Microprocessor will read the appropriate
Page Directory Entry. if P = 1 on the Page Directory
Entry indicating that the page table is in memory,
then the 486 Microprocessor will read the appropri-
ate Page Table Entry and set the Access bit. If P =
1 on the Page Table Entry indicating that the page is
in memory, the 486 Microprocessor will update the
Access and Dirty bits as needed and fetch the oper-
and. The upper 20 bits of the linear address, read
from the page table, will be stored in the TLB for
future accesses. However, if P = 0 for either the
Page Directory Entry or the Page Table Entry, then
the processor will generate a page fault, an Excep-
tion 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (i.e., U/S or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec-
ond page fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep-
tion 14) handler a second time, rather than the dou-
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc-
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. Fig-
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4.23b indicates

. what type of access caused the page fault.

5-69

15 3210
U

UjulUjUjU|UJUJUjUjUjU|UJUJU| (WP
S|R

Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1).

intel

i486™ MICROPROCESSOR |

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0) or by a page
level protection violation (P = 1).

U: UNDEFINED
u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0. User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.
Figure 4.23b. Type of Access
Causing Page Fault

4.5.7 OPERATING SYSTEM RESPONSIBILITIES

The 486 Microprocessor takes care of the page ad-
dress translation process, relieving the burden from
an operating system in a demand-paged system.
The operating system is responsible for setting up
the initial page tables, and handling any page faults.
The operating system also is required to invalidate
(i.e., flush) the TLB when any changes are made to
any of the page table entries. The operating system
must reload CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

4.6.1 EXECUTING 8086 PROGRAMS

The 486 Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system de-
signer the most flexibility. The Virtual 8086 Mode al-
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the 486 Microprocessor protection mechanism. In

5-70

particular, the 486 Microprocessor allows the simul-
taneous execution of 8086 operating systems and
its applications, and a 486 Microprocessor operating
system and both 80286 and 486 Microprocessor ap-
plications. Thus, in a multi-user 486 Microprocessor
computer, one person could be running an MS-DOS
spreadsheet, another person using MS-DOS, and a
third person could be running multiple Unix utilities
and applications. Each person in this scenario would
believe that he had the computer completely to him-
self. Figure 4.24 illustrates this concept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between 486 Micro-
processor Real and Protected modes is how the
segment selectors are interpreted. When the proc-
essor is executing in Virtual 8086 Mode the segment
registers are used in an identical fashion to Real
Mode. The contents of the segment register is shift-
ed left 4 bits and added to the offset to form the
segment base linear address.

The 486 Microprocessor ailows the operating sys-
tem to specify which programs use the 8086 style
address mechanism, and which programs use Pro-
tected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the 486 Microprocessor. Like Real Mode, Virtual
Mode effective addresses (i.e., segment offsets) that
exceed 64 Kbyte will cause an exception 13. Howev-
er, these restrictions should not prove to be impor-
tant, because most tasks running in Virtual 8086
Mode will simply be exustlng 8086 application pro-
grams.

4.6.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system .isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode 'task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig-
abyte physical address space of the 486 Microproc-
essor. In addition, since CR3 (the Page Directory
Base Register) is loaded by a task switch, each Vir-
tual Mode task can use a different mapping scheme
to map pages to different physical locations.

intel i486™ MICROPROCESSOR

Finally, the paging hardware allows the sharing of LIDT; MOV DRn,reg; MOV reg,DRn;

the 8086 operating system code between muiltiple LGDT; MOV TRn,reg; MOV reg,TRn;

8086 applications. Figure 4.24 shows how the 486 LMSW; MOV CRn,reg; MOV reg,CRn.
Microprocessor paging hardware enables multiple CLTS;

8086 programs to run under a virtual memory de- HLT ;

mand paged system.

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

4.6.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual

8086 Mode programs are subject to all of the protec- LTR; STR;
tion checks defined in Protected Mode. (This is dif- LLDT; SLDT;
ferent from Real Mode which implicitly is executing LAR; VERR;
at privilege level 0, the level of greatest privilege.) LSL; VERW;
Thus, an attempt to execute a privileged instruction ARPL.
when in Virtual 8086 Mode will cause an exception
13 fault. The instructions which are IOPL-sensitive in Protect-
. ed Mode are:
The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at- IN; STI;
tempting to execute these instructions in Virtual OUT; CLI
8086 Mode (or anytime CPL > 0) causes an excep- INS;
tion 13 fault: OUTS ;
REP INS;
REP OUTS;
PHYSICAL
MEMORY
02000000(H)
(PAGE N
8086 0S
EMPTY
TASK 2 PAGE
TABLE
CRTUAL MODE PAGE DIRECTORY
8086 TASK TASK 2 .
[AVAILABLE
PAGE N
PAGE 1 —1
8086 0S >
EMPTY 00000000(H)
PAGE DIRECTORY TASK 1 PAGE T TASK 1 8086 0S
ROOT »| TABLE L Mewory) MEMORY
TASK 2 q 386™ cPu Os
ngggérhsﬁ(ooz ;AAS‘;E ?IRECTORY % MEMORY \\ MEMORY
240440-25

Figure 4.24. Virtual 8086 Environment Memory Management

5-71

intel

i486™ MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be-
come automatically sensitive to the I/O Permission
Bitmap contained in the 486 Microprocessor Task
State Segment. The 1/0 Permission Bitmap, auto-
matically used by the 486 Microprocessor in Virtual
8086 Mode, is illustrated by Figures 4.15a and
4.15b.)

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit_Map__Offset in the current TSS. Bit_Map_
Offset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets < FFFFH from the TSS base. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4.15a.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4.15a. If a bit is 0, I1/0 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 170 instruction causes an excep-
tion 13 fault. Since every byte-wide 1/0 port must be
protectabile, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted I/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/0
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K /0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general case if de-
sired.

572

EXAMPLE OF BITMAP FOR 1/0 PORTS 0-255:
Setting the TSS limit to {bit_Map__Offset + 31
“+1**] [** see note below] will allow a 32-byte bit-
map for the 1/0 ports #0-255, plus a terminator
byte of all 1’s [** see note below]. This allows the
170 bitmap to control I/0 Permission to 1/0 port 0-
255 while causing an exception 13 fault on attempt-
ed 1/0 to any I/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond

the last byte of 1/O mapping information in the 1/O
Permission Bitmap must be a byte containing all 1’s.

The byte of all 1’s must be within the limit of the 486

Microprocessor TSS segment (see Figure 4.15a).

4.6.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
died in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host 486 Microprocessor
operating system. The 486 Microprocessor operat-
ing system determines if the interrupt comes from a
Protected Mode application or from a Virtual Mode
program by examining the VM bit in the EFLAGS
image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 486 Microprocessor operating system in turn
handles the exception or interrupt and then returns
control to the 8086 program. The 486 Microproces-
sor operating system may choose to let the 8086
operating system handle the interrupt or it may emu-
late the function of the interrupt handler. For exam-
ple, many 8086 operating system calls are accessed

" by PUSHing parameters on the stack, and then exe-

cuting an INT n instruction. If the IOPL is set to 0
then all INT n instructions will be intercepted by the
486 Microprocessor operating system. The 486 Mi-
croprocessor operating system could emulate the
8086 operating system’s call. Figure 4.25 shows
how the 486 Microprocessor operating system could

- intercept an 8086 operating system’s call to “Open

a File”.

A 486 Microprocessor operating system can provide
a Virtual 8086 Environment which is totally transpar-
ent to the application software via intercepting and
then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

intel

i486™ MICROPROCESSOR

4.6.6 ENTERING AND LEAVING VIRTUAL
8086 MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to a 486 Microprocessor task whose 486 Microproc-
essor TSS has a FLAGS image containing a 1 in the
VM bit position while the processor is executing in
Protected Mode. That is, one way to enter Virtual
8086 mode is to switch to a task with a 486 Micro-
processor TSS that has a 1 in the VM bit in the
EFLAGS image. The other way is to execute a 32-bit

IRET instruction at privilege level 0, where the stack -

has a 1 in the VM bit in the EFLAGS image. POPF
does not affect the VM bit, even if the processor is in
Protected Mode or level 0, and so cannot be used to
enter Virtual 8086 Mode. PUSHF always pushes a 0
in the VM bit, even if the processor is in Virtual 8086
Mode, so that a program cannot tell if it is executing
in REAL mode, or in Virtual 8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM=1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to 486 Micro-
- processor protected mode occurs only on receipt of
an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode IDT,
and enter an interrupt handler in protected 486 Mi-
croprocessor mode. That is, as part of interrupt pro-
* cessing, the VM bit is cleared.

Because the matching IRET must occur from level O,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 Task Switches To/From Virtual
8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new 486 Microproc-
essor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as -any other task switch out of a
task with a 486 Microprocessor TSS. All of the pro-
grammer visible state, including the FLAGS register
with the VM bit set to 1, is stored in the TSS.

5-73

The segment registers in the TSS will contain 8086
segment base values rather than selectors.

A task switch into a task described by a 486 Micro-
processor TSS will have an additional check to de-
termine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image in
80286 format TSS has only the low order 16 FLAGS
bits). Before loading the segment register images
from a 486 Microprocessor TSS, the FLAGS image
is loaded, so that the segment registers are loaded
from the TSS image as 8086 segment base values.
The task is now ready to resume in virtual 8086 exe-
cution mode.

4.6.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a 486 Microprocessor
Trap Gate (Type 14), or 486 Microprocessor Inter-
rupt Gate (Type 15), which must point to a non-con-
forming level 0 segment (DPL=0) in order to permit
the trap handler to IRET back to the Virtual 8086
program. The Gate must point to a non-conforming
level 0 segment to perform a level switch to level 0
so that the matching IRET can change the VM bit.
486 Microprocessor gates must be used, since
80286 gates save only the low 16 bits of the FLAGS
register, so that the VM bit will not be saved on tran-
sitions through the 80286 gates. Also, the 16-bit
IRET (presumably) used to terminate the 80286 in-
terrupt handler will pop only the lower 16 bits from
FLAGS, and will not affect the. VM bit. The action
taken for a 486 Microprocessor Trap or Interrupt
gate if an interrupt occurs while the task is executing
in virtual 8086 mode is given by the following se-
quence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

i486™ MICROPROCESSOR

8086 APPLICATIO!
PROGRAM

OPERATING
SYSTEM

486™ cPu
APPLICATION
PROGRAM

GP FAULT

486™ CPU 0S
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 3
(LOWEST)

8086 Application makes “Open File Call” — causes

General Protection Fault (Arrow # 1)

Virtual 8086 Monitor intercepts call. Calls 486™ CPU OS (Arrow #2)
486™ CPU OS opens file returns control to 8086 OS (Arrow #3)
8086 OS returns control to application. (Arrow #4)

Transparent to Application

PRIVILEGE
LEVEL 0
(HIGHEST)

3086 APPLICATION
PROGRAM

240440-26

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above. B

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up 'the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected 486 Microprocessor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don't care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not

574

a “native” mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended 486 Microproc-
essors IRET instruction (operand size=32) can be
used, and must be executed at level 0 to change the
VM bit to 1.

(1) If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following sequence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is

popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If

intef

i486™ MICROPROCESSOR

VM=0, this CS load is done as a protected
mode segment load. If VM =1, this will be done
as an 8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was “popped” in step 1.

(5) If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:[ESP+8],
SS:[ESP+12], SS:[ESP+ 16}, and
SS:[ESP + 20], respectively, where the new val-
ue of ESP stored in step 4 is used. Since VM =1,
these are done as 8086 segment register loads.

Else if VM =0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register load. If VM =1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual 8086
mode.

5.0 ON-CHIP CACHE

To meet its performance goals the 486 microproces-
sor contains an eight Kbyte cache. The cache is

software transparent to maintain binary compatibility
with previous generations of the x86 architecture.

The on-chip cache has been designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

5.1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16 bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks each containing 128 lines (see Fig-
ure 5.1). Associated with each 2-Kbyte block are
128 21-bit tags. There is a valid bit for each line in
the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

2y

128 Tags

| |

[=— 16=Byte Line Size —

2k Bytes ;33

-

2k Bytes

2k Bytes

2k Bytes

3 LRU 4 Valid
Bits

128
Sets

t

240440-27

Figure 5.1. On-Chip Cache Physical Organization

5-75

intel

i486™ MICROPROCESSOR

The write strategy of on-chip cache is write-through.
All writes will drive an external write bus cycle in
addition to writing the information to the internal
cache if the write was a cache hit. A write to an
address not contained in the internal cache will only
be written to external memory. Cache allocations
are not made on write misses.

5.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 5.1. These
modes provide flexibility in how the on-chip cache is
used.

The CD and NW bits define four operating modes of
the on-chip code and data cache, as given in the
following table:

Table 5.1. Cache Operating Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, wnte-through and
invalidates disabled

1 0 | Cache fills disabled, wrlte-through and
invalidates enabled

0 1 | INVALID. IF CRO is loaded with this
configuration of bits, a GP fault with
error code of 0 is raised.

0 0 | Cache fills enabled, write-through and
invalidates enabled "

CD=1, N\W=1

The cache is completely disabled by setting
CD=1 and NW=1 and then flushing.the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes which
hit in the cache will not appear on the exter-
nal bus.

It is possible to use the on-chip cache as
fast static RAM by “pre-loading” certain
memory areas into the cache and then set-
ting CD=1 and NW=1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions (see Section 8.2).
When the cache is turned off the memory
mapped by the cache is “frozen” into the
cache since fills and invalidates are dis-
abled.

CD=1, NW=0

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KEN# pin was strapped
HIGH disabling cache fills. Write-throughs
and invalidates may still occur to keep the
cache valid. This mode is useful if the soft-
ware must disable the cache for a short pe-
riod of time, and then re-enable it without
flushing the original contents.

CD=0, N\W=1

INVALID. If CRO is loaded with this bit con-
figuration, a General Protection fault with
error code of 0 is raised. Note that this
mode would imply a non-transparent write-
back cache. A future processor may define
this combination of bits to implement a
write-back cache. ‘

CD=0, NW=0
This is the normal operating mode.

Completely disabling the cache is. a two step pro-
cess. First CD and NW must be set to 1 and then the
cache must be flushed. If the cache is not flushed,
cache hits on reads will still occur and data will be
read from the cache. .

5.3 Cache Line Fills

Any area of memory can be cached in the 486 mi-
croprocessor. Non-cacheable portions of memory
can be defined by the external system or by soft-
ware. The external system can inform the 486 micro-
processor that a memory address is non-cacheable
by returning the KEN# pin inactive during a memory
access (refer to Section 7.2.3). Software can pre-
vent certain pages from being cached by setting the
PCD bit in the page table entry.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-

" ory, the 486 microprocessor initiates a cache line fill.

During a line fill a 16-byte line is read into the 486
microprocessor.

Cache fills will only be generated for read misses.
Write misses will never cause a line in the internal
cache to be allocated. If a cache hit occurs on a
write, the line will be updated.

intef

i486™ MICROPROCESSOR

Cache line fills can be performed over 8- and 16-bit
busses using the dynamic bus sizing feature. Refer
to Section 7.1.3 for a description of dynamic bus
sizing.

Refer to Section 7.2.3 for further information on
cacheable cycles.

5.4 Cache Line Invalidations

The 486 microprocessor contains both a hardware
and software mechanism for invalidating lines in its
internal cache. Cache line invalidations are needed
to keep the 486 microprocessor’s cache contents
consistent with external memory.

Refer to Section 7.2.8 for further information on
cache line invalidations.

5.5 Cache Replacement

When a line needs to be placed in its internal cache
the 486 microprocessor first checks to see if there is
a non-valid line in the set that can be replaced. If all
four lines in the set are valid, a pseudo least-recent-
ly-used mechanism is used to determine which line
should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four

valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, |1, 12, and I3.
The order in which the valid bits are checked during
an invalidation is 10, 11, 12 and 13. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.

If the most recent access to the set was to 10 or I1,
BO is set to 1. BO is set to O if the most recent ac-
cess was to 12 or 13. If the most recent access to
10:11 was to 10, B1 is set to 1, else B1 is set to 0. If
the most recent access to 12:13 was to 12, B2 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:11 and 12:I3 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
5.2. When the processor is reset or when the cache
is flushed all 128 sets of three LRU bits are set to 0.

Yes l

BO=0?
Yes: 10 or |1 least recently used

All four lines in the set valid? No Replace non=valid line

No: 12 or 13 least recently used

B1 =07 B2=07?
Yes No Yes No
Replace Replace Replace Replace
10 n 2 13

240440-28

Figure 5.2. On-Chip Cache Replacement Strategy

5-77

intel

i486™ MICROPROCESSOR

5.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls write policy for second level
caches used with the 486 microprocessor. Setting
PWT=1 defines a write-through policy for the cur-
rent page ‘while PWT=0 allows the possibility of
write-back. The state of PWT is ignored internally by
the 486 microprocessor since the on-chip cache is
write through.

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally ANDed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 5.3). PCD=0 enables cach-

_ing while PCD=1 forbids it. Note that cache fills are

enabled when PCD=0 AND KEN# =0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KEN# telling the 486 microprocessor if the
area is cacheable. The 486 microprocessor initiates
a cache line fill if PCD and KEN# indicate that the
requested information is cacheable.

CRO

vV V.

"CACHE CONTROL LOGIC

) o |

| KEN#

CACHE MEMORY

!
———>] oirecTory | 7aBLE | oFFsET | '
]

LINEAR &
ADDRESS 10l 1oL

4

PWT

' DIRECTORY
' CONTROL REGISTERS

'

]

)

31 0 39 0,

31 '

) CRO I '

| 1

1 CR1) 4 PCD, PWT | 4

' ¥ PCD, PWT '

' CR2 '

] [[]

, CR3 | PCD, PWT » PAGE TABLE 1 (Fr(o:r[:t cR0)

, .

240440-29

Figure 5.3. Page Cacheability

5-78

intel

i486™ MICROPROCESSOR

The PCD bit is masked with the CD (cache disable)
bit in control register 0 to determine the state of the
PCD pin. If CD=1 the 486 microprocessor forces
the PCD pin HIGH. If CD=0 the PCD pin is driven
with the value for the page table entry/directory. See
Figure 5.3.

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (/O references, interrupt ac-
knowledge and Halt cycles), the PWT and PCD bits
are taken from CR3. These bits are initialized to 0 on
reset, but can be set to any value by level 0 soft-
ware.

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3.

5.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSH# pin.

The flush pin needs to be asserted for one clock if
driven synchronously or for two clocks if driven
asynchronously. The flush input is asynchronous but
setup and hold times must be met. The flush pin
should be deasserted after the cache flush is com-
plete. Failure to deassert the pin will cause execu-
tion to stop as the processor will be repeatedly flush-
ing the cache. If external hardware activates flush in
response to an |/0 write, flush must be asserted for
at least two clocks prior to ready being returned for
the 170 write. This ensures that the flush completes
before the CPU begins execution of the instruction
following the OUT instruction.

Flush is recognized during HOLD just like EADS #.

The instructions INVD and WBINVD cause the on-
cache to be flushed. External caches connected to
the 486 microprocessor are signalled to flush their
contents when these instructions are executed.

WBINVD will cause an external write-back cache to
write back dirty lines before flushing its contents.
The external cache is signalled using the bus cycle
definition pins and the byte enables (refer to Section

6.2.5 for the bus cycle definition pins and Section
7.2.11 for special bus cycles). Refer to the 486 mi-
croprocessor programmers reference manual for de-
tailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the 486 microproc-
essor’'s on-chip cache since the cache is write-
through. Note that the INVD and WBINVD instruc-
tions are machine dependent. Future members of
the 486 microprocessor family may change the defi-
nition of this instruction.

5.8 Caching Translation Lookaside
Buffer Entries

The 486 microprocessor contains an integrated pag-
ing unit with a translation lookaside buffer (TLB). The
TLB contains 32 entries. The TLB has been en-
hanced over the 386 microprocessor’s TLB by up-
grading the replacement strategy to a pseudo-LRU
(least recently used) algorithm. The pseudo-LRU re-
placement algorithm is the same as that used in the
on-chip cache.

The paging TLB operation is automatic whenever
paging is enabled. The TLB contains the most re-
cently used page table entries. A page table entry
translates the linear address pointing to a particular
page to the physical address where the page is
stored in memory (refer to Section 4.5, Paging).

The paging unit will look up the linear address in the
TLB in response to an internal bus request. The cor-
responding physical address is passed on to the on-
chip cache or the external bus (in the event of a
cache miss) when the linear address is present in
the TLB.

The paging unit will access the page tables in exter-
nal memory if the linear address is not in the TLB.
The required page table entry will be read into the
TLB and then the cache or bus cycle for the actual
data will take place. The process of reading a new
page table entry into the TLB is called a TLB refresh.

A TLB refresh is a two step process: The paging unit
must first read the page directory entry which points
to the appropriate page table. The page table entry
to be stored in the TLB is then read from the page
table. Control register 3 (CR3) points to the base of
the page directory table.

The 486 microprocessor will allow page directory
and page table entries (returned during TLB refresh-
es) to be stored in the on-chip cache. Setting the

- PCD bits in CR3 and the page directory entry to 1

5-79

will prevent the page directory and page table en-
tries from being stored in the on-chip cache (see
Section 5.6, Page Cacheability).

intel

i486™ MICROPROCESSOR

6.0 HARDWARE INTERFACE

6.1 Introduction

The 486 microprocessor bus has been designed to
be similar to the 386 microprocessor bus whenever
possible. Several new features have been added to
the 486 microprocessor bus resulting in increased
performance and functionality. New features include
a 1X clock, a burst bus mechanism for high-speed
internal cache fills, a cache line invalidation mecha-
nism, enhanced bus arbitration capabilities, a BS8 #
bus sizing mechanism and parity support.

The 486 microprocessor is driven by a 1X clock as
opposed to a 2X clock in the 386 microprocessor. A
25 MHz 486 microprocessor uses a 25 MHz clock in
contrast to a 256 MHz 386 microprocessor which re-
quires a 50 MHz clock. A 1X clock allows simpler
system design by cutting in half the clock speed re-
quired in the external system.

Like the 386 microprocessor, the 486 microproces-
sor has separate parallel busses for data and ad-
dresses. The bidirectonal data bus is 32 bits in width.
The address bus consists of two components: 30
address lines (A2-A31) and 4 byte enable lines
(BEO# —-BE3#). The address bus addresses exter-

nal memory in the same manner as the 386 micro-
processor: The address lines form the upper 30 bits
of the address and the byte enables select individual
bytes within a 4 byte location. The address lines are
bidirectional for use in cache line invalidations.

The 486 microprocessor’s burst bus mechanism en-
ables high-speed cache fills from external memory.
Burst cycles can strobe data into the processor at a
rate of one item every clock.-Non-burst cycles have
a maximum rate of one item every two clocks. Burst
cycles are not limited to cache fills: all bus cycles
requiring more than a single data cycle can be burst-
ed.

The 486 microprocessor has a bus hold feature simi-
lar to that of the 386 microprocessor. During bus
hold, the 486 microprocessor relinquishes control of
the local bus by floating its address, data and control
busses.

The 486 microprocessor has an address hold fea-
ture in addition to bus hold. During address hold only
the address bus is floated, the data and control bus-
ses can remain active. Address hold |s used for
cache line invalidations.

Ahead is a brief description of the 486 microproces-
sor input and output signals arranged by functional

|

DATA BUS
32-Bit -
a {DO D31

i

8 ADS#

us

Control ROY#
INTR

Interrupt [RESET

i

Signals NMI

l

Cache
Control {_F%’
Pl
Coching PCD
Control —
Numeric Q_._L.._
Error IGNNE;
Reporting L

Address Bit A20M;
20 Mask

a8s™
Microprocessor sgz#

C__“> A2=A31
32-Bit

E="IN fddress

Enohles

Arbltrotlon

Burst

BLAST# Control

Bus Size
Control

Bus Cycle
LOCK# Definition
PLOCK#

240440-30

Figure 6.1. Functional Signal Groupings

5-80

intel

i486™ MICROPROCESSOR

groups. Before beginning the signal descriptions a
few terms need to be defined. The # symbol at the
end of a signal name indicates the active, or assert-
ed, state occurs when the signal is at a low voltage.
When a # is not present after the signal name, the
signal is active at the high voltage level. The term
“ready” is used to indicate that the cycle is terminat-
ed with RDY # or BRDY #.

Section 6 and 7 will discuss bus cycles and data
cycles. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the 486 microprocessor during a data cycle. A bus
cycle contains one or more data cycles.

6.2 Signal Descriptions

6.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the 486 microprocessor.
All external timing parameters are specified with re-
spect to the rising edge of CLK.

The 486 microprocessor can operate over a wide
frequency range but CLK’s frequency cannot
change rapidly while RESET is inactive. CLK’s fre-
quency must be stable for proper chip operation
since a single edge of CLK is used internally to gen-
erate two phases. CLK only needs TTL levels for
proper operation. Figure 6.2 illustrates the CLK
waveform.

6.2.2 Address Bus (A31-A2, BEO# ~BE3#)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and 1/0 port address-

es. The 486 microprocessor is capable of address-
ing 4 gigabytes of physical memory space
(0O0000000H through FFFFFFFFH), and 64 Kbytes
of 1/0 address space (00000000H through
0000FFFFH). A31-A2 identify addresses to a 4-byte
location. BEO# -BE3# identify which bytes within
the 4-byte location are involved in the current trans-
fer.

Addresses are driven back into the 486 microproc-
essor over A31-A4 during cache line invalidations.
The address lines are active HIGH. When used as
inputs into the processor, A31-A4 must meet the
setup and hold times, too and tp3. A31-A2 are not
driven during bus or address hold.

The byte enable outputs, BEO# —-BE3 #, determine
which bytes must be driven valid for read and write
cycles to external memory.

BE3# applies to D24-D31
BE2# applies to D16-D23
BE1# applies to D8-D15
BEO# applies to DO-D7

BEO#-BE3# can be decoded to generate A0, A1
and BHE# signals used in 8- and 16-bit systems
(see Table 7.5). BEO# -BE3# are active LOW and
are not driven during bus hold.

6.2.3 DATA LINES (D31-D0)

The bidirectional lines, D31-D0, form the data bus
for the 486 microprocessor. DO-D7 define the least
significant byte and D24-D31 the most significant
byte. Data transfers to 8- or 16-bit devices is possi-
ble using the data bus sizing feature controlled by
the BS8# or BS16# input pins.

tx = input setup times
ty = input hold times, output float, valid and hold times

tx—ste-ty

1.5V

240440-31

Figure 6.2. CLK waveform

intel

i486™ MICROPROCESSOR

D31-DO0 are active HIGH. For reads, D31-D0 must
meet the setup and hold times, t2o and tp3. D31-D0
are not driven during read cycles and bus hold.

6.2.4 PARITY
Data Parity Input/Outputs (DP0-DP3)

DPO-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the 486 micro-
processor. Even parity information must be driven
back to the 486 microprocessor on these pins with
the same timing as read information to insure that
the correct parity check status is indicated by the
486 microprocessor.

The values read on these pins do not affect program
execution. It is the responsibiiity of the system to
take appropriate actions if a parity error occurs.

Input signals on DP0-DP3 must meet setup and
hold times tpo and tog for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK# pin, and a pari-
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and 1/0 reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK# only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the 486 microprocessor. At
all other times it is inactive (HIGH). PCHK # is never
floated.

Driving PCHK # is the only effect that bad input pari-
ty has on the 486 microprocessor. The 486 micro-
processor will not vector to a bus error interrupt
when bad data parity is returned. In systems that will
not employ parity, PCHK# can be ignored. In sys-
tems not using parity, DPO-DP3 should be connect-
ed to Vg through a pullup resistor.

6.2.5 BUS CYCLE DEFINITION
M/10#, D/C#, W/R# Outputs

M/10#, D/C# and W/R# are the primary bus cycle
“definition signals. They are driven valid as the ADS #

signal is asserted. M/IO# distinguishes between
memory and I/O cycles, D/C# distinguishes be-
tween data and control cycles and W/R# distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/I0O#, D/C#
and W/R# are given in Table 6.1. Note there is a
difference between the 486 microprocessor and 386
microprocessor bus cycle definitions. The halt bus
cycle type has been moved to location 001 in the
486 microprocessor from location 101 in the 386 mi-
croprocessor. Location 101 is now reserved and will
never be generated by the 486 microprocessor.

Table 6.1. AD5# Initiated Bus Cycle Definitions

M/IO# D/C# W/R# Bus Cycle Initiated
9 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 1/0 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

5-82

Special bus cycles are discussed in Section 7.2.11.
Bus Lock Output (LOCK#)

LOCK# indicates that the 486 microprocessor is
running a read-modify-write cycle where the external
bus must not be relinquished between the read and
write cycles. Read-modify-write cycles are used to
implement memory-based semaphores. Multiple
reads or writes can be locked.)

When LOCK# is asserted, the current bus cycle is
locked and the 486 microprocessor should be al-
lowed exclusive access to the system bus. LOCK #
goes active in the first clock of the first locked bus
cycle and goes inactive after ready is returned indi-
cating the last locked bus cycle.

The 486 microprocessor will not acknowledge bus
hold when LOCK# is asserted (though it will aliow
an address hold). LOCK # is active LOW and is float-
ed during bus hold. Locked read cycles will not be
transformed into cache fill cycles if KEN# is re-
turned active. Refer to Section 7.2.6 for a detailed
discussion of Locked bus cycles.

Pseudo-Lock Output (PLOCK #)
The pseudo-lock feature allows atomic reads and

writes of memory operands greater than 32 bits.
These operands require more than one cycle to

intel

i486™ MICROPROCESSOR

transfer. The 486 microprocessor asserts PLOCK #
during floating point long reads and writes (64 bits),
segment table descriptor reads (64 bits) and cache
line fills (128 bits).

When PLOCK# is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD
is recognized on memory cycle boundaries even
though PLOCK # is asserted. The 486 microproces-
sor will drive PLOCK# active until the addresses for
the last bus cycle of the transaction have been driv-
en regardiess of whether BRDY # or RDY # are re-
turned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con-
tained within a single cache line. A 64-bit floating
point number must be aligned to an 8-byte boundary
to guarantee an atomic access.

Normally PLOCK# and BLAST# are inverse of
each other. However during the first cycle of a 64-bit
floating point write, both PLOCK# and BLAST # will
be asserted.

Since PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to Section
7.2.7 for a detailed discussion of pseudo-locked bus
cycles.

6.2.6 BUS CONTROL

The bus control signals allow the processor to indi-
cate when a bus cycle has begun, and allow other
system hardware to control burst cycles, data bus
width and bus cycle termination.

Address Status Output (ADS #)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signal will
go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS # is also inactive when the bus is idle.

ADS # is used by external bus circuitry as the indica-
tion that the processor has started a bus cycle. The
external circuit must sample the bus cycle definition
pins on the next rising edge of the clock after ADS #
is driven active.

ADS# is active LOW and is not driven during bus
hold.

Non-burst Ready Input (RDY #)

RDY # indicates that the current bus cycle is com-
plete. In response to a read, RDY # indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDY # indi-
cates that the external system has accepted the 486
microprocessor data. RDY # is ignored when the
bus is idle and at the end of the first clock of the bus
cycle. Since RDY # is sampled during address hold,
data can be returned to the processor when AHOLD
is active.

RDY # is active LOW, and is not provided with an
internal pullup resistor. This input must satisfy setup
and hold times t1g and t47 for proper chip operation.

6.2.7 BURST CONTROL
Burst Ready Input (BRDY #)

BRDY # performs the same function during a burst
cycle that RDY # performs during a non-burst cycle.
BRDY # indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
486 microprocessor data in response to a write.
BRDY # is ignored when the bus is idle and at the
end of the first clock in a bus cycle.

During a burst cycle, BRDY # will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the 486 microprocessor.
ADS# is negated during the second through last
data cycles in the burst, but address lines A2-A3
and byte enables will change to reflect the next data
item expected by the 486 microprocessor.

If RDY# is returned simultaneously with BRDY #,
BRDY # is ignored.and the burst cycle is premature-
ly aborted. An additional complete bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDY # is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to Section 7.2.2 for
burst cycle timing.

BRDY # is active LOW and is provided with a small
internal pullup resistor. BRDY # must satisfy the set-
up and hold times t1g and t47.

 Burst Last Output (BLAST #)

5-83

BLAST# indicates that the next time BRDY # is re-
turned it will be treated as a normal RDY #, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLAST# is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

intel

i486™ MICROPROCESSOR

6.2.8 INTERRUPT SIGNALS (RESET, INTR, NMI)

The interrupt signals can interrupt or suspend exe-
cution of the processor’s current instruction stream.

Reset Input (RESET)

RESET forces the 486 microprocessor to begin exe-
cution at a known state. For a power-up (cold start)
reset, Voo and CLK must reach their proper DC and
AC specifications for at least 1 ms before the 486
microprocessor begins instruction execution. The
RESET pin should remain active during this time to
ensure proper 486 microprocessor operation. How-
ever, for a warm boot-up case, RESET is required to
remain active for a minimum of 15 clocks. The testa-
bility operating modes are programmed by the falling
(inactive going) edge of RESET. (Refer to Section
8.0 for a description of the test modes during reset.)

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The 486 microprocessor will generate two locked in-
terrupt acknowledge bus cycles in response to as-
serting the INTR pin. An 8-bit interrupt number will
be latched from an external interrupt controller at
the end of the second interrupt acknowledge cycle.
INTR must remain active until the interrupt acknowl-
edges have been performed to assure program in-
terruption. Refer to Section 7.2.10 for a detailed dis-
cussion of interrupt acknowledge cycles.

The INTR pin is active HIGH and is not provided with
an internal pulldown resistor. INTR is asynchronous,
but the INTR setup and hold times, tzg9 and tp1, must
be met to assure recognition on any specific clock.

Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally
supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated since the NMI
interrupt vector is internally generated. When NMI
processing begins, the NMI signal will be masked
internally until the IRET instruction is executed.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pulldown resis-
tor. NMI is asynchronous but setup and hold times,
top and t21 must be met to assure recognition on any
specific clock. : '

5-84

6.2.9 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output (BREQ)

The 486 asserts BREQ whenever a bus cycle is
pending internally. Thus, BREQ is always asserted in
the first clock of a bus cycle, along with ADS #. Fur-
thermore, if the 486 is currently not driving the bus
(due to HOLD, AHOLD, or BOFF #), BREQ is assert-
ed in the same clock that ADS# would have been
asserted if the processor were driving the bus. After
the first clock of the bus cycle, BREQ may change
state. It will be asserted if additional cycles are nec-
essary to complete a transfer (via BS8#, BS16#,
KEN#), or if more cycles are pending internally.
However, if no additional cycles are necessary to
complete the current transfer, BREQ can be negat-
ed before ready comes back for the current cycle.
External logic can use the BREQ signal to arbitrate
among multiple processors.: This pin is driven re-
gardless of the state of bus hold or address hold.
BREQ is active HIGH and is never floated. During a
hold state, internal events may cause BREQ to be
deasserted prior to any bus cycles.

Bus Hold Request input (HOLD)

HOLD allows another bus master complete control
of the 486 microprocessor bus. The 486 microproc-
essor will respond to an active HOLD signal by as-
serting HLDA and placing most of its output and in-
put/output pins in a high impedance state (floated)
after completing its current bus cycle, burst cycle, or
sequence of locked cycles. The BREQ, HLDA,
PCHK# and FERR# pins are not floated during bus
hold. The 486 microprocessor will maintain its bus in
this state until the HOLD is deasserted. Refer to
Section 7.2.9 for timing diagrams for a bus hold cy-
cle.

Unlike the 386 microprocessor, the 486 microproc-
essor will recognize HOLD during reset. Pullup resis-
tors are not provided for the outputs that are floated
in response to HOLD. HOLD is active HIGH and is
not provided with an internal pulldown resistor.
HOLD must satisfy setup and hold times tig and tqg
for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the 486 microprocessor has
given the bus to another local bus master. HLDA
goes active in response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
clock that the 486 microprocessor floats its bus.

intel

i486™ MICROPROCESSOR

HLDA will be driven inactive when leaving bus hold
and the 486 microprocessor will resume driving the
bus. The 486 microprocessor will not cease internal
activity during bus hold since the internal cache will
satisfy the majority of bus requests. HLDA is active
HIGH and remains driven during bus hold.

Backoff Input (BOFF #)

Asserting the BOFF # input forces the 486 micro-
processor to release control of its bus in the next
clock. The pins floated are exactly the same as in
response to HOLD. The response to BOFF # differs
from the response to HOLD in two ways: First, the
bus is floated immediately in response to BOFF #
while the 486 completes the current bus cycle be-
fore floating its bus in response to HOLD. Second
the 486 does not assert HLDA in response to
BOFF#.

The processor remains in bus hold until BOFF # is
negated. Upon negation, the 486 microprocessor re-
starts the bus cycle aborted when BOFF# was as-
serted. To the internal execution engine the effect of
BOFF # is the same as inserting a few wait states to
the original cycle. Refer to Section 7.2.12 for a de-
scription of bus cycle restart.

Any data returned to the processor while BOFF # is
asserted is ignored. BOFF # has higher priority than
RDY# or BRDY #. If both BOFF# and ready are
returned in the same clock, BOFF # takes effect. If
BOFF# is asserted while the bus is idle, the 486
microprocessor will float its bus in the next clock.
BOFF# is active LOW and must meet setup and
hold times t1g and tyg for proper chip operation.

6.2.10 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cycles. AHOLD conditions the
486 microprocessors address lines, A4-A31, to ac-
cept an address input. EADS # indicates that an ex-
ternal address is actually valid on the address
inputs. Activating EADS# will cause the 486 mi-
croprocessor to read the external address bus
and perform an internal cache invalidation cycle to
the address indicated. Refer to Section 7.2.8 for
cache invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the 486 microprocessor
address bus for performing an internal cache invali-
dation cycle. Asserting AHOLD will force the 486 mi-
croprocessor to stop driving its address bus in the
next clock. While AHOLD is active only the address
bus will be floated, the remainder of the bus can

5-85

remain active. For example, data can be returned for
a previously specified bus cycle when AHOLD is ac-
tive. The 486 microprocessor will not initiate another
bus cycle during address hold. Since the 486 micro-
processor floats its bus immediately in response to
AHOLD, an address hold acknowledge is not re-
quired. If AHOLD is asserted while a bus cycle is in
progress, and no readies are returned during the
time AHOLD is asserted, the 486 will redrive the
same address (that it originally sent out) once
AHOLD is negated.

AHOLD is recognized during reset. Since the entire
cache is invalidated by reset, any invalidation cycles
run during reset will be unnecessary. AHOLD is ac-
tive HIGH and is provided with a small internal pulii-
down resistor. It must satisfy the setup and hold
times t1g and tqg for proper chip operation. This pin
determines whether or not the built in self test fea-
tures of the 486 microprocessor will be exercised on
assertion of RESET.

External Address Valid Input (EADS #)

EADS# indicates that a valid external address has
been driven onto the 486 address pins. This address
will be used to perform an internal cache invalidation
cycle. The external address will be checked with the
current cache contents. If the address specified
matches any areas in the cache, that area will imme-
diately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #. EADS # is active LOW -and is provided
with an internal pullup resistor. EADS# must satisfy
the setup and hold times t4, and tq3 for proper chip
operation.

6.2.11 CACHE CONTROL
Cache Enable Input (KEN #)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active
and the 486 microprocessor generates a cycle that
can be cached (most any memory read cycle), the
cycle will be transformed into a cache line fill cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The 486 microprocessor will
run between 4 and 16 contiguous bus cycles to fill
the line depending on the bus data width selected by
BS8# and BS16+#. Refer to Section 7.2.3 for a de-
scription of cache line fill cycles.

intel

i486™ MICROPROCESSOR

The KEN# input is active LOW and is provided with
a small internal pullup resistor. It must satisfy the
setup and hold times t14 and t45 for proper chip op-
eration.

Cache Flush Input (FLUSH #)

The FLUSH# input forces the 486 microprocessor
to flush its entire internal cache. FLUSH# is active
LOW and need only be asserted for one clock.
FLUSH# is asynchronous but setup and hold times
top and to1 must be met for recognition on any spe-
cific clock.

FLUSH# also determines whether or not the tristate
test mode of the 486 microprocessor will be invoked
on assertion of RESET.

6.2.12 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respectively. When
paging is disabled, or for cycies that are not paged
when paging is enabled (for example 1/0 cycles)
PWT and PCD correspond to bits 3 and 4 in control
register 3.

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CRO). When CD=1 (cache line fills
disabled) the 486 microprocessor forces PCD HIGH.
When CD=0, PCD is driven with the value of the
page table entry/directory.

The purpose of PCD is to provide a cacheable/non-
cacheable indication on a page by page basis. The
486 will not perform a cache fill to any page in which
bit 4 of the page table entry is set. PWT corresponds
to the write-back bit and can be used by an external
cache to provide this functionality. PCD and PWT
bits are assigned to be zero. during real mode or
whenever paging is disabled. Refer to Sections 4.5.4
and 5.6 for a discussion of non-cacheable pages.

PCD and PWT have the same timing as the cycle
definition pins (M/10#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

6.2.13 NUMERIC ERROR REPORTING
(FERR#, IGNNE #)

To allow PC-type floating point error reporting, the
486 microprocessor provides two pins, FERR# and
IGNNE #.

5-86

Floating Point Error Output (FERR #)

The 486 microprocessor asserts FERR# whenever
an unmasked floating point error is encountered.
FERR# is similar to the ERROR# pin on the 387
math coprocessor. FERR# can be used by external
logic for PC-type floating point error reporting in 486
microprocessor systems. FERR# is active LOW,
and is not floated during bus hold.

In some cases, FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction. '

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

Ignore Numeric Error Input (IGNNE #)

The 486 microprocessor will ignore a numeric error
and continue executing non-control floating point in-
structions when IGNNE # is asserted, but FERR #
will still be activated. When deasserted, the 486 mi-
croprocessor will freeze on a non-control floating
point instruction if a previous instruction caused an
error. IGNNE # has no effect when the NE bit in con-
trol register O is set.

The IGNNE# input is active LOW and is provided
with a small internal pullup resistor. This input is
asynchronous, but must meet setup and hold times
top and tpq to insure recognition on any specific
clock. :

6.2.14 BUS SIZE CONTROL (BS16+#, BS8+#)

The BS16# and BS8# inputs allow external 16- and
8-bit busses to be supported with a small number of
external components. The 486 CPU samples these

intel

i486™ MICROPROCESSOR

pins every clock. The value sampled in the clock
before ready determines the bus size. When assert-
ing BS16# or BS8+# only 16 or 8 bits of the data bus
need be valid. If both BS16# and BS8+# are assert-
ed, an 8-bit bus width is selected.

When BS16# or BS8# are asserted the 486 micro-
processor will convert a larger data request to the
appropriate number of smaller transfers. The byte
enables will also be modified appropriately for the
bus size selected.

BS16+# and BS8# are active LOW and are provided
with small internal pullup resistors. BS16# and
BS8+# must satisfy the setup and hold times t4 and
t45 for proper chip operation.

6.2.15 ADDRESS BIT 20 MASK (A20M #)

Asserting the A20M# input causes the 486 micro-
processor to mask physical address bit 20 before
performing a lookup in the internal cache and before
driving a memory cycle to the outside world. When
A20M# is asserted, the 486 microprocessor emu-
lates the 1 Mbyte address wraparound that occurs
on the 8086. A20M# is active LOW and must be
asserted only when the processor is in real mode.
The A20M# is not defined in Protected Mode.
A20M# is asynchronous but should meet setup and
hold times tag and tpq for recognition in any specific
clock. For correct operation of the chip, A20M#
should be sampled high 2 clocks before and 2
clocks after RESET goes low.

6.3 Write Buffers

The 486 microprocessor contains four write buffers
to enhance the performance of consecutive writes
to memory. The buffers can be filled at a rate of one
write per clock until all four buffers are filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will
go onto the external bus before the memory writes
pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If

5-87

all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
486 microprocessor will not read from an external
memory location that needs to be updated by one of
the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:
The CPU writes to location X. Location X is in the
internal cache, so it is updated there immediately.
However, the bus is busy so the write out to main
memory is buffered (see Figure 6.3(a)). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.

i486 CPU Cache Write Buffer Main Memory
W|
X| new datax X[new data x X data x
Y datay
z
Figure 6.3(a)

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Since
the write in the write buffer is a cache hit, the read is
reordered. When location Y is read, it is put into the
cache. The possibility exists that location Y will re-
place location X in the cache. If this is true, location
X would no longer be cached (see Figure 6.3(b)).

486 CPU Cache Write Buffer Main Memory
W|
Y datay X| new data x X data x
Y
z
Figure 6.3(b)

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Since one of the condi-
tions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propogate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache
misses.

intel

i486™ MICROPROCESSOR

For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con-
sistency.

6.3.1 WRITE BUFFERS AND 1/0 CYCLES

Input/Output (1/0) cycles must be handled in a dif-
ferent manner by the write buffers.

I1/0 reads are never reordered in front of buffered
memory writes. This insures that the 486 microproc-
essor will update all memory locations before read-
ing status from an |I/0 device.

The 486 microprocessor never buffers single 1/0
writes. When processing an OUT instruction, internal
execution stops until the I/0 write actually com-
pletes on the external bus. This allows time for the
external system to drive an invalidate into the 486
microprocessor or to mask interrupts before the
processor progresses to the instruction following
OUT. REP OUTS instructions will be buffered.

i/0 device recovery time must be handled slightly
differently by the 486 microprocessor than with the
386 microprocessor. 1/0 device back-to-back write
recovery times could be guaranteed by the 386 mi-
croprocessor by inserting a jump to the next instruc-
tion in the code that writes to the device. The jump
forces the 386 microprocessor to generate a pre-
fetch bus cycle which can’t begin until the 1/0 write
completes.

Inserting a jump to the next write will not work with
the 486 microprocessor because the prefetch could
be satisfied by the on-chip cache. A read cycle must
be explicitly generated to a non-cacheable location
in memory to guarantee that a read bus cycle is per-
formed. This read will not be allowed to proceed to
the bus until after. the I/0 write has completed be-
cause /0 writes are not buffered. The 1/0 device
will have time to recover to accept another write dur-
ing the read cycle.

6.3.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. It is
important that no other bus cycles, generated by
other bus masters or by the 486 microprocessor it-
self, be allowed on the external bus between the

. read and write portion of the locked sequence.

5-88

During a locked read cycle the 486 microprocessor
will always access external memory, it will never
look for the location in the on-chip cache, but for
write cycles, data is written in the internal cache (if
cache hit) and in the external memory. All data
pending in the 486 microprocessor’'s write buffers
will be written to memory before a locked cycle is
allowed to proceed to the external bus.

The 486 microprocessor will assert the LOCK# pin
after the write buffers are emptied during a locked
bus cycle. With the LOCK# pin asserted, the micro-
processor will read the data, operate on the data
and place the results in a write buffer. The contents
of the write buffer will then be written to external
memory. LOCK# will become inactive after the write
part of the locked cycle.

6.4 Interrupt and Non-Maskable
Interrupt Interface

The 486 microprocessor provides two asynchronous
interrupt inputs, INTR (interrupt request) and NMI
(non-maskable interrupt input). This section de-
scribes the hardware interface between the instruc-
tion execution unit and the pins. For a description of
the algorithmic response to interrupts refer to Sec-
tion 2.7. For interrupt timings refer to Section 7.2.10.

6.4.1 INTERRUPT LOGIC

The 486 microprocessor contains a two-clock syn-
chronizer on the interrupt line. An interrupt request
will reach the internal instruction execution unit two
clocks after the INTR pin is asserted, if proper setup
is provided to the first stage of the synchronizer.

intel

i486™ MICROPROCESSOR

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the 486 microprocessor if the INTR sig-
nal does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the 486 micro-
processor INTR pin three clocks before the end of
an instruction for the interrupt to be acknowledged.
Presenting the interrupt 3 clocks before the end of
an instruction allows the interrupt to pass through
the two clock synchronizer leaving one clock to pre-
vent the initiation of the next sequential instruction
and to begin interrupt service. If the interrupt is not
received in time to prevent the next instruction, it will
be accepted at the end of next instruction, assuming
INTR is still held active. The interrupt service micro-
code will start after two dead clocks.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock
required to vector into the interrupt service micro-
code.

6.4.2 NMI LOGIC
The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log-

ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NMI signal

5-89

is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NMI is not held inactive for at least two clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signal prevents
recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMl is done. Only one NMI can be
pending while NMI is masked.

6.5 Reset and Initialization

The 486 microprocessor has a built in self test
(BIST) that can be run during reset. The BIST is in-
voked if the AHOLD pin is asserted for 2 clocks be-
fore and 2 clocks after RESET is deasserted. RE-
SET must be active for 15 clocks with or with no
BIST being enabled. Refer to Section 8.0 for infor-
mation on 486 microprocessor testability.

The 486 microprocessor registers have the values
shown in Table 6.2 after RESET is performed. The
EAX register contains information on the success or
failure of the BIST if the self test is executed. The
DX register always contains a component identifier
at the conclusion of RESET. The upper byte of DX
(DH) will contain 04 and the lower byte (DL) will con-
tain a stepping identifier (see Table 6-3). The floating
point registers are initialized as if the FINIT/FNINIT
(initialize processor) instruction was executed if the
BIST was performed. If the BIST is not executed, the
floating point registers are unchanged.

intel

i486™ MICROPROCESSOR

Table 6.2. Register Values after Reset

The 486 microprocessor will start executing instruc-
tions at location FFFFFFFOH after RESET. When
the first InterSegment Jump or Call is executed, ad-
dress lines A20-A31 will drop LOW for CS-relative
memory cycles, and the 486 microprocessor will
only execute instructions in the lower one Mbyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of RESETs.

RESET forces the 486 microprocessor to terminate
all execution and local bus activity. No instruction or
bus activity will occur as long as RESET is active.

5-90

. Initial Value Initial Value

Register (BIST) (No Bist)

EAX Zero (Pass) Undefined

ECX Undefined Undefined

EDX 0400 + Revision ID 0400 + Revision ID

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ESI Undefined Undefined

EDI Undefined Undefined

EFLAGS 00000002h . 00000002h

EIP OFFFOh OFFFOh

ES 0000h 0000h

Cs FOOOh* FOOOh*

SS 0000h 0000h

DS 0000h 0000h

FS 0000h 0000h

GS 0000h 0000h

IDTR Base = 0, Limit = 3FFh Base = 0, Limit = 3FFh

CRO 60000010h 60000010h

DR7 00000000h 00000000h

CwW 037Fh Unchanged

SW 0000h Unchanged

T™W FFFFh Unchanged

FIP 00000000h Unchanged

FEA 00000000h Unchanged

FCS 0000h Unchanged

FDS 0000h Unchanged

FOP 000h Unchanged .

FSTACK Undefined Unchanged

Table 6-3. i486™ CPU Revision ID All entries in the cache are invalidated by RESET.

i486™ CPU Revision ID

Stepping Name evision 6.5.1 PIN STATE DURING RESET

B3 01 The 486 microprocessor recognizes and can re-
B4 01 spond to HOLD, AHOLD, and BOFF# requests re-
B5 01 gardless of the state of RESET. Thus, even though
B6 01 the processor is in reset, it can siill float its bus in
co 02 response to any of these requests.

While in reset, the 486 microprocessor bus is in the
state shown in Figure 6.4 if the HOLD, AHOLD and
BOFF # requests are inactive. Note that the address
(A31-A2, BE3#-BEO#) and cycle definition
(M/10#, D/C#, W/R#) pins are undefined from the
time reset is asserted up to the start of the first bus
cycle. All undefined pins (except FERR#) assume
known values at the beginning of the first bus cycle.
The first bus cycle is always a code fetch to address
FFFFFFFOH. FERR# reflects the state of the ES
(error summary status) bit in the floating point unit
status word. The ES bit is initialized whenever the
floating point unit state is initialized.

16-G
13534 Buunp sajels uld b9 ainbi

w /N

At least 15 CLK periods

T

Ti Ti

Tt

/T /"

(e <217 CLKs If no self-test

RESET ANRA (0] 220 CLKs if self-test
L"zo "‘2?:’
A20Mg //// o) ANRAN
FLushy =\ S /777 i
AHoLD 7777 S0 =\
ADS# Y74
BREQ ANRNN
Azq~A4, MIO#, BLAST UNDEFINED /// Y
BEO-BE3#, PWT, PCD °§
A, Ag, PLOCK# UNDEFINED AN\
D/CH, W/R#
Per. 7777
LOCK#
Ds,=0g.
;‘,,0_03)3 SELELLE ssceccccccne- sesscmccccce- seesecsmcccce- ceem--

HOA Q)

NOTES:

1. RESET is an asynchronous input. tpg must be met only to guarantee recognition on a specific clock edge.
2. High for 2 CLKs before and 2 CLKs after RESET goes inactive, for correct operation of the part.
3. Low for 2 CLKs before and 2 CLKs after RESET goes inactive, if tri-state output test mode is to be entered. All outputs are generated tri-stated within 10 CLKs of

RESET being 'deasserted.

4. High for 2 CLKs before and 2 CLKs after RESET goes inactive, to initiate self-test.

5. Hold is recognized normally during RESET.

6. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at least 1 ms after Vgg and CLK are stable.

240440-32

HOSS3IO0HdOHIIN w198h!

intel

i486™ MICROPROCESSOR

7.0 BUS OPERATION

7.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
dword lengths may be transferred without restric-
tions on physical address alignment. Data may be
accessed at any byte boundary but two or three cy-
cles may be required for unaligned data transfers.
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op-
erand Alignment.

The 486 microprocessor address signals are split
into two components. High-order address bits are
provided by the address lines, A2-A31. The byte
enables, BEO # —BE3 #, form the low-order address
and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-
ent bus cycle, as listed in Table 7.1. Byte enable
patterns which have a negated byte enable separat-
ing two or three asserted byte enables will never
occur (see Table 7.5). All other byte enable patterns
.. are possible.

Table 7.1. Byte Enables and Associated

Data and Operand Bytes

Byte
Enable Associated Data Bus Signais
Signal

BEO# | D0-D7 (byte 0—least significant)
BE1# | D8-D15 ‘(byte 1)

BE2# | D16-D23 (byte 2)

BE3# | D24-D31 (byte 3—most significant)

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 7.2. The byte enables can also be decoded to
generate BLE# (byte low enable) and BHE# (byte
high enable). These signals are needed to address
16-bit memory systems (see Section 7.1.4 Inter-
facing with 8- and 16-bit memories).

Table 7.2. Generating A0O-A31 from
BEO#-BE3+# and A2-A31

486™ CPU Address Signals
A31 A2 BE3+# |BE2# | BE1# | BEQ#
Physical Base
Address
A31| ..., ...|A2|A1|A0
A31] ..., A2(0|0 X X X Low
A3t A2l 011 X X Low | High
A1} ... A2(11]0 X Low | High | High
A31] A2| 1| 1| Low | High | High | High

7.1.1 MEMORY AND 1/0 SPACES

Bus cycles may access physical memory space or
170 space. Peripheral devices in the system may ei-
ther be memory-mapped, or |1/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). I/0 addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for pro-
grammed 1/0. See Figure 7.1.

5-92

|ntel i486 ™M MICROPROCESSOR

FFFFFFFFH
PHYSICAL
MEMORY
4 GBYTE
000OFFFFH
00000000H 00000000H
Physical Memory Space

.

PROGRAMMED
1/0 SPACE

.
ACCESSIBLE
64 kBYTE

240440-33
1/0 Space

Figure 7.1. Physical Memory and I/0 Spaces

7.1.2 MEMORY AND 1/0 SPACE
ORGANIZATION

The 486 microprocessor datapath to memory and
input/output (1/0) spaces can be 32-, 16- or 8-bits
wide. The byte enable signals, BEO# —-BE3 #, allow
byte granularity when addressing any memory or |/0
structure whether 8, 16 or 32 bits wide.

The 486 microprocessor includes bus control pins,
BS16+# and BS8#, which allow direct connection to
16- and 8-bit memories and 1/0 devices. Cycles to
32-, 16- and 8-bit may occur in any sequence, since
the BS8# and BS16# signals are sampled during
each bus cycle.

32-bit wide memory and |/O spaces are organized
as arrays of physical 4-byte words. Each memory or
1/0 4-byte word has four individually addressable
bytes at consecutive byte addresses (see Figure
7.2). The lowest addressed byte is associated with
data signals DO-D7; the highest-addressed byte
with D24-D31. Physical 4-byte words begin at ad-
dresses divisible by four.

5-93

32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH

00000003H 00000000H
R

BE3# BE2# BE1# BEO#
240440-34

16-Bit Wide Organization
FFFFFFFFH FFFFFFFEH

' 00000001H 00000000H
[——]
BHE# BLE#
240440-35

Figure 7.2. Physical Memory
and 1/0 Space Organization

intel

i486™ MICROPROCESSOR

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BEO# -
BE3 #, must be decoded to A1, BLE# and BHE # to
address 16-bit memories (see Section 7.1.4).

To address 8-bit memories, the two low order ad-
dress bits A0 and A1, must be decoded from BEO # —
BE3+#. The same logic can be used for 8- and 16-bit
memories since the decoding logic for BLE# and AO
are the same (see Section 7.1.4).

7.1.3 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or 8-bit buses for mem-
ory or I/0. A processor may connect toall three bus
sizes. Transfers to or from 32-, 16- or 8-bit devices
are supported by dynamically determining the bus
width during each bus cycle. Address decoding cir-
cuitry may assert BS16# for 16-bit devices, or
BS8# for 8-bit devices during each bus cycle. BS8 #
and BS16# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both
BS16+# and BS8# are asserted.

BS16+# and BS8# force the 486 microprocessor to
run additional bus cycles to complete requests larg-
er than 16- or 8 bits. A 32-bit transfer will be convert-
ed into two 16-bit transfers (or 3 transfers if the data
is misaligned) when BS16# is asserted. Asserting
BS8# will convert a 32-bit transfer into four 8-bit
transfers.

Extra cycles forced by BS16# or BS8# should be
viewed as independent bus cycles. BS16# or BS8 #
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it.can return between
cycles.

The 486 microprocessor will drive the byte enables
appropriately during extra cycles forced by BS8#:
and BS16#. A2-A31 will not change if accesses are
to a 32-bit aligned area. Table 7.3 shows the set of
byte enables that will be generated on the next cycle
for each of the valid possibilities of the byte enables
on the current cycle.

The dynamic bus sizing feature of the 486 micro-
processor is significantly different than that of the
386 microprocessor. Unlike the 386 microprocessor,
the 486 microprocessor requires that data bytes be
driven on the addressed data pins. The simplest ex-
ample of this function is a 32-bit aligned, BS16#
read.- When the 486 microprocessor reads the two
high order bytes, they must be driven on the data
bus pins D16-D31. The 486 microprocessor ex-
pects the two low order bytes on DO-D15. The 386
microprocessor expects both the high and low order
bytes on DO-D15. The 386 microprocessor always
reads or writes data on the lower 16 bits of the data
bus when BS16# is asserted.

The external system must contain buffers to enable
the 486 microprocessor to read and write data on
the appropriate data bus pins. Table 7.4 shows the
data bus lines where the 486 microprocessor ex-
pects data to be returned for each valid combination
of byte enables and bus sizing options.

Valid data will only be driven onto data bus pins cor-
responding to active byte enables during write cy-
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the 386 micro-
processor, the 486 microprocessor will not duplicate
write data onto parts of the data bus for which the
corresponding byte enable is negated.

Table 7.3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16 #
BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO#
1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 n n n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n

“n" means that another bus cycle will not be required to satisfy the request.

ntel

i486™ MICROPROCESSOR

Table 7.4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO# w/o0 BS8#/BS16# w BS8# W BS16#
1 1 1 0 D7-D0 D7-DO D7-DO
1 1 0 0 D15-D0 D7-D0 D15-D0
1 0 0 0 D23-D0 D7-DO D15-D0
0 0 0 0 D31-D0 D7-D0 D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

7.1.4 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES

In 32-bit physical memories such as Figure 7.3, each
4-byte word begins at a byte address that is a multi-
ple of four. A2—A31 are used as a 4-byte word se-
lect. BEO# —BE3# select individual bytes within the
4-byte word. BS8# and BS16+# are negated for all
bus cycles involving the 32-bit array.

32 DATA BUS (D0O-D31)
486™ 7| 32-BIT
CPU] ADDRESS BUS (BEO#-BE3#,A2-A31) | MEMORY
Iasa# Tasm#
""HIGH"" ""HIGH"
240440-36

Figure 7.3.i486™ Microprocessor
with 32-Bit Memory

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHE #, BLE# and A1.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16# or BS8#.

Figure 7.4 shows the 486 microprocessor address
bus interface to 32-, 16- and 8-bit memories. To ad-
dress 16-bit memories the byte enables must be
decoded to produce A1, BHE# and BLE# (AO). For
8-bit wide memories the byte enables must be de-
coded to produce A0 and A1. The same byte select
logic can be used in 16- and 8-bit systems since
BLE# is exactly the same as A0 (see Table 7.5).

BEO# -BE3# can be decoded as shown in Table
7.5 to generate A1, BHE# and BLE#. The byte se-
lect logic necessary to generate BHE # and BLE # is
shown in Figure 7.5.

486 ™ Micropr Address Bus (A31-A2 BEO#-BE3#) , l;z-s.ty
L 3 A
BS8# BS16#
A31=A2 R
Address - v 16=Bit
Decode ~ BHE#, BLE#, Al . Memory
BEO#=-BE3# Byte
P»] Select Logic
\ AO(BLE#), A1 |
"] 8=Bit
A31-A2 .| Memory
240440-37

Figure 7.4. Addressing 16- and 8-Bit Memories

5-95

intel

i486™ MICROPROCESSOR

Table 7.5. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

i486™™ CPU Signals 8, 16-Bit Bus Signals Comments
BE3# BE2# BE1# BEO# A1 BHE # BLE # (A0) ‘

H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H. H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X -x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when DO-D7 of 16-bit bus is active.
BHE # asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
x = don’tcare

"H = high voltage level
L = low voltage level

* = anon-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes

BEO#
BE1#

Al

240440-38

BE1
BE3#

240440-39

240440-40

Figure 7.5. Logic to Generate A1, BHE # and BLE # for 16-Bit Busses

Combinations of BEO# -BE3# which never occur -

are those in which two or three asserted byte en-
ables are separated by one or more negated byte
enables. These combinations are “don’t care” con-
ditions in the decoder. A decoder can use the non-
occurring BEO # —-BE3 # combinations to its best ad-
vantage.

5-96

Figure 7.6 shows a 486 microprocessor data bus in-
terface to 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so
that data is supplied to, and received from the 486
microprocessor on the correct data pins (see Table
7.4).

i486™ MICROPROCESSOR

. D0-D7 4 >
DB-DI5, 4 >
™ < > 32-Bit
486 '™ Microprocessor ‘LD16-023 4 »| Memory
| D24-D31 " 4
s » ‘
BS8#
BS16# (A2-A31, BEO#=BE3#)
gy{::) 16 | 16-mit
Logic < ”| - Memory
A
! v
Address Byte P 8 R 8-Bit
Decode Swap [€ »] Memory
Logic
240440-74

Figure 7.6. Data Bus Interface to 16- and 8-bit Memories

7.1.5 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8+# and BS16+# can be driven during cache line
fills. The 486 microprocessor will generate enough
8- or 16-bit cycles to fill the cache line. This can be
up to 16 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The 486 microprocessor will generate proper byte
enables for subsequent cycles in the line fill. Table
7.6 shows the appropriate A0 (BLE#), A1 and
BHE# for the various combinations of the 486 mi-
croprocessor byte enables on both the first and sub-
sequent cycles of the cache line fill. The “*" marks
all combinations of byte enables that will be generat-
ed by the 486 microprocessor during a cache line fill.

7.1.6 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
operand that spans more than one physical 4-byte
word of memory or I/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 7.7 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple cycles are required to transfer a
multi-byte logical operand, the highest-order bytes
are transferred first. For example, when the proces-
sor does a 4-byte unaligned read beginning at loca-
tion x11 in the 4-byte aligned space, the three high
order bytes are read in the first bus cycle. The low
byte is read in a subsequent bus cycle.

Table 7.6. Generating A0, A1 and BHE # from the i486™ Microprocessor Byte Enables

First Cache Fill Cycle Any Other Cycle
BE3# BE2# BE1# BEO# | .0 A1 BHE# | A0 A1 BHE#
1 1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
*0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0
*0 0 0 1 0 0 0 1 0 0
1 0 1 1 0o 0 0 0 1 1
*0 0 1 1 0 0 0 0 1 0
*0 1 1 1 0 0 0 1 1 0

5-97

intel

i486™ MICROPROCESSOR

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords

KEY:

b = byte transfer h = high-order portion
w = 2-byte transfer | = low-order portion
‘3 = 3-byte transfer m = mid-order portion
d = 4-byte transfer '

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16# or BS8# forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the 486 microproces-
sor requests a 4-byte read and the external system
asserts BS16#, the lower 2 bytes are read first fol-
lowed by the upper 2 bytes.

In the unaligned transfer described above, the proc-

essor requested three bytes on the first cycle. If the

external system asserted BS16# during this 3-byte

transfer, the lower word is transferred first followed

by the upper byte. In the final cycle the lower byte of

the 4-byte operand is transferred as in the 32-bit ex-
. ample above.

7.2 Bus Functional Description

The 486 microprocessor supports a wide variety of
bus transfers to meet the needs of high performance
systems. Bus transfers can be single cycle or multi-
ple cycle, burst or non-burst, cacheable or non-
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To
support multiprocessing systems there are cache in-
validation cycles and locked cycles.

Byte-Length of Logical Operand
1 2 ‘ 4

Physical Byte Address in

Memory (Low Order Bits) XX 00 01 10 11 00 01 10 11

Transfer Cycles hb hb hw h3
" over 32-Bit Bus b\ w w w Ib d 13 Iw Ib

Transfer Cycles over

16-Bit Data Bus b

{ = BS16+# Asserted
Transfer Cycles over

8-Bit Data Bus b

i = BS8# Asserted

4-Byte Operand [b | mib I mhb| hb |

P P

byte with byte with
lowest highest
address address

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in Section 7.2.3. The re-
maining sections describe locked, pseudo-locked,
invalidate, bus hold and interrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the 486 microprocessor during a data cycle. A bus
cycle contains one or more data cycles.

Refer to Section 7.2.13 for a description of the bus
states shown in the timing diagrams.

7.2.1 NON-CACHEABLE NON-BURST SINGLE
CYCLE

- 7.2.1.1 No Wait States

The fastest non-burst bus cycle that the 486 micro-
processor supports is two clocks long. These cycles
are called 2-2 cycles because reads and writes take
two cycles each. The first 2 refers to reads and the

5-98

intel

i486™ MICROPROCESSOR

second to writes. For example, if a wait state needs
to be added to a write, the cycle would be called 2-3.

Basic two clock read and write cycles are shown in
Figure 7.7. The 486 microprocessor initiates a cycle
by asserting the address status signal (ADS #) at the
rising edge of the first clock. The ADS# output indi-
cates that a valid bus cycle definition and address is
available on the cycle definition lines and address
bus.

The non-burst ready input (RDY #) is returned by the
external system in the second clock. RDY # indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The 486 microprocessor samples RDY # at the end
of the second clock. The cycle is complete if RDY #
is active (LOW) when sampled. Note that RDY # is
ignored at the end of the first clock of the bus cycle.

The burst last signal (BLAST #) is asserted (LOW)
by the 486 microprocessor during the second clock
of the first cycle in all bus transfers illustrated in Fig-
ure 7.7. This indicates that each transfer is complete
after a single cycle. The 486 microprocessor asserts
BLAST# in the last cycle of a bus transfer.

The timing of the parity check output (PCHK#) is
shown in Figure 7.7. The 486 microprocessor drives
the PCHK# output one clock after ready terminates
a read cycle. PCHK# indicates the parity status for
the data sampled at the end of the previous clock.
The PCHK# signal can be used by the external sys-
tem. The 486 microprocessor does nothing in re-
sponse to the PCHK# output.

7.2.1.2 Inserting Wait States

The external system can insert wait states into the

" basic 2-2 cycle by driving RDY # inactive at the end
of the second clock. RDY # must be driven inactive
to insert a wait state. Figure 7.8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to a
486 microprocessor bus cycle by maintaining RDY #
inactive.

The burst ready input (BRDY #) must be driven inac-
tive on all clock edges where RDY # is driven inac-
tive for proper operation of these simple non-burst
cycles.

5-99

7.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the 486 microprocessor or by the
external memory system. An internal request for a
64-bit floating point load or a 128-bit pre-fetch must
take more than one cycle. Internal requests for un-
aligned data may also require multiple bus cycles. A
cache line fill requires multiple cycles to complete.
The external system can cause a multiple cycle
transfer when it can only supply 8 or 16 bits per
cycle.

Only multiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in Sec-
tions 7.2.3 and 7.2.5.

7.2.2.1 Burst Cycles

The 486 microprocessor can accept burst cycles for
any bus requests that require more than a single
data cycle. During burst cycles, a new data item is
strobed into the 486 microprocessor every clock
rather than every other clock as in non-burst cycles.
The fastest burst cycle requires 2 clocks for the first
data item with subsequent data items returned every
clock.

The 486 microprocessor is capable of bursting a
maximum of 32 bits during a write. Burst writes can
only occur if BS8+# or BS16# is asserted. For exam-
ple, the 486 microprocessor can burst write four 8-
bit operands or two 16-bit operands in a single burst
cycle. But the 486 microprocessor cannot burst mul-
tiple 32-bit writes in a single burst cycle.

Burst cycles begin with the 486 microprocessor driv-
ing out an address and asserting ADS # in the same
manner as non-burst cycles. The 486 microproces-
sor indicates that it is willing to perform a burst cycle
by holding the burst last signal (BLAST #) inactive in
the second clock of the cycle. The external system
indicates its willingness to do a burst cycle by return-
ing the burst ready signal (BRDY #) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal 486 microprocessor cache
line). A 16-byte aligned area begins at location
XXXXXXX0 and ends at location XXXXXXXF. During
a burst cycle, only BEO-3#, As, and Az may
change. A4—A3q, M/IO#, D/C#, and W/R # will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the 486 microprocessor internal cache
lines.

intel

i486™ MICROPROCESSOR

T2

T , T2

o, omo, . nmn o, 1 m o, T2, ™

[! | ' | ! 1 ! |
CLK | ! | y | ! | ! |
| ! I ! | ! | ! |

' . ' ' |

1 1 1 1
ADS# | 1 | [I ' 1 ' |
i \—l—ll | \—l—/l | __.I_J,I | \.__J_.JI I
A2-A31 - S : X : ' N . f

" M/I10;

broy i LA i A :
BEO=-3# 1 H |) | o | , |
| | |] | L L
w /R#] : [} : . I : 1 :]
| __,____,L_J) | ______L_J h 1
| [S ' | 1 1 1 |

RDY#

OOOCEKRXKKRRXRKRRKRKRRKRRKN 1 /XRRRRRRKKROUON /HCCRKOCRRROONEY. /X000000R000KRK\ ! /XKKKK0

I 1 [} I
L ! | X | ! | ! 1
v T\ L\ L T T
| X]) 1 S | | r
[} . 1 | ! | i |] |
DATA L ; {20} —{ FROM CPU Yt (N : FROM CPU ‘
| o —— T e :>_
PCHK# : r L \ L r : : L
| ! Y ! IRYRY
READ WRITE READ WRITE
) 240440-50
Figure 7.7. Basic 2-2 Bus Cycle
no,om ., T2, 12 Mmoo, T2 , T2 , ™
cLK :] | : N I 1 !
' | | ' |) !
ADS# ' \ | / | | \ | / | |
! ; : ' . \ '
A2~A31 : ! ! ! ! ! !
5 i S S
BEO-3# | H H o |) |
W/R# ! \ : : : / ! ! !
\ | : ' i : '
rov# - KOOOO00R000C00O0RNN0NN/ \HN\ [)HHHMNW’ \NN\)HNH
o X X | : : i
BLAST# D O '. [\ : [
'. ! ! ' ! ! !
DATA : I. : @ : { irRoMceu | Y
! | READ ! | OWRITE | !
‘ 240440-51

Figure 7.8. Basic 3-3 Bus Cycle

5-100

intel

i486™ MICROPROCESSOR

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the 486 microproces-
sor can be converted into a burst cycle. The 486
microprocessor will only burst the number of bytes
needed to complete a transfer. For example, eight
bytes will be bursted in for a 64-bit floating point
non-cacheable read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be bursted such
as interrupt acknowledge and halt, BRDY # has the
same effect as RDY#. BRDY # is ignored if both
BRDY # and RDY # are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with RDY #.

7.2.2.2 Terminating Muitiple and
Burst Cycle Transfers

The 486 microprocessor drives BLAST # inactive for
all but the last cycle in a multiple cycle transfer.
BLAST # is driven inactive in the first cycle to inform
the external system that the transfer could take ad-
ditional cycles. BLAST # is driven active in the last
cycle of the transfer indicating that the next time
BRDY# or RDY # is returned the transfer is com-
plete.

BLAST # is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDY # or BRDY # is returned.

The number of cycles in a transfer is a function of
several factors including the number of bytes the mi-
croprocessor needs to complete an internal request
(1, 2, 4, 8, or 16), the state of the bus size inputs
(BS8+# and BS16#), the state of the cache enable
input (KEN#) and alignment of the data to be trans-
ferred.

When the 486 microprocessor initiates a request it
knows how many bytes will be transferred and if the
data is aligned. The external system must tell the
microprocessor whether the data is cacheable (if the
transfer is a read) and the width of the bus by return-
ing the state of the KEN#, BS8# and BS16# inputs
one clock before RDY # or BRDY # is returned. The
486 microprocessor determines how many cycles a
transfer will take based on its internal information
and inputs from the external system.

BLAST # is not valid in the first clock of a bus cycle
because the 486 microprocessor cannot determine
the number of cycles a transfer will take until the

external system returns KEN#, BS8# and BS16#.
BLAST # should only be sampled in the second and
subsequent clocks of a cycle when the external sys-
tem returns RDY # or BRDY #.

The system may terminate a burst cycle by returning
RDY# instead of BRDY#. BLAST# will remain
deasserted until the last transfer. However, any
transfers required to complete a cache line fill will
follow the burst order, e.g., if burst order was 4, 0, C,
8 and RDY # was returned at after 0, the next trans-
fers will be from C and 8.

7.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 7.9 illustrates a 2 cycle non-burst, non-cache-
able multiple cycle read. This transfer is simply a
sequence of two single cycle transfers. The 486 mi-
croprocessor indicates to the external system that
this is a multiple cycle transfer by driving BLAST #
inactive during the second clock of the first cycle.
The external system returns RDY # active indicating
that it will not burst the data. The external system
also indicates that the data is not cacheable by re-
turning KEN# inactive one clock before it returns
RDY # active. When the 486 microprocessor sam-
ples RDY # active it ignores BRDY #.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns RDY # active.

The 486 microprocessor indicates the last cycle of
the transfer by driving BLAST# active. The next
RDY # returned by the external system terminates
the transfer.

7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # in the first cycle of the transfer.
This is illustrated in Figure 7.10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. RDY # must be driven inactive when
BRDY # is returned active.

BLAST # behaves exactly as it does in the non-burst
read. BLAST # is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLAST # is driven
active telling the external memory system to end the
burst after returning the next BRDY #.

5-101

el

i486™ MICROPROCESSOR

m ™o, T2 , T -, T2, m

’ B ! 1 ! |
CLK Ly . | . |

. | ! [! | '

. 1 A
ADS$ - . \ | / o\ / S
: I I i
A2-A31 ! . 1 . l
M/10# —— .

D /c# 1 x | 1]]
W/R# — : X : :
BEO=3# ! I ! I !

Rov# ARV LAV /AW
BROY# - A A A A AR

L : L : I
1 1 1
KEN# | | | :
| : | : !
]] | .
il 1 1
S T A W WY
[\ 1 . i [
1 | 1 | 1
DATA | : /T0\ ! /T0\
: j \CP‘U[5 \CPllJ[
1 ! .
1st DATA 2nd DATA

240440-52

Figure 7.9. Non-Cacheable, Non-Burst, Muiltiple Cycle Transfers

no, . , T2 , T2 , m ., u

| | |
) | o |
ADS# : \ ,

1
1
1
|
I
i
[
i
'

[
|
i I |
1
' | |
1 1 |
1
|

' r I I
rov - RKARAAVANCRRKARRARAARANRY KRR KRR

seovs YN0 A A

1

M/10# L
L
I

| ! !
o | }
KEN# |) | ! !
| | i N o
\ ' ' | |
| | \
L T T
BLAST# X X | / - \ | / |
- 1
! : : | |
] 1 I
T0 0
DATA - F—v)
1

y
|
'

. 240440-53

Figure 7.10. Non-Cacheable Burst Cycle

5-102

intel

i486™ MICROPROCESSOR

7.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KEN# active
one clock before RDY # or BRDY # during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining three require-
ments described below are met, the 486 microproc-
essor will fetch an entire cache line regardless of the
state of KEN#. KEN# must be returned active in
the last cycle of the transfer for the data to be writ-
ten into the internal cache. The 486 microprocessor
will only convert memory reads or prefetches into a
cache fill.

KEN# is ignored during write or 1/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. 1/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock pri-
or to RDY# or BRDY # being returned for the
first data cycle.

2. The cycle must be of the type that can be inter-
nally cached. (Locked reads, 1/0 reads, and in-
terrupt acknowledge cycles are never cached).

3. The page table entry must have the page cache
disable bit (PCD) set to 0. To cache a page
table entry, the page directory must have
PCD=0. To cache reads or prefetches when
paging is disabled, or to cache the page direc-
tory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in control register 0
(CRO) must be clear.

External hardware can determine when the 486 mi-
croprocessor has transformed a read or prefetch
into a cache fill by examining the KEN#, M/IO#,
D/C#, W/R#, LOCK#, and PCD pins. These pins
convey to the system the outcome of conditions 1-3
in the above list. In addition, the 486 drives PCD high
whenever the CD bit in CRO is set, so that external
hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

7.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The 486 microprocessor expects to receive valid
data on its entire bus (32 bits) in the first cycle of a
cache line fill. Data should be returned with the as-
sumption that all the byte enable pins are driven ac-
tive. However if BS8# is asserted only one byte
need be returned on data lines DO-D7. Similarly if
BS16# is asserted two bytes should be returned on
D0-D15.

The 486 microprocessor will generate the addresses
and byte enables for all subsequent cycles in the
line fill. The order in which data is read during a line
fill depends on the address of the first item read.
Byte ordering is discussed in Section 7.2.4.

7.2.3.2 Non-Burst Cacheable Cycles

Figure 7.11 shows a non-burst cacheable cycle. The
cycle becomes a cache fill when the 486 microproc-
essor samples KEN# active at the end of the first
clock. The 486 microprocessor drives BLAST # in-
active in the second clock in response to KEN#.
BLAST # is driven inactive because a cache fill re-
quires 3 additional cycles to complete. BLAST # re-
mains inactive until the last transfer in the cache line
fill. KEN# must be returned active in the last cycle
of the transfer for the data to be written into the
internal cache.

Note that this cycle would be a single bus cycle if
KEN# was not sampled active at the end of the first
clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST # output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST# until the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
486 microprocessor drives the address lines and
byte enables (see Section 7.2.4.2 for Burst and
Cache Line Fill Order).

5-103

i486™ MICROPROCESSOR

Ti m 12, ™M 2 no,oT T T2, W
oLk : ' : h : | :) :
o ! | ! : ' : !
ADS# ’I \ i ’ I \ i ’ [\ i ’ ! \ | / |
Az;?g/; ! | | | : X K X |
M +
bt i LA B i !
BEO-3# ' ! | ! | -‘ | ! .
RDY# WHNH'NHHNWMH\)NNHMHHN\ [HNNWHW\)WNHMWH\)WHH
BROY# 0WONWWHOHMHHHHONNHH00OHOWHOHMHNHNWH0000NWN\«NHHWMMHW
l : | | | | : |
KEN# | \ I / : l ! ! : \) / !
: : 1 E | E | : P
BLAST# : X : / B \ : / ! \ : , ! \ : \ | ,
| . | ' | X . ' !
DATA ! - /7N X T